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Chapter 1

Introduction

Keywords Chemistry, Manufacturing, and Controls (CMC) statistics • Clinical

statistics • Pharmaceutical activities • Regulatory guidance • Statistical methods

1.1 Objectives

The motivation for this book came from an American Association of Pharmaceu-

tical Scientists (AAPS) short course on statistical methods applied to Chemistry,

Manufacturing, and Controls (CMC) applications presented by four of the authors.

One of the course participants asked us for a good reference book, and the only

book we could recommend was written over 20 years ago by Chow and Liu (1995).

We agreed that a more recent book would serve a need in our industry. This book

presents statistical techniques that are critically important to CMC activities.

Statistical methods are presented with a focus on applications unique to the

CMC pharmaceutical industry. The target audience consists of statisticians and

other scientists who are responsible for performing statistical analyses within a

CMC environment. Basic statistical concepts are addressed in Chap. 2 followed by

applications to specific topics related to development and manufacturing. The

mathematical level assumes an elementary understanding of statistical methods.

The ability to use Excel or statistical packages such as Minitab, JMP, or R will

provide more value to the reader.

Since we began this project, an edited book has been published on the same topic

by Zhang (2016). The chapters in Zhang discuss statistical methods for CMC as

well as drug discovery and nonclinical development. We believe our book com-

plements Zhang by providing more detailed statistical analyses and examples.

1.2 Regulatory Guidance for CMC Applications

Persons responsible for statistical analyses in CMC applications should be familiar

with guidance and regulations that pertain to the pharmaceutical industry. The

legality of CMC issues is covered in the Code of Federal Regulations (CFR),
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Title 21, Food and Drugs Administration (FDA). Several relevant sections of this

code are reported in Table 1.1.

In addition to the CFR, regulatory agencies have produced a number of useful

documents that direct the approaches used in statistical analysis. Tables 1.2, 1.3,

1.4, and 1.5 report documents referenced and discussed in this book.

1.3 Use of Statistical Tools in Pharmaceutical Development
and Manufacturing

This book focuses on statistical methods used in the development and

manufacturting of pharmaceutical products. An excellent description of this area

is presented by Peterson et al. (2009). Pharmaceutical products are developed over

five parallel activities:

1. Clinical trials,

2. Preclinical assessment,

3. Active pharmaceutical ingredient (API) development,

4. Drug product (DP) formulation, and

5. Analytical method development.

Table 1.1 Important sections of 21 CFR

Source Title

Code of Federal Regulations, Title 21, Food

and Drugs Administration (FDA), Part

210 (21 CFR 210)

Current good manufacturing practice in

manufacturing, processing, packing, or hold-

ing of drugs

21 CFR 211 Current good manufacturing practice for fin-

ished pharmaceuticals

21 CFR 600 Biological products: general

21 CFR 820 Quality system regulations

Table 1.2 Useful regulatory statistical guidance ASTM international

Title Chapter

E29: Standard practice for using significant digits in test data to determine confor-

mance to specifications

2

E2281: Standard practice for process capability and performance measurement 5

E2475: Standard guide for process understanding related to pharmaceutical manu-

facture and control

4

E2587: Standard practice for use of control charts in statistical process control 5

E2709: Standard practice for demonstrating capability to comply with an acceptance

procedure

7

E2810: Standard practice for demonstrating capability to comply with the test for

uniformity of dosage units

7
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Figure 1.1 from Peterson et al. displays the timeline for these activities.

While the most common area for statisticians to work is in the clinical area

(activities 1 and 2), the focus of this book is on paths 3–5 in Fig. 1.1. Key research

questions and statistical methods used to help answer them are shown in Table 1.6.

Statistical quality control methods are applied throughout all activities in Phase

IV. These methods are discussed in Chap. 5.

1.4 Differences Between Clinical and CMC Statisticians

To better understand the nature of CMC statisical analysis, it is useful to contrast

this work to that of the clinical statistician. The role of a clinical statistician is well

established. It is required and integrated into regulations and internal business

processes. Often, these predefined roles and responsibilities are outlined in com-

pany procedures. Given the key role they play in the clinical drug development

process, the clinical statistician is well linked into clinical project teams with strong

management support. Among their many responsibilities, clinical statisticians are

responsible for statistical design of clinical trials and statistical analysis plans

included in protocols which are sent to the FDA for review. These protocols are

Table 1.3 Useful regulatory statistical guidance Food and Drug Administration, Center for Drugs

Evaluation Research (FDA,CDER)

Title Chapter

Guidance for industry: immediate release solid oral dosage forms, scale-up and

postapproval changes: chemistry, manufacturing and controls, in vitro dissolution

testing, and in vivo bioequivalence documentation (1995)

7

Guidance for industry: demonstration of comparability of human biological products,

including therapeutic biotechnology-derived products (1996)

9

Guidance for industry: SUPAC-MR modified release solid oral dosage forms, scale-

up and postapproval changes: chemistry, manufacturing and controls, in vitro disso-

lution testing, and in vivo bioequivalence documentation (1997a)

7

Guidance for industry: dissolution testing of immediate release solid oral dosage

forms (1997b)

7

Guidance for industry: ANDAs: blend uniformity analysis (1999 withdrawn 2002) 7

Guidance for industry: powder blend and finished dosage units—stratified in-process

dosage unit sampling and assessment (October 2003 withdrawn 2013)

7

Guidance for industry: process validation: general principles and practices (2011) 3, 5, 6, 9

Guidance for industry: quality considerations in demonstrating biosimilarity of a

therapeutic protein product to a reference product (2015a)

9

Guidance for industry: scientific considerations in demonstrating biosimilarity to a

reference product (2015b)

9

Guidance for industry: biosimilars: questions and answers regarding implementation

of the biologics price competition and innovation act of 2009 (2015c)

9

Guidance for industry: analytical procedures and methods validation for drugs and

biologics (2015d)

6
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very detailed and provide clear articulation of the exact analyses to be followed and

the specific endpoints that must be met for clinical success. These protocols

typically are based on regulatory requirements. The FDA has a team of statistical

reviewers that evaluates the protocols and the definitive pass/fail nature of these

Table 1.4 Useful regulatory statistical guidance International Conference on Harmonization

(ICH)

Title Chapter

Q5C stability testing of biotechnological/biological products (1995) 8

Q1B photostability testing of new drug substances and products (1996) 8

Q1C stability testing for new dosage forms (1997) 8

Q6A specifications: test procedures and acceptance criteria for new drug substances

and new drug products: chemical substances (1999a)

3, 7, 8

Q6B specifications: test procedures and acceptance criteria for biotechnological/

biological products (1999b)

7, 8

Q7 good manufacturing practice guide for active pharmaceutical ingredients (2000) 4

Q1D bracketing and matrixing designs for stability testing of new drug substances and

products (2002)

8

Q1A(R2) stability testing of new drug substances and products (2003a) 8

Q1E evaluation for stability data (2003b) 7, 8

Q3A impurities in new drug substances (2003c) 8

Q3B (revised) impurities in new drug products (2003d) 8

Q5E comparability of biotechnological/biological products subject to changes in their

manufacturing process (2004)

2, 9

Q2(R1) validation of analytical procedures: text and methodology (2005a) 6, 8

Q9 quality risk management (2005b) 3–5

Q10 pharmaceutical quality system (2008) 3, 5

Q8(R2) pharmaceutical development (2009) 3, 5

Q11 development and manufacture of drug substances (chemical entities and bio-

technological/biological entities) (2012)

3

Table 1.5 Useful regulatory statistical guidance United States US Pharmacopeial (USP)

Title Chapter

h905i Uniformity of dosage units 7

h1010i Analytical data—interpretation and treatment 2, 6

h1030i Biological assay chapters—overview and glossary 6

h1032i Design and development of biological assays 6

h1033i Biological assay validation 6

h1160i Pharmaceutical calculations in prescription compounding 8

h1223i Validation of alternative microbiological methods 6

h1224i Transfer of analytical procedures 6

h1225i Validation of compendial procedures 6

General notices 3.10: conformance to standards, applicability of standards 7

General notices 7.20: rounding rules 2, 7
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criteria heightens the criticality of the statistician on the cross-functional team.

There is much external guidance that must be followed and the clinical statisticians

must follow strict documentation expectations. Data systems are well developed

Fig. 1.1 Pharmaceutical activities

Table 1.6 Research questions and statistical methods

Activity Research questions

Book chapter

with application

API development How can API be scaled to a level required for com-

mercial market?

4

API development How do we effectively characterize our product and

develop a knowledge base for the API?

3, 4

DP formulation What shelf life limits and specifications need to be

established to ensure DP is safe and efficatious?

7, 8

DP formulation If our process is transferred to another manufacturing

site, how do we ensure product safety and efficacy are

not impacted?

9

Analytical

method

development

How do we determine if analytical methods are fit for

use?

6

Analytical

method

development

How do we know if a method will perform the same in

two different labs?

6
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and SAS and R are common data analysis tools. Other software packages are rarely

used except for occasional exploratory work. Upon completion of the clinical study,

the clinical statistician co-authors reports with clinical colleagues which are

included in the regulatory submissions. Given the existing system, the clinical

statistician does not spend a significant portion of time training their clinical

colleagues to perform their own statistical analyses. Most of their interaction with

colleagues involves discussions to help them understand and correctly interpret the

statistical analyses completed by the statistician. In order to be the most successful,

clinical statisticians must understand the science of the disease so that they can add

value to the project team.

Although there are similarities between the roles of the CMC and clinical

statisticians, there are differences in both type and degree. CMC statisticians

work with scientists to help develop new drug substance and drug product

manufacturing processes, develop and validate analytical procedures, improve

existing processes and products, and troubleshoot systems when issues arise. Unlike

the clinical statistician, the role of the CMC statistician does not have a regulatory

requirement and as such, the nature of the role can vary both within and across

companies. Factors impacting these differences include the technical and interper-

sonal skills of the statistician, the nature of management support, and the strength of

the partnership with individual collaborators. Small, relatively short duration stud-

ies are common as opposed to large clinical trials and access to large data sets

created to satisfy Good Manufacturing Practice (GMP) or regulatory requirements

are the exception rather than the rule. Unlike the large and well-defined statistical

departments in the clinical organization, CMC statisticians often work alone or in

very small groups. The CMC statistician may report to management in the area they

support, or to the broader clinical organization. Good documentation practices are

important for the CMC statistician to adhere to GMP requirements but there are no

statistical protocols sent to regulatory agencies for review. In the CMC area, studies

are performed and documented internally so as to be available if requested by

regulatory agencies. Documentation in these reports must be clear so that analyses

can be explained and reproduced when necessary. Given that data sets are often

small, data analysis packages such as Minitab and JMP are commonly used to

perform calculations. SAS and R are also employed with larger data sets, or when

requests are made from regulatory agencies. Because the CMC statistical workforce

is relatively small, CMC statisticians spend time teaching their scientific collegues

how to peform their own statistical analyses. This is one reason why statistical

packages that do not require written code (e.g., JMP and Minitab) are often selected

for analysis. Similar to the clinical statistician, the CMC statistician often contrib-

utes to the contents of a regulatory submission. CMC statisticians help write

sections describing process and formulation development, stability, justification

of specifications, process and product comparability, and analytical method vali-

dations. Similar to clinical statisticians, the CMC statistician must understand the

science and engineering concepts of their collaborators in order to be successful.

6 1 Introduction



1.5 How to Use This Book

It is possible to gain a working understanding of the methods in this book with no

advanced statistical training. In fact, one objective of this book is to make these

methods available for scientists who do not possess a degree in statistics. Profes-

sional statisticians will also find it helpful to have these methods in a single source

for their own use and for training others.

Chapter 2 provides statistical methods that are useful for performing the analyses

required to address research questions in the CMC manufacturing environment. We

recommend that the reader begin by reading Sects. 2.1–2.5. This provides both a

high level view of statistical applications and some specific examples for simple

data sets. After reading this material, the reader may complete Chap. 2, or jump to

any particular application of interest in Chaps. 3–9. Where needed, Chaps. 3–9 refer

back to statistical methods in Chap. 2 where the reader is provided a more thorough

understanding of the statistical method. Worked numerical examples are provided

in all chapters.

The reader may use any number of statistical packages to help work the

examples. Many of the examples can be performed using Excel. Some require

user-friendly statistical packages, such as Minitab and JMP. Additionally, we have

provided data sets and program codes written in SAS and R at the website for many

of the examples. Discussions of the examples will focus on the output rather than

specific code used to generate the output.
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Chapter 2

Statistical Methods for CMC Applications

Keywords Analysis of variance • Bayesian analysis • Confidence intervals • Data

reporting • Data rounding • Data transformations • Dependent measures •

Equivalence testing • Hypothesis testing • Interaction effects • LOQ values •

Mixed models • Multiple regression • Nonlinear models • Non-normal data •

Prediction intervals • Quadratic effects • Regression analysis • Residual analysis •

Statistical consulting • Statistical intervals • Tolerance intervals • Visualization of

data

2.1 Introduction

In this chapter, we provide statistical methods that are useful in CMC applications.

Our goal is to provide a description of these methods without delving deeply into

the theoretical aspects. References are provided for the reader who desires a more in

depth understanding of the material.

2.2 Statistical Analysis in a CMC Environment

As described in Chap. 1, CMC statisticians work directly with individual subject

matter experts (SME) from other areas of science. In this section, we describe a

typical example of this interaction from the viewpoint of the statistician. Here

“statistician” is defined as the person who is responsible for performing the required

statistical analyses. This need not be a person with a terminal degree in statistics. The

term “client” is used to represent the SME requiring help in performing the statistical

analysis. The statistical analysis process consists of the following four steps:

1. Initial client meeting.

2. Planning of statistical analysis.

3. Data analysis.

4. Communication of results to the client.

Each of these steps is now described in the context of an example.
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2.2.1 Initial Client Meeting

The initial meeting with a client is where everything begins. The goal for the

statistician is to listen to the client and learn about the problem. The statistician

should listen for at least 80% of the conversation, and ask clarifying questions for

the other 20%. This is not the time to overwhelm the client with statistical jargon

and tales of the sophisticated power of a pet statistical procedure. One of the

benefits of being a statistician is that you have the opportunity to work with clients

in a variety of fields. So take advantage of these sessions and learn something new.

You will have an opportunity later in the process to share your expertise in

statistics.

An example of a typical initial meeting is shared below. The statistician, Tom,

has met the client, Noel, in Noel’s office. Noel is a product quality leader who is

responsible for all quality issues related to a particular product.

Tom: Good morning, Noel. How have you been doing?

Noel: Fine. Just trying to keep up with all the work.

Tom: Tell me about it! (Note: There is always the obligatory greeting that suggests

both parties are the hardest working people in the company.) What can I help you

with today?

Noel: As you know, we are transferring our manufacturing process to Ireland, and

are in the middle of the comparability phase of the transfer. We need to

demonstrate to regulatory agencies that once the process is operating in Ireland,

it will be manufacturing product of a similar quality to our present process with

no risks to patient safety or product efficacy.

Tom: Right. I have helped on these types of projects in the past. What are some of

the details?

Noel: We have produced eight lots in Ireland and want to compare the lot release

values for some of our quality attributes with those we have collected from our

process here in the USA. The two processes don’t have to be exactly the same,

but as I have already mentioned, we cannot compromise patient safety or product

efficacy. One thing we do to ensure our present process continues to provide safe

and efficacious product is to demonstrate that the average purity is no less than

93%. Anything less than 93% would be sufficiently different from our present

process that I would be concerned.

Tom: Thanks. So if our process in Ireland has a mean of 93% or greater, we believe

the new process is operating as expected. Right?

Noel: Exactly.

Tom: What data do we have available?

Noel: Purity is measured using the reversed-phase high performance liquid chro-

matography (RP-HPLC) main peak. I have these values for each of the eight lots

produced at the Ireland plant. Do you think eight values is a large enough data set

to draw any meaningful conclusion?

Tom: Well, eight lots is better than seven lots but not as good as nine lots. We can

perform calculations with the available eight lots, but the uncertainty may be too
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large to provide meaningful results. You will have to make that determination. If

there is too much uncertainty to be useful, you will need more data.

Noel: Right. We would like to know now if there are any apparent issues at this

point, so let’s see what the eight lots tell us.

Tom: Sounds good.

Noel: I will get the data to you as soon as possible. I know you like the data in a

certain format. Can you remind me how to prepare it for you?

Tom: Thanks, Noel. It lessens the opportunity for errors if you get me the data in the

proper format. I would like the data placed in two columns of an Excel spread-

sheet. The first column will be the lot number and the second column will be the

purity value. The first row of the spreadsheet will have the label for each column

and then there will be eight rows of data. Make sure to report the recorded values

for your measurements.

Noel: That doesn’t sound too hard. I will get the data verified and then place the

spreadsheet in the company information system for you to access.

Tom: That sound’s great. What kind of timeframe do we have?

Noel: It should take me about a week to get everything verified, approved, and into

the system. If you could do your magic within a week after receiving the data, it

would give us time to assess the results and move on to the next step.

Tom: That sounds workable. Please send me a note when the data are ready. Talk to

you later.

Noel: Thanks, Tom. I look forward to talking to you again in a couple of weeks.

2.2.2 Planning of Statistical Analysis

After meeting with the client, it is time to formulate a strategy for answering the

research question. To do this, it is often necessary to make a statistical inference.

Statistical inference concerns the ability to answer a question based on a collected

data set. The research question concerns a collection of items called the population

or process output. For purposes of our discussion, a population is a finite collection

of items, such as all vials within a manufactured lot of drug product. A process is a

series of actions or operations used to convert a set of inputs into a set of outputs.

The process output over a fixed interval of time constitutes a population of items.

When thinking of a process, we often want to make a statement about future items

that will result if the process operates in a manner consistent with the observed data.

In CMC applications, we are often interested in process outputs where one set of

outputs is created with an existing process and the other set of output is created with

a new or improved process. The planning of a statistical analysis should consider

three components:

1. Statement of the study objective.

2. Data acquisition.

3. Selection of a statistical tool.
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2.2.2.1 Statement of the Study Objective

One result of the initial client meeting is an understanding of the research question.

In order to develop an effective statistical strategy, it is necessary for the statistician

and client to agree on a clear research objective. In working with the client, it is

sometimes helpful to ask them how they intend to use the results of the statistical

analysis. For example, ask the client what action she would take if presented with a

certain outcome of the statistical analysis. Similarly, ask the client what action he

would take based on an alternative outcome. If such questions cannot be answered,

then the research question is not well-defined, and more discussion is needed to

clarify the study objective. The research question in our present example is “Does

the Ireland manufacturing process operate at an acceptable capability?” One piece

of information that will be used to help answer this question is the process mean for

purity. Once the research question has been clearly defined, the next step is to

determine the most appropriate data to answer the question.

2.2.2.2 Data Acquisition

The following questions are worth consideration in any discussion of data

acquisition.

1. What is the population or process of interest, and how can we ensure the

collected data are representative of this group?

Require an exact definition of the population/process including the time period

of interest. In the present example, Noel wants to know something about long-

run behavior of a process for which eight items presently exist. If it is planned to

run the same process in the future, then the eight available lots are likely

representative of future output. The assessment of whether a data set is repre-

sentative is not a statistical question. It requires the judgment of an expert in the

field of application (i.e., Noel in our example).

2. Do the data already exist (observational), or will we have to create it

experimentally?

Although the answer to this question is often based on convenience or timeli-

ness, it is important to understand the different types of inference that can be

made with each type of data. Generally speaking, inferences of a causal nature

require experimental data. That is, if one wishes to provide evidence that

changes in factor X cause change in factor Y, then an experimental data set is

required in order to properly isolate the relationship of Y and X and protect it

from other factors. Although observational data cannot directly demonstrate

causality, it does provide a description of how variables relate to each other in

the “real world.” To better explain in the context of our example, the lot release

data is observational since it was collected as part of the manufacturing process.

It does not require a separate set of experimental studies to generate the data. In

the analysis that follows, we are able to estimate the mean purity of the Ireland
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process. However, if it is lower than desired, we have not learned anything to

help us determine how to increase the mean and improve the process. To do this,

we would likely need a set of experimental studies where inputs of the process

are systematically changed to determine the impact on the mean purity. Data

generated in this manner is an example of experimental data. In the CMC world,

experimental data is generally required in process development, whereas obser-

vational data are used in quality operations.

3. What sampling method is used to collect the data?

It is necessary that the data used for analysis be collected using a valid statistical

sampling procedure. There are many different types of sampling procedures, and

the best approach in any given situation will depend on the structure and

availability of the data. Natural groupings of population items often impact the

manner in which a statistical sample is selected. Consider the following exam-

ple. As part of a method validation study, four plates are prepared, each one

containing three aliquots. Measurements made on the three aliquots in the same

plate are typically more similar than measurements of aliquots in different

plates. For this reason, the statistical analysis must account for this relationship.

Had the 12 measurements been collected using 12 plates with one aliquot each, a

different statistical analysis would be performed. The larger physical units (plate

in this example) are called experimental units, and the smaller units (aliquots)

are called observational units. Observational units are what are actually mea-

sured. In many situations, the experimental unit is the observational unit. As

noted, it is always important to identify any grouping of observational units in

order to perform the correct statistical analysis.

4. How are the variables defined and measured?

A variable provides information of interest about each individual item in a

population. Variables can provide a number (quantitative variable) or a category

(qualitative variable). It is important that all variable definitions be included in

the statistical report. In our present example, the variable assigns a number that

represents lot purity as measured by the RP-HPLC main peak. We might label

this variable “Purity.” Each variable in a study must be measured for each

sampled item.

When one measures the value of a continuous variable, the measured value is

never exactly equal to the true value. The difference between the measured value

and the true value is called measurement error. We say that a measurement

procedure is unbiased if there is no systematic tendency for the procedure to

underestimate or overestimate the true value. For example, if the weight of

100 people were measured using an unbiased scale, we would expect the

reported weight to be greater than the true value for some people and less than

the true value for others. On average, the error in measurement would be

essentially zero. However, if the scale is not calibrated properly, it might

consistently yield readings that are lower (or higher) than the true weights. In

such a case, the scale is said to be biased.

In addition to having a small amount of bias, a good measuring device is precise.

Precision concerns the reliability of a measurement procedure. If one measures
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the same item several times, it is hoped that the measurements are more or less

the same each time and do not fluctuate wildly. Measurement procedures that

exhibit little variability when measuring the same item are said to be precise.

One of the reasons that analytical procedure validations are performed is to

ensure that the bias and the precision are acceptable. Chapter 6 concerns the

validation of analytical procedures.

Another question to ask concerning quantitative variables is whether the numer-

ical values are recorded to enough decimal places to allow a meaningful

analysis. It is recommended to always perform calculations with recorded

data, rather than data that have been reported to a lesser degree of accuracy.

More on this topic is provided in Sect. 2.3.

5. What sample size is required to provide a useful analysis?

This is probably the most frequent question asked of a statistician. The statisti-

cian can never answer this question in isolation. It always requires interaction

between the client and the statistician. The thing to remember is that as sample

size increases, then uncertainty in the statistical inference will decrease. At some

point, one must balance the cost and time of selecting additional sample items

against the risks associated with an uncertain decision. In many CMC applica-

tions, sample sizes are small because a single item, such as a production lot, is

produced infrequently or is extremely expensive. Valid statistical analyses can

be performed with relatively small data sets, but it is important to report the level

of uncertainty in order to fairly represent the usefulness of the conclusions.

2.2.2.3 Selection of a Statistical Tool

Once the research question is well defined and the relevant data have been identi-

fied, it is time to select a statistical procedure to help answer the research question.

For the Ireland manufacturing problem discussed earlier, it is necessary to estimate

the mean of the new process using the data set of eight values. We will use the

sample mean of eight production runs to provide a point estimate of the true process

mean. A point estimate is useful, but we need to recognize that it is based on only

eight process lots. Thus, a point estimate has uncertainty associated with it. One

quantifies this uncertainty by computing a statistical interval that provides a range

of possible values. The various types of statistical intervals are introduced in

Sect. 2.5. For the present example, a confidence interval is the appropriate statistical

interval. A confidence interval contains the true unknown value of the purity mean

with an associated level of confidence (e.g., 95%). The confidence level of 95%

describes the ability of the confidence interval to correctly capture the true value of

the purity mean. More discussion is provided on the interpretation of the confidence

coefficient in Sect. 2.5.1.

In our example, if all values in the confidence interval exceed 93%, we will

conclude that the new process has attained the desired mean. Now that our strategy

has been determined, we wait for the data.
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2.2.3 Data Analysis

Data analysis consists of both graphical representation of the data and numerical

description. Data analysis consists of the following operations:

1. Obtain the data.

2. Plot the data.

3. Estimate the unknown quantities of interest.

4. Quantify uncertainty in point estimates using a statistical interval.

We demonstrate this process within the context of the previous example.

2.2.3.1 Obtain the Data

The big day arrives and Tom receives an email that the data are ready for analysis.

The data are presented in Table 2.1.

True to his word, Noel provided the data in a format that is amenable for

performing the statistical analysis. Each column in the table represents a variable.

The name for each variable is found in the first row. For example, the first column in

Table 2.1 reports values for the variable “Lot.” The variable “Lot” is a qualitative

variable because the values assigned are categories. The variable “Purity” in the

second column is quantitative or numerical. Since the unit of measurement for

purity is a percentage, it can assume any numerical value between 0 and 100%,

inclusive. Each lot is represented by a single purity value as reported by the lab.

2.2.3.2 Plot the Data

Lynne Hare is a well-known statistician who established a rule that should be

followed in every data analysis. The rule is termed the “Always, always, always--

without exception rule” (AAAWER). The AAAWER is simple—Plot the data.

Some years after creation of the AAAWER, he added the corollary—“and look at

it.” It is an old adage that a picture is worth a thousand words, but it is really true in

Table 2.1 Purity measures

(%) from the Ireland process
Lot Purity (%)

A 94.20

B 92.68

C 94.47

D 94.14

E 95.17

F 94.47

G 94.14

H 95.17
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data analysis. Most learnings are obtained by simply plotting the data (and looking

at the plot). We begin the analysis of the purity data by constructing a plot. The plot

is shown in Fig. 2.1.

Recall that the objective of the study is to determine if the process mean in

Ireland is at least 93%. Looking at the plot, all of the purity values except one

exceed 93%, so it is clear that the mean of the eight values exceeds 93%.

Note that the purity values are all different. It is useful when looking at data to

ask yourself the question, “Why aren’t these values all the same?” There are two

primary reasons why these eight values are not all equal.

1. There is expected variation from lot-to-lot for any manufacturing process.

2. There is measurement error in the data.

As in this example, most variables encountered in CMC applications are

impacted by variation from both the manufacturing process and the analytical

(measurement) method.

Another aspect to note about the plot is that Lot B is somewhat removed from the

other seven lots. Points that are inconsistent with the rest of the data are called

outliers. Outliers may arise due to coding errors, or perhaps due to some unique

event that occurred during the manufacturing of a particular lot. The SME should be

consulted immediately to discuss possible reasons for any detected outlier. Sec-

tions 2.4 and 2.12.2 provide more discussion on the statistical definition and

identification of outliers.

95.5

95.0

94.5

94.0

93.5

93.0

Pu
rit

y 
(%

)

Lot B

Fig. 2.1 Plot of purity data (%)
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2.2.3.3 Estimate the Unknown Quantities of Interest

As discussed earlier, one objective of a statistical analysis is to make an inference

(conclusion) about an unknown characteristic of a population or process. Both

populations and processes are described by summary measures called parameters.

The parameter of interest in the example is the process mean. The values of the

eight completed lots represent a sample of all process outcomes. One can compute

the mean for the eight lots in Table 2.1, but since this is only a sample, one cannot

know with certainty the exact value of the true process mean.

It is a convention in the statistical literature to represent an unknown parameter

value with a Greek letter. Table 2.2 shows Greek notation used to represent three

parameters in the example. Think of the Greek symbol as you would an acronym. It

is simply a shorthand notation to replace all the words in column 2 of Table 2.2.

Let the measured value of the variable “Purity” for lot i be represented as Yi.
Since there are eight lots, the index i goes from 1 to 8, inclusive. The sample of

eight measured values is represented as Y1,Y2, . . .,Y8. The sample mean is com-

puted by adding all eight values and dividing by the number of values (8).

Representing as a formula we have

�Y ¼

Xn
i¼1

Yi

n
¼ 94:20þ � � � þ 95:17

8
¼ 94:305% ð2:1Þ

where n is the sample size. Summary measures computed from a sample such as �Y
are referred to as statistics. A point estimator is a function of one or more statistics

used to provide a “best guess” of the true (unknown) parameter value. For example,

the sample mean �Y is the point estimator of the true and unknown process mean, μ.
The realized value of �Y, 94.305, is the point estimate for μ.

A point estimator for the process standard deviation, σ, is the sample standard

deviation

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðYi � �YÞ2

n� 1

vuuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð94:20� 94:305Þ2 þ � � � þ ð95:17� 94:305Þ2

8� 1

s

¼ 0:780%: ð2:2Þ

Table 2.2 Definition of parameters

Parameter symbol Interpretation

μ
(Lower case Greek letter “mu”)

Process mean at Ireland site

σ2

(Lower case Greek letter “sigma” squared

Process variance at Ireland site

σ
(Lower case Greek letter “sigma”)

Process standard deviation at Ireland site

2.2 Statistical Analysis in a CMC Environment 19



The square of the standard deviation is called the variance, and S2 is the point

estimator for σ2.
The point estimate for the process mean, 94.305 %, exceeds the required value of

93%. However, we must ask the question, “How close to the true value of μ is the

estimate?”

2.2.3.4 Quantify the Uncertainty in the Point Estimates Using

a Statistical Interval

Point estimates are useful, but they do not tell us anything about the uncertainty

associated with the estimates. Recall we are sampling only eight lots from the

process, and we wish to make an inference concerning future lots. The best way to

quantify the uncertainty in this example is to compute a statistical confidence

interval. For this example, the following formula provides a 95% lower bound on

the true process mean (see Eq. (2.8) later in this chapter).

L ¼ �Y � 1:895� Sffiffiffi
n

p : ð2:3Þ

In our example,

L ¼ 94:305� 1:895� 0:780ffiffiffi
8

p ¼ 93:78%: ð2:4Þ

The 95% lower bound exceeds the 93% criterion, providing statistical evidence

that the process mean will exceed 93% if the process continues to operate in the

future as it has in the past.

2.2.4 Communication of Results to Client

The data analysis is complete and now it is time for another visit with the client.

Unlike the first visit where the statistician took the role of listener, the statistician

now assumes the role of teacher.

Tom: Good morning, Noel. How have you been doing?

Noel: Great. Good to see you again, Tom. What can you tell me about the analysis?

Tom: As you will recall, we wanted to see if the new process has a mean greater

than or equal to 93%. I looked at the sample of eight lots you sent me and

computed an estimate of the new process mean. My conclusion is that the new

process is expected to have a mean no less than 93.78% with 95% confidence.

Since 93.78% exceeds your requirement of 93%, we can expect the new process

to deliver the desired level of quality.
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Noel: That sounds great. As we discussed before, I am a little concerned that I only

have eight lots in the study. Can we really make this conclusion with such a

small sample size?

Tom: Yes, as long as you are comfortable with the 95% confidence level. If you

desire a greater level of confidence, such as 99%, I could compute a new bound,

and this value would be less than 93.78%. However, such a high level of

confidence with such a small data set may make our bound somewhat

non-informative. The point estimate based on the eight lots is 94.305%. If we

were to wait for more lots to increase sample size, we would lessen the

difference between the point estimate and the lower bound.

Noel: No. I am still comfortable with the 95% confidence level since this is

typically the level expected by the regulatory agencies. Did you see anything

that looked strange in the data?

Tom: Maybe. Here is a plot of the data. (Tom shows Noel Fig. 2.1). As you can see,

Lot B is somewhat removed from the other values. It might be worth checking if

the value was properly recorded, or if there was something unique about that

production run. It is not an extreme aberration, but it never hurts to check. I

monitored the reasonableness of the assumptions required to use the formula for

the confidence bound, and there is no reason to believe the results are not

appropriately derived.

Noel: That’s all good news. So do you think I can report that our initial analysis

suggests that our process mean is in alignment with expectations?

Tom: Yes, I think that is reasonable. We should be good as long as the process

continues to perform in the future as it has for these first eight runs.

Noel: Great. Thanks, Tom. I appreciate your time.

Tom: Thank you, Noel. I always appreciate the opportunity to work with you. Have

a good day.

In this section we introduced the steps needed to perform a statistical analysis.

We now consider elements of this process in more detail.

2.3 Data Rounding and Reporting of Results

If you ever want to bring a meeting to a screeching halt, bring up the topic of

rounding and reporting results of a statistical analysis. It seems everyone has their

own opinion on how this should be done. Believe it or not, there are some best

practices that should be followed. The process of measuring and reporting data is

discussed in three regulatory documents:

1. Volume III, Sect. 4.3, of the Office of Regulatory Affairs (ORA) Laboratory

Manual.

2. ASTM E29: Standard Practice for Using Significant Digits in Test Data to

Determine Conformance with Specifications.

3. USP General Notices 7.20: Rounding Rules.
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The objective of these documents is to provide an approach for reporting

numbers that avoids false perception of numerical precision, while at the same

time, prevents the loss of information for subsequent statistical analyses. We now

present an example to demonstrate best practices based on terminology presented in

Table 2.3.

Consider a laboratory that measures the percentage of total area under the main

peak using a reverse-phase HPLC method where peaks are detected by UV absor-

bance in milli-absorbance units (mAU) over a course of time (seconds). The

software package used with the equipment reports the percentage to five decimal

places. Assume this value for a given test sample is 97.84652%. This is the recorded

value as defined in Table 2.3.

Although the statistical software reports the value to five decimal places, it is

important to know how many of these digits for this single test result provide

meaningful information concerning the true value of the measured sample. ASTM

E29 (2013) is useful for this purpose. The number of informative digits is related to

the precision of the measuring device. Here, precision is defined as the standard

deviation created when measuring the same item many times under exactly the

same condition (e.g., with the same operator and equipment). This is commonly

referred to as the repeatability standard deviation. ASTM E29 provides a very

simple rule for determining the number of informative digits: Report results to

the place of the first significant digit in the standard deviation if that digit is 2 or

greater. If the digit is 1, report it an additional place. Table 2.4 provides some

examples.

Based on a validation of the analytical method in our example, it is known that

the repeatability standard deviation is 0.023%. Since the first significant digit is in

the second decimal place, and the value exceeds 1, values after the second decimal

place provide no meaningful information for this single test result.

When the laboratory provides values to a client, they may or may not know how

the client intends to use the data. Thus, they often provide values with at least one

more decimal place than the number of informative decimal places. Truncation

rather than rounding should be used at this stage in order to avoid double rounding

by the client. The value provided to the client is defined as the effectively

unrounded value in Table 2.3. In our example, the last informative decimal is in

the second position. Thus, the lab might truncate the recorded value 97.84652%

Table 2.3 Terminology

Term Definition

Recorded value The value output by a measuring system (e.g., analytical method)

Effectively

unrounded value

A value which has a sufficient number of decimal places so there is

negligible impact on subsequent statistical analyses. The number of

decimal places should never be less than the meaningful part of the

recorded value consistent with the precision of the measuring device

Reported value A rounded version of an effectively unrounded value or a rounded

version of a statistical computation based on effectively unrounded

values
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after the third decimal place and report the effectively unrounded value 97.846%.

The additional decimal place would usually be sufficient to prevent any negative

impact on future statistical analyses. If the laboratory knows that the value is to be

compared to a specification limit, Borman and Chatfield (2015) provide an alter-

native method and recommend that the effectively unrounded value be represented

with at least two decimal places more than the number of decimal places in the

reported value to be compared to the specification (usually the reported value and

specification are given to the same precision). When no estimate of the repeatability

standard deviation is available, then rules for retention of significant digits are

described in Sect. 7.4.1 of ASTM E29.

Any subsequent statistical analyses by the client should use effectively

unrounded data values. One should perform all calculations with the effectively

unrounded values and round to a reported value at the end of all calculations.

Borman and Chatfield provide examples of the consequences that occur by not

following this practice. These consequences include making decisions not consis-

tent with the data. Rules for determining retention of significant digits during

computations are provided in Sect. 7.4.1 of ASTM E29.

Once a calculation is completed, or if an effectively unrounded value is used

with no subsequent calculations, rounding is often allowed before comparing the

value to a limit. For example, USP General Notices 7.20 (2016b) states that “the

observed or calculated values shall be rounded off to the number of decimal places

that is in agreement with the limit expression.” In our example, suppose the

effectively unrounded value of 97.846% is to be compared to a release specification

limit of no less than 97.0%. Since the specification limit has only one decimal, the

value 97.846% must be rounded to one decimal. The resulting value after rounding

is defined as the reported value in Table 2.3. Burgess (2013) provides a decision tree

that describes best practices for rounding. To explain this process, consider the

effectively unrounded value of 97.846% that needs to be rounded to one decimal. A

graphical representation is shown in Fig. 2.2 where X is the digit to be rounded, Y is

the digit to be dropped, and Z represents all digits to the right of Y.

Best practice for rounding uses the following three rules:

1. If Y is less than 5, X remains unchanged.

2. If Y is greater than 5, then X increases by 1.

Table 2.4 Determining the number of informative digits

Repeatability standard

deviation First significant digit position

Number of informative

decimal places

0.0056 5 is in third decimal position 3

0.0016 1 is in third decimal position 4

0.216 2 is in first decimal position 1

0.167 1 is in first decimal position 2

1.363 1 is in the unit position 1

2.951 2 is in the unit position 0
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3. If Y is equal to 5, and Z has all 0s or is absent, X increases by 1 if it is odd and is

left unchanged if it is even. If Z contains at least one non-zero element, then X

increases by 1.

The three rules above are described in the ORA Laboratory Manual and in

ASTM E29. However, rule 3 does not appear in USP 7.20. In this guidance, if Y

is equal to 5, X always increases by 1 regardless of Z. As noted by Burgess, ignoring

rule 3 will bias data upward. Burgess also notes that the Excel rounding function

ignores rule 3, but provides Excel statements that incorporate the rule. Following

rule 3 often avoids annoying problems. For example, suppose we are reporting

percentage of area for two peaks with an HPLC method, and the sum of the two

peaks is by definition 100%. Suppose two measurements that must be rounded to

one decimal are 10.05 and 89.95%. If rule 3 is ignored, the rounded values are 10.1

and 90.0% which no longer sum to 100%. In contrast, by using rule 3, the rounded

percentages are 10.0 and 90.0% which do add to 100%.

In our example, the effectively unrounded value of 97.846% must be rounded to

one decimal. Since Y¼ 4, X remains unchanged by rule 1, and the reported value to

compare to the specification is 97.8%. Since this value meets the specification of no

less than 97.0%, the lot satisfies the specification limit.

2.4 Use of Tables and Graphs

Early in any statistical analysis it is necessary to summarize and visually display

individual values. The purpose of this process is to quickly communicate the data to

others. Each table or graph should be able to answer a relevant research question for

the study of interest.

The first decision to make is whether to use a table or a graph. Tables should be

considered when

• The reader needs exact numbers.

• There are many summary statistics comparing several data sets.

• Detail is important to your conclusions.

• The audience is predominantly numerical thinkers.

• You need to make large amounts of information accessible to the reader.

• Visual organization is important.

• You cannot readily compose a sentence to convey the same information.

97.846

X

Y

Z

Fig. 2.2 Representation of effectively unrounded value for rounding
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Graphs are more useful when

• Shapes, trends, relationships, or unusual values are of interest.

• The distribution is lopsided, there is more than one peak, or there is anything else

unusual in the data.

• Exact values are of less interest.

• You want to compare data sets.

• There are more than 25 observations.

Some guidelines for producing useful tables are the following:

• Like elements should read down in columns, not across in rows.

• Related data should be grouped spatially.

• Lines should not be used to create cells. Lines should be used only to relate and

divide information.

• Align the decimal point in columns of numbers.

• Use bold and italics only occasionally for emphasis.

• Use lower case for all body text.

• Times and Univers are good all-around font choices.

• Fonts should be at least 10 point.

• Standard conditions should not be repeated.

• The table should stand alone, without the text.

• Remove non-significant digits.

When graphs are more appropriate, selection of the correct graph is essential.

Some basic graphs and their use are listed in Table 2.5.

Table 2.6 presents a small data set to be presented in a graphical manner.

The response in this example is concentration measured as a percentage. Each

lot is measured six times at six different time periods. The variable Lot is qualitative

Table 2.5 Basic graphs

Type of variable

Type of

graph Format of horizontal and vertical axes

One qualitative Bar chart Count, percentage, or proportion on one axis.

Qualitative categories on the other axis.

Two qualitative Side-by-side

bar chart

Count, percentage, or proportion on one axis.

Qualitative categories of one variable on the other axis.

Other qualitative variable categories are side-by-side.

One quantitative Boxplot Numerical values on one axis.

No unit of measure on the other axis.

Histogram Numerical values on one axis.

Other axis reports count or density.

One quantitative and

one qualitative

Side-by-side

boxplots

Numerical values of quantitative variable on one axis.

Other axis reports categories of qualitative factor

Two quantitative Scatterplot Numerical values of quantitative variables on each axis.

If a response–predictor relationship exists, response is

on the verical axis and the predictor on the

horizontal axis.
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and Concentration and Time are quantitative. Based on Table 2.5, it might be of

interest to examine a boxplot of all concentrations in a single boxplot as well as

side-by-side boxplots across the qualitative variable Lot. These graphs are shown in

Figs. 2.3 and 2.4, respectively.

Table 2.6 Example data

for graphing
Lot Concentration (%) Time (months)

A 102.1 0

A 101.4 6

A 101 12

A 101.1 18

A 100.8 24

A 99.6 30

B 100 0

B 100 6

B 100.2 12

B 98.8 18

B 99.8 24

B 99 30

C 97.6 0

C 98.3 6

C 98.1 12

C 97.1 18

C 96.5 24

C 96 30
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Fig. 2.3 Boxplot with all concentration values
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The three horizontal lines from bottom to top in a boxplot represent the first

quartile (Q1), the median, and the third quartile (Q3). The first quartile exceeds 25%

of the data values, and the third quartile exceeds 75% of the data values. The

vertical lines are referred to as whiskers. The upper whisker extends to the highest

data value within the upper inner fence, Q3 þ 1:5 Q3 � Q1ð Þ. The lower whisker

exends to the lowest value within the lower inner fence,Q1 � 1:5 Q3 � Q1ð Þ:Values
below the lower inner fence or above the upper inner fence are described as outliers.

Values between the upper inner fence and Q3 þ 3 Q3 � Q1ð Þ are sometimes called

mild outliers, and those that exceed Q3 þ 3 Q3 � Q1ð Þ are called extreme outliers.

Similarly, values between the lower inner fence and Q1 � 3 Q3 � Q1ð Þ are mild

outliers, and those less than Q1 � 3 Q3 � Q1ð Þ are extreme outliers. Figure 2.4

suggests the concentration level differs among the three lots. Quantification of these

differences relative to expected process and measurement error is needed to derive

any conclusion.

Finally, the most important research question for this example is whether the lots

degrade at similar rates. This is the so-called stability research question (Chap. 8

provides more on stability models). Table 2.5 suggests a scatterplot is a useful

graph for this purpose. A scatterplot is provided in Fig. 2.5 with straight lines fit

through the data to help visualize the slopes.

Figure 2.5 suggests that the slopes are reasonably similar. As with the previous

figure, quantitative assessment of the visual difference relative to identifiable

sources of variation is needed to draw a conclusion. Since the horizontal axis in

Fig. 2.5 measures time, it is sometimes referred to as a time series plot.
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Fig. 2.4 Boxplots of concentration by lot
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Other recommendations for producing effective graphs include the following:

• Use large, bold, prominent plotting symbols.

• If symbols overlay one another, use open symbols and jitter the data on any scale

that is not quantitative.

• Don’t let lines obscure the data points.
• Connect the points with lines if there is a natural order such as time sequence.

This helps the reader track the movement of the data.

• Enclose the data in a rectangle. Make sure all the data points are inside and not

touching the rectangle.

• Place tick marks outside the rectangle on all four sides, from 3 to 10 tick marks

per side.

• If data labels are needed inside the rectangle, make the plotting symbol more

prominent than the label by using small letters for the label.

• The axes (especially the y-axis) do not need to include zero.

• Avoid the use of 3D when the third dimension has no information. Bar charts and

3D don’t go together.

• Try to avoid pie charts. If absolutely necessary to use one, do not use exploding

or 3D pie slices and label the proportion on each pie slice.

There are many excellent references on this topic. Two favorites are Tufte

(1983) and Cleveland (1985).

Fig. 2.5 Scatterplot of concentration on time by lot
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2.5 Statistical Intervals

As noted earlier, it is important in any statistical analysis to quantify the amount of

uncertainty in point estimates. This is best done using a statistical interval. There

are three types of statistical intervals that are useful for this purpose:

1. Confidence intervals,

2. Prediction intervals, and

3. Tolerance intervals.

An excellent resource for learning more about each type of interval is the book

by Hahn and Meeker (1991). The book by Krishnamoorthy and Mathew (2009) is

an excellent resource for tolerance intervals, and the books by Burdick et al. (2005)

and Burdick and Graybill (1992) provide more information for confidence intervals

for functions of variances.

2.5.1 Confidence Intervals

Confidence intervals are used to quantify the uncertainty associated with the

estimation process. For demonstration, consider the mean parameter μ described

in Table 2.2. A 100 1� αð Þ% two-sided confidence interval for μ is a random

interval with a lower bound L and an upper bound U. These bounds are functions of
the sample values such that Pr L � μ � U½ � ¼ 100� 1� αð Þ%. The term 100�
1� αð Þ% is called the confidence coefficient, and is selected prior to data collec-

tion. Typical values for the confidence coefficient are 90, 95, and 99% (i.e., α is

equal to 0.10, 0.05, and 0.01, respectively). The confidence coefficient describes the

quality of the statistical process. In particular, the confidence coefficient defines the

success rate in capturing the true value of μ. Figure 2.6 provides a visual interpre-

tation of the confidence coefficient.

Assume the purpose of a study is to estimate the true mean concentration (μ) of a
population of 5000 vials based on a sample of 50 vials. Further assume the true

value of μ is 0.500 mg/mL. The computed 95% two-sided confidence intervals for

100 samples of size 50 selected from this population are shown as the vertical lines

in Fig. 2.6. Note that a different interval is computed for each sample due to the

randomness of the sampling process. There are 95 vertical lines that include the

parameter value 0.500 mg/mL and five vertical dashed lines that do not include the

true value of 0.500 mg/mL. The percentage of intervals that correctly capture the

true value of 0.500 mg/mL is the confidence coefficient. Of course in practice, we

select only a single sample. Our confidence that the single interval we obtain

contains the true value is equal to the percentage of all such intervals that contain

the true value. This percentage is the confidence coefficient. If one increases the

confidence coefficient, the confidence intervals will widen, causing a greater

percentage of the intervals to contain the true value. However, as the confidence
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intervals widen, the information provided is less useful. Thus, there must always be

some compromise between the assurance the true value is captured and the utility of

the interval as defined by the length.

A confidence interval that satisfies Pr L � μ � U½ � ¼ 100� 1� αð Þ% is called

an exact two-sided confidence interval. Often exact intervals do not exist, and Pr

L � μ � U½ � is only approximately equal to 100� 1� αð Þ%. An approximate

interval that has a realized confidence coefficient greater than the stated level

(i.e., Pr L � μ � U½ � > 100� 1� αð Þ% ) is called a conservative interval. An

approximate interval that has a realized confidence coefficient less than the stated

level (i.e., Pr L � μ � U½ � < 100� 1� αð Þ%) is called a liberal interval. In general,

conservative intervals are preferred when only approximate intervals are available.

Liberal intervals can be recommended if the confidence coefficient is not too much

less than the desired level.

If a parameter value is of interest only when it is “too high” or “too low”, then

one-sided confidence bounds are computed. The exact one-sided100 1� αð Þ% lower

confidence bound satisfies the statement Pr L � μ½ � ¼ 100� 1� αð Þ% and the exact

one-sided 100� 1� αð Þ% upper bound satisfies Pr μ � U½ � ¼ 100� 1� αð Þ%.

2.5.2 Prediction Intervals

A 100� 1� αð Þ% two-sided prediction interval for a single new observation is a

random interval with a lower bound L and an upper bound U, that will contain the

next randomly selected observation from a process or population with stated

confidence level 100� 1� αð Þ%. As with confidence intervals, the coefficient 100

Fig. 2.6 Results of 100 computed confidence intervals
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� 1� αð Þ% refers to the percentage of computed prediction intervals that actually

include the next new value.

2.5.3 Tolerance Intervals

A 100� 1� αð Þ% two-sided tolerance interval is a random interval with a lower

bound L and an upper bound U, that contains at least a specified proportion (P) of

future process outcomes with stated level of confidence 100� 1� αð Þ%. Tolerance

intervals are used in a variety of CMC applications. Most notably, tolerance

intervals are used in setting specifications and assessment of pharmaceutical quality

as described in Dong et al. (2015).

2.5.4 Individual Versus Mean

Prediction intervals and tolerance intervals each describe the behavior of individual

values, whereas a confidence interval describes something about a summary mea-
sure of individual values. It is important to understand this distinction in order to

properly interpret statistical intervals. The distinction between an inference

concerning an individual value and one concerning a summary measure is an

important concept in the analysis of CMC data. Understanding whether an infer-

ence concerns a single lot in a manufacturing process or a summary measure of all

past lots is necessary to make an informed decision. We provide several applica-

tions related to this distinction throughout the book.

2.5.5 Formula Notation

Throughout the book we provide formulas for computing statistical intervals that

can be computed in a spreadsheet program. These formulas employ percentile

values of familiar statistical distributions. Table 2.7 presents these distributions

and the notation used to represent them in formulas. In all cases the subscript α
represents the area to the left of the percentile.

Table 2.7 Percentile

notation
Distribution Notation (α is area to left)

Standard normal Zα
T tα : df
Chi-squared χ2α : df
F Fα:df 1,df 2
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Table 2.8 provides some examples that illustrate the notation, and reports

functions of Excel used to compute them. The TINV function in Excel reports

percentiles for computing two-sided intervals. To obtain t-values consistent with

our notation, use the following rule:

1. If α (the area to the left) exceeds 0.50, then use the value 2� 1� αð Þ as the

reported probability in TINV, and

2. If α is less than 0.50, then use the value 2� α as the reported probability and

attach a negative sign to the result.

In Excel, the functions CHIINV and FINV require you to report the area to the

right, whereas NORMINV requires you to report the area to the left. All values in

Table 2.8 are truncated at three decimal places.

2.6 Intervals for One Population (Independent
Measurements)

We consider two statistical models for analyzing data collected from one popula-

tion or process. In this section, all measurements are independent. In Sect. 2.7,

measurements are dependent.

In the Irish manufacturing example discussed earlier, a lot release value for

purity was measured for each of eight manufactured lots. A very simple statistical

model representing the measured purity value for a single lot is

Measured Purity ¼ True average purity of manufacturing process

þ Random value due to process and measurement variation

ð2:5Þ

We now replace the words with symbols and write

Table 2.8 Percentile examples

Described percentile Percentile value Excel command

Z0.05 �1.644 ¼NORMINV(0.05,0,1)

Z0.90 1.281 ¼NORMINV(0.9,0,1)

t0.95 : 6 1.943 ¼TINV(0.1,6)

t0.10 : 10 �1.372 ¼-TINV(0.2,10)

χ20:05 : 10 3.940 ¼CHIINV(0.95,10)

χ20:95 : 10 18.307 ¼CHIINV(0.05,10)

F0.05 : 3,6 0.111 ¼FINV(0.95,3,6)

F0.95 : 6,3 8.940 ¼FINV(0.05,6,3)
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Y ¼ μþ E ð2:6Þ

where Y is the measured purity, μ is the true average purity for the process, and E is

the random value that changes from lot-to-lot and from measurement to measure-

ment within a lot. Both μ and E are unknown—the only thing we can observe is Y.
The term μ is said to be fixed, because it never changes as long as the process does

not change. On the other hand, the term E is random because it changes from

measurement to measurement. All random variables such as E have an associated

probability distribution. It is assumed here that E has a normal probability distri-

bution with mean zero and an unknown variance σ2. We will discuss the importance

of these assumptions concerning E in Sect. 2.12.2.

Note that if the process were perfectly consistent, and our analytical method

could always make an exact measurement, then E ¼ 0 and every lot would have a

value of μ. Because this is not a realistic expectation for any manufacturing process

or analytical method, it is necessary to incorporate E in all statistical models.

You will note the symbols used in model (2.6) vary. A random variable such as

E is represented with an upper case Latin letter whereas a fixed quantity such as μ is
represented with a lower case Greek letter. We use this convention throughout the

book. (Note that since Y is a function of the random variable E, it is also a random

variable.)

Finally, we modify model (2.6) by adding subscripts in order to represent a

collection of n values instead of a single value. The final model that we use for the

rest of this section is

Yi ¼ μþ Ei i ¼ 1, 2, . . . , n: ð2:7Þ

An important assumption concerning Ei not mentioned previously is that the

value associated with the ith lot is independent (not impacted) by the values

assigned to other lots. Thus, we describe model (2.7) as the one population model

with independent measurements. As we will see in Sect. 2.7, items are sometimes

grouped in such a manner that the value of one item is influenced by the values of

items in its group. In this case, the measured Yi values are dependent rather than

independent. It is always important to know if data are independent or not, so that

the correct analysis can be performed.

Table 2.9 reports summary formulas used to describe the collection of values

described in (2.7). Since the data represent a sample of process values, the summary

measures are called the sample statistics. These sample statistics are used to

compute statistical intervals to describe the sampled process.

Table 2.10 reports the parameters, their point estimators, and computed esti-

mates using the example data in Table 2.1. As described in Sect. 2.2, parameters are

unknown summary measures of the process or population of interest. Sample

statistics are used to estimate parameters.
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2.6.1 Confidence Interval for Mean

The bounds for a 100 1� αð Þ% two-sided confidence interval for μ are

L¼ �Y � t1�α=2:n�1

ffiffiffiffiffi
S2

n

r

U ¼ �Y þ t1�α=2:n�1

ffiffiffiffiffi
S2

n

r ð2:8Þ

Assume in our lot release example that we desire a 95% two-sided confidence

interval for μ. Thus, 100 1� αð Þ% ¼ 95% and so 1� α ¼ 0:95, α ¼ 0:05, and
α=2 ¼ 0:025. With n ¼ 8, then t1�0:025:8�1 ¼ t0:975:7 ¼ 2:364. Using the computed

point estimates in Table 2.10 the computed 95% confidence interval on μ is

L¼ 94:305� 2:364�
ffiffiffiffiffiffiffiffiffiffiffi
0:608

8

r
¼ 93:65%

U ¼ 94:305þ 2:364�
ffiffiffiffiffiffiffiffiffiffiffi
0:608

8

r
¼ 94:96%:

ð2:9Þ

With 95% confidence, we can state the true value of μ is between 93.65 and

94.96%.

Table 2.9 Sample statistics

for one population with

independent measurements

Statistic Symbol Formula

Sample mean �Y Xn
i¼1

Yi

n

Pn
i¼1

Yi

n

Sample variance S2 Xn
i¼1

ðYi � �YÞ2

n�1

Pn
i¼1

ðYi��YÞ2

n�1

Sample standard

deviation

S
ffiffiffiffiffi
S2

p

Table 2.10 One population

mean with independent

measurements example
Parameters Point estimator

Computed estimate

Table 2.1

μ �Y 94.305

σ2 S2 0.608

σ S 0.780
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2.6.2 Confidence Interval for Variance

The bounds for a 100 1� αð Þ% two-sided confidence interval on σ2 are

L¼ n� 1ð ÞS2
χ2
1�α=2:n�1

U ¼ n� 1ð ÞS2
χ2α=2:n�1

:

ð2:10Þ

The computed 95% interval using the statistics in Table 2.10 is

L¼ 8� 1ð Þ0:608
16:013

¼ 0:27

U ¼ 8� 1ð Þ0:608
1:690

¼ 2:52

ð2:11Þ

2.6.3 Confidence Interval on the Standard Deviation

Based on these calculations, the 95% confidence interval on the standard deviation

σ is L ¼ ffiffiffiffiffiffiffiffiffi
0:27

p ¼ 0:52% and U ¼ ffiffiffiffiffiffiffiffiffi
2:52

p ¼ 1:59%.

2.6.4 Confidence Interval on the Percent Relative Standard
Deviation

In terms of the population parameters, the percent relative standard deviation (%

RSD) is expressed as

%RSD ¼ σ

μ
� 100%: ð2:12Þ

In words, it is the standard deviation expressed as a percentage relative to the

average. It has also been referred to as the coefficient of variation (CV) in the

statistical literature. Analytical laboratories often use %RSD to describe the per-

formance of an analytical method. Since it is a relative measure, it is useful for

comparisons across dissimilar magnitudes or dissimilar units of measure. However,

as noted by Torbeck (2010), there are situations where it is not useful. For example,

it is not informative for measurement scales such as pH where zero has no physical

meaning. It can be misleading if the original unit of measure is a percentage such as

percent recovery or percent of main peak. Care must also be taken when data have
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very small averages. In such a situation, a minor shift in the standard deviation can

cause a very big shift in the %RSD.

A naı̈ve method for computing a confidence interval on %RSD is to compute the

interval in (2.10), take the square root, and then divide both bounds by �Y. The

problem is this does not properly account for the variability in �Y as an estimator of μ.
This results in an interval that is too short. Vangel (1996) offers two alternative

intervals to mitigate this problem. However, we have found the naı̈ve interval works

well for practical purposes. In our example, the two-sided 95% naı̈ve interval is

L¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 1ð Þ0:608
16:013

r
� 1

94:305
� 100% ¼ 0:55%

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 1ð Þ0:608

1:690

r
� 1

94:305
� 100% ¼ 1:68%:

ð2:13Þ

To compare, the two-sided modified McKay method recommended by Vangel is

from 0.547 to 1.683%. There is no practical difference between these two intervals.

2.6.5 Confidence Interval for Proportion Out of Specification

In many applications, it is desired to estimate the probability that a reportable value

measured on a quality attribute will exceed a predefined specification limit. Such a

measurement is said to be out of specification (OOS). Exact confidence intervals

can be obtained where there is a single specification limit, and a good approxima-

tion is available when there are both a lower and upper specification limit. Com-

putation of these intervals requires the ability to determine percentiles of a

non-central t-distribution. To begin, consider a process where a reportable value

is within specification if it is no less than a lower specification limit (LSL). That is,
the reportable value, Y, is in specification if LSL � Y. The bounds for an exact 100

1� αð Þ% confidence interval on the probability of an OOS are

L ¼ 1�Φ
λLffiffiffi
n

p
� �

U ¼ 1� Φ
λUffiffiffi
n

p
� �

where λL and λU are determined such that

Pr tλL:n�1 �
ffiffiffi
n

p � KLSL½ � ¼ α

2

Pr tλU :n�1 �
ffiffiffi
n

p � KLSL½ � ¼ 1� α

2
,

KLSL ¼
�Y � LSL

S

� �

ð2:14Þ

36 2 Statistical Methods for CMC Applications



tλL:n�1 is a non-central t-variate with non-centrality parameter λL and degrees of

freedomn� 1, tλU :n�1 is a non-central t-variate with non-centrality parameter λU and

degrees for freedom n� 1, andΦ(•) is the area in a standard normal curve to the left

of (•). Generally, only an upper bound is desired, but for completeness formulas for

both bounds are provided below.

Assume LSL¼ 88%. For a 95% two-sided interval, solve the following equa-

tions for λL and λU

Pr tλL:n�1 �
ffiffiffi
8

p 94:305� 88

0:780

� �� �
¼ 0:05

2

Pr tλL:n�1 � 22:868½ � ¼ 0:025

Pr tλU :n�1 � 22:868½ � ¼ 0:975:

ð2:15Þ

Unfortunately, Excel does not have non-central t-distribution percentiles in its

base package to solve these equations. SAS provides the values for the

non-centrality parameters using the function “tnonct” and Minitab calculates cumu-

lative probability for the non-central t-distribution so that it can be used to solve for

the two non-centrality parameters iteratively. For our example, λL ¼ 34:72 and

λU ¼ 11:04. Thus the computed bounds are

L¼ 1� Φ
λLffiffiffi
n

p
� �

¼ 1� Φ
34:72ffiffiffi

8
p

� �
¼ 1� Φ 12:28ð Þ ¼ 0

U ¼ 1� Φ
λUffiffiffi
n

p
� �

¼ 1� Φ
11:04ffiffiffi

8
p

� �
¼ 1� Φ 3:90ð Þ ¼ 0:000047:

ð2:16Þ

As seems obvious from the plot in Fig. 2.1, the likelihood of an OOS is

essentially non-existent if the process remains in control. If only an USL is

provided, one simply replaces KLSL with KUSL ¼ USL��Y
S

� �
in (2.14).

The calculations become a bit more complex when there are two specification

limits. The following algorithm reported by Mee (1988) is used to compute a 100

1� αð Þ% two-sided confidence interval:

1. Compute KLSL and KUSL. If either of these values exceeds n� 1ð Þ= ffiffiffi
n

p
; then set

K* ¼ min KLSL;KUSLð Þ and go to step 4. Otherwise, compute the maximum

likelihood point estimator (MLE) of the proportion outside the specification

limits using the formula

π̂ ¼ Φ �
ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
� KLSL

� �
þ Φ �

ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
� KUSL

� �
: ð2:17Þ

2. Determine the 100π̂% percentile of a beta distribution with parameters n� 2ð Þ
=2 and n� 2ð Þ=2 using the inverse cumulative distribution function (Excel,

Minitab, and SAS all have this function). Denote this value as b.
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3. Compute

K* ¼ 1� 2� bð Þ � n� 1ð Þffiffiffi
n

p : ð2:18Þ

4. Solve the equations

Pr tλL:n�1 �
ffiffiffi
n

p � K*
	 
 ¼ α

2
to get λL, and

Pr tλU :n�1 �
ffiffiffi
n

p � K*
	 
 ¼ 1� α

2
, to get λU:

ð2:19Þ

Apply (2.16) to obtain L and U.

This approximation is improved by using the minimum variance unbiased

estimator in place of the MLE as discussed by Mee. However, it is a bit more

complicated to compute, and for demonstration, we have selected the MLE.

Consider a simple example with �Y ¼ 10,S ¼ 2,n ¼ 20,LSL ¼ 8, andUSL ¼ 13.

The computations following the steps above for a 90% confidence interval are

1. KLSL ¼ 10� 8ð Þ=2 ¼ 1, KUSL ¼ 13� 10ð Þ=2 ¼ 1:5. Since both of these values

are less than 20� 1ð Þ= ffiffiffiffiffi
20

p ¼ 4:25; compute

π̂ ¼ Φ �
ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
� KLSL

� �
þ Φ �

ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
� KUSL

� �

¼ Φ �
ffiffiffiffiffi
20

19

r
� 1

 !
þΦ �

ffiffiffiffiffi
20

19

r
� 1:5

 !

¼ Φ �1:026ð Þ þ Φ �1:539ð Þ
¼ 0:152þ 0:062 ¼ 0:214:

ð2:20Þ

2. b ¼ 0:406 using the Excel function “¼betainv(0.214, (20-2)/20,(20-2)/20)”.

3. K* ¼ 1�2�bð Þ� n�1ð Þffiffi
n

p ¼ 1�2�0:406ð Þ� 20�1ð Þffiffiffiffi
20

p ¼ 0:796.

4. λL ¼ 5:786, λU ¼ 1:267, L ¼ 0:098, and U ¼ 0:388.

2.6.6 Prediction Interval for the Next Observed Process
Value

The bounds for a 100 1� αð Þ% two-sided prediction interval for the next observa-

tion from a process are
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L¼ �Y � t1�α=2:n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

� �
� S2

s

U ¼ �Y þ t1�α=2:n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

� �
� S2

s
:

ð2:21Þ

The computed 95% prediction interval using the statistics in Table 2.10 is

L¼ 94:305� 2:364

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

8

� �
� 0:608

s
¼ 92:35%

U ¼ 94:305þ 2:364

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

8

� �
� 0:608

s
¼ 96:26%:

ð2:22Þ

By replacing t1�α=2:n�1 in Eq. (2.21) with t1�α= 2mð Þ:n�1 the prediction interval

contains all of the next m future process values for the desired level of confidence.

Once m becomes sufficiently large, it is more informative to compute the tolerance

interval described in the next section.

2.6.7 Tolerance Interval for all Future Process Values

A two-sided tolerance interval is an interval expected to contain at least 100P% of a

population with 100 1� αð Þ% confidence. For example, if P ¼ 0:99 and α ¼ 0:05,
one can state with 95% confidence that 99% of the population will fall in the

computed interval. For model (2.7), a two-sided tolerance interval is written as

L¼ �Y � K
ffiffiffiffiffi
S2

p

U ¼ �Y þ K
ffiffiffiffiffi
S2

p ð2:23Þ

where �Y and S2 are as defined in Table 2.9 and K is a constant obtained from either

statistical software or a table of values (see, e.g., tables in Appendix B of

Krishnamoorthy and Mathew or tables in Appendix A of Hahn and Meeker).

The exact value for K from Table A.10b of Hahn and Meeker for a two-sided

95% tolerance interval that contains 99% of the process values with n ¼ 8 is

K ¼ 4:889. Thus, using the statistics in Table 2.10 with this value of K

L¼ 94:305� 4:889
ffiffiffiffiffiffiffiffiffiffiffi
0:608

p ¼ 90:49%

U ¼ 94:305þ 4:889
ffiffiffiffiffiffiffiffiffiffiffi
0:608

p ¼ 98:12%
ð2:24Þ

Thus, with 95% confidence we expect the range from 90.49 to 98.12% will

include at least 99% of all future purity values.
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There are several simple approximations for K in Eq. (2.23) that can be used if

you don’t have exact values. One good approximation proposed by Howe (1969) is

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ne

� �
Z2

1þPð Þ=2 � ν

χ2α:ν

vuut ð2:25Þ

where χ2α : ν is the chi-squared percentile with ν degrees of freedom and area α to the

left, and Z2
1þPð Þ=2 is a standard normal percentile with area 1þ Pð Þ=2 to the left. The

term ne represents the number of observations used to estimate the mean (some-

times called the effective sample size) and ν ¼ n� 1 in this example. The

approximate value of K is

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ne

� �
Z2

1þPð Þ=2 � ν

χ2α:ν

vuuut

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

8

� �
2:5762 � 7

2:167

vuut
¼ 4:910

ð2:26Þ

which closely matches the exact value of 4.889.

Most typically as in this example, ne is equal to the sample size n, and ν is equal
ton� 1. However, this need not always be the case. In Chap. 9, an example is given

where a tolerance interval is computed where the center of the interval is the sample

mean of one data set of size n1, and the standard deviation is computed as the pooled

estimate of this data set and a second data set of size n2. In this situation,ne ¼ n1 and
ν ¼ n1 þ n2 � 2.

In some cases, only one-sided bounds are necessary. Typically, one desires

either a 100 1� αð Þ% lower tolerance bound to be exceeded by at least 100P% of

the population, or a 100 1� αð Þ% upper tolerance bound to exceed at least 100P%

of the population where P > 0:5. Exact tolerance bounds can be computed using a

non-central t-distribution. In particular, a 100 1� αð Þ% lower tolerance bound to be

exceeded by at least 100P% of the population is

L¼ �Y � K1

ffiffiffiffiffi
S2

p

K1 ¼ t1�α:n�1,ncpffiffiffi
n

p

ncp¼ ZP �
ffiffiffi
n

p
ð2:27Þ

where t1�α:n�1,ncp is the percentile of a non-central t-distribution with area 1� α to

the left, degrees of freedom n� 1 with non-centrality parameter ncp, and ZP is a

standard normal percentile with area P to the left. A 100 1� αð Þ% upper tolerance

bound to exceed at least 100P% of the population is
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U ¼ �Y þ K1

ffiffiffiffiffi
S2

p
: ð2:28Þ

Tabled values of K1 are available in the same sources referenced for the

two-sided interval or determined with statistical software that provides the

non-central t-distribution.

Consider a 99% upper tolerance bound that will exceed at least 90% of the

population. Using (2.28) with α ¼ 0:01 and P ¼ 0:90,

ncp¼ Z:9 �
ffiffiffi
8

p ¼ 1:28� ffiffiffi
8

p ¼ 3:62

K1 ¼ t1�α:n�1,ncpffiffiffi
n

p ¼ 9:88ffiffiffi
8

p ¼ 3:49

U ¼ 94:305þ 3:50
ffiffiffiffiffiffiffiffiffiffiffi
0:608

p ¼ 97:03%:

ð2:29Þ

The veracity of computed tolerance and prediction intervals are very much

dependent on the assumption that the data arise from a normal population or

process. Methods to validate this assumption are presented later in this chapter. If

the normal population assumption is not reasonable, one can compute a nonpara-

metric tolerance interval. The references listed above as well as the article by

Gitlow and Awad (2013) offer tables and examples for these intervals. Nonpara-

metric tolerance intervals require more data than normal-based intervals to provide

useful intervals. In our present example where n ¼ 8, the interval covered by the

minimum to the maximum values, i.e., the interval from 92.68 to 95.17%, has a

confidence of only 18.7% of including at least 90% of the entire population. To

increase the confidence to 95% requires a sample size of at least n ¼ 46. That is, if

one selects a sample of size 46 with 95% confidence, the range from the minimum

to the maximum sample value includes at least 90% of the population (see

Table A.17 of Hahn and Meeker).

2.6.8 Comparison of Statistical Intervals

Figure 2.7 shows a plot of the sample data with the confidence interval for the mean,

the prediction interval, and the tolerance interval.

All intervals are computed with 95% confidence and the tolerance interval

contains 99% of future values. The tolerance interval is represented by the solid

lines, the prediction interval is the line with long dashes, and the confidence interval

for the mean is the line with short dashes. As expected, the tolerance interval is

widest because there is greater uncertainty about the behavior of all future individ-

ual values than there is for the next individual value (the prediction interval) or the

average of all values (the confidence interval). The fact that some of the individual

values fall outside the confidence interval for the mean is not surprising. Remember

that the confidence interval is expected to include the average 95% of the time, but

it will not include all the individual values that make up the average.
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2.6.9 Data Sets with LOQ Values

Measured values are sometimes subject to a limit of quantitation (LOQ). The LOQ

is the lowest amount of analyte in a sample that can be determined with acceptable

precision and accuracy under the stated experimental conditions. Values that are

less than LOQ are typically reported as “LOQ” with no numerical value. The

measured values are said to be left-censored. One strategy for computing descrip-

tive statistics in this situation is to replace the label “LOQ” with the numerical value

of LOQ and compute the desired statistics. This strategy is called the “Substitution”

method.

Unfortunately, the substitution method will overestimate the mean (because one

is increasing all values less than LOQ to LOQ) and underestimate the standard

deviation (because a shorter range of the data is artificially created).

There is a large body of research that considers estimation of means and standard

deviations with normally distributed left-censored data. One very simple approach

that works well was suggested by Persson and Rootzen (1977). This is an adjusted

maximum likelihood approach that does not require an iterative estimation process.

Thus, it can be easily implemented in Excel.

Let n represent the total sample size including observations marked as “LOQ,”

and k represent the number of observations greater than LOQ. Thus, the number of

“LOQ” values is n� k. The sample mean �Yð Þ and sample standard deviation (S) for
the Persson and Rootzen approach are computed using the sample mean and sample

standard deviation computed from the k values that exceed LOQ, denoted �Y1 and S1,
respectively. In particular, the estimators are
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Fig. 2.7 Plot of lot release data with statistical intervals
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Y ¼ Y1 � r � c

S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � 1

k

� �
� S21 � r � ðλ� rÞ � c2

s Y ¼ Y1 � r � c

S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � 1

k

� �
� S21 � r � ðλ� rÞ � c2

s

ð2:30Þ

where

c¼ 1

2
λ �Y1 � LOQð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ λ2
� �� �Y1 � LOQð Þ2 þ 4 1� 1

k

� �
S21

s" #

r¼ n

k

� �
� 1ffiffiffiffiffi

2π
p
� �

exp � λ2

2

� � ð2:31Þ

and λ is the percentile of a standard normal distribution with area 1� k=nð Þ to the

left. Once the mean and standard deviation are estimated in this manner, they can be

used to compute statistical intervals.

Table 2.11 reports a sample of n ¼ 48 nucleic acid measurements (ng/mg

protein) taken from the first column of a purification process. There are k ¼ 41

values that exceed the LOQ of 0.007 ng/mg.

Table 2.12 shows the computed quantities defined in Eqs. (2.30) and (2.31).

As shown in Fig. 2.8, the data in Table 2.11 are extremely skewed to the right.

Thus, it is not appropriate to compute a normal-based prediction or tolerance

interval with these data.

However, one can still compute a confidence interval on the mean because the

sample size is large enough for the central limit theorem to apply. Thus, a 95%

confidence interval on the mean using Eq. (2.8) is

Table 2.11 Example data

Obs Value Obs Value Obs Value Obs Value

1 0.043 13 0.010 25 0.015 37 LOQ

2 0.033 14 0.012 26 0.013 38 0.011

3 0.032 15 0.013 27 0.019 39 LOQ

4 0.035 16 0.011 28 0.019 40 0.095

5 0.034 17 0.014 29 0.017 41 0.023

6 0.037 18 0.012 30 0.019 42 0.015

7 0.040 19 0.012 31 0.017 43 0.017

8 0.034 20 0.011 32 LOQ 44 0.020

9 0.012 21 0.026 33 LOQ 45 LOQ

10 0.014 22 0.011 34 0.017 46 0.025

11 0.016 23 0.009 35 LOQ 47 0.033

12 0.014 24 0.010 36 LOQ 48 0.024
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L¼ 0:018� 2:01� 0:017ffiffiffiffiffi
48

p ¼ 0:013 ng=mg protein

U ¼ 0:018þ 2:01� 0:017ffiffiffiffiffi
48

p ¼ 0:023 ng=mg protein

ð2:32Þ

2.6.10 Non-Normal Data

As noted in the previous example, unless that data are well represented with a

normal probability model, the statistical interval formulas presented to this point

are not appropriate. This is especially true for prediction and tolerance intervals, but

Table 2.12 Computed

statistics for example problem
LOQ 0.007

n 48

k 41

�Y1 0.0218

S1 0.0151

λ �1.0545

c 0.0146

r 0.2679

�Y 0.0179

S 0.0173
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Fig. 2.8 Example data (ng/mg protein)

44 2 Statistical Methods for CMC Applications



less so for the confidence interval on the mean. A confidence interval for the mean is

not as sensitive to the assumption of normality because it is based on the sampling

distribution of the sample mean. For the sample mean, the central limit theorem

ensures that the sampling distribution tends toward a normal probability distribu-

tion regardless of the underlying distribution of individual observations. So with

relatively large samples, Eq. (2.8) works well even if the underlying distribution is

not normal. However, prediction intervals and tolerance intervals may not perform

well if the population is non-normal. The validity of these intervals depends on the

distribution of the individual values which are not impacted by the central limit

theorem. More discussion on this topic is found in Sect 4.10 of Hahn and Meeker.

A useful plot for determining whether data are reasonably represented with a

normal distribution is the normal quantile plot (also called normal probability plot).

Figure 2.9 shows a normal quantile plot of the purity values in Table 2.1. The

horizontal axis reports the value of the measurement and the vertical axis reports the

percentage of values in the data set that are less than or equal to the measured value.

(There is a continuity adjustment made to these values.) The vertical axis is scaled

so that if the data can be described with the normal probability model, the mea-

surements will fall in a straight line that can be covered with a “fat pencil.”

It seems reasonable to suggest the measurements in Fig. 2.9 fall in a straight line,

so use of the previously computed statistical intervals for this data set is appropriate.

Statistical tests can be used to test the null hypothesis that data are normal.

However, we prefer graphical representations over statistical tests. The results of a

statistical test are dependent on sample size—large samples often lead to the

conclusion that data are not normal, and small samples are often too small to reject

the null hypothesis of normality in even extreme situations. Additionally, graphical

Fig. 2.9 Normal quantile plot of purity data
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representations allow one to discover the nature of any variations from the “ideal,”

and suggest possible data transformations or identify the existence of outliers.

Additional discussion on this issue and other useful graphs to display a data set is

provided by Vukovinsky and Pfahler (2014). Boylan and Cho (2012) provide

additional examples of how to interpret normal quantile plots with respect to

skewness, kurtosis, and variability. Vining (2010) provides calculations and addi-

tional advice on the application of these plots.

When data are not well represented with a normal probability model, there are

three ways to proceed.

1. Determine a transformation that will make the data fit a normal model.

2. Model the data with a more appropriate distribution.

3. Apply a distribution-free or nonparametric approach.

The first approach is to determine a transformation so that the transformed data

are well modeled by the normal curve. A transformed value T is a function of the

original measurement, Y. Even though Y does not have a normal distribution, it is

possible that T can be represented by the normal model. Table 2.13 reports some

common transformations and conditions for Y that might yield a successful

transformation.

Power transformations, the most common of which are Box-Cox transforma-

tions, are also useful tools. These transformations are of the form

T ¼
Yλ � 1

λ
λ 6¼ 0

lnðYÞ λ ¼ 0

8<
: ð2:33Þ

where λ is selected to best transform the data set to normality. Information on

Box-Cox transformations is provided in Sect. 6.5.2 of the NIST/SEMATECH

e-Handbook of Statistical Methods (2016).

Table 2.13 Useful transformations for normality

Transformation

name Transformation

Back

transformation Conditions for Y

Log T ¼ ln Yð Þ Y ¼ eT Useful when Y is skewed to the

right with values ranging over sev-

eral orders of magnitude. If Y has a

log-normal distribution, then T will

have a normal distribution

Arcsine T ¼ 2� sin �1
ffiffiffi
Y

p� �
Y ¼ sin T

2

� �	 
2 Useful if Y is a proportion, i.e.,

0 � Y � 1. Works well for propor-

tions that are “pushed up” against a

finite bound such as 0 or 1

Logit T ¼ ln Y
1�Y

� �
Y ¼ eT

1þeT
Works in situations similar to the

arcsine transformation where

0 � Y � 1
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After completing an analysis with transformed values (T ), results are typically

“back-transformed” to the original scale of measurement (Y). For example, if a

lower tolerance bound, L, is computed using Eq. (2.23) with transformed data

T ¼ lnðYÞ, then the reported lower tolerance bound in the original units is eL.
It has been our experience that back-transformed prediction and tolerance

bounds are often too wide to be useful when the original distribution is extremely

skewed and the sample size is small. From a practical standpoint, this is what makes

a transformation strategy difficult to employ in many CMC applications. Addition-

ally, consumers of your analysis may not like the fact you are “changing the data,”

even though the resulting analysis is perfectly fine from a statistical standpoint.

Units of measure on transformed data can also present problems in interpretation.

As an alternative to data transformation, one can compute statistical intervals

with a more appropriate probability distribution. With the advancement of statisti-

cal software, this approach is well within the capabilities of most investigators.

This approach is demonstrated by computing a tolerance interval for counts of

sub-visible particles (SbVP) found in a vial or syringe. Historically, variables that

are measured as counts in a fixed unit of space or time are modeled with the Poisson

distribution, and this model is a good representation of SbVP counts. Table 2.14

summarizes counts of sub-visible particles of size greater than 25μm for a sample of

38 vials taken from a manufacturing process. For example, of the 38 vials in the

sample, four had no particles, and 21 had one particle each.

Krishnamoorthy et al. (2011) propose one-sided and two-sided tolerance inter-

vals on the mean λ of the Poisson distribution, based on either the exact or score-

based confidence interval on λ. To compute a two-sided 100 1� αð Þ% tolerance

interval that contains 100P% of a population, start with a 100 1� 2αð Þ% confidence

interval on the mean of the Poisson distribution, λ. One recommended confidence

interval on λ with confidence coefficient 100 1� 2αð Þ% is

L¼ χ2α:2m
2n

U ¼ χ21�α:2mþ2

2n

ð2:34Þ

where n is the sample size and m is the sum of all n values (counts). The upper

tolerance bound is now the 1þP
2

percentile of a Poisson distribution with mean

U from Eq. (2.34), and the lower tolerance bound is the 1�P
2

percentile of a Poisson

distribution with mean L from Eq. (2.34).

Table 2.14 Counts of

sub-visible particles of size

25 μm

Number of particles in vial Number of vials

0 4

1 21

2 11

3 2
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This calculation can be performed using the function “Quantile” in SAS,

the inverse cumulative function in the “Calc” menu of Minitab, or the

“Poisson” function in Excel. Using the data in Table 2.14, n ¼ 38 and

m ¼ 0� 4þ 1� 21þ 2� 11þ 3� 2 ¼ 49. To construct a 95% two-sided toler-

ance interval that contains 99.5% of future values, α ¼ 0:025 and P ¼ 0:995. The
two-sided confidence interval on λ from Eq. (2.34) is

L¼ χ2α:2m
2n

L¼ χ20:025:98
2� 38

¼ 72:5

2� 38
¼ 0:954

U ¼ χ21�α:2mþ2

2n

U ¼ χ20:975:100
2� 38

¼ 129:56

2� 38
¼ 1:705:

ð2:35Þ

To compute the upper bound on the tolerance interval, use the Excel function

“Poisson” to find the smallest integer such that probability exceeds 1þP
2

¼ 1þ0:995
2

¼ 0:9975 with mean¼U¼ 1.705. This yields “Poisson(6,1.705,1)¼0.9981”. So the

upper tolerance bound is 6 particles. The lower tolerance bound is 0 since “Poisson

(0,0.954,1)¼0.3852” exceeds 1�P
2

¼ 0:0025, and the lower bound can be no less

than zero.

It is instructive to note that if these data had been used to compute a two-sided

tolerance interval using the normal-based formula in Eq. (2.23), L ¼ �1:292, and
U ¼ 3:871. As can be seen from this result, the normal-based upper bound is too

small because it does not account for the skewness of the distribution. The same

approach can be applied for a binomial distribution as described in Krishnamoorthy

et al. A generalized linear model (see, e.g., Myers et al. 2002) offers a more general

approach for constructing statistical intervals under various distributional probabil-

ity models.

Nonparametric methods can also be considered for relatively large data sets.

Chapter 5 of Hahn and Meeker (1991) provides distribution-free formulas for

several statistical intervals.

2.7 Intervals for One Population (Dependent
Measurements)

Measurements in a laboratory are often collected with observational units nested

within experimental units. A common example is an analytical method where

aliquots (observational units) are contained within plates (experimental units). An
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example of a typical data set is shown in Table 2.15 where the reading from a single

aliquot is a purity measure expressed as a percentage.

The data are plotted in Fig. 2.10. The circles with the crosses represent the

averages for each plate.

Measurements have been taken from 12 aliquots and there are two aliquots on

each plate. Because values of aliquots on the same plate are more similar than

values of aliquots from different plates, the measurements within the same plate are

dependent (correlated). This situation is demonstrated in Fig. 2.10 where it is seen

that the means from plate to plate vary more than the values within any given plate.

The statistical model used to represent these data is

Table 2.15 Measurements

on drug product from

laboratory

Plate Aliquot Purity (%)

1 1 96.672

1 2 96.606

2 3 96.793

2 4 96.883

3 5 96.253

3 6 96.298

4 7 96.074

4 8 96.075

5 9 96.098

5 10 96.071

6 11 96.870

6 12 96.755

654321

96.9

96.8

96.7

96.6

96.5

96.4

96.3

96.2

96.1

96.0

Plate
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rit
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)

Fig. 2.10 Plot of drug product measurements
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Yij ¼ μþ Ai þ Eij

i¼ 1, . . . , a platesð Þ; j ¼ 1, . . . , r aliquots per plateð Þ; ð2:36Þ

where Yij is the measured value for aliquot j on plate i, a is the number of plates, r is
the number of aliquots on each plate, μ is the true average, Ai is a random error

contributed by plate i, and Eij is a random error specific to aliquot j from plate i.
For the design in Table 2.15, a ¼ 6 plates and r ¼ 2 aliquots per plate. The total

sample size is n ¼ a� r ¼ 12. Unlike model (2.7) in Sect. 2.6 where there is a

single random variable, the model in (2.36) has two random variables, Ai and Eij. As

a matter of terminology, when there is more than one random error term in the

model, the error term on the far right of the equation (Eij) is referred to as the

residual error. The two random variables are assumed to be independent, and each

one has a normal distribution with mean zero. The variance associated with the

normal population of the Ai is σ2A and the variance associated with the normal

population of the Eij is σ2E. Based on these assumptions, the correlation between two

aliquots on the same plate is

ρ ¼ σ2A
σ2A þ σ2E

: ð2:37Þ

Thus, if σ2A ¼ 0, measurements on the same plate are independent and model

(2.36) simplifies to the independent model (2.7). Note that ρ can also be described

as the proportion of the total error in Yij that is attributed to the plate-to-plate

variation. Table 2.16 reports statistics and Table 2.17 reports the parameters, their

point estimators, and computed estimates for the model in (2.36) using the data in

Table 2.15.

Table 2.16 Statistics for one population with dependent measurements

Statistic Symbol Formula Estimate

Sample mean �Y Xa
i¼1

Xr
j¼1

Yij

ar

96.454

Among group (plate) mean square S2A r
Xa
i¼1

�Yi � �Yð Þ2

a� 1

where

�Yi ¼

Xr
j¼1

Yij

r

0.249

Within group mean square S2E Xa
i¼1

Xr
j¼1

Yij � �Yi

� �2
a r � 1ð Þ

0.00237
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Statistical intervals are now presented for the parameters in Table 2.17. When ρ
is relatively high (say greater than 0.75), interval lengths are primarily determined

by the value of a, so one should make a as large as possible, and r as small as

possible r ¼ 2ð Þ.

2.7.1 Confidence Interval for Mean

The bounds for a 100 1� αð Þ% two-sided confidence interval on μ are

L¼ �Y � t1�α=2:a�1

ffiffiffiffiffi
S2A
ar

r

U ¼ �Y þ t1�α=2:a�1

ffiffiffiffiffi
S2A
ar

r ð2:38Þ

A 100 1� αð Þ% ¼ 95% two-sided interval on μ has α=2 ¼ 0:025 and

t1�0:025,6�1 ¼ t0:975,5 ¼ 2:570. Using the statistics from Table 2.16 the computed

95% confidence interval is

L¼ 96:454� 2:570

ffiffiffiffiffiffiffiffiffiffiffi
0:249

12

r
¼ 96:1%

U ¼ 96:454þ 2:570

ffiffiffiffiffiffiffiffiffiffiffi
0:249

12

r
¼ 96:8%:

ð2:39Þ

2.7.2 Confidence Intervals for Individual Variances, the Sum
of the Variances, and the Ratio

There are two variances of interest in model (2.36), σ2A and σ2E. Exact confidence
intervals can be computed for both σ2E and ρ. However, only an approximate

interval can be computed for σ2A. The bounds for the exact 100 1� αð Þ%
two-sided confidence interval on the variance σ2E are

Table 2.17 One population

mean with dependent

measurements example

Parameter Point estimator Estimate

μ �Y 96.454

σ2A S2A � S2E
r

0.12

σ2E S2E 0.00237

ρ S2A � S2E
S2A þ r � 1ð ÞS2E

0.98
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L¼ a r � 1ð ÞS2E
χ2
1�α=2:a r�1ð Þ

U ¼ a r � 1ð ÞS2E
χ2α=2:a r�1ð Þ

:

ð2:40Þ

The 95% confidence interval on σ2E using the computed statistics in Table 2.16 is

L¼ 6� 0:00237

14:449
¼ 0:00098

U ¼ 6� 0:00237

1:237
¼ 0:011:

ð2:41Þ

The 95% confidence interval on the standard deviation σE is obtained by taking

the square root of L and U in Eq. (2.41). This interval is from 0.031% to 0.11%.

The exact 100 1� αð Þ% two-sided confidence interval on ρ is based on the

F-distribution and given by the formula

L¼ L1
1þ L1

U ¼ U1

1þ U1

L1 ¼ S2A
rF1�α=2:a�1,a r�1ð ÞS2E

� 1

r

U1 ¼ S2A
rFα=2:a�1,a r�1ð ÞS2E

� 1

r
:

ð2:42Þ

The 95% confidence interval on ρ using the computed statistics in Table 2.16 is

L1 ¼ 0:249

2� 5:987� 0:00237
� 1

2
¼ 8:28

U1 ¼ 0:249

2� 0:143� 0:00237
� 1

2
¼ 366

L¼ L1
1þ L1

¼ 0:89

U ¼ U1

1þ U1

¼ 1:00:

ð2:43Þ

As depicted in Fig. 2.10, the correlation among plates explains most of the

variation in the measured values. Thus, selecting a value for r greater than two will
not do much to shorten the statistical intervals.
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The parameter σ2A is estimated using a difference of two mean squares, S2A and S
2
E.

Burdick et al. (pages 16–17) provide two methods for constructing approximate

confidence intervals for σ2A under model (2.36). The lengths of the two intervals are

comparable and both generally maintain the stated confidence level. The more

simple 100 1� αð Þ% two-sided confidence interval on σ2A is

L¼ a� 1ð Þ S2A � S2E � F1�α=2:a�1,a r�1ð Þ
� �

r � χ2
1�α=2:a�1

U ¼ a� 1ð Þ S2A � S2E � Fα=2:a�1,a r�1ð Þ
� �

r � χ2α=2:a�1

:

ð2:44Þ

The lower bound will be negative if S2A=S
2
E < F1�α=2:a�1,a r�1ð Þ, and should be

increased to zero. Some software packages provide confidence bounds for σ2A based
on large sample likelihood approximations. In general, Eq. (2.44) is preferred to

these likelihood approximations, because the likelihood equations do not generally

maintain the stated confidence level (see, e.g., Yu and Burdick 1995). The 95%

confidence interval for σ2A in this example is

L¼ 5ð Þ 0:249� 0:00237� 5:987ð Þ
2� 12:832

¼ 0:05

U¼ 5ð Þ 0:249� 0:00237� 0:143ð Þ
2� 0:831

¼ 0:75:

ð2:45Þ

Finally, there is generally interest in the total variance, σ2Total ¼ σ2A þ σ2E. As will
be discussed in Chap. 6, the intermediate precision of an analytical method can be

represented in this manner. Intermediate precision is the sum of all components

within a laboratory that contribute to the variability of the analytical method. Such

factors include analyst, day, and equipment. The point estimator for σ2Total is

S2Total ¼
S2A
r
þ r � 1ð ÞS2E

r
: ð2:46Þ

Nijhuis and Van den Heuvel (2007) recommend the following approximate

confidence interval for σ2Total. This interval is based on the modified large sample

(MLS) method developed by Graybill and Wang (1980). This 100 1� αð Þ%
two-sided confidence interval on σ2Total is
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L¼ S2Total �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1S

2
A

r

� �2

þ ðr � 1ÞG2S
2
E

r

� �2
s

U¼ S2Total þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1S

2
A

r

� �2

þ ðr � 1ÞH2S
2
E

r

� �2
s

G1 ¼ 1� a� 1

χ2
1�α=2:a�1

G2 ¼ 1� aðr � 1Þ
χ2
1�α=2:aðr�1Þ

H1 ¼ a� 1

χ2α=2:a�1

� 1

H2 ¼ aðr � 1Þ
χ2α=2:aðr�1Þ

� 1:

ð2:47Þ

To complete our example, the point estimator for σ2Total is

S2Total ¼
0:249

2
þ 2� 1ð Þ0:00237

2
¼ 0:1257: ð2:48Þ

The computed 95% confidence interval on σ2Total is

G1 ¼ 1� 5

12:832
¼ 0:610

G2 ¼ 1� 6 2� 1ð Þ
17:53455

¼ 0:585

H1 ¼ 5

0:831
� 1 ¼ 5:105

H2 ¼ 6 2� 1ð Þ
1:237

� 1 ¼ 3:849

L¼ 0:1257�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:610� 0:249

2

� �2

þ 2� 1ð Þ � 0:585� 0:00237

2

� �2
s

¼ 0:05

U ¼ 0:1257þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:105� 0:249

2

� �2

þ 2� 1ð Þ � 3:849� 0:00237

2

� �2
s

¼ 0:75:

ð2:49Þ
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2.7.3 Prediction Interval for the Next Observed
Process Value

An approximate formula for computing a prediction interval for model (2.36) is

obtained by replacing S2 in (2.21) with S2Total and the degrees of freedom n� 1ð Þ
with the value m defined by the Satterthwaite approximation. (The Satterthwaite

approximation is discussed in Sect. 2.12.7 of this book.)

The resulting 100 1� αð Þ% two-sided prediction interval is

L¼ �Y � t1�α=2:m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a� r

� �
� S2Total

s

U ¼ �Y þ t1�α=2:m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a� r

� �
� S2Total

s

m¼ S4Total
S4A

r2 � a� 1ð Þ þ
r � 1ð Þ � S4E
r2 � a

:

ð2:50Þ

If using software that does not allow non-integer values for the t-distribution

(e.g., Excel), then round m to the nearest integer. Interval (2.50) provides a range

that will include the next observed observation, Yij, with the given level of confi-

dence. Using data from the example problem, the computed 95% two-sided pre-

diction interval for the individual value Yij is

L¼ 96:454� 2:57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
� 0:1257

s
¼ 95:5%

U ¼ 96:454þ 2:57

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
� 0:1257

s
¼ 97:4%

m¼ 0:12572

0:2492

6� 1ð Þ22 þ
0:00237 2� 1ð Þ

6� 22

¼ 5:10 ¼ 5 roundedð Þ

ð2:51Þ

Mee (1984) provides an alternative interval that also uses the Satterthwaite

approximation. The two intervals are virtually identical for practical applications.
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2.7.4 Tolerance Interval for All Future Process Values

The same substitution used for the prediction interval can be used to construct a

tolerance interval from the interval in (2.23). In particular, the 100 1� αð Þ%
two-sided tolerance interval that includes 100 P% of all future observations, Yij, is

L¼ �Y � K
ffiffiffiffiffiffiffiffiffiffi
S2Total

q
U ¼ �Y þ K

ffiffiffiffiffiffiffiffiffiffi
S2Total

q

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a� r

� �
Z2

1þPð Þ=2 � m

χ2α:m

vuuut
ð2:52Þ

where m is defined in (2.50) and S2Total in (2.46). For the present example, the 95%

tolerance interval that includes 90% of future values is

L¼ 96:454� 3:577
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1257

p ¼ 95:2%

U ¼ 96:454þ 3:577
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1257

p ¼ 97:7%

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
1:6452 � 5

1:146

vuut
¼ 3:577:

ð2:53Þ

Hoffman and Kringle (2005) and Quiroz et al. (2016) provide alternative inter-

vals that generally better match the stated confidence level. For this example, the

tolerance interval recommended by Hoffman and Kringle is from 95.1 to 97.8%.

Figure 2.11 presents a plot of the prediction and tolerance intervals computed

above. The prediction interval is the solid line and the tolerance interval the dashed

line. Because most of the variation in the data is due to plate, more plates would

need to be collected to reduce the width of the intervals.

2.7.5 Modifications for Unbalanced Designs

The design in this example included an equal number of aliquots (r) for each plate.

Such a design is described as balanced because there is an equal number of

observational units within each experimental unit. In many situations, the number

of observational units is not equal for all experimental units. When this occurs, it is

necessary to modify the formulas in this section. A simple set of modifications are

based on an approach recommended by Thomas and Hultquist (1978). To use this

approach, replace S2A with S2AU and r with rH where
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S2AU ¼
rH
Xa
i¼1

�YiU � �YUð Þ2

a� 1

�YiU ¼

Xri
j¼1

Yij

ri

�YU ¼

Xa
i¼1

�YiU

a

rH ¼ aXa
i¼1

1

ri

ð2:54Þ

and ri is the number of observations in the i th experimental unit (plate). The term rH
represents the harmonic mean of the ri values. Additionally, the term a r � 1ð Þ in the
definitions of G2 and H2 is changed to

Xa

i¼1
r
i
� a. This modification will provide

good approximations in virtually all situations encountered in practice. Burdick

et al. (2005) provide worked examples for this approach.

Fig. 2.11 Tolerance and prediction intervals for data in Table 2.15
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2.8 Comparing Two Populations (Independent
Measurements)

This section considers comparisons of the means and variances of two populations

or processes. To start with an example, consider the process of comparing two

analytical methods.

Analytical methods used to measure quality attributes are often replaced during

commercialization with improved methods. Before a new method replaces an

existing method, a bridging study is conducted to ensure the performance of the

new method will not create any bias that could lead to false out-of-specification

measurements. Data from a representative bridging study are shown in Table 2.18.

Twelve vials are selected from a lot of drug product and six vials are randomly

assigned to each analytical method. The average of the vial measurements using the

new method is compared to the average of the measurements using the present

method. Any difference between the two means is defined as bias. The standard

deviations of the two methods are also compared to determine if the methods have

comparable precision. The statistical model used to represent the data is

Yij ¼ μi þ Eij i ¼ 1, 2 methodsð Þ; j ¼ 1, . . . , ni vials per methodð Þ; ð2:55Þ

where Yij is the measured value for vial j using analytical method i, ni is the number

of vials measured using the i th method (n1 ¼ n2 ¼ 6 in this example), μ1 and μ2 are
the true averages for the present method and new method, respectively, and Eij is

the residual error associated with vial j from method i. It is assumed that the Eij are

sampled from a normal population with mean 0 and variance σ21 for the present

method and variance σ22 for the new method.

In this example there are two primary contributors to the residual error term:

(1) the variability from vial to vial (the manufacturing variability) and (2) the

measurement error. Since there is only one measurement per vial, these two errors

Table 2.18 Bridging study

with independent

measurements
Method Vial

Protein concentration

(mg/mL)

Present 1 0.426

Present 2 0.456

Present 3 0.454

Present 4 0.444

Present 5 0.456

Present 6 0.440

New 7 0.449

New 8 0.476

New 9 0.467

New 10 0.452

New 11 0.473

New 12 0.461
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cannot be separated. In the present example, it is assumed the majority of the

variation is due to measurement error since we expect the manufactured drug

product to be uniform (homogeneous) from vial to vial within a lot.

Table 2.19 reports the statistics needed to perform the required calculations

where group 1 is “Present” and group 2 is “New.”

Table 2.20 reports the point estimators using the data in Table 2.18.

2.8.1 Confidence Interval for Difference in Means

There are two versions for the confidence interval on the difference in two means.

The appropriate interval depends on the relationship between the two variances, σ21
and σ22. If one assumes the variances are equal, then the appropriate 100 1� αð Þ%
two-sided confidence interval on μ1 � μ2 is

L¼ �Y1 � �Y2 � t1�α=2:n1þn2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2P

1

n1
þ 1

n2

� �s

U ¼ �Y1 � �Y2 þ t1�α=2:n1þn2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2P

1

n1
þ 1

n2

� �s

S2P ¼
n1 � 1ð ÞS21 þ n2 � 1ð ÞS22

n1 þ n2 � 2
:

ð2:56Þ

Table 2.19 Statistics for two

populations with independent

measurements

Statistic Symbol Formula

Sample mean group 1 �Y1
Xn1
j¼1

Y1j

n1

Sample mean group 2 �Y2
Xn2
j¼1

Y2j

n2

Sample variance group 1 S21 Xn1
j¼1

Y1j � �Y1

� �2
n1�1

Sample variance group 2 S22 Xn2
j¼1

Y2j � �Y2

� �2
n2�1

Table 2.20 Two population

means with independent

measures example
Parameter Point estimator

Computed estimate

Table 2.18 (mg/mL)

μ1 �Y1 0.446

μ2 �Y2 0.463

σ21 S21 0.0001408

σ22 S22 0.0001212
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Equation (2.56) is referred to as the pooled confidence interval.

To illustrate Eq. (2.56) using the estimates in Table 2.20, a 100 1� αð Þ% ¼ 95%
two-sided interval on μ1 � μ2 has α=2 ¼ 0:025 and t1�0:025:12�2 ¼ t0:975:10 ¼ 2:228.
The computed 95% confidence interval is

L¼ 0:446� 0:463� 2:228

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:000131

1

6
þ 1

6

� �s
¼ �0:032 mg=mL

U ¼ 0:446� 0:463þ 2:228

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:000131

1

6
þ 1

6

� �s
¼ �0:002 mg=mL

S2P ¼
6� 1ð Þ 0:0001408ð Þ þ 6� 1ð Þ 0:0001212ð Þ

6þ 6� 2
¼ 0:000131

ð2:57Þ

If, on the other hand, evidence suggests the variances are not equal, it is more

appropriate to use the formula

L¼ �Y1 � �Y2 � t1�α=2:df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

þ S22
n2

s

U ¼ �Y1 � �Y2 þ t1�α=2:df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

þ S22
n2

s

df ¼
S21
n1
þ S22

n2

� �2
S41

n21 n1 � 1ð Þ þ
S42

n22 n2 � 1ð Þ
:

ð2:58Þ

The computed interval for the example problem using Eq. (2.58) is

L¼ 0:446� 0:463� 2:228

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0001408

6
þ 0:0001212

6

r
¼ �0:032 mg=mL

U ¼ 0:446� 0:463þ 2:228

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0001408

6
þ 0:0001212

6

r
¼ �0:002 mg=mL

df ¼
0:0001408

6
þ 0:0001212

6

� �2

0:00014082

62 6� 1ð Þ þ 0:00012122

62 6� 1ð Þ

¼ 9:94 ¼ 10 roundedð Þ:

ð2:59Þ

Comparison with the pooled confidence interval demonstrates that the intervals

are the same in this example. This is generally not the case. It occurs in this example

because there are equal observations in each group and S21 and S22 are very close to

being equal.
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Whether variances should be considered equal or not can be determined in two

ways. First, the data can be plotted after grouping by population. A visual assess-

ment of this plot often provides sufficient guidance for making a decision. Statis-

tical tests can be used to test the null hypothesis that two variances are equal. One

such test can be performed using the confidence interval on the ratio of variances

provided in Sect. 2.8.3. However, the probability of rejecting the null hypothesis of

equal variances depends greatly on the total sample size, n1 þ n2. If the sample size

is relatively small, then one will generally not reject the assumed model of equal

variance. Conversely, if the sample size is large, one will likely reject the assump-

tion, even in cases where the equality assumption is reasonable. Thus, we believe

the pooling decision is better based on a plot of the data combined with subject

matter expert knowledge of the specific problem. Figure 2.12 displays the plotted

data for the data in Table 2.18.

Since the spreads of the data are similar, it is decided to use the pooled interval in

Eq. (2.56) to compute the desired confidence interval.

If there is interest in obtaining individual confidence intervals on the mean for

each group, the confidence interval in Eq. (2.8) can be used for this purpose.

2.8.2 Confidence Interval for the Effect Size

It is often useful to express a difference of means relative to the standard deviation

of population 1. As will be discussed in Chap. 9, such a measure is useful in the

analysis of biosimilarity data. This measure is called the effect size and is defined as
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Fig. 2.12 Plot of data in Table 2.18
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λ ¼ μ1 � μ2
σ1

: ð2:60Þ

Confidence intervals on λ can be computed whether variances are equal or

unequal. Each situation is described below.

Case 1: σ1 ¼ σ2.
The general approach for constructing a confidence interval on the effect size is

based on the inversion confidence interval principle as discussed by Kelley (2007).

For Case 1, the maximum likelihood estimator (with degree of freedom correction)

for λ is

λ̂ ¼
�Y1 � �Y2

SP

¼
�Y1 � �Y2

SP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r
2
664

3
775�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r

¼ tcalc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r
:

ð2:61Þ

The statistic tcalc is the familiar test statistic used to test equality of means for

two independent groups. It has a non-central t-distribution with non-centrality

parameter

ncp ¼ λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2
:

r ð2:62Þ

In order to form a confidence interval on λ based on λ̂ , it is necessary to first form
a confidence interval on ncp. Once a two-sided confidence interval is obtained for

ncp, each bound is multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q
to obtain a confidence interval on λ. To

demonstrate, the following SAS code is used to compute the confidence interval on

λ. The function “tnonct” returns the ncp that yields the specified probability (e.g.,

0.95 or 0.05) for the observed value of tcalc.

twosideconf=0.90;

tcalc=meandiff/sqrt(pooledvar*(1/n1+1/n2));

lbeffect= tnonct(tcalc,n1+n2-2,(1+twosideconf)/2)*sqrt(1/n1+1/n2);

ubeffect= tnonct(tcalc,n1+n2-2, (1-twosideconf)/2)*sqrt(1/n1+1/n2);

A more detailed explanation and R code is provided by Kelley. Note that this

procedure provides an exact confidence interval on λ.
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Case 2: σ1 6¼ σ2.
This situation is a bit more problematic as only information for the first sample is

used to estimate the denominator of λ. A useful approach for this situation is to

employ a generalized confidence interval (GCI) as described in Appendix B of

Burdick et al. (2005). Hannig et al. (2006) have shown that under very mild

conditions, these intervals provide correct frequentist coverage. That is, for practi-

cal purposes, they can be considered as “exact” confidence intervals.

For the present application, a GCI can be computed using the following steps:

1. Compute the sample means �X1 and �X2 and the sample variances S21 and S
2
2 for the

sample data sets of size n1 and n2, respectively.
2. Simulate N values of the effect size:

λsim ¼
�Y1 � �Y2 � Z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þ � S21
n1 �W1

þ n2 � 1ð Þ � S22
n2 �W2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1ð Þ � S22

W2

s ð2:63Þ

whereW1 is a chi-squared random variable withn1 � 1degrees of freedom,W2 is

a chi-squared random variable with n2 � 1 degrees of freedom, and Z is a

standard normal random variable with mean 0 and variance 1. A value of N
� 10, 000 is recommended.

3. Order the N simulated λsim values obtained in Step (2) from least to greatest.

4. Define the lower bound for a two-sided 100 1� αð Þ% confidence interval as the

value in position N � α=2ð Þ of the ordered data set in Step (3). Define the upper

bound as the value in position N � 1� α=2ð Þ of this same ordered set. For

example, ifN ¼ 10, 000 the lower bound of a 95% two-sided confidence interval

is the value in position 10, 000� 0:025 ¼ 250 and the upper bound is the value

in position 10, 000� 0:975 ¼ 9, 750.

Note that these steps can be computed with any software package that contains

sorting and simulation functions including Excel.

To demonstrate, the data in Table 2.20 are used to compute a 95% confidence

interval on λ assuming equal variances. Here

λ̂ ¼
�Y1 � �Y2

SP
¼ 0:446� 0:463ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:000131
p ¼ �1:485

tcalc ¼ λ̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r ¼ �1:485ffiffiffiffiffiffiffiffiffiffiffi
1

6
þ 1

6

r ¼ �2:573
ð2:64Þ

and the resulting 95% two-sided confidence interval on ncp is from �4:778 to

�0:271. Converting this interval to the 95% confidence interval on the effect size
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L¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r
��4:778 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

6
þ 1

6

r
��4:778 ¼ �2:76

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r
��0:271 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

6
þ 1

6

r
��0:271 ¼ �0:16:

ð2:65Þ

Note the effect size has no units of measure.

The algorithm described for Case 2 is used to compute the confidence interval on

the effect size using an unequal variance assumption. Figure 2.13 presents 10 rows

of an Excel sheet that demonstrates the required calculation by simulating the

random chi-squared values using the uniform distribution and the Excel function

CHIINV to obtain W1 and W2.

Table 2.21 presents a summary for 10,000 iterations that produces the 95%

confidence interval from �3.38 to �0.01.

2.8.3 Confidence Interval for the Ratio of Two Variances

The best way to compare two variances is to examine their ratio. This is because the

difference of two variances is reported in squared units of the measurement scale

and has no practical interpretation. Conversely, a ratio of two variances has no units

and expresses a magnitude of difference (e.g., the variance of group 1 is twice as

great as the variance of group 2). If two variances are equal, the ratio is equal to one.

The 100 1� αð Þ% two-sided confidence interval on the ratio σ21/σ
2
2 is

W1 uniform W1 W2 uniform W2 Z Mean1 Mean2 SD1 SD2 n1 n2
0.361 5.476 0.425 4.924 -0.133 0.446 0.463 0.012 0.011 6 6 -1.455
0.300 6.066 0.474 4.543 0.620 0.446 0.463 0.012 0.011 6 6 -1.818
0.677 3.151 0.566 3.885 -0.045 0.446 0.463 0.012 0.011 6 6 -1.333
0.379 5.310 0.419 4.971 -1.203 0.446 0.463 0.012 0.011 6 6 -0.830
0.020 13.390 0.436 4.834 1.985 0.446 0.463 0.012 0.011 6 6 -2.484
0.610 3.586 0.262 6.486 -0.247 0.446 0.463 0.012 0.011 6 6 -1.581
0.529 4.146 0.836 2.093 0.592 0.446 0.463 0.012 0.011 6 6 -1.304
0.522 4.195 0.424 4.932 0.156 0.446 0.463 0.012 0.011 6 6 -1.632
0.352 5.557 0.839 2.070 -0.379 0.446 0.463 0.012 0.011 6 6 -0.808
0.777 2.499 0.217 7.052 -0.164 0.446 0.463 0.012 0.011 6 6 -1.695

l sim

Fig. 2.13 Example excel worksheet

Table 2.21 Summary

of 10,000 values of λsim
Mean �1.49

Median �1.42

Standard deviation 0.87

Minimum �13.05

Maximum 5.74

Count 10000.00

Largest (250) �0.01

Smallest (250) �3.38
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L¼ S21
S22 � F1�α=2:n1�1,n2�1

U ¼ S21
S22 � Fα=2:n1�1,n2�1

:

ð2:66Þ

Using the numerical values in Table 2.18 with α ¼ 0:05, F0:975:5,5 ¼ 7:146,
F0:025:5,5 ¼ 0:140, and

L¼ 0:0001408

0:0001212� 7:146
¼ 0:16

U ¼ 0:0001408

0:0001212� 0:140
¼ 8:3

ð2:67Þ

Equation (2.10) can be used to construct confidence intervals on the individual

variances.

2.9 Confidence Interval for Difference of Means
(Dependent Measurements)

Suppose the data in Table 2.18 were collected in a different manner. In particular,

instead of assigning six different vials to each analytical method, a single set of six

vials was selected at random from the manufacturing process. Each vial is split into

half, and each half is measured using a different analytical method. This new design

is called a paired design because each experimental unit (vial) is measured with

both treatments. Table 2.22 reports the same numerical values as Table 2.18, but is

organized in a manner consistent with the data collection process. As will be

demonstrated, the resulting confidence interval on the mean difference between

the two methods will differ from those computed in the previous section even

though the numerical values in the two examples are the same. This will demon-

strate the importance of knowing how data are collected in order to perform the

most appropriate statistical analysis.

Table 2.22 Bridging study with paired design

Vial

Concentration (mg/mL)

Present method

Concentration (mg/mL)

New method

Concentration (mg/mL)

Present-new

1 0.426 0.449 �0.023

2 0.456 0.476 �0.020

3 0.454 0.467 �0.013

4 0.444 0.452 �0.008

5 0.456 0.473 �0.017

6 0.440 0.461 �0.021
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The fact that each vial is measured using both methods creates a dependent

relationship for the measured values on the same vial.

The two population model with dependent measurements is written as

Yij ¼ μi þ Aj þ Eij i ¼ 1, 2 methodsð Þ; j ¼ 1, . . . , n vialsð Þ; ð2:68Þ
where Yij is the measured value for vial j with analytical method i, n is the total

number of vials (n ¼ 6 in this example), μ1 and μ2 are the true average measure-

ments for the present method and new method, respectively, Aj is random

manufacturing error that creates vial-to-vial differences, and Eij is the residual

error associated with vial j from method i. It is assumed that Aj are sampled from

a normal population of vial effects with mean 0 and variance σ2A. The Eij are

sampled from a normal population with mean 0 and variance σ21 for the present

method and variance σ22 from the new method. The covariance between two

measurements within the same vial is σ2A.
It is traditional in a paired design to model the difference between the two

measured values for each vial. That is, the statistical model considers the difference

Dj ¼ Y1j � Y2j j ¼ 1, . . . , n vialsð Þ: ð2:69Þ
By substituting the definitions for Y1j and Y2j from Eq. (2.68) into Eq. (2.69) it is

shown that the vial-to-vial variation is removed from the model. That is,

Dj ¼ Y1j � Y2j

¼ μ1 þ Aj þ E1j � μ2 þ Aj þ E2j

� �
¼ μ1 � μ2 þ E1j � E2j

¼ μD þ E*
j

ð2:70Þ

where μD ¼ μ1 � μ2 is the difference between the two method means and E*
j ¼ E1j

�E2j is a random normal variable with mean 0 and variance σ2D ¼ σ21 þ σ22.
Note that model (2.70) is now in the same form as the independent model (2.7).

Thus, we can use Eq. (2.8) with the Dj values to construct a 100 1� αð Þ% two-sided

confidence interval on μD. This interval is

L¼ �D� t1�α=2:n�1

ffiffiffiffiffiffi
S2D
n

r

U ¼ �Dþ t1�α=2:n�1

ffiffiffiffiffiffi
S2D
n

r

�D¼

Xn
j¼1

Dj

n

S2D ¼

Xn
j¼1

Dj � �D
� �2
n� 1

:

ð2:71Þ
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The Dj values for the example problem are shown in the last column

of Table 2.22. The computed 95% confidence interval on the difference in means

μ1 � μ2 is

L¼ �0:017� 2:571

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0000316

6

r
¼ �0:023 mg=mL

U¼ �0:017þ 2:571

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0000316

6

r
¼ �0:011 mg=mL

ð2:72Þ

where �D ¼ �0:017 and S2D ¼ 0:0000316.
Recall the interval for the independent design in Table 2.18 was L ¼ �0:032

mg/mL to U ¼ �0:002 mg/mL. Note that although the average difference is the

same for both intervals, �0:017, the interval based on the paired design is tighter.

This occurs because elimination of the vial-to-vial variance reduces the uncertainty

in the estimated difference and leads to a tighter confidence interval. This example

demonstrates that the manner in which data are collected is an important consider-

ation when selecting an appropriate statistical analysis, and that efficiencies are

gained by proper experimental design.

2.10 Basics of Hypothesis Testing

A hypothesis test is a procedure used to determine the amount of evidence a sample

provides for concluding that a population parameter is in an interval specified by an

investigator. In this section, we review the basics of hypothesis testing.

2.10.1 Statement of Hypotheses

To conduct a hypothesis test, an investigator makes two complementary statements

about an unknown parameter. To demonstrate, we use the Greek letter θ (theta) to

represent an unknown parameter such as μ (a process mean) or σ2 (a process

variance). An investigator makes two complementary statements about θ. The
first statement is called the null hypothesis and is denoted as H0. The second

statement is called the alternative (or research) hypothesis and is denoted as Ha.

In general, an investigator wants to determine the amount of evidence a sample

provides to support a claim or conjecture. This claim is chosen asHa, the alternative

hypothesis. If the sample evidence is sufficient to convince an investigator that the

null hypothesis H0 is false (and hence the alternative hypothesis Ha is true), the

result of the test is stated as “Reject H0”. If the sample evidence is not sufficient to

convince the investigator that the null hypothesis H0 is false, the result of the test is

stated as “Do not reject H0”. The statement “Do not reject H0” does not mean the
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sample provides evidence that H0 is true. It simply means that the sample evidence

is not sufficient for the investigator to reject H0 and claim Ha is true. Four sets of

hypotheses are shown in Table 2.23.

The hypothesis in row 4 of Table 2.23 is referred to as the hypothesis of

equivalence.

2.10.2 Testing Errors and Power

Since sample data are used to make a conclusion, one might ask the question,

“What is the probability of getting sample data that lead to an erroneous conclu-

sion?” That is, what is the probability that the sample data will indicate H0 should

be rejected when H0 is true? Or, what is the probability that the sample data will

indicate that H0 should not be rejected when H0 is false?

The following two mistakes (errors) are possible when conducting a hypothesis

test:

1. The mistake of rejecting H0 when H0 is true. The probability of making this

mistake is denoted by the Greek letter α (alpha). It is referred to as a type I error.

2. The mistake of not rejecting H0 when H0 is false. The probability of making this

mistake is denoted by the Greek letter β (beta). It is referred to as a type II error.

The difference1� β is called the power of the test. The power of the test depends
on the true value of θ.

The probabilities of making either of the two mistakes are schematically

exhibited in Table 2.24.

When conducting a hypothesis test, it is desirable to choose small values for both

α and β so that the probability of making a mistake is small. Typically, the value of

α is a commonly accepted value such as 0.05. Once α is fixed, it is necessary to

determine the required sample size to obtain the desired β. The process of deter-

mining the required sample size to ensure both α and β are at acceptable levels is

called a power calculation. Power calculations are applied throughout the book as

the need arises.

Table 2.23 Hypothesis sets of interest

Row H0 Ha Sample must prove. . .

1 θ � θ0 θ > θ0 θ exceeds θ0
2 θ � θ0 θ < θ0 θ is less than θ0
3 θ ¼ θ0 θ � θ0j j > 0 θ is different from θ0
4 θ � θ0j j � K θ � θ0j j < K θ differs from θ0 by less than K
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2.10.3 Using Confidence Intervals to Conduct Statistical
Tests

The simplest manner to conduct a hypothesis test is to compute a confidence

interval on the parameter and then compare it to the set of hypotheses. An

alternative testing procedure employs a p-value. We prefer using a confidence

interval because it encourages one to also consider the practical importance of

any differences that might exist.

The rule for using a confidence interval to test a statistical hypothesis is quite

simple. If every value contained in the confidence interval is consistent with the

alternative hypothesis, then reject H0 and claim Ha is true. In all other cases, fail to

reject H0. The two-sided confidence interval should have a confidence coefficient of

100 1� 2αð Þ% for testing the hypotheses in rows 1, 2, and 4 of Table 2.23. The

two-sided confidence coefficient for the hypothesis set in row 3 is 100 1� αð Þ%.

This convention will provide a type I error rate of α for all four sets of hypotheses.

Recall the earlier example in this chapter where it was desired to demonstrate

that the mean purity of a manufacturing process is greater than 93%. In the context

of this example, the data must support the condition that the process mean is greater

than 93%. This requires testing the set of hypotheses in row 1 of Table 2.23 with

θ0 ¼ 93%. These hypotheses are

H0 : The process mean � 93%

Ha : The process mean > 93%
ð2:73Þ

The two-sided 90% confidence interval on the process mean is from L ¼ 93:78
% to U ¼ 94:83%. The decision using this confidence interval is to reject H0 since

all values in the confidence interval exceed 93%. Note that since the two-sided

confidence coefficient is 90%, then 100 1� 2αð Þ% ¼ 90% and α ¼ 0:05.

2.10.4 Using p-Values to Conduct a Statistical Test

Another approach for testing a statistical hypothesis that is equivalent to the

confidence interval approach is based on a p-value (probability value). The

p-value is the smallest value of α for which H0 can be rejected. The p-value

measures the amount of sample evidence in favor of rejecting H0, with smaller

Table 2.24 Probabilities of errors in a statistical test

If H0 is true If H0 is false

Reject H0 Probability of a mistake is α Correct decision

Do not reject H0 Correct decision Probability of a mistake is β
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values providing stronger evidence. If a computed p-value is less than the

pre-selected value of α, then reject H0 and claim Ha is true. Otherwise, fail to reject

H0. The p-value approach will provide the same test results as the confidence

interval procedure described previously. However, we believe the confidence

interval provides a more scientifically enlightened assessment of the data.

2.11 Equivalence Testing

ICH Q5E (2004) states the goal of a comparability study is to determine the

potential adverse impact of manufacturing changes on product quality attributes.

Pre- and post-change products do not need to have identical quality attributes, but

do need to be highly similar with scientific justification that any observed differ-

ences will not impact safety or efficacy. One statistical approach for demonstrating

similarity is equivalence testing.

The hypothesis set in row 4 of Table 2.23 can be used to demonstrate the

equivalence of two process means, μ1 and μ2. In particular, the hypotheses are

stated as

H0 : μ1 � μ2j j � EAC

Ha : μ1 � μ2j j < EAC
ð2:74Þ

where EAC is referred to as the Equivalence Acceptance Criterion. To test the

hypotheses in Eq. (2.74), one constructs a two-sided 100 1� 2αð Þ% confidence

interval on the difference μ1 � μ2. The null hypothesis H0 in (2.74) is rejected and

equivalence is demonstrated if the entire confidence interval from L to U falls in the

range from �EAC to +EAC. As noted by Berger and Hsu (1996), use of an equal-

tailed two-sided 100 1� 2αð Þ% confidence interval provides a test size (type I error

rate) of α. This procedure is referred to as the two one-sided statistical test

procedure (TOST).

It is important to remember that failure to reject H0does not imply that the two

processes are not equivalent. Figure 2.14 presents three possible outcomes for an

equivalence test of means.

Scenario A is the situation where the confidence interval is entirely contained in

the range from �EAC to +EAC. The conclusion here is to reject H0 and claim the

two process means are equivalent. In both Scenarios B and C, at least some of the

values in the confidence interval fall outside the range from �EAC to +EAC.

Scenario C provides an inconclusive result, since as noted earlier, failure to reject

H0 does not imply that H0 is true. In contrast, since all values in the confidence

interval exceed EAC in Scenario B, one can reject H0 in the following set of

hypotheses:
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H0 : μ1 � μ2j j � EAC

Ha : μ1 � μ2j j > EAC
ð2:75Þ

That is, the data provide evidence that the two means are not equivalent.
When employing a test of equivalence, the EAC should represent an amount

viewed to have no practical importance. Establishment of an EAC is sometimes

based on existing information of the pre-change condition to ensure the same level

of quality (see, e.g., Appendix E of USP <1010>). Another approach is to base the

criterion on the process capability of the pre-change process. Such an approach is

described by Limentani et al. (2005).

Consider the bridging study presented in Table 2.22. Prior to conducting the

study, it was determined that the two methods would be considered equivalent if the

true difference in mean concentration was no greater than 0.03 mg/mL. The

hypotheses for this equivalence test are stated as

H0 : μ1 � μ2j j � 0:03

Ha : μ1 � μ2j j < 0:03
ð2:76Þ

The computed two-sided 90% confidence interval on the difference in means

using Eq. (2.71) is

L¼ �0:017� 2:015

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0000316

6

r
¼ �0:022 mg=mL

U¼ �0:017þ 2:015

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0000316

6

r
¼ �0:012 mg=mL

ð2:77Þ
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Fig. 2.14 Outcomes of an equivalence test
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where �D ¼ �0:017 andS2D ¼ 0:0000316. Figure 2.15 shows a plot of the confidence
interval relative to the range �EAC to +EAC. Since all values in the confidence

interval fall within the range from�0.03 to +0.03, the test demonstrates that the two

methods are equivalent.

As a final reminder, after the EAC has been established, it is important to apply a

power calculation to determine appropriate sample sizes. This is necessary to

provide an acceptable probability of passing the test when means are equivalent.

Section 9.5.1 later in this book demonstrates such a power calculation.

2.12 Regression Analysis

To this point, we have been concerned with estimation of unknown population and

process parameters. Another useful statistical application is prediction. Consider a

manufactured lot consisting of individual vials of drug product. Let the measure-

ment Y represent the concentration as a percentage of label. It is known that the

value of Y will decrease over time. Every six months, a single vial is selected at

random from the lot and the concentration is measured. The time periods when

values are collected are 0, 6, 12, 18, 24, and 30 months. These time periods

represent values assigned by the variable “Time” which is denoted with the letter

X. The variable X is called a predictor variable. The variable “Concentration”

denoted by Y is called the response variable. Regression analysis is used to predict

Y for a given value of X. Table 2.25 provides an example data set. A scatterplot of

the data is provided in Fig. 2.16.
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Fig. 2.15 Comparison of confidence interval to EAC
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2.12.1 Linear Regression with One Predictor Variable

In this section we demonstrate how regression analysis is used to obtain prediction

functions when there is a single predictor variable, X.
In many cases it is reasonable to assume that Y is a linear function of X. In such

cases, the form of the statistical model that relates Y and X is

Yi ¼ β0 þ β1Xi þ Ei i ¼ 1, . . . , n; ð2:78Þ

where Yi is the measured response for item i, Xi is the known value of the predictor

variable associated with item i, β0 is the y-intercept of the linear relationship, β1 is
the slope of the linear relationship, and Ei is the residual error for item i. The error
term Ei is assumed to have a normal distribution with mean 0 and variance σ2. Note
that model (2.78) is essentially the same as model (2.7) with β0 þ β1Xi replacing μ.
For this reason, it is helpful to think of the term β0 þ β1Xi as the average of Y when

Table 2.25 Concentration

(%) over time
Vial Concentration (%) (Y) Time in months (X)

1 102.1 0

2 101.4 6

3 101.0 12

4 101.1 18

5 100.8 24

6 99.6 30
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Fig. 2.16 Scatterplot of data in Table 2.25

2.12 Regression Analysis 73



the predictor variable is equal to a particular value, say XP. More formally, β0 þ β1
XP is referred to as the conditional mean of Y given the predictor X ¼ XP.

Table 2.26 reports the sample statistics needed to compute a regression function

for model (2.78). The computed values in Table 2.26 are for the example data in

Table 2.25. Table 2.27 reports the parameters, their point estimators, and computed

estimates.

In the example, it is desired to predict the value of Y when the value of X is equal

to the product expiry, XP ¼ 30 months. The formula for predicting Y given XP is

Ŷ P ¼ b0 þ b1XP: ð2:79Þ

Plugging in the values from Table 2.27 to predict the mean of all Y values when

XP ¼ 30 months yields

Ŷ P ¼ 102:014� 0:0676 30ð Þ ¼ 99:99%: ð2:80Þ

The estimated value Ŷ P ¼ 99:99% provides the answer to two different

questions:

Table 2.26 Statistics for simple linear regression calculations

Statistic Symbol Formula

Sample mean for Y �Y Xn
i¼1

Yi

n ¼ 606
6
¼ 101

Sample mean for X �X Xn
i¼1

Xi

n ¼ 90
6
¼ 15

Sample slope b1 Xn
i¼1

Yi � �Yð Þ Xi � �Xð Þ
Xn
i¼1

Xi � �Xð Þ2
¼ �42:6

630
¼ �0:0676

Sample y-intercept b0 �Y � b1 �X ¼ 101� �0:0676ð Þ15 ¼ 102:014

Sample variance S2 Xn
i¼1

Yi � b0 � b1Xið Þ2

n�2
¼ 0:499429

4
¼ 0:1249

Table 2.27 Simple linear regression example

Parameter Point estimator Computed estimate for Table 2.25

β1 b1 �0.0676

β0 b0 102.014

σ2 S2 0.1249

σ S 0.3534

74 2 Statistical Methods for CMC Applications



1. What is the best guess for the average concentration of all vials in the lot at

30 months?

2. What is the best guess for the concentration of an individual vial selected at

random from the lot at 30 months?

Thus, Eq. (2.79) can be used to draw an inference for both individual values and

the average of all individual values. Recall the discussion in Sect. 2.5.4 in which it

was noted that uncertainties associated with point estimates vary depending on

whether the inference concerns an individual or an average of individuals. There is
always less uncertainty associated with an average than there is for an individual. In

our example, there is less uncertainty about the average of all the vials at 30 months

than there is for the value of a single vial selected at random at 30 months. We again

use interval estimates to quantify the uncertainty associated with both individuals

and averages. In particular, formulas are now provided for

1. a confidence interval on the average of all vials at XP months,

2. a prediction interval for the value of a single vial selected at random from all

vials at XP months, and

3. a tolerance interval that contains 100P% of all vial values from the lot at XP

months.

To begin, the100 1� αð Þ% two-sided confidence interval on the mean of all vials

at XP months is

L¼ Ŷ P � t1�α=2:n�2 � S� d

U ¼ Ŷ P þ t1�α=2:n�2 � S� d

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ XP � �Xð Þ2Xn

i¼1

Xi � �Xð Þ2

vuuuut :
ð2:81Þ

The product S� d is called the estimated standard error of the fitted value.

The 100 1� αð Þ% two-sided prediction interval for a single vial selected at

random at XP months is

L¼ Ŷ P � t1�α=2:n�2 � S�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
U ¼ Ŷ P þ t1�α=2:n�2 � S�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
:

ð2:82Þ

An exact 100 1� αð Þ% one-sided tolerance interval is based on a non-central

t-distribution. A one-sided interval is used when interest is only in the value that is

greater than 100P% of the population, or the value that is less than 100P% of the

population. The 100 1� αð Þ% one-sided tolerance bound that is less than 100P% of

all vials at XP months is
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L ¼ Ŷ P � t1�α:n�2 ZP=dð Þ � S� d ð2:83Þ

where t1�α:n�2ðZP=dÞ is the percentile from a non-central t-distribution with area

1� α to the left, n� 2 degrees of freedom, non-centrality parameter (ZP/d), and ZP
is the standard normal percentile that has area P to the left (e.g., Z0:95 ¼ 1:645).
Similarly, an upper 100 1� αð Þ% one-sided tolerance bound that is greater than

100P% of all vials at XP months is

U ¼ Ŷ P þ t1�α:n�2 ZP=dð Þ � S� d: ð2:84Þ

An exact 100 1� αð Þ% two-sided tolerance interval that contains at least 100P%

of all vial values from the lot at XPmonths was derived by Eberhardt et al. (1989). It

is computationally intensive, and a more simple approximation based on (2.83) and

(2.84) is

L¼ Ŷ P � t1�α=2:n�2 ZP=dð Þ � S� d

U ¼ Ŷ P þ t1�α=2:n�2 ZP=dð Þ � S� d:
ð2:85Þ

Krishnamoorthy and Mathew note that interval (2.85) is an excellent approxi-

mation when d2 � 0:30. In situations where d2 < 0:30, they recommend a very

simple approximation due to Wallis

L¼ Ŷ P �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2ð Þ � χ2P:1 d2

� �
χ2α:n�2

s
� S

U ¼ Ŷ P þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2ð Þ � χ2P:1 d2

� �
χ2α:n�2

s
� S

ð2:86Þ

where χ2P : 1(d
2) is the percentile from a non-central χ2 -distribution with area P to

the left, one degree of freedom, and non-centrality parameter d2. Krishnamoorthy

and Mathew also provide a slightly more complex approximation, but based on

their reported simulation results, Eq. (2.86) seems more than adequate for practical

applications when d2 < 0:30. If you are using software that does not provide

percentiles for the non-central chi-squared distribution (such as Excel),

Krishnamoorthy and Mathew present another approximation that can be employed.

All three intervals are now computed for the stability example with XP ¼ 30

months. We first compute the value of d as
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d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ XP � �Xð Þ2Xn

i¼1

Xi � �Xð Þ2

vuuuut

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
þ 30� 15ð Þ2

630

s
0:724:

ð2:87Þ

The 95% two-sided confidence interval on the mean of all vials at XP ¼ 30

months shown in Eq. (2.81) is

L¼ Ŷ P � t1�α=2:n�2 � S� d

L¼ 99:99� 2:78� 0:3534� 0:724 ¼ 99:3%

U ¼ Ŷ P þ t1�α=2:n�2 � S� d

U ¼ 99:99þ 2:78� 0:3534� 0:724 ¼ 100:7%:

ð2:88Þ

The 95% two-sided prediction interval for a single vial selected at random at XP

¼ 30 months shown in Eq. (2.82) is

L¼ Ŷ P � t1�α=2:n�2 � S�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
L¼ 99:99� 2:78� 0:3534�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:7242

p
¼ 98:8%

U ¼ Ŷ P þ t1�α=2:n�2 � S�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
L¼ 99:99þ 2:78� 0:3534�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:7242

p
¼ 101:2%:

ð2:89Þ

Since d2 > 0:30, Eq. (2.85) is suitable for computing a two-sided tolerance

interval. This approximate 95% two-sided tolerance bound that contains at least

90% of the population of individual values at XP ¼ 30 months is

L¼ Ŷ P � t1�α=2:n�2 ZP=dð Þ � S� d

L¼ 99:99� 6:57� 0:3534� 0:724 ¼ 98:3%

U ¼ Ŷ P þ t1�α=2:n�2 ZP=dð Þ � S� d

U ¼ 99:99þ 6:57� 0:3534� 0:724 ¼ 101:7%:

ð2:90Þ

The two-sided 95% tolerance interval that contains 90% of the population of

individual values at XP ¼ 30 months based on the Wallis approximation in

Eq. (2.86) is
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L¼ Ŷ P �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2ð Þ � χ2P:1 d2

� �
χ2α:n�2

s
� S

L¼ 99:99�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 2ð Þ � 4:09

0:711

r
� 0:3534 ¼ 98:3%

U ¼ Ŷ P þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2ð Þ � χ2P:1 d2

� �
χ2α:n�2

s
� S

U ¼ 99:99þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 2ð Þ � 4:09

0:711

r
� 0:3534 ¼ 101:7%

ð2:91Þ

Since d2 � 0:30, the two tolerance intervals provide the same results to the

reported decimal accuracy. Table 2.28 reports the three computed statistical inter-

vals for the example.

As shown in Table 2.28, the uncertainty is greatest (i.e., the interval is widest) for

the tolerance interval, and the uncertainty is least for the confidence interval on the

mean. This is consistent with our previous discussion concerning the relationships

of the three intervals.

Figure 2.17 presents a plot of the data with the fitted regression line and the three

statistical intervals described in this section. Note that all three intervals have the

least amount of uncertainty in the middle of the plot, and the uncertainty increases

as the value of XP moves away from the center of the X values.

In addition to making predictions, there is interest in determining if there is

evidence of a linear relationship between Y and X. This is most easily accomplished

by computing a confidence interval on the slope of the regression, β1. Ifβ1 ¼ 0, then

model (2.78) is no longer a function of X, and Y and X are not linearly related. Thus,

X is not a useful predictor of Y when β1 ¼ 0. Statistical evidence of a linear

relationship between Y and X is provided by testing the set of hypotheses H0 : β1
¼ 0 against Ha : β1j j > 0. As described in Sect. 2.10.3, these hypotheses can be

tested with test size α by computing a 100 1� αð Þ% two-sided confidence interval

on β1. If the interval does not contain the null value of 0, then there is statistical

evidence of a linear relationship between Y and X.

Table 2.28 Summary of statistical intervals

Focus of inference at XP ¼ 30 months Statistical interval Results (%)

Average of all vials Confidence interval L¼ 99.3 to U¼ 100.7

A single vial selected at random Prediction interval L¼ 98.8 to U¼ 101.2

All individual vials Tolerance interval L¼ 98.3 to 101.7
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A 100 1� αð Þ% two-sided confidence interval for the slope β1 in model (2.78) is

L¼ b1 � t1�α=2:n�2 � k

U ¼ b1 þ t1�α=2:n�2 � k

k¼ SffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xi � �Xð Þ2
s :

ð2:92Þ

The term k is referred to as the estimated standard error of the regression

coefficient.

The 95% confidence interval for the example problem is

L¼ �0:06762� 2:78� 0:3534ffiffiffiffiffiffiffiffi
630

p ¼ �0:107

U¼ �0:06762þ 2:78� 0:3534ffiffiffiffiffiffiffiffi
630

p ¼ �0:029:

ð2:93Þ

Since both bounds in the interval are negative, the value 0 is not included, and

one concludes there is statistical evidence at the α ¼ 0:05 level that concentration

and time are linearly related.

Fig. 2.17 Statistical intervals for stability regression example
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2.12.2 Checking Regression Assumptions with Residual
Plots

For statistical inferences to be valid in regression analysis, the following assump-

tions must be maintained:

1. The random error term, Ei, can be described by the normal probability model,

2. The Ei are independent, and

3. The Ei have the same variance, σ2, for all i.
In addition, for model (2.78)

4. The relationship between Y and X is reasonably defined by a straight line. (This is

another way to state the Ei have a mean of zero.)

As was noted earlier, the Ei are unknown random errors. In order to monitor the

assumptions, it is necessary to examine estimators of the Ei. These estimators are

called residuals. The residual for the ith measurement where Xi ¼ XP is defined as

ei ¼ Yi � Ŷ P ð2:94Þ

where ŶP is defined in Eq. (2.79). Equation (2.94) is called the “raw residual.” Most

statistical software packages have alternative residuals that better serve the purpose

of monitoring statistical assumptions. For example, Minitab offers standardized and

deleted residuals in addition to raw residuals. The standardized and deleted resid-

uals are recommended over raw residuals because they have properties that are

more consistent with the properties of the Ei. For example, it is known that the raw

residuals do not have equal variance when the Ei have equal variance. The variance

of the raw residuals increases as the predictor value moves away from �X. However,
both standardized and deleted residuals have a common variance when the Ei have a

common variance. Vining (2011) provides calculations and mathematical defini-

tions of these various residuals. It is important to select residuals that best mimic the

behavior of the Ei. Typically, you should select the deleted residuals if they are

available.

We recommend the following three steps for determining if the regression

assumptions are reasonable.

1. Construct a scatterplot. A scatterplot of Y versus X is one of the most helpful

tools for checking regression assumptions. Figure 2.16 presented the scatterplot

for the example data provided in Table 2.25. By examining the scatterplot you

should be able to decide if the regression relationship is linear as stated in

assumption 4. When the regression function appears not to be linear, you may

consider more complex nonlinear regression functions. Sections 2.12.4 and

2.12.6 provide some simple techniques that can be used if it appears the model

is better described by a nonlinear model.

2. Plot the residuals. If the regression assumptions are satisfied, the deleted resid-

uals will (roughly) behave like a simple random sample from a normal
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population with mean 0 and variance σ2. To help decide if the assumptions are

satisfied, the following residual plots are useful:

(a) A normal quantile plot as described in Sect. 2.6.10. This plot will monitor

assumption 1 concerning the appropriateness of the normal probability

model.

(b) A scatterplot with the deleted residuals on the vertical axis and the predicted

values (fitted values) on the horizontal axis. If the regression assumptions are

satisfied, the points in this scatterplot should be randomly scattered about a

horizontal line through zero. There should be no trend in the scatterplot, and

the spread in the residuals should be constant across the plot.

(c) Plot the residuals in a time order if there is a possibility of a time effect. This

might demonstrate a cyclical pattern that would demonstrate a lack of

independence among the Ei (Note: even the deleted residuals are not inde-

pendent, but the degree of dependence should be small enough not to matter

if the Ei are independent.)

3. Examine all plots for anomalous points or outliers. Outliers are sample values

that do not appear to be from the same population as the rest of the data. Outliers

sometimes occur because mistakes were made during data collection, transcrip-

tion, or entry. Each sample value that appears to be an outlier should be

thoroughly investigated to determine the reason for its existence. If you cannot

determine why the outlier exists, it may be wise to carry out two analyses—one

with the outlier included and one with it excluded. If the two analyses lead to

identical decisions, then the outlier does not impact the result. If the two analyses

lead to different decisions, you must look further into the matter.

Figure 2.18 presents the residual plots described in this section for the data in

Table 2.25.

There does not appear to be any evidence that the regression assumptions are

unreasonable for this application.

A complete discussion of remedial measures when assumptions are violated is

beyond the scope of this book. There are numerous textbooks on regression analysis

that provide discussion of these remedial measures.

2.12.3 Multiple Regression Analysis

2.12.3.1 Model Definitions

Multiple regression considers models with more than one predictor variable. Pre-

dictor variables can be either quantitative or categorical. Consider the data

presented in Table 2.29.

These data were collected during a process characterization experiment for a

purification column used in a biopharmaceutical manufacturing process. The
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response variable, Y, is a measure of product purity expressed as a percentage.

There are two quantitative predictor variables, X1 ¼ Load rate measured in grams

per liter and X2 ¼ pH.

The multiple regression model used to represent the data is

Yi ¼ β0 þ β1X1i þ β2X2i þ Ei i ¼ 1, . . . , n; ð2:95Þ

where Yi is the measured response for experiment i, X1i is the value of Load Rate for

experiment i, X2i is the value of pH for experiment i, β0 is the y-intercept of the

linear relationship, β1 and β2 are regression (slope) parameters, and Ei is the error

Fig. 2.18 Plots of deleted residuals

Table 2.29 Results of

characterization study
Experiment Load rate (g/L) pH Y (%)

1 2.5 4.7 94.01

2 2.5 5 94.91

3 2.5 5.3 99.65

4 7.5 4.7 75.7

5 7.5 5 81.54

6 7.5 5 84.92

7 7.5 5.3 91.37

8 12.5 4.7 67.11

9 12.5 5 80.62

10 12.5 5.3 92.36
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term described for regression model (2.78). Essentially, model (2.95) is the same

model as (2.78), but now the conditional mean of Y is a function of both X1 and X2.

One important difference between a regression model with one predictor and one

with more predictors is the interpretation of the slope parameters β1 and β2. Similar

to β1 in the single predictor regression, β1 and β2 both describe rates of change. In

particular, β1 represents the change in the conditional mean of Y as X1 increases by

one unit while holding X2constant. Similarly, β2 represents the change in the

conditional mean of Y as X2 increases by one unit and X1is held constant. Due to

the conditional interpretation of these parameters, they are referred to as partial

regression coefficients. When a partial regression coefficient is equal to zero, then

the conditional mean of Y is not a function of the associated predictor variable. As

in simple regression analysis, tests for evidence of a non-zero partial regression

coefficients are used to determine if predictor variables are useful for predicting Y.
Confidence intervals for this purpose are presented after a brief discussion

concerning calculation of statistics in a regression model.

2.12.3.2 Regression Calculations

As a practical matter, it will be necessary to compute statistics for a multiple

regression model using a statistical software package. However, it is instructive

to write the formulas using the same format provided in Sect. 2.12.1, understanding

that some of the quantities will be taken from computer output. Table 2.30 provides

the essential information for this strategy.

Using the notation in Table 2.30, the following statistical intervals can be used

with any number of predictor variables. Modification of Eq. (2.81) provides the 100

1� αð Þ% two-sided confidence interval on the conditional average of Y when

X1 ¼ X1P, X2 ¼ X2P, . . ., Xm ¼ XmP. This interval is

Table 2.30 Notation for multiple regression models

Verbal description

Notation used in

Sect. 2.12.1

Notation with more than one

predictor

Number of predictor variables 1 m

Estimated Y-intercept b0 b0
Estimated regression coefficient b1 b1, b2, . . ., bm
Sample variance S2 S2

Sample standard deviation S S

Error degrees of freedom n� 2 n� m� 1

Estimated standard error of regression

coefficient

k as defined in(2.92) k1, k2, . . ., km

Estimated standard error of fitted

value ŶP

S� d S� d
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L¼ Ŷ P � t1�α=2:n�m�1 � S� d

U ¼ Ŷ P þ t1�α=2:n�m�1 � S� d

Ŷ P ¼ b0 þ b1X1P þ b2X2P þ . . .þ bmXmP

ð2:96Þ

where d and S must be obtained using statistical software.

The 100 1� αð Þ% two-sided prediction interval is modified from interval (2.82) as

L¼ Ŷ P � t1�α=2:n�m�1 � S�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
U ¼ Ŷ P þ t1�α=2:n�m�1 � S�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p ð2:97Þ

The 100 1� αð Þ% two-sided tolerance interval that contains P% of all future

values based on the approximate Wallis interval in (2.86) is

L¼ Ŷ P �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� m� 1ð Þ � χ2P:1 d2

� �
χ2α:n�m�1

s
� S

U ¼ Ŷ P þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� m� 1ð Þ � χ2P:1 d2

� �
χ2α:n�m�1

s
� S:

ð2:98Þ

A 100 1� αð Þ% two-sided confidence interval on βj for j ¼ 1, . . . ,m similar to

(2.92) is

L¼ bj � t1�α=2:n�m�1 � kj

U ¼ bj þ t1�α=2:n�m�1 � kj
ð2:99Þ

where kj is determined from a software program.

Consider the data from the experiment shown in Table 2.29. Table 2.31 reports

the required statistics that were obtained from a statistical package assuming X1P

¼ 7:5 g/L and X2P ¼ 5.

Table 2.32 reports the statistical intervals using the formulas (2.96), (2.97),

(2.98), and (2.99) for the data in Table 2.29. All intervals are two-sided intervals

with 95% confidence. The tolerance interval contains 99% of the future values.

All of the intervals in Table 2.32 can be obtained directly from most software

packages with the exception of the tolerance interval. An example printout from

Minitab is shown in Table 2.33.

The 95% tolerance interval containing 99% of future values whenX1P ¼ 7:5 and
X2P ¼ 5 is computed with the information in Table 2.33 using Eq. (2.98). First,

determine the non-centrality parameter d2 ¼ 1:50513=4:75962ð Þ2 ¼ 0:100,

χ20:99:1 d2
� � ¼ 7:260, and χ20:05:7 ¼ 2:167. Then
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Table 2.31 Example problem

Verbal description Value with data from Table 2.29

Number of predictor variables m ¼ 2

Estimated Y-intercept b0 ¼ �31:0

Estimated regression coefficients b1 ¼ �1:62
b2 ¼ 25:87

Sample variance S2 ¼ 22:654

Sample standard deviation S ¼ 4:76

Error degrees of freedom n� m� 1 ¼ 7

Estimated standard error of regression coefficients k1 ¼ 0:389
k2 ¼ 6:48

Estimated standard error of fitted value X1P ¼ 7:5,X2P ¼ 5 S� d ¼ 1:51

Table 2.32 Computed statistical intervals

Verbal description Interval with data from Table 2.29

Fitted value with X1P ¼ 7:5,X2P ¼ 5 86.22%

Confidence interval on β1 �2.54 to �0.70

Confidence interval on β2 10.55 to 41.18

Confidence interval on mean when X1P ¼ 7:5 and X2P ¼ 5 82.66 to 89.78%

Prediction interval when X1P ¼ 7:5 and X2P ¼ 5 74.41 to 98.02%

Tolerance interval when X1P ¼ 7:5 and X2P ¼ 5 63.17 to 109.27%

Table 2.33 Minitab output for multiple regression example

Term Coef SE Coef 95% CI
Constant -31.0 32.6 (-108.0 , 46.0)
Load -1.616 0.389 (-2.535 , -0.697)
pH 25.87 6.48 (10.55 , 41.18)

S   4.75962

Variable   Setting
Load Rate      7.5
pH               5

Fit         SE Fit               95% CI                       95% PI
86.219  1.50513  (82.6599, 89.7781)  (74.4149, 98.0231)

0

1

2

b
b
b

1

2

k
k

1

2

P

P

P

X
X

Ŷ
S d´
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L¼ Ŷ P �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� m� 1ð Þ � χ2P:1 d2

� �
χ2α:n�m�1

s
� S

¼ 86:219�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7� 7:260

2:167

r
� 4:76 ¼ 63:17

U ¼ Ŷ P þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� m� 1ð Þ � χ2P:1 d2

� �
χ2α:n�m�1

s
� S

¼ 86:219þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7� 7:260

2:167

r
� 4:76 ¼ 109:27

ð2:100Þ

2.12.4 Incorporating Interaction and Quadratic Effects

Recall the definitions for the partial regression coefficients associated with the

predictor variables X1 and X2. The partial regression coefficient β1 provides the

rate of change in the average of Y as X1 increases one unit holding X2 fixed. Notice

that the definition does not stipulate a particular value at which X2 is fixed.

Regardless of what value of X2 is assigned, the rate of change in the mean of

Y for a one unit increase in X1 is constant, and does not depend on the particular

fixed value of X2. However, situations arise where such an assumption is not

reasonable. That is, the rate of change in the mean of Y for a one unit increase in

X1 varies as the value of X2 changes. When such a situation occurs, it is stated that

X1 and X2 interact.

It has been our experience that researchers often confuse the definitions of

interaction and correlation. Correlation is a relationship between two variables

(e.g., Y,X1), whereas interaction involves at least three variables (e.g., Y,X1,X2).

If two variables are being considered where one variable generally increases

(decreases) as the other variable increases (decreases), then the two variables are

positively correlated. If the two variables tend to move in opposite directions, then

they are negatively correlated. Interaction is a condition that considers at least three

variables. If two predictor variables X1 and X2 interact, this means the slope of the

regression of Y on X1 changes as X2 changes. Similarly, the slope for the regression

of Y on X2 changes as X1 changes. Figure 2.19 provides an illustration of an

interaction effect between Load Rate (X1) and pH (X2) on Y. Note the slope of

Y on X1 is much steeper when pH¼ 4.7 than when pH¼ 5.3.

In order to include an interaction effect between X1 and X2 in a regression model,

one creates a new predictor variable by multiplying the values of X1 and X2, say

X3 ¼ X1 � X2. Using the data in Table 2.29, a regression model that includes an

interaction effect between X1 and X2 is

Yi ¼ β0 þ β1X1i þ β2X2i þ β3X3i þ Ei i ¼ 1, . . . , n; ð2:101Þ
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where X3i ¼ X1i � X2i. The prediction function associated with model (2.101) is

written as

Ŷ P ¼ b0 þ b1X1P þ b2X2P þ b3X3P

Ŷ P ¼ b0 þ b1X1P þ b2X2P þ b3 X1P � X2Pð Þ
Ŷ P ¼ b0 þ b1 þ b3X2Pð ÞX1P þ b2X2P:

ð2:102Þ

Notice that the slope coefficient on X1P is now a function of X2P, namely

b1 þ b3X2P. Thus, the rate of change in ŶP as X1P increases one unit is now a

function of X2P. Similarly, the prediction function can be written as

Ŷ P ¼ b0 þ b1X1P þ b2X2P þ b3X3P

Ŷ P ¼ b0 þ b1X1P þ b2X2P þ b3 X1P � X2Pð Þ
Ŷ P ¼ b0 þ b2 þ b3X1Pð ÞX2P þ b1X1P

ð2:103Þ

and one can see that the rate of change in ŶP as X2P increases one unit is now a

function of X1P.

When fitting a regression model with an interaction effect, it is recommended

that each predictor variable included in the interaction be coded prior to computing

the interaction predictor variable. The appropriate coding formula is

Fig. 2.19 Slopes change due to interaction between load rate and pH
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XCoded ¼ 2� XOriginal �Max�Min

Max�Min
ð2:104Þ

where Max is the maximum X value for the original (uncoded) data and Min is the

minimum X value. By coding the data in this manner, the minimum value of XCoded

is �1 and the maximum value is +1. As an example, for pH in Table 2.29, the

maximum value is 5.3 and the minimum is 4.7. The value of pH for the first

experiment is 4.7, and so the coded value is

XCoded ¼ 2� XOriginal �Max�Min

Max�Min

XCoded ¼ 2� 4:7� 5:3� 4:7

5:3� 4:7
¼ �0:6

0:6
¼ �1:

ð2:105Þ

The reason for coding using Eq. (2.104) is to mitigate a situation where predictor

variables are correlated with each other. This condition is called collinearity. The

primary problem caused by collinearity is that the estimated regression coefficients

can have standard errors that are extremely large, creating point estimates that are

“unstable.” This instability leads to wide confidence intervals on the regression

coefficients and associated p-values that are large even when there are strong

statistical relationships between Y and the predictor variables. Since the predictor

variable representing the interaction term (X3) is a function of other predictor

Table 2.34 Impact of correlation among predictors

Statistic

Predictors not

coded

Predictors coded

using (2.104)

b0 91.57 86.22

b1 �17.96 �8.08

b2 1.35 7.76

b3 3.27 4.90

95% CI on β1
(p-value)

�31.1 to

�4.79

(0.016)

�11.3 to �4.86

(0.001)

95% CI on β2
(p-value)

�21.1 to 23.8

(0.888)

4.54 to 10.98

(0.001)

95% CI on β3
(p-value)

0.64 to 5.90

(0.023)

0.96 to 8.85

(0.023)

S 3.226 3.226

ŶP with X1P ¼ 7:5 coded 0ð Þ, X2P ¼ 5:0 coded 0ð Þ 86.2 86.2

95% CI on mean of Y with

X1P ¼ 7:5 coded 0ð Þ, X2P ¼ 5:0 coded 0ð Þ
83.7 to 88.7 83.7 to 88.7

95% Prediction Interval with

X1P ¼ 7:5 coded 0ð Þ, X2P ¼ 5:0 coded 0ð Þ
77.9 to 94.5 77.9 to 94.5

95% Tolerance Interval with X1P ¼ 7:5 coded 0ð Þ,
X2P ¼ 5:0 coded 0ð Þ
Equation (2.98)

69.6 to 102.9 69.6 to 102.9
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variables (X1 and X2), X3 will likely be correlated with X1 and X2. By coding the

predictors as described, the degree of correlation is reduced, if not eliminated

entirely.

To demonstrate, Table 2.34 shows results from fitting interaction models to the

data in Table 2.29 using both original and coded data.

Tables 2.35 and 2.36 report the correlation matrices between the original

X values (X1O,X2O,X3O) with the coded X values (X1C,X2C,X3C).

There are several things to notice in Table 2.34. First, the confidence intervals on

the regression coefficients for X1 and X2 are wider for the original data than for the

coded data. Additionally, the associated p-values are greater for the original data.

For example, using the original data the regression coefficient of X2 does not appear

to be “statistically significant.” In contrast, when the model is fit with the coded

data, the coefficient of X2 is seen to be important ( p¼0.001). As seen in Table 2.35,

there are non-zero correlations between X1O and X3O, and X2O and X3O. In contrast,

Table 2.36 shows all pairwise correlations are zero.

One other important thing to notice is that the presence of collinearity does not
impact S, ŶP, or the three statistical intervals. This demonstrates that although

collinearity can create problems in interpreting the individual impact of a predictor

variable, it does not create a problem with predictions. However, since studies such

as the one described in Table 2.29 are performed to discover relationships between

Y and the predictor variables, one should attempt to control collinearity as much as

possible.

Some care must be taken when interpreting the regression coefficients shown in

Table 2.34. Consider the definition of the prediction function in Eq. (2.102) where

Ŷ P ¼ b0 þ b1 þ b3X2Pð ÞX1P þ b2X2P. Using the coded data results in Table 2.34,

the slope of the response Y on X1 is b1 þ b3X2Pð Þ ¼ �8:08þ 4:90X2Pð Þ. Suppose
the original value of pH is X2P ¼ 5:0. Then the coded value is X2P ¼ 0, and the

slope of Y on X1 is�8.08. This means that as the coded value of X1 increases 1 unit,

say from �1 to 0, the average value of Y will decrease by 8.08%. Or in terms of the

original data, when pH is equal to 5.0 and Load Rate increases from 2.5 to 7.5 g/L,

the average value of Y will decrease by 8.08%. Similarly, when pH is equal to 5.0

and Load Rate increases from 7.5 to 12.5 g/L, the average value of Y will decrease

Table 2.35 Correlation

matrix of original data
X1O X2O X3O

X1O 1 0 0.995

X2O – 1 0.090

X3O – – 1

Table 2.36 Correlation

matrix of coded data
X1C X2C X3C

X1C 1 0 0

X2C – 1 0

X3C – – 1
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by 8.08%. Thus, if pH is equal to 5.0, as Load Rate increases across the entire range

from 2.5 to 12.5 g/L, the average of Y will decrease by 2 � 8.08¼ 16.16%. Now if

pH is set equal to X2P ¼ 5:3 and Load Rate increases from 2.5 to 7.5 g/L, then the

average value of Y will change by only (�8.08+4.90(1))¼�3.18%. That is, the

slope of Y on X1 flattens out as pH increases. This was displayed in Fig. 2.19.

One final thing to note in Table 2.34 is that the width of the three statistical

intervals associated with ŶP is shorter than those computed for the model without

the interaction shown in Table 2.32. This demonstrates the value of adding the

interaction effect to the model.

One final addition to the model are quadratic effects for both X1 and X2. In many

applications, the functional relationship between Y and a predictor variable may not

be linear. In order to fit a quadratic term for the predictor variable X1, one creates a

new predictor variable, say X4, by multiplying X1 with itself. That is,X4 ¼ X1 � X1.

Similarly, one can define X5 ¼ X2 � X2 to represent the quadratic effect for X2. As

with the predictor variables associated with interaction, the quadratic terms should

be formed with coded values of X1 and X2. Table 2.37 reports an analysis of the data

in Table 2.29 fitting the interaction term and both quadratic effects.

The p-values in Table 2.37 provide evidence of both an interaction effect

between X1 and X2, and a quadratic effect for X1 (Load Rate).

Table 2.37 Model fit with interaction and quadratic effects with predictors coded

Statistic Value

b0 83.17

b1, b2, b3, b4, b5 �8.08, 7.76, 4.90, 4.66,

0.426

95% CI on β1 (p-value) �9.72 to �6.44 (0.000)

95% CI on β2 (p-value) 6.12 to 9.40 (0.000)

95% CI on β3 (p-value) 2.89 to 6.91 (0.003)

95% CI on β4 (p-value) 2.03 to 7.29 (0.008)

95% CI on β5 (p-value) �2.20 to 3.06 (0.676)

S 1.4472

ŶP
X1P ¼ 7:5ðcoded 0Þ,X2P ¼ 5:0ðcoded 0Þ

83.17

95% CI on mean of Y with

X1P ¼ 7:5 coded 0ð Þ, X2P ¼ 5:0 (coded 0)

80.77 to 85.57

95% Prediction Interval with X1P ¼ 7:5 coded 0ð Þ, X2P ¼ 5:0
(coded 0)

78.49 to 87.85

95% Tolerance Interval with X1P ¼ 7:5 coded 0ð Þ, X2P ¼ 5:0
(coded 0)

Equation (2.98)

73.10 to 93.24
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2.12.5 Incorporating Qualitative Predictor Variables

Regression models can also include qualitative factors. This is done by creating

“indicator” or “dummy” variables to represent the factor levels. Consider the

example used to introduce regression analysis in Table 2.25. In this example,

concentration values were recorded for a single drug product lot as it degraded

over time. The data set shown in Table 2.38 provides the same data but now with

measurements from two additional lots.

The variable “Lot” in Table 2.38 is a qualitative factor with three categories: A,

B, and C. In general, a qualitative variable has c categories. To represent this factor
in the regression model, it requires the creation of c� 1 indicator variables. These

indicator variables can be defined in several ways, but we apply coding to produce a

range of (�1,+1) as in the previous section. In particular, to represent a qualitative

factor with c categories, define c� 1 indicator variables of the form

Ii ¼
þ1 if category i

�1 if category c

0 otherwise

8><
>:

9>=
>;

for i ¼ 1, 2, . . . , c� 1:

ð2:106Þ

You might wonder why only c� 1 indicator variables are required to represent

c categories. The reason is that knowledge of c� 1 variables will uniquely define

the last category. That is, use of all c indicator variables is unnecessary because the

Table 2.38 Concentration

(%) over time for three lots
Lot Vial Concentration (%) (Y) Time in months (X)

A 1 102.1 0

A 2 101.4 6

A 3 101.0 12

A 4 101.1 18

A 5 100.8 24

A 6 99.6 30

B 7 100.0 0

B 8 100.0 6

B 9 100.2 12

B 10 98.8 18

B 11 99.8 24

B 12 99.0 30

C 13 97.6 0

C 14 98.3 6

C 15 98.1 12

C 16 97.1 18

C 17 96.5 24

C 18 96.0 30
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last one provides redundant information and will lead to a singularity in the solution

of the regression equation. In our present example, c ¼ 3 categories. Thus we define

c� 1 ¼ 2 indicator variables

I1 ¼
þ1 if Lot A

�1 if Lot C

0 if Lot B

8><
>:

9>=
>;

I2 ¼
þ1 if Lot B

�1 if Lot C

0 if Lot A :

8><
>:

9>=
>;

ð2:107Þ

The assumed regression model is now

Yi ¼ β0 þ β1X1i þ β2I1i þ β3I2i þ Ei i ¼ 1, . . . , n; ð2:108Þ

where X1 is time in months. Note that we have now defined c ¼ 3 regression

models. For Lot A, I1 ¼ þ1 and I2 ¼ 0 so model (2.108) becomes

Yi ¼ β0 þ β1X1i þ β2 1ð Þ þ β3 0ð Þ þ Ei

Yi ¼ β0 þ β1X1i þ β2 þ Ei

Yi ¼ β0 þ β2ð Þ þ β1X1i þ Ei :

ð2:109Þ

The model in Eq. (2.109) has a slope of β1 and a y-intercept of β0 þ β2. For
Lot B, I1 ¼ 0 and I2 ¼ 1 so model (2.108) becomes

Yi ¼ β0 þ β1X1i þ β2 0ð Þ þ β3 1ð Þ þ Ei

Yi ¼ β0 þ β1X1i þ β3 þ Ei

Yi ¼ β0 þ β3ð Þ þ β1X1i þ Ei :

ð2:110Þ

The model in Eq. (2.110) has a slope of β1 and a y-intercept of β0 þ β3. Finally,
for Lot C, I1 ¼ �1 and I2 ¼ �1 so model (2.108) becomes

Yi ¼ β0 þ β1X1i þ β2 �1ð Þ þ β3 �1ð Þ þ Ei

Yi ¼ β0 þ β1X1i � β2 � β3 þ Ei

Yi ¼ β0 � β2 � β3ð Þ þ β1X1i þ Ei :

ð2:111Þ

Model (2.111) is a regression with slope β1 and y-intercept β0 � β2 � β3. Thus,
the regression model in (2.108) represents the data as three parallel lines, all with
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slope β1. The intercepts for the three lots are β0 þ β2, β0 þ β3, and β0 � β2 � β3,
respectively.

Table 2.39 adds the two indicator variables to the data in Table 2.38.

Table 2.40 reports the results of this regression using the data in Table 2.39, and

Fig. 2.20 shows a plot of the fitted regression line for each lot.

A model that allows different slopes for each lot can be obtained by using

interaction effects between time and the indicator variables. In particular, the

following regression model will allow a different slope within each lot.

Yi ¼ β0 þ β1X1i þ β2I1i þ β3I2i þ β4 X1i � I1ið Þ
þ β5 X1i � I2ið Þ þ Ei i ¼ 1, . . . , n:

ð2:112Þ

Fitting the interaction terms from the same data used to produce Table 2.40,

Table 2.42 reports the results of the analysis. Since an interaction term has been

added to the model, time has been coded using the formula in (2.104) as shown in

Table 2.41. Figure 2.21 presents the plot of the model fit allowing different slopes

for each lot.

Notice that since the intervals in Table 2.42 are wider than those in Table 2.40,

and neither of the interaction effects have p-values less than 0.05, it appears an

assumption of equal slope across lots is reasonable.

Table 2.39 Concentration (%) over time with indicator variables

Lot Vial Concentration (%) (Y) Time in months (X) I1 I2

A 1 102.1 0 1 0

A 2 101.4 6 1 0

A 3 101.0 12 1 0

A 4 101.1 18 1 0

A 5 100.8 24 1 0

A 6 99.6 30 1 0

B 7 100.0 0 0 1

B 8 100.0 6 0 1

B 9 100.2 12 0 1

B 10 98.8 18 0 1

B 11 99.8 24 0 1

B 12 99.0 30 0 1

C 13 97.6 0 -1 -1

C 14 98.3 6 -1 -1

C 15 98.1 12 -1 -1

C 16 97.1 18 -1 -1

C 17 96.5 24 -1 -1

C 18 96.0 30 -1 -1
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2.12.6 Nonlinear Models Using Variable Transformation

In some situations, the assumption of linearity between the response variable and a

predictor is not reasonable. The incorporation of quadratic effects as described in

Sect. 2.12.4 is one approach for modeling such data. Another approach is to perform

a transformation on either the response or the predictor variable. Consider the data

set shown in Table 2.43 which displays the response variable, Proportion Cell

Viability (Y ), and the predictor variable Cell Age at Time of Inoculation (X) in
an experiment to examine the growth of cells in a bioreactor.

Fig. 2.20 Fitted model with qualitative predictor (Equal Slopes)

Table 2.40 Model with equal slopes across lots

Statistic Value

b0 100.15

b1 �0.0565 (p< 0.001)

b2 1.700 (p< 0.001)

b3 0.333 (p¼ 0.054)

S 0.4744

Results for Lot A I1 ¼ 1, I2 ¼ 0ð Þ at X1 ¼ 30 months

ŶP 100.152

d 0.5345

95% confidence interval on mean of Y 99.61–100.70

95% prediction interval 99.00–101.31

95% tolerance interval that contains 99% using (2.98) 98.16–102.14
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Table 2.41 Concentration (%) over time with time coded

Lot Vial Concentration (%) (Y) Time in months (X) I1 I2 Time (coded)

A 1 102.1 0 1 0 �1

A 2 101.4 6 1 0 �0.6

A 3 101.0 12 1 0 �0.2

A 4 101.1 18 1 0 0.2

A 5 100.8 24 1 0 0.6

A 6 99.6 30 1 0 1

B 7 100.0 0 0 1 �1

B 8 100.0 6 0 1 �0.6

B 9 100.2 12 0 1 �0.2

B 10 98.8 18 0 1 0.2

B 11 99.8 24 0 1 0.6

B 12 99.0 30 0 1 1

C 13 97.6 0 �1 �1 �1

C 14 98.3 6 �1 �1 �0.6

C 15 98.1 12 �1 �1 �0.2

C 16 97.1 18 �1 �1 0.2

C 17 96.5 24 �1 �1 0.6

C 18 96.0 30 �1 �1 1

Fig. 2.21 Fitted model with unequal slopes
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Table 2.42 Model with unequal slopes across lots

Statistic Value

b0 99.3

b1 (Time) �0.848 (p< 0.001)

b2 1.700 (p< 0.001)

b3 0.333 (p¼ 0.055)

b4 �0.167 (p¼ 0.481)

b5 0.348 (p¼ 0.155)

S 0.4694

Results for Lot A I1 ¼ 1, I2 ¼ 0ð Þ at X1 ¼ 30 months

ŶP 99.986

d 0.7237

95% confidence interval on mean of Y 99.25–100.73

95% prediction interval 98.72–101.25

95% tolerance interval that contains 99% using (2.98) 97.81–102.16

Table 2.43 Data from cell growth study

Proportion cell viability (Y) Cell age in days (X) Logit (T)

0.931 13.0 2.602

0.94 18.6 2.751

0.946 22.1 2.863

0.957 32.3 3.102

0.991 96.7 4.701

0.946 24.0 2.863

0.968 43.5 3.409

0.967 46.0 3.377

0.979 63.5 3.842

0.995 118.5 5.293

0.995 126.0 5.293

0.997 138.5 5.806

0.937 16.0 2.699

0.942 21.6 2.787

0.949 25.1 2.923

0.957 35.3 3.102

0.991 99.7 4.701

0.954 27.0 3.032

0.969 46.5 3.442

0.968 49.0 3.409

0.982 66.5 3.999

0.995 121.5 5.293

0.995 129.0 5.293

0.997 141.5 5.806
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Notice from the plot in Fig. 2.22 that the points at both the left and right fall

below a straight line, whereas those in the middle fall above the line. This suggests a

nonlinear relationship between Y and X. Generally, the improvement in viability is

slow for very young cells, followed by an increasing linear growth, and then a

plateau at higher ages. Additionally, the response variable is such that a value less

than 0 or greater than 1 is not possible. However, the straight line in Fig. 2.22 has

predicted values that exceed 1 within the timeframe of interest.

A useful transformation for this situation is the logit transformation. The

response variable Y is replaced with the transformed variable T where

T ¼ ln
Y

1� Y

� �
0 � Y � 1: ð2:113Þ

The reverse transformation that allows one to re-express predicted values of

T into predicted values of Y is

Y ¼ eT

1þ eTð Þ : ð2:114Þ

Table 2.43 shows values of T in the last column. For example, in the first row

T ¼ ln 0:931= 1� 0:931ð Þð Þ ¼ 2:602: Figure 2.23 displays the data for the

transformed value T against cell age.

Note that the linear model of T on X is now a much better representation of the

data. Suppose it is desired to predict Y when the predictor variable Cell Age is X
¼ 140 days. Table 2.44 reports results of a simple linear regression after

transforming Y to the values of T as shown in Table 2.43.
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Fig. 2.22 Plot of cell viability against cell age

2.12 Regression Analysis 97



Transforming these values back to the original measurements, the predicted

value of Y at X ¼ 140 days using (2.114) is Y ¼ exp 5:731ð Þ= 1þ exp 5:731ð Þ½ �
¼ 0:997 with a lower prediction bound of Y ¼ exp 5:586ð Þ= 1þ exp 5:586ð Þ½ � ¼
0:996 and an upper prediction bound ofY ¼ exp 5:876ð Þ= 1þ exp 5:876ð Þ½ � ¼ 0:997.
Note that all values are less than 1 as desired.

There are many other transformations that might be considered in a particular

application. The logit transformation is one of several transformations that are

commonly used with proportions. Other useful transformations for proportions or

percentages are the square root and arcsine transformations. An exponential model

is also useful for some growth patterns. Logarithms are useful for transforming

non-normal data with a long tail to more normal appearing data.

2.12.7 Mixed Models

All of the regression models considered to this point contain only a single error

term. However, as was encountered with the dependent data in Sect. 2.7, it is often
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Fig. 2.23 Plot of T against cell age

Table 2.44 Regression fit

of t on cell age (days)
Statistic Value

b0 2.293

b1 0.0246

S 0.0646

T̂ P when X ¼ 140 5.731

95% prediction interval (5.586, 5.876)
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necessary to model more than a single random error. To demonstrate, consider the

previously described stability data shown in Table 2.45.

In Sect. 2.12.5 these data were modeled using indicator variables to represent

“Lot” as a fixed effect. This means that the inferences collected from the sample

pertain only to the three specific lots shown in Table 2.45. More realistically, it is

desired to make an inference on the process that produces the lots, rather than this

single fixed set of three lots. In fact, regulatory expectations are that companies

provide assurance that their manufacturing processes are continuously producing

lots that meet quality standards. (see Chap. 8 for more discussion on stability

models).

In order to allow inferences concerning the ongoing process, it is necessary to

consider the three lots tested in the sample as a representative sample from a

conceptual population of future lots that will be produced by the process. In

statistical terms, this means the factor lot is treated as a random effect. The

statistical model is

Yij ¼ μþ Li þ β � tij þ Eij i ¼ 1, . . . , n; j ¼ 1, . . . ,Ti; ð2:115Þ

where Yij is a product quality attribute for lot i at time point j, μ is the average

y-intercept across all lots, β is the average slope across all lots, Li is a random

variable that allows the y-intercept to vary from μ for a given lot, Li has a normal

distribution with mean 0 and variance σ2L, tij is the time point for measurement j of
lot i, Eij is a random normal error term created by measurement error and model

misspecification with mean 0 and variance σ2E, n is the number of sampled lots, Ti is
the number of time points obtained in lot i, and Li and Eij are jointly independent.

Table 2.45 Concentration

(%) over time for three lots
Lot Vial Concentration (%) (Y) Time in months (X)

A 1 102.1 0

A 2 101.4 6

A 3 101.0 12

A 4 101.1 18

A 5 100.8 24

A 6 99.6 30

B 7 100.0 0

B 8 100.0 6

B 9 100.2 12

B 10 98.8 18

B 11 99.8 24

B 12 99.0 30

C 13 97.6 0

C 14 98.3 6

C 15 98.1 12

C 16 97.1 18

C 17 96.5 24

C 18 96.0 30
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The model in (2.115) shows a process where individual lots have varying

y-intercepts and is sometimes referred to as a random intercepts model. This

model is appropriate when it can be assumed degradation rates (slopes) are equal

to β across all lots. Such a model is reasonable when the process is well controlled,

the reaction kinetics governing the stability properties are consistent from lot-to-lot,

and variations in slope estimates from lot-to-lot are attributable primarily to ana-

lytical method variability. However, in some situations, it may be necessary to

allow slopes to vary across lots. A model that allows such variation is

Yij ¼ μþ Li þ β þ Bið Þ � tij þ Eij i ¼ 1, . . . , n; j ¼ 1, . . . , Ti; ð2:116Þ

where β is the average slope across all lots and Bi is a normal random variable that

allows the slope to vary from lot-to-lot with mean 0 and variance σ2B.
Note that model (2.116) has three random error terms, Li, Bi, and Eij. As before,

upper case Latin letters represent random effects (e.g., Eij) and Greek symbols

represent fixed effects (e.g., β). A model that contains both fixed and random effects

is called a mixed model (hierarchical model). In a mixed model, one generally

desires inferences on both the fixed effects and the covariances and variances

associated with the random effects.

Table 2.46 reports the parameters of interest associated with model (2.115) using

uncoded time data. Also shown in the table are the estimates using the data in

Table 2.45. Minitab can be used for computations for some mixed models, but more

generally JMP, SAS, or R code is recommended.

Determination of appropriate statistical intervals becomes a bit more complex in

a mixed model because there are more intervals to consider. For example, suppose

one asks the question, “What is the predicted value for a future lot at 30 months?”

The predicted value using model (2.115) is μ̂ þ β̂ � tij where the “hats” on the

parameters denote the estimates shown in Table 2.46. So in this case, the answer to

the question is 100:15þ �0:0565ð Þ � 30 ¼ 98:452%. However, suppose the ques-

tion is “What is the predicted value for Lot A at 30 months?” In this case, the

predicted value now includes an estimate of a random effect and is obtained from

the equation μ̂ þ L̂ 1 þ β̂ � tij ¼ 100:135%. A predicted value that contains esti-

mates of both fixed and random effects is called a best linear unbiased predictor or

BLUP. In the fixed effects model of Sect. 2.12.5, the predicted mean for Lot A at

time 30 was 100.152% as shown in Table 2.40. This example demonstrates that

model assumptions concerning whether factors are fixed or random make a differ-

ence in the estimates. When using mixed models, the complexity necessarily

Table 2.46 Mixed model with random intercept

Parameters Description Computed estimate from Table 2.45

μ Overall average across all lots 100.15

β Average slope across all lots �0.0565

σ2L Variance from lot-to-lot 3.5303

σ2E Variance of analytical method 0.2251
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increases because there are more quantities (and questions) of interest. Statistical

intervals can also be computed with mixed models, but the formulas are more

complex than those presented to this point, and statistical software is needed to

compute them.

For some mixed models, simple results can be obtained by considering the

analysis of variance (ANOVA) table associated with the model. As an example,

consider the mixed model often used in method validation

Yijk ¼ μi þ Aj ið Þ þ Eijk i ¼ 1, . . . , c; j ¼ 1, . . . , a; k ¼ 1, . . . , r; ð2:117Þ

where Yij is the measured value for the kth replicate of the jth analytical run for

concentration level i. The random error Aj(i) represents between run variability. It is

assumed to have a mean of zero and a variance σ2A. The random error Eijk is the

within run variability which has an assumed mean of zero and variance σ2E. The
parameter μi represents the mean of Yijk for concentration level i.

The ANOVA table for model (2.117) is shown in Table 2.47. It can be computed

in any of the software programs previously cited.

The factor concentration is a fixed effect because the inference pertains to the

particular concentration range examined in the study. The factor “Between runs” is

a random effect since runs are not unique and change from application to applica-

tion. The “Within runs” source of variation represents the method’s repeatability.
Inferences are desired for the parameters shown in the expected mean square (EMS)

column of the ANOVA table. For example, the total variation of the analytical

method is the sum of the two variance components, σ2A þ σ2E. This sum is called the

intermediate precision.

A useful approximation for constructing statistical intervals on sums of variance

components is the Satterthwaite approximation. This approximation is used to form

an approximate chi-squared random variable that can be used for constructing

statistical intervals. To demonstrate, suppose it is desired to compute a 95%

confidence interval on the intermediate precision variance σ2A þ σ2E. From the

ANOVA in Table 2.47, consider the two expected mean squares θ2 ¼ σ2E þ rσ2A
and θ3 ¼ σ2E. The intermediate precision variance, γ ¼ σ2A þ σ2E, can be written as

the function of these expected mean squares

Table 2.47 ANOVA for mixed model

Source of variation Degrees of freedom Mean square Expected mean square

Concentration n1 ¼ c� 1 S21

θ1 ¼ σ2E þ rσ2A þ ar

Xc
i¼1

μi � μð Þ2

c�1

Between runs n2 ¼ c a� 1ð Þ S22 θ2 ¼ σ2E þ rσ2A
Within runs n3 ¼ ac r � 1ð Þ S23 θ3 ¼ σ2E
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γ ¼ k2θ2 þ k3θ3,

k2 ¼ 1

r
, and

k3 ¼ 1� k2:

ð2:118Þ

The estimator for γ is obtained by replacing the EMS values with their respective

mean squares, S22 and S23. This provides the point estimator

γ̂ ¼ k2S
2
2 þ k3S

2
3: ð2:119Þ

The Satterthwaite approximation determines a value m such that mγ̂ð Þ=γ has an
approximate chi-squared distribution where

m ¼ γ̂ 2

k2S
2
2ð Þ2

c a�1ð Þ þ
k3S

2
3ð Þ2

ac r�1ð Þ

: ð2:120Þ

In practice, m will often be non-integer. This causes no problem if using a

software package that allows non-integer degrees of freedom for the chi-squared

distribution. However, if performing calculations in Excel, one should round the

value of m to the nearest integer.

Once m has been determined, statistical intervals can be computed using γ̂ and

m. For example, Eq. (2.10) can be used to construct a confidence interval on γ by
replacing S2 with γ̂ and n-1 with m. Consider the present example and suppose

S22 ¼ 30, S23 ¼ 15, c ¼ 3, a ¼ 4, and r ¼ 3. The estimator for the intermediate

precision is

γ̂ ¼ k2S
2
2 þ k3S

2
3 ¼

1� 30

3
þ 2� 15

3
¼ 20: ð2:121Þ

The value of m is obtained as

m ¼ γ̂ 2

k2S
2
2

� �2
c a� 1ð Þ þ

k3S
2
3

� �2
ac r � 1ð Þ

m ¼ 20ð Þ2
30
3

� �2
3 4� 1ð Þ þ

2�15
3

� �2
4� 3� 3� 1ð Þ

m ¼ 26:18

ð2:122Þ

Rounding m to 26, the 95% confidence interval on γ is
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L¼ mγ̂

χ2
1�α=2:m

¼ 26� 20

41:92
¼ 12:4

U ¼ mγ̂

χ2α=2:m
¼ 26� 20

13:84
¼ 37:6:

ð2:123Þ

The Satterthwaite approximation can be applied for any sum of expected mean

squares. If γ ¼
XQ
q¼1

kqθq is a sum of Q expected means squares, the Satterthwaite

approximation is

γ̂ ¼
XQ
q¼1

kqS
2
q

m¼ γ̂ 2

XQ
q¼1

kqS
2
q

� �2
df q

ð2:124Þ

where dfq is the degrees of freedom associated with the qth mean square. If differ-

ences or ratios of expected mean squares are needed, then other methods should be

applied (see Chap. 8 of Burdick et al. (2005) for a discussion of these methods).

Some useful references describing mixed model analysis include Brown and

Prescott (2006), Gelman and Hill (2007), and Littell et al. (2006). A few applica-

tions of mixed models are provided in this book, but with emphasis on the

interpretation of the statistical computations.

2.13 Bayesian Models

Everything described in the chapter to this point is based on the classical frequentist

model. Under the frequentist model, parameters that describe a population or

process are assumed to be fixed and unknown. A sample is selected from the

population, and the unknown parameters are estimated using numerical functions

of the sample called statistics. Unlike the fixed parameters of interest, sample

statistics are random variables because their values change each time a new sample

is drawn from the population. In the classical frequentist model, all probability

statements refer to the theoretical sampling distribution of random statistics that

would be obtained in a hypothetical infinite series of resampling and re-estimation

steps. Frequentist probabilities are thus based on long-run relative frequencies.

Computation of these probabilities requires a sampling distribution for the sample
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statistics and an assumed value for the fixed parameter. Very briefly, the classical

frequentist approach is concerned with the

Probability Random Sample Statistic


Fixed Parameter Value

� �
: ð2:125Þ

Statement (2.125) reads as “The probability that a given sample statistic will

take on some value or values, conditional on a set of fixed unknown model

parameters.”

An alternative inference approach is the Bayesian model. In contrast to the

classical approach, parameters in a Bayesian model are assumed to be random,

rather than fixed. Thus, in addition to a probability distribution that describes

random sample statistics, there is also a probability distribution that describes

uncertainty in the unknown random parameter. The probability of interest in the

Bayesian approach is

Probability Random Parameter Value


Observed Sample Statistic

� �
: ð2:126Þ

Statement (2.126) reads as “The probability that a given unknown parameter will

take on some value or values, conditional on the observed sample statistic”. The

mathematics of (2.126) is discussed in the next section.

To contrast the two approaches, consider the client meeting described in

Sect. 2.2. The company is building a new manufacturing site in Ireland, and

wants to know the average purity of the product produced at the Ireland plant.

The frequentist approach assumes the true average purity is fixed and unknown.

To estimate the average, lots are sampled from the Ireland plant, sample means and

sample variances are computed, and the resulting values are used to construct a 100

1� αð Þ% confidence interval on the unknown average purity. The confidence

coefficient 100 1� αð Þ% expresses the confidence that this procedure will provide

an interval that truly contains the average purity for the Ireland site. Based on the

resulting interval, a decision is made concerning the quality of the manufacturing

process. Notice that the confidence coefficient is a fixed probability that refers not to

the unknown average purity, but to the statistical methodology used to construct the

interval. From the classical frequentist perspective, a computed confidence interval

will be correct 100 1� αð Þ% of the time. Whether the confidence interval is correct

for any particular application is unknown because the true mean potency is

unknown.

To conceptualize this problem in a Bayesian framework, assume that the com-

pany has performed many manufacturing transfers over the years. They know that

average purities vary across manufacturing sites in accordance with a defined

probability distribution. It is desired to combine this information with the sample

collected in Ireland to provide information concerning the average purity at the

Ireland site. This combined information is used to form the expression (2.126). The

Bayesian analogue of a frequentist confidence interval is called a credible interval.

Although similar to a confidence interval, the interpretation of a credible interval is
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much different. Bayesian inference is not based on the long-run frequentist behav-

ior of statistics. Rather, a credible interval is conditional on the particular data set

that was observed and is therefore fixed, and not random. In this example, the

probability that the true unknown average purity at the Ireland site lies within a

fixed credible interval based on (2.126) is 100 1� αð Þ%. This interval is assessed to

make a decision concerning the quality of the Ireland manufacturing site. Notice

that the probability in (2.126) refers directly to the parameter of interest, the average

purity of the product from the Ireland site. More generally, Bayesian procedures can

be used to estimate the probability that the true average purity of the product made

in Ireland lies in any interval that might be of interest.

Importantly, the coverage properties of credible intervals are also of interest

because one wants to understand the long-run reliability of any statistical proce-

dure. Unlike many (but not all) frequentist interval procedures, the coverage

properties of Bayesian credible intervals are usually not discoverable from theory

and must be determined by computer simulation.

The selection of either a Bayesian approach or a frequentist approach depends on

many factors. Some considerations when making this decision are offered in

Sect. 2.13.5. Excellent introductions to Bayesian statistics are provided in the

books by Bolstad (2007) and Kruschke (2015).

2.13.1 Expressing Prior Information on Model Parameters

Both frequentist and Bayesian procedures make use of probability density functions

(pdfs). A pdf is a function that gives the probability density (or relative likelihood)

as a function of values assigned by a random variable. The greater the probability

density, the more likely a variable is to have the corresponding value. Univariate

pdfs describe the probability density of scalar variables and multivariate pdfs

describe the probability density of vector variables. The normal probability distri-

bution is the primary pdf used for many statistical methods.

Some notation is needed to describe the Bayesian procedure. Let the bold-face

letter y represent a vector that will contain a random sample of data values to be

collected from a population or process. For example, this could be a set of

concentration values for a sample of manufactured lots in Ireland. Before the data

y are analyzed, Bayesian procedures require that a pdf be selected to define

knowledge concerning y before the analysis. This pdf is called the “prior” pdf.

This prior pdf is denoted as the bold-face function p(θ) where the bold Greek letter

theta represents parameter values that define the pdf. For example, if the prior pdf is

a normal distribution, then θ would be a vector that contains the mean and the

variance parameters. The prior pdf encapsulates any empirical or theoretical

knowledge one may have about the likely values of the parameters prior to data

analysis. In the Irish manufacturing example, it would include empirical informa-

tion from other process transfers. The idea is illustrated in Fig. 2.24.
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If one has a great amount of prior knowledge about a parameter, one might

define a very narrow pdf that limits the possible values of the parameter. This is

referred to as a strong prior. On the other hand, if one has very little information

concerning the parameter values, a wider prior pdf is assigned. Such pdfs are

described as either moderate or weak priors. If one has no prior knowledge, it is

customary to assign a very wide and flat pdf that is often referred to as a

non-informative prior. Often, the use of a non-informative prior pdf yields Bayesian

credible intervals that correspond closely with statistical intervals developed using

the frequentist approach. However, remember that the interpretation of any prob-

ability statements is different between these two intervals.

2.13.2 Bayes Rule and the Posterior Distribution

From a Bayesian perspective, all knowledge of the prior pdf and the sampled data

set is encapsulated in their combined “posterior” pdf. This posterior pdf is obtained

by combining the prior pdf with new information from the collected sample.

More formally, the probability of obtaining the observed data given a function of

the parameter values is called the likelihood. The likelihood is a pdf denoted as

p y


θ� �

. Note that the likelihood forms the basis of the frequentist relationship

shown in (2.125). The prior pdf p(θ) and the likelihood p y


θ� �

are combined to

produce the posterior pdf p θ


y� �

using Bayes rule. According to Bayes rule, the
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Fig. 2.24 Quantifying prior knowledge using a prior pdf
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posterior pdf at a given parameter value is proportional to the product of the prior

pdf and the likelihood. In statistical shorthand,

p θ


y� � / p θð Þ � p y



θ� �
: ð2:127Þ

Equation (2.127) uses two conventions commonly applied in Bayesian exposi-

tions. First, the symbol p(•) is used instead of the traditional f(•) to represent a pdf.

Second, the symbol / (proportional to) is used in place of an equality sign. This

indicates that in general, specified constants of the density functions are not

important to the derivation of the posterior distribution.

To put this in a context, consider y to represent a single data value selected from

a normal population with an unknown mean μ and a known variance σ2. The
likelihood is represented as p y



θ� �
where θ is the scalar μ. The actual formula for

the likelihood is

p y


μ� � ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p e�

y�μð Þ2
2σ2 / e�

y�μð Þ2
2σ2 : ð2:128Þ

Now assume the prior pdf on μ is a normal distribution with mean μ0 and

variance σ20. That is, the prior density is written as

p μð Þ / e
�

μ� μ0ð Þ2
2σ20 ð2:129Þ

Using Eq. (2.127), the posterior density is

p μ


y� � / p μð Þ � p y



μ� �
/ e

� μ�μ0ð Þ2
2σ2

0 � e�
y�μð Þ2
2σ2

ð2:130Þ

After performing some algebra, p μ


y� �

is shown to be a normal distribution with

mean μP and variance σ2P where

μP ¼
1

σ20
� μ0 þ

1

σ2
� y

1

σ20
þ 1

σ2

σ2P ¼ 1
σ2
0

þ 1
σ2

� ��1

:

ð2:131Þ

Once the posterior distribution, p θ


y� �

, is estimated using (2.127), it can be used

to obtain credible intervals, make predictions of future data, or test hypotheses of

interest. The relationship between the three pdfs is illustrated in Fig. 2.25.
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Prior to observing any data, knowledge about the parameter θ with possible

values plotted on the horizontal axis is represented by the prior pdf p(θ). The prior
pdf in Fig. 2.25 encapsulates prior evidence that the likely value of θ lies some-

where between 0 and 10 with the most likely value being 5. Based on the collected

data, the likelihood p y


θ� �

suggests that the value for θ may be between 7 and

13 with the most likely value being about 10. The likelihood is narrower than the

prior indicating that the evidence collected in the data set is stronger than what was

believed prior to the data collection. The posterior pdf p θ


y� �

represents a

compromise between the likelihood and prior. Because the weight of evidence is

stronger with the data (likelihood), the posterior is very close to the likelihood and

somewhat removed from the prior.

2.13.3 An Example

To demonstrate how Bayesian inference can be used in a CMC setting, consider the

data collected in the Ireland manufacturing example and shown in Table 2.1. The

sample mean is �Y ¼ 94:305%. Noel tells Tom he can assume virtually all the

variation in the measured values is due to the analytical method. The method is

well characterized and it is known the standard deviation is 0.8. Thus, for a sample

mean based on a sample of n ¼ 8 observations, the standard deviation is

σ ¼ 0:8=
ffiffiffi
8

p ¼ 0:28%. In discussion to determine prior information, Noel shares

that based on past transfers, he believes there is a 99% chance that the true value of
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Fig. 2.25 The relationship between prior, likelihood, and posterior pdf
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μ is between 91 and 99%. This subjective assessment is described by a normal

distribution with mean μ0 ¼ 95% and σ0 ¼ 1:55%. (Based on a standard normal

curve, 99% has a Z-score 2.58. Thus σ0 ¼ 99� 95ð Þ=2:58 ¼ 1:55%. Similarly, the

same result can be obtained using the lower value of the range, 91%.) Using

(2.127), the posterior distribution for the mean is shown to be a normal distribution

with mean μP and variance σ2P where

μP ¼
1

σ20
� μ0 þ

1

σ2
� �Y

1

σ20
þ 1

σ2

¼
1

1:55ð Þ2 � 95þ 1

0:28ð Þ2 � 94:305

1

1:55ð Þ2 þ
1

0:28ð Þ2
¼ 94:32

σ2P ¼
1

σ20
þ 1

σ2

� ��1

¼ 1

1:55ð Þ2 þ
1

0:28ð Þ2
 !�1

¼ 0:0759:

ð2:132Þ

Thus the posterior distribution has a mean of 94.32% and a standard deviation offfiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0759

p ¼ 0:276%. Table 2.48 reports the probability using this distribution that

the mean in Ireland exceeds various values.

One question that Noel wanted answered is whether the mean at the site in

Ireland exceeds 93%. Table 2.48 indicates that this is indeed the case.

2.13.4 Software for Estimation of the Posterior Distribution

Except in some very simple situations, application of (2.127) to perform a Bayesian

analysis requires computer software. Modern Bayesian software, such as Bayesian

inference Using Gibbs Sampling (BUGS), the Windows version WinBUGS, Just

Another Gibbs Sampler (JAGS), or Stan, are freely available and have been widely

used for over a decade. WinBUGS comes with a wide range of examples and many

books are available to describe how to use it to implement Bayesian procedures.

In using such software, it is typically necessary to specify y, p(θ), and p y


θ� �

using whatever functions are available in the particular software package. The

software will handle the computation of p θ


y� �

behind the scenes. Usually

p θ


y� �

is provided not as an analytical pdf expression, but as a sample “drawn”

from this posterior pdf. Generally the sample size will consist of thousands or

Table 2.48 Probabilities

based on posterior

distribution
Possible value in Ireland

Probability that Ireland mean

Exceeds value in column 1

95% 0.007

94.5% 0.265

94% 0.882

93.5% 0.999
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millions of draws. From this sample of draws, the posterior distribution of any fixed

or random function of θ can be easily obtained simply by calculating the function

for each draw.

2.13.5 Bayesian Analysis in Practice Today

There are many applications that may be formulated using either a frequentist or a

Bayesian approach. Generally speaking, the Bayesian approach is preferred when

there is information that can be used to construct an informative prior. The

Bayesian approach is necessary if one wishes to make a probability statement

concerning a parametric value. However, it seems most of the applications in the

CMC world presently involve frequentist formulations. One may ask why this is the

situation, given the potential benefits that can be derived from a Bayesian approach.

Some possible roadblocks to greater implementation of Bayesian methods include

the following:

1. The subjectivity of prior knowledge gives the perception to some that Bayesian

approaches allow one to demonstrate a preconceived position regardless of the

data. This may seem to be a major deterrent in a regulated industry.

2. As with all scientific analyses, care and understanding are needed to ensure that

results are meaningful and appropriately derived. Thus, statistical knowledge is

needed to apply Bayesian procedures correctly. Although this knowledge can be

acquired by non-statisticians, many of these scientists are not inclined to learn

Bayesian methods without first understanding the benefits that might result.

3. User-friendly statistical packages are more developed for the frequentist

approach.

With regard to the first objection, it is true that the accuracy of Bayesian

probabilities depend on both mechanistic understanding of random processes and

one’s prior knowledge of how the mechanism behaves. Because prior knowledge

and expression of that knowledge vary among individuals, Bayesian probabilities

are subjective in nature.

However, Bayesian probabilities can be just as objective as frequency-based

probabilities. The same fundamental laws of probability apply to both. Given that

prior knowledge is justified and properly expressed, a Bayesian procedure is no less

rigorous or appropriate than a corresponding frequentist procedure. Moreover, the

use of prior knowledge can render a Bayesian analysis more efficient (i.e., provide

tighter intervals) than a corresponding frequentist analysis, or provide a solution

where none exists in the frequency world. As an example, Bayesian approaches

developed by Joseph et al. (1995) and Suess et al. (2000) are used to analyze

screening tests when a gold standard is absent. Frequentist approaches are not

useful here due to the limited information that cause traditional models to be

“under-specified.” Because Bayesian procedures provide probability statements

about unknown parameters, they are arguably more often in alignment with
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questions posed by clients. That is, clients often want to know the probability of

some event occurring in the future, and a Bayesian analysis more directly answers

such a question.

Although some will criticize Bayesian methods for the subjectivity inherent in

defining prior information, it is well known that subjectivity is an inherent part of

most regulatory and business decisions. This is because we generally make better

decisions when we consider the totality of evidence that bears on a problem,

including evidence beyond the particular limited data set in hand. Additionally,

subjectivity is hardly absent in frequentist statistical methods where one is required

to make subjective decisions concerning model assumptions, the choice of confi-

dence levels, selected decision limits, pooling of data, and weighting rules that may

be included in an analysis.

Bayesian approaches are commonly found in the pharmaceutical industry.

Examples of such applications in clinical activities are provided in the book by

Berry et al. (2010). We also provide some examples in this book in Chaps. 6

(analytical methods) and 8 (stability testing). Thus, the argument that Bayesian

methods are not appropriate in a regulated industry does not hold in the pharma-

ceutical industry.

Roadblocks 2 and 3 are slowly dissolving. Bayesian methods are becoming part

of every statistician’s tool box, and scientists outside the field of statistics have

more opportunities to experience their benefits.

As greater demand arises for Bayesian methods, statistical software will appear

to meet the demand. Prior to the existence of modern computer software, Bayesian

analysis was difficult to handle since the computations are very involved. The

advent of powerful techniques such as Gibbs sampling (see, e.g., Casella and

George 1992) has facilitated the use of the Bayesian approach since now practi-

tioners can concentrate on the analysis rather than on the difficult calculation of

posterior densities.
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Chapter 3

Process Design: Stage 1 of the FDA Process
Validation Guidance

Keywords Critical process parameter (CPP) • Critical quality attribute (CQA) •

Experimental design • Factorial design • Knowledge space • Normal operating

range • Process capability • Process design • Process robustness • Quality by

design • Quality target product profile (QTPP) • Region of goodness • Risk

assessment

3.1 Introduction

This is the first of three chapters that describe statistical approaches related to the

three stages of process validation described in the FDA Process Validation Guid-

ance for Industry (2011). The three stages are

1. Process Design (Chap. 3),

2. Process Qualification (Chap. 4), and

3. Continued Process Verification (Chap. 5).

The three-stage process validation guidance aligns process validation activities

to the product life cycle concept. Along with existing FDA guidance, it links the

quality of the product with ensuring quality of the process, from product and

process design through mature manufacturing. The FDA process validation guid-

ance supports process improvement and innovation through sound science and

includes concepts from other FDA supported guidance, including the International

Conference on Harmonization (ICH) chapters Q8(R2) Pharmaceutical Develop-

ment (2009), Q9 Quality Risk Management (2005), and Q10 Pharmaceutical

Quality System (2008).

A goal of quality assurance is to produce a product that is fit for its intended use.

Very broadly, within the guidance, process validation is defined as the collection

and evaluation of knowledge, from the process design stage through commercial

production, which establishes scientific evidence that a process consistently

delivers quality product. This knowledge and understanding is the basis for

establishing an approach to control a manufacturing process that results in products

with the desired quality attributes. Across the three stages, the statistics contribution

is to iteratively work on understanding sources of variability and the impact of
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variability on the process and product attributes, build quality into the product and

process, and detect and control the variation in a manner commensurate with the

product risk and the patient needs.

This three-step approach assumes the following conditions:

1. Quality, safety, and efficacy are designed or built into the product.

2. Quality cannot be adequately assured merely by in-process and finished product

inspection or testing.

3. Each step of a manufacturing process is controlled to ensure that the finished

product meets all quality attribute specifications.

In slightly more detail, the three stages are

Stage 1—Process Design: The commercial manufacturing process is defined during

this stage based on knowledge gained through development and scale-up activ-

ities. The knowledge can be of several forms: fundamental science, mechanistic

or physics-based models, data-driven models based on previous compounds, and

experimental understanding of the product being developed. In the process

design stage various tools are employed to understand inputs to the process

(parameters and material attributes) and their effect on the outputs (quality

attributes). Throughout this development stage, decisions are made on how to

establish and control the process to ensure quality in the output. This design

stage can be in accordance with ICH Q8(R2) and ICH Q11 (2012) and as such

may be a key change in the focus of activity for many companies.

Stage 2—Process Qualification: Following a process design stage where sufficient

understanding has been gained to provide a high degree of assurance in the

manufacturing process, the process design is evaluated to determine if the

process is capable of reproducible commercial manufacturing. This stage has

two elements: (1) design of the facility and qualification of the equipment and

utilities and (2) process performance qualification (PPQ). This later element was

historically called process validation, and most often conducted by executing

three lots within predetermined limits.

Stage 3—Continued Process Verification: After establishing and confirming the

process, manufacturers should maintain the process in a state of control over the

life of the process, even as materials, equipment, production environment,

personnel, and manufacturing procedures change. The goal of the third valida-

tion stage is continued assurance that the process remains in a state of control

(the validated state) during commercial manufacturing. Systems for detecting

departures from the product quality are helpful to accomplish this goal. Data are

collected and analyzed to demonstrate that the production process remains in a

state of control and to identify any opportunities for improvement.

Stages 2 and 3 are discussed in Chaps. 4 and 5, respectively.
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3.2 More on PV-1

Inspection is too late, the quality or lack thereof, is already in the product. Inspection does

not improve the quality, nor guarantee quality. As Harold F. Dodge said, “You cannot

inspect quality into a product.”

“Quality cannot be inspected into a product or service; it must be built into it.”

W.E. Deming in Out of the Crisis (2000).
Joseph M. Juran, renowned quality guru, characterized the development process as a

hatchery for new quality issues and coined the term “quality by design” to describe the

comprehensive discipline required to pro-actively establish quality (Juran 1992).

The pharmaceutical industry has traditionally been highly dependent on

end-product testing and inspection. However, this has changed and continues to

develop. The appropriate balance of a holistic quality approach versus end-product

testing is now common across the industry. Concepts from ICH Q8–Q11 and the

FDA guidance for process validation facilitate a move from an inspection-based to

a design-based system. The focus of PV-1 is to design a product and associated

processing by identifying and controlling process inputs so that the resulting output

is of acceptable quality (defined as “what the patient needs”) and well-controlled.

The result of PV-1 is to create a manufacturing process with an appropriate risk-

based control strategy.

The PV-1 process progresses in the following manner:

1. Develop a Quality Target Product Profile (QTPP).

2. Iteratively design the active pharmaceutical ingredient (API) process, formula-

tion, analytical methods, and final drug product process to achieve the QTPP.

3. Define the “region of goodness” for each process and process input.

4. Determine critical parameters and propose a control strategy.

5. Transition to Manufacturing, PV-2.

The next sections of this chapter overview and connect statistically related tools

used in process design. These tools are used to identify good and flexible operating

regions, help to determine critical parameters, and propose a control strategy.

Figure 3.1 presents terminology and provides a high level summary of the QbD

development process. When starting to develop any product or process, the

unknown is called the “unexplored space.” The subset labeled “knowledge space”

consists of prior learnings on similar products, first principles understanding of the

present process, and empirical information from experiments and other data ana-

lyses. After assessing what is known and unknown, the task is to identify and

prioritize the knowledge necessary to produce a high quality, safe, and efficacious

product. Risk assessment helps in the prioritization and both statistical and

non-statistical tools are used to obtain the knowledge. Following an iterative

development cycle, the knowledge and scientific experience might lead to several

defined regions:

1. A process set point, where if needed, represents where the process is nominally

operated.
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2. A normal operating range (NOR) which accounts for variability in the set point.

3. A proven acceptable range (PAR) is a region of goodness which allows for

variability in incoming raw materials or otherwise permits flexibility in assuring

quality.

Based on knowledge gained through development, parameters and process

elements which must be controlled and monitored are identified via the “control

strategy.” This control strategy allows the manufacturing process to stay within a

region of goodness.

The following definitions are useful in navigating the PV-1 landscape.

1. Attribute: A characteristic or inherent property of a feature. This term is used in

two contexts. The first is as a reference to raw material or excipient features,

called material attributes. The other is in reference to the features of the drug

substance or drug product. These attributes are significant in defining product

safety and efficacy, and are termed critical quality attributes.

2. Control Strategy: A planned set of controls, derived from current product and

process understanding that ensures a consistent level of process performance

and product quality. The controls can include parameters and attributes related

to drug substance and drug product materials, facility and equipment operating

conditions, in-process controls, finished product specifications, and the associ-

ated methods and frequency of monitoring and control (ICH Q10 2008).

3. Critical Process Parameter (CPP): A process parameter whose variability has

an impact on a critical quality attribute and must be monitored or controlled to

ensure the process produces the desired quality (ICH Q8(R2)).

Unexplored Space

Knowledge Space

“Design” Space

NOR

PAR
(Proven Acceptable Range)

Explored with 
Acceptable Performance

NOR
(Normal Operating Range)

Operating Strategy based 
on Business Requirements

Explored Space
• DOE 
• Modeling
• Prior Knowledge
• First Principles

Risk Assessment to 
Prioritize Investigation

Control Strategy
Specifications

Tolerances

Fig. 3.1 Structure of PV-1 spaces and terminology
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4. Critical Quality Attribute (CQA): A physical, chemical, biological, or micro-

biological property or characteristic that should be within an appropriate limit,

range, or distribution to ensure the desired product quality (ICH Q8(R2)).

5. Design Space: The multidimensional combinations and interaction of input

variables (e.g., material attributes) and process parameters that have been

demonstrated to provide assurance of quality. Movement of a process within

the design space is not considered to be a change. Movement out of the design

space is considered to be a change and would normally initiate a regulatory

postapproval change process. Design space is proposed by the applicant and is

subject to regulatory assessment and approval (ICH Q8(R2)).

6. Knowledge Management: Systematic approach to acquiring, analyzing, stor-

ing, and disseminating information related to products, manufacturing pro-

cesses, and components. Sources of knowledge include prior knowledge

(public domain or internally documented), pharmaceutical development stud-

ies, technology transfer activities, process validation studies over the product

life cycle, manufacturing experience, innovation, continual improvement, and

change management activities (ICH Q10).

7. Life cycle: All phases in the life of a product from the initial development

through marketing until the product’s discontinuation (ICH Q8(R2)).

8. Normal Operating Range (NOR): A defined range within (or equal to) the

Proven Acceptable Range. It defines the standard target and range under which

a process operates.

9. Parameter: A measurable or quantifiable characteristic of a system or process

(ASTM E2363).

10. Process Design (PV-1): Defining the commercial manufacturing process based

on knowledge gained through development and scale-up activities.

11. Process Qualification (PV-2): Confirming that the manufacturing process as

designed is capable of reproducible commercial manufacturing.

12. Process Validation: The collection and evaluation of data, from PV-1 through

PV-3, which establishes scientific evidence that a process is capable of consis-

tently delivering quality products.

13. Process Capability: Ability of a process to manufacture and fulfill product

requirements. In statistical terms, process capability is measured by comparing

the variability and targeting of each attribute to its required specification. The

capability is summarized by a numerical indexCpk (see Chap. 5 for information

on this topic). A process must demonstrate a state of statistical control for

process capability to be meaningful.

14. Process Parameter: A process variable (e.g., temperature, compression force)

or input to a process that has the potential to be changed and may impact the

process output. To ensure the output meets the specification, ranges of process

parameter values are controlled using operating limits.

15. Process Robustness: The ability of a manufacturing process to tolerate the

variability of raw materials, process equipment, operating conditions, environ-

mental conditions, and human factors. Robustness is an attribute of both

3.2 More on PV-1 119

http://dx.doi.org/10.1007/978-3-319-50186-4_5


process and product design (Glodek et al. 2006). Robustness increases with the

ability of a process to tolerate variability without negative impact on quality.

16. Proven Acceptable Range: A characterized range of a process parameter for

which operation within this range, while keeping other parameters constant,

will result in producing a material meeting relevant quality criteria (ICH Q8

(R2)).

17. Quality: The suitability of either a drug substance or drug product for its

intended use. This term includes such attributes as the identity, strength, and

purity (ICH Q6A 1999), ICH Q8(R2)).

18. Quality by Design: A systematic approach to process development that begins

with predefined objectives and emphasizes product and process understanding

based on sound science and quality risk management (ICH Q8(R2)).

19. Quality Risk Management: A systematic process for the assessment, control,

communication, and review of risks to the quality of the drug (medicinal)

product across the product life cycle (ICH Q9).

20. Quality Target Product Profile (QTPP, pronounced Q-tip): A prospective

summary of the quality characteristics of a drug product that ideally will be

achieved to ensure the desired quality, taking into account safety and efficacy

of the drug product (ICH Q8(R2)).

21. Risk: The combination of the probability of occurrence of harm and the

severity of that harm (ICH Q9).

22. Risk Assessment: A systematic process of organizing information to support a

risk decision to be made within a risk management process. It consists of the

identification of hazards and the analysis and evaluation of risks associated

with exposure to those hazards (ICH Q9).

23. State of Control: A condition in which the set of controls consistently provides

assurance of continued process performance and product quality (ICH Q10).

3.3 Iterative Process Design

Once the QTPP has been developed, product and process design can begin.

Process design is the activity of defining the commercial manufacturing process

that will be reflected in master production and control records. The goal of this

stage is to design a process suitable for routine commercial manufacturing that

can consistently deliver a product that meets the acceptance criteria of its quality

attributes.

Process design is iterative and can include all processes associated with the

product: API process, formulation, analytical methods, and final product processes.

Not all processes are developed in the same manner. For example, the API synthesis

process is not developed in the same fashion as a formulation process or an

analytical method.
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Step 1: Form a team.
A systematic team-based approach to development is the most efficient manner

to develop a robust process. This team should include expertise from a variety of

disciplines including process engineering, industrial pharmacy, analytical chemis-

try, microbiology, statistics, manufacturing, and quality assurance.

Step 2: Define the process.
Typically, a manufacturing process is defined by a series of unit operations or a

series of synthesis steps. Prior to initiation of any studies, the team needs to agree

which unit operations, reactions, or steps are included in the process. To aid in this

definition, the team creates a map or flowchart of the process.

A process is a combination of people, machines, methods, measurement sys-

tems, environment, and raw materials that produces the intended output. Figure 3.2

displays a process flow diagram for a dry granulation process. Once the process has

been defined, meaningful groupings of the unit operations are developed to form the

basis for experimentation. Figure 3.3 provides a schematic of these grouping or

“focus areas.” The parameters (inputs) and attributes (outputs) for each focus area

are discussed and studied in detail. The team discusses a focus area and identifies

the attributes and parameters that could potentially affect each attribute. Figure 3.4

provides an Ishikawa diagram (also known as a cause and effect or fishbone

diagram) which is helpful in mapping potential sources of parameter variability

by categories (e.g., machine, method, manpower, and environment) that could

influence attributes.

Blend-1 Sieve Blend-2 Sieve Blend-3

CompactMillBlend-4Compress

Fig. 3.2 Process flow diagram for a dry granulated product

Blend-1 Sieve Blend-2 Sieve Blend-3

CompactMillBlend-4Compress

Focus Area 1 

Focus Area 2 Focus Area 3

Fig. 3.3 Process map with experimental focus areas
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Step 3: Prioritize Team Actions
All attributes and parameters should be evaluated in terms of their roles in the

process, and on their impact on the final product or in-process material. They should

also be reevaluated as new information becomes available.

Following the relationship building of the Ishikawa diagram, the team will select

attributes that best define the process. It is typical to perform a risk assessment to

prioritize actions taken by the team in developing the process. As per the Pareto

principle, it is important to identify the significant parameters for further study. Not

all parameters will have an impact and prior knowledge of this improves the impact

of the planned studies. Prioritization establishes a risk-based approach to develop-

ment. Table 3.1 provides the results of a risk assessment.

• The attributes from the Ishikawa diagram are listed across the top and the team

of knowledgeable experts rates their importance from 1 to 10, with 10 being the

most important in impacting the final product quality.

• The parameters are listed down the left side and the hypothesized or known

strength of the relationship between the attribute and parameter is supplied in

each box.

• The score is determined for each parameter by multiplying the attribute score

and the parameter strength and summing across the attributes. For example, the

score for the excipient attribute is 10� 10 + 5� 7 + 5� 10 + 9� 10

+ 1� 7¼ 282.

• The score is sorted from high to low and the strategy to study each parameter is

determined.

• The team’s actions and the work performed in developing the product are

prioritized based on importance as indicated by the total score.

Table 3.1 Risk assessment matrix

Attribute Rank 10 7 10 10 7

Attribute
Parameter

Genotoxic
Impurity

Tablet 
Potency

Drug Release 
Rate

Shelf 
Life

Content 
Uniformity Score Strategy

Sampling Method 9 5 5 5 9 288 MSA

Excipient 
Attribute 10 5 5 9 1 282 DoE

Drug Particle Size 1 9 9 1 9 236 Model

Roll Force 1 9 5 1 9 196 DoE

Screen Size 1 5 1 1 5 100 DoE

Blend Speed 1 5 1 1 5 100 Model

Blend Size 1 5 1 1 5 100 Model

Roll Gap Width 1 5 1 1 5 100 DoE

Compression 
Force 1 1 5 1 1 84 DoE
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Step 4: Take Action to Understand and Solidify Functional Relationship
Throughout the product life cycle, various studies can be initiated to discover,

observe, correlate, or confirm information about the product and process. Knowl-

edge exists in many forms including fundamental knowledge, data-driven models

from experimentation, data-driven models on related compounds or equipment, and

experimental studies meant to establish or confirm relationships. Studies to gain

knowledge are planned for areas where information does not exist. These studies

should be planned and conducted according to sound scientific principles and

appropriately documented.

Ultimately, the result of the functional understanding is coined as a knowledge

space. The region defined as the design space is a subset of the knowledge space.

Operation within the design space will ensure product quality. Note that this is

clearly not the traditional statistical definition, as a design space in statistics refers

to the study range. The design space is meant to be defined in a multifactor fashion

and is optional from a regulatory perspective. Another region traditionally defined

to represent a region of goodness is the proven acceptable range (PAR). This range

has traditionally, although not exclusively, been set in a univariate manner. Rather

than compare and contrast a design space with a PAR, suffice it to say each can be

called a “region of goodness.” This term is used in future discussion in this chapter

to cover both regions. For more on the topic of design space see the papers by

Peterson (2004, 2010), Vukovinsky et al. (2010a, b, c), and Stockdale and

Cheng (2009).

An initial set point is established within the region of goodness to define the

nominal operating condition. Around that point, a normal operating range (NOR) is

defined that considers expected operational variability. In the ICH literature, the

NOR is permitted to vary within the region of goodness. For example, incoming

raw material variability might necessitate a change in set point and NOR or

additional process understanding at scale could be used to establish a new set

point within the region of goodness.

Step 5: Confirm
Once an NOR is determined, the selected operating conditions or ranges are

confirmed. In many cases the NOR has been determined based on experimental

design and predictive modeling, but it hasn’t been run at either development or full

scale. The paper champion needs to be realized and the knowledge confirmed. The

initial confirmation might be at development scale (Garcia et al. 2012). The

ultimate confirmation, process qualification, is usually conducted at the

manufacturing facility where the product will be produced.

Step 6: Document Control Plan
Justification of the controls should be sufficiently documented and internally

reviewed to verify and preserve their value for use or adaptation later in the process

life cycle. Process knowledge and understanding is the basis for establishing an

approach to process control for each unit operation. Strategies for process control

can be designed to reduce input variation, adjust for input variation during

manufacturing, or combine both approaches. Manufacturing controls mitigate

variability to assure quality of the product. Controls can consist of material analysis
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and equipment monitoring at significant processing points (21 CFR 211§ 211.110

(c)). Decisions regarding the type and extent of process controls can be aided by

earlier risk assessments, then enhanced and improved as process experience is

gained. The degree of control over attributes and parameters should be commen-

surate with their risk to the process. In other words, a higher degree of control is

appropriate for attributes and parameters that pose a higher risk. The planned

commercial production and control records, which contain the operational limits

and overall strategy for process control, should be carried forward to the next stage

for confirmation.

Step 7: Iterate as Needed
Typically, all development decisions are not made in one shot. This is an

iterative process that continues as new information becomes available.

3.4 PV-1 Statistical Tools

Knowledge is defined as facts, information, and skills acquired through experience

or education. It is the theoretical or practical understanding of a subject. Knowledge

does not need to be recreated ab initio for every product being developed, but

should be created where necessary. That is, in the design process, teams leverage

relevant existing data along with fundamental knowledge to make initial decisions,

perform risk assessments that identify gaps, and take actions to gain more knowl-

edge. Figure 3.5 summarizes statistical tools that are important in PV-1. These tools

include data-based decision making, data collection and experimental design,

QbD
Process

Understanding

“Design Space” as a 
Mathematical Model

Statistics Tools:
Visualization, Intervals, 
Sampling, Simulation, 

Modeling, DoE
PPQ

Verification

Science

Mechanistic
Models

Engineering

Holistic
Control

Strategy  

Statistics tools: 
Risk mitigation, confidence, 

process/ product performance

Design space can be a 
mathematical expression of 
process understanding, which then 
feeds into the development of an 
appropriate control strategy.

Statistical tools are useful to 
understand risk, confidence levels, 
process performance, along with 
other supporting science & risk 
based rationale when deciding the 
overall control strategy.

The area of the design space 
where we plan to operate could

be verified during PPQ, but 
otherwise PPQ remains essentially 
the same as it should be driven by 

process understanding and the 
holistic control strategy.

region of goodness

PV-2

Region of goodness as a

Fig. 3.5 Application of statistical tools in PV-1
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descriptive data analysis, and complex modeling. These tools are used to gather,

summarize, or quantify knowledge in PV-1.

Some of the PV-1 statistical tools are

1. Visualization: It is said that a picture is worth a thousand words. The benefit of

effective and simple display of information cannot be overstated and the ability

to take a set of data, summarize the information, and visually display this

information is both an art and a science. A primary goal of data visualization

is to communicate information clearly and efficiently in order to induce the

viewer to think about the substance being displayed without distorting or

misrepresenting the information. There are many graphical tools available in

spreadsheet and statistical software programs. It is necessary to learn these

tools in order to present a meaningful data analysis. Section 2.4 provides more

discussion on this topic.

2. Simple Descriptive Statistics: Descriptive statistics is the discipline of quanti-

tatively describing a set of data. This usually includes a description of the

central tendency of the data (mean, geometric mean, median, or mode) and a

measure of the dispersion or variability in the data (range, standard deviation,

or variance). The data summary can be displayed visually as a boxplot by itself

or with other groups of similar data as a comparison. Section 2.4 provides more

discussion on a boxplot.

3. Statistical Intervals (Confidence, Prediction, and Tolerance): Statistical inter-

vals are the most useful tools for quantifying uncertainty. Section 2.5 discusses

these tools in detail.

4. Sampling Plans: In pharmaceutical development and manufacturing, sampling

is used in many applications. Included are sampling processes used for making

batch release decisions, demonstrating homogeneity of drug substance and

drug product, accepting batches of raw material, and selection of units for

environmental monitoring. Examples of sample plans are discussed throughout

this book.

5. Monte Carlo Simulation: Simulation is most useful for studying future events

that can be predicted from historical data and theorized or established models.

The impact of considered changes can be simulated to obtain an understanding

of future outcomes under various possible scenarios. Simulation applications

are provided throughout this book.

6. Measurement System Analysis (MSA): These analyses are referred to as

repeatability and reproducibility (R&R) in some industries. They involve the

design and analysis of experimental data to understand, quantify, and reduce

the variability in the measurement system (analytical method). Variability in

the measurement system is normally reduced to categories of bias, linearity,

stability, repeatability, and reproducibility. These types of data analysis are

critical for the development of useful analytical methods, and are discussed in

Chap. 6.

7. Hypothesis Testing: Hypothesis testing is a formal statistical process of com-

parison and inference. Such tests are often required by regulatory agencies in

many evaluations. This topic is discussed in Sect. 2.10.
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8. Models and Modeling: Prior to running experiments, information based on

either first-principles or data-driven models should be exercised to help inform

relationships.

9. Data-driven Modeling: Data-driven models are developed through fitting

models to data. In PV-1, there is often data related to the process or compound

being developed. Sometimes, as is the case with material property data, chem-

ical structure data, and processing data, small to large data sets exist and data-

driven models are developed to best express relationships. In the case of a

material property data base, relationships between material properties and

product attributes would be examined and data-driven models developed to

predict product properties based on the material attributes. These data-driven

models permit a decrease in experimentation, or at least provide a starting point

for further experimentation. Common modeling techniques include simple

linear regression, partial least squares, regression trees, and machine learning

algorithms.

10. First-principle or Fundamental Models: First-principle, engineering, physics,

or fundamental models explain relationships between parameters, material

attributes, or manufacturing factors and product attributes. These models seek

to predict product attributes directly from established laws of science.

11. Design of Experiments (DoE): DoE is a highly used tool in investigating

unknown relationships within the framework of PV-1. DoE provides a system-

atic approach to study prioritized factors and establish a relationship with

quality or in-process attributes. More information on DoE is provided in

Sect. 3.5.

3.5 Design of Experiments

To call in the statistician after the experiment is done may be no more than asking him to

perform a post-mortem examination: he may be able to say what the experiment died of.

R. A. Fisher (1890–1962)

DoE has become a bedrock of the framework of PV-1. Why has this become

such an integral part of the process? The strength of DoE is in the application of a

systematic approach to data-based decision making along with the selection of a

study design. Because of the complexity of most processes, several factors are

usually studied in a series of experiments. Historically, students learn to vary

one-factor-at-a-time (OFAT) and this practice is applied on the job in research,

development, and manufacturing. A reason provided in support of this approach is

that if more than one factor is changed, the experimenter will not be able to

determine which factor was responsible for the change in the response. In reality,

the proper selection of experimental runs combined with the proper analysis

removes this source of concern. In addition, there are two major deficiencies with

an OFAT study. The first is that there are often interactions between the parameters

under study. An interaction means that the effect a process parameter has on the
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response may depend on the levels of another process parameter. Statistical exper-

imental designs that permit the estimation of interactions will allow for their study,

whereas OFAT studies do not. The other deficiency of OFAT is that data previously

collected to study other factors is set aside and new data are collected. The structure

of the statistical experimental design allows all the data from the entire study to be

used to draw conclusions on each factor. This results in savings of both time and

money over the OFAT process. In fact, the statistical design approach provides a

proper design structure that when combined with the analysis method maximizes

the amount of information for the minimum number of runs (i.e., the knowledge

development process is highly efficient)

Many textbooks and papers have been written on this subject, and the reader is

encouraged to have some of these books in a personal library. Three books are Box

et al. (2005), Montgomery (2012), and Morris (2011). Since so much is available on

the topic, there is no intention to provide comprehensive technical details in this

book. Rather, the focus in this chapter is on the high level application of DoE within

a PV-1/QbD environment.

Underlying all processes are mathematical and statistical models, the behavior of

which is interrogated via experimentation. Designing an efficient process with an

effective process control strategy is dependent on the process knowledge and

understanding obtained. DoE studies can help develop process knowledge by

revealing relationships between process parameters and the resulting quality attri-

butes measured on process outputs. Efficiently determining an approximate equa-

tion representing the underlying physical equation is best accomplished by DoE and

an effective experimental strategy. The experimental design process is only one

element of QbD, and it closely follows the QbD process as shown in Fig. 3.6.

Determine Experimental 
Objective and Scope

Formalize Study Attributes 
Based on Objective

Prioritize Study Parameters;
Consider  Risk Assessment

Select Experimental Design 
Considering Sequential 

Experimentation

Run Experiment

Analyze Data and Draw Conclusions

Confirm Results

Iterate:
Formulate Next 

Experiment

Fig. 3.6 Experimental

design flowchart
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As shown in Fig. 3.6, the experimental process consists of the following seven

steps:

1. Determine the experimental objective and scope: Before initiating any series of

experiments, define the purpose of the study. Is the goal to improve yield,

increase selectivity or the reaction, achieve a particular dissolution profile

while minimizing content variability, or optimize a potency method? It is very

important to be clear about the purpose of the experiment and the decisions to be

based on the study. Under the QbD paradigm, agreement on the goal and

alignment on the experimental objective is especially important. Everyone on

the team needs to be progressing toward the same goal.

2. Formalize study attributes based on the objective: Agree on the attributes

(responses or outputs) to study in the experiment. Attributes should be aligned

with the experimental objective. In addition, an important consideration at this

stage is inclusion of attributes that are not primary to the objective. Selected

attributes should include those directly related to the experimental objective, and

those not of primary interest, but with an ability to impact the study later in the

process. In addition, selection of a measurement system, how responses will be

measured, and the required level of precision should all be considered before

running the experiment.

3. Prioritize study parameters which may affect the responses: Define the factors

(e.g., process parameters, material attributes, and starting materials) that are

hypothesized to have an impact on the quality attribute responses. Scientifically

analyze the issue at hand and the process under study in order to determine all

the possible factors influencing the situation. This could be achieved by exam-

ining literature reports or other prior knowledge, employing fundamental or

mechanistic understanding, or through preliminary laboratory experiments.

Judicious selection of factors is important in keeping the number of experiments

manageable. Consider the appropriateness of a single large design, or a series of

reduced sequential designs. A risk assessment can be used to prioritize variables

for DoE studies. There are two ways to usefully categorize process performance

parameters. One is traditionally statistical, and the other is of special consider-

ation within the pharmaceutical industry. In each case, there are special issues

with each parameter type that should be addressed prior to designing and

running the experiment.

a. Control and noise factors: Selecting factors to control is not always an easy

decision. In fact, even if a factor is not one of the process parameters to be

controlled during manufacturing (so-called noise factors), it might be bene-

ficial to control the noise factor during experimentation. For example, humid-

ity at the site might be an uncontrollable factor during manufacturing.

However, if an effect on response attributes can be demonstrated during

experimentation which might drive improvement of the manufacturing pro-

cess to mitigate the effect of humidity. Thus, it is important to consider all

factors that can impact values of the quality attributes in designing your

experiment.
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b. Scale dependent vs. scale independent or scalable: Parameters that are scale

independent or scalable can be studied at a smaller scale than full scale

commercial manufacturing and results are applicable for full scale. With

scale dependent parameters, there is a dependency of the results based on

the scale of the equipment. A strategy is needed to assess the DoE results at

scale. Examples of scale independent factors include pressure, temperature,

and Gerties roller compactors. Examples of scale dependent factors include

mixing rpm and high sheer granulation.

In addition to defining process parameters, it is necessary to define the

experimental domain by assigning the upper and lower limit ranges to all

continuous variables. For discrete variables, one must define categories.

Probably the most difficult component of designing an experiment is selec-

tion of the levels or ranges for each parameter. Consider an experiment with

the process performance parameter “revolutions per minute (rpm)”. How

does one decide to set the low and high study levels to (75, 125), as

opposed to (50, 100) or (50, 150), or (75, 150)? Selection of such ranges

depends on the experimental objective and the overall development strat-

egy. In general, the range limit span should be as wide as is practical, but

neither too large nor too narrow. If limits are too narrow, there is a risk of

not seeing the parameter effect. If the range is too wide, the parameter will

be characterized on a macro level, but may not provide information on the

micro level and hide effects of other parameters. It is often helpful to

examine existing experimental data, fundamental knowledge, and similar

compounds or processes of interest.

4. Select experimental design and consider sequential experimentation: Experi-

mental design is based on the following principles:

a. Randomization: Statistical methods require that observations be indepen-

dently distributed random variables, and randomization helps make this

assumption valid. Randomizing helps “average out” uncontrolled noise vari-

ables (lurking or extraneous variables). There are situations where the exper-

iment is not run in a completely randomized fashion due to practical

situations. However, this should be by design and the data analyzed in a

manner consistent with the design.

b. Blocking: Blocking removes unwanted variability and allows focus on the

factors of interest. Pairing is a special type of blocking. As an example,

consider a comparison of the bias for two analytical methods. It is expected

that there will be variation among the test samples measured in the experi-

ment. For that reason, a paired design requires that each method be used to

measure each test sample. In this manner, variation among test samples will

not manifest in differences between the measured values from the two

analytical methods.

c. Replication: Replication allows the estimate of experimental error to be

obtained. This estimate is the basic unit of measurement for determining

whether observed differences in the data are statistically different.
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Replication represents the between run variability. True replication means

that the process is completely restarted for each replicate run. Often times, the

person running the experiment will merely take repeated measures from a

single experimental setup. This is not a true replication, but rather repetition.

The manner in which one employs these three principles is impacted by the

realities of the scale of the design, and time and other resource constraints. If

is easy to get confused by the many statistical designs that are described in the

literature.

Design selection is largely dependent on the objective, goals, process knowl-

edge, and the stage of the experimentation. Sections 3.5.1 and 3.5.2 provide

high level descriptions of some common experimental designs.

5. Run the experiment: The details in this step are often ignored. It is extremely

important that the one who carries out the experiment understands the underly-

ing details of the experiment. In general, run the experiments in a random order

to distribute unknown sources of variability and minimize the effect of system-

atic errors on the observations. It may be tempting to re-order for convenience,

but running an experiment in such a non-random pattern can create problems

with the data analysis. Some designs can account for planned restrictions on

randomization (e.g., split-plot or hard-to-change factors). However, any such

restrictions should be built into the experimental design.

It is important for the person running the experiment to understand the

process. The person should understand the difference between experimental

factors and factors which should stay fixed during the entire DoE. It may be

tempting for those who truly understand the process to make slight tweaks to try

and “save” a run. Such adjustments are not allowed, and risk destroying the

study conclusions. Review the experimental protocol and determine if there is

something that should be changed before running the experiment. Record actual

levels of the process parameters and note if they deviate from the planned levels.

Record other unexpected events.

6. Analyze the data and draw conclusions: If care was taken in setting up the

experimental plan and the experiments were executed as expected, then the

data analysis will be relatively straightforward. It might be necessary to meet

with a subject matter expert should any of the data appear as outliers, or if the

analysis results have influential observations or the models don’t appear to be

feasible.

7. Confirm results and document: Verify as necessary the decisions made based on

the experimental data and the model. It is very important to perform confirma-

tion runs as necessary to verify the best predicted condition. Often times, the best

model predicted condition or region has not been run in the experiment, so

physical confirmation is highly recommended. Plan the next sequential design, if

appropriate.

Results of the experimental effort must be documented. Recommended docu-

mentation should include a brief description of the background information that led

to the experimentation, the objective, study process parameters (including names,
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levels, and units), response attributes (including measurement method), details of

replication and randomization, the design matrix, a summary of the data, the

statistical methods and software used in the analysis, and summary results.

3.5.1 Full and Fractional Factorial Experiments

The factorial family provides powerful and flexible designs for collecting informa-

tion on main effects and interactions in a minimum number of runs. They are highly

flexible and can be used in the screening and interaction phases and as a base for

optimization. The ability to add onto these designs facilitates sequential experi-

mentation and enhanced refinement of knowledge.

To execute, factors for experimentation are selected and a fixed number of

“levels” (usually high-low) are defined for each parameter. A full factorial design

considers all possible combinations of the levels of each input factor. This design

permits estimation of the main effects and interactions. In general, assume there are

‘1 levels for the first factor, ‘2 levels for the second factor, and ‘k levels for the kth
and last factor. The complete arrangement of ‘1 � ‘2 � . . .� ‘k experimental

combinations is called a full factorial design (e.g., a 2� 2� 3 full factorial design

yields 12 experimental runs). A full factorial design including five factors varying

each factor across two levels is written as 25, and has 32 experimental runs.

The 25 full factorial design permits estimation of the five main effects, 10 -

two-way interactions, 10 three-way interactions, five four-way interactions, and one

five-way interaction. The remaining experimental run is used to estimate an

overall mean.

It is usually not required to estimate all multifactor interactions, and so a specific

fraction of the full factorial is selected. This necessarily results in a reduction of the

number of experimental runs. This so-called fractional factorial design is a math-

ematically correct subset of the full factorial that permits estimation of main effects

and some subset of interaction effects. Some loss in experimental information (i.e.,

resolution) generally results by fractionating, but knowledge of the desired infor-

mation can be used a priori to select an appropriate fraction. For example, a half

fraction of the 25 full factorial design includes 25�1 ¼ 16 runs. This design permits

estimation of the main effects and all of the 10 two-factor interactions. Figure 3.7

displays a 2-level full factorial with 3 factors (A, B, C) on the left, and a half

fraction of that design on the right.

Understanding the structure of a factorial experiment is important as a base to

understanding all designed experiments. An experiment to study the effect of

factors A and B on attributes of interest would consist of the four unique runs:

(A low, B low), (A low, B high), (A high, B low), and (A high, B high). This is

denoted as a 22 full factorial experiment, and is shown in Table 3.2. A full factorial

experiment to study three factors at two levels, 23, has eight unique runs as shown in

Table 3.3.
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As noted earlier, it is generally accepted that even complicated relationships

between parameters and attributes can have a large proportion of the relationship

explained by linear effects. Less can be explained by interactions, and even less

from nonlinear or quadratic effects. Hence, 2-level factorial experiments are all that

is required in many cases.

An example is now provided to demonstrate the power of the two-level

factorial structure. In the development of a wet granulation process, it is desired

to study the impact of impeller speed, binder level, and binder addition rate on the

average particle size (D50). Since it is desired to look at all possible combinations

of the three process parameters, the selected design is the 23 full factorial

experiment shown in Table 3.4. The experiment was run in a random order and

three replicated center point conditions were run in addition to the eight factorial

1 1

C C

-1 -1

-1 -1
-1 -1

1 1

1 1

B B

A A

Fig. 3.7 Two level three full factorial (left) and half fraction factorial (right)

Table 3.2 22 full factorial

experiment
Standard order A B

1 Low Low

2 Low High

3 High Low

4 High High

Table 3.3 23 full factorial

experiment
Standard order A B C

1 Low Low Low

2 Low Low High

3 Low High Low

4 Low High High

5 High Low Low

6 High Low High

7 High High Low

8 High High High
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runs (not shown in the table). The results are in Table 3.4 in standard order

without the center points to simplify the analysis and more effectively demon-

strate the power of the analysis.

In the analysis of this particular experiment, it is possible to obtain the linear

effects of the parameters (A, B, C), the two-way interactions

A� B, A� C, B� Cð Þ, and the three-way interaction A� B� Cð Þ. Now, replace
the word “low” in Table 3.4 with a “�1” and the word “high” with a “1”, as shown

in Table 3.5. Notice that the sum of multiplied values in the same row of any two

columns is equal to zero. In matrix algebra nomenclature, such columns are said to

be linearly independent. An experimental design in which all columns are linearly

independent is said to be an orthogonal design. An orthogonal design permits

estimation of all of the effects individually without interference from any other

effects. Notice that each column in Table 3.5 is unique. All eight values of D50 will

be used to estimate all seven effects.

Table 3.6 displays this same information in an alternate form. White space in

Table 3.6 indicates the correct �1 or 1 positioning of the data for each effect.

Data analysis will normally be conducted using a computer program. For this

example, a simple analysis representation which will match a computer analysis is

shown in Table 3.7. Each D50 value is placed in the column of its row

Table 3.4 Wet granulation design with particle size data

Standard order Impeller speed (A) Binder level (B) Binder addition rate (C) D50

1 Low Low Low 156.5

2 Low Low High 146.3

3 Low High Low 198.8

4 Low High High 209.5

5 High Low Low 158.4

6 High Low High 161.6

7 High High Low 136.4

8 High High High 142.7

Table 3.5 23 design illustrating all estimable effects

Standard

order

Impeller

speed (A)

Binder

level (B)

Binder

addition rate

(C) A�B A�C B�C A�B�C D50

1 �1 �1 �1 1 1 1 �1 156.5

2 �1 �1 1 1 �1 �1 1 146.3

3 �1 1 �1 �1 1 �1 1 198.8

4 �1 1 1 �1 �1 1 �1 209.5

5 1 �1 �1 �1 �1 1 1 158.4

6 1 �1 1 �1 1 �1 �1 161.6

7 1 1 �1 1 �1 �1 �1 136.4

8 1 1 1 1 1 1 1 142.7
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corresponding to the level of the performance parameter for which it was collected.

For example, in the first row, A is at level �1, and so D50 in the first row is placed

in the �1 column of A. From this display, patterns may become apparent, and

certainly, data from standard order trial numbers 3 and 4 appear greater than the rest

of the data.

To perform the analysis, add each column of values and place the sum in the row

labeled “Total.” For example, the sum for Impeller (A) at �1 is 156.5 + 146.3

+ 198.8 + 209.5¼ 711.1. Next average each column by dividing the column total by

the total number of observations included in the total (4 in this example). For

Impeller (A) at �1, the average is 711.1/4¼ 177.78. Comparing the average

between the low and high level of each factor, it is observed that some of the

differences are large (e.g., 177.78 versus 149.78 for Impeller (A)) and some of the

differences are small (e.g., 162.53 versus 165.03 for Binder Addition Rate (C)). The

difference between the +1 average and the �1 average is summarized into a factor

effect shown in the last row of the table. By this method, the effect of A is found by

149.78� 177.78¼�28. From this row, it can be seen that A � B, A, and B are the

largest effects.

Table 3.8 presents results of a regression model as described in Sect. 2.12 that is

fit to include the three large effects (A,B, A � B) using the data in Table 3.5.

Note the intercept term is the overall average of all eight values of D50. The

regression estimate (slope) for each parameter is equal to the effect value in

Table 3.7 divided by two. Recall that the effect is the difference from low (�1)

to high (+1), whereas the slope is the difference for one unit change (e.g., from �1

to 0 or from 0 to +1). Since the overall average of the attribute D50 represents a

Table 3.6 Alternative representation of Table 3.5

Random
Order Trial

Number

Standard
Order Trial

Number

Response
(Observed

Value)
Impeller (A) Binder Level (B)

-1

156.5

146.3

198.8

209.5

158.4

161.6

136.4

142.7

-1 -1 -1 -1 -1 -11

1

2

3

4

5

6

7

8

8 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Total

Number of Values

Average

Effect

1 1 1 1 1 1

Binder AddRate
(C)

AB AC BC ABC
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model baseline, the estimates describe the amount of change from baseline as a

given factor moves from �1 (low) to +1 (high).

As discussed in Sect. 2.12, existence of an interaction A � B means that the

effect of A on the response attribute depends on the selected level for B. This means

information from two levels of each parameter is required to decompose the shape

of the interaction. In the case of the example, the existence of the A� B interaction

points to its strength but not to the functional nature. The functional nature can be

described using an interaction plot.

Two interaction plots are provided in Fig. 3.8 for factors P and Q. The vertical

axis represents the response attribute, and the horizontal axis shows the two levels

of Q. There is one line on the plot for each level of P. The circles represent the

average of the response attribute at the given combination of P and Q.

No interaction exists between P and Q in the plot on the left. This is because the

lines are parallel, and the amount of change in the response attribute as Q changes

from �1 to +1 is constant for both values of P. The y-intercept is different for the

two lines, but the rate of change (slope) is identical. Thus, the change in the

response attribute as a function of Q is not dependent on the setting for P. Such

effects are said to be additive rather than interactive. Similarly, the change in the

response as a function of P is not dependent on the setting for Q. (This can be

demonstrated by placing P on the horizontal axis, and drawing a line for each level

of Q.)

The interaction plot on the right of Fig. 3.8 indicates a strong interaction between

P and Q. Notice that as Q moves from �1 to +1 when P¼ 1, there is a decrease in

the average response. However, if P¼�1, movement of Q from �1 to +1 results in

an increase in the average of the response. This is an important discovery when

interactions of this magnitude exist, and provides important information to be

considered in process development.

Fig. 3.8 Examples of

interaction plots

Table 3.8 Estimates of

regression slopes
Term Estimate Prob> |t|

Intercept 163.775 <0.0001

Impeller speed (A) �14 0.0024

Binder level (B) 8.075 0.0169

Binder level (B)*Impeller speed (A) �18.3 0.0009
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The analysis of the data from these two graphs is provided in Table 3.9. The no

interaction graph on the left of Fig. 3.8 shows visually that as Q changes from low to

high, there is a 1 unit change in the response. As P changes from low to high, there

is also a 1 unit change in the response and there is no dependency between P and

Q. Note the sum that defines the effect of the interaction is 0. This must be true

when there is no interaction, and the lines when graphed will be parallel. On the

other hand, the interaction graph on the right shows there is not consistent behavior

in the effect of Q changing between P low and P high. Table 3.9 calculates the

effects given this situation. In this case, the effect of P changing from low to high is

1, the effect of Q changing from low to high is 0, and the effect of the interaction is

1. The weight of importance in correctly understanding the situation has shifted

from an individual parameter effect to the interaction effect.

3.5.2 Other Experimental Designs

Other experimental designs are now briefly discussed.

1. Plackett–Burman Designs (PBD): The PBD design is used in screening where

one has a large set of candidate factors and it is necessary to select a small set of

the most important factors. Unlike the factorial design structure, the PBD design

is constructed in multiples of four rather than powers of two. For example, a PBD

design with 12 runs may be used for an experiment containing up to 11 factors.

These very economical screening designs are most normally used when only

main effects are of interest and are most useful if you can safely assume that

interactions are not significant. Another useful application is in ruggedness

testing or confirmation within a region of goodness where there should not be

an effect on the attributes of interest. Alias structures can be very messy in some

situations and it is advised that someone with experience in experimental design

be consulted in selecting an appropriate design. Because these designs are used

for screening, follow-on designs are usually conducted with the process param-

eters identified as significant. PBDs are difficult to augment except under specific

circumstances when combined with a computer optimal design.

Table 3.9 Calculations of interaction example

Run

Response, No 
Interaction

P      
(-1)

P      
(1)

Q     
(-1)

Q     
(1)

P*Q Low,  No 
Interaction

P*Q High, No 
Interaction

Response, Yes 
Interaction

P      
(-1)

P      
(1)

Q     
(-1)

Q     
(1)

P*Q Low, Yes 
Interaction

P*Q High, Yes 
Interaction

1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
2 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
3 3.5 3.5 3.5 3.5 4.5 4.5 4.5 4.5
4 4.5 4.5 4.5 4.5 3.5 3.5 3.5 3.5

Total 14 6 8 6 8 7 7 14 6 8 7 7 8 6
Number of 

Values
4 2 2 2 2 2 2 4 2 2 2 2 2 2

Average 3.5 3 4 3 4 3.5 3.5 3.5 3 4 3.5 3.5 4 3
Effect 0 11 1 1 0
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2. Central Composite Designs (CCD): The CCD is used in optimization or to map a

region of interest in more detail. These are response surface designs to which a

full quadratic model can be fit. The CCD is part of the factorial family of designs

and contains a factorial or fractional factorial design that is augmented with both

center and axial points. As the name implies, axial points appear on the axis

outside of the cube defined by the full factorial corner points. If the distance from

the center of the design to a factorial point is defined to be�1unit for each factor,

then the distance from the center of the design to an axial point is�α with jαj is
greater than or equal to 1. The precise value of the distance depends on the

properties desired for the design and on the number of factors included in the

design. The axial points require that each design factor can be changed across

either three or five levels. Similarly, the number of center points depends on

preferred design properties.

3. Box–Behnken Designs (BBD): The BBD is a three-level design used for fitting

response surfaces. BBDs are experimental designs used to fit a model which

includes main effects, two-factor interactions, and quadratic effects. They are

formed by combining 2k factorials with incomplete block designs. In the exper-

iment, each factor is placed at one of three equally spaced values, usually coded

�1, 0, +1. The design itself is structured as a series of two level (full or

fractional) factorial designs (�1, +1) in usually 2–3 factors while the other

factors are kept at the center (0) values. In this design, several center points

are run. The structure of the BBD provides a convenience of not running at

extremes, should the extreme be a concern. However, the predictive ability is not

generally as good as the CCD. Like a CCD, these designs can be augmented. The

augmentation for BBD permits estimation of cubic and quartic effects. In the

case of 3–4 factors, the BBD will require a fewer number of experiments than

the CCD.

4. Split-Plot Fractional Factorial Designs: Split-plot designs are required when

there are constraints on randomization of the experimental runs. For example,

the temperature of an incubator cannot be randomly changed across units placed

in the same incubator. Factors such as temperature in this example are referred to

as hard to change factors. Hard to change factors appear often in CMC applica-

tions, and proper analysis of the data requires proper recognition of these factors

in the experimental design.

5. Mixture Designs: Mixture designs include factors that are compounds or ingre-

dients in a mixture. The objective of these experiments is to determine the

optimal proportion of each ingredient in order to accomplish some objectives.

6. Computer Optimal Designs: Computer optimal designs allow alternatives that

are not considered in the more classical designs. In particular, they allow

definition of an experimental range that is not defined by a cube or sphere.

They also allow selection of specific models that might include a pre-selected

subset of interactions. They also allow the opportunity to select designs with

small sample sizes relative to the number of parameters to be estimated. These

designs are popular as they can reduce the required number of experiments and

are helpful in augmenting experimental runs to a previously designed study.
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They can also be helpful in tricky situations, such as when there are an uneven

number of levels of the experimental factors, when certain combinations of the

factors cannot be run, or when multiple level discrete factors combine with

continuous and mixture factors. Care should be given in employing this design

as the design is only optimal if the pre-specified model is current. This requires

understanding of the underlying mathematics of statistical experimental design

and practical knowledge of the process under study. Two popular criteria include

both D-optimal and I-optimal designs. The D-optimality criterion minimizes the

joint confidence region of the regression coefficients, and I-optimality mini-

mizes the average prediction variance over the design space.

There are many other designs that are useful in special applications, and new

designs to be developed. Some of these other designs include saturated designs

(designs where the number of parameters is equal to the number of data points),

definitive screening designs, and hybrid designs. Information on these designs can

be found in the statistical literature.

3.5.3 Experimental Strategy

Determination of an experimental strategy is both an art and a science. If research

studies are sequential in nature or cover multiple unit operations, it may be

advantageous to break up a study into parts. Strategy depends on prior knowledge,

available time, and material and equipment availability. Regardless of the particular

intricacies of a situation, it is best to make decisions as expeditiously and efficiently

as possible. To do so, a hierarchical effect principle is employed. Many processes

involve complicated relationships between process parameters and attributes. In

general, the large portion of the relationship can be explained by the linear effect,

less by interactions between parameters, and less again by a nonlinear or quadratic

effect. It takes two experiments (low, high) to estimate a linear trend, four exper-

iments to estimate an interaction between two parameters, and three to five exper-

iments (depending on the nonlinearity) to estimate curvature. This generality is

consistent with a strategy to first understand linear relationships and interactions,

and then examine curvature as needed.

Consider two such examples:

• HPLC process parameters are known to be linear in their effect on certain

attributes. The signature for a new piece of HPLC equipment may be unknown,

but the underlying trend in the parameter to attribute relationships could be well

known based on prior fundamental and experimental knowledge. A couple of

familiarization runs plus a screening design combined with prior knowledge

might be all that is needed to establish the functional relationship between the

process parameter and attribute for the compound being developed.

• In developing understanding around an active ingredient‘s synthetic route with

minimal prior knowledge, one might require all stages of experimentation. As a
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first familiarization step, a small number of experiments at the extremes could be

run to gain knowledge on the compound and equipment. A screening experiment

could then be run to identify the significant few from the trivial many parame-

ters. Once the important 3–5 parameters are determined, a factorial or central

composite design is run to estimate interactions and quantify nonlinearities.

In each of these examples, a scientist works to understand the particular strategy

and integrate all prior knowledge and tools in order to set up the most efficient

experimental strategy. Table 3.10 presents the four stages of strategy:

1. Familiarization,

2. Screening,

3. Interaction, and

4. Optimization.

Each stage is now described in more detail.

1. Familiarization: As the name implies, the basic purpose of this phase is to better

understand the problem at hand. The experimenter should keep in mind that

engaging in a full DoE without a basic understanding of the system practically

assures a study of limited value. If the system is well known, this step can be

skipped. There are no set guidelines or specific requirements for executing

familiarization runs as part of an experimental design (with perhaps the

Table 3.10 Overview of experimental strategy by level of understanding

Familiarization
Phase

Screening
Phase

Interaction
Phase

Optimization
Phase

# Parameters
(Factors) 2 - 15 5 - 15 2 - 8 2 - 5

# Experiments 2 – few 11 – 19 7 – 35 11 - 31

Questions to 
be Answered

If there is little 
knowledge about 

the study 
environment, a 

couple of runs to 
establish ranges 
and investigate 
the system is 

valuable.  Need 
to be aware of 

when to stop and 
move on to 

formal efforts.

What factors 
should be further 

studied?
Is there a workable 

solution?
Should the ranges 
be adjusted in the 

next study?
Is there an area or 

direction of 
goodness?

Are any responses 
nonlinear?

What is the control 
strategy?

Are the center 
points repeatable 
and reproducible?

Which factors 
interact?

Is there a potential 
solution?

Is there an area or 
direction of 
goodness?

Are any responses 
nonlinear?

What is the control 
strategy?

Are the center 
points 

repeatable and 
reproducible?
Are nonlinear 

responses 
adequately 
modelled?

Is there an area 
or direction of 

goodness?
What is the 

control 
strategy?

Little System Knowledge Detailed Understanding
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exception of the initial runs in a sequential simplex). However, a familiarization

phase is essential. The following outcomes would generally describe a success-

ful completion of this stage:

• Any new equipment has been tested and enjoys a degree of reliability.

• Potential performance parameters have been identified with some degree of

certainty.

• A range for the performance parameters has been defined that appears

practical from a process point of view (i.e., not difficult to control and are

scalable) and provide results that are not extraordinarily atypical.

• At least several replicate runs have been completed to estimate the system

variability.

2. Screening: The main purpose of a screening design is to select a small number of

performance parameters from a large set of potential parameters in a minimal

number of experiments. Many times, one can identify several potential perfor-

mance parameters after only a few experiments. At this very early stage, the

relative impact of these parameters on the quality attributes may be based more

on prior knowledge than on empirical experimentation. Since there is a severe

penalty in terms of the number of experiments required to complete a full

factorial design, the wise experimenter will embark on a full DoE with only

those process parameters that are truly important in this stage.

Screening designs are obtained by using fractional factorial designs, Plackett–

Burman designs, or computer optimal designs. One drawback to screening designs

is they have a complicated confounding of interactions. However, any process

parameters that affect the attributes to an extent greater than the experimental

error will be identified. Although some modeling can be done with the data, the

basic idea is that once a screening design is completed, the experimenter will

eliminate the superfluous variables and embark on a more detailed study of the

important process parameters using higher resolution factorial designs.

Screening designs can also be used for purposes that don’t require additional

experimentation. One such case is the confirmation of an area of robustness. In

demonstrating robustness, key process parameters are studied across their

recommended manufacturing ranges and the responses or quality attributes are

measured. The effects of raw materials and environmental or human factors may

be considered in the experiment as noise factors. Noise factors are controlled at the

time of the DoE and then left uncontrolled in process operation. Robustness

demonstration can be conducted in conjunction with the optimization phase. Var-

iability reduction activities take place in manufacturing, but are best performed

early in the development life cycle.

3. Interaction: The interaction phase permits study of interactions between the

input process parameters. During this phase fewer input factors are studied as

compared to the screening phase, because knowledge of interaction effects

requires more testing than knowledge of main effects. There may also be a

greater level of process understanding. The several process parameters being
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studied are believed more likely significant than the many studied in the screen-

ing phase. If there are no more than 5–6 process parameters, and only 2-factor

interactions are of interest, the screening and interaction phase may be

conducted at the same time.

Possible designs considered in this phase include fractional to full factorial

designs, depending on the level of interaction required in the study. Data from

the screening design can be used in a “fold-over” study (Box et al.) to reduce the

total number of runs. A computer optimal design may be used if the region is of

unusual shape, if a known model exists, or if design modifications are required

unexpectedly in the process of running the experiment (e.g., design repair).

4. Optimization: Optimization refers to examination of nonlinear effects, usually

quadratic effects, about a smaller region of interest (e.g., the NOR). This

typically occurs following the interaction and the screening phases. Designs

used in this phase include central composite designs, optimal designs, and Box–

Behnken designs. The most popular designs in this phase are central composite

designs as in many cases information from experiments included in the screen-

ing and interaction phase can be reused and included in the study design and

analysis. Note that the screening, interaction, and optimization phases do not

need to be sequential and can be conducted simultaneously.

Strategic questions to answer that are crucial to proper execution of an experi-

ment include the following:

1. How will the responses be measured? What measurement system will be used?

What is the expected variability?

2. What performance parameter factors are hypothesized to have the largest effect

on the quality attributes of interest?

3. Are there any known interactions between factors? Increased prior knowledge

can help in decreasing the required experiments.

4. How will the rest of the parameters and material attributes be controlled or

blocked during the experiment?

5. Are there noise factors which cannot be controlled? How can their effect be

minimized? Should blocking be used to minimize the effect of the hard to

control sources of variability?

6. Can the entire experiment be randomized or is this not practical? Should there be

a partial randomization scheme?

7. How many replicates are needed for each attribute in an experimental run? It is

often both acceptable and necessary to perform unreplicated experiments, but it

is important to understand the considerations of these experiments. For example,

consider tablet potency as a quality attribute for a study. How will potency be

measured? Certainly not by a single replicate assay injection from a single tablet.

More likely, it could be measured as the average of two replicate HPLC

injections from a composite of five tablets. In general, knowledge of past

estimates of variability for similar compounds or similar processes will help

inform the replicate strategy. Ultimately, this subject is important to ensure
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sufficient statistical power to detect differences which are meaningful to the

experimental objective.

8. Will center points be used to estimate variability? For example, in a 16 run

factorial design, it is usually of benefit to run at least three center points at the

beginning, middle, and end of the experiment. These center points are used to

assess variability across the experiment and also to judge nonlinearity or curva-

ture in the experimental space.

9. Is it expected that center points will be in the center of the experimental design,

or will those points be at a manufacturing set point that may be off-center in the

experimental space? What is the effect to the properties of the experimental

design if the points are off-center?

3.6 Nominating a Parameter as Critical

The assessment of critical quality attributes (CQAs) and the control of critical

process parameters (CPPs) that affect these attributes is an important component

of the overall control strategy for drug substance and drug product manufacturing.

There are many different approaches for assessing process parameter criticality,

and although the determination of criticality is not primarily a statistics function,

statistics can play a part in helping to identify CPPs.

One particular challenge involves assessing when a relationship between a

process parameter and a CQA represents a significant impact on that CQA. For

example, Fig. 3.9 provides two statistically significant relationships between a CQA

and a process parameter across the explored space. Both equations are statistically

significant, however, it is clear that the blue equation has a practically more

meaningful relationship than the green equation. The blue equation has a chance

of producing product outside specification if operated within the range, whereas,

the green equation does not. Assessing impact based solely on statistical signifi-

cance (p-value) is not appropriate, because statistical significance does not take into
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account the strength of the relationship relative to the relevant quality requirements.

Ignoring this fact can lead to the inclusion of relatively unimportant process

parameters as critical elements of the control strategy. Including these unimportant

process parameters as CPPs is undesirable as it effectively dilutes the focus on

process parameters that are truly important for ensuring product quality. It can

also place an unnecessary burden on manufacturing operations resulting in an

increased cost.

An alternative two-step procedure is provided by Wang et al. (2016).

Step 1: Perform a process risk evaluation for each relevant CQA.
For each CQA, evaluate the data set responses across the investigated range

without focusing on any single or particular parameter. A Z-score assessment is

employed to determine how close the results are to the specification or targeted

response for the attribute. The Z-score is calculated as

Z* ¼ min
U � �x

S
;
�x� L

S

� �

�x ¼ average of data across the explored space,

S ¼ standard deviation of data across the explored space,

U ¼ upper target or specification, and

L ¼ lower target or specification:

ð3:1Þ

It is not necessary to have both an upper and lower limit to calculate Z*. In the

case of a one-sided specification, Z* is simply the single value corresponding to the

specification of interest.

Figure 3.10 provides an illustration for a one-sided Z*. For this case, if “spec-

ification #1” is the upper specification limit, then the Z* for this data is expected to

be small, indicating that the data is at risk of being greater than the upper specifi-

cation limit at some operating conditions in the explored space. Alternatively, for

“specification #2,” the data is far from the specification limit indicating that there is

no risk of being beyond the specification for a well-controlled process operating

within the explored space.

In Fig. 3.10 cutoff values for Z* of 2 and 6 were selected as decision points in the

analysis. Say that potency is a CQA and the analysis of the DoE data found a

significant relationship between potency and milling speed, roll force, and com-

pression force. The prediction equation is

Potency ¼ 98þ 2:5 �Millspeed� 0:5� Roll forceþ 1:5
� Compression force ð3:2Þ

• If Z* is less than 2, then all of the parameters in the significant model are CPPs.

For the potency example, mill speed, roll force, and compression force are all

significant.

3.6 Nominating a Parameter as Critical 145



• If Z* is greater than 6, then none of the parameters in (3.2) are CPPs. For the

potency example, the response is performing similar to the green line in Fig. 3.9.

Hence, there is no risk across the explored region and no CPPs.

• If Z* is between 2 and 6, then go to Step 2.

Step 2: Assess the criticality of individual parameters as necessary.

This step is performed if Z* is between 2 and 6. Here, the fitted statistical model

is utilized to quantify individual parameter effects against the proposed specifica-

tion. This is termed the 20% rule for this application. For the potency CQA, if the

specification is 95–105%, then the specification width is 10%. This specification

width is multiplied by 20% to yield 2% for this example. As the mill speed

coefficient in (3.2) is greater than 2%, the mill speed is a practically meaningful

CPP. The other two parameters, roll force and compression force, are not CPPs.

3.7 Determining a Region of Goodness

A significant outcome of the DoE is determination of a region of goodness to

operate the process. For example, two responses, impurity 1 and impurity 2, were

studied in a two-factor (B, C) full factorial design with replicated center points.

From the experimental data, models were developed and summarized in a contour

plot (see Fig. 3.11).

It is desired to minimize impurity. The arrows in Fig. 3.11 show the direction of

this minimization, or the so-called direction of goodness. For impurity 1, the

Fig. 3.10 Potential Z-score cutoff values for determining significance
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combination of factor B at the low level with factor C at the high level is the best

combination to minimize impurity 1. For impurity 2, factor B at the low level is the

best, and factor C has no impact.

Assume the specification for each impurity is 0.10%. Examination of Fig. 3.11

shows the region and boundary where each impurity is less than 0.1%. It is common

to summarize this information by providing pass (orange) and fail (gray) regions as

shown in Fig. 3.12. The orange region represents an area where both 0.10%
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specification limits are simultaneously met. However, across this region, there are a

range of success probabilities. That is, based on Fig. 3.11, it is expected that there

will be a higher probability to pass the specification of 0.1% in the upper left

quadrant of the region than in the rest of the space. The predicted value at point #1

in Fig. 3.12 for impurity 1 and 2 is 0.01. The predicted value at point #2 for impurity

2 is close to 0.10. It makes sense that although the orange region will produce

product that passes specifications, the probability of passing a specification of

0.10% must be greater at point #1 than point #2. In general, at the impurity limit

of 0.10% it is expected that the probability of passing the specification is about 50%

and in the region of overlapping requirements there is less than a 50% probability of

passing. An improvement to examining the pass/fail plot in Fig. 3.12 is to assess the

probability of passing and make decisions based on this probability.

Peterson et al. (2009) proposed an approach to calculate the probability of

simultaneously passing all relevant specifications using seemingly unrelated regres-

sion (SUR) and has also, although unpublished, outlined a parametric bootstrap

simulation approach to calculating this probability across the space of interest.

Using a bootstrap method, the probability to simultaneously pass multiple

specifications is provided in Fig. 3.13. The levels on these contours now show the

probability of passing while taking into account the predictive distribution, not

simply the average prediction.

This more descriptive probability can be used to make better informed decisions

about the process. That is not to say that the method is perfect or cannot be

improved. A Bayesian approach to specify a range of parameter and variability

estimates might help stabilize predictions in some cases.
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Continuing the earlier example of the two impurities, assume the process was

initially set to operate at the point indicated by a star in Fig. 3.14. Following the

probability calculation, it is determined that there is a 70% chance of passing both

specifications simultaneously. There could be several solutions that may improve or

remediate this probability, and knowledge of the estimated probability is a step in

proposing the process.

• It may be that the process is improved by downstream processing. So although

there may be a cost associated with a 70% probability of passing at this stage, the

probability will be improved in the future.

• It may be that the experiment was performed sub-scale. There is a known

improvement to the probability when performed at scale.

• The set points of parameters B and C may need to be adjusted to improve the

probability of passing.

• The initial specifications on the impurities of 0.1% may need to be increased.

The effect of increasing the specification to 0.3% is provided in the right-hand

side of Fig. 3.15.

• Finally, true process variability may be greater or less than the magnitude

realized in the experimental data. The simulation can be performed again with

the more appropriate error structure.

3.8 Process Capability and Process Robustness

The process capability index, abbreviated broadly asCpk, is a widely used summary

statistic describing the ability of a process to produce output within specification

limits. The index plays a prominent role in PV-3, and is discussed in Chap. 5 of this

book. An assessment of capability is also useful in PV-1. Obtaining a meaningful

estimate of process capability early in a product’s life cycle is difficult because
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many lots are needed to provide a meaningful capability index. For these indices to

have predictive meaning, the process must have demonstrated adequate statistical

control prior to their calculations. This effort requires at least 25 lots.

Within the last decade, the concept and industrial practices of QbD have led to

greater process understanding in R&D leading to increased knowledge of process

capability that is not specifically captured by the small number of lots manufactured

early in a product’s life cycle. Although there may only be a couple produced lots,

the scientific understanding, fundamental knowledge, and development experience

is substantial and provides an opportunity to assess process capability. A proposal

for a robustness calculation, meant to distinguish an early estimate of control and

capability developed within a QbD framework from the rigorous assessment of

control and capability implied by a capability statistic was proposed by Vukovinsky

et al. (2017). This contour-based tool calculates the percent out-of-specification (%

OOS), based on the mean, standard deviation, and specification of an attribute. The

contours provide a clear visualization of the ability of the process to meet the

specification, making it a useful tool for products in development as well as new

and marketed products. Figure 3.15 provides an example contour plot for potency,

96

0
1

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 L

ot
 M

ea
ns

2
3

98

X0.0064

6e - 05

0.27

1

3

100

Potency Average % OOS
with Specifications of 95 - 105 %

Mean of Lot Means(%)
X : (n=10) will produce 0% OOS

90% confidence that no more than 0% are OOS

102 104

Fig. 3.15 Robustness contour

150 3 Process Design: Stage 1 of the FDA Process Validation Guidance



based on a sample size of only 10 lots resulting in a mean potency of about 98.4%, a

standard deviation between lots of 0.5%, and a specification of 95–105%.

These %OOS contour regions use the following coloring scheme:

• Green: less than a 0.27% OOS rate (good performance).

• Yellow: greater than or equal to 0.27% OOS rate and less than 3% (further

discussion required).

• Red: greater than 3% OOS rate (requires improvement).

The OOS% contour levels of 0.27, 0.006, and 6e-5 displayed on the plot are

approximately related to Cpk values of 1, 1.33, and 1.67, respectively. Associating

the green contour with 0.27% OOS implies a minimum Cpk of one in transition to

manufacturing.

Once a process robustness contour plot is constructed, the relative location of the

present process within the colored contour is examined to assess the product

performance. In Fig. 3.15 the “X” represents the location of the attribute of interest.

The ultimate goal for the product should be emphasized more than the color zone

containing the “X”. The relative location provides information concerning the

sensitivity of the attribute to change in the sample mean and sample standard

deviation and can guide the search for potential improvements in product perfor-

mance or the need to modify data-driven specifications. As with any summary

statistic, there is variability in the %OOS estimates. This variability is described in

Fig. 3.15 footnote as an upper confidence estimate on the %OOS. This estimated

upper bound is based on the data, and can be quite wide for a small sample size. The

fundamental, scientific, and experimental understanding of the process gained

through the design process along with the calculated bound should be considered

in process decisions.

Once constructed, the contour plots should support an active discussion about

the product performance amongst a cross-functional team. In general, data external

to the summarized lot data, estimates of variability components from methods and

processes, or knowledge from modeling efforts on similar products can be used to

assess potential future process behavior and expectations. All of these discussions

can use the robustness contour as a foundation.

3.9 Control Strategy Implementation

ICH Q8(R2) documents a “Minimal Approach” to Control Strategy which is

contrasted with the “Enhanced, Quality by Design Approach.” Here, criticality of

parameters is determined following scientific investigation through the QbD

process.

The concept of criticality can be used to describe any material attribute, char-

acteristic of a drug substance, component, raw material, drug product or device,

process attribute, parameter, condition, or factor in the manufacture of a drug
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product. The assignment of attributes or parameters as critical or non-critical is an

important outcome of the development process and provides the foundation for the

control strategy. Critical Process Parameters (CPPs), the relationship between

Critical Quality Attributes (CQAs) and Critical Process Parameters (CPPs), and

the ranges for CPPs (PAR and NOR) are documented as a control plan. The control

strategy provides a plan to prevent operating in regions of limited process knowl-

edge or those that are known to cause product failure.

Underlying the criticality assignment process is the concept that the primary

assessment and designation of criticality should be made relative to the impact that

quality attributes or process parameters have on the safety, efficacy, and quality of

the product. The material in Sect. 3.6 provides one option to determine criticality.

Once criticality is determined, a control strategy that focuses on the most appro-

priate control points and methods is developed.

ICH Q10 defines a control strategy as

a planned set of controls derived from current product and process understanding that

assures process performance and product quality. The controls can include parameters and

attributes related to drug substance and drug product materials and components, facility and

equipment operating conditions, in process controls, finished product specifications and the

associated methods and frequency of monitoring and control.

QbD also introduced the concept of a traditional versus a dynamic control

strategy. In a traditional control strategy, any variability in process inputs (such

as quality of the feed material or raw materials) results in variability in the quality

of the product because the manufacturing controls are fixed. In a dynamic control

strategy, the manufacturing controls can be altered (within the region of goodness)

to remove or reduce the variability caused by process inputs.

A holistic control strategy mitigates any risk from a single unit operation. The

control strategy includes the process definition, control limits of process parame-

ters, and release limits, amongst other considerations. It is important in determining

the manufacturing process that specifications be set appropriately (see Chap. 7).

A statistically related example illustrates the translation from an equation

derived from a DoE to a control strategy. Here, dissolution (Diss) is found to be a

function of API particle size (API), magnesium stearate surface area (MgSt),
lubrication time (LubT), and compression force (Crush F).

Diss ¼ 108:9� 11:96� API � 7:556� 10�5 �MgSt� 0:1849� LubT

� 3:783� 10�2 � CrushF� 2:557� 10�5 �MgSt� LubT:
ð3:3Þ

Assume these parameters are both statistically significant and their effect on

dissolution is practically meaningful. Equation (3.3) describes the current under-

standing and can be used to define meaningful limits on the parameter specifications

and process controls. Using this information, quality is built into the process by

managing the process inputs. Although there may not be direct control of Diss, it
might be controlled upstream by one of the variables on the right of Eq. (3.3).
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• API: To control dissolution, it is important to maintain the D90 API particle size

within a certain range. Here, the predicted equation is used to determine the

range of 5–30 μm and the high shear wet milling equipment is set to achieve a

value within this range.

• MgSt: The surface area of the magnesium stearate (lubricant) particles is

controlled to ensure dissolution. This assurance is performed upon receipt of

the MgSt from the supplier.

• LubT: Lubrication time is controlled between 1 and 8 min via automated

equipment.

• CrushF: Tablet hardness is controlled by the crushing force at the time of

compression to a targeted amount and within an acceptable range.

All decisions concerning the CQA are documented within a control plan.

3.10 Preparation for Stage PV-2

After the control strategy has been defined and the product and process ranges are

established, product and process qualification (PV-2) is performed to demonstrate

that the process will deliver a product of acceptable quality if operated within the

region of goodness. This will also confirm whether the small and/or pilot-scale

systems used to establish the region of goodness can accurately model the perfor-

mance of the manufacturing scale process. PV-2 is really a confirmation of the

understanding and control strategy. Following PV-2, the regulatory filing is com-

piled, which includes the acceptable ranges for all critical operating parameters that

define the manufacturing process.
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Chapter 4

Process Qualification: Stage 2 of the FDA
Process Validation Guidance

Keywords Data analysis • Effects of scale • Equivalence testing • Inter-batch

variation • Intra-batch variation • Lot homogeneity • Lot-to-lot variation • Process

characterization • Process performance qualification (PPQ) • Profiler • PPQ batch

size • Risk management solution

4.1 Introduction

In Chap. 3, the first stage of the FDA’s 2011 process validation guidance was

described demonstrating various options to drive process understanding using

experimental design. The resulting process design experiments yield information

that can be used to define future operating ranges for the new process. The second

stage of process validation is process qualification.

There are two elements associated with this stage of process validation. As

described in the guidance, process qualification is the point where commercial

manufacturing is demonstrated to be reproducible. This stage consists of two

elements. The first element is the design of a facility and qualification of utilities

and equipment. This precedes the second element, Process Performance Qualifica-

tion (PPQ). Without validating the facility, utilities, and equipment, it is not

possible to determine if the process can operate within the proposed operating

ranges defined in Stage 1. Although an important step for Stage 2, it is not discussed

in this chapter. Rather, this chapter focuses on the second element, PPQ. By

definition, “PPQ will confirm the process design and demonstrate that the commer-

cial manufacturing process performs as expected.” By confirming that the process

performs as expected, there is a high level of assurance that the manufacturing

process consistently produces the active pharmaceutical ingredient (API) and drug

product that meet the specifications related to identity, strength, purity, and

potency. This requirement is also consistent with ICH Q7 (2000) and the EMA’s
guidance on process validation (EMA 2014). To demonstrate that a process con-

sistently delivers product that is safe and efficacious, it is imperative to understand

variability of the product over time versus the specifications. Gaining such under-

standing requires knowledge of multiple lots.
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Statistical analysis is at the core of any demonstration of process consistency.

There are three statistical issues that are particularly germane to this stage of

process validation that will be described in this chapter:

1. Evaluation of the effects of scale.

2. Demonstration of both inter-batch and intra-batch consistency.

3. Determination of the number of lots to be run in a PPQ campaign.

Section 4.3 describes a process for evaluating effects of scale. Sections 4.4 and

4.5 provide approaches for demonstrating both inter- and intra-batch consistency.

Finally, Sect. 4.6 describes two approaches for selecting the appropriate number of

lots to run in a PPQ campaign. The first approach considers a risk-based decision

making tool that uses qualitative knowledge gained during Stage 1 and from

previous experience with similar products, scales, and processes. The second

approach considers the use of statistics to select the number of lots based on an

understanding of lot-to-lot variability and the established sampling plans for pro-

cess validation.

4.2 Process Performance Qualification

In the regulations, process validation is a mandatory step performed by the manu-

facturer to confirm that the process consistently delivers safe and efficacious API

and drug product for commercial use. Although the requirement to validate a

process has not changed over time, the activities that define process validation

have evolved. Both the EMA and FDA promote a risk-based approach to process

validation providing the manufacturer the flexibility to incorporate knowledge from

process development studies and relevant scientific knowledge from similar prod-

ucts, processes, and scales. The FDA has matured the definition of process valida-

tion further by moving process validation from a single event to a series of events

that extend through the lifecyle of a product. The new term used by the FDA to

capture the prior definition of process validation is Process Performance Qualifica-

tion (PPQ). PPQ is called process validation by the EMA and ICH Q7.

For PPQ, the FDA places emphasis on incorporating process variability knowl-

edge into the justification of the sampling plan, the acceptance criteria selected for

each of the process steps, and the number of lots required to execute the PPQ

campaign. The level of monitoring and testing should be designed to confirm that

there is uniform product quality both within manufactured lots (intra-batch vari-

ability) and among manufactured lots (inter-batch variability). The following

sections will describe the statistical techniques used to address these areas.
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4.3 Evaluation of Effects of Scale

The ultimate objective of process qualification is to demonstrate an understanding

of the manufacturing process that allows an assurance that a process will operate as

intended with respect to attributes of product identity, strength, quality, purity, and

potency. Because of the costs and time associated with a full scale manufacturing

process, smaller scale processes are used to develop understanding concerning the

full scale process. Such processes are referred to as small-scale studies, and these

studies can themselves vary by size of scale. Combining data across different scales

provides opportunities for discovering scale-up effects and also leverages learnings

from small scale concerning relationships between quality attributes (QAs) and

process parameters (PPs). In statistical jargon, the QAs are the responses (Y) and

the PPs are the predictors (X). However, combining information across scales

presents several challenges.

1. Process means can shift when moving from one scale to another scale.

2. Process variances may change across scales.

3. Functional relationships between QAs and PPs may change across scales.

If proper statistical adjustments are not made, combining such data may lead to

an erroneous analysis. Scale must be modeled so that scale shifts can be properly

identified in the analysis.

Changes in functional relationships (i.e., changes between QAs and PPs) are the

most difficult to detect across changes in scale. This is because unless one actually

varies a PP, it is not possible to estimate a functional relationship with the QA.

Large-scale runs are very expensive and it is generally not possible to manufacture

lots under different settings of the PPs. Thus, functional relationships can only be

inferred from small-scale experiments. In most practical cases, the relationships

discovered at smaller scale transfer to larger scales. However, it is important to

remember that transitivity is never guaranteed.

The data set in Table 4.1 reports results of six small-scale experiments conducted

in a laboratory. There are two PPs: pH and Temperature (�C). The QA is Yield (%).

The six experiments consist of four corner points and two center points for a

two-factor factorial experiment. (See Chap. 3 for more on factorial experiments).

There is interest in estimating both main effects and the interaction. Figure 4.1

provides an interaction plot of the data in Table 4.1. The plot suggests there is an

interaction between pH and Temperature.

The PPs are coded as described in Eq. (2.106), and shown in Table 4.2.

Table 4.3 reports the analysis of variance table that reports estimated effects and

p-values. The small p-values confirm the statistical significance of both main effects

and interaction.

The data in Table 4.1 are now augmented with four medium-scale process runs

conducted in a pilot plant. The augmented data are shown in Table 4.4. Note that a

third PP, Scale, has been added to the data set. Scale is a qualitative PP. Here,

Scale ¼ �1 denotes small-scale, and Scale ¼ þ1 denotes medium-scale. (See Sect.

2.12.5 for coding a qualitative PP).
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Note that all pH levels for the medium runs are set to 0 (4.5 uncoded), but that

Temperature was varied to include both�1 (20�C) and +1 (30�C). For this reason, no
new information is provided for the pH and Yield relationship, although an interaction

between Temperature and Scale can now be estimated. Estimation of this interaction

allows one to determine if the functional relationship between Yield and Temperture

changes across scales. Table 4.5 reports the results of a model that adds the Scale

main effect and the Scale � Temperature interaction to the previous analysis.

Note that since pHwas not manipulated in themedium-scale experiment, the effect

estimates for pH and pH*Temp are the same in Table 4.3 and Table 4.5. The p-values

Table 4.1 Small-scale

experiment
pH Temp (�C) Yield (%)

4 30 88.5

5 20 53.9

5 30 55.8

4 20 56.8

4.5 25 67.8

4.5 25 64.4
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Fig. 4.1 Interaction plot for

small-scale data

Table 4.2 Small-scale

experiment with coded PPs
pH Temp Yield (%)

–1 1 88.5

1 –1 53.9

1 1 55.8

–1 –1 56.8

0 0 67.8

0 0 64.4

Table 4.3 Estimated effects

for laboratory experiment
Term Estimate Prob > |t|

Intercept 64.533 0.0003

pH –8.9 0.0201

Temp 8.4 0.0225

pH*Temp –7.45 0.0283
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for these effects have changed because the degrees of freedom and the point estimate

for the model error have changed. The effect estimate for Temperature is different in

the two tables because Temperature was manipulated in themedium-scale data. There

is no statistical evidence (p ¼ 0.6409) that temperature interacts with scale. It

therefore seems appropriate to drop this interaction from the model. The functional

relationship between Temperature and Yield is not a function of Scale.

Finally, Table 4.6 augments the data in Table 4.4 with two runs conducted at full

manufacturing scale. Note that both the quantitative PPs are set to 0 for each run.

Table 4.4 Small-scale

combined with medium-scale
pH Temp Scale Yield (%)

–1 1 –1 88.5

1 –1 –1 53.9

1 1 –1 55.8

–1 –1 –1 56.8

0 0 –1 67.8

0 0 –1 64.4

0 1 1 81.7

0 –1 1 48.1

0 1 1 80.6

0 –1 1 69.5

Table 4.5 Estimates for

combined small-scale and

medium-scale data

Term Estimate Prob > |t|

Intercept 67.254 <0.0001

pH –8.9 0.0843

Temp 9.788 0.0237

pH*Temp –7.45 0.1283

Scale 2.721 0.3400

Temp*Scale 1.388 0.6409

Table 4.6 Combined data for

all three scales
pH Temp Scale (medium) Scale (large) Yield (%)

–1 1 –1 –1 88.5

1 –1 –1 –1 53.9

1 1 –1 –1 55.8

–1 –1 –1 –1 56.8

0 0 –1 –1 67.8

0 0 –1 –1 64.4

0 1 1 0 81.7

0 –1 1 0 48.1

0 1 1 0 80.6

0 –1 1 0 69.5

0 0 0 1 88.2

0 0 0 1 68.1
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The qualitative factor Scale (Small, Medium, and Large) is coded as described in

Eq. (2.107) where small-scale is always coded �1. The resulting effect estimates

are shown in Table 4.7.

The data have now been successfully combined. Figure 4.2 presents a visuali-

zation using the JMP(c) profiler of the final estimates when run at Large-scale at the

pH and Temperature targets of 4.5 and 25�C, respectively.
The value 78.15% on the left most axis of Fig. 4.2 indicates the long-run average

of lots manufactured at Large-scale when pH is held at 4.5 and Temperature is held

at 25�C. There is also interest in the range of individual lots around the long-run

average. An approach to provide that information is presented in Sect. 4.4.

It is important to remember there is an interaction between pH and Temperature.

To demonstrate, compare Fig. 4.2 with Fig. 4.3 where Temperature has been

increased to 28�C. The slope of pH is steeper in Fig. 4.3 than in Fig. 4.2. In

Fig. 4.2 it runs from a yield of about 88% at pH ¼ 4 to 70% at pH ¼ 5 (88% �
70% ¼ � 18%). In Fig. 4.3, the change in Yield runs from 98% at pH ¼ 4 to 71%

at pH ¼ 5 (98% � 71% ¼ � 27%).

The analysis to this point has examined the effect of scale on the process average

and functional relationships (for those PPs varied under different scales). It is also

important to examine the effect of scale on the process variance. One simple way to

do this is to plot the residuals from the final model in Table 4.7 against the factor

Scale. Figure 4.4 presents this plot.

Table 4.7 Estimates for all

data combined
Term Estimate Prob > |t|

Intercept 70.886 <0.0001

pH –8.9 0.0883

Temp 9.788 0.0195

pH*Temp –7.45 0.1398

Scale (large) 7.264 0.1606

Scale (medium) –0.911 0.8170
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Fig. 4.2 Profiler of example data
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Figure 4.4 suggests a greater variance in the model for the medium and large

scales. Table 4.8 reports standard deviations of the residuals for the small scale and

the medium and large scales combined.

This difference in the standard deviations is perhaps exagerated due to the

smallness of the data set. However, we will assume this difference is real and use

it to establish criteria for the PPQ runs as described in the next section.

Fig. 4.3 Profiler with temperature ¼ 28

Fig. 4.4 Plot of residuals versus scale

Table 4.8 Standard deviation of residuals

Scale Standard deviation of residuals

Small 2.04

Medium and large combined 9.37
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4.4 PPQ Criteria for Inter-Batch (Lot-to-Lot) Variability

One use of the combined data set in Sect. 4.3 is establishment of PPQ acceptance

criteria that can be used to estimate inter-batch variability. Use of this data

set allows one to form criteria based on the expected ranges of the QA when the

PPs are run in an expected range.

Computer simulation based on results from the combined data set of manufactur-

ing and laboratory experince is a useful approach for defining such criteria. Fig-

ure 4.5 shows the prediction profiler from Fig. 4.2 with some new information

provided.

Figure 4.5 provides the results of a simulation produced in the following manner:

1. The PPs pH and Temperature are allowed to vary around the target values of 4.5

and 25�C, respectively, in accordance with a normal probability distribution.

The mean is set equal to the target, and the standard deviation is set at the

characterized range divided by five. For example, the characterized pH range is

from 4 to 5, and so the value of the standard deviation is (5� 4)/5¼ 0.2. This

calculation is based on the fact that 98.8% of the values within a normal

distribution fall within 2.5 standard deviations of the mean, and so the total

range from minimum to maximum is five standard deviations. This is an

Fig. 4.5 JMP simulator
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expected source of variation as it is likely PPs will vary from their target values.

Because it is of interest to simulate the output from a large-scale (manufacturing

run), Scale is held fixed at Large.

2. As presented in Table 4.8, there will be variability in values of the QA even

when PPs are fixed. Based on Table 4.8, it is estimated that the standard

deviation of this noise level for a large lot is 9.37. This value is shown at the

bottom of Fig. 4.5.

3. The following operation is now repeated 100,000 times (N Runs in Fig. 4.5):

a. One value for pH and one value for Temperature are simulated from the

normal distributions defined in Fig. 4.5. The computed regression equation is

used to predict the QA, Yield.

b. A random normal error with mean zero and standard deviation 9.37 is then

simulated and added to the predicted value from part a. This represents one

simulated value of Yield for a manufacturing run.

c. After performing steps a. and b. 100,000 times, the histogram of the simulated

responses is plotted to the right of the profiler.

Figure 4.6 presents a numerical summary of the profiler histogram of simulated

Yield values shown in the far right of the upper row of Fig. 4.5.

The interval of simulated Yield values that contain the middle 99% of all values

is from 51.1 to 106.8%. This range can be considered as an expected range for the

process and used as a criterion for the PPQ.

There are certainly other approaches for establishing criteria for the PPQ. The

described approach is scientifically based because it makes use of knowledge

acquired during stage 1 of process validation. It also takes into account expected

variation in the process.

Fig. 4.6 Simulated values for yield
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4.5 PPQ Criteria for Intra-Batch Variability

Drug product (DP) homogeneity refers to the sameness of QAs across the units that

make up a batch (lot). Testing performed at release and during stability studies

necessitates that homgeneity assessment of the DP batches be performed for the

justification of release sample size.

Doymaz et al. (2015) provide the following statistical test for demonstration of

batch homogeneity. Consider the operation of filling DP into final containers (vials

or syringes). The QA of interest is protein concentration measured as mcg/mL. One

can conceptually divide the filling process into three regions: beginning, middle,

and end as shown in Fig. 4.7. Three independent measurements are made in each

region. If the process is homogeneous, then the average protein concentrations of

the three regions should be comparable. In fact, there should be no variation in the

means except for that resulting from analytical method error. (Doymaz et al.

describe a situation where variation in fill weight might also be expected).

To demonstrate homogenity, one can formulate a hypothesis set that compares

region means:

H0 : The absolute value of at least one pair-wise mean difference � EAC

Ha : The absolute value of all pair-wise mean differences < EAC
ð4:1Þ

Let the three position means be represented as μB , μM , and μE, for beginning,
middle, and end, respectively. Using this notation, the alternative hypothesis in

(4.1) is

Ha : μB � μMj j < EAC

μB � μEj j < EAC

μM � μEj j < EAC:
ð4:2Þ

The definition of the EAC should be based on the precision of the analytical

method. For example, a reasonable defintion for EAC is 3� σM where σM is the

standard deviation of the analytical method. The value of σM can typically be

obtained from method qualification or from historical measurements of reference

standards.

REGIONS

B-1

Line
Setup

Beginning Middle End

Filling
Process End

B-2 B-3 M-1 M-2 M-3 E-1 E-2 E-3

Fig. 4.7 Sampling plan for demonstrating lot homogeneity
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Since all three conditions in (4.2) must be satisfied in order to reject the null

hypothesis, computation of three 90% two-sided confidence intervals (one for each

pairwise difference) provides an equivalence test with an approximate test size of

0.05. The calculations are most easily performed using a one-factor analysis of

variance table. Table 4.9 presents a summary of such an analysis where there are

a ¼ 3 regions and r ¼ 7 samples taken at each region.

The sample means for the three regions are �YB ¼ 49:12 mcg=mL,
�YM ¼ 50:15 mcg=mL, and �YE ¼ 49:84 mcg=mL. The mean squared error S22 ¼
0:907 represents the pooled variance. Thus, using Eq. (2.56), the 90% two-sided

confidence interval on the difference μB� μM is

L ¼ �YB � �YM � t0:95:a r�1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S22
1

r
þ 1

r

� �s

¼ 49:12� 50:15� 1:73

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:907
1

7
þ 1

7

� �s

¼ �1:91 mcg=mL

U ¼ �YB � �YM þ t0:95:a r�1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S22
1

r
þ 1

r

� �s

¼ �0:15 mcg=mL

ð4:3Þ

The computed 90% two-sided intervals for μB� μE and μM� μE are (�1.60,

0.16) and (�0.57, 1.19), respectively.

The analytical method has a reported %RSD of 2 at a target protein concentra-

tion of 50 mcg/mL (see Sect. 2.6.4 for %RSD definition). Thus, the standard

deviation at the target concentration is 50� 0.02¼ 1 mcg/mL. An appropriate

EAC for this demonstration is thus 3� 1¼ 3 mcg/mL. Since all three confidence

intervals fall within the range from �3 mcg/mL to +3mcg/mL, homogeneity has

been demonstrated.

Power is an important consideration in determining the sample size to select

from each region. Computer simulation, as demonstrated by Doymaz et al., is a

useful tool for this purpose.

4.6 Determining the Number of PPQ Lots

The final issue discussed in this chapter concerns determination of the number of

batches needed for the PPQ campaign. Historically, traditional process validation

was considered a one-time event, and the standard rule was to manufacture three

batches. This rule required that three consecutive commercial scale batches meet

Table 4.9 ANOVA for

mixed model
Source of variation Degrees of freedom Mean square

Region n1¼ a� 1¼ 2 S21 ¼ 1:96

Error with regions n2¼ a(r� 1)¼ 18 S22 ¼ 0:907
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the predefined acceptance criteria in order to declare the process validated. This

“test into compliance” mindset has evolved in the FDA’s 2011 process validation

guidance. The shift has moved from the traditional three batch campaign to a

campaign size that is dependent on process understanding and relevant historical

knowledge.

Per the FDA’s 2011 guidance document, “the number of samples should be

adequate to provide sufficient statistical confidence of quality both within a batch

and between batches. The confidence level selected can be based on risk analysis as

it relates to the particular attribute under examination.” From this excerpt, the FDA

calls out the need to justify the number of samples for PPQ. In this section, the

number of samples is defined as the number of lots (batches) in the PPQ campaign.

Determining the number of lots required to execute PPQ is driven by multiple

factors which together build the body of evidence driving the amount of data

collected from lots manufactured during PPQ. Complexity of the process or product

knowledge gained during Stage 1, and relevant knowledge of similar products and

scales will inform the process engineer of potential gaps in process knowledge.

These gaps will need to be filled by either collecting data from the PPQ campaign,

or from statistical techniques that use mathematical models and simulation. Where

process knowledge gaps are high, and the data are insufficient to fill them, the PPQ

campaign will require a greater number of lots than if the converse is true.

Two approaches for determing the number of PPQ lots are discussed in this

section. The first approach considers variations on risk-based decision making tools

with ordinal scales that describe residual risk. The description of residual risk is

designed to determine the number of lots based on qualitative process understand-

ing. The second approach uses statistical methods to justify the number of PPQ lots.

Regardless of the selected approach, there are jurisdictions that may still require a

minimum of three lots for process validation, and this must be considered in the

filing strategy.

4.6.1 Risk-Based Decision Approach to Determine Number
of PPQ Lots

A risk-based approach to decision making in the GMP environment is not a new

concept. ICH Q9 (2005) provides the framework to risk management and these

principles can be extended to process validation. Early examples of incorporating

risk-based decision making into process validation decisions include selection of

equipment in cleaning validation (PDA 1998; Chao 2005), assessment of qualifi-

cation, validation and change control (O’Donnell and Greene 2006a, b), and

selection of process steps to include in process validation (Sidor and Lewus

2007). A risk-based decision making tool has been used to determine the number

of PPQ lots in Levy (2012), Bryder et al. (2012) and Sidor (2013, 2014).
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In Bryder et al., the risk-based approach is divided into three steps. Step

1 assesses product knowledge and process understanding, and Step 2 assesses the

control strategy. Step 3 is the assessment of residual risk based on the outcome of

Steps 1 and 2. The residual risk qualitatively describes gaps in knowledge and/or

the control strategy. The residual risk is mapped into five levels from Severe to

Minimal.

Depending on the residual risk, Bryder et al. present three options that drive the

selection of the number of PPQ lots. The first option provides a qualitative descrip-

tion of rationale and experiences. Based on the qualitative description, the number

of lots is determined. This is similar to the approach proposed by Sidor (2014)

where quantitative scores are assigned to both process and scientific understanding.

The primary difference between the two qualitative decision making tools is that

Sidor’s tool computes a cumulative score of process and scientific understanding.

This score is translated to the number of lots using a decision making table where a

range of scores define residual risk. Neither approach considers known information

about process variability. This is the primary limitation for qualitative risk-based

decision making tools. The other two options proposed in Bryder et al. involve

statistical methods driven by the outcome of the qualitative tool. These methods are

described in Sect. 4.6.2.

All approaches described above are ultimately based on a qualitative risk-based

tool describing process and scientific understanding. There are several consider-

ations in developing a risk-based tool. The tool is based on indicator characteristics

and factors that describe the information collected during Stage 1 of the validation

process or characterize additional relevant scientific knowledge. The information is

scored based on its presence or absence using a predefined scoring system and

aggregated to compute a final score that quantifies the residual risk. Cut-points

based on the range of possible final scores will be organized into a decision making

table. The number of lots required for PPQ will be determined using the final score

and its position relative to the cut-points of the decision making table.

The first step in risk-based tool development is to describe the characteristics and

factors to be used in the tool. If there are elements that describe knowledge or

scientific understanding, these statements must be as objective as possible. Chao,

ASTM E2475 (2010), and Bryder et al. offer examples of qualitative characteristics

to consider for tool development. It is recommended to avoid adjectives in these

statements since adjectives can lead to interpretation. If an adjective must be used,

it is helpful to define the term. For example, an outcome of Stage 1 may result in

limited understanding of critical raw materials. Here it would be useful to define the

word limited. The word limited could be defined as “three or fewer raw material lots

were used in Stage 1 experiments”or “the raw materials used during Stage 1 did not

represent the range of the raw material specificaton.” These modifed statements

minimize interpretation error and drive consistent application among users of the

tool. In addition, the choice of characteristics and factors describing the knowledge

for each indicator characteristic depends on whether the tool is used for API/bulk

drug substance or drug product. Characteristics unique to understanding API or

drug product need to be accounted for because the knowledge gathered for bulk
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drug substance may differ from drug product. For example, process complexity

with multiple seed trains may be of value for a bulk drug substance tool, whereas

process understanding given different drug product run sizes may be appropriate for

the drug product tool. An example with limited information for a tool’s framework

is shown in Table 4.10. Additional examples are provided by Levy and Bryder et al.

Once the indicator characteristics and the corresponding factors have been

defined, a scoring mechanism needs to be developed. This can be a simple binary

score as shown in Table 4.10, or a more complex scoring mechanism that provides

greater values for more valuable or critical factors. The validity of the scoring needs

to be tested before it can be tied to an action threshold table. Bryder et al. describe a

low, medium, and high risk scenario for each factor. Based on the outcome of the

risk for each factor, a qualitative description of residual risk is determined. One

aspect that is not directly provided by Bryder et al. is a defined scoring system that

determines residual risk. However, the example presented in Appendix 3 of their

paper provides a risk priority number that implies a scoring of the different factors.

Levy and Sidor also note the importance of weighting each factor based on its

relative importance. In this manner, the residual risk will increase appropriately if

there are gaps within the most critical information.

The final step in developing a risk-based decision making tool is construction of

the decision making table. The decision making table describes the actions to be

taken based on the tool’s score. For the PPQ tool, the action is the selection of the

number of PPQ lots. The decision making table consists of multiple cut-points

based on a range of possible tool scores. An example of a decision making table is

shown in Table 4.11. In this example, the overall tool score is translated to a

percentage of false factors as described in Table 4.10. The score for the example

presented in Table 4.10 is computed as the total number of false factors divided by

the total number of factors.

Table 4.10 Limited example of a risk-based decision making tool for indicator characteristics

(false statement ¼ 0 and true statement ¼ 1)

Indicator

characteristic Factor Result Scoring

Product

knowledge

Analytical comparability has been demonstrated at com-

mercial scale

True 1

Drug product experience exists with a range of API age False 0

Process

knowledge

Process tracking is active in clinical manufacturing False 0

Raw materials All raw materials have been used for the same application

at commercial scale

True 1

Total score 2

168 4 Process Qualification: Stage 2 of the FDA Process Validation Guidance



2 false factors

4 factors

� �
� 100% ¼ 50% ð4:4Þ

Using the decision making table in Table 4.11, a score of 50% results in

moderate residual risk and the need for 3–4 lots in the PPQ campaign.

Although a risk-based decision making tool has some disadvantages, one major

benefit is going through the process to develop the tool. Process engineers and other

team members are required to articulate and discuss characteristics that lead to

process understanding, and this improves and codifies product knowledge. A

second advantage is that a risk-based tool can be developed and used even when

statistical expertise is not readily available.

4.6.2 Statistical Approach to Determining the Number
of PPQ Lots

In contrast to the non-statistical approaches discussed in the previous section,

statistical approaches define the number of PPQ lots based on the “expectation”

of meeting a desired level of acceptable quality. Determining the number of PPQ

lots for a stated objective is not a difficult statistical problem. In many cases, it only

requires use of a sample size calculation based on a desired power and statistical

hypothesis of interest (Sect. 2.10). The challenging aspect of traditional sample size

calculations is that required sample sizes are typically too large to be practical for a

PPQ campaign.

Bryder et al. and, more recently, Breen et al. (2016) have offered no less than six

statistical procedures that might be considered for determining the number of PPQ

lots. These publications are presented as ISPE discussion papers and offer insight

from many participants in the pharmaceutical community. The six approaches

presented in this set of two papers are briefly described below.

A. Statistical approaches appearing in Bryder et al.

1. Target process confidence and target process capability: The number of lots

is chosen to ensure with a target process confidence that a target process

capability will be maintained. Higher residual risk requires a higher level of

confidence to meet the target Cpk value. For example, one might determine

Table 4.11 Example of a decision making table to determine the number of lots for PPQ

Total score (% false statements) Number of lots for PPQ Residual risk

�80% >6 Very high

>60 to <80% 5–6 High

>40 to �60% 3–4 Moderate

�40% 1–2 Low
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the number of lots that if passed ensure an 80% chance (target process

confidence) that the process capability Cpk

� �
exceeds 1 (target process

capability). This method is based on a confidence interval formula for Cpk.

Strickland and Altan (2016) have stated that this could lead to larger batch

sizes than are practical.

2. Expected coverage: This approach relies on order statistics. It is based on the
relationship that as more PPQ lots are manufactured, a more informative

description of future performance is obtained. As the residual risk increases,

the required expectation for coverage increases. As an example, for a passing

high risk process using 9 lots, one has 50% confidence that 80% of future lots

are within release limits. However, reliance on a nonparametric interval may

require more lots than is viewed practical if meaningful confidence and

coverage percentages are to be established.

B. Statistical approaches appearing in Breen et al.

1. Tolerance intervals: This approach is somewhat similar to the expected

coverage approach. Here a tolerance interval is computed by fixing the

constant K based on a predefined confidence and coverage. (See Eqs. (2.23)

and (2.52) for tolerance interval formulas). PPQ is deemed successful if the

tolerance interval falls within the PPQ acceptance criterion. The selected

confidence and coverage is based on residual risk.

2. Probability of batch success: This approach determines sample size by

specifying a probability that a batch will meet all specification limits. The

approach can use either a frequentist approach with a given level of confi-

dence, or a Bayesian approach. As before, the selected probability and

confidence should be based on the specific residual risk.

3. Combinatorial approach of analysis of variance with risk assessments: This
approach determines sample size that ensures adequate power to detect an

important shift in the process mean. As the criticality of a QA increases, there

is a lower tolerance for drift. Drift can be described in terms of the process

capability Cpk.

4. Variability-based approach: Here the sample size is determined using a

power calculation for a test that compares the variation of validation lots

with the variation of historical lots of a current process.

One other approach of note is a Bayesian approach proposed by Yang (2013). In

this approach, quality assurance is defined as the posterior probability that a

specified number of future post-PPQ lots will meet specifications. At the end of a

successful PPQ campaign, if all lots meet the predefined acceptance criterion, then

the posterior probability that a future lot meets the specification exceeds a

predetermined level.

In summary, the use of any one approach to compute the number of PPQ lots has

inherent advantages and disadavantages. Qualitative approaches force participants

to think scientifically about a process, and consider all aspects of the process

performance. They also provide information for selecting criteria for statistical

approaches. However if used without statistical approaches, it will not most
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effectively incorporate quantitative knowledge related to the understanding of

variability and process reliability. Conversely, statistical approaches give seem-

ingly analytical solutions, but do not entirely consider the holistic process perfor-

mance provided by a qualitative assessment. Additionally, some of these

approaches yield sample sizes that are too large for practical application. Thus,

some combination of these two approaches is recommended in order to provide the

most appropriate number of PPQ lots.
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Chapter 5

GMP Monitoring and Continuous Process
Verification: Stage 3 of the FDA Process
Validation Guidance

Keywords Acceptance quality level (AQL) • Acceptance sampling • Annual

product review • Continued process verification • Corrective and preventative

action (CAPA) • Critical material attribute (CMaA) • Critical method attribute

(CMeA), Critical process parameter (CPP) • Critical quality attribute (CQA) • Lot

tolerance percent defective (LTPD) • Operating characteristic (OC) curve • Out of

specification (OOS) • Process capability • Statistical control charts

5.1 Introduction

The FDA Process Validation Guidance (2011) advocates a life cycle approach for

manufacturing to ensure the process can reliably and consistently provide quality

product that meets the therapy’s desired efficacy and safety profile. This life cycle

approach emphasizes collection and evaluation of appropriate data as evidence to

demonstrate that the process is in a controlled state to deliver quality product. It has

three stages:

1. Process design,

2. Process qualification, and

3. Continued process verification (CPV).

Chapter 3 discussed the process design stage in which state-of-the-art science

and engineering are used to design a process, statistical tools including design of

experiment are used to identify sources of variation, and risk assessment is used to

establish a control strategy for critical parameters and attributes. A quality by

design (QbD) approach is desired to build quality into the process.

Chapter 4 discussed process qualification, which included two substages:

1. Facility, equipment, and systems qualification and

2. Process performance qualification (PPQ).

Substage 1 ensures all facilities, equipment and systems meet cGMP and other

regulatory standards and that they are fit for the purpose of a reliable and controlled

process to deliver quality product. Substage 2 (PPQ) confirms that the process

performs as expected.
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The third stage of the FDA process validation considered in this chapter is called

continued process verification (CPV). In this stage, data are continuously collected

and evaluated to verify the process remains in the desired controlled state. Using the

analogy of an orbital spacecraft, process validation Stages 1 and 2 represent the

development of an orbital spacecraft and the successful launch into orbit. Stage

3 consists of the work done to ensure the spacecraft remains in orbit. This chapter

discusses the key components of CPV and statistical tools that are useful for this

purpose.

5.2 Components in Continued Process Verification

It is assumed that Stages 1 and 2 of the validation process provide a good

understanding of the manufacturing process and associated analytical methods.

Using risk assessment, quality by design, and appropriate quality systems (ICH

Q8 (R2), ICH Q9, ICH Q10), an appropriate control strategy will be in place, and

the process capability to deliver intended-for-use products will have been validated.

Alsmeyer and Pazhayattil (2014) described a simple case study of CPV for small

molecules. The BioPhorum Operations Group (BPOG 2014) provides a position

paper on CPV with a case study using a monoclonal antibody manufacturing

process. This study is a continuation of a case study in bioprocess development

using risk assessment and quality by design (CMC Biotech Working Group 2009).

These two case studies provide examples for the following discussion.

Figure 5.1 presents a simplified diagram of key parameters from different

sources that potentially need monitoring in Stage 3.

The parameters in Fig. 5.1 are classified into four sets:

1. Critical material attributes,

2. Critical process parameters,

3. Critical quality attributes, and

Critical Process ParametersCritical Material Attributes Critical Quality Attributes

Final Product

Analytical Methods

ProcessRaw Materials

Critical Method Attributes

Fig. 5.1 Manufacturing components and structure of CPV monitoring variables
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4. Critical method attributes.

Because of the progression shown in Fig. 5.1, critical quality attributes are often

called lagging factors, and critical material attributes and critical process parame-

ters are called leading factors (Strickland and Altan 2016).

These categories may not be complete or non-overlapping, but are useful to help

determine the quantities that need to be monitored in Stage 3. Modifications of this

classification system can be considered for particular circumstances. This structure

is useful for understanding the sources of variation as emphasized in the FDA

validation guidance.

1. Critical material attributes (CMaAs) are properties or characteristics of input

materials used during the manufacturing process. For example, in a typical solid

dose manufacturing process, critical characteristics of API and excipients (e.g.,

water content) can be considered critical material attributes (Alsmeyer and

Pazhayattil 2014). In a monoclonal antibody manufacturing process, examples

of CMaAs include certain characteristics of working cells, key nutrient levels of

the cell culture, and glucose feed levels (BPOG 2014).

2. Critical process parameters (CPPs) are those that relate to the manufacturing

process and directly impact product quality. CPPs should be identified in Stages

1 and 2 of process qualification, along with their control range (i.e., design

space). These parameters can appear in different unit operations for small

molecules (Fig. 2 of Alsmeyer and Pazhayattil 2014) or in different manufactur-

ing steps for monoclonal antibodies (Chap. 10 of BPOG 2014).

3. Critical quality attributes (CQAs) are properties and characteristics of the drug

substance or final product. CQAs must meet specifications in order to ensure that

the product quality supports its intended safety and efficacy for patients. Typical

CQAs relate to product strength, potency, identity, and purity. CQAs for one unit

operation may become CMaAs for a subsequent unit operation.

4. Critical method attributes (CMeAs), including critical reagent properties,

method parameters, and method accuracy and precision measures, are all can-

didates for continual monitoring in order to ensure the analytical methods

remain fit for purpose. These are often neglected, but much of the data used to

assess the CMaAs and CQAs are output from analytical methods. If the analyt-

ical methods are not validated and controlled for their intended accuracy and

precision, measured CMaAs and CQAs will be compromised. In addition to

minimizing the risk of poor measurements, this information is useful in trouble-

shooting non-conformances of a CQA to determine if the problem is attributable

to the manufacturing process or the analytical method.

According to quality by design principles, effective control of CMaAs and CPPs

should lead to high confidence that requirements on CQAs will be met. Therefore,

the FDA guidance on validation emphasizes sufficient understanding of the process,

and states that “Focusing exclusively on qualification efforts without also under-

standing the manufacturing process and associated variations may not lead to

adequate assurance of quality.” By monitoring parameters in all four categories,
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the CPV monitoring program provides evidence that the process is sufficiently

understood.

The structure presented in Fig. 5.1 implies the following:

1. If all CQAs are in control, the product quality is in control.

2. If all CMaAs and CPPs are in control, there is a high chance that CQAs will be in

control.

3. If all CMeAs are in control, it follows that all data represent the true state of the

product and process.

Data for the identified CMaAs, CPPs, CQAs, and CMeAs should be compiled in

a format amenable for trending and analysis using available software. The reader is

referred to Chap. 10 of BPOG (2014) for a well-structured list of variables to be

monitored in each step of a monoclonal antibody drug substance manufacturing

process.

5.2.1 Data Collection and Control Limits

Historical data from the four parameter groups discussed above are used for

constructing statistical control limits. Once sufficient process understanding is

achieved, control limits based on historical process performance are not expected

to require revision unless the process has been changed or impacted in some defined

manner (e.g., an investigation determines a process shift has occurred). Periodic

examination of the appropriateness of the limits may be undertaken based on the

frequency of manufacturing.

A sampling plan should be determined for each monitored variable. The plan

should include sampling frequency and the type of chart(s) used for trending. An

analysis plan should also be created, including the process for constructing control

limits, the frequency of analysis, how results will be interpreted, and actions to be

taken after a trend or out-of-control event is identified.

New data are best entered into the historical database in a timely manner for

trending and analysis so that any potential signals may be investigated in a

meaningful manner. Examining data with very low frequency limits the usefulness

of the CPV program because it reduces the ability to react to potential factors that

may lead to out-of-specification results or excursions from in-process control limits.

5.2.2 Monitoring

Consistent with the 2011 FDA guidance, the goal of CPV is “continual assurance

that the process remains in a state of control (the validated state) during commercial

manufacture.” This goal ensures that high quality products can be consistently
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supplied to patients. As such, an effective CPV program monitors the chosen

parameters for trends and defines actions to be taken if signals are identified.

If the CPV program identifies a signal, any of the critical material, process,

quality, or method attributes may require further examination. The investigation

type and rigor will depend on the specific attribute that displays the signal, the

scientific knowledge about the given parameter and process, an examination of

previous investigations, and an analysis of the current data set. One should not

assume that the signal is a result of inappropriately set limits and blindly reset

control limits so that the process appears in control. However, an examination of the

appropriateness of the limits may be considered should the data indicate a need for

such an assessment.

In cases where the monitoring program detects a signal, the implications may

differ depending on which of the following two cases occurs:

1. One or more CQAs are trending out of control.

a. One should first examine the analytical method performance. If the method

appears out of control, a thorough investigation into the method should be

undertaken. Determine if the correct CMeAs are being monitored, if they are

being monitored with the appropriate frequency, and if the method is fit for

purpose. If the investigation finds that the analytical method is out of control,

it should be improved, samples should be re-tested using the updated method,

and the quality attribute can then be re-assessed.

b. If all CMeAs are in control, the out-of-control signal for the CQA is con-

firmed. The signal is attributed to some portion of the manufacturing process.

It is now necessary to examine CMaAs and CPPs.

c. If one or more of the CMaAs or CPPs are out of control, the process should be

re-calibrated. The investigation may indicate the process is not well under-

stood, and more study of the process is warranted. The resulting investigation

may lead to a new control and monitoring strategy, possibly including new

monitoring variables or control limits.

2. All CQAs are within control, but out-of-control signals occur for other attributes.

a. If some CMaAs or CPPs are out of control, this implies the upstream

parameters may not truly impact the CQA. One should investigate whether

the out-of-control variable should continue to be monitored using a risk

assessment.

b. If some CMeAs are out of control, there are two possibilities:

i. The product quality is consistent, but the method aberration is not large

enough to change the method performance or severely affect the quality

attribute data.

ii. The CQAs are within control only because of a serious method aberration.

In fact, the CQAs may be out of control, but data distortion due to the

method produces a misleading result. In either case, the method and its

control strategy should be reviewed. Perhaps an adjustment of the control
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strategy solves the problem, or a partial validation or re-validation of the

method is warranted. In this situation, product samples may need to be

re-tested using a calibrated method.

5.3 Statistical Tools for CPV

Statistical quality tools are used to verify that CQAs are being properly controlled

throughout CPV. Statistical control charts, process capability assessment, and

acceptance sampling methodology are among the statistical quality applications

used to achieve the process monitoring and improvement required in CPV. This

section introduces some of these statistical applications applied to CPV. ASTM

(2010) provides useful material for further reading.

5.3.1 Acceptance Sampling

Acceptance sampling plans can be incorporated into the overall strategy of CPV for

ensuring product quality. The majority of acceptance sampling plans involve

attribute sampling, or variables described as qualitative or nominal. However, in

many cases quality attributes are physical measurements on a continuous or quan-

titative scale. In such cases lot acceptance is based on the percentage of individual

values in a lot that satisfy a numerical specification.

Acceptance sampling consists of a sampling design and a set of rules for making

decisions based on the resulting sample. For situations where only a single sample

is selected, the two decisions are

1. Accept the lot or

2. Reject the lot.

3. In a pre-planned multiple sample design, a third decision is to select another

sample and then decide to either accept the lot, reject the lot, or continue

sampling.

The fundamental tool for selecting a sampling plan is the operating characteristic

(OC) curve. An OC curve is a bi-variate graph with probability of passing a lot on

the vertical axis and the percentage of units that do not meet the specification limits

on the horizontal axis. Figure 5.2 provides an example of an OC curve for an

attribute sampling plan in which a sample of 80 items is selected at random from a

lot. A lot is “accepted” if there are fewer than two non-conforming (defective) units

in the sample. The lot is “rejected” if there are two or more non-conforming units in

the sample. The terms “accepted” and “rejected” in this context are used in a

generic sense. The action that results from either conclusion depends on the

particular application.
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From Fig. 5.2 is seen that this plan virtually ensures no lot is accepted if the

percentage of defective units in the lot exceeds 8%. If the percentage of defective

units is 2%, the probability of accepting the lot based on this sampling plan is

52.3%.

When deciding whether to accept or reject a lot, there are two types of errors

1. Rejecting a good lot (Type 1 error) and

2. Accepting a bad lot (Type 2 error).

The risk of committing a Type 1 error is referred to as the producer’s risk and is

denoted by the Greek letter α. The risk of committing a Type 2 error is called the

consumer’s risk and is denoted by the Greek letter β. Definitions for “good” and

“bad” are typically defined in terms of the percentage of non-conforming (defec-

tive) units in the sample. Acceptance quality level (AQL) is the percentage of

defective units on the horizontal axis associated with the 95% probability of

acceptance on the vertical axis. The lot tolerance percent defective (LTPD) is the

percent of defective on the horizontal axis associated with the 10% probability of

acceptance. It is also useful to define AQL and LTPD in terms of the proportions

p1 ¼ AQL
100% and p2 ¼ LTPD

100%. The AQL and LTPD values for Fig. 5.2 are shown in

Fig. 5.3.

Determination of acceptable values for AQL and LTPD require assessment of a

variety of criteria including risks, costs, and consumer requirements. The first step

in this process is to classify the severity of the defects that might occur. Typical

classifications are Critical, Major, and Minor. Defectives of the same category

would generally be expected to have the same values for AQL and LTPD.

Fig. 5.2 OC curve with sample size ¼ 80 and acceptance number ¼ 1
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To demonstrate how acceptance sampling can be used in CPV, consider a quality

attribute monitored in Stage 3 to ensure it maintains the same quality level attained

in Stages 1 and 2. Values will conform to an acceptable quality level if they do not

exceed an upper specification limit (USL).
A random sample of size n is selected and the quality attribute is measured for

each item. The sample mean is then compared to the quantity

A ¼ USL� kS ð5:1Þ

where S is the sample standard deviation and k is a constant that is a function of

AQL and LTPD. The process is considered acceptable if the sample mean of the

n items is less than or equal to A. Schilling and Neubauer (2009, p. 186) provide the
following approximate formulas for both k and n using what is called the k-method:

k¼ Z1�p2Z1�α þ Z1�p1Z1�β

Z1�α þ Z1�β

n¼ Z1�αþZ1�β

Z1�p1
�Z1�p2

� �2

when the variance is known

n¼ Z1�αþZ1�β

Z1�p1
�Z1�p2

� �2

1þ k2

2

� �
when the variance is unknown

ð5:2Þ

where Zδ is the percentile of a standard normal distribution with area δ to the left.

To illustrate how acceptance sampling may be applied to Stage 3, consider a

power fill process. Suppose that during Stages 1 and 2, the net weight of each vial

should be at least 25 g. To determine whether the process maintains this quality

level, an acceptance sampling plan requires that the process should be accepted

Fig. 5.3 AQL and LTPD for Fig. 5.2
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95% of the time when the proportion of net weight vials below 25 g is AQL¼ 0.5%,

and should be rejected 90% of the time when the proportion of net weight

vials less than 25 g is LTPD ¼ 5%. The specification above can be expressed

using acceptance sampling terminology as determining a sampling plan with

p1 ¼ AQL
100% ¼ 0:005, p2 ¼ LTPD

100% ¼ 0:05, α¼ 0.05, and β¼ 0.10. Using these values

and assuming that the variance of the process is unknown, Z1�p1 ¼ 2:576,

Z1�p2 ¼ 1:645, Z1� α¼ 1.645, and Z1� β¼ 1.282, k¼ 2.05 and n¼ 31(rounding

up). If the variance is known, the sample size reduces to n¼ 10 (rounding up).

Schilling and Neubauer (2009) and Burdick and Ye (2016) provide more

in-depth discussions of acceptance sampling. Kiermeier (2008) provides R-code

for many of the required calculations.

5.3.2 Statistical Control Charts

Statistical control charts are useful for continually verifying that a process remains

in control. The main goal of statistical control charting is to use probability theory

to determine whether an observed deviation is due to a chance cause (also known as

a common cause) or to an assignable cause. If a control chart signals the occurrence

of an assignable cause, the process is stopped and appropriate actions are taken to

eliminate the assignable cause. In addition, preventive actions are put in place to

reduce the chance that the assignable cause reappears in the future. One set of rules

generally used to determine when an assignable cause occurs is provided by

Nelson (1984).

To briefly demonstrate this process, we present results for an individual value

chart. An individual value chart is used in Stage 3 to monitor individual values of

CQAs for released lots. Suppose that a CQA used for lot disposition is monitored in

an individual control chart. A sample of n lots is selected and a single CQA

measurement is taken from each lot. The collected sample is represented as Y1 ,
Y2 , . . . , Yn. For the procedure that follows, it is assumed that when the process is in

control, the sample of n lots behaves as a random sample selected from a normal

population with mean μ and standard deviation σ. Based on the probabilities of the

normal distribution, the probability that a single observation exceeds the range from

μ� 3σ to μ+ 3σ is roughly 99.73%. The first rule presented by Nelson (1984) states

than an individual value that falls outside this range is a signal that the process is out

of control. In practice, μ and σ are unknown and must be estimated from the sample.

An unbiased estimator for the unknown process mean μ is the sample average,

�Y ¼

Xn
i¼1

Yi

n
: ð5:3Þ
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An estimate of σ using a moving range of two consecutive measurements in the

sample is

MR

1:128

MR ¼

Xn�1

i¼1

Yiþ1 � Yij j

n� 1

ð5:4Þ

An individual control chart is established by plotting a run chart for the sample

values, with horizontal reference lines at �Y to represent the center line (CL),

LCL¼ �Y � 3� MR

1:128

LCL¼ �Y � 2:66�MR

ð5:5Þ

to represent the lower control limit (LCL), and

UCL ¼ �Y þ 2:66�MR ð5:6Þ

to represent the upper control limit (UCL). Figure 5.4 presents an example of an

individual value chart.

A moving range chart as shown in Fig. 5.5 is useful to complement the infor-

mation provided by the individual control chart. A moving range chart has a

horizontal reference line at MR and an upper control limit (UCL) of

UCL ¼ 3:267�MR:
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Fig. 5.4 Individual value control chart
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Figures 5.4 and 5.5 were obtained from a sample of n ¼ 26 released lots of a

manufacturing process. The measured CQA is concentration expressed as percent-

age of label claim. A summary of the calculated results are shown in Table 5.1.

A graphical inspection of the plots indicates that none of the individual values or

moving ranges are outside their respective control limits. This suggests that the

process is in a state of statistical control.

Since decisions based on control charts are based on probability, there is a risk

that a future individual value will fall outside the control limits, even though the

process is truely in control. Similarly, there is a chance that a future individual value

will fall within the control limits, even if an assignable cause is present. The

consequences of such errors can be severe, and need to be considered in

establishing a risk strategy. These risks can be dramatically increased if one were

to use either two or four standard deviation control limits. Two standard deviation

limits would result in nuisance signals, whereas four standard deviation limits

would fail to detect shifts due to an assignable cause. The three standard deviation

control limits described above provide a good balance between these two risks.
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Fig. 5.5 Moving range control chart

Table 5.1 Computations for control charts

Chart Reference line Value

Individuals CL �Y ¼ 100:10

LCL LCL ¼ �Y � 2:66�MR ¼ 96:48

UCL UCL ¼ �Y þ 2:66�MR ¼ 103:73

Moving range CL MR ¼ 1:364

UCL UCL ¼ 3:267�MR ¼ 4:46
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Many other types of control charts are used throughout Stages 1–3 of the

validation process, and there is a wealth of references on this topic. Interested

readers are referred to ASTM (2010), Montgomery (2013), Wheeler (2012), ASTM

E2587 (2016) and Altan et al. (2016).

5.3.3 Process Capability and Performance Assessment

When a manufacturing process is in statistical control, this does not necessarily

imply that it is producing products that meet predetermined quality specifications.

Therefore, it is not only important to evaluate process stability (statistical control)

during CPV, but it is also equally important to monitor the process capability (i.e.,

the ability to produce products that conform to specifications). Monitoring process

capability often provides potential focal points for process improvement. Addition-

ally, it can be used to assess any improvements to process capability after process

improvements have been implemented. Process capability indices identify the need

to reduce common cause variation or to compare processes.

When a process is in statistical control, its quality is predictable. Thus, before

assessing process capability, it is necessary that the process be in a state of

statistical control. It is common to define process capability in units of standard

deviations of the controlled process. We will denote this process standard deviation

as σ. In particular, it is common to look at the relationship between the standard

deviation and the range between the upper and lower specification limits. This

capability index is defined as

Cp ¼ USL� LSL

6σ
ð5:7Þ

where LSL is the lower specification limit and USL is the upper specification limit.

When process data are well represented with a normal distribution and the

process is centered between the upper and lower specification limits (i.e.,

the process mean ¼(LSL +USL)/2), the capability index Cp can be expressed as

the number of units that are outside of specification. In particular, the proportion

of defective product (expressed in parts per million (ppm)) is related to Cp by the

equation

ppm defective ¼ 1, 000, 000� 2Φ �3Cp

� � ð5:8Þ

where Φ is the cumulative standard normal distribution. For example, assume that

the process is centered about the specification limits and that Cp ¼ 1. Then
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ppm defective ¼ 1, 000, 000� 2Φ �3� 1ð Þ
¼ 1, 000, 000� 2�Φ �3ð Þ
¼ 1, 000, 000� 2� 0:00135
¼ 2, 700 ppm:

ð5:9Þ

Thus, a Cp ¼ 1 corresponds to a centered process that produces 2700 ppm

outside of the specification limits. This relationship between Cp and ppm can be

used to establish acceptable values for Cp. Since Cp < 1 implies that more than

2700 ppm will be out of the specification limits, and Cp > 1 implies less than

2700 ppm out of the specification limits, it is seen that the process improves as Cp

increases. In addition to describing the overall capability of a process, Cp can be

used to determine where to focus process improvement efforts.

The capability index Cp is not appropriate when a process is operating off-center.

In such cases, an alternative capability index is defined as

Cpk ¼ min
USL� μ

3σ
;
μ� LSL

3σ

� 	
ð5:10Þ

where μ is the (off-centered) process mean.

Because μ and σ are typically unknown, they must be estimated from a sample.

There are several ways to estimate σ, and this unfortunately has created much

confusion as to what is the “correct” manner. As in most statistical procedures, the

“correct” manner depends on the situation. We demonstrate one approach, but

encourage the reader to read more on this topic in the references provided at the

end of this section.

Because the control chart in Sect. 5.3.2 indicates the process is stable, we

consider the sample to be a random sample of n ¼ 26 from a process with mean

μ and standard deviation σ. Thus we will use the sample mean �Y as an estimator for

μ and the sample standard deviation S as an estimator for σ. A point estimator and

100(1–α)% lower confidence bound on Cp using these estimators is

bCp ¼ USL� LSL

6� S

L¼ bCp �
ffiffiffiffiffiffiffiffiffiffiffiffi
χ2α:n�1

n� 1

r ð5:11Þ

where

S¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Yi � �Yð Þ2

n� 1

vuuut
�Y ¼

Xn
i¼1

Yi

ð5:12Þ
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and χ2α:n�1 is the chi-squared percentile with n� 1 degrees of freedom and area α to

the left. The lower bound on Cp can be used to answer the question, “What is the

smallest value of Cp consistent with the uncertainty in the data?” A process is

considered capable if L is greater than the desired value for Cp.

A point estimator and 100(1� α)% lower confidence bound on Cpk is

bCpk ¼ min
USL� �Y

3S
;
�Y � LSL

3S

� 	
L¼ bCpk 1� Z1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9nbC2
pk

þ 1

2 n� 1ð Þ

s24 35 ð5:13Þ

where Z1� α is the percentile of a standard normal distribution with area 1–α to

the left.

Assume that the specification limits are LSL ¼ 95% and USL ¼ 105%. Calcu-

lations for (5.11) and (5.13) are provided in Table 5.2 using the data from Sect.

5.3.2 where �Y ¼ 100:10 and S ¼ 1.40.

As will always be the case, Cpk is less than Cp. Some interpret Cp to be the

maximum attainable capability that is achieved when the process is centered. Using

equation (5.8) and the lower bound of Cp provides the estimated out-of-specifica-

tion rate of

ppm defective¼ 1, 000, 000� 2Φ �3� 0:91ð Þ
¼ 1, 000, 000� 2�Φ �2:73ð Þ
¼ 1, 000, 000� 2� 0:0032
¼ 6, 400 ppm:

ð5:14Þ

A process performance index is closely related to a process capability index.

These are typically represented as Pp and Ppk. A capability index is typically used in

a prospective assessment where a process has been demonstrated to be in statistical

Table 5.2 Computations for capability indexes

bCp ¼ USL�LSL
6�S ¼ 105�95

6�1:40 ¼ 1:19

95%L ¼ bCp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2α:n�1

n�1
¼ 1:19�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:61
26�1

¼ 0:91
qr

bCpk ¼ min
USL� �Y

3S
;
�Y � LSL

3S

� 	
¼ min

105� 100:10

3� 1:40
;
100:10� 95

3� 1:40

� 	
¼ 1:17

95%L ¼ bCpk 1� Z1�α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9nbC2
pk

þ 1

2 n� 1ð Þ

s24 35
¼ 1:17 1� 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9� 26� 1:17ð Þ2 þ
1

2 26� 1ð Þ

s" #
¼ 0:88
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control. Such an assessement focuses on the ability of the process to meet specifi-

cations in the future. A process performance index is used in a retrospective

assessment to examine past process behavior and determine how a process will

perform in the future if left unchanged. The process under examination may or may

not be in statistical control. Some authors differentiate a capability index from a

performance index by the manner in which the standard deviation is computed. The

capability index employs an estimate of short-term variance, and the performance

index employs an estimate of long term variance. More information on the topics

considered in this section are provided in Altan et al. (2016), ASTM E2281 (2015)

and Montgomery (2013).

5.3.4 Out of Specification and Corrective and Preventative
Action (CAPA)

The goal of the CPV program is to detect a process shift before an out-of-specifi-

cation result is observed. Typically, an out-of-specification result leads to a rigorous

investigation, and may ultimately lead to rejection of the batch. Results that do not

meet specifications may be observed for unit operations where the CPV program

has previously detected signals or where the monitored attribute has displayed less

than ideal process capability. However, out-of-specification results may also be

obtained for parameters where the CPV program has not previously detected any

concerns.

An overall examination of the CPV strategy should be part of any investigation

into out-of-specification results. The level of scrutiny given to the CPV monitoring

for the given parameter will depend on previous investigations and corrective

actions already in place. If the CPV program has previously detected an issue

with a given parameter, then the monitoring program is likely functioning properly,

and investigative efforts might focus on the effectiveness of previous corrective

actions. In contrast, if the CPV program has not previously detected any potential

issues, an examination into whether the current monitoring strategy is effective

should be undertaken.

When a non-conformity occurs, the following steps are required to investigate

and take actions for correction.

1. The magnitude and scope of its risk should be assessed. If there is minimum risk,

perhaps no further action is needed. Otherwise, a root cause analysis should be

conducted to identify the assignable cause and a solution should be identified.

2. Corrective and preventive actions are taken to eliminate the root cause of the

non-comformity and prevent its future occurence.

3. The attribute associated with the non-conformance must be closely monitored to

verify that it is now consistently in control and in specification.
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This process is demonstrated in the following example. Suppose the potency of a

batch of biological product exceeds the upper specification limit. Since potency is a

critical quality attribute, the risk of this excursion non-conformity is high. Such a

non-conformance could potentially lead to safety problems for patients. Accord-

ingly, a root cause analysis is conducted using the process described in Sect. 5.2.2.

The performance of the analytical method for potency is first examined. Assume

there is an upward trending in the potency of the negative control. This suggests

there was a change in the reference standard. Further investigation leads to the

discovery that the shelf-life of the reference standard has been extended twice. To

determine if this was the root cause, a new reference standard was qualified and

compared to the original reference standard. The comparability analysis showed

that the method performance was highly similarly to the method performance when

using the previous reference standard before the shelf-life extension. Another few

samples from the same batch of the biological produt were tested using the new

reference standard and the results were all within specification (corrective action).

From this analysis, it was concluded that the excursion was due to method drift. A

new process was established to monitor the stability of the reference standard

(preventive action). If no aspects of the analytical method had been discovered to

be the root cause, a further drill down to the manufacturing process would have

been required.

Regulatory agencies expect companies to verify that changes made in response

to a CAPA actually work to eliminate the root cause of a non-conformance failure.

To do this, it is required to examine data collected after the CAPA and demonstrate

that the failure rate intended to be improved by the CAPA satisfies the desired goal.

Typically a protocol is drafted that states a post-change sample must satisfy some

test criterion related to an upper value for the new defective rate. Burdick and Ye

(2016) provide an example of such an application.

5.4 A CPV Protocol and Relation to Annual Product
Review

Although CPV is a Stage 3 process validation activity, it should be kept in mind

during Stage 1 when collected process knowledge will inform which control points

should be monitored and incorporated into the CPV program. The parameters to be

monitored under the CPV plan should be largely defined and understood prior to

Stage 2 so that important data for generating the Stage 3 CPV limits can be

gathered. The CPV protocol should be a living document throughout the first two

stages of process validation. When sufficient data are collected to reliably estimate

the expected process variability, the CPV protocol should be modified and assessed

at some frequency as defined in procedures.
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As knowledge of the process accumulates during development and validation,

the CPV protocol is updated regarding the variables to be monitored, their sampling

plan, monitoring chart type, and control limits.

A good CPV protocol should minimally include the following information:

1. Product information.

2. Personnel, roles, and responsibilities. A designated statistician or someone

trained in statistical techniques should be involved throughout the product life

cycle.

3. A structured table for all monitored parameters categorized into CMaAs, CPPs,

CQAs, CMeAs, and variables corresponding to each attribute. The table should

also include the sampling plan, control chart type, and initial limits. Specify

which attributes should be monitored with a particular frequency.

4. A description of the process for periodic examination of the appropriateness of

the limits and the method for adjusting limits based on updated process

knowledge.

5. Identification of the database warehouse and analysis software.

6. All relevant data and knowledge (e.g., design space) accumulated from Stages

1 and 2 should be organized and included for determination of initial control

limits.

7. Description of planned analyses, including frequency of analyses, format of

documentation, and result evaluation.

8. An appropriate action plan should be established to address aberrant results.

Procedures should clearly define what kinds of aberrant results can be handled

by designated personnel, and what results require escalation to upper

management.

9. A plan for change management should be defined. Over the life cycle of the

product, some aspects of the monitoring plan may need to be changed or updated

due to an accumulation of experiences and process knowledge, or in response to

regulatory requirements.

The CPV protocol should align with the PPQ protocol created in Stage 2. The

CPV protocol will specify a frequency for analysis of given parameters, but data

should be assessed annually, at a minimum. Since an annual product review (APR)

is required for several regulatory jurisdictions, coordinating the annual CPV

reporting cycle with the APR cycle is most efficient from an analysis perspective.

The CPV protocol should meet the minimum data analysis requirements for the

APR. The APR is also a good time to evaluate the performance of the CPV

protocol.
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5.5 Statistical Support

The FDA guidance on validation defines process validation as “the collection and

evaluation of data, from the process design stage through commercial production,

which establishes scientific evidence that a process is capable of consistently

delivering quality products.” This definition characterizes process validation as a

joint work between scientists and statisticians, and requires a full integration of

statistical involvement throughout the process.

The word “statistical” or “statistics” appears 12 times in the guidance, which

highlights the importance of quantitative data analysis methods in the CPV pro-

gram. Regarding CPV at Stage 3, the guidance specifically emphasizes, “We

recommend that a statistician or person with adequate training in statistical process

control techniques develop the data collection plan and statistical methods and

procedures used in measuring and evaluating process stability and process capabil-

ity.” Additionally, it states “We recommend that the manufacturer use quantitative,

statistical methods whenever appropriate and feasible.” We strongly recommend

that adequate statistical resources are made available for process validation and that

statisticians be an integral part of the team throughout all three stages of process

validation.
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Chapter 6

Analytical Procedures

Keywords Analytical target profile (ATP) • Bayesian analysis • Method transfer •

Prediction intervals • Procedure validation • Procedure qualification • Ruggedness

factors • Tolerance intervals

6.1 Introduction

Analytical chemistry is used across the pharmaceutical industry to quantify and

identify the components in drug substance, drug product, and raw material to ensure

that the final dosage form remains safe and efficacious from lot release throughout

the product’s shelf life. To understand any potential shifts in the components

impacting safety and efficacy, laboratories require analytical procedures which

are reliable, fit for purpose, and executed consistently over time. Analytical pro-

cedures provide the instructions used by the analyst to ensure consistent use of

laboratory equipment, solution preparation, measurement recording, and documen-

tation. As such, analytical procedures form a critical component in any quality

system. This chapter considers statistical methods that ensure that these procedures

are fit for their intended purpose.

Martin et al. (2013) describe a holistic view of the analytical procedure life

cycle. It frames this problem using concepts consistent with Quality by Design

(QbD), ICH Q8 (2009), the FDA method validation guidance (2015), and the FDA

process validation guidance (2011). The performance requirements of a procedure

are defined by the analytical target profile (ATP). The ATP defines the analyte to be

measured, the concentration range, procedure performance criteria, and product

specifications. The criteria and specifications are established to define the purpose

of the analytical procedure.

The analytical procedure life cycle is presented in the following three stages:

1. Stage 1: Procedure development and preparation for Stage 2.

2. Stage 2: Procedure performance validation (Qualification).

3. Stage 3: Procedure performance verification (Transfer and Monitoring).

The detail of each stage is discussed in this chapter. Other references of interest

not discussed in this chapter are USP <1030>, <1033>, and <1223>.
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6.2 Terminology

6.2.1 Description of an Analytical Procedure

An analytical procedure and relevant terms must be clearly defined in order to

design an appropriate analytical study. Descriptors such as “replicates” or “prepa-

rations” without further explanation often lead to confusion. Table 6.1 reports

terminology used to describe an analytical procedure.

Not all analytical procedures entail all descriptions shown in Table 6.1. For

example, liquid laboratory samples that require no further manipulations employ

only a test solution. Table 6.2 provides an example of an analytical procedure for a

solid dosing form.

Table 6.1 Analytical procedure terminology

Terminology Description

Laboratory sample The material received by the laboratory

Analytical sample Material created by any physical manipulation of the laboratory

sample such as crushing or grinding

Test portion The quantity (aliquot) of material taken from the analytical sample

for testing

Test solution The solution resulting from chemical manipulation of the test por-

tion such as chemical derivatization of the analyte in the test portion

or dissolution of the test portion

Reading (individual

determination)

The measured numerical value from a single unit of test solution

Reportable value A summary value of individual readings, such as an average, from

one or more units of a test solution. Replication may also occur

across any level of the study design

Table 6.2 An analytical procedure for solid dosage coated pills

Terminology Description

Laboratory

sample

100 coated pills

Analytical

sample

20 pills are removed from the laboratory sample and are crushed together in a

mortar and pestle (i.e., composted)

Test portion Replicate 1: 1 gram crushed powder

aliquot from analytical sample

Replicate 2: 1 gram crushed pow-

der aliquot from analytical sample

Test solution Replicate 1: Test portion is dissolved

in 1 L solvent

Replicate 2: Test portion is

dissolved in 1 L solvent

Reading (indi-

vidual

determination)

Reading 1 of rep-

licate 1: test

solution

Reading 2 of rep-

licate 1: test

solution

Reading 1 of

replicate 2: test

solution

Reading 2 of

replicate 2: test

solution

Reportable

value

Average value of four readings

194 6 Analytical Procedures



6.2.2 Measurement Error Models

In this chapter, we consider the reportable value to be the key output from an

analytical procedure and the focus of any investigation. In many cases, a particular

analytical procedure may be used for different applications, with a different defi-

nition for the reportable value in each application. However, for purposes of

discussion in this chapter, the term “reportable value” is used with the understand-

ing that it may not be unique to a particular analytical procedure. A model that is

useful for representing a reportable value is

Reportable Value ¼ True Value þ Systematic Bias þ Random Error ð6:1Þ

where the true value and the systematic bias are fixed constants and the random

error assigns a different error value to each reportable value. This relationship is

represented symbolically as

Y ¼ τ þ β þ E ð6:2Þ

where Y represents the reportable value, τ (tau) is the true value, β (beta) is the

systematic bias, and E is a random error with mean 0 and variance σ2. (Note that β is
not to be confused with its use as a regression slope in Sect. 2.12.) Model (6.2) uses

the convention described in Sect. 2.12.7 of representing constants with Greek letters

and random effects with upper case Latin letters. In many applications, σ2 may be

further decomposed into components that represent the various causes of

variability.

6.2.3 Accuracy

In this text, accuracy concerns the magnitude of the systematic bias, β. The bias is
defined as the long-run average of the difference, Y � τ. Note that bias can only be

determined if the true value, τ, is known. USP <1225> notes that a reference

standard or a well-characterized procedure can be used to assign the value of τ. For
relative content procedures used for large molecules, accuracy cannot be defined in

this manner. Relative content procedures, sometimes referred to as relative purity

procedures, include such procedures as size exclusion and cation exchange chro-

matography. Generally, minor species observed in purity procedures are product

related variants or degradants, and orthogonal procedures are typically not available

to provide a value for τ. Thus, the accuracy of the measurement as defined in this

context cannot be independently confirmed. In cases where τ is not available, ICH
Q2 (2005) states accuracy may be inferred once precision, linearity, and specificity

have been established.
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6.2.4 Precision

Precision of an analytical procedure is the degree of agreement among reportable

values when the procedure is applied repeatedly to multiple samplings (possibly

under different conditions) of a homogeneous test solution. The precision of an

analytical procedure is quantified by the magnitude of the variance σ2, or alterna-
tively in terms of the standard deviation, σ. The standard deviation is the preferable
measure of precision because it has the same measurement units as Y. The lesser the
value of σ, the better the precision. Precision of a test procedure may be influenced

by factors that vary during the normal use of the analytical procedure. These are

called ruggedness factors, and include factors such as analyst, day, and instrument.

6.3 Stage 1: Procedure Development (Pre-validation)

In order to maximize the likelihood of a successful validation, it is imperative that

all aspects of the procedure be well understood prior to the validation.

Pre-validation work allows one to best design the experiment employed in the

procedure validation. Martin et al. note that pre-validation experiments can be

leveraged to support the validation and may reduce work in the validation itself.

A lack of pre-validation work will often lead to a failed validation and costly

rework.

The following series of questions provided by the USP Statistics Expert Team

(2016) should be considered during pre-validation in order to ensure a successful

validation experiment.

1. What are the allowable ranges for operational parameters such as temperature

and time that impact the performance of the analytical procedure?

• Robustness of these ranges can be determined using statistical design of

experiments (DoE) as described in Chap. 3.

2. Are there ruggedness factors that impact precision?

• Factors such as analyst, day, and instrument that vary in routine use and impact

the precision of a test procedure are called ruggedness factors. When rugged-

ness factors impact precision, reportable values within the same ruggedness

grouping (e.g., analyst) are correlated. Depending on the strength of the

correlation, this may necessitate a statistical analysis that appropriately

accounts for this dependence. Ruggedness factors can be identified empirically

during pre-validation or based on a risk assessment. This topic is addressed in

more detail in Sect. 6.4.10.

3. Are statistical assumptions for data analysis reasonably satisfied?
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• These assumptions typically include normality, homogeneity of variance, and

independence of reportable values. It is useful during pre-validation to employ

statistical tests or visual representations to help answer these questions. USP

<1010> provides information on this topic as does Sect. 2.12.2.

4. What is the required analytical range for the procedure?

5. Do accepted reference values or results from an established procedure exist for

validation of accuracy?

• If not, ICH Q2 states accuracy may be inferred once precision, linearity, and

specificity have been established.

6. How many individual readings will be averaged to form a reportable value?

• To answer this question, it is necessary to understand the contributors to the

procedure variance and the procedure’s ultimate purpose. Estimation of var-

iance components during pre-validation provides useful information for mak-

ing this decision. A good rule of thumb is to replicate against the source

representing the largest component of variance.

7. What are appropriate validation acceptance criteria?

• We provide discussion on this topic throughout Sect. 6.4.

8. How large a validation experiment is necessary?

• Validation experiments should be properly powered to ensure there are suffi-

cient data to conclude accuracy and precision can meet pre-specified accep-

tance criteria. Computer simulation is a useful tool for performing power

calculations as discussed in Sect. 6.4.8.

Based on the answers to these and similar questions, a suitable validation

experimental protocol may be designed.

6.4 Stage 2: Procedure Performance Validation
(Qualification)

As noted in ICH Q2, the objective of validation of an analytical procedure is to

demonstrate that it is suitable for its intended purpose. Suitability for intended

purpose can be expressed in several ways. For instance, when a reportable value is

used to disposition a product batch, suitability may be expressed in terms of

decision error rates (e.g., passing an unacceptable batch, or failing an acceptable

batch). In other cases, it may be sufficient to define suitability by placing limits on

the quality metrics of the analytical procedure itself (e.g., maximum bias or

precision). The life cycle approach suggests that these suitability metrics be

documented in an analytical target profile (ATP) statement that guides quality

decision making at all stages of the analytical procedure life cycle.
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As discussed in the introduction, the term validation aligns with the process

described in the USP document <1225>. In the life cycle approach described by

Martin et al., this validation process is referred to as qualification.

The validation experiment is the culmination of all the investigational work

needed to determine the operational details of the procedure. These details include

selected inputs, operating conditions, equipment, limits, ranges, replication strat-

egy, and other factors thought to potentially influence the outcome. The validation

experiment is the final check that a newly developed procedure is fit for use.

Traditionally, validation of accuracy and precision provide the essential evi-

dence that a procedure meets the requirements for the intended analytical applica-

tion. Accordingly, we focus on these two topics in this section. Other factors that

are typically characterized in a validation experiment are more descriptive in nature

(e.g., range, detection, and quantitation limits), or more internal to the analytical

procedure (e.g., linearity). For example, the impact of linearity is captured during

DoE, repeatability, and intermediate precision studies because each experiment

requires a calibration that includes the impact of the linearity. This is important

because the decision rule and ATP provide an overarching criterion for the valida-

tion study, and require identification and quantification of all potential uncertainty

components. For a full understanding of other characteristics, the reader should

consult USP <1225>.

6.4.1 Experimental Design for Validation of Accuracy
and Precision

A single experimental design will allow validation of both accuracy and precision.

As will be discussed, individual assessment of accuracy and precision is not

generally an effective approach. Such an approach is first described, and then better

approaches that address bias and precision together are presented.

An example is provided to demonstrate the statistical analysis that follows. This

example considers validation of a test procedure using high performance liquid

chromatography (HPLC). The measured drug substance (DS) is a USP compendial

substance, so information concerning τ is available. Three different quantities of

reference standard were weighed to correspond to three different percentages of the

test concentrations: 50, 100, and 150%. The unit of measurement for the reportable

value is the mass fraction of DS expressed in units of mg/g and τ ¼ 1000 mg=g for
all three concentrations. The DS product specification is from 980 to 1020 mg/g

(see Weitzel 2012). Similar experiments are often established with levels expressed

as a percent of the API label claim for the drug (as opposed to the weight of the

entire tablet). Table 6.3 presents the n¼ 12 reportable values and the computed

statistics.
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To begin, the following two assumptions are made:

1. Each row in Table 6.3 is independent. In Sect. 6.4.10 and Sect. 6.4.11, the

addition of ruggedness factors that invalidate this assumption is discussed. For

example, consider the ruggedness factor “day.” Suppose the experiment had

been run over four days. Each day a reportable value was obtained from each of

the three concentration levels: 50, 100, and 150. If there is variation in the

procedure across days, then reportable values made on the same day are corre-

lated and the assumption of independence is violated.

2. The standard deviation of the reportable value is constant across all three

concentration levels. Discussion of how to proceed if this assumption is not

met is provided in Sect. 6.4.9.

6.4.2 Confidence Intervals for Accuracy and Precision

The model in Eq. (6.2) is used to represent the data in Table 6.3 as

Yij ¼ τi þ βi þ Eij

i¼ 1, . . . , c concentration levelð Þ; j ¼ 1, . . . r;
ð6:3Þ

where Yij is the jth reportable value in the ith concentration level, τi is the known

true value of the ith concentration level, βi is the procedure bias in the ith concen-

tration level, and Eij is a random error specific to jth reportable value in the ith

concentration level. The random error is assumed to have a normal distribution with

mean 0 and variance σ2. For the data in Table 6.3, c ¼ 3, r ¼ 4, and so the total

sample size is n ¼ c� r ¼ 12. We present results for computing confidence

intervals on βi and σ2 that can be used for validation of accuracy and precision.

Table 6.3 Example data set for procedure validation

Test concentration (%) Test solution (plate or run) Reportable value (mg/g)

50 1 1000.57

50 2 996.93

50 3 1002.4

50 4 994.91

100 5 994.16

100 6 992.72

100 7 1000.03

100 8 1004.89

150 9 1002.53

150 10 1004.83

150 11 998.17

150 12 994.15
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6.4.2.1 Case 1: Bias Is Constant Across Concentration Levels

In this case, it is assumed thatβi ¼ β across all c concentration levels. Note this does
not require that τi be equal across concentration levels. Since there are an equal

number of reportable values for each concentration level, the estimator for β is

β̂ ¼

Xc

i¼1

�Yi � τið Þ

c
: ð6:4Þ

The bounds for a 100 1� αð Þ% two-sided confidence interval for β are

L¼ β̂ � t1�α=2:n�1

ffiffiffiffiffi
S2

n

r

U ¼ β̂ þ t1�α=2:n�1

ffiffiffiffiffi
S2

n

r

�Yi ¼

Xr

j¼1

Yij

r

�Y ¼

Xc

i¼1

Xr

j¼1

Yij

n

S2 ¼

Xc

i¼1

Xr

j¼1

Yij � �Y
� �2
n� 1

:

ð6:5Þ

Validation for precision typically requires only an upper bound, since it is

only problematic if the standard deviation is too large. A 100 1� αð Þ% upper

bound on σ is

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð ÞS2
χ2α:n�1

s
: ð6:6Þ

Note that (6.6) can be calculated with no knowledge of τi. Thus, although the

true value is required to estimate accuracy, it is not needed to estimate precision.

For the data shown in Table 6.3, τi ¼ τ ¼ 1000 mg/g for each concentration

level. The calculated statistics are �Y1 ¼ 998:70, �Y2 ¼ 997:95, �Y3 ¼ 999:92,
�Y ¼ 998:86, and S2 ¼ 18:55. Equation (6.5) is now simplified since all τi are
equal and provides the 90% confidence interval on β
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L¼ �Y � τ � t1�α=2:n�1

ffiffiffiffiffi
S2

n

r

L¼ 998:86� 1000� 1:796

ffiffiffiffiffiffiffiffiffiffiffi
18:55

12

r
¼ �3:38 mg=g

U ¼ �Y � τ þ t1�α=2:n�1

ffiffiffiffiffi
S2

n

r

U ¼ 998:86� 1000þ 1:796

ffiffiffiffiffiffiffiffiffiffiffi
18:55

12

r
¼ 1:09 mg=g

ð6:7Þ

Equation (6.6) provides the upper 95% confidence bound on σ

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð ÞS2
χ2α:n�1

s

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 1ð Þ18:55

4:57

r
¼ 6:68 mg=g

ð6:8Þ

6.4.2.2 Case 2: Bias Changes Across Concentration Levels

In this case, it is necessary to estimate the bias separately for each concentration

level. However, since the standard deviation is assumed equal across all concen-

tration levels, it is still possible to use all the data to estimate σ2. This is referred to

as “pooling.” In order to pool the variance estimates, an analysis of variance table is

constructed as shown in Table 6.4 (see Sect. 2.12.7 for more on the analysis of

variance).

where

S2C ¼
r
Xc

i¼1

�Yi � �Yð Þ2

c� 1

S2E ¼

Xc

i¼1

Xr

j¼1

Yij � �Yi

� �2
c r � 1ð Þ :

ð6:9Þ

Table 6.4 Analysis of

variance
Source of variation Degrees of freedom Mean square

Concentration c�1 S2C
Error c r � 1ð Þ S2E
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Since the bias is different across concentration levels, a separate confidence

interval is needed for each concentration level. The bounds for a 100 1� αð Þ%
two-sided confidence interval for βi are

Li ¼ �Yi � τi � t1�α=2:c r�1ð Þ

ffiffiffiffiffi
S2E
r

r

Ui ¼ �Yi � τi þ t1�α=2:c r�1ð Þ

ffiffiffiffiffi
S2E
r

r ð6:10Þ

where �Yi is defined in (6.5) and S2E is defined in (6.9).

A 100 1� αð Þ% upper bound on σ is

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c r � 1ð ÞS2E
χ2α:c r�1ð Þ

s
: ð6:11Þ

The analysis of variance table for the data in Table 6.3 is shown in Table 6.5.

Using Eq. (6.10) a 90% two-sided confidence interval for the bias in the 100%

concentration level is

L¼ �Yi � τi � t1�α=2:c r�1ð Þ

ffiffiffiffiffi
S2E
r

r

L¼ 997:95� 1000� 1:833

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:796

4

r
¼ �6:33 mg=g

U ¼ �Yi � τi þ t1�α=2:c r�1ð Þ

ffiffiffiffiffi
S2E
r

r

U ¼ 997:95� 1000þ 1:833

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:796

4

r
¼ 2:23 mg=g:

ð6:12Þ

The confidence intervals for the 50 and 150% concentration levels are made in a

similar fashion.

A 95% upper bound on the (pooled) precision from (6.11) is

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c r � 1ð ÞS2E
χ2α:c r�1ð Þ

s

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 21:796ð Þ

3:33

r
¼ 7:68 mg=g:

ð6:13Þ

Table 6.5 Analysis of

variance for example data
Source of variation Degrees of freedom Mean square

Concentration 2 S2C ¼ 3:953

Error 9 S2E ¼ 21:796
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Note this upper bound is slightly greater than that computed in Case 1 because

there are fewer degrees of freedom associated with the pooled estimate of σ (11 in

Case 1 and 9 in Case 2). A plot of the data in Table 6.3 is shown in Fig. 6.1.

Note that the reportable values are centered at roughly the same value across

levels of concentration. This suggests the bias is constant and that Case 1 is the

more appropriate procedure. Also note that the spread appears constant across

concentration. This is consistent with the second assumption noted in Sect. 6.4.1.

6.4.3 Using Confidence Intervals to Validate Accuracy
and Precision

The confidence intervals provided in the previous section can be used to validate

accuracy and precision individually. Because bias can be either positive or nega-

tive, it is customary to perform a statistical test of equivalence to validate accuracy.

Tests of equivalence are discussed in Sect. 2.11. Assume Case 1 is appropriate and

Eq. (6.5) is used to compute a 90% two-sided confidence interval on the bias. A

pre-selected value of the equivalence acceptance criterion (EAC) to validate accu-

racy was selected to be 5 mg/g or 0.5% of the true value. (Section 6.4.4 discusses

considerations in selecting an appropriate EAC.) Since the 90% confidence interval

from L¼�3:38 mg/g to U¼ 1.09 mg/g falls completely in the range from –5 to

+5 mg/g, the statistical equivalence test is passed, and it can be claimed the

procedure is validated for accuracy.
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Fig. 6.1 Plot of data in Table 6.3
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To validate precision, the upper bound on the standard deviation must be less

than a pre-selected acceptance criterion. In our example, assume precision is

validated if it can be shown that the standard deviation is less than 7 mg/g. Since

the computed 95% upper bound in this example, U¼6.68 mg/g, is less than the

acceptance criterion of 7 mg/g, the procedure has been validated with respect to

precision.

6.4.4 Validation Criteria for Accuracy and Precision

As discussed in Sect. 2.11, acceptance criterion should ideally be defined by the

analytical scientist and not the statistician. The criterion must be meaningful in the

sense that it must define what is meant by “fit for purpose.” When validating

accuracy and precision individually, this is the most difficult part of the analysis.

This is because a procedure that has very small bias can accept a greater standard

deviation than a procedure with a large bias. Similarly, a procedure with a relatively

small standard deviation can accept a relatively large bias. For this reason, the

criteria for these two attributes are linked, making it difficult to get a good

assessment of individual criteria. Many companies, as well as industry standards

organizations, have default limits that are used for all validations. These may be

based on industry benchmarking, but it is arguable whether such an approach truly

demonstrates “fit for purpose.” For this reason, and to account for the relationship

between accuracy and precision as it relates to overall performance, we recommend

two other approaches for validation of accuracy and precision. We present these

approaches in the next two sections.

6.4.5 Validation of Accuracy and Precision Using Statistical
Intervals

Hubert et al. (2004, 2007a, b) proposed validation of both accuracy and precision

simultaneously rather than individually as described in the previous section. The

reasoning is to take advantage of the natural tradeoffs between these two charac-

teristics. For example, a procedure with a relatively small standard deviation can

accept a greater bias than a procedure with a larger standard deviation. Because the

intended purpose of an analytical procedure is to provide accurate and precise

measurements, one may consider that the procedure is validated if it is shown to

provide a high degree of assurance that future measured values will be close to their

true values. A criterion that can be used to simultaneously validate accuracy and

precision seeks to ensure
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Pr �λ < Y � τ < λð Þ � P, or
Pr �λþ τ < Y < λþ τð Þ � P

ð6:14Þ

where λ > 0 is an acceptable limit defined a priori to be consistent with the purpose

of the procedure. The term P is a desired probability value (e.g., P ¼ 0:90).
For example, a desired goal for a procedure that reports concentration in mg/mL

may be written in the following manner: “The procedure must ensure that at least

90% of the time, measurement error (i.e., the difference between the reported value

and the true value) is no greater than 0.5 mg/mL.” In terms of Eq. (6.14), this means

λ ¼ 0:5 mg/mL and P ¼ 0:90.
Equation (6.14) can be interpreted as either (1) the probability that the next

reportable value falls in the range from�λþ τ to λþ τ is greater than or equal to P,
or (2) the proportion of all future reportable values falling between �λþ τ and λ
þτ is greater than or equal to P. Accordingly, two statistical intervals have been

proposed for validating Eq. (6.14).

1. A prediction interval of reportable values (also referred to as an expectation

tolerance interval) and

2. A tolerance interval of reportable values (also referred to as a content tolerance

interval).

The prediction interval validates that (6.14) is true for the next reportable value,
whereas the tolerance interval validates that (6.14) is true for all future reportable

values with a specific level of confidence. Since the inference associated with the

tolerance interval concerns a larger set of values, the tolerance interval is always

wider than the prediction interval.

Both intervals can be used in the following manner to validate accuracy and

precision simultaneously:

1. Compute the appropriate statistical interval using Eq. (2.21) for the prediction

interval and Eq. (2.23) for the tolerance interval.

2. Compute a 100P% prediction interval or a 90% tolerance interval that contains

100P% of the population. A 90% confidence level for the tolerance interval will

provide a statistical test with a type I error rate (probability of rejecting the null

hypothesis when it is true) of approximately 5%.

3. If the computed interval falls completely in the range from �λþ τ to λþ τ,
criterion (6.14) is satisfied and the procedure is validated for both accuracy and

precision.

When computed by classical statistical methods (as we do below in this section)

the interpretation of these intervals is as follows. When the interval estimation

methodology is applied repeatedly to many (i.e., an infinite number) of hypothetical

future data sets of size n from possibly many different populations, each prediction

interval obtained has a 100P% probability of containing the hypothetical next

reportable value. Similarly, each 100 1� αð Þ% tolerance interval has a 100 1� αð Þ
%probability of containing at least 100P% of hypothetical future reportable values.

6.4 Stage 2: Procedure Performance Validation (Qualification) 205

http://dx.doi.org/10.1007/978-3-319-50186-4_2
http://dx.doi.org/10.1007/978-3-319-50186-4_2


Our inference about the truth (or not) of relationship (6.14) is thus based on the

properties of the statistical procedure. Whether (6.14) is true for any particular

sampled population is unknown because it depends on parameters whose values are

unknown. In Sect. 6.4.7, Bayesian interval estimation is introduced as a more direct

alternative to validation using (6.14).

Huber et al. recommend the testing strategy based on the prediction interval.

Yang and Zhang (2015) recommend the tolerance interval. The tolerance interval is

the appropriate choice if one desires a statistical test in which the type I error rate is

controlled. The tolerance interval is therefore more consistent with the approach

described in Sects. 6.4.2 and 6.4.3.

To demonstrate, consider Case 1 (bias constant) and analyze the data in

Table 6.3. Suppose (6.14) is defined so that λ ¼ 0:015� τ ¼ 15 mg=g and

P ¼ 0:90. Thus, we seek to validate the claim

Pr �λþ τ < Y < λþ τð Þ � P

Pr �15þ 1000 < Y < 15þ 1000ð Þ � 0:90

Pr 985 < Y < 1015ð Þ � 0:90:

ð6:15Þ

From Eq. (2.21) the 90% prediction interval is computed as

L¼ �Y � t 1þPð Þ=2:n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

� �
� S2

s

L¼ 998:86� 1:796

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
� 18:55

s
¼ 990:8 mg=g

U ¼ �Y þ t 1þPð Þ=2:n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

� �
� S2

s

U ¼ 998:86þ 1:796

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
� 18:55

s
¼ 1006:9 mg=g:

ð6:16Þ

From Eq. (2.23) using an exact K value of 2.414, the 90% tolerance interval that

includes 90% of the future population of reportable values is

L¼ �Y � K
ffiffiffiffiffi
S2

p

L¼ 998:86� 2:414
ffiffiffiffiffiffiffiffiffiffiffi
18:55

p ¼ 988:5 mg=g

U ¼ �Y þ K
ffiffiffiffiffi
S2

p

U ¼ 998:86þ 2:414
ffiffiffiffiffiffiffiffiffiffiffi
18:55

p ¼ 1009:3 mg=g:

ð6:17Þ

Since both intervals (6.16) and (6.17) fall within the range from 985 to 1015

defined in (6.15), both intervals validate the procedure. As described, the tolerance
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interval is wider than the prediction interval, since it makes an inference to a larger

set of values. It is also true that the tolerance interval provides a statistical test with

a type I error rate near 5%.

One final comment concerning application of this approach. When validated

individually, each test has a type I error rate of 5% and the combined error rate can

be as high as 10%. Thus, it is not unreasonable to apply a 10% type I error rate with

the simultaneous methods described in this section. This means one could use an

80% confidence level for the two-sided tolerance interval. In the present applica-

tion, the 80% tolerance interval that contains 90% of all future reportable values is

from 989.6 to 1008.1 mg/g. This compares to the previously computed 90%

tolerance interval of 988.5 mg/g to 1009.3 mg/ml.

6.4.6 Validation of Accuracy and Precision Based on Out-of-
Specification Rates

A typical application for an analytical procedure is lot (batch) release. After a lot is

manufactured, a reportable value of the product quality is obtained using the

analytical procedure. If the reportable value falls within the lower specification

limit (LSL) and upper specification limit (USL), it is deemed as satisfying the

quality requirement. However, if it falls outside of this range, action must be taken

to determine the lot disposition. Thus, an obvious criterion for procedure validation

is the probability that a reported value is out-of-specification (OOS). If the process

is operating as designed, then a reported OOS alarm in most cases is “false,” and

can lead to unnecessary time and expense in further examination of the lot. The

probability statement in (6.14) can be adapted to consideration of the OOS rate by

defining�λþ τ ¼ LSL and λþ τ ¼ USLwhere LSL and USL are the process lower

and upper specifications, respectively, and it is assumed the process is symmetric

about τ (i.e., LSLþ USLð Þ=2 ¼ τ). Thus, (6.14) is rewritten as

Pr �λþ τ < Y < λþ τð Þ � P

Pr LSL < Y < USLð Þ � P

π � 1� P

ð6:18Þ

where π ¼ 1� Pr LSL < Y < USLð Þ is the probability of an OOS signal. A 95%

upper bound can be constructed on π using the process described in Sect. 2.6.5. If

the upper bound is less than 1�P, then (6.18) is satisfied and the analytical

procedure is validated.

To demonstrate for the present Case 1 example, LSL¼ 980 mg/g, USL¼
1020 mg/g, �Y ¼ 998:86, S2 ¼ 18:55, and P¼ 0.90. Following the instructions

from Eqs. (2.17) to (2.19) with α ¼ 0:10 in (2.19), we compute KLSL ¼ 4:38 and

KUSL ¼ 4:91. Since both of these values exceed n� 1ð Þ= ffiffiffi
n

p ¼ 12� 1ð Þ= ffiffiffiffiffi
12

p ¼
3:175, K* ¼ min 4:38; 4:91ð Þ ¼ 4:38, λU ¼ 9:51, and U ¼ 0:003. Since this upper
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bound is less than 1�P¼ 1-0.90¼ 0.10, the procedure is validated against the OOS

criterion.

There is an interesting relationship between the upper bound on π and the

tolerance interval used to validate (6.14) when �λþ τ ¼ LSL and λþ τ ¼ USL.
To demonstrate, consider a situation where there is only an upper specification,

USL. Let U1 represent the 95% upper tolerance bound that exceeds 100P% of the

population computed with (2.28) and the exact value of K1. Let U2 represent the

upper 95% confidence bound computed using KUSL in Eq. (2.14). WhenU1 ¼ USL,
it must be true that U2 ¼ 1� P. Thus, the two rules for validation are exactly the

same, and have a type I error rate of 0.05. Although the situation with two-sided

specifications involves approximations, the two approaches will also generally

provide the same result, and the type I error rate is very close to 0.05.

One final adjustment is required for application of this approach. To this point,

only the measurement error has been quantified. However, if specifications are used

to define “fitness for purpose,” it is necessary to also account for process variation.

To do this, let σ2P represent the variance of the manufacturing process and σ2 the
variance of the reportable value. (The statistic S2 is an estimator for σ2). Now define

ρ ¼ σ2P
σ2P þ σ2

: ð6:19Þ

which represents the proportion of the total variance in the reportable value due to

the process. An empirical estimate of σ2P might be available from process data, but if

not, a subject manner expert can generally provide a reasoned guess for ρ. For
example, if the procedure is a bioassay, it is expected that variance due to the

analytical procedure is greater than the process variance, and so a value of ρ ¼ 0:2
might be reasonable. In contrast, a procedure with relatively little measurement

error might employ ρ ¼ 0:8.
With a known or well-informed value for ρ, the total of process and measure-

ment variance is written as

σ2P þ σ2 ¼ σ2
σ2P
σ2

þ 1

� �
¼ σ2

ρ

1� ρ
þ 1

� �
¼ σ2

1

1� ρ

� �
: ð6:20Þ

The confidence interval for π is now computed as before, but with S2 replaced

with S2* ¼ S2 1
1�ρ

h i
.

In the present example, assume that ρ ¼ 0:5. Performing the previous calcula-

tions with S2* ¼ S2 1
1�ρ

h i
¼ 18:55 1

1�0:5

	 
 ¼ 37:1, we obtain KLSL ¼ 3:096 and

KUSL ¼ 3:471, K* ¼ min 3:096; 3:471ð Þ ¼ 3:096, λU ¼ 6:545, and U ¼ 0:029.
Since this upper bound is less than 1�P¼1-.90¼0.10, the procedure is validated

against the OOS criterion.

Burdick et al. (2005) provide an approach for estimating false failure rates and

missed fault rates. As noted earlier, the false failure rate is generally very close to
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the observed OOS rate. However, it is also of interest to know if the missed fault

rate is acceptably low. By defining criteria based on misclassification rates, a

procedure can be validated using upper confidence bounds on these rates.

Other approaches for establishment of criteria are provided by Chatfield and

Borman (2009).

6.4.7 A Bayesian Approach

It is also possible to estimatePr �λ < Y � τ < λð Þdirectly using a Bayesian approach
(see Sect. 2.13 for a discussion of Bayesian statistics). The validation criterion is thus

satisfied if this estimated probability exceeds P. A Bayesian tolerance interval is

provided in Wolfinger (1998) and can be computed using the statistical software

package WinBUGS (Ntzoufras 2009 or Spiegelhalter et al. 1996).

The WinBUGS code required for Case 2 is shown below:

# data

Level[] Y[]

1 1000.57

1 996.93

1 1002.4

1 994.91

2 994.16

2 992.72

2 1000.03

2 1004.89

3 1002.53

3 1004.83

3 998.17

3 994.15

END

# more data

list(n=12, c=3, tau=1000)

model{

# Priors

for(i in 1:c){ beta[i] ~ dnorm(0,0.000001) }

sigma ~ dunif(0, 100)

precision <- pow(sigma,-2)

# Likelihood

(continued)
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for(obs in 1:n){

Dif[obs] <- Y[obs] - tau

Dif[obs] ~ dnorm (beta[ Level[obs] ],precision)

}

}

Boxplots that compare the posterior distributions for beta[i] are shown in

Fig. 6.2. The distributions are labeled with the concentration level index (i.e.,

[1]¼ 50, [2]¼ 100, [3]¼ 150). These boxplots are created by WinBUGS and are

different than those described in Sect. 2.4. Boxes represent inter-quartile ranges and

the solid black line at the (approximate) center of each box is the mean. The arms of

each box extend to cover the central 95% of the distribution. The horizontal line

behind the boxes is the overall mean of the posterior means.

The two-sided 90% credible interval for beta2 is�5.885 to +3.307 which may be

compared to the classical frequentist two-sided 90% confidence interval computed

in (6.12) of �6.33 to +2.23. The upper 95% credible bound for sigma is 8.49 which

may be compared to the classical frequentist upper 95% confidence bound of 7.68

shown in (6.13). Figure 6.2 supports the conclusions from Fig. 6.1 that Case

1 (constant bias) provides a more appropriate model for these data.

The WinBUGS code required for Case 1 is shown below:

[1] [2]
[3]

box plot: beta

-5.0

0.0

5.0

Fig. 6.2 Comparison of

posterior distributions
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# data

Y[]

1000.57

...

END

# more data

list(n=12, tau=1000)

# Let WinBUGS pick initials

model{

# Priors

beta ~ dnorm(0,0.000001)

sigma ~ dunif(0, 100)

precision <- pow(sigma,-2)

# Likelihood

for(obs in 1:n){

Dif[obs] <- Y[obs] - tau

Dif[obs] ~ dnorm (beta,precision)

}

}

The posterior sample obtained from executing this code was imported into R for

further analysis. This sample consists of 300,000 pairs of values for β and σ drawn

from their joint posterior. A two-sided 90% central credible interval for β can be

obtained using the R function

quantile(beta,c(0.05,0.95))

The interval is �3.50 to +1.22 mg/g which is comparable to the corresponding

classical frequentist interval of �3.38 to +1.09 that was computed in (6.7).

A one-sided upper 95 credible bound for sigma can be obtained using the

following R function:

quantile(sigma,c(0.95))

The resulting upper bound is 7.204 mg/g which is comparable to the classical

frequentist upper bound of 6.68 mg/g computed in (6.8).
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It is of interest to estimate the posterior probability that 90% of future values will

be within τ � λ where τ ¼ 1000 and λ ¼ 15. This can be obtained using the

following two lines of R code:

Content <- pnorm(tau + lambda, tau + beta, sigma) - pnorm(tau

- lambda, tau + beta, sigma)

mean(Content >= 0.9)

The result is 0.989. Since this value is greater than 0.90¼ 90%, the method is

validated. The frequentist approach computes an upper bound on

Pr �λ < Y � τ < λð Þ using results from Sect. 2.6.5. An example of this approach

was given in (6.18) where λ ¼ 20:
A sample of 100,000 draws from the posterior predictive distribution of future

reportable results may be obtained using the following random normal R function:

Y.fut <- rnorm(100000,beta+tau,sigma)

The central two-sided 90% credible posterior predictive interval of future values

may be obtained using the R function

quantile(Y.fut,c(0.05,0.95))

The resulting interval is from 990.3 to 1007.5 which may be compared to the

classical prediction interval of 990.8–1006.9 computed in (6.16).

It is of interest to estimate the posterior predictive probability that future values

will be within τ � λ. This can be obtained using the following two lines of R code:

Y.fut.in <- (tau - lambda <= Y.fut) & (Y.fut <= tau + lambda)

mean(Y.fut.in)

The resulting probability is 0.989. There is no comparable classical frequentist

estimate available.

It is of interest to estimate the posterior predictive probability that future values

will be OOS (outside 980 to 1020). The following two lines of R code will provide

this estimate:

OOS <- (Y.fut <= 980) & (1020 >= 1020)

mean(OOS)
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The resulting probability is 0.00137 which can be compared to the result

obtained previously using classical frequentist approaches of 0.003 shown in

Sect. 6.4.6.

A Bayesian content tolerance interval to contain 90% of future values with 90%

credibility can be obtained using Algorithm 11.2 of Krishnamoorthy and Mathew

(2009). The R code is a bit more involved because it requires an iterative search.

The implementation of this algorithm in R is given below.

P<-0.90; C<-0.90

L<- tau + beta + qnorm((1-P)/2,0,sigma)

U<- tau + beta + qnorm((1+P)/2,0,sigma)

ndraws<-length(L)

mu.bar <- mean(c(L,U))

intervals<-1000 # 10000 takes too long

mu.2.range <- seq(min(U),max(U), ( max(U)-min(U) )/intervals

)

PP <- matrix (rep(NA,3*length(mu.2.range)),ncol=3)

i <-0

for(mu.2 in mu.2.range){

i<-i+1

mu.1 <- -mu.2 + 2*mu.bar

PP[i,]<-c(mu.1,mu.2,mean((U<=rep(mu.2,ndraws))&(L>=rep

(mu.1,ndraws))))

}

# select values in PP for which the proportion covered is

near C

# may need to adjust the factors of C to select a narrow range

of values close to C

PP.out<- PP[ (PP[,3]<=1.02*C) & (PP[,3]>=0.98*C),]

TI <- c(mean(PP.out[,1]),mean(PP.out[,2]))

TI

The resulting Bayesian content tolerance interval is 986.5 to 1011.3 which is

comparable to the 988.5–1009.3 as computed in (6.17).

While the Bayesian results are quite close to those obtained using classical

statistical methods, the interpretation of these intervals and probabilities are differ-

ent from the frequentist interpretations. The Bayesian results were obtained using

relatively uninformative prior distributions for β and σ. Had more informative

distributions been available, the estimates could be much different, and arguably

more informative. The other difference is that the Bayesian methodology replaces

analytical solutions (some of which are necessarily approximate) with computer
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algorithms for which there are no approximations. However, these computer algo-

rithms have their own challenges related to Markov Chain Monte-Carlo (MCMC)

convergence verification and the requirement for large MCMC samples to mini-

mize simulation error. An additional advantage of the Bayesian approach is that it is

easily extended to more complex models for which frequentist analytical

approaches are intractable.

6.4.8 Power Considerations

As noted in Sect. 6.3, it is important to conduct pre-validation work to gain

understanding of the procedure. Part of this work should include a power analysis

to determine the probability of passing validation under given scenarios. Computer

simulation is extremely useful for this purpose. Statistical power is defined as the

probability that one meets the acceptance criterion given a true value of the

parameter of interest. To demonstrate, a simulation program was written to deter-

mine the power of a validation test based on the requirement that the probability of

an OOS (π) is less than 1�P¼ 0.10 with a type I error rate of 5%. The specifications

are LSL¼ 980 and USL¼ 1020. The test is to be conducted as described in

Sect. 6.4.6. The simulation was conducted with 100,000 iterations. Table 6.6 pre-

sents the results for validation designs with n¼ 6, n¼ 12, and n¼ 20 using a 90%

confidence coefficient (type I error rate of 0.05). Table 6.7 reports the same design

with an 80% confidence coefficient (type I error rate of 0.10).

Note that the power in the last row where π ¼ 0:10 is the estimated type I error

rate. Since these values are all less than the desired rate (0.05 in Table 6.6 and 0.10

in Table 6.7), this provides an additional argument for applying an 80% confidence

coefficient on the confidence interval for π. The simulation results also show that

with the typical sample sizes used in a validation study, the criterion (1� P ¼ 0:10
in this case) must be much greater than the true value of π in order to provide a

reasonable chance of passing the validation.

Table 6.6 Power for several

designs with 90% confidence
True value of π n¼ 6 n¼ 12 n¼ 20

0.001 0.566 0.875 0.997

0.005 0.375 0.644 0.941

0.010 0.270 0.455 0.808

0.10 0.041 0.028 0.039

Table 6.7 Power for several

designs with 80% confidence
True value of π n¼ 6 n¼ 12 n¼ 20

0.001 0.775 0.968 0.999

0.005 0.586 0.842 0.983

0.010 0.455 0.684 0.919

0.10 0.087 0.068 0.086
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6.4.9 Violation of Homogeneity Across Concentration Levels

Procedures based on chemical or biological principles will sometimes demonstrate

different variances as concentrations vary. This violates one of the assumptions

made during discussions to this point. In such a situation, it is sometimes possible to

transform the data so that the standard deviations can be assumed equal across the

concentration range. The analyses that combine the data from all concentration

levels as described above can then be performed using the transformed data, with

appropriately transformed validation criteria.

It is extremely important that pre-validation work be used to determine neces-

sary transformations that will allow the pooling of data across concentration levels.

Failure to do so could lead to either unnecessary experimentation, or an under-

powered validation experiment. Section 4.3 of USP chapter <1032> presents an

excellent review of this topic. The normality transformations described in Sect.

2.6.10 also often stabilize the variance.

6.4.10 Experimental Designs to Incorporate Ruggedness
Factors

In order to validate a procedure across the total environment in which it is expected

to operate, it is sometimes necessary to manipulate ruggedness factors in the

experimental design. Examples of ruggedness factors include analysts, equipment,

and days. Table 6.8 reports the same data shown in Table 6.3, but with information

concerning the analyst that performed the preparation work for the assay.

We again assume that the reportable value has a constant variance across all

three concentration levels, and that bias is constant (Case 1) so that we may

Table 6.8 Example data set with ruggedness factors

Test concentration (%) Analyst Test solution (plate or run) Reportable value (mg/g)

50 1 1 1000.57

50 1 2 996.93

50 2 3 1002.4

50 2 4 994.91

100 3 5 994.16

100 3 6 992.72

100 4 7 1000.03

100 4 8 1004.89

150 5 9 1002.53

150 5 10 1004.83

150 6 11 998.17

150 6 12 994.15
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combine all concentration levels into a single data set. Unlike the previous analysis

with Table 6.3, the 12 rows in Table 6.8 are not independent unless analysts do not

impact the reportable value. For example, rows 1 and 2 were both prepped by

analyst 1. If analyst impacts the reportable value, the values in rows 1 and 2 are

more similar with each other than with the values in other rows of the table. In such

a situation, we state the responses made by the same analyst are correlated. We

described such a situation previously in Sects. 2.7 and 2.12.7.

In the present example, represent the reportable value with the statistical model

Yij ¼ τ þ Ai þ Eij

i ¼ 1, . . . , a analystð Þ; j ¼ 1, . . . r;
ð6:21Þ

where Yij is the reportable value for the j
th replicate of the ith analyst. The number of

analysts in this example is a¼ 6, and each analysts performs r¼ 2 independent

repetitions. The random error Ai represents between analyst variability. It is

assumed to have a mean of zero and a variance σ2A. The random error Eij is the

within analyst variability which has an assumed mean of zero and variance σ2E. The
parameter τ represents the true value (1000 mg/g for all concentration levels in our

example).

The ANOVA table for model (6.21) is shown in Table 6.9. Formulas for S2A and

S2E are provided in Table 2.16. The numerical values for the data in Table 6.8 are

shown in Table 6.10.

The model shown in (6.21) assumes that analyst is a random effect. That is, a

sample of six analysts used in the experiment is viewed as a random sample from a

population of analysts that will perform the procedure in the future. In some

situations, it may be reasonable to treat analyst as a fixed effect. This case is

considered in the next section.

The total variance associated with the procedure is the sum of the variance

components,σ2Total ¼ σ2A þ σ2E ¼ θ1 � θ2ð Þ=r þ θ2 ¼ θ1=r þ 1� 1=rð Þθ2. This sum
is called the intermediate precision. The estimator for the intermediate precision is

S2Total ¼
S2A
r
þ r � 1ð ÞS2E

r
: ð6:22Þ

Table 6.9 ANOVA for model (6.21)

Source of variation Degrees of freedom Mean square Expected mean square

Between analysts n1 ¼ a� 1 S2A θ1 ¼ σ2E þ rσ2A
Within analysts n2 ¼ a r � 1ð Þ S2E θ2 ¼ σ2E

Table 6.10 ANOVA, for

example
Source of variation Degrees of freedom Mean square

Between analysts n1 ¼ 5 S2A ¼29.165

Within analysts n2 ¼ 6 S2E ¼9.708
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Using the Satterthwaite approximation given in (2.120), the degrees of freedom

associated with this estimator is

m ¼ S4Total
S4A

r2 � n1
þ r � 1ð Þ2 � S4E

r2 � n2

ð6:23Þ

Using the data in Table 6.10,

S2Total ¼
29:165

2
þ 1� 1

2

� �
9:708 ¼ 19:437 ð6:24Þ

and

m ¼ 19:437ð Þ2
29:165ð Þ2
22 � 5

þ 2� 1ð Þ2 � 9:708ð Þ2
22 � 6

¼ 8:13 ¼ 8 roundedð Þ ð6:25Þ

Notice that S2Total ¼ 19:437 is greater than the estimate of the measurement

variability obtained when assuming all 12 rows of the data table are independent

S2 ¼ 18:55
� �

: This demonstrates the problem of not properly modeling the rugged-

ness effects to account for correlation. Namely, one will underestimate the true

procedure variance, and possibly validate a procedure that is not truly fit for purpose.

The prediction and tolerance intervals used for validation in the previous section

can be easily modified for this correlated condition. In particular, simply replace S2

with S2Total and the error degrees of freedom n� 1ð Þ with m (rounded to the nearest

integer). The formula for �Y remains unchanged. Thus, the 90% prediction interval is

computed as

L¼ �Y � t 1þPð Þ=2:m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a� r

� �
� S2Total

s

L¼ 998:86� 1:86

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
� 19:437

s
¼ 990:3 mg=g

U ¼ �Y þ t 1þPð Þ=2:m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a� r

� �
� S2Total

s

U ¼ 998:86þ 1:86

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12

� �
� 19:437

s
¼ 1007:4 mg=g

ð6:26Þ

The 90% tolerance interval that contains 90% of the population is computed as
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L¼ �Y � K
ffiffiffiffiffiffiffiffiffiffi
S2Total

q

L¼ 998:86� 2:59
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19:437

p ¼ 987:4 mg=g

U ¼ �Y þ K
ffiffiffiffiffiffiffiffiffiffi
S2Total

q

U ¼ 998:86þ 2:59
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19:437

p ¼ 1010:3 mg=g

ð6:27Þ

where

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a� r

� �
Z2

1þPð Þ=2 � m

χ20:1:m

vuuut

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

6� 2

� �
1:64ð Þ2 � 8

3:49

vuuut ¼ 2:59:

ð6:28Þ

Note that both of the computed intervals are wider than their counterparts

computed earlier (990.8 to 1006.9 for the prediction interval and 988.5 to 1009.3

for the tolerance interval). This difference occurs for two reasons:

1. S2Total is generally greater than S2 and
2. The error degrees of freedom, m, is generally less than n�1.

Thus, incorporation of ruggedness effects requires more experimental runs to

obtain the same power as a completely independent design. If during pre-validation

work a ruggedness factor has been discovered to not impact the intermediate

precision, do not include it in the analysis. This will needlessly decrease statistical

power.

The intervals in (6.26) and (6.27) can be recommended for validation as

described in this chapter. The same substitutions can be applied to the formulas

described in Sect. 6.4.6 to estimate OOS.

To finish the example, we now account for the process variation assuming ρ
¼ 0:5 and compute the tolerance interval using S2*Total ¼ S2Total= 1� ρð Þ ¼ 38.873.

The resulting tolerance interval from 986.1 to 1011.6 falls within the range from

LSL¼ 980 to USL¼ 1020, and the procedure is validated as fit for purpose.

We have considered the case where there is only a single ruggedness factor. If

more ruggedness factors are included, more power is lost for a fixed number of

experimental runs due to additional partitioning of σ2Total. Again, one is reminded to

not employ ruggedness factors unless they have a demonstrable impact on the

intermediate precision.

If a ruggedness factor can be more properly considered as a fixed effect rather

than a random effect, power will not be as dramatically impacted. This topic is

discussed in the next section.
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6.4.11 Incorporating Fixed Effect Ruggedness Factors

In some situations, ruggedness factors are more properly treated as fixed effects.

For example, suppose that a major contributor to the intermediate precision of an

analytical procedure is the instrument used in the procedure. Suppose there are four

instruments in the laboratory, and these will be the only instruments used to perform

the procedure in the foreseeable future. Since these are the only four instruments

that will be used when performing the procedure, instrument is a fixed effect. Even

though it is a fixed effect, differences among the instruments will contribute to the

total variation, since only one instrument will be selected for a given application.

Thus, it is still necessary to account for this component of variance in the interme-

diate precision.

As another example, Schwenke and O’Connor (2008) argue that in many cases,

analysts can be considered a fixed effect. They argue an analyst is a trained

professional proficient on the procedure through a lab-sponsored training program.

As such, they are viewed as fixed effects since the training program has made them

interchangeable. In many labs, only a small set of analysts perform a given

procedure. If they are all used in the validation process, then assuming analyst to

be fixed effect is a reasonable assumption.

Analysis of the data in Table 6.8 is now performed assuming analyst to be a fixed

effect. The statistical model used to describe the fixed design is

Yij ¼ τ þ αi þ Eij

i¼ 1, . . . , a analystð Þ; j ¼ 1, . . . r;
ð6:29Þ

where Yij is the reportable value for the j
th replicate of the ith analyst. The term αi is a

fixed unknown constant that represents the ith analyst and replaces the random

variable Ai shown in the random model (6.21). The variance of the a values of αi is
defined as

σ2α ¼

Xa
i¼1

α2i

a� 1
: ð6:30Þ

The random error Eij has an assumed mean of zero and variance σ2E. The
parameter τ represents the true value (1000 mg/g for all concentration levels in

our example). The total variance associated with the procedure is the sum of the

variance components, σ2Total ¼ σ2α þ σ2E.
Using an approximation described in Dolezal et al. (1998), all the formulas

described in the previous section can be used with a fixed effect by simply replacing

n1 with n�1 where

6.4 Stage 2: Procedure Performance Validation (Qualification) 219



n*1 ¼
n1 þ 2λ½ �2
n1 þ 4λ

λ¼ n1
2

S2A
S2E

n2 � 2

n2

� �
� 1

� �
:

ð6:31Þ

In the present example,

λ¼ 5

2

29:165

9:708

6� 2

6

� �
� 1

� �
¼ 2:507

n*1 ¼
5þ 2� 2:507½ �2
5þ 4� 2:507

¼ 6:673

m¼ 19:437ð Þ2
29:165ð Þ2
22�6:673

þ 2� 1ð Þ2 � 9:708ð Þ2
22 � 6

¼ 10:55 ¼ 11 roundedð Þ:

ð6:32Þ

Thus, the degrees of freedom used in the prediction and tolerance intervals has

increased from m ¼ 8 to m ¼ 11, and length of the intervals will be properly

reduced. In this problem, the 90% tolerance interval that contains 90% of the

population computed in (6.27) assuming random analysts is from 987.4 to

1010.3 mg/g. If analysts are treated as fixed, then the interval that results replacing

m ¼ 8 with m* ¼ 11 is from 988.3 to 1009.5 mg/g. Although the difference is

relatively modest in this example, this adjustment will have a major impact on

results when a¼ 2 or 3.

This example demonstrates the importance of identifying whether ruggedness

factors are fixed or random in the validation experiment. If the validation experi-

ment includes all levels of a ruggedness factor that will be employed in the future,

then properly treating it as a fixed effect will increase the likelihood of a successful

validation.

6.5 Stage 3: Procedure Performance Verification
and Analytical Procedure Transfer

Once the validation is done, it is important to continually monitor the performance

of the analytical procedure. A useful statistical tool for this purpose is a control

chart of measurements made with the reference standard (refer to Chap. 5 for

information on control charts). It is also good practice to perform a system suit-

ability test before every application. USP, ICH, and FDA all provide recommen-

dations as to the need for system suitability tests. Procedures used for this purpose

will vary by the procedure and the company.

The purpose of an analytical procedure transfer is to ensure that the receiving

laboratory can perform an analytical procedure with the same ability as the trans-

ferring laboratory.
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6.5.1 Objectives and Regulatory Guidance for Transfers

Some guidance for procedure transfers is provided in General USP

Chapter <1224>. The purpose of <1224> is to summarize the types of transfers

that may occur, including the possibility of waiver of any transfer, and to outline the

potential components of a transfer protocol. However, the chapter does not provide

any statistical methods.

A procedure transfer study requires a preapproved transfer protocol that includes

details pertaining to the procedure, the sample types being tested, and

predetermined acceptance criteria. The acceptance criteria often consider both

bias and variability. The acceptance criteria must be satisfied in order to success-

fully demonstrate the receiving lab is qualified to perform the analytical procedure.

6.5.2 Experimental Designs for Transfers

USP <1224> refers to three types of studies employed in procedure transfer:

1. Comparative testing,

2. Covalidation, and

3. Re-validation.

As described in <1224>, comparative testing requires the analysis of a

predetermined number of samples of the same lot by both the transferring and the

receiving labs. (More than one lot can be employed if the measurements of the two

labs are properly matched.) Covalidation occurs when more than one lab is

involved in the initial procedure validation. Re-validation occurs when the receiv-

ing lab performs its own independent validation of the procedure.

Statistical designs are not provided in USP <1224>, and so the procedure

transfer design is typically determined by the individual company. Consider the

summary data in Table 6.11 where each lab is assignedn ¼ 10 independent samples

from the same lot of material. The response variable is the amount of active

ingredient measured in mg.

Table 6.11 Summary of procedure transfer

Parameters Point estimator Computed estimate

μ1—Mean of transferring lab �Y1 247.7

μ2—Mean of receiving lab �Y2 249.4

σ21—Variance of transferring lab S21 10.2

σ22—Variance of receiving lab S22 27.1
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6.5.3 An Equivalence Test for Bias

Bias between the labs is defined as the difference in the lab averages, μ1 � μ2. The
equivalence test described in Sect. 2.11 based on the 90% confidence interval on the

difference in means can be used for this purpose. Since the two samples are

independent, the appropriate confidence interval on the mean difference is provided

in Eq. (2.58) where we assume variances are not equal. Based on historic reference

sample measurements in the transferring lab, the EAC is taken to be 10 mg. Thus,

the 90% confidence interval on the difference μ1 � μ2 must fall entirely within the

range from �10 to +10 mg.

We begin by computing the degrees of freedom for the confidence interval.

df ¼
S21
n1
þ S22

n2

� �2

S41
n21 n1 � 1ð Þ þ

S42
n22 n2 � 1ð Þ

¼
10:2
10

þ 27:1
10

� �2
10:2ð Þ2

10ð Þ2 10� 1ð Þ þ
27:1ð Þ2

10ð Þ2 10� 1ð Þ

¼ 14:9 ¼ 15 roundedð Þ:
ð6:33Þ

The lower and upper bounds of the confidence interval are now computed as

L¼ �Y1 � �Y2 � t1�α=2:df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

þ S22
n2

s

¼ 247:7� 249:4� 1:75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:2

10
þ 27:1

10

r
¼ �5:1 mg

U ¼ �Y1 � �Y2 þ t1�α=2:df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21
n1

þ S22
n2

s

¼ 247:7� 249:4� 1:75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:2

10
þ 27:1

10

r
¼ 1:7 mg:

ð6:34Þ

Since the 90% confidence interval falls entirely within the range from �10 to

+10 mg, equivalence of means between the laboratories has been demonstrated.

Rugaiganisa (2016) has proposed an approach for setting the EAC for the

equivalence test. As an alternative to this procedure, one may wish to establish

transfer criteria using an ATP as described by Martin et al. (2013).
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6.5.4 Tests for Precision

Precision of a procedure is described by the magnitude of the variance (or standard

deviation). As discussed in Schwenke and O’Connor (2008), the necessity and form
of an equivalence test for precision is not obviously apparent. If the receiving lab

provides better precision, that is a good thing, even if the two procedure precisions

are not equivalent. Thus, a difference testing approach as opposed to equivalence

testing might be considered.

In particular, one might test the null hypothesis σ21 � σ22 versus the alternative

hypothesis σ21 < σ22 and conclude the receiving lab is no worse than the transferring
lab if one does not reject the null hypothesis. Such a test could be performed by

computing an upper bound on the ratio σ21/σ
2
2 as described in Sect. 2.8.3. If this

upper bound is greater than 1, then one is unable to reject the null hypothesis, and

will conclude the procedure transfer is successful. However, one would need to

ensure that the power associated with the test is sufficiently high to discover a

situation where σ21 < σ22.
Alternatively, one might compute a range of expected variances in the receiving

lab based on the variance in the transferring lab. The receiving lab passes the

transfer if the computed variance falls in this range. Such an approach is similar

to using a control chart or a system suitability test. A 95% upper prediction bound

based on n1 observations to contain the variance of a future sample of size n2 from
the same normal population is

U ¼ S21 � F0:95,n2�1,n1�1 ð6:35Þ

(see page 64 of Hahn and Meeker (1991)).

That is, if the receiving lab is performing the procedure in the same manner as

the transferring lab, the transfer criteria are satisfied if S22 � Uwhere U is defined in

(6.35). To demonstrate, using the data in Table 6.11,

U¼ S21 � F0:95,n2�1,n1�1

¼ 10:2� 3:18 ¼ 32:4:
ð6:36Þ

Since S22 ¼ 27:1 is less than 32.4, the procedure transfer satisfies the precision

requirement.
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Chapter 7

Specifications

Keywords Acceptance limits • Blend uniformity • Compendial tests • Composite

assay • Dissolution • Percentiles • Process capability • Protein concentration •

Release and shelf life limits • Similarity factor (f2) • Simulation • Three sigma

limits • Tolerance intervals • Uniformity of dosage units

7.1 Introduction

Setting specifications for drug substances and drug products is a complex process.

Many factors must be considered such as patient requirements, clinical and devel-

opment experience, and global regulatory expectations. The specification setting

process starts with determining the critical attributes and parameters of the product

and manufacturing process that need to be controlled to ensure a high quality, safe,

and efficacious product for the patient. During the development process, risk

assessments, prior knowledge, and experimentation should yield which attributes

and parameters need to be controlled and the range over which they can vary and

still produce a high quality product. The next step is to understand the global

regulatory expectations for setting specifications including compendial require-

ments. There must be an understanding of the markets the product will be sold in

since regulatory requirements vary from market to market. International Confer-

ence on Harmonization Q6A (1999a) and International Conference on Harmoniza-

tion Q6B (1999b) represent efforts to harmonize expectations around specification

setting. A review of regulatory and compendial expectations will likely add attri-

butes to the list that require specifications. It will also be important to understand

which drug product attributes must meet specifications throughout the shelf life of

the product.

7.1.1 Definition and Regulatory Expectations

Two key global guidance documents for specification setting are ICH Q6A that

covers specifications for chemical substances and ICH Q6B that covers
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specifications for biotechnological/biological products. In ICH Q6A and Q6B, a

specification is defined as:

a list of tests, references to analytical procedures, and appropriate acceptance criteria,

which are numerical limits, ranges, or other criteria for the tests described. It establishes

the set of criteria to which a drug substance or drug product should conform to be

considered acceptable for its intended use. “Conformance to specifications” means that

the drug substance and/or drug product, when tested according to the listed analytical

procedures, will meet the listed acceptance criteria. Specifications are critical quality

standards that are proposed and justified by the manufacturer and approved by regulatory

authorities as conditions of approval.

One key concept in this definition is that the specification is more than just the

acceptance criterion (e.g., a range the result most be within or equal to). This

definition also includes the analytical procedure that must be used to obtain the

result. Another key concept is that the manufacturer must propose and justify the

specification to the appropriate regulatory authority. Even if the acceptance criteria

are already known via regulatory or compendial expectations, it is incumbent on the

manufacturer to justify that the product can meet the specifications.

There are many guidance and requirements documents covering specifications

for drug substances and drug products from regulatory organizations and

compendia such as the Food and Drug Administration (FDA), European Medicines

Agency (EMEA), World Health Organization (WHO), International Council on

Harmonization (ICH), United States Pharmacopeia (USP), European Pharmaco-

poeia (EP), and Japanese Pharmacopoeia (JP). Current versions can be found at the

organizations’ websites. This chapter will introduce some of the key guidance

documents as they relate to the application of statistics.

7.1.2 Conformance to a Specification

It is important to understand how to determine if a test result meets the acceptance

limits. As described in Sect. 2.3, rounding of data is critical to making such

decisions. The USP General Notices and Requirements Section 7.20 (2016) pro-

vides clear guidance on how to round test results to determine if the results conform

to the specification. The USP states that:

The observed or calculated values shall be rounded off to the number of decimal places that

is in agreement with the limit expression. . .. When rounding is required, consider only one

digit in the decimal place to the right of the last place in the limit expression. If this digit is

smaller than 5, it is eliminated and the preceding digit is unchanged. If this digit is equal to

or greater than 5, it is eliminated and the preceding digit is increased by 1.

For example, assume the attribute of interest is composite assay and the accep-

tance criterion (limit expression) is that the result as measured by the defined

analytical procedure must be within or equal to 95.0–105.0%LC (percent of label

claim). If the unrounded test result obtained is 94.95%LC, the result would be

rounded using the hundredth’s place to 95.0%LC which would conform to the
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specification. However, if the test result was 94.94%LC, the result would round to

94.9%LC and would not conform. The appropriately rounded result is often

referred to as the “reportable result.”

7.1.3 Reportable Versus Recordable Results

The rounding to create the reportable result as shown in Sect. 7.1.2 leads to an

unfortunate situation that is often encountered in the pharmaceutical industry where

data are stored either in paper files or in electronic databases to the number of

decimal places in the acceptance limit. The number of decimal places in the

acceptance limit does not necessarily equal the number of significant digits in the

result. Excessive rounding removes information from the data that could be helpful

for future statistical assessments. Figure 7.1 provides an example of the effect of

rounding to the acceptance limit. Assume that the %RSD (percent relative standard

deviation) measurement has an acceptance limit of maximum 6%RSD. The ten

batches that are recorded with one decimal place show an increase in the %RSD. If

the data are recorded to the number of places in the acceptance limit, it is not

possible to see the increasing trend. Since the acceptance limit is maximum 6%

RSD, the manufacturer would be interested to learn the data are trending toward the

maximum acceptable limit. However, such movement is only apparent when the

data are recorded and trended with the extra decimal point. As the example makes

clear, it is important to separate reportable values (rounded to the number of

decimal places in the acceptance limit) and recordable values (rounded to the

number of significant digits) for use in future statistical analyses.

Fig. 7.1 Example of the effect of rounding
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7.2 Considerations in Setting Specifications

Ideally, specifications would not be based on statistical calculations. Rather, they

should be derived from patient requirements, clinical experience, and scientific

understanding to ensure a safe and efficacious product whenever possible. How-

ever, there are times when these inputs are not easily linked to a particular critical

quality attribute or process parameter and do not lead to quantifiable requirements

for the attribute or parameter in question. For these situations, manufacturers and

regulators often turn to statistical process capability as the basis for setting speci-

fications. Although necessity may require this approach, it is fraught with potential

dangers that must be considered when using this strategy.

7.2.1 Frame of Reference

When determining acceptance limits for a specification, it is essential to understand

what the limits refer to. To apply statistical methods appropriately, it is important to

define the sampling population and the population parameter or parameters required

to make the inference of interest (e.g., mean or standard deviation). In this chapter,

the definition of the population and parameter is referred to as the “Frame of

Reference.” First the population must be defined. This determines how the product

should be sampled from batch and how the results should be obtained from the

analytical method. The result from the analytical method might come from mea-

suring an individual dosage unit, a composite of several dosage units, or the average

of several composite results. The parameter of interest should also be defined as

well. For example, the intent of the specification might be to estimate the distribu-

tion of individual values for dosage units from a batch such as uniformity of dosage

units. In contrast, the intent of another specification might be to estimate the overall

batch mean such as composite assay or protein concentration.

If the acceptance limits apply to individual dosage units, data used to set the

limits must be capable of estimating the variation of individual dosage units. If

averages are being evaluated, the data must be suitable for estimating variation

expected in averages. The statistical approach used for setting the acceptance limits

must take this in account. For example, if statistical intervals are to be used to

determine the acceptance limits, it must be determined if the interval should be

constructed to reflect the location of the batch mean or if the interval should contain

individual dosage unit values from the batch. A statistical interval designed for

individual dosage unit values will naturally be wider since individual values will

have more variation than values that represent batch averages such as a composite

sample value. As a result, it is not reasonable to require that individual dosage unit

values satisfy limits derived to assess batch means. If the frame of reference for a

specification is not clear, it is very hard to provide acceptance limits that make

sense.
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7.2.2 Incorporation of All Sources of Variation

When using statistical process capability to set acceptance limits, the data used in

the analysis should represent the full variability expected for the product and

process. Many textbooks recommend at least 20–30 results to assess process

capability if it can be assumed that all the factors that create variation in the process

are “active” for those 20–30 results. This is often not the case in pharmaceutical

manufacturing situations. For example, raw materials can be a major contributor to

process variation, and batches of raw materials are often used for several product

batches in a row. Thus, it is possible that in a campaign of 30 product batches, a raw

material batch may have changed only one or two times. As a result, the full impact

of variation due to raw material batches will be underrepresented in the 30 product

batches.

It is nearly impossible to know if all the sources of variation have been captured

in a set of data used for specification setting. Thus, the best that can be done is to

ensure that the approach used for setting the acceptance limits accounts for our lack

of knowledge about the sources of variation. Tolerance intervals (see Sect. 2.6.7 in

Chap. 2 and Sect. 7.4.3 for more information) and simulation (see Sect. 7.4.4) are

statistical tools that can be employed. It is important to note that tolerance intervals

(and most other statistical approaches) cannot represent variation that has not been

observed in the data. However, tolerance intervals are adjusted to the amount of

data available as discussed in the next section.

7.2.3 Small Data Sets for Specification Setting

The use of small data sets for specification setting not only leads to an underrep-

resentation of all the sources of variation, but also leads to additional problems that

must be addressed. Specifications are usually set when a product is in the approval

stage with limited data from full scale production runs. With such limited data,

appropriate statistical approaches will often yield wide acceptance ranges since

there is uncertainty about the distribution of the data from the production process.

These wide intervals may not provide useful acceptance limits as it is often claimed

“one can drive a truck through them.” At this point, it is typical for negotiation

between regulatory authorities and manufacturers to ensue in order to determine

limits that seem “practical.” There is a danger that the “practical” range will be

unsuitable as more sources of variability manifest themselves, and this creates

increased probabilities of out-of-specification results. Since neither the “practical”

nor statistically based acceptance limits are based on direct links to safety and

efficacy, no one really knows if results outside the acceptance limits are truly

reflective of unacceptable quality. This issue can cause manufacturers significant

challenges in supplying the market.
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7.2.4 Disincentive to Improve Process Variation

If specifications are set based on process capability, there is little incentive for the

manufacturer to improve the process. If process variation is reduced, regulatory

agencies may request that acceptance limits be tightened. If the manufacturer

knows that process capability will be needed to set the limits, it might lead

developers to make sure as much variation as possible is included in the develop-

ment data for the specification setting process rather than a focus on what knowl-

edge is needed to optimize the process and formulation.

7.3 Compendial Standards and Tests with Commonly
Expected Acceptance Limits

Compendial tests are found in the national/regional pharmacopeia such as USP, EP,

and JP. In general, there are more compendial tests for small molecule products than

biologics and vaccines. It is expected that a product will meet the standards whenever

tested during the entire shelf life of the product. During the specification setting phase

for a product, it is useful to understand the performance needed to meet the standards

and in some cases to help determine product specific parameters that must be

specified in the regulatory filing (e.g., the value of Q for dissolution testing).

7.3.1 Compendial Standards and Specifications

There has been much discussion of the similarities and differences between

compendial standards and specifications. It is not uncommon for regulatory filings

to include wording such as “when tested will comply with USP <XXX>” when

providing the specification for a specific attribute. The USP made changes to the

General Notices and Requirements Section 3.10 in USP 39-NF34 (2016b) on

“Applicability of Standards” to clarify that the standards provided are not be

considered specifications or statistical sampling plans:

The standards in the relevant monograph, general chapter(s), and General Notices apply at

all times in the life of the article from production to expiration. It is also noted that the

manufacturer’s specifications, and manufacturing practices (e.g., Quality by Design, Pro-

cess Analytical Technology, and Real Time Release Testing initiatives), generally are

followed to ensure that the article will comply with compendial standards until its expira-

tion date, when stored as directed. Every compendial article in commerce shall be so

constituted that when examined in accordance with these assays and test procedures, it

meets all applicable pharmacopeial requirements (General Notices, monographs, and

general chapters). Thus, any official article is expected to meet the compendial standards

if tested, and any official article actually tested as directed in the relevant monograph must

meet such standards to demonstrate compliance.
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Some tests, such as those for Dissolution and Uniformity of Dosage Units, require

multiple dosage units in conjunction with a decision scheme. These tests, albeit using a

number of dosage units, are in fact one determination. These procedures should not be

confused with statistical sampling plans. The similarity to statistical procedures may seem

to suggest an intent to make inference to some larger group of units, but in all cases,

statements about whether the compendial standard is met apply only to the units tested.

Repeats, replicates, statistical rejection of outliers, or extrapolations of results to larger

populations, as well as the necessity and appropriate frequency of batch testing, are neither

specified nor proscribed by the compendia; such decisions are based on the objectives of the

testing. Frequency of testing and sampling are left to the preferences or direction of those

performing compliance testing, and other users of USP–NF, including manufacturers,

buyers, or regulatory authorities.”

To address the issue that product must meet the compendial standards whenever

tested, several approaches have been proposed. It is logical to think that the

manufacturer would need to apply a tighter “standard” at product release to ensure

that the product will meet the compendial standard whenever tested. Since it is

impossible to create 100% assurance unless all dosage units in the batch are tested

at release, a level of assurance that is less than 100% is selected using statistically-

based sampling methodologies. One of these approaches will be discussed in Sect.

7.3.5. The next sections discuss compendial standards for several dosage forms and

critical quality attributes that have commonly expected specifications.

7.3.2 Uniformity of Dosage Units

Uniformity of dosage units is a measurement intended to ensure that every dosage

unit contains the amount of drug substance intended with little variation among

dosage units within a batch. In the sample taken for testing, each dosage unit is

tested individually and the acceptance criteria are intended to limit the amount of

variation among the individual values.

7.3.2.1 Uniformity of Dosage Units for Immediate Release Products

Covered by USP <905>, EP 2.9.40, and JP 6.02

The UDU test for these dosage forms can be conducted by either of two approaches:

Content Uniformity (CU) or Weight Variation. Content Uniformity is based on an

assay for the content of the drug substance in the individual dosage units. Weight

Variation is applicable to certain dosage forms such as granules/powders and

solutions in single unit dose containers. Weight Variation is also possible for

capsules and tablets where the drug substance comprises a large portion of the

total weight of the dosage unit. Specifically the dosage unit must contain at least

25 mg of the drug substance and comprise more than 25% of the total weight.

The UDU compendial standard was harmonized among the USP, EP, and JP

pharmacopeia. However, a few differences between the pharmacopeia exist. The EP
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and JP use the termMass Variation rather than Weight Variation. The EP and JP also

allow the use of mass variation when the relative standard deviation of drug substance

is not more than 2% even if the dosage units do not meet the 25 mg/25% condition.

The harmonized UDU test has two stages: Stage 1 (n¼ 10 dosage units assayed)

and Stage 2 (n ¼ 30, an additional 20 dosage units assayed). Figure 7.2 describes

the test where the target for the product is 100%LC (T ¼ 100%), the maximum

acceptance limit is 15% (L1 ¼ 15%) and the maximum allowed range for each

dosage unit relative to the reference value (M) is 25% (L2¼ 25%). It is important to

note that the AV (Acceptance Value) calculation changes in Stage 1 and 2. The

multiplier in front of the standard deviation is 2.4 for Stage 1 and 2.0 for Stage 2. T,

L1, and L2 are specified in the monograph for a drug product but typically they are

set to values defined in Fig. 7.2. In some situations, it is possible to have different

values for T, L1, and L2. This would likely be negotiated with the regulatory agencies

at the time of initial application. In those cases, the use of simulation techniques

discussed in Sect. 7.4.4 is helpful in determining the appropriate values to propose.

Table 7.1 shows two sets of example calculations for the harmonized UDU test.

The first example in the table shows a Stage 1 passing result. In this example, the

Fig. 7.2 Flow Diagram of Harmonized UDU test assuming T ¼ 100%LC, L1 ¼ 15%, and

L2 ¼ 25%
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AV value is 8.7% which is less than the L1 value of 15% so the test yields a “pass”

and stops at Stage 1. The second example shows a passing result that went to Stage

2. The AV value for Stage 1 is 18.7% which is greater than the L1 value of 15% so

an additional 20 UDU results are obtained and combined with the 10 results from

Stage 1. The AV value using all thirty results is 12.2% and passes. In Stage 2, all

Table 7.1 Two examples

of UDU test calculations
Stage 1 (%LC) Calculations (%)

1 101.4 T 100.0

2 98.7 L1 15.0

3 105.5 L2 25.0

4 99.4 k 2.4

5 104.8

6 94.3 Average 101.3

7 100.4 s 3.62

8 105.9 M 101.3

9 103.2 AV 8.7

10 99.6

Pass Stage 1, AV � 15.0%

Stage 1 (%LC) Calculations (%)

1 94.4 T 100.0

2 95.2 L1 15.0

3 85.1 L2 25.0

4 104.4 k 2.4

5 98.4

6 92.3 Average 97.6

7 97.9 s 7.45

8 105.9 M 98.5

9 92.6 AV 18.7

10 110.2

Go to Stage 2, AV > 15.0%

Stage 2: (%LC) (%LC) Calculations: (%)

11 95.8 21 99.1 T 100.0

12 95.3 22 100.7 L1 15.0

13 97.6 23 98.2 L2 25.0

14 103.6 24 98.3 k 2.0

15 105.4 25 106.4

16 105.1 26 100.8 Average 96.5

17 103.1 27 97.0 s 5.11

18 99.5 28 100.1 M 98.5

19 101.8 29 102.3 AV 12.2

20 102.8 30 102.5 0.75M 73.9

1.25M 123.1

Pass Stage 2, AV � 15.0%, All UDU values within limits
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individual results must be checked to determine that all results are within 0.75 M

and 1.25 M%LC to allow for a Stage 2 pass (this assumes L2 ¼ 25%).

When evaluating UDU performance for a product, it is important to understand

if the product will meet the UDU standard reliably. Figure 7.3 provides a heatmap

that illustrates the probability to pass the UDU test for a given process average and

within batch standard deviation (when T ¼ 100%, L1 ¼ 15 and L2 ¼ 25%). The

heatmaps in this chapter are created by use of computer simulations as described in

Sect. 7.4.4. Access to example programs is listed in Sect. 7.8. A chart like this can

be used with the development or historical UDU data for a product to determine if

the product is expected to consistently pass the UDU test. For example, Product A

in Fig. 7.3 typically has a process average of 98%LC and a within batch standard

deviation for UDU results of 8%LC. This product has less than an 80% chance of

passing the UDU test. Product B typically has a process average of 102%LC and a

within batch standard deviation of 2%LC. This product has a greater than 99%

chance of passing the UDU test. The heatmap does not take into account batch to

batch variation. This variation can be visualized by plotting development and/or

historical batches on the chart. If the data from the batches are clustered tightly

together and within the greater than 95–99% probability to pass region, the process

is likely performing adequately and the batch to batch variation is not of concern. If

Fig. 7.3 Heatmap showing the probability to Pass the harmonized UDU compendial test for

various process averages and within batch standard deviations (T ¼ 100%LC, L1 ¼ 15%,

L2 ¼ 25%)
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the batches are widely scattered and include results that fall in the red portion of the

heatmap, this process most likely needs improvement.

7.3.3 Blend Uniformity

The blending of drug substance(s) and excipients is a challenging process operation

in pharmaceutical manufacturing. For powders, it is possible to blend too little or

too much with both situations potentially creating a mixture that is not homoge-

neous. As a result, blend uniformity testing is usually required during process

performance qualification (PPQ) and may be required in routine production espe-

cially for complex and generic products. Blend uniformity testing is complicated

due to the difficulties in obtaining representative samples from the blend. It is

usually expected that the samples of the blend are no more than three times the

dosage unit size. Thief sampling is typically employed to take the samples and with

the physical characteristics of the blend and the design of thief, sampling errors are

sometimes significant enough to falsely indicate the blend is not uniform.

The acceptance criteria for this testing have been a hotly debated topic for many

years and are still in discussion between the industry and health authorities. The

FDA has withdrawn two draft guidance documents that had provided some stan-

dards to follow. The first is the ANDAs: Blend Uniformity Analysis which was

released in 1999 and withdrawn in 2002. A Product Quality Research Institute

(PQRI) project was underway in that timeframe and the guidance was withdrawn to

allow for the research to be completed. The PQRI project resulted in a second FDA

draft guidance in 2003, Powder Blends, and Finished Dosage Units—Stratified

In-process Dosage Unit Sampling and Assessment. This guidance was withdrawn in

2013 because it was no longer consistent with the current agency thinking. The

criteria for blend uniformity in the ANDA guidance were the following:

1. Analyze 6–10 samples from appropriate locations in the blender or drum; sample

should be no more than three times the weight of the dosage unit.

2. Average of the sample results should be within or equal to 90.0–110%LC.

3. %RSD should be less than or equal to 5.0%.

The 2003 guidance document attempted to link the blend uniformity results to

the UDU results which were to be conducted using a specific type of sampling

called stratified sampling. The guidance recommended that key development and

PPQ batches (or current production batches for an existing product) include testing

of blends and dosage units in such a way that the results could be used to develop a

correlation between these two types of testing. The logic of this proposal was that

the UDU testing of dosage units sampled using an appropriate stratified approach

can only be acceptable if the blend is sufficiently uniform. As a result once both the

blend and stratified UDU testing are demonstrated successfully, routine testing of

the blend should not be necessary. For the stratified sampling plan for UDU, dosage

units should be sampled at a least 20 locations during the compression/filling
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process. The locations should be spaced appropriately throughout the process and

should include significant events during the process such as the filling or empting of

intermediate bulk containers and the start and end of the run. The blend uniformity

results were expected to meet the following criteria:

1. Collect three replicate samples for at least 10 locations in the blender. Assay one

sample per location.

2. RSD should be less than or equal to 5.0%.

3. All results should be within 10.0% (absolute) of the mean of the results.

If the results on the blend did not meet the criteria above, it was recommended to

analyze the second and third samples from each location and compare that to the

testing of the UDU testing of the dosage units at the 20 locations during the

compression/filling run (a detailed plan with criteria for the UDU results was

provided in the withdrawn draft guidance).

After the FDA draft guidance was withdrawn in 2013, International Society for

Pharmaceutical Engineering (ISPE) sponsored a group consisting of representatives

from the FDA, industry, and academia to develop and evaluate alternative

approaches to assessing Blend and Content Uniformity. To date, the group has

published three papers that provide a proposal for assessing Blend and Content

Uniformity: Bergum et al. (2014), Garcia et al. (2015), and Bergum et al. (2015).

The plan is similar to the approach in the withdrawn stratified sampling guidance

but with a few key changes in order to align with the FDA’s current thinking such as
more explicit instructions on when to test the second and third replicate blend

samples and to provide criteria that offer more statistical confidence that future

UDU samples will comply with the USP h905i standard.
At this time appropriate specifications and testing plans for blend uniformity are

not clear. Each manufacturer must determine the best approach for their product(s).

The ISPE work may provide an approach that can be considered but this work is

still evolving. Manufacturers will need to justify their approach including the

number and size of the samples and acceptance criteria. Manufacturers may also

consider other approaches such as the use of process analytical technologies (PAT)

and near infrared (NIR) to assess blend uniformity.

7.3.4 Dissolution

The dissolution test attempts to mimic how the active drug substance in a dosage

form is absorbed into the body and is a required release test for many dosage forms.

The dosage unit is placed into a vessel with a known volume of media. Some form

of gentle stirring or flow of the media occurs in the vessel. The media is sampled at

a specific time (or a series of times) and the amount of active drug substance in the

sample is determined via an analytical technique such as high performance liquid

chromatography (HPLC).

238 7 Specifications



The dissolution compendial standard was harmonized across the USP, EP, and

JP pharmacopeia in USP h711i, Ph. Eur. 2.9.3, and JP 6.10. There are some

differences between the pharmacopeia in areas such as apparatus definition and

the handling of extended release and delayed release products.

7.3.4.1 Immediate Release Products

The immediate release dosage form compendial test is multi-stage and is described

in Table 7.2. The criteria depend on the parameter Q, which is an amount of

dissolved active ingredient specified in the monograph. Q is typically set at

70, 75, or 80% dissolved and this is determined on a product specific basis at the

time of specification proposal. The other important parameter is the time of

sampling for the test. This is often in the range of 15–60 min. The manufacturer

must propose the value of Q and the time of sampling for the release test in the

filing. Development data and simulation can be used to help determine the appro-

priate Q and time of sampling. While not specifically called out in Table 7.2, if a

result is less than Q �25% at any stage, the data fail the dissolution test.

The pivotal clinical batches, primary registration (stability), and key develop-

ment batches are usually tested using the profile format for dissolution. The profile

format is when the sample is tested at several time points such as 15, 20, 25, 30,

45, and 60 min. Figure 7.4 shows some typical development data from an imme-

diate release solid oral dosage product. The figure shows two possible choices for Q

for a 30 min sampling time. Figure 7.5 shows a histogram and boxplot of the 30 min

dissolution data. At 30 min, all the individual dissolution values are well above

Q ¼ 75% and just above Q ¼ 80%. The choice of Q can be further refined by using

simulation techniques as shown in Sect. 7.4.4.

Table 7.3 contains two examples of the compendial test with a Q value of 75%

LC. The example on the left illustrates a Stage 1 pass. All six dissolution results are

greater than or equal to Q +5%. The example on the right shows a Stage 2 pass. For

Stage 1, one of the six results is less than Q +5% (Unit #2 ¼ 78%LC). The test

passes Stage 2 since the average dissolution value of all 12 results is 84%LC and all

results are greater and or equal to Q �15%.

Figure 7.6 provides a heatmap that illustrates the probability to pass the imme-

diate release dissolution test. The x-axis shows the distance of the process average

from the Q value. The y-axis is the within batch standard deviation. This chart can

Table 7.2 Acceptance criteria for the compendial dissolution test for immediate release products

Stage

Number of

samples Acceptance criterion

S1 6 Each unit is not less than Q +5%

S2 6 Average of 12 units (S1 + S2) is equal to or greater than Q and no unit is

less than Q �15%

S3 12 Average of 24 units (S1 +S2 + S3) is equal to or greater than Q, not more

than 2 units are less than Q �15% and no unit is less than Q �25%
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be used with the development or historical dissolution data to determine if the

product is expected to consistently pass the compendial dissolution test. For

example, Product A in Fig. 7.6 typically has a process average that is 1.2%LC

above the Q value and a within batch standard deviation for UDU results of 7%LC.
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Fig. 7.4 Dissolution profiles for an immediate release product

Fig. 7.5 Histogram and boxplot of 30 min dissolution results
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Table 7.3 Two examples of dissolution test calculations

Q

Sample

time

75%LC

30 min

Q

Sample

time

75%LC

30 min

Unit Stage 1 (%LC) Unit

Stage 1 (%

LC) Unit Stage 2 (%LC)

1 90 1 88 7 77

2 83 2 78 8 81

3 89 3 82 9 86

4 85 4 90 10 85

5 81 5 85 11 82

6 97 6 83 12 87

Stage 1 pass. All results

greater than or equal to

Q + 5%

Stage 1. All results are

not greater than or equal

to Q + 5%. Go to stage 2

Average

S1 + S2

84

Stage 2 pass. Average of S1 + S2

is greater than or equal to Q and

all results are greater than or

equal to Q ¼ 15%

Fig. 7.6 Heatmap showing the probability to pass the harmonized dissolution compendial test for

various process averages and within batch standard deviations
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This product has between 80 and 90% chance of passing the dissolution test.

Product B typically has a process average that is 4%LC above the Q value and a

within batch standard deviation of 4%LC. This product has a greater than 99%

chance of passing the dissolution test. Just like the heatmap in Fig. 7.3, this graph

does not take into account batch to batch variation. This variation can be visualized

by plotting development and/or historical batches on the chart. If the data from the

batches are clustered tightly together and within the greater than 95–99% probability

to pass region, the process is likely performing adequately and the batch to batch

variation is not of concern. If the batches are widely scattered and include results that

fall in the red portion of the heatmap, this process most likely needs improvement.

7.3.4.2 Dissolution Profile Comparisons, Similarity Factor ( f2)

While not a direct part of dissolution specification setting, an important aspect of

dissolution testing is the ability to compare profiles. Profile comparisons are used

for many purposes such as:

1. Demonstrating bioequivalence to obtain biowaivers

2. Comparing formulations in development

3. Supporting process, formulation, equipment, and site changes as discussed in

two key FDA guidance documents: Immediate Release Solid Oral Dosage

Forms: Scale-up and Postapproval Changes (SUPAC-IR) (1995) and SUPAC-

MR Modified Release Solid Oral Dosage Forms: Scale-up and Postapproval

Changes (SUPAC-MR) (1997a).

Equation (7.1) is a similarity factor ( f2) for comparing dissolution profiles that

was proposed in Moore and Flanner (1996) and further discussed in the FDA

Guidance Dissolution Testing of Immediate Release Solid Oral Dosage Forms

(1997b) as well as SUPAC-IR and SUPAC-MR guidance documents.

f 2 ¼ 50� log 1þ 1

n

Xn

t¼1

Rt � Ttð Þ2
" #�0:5

� 100

8
<
:

9
=
;: ð7:1Þ

where log is log10, n is the number of time points, Rt is the dissolution value of

the reference (pre-change) batch at time t, and Tt is the dissolution value of the test

(post-change) batch at time t. Values between 50 and 100 are evidence of similarity

between the reference and test.

The f2 calculation was not developed from a statistical perspective and thus it has

many undesirable properties such as increasing the number of time points in the

calculation makes it easier to show similarity. Also the equation does not weight

time point data relative to the amount of variation at the time points even though the

differing variability at the time points is almost always evident. These issues and

many more have been detailed in several publications such as Liu et al. (1997) and

LeBlond et al. (2016).
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There are several guidance documents that discuss some of the issues that arise

when using the f2 calculation with some variations on the requirements provided.

The following requirements (as listed in the FDA guidance for dissolution testing,

August 1997) must be met before using the f2 to compare dissolution profiles:

1. Test 12 units for both sets of data to be compared: test and reference.

2. There should be data from at least 3–4 dissolution time points and the time points

should be the same for both the test and reference.

3. Average dissolution values should be used in the calculation of f2 for the test and
reference data.

4. Only one time point after reaching 85% dissolved for both products should be

used in the calculation.

5. The coefficient of variation (or %RSD) for early time points (e.g., 15 min.) should

not be more than 20% and should not exceed 10% for all other time points.

If the conditions described above are not met, the FDA guidance indicates that

other methods may be used to compare the curves. Alternative methods may also be

used if the f2 value does not accurately reflect the similarity of the test and

reference. Alternative approaches are reviewed in LeBlond et al. (2016).

Table 7.4 shows two examples of f2 calculations and Fig. 7.7 shows the dissolution
profiles for the two examples. Example 1 shows a pair of profiles that have an f2 value
of 65.4 which is greater than 50 and indicates similarity. Example 2 has an f2 value of
46.0 which is less than 50 and does not support similarity using the f2 approach.

Table 7.4 Two examples of f2 calculations

Example 1

Mean dissolution (%LC)

Time point (min) Reference Test Difference squared

10 29 34 25

15 53 58 25

20 70 75 25

30 84 89 25

45 95 99 16

Sum of squared difference ¼ 116

f2 ¼ 65.4

Example 2

Mean dissolution (%LC)

Time point (min) Reference Test Difference squared

10 25 40 225

15 45 60 225

20 67 78 121

30 82 90 64

45 90 99 81

Sum of squared difference ¼ 716

f2 ¼ 46.0
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7.3.4.3 Extended Release Products

Extended release products are formulated so that the active ingredient is released

slowly over time. Dissolution specifications for these products require multiple time

points with limits for each sampling time. Typically three time points are selected

for dissolution testing for release:

1. Early time point to provide assurance against premature release of drug.

2. Intermediate time point to define the release profile.

3. Late time point to provide assurance of full release. It is common to select a time

point where the dosage form is at least 80% dissolved.

Fig. 7.7 Profiles for two examples for f2 calculations
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Table 7.5 provides the compendial acceptance criteria. The test has three

stages similar to the immediate release test. For each time point except the final

time point, a range is provided. For the final time point, a lower limit is provided.

In Stage 1, 6 units are tested. All individual values must fall within or equal to the

ranges for each time point to achieve a passing result. If not, the test proceeds to

Stage 2. In Stage 2, an additional 6 units are tested for a total of 12 values. The

average value for the 12 units must be within the stated ranges and no unit can be

more than 10% outside of the stated ranges for a passing result. If the data do not

meet the Stage 2 criteria, the test proceeds to Stage 3. In Stage 3, an additional

12 units are tested for a total of 24 units. The average value for the 24 units must

be within the stated ranges and no more than two units can be more than 10%

outside of the stated ranges and no unit can be more than 20% outside the stated

ranges.

Figure 7.8 shows dissolution profile data for an extended release product. The

manufacturer must propose the sampling times and ranges for the dissolution

release test. The shaded purple area is a potential choice for the range (25–45%

LC) when the early time point is 0.5 h. The gray shaded area contains a possible

range (62–82%LC) when the intermediate time point is 4 h. The red line at 85%LC

shows that several later time points are potential choices for the final time point

such as 10 or 12 h. The stated ranges in this example are 20% wide for the early and

intermediate time points. This is a typical range but it is possible to propose wider

ranges if additional justification is provided such as clinical data and scientific

rationale.

Table 7.5 Acceptance criteria for the compendial dissolution test for extended release products

Stage

Number of

samples Acceptance criteria

S1 6 No individual unit lies outside each of the stated ranges and no indi-

vidual is less than the stated amount at the final test time

S2 6 The average value of the 12 units (S1 + S2) lies within each of the stated

ranges and is not less than the stated amount at the final test time. No

unit is more than 10% of labeled content outside of each of the stated

ranges and no unit is more than 10% below the stated amount at the

final test time

S3 12 The average value of the 24 units (S1 + S2 + S3) lies with each of the

stated ranges and is not less than the stated amount at the final test time.

Not more than 2 of the 24 units are more than 10% of the labeled

content outside of the stated ranges and note more than 2 of the 24 units

are more than 10% of labeled content below the stated amount at the

final test time. None of the units are more than 20% of labeled content

outside of the each of the stated ranges or more than 20% of labeled

content below the stated amount at the final test time
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7.3.5 ASTM 2709/2810 (Bergum/CUDAL Method)

As discussed in Sect. 7.3.1, the USP has revised its general notices section to clarify

that USP tests are not required to be used as release tests and they are not intended

to make inferences about the performance of a batch tested. However, the text

makes it clear that products must pass the compendial requirement whenever tested

from production to the end of shelf life. As a result, there is much activity in the

industry to develop release tests (sampling plans and acceptance criteria) that

ensure a high probability of passing compendial tests with strong focus on the

UDU test. The requirement to pass USP tests whenever tested can present a

compliance issue if a batch of product tested at release just meets the acceptance

criteria of the USP test and is released to the market. The batch may not pass a

future USP test in this situation. ASTM E2709 (2014) is a methodology that can be

used to assure future samples will have a high probability of passing the compendial

criteria with a defined statistical confidence. ASTM E2810 (2011) is the application

of the methodology described in ASTM 2709 to the harmonized UDU test.

The ASTM 2709/2810 methodology is also known as Content Uniformity and

Dissolution Acceptance Limits (CUDAL) or the Bergum Method. It is a well-

known procedure that is used in the pharmaceutical industry for estimating the

probability that a batch will pass a multi-stage test, such as the compendial tests for

Fig. 7.8 Dissolution profiles for an extended release product
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UDU and dissolution. Historically, this methodology was applied by many manu-

facturers to establish criteria for PPQ studies.

The confidence provided by the ASTM 2810 method is achieved by calculating a

C% confidence region on the average and standard deviation estimated from the

UDU sample. The extremes of this confidence region are compared to a lower

bound, LB%, on the probability of passing the harmonized UDU test. If the

confidence region is within the lower bound, LB, then the sample, and hence the

lot, has demonstrated the necessary confidence for the market. The interpretation of

passing an ASTM 2810 plan conducted at C% confidence with a lower probability

bound of LB% is the following: “with C% confidence there is at least LB%

probability that a future sample taken from the batch will meet the UDU test.”

The ASTM standard contains tables to implement plans for the following confi-

dence and lower bound probabilities (C%/LB%): 95/90, 95/95, 95/99, and 90/95. A

verified SAS program is described by Bergum and Li (2007). The actual code can

be downloaded at the ISPE website http://www.ispe.org/blend-content-uniformity-

initiative/tools.

The statistical statement provided by an ASTM 2810 plan is achieved by

determining the worst-case mean and standard deviation as defined by the joint

confidence region at the selected confidence level (C%). An example of this region

is shown in Fig. 7.9 as the area inside the blue triangle. Figure 7.9 shows an example

where the sample average is equal to 100.8 % LC and the standard deviation equals

4.91%LC for 100 dosage units tested. This plan was conducted at 95% confidence

with a 95% lower bound. The upper right corner (worst-case mean and standard
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Fig. 7.9 Contour plot of probability to pass USP h905i
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deviation for the batch) of the joint confidence region is just touching the

estimated 95% LB. It is important to note that nearly all the other possible

means and standard deviations in the confidence region will provide much more

than 95% chance of passing a future USP test. In fact, most of the area of

triangular region falls in the contour indicating a 99% to greater than 99.99%

chance of passing the USP test.

While the ASTMmethod is a statistically valid approach, it is conservative. Here

“conservative” means the ASTM approach will not pass many inherently accept-

able lots with sample sizes used for UDU testing. For example, when taking a

sample of size 30, a process with a true mean of 100%LC, a standard deviation of

5% will pass the UDU test approximately 100% of the time, but would only pass a

95%/95% ASTM 2810 plan 7.7% of the time. If the ASTM approach is used, a

much larger sample must be tested so that the confidence region size is not overly

large. There are other statistical approaches that provide reasonable assurance and

are efficient in terms testing resources such as tolerance intervals. The ASTM

standard explicitly states that other methodologies can be utilized. Several alterna-

tive approaches are discussed in De los Santos et al. (2015) along with greater detail

on the conservative nature of the ASTM method.

7.3.6 Composite Assay

Composite assay is used to determine if a batch of product contains the appropriate

amount of drug substance/active ingredient. This assay involves compositing dos-

age units (typically in the range of 5–20 dosage units) into a sample preparation. For

small molecule products, the preparation is assessed via chromatography methods

to determine the amount of drug substance in the sample as a percent of label claim.

Regulatory authorities expect a specification of either 90.0–110.0%LC or

95.0–105%LC for standard small molecule products. Other ranges are possible

given a product’s situation such as unique manufacturing technologies, expected

degradation of the product or if the target potency is more than 100%LC at release.

Several composite assays per batch are often tested for key development, formal

stability, and PPQ batches. It is common to do assays for the beginning, middle, and

end of the compression/filling run and to include assays at any locations during the

process that might be at risk of being off-target. Figures 7.10 and 7.11 provide

heatmaps for evaluating data against acceptance limits of 90.0–110.0%LC and

95.0–105%LC, respectively, to determine if the product is expected to consistently

pass the composite assay test. These charts can be used and interpreted similarly to

Figs. 7.3 and 7.6.
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Fig. 7.10 Heatmap showing the probability to pass composite assay for various process averages

and within batch standard deviations with acceptance limits of 95.0–105%LC

Fig. 7.11 Heatmap showing the probability to pass composite assay for various process averages

and within batch standard deviations with acceptance limits of 90.0–110%LC



7.3.7 Protein Concentration

Protein concentration is a key critical quality attribute for a biologic which mea-

sures the quantity of protein in the product. The units of this attribute are usually in

mg/mL. Regulatory authorities typically expect a specification of �10% of the

target concentration. Statistically, protein concentration can be viewed similarly as

composite assay. The heatmap in Fig. 7.11 can be used to evaluate protein concen-

tration data after expressing the data in terms of percent of target concentration. For

example, if the target concentration for a product is 25 mg/mL, a value of 23 mg/mL

can be expressed as (23 mg/mL)/(25 mg/mL)*100 ¼ 92% of target.

7.4 Statistical Tools for Specifications

Many statistical tools can be used to help set the acceptance limits for critical

quality attributes and parameters of a product. While there is a large volume of

literature on this subject, there is no agreement on a best practice for using data to

determine appropriate acceptance limits. This section will cover the key statistical

tools/approaches that have been successfully used.

7.4.1 Amount of Data Needed and How to Collect the Data

A common concern when using statistical approaches is how much data is needed

to set reasonable acceptance limits. There is no simple answer to this question since

it depends on many factors such as what are the sources of variation in the data,

have all the sources of variation been incorporated into the data available for

analysis, and which statistical approach will be utilized. As noted previously in

this chapter, there is often no way to know if the data available contain all the

sources of variation that can be expected in the future. In fact, it is probably best to

assume that all sources of variation have not been experienced yet. At times,

specifications need to be updated since sources of variation may only become

evident once the product is in routine manufacturing and/or when analytical method

technology changes.

How the data are obtained is probably more important than how much data is

needed since many statistical tools that are used for specification setting adjust to

the amount of data available. Well-designed experiments are essential to make sure

the data contains as many of the expected sources of variation as possible and that

these sources can be identified. Two key areas to consider in designing experiments

for specification setting are producing the product and measuring the product:

250 7 Specifications



1. Producing batches of drug substance or drug product: Were the batches made

within a wide or narrow range of operating parameters? Were different batches

of raw materials used in manufacture of the drug substance or drug product?

2. The analytical methods for measuring the product: What is the method varia-

tion? Do factors such as day/time of testing, analyst, instrumentation, sample

preparation, and assay run contribute to the method variation? How will the

analytical method be used for batch release? Will there be a single value from

the method or will multiple runs of the method be used and an average or

geomean of the runs be used for batch release? Many of these questions are

addressed in Chapter 6.

7.4.2 Data Distribution

Most of the statistical approaches used in specification setting require the assump-

tion that the data follow a normal distribution. If the data are not well represented by

the normal distribution, three approaches can be considered. The first two are to

consider a transformation of the data or to use of another data distribution as

discussed in Sect. 2.6.10. A third option is to use statistical methods that do not

make assumptions (or limited assumptions) about the data distribution. These

approaches are called nonparametric. Many of the statistical methods discussed in

this chapter have nonparametric versions. Section 7.4.5 discusses the use of per-

centiles to set acceptance ranges which can be a reasonable approach when the data

do not follow a normal distribution although percentiles require a fairly large set of

data to be effective (n > 100).

7.4.3 Tolerance Intervals and Three Sigma Limits

Statistical intervals are often used in specification setting activities and follow the

general equation:

�Y � K
ffiffiffiffiffi
S2

p
ð7:2Þ

This formula requires the sample mean and variance of the data set. The critical

piece in Eq. (7.2) is the choice of K. Note that this equation assumes that the

acceptance limits will be two-sided due to the use of the “�” sign. One-sided

acceptance limits are also possible and can be constructed using the same

approaches described here.

When the data are normally distributed, a simple approach for the choice of K is

to use the theoretical normal distribution to pick appropriate K values. This

approach has a long history in the pharmaceutical industry and comes from

statistical process control (SPC) theory. Typically K is set equal to three which
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yields a range that represents “three sigma limits,” the usual limits on an SPC chart.

For data that follow a normal distribution, this range would encompass or cover

99.73% of the data. Only 0.27% should fall outside these limits. This is why three

sigma limits seem a natural approach to setting specifications.

The pros of using three sigma limits (or any value of K such as 2 or 4) as the

acceptance range are that the calculations are simple and easy to interpret. The cons

of using these limits is that they do not provide an adequate estimate when the

sample size is small (n < 100). In small sample situations, the three sigma range

will not reliably provide the expected coverage of 99.73% as discussed in Dong

et al. (2015).

Tolerance intervals provide an alternative to three sigma limits (see Sect. 2.6.7

for discussion and computational details). Since tolerance intervals are specified

with both a confidence level (1� α) and proportion (P) of the data covered, these

intervals provide excellent flexibility for many specification setting scenarios.

Tolerance intervals also adjust to the amount of data available and will cover the

proportion of data specified. The downside of using tolerance intervals is that the

interval may become overly wide in small data situations especially when the

confidence and proportion of the future outcomes are set to high values. Figure 7.12

shows the K values for a variety of confidence levels and coverage. When the

sample size is less than 10, the K values can be quite large.

Fig. 7.12 K values for two-sided tolerance intervals
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When using either three sigma limits or equivalent tolerance intervals it should

be recognized that the specifications are set so that the process will at best achieve a

process capability index of 1 (see Sect. 5.3.3 for more information on process

capability). This means the process is just capable of meeting the specifications

routinely. Any additional variation or shifts in the process mean will lead to a

process that has a capability index of less than 1. If process data are the only source

of information being used to set specifications, it may make sense to use the

equivalent of a four sigma limits to allow for small increases in the process

variation and/or shifts in the process mean. This would also allow for a process to

achieve a capability index of greater than 1.

The challenge in using tolerance intervals is determining the appropriate confi-

dence and coverage for the situation at hand. There is no accepted standard for

confidence and coverage in the industry or among the various health authorities.

Practical choices are described below and shown in Fig. 7.13.

• 95% confidence and 99% coverage. K is usually between 3 and 5 for most

sample sizes of interest. K quickly approaches a value of three as the sample size

approaches 50 (K ¼ 3.13) but drops slightly below three after 80 results with

K ¼ 2.92 for 200 results.

Fig. 7.13 Comparison of K values for 90% confidence/99.73% coverage and 95% confidence/

99% coverage
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• 90% confidence and 99.73% coverage. K is also between 3 and 5 for most

sample sizes of interest. After 200 results, the value of K is still slightly above

three at 200 results (K ¼ 3.22). This choice would leave some “room” for slight

process shifts or increases in process variation which are often experienced once

a product goes into full scale production.

There are other types of tolerance intervals that can also be considered for

establishing acceptance limits. These are a two-sided tolerance interval to control

the tails (Hahn and Meeker 1991) of the distribution and two one-sided tolerance

intervals. Both of these intervals focus on ensuring that no more than a specified

proportion of the population is contained in the tails of the distribution. The

tolerance interval discussed so far in this chapter only ensures that interval covers

the specified proportion and is sometimes referred to as a tolerance interval to

control the center. It is possible that one tail could have a greater percentage of the

population in the tail than the other. Both the two-sided interval to control the tails

and the two one-sided tolerance intervals provide a means to control the proportion

of data in each of the tails separately. The tolerance interval formula for controlling

the tails becomes

L¼ �Y � KL

ffiffiffiffiffi
S2

p

U ¼ �Y � KU

ffiffiffiffiffi
S2

p
:

ð7:3Þ

where KL and KU are chosen so that P(Y< L )< pL and P(Y>U )< pU where pL and
pU are desired maximum proportion of the population in the lower and upper tails of

the population, respectively.

For the two-sided tolerance interval to control the tails, appropriate K values are

provided in Hahn and Meeker (1991). The two one-sided tolerance interval

approach is constructed just like it sounds. A lower one-sided tolerance interval is

calculated for lower limit with the appropriate proportion to be allowed in the lower

tail. The upper limit is calculated using an upper one-sided tolerance interval with

the appropriate proportion to be allowed in the upper tail.

Two one-sided tolerance intervals have also played a role in recent work to

establish a statistical test for release testing of inhalation products for delivered

dose uniformity (DDU). In this situation, limits would already need to be specified

and the two one-sided tolerance intervals would be calculated from the release data

to ensure that the tails of the distribution contain no more than a specified propor-

tion outside the limits with a specified confidence. This test is referred to as a

Parametric Tolerance Interval Two One-Sided Test or (PTI-TOST) and has been

extensively discussed in the literature (see Novick et al. 2009 and Tsong et al.

2015). Similar tests have also been proposed for UDU (Tsong and Shen 2007) and

dissolution (Hauck et al. 2005).
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7.4.4 Simulation

Simulation can be used to help set specifications if a reasonable model of the

process and the sources of variability for the attribute or parameter can be devel-

oped. Usually Monte Carlo techniques are used to simulate data for the attribute. In

this type of simulation, a model is developed to link together all the operations that

occur related to the attribute. A distribution is assumed for each source of variation

in the process that affects the attribute’s final value. In a simulation run, a deter-

mination for the attribute is created by generating values for each of the sources of

variation and then the values are combined according to the model to produce a

final value for the attribute. To generate a distribution of final attribute values,

several thousand simulation runs are conducted. This final attribute distribution can

then be used to set specifications and to explore the effect of the various sources of

variation on the attribute.

For example, a vaccine product typically experiences several temperatures

during its distribution and shelf life. Assume it is known that exposure to higher

temperatures can cause a measurable loss in potency. In order to understand the

distribution of potency values at time of use and also set specifications for expiry,

simulation can be used. Figure 7.14 shows the storage conditions that the product

experiences during its distribution and storage. Potency for vaccine products is

often log normally distributed so the potency is transformed using the natural log to

allow for the use of the normal distribution in the simulation. The simulation starts

by generating a release potency from the expected distribution of release values.
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Fig. 7.14 Vaccine potency simulation model
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This might be known from data taking during development and/or from the process

targets during the dilution of the drug substance and lyophilization (freeze drying)

steps that occur before the release testing is conducted. Assume this product has the

potential to experience loss at several conditions:

• warehouse storage at �20 �C for up to 2 months

• packaging for shipping at 15 �C for up to 8 h

• time in distribution at 2–8 �C for up to 22 months

• reconstitution for administration to the patient for 0.5 h.

The amount of time at each storage condition is obtained by generating a time for

each storage condition using an assumed mean time of storage and the variability of

the time at that storage condition. A slope representing the loss of potency for each

storage condition is also obtained from an appropriate distribution. The loss is

considered to vary in the simulation since the loss is estimated from limited studies

conducted during development. Varying the amount of loss experienced for each

simulation run allows for understanding of the impact of not knowing exactly the

loss expected at that storage condition. The time and slope for each storage

condition are combined across all of the storage temperatures to calculate the

total potency loss for the lot. Subtracting this amount from the release potency

yields the potency at time of use for the simulated lot. Figure 7.15 shows a

histogram of the potency results at time of use after running the simulation for a

total of 10,000 lots. This distribution can then be used to help determine

specifications.

Simulation can also be used to assess probability to pass compendial tests such

as uniformity of dosage units and dissolution. R code is provided at the book

website to simulate several of the compendial tests discussion in Sect. 7.3 and

these are listed in Sect. 7.8. The dissolution simulation can be used to help

determine the appropriate sampling time and Q value for the release test. The

simulation requires the user to input the mean and standard deviation expected

for the dissolution values and a proposed Q value. The process generates dissolution
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data from a normal distribution with the user selected mean and standard deviation.

The program simulates data for the required number of batches which is also

selected by the user. Table 7.6 shows the R statements needed to run the dissolution

simulation and evaluate the data generated (note the # symbol means that line is a

comment and the “>” is the prompt from the R Console Window). The simulation

in Table 7.6 was run with a mean of 82%LC, standard deviation of 4%LC, and the

Q value was set to 80%LC. 10,000 batches were simulated (reps ¼ 10,000). The

simulation indicates that setting the Q value at 80% for this process will mean that

almost all batches will require Stage 2 testing since 0% passed at Stage 1. Approx-

imately 96% of all tests will pass at Stage 2 and the rest will require Stage 3 testing.

We can expect a 0.31% (100–99.69%) failure rate overall in routine manufacturing

with these assumptions. Simulations such as this can help the manufacturer under-

stand the risk of failure and testing requirements under various assumptions.

Design of Experiments (DOE) models can also be leveraged in combination with

simulation techniques to help set and justify acceptance limits. If a DOE was

conducted using the key factors in the process that affects the attribute of interest,

the model developed from the DOE can be utilized to understand how variation in

the processing factors will cause the attribute to vary. Figure 7.16 shows such a

simulation for a downstream purification step in a biologic product. The factors

studied in the DOE were Load Factor (g/L), Feed pH, and Elution pH. The attribute

of interest is the Yield (%). The DOE data was first analyzed to develop a model

relating Yield to the DOE factors. This model has been called a “transfer function”

in the literature since it predicts how values for the factors transfer their impact to

the attribute of interest (Little 2016). In this example, the model fit from the DOE

study is

Yield %ð Þ ¼ 66:7-9:4� Load

Factorþ 6:5� Elution pH-4:0� Feed pH

Factor*Feed pH:

ð7:4Þ

Table 7.6 R statements needed to run dissolution simulation and display key results

> # simulation run with 10,000 batches with the mean = 82% and 

> # sd = 4% and the Q value set to 80% dissolved/%LC

> simRun1 <- simDissoTest(reps=10000, mean=82, sd=4, Q=80)

> # percent pass Stage 1

> mean(simRun1[,1])*100

[1] 0

> # percent pass at Stage 1 or 2

> mean(simRun1[,1]==1 | simRun1[,2]==1)*100

[1] 96.17

> # percent pass overall

> mean(simRun1[,12])*100

[1] 99.69
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Once the model is developed, the factors are set to the values where the process

is expected to operate. The variation expected in the factors is also specified. In

Fig. 7.16, the Load Factor was set to 20 g/L and the variation expected was defined

with a truncated normal distribution with a standard deviation of 2.8. The Elution

and Feed pH factors were similarly specified and variation in measuring the Yield

was also added to the simulation. The histogram of simulated Yield values on the

top right of Fig. 7.16 shows Yield can be expected to vary between 66 and 87%with

the settings and assumptions used for the simulation. The settings of the factors and

the expected variation can be changed to investigate how changing these will

impact the expected Yield. Different distributions for the expected variation can

also be specified. This approach can support a deeper understanding of the impact

of set points for the factors and the impact of control strategies that reduce the

expected variation in the factors and the attributes of interest. It can also help justify

acceptance limits that are wider than the results observed during development. One

simple approach to setting limits using simulated data is to use percentile methods

discussed in the next section.

7.4.5 Percentiles

A percentile is the value in a set of data below which a certain percentage of the data

fall. For example, the 99th percentile is the value in a set of data below which 99%

of the data reside. Percentiles can be used in a similar fashion as the three sigma

limits and tolerance intervals. If acceptance limits for a parameter were set so that

95% of the data were contained with the range, the 2.5th percentile and the 97.5th

Fig. 7.16 Simulation using DOE model for yield for downstream purification step
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percentile could be used. Using percentiles requires a large data set to be effective.

If percentiles near zero or 100 are needed, at least 100 results are needed with even

more data needed as the percentiles approach zero and 100. The advantage of using

percentiles is that the data do not need to follow any particular distribution. A

disadvantage, in addition to requiring large data sets, is that percentiles will not

provide any “buffer” for the acceptance limits. The limits will always be an actual

data point or very close to an actual data point. There will be no gap between the

data observed so far and the proposed acceptance range.

Figure 7.17 shows a histogram and normal quantile plot of pH data comprising

180 results. It is clear from both graphs that this data set is not normally distributed.

If it was desired to set the acceptance range to contain 99% of data in the

distribution of pH, the 0.5th and 99.5th percentiles are needed. The 0.5th and

99.5th percentiles of the pH data are 5.4 and 6.07 which are the minimum and

maximum of the data. In contrast, a tolerance interval with 95% confidence and

99% coverage is (5.2–6.0). The tolerance interval assumes the data are normal

distributed that does not reflect a reasonable acceptance range for the pH data.

7.5 Release and Stability Specifications

Chapter 8 provides detailed information on how to analyze data from stability

studies. A key focus of the chapter is estimating the shelf life of a product using

the methodologies described in ICH Q1E (2003) and several alternative

approaches. The approaches in Chapter 8 assume that the acceptance limits are

known. For some attributes, typical acceptance limits are known such as composite

Fig. 7.17 Histogram and normal quantile plot of pH data
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assay (90.0–110.0 or 95.0–105.0%LC) and protein concentration (target concen-

tration �10%). However, for some quality attributes such as degradates and

charged variants, stability studies can be leveraged to help determine acceptance

limits in conjunction with scientific understanding and patient safety. In this

situation, one must first pick a reasonable shelf life (e.g., 24 or 36 months) and

then determine acceptance limits that will support that shelf life given the results

from the stability studies. Scientific understanding, patient safety, regulatory accep-

tance, and manufacturability must be taken into account in these situations. This

analysis often requires an iterative approach where different shelf lives are assumed

and the data is evaluated to see what acceptance limits would be needed to achieve

the assumed shelf life.

A short summary of the ICH Q1E approach is provided to illustrate how stability

analysis can be incorporated into acceptance limit determination. In ICH Q1E, a

stability study for shelf life estimation is usually assumed to include at least

3 batches tested at regular intervals (typically at 0, 3, 6, 9, 12, 18, 24, and

36 months). The analysis described in ICH Q1E uses analysis of covariance

(ANCOVA) to determine if the data from the batches in the study can be combined

(or pooled) to estimate the shelf life of the product (or expiry). There are usually

three “models” as shown in Fig. 7.18 for a simple stability study with batch and

time as factors. The analysis determines which of these three models is appropriate

for the data in the study.

Once the model is selected, a 95% confidence interval for the mean is

constructed for the data allowing for pooling of the intercepts or slopes as appro-

priate. Pooling usually leads to longer shelf life estimates. The shelf life estimate is
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Fig. 7.18 Stability models for ICH Q1E ANCOVA analysis
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the time where the confidence interval intersects the acceptance limit. Figure 7.19

shows the analysis of a degradate from a three batch stability study. In this example,

the slopes can be pooled but the intercepts are statistically different so the Separate

Intercept, Common Slope model is the appropriate model. The graph shows the

shelf life is estimated to be 21 months if the acceptance limit for this degradate is set

to 0.5%. If it is possible to increase the acceptance limit to 0.6%, the shelf life

estimate is 28 months. Using a higher acceptance limit for a degradate would

require understanding if the limit being proposed was acceptable to regulatory

authorities and safe for the patient. Toxicology studies and clinical experience are

often used to support the choice of the acceptance limit along with the stability

analysis.

It is possible to have separate release and shelf life acceptance limits for an

attribute. In these cases, it has usually been demonstrated that the attribute changes

on stability and this change needs to be reflected in acceptance limits. The

degradate example shown in Fig. 7.19 could be such an attribute. If the acceptance

Fig. 7.19 Degradate stability results
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limit for shelf life is set to 0.6%, a release limit below the 0.6% limit would need to

be determined to ensure that the 0.6% limit will be met at the expiry. Figure 7.20

graphically shows how one derives a release limit. A “buffer” is added or subtracted

from the shelf life limits to determine the release limits. This buffer is composed of

estimates for the change expected over the shelf life (slope), assay variation, and

variation of the slope estimate.

The calculations discussed in Chap. 8 provide a way to determine release limits

that will support shelf life limits at expiry. For the example provided in Fig. 7.19, an

upper release limit of around 0.25% would support the upper shelf life limit of 0.6%

with 95% confidence. Depending on the specific situation, manufacturers will include

both the shelf life limit and release limit in the regulatory filing or include only shelf

life limit in the specification and designate the release limit as an “internal” limit.

Some manufacturers also use release limits for attributes without significant change

over shelf life to protect against releasing a product too close to the shelf life limits. If

a batch of product is very close to one of the shelf life limits, it is possible that assay

variation alone could cause an out-of-specification (OOS) result. Release limits in

this case provide a measure of protection that such a situation will not occur.

7.6 Real Time Release/Large Sample Sizes

With the implementation of process analytical technology (PAT) in the pharma-

ceutical industry, there is an increased interest in developing acceptance criteria

when a large number of measurements can be examined for a production batch. For

Lower Shelf-Life Specification

Lower Release Limit (Calculated)

Change over expiry

Upper Shelf-Life Specification

Variation (assay and slope)

Variation (assay)

Upper Release Limit (Calculated)

Expiry

Fig. 7.20 Release limits—assuming attribute decreases over shelf life
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example, dosage units of sample size 10–30 are typically assessed for uniformity of

dosage units (UDU) for batch release testing using traditional measurement systems

(e.g., HPLC). With the PAT technology, this sample size can be increased substan-

tially to hundreds or thousands of dosage units per batch. The acceptance criteria for

the traditional small sample testing are not appropriate for much larger sample sizes

that are possible using PAT methods. In the last 10 years, there have been numerous

approaches discussed in industry meetings and journals for developing appropriate

large sample size criteria.

Uniformity of dosage units has been the most common application area for the

development of large sample size specifications. By using PAT methods such as

near infrared (NIR) spectroscopy, it is possible to measure the active ingredient

content of a large number of dosage units during the compression or filling process.

The data collection is complete when the batch run is finished and the batch can be

“released” based on the data collected. This scenario is called real time release.

One of the first approaches proposed for large sample size UDU testing is a

nonparametric counting test (Sandell et al. (2006); Bergum and Vukovinsky

(2010)). This test focused on the meeting or exceeding the performance of a

compendial UDU test (see Sect. 7.3.1) to detect unacceptable dose uniformity for

various ranges of the process performance. The compendial test requires the

acceptance value to be less than or equal to 15%LC. This requirement essentially

means that a high proportion of individual content values should be within

85–115%LC. The counting test simply counts the number of individual values

that are outside the 85–115%LC range. Equations are provided in both papers that

define the number of individual content values that can be outside the 85–115%

range for a given sample size. The Sandell and Bergum papers provide different

limits with the Bergum paper having tighter limits. The approach in the Sandell

paper is usually referred to as the Large-N test and the approach in the Bergum

paper is the Modified Large-N test. The second and third columns of Table 7.7 show

a comparison of the number of results that can be outside the 85–115%LC by

sample size. The Modified Large-N approach was proposed to address regulatory

feedback that the test should provide quality equivalent to or better than the

compendial UDU test across the entire test range.

The Large-N and Modified Large-N counting tests have some desirable proper-

ties. One key property is that they are nonparametric tests. This means the test is not

based on assuming a particular distribution such as the normal distribution for the

UDU data. These tests are also quite simple to implement in a manufacturing

environment. A table of sample sizes and acceptance values is all that is needed

to assess the data. These tests allow differing sample sizes that are likely to occur

when using PAT technologies for real time release testing. It is common for the

PAT sampling strategies to be based on time where dosage units are sampled evenly

over the production run. It is possible for the small differences in sample sizes to

occur for each production run. This flexibility is very easy to achieve with counting

tests.

Two more large sample size criteria for dose uniformity are presented in

Chapter 2.9.47 of European Pharmacopoeia (EP) 8.8 (2016b). The chapter
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discusses two alternatives: a parametric and nonparametric approach. The paramet-

ric version is a modification of the acceptance value (AV ¼ M � �Xj j þ ks) formula

used in the compendial test and discussed in Sect. 7.3.2. For this approach, the k

value of the formula is adjusted based on the sample size. As the sample size

increases, the k value increases. The nonparametric option is a version of the

counting rules of Bergum and Sandell and is slightly tighter than the Modified

Large-N Test as shown in the fourth column of Table 7.7. The EP chapter also

limits the number of results outside of (1 � L2 � 0.01)M based on sample size.

When L2 ¼ 25% and M ¼ 100%, this amounts to a range of 75–125%LC. This

requirement addresses the concern that large deviations in dose uniformity should

not be permitted. As the sample size increases, a larger number of results are

allowed outside of the range.

As on-line measurement systems progress, there will certainly be more applica-

tions for large sample specifications beyond uniformity of dosage units. One

concern as small sample size tests are translated to large sample sizes is the

imposition of “zero tolerance” criteria. This concept was brought to the forefront

in a paper by Murphy and Griffiths (2006). A zero tolerance criterion is one that

allows no test results from a batch outside a specified range. This type of criterion

gives the impression of ensuring that large deviations in the batch will not be

allowed. The reality is that this is not the case and there are significant downsides

to such criterion. For example, this creates a reluctance to test large numbers of

results per batch since each test increases the risk of being outside the specified

range. This becomes especially important as PAT technologies provide manufac-

turers an opportunity to learn more about their manufacturing process and products

by allowing the nondestructive measurement of a large number of dosage units.

7.7 Incorporation of Clinical Experience

Clinically relevant specifications have long been a desire of the industry. It would

be ideal if acceptance limits were determined based on safety and efficacy rather

than process capability determinations. Much work has been done to find ways to

link clinical performance and safety requirements to appropriate acceptance limits.

One of most discussed areas is dissolution specifications for solid oral dosage forms

Table 7.7 Acceptance

values for Large-N UDU

counting tests
Sample

size

Large-N

acceptance value

(Sandell)

Modified Large-N

acceptance value

(Bergum)

EP

2.9.47

100 4 3 3

250 11 7 7

500 23 15 13

1000 47 30 25
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(Dickinson et al. 2008; Sunkara and Chilukuri 2003). One approach is to create

formulations that vary key parameters such as particle size and tablet hardness.

These formulations are then tested using the dissolution analytical method and the

formulations are tested in the clinic. The dissolution data from the formulations

deemed to have acceptable clinical performance are then used to determine the

appropriate Q value and sampling time for the release tests (see Sect. 7.3.4).

Clinical experience can also be incorporated by combining both process capa-

bility and clinical performance. Capen et al. (2007) used statistically based limits

for potency and then verified that product within these limits produced acceptable

clinical performance in a potency ranging study.

Even though there are numerous presentations and articles on clinically relevant

specifications, regulatory expectations are still evolving with regard to approaches

for developing clinically relevant specifications.

7.8 Computer Programs

We have written several computer programs in the R language for performing some

of the calculations and simulations discussed in this chapter. These are located at

the book website. Table 7.8 describes the programs available at the website.
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Chapter 8

Stability

Keywords Accelerated stability • Fixed batch ANCOVA • Matrix and bracketing

designs • Pharmaceutical shelf life • Predictive stability model • Random batch

hierarchical model • Regulatory guidance • Release limit estimation • Risk

assessment • Stability design and analysis • Probability of achieving desired shelf

life

8.1 Introduction

The stability of a drug product is defined by the rate of change over time of key

quality attributes on storage under specific conditions of temperature and humidity.

Understanding the stability of a pharmaceutical product (or any of its components)

is important for proper quality design at many stages of the product life cycle.

Table 8.1 lists some examples of pharmaceutical stability studies and their

objectives.

Stability is intimately connected to many other key quality aspects of a drug

product. For instance, interpretation of the rate of change of a key measure requires

knowing the associated product release levels, recommended storage conditions,

packaging, and stability acceptance limits. Proper interpretation of stability study

data requires an understanding of the chemical-kinetic processes, the accuracy and

precision of the associated test method, and the statistical limitations of the stability

study experimental design. The statistical methodology used to achieve a given

objective often depends on the quantity and quality of the data available and on the

life cycle stage of the product.

A stability study should always be regarded as a scientific experiment designed

to test certain hypotheses (such as equality of degradation rates among lots) or

estimate certain parameters (such as shelf life). Similar to any other scientific

process, the outcome of a stability study should lead to knowledge that permits

the pharmaceutical manufacturer to better understand and predict product behavior.
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8.2 Regulatory Guidance

As with most drug development activities, a stability study is not merely a regula-

tory requirement. Rather, it is a key component in acquiring scientific knowledge

that supports continued quality, safety, and efficacy. Regulatory guidance is pro-

vided to ensure that the required knowledge base is available to support a pharma-

ceutical product throughout its shelf life.

The regulatory aspects of drug product stability are governed by a number of

interrelated regulatory guidance documents. One must use caution in interpreting

and using this guidance. Often, their individual scopes are somewhat narrow and

may not always include the specific objectives of interest to the developer. There is

no guarantee that following such guidance will lead to a manufacturing process that

is approvable and will yield high quality product. Each guidance is established by a

separate committee and despite harmonization efforts, inconsistencies are inevita-

ble. In addition, current guidance often lags behind advancements in scientific and

statistical best practices. Blind adherence to guidance may lead to suboptimal

decision making. A developer must always consider the specific study objectives

and the approach taken should always be scientifically and statistically justified.

In the USA, the European Union, and Japan, these guidance documents are

provided through the International Conference on Harmonization of Technical

Requirements for Registration of Pharmaceuticals for Human Use (ICH).

Table 8.1 Applications of stability studies in pharmaceutical development

Product development stage Objective

Chemical characterization

(Pharmaceutics)

Accelerated studies to define degradation pathways

Formulation development Establish retest period for active ingredient. Excipient/packag-

ing selection and compatibility studies

Clinical studies Verify stability of clinical supplies. Assess risk of temperature

excursions

Product registration Shelf life estimation. Release limit estimation. Determine pro-

cess capability with respect to release or acceptance limits.

Comparison of stability of clinical, development, registration

batches

Postapproval commitment Shelf life confirmation/extension with long term studies annual

stability monitoring

Life cycle management

of marketed product

Determination of predictive model from historical data. Shelf

life extension. Assess risk of temperature excursions. Routine

trending. Justification of scale-up, process, formulation, dosage

strength, manufacturing site, packaging or other postapproval

changes. Establish equivalency with new formulations/pack-

ages. Annual stability reports

Trending of reference

material

Estimate stability or retest date for analytical standards or

calibrators
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1. ICH Q1A (R2, 2003a), ICH Q1B (1996), ICH Q1C (1997), ICH Q1D (2002),

and ICH Q1E (2003b) govern stability testing of drug substances and products,

2. ICH Q2(R1) (2005) and ICH Q2B (1996) govern validation of analytical

methods for (among other things) stability testing,

3. ICH Q3A (2003c) and ICH Q3B (Revised) (2003d) govern impurity levels in

drug substances and products,

4. ICH Q6A (1999a) and ICH Q6B (1999b) govern acceptance criteria, and

5. ICH Q5C (1995) governs stability testing of biotechnological/biological

products.

8.3 Modeling Instability

No pharmaceutical is perfectly stable. In other words, all pharmaceuticals exhibit

some degree of instability. This instability is quantified as a finite rate of loss in

potency, a rate of increase in products of chemical degradation, or a rate of change

in a key quality attribute over time. Understanding the magnitudes of these rates is a

critical aspect of any pharmaceutical development program. In this section we

discuss predictive kinetic models for such instability.

We will start with shopping lists of key response, experimental, and controlled

variables that often appear in drug product stability studies. The lists are by no

means exhaustive. Then we will discuss how each is typically incorporated into the

kinetic model.

8.3.1 Stability Study Variables

8.3.1.1 Response Variables

The response variable that is monitored over time should include, as appropriate,

results from the physical, chemical, biological, microbiological, and/or key perfor-

mance indicators of the dosage form. The potency level of the active ingredient(s)

and the levels of related degradants or impurities are always considered. In the case of

instability due to degradation,mass balance should be accounted for.Only quantitative

variables will generally be amenable to statistical analyses as described below.

Other critical or key quality attributes also need to be considered if they have

acceptance limits. Dissolution may be especially critical for modified release

products or products of poorly soluble compounds where bioavailability may

change over time when dissolution is the rate limiting step for drug absorption.

Other responses that may be included in stability studies are color, moisture or

solvent level, preservative, antioxidant, or pH.

ICH Q2 (R1) governs the validation of analytical methods used for stability

testing. Quantitative, precise, unbiased, stability indicating test methods are
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essential components of stability experimentation. All information obtained from a

stability study ultimately comes from the test methods used in the study. No amount

of statistical sophistication can compensate for a poor measurement system. The

following recommendations promote the use of high quality test methods and data

management approaches.

1. Use quantitative test methods which produce a result on a continuous measure-

ment scale. These have higher information content than those that produce

binary (yes/ no), discrete (1, 2, 3,. . .), ordinal (low, medium, high), or categorical

(A, B, C,. . .) responses.
2. The validity of information obtained from a stability study ultimately depends

on the selected analytical test methods. Where possible, these test methods

should be thoroughly characterized and validated prior to use. Partial validation

may be acceptable for early development studies, but the uncertainties of the test

method need to be accounted for in data evaluation. The validation should

include determination of bias and precision as a function of true concentration

level. The sources (components) of variance (replication, instrument, operator,

day, lab, calibration run, etc.) should be identified and quantified. Such under-

standing is important in both study design (e.g., assuring adequate sample size or

study power) and analysis (e.g., deciding whether to average replicated test

values). See Chap. 6 for more information on analytical methods.

3. Excessive rounding and binning (e.g., conversion of measured values to below

detection or below quantitation) of continuous measured values should be

avoided. Such practices are common when reporting individual analytical

results. However, when values such as stability testing results are used as input

for further data analyses, over-rounding and binning of test results lowers the

data information content and distorts the measurement error structure. These

abuses may limit the statistical procedures available for data analysis and lead to

biased estimates or incorrect conclusions. All information contained in the

original measurements should be used for efficient, sound decision making.

More discussion on this topic is provided in Sect. 2.3.

4. Design stability databases with data analysis in mind. Statistical analyses may

lead to approval of a longer shelf life, or provide information needed to better

manage a product throughout its life cycle. Often statistical analyses are not

performed or included in submissions because hand re-entry of data is required,

excessive reformatting must be performed, or there may be a delay in obtaining

analytical results.

5. As recommended by Tsong (2003), include a trained statistician on the study

design and analysis team.

Analytical data are obtained at great expense. The information contained within

these data represents a proprietary advantage to the product developer. Thus the

analytical methods used to produce the data, and the computing/statistical methods

used to extract information from them should be of the highest possible quality.
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8.3.1.2 Experimental Fixed Factors

Factors such as storage time, dosage strength, and packaging type are called fixed

factors (fixed effects) because the levels (e.g., 3 months of storage, 300 mg) have

specific meaning that is the same whenever that level is used in the study.

Storage time is the primary experimental fixed factor always included in a

stability study. ICH Q1A recommends testing every 3, 6, and 12 months during

the first, second, and subsequent years, respectively. Thus for a typical 3 year study,

testing would occur at 0, 3, 6, 9, 12, 18, 24, and 36 months.

Other experimental fixed factors that may be included as part of more complex

studies include container type or size, closure type, fill size, desiccant type or

amount, manufacturing site, batch size, or other covariates.

8.3.1.3 Experimental Random Factors

Factors such as replicate number or batch number are called random factors

(random effects) because the levels used (say replicate 1, 2, or 3) are not the

same whenever they are applied. Rather, these levels are assumed to represent

experimental conditions drawn at random from a hypothetical infinite population of

all possible replicates.

The ICH Q1A guidance recommends that stability studies for new product

registration include at least three batches of drug product (say batches 1, 2, and

3). If batch is considered as a fixed factor, then inference concerning the shelf life

pertains only to the three batches in the study. If, on the other hand, batch is

considered to be a random factor, then the conclusions of the study are valid for

the hypothetical infinite population of all (future) batches. To properly treat batch as

a random factor requires use of a hierarchical or multi-level statistical model. Such

models can often be expressed as “mixed models” as described in Sect. 2.12.7.

It has been our experience that a random effects model often leads to a longer

shelf life estimate because the fixed model estimate is based on the “worst case” lot.

Since the shelf life specification is meant to apply to all future batches, the random

effects model may be a more pertinent model. However in most new product

registrations governed by ICH Q1E, where the minimum of three batches are

available, batch is treated as a fixed variable and any inferences are strictly limited

to the three batches on hand. This is done, quite simply, because data from only

three batches, without some additional prior knowledge, are insufficient to project

to the larger population of all future batches. This caveat must be born in mind

when interpreting the results of stability analyses.
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8.3.1.4 Controlled Factors

Temperature and humidity are usually controlled during a stability study. The

product label storage condition will dictate the conditions used in studies conducted

to estimate shelf life. Table 8.2, taken from ICH Q1A, describes typical conditions

used in a stability study.

For controlled room temperature products susceptible to moisture loss, lower

relative humidity (RH) storage conditions may be appropriate (40% for long term

and intermediate and 15% for accelerated conditions). For controlled room tem-

perature products stored in water impermeable containers, ambient RH might be

appropriate for different temperature conditions.

While storage temperature and RH are quantitative variables that are often

included in drug product stability studies, they are not generally included in a

stability model. As specified by ICH Q1E, each storage condition (i.e., long term,

intermediate, accelerated) is evaluated separately. An exception to this is with

analysis of accelerated stability studies as briefly discussed in Sect. 8.6.3. Inclusion

of storage condition variables as predictors in the stability model can be useful in

judging the risk of temperature or humidity excursions which can occur during

storage of finished drug products in warehouses or in a patient’s environment. Such

evaluations are briefly discussed in Sect. 8.6.4.

8.3.2 Predictive Stability Models

The design and analysis of a stability study requires the specification of a kinetic,

predictive model for the instability of each key attribute. A model should include

mechanistic, experimental, and statistical aspects. That is, the model must take into

account the physical or chemical mechanisms that result in changes of the average

Table 8.2 Temperature and humidity control of stability studies

Label storage

Long term

condition Intermediate condition Accelerated condition

Controlled room

temperature

25� 2�C/
60%� 5%

relative

humidity

30� 2�C/65%� 5% RH 40� 2�C/75%� 5% RH

Refrigerated 5� 3�C 25� 2�C/60%� 5% RH

Frozen �15� 5�C 5� 3�C/ambient RH

Minimum time

period covered

by data at

submission

12 months 6 months 6 months
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measure over time. It must account for the fixed effects of factors whose levels are

systematically varied as part of the stability study. Further, it must account for the

statistical variation introduced by random factors whose levels are not specifically

controlled, but vary in the study (e.g., product lot, analyst, delay between sample

collection and analysis, and reagent or analytical standard lot).

An understanding of the physicochemical mechanisms of instability of a drug

product is an essential component of drug product life cycle support. Knowledge of

these mechanisms allows a developer to anticipate flaws, design an appropriate

formulation and packaging system, and to troubleshoot and support the product

throughout its life cycle. The reader is directed to Carstensen (1995) for a discus-

sion of kinetic mechanism.

When the rate of change in the response measure is nearly constant over time

and the change is monotonic (strictly increasing or decreasing), linear regression

(LR) as discussed in Sect. 2.12 may be used to describe the stability profile. LR

provides a simple description that is easily understood by non-statisticians,

requires few assumptions, and can be executed in widely available software.

While the assumptions of LR are few, they must be satisfied for any estimates,

inferences, or predictions made with the regression model to be valid. The

assumptions of LR were presented in Sect. 2.12.2. In the context of stability

testing, these assumptions are:

1. The response (Y) is linearly related to the storage time.

2. There is no uncertainty in the storage time value.

3. Errors in the response measurements are normally distributed.

4. Errors in the response measurements are mutually independent.

5. The error variance in the response measurement is the same at all points in time.

Section 2.12.2 provides methods for verifying these assumptions.

If the kinetic processes of instability are more complex, the profile may exhibit

curvature. If a theoretical kinetic model is available, then nonlinear regression

approaches may be the best way to draw inferences, estimate shelf life, and make

predictions from the stability data. In some cases, a nonlinear model can be

linearized by transformation. For instance, the first-order kinetic model

Y ¼ Ae�kt can be rewritten log Yð Þ ¼ log Að Þ � kt. Thus a log transformation of

the response,Y, may improve conformance to assumption 1 above.

When the stability profile is not well represented by a straight line and ignorance

of the underlying kinetic process prevents use of a nonlinear theoretical model,

various transformations of the response or time scales (or both) may be tried in an

effort to allow LR to be used for analysis. It is important that the transformation be

valid for all possible response or time values. For instance, transformations such as

log Y= A� Yð Þð Þ or log(t) are undefined for Y ¼ A or t ¼ 0, respectively.

Section 2.12.6 provides more information on fitting nonlinear models using vari-

able transformation.
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Transformation of the time scale can have subtle effects on estimation efficiency

but generally presents few statistical issues. However, transformation of the

response scale may fundamentally change the error structure of the response

measurements (assumptions 2 and 5). In favorable cases, a transformation may be

found that will improve conformance to all five basic LR assumptions. However, if

the transformation does not have a theoretical basis, extrapolations beyond the

scope of the study must be made with caution.

As indicated in ICH Q1A, a linearizing transformation or use of an appropriate

nonlinear model for the effect of storage time should be considered if the stability

profile cannot be represented by a straight line. A thorough discussion of the

important topic of physicochemical mechanisms is beyond the scope of this chap-

ter. The chosen model for the effect of storage time should be scientifically and

statistically justified.

A zero order kinetic (straight line) model is often sufficient to describe the

relationship between the average of the response and storage time. This is partic-

ularly true when the response changes only a small amount from its initial or

potential value (say less than 15%).

8.4 Shelf Life Estimation

8.4.1 Definition of Shelf Life

A coherent discussion of shelf life estimation requires an absolutely clear defini-

tion of shelf life. To date, regulatory guidance does not provide such a definition.

Instead, guidance suggests estimation methodology and leaves the definition

largely to the imagination of the product sponsor. This has led to a fascinating

diversity of opinions about what shelf life really means and how best to

estimate it.

Let’s see what definition can be gleaned from the following ICH Q1E excerpt

(emphasis added).

The purpose of a stability study is to establish, based on testing a minimum of three batches
of the drug substance or product, a retest period or shelf life and label storage instructions

applicable to all future batches manufactured and packaged under similar circumstances.

The degree of variability of individual batches affects the confidence that a future
production batch will remain within acceptance criteria throughout its retest period or

shelf life. . . An appropriate approach to retest period or shelf life estimation is to analyze a

quantitative attribute (e.g., assay, degradation products) by determining the earliest time at

which the 95 percent confidence limit for the mean intersects the proposed acceptance

criterion.

Amazingly, the guidance implies that it is advisable to estimate a shelf life for all

future batches based on testing results from only three batches while acknowledg-

ing batch to batch variability. Ignoring the obvious naivety here and looking further

we notice the emphasis on themean. Is this the mean of each individual batch or the
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mean of the process that makes batches (or something else)? The guidance is not

clear here, but the spirit of the passage above suggests, and we assume in this

chapter, that it is the individual mean of each future batch that must conform. Not

all accept this definition of shelf life. Some suggest that shelf life should be set to

control the spread of individual results using prediction or tolerance bounds (see,

for instance, Kiermeier et al. 2004). Unfortunately, stability results are generally

obtained from tests on composited units so such proposals cannot claim to control

unit dose uniformity.

ICH Q1E further encourages the consistent use of appropriate statistical methods

to analyze long term primary stability data to establish, with a high degree of

confidence (e.g., 95%), a shelf life during which the mean of each stability indicating
attribute will remain within acceptance criteria for all future batches produced by a

given process. Ideally, the statistical method will be based on a model that accounts

for known kinetic processes and measurement variability. However, when kinetic

mechanisms are not understood, an approximate straight line, or zero order kinetic

model, is often used. Use of a straight line model to approximate (say) an exponential

kinetic process may be adequate as long as the overall loss in potency is less than

15%. In such cases, the use of a simple linear regression method is appropriate. In

other cases, transformations or the use of nonlinear models may be required. Other

commonly made assumptions are normality and independence. When such assump-

tions are not appropriate, statistical support is recommended.

8.4.2 Single Batch

Because batch to batch variation in initial levels and rates of change can be

expected, drawing inferences about a process from only a single batch is clearly

risky. Regulators generally expect shelf life estimation for the population of batches

to be based on data from at least three batches. It is best to regard a shelf life

estimate based on data from a single batch as a preliminary estimate that strictly

applies to that batch only.

An appropriate approach, using batch number 2 from the potency data set of

Shuirmann (1989), provided at the book website, is illustrated below. The unit of

measure of this potency response is percent of label claim (%LC) and the unit of

measure for time is months. If the data for batch 2 are in an R data frame called

stab1, a simple linear regression is obtained using the following R statements:

fit<-lm(Potency�Months,data=stab1)

summary(fit,correlation=TRUE)

anova(fit)
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This produces the following summary and ANOVA tables:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 100.24914 0.42208 237.51 < 2e-16 ***

Months -0.18013 0.03411 -5.28 0.000746 ***

Residual standard error: 0.9044 on 8 degrees of freedom

Multiple R-squared: 0.7771, Adjusted R-squared: 0.7492

F-statistic: 27.88 on 1 and 8 DF, p-value: 0.0007459

Correlation of Coefficients:

(Intercept)

Months -0.74

Analysis of Variance Table

Response: Potency

Df Sum Sq Mean Sq F value Pr(>F)

Months 1 22.8057 22.8057 27.883 0.0007459 ***

Residuals 8 6.5433 0.8179

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The time at which the 95% one-sided lower bound on the average response

intersects the stability acceptance limit provides an estimate for the batch shelf life.

The formula for this 95% lower bound as presented in (2.81) for the given storage

time XP is

L ¼ b0 þ b1XP � t0:95:n�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ XP � �Xð Þ2Xn

i¼1

Xi � �Xð Þ2

vuuuut � S ð8:1Þ

For the data shown above, b0 ¼ 100:249%LC (shown as (Intercept) Estimate in

the output), b1 ¼ �0:18013%LC/month (shown as the “Months” estimate in the

output), n¼ 10, S¼ 0.9044%LC (labeled as “Residual standard error” in the

output),
Xn
i¼1

Xi � �Xð Þ2 ¼ 702:9, �X ¼ 9:1, and t0:95:n�2 ¼ t0:95:8 ¼ 1:860. For this

example, assume the lower one-sided stability acceptance limit is 90%LC, where

“%LC” is shorthand for “% of label claim.” To determine shelf life, one sets L equal

to 90%LC in (8.1) and then solves forXP. That is,
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L¼ b0 þ b1XP � t0:95:n�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ XP � �Xð Þ2Xn

i¼1

Xi � �Xð Þ2

vuuuut � S

90¼ b0 þ b1XP � t0:95:n�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ XP � �Xð Þ2Xn

i¼1

Xi � �Xð Þ2

vuuuut � S

0¼ �90þ b0 þ b1XP � t0:95:n�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ XP � �Xð Þ2Xn

i¼1

Xi � �Xð Þ2

vuuuut � S

ð8:2Þ

The R function uniroot () can be used to solve this quadratic equation for the

shelf life, XP, as follows:

Lower.Limit<-90

intercept<-coef(fit)[1]

slope<-coef(fit)[2]

n<-length(stab1$Potency)

s<-sqrt(anova(fit)[2,3])

Sxx<-var(stab1$Months)*(n-2)

xbar<-mean(stab1$Months)

# Ref Chow and Liu page 362

# Note that the interval has to be chosen carefully to include only

one of the roots or will get an error

Shelf.Life<-uniroot(f=function(x,L,a,b,n,s,Sxx,xbar){

L-a-b*x+qt(0.95,n-2)*s*sqrt(1/n+(x-xbar)^2/Sxx)

},

interval=c(0,100),tol=0.00000000001,L=Lower.Limit,

a=intercept,b=slope,n=n,s=s,Sxx=Sxx,xbar=xbar)$root

Shelf.Life

For this example where the stability limit is 90%LC, the resulting shelf life is

XP ¼ 43:6 months. This simple linear regression and the two-sided confidence

interval on the average are illustrated in Fig. 8.1 which is produced by the following

R statements:

new<-data.frame(Months=seq(0,60,0.1))

pred.w.clim<-predict(fit, new, interval = "confidence",level = 0.90)

pred.w.plim<-predict(fit, new, interval = "prediction",level = 0.90)

matplot(new$Month,cbind(pred.w.clim, pred.w.plim[,-1]),

col=c(1,2,2,3,3),lty=c(1,2,2,3,3), type="l", ylab="Potency",

xlab="Month")
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points(stab1$Months,stab1$Potency)

grid()

lines(c(0,Shelf.Life),rep(Lower.Limit,2))

lines(rep(Shelf.Life,2),c(Lower.Limit,0))

The individual observed potencies are plotted as circles and the predicted batch

mean level, obtained by simple linear regression, is indicated by the solid black line

through the data. The red dashed lines give the two-sided 90% confidence intervals

for the average batch potency. The lower mean confidence line is also a one-sided

95% confidence lower bound on the average batch potency. Note this lower line

crosses the potency line of 90%LC at month XP ¼ 43:6months.

8.4.3 Fixed Batch Analysis of Covariance

ICH and FDA guidance permit shelf life assignment with as few as three batches.

With stability data from only three batches, it may be unrealistic to attempt to

model batch to batch variation. In this case a fixed effects model is employed and

inference is limited to the batches in the stability study (Chow and Liu 1995). The

shelf life estimation serves as a demonstration that the manufacturing process is
capable of producing a limited number of batches all of which can meet the

estimated shelf life with high (at least 95%) confidence. The selected stability

batches may have been manufactured using similar materials in the same facility

by the same operators over a limited period of time. When shelf life estimation is

based on limited manufacturing experience, it is best to regard the exercise as a

preliminary shelf life assignment rather than an estimate of the shelf life that should
apply to all future batches made by the process.

Fig. 8.1 Shelf life

estimation for a single batch
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In what follows, we assume that the proper kinetic model is zero order (i.e., slope

is constant over time) and that variance is homogeneous. The homogeneity assump-

tion is important. If the error variance cannot be assumed similar among batches,

then FDA and ICH guidance recommends that each batch be analyzed separately by

the approach described above for a single batch. In other words, the batches cannot

be “pooled” as discussed by Ruberg and Stegman (1991). This generally will result

in a shorter shelf life assignment because fewer degrees of freedom will be

available for estimating uncertainty. If the content uniformity differs among

batches, or if there are other differences among batches that affect analytical

precision, variance heterogeneity may be present in the data. In what follows, we

assume variance homogeneity.

Analysis of covariance (ANCOVA) is a statistical procedure that is a hybrid of

analysis of variance (ANOVA) and linear regression in which the model includes

both quantitative and qualitative predictor variables. If the underlying assumptions

of ANCOVA are met, it may be used to choose a stability model for assignment of

shelf life. A good description of ANCOVA including its underlying assumptions is

given by Brownlee (1984). At one time the FDA provided SAS macros for stability

ANCOVA analysis (Ng 1995), but these macros appear to have been withdrawn by

the agency.

The ANCOVA assumes that one of the following stability models is appropriate:

1. CICS¼ common intercept and common slope for all batches. This is the basic

model in Eq. (2.78) of Chap. 2.

2. SICS¼ separate intercept and common slope for all batches. This model is

discussed in Eq. (2.108) of Chap. 2.

3. SISS¼ separate intercepts and separate slopes for each batch. This model is

discussed in Eq. (2.112) of Chap. 2.

The underlying algebraic description of these three models has already been

given in Chap. 2. A fourth model (common intercept and separate slopes) is

sometimes included if there are scientific reasons for considering it, but it will not

be discussed here.

The purpose of a stability ANCOVA is to select the appropriate model (CICS,

SICS, or SISS) for shelf life estimation purposes. To do this, three statistical F-tests

are conducted as indicated in Table 8.3. Each test is associated with a null

hypothesis (less complex model) and an alternate hypothesis (more complex

model).

The null hypothesis is accepted unless the p-value associated with the test is less

than 0.25. Bancroft (1964) originally proposed 0.25 for such applications as a way

of assuring adequate statistical power. This type I error rate is much higher than the

usual 0.05 and may lead to adopting an unnecessarily complex model, which in turn

may result in an under-estimation of the shelf life. It has been argued that such a

liberal decision criterion serves as a disincentive for manufacturers to improve

analytical precision or increase the amount of stability data used in shelf life

estimation. While the use of 0.25 remains controversial, it has become a regulatory

standard.
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The ANCOVA tests of most interest are tests B and C. Test B is a test for

separate intercepts, given that the slope is common among batches. Test C is a test

for separate slopes, given that intercepts are separate among batches. Test A is a

joint test for separate slopes and intercepts and is not employed for shelf life

estimation.

The ANCOVA tests are best described using matrix algebra (see Appendix at the

end of the book). Table 8.4 makes use of matrix notation to define the tests for the

hypotheses in Table 8.3. Inspection of this table can be insightful. Consider a

stability study with k batches and N total test results for a given compound. We

place the N test results in a column vector denoted Y. Y is the response variable

vector. The predictor variable X will then be a matrix with N rows and a column of

ones in the first column. The total number of columns in X will depend on the

particular linear model of interest. (You may wish to review the format of the

indicator variables and interactions in Sect. 2.12.) ANCOVA is the statistical tool

used to perform the F-test that identifies the appropriate stability model.

In the above table, I is the N�N identity matrix. For Model 1 (CICS), the X1

matrix has two columns representing, respectively, the indicator coefficients of the

common intercept and common slope for all k batches. For Model 2 (SICS), the X2

matrix will have k columns representing indicator coefficients for the k separate

intercepts and an additional indicator column coefficient for the common slope. For

Model 3 (SISS), the X3 matrix will have 2k columns, represent the indicator

coefficients for the intercept and slope for each of the k batches. Hi¼Xi(Xi
TXi)Xi

T

is the N�N “hat” matrix for the model i regression. The superscript T indicates the

matrix transpose operation. The equations used in the above table are standard

regression equations found in most regression textbooks (e.g., see Neter et al. 1996,

p. 229, Eq. 6.35). Table 8.5 gives the formulas used in the calculation of each statistic

in the ANCOVA table where MSE¼ SSE3/dfe3.

Table 8.3 Hypotheses

associated with each

ANCOVA test

Test Null hypothesis Alternate hypothesis

A CICS SISS

B CICS SICS

C SICS SISS

Table 8.4 Regression sums of squares for the CICS, SICS, and SISS models

Model

Matrix of

independent

predictors

Matrix algebra expression for

the regression error sum of

squares

Degrees of freedom

associated with error

sum of squares

1 (CICS) X1

N rows, 2 columns

SSE1¼YT(I�H1)Y dfe1¼N� 2

2 (SICS) X2

N rows, k + 1

columns

SSE2¼YT(I�H2)Y dfe2¼N� k� 1

3 (SISC) X3

N rows, 2k columns

SSE3¼YT(I�H3)Y dfe3¼N� 2k
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In the table, Φ(Fi, dfi, dfe3) represents the cumulative F distribution for the

observed F ratio for test i with dfi and df3 degrees of freedom in the numerator

and denominator, respectively.

The hypotheses tests associated with tests A and C in the above table are easily

justified based on the extra sum of squares principle in linear model building (see

Neter et al. (1996), p. 80, Eq. 2.70). In this paradigm, the alternative model

represents the “full model” and the null model represents the “reduced model.”

The hypotheses test associated with source B is a modification of this principle.

The F ratio for test B in the table substitutes MSE in the denominator in place of the

traditional SSE2/dfe2. This F-test is more clearly understood as a type I test of the

batch effect on the intercept in the SISS model.

The ANCOVA test A is usually provided, but not used for model identification.

It is a joint test of slopes and intercepts as is easily seen since SSE1�ð
SSE2Þ þ SSE2 � SSE3ð Þ ¼ SSE1 � SSE3ð Þ. MSE provides a pooled estimate of

total analytical plus content non-uniformity variance that may be quite useful.

The statistics associated with E are not used for any statistical tests but are

traditionally provided for completeness.

From the above P-values associated with tests B and C (P-valueB and P-valueC,

respectively), the ANCOVA algorithm performs the model selection procedure

according to the following rules:

Select Model 1 (CICS) if P-valueB> 0.25 and P-valueC> 0.25

Select Model 2 (SICS) if P-valueB< 0.25 and P-valueC> 0.25

Select Model 3 (SISS) otherwise.

Table 8.6 gives another view of these calculations and statistical tests which

relate to these three models which are described in detail in Chap. 2.

In SAS GLM syntax, the ANCOVA could be conducted as an analysis of the

SISS Model as follows (order of terms is critical):

PROC GLM;

CLASS BATCH;

MODEL LEVEL = TIME BATCH TIME*BATCH/ SS1;RUN;

Here, the intercept term is assumed present but not explicitly included in the

model statement. The resulting GLM output would automatically print type I

sequential tests for each term in the model. In the SAS output, the test associated

with the BATCH effect is test B and the test associated with the TIME*BATCH

effect is test C.

Table 8.5 ANCOVA table for model selection

Test from Table 8.3 SS DfTest SS/df FTest P-valueTest

A SSE1-SSE3 dfe1-dfe3 MSA MSA/MSE 1�Φ(FA,dfA,dfe3)

B SSE1-SSE2 dfe1-dfe2 MSB MSB/MSE 1�Φ(FB,dfB,dfe3)

C SSE2-SSE3 dfe2-dfe3 MSC MSC/MSE 1�Φ(FC,dfC,dfe3)
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Having identified and fit the appropriate regression model, it remains to find the

predicted response,Ŷh, and its 95% confidence interval, (L,U ), as a function of the

predictor, xh, for all batches (if the CICS model is chosen) or each batch (other-

wise). The predictor, xh, is a row vector with the same structure as a row of the

X matrix except that the desired storage time at which predictions are needed is

employed. The predicted response is equal to

Ŷ h ¼ xh XTX
� ��1

XY ð8:3Þ

and the confidence interval for the mean predicted response is

L;Uð Þ ¼ Ŷ h � d � t1�α=2:df e3 �
ffiffiffiffiffiffiffiffiffi
SS3
df e3

r
�

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh XTX
� ��1

xT
h

q ð8:4Þ

Note that Eq. (8.4) uses the mean squared error and error degrees of freedom

from the SISS model (see Table 8.6) regardless of the final model selected by the

ANCOVA algorithm. An alternative approach used by some software packages

(such as the Minitab stability platform illustrated below) is to substitute the mean

squared error and degrees of freedom for the final model selected into Eq. (8.4).

This alternative approach seems to promote an undesirable feature of “using the

data twice” (once to choose the model, and again to determine shelf life from the

model). Unless dfe3 is small (say less than 20), it should make little difference

which procedure is used. However, we feel that consistently using the statistics

obtained from the full SISS model represents statistical best practice.

Table 8.6 Summary of calculations and statistical F-tests for stability model selection by

ANCOVA

Model CICS SICS SISS

Model

terms

Time Time Time

Batch (categorical

coding)

Batch (categorical

coding)

Time*batch

(categorical coding)

Model

equation

(2.78) (2.108) (2.112)

Error df df e1 ¼ N � 2 df e2 ¼ N � k � 1 df e3 ¼ N � 2k

Error SS
SSE1 ¼

XN
i¼1

Yi � Ŷ CICS, i

� �2
SSE2 ¼

XN
i¼1

Yi � Ŷ SICS, i

� �2
SSE3 ¼

XN
i¼1

Yi � Ŷ SISS, i

� �2
Test B

FB ¼ SSE1 � SSE2ð Þ � df e3
df e1 � df e2ð Þ � SSE3

Test C
FC ¼ SSE2 � SSE3ð Þ � df e3

df e2 � df e3ð Þ � SSE3
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If the stability risk is identified as only a decreasing or increasing response (but

not both), then a one-sided confidence bound, L or U, respectively, is employed

with α ¼ 0:05. Otherwise a 2-sided confidence interval is used in which 1-α/2 is

replaced with 1-α. For models SICS and SISS the predictor vector also includes

indicator variables that identify the specific batch for which predictions are desired.

Note that Eq. (8.4) performs the same computation as given by Eq. (2.96) of Chap. 2

with d ¼ xh XTX
� ��1

xT
h .

Following the definition of shelf life given in ICH Q1E, one looks for the longest

storage time at which the response remains above L or below U (one-sided) or

within the interval (L,U ) (two-sided). An analytical expression for the shelf life

involves a solution to a quadratic equation. It is generally more convenient and

informative to plot Ŷh, L, and/or U as a function of storage time using the above

equation and observe the storage times at which the response remains within

stability acceptance limits for all batches. Such a relationship is illustrated for

three fixed batches in Fig. 8.2.

The R functions ANCOVA, SHELF.LIFE, and slplot at the book website will

provide the above ANCOVAmodel identification, response and confidence interval

estimation, and stability profile graphics. If X, Batch, and Y are vectors containing

storage times, a batch identification number, and observed responses, then these

functions are called using the following R statements:

0

90

92

94

96

98

100

102

Shelf Life Plot for All Batches

Shelf Life = 48.6703

Fitted Line
95% LB

Batch
Batch 2

Batch 5
Batch 7

P
o

te
n

cy

10 20

LS = Lower Specification
Equation for fitted line: Potency = 101 - 0.193 Months

30
Months

40 50 60

LS = 90

Fig. 8.2 Shelf life estimation for three fixed batches
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ancova<-ANCOVA(Batch=Batch,X=X,Y=Y)

ancova

predict<-SHELF.LIFE(Batch=Batch,X=X,Y=Y,Model=ancova[[2]],pool=-

TRUE,conf=0.9)

predict

slplot(Batch=Batch,X=X,Y=Y,Model=ancova[[2]],Limit=90,predict=-

predict)

Minitab 17 provides a convenient shelf life estimation platform for fixed

batches. As an example, Potency batches 2, 5, and 7 (provided on the book website)

are analyzed below in Minitab using the menu options Stat/Regression/Stability

Study/Stability Study. The data are arranged in three columns: Months, Potency,

and Batch (categorical variable). A one-sided lower specification of 90 is used. The

fixed option for Batch, a 95% confidence lower bound on the mean and an alpha for

pooling of 0.25 must be selected from the options window. The resulting ANCOVA

output appears in Table 8.7.

ANCOVA tests B and C correspond to the sources “Batch” and

“Months*Batch,” respectively, in Table 8.7. Since the P-values for both tests are

above 0.25, a CICS model is selected for these batches. Minitab solves the quadratic

equation and prints a shelf life, (here 48.67 months) and provides a stability profile

plot as shown in Fig. 8.2 that illustrates the estimation process.

Since both intercept and slope are common among batches, a single predicted

mean potency line and its lower 95% confidence bound are shown for all three

batches. The Minitab stability platform also produces estimates of intercept and

slope and their standard errors as well as various regression diagnostics.

When batches 3, 4, and 5 are analyzed similarly in Minitab, a SICS model

results. In this situation, each batch has a different shelf life with the minimum shelf

life taken as the assigned shelf life. The ANCOVA and shelf life estimates reported

by Minitab are shown in Table 8.8 and the stability profile plot is in Fig. 8.3.

The Minitab analysis in Table 8.9 considers batches 4, 5, and 8 and results in an

SISS model. The stability profile is illustrated in Fig. 8.4. The overall shelf life is

again based on the minimum of the three fixed lots.

Traditionally, analysis of more complex stability studies follows a model build-

ing and fitting process similar to the ANCOVA described above. Good reviews are

given by Chow and Liu (1995) and Shao and Chow (1995). The statistical aspects of

the analysis for a multifactor fixed effects model are discussed by Fairweather et al.

Table 8.7 Minitab ANCOVA output with potency batches 2, 5, and 7

Source DF Seq SS Seq MS F-Value P-Value

Months 1 80.3588 80.3588 117.17 0.000

Batch 2 0.5981 0.2990 0.44 0.651

Months*Batch 2 0.3137 0.1568 0.23 0.797

Error 25 17.1462 0.6858

Total 30 98.4168
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(1995) and Chen et al. (1997). When a mixed effects model is used (see the

discussion in Sect. 8.4.4), the same model identification principles have been

employed. Analysis of mixed effects stability models is described by Chen et al.

(1995) and Chow and Shao (1991). Such approaches require ad hoc decision rules

based on arbitrary criteria (such as a minimum p-value). In practice, such

approaches can lead to swings in shelf life projections as data accumulate. It

would seem desirable that model selection be based on scientific understanding

rather than arbitrary model selection rules.

Table 8.8 Minitab ANCOVA output with potency batches 3, 4, and 5

Source DF Seq SS Seq MS F-Value P-Value

Months 1 74.489 74.4895 60.01 0.000

Batch 2 53.968 26.9839 21.74 0.000

Months*Batch 2 0.455 0.2273 0.18 0.834

Error 22 27.309 1.2413

Total 27 156.221

Batch Shelf Life

Batch 3 48.988

Batch 4 57.316

Batch 5 43.454

Overall 43.454

Shelf Life = 43.4536

Fitted line
95% LB

Batch
Batch 3
Batch 4
Batch 5

LS = 90

706050403020100
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100
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LS = Lower Specification
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Fig. 8.3 Shelf life estimation for three batches
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8.4.4 Random Batch

Because the fixed batch shelf life estimated using the ICH Q1E approach in

Sect. 8.4.3 applies only to batches in hand, it cannot be used to make inferences

about the shelf life of future batches. To illustrate the problems of using the ICH

Q1E approach, consider the related substance data set provided in an Excel sheet on

the book website for which 16 batches of stability data are available. The response

is “RSTotal” or total weight of undesirable chemicals resulting from the breakdown

Table 8.9 Minitab ANCOVA output with potency batches 4, 5, and 8

Source DF Seq SS Seq MS F-Value P-Value

Months 1 45.451 45.4513 100.99 0.000

Batch 2 64.918 32.4588 72.12 0.000

Months*Batch 2 1.760 0.8800 1.96 0.170

Error 18 8.101 0.4500

Total 23 120.230

Batch Shelf Life

Batch 3 59.520

Batch 4 44.207

Batch 5 27.166

Overall 27.166

105

Shelf Life = 27.1660

100

95

90

85

80

75

70
0 10 20

LS = Lower Specification
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Fig. 8.4 Shelf life estimation for three fixed batches
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of the active pharmaceutical ingredient expressed as a percent of the label claim or

%LC. There is a one-sided upper specification of 6.5%LC. When these data are

analyzed using the fixed batch approach in Minitab, an SISS model is selected. The

stability profile shown in Fig. 8.5 results. Table 8.10 shows the estimated shelf life

for each batch (rounded down to the nearest whole month).

The SISS model results in a separate stability profile and 95% confidence upper

bound for each batch with the shelf life being set by the worst-performing batch.

The worst-performing batch was batch 13 with a 19.728 month shelf life estimate

based on 18 months of data. Batch 16 with only 9 months of stability data was the

second-worst batch with an estimated shelf life of 19.998 months. However, 11 of

the 15 batches for which shelf life estimates were provided had estimated shelf lives

greater than 30 months. The four batches with full 24 month data all exhibited shelf

lives above 40 months. In this light, it does not appear that 19.728 months is an

appropriate shelf life for future batches. It is rare for all batches to have complete

data in a stability data set at the time of analysis because batches are made in

sequence (or in limited campaigns) and the initials are therefore staggered. In cases

where the SISS model is selected, batches with the least data often exhibit the

shortest shelf life simply because their mean levels are most uncertain and have the

widest 95% confidence bounds. The estimated slopes for batches with limited data

are also highly influenced by random measurement variation in the initial or last

data value. As the number of batches being analyzed increases, the probability of

underestimating the shelf life for the population of future batches increases.
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Fig. 8.5 Shelf life estimation for 16 fixed batches
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When stability data are available from a sufficient number of batches of a

product (say six or more), it is possible to make inferences not only about the

batches under study, but also about the process that makes batches itself. Doing so

requires hierarchical modeling of the process. As with the fixed batch case, a

stability model is assigned to each individual batch. For instance, the following

mixed model described in (2.116) may be considered.

Yij ¼ μþ Li þ β þ Bið Þ � tij þ Eij ð8:5Þ

where Yij is the response for lot i at time point j, and the intercept and slope of the ith
batch are μþ Li and β þ Bi, respectively. The random variables Li, Bi, and Eij are

assumed to be iid normally distributed with zero mean and standard deviations σL,
σB, and σE, respectively. Analysis of this model is described in the next section.

Section 8.6.1 provides an extension of the model in (8.5) that assumes Li and Eij are

correlated.

Table 8.10 Minitab batch shelf life estimates when all 16 potency batches are analyzed using

ANCOVA

Shelf Life Estimation
Upper spec limit ¼ 6.5
Shelf life ¼ time period in which you can be 95% confident that at least
50% of response is
below upper spec limit

Batch Shelf Life

1 44.435

2 30.440

3 25.222

4 40.533

5 43.701

6 43.982

7 38.670

8 42.888

9 33.512

10 38.785

11 37.748

12 21.883

13 19.728

14 32.926

15 *

16 19.998

Overall *

The mean response slope for batch 15 is not significantly larger than
zero. No shelf life estimate for batch 15 is available.
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8.4.5 Random Batch Approach Using SAS Proc Mixed

The predictive model shown above can be thought of as a mixed model and

analyzed using the SAS procedure Proc Mixed. This is a very flexible procedure

which can be used to analyze a wide variety of linear statistical models that include

both fixed and random effects.

Consider the data set of 16 batches analyzed using the fixed effects model in the

previous section. The Proc Mixed code below provides a mixed model analysis of

this 16 batch degradation data set.

data omni;

input batch $ month RSTotal;

cards;

1 0 1.4

1 3 2.3

...

16 6 3

16 9 3.6

run;

* add missing values for existing batches;

proc sort data=omni;by batch month;run;

data omni;set omni;by batch month;

output;

if last.batch then do;

do month= 0 to 60 by 1;

RSTotal=.;

output;

end;

end;run;

* add missing values for future batch;

data future;

do month= 0 to 60 by 1;

batch=’f’;

RSTotal=.;

output;

end;

data both; set omni future;run;

filename myoutput ’<file pointer>’;

proc printto print=myoutput;run;
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proc print data=both;run;

proc mixed data=both covtest cl;

class batch;

model RSTotal = month/solution alphap=0.1 outp=outp;

random intercept month/type=vc subject=batch;

prior/out=posterior nsample=60000;

run;

proc print data=outp;run;

proc print data=posterior;run;

The above SAS code implements a Bayesian shelf life estimation. Note that

there are alternative non-Bayesian estimation procedures available and these may

lead to slightly different shelf life estimates. However, our experiences with

Bayesian approaches in stability analysis have been positive and we find them

quite informative. More details about Bayesian approaches and the above code can

be found in Sect. 8.4.6. At this point we just focus on the key output from the Proc

Mixed procedure which is shown in Table 8.11. Proc Mixed provides point and

standard error estimates for the five model parameters (fixed effects μ and β, and
squares of the standard deviation parameters σL, σB, and σE). The point estimates

are shown in Table 8.12.

The Proc Mixed statements above produce an output data set which includes

predictions of the average RSTotal levels at months 0, 1, . . ., 60 for each of the

16 batches and also for a random future batch whose slope and intercept are

unknown, but would be randomly drawn from the respective normal distributions

with means and variances estimated above. The output data set includes a one-sided

95% confidence upper bound on this estimated RSTotal mean. The longest whole

month at which the RSTotal mean is still below the upper limit of 6.5%LC is given

in Table 8.13.

Based on the above list, a future batch, made by the process should be within the

acceptance limit for RSTotal for 29 months with a confidence level of 95%. Recall

the fixed effects model in the previous section produced a shelf life of only

19.7 months. It should be noted that batches 12 and 13 are projected to be within

the acceptance limit for only 24 or 23 months, respectively. Setting the shelf life to

only 23 months would be consistent with the worst-case philosophy advocated by

ICH Q1E. However, the worst-case philosophy is inappropriate when data from a

large number of batches are available. The worst-case philosophy leads to an

inverse relationship between estimated shelf life and number of batches which

serves as a testing disincentive for sponsors. It seems more appropriate to set a

shelf life using the model projection of 29 months for a future batch.
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8.4.6 Considerations with the Traditional Mixed Model
Approach

When using any statistical package, a user should always consult the technical

descriptions in the software manual to appreciate the underlying assumptions,

approximations, and algorithms used in the analysis. Below we briefly highlight

some details that should be considered.

The default estimation method used by Proc Mixed is restricted (or residual)

maximum likelihood (REML). REML reduces the bias in estimates of variance

parameters (compared to the usual maximum likelihood approach) but includes a

“penalty term” that may not be appropriate in certain situations. While strict

adherence to the principles of maximum likelihood disallows a negative variance

component estimate, REML can sometimes produce negative variance estimates

which are (by default) set to zero.

Table 8.12 Parameter point estimates obtained from Table 8.11

Parameters Description Computed estimate

μ Overall average across all lots 2.3166

β Average slope across all lots 0.09136

σ2L Lot-to-lot variance in intercept 0.07354

σ2B Lot-to-lot variance in slope 0.000718

σ2E Variance of analytical method 0.1571

Table 8.13 Batch shelf lives

including a “Future Batch”

computed for RSTotal

data set

Batch Shelf Life

1 46

2 36

3 35

4 41

5 41

6 43

7 38

8 40

9 35

10 38

11 40

12 24

13 23

14 40

15 29

16 29

future batch 29
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For mixed models, the concept of degrees of freedom can be unclear and as a

default Proc Mixed uses a procedure called “containment” to approximate the

denominator degrees of freedom. The containment approximation may be adequate

unless significant imbalance (correlation among predictors) is present in the exper-

imental design. Sometimes containment can result in an estimate of the degrees of

freedom equal to zero.

Often in mixed model analysis, interest focuses on certain parameters and others

(such as residual variance) may be regarded as “nuisance parameters.” By default,

the Proc Mixed procedure will “profile” or “sweep” the model residual variance out

of the likelihood expression using a numerical process. In doing so, some informa-

tion about the parameters of interest may be lost. While this does not usually affect

parameter point estimates, it may impact the standard errors or confidence intervals

of the parameters of interest.

As a cautionary note, Proc Mixed tends to underestimate sampling variability

because no account is taken of the uncertainty in estimating the key covariance

matrices. This is a particular issue with small sample sizes (e.g., small numbers of

stability batches). To compensate for this, Proc Mixed uses approximate t and F

statistics for statistical tests and confidence interval estimation. Other user options

include the use of Kenward–Rogers inflation factors and Satterthwaite degrees of

freedom approximations. It is important to assess the impact of such approxima-

tions on the inferences made.

8.4.7 Random Batch Analysis Using Bayesian Analysis

The preceding technical considerations are an unfortunate, but unavoidable, dis-

traction to the analyst whose goal is to learn about the data at hand rather than the

vagaries of the computing methodology. In this regard, Bayesian methods provide

some relief as the modeling paradigm is unified under Bayes rule (see Sect. 2.13).

Additionally, the associated Markov Chain Monte-Carlo (MCMC) methodology

(i.e., Gibbs, Metropolis, or related algorithms) frees the analyst from concern about

statistical derivations or mathematical approximations. This is because modern

Bayesian software (e.g., BUGS, JAGS, Stan) expresses a statistical model using a

syntax that requires only statements of the mathematical and probabilistic relation-

ships that underlie the model. The need for analytical derivations is minimized.

Thus many problems that are intractable by traditional approaches are easily

implemented—without approximations—in a Bayesian setting.

Background in Bayesian thinking is provided in Sect. 2.13 of this book. For a

more comprehensive, and easily readable, introduction to Bayesian approaches, the

text by Kruschke (2015) is highly recommended.

SAS Proc Mixed can provide a Bayesian analysis for a class of mixed models

called variance component models which ignore covariances between (in this case)

random batch slopes and intercepts.
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For variance component models, such as the predictive model used here, which

assumes zero covariance between random batch slopes and intercepts, Proc Mixed

is also capable of generating a sample from the joint posterior of the five model

parameters using an independence chain algorithm. This is implemented using the

prior statement as shown in the SAS code in Sect. 8.4.5. By default, Proc Mixed

uses Jeffreys’ prior distributions for the five parameters.

Because this random batch model allows each batch to have its own intercept

and slope, we are essentially hypothesizing an SISS model. An important difference

between the random batch analysis we describe here and the fixed batch ANCOVA

shown in Table 8.10 is that we do not incorporate here any statistical tests for model

selection. While such tests are possible, they seem unnecessary and perhaps even

unwise. If a simpler model (such as CICS or SICS) better describes the data, this

should be evident from the magnitudes of the variance parameters σL and σB. Rather
than make a post hoc model selection based (usually) on limited data, we use the

full SISS model and let the estimated parameter values serve to restrict the model as

warranted by the data.

The output data set “posterior” provides a sample of 60,000 values from the joint

posterior which can be used for shelf life estimation (without the troublesome

asymptotic assumptions and approximations described above). However, the

PRIOR statement in Proc Mixed requires a variance component model and the

default prior selection is limited.

SAS Proc MCMC can provide a more general Bayesian analysis, but we will not

discuss this approach here. Instead, we will show below how to conduct Bayesian

stability analyses using the well-established freeware package, WinBUGS (Lunn

et al. 2013).

8.4.8 Using WinBUGS to Perform a Stability Analysis

ABayesian analysis of the 16 batch data is performed by assuming diffuse N(0, 106)
prior distributions on the model parameters μ, and β, and U(0, 100) distributions on
the model parameters σL, σB, and σE. These prior distributions contribute little

information and give nearly equal weight to parameter estimates that are supported

by the data. The WinBUGS file that implements this model is shown below.

model

{

#Likelihood

for(i in 1:n){

intercept[i] � dnorm(mu,tau.L)

slope[i] � dnorm(beta,tau.B)

}
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for(k in 1:N){

Yhat[k] <- intercept[batch[k]] + slope[batch[k]]*t[k]

Y[k] � dnorm(Yhat[k],tau.E)

}

#Priors

mu � dnorm(0, 1.0E-6)

beta � dnorm(0, 1.0E-6)

sigma.E � dunif(0,100);tau.E <- 1/(sigma.E*sigma.E)

sigma.B � dunif(0,100); tau.B <- 1 / (sigma.B * sigma.B)

sigma.L � dunif(0,100);tau.L <- 1 / (sigma.L * sigma.L)

}

This file is called by the R code provided on the website (the library

R2WinBUGS is needed). This code generates 60,000 MCMC draws (post burn-

in) from the posterior distribution of model parameters. We label each of these

draws by the superscript m, where m¼ 1, 2, . . ., 60,000. Draw m from the joint

posterior distribution is then a vector of five scalar parameters and two sub-vector

values and can be indicated using a bracketed superscript as

μ m½ �; β m½ �; σ m½ �
L ; σ m½ �

B ; σ m½ �
E ;L m½ �;B m½ �

� �
ð8:6Þ

where L[m] and B[m] are sub-vectors of the batch specific random effects Li and Bi,

respectively.

Marginal statistical summaries of each parameter (except L[m] and B[m]) are

output and shown below.

parameter mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

mu 2.317 0.104 2.110 2.250 2.318 2.384 2.521 1.001 22000

beta 0.091 0.011 0.071 0.084 0.091 0.098 0.113 1.001 42000

sigma.L 0.294 0.102 0.103 0.227 0.287 0.353 0.516 1.004 13000

sigma.B 0.029 0.011 0.009 0.022 0.028 0.035 0.052 1.001 60000

sigma.E 0.408 0.036 0.344 0.382 0.405 0.430 0.485 1.001 38000

For each parameter, n.eff is a crude measure of effective size of the MCMC

sample (taking account of the serial correlation in the Markov chain reduces its

effective sample size), and Rhat is the potential scale reduction factor

(at convergence, Rhat¼ 1). Each MCMC vector also includes draws for 16 slopes

and 16 intercepts. Thus we have 60,000 MCMC posterior draws of the slope and

intercept for each of the 16 batches. Samples from the posterior distribution of the

ith individual batch intercept and slope can be obtained as follows:
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Intercept
m½ �
i ¼ μ m½ � þ L

m½ �
i

Slope
m½ �
i ¼ β m½ � þ B

m½ �
i

ð8:7Þ

These intercepts and slopes can be compared conveniently as box plots available

from the WinBUGS inference/compare dialogue. Like the boxplots described in

Sect. 2.4, the boxes represent inter-quartile ranges. However, in the WinBUGS

boxplots, the solid black line near the center of each box is the posterior mean, the

arms of each box extend to cover the central 95% of the posterior distribution—

their ends correspond, therefore, to the 2.5 and 97.5% quantiles. The WinBUGS

boxplots thus differ somewhat from the traditional boxplot description given in

Sect. 2.4. These are shown in Figs. 8.6 and 8.7. The default value of the baselines

shown in these plots are the global means of the 16 intercept and slope posterior

means, respectively.

Samples from the posterior (predictive) distribution of any (random) function of

model parameters can easily be obtained from the MCMC posterior samples of

model parameters using the obvious equations and (random) functions. For

instance, a sample from the posterior distribution of the mean level of the ith

batch at time t can be obtained as
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Fig. 8.6 WinBUGS box plot summaries of intercept posterior distributions for 16 batches
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μ m½ �
i tð Þ ¼ intercept

m½ �
i þ t � slope m½ �

i : ð8:8Þ

Assuming an upper stability acceptance Limit on the batch mean level (in this

case equal to 6.5%LC), a posterior sample from the shelf life of the ith batch can be

obtained as

SL
m½ �
i ¼ Limit� intercept

m½ �
i

slope
m½ �
i

: ð8:9Þ

The shelf life samples obtained using Eq. (8.9) are usually left- and right-

censored at zero and some large shelf life (such as 200 months), respectively, to

avoid negative or infinite values. The censoring will not affect the mode or median

point estimates and will have minimal or no effect on interval estimates.

Figure 8.8 shows the posterior distributions (in the form of WinBUGS box plots)

for each of the 16 batches in the data set.
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Fig. 8.7 WinBUGS box plot summaries of slope posterior distributions for 16 batches
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Similarly, the predictive posterior distributions of the slope and intercept of

future batches are obtained as follows:

intercept
m½ �
f ut � N μ m½ �; σ m½ �

L

� �2� �
ð8:10Þ

slope
m½ �
f ut � N β m½ �

1 ; σ m½ �
B

� �2� �
ð8:11Þ

where the “�” indicates the operation of drawing a single pseudo random number

from each of the respective m distributions (one for intercept and one for slope).

The subscript fut indicates that the resulting numbers represent samples from the

distribution of the intercept and slope of a random future batch. A sample from the

posterior predictive distribution of the mean level of a future batch at time t can be

obtained as

μ m½ �
f ut tð Þ ¼ intercept

m½ �
f ut þ slope

m½ �
f ut � t: ð8:12Þ

A definition of shelf life consistent with the spirit of ICH Q1E is the earliest

storage time at which less than 95% of future batch mean total related substance

level is below the acceptance limit of 6.5%LC. The time at which the predictive

posterior mean of future batch m intersects 6.5%LC will be

SL m½ � ¼ Limit� intercept
m½ �
f ut

slope
m½ �
f ut

ð8:13Þ
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Fig. 8.8 WinBUGS box plots of shelf life posterior distributions for 16 batches
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As with the batch specific shelf life, to account for the occurrence of negative

slopes (which lead to a negative shelf life) and batches with very long (or even

infinite shelf lives), the variable SL is truncated between 0 and 200 months as

follows:

Shelf :Lif e m½ � ¼
200 if SL m½ � 	 0

SL m½ � if 0 < SL m½ � 	 200

200 if SL m½ � > 200

8><
>: ð8:14Þ

The logic behind the first line in Eq. (8.14) is as follows. For any viable product,

it is likely that posterior values for the intercept are well below the Limit, so the

numerator of Eq. (8.13) should be positive. Therefore, a negative value of SL[m]

implies that the slope (denominator of Eq. (8.13)) is non-positive—total related

substances are not changing or are decreasing. This suggests a long (i.e., infinite)

shelf life. However, common sense argues against an infinite shelf life so we

truncate these infinite values at some realistically long shelf life such as 200 months.

Similarly in the last line of Eq. (8.14), any values of SL[m] above 200 months are

truncated at 200 months.

The posterior distribution of Shelf.Life for a future batch is shown in Fig. 8.9.
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Fig. 8.9 Posterior distribution of shelf life for a future batch
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Figure 8.9 is a histogram of the 60,000 values of Shelf.Life[m] obtained from

application of Eqs. (8.10)–(8.14). Shelf.Life[m] is thus a random function of the

posterior distributions of underlying model parameters. It is a random function

because Eqs. (8.10) and (8.11) require random normal sampling. We refer to the

distribution of such random functions as posterior predictive distributions. The

estimated shelf life for future batches is taken as the 5th percentile of this posterior

predictive distribution of shelf lives of future batches.

The estimated shelf life in this case is 28.39 months (round down to 28 months).

The red line in the figure illustrates this estimated shelf life. This result agrees well

with 29 month shelf life obtained using the Proc Mixed REML mixed model

analysis, but both are considerably different than the 19 months shelf life obtained

using the traditional ICH Q1E ANCOVA worst-case batch approach.

It is also of interest to know the probability that future stability test results for

batches placed on annual stability monitoring will be greater than the stability

acceptance limit of 6.5%LC because this would result in the need for an investiga-

tion, regulatory notification, and possibly a recall of the batch. A draw from the

posterior predictive distribution of future results at tpred months can be obtained by

substituting the parameter values from the mth posterior MCMC draw, Eq. (8.6)

into Eq. (8.15).

Y
m½ �
f ut tpred
� � � N intercept

m½ �
f ut þ slope

m½ �
f ut � tpred, σ m½ �

E

� �2� �
ð8:15Þ

where �N(A,B) is shorthand for a random number generated from a normal

distribution with mean A and variance B (e.g., using the rnorm function in R).

The predicted probability of future test results exceeding 6.5%LC is 0 for samples

tested at 0 months and 0.0632 for samples tested at 28.39 months.

The posterior predictive distribution of future test results can also be helpful in

setting process controls. The 0.95th quantile of the predictive posterior of future

results is equal to the beta expectation 95% tolerance upper bound which, condi-

tional on the observed data, prior distributions, and stability model, should be

greater than or equal to 95% of future results. This Bayesian bound is analogous

to the traditional beta expectation tolerance bound, but differs from the traditional

bound in the following important ways:

1. It represents simply an estimate of the interval within which 95% of future

results will fall. It does not require the repeated sampling paradigm for inter-

pretation as the traditional tolerance bound does.

2. It is conditional on the observed data. The traditional interval/bound is condi-

tional on an infinite series of hypothetical repeats of the sampling and estimation

process.

3. A “fixed-in-advance” bound is possible. In other words, one can fix the bound

and then use the sample from the predictive posterior to estimate the probability

of being within or outside the bound by a simple counting exercise. This cannot

be done with the traditional interval/bound.
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4. Justified historical knowledge could have been included by specifying informa-

tive priors. The traditional paradigm provides no mechanism for quantitatively

incorporating prior knowledge.

For normal linear models, traditional and Bayesian intervals will often be

similar, but their interpretations will differ. The Bayesian 95% upper tolerance

bounds for this example are 3.18%LC for samples tested at 0 months and 6.64%LC

for samples tested at 28.39 months.

8.5 Stability Risk Assessment

8.5.1 Estimating OOS Probability on Stability

An out of specification (OOS) on stability occurs when an observed stability result

exceeds the stability acceptance limit(s). This could be a signal that the true batch

mean has exceeded the limit(s) which indicates a batch stability failure. If the

stability result came from a batch under distribution the result could be a regulatory

notification and possible product recall. Alternatively, the OOS merely reflects

analytical uncertainty. At the very least, an OOS requires an investigation to

distinguish these possibilities.

Unplanned investigations, notifications, recalls, and batch replacement costs

strain a manufacturer’s resources, the product supply chain, the burden of regula-

tory over-sight, and ultimately the cost of pharmaceuticals. So it is in the interest of

all stakeholders to anticipate the probability of such adverse events and include the

resulting costs into the budget.

Frequentist tools (prediction and tolerance intervals) are commonly employed

for such risk assessments. Frequentist probabilities require a repeated sampling

interpretation, approximations, and asymptotic assumptions in mixed models.

Additionally, they cannot directly provide statements such as “The probability of

a future OOS is X.” This is because, as noted by Hahn and Meeker (1991), the

confidence probability refers to the statistical procedure used to construct the

interval and not to any particular interval that is computed. The actual probability

that a particular confidence, prediction, or tolerance interval will contain the values

it is supposed to contain is unknown because this probability depends on the

unknown parameters.

It must be remembered that frequentist intervals (e.g., the estimated L and

U in Eq. (2.52)) are random. It is of course possible to invert frequentist

equations such as (2.52) to solve for P, given some fixed values for L and U.
However, the frequentist paradigm that underlies Eq. (2.52) provides no basis for

interpreting this P as a probability associated with the distribution of future

predicted values.
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Bayesian approaches, on the other hand, can provide such statements directly

without any approximations. Bayesian methods also offer the possibility of rigor-

ously incorporating justified prior knowledge into the assessment for more

informed decision making. Modern computing tools such as WinBUGS (Lunn

et al.), JAGS (Plummer 2012), and Stan (Gelman et al. 2013) make it easy to

apply Bayesian methods.

Given an MCMC sample, such as Eq. (8.6), a sample from the posterior

predictive distribution of future stability results at time t for a random future

batch can be obtained from

Y
m½ �
f ut tð Þ � N intercept

m½ �
f ut þ slope

m½ �
f ut � t, σ m½ �

E

� �2� �
: ð8:16Þ

It is informative to compare (8.16) with (8.15). As before, the subscript fut
indicates that the resulting numbers represent samples from the distribution of

results from a random future batch. The probability of a future OOS, at any time

t, can then be obtained via a simple counting exercise, comparing Y
½m�
fut (t) to the

stability acceptance limit(s). The OOS probability can then be plotted as a function

of t as part of an overall risk and resource assessment for the product. The

uncertainty in the estimate of the probability is limited only by available data and

prior knowledge, appropriateness of the stability model, and the size of the MCMC

sample.

8.5.2 Estimating the Probability of a Noncompliant Batch

Occasionally the stability results for a batch will exhibit an apparent “out of trend”

(or OOT) condition that causes some concern. Will the trend for this particular

batch result in a stability failure? Often there is limited data for the batch and it will

be unclear whether the trend is real or the result of analytical uncertainty.

Equation (8.8) provides an MCMC sample from the posterior distribution of the

mean level of the ith batch at time t. This level can be compared to the stability

acceptance limit as described in Sect. 8.5.1 as a part of risk assessment for a

particular batch of interest. A plot of probability of exceeding the shelf life

acceptance limit(s) against storage time for this batch can be generated. This plot

can be compared to a similar plot for all future batches generated using Eq. (8.12).

If the probability profile for the batch of interest is below the probability profile for

all future batches, then there is little cause for concern.

For products with a high batch production rate, such comparisons can be

conducted pro-actively as part of overall life cycle monitoring and trending.
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8.5.3 Release Limit Estimation

8.5.3.1 The Allen et al. (1991) Approach to Release Limit Estimation

The shelf life estimation discussed above depends on the true level at release (i.e.,

the intercept) being in control. Thus the true release levels of batches used for shelf

life determination are assumed to be representative of those of future lots. Often a

process control limit is established to assure good control of the release level. If the

measured release level exceeds the limit, the product is not released for sale.

In keeping with the definition of shelf life, a one-sided release limit should

ensure with at least 95% confidence that the mean level of a released lot will remain

above (or below) a given lower (or upper) stability specification at the end of shelf

life. Generally, stability data are available and the objective is to calculate a release

limit (RL) from the estimated slope, it’s standard error of estimate ( σ̂ slope ), an

established shelf life acceptance limit (SL), the desired shelf life (D), the estimated

total analytical standard deviation (σ̂ ), and the number of replicates averaged to

obtain the reportable release test result (n). Using this information, the release limit

estimate given by Allen et al. (1991) is:

RL ¼ SL� δ � Dþ tp:df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂ 2=nþ D2 � σ̂ 2

slope

q
; ð8:17Þ

where δ¼min[slope,0] or max[slope,0] for lower or upper RL, respectively, tp :
df¼ pth quantile of the t-distribution with df degrees of freedom, df¼ degrees of

freedom associated with the estimate of both σ̂ and σ̂ slope, p¼ 0.95 or 0.05 for lower

or upper RL, respectively. Allen et al. assume an SISS model with σ̂ and σ̂ slope

estimated from independent data sets and the value for df obtained using the

Satterthwaite approximation (see Eq. (2.120)). This procedure assumes a reason-

ably large number of batches are available to estimate σ̂ slope. However, at the time

of submission there may be as few as three batches of data available. With so few

batches the estimate of σ̂ slope may have considerable uncertainty leading to a small

df and consequently an overly wide release limit. In such cases, a Bayesian

approach (described in the next section) can be used to provide a more reasonable

estimate avoids approximations.

Below we show an example in which both σ̂ and σ̂ slope are estimated from the

same data set in which a common slope model is assumed so that σ̂ slope represents

only the uncertainty in estimation of the common slope. To illustrate application of

Eq. (8.17), the data from Schuirmann, available at the book web site, will be used. A

fixed batch analysis of batches 3, 4, and 5 yields a separate intercept, common slope

model (SICS) as illustrated in Table 8.8 and Fig. 8.3. The multiple regression output

from a SAS analysis is shown in Table 8.14.

With a stability lower acceptance limit of SL¼ 90.0%LC and using the methods

shown above, shelf lives of 48, 57, and 43 months are obtained for batches 3, 4, and

5, respectively. Thus a shelf life of 43 months could be justified for this product.

Thus the development team feels justified in recommending a shelf life for this
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product of D¼ 36 months. At this point, the development team decided to establish

a lower release limit on the mean of n¼ 2 replicate tests to assure that no future

batch mean will be below 90%LC through 36 months with 95% confidence. From

the above SAS output, the following inputs to Eq. (8.17) are obtained.

slope¼�0.2131%LC/month

δ¼min[slope,0]¼�0.2131 (for lower release limit)

σ̂ ¼ 1.1568 (residual error)

σ̂ slope ¼ 0.02433###

df¼ 24

tp:df ¼ 1:71

p¼ 0.95 (for lower release limit)

Application of Eq. (8.17) yields a release limit of RL¼ 99.7%LC for this

product.

For a separate intercept, separate slope model (SISS), a conservative approach is

to take the slope estimate from the worst-case batch. In cases where the estimated

slope implies a (favorable) divergence over time from the limit of interest (e.g.,

negative slope used to estimate an upper RL), the slope should be set to zero as

implied by the δ function above. This provides a worst-case, conservative estimate

for the release limit and ensures that lot mean levels will remain in conformance

throughout the storage period with at least 95% confidence.

When estimates of σ̂ and σ̂ slope are not obtained from the same regression, then

the evaluation of df can be problematic. However the Satterthwaite approximation

may be applied in this case (see Eq. (2.124)). In principal, a similar approach could

be used in the random batch case.

Allen et al. are somewhat vague about the source for an estimate of σslope and its
estimation uncertainty. The number of degrees of freedom associated with this

estimate must be known to properly apply the recommended Satterthwaite approx-

imation. So we do not describe it in detail here. A 95% confidence level may not

always be appropriate. Indeed it may seem that a prediction (rather than a confi-

dence) bound is more appropriate for release limit estimation. A Bayesian perspec-

tive can shed fresh light on the release limit challenge.

Table 8.14 Output from SAS fixed batch analysis

Covariance Parameter

Estimates

Cov Parm Estimate

Residual 1.1568

Solution for Fixed Effects

Standard

Effect batch Estimate Error DF t Value Pr > |t|

Intercept 100.82 0.3840 24 262.52 <.0001

Month -0.2131 0.02433 24 -8.76 <.0001

batch BATCH3 1.3556 0.4849 24 2.80 0.0100

batch BATCH4 3.4352 0.5032 24 6.83 <.0001

batch BATCH5 0 . . . .
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8.5.3.2 A Bayesian Approach to Release Limit Estimation

A stability failure occurs when the true mean potency of a batch exceeds the

stability acceptance range (note that limits are sometimes 2-sided) before the end

of shelf life. A batch release failure occurs when an observed release result is

outside the release limit. A lower release limit is intended not only to reduce the risk

of stability failure but may also increase the risk of batch release failures. Thus, the
value of the release test is a compromise that depends on a possible correlation

between the release test result and the probability of stability failure.

It is not clear (to this author) how to model this correlation from a traditional

perspective to identify an optimal release limit. But it is straightforward using a

Bayesian approach. Of course this requires data from a sufficient number of batches

to estimate this correlation. We do not explore the sample size requirements of such

an approach in any detail here. Clearly three batches seem too few.

Below we illustrate this approach using all eight of the batches from Schuirmann

which are illustrated in Fig. 8.10. For illustration, separate simple regression lines

are fit to the stability data from each batch.

To evaluate release limit options from a Bayesian point of view, we form

samples from

• the posterior distribution of future batch means, and

• the posterior predictive distribution of future release test results,

using the parameter values from the mth posterior MCMC draw, Eq. (8.6).

Samples from the posterior distribution of future batch means, μ m½ �
tSL , at the end of

shelf life, tSL, are obtained using Eq. (8.18).
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Fig. 8.10 Potency stability results on 8 drug batches
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μ m½ �
tSL ¼ intercept

m½ �
f ut þ tSL � slope m½ �

f ut ð8:18Þ

Samples from the posterior predictive distribution of future release test results

(Y
½m�
fut rel) represent an average of nrel stability test values. These samples are obtained

by simulation from a normal distribution described by Eq. (8.19).

Y
m½ �
f ut rel � N intercept

m½ �
f ut , σ m½ �

E

� �2
=nrel

� �
: ð8:19Þ

Notice that the modifier predictive is included to indicate that the function of

parameters in Eq. (8.19) involves random sampling (from a normal distribution).

The correlation between future batch mean potencies at shelf life (36 months)

and the release test result for the Schuirmann data is illustrated in Fig. 8.11.

A positive correlation between batch mean potency at the end of shelf life and

the corresponding release test result is expected. This positive correlation is neces-

sary if we are to realize any benefit (i.e., a reduction in batch failures on stability)

from establishing a release limit. For illustration, a release limit of 98%LC is shown

as the vertical line in Fig. 8.11, but interest lies in the consequences of adjusting this

value either left or right. Plotted points to the left of this release limit (the “OOS at

Release” region in the figure) represent batches that fail to be released. The stability
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acceptance limit is 90%LC and this is indicated as a fixed horizontal line in

Fig. 8.11. Predicted batch mean potencies of released batches below 90%LC at

36 months represent a stability failure. As the release limit increases from left to

right it is apparent that the probability of a batch release failure increases, but the

probability of released batches with stability failures decreases. By a simple

counting exercise of the number of draws that pass or fail the respective limits for

μ m½ �
tSL and Y

½m�
fut rel, we can predict these probabilities as a function of release limit and

nrel, which is the number of test results averaged to produce a reportable release

value.

The resulting probabilities for this example are plotted in Fig. 8.12. The solid

and dashed lines show the predicted probability of shelf life and release limit

failure, respectively, as a function of release limit and nrel. Generally as the release
limit is increased, the probability of release failure increases and the probability of

shelf life failure decreases, as expected. It is somewhat disappointing that the drop

in shelf life failures is not more dramatic. We can see also that there is an

improvement in the release limit failures as nrel is increased. This graphic can

allow decision makers a more informed, and therefore more justifiable, release limit

Fig. 8.12 Choosing a release limit based on a compromise between the probability of release

failures and stability failures
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compromise between these two kinds of failures based on probability. It is note-

worthy that as the correlation in Fig. 8.11 increases, the risk of decision errors (i.e.,

failing to release lots with acceptable shelf life or releasing lots with unacceptable

shelf life) will drop. Probability estimates are needed for risk-based decision

making and such probabilistic modeling is the hallmark of Bayesian procedures.

8.6 Additional Stability Analysis Issues

8.6.1 Modeling Slope Intercept Correlation

The model of Eq. (8.5) assumes zero correlation between batch slopes and inter-

cepts. If the factors that affect batch intercept (e.g., weighing errors, API purity) are

independent of those that affect batch instability (e.g., moisture content, packaging

integrity), the zero correlation assumption may be appropriate. Otherwise, a model

that includes a covariance should be considered. For example, a correlation

between Li and Bi can be added to Eq. (8.5) by modifying the model so that σLB
is a non-zero covariance. That is, assume the model

Li

Bi

 !
� N

0

0

 !
;

σ2L σLB

σLB σ2B

 ! !
: ð8:20Þ

Such models are easily accommodated in SAS Proc Mixed by switching the

TYPE¼VC option in the RANDOM statement to TYPE¼UN. The lmer function

in the R library lme4 provides similar functionality. Gelman and Hill (2007) show

how to implement such models from both a frequentist and Bayesian perspective.

The Bayesian version of this model is easy to implement inWinBUGS, JAGS, or

Stan. As discussed above, the Bayesian version has the advantage of providing a

full probability model without analytical approximations or asymptotic approxi-

mations. Of course, both traditional and Bayesian approaches depend on distribu-

tional assumptions for the likelihood. The Bayesian approach has the additional

burden of justifying any prior assumptions.

The MCMC iterations (i.e., Gibbs or Metropolis sampling or the like) with such

models can sometimes be speeded up by first centering the time covariate about its

grand mean

t0k ¼ tk � �t; ð8:21Þ

and regressing against t
0
k �rather than tk. This leads to MCMC samples from the

posterior distribution of a transformed set of parameters

μ0 m½ �
; β m½ �

1 ; σ m½ �
L0 ; σ

m½ �
B ; σ m½ �

E ; σ0 m½ �
L0B;L

0 m½ �
;B m½ �

� �
; ð8:22Þ

where primed parameters are affected by the time centering transformation.

310 8 Stability



Inference will most often be desired on the original, un-centered parameters. As

described by Paccagnella (2006), the following algebra, performed directly on the

MCMC samples, recovers posterior samples from the original, un-centered

parameters

μ m½ � ¼ μ0 m½ � � β m½ �
1 � �t

L m½ � ¼ L0 m½ � � B
m½ �
i � �t

σ m½ �
LB ¼ σ m½ �

L0B � σ m½ �2
B � �t

σ m½ �
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ m½ �2
L0 þ σ m½ �2

B � �t2 � 2σ m½ �
L0B � �t

q
ð8:23Þ

8.6.2 Multifactor Studies

The principles illustrated above also apply when the stability study includes

multiple levels of strength, packaging, or other design variables. A good review

of model-building aspects in such complex cases is provided by Milliken and

Johnson (1992). The model pruning in such studies is done using an alpha level

for batch effects of 0.25, while the alpha level for other factors may be at the

traditional 0.05 level. Such modeling can, of course, be implemented in a Bayesian

framework.

8.6.3 Accelerated Stability Studies

Depending solely on a limited number of pivotal batches for shelf life estimation

presents many challenges. It is an entirely empirical process that ignores chemical

theory, mechanistic insights and prior knowledge gained during early

pharmaceutics studies, preliminary product development, or from similar products.

Often, label storage stability studies are incomplete at the time of submission and

results from accelerated studies are not used as part of an overall stability model in

the shelf life estimation process. While batches are annually placed on stability as

part of regulatory commitments, the data from such batches are rarely used to adjust

the shelf life after approval.

Waterman and Adami (2005) and Waterman (2011, 2012) have suggested

methods for early assessment of pharmaceutical stability, and even early estimation

of shelf life, using data from accelerated studies. These methods employ nonlinear

predictive stability models that include both thermal and other (e.g., relative

humidity) parameters. These methods include both study design and analysis

aspects and appear to offer considerable promise in improved decision making

with respect to shelf life estimation.
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While a thorough discussion of these interesting approaches is beyond the scope

of the present text, we note that Bayesian approaches—which do not depend on

linear approximations to model nonlinear cases, allow for rigorous incorporation of

prior knowledge, and excel at probabilistic inference—may well be used to

advantage here.

8.6.4 Managing Storage Excursions

ICH Q1A and USP h1160i advocate the use of mean kinetic temperature (MKT) as

a basis for short-dating or destroying pharmaceuticals that experience post

manufacturing temperature excursions during storage or transport. The MKT

requirement is

MKTLimit 
 ΔH

�R � ln
Xk
i¼1

nie
�ΔH=

RTi

	Xk
i¼1

ni

 ! ð8:24Þ

where MKTLimit is the mean kinetic temperature upper limit (which, for room

temperature storage is 298.15 K, or 25�C), ΔH is the heat of activation for the

instability mechanism (generally 42–125 kJ/mol, although USP h1160i recom-

mends 83.144 kJ/mol unless a more accurate experimentally determined value is

available), R is the universal gas constant (0.0083144 kJ mol�1 K�1), and ni is the
number of hours spent at the storage temperature Ti (

�K) for all k temperatures.

It is relatively straightforward to apply Eq. (8.24) to determine if the requirement

is met, as long as a value for ΔH can be justified and the storage temperature history

is available. It can be challenging to verify this requirement, however, for investi-

gational products—especially for purchased comparators for which the sponsor will

generally have little knowledge of physical properties or storage history. Asmussen

et al. (2014, 2016) offer a conservative MKT approach based on simple lookup

tables that can be easily implemented as part of an enterprise-wide quality man-

agement system.

8.7 Stability Study Designs

8.7.1 Full Design

When a stability study includes all combinations of dosage strength, packaging, and

storage times, the stability design is referred to as a “full-factorial” (or sometimes as

just a “full” or “complete”) design. Conducting a full design on a new drug product

with multiple strengths and packages can be prohibitively expensive and may stress
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a company’s analytical resources beyond their limits. From a statistical point of

view, when the number of study variables is large, a complete factorial may be

unnecessary as long as certain assumptions can be made about the stability effects

of the variables.

ICH Q1D describes situations in which a “reduced” design can be applied

without further justification and some situations in which further justification will

need to be provided. If a design deviates markedly from the principles of ICH Q1D,

the protocol must be approved by the FDA prior to the initiation of stability studies.

Some additional clarification is provided in the literature (see Lin and Chen 2003).

In a reduced design, only a specific fraction of the possible combinations of dosage

strength, packaging, and storage times are actually tested. ICH Q1D refers to two

general approaches to reduced designs: bracketing and matrixing.

8.7.2 Bracketing Designs

In a bracketing approach, the sponsor relies on theory or past experience to identify

a small number of variable combinations (say of strength and packaging) that can

be assumed to give “worst-case” stability. Often these combinations will be

extremes (e.g., of active content, head space, moisture vapor transmission rate)

and the sponsor is willing to estimate the product shelf life from a study of these

“worst cases” alone. Bracketing assumes that the untested variable combinations

will have equal or superior stability and therefore need not be tested at all.

Bracketing requires a thorough understanding of the mechanism(s) of instability

from theory or from studies on earlier development or clinical batches. Because

bracketing makes strong assumptions about the underlying mechanism of instabil-

ity, it is not applicable when dosage form formulations or package characteristics

differ markedly. In a pure bracketing design, the chosen combinations are tested at

all time points. Often those combinations not intended to be tested as part of the

bracketing design are not even placed on stability.

Bracketing may be applied with no further justification across strength when

different strengths have identical or closely related formulations. Examples include

capsules of different strength made with different plug sizes from the same powder

blend, tablets of different strengths made by compressing varying amounts of the

same granulation, and formulations that differ only in minor excipients. Further

justification should be considered when amounts of drug substance and excipients

change in a formulation. When different excipients are used amongst strengths,

bracketing is generally not applied.

Bracketing may be applied with no further justification across packages using

the same container closure system where either container size or fill varies while the

other remains constant. Further justification should be considered when the closure

systems vary for the same container. Justification could include a discussion of

relative permeation rates of the bracketed container closure system.
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8.7.3 Matrixed Designs

In a matrixing approach, the sponsor takes advantage of traditional principles of

experimental design (refer to Box et al. 1978 and Chap. 3 of this book) to reduce

study size without sacrificing statistical power, model structure, or parameter

estimability. Matrixing depends on choosing a balanced subset of the full factorial

set of combinations which supports a predictive model that includes all main effects

and critical interactions. Often, all combinations (even those not intended to be

tested in the matrix design) are placed on stability. However because of the

expense, all are not tested unless there is a need to revert to full testing.

Matrixing with respect to strength may be applied across strengths without

further justification when the strength formulations are identical or closely related.

Additional justification should be considered when different strengths differ in the

drug substance content, excipients change, or different excipients are used.

Matrixing across batches of drug product can be applied when batches are made

using the same process and equipment, or batches of drug substance. Matrixing

across package size and fill is permitted when all packages use the same container

closure system. Further justification should be provided when packages use differ-

ent container closure systems, different contact material, different suppliers, or

different orientations. Justification should be based on supportive data (e.g., mois-

ture vapor transmission rates or light protection for different containers).

Matrix designs can be complete (all combination of factors are tested) or

incomplete (some combinations are not tested at all). In a complex design, combi-

nations of strength and container size are tested and individual batch of product is

not tested in all strength and container size combinations. If the design is broken

(some samples are lost or not tested) during the course of the study, testing should

revert back to full testing through the proposed retest period or shelf life. Where

testing exhibits moderate variability and moderately good stability, the use of a

matrix design should provide adequate statistical power and thus be statistically

justified.

Matrixing is not without risks. Highly fractional designs, involving factors other

than time, generally have less precision in shelf life estimation and may yield

shorter shelf life than a full design. With large variability and poor product stability,

a matrix should not be applied. Techniques are discussed below for comparing and

assessing the statistical power of stability designs.

Before a reduced design is considered, assumptions should be assessed and

justified. As a starting point, either the design including all possible combinations,

or an appropriately bracketed subset, is taken as the full design. Then reduced

designs are obtained by matrixing the full design. The reduced designs may be

compared with respect to the following criteria:

1. Probability of justifying the desired shelf life as a function of study duration.

2. Power to detect effects of experimental variables on stability. Any reduced

design should retain the ability to adequately detect differences in stability.
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3. “Balance” (i.e., each combination of factor levels is tested to the same extent) to

assure orthogonality of model parameter estimates.

4. Total number of tests required (or total study cost).

5. Ergonomic spread of testing throughout the study to optimize analytical resources.

ICH Q1D mandates full testing of all studied factor combinations at the begin-

ning and end of the study as well as at the time of submission. It also recommends at

least three time points for each studied factor combination be available at the time

of submission (nominally at 12 months storage). ICH Q1D provides examples of

study designs. These are not the only designs to be considered, but they illustrate

many of the principles of balance as well as the practical constraints. These are

discussed below.

8.7.3.1 Matrixing on Time Only

A key principal of fractional factorial design is to maximize testing of extremes of

continuous variables. In the case of storage time, this means full testing is required

at initial, study completion, and submission (typically 12 months). Thus reduced

testing for a 36 month study can only be considered at five time points: 3, 6, 9, 18,

and 24 months. Consider a study with six combinations: two strengths with three

batches per strength. Assume a 1/3 reduction in testing is desired. Which 20 of the

5 time points � 6 combinations ¼ 30 test points should be tested?

One principle of good experimental design is that of balance. A balanced design is

one in which the number of replicates in each treatment group is equal. Balanced

designs are generally statistically most efficient. The principle of balance requires that

1. Each of the 2 strengths be tested 10 times (2� 10 ¼ 20).

2. Each of the 3 batches be tested Z times (Z � 3 ¼ 20).

3. Each of the 5 time points be tested 4 times (5� 4 ¼ 20).

4. Each of the 6 strength*batch combinations be tested Y times (Y � 6 ¼ 20).

5. Each of the 10 strength*time combinations be tested 2 times (2� 10 ¼ 20).

6. Each of the 15 batch*time combinations be tested W times (W � 15 ¼ 20).

Note that W, Y, and Z cannot be whole numbers. In fact, unless the number of

tests is evenly divisible by 2 (strength), 3 (batch), and 5 (time), some loss of balance

is inevitable. In this case the lowest number of tests that allows balance is

2� 3� 5 ¼ 30, which does not allow for any testing reduction at all.

Similarly, if a 1/2 reduction in testing was desired, which 15 of the 30 test points

should be tested? Balance would require that the number 15 is evenly divisible by

2 (strength), 3(batch), and 5(time). Since 15 is not evenly divisible by 2, full balance

is not possible in this case either. In the ICH Q1D examples, the compromise made

is to allow more testing on some batch, strength*batch, and batch*time combina-

tions than others. However, the continuous time variable is robust to loss of balance

because of the assumption of a linear change over time. Thus, the inevitable

non-orthogonality in the ICH Q1D design examples is probably negligible.
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An example illustrating complete and partial balance is as follows. Assume the

sponsor desired an analysis at 24 months (perhaps to justify shelf life extension).

Then full testing would be required at 24 months and matrixing would be on the

four time points 3, 6, 9, and 18 months only. Thus the full design would require

(2 strengths)� (3 batches)� (4 times)¼ 24 tests. Since 12 is divisible by 2, 3, and

4, a completely balanced 1/2 reduction is possible. A 1/3 reduction would require

18 tests, however, 18 is only evenly divisible by 2 and 3, not by 4. Therefore only a

partially balanced design is possible if a 1/3 reduction is desired. To identify which

of the 12 or 18 tests to include, the mod arithmetic method of Nordbrock (1994) can

be used. The following steps illustrate this approach:

1. Assign a code of S ¼ 0 or 1 for each strength.

2. Assign a code of B ¼ 0, 1, or 2 for each of the 3 batches within each strength.

3. Assign a code of T ¼ 0, 1, 2, or 3 for the time points 3, 6, 9, or 18 months,

respectively.

4. For each of the 24 possible strength*batch*time combinations,

a. for a 1/2-fold reduction, test only combinations where Sþ Bþ T mod 2¼ 0.

b. for a 1/3 reduction, test only combinations where Sþ Bþ T mod 3¼ 0 or 1.

Table 8.15 shows the construction of the sum of the S, B, and T indicator

variables.

Tables 8.16 and 8.17 illustrate the mod arithmetic for selection of testing

schedules providing 1/2and 1/3 reductions, respectively.

The particular 1/2 or 1/3 fraction selected in Tables 8.16 and 8.17 is of course

only one of two or three possible fractions. For instance, one could have decided to

test Sþ Bþ T mod 2¼ 1 in Table 8.16 or Sþ Bþ T mod 3¼ 0 or 2 instead.

The sum Sþ Bþ T can be generalized to n� Sþ Bþ m� T, where n and m are

constants other than 1, in an attempt to find a design that achieves the desired

balance. The same principles can be extended to more complex situations. The

example in ICH Q1D involves a product with 3 strengths, 3 packages, 3 batches,

and 5 time points. It is typical to first identify a set of balanced (or approximately

Table 8.15 Illustration of use of indicator variable summation to find a matrix design on time

points for a product with two strengths

Strength Batch

S+B + T

3 months

(T¼ 0)

6 months

(T¼ 1)

9 months

(T¼ 2)

18 months

(T¼ 3)

Low (S¼ 0) 1 (B¼ 0) 0 1 2 3

2 (B¼ 1) 1 2 3 4

3 (B¼ 2) 2 3 4 5

High (S¼ 1) 1 (B¼ 0) 1 2 3 4

2 (B¼ 1) 2 3 4 5

3 (B¼ 2) 3 4 5 6
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balanced) time vectors. Then the various strength� package� batch combinations

are then assigned in a balanced (or approximately balanced) way to each of the

vectors. The example in ICH Q1D establishes the following testing vectors:

1. T1¼ {0, 6, 9, 12, 18, 24, 36}

2. T2¼ {0, 3, 9, 12, 24, 36}

3. T3¼ {0, 3, 6, 12, 18, 36}

T1 calls for testing at seven total time points, but T2 and T3 only six. However,

balance is achieved across the time points 3, 6, and 9. Because of the assumption of

linear trend across time, lack of balance does not lead to serious degradation of

estimation efficiency. A desirable feature of T1, T2, and T3 is that each of the time

points 3, 6, 9, 18, and 24 is represented twice. Thus if the vectors are evenly spread

across the combinations, a 1/3 reduction of testing at these time points would be

realized. The assignments of the vectors to each of the 3� 3� 3 ¼ 27 combina-

tions are illustrated in Table 8.18.

Table 8.16 Example of a balanced one-half reduction matrix design on time points for a product

with two strengths

Strength Batch

S +B+T mod 2

3 months

(T¼ 0)

6 months

(T¼ 1)

9 months

(T¼ 2)

18 months

(T¼ 3)

Low (S¼ 0) 1 (B¼ 0) 0 1 0 1

2 (B¼ 1) 1 0 1 0

3 (B¼ 2) 0 1 0 1

High (S¼ 1) 1 (B¼ 0) 1 0 1 0

2 (B¼ 1) 0 1 0 1

3 (B¼ 2) 1 0 1 0

0¼ test, 1¼ do not test

Table 8.17 Example of a partially balanced one-third reduction matrix design on time points for a

product with two strengths

Strength Batch

S +B+T mod 3

3 months

(T¼ 0)

6 months

(T¼ 1)

9 months

(T¼ 2)

18 months

(T¼ 3)

Low (S¼ 0) 1 (B¼ 0) 0 1 2 0

2 (B¼ 1) 1 2 0 1

3 (B¼ 2) 2 0 1 2

High (S¼ 1) 1 (B¼ 0) 1 2 0 1

2 (B¼ 1) 2 0 1 2

3 (B¼ 2) 0 1 2 0

0 or 1¼ test, 2¼ do not test
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8.7.3.2 Matrixing on Time and Other Variables

Continuing the ICH Q1D matrix example, one can further matrix against batch,

strength, and package by omitting the testing based on the value of B + S + P mod

3. In the ICH Q1D Table 3b example, the criterion for elimination depends on batch

as described in Table 8.19.

The resulting approximately balanced matrix provides about a 5/9 reduction in

the amount of testing at the 3, 6, 9, 12, 18, and 24 month time points. These

examples are provided merely for illustration. Other matrixing designs are possible

and some may well be superior to those given. Once candidate designs are gener-

ated by the methods above—or by other standard experimental design techniques—

it is best to perform an assessment of their balance and operation feasibility. Those

which pass these assessments may be examined further by the statistical methods

described in the next section.

The level of reduction that would be acceptable to a regulatory agency can be

addressed by examining the power of the design to detect differences in stability

among the different batches, strengths or packages, and/or the precision with which

shelf life can be estimated. These characteristics are compared between the candi-

date matrix design and the full design. If a candidate matrix design sacrifices little

relative to the full design, then it should be acceptable from a regulatory point

of view.

Table 8.18 Using mode arithmetic to matrix on time points only for the example of Table 3a of

ICH Q1D

B+S+P mod 3

Strength Low (S¼ 0) Med. (S¼ 1) High (S¼ 2)

Package

A

(P¼ 0)

B

(P¼ 1)

C

(P¼ 2)

A

(P¼ 0)

B

(P¼ 1)

C

(P¼ 2)

A

(P¼ 0)

B

(P¼ 1)

C

(P¼ 2)

Batch

1 (B¼ 0)

0 1 2 1 2 0 2 0 1

Batch

2 (B¼ 1)

1 2 0 2 0 1 0 1 2

Batch

3 (B¼ 2)

2 0 1 0 1 2 1 2 0

0¼ use T1, 1¼ use T2, 2¼ use T3

Table 8.19 Using mod

arithmetic to include

matrixing against design

variables in the example of

Table 3b of ICH Q1D

Batch Do not test if B + S+ P mod 3 ¼
1 2

2 1

3 0

318 8 Stability



8.7.4 Accelerated Stability Designs

As noted in Sect. 8.6.3, Waterman and Adami (2005) and Waterman (2011, 2012)

have suggested methods for rapid stability assessment and shelf life estimation

using accelerated testing studies. Because underlying models of these approaches

are nonlinear, traditional factorial arrangements may not be optimal. These authors

have discussed some interesting and possibly useful design aspects. A thorough

examination of these design considerations is beyond the scope of this text.

However, we believe that these designs deserve careful attention and examination

by the statistical community.

8.7.5 Comparing Stability Designs

Nordbrock (1992) provided a framework for comparing stability designs with

respect to their power to detect slope (stability) differences. This same framework

can be applied to a comparison of the probability (power) of meeting a desired shelf

life claim among competing stability designs.

8.7.5.1 Power to Detect Slope Differences

A product in which the rate of change (i.e., slope) in potency (or other related

substance) is constant across batches is desirable. When batches differ in their

slope, it is important that the stability design be capable of estimating slope

differences that have safety or efficacy consequences. In this section we illustrate

how to determine the power of a stability design to detect such slope differences.

First we state some distributional results that will be useful in design evaluation.

Let R and H be mutually independent random variables with distributionsR � N

ncp; 1ð Þ and H � χ2 dfð Þ. Then by definition,

Rffiffiffiffiffiffiffiffiffiffiffi
H=df

p ¼ W � t df ; ncpð Þ ð8:25Þ

where t(df, ncp) represents a random variable distributed as non-central t with

degrees of freedom dfe and non-centrality parameter δ. Further, let pt(Q, df, ncp)
be the cumulative distribution function of the non-central t random variable

W relative to fixed Q such that

Prob W 	 Qð Þ ¼ pt Q, df , ncpð Þ and Prob W > Qð Þ ¼ 1� pt Q, df , ncpð Þ: ð8:26Þ

Non-central t distribution functions are present in software packages such as

SAS or R. The following approximations may be useful in implementing these
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calculations in packages which have a cumulative non-central F (pf()) but not a

non-central t function:

pt t; df ; ncpð Þ ¼ pf t2, 1, df , ncp2ð Þ þ pt �t, df , ncpð Þ
� pf t2, 1, df , ncp2ð Þ for ncp � 0

ð8:27Þ

In some software packages, algorithms for non-central t do not converge when

ncp and/or df are large. In those cases, the following approximation may be used:

pnorm t� ncpð Þ � pt t, df , ncpð Þ ð8:28Þ

with pnorm(z) indicating the cumulative standard normal distribution function for

quantile z.
Next we describe the predictive stability model we will use to evaluate stability

designs. Consider a linear regression to the fixed model

y ¼ Xβþ ε ð8:29Þ

with fixed model parameter vector β and ε � MVN 0, Iσ2ð Þ. In applying the con-

cepts below it is critical to understand the structure of β and X. As an example,

consider a stability design that includes measurements (y vector) at a series of time

(T) points on three batches (B), each of three strengths (S), with three possible

package (P) options. Assume the design will support estimation of all main effects

and certain interactions (i.e., others known to be unimportant). In a high level

program like SAS, the model might be expressed as

Y ¼ intercept T B S P T*B T*S T*B*S: ð8:30Þ

The column vector β will be composed of one sub-vector for each model term.

The length of each sub-vector is 1 for the continuous variables intercept and T. For

categorical main effects B, S, and P, the sub-vector length will be number of

categorical levels for that variable minus 1. Thus, the length will be 2 for each

main effect. For interactions, the vector length will be the product of the vector

lengths of each of the component main effects in the interaction. Working across in

the above model order we see the length of β will be 1 + (1 + 2 + 2 + 2) + (2 + 2)

+ (4)¼ 16. Thus

βT ¼ �βint, βT , βB1, βB2, βS1, βS2, βP1, βP2, βTB1, βTB2, βTS1, βTS2; ð8:31Þ
βTB1S1, βTB1S2, βTB2S1, βTB2S2

�
Each element of β is an effect attributable to the presence of certain levels or

combinations of levels of the variables T, B, S, and P.

The Xmatrix in this example will have 16 columns corresponding to each of the

coefficients in β, and one row for each result in y. The intercept column in X will

320 8 Stability



have a “1” in each row and the T column in X will have the numeric storage time at

which the corresponding test result in y was obtained. For categorical main effects,

the X columns corresponding to B, S, and P will contain codes that specify the level

of each corresponding to the respective y test result. A convenient 0/1 coding is

shown in Table 8.20 in which the presence of a 0 in the first or second element

indicates that the corresponding factor level is not acting to produce the

corresponding result. If both the first and second elements are 0, then the third

level must be active.

Sub-vector codes for interactions consist of the Kronecker product of the

sub-vectors of the component main effects. Thus the 2 T*B columns in

X corresponding to a y result obtained at 3 months on batch 2 would be encoded

as 3
 (0 1)¼ (0 3). The four T*B*S columns in X corresponded to a y result at

6 months on Batch 1, middle strength would be 6
(1 0)
 (0 1)¼ (0 6 0 0). In this

way, the entire X matrix is constructed. Consider the y result corresponding to the

9 month test on batch 2 of low strength packaged in container type B. The

corresponding row of the X matrix is then

X ¼
. . .

1 9 0 1 1 0 0 1 0 9 9 0 0 0 9 0

. . .

0
B@

1
CA ð8:32Þ

Finally we show how the distributional results and predictive model discussed

above can be used for design evaluation. The estimates of interest in a stability

analysis generally consist of linear functions of the elements of β. Functions of

interest might be slopes or differences between slopes for specific combinations of

design variables or averages across certain design variables. A linear function of β,
say δ ¼ cTβ, will have an estimate δ̂ � N δ; σ2δ

� �
with sampling variance

σ2δ ¼ cT X0Xð Þ�1
cσ2 ð8:33Þ

based on degrees of freedom

df ¼ number of rows in X� number of columns in X: ð8:34Þ

The dimensions of the contrast column vector c will be identical to that of β. The
elements of c will depend on which of the corresponding elements of β are active in

defining a specific linear function of interest. Finally, note that if σ̂ 2
δ is a sample

Table 8.20 Coding of design variable levels in the construction of the X matrix

Sub-vector code B interpretation S interpretation P interpretation

(1 0) Batch 1 Low strength Package A

(0 1) Batch 2 Middle strength Package B

(0 0) Batch 3 High strength Package C
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estimate of σ2δ based on df degrees of freedom, then its sampling distribution is

given by

σ̂ 2
δ

σ2δ
� df � χ2 dfð Þ: ð8:35Þ

Let δ represent some slope difference that is of interest and consider a statistical

test of H0 : δ ¼ 0 against the alternative Ha : δ > 0. H0 will be rejected at the 0.05

level of significance if

δ̂

σ̂ δ
¼ δ̂ =σδffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̂ 2
δ=σ

2
δ

q > qt 0:95; dfð Þ ð8:36Þ

where qt(P,df) represents (using R function notation) the quantile of the Student’s t
distribution with df degrees of freedom having cumulative probability P in its left

tail. Now under the assumption that δ ¼ Δ,

δ̂

σδ
� N

Δ

σδ
; 1

� �
ð8:37Þ

Combining Eqs. (8.25), (8.26), (8.34)–(8.36) we may state that

Pr H0 rejected


δ ¼ Δ

� �¼ Pr
δ̂

σ̂ 2
δ

> qt 0:95; dfð Þ

δ ¼ Δ

( )

¼ 1� pnct qt 0:95; dfð Þ, df , Δ
σδ

� � ð8:38Þ

Equation (8.38) may be evaluated as a function of Δ to provide the operating

characteristics of the statistical test. Since df and σ2δ depend, by Eqs. (8.33) and

(8.34), only on X which in turn is determined by the stability design, the operating

characteristics can be compared for various designs and storage times as an aid in

study planning.

As an example, consider three matrix designs presented in ICH Q1D and the

model as described above. Let δ be a slope difference between medium and low

(medium minus low) strength averaged across all lots. Then the corresponding

contrast vector is

cT ¼ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, � 1, þ 1, � 1

3
, þ 1

3
, � 1

3
, þ 1

3

� �
ð8:39Þ
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so that

cTβ ¼ βTS2 � βTS1 þ
βTB1S2 � βTB1S1 þ βTB2S2 � βTB2S1

3
ð8:40Þ

Assume the stability potency analysis for submission will occur at the 12 month

time point. Let σ ¼ 1%LC and let the true slope difference, Δ, vary between 0 and

0.25%LC/month. Figure 8.13 shows the power as given by Eq. (8.38) for various

true slope differences. Note that very little power is lost in going from the Full

design (solid line, 135 tests required) to the design matrixing on time only (dashed

line, ICH Q1D Table 3a, 108 tests required). However, considerable power is lost

when matrixing on time, strength, batch, and packaging (dash-dotted line, ICH Q1D

Table 3b, 72 tests required).

8.7.5.2 Probability of Achieving Desired Shelf Life

Consider a stability determining test, such as potency, with a lower acceptance

limit, L. Let D be the desired shelf life for the product. Further assume that the

product will have a true release potency (intercept) of η, a true slope of ρ and a true
analytical standard deviation of σ.

The regression slope estimate of ρ, ρ̂ , will have a sampling distribution that can

be defined by

ρ̂ � ρ

σρ
þ ncp � N ncp; 1ð Þ ð8:41Þ

Combining Eq. (8.41) with Eq. (8.35) and comparing with Eqs. (8.25) and (8.26)

we see that

Fig. 8.13 Comparison of

power to detect slope

differences at the 12 month

time point for three stability

designs in ICH Q1D. See

text for legend
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Pr

ρ̂�ρ
σρ

þ ncp

σ̂ ρ=σρ
> Q

( )
¼ 1� pt Q; df ; ncpð Þ ð8:42Þ

Now for a test with a lower limit L, the desired shelf life claim will be achieved

whenever

ηþ D � ρ̂ � σ̂ ρ � qt 0:95; dfð Þ� �
> L ð8:43Þ

or

ρ̂ þ η� Lð Þ=D
σ̂ ρ

> qt 0:95; dfð Þ ð8:44Þ

or

ρ̂ � ρ

σρ
þ η� Lð Þ=Dþ ρ

σρ
σ̂ ρ=σρ

> qt 0:95; dfð Þ ð8:45Þ

Comparing this with Eq. (8.42), we see that

Pr Achieving desired shelflife claimf g ¼ 1� pnct qt 0:95; dfð Þ, df ,
η�Lð Þ

.
D
þ ρ

σρ

0
@

1
A

ð8:46Þ

Note that a similar derivation in the case of an upper acceptance limit would

yield

Pr Achieving desired shelflife claimf g ¼ pnct qt 0:05; dfð Þ, df ,
η�Lð Þ

.
D
þ ρ

σρ

0
@

1
A

ð8:47Þ

Equation (8.46) or Eq. (8.47) may be evaluated as a function of η, ρ, and σ to

provide the operating characteristics of the shelf life estimation goal. Hypothetical

η, ρ, and σ may be taken from preliminary stability and analytical studies. Since df

and σ2ρ depend, by Eqs. (8.33) and (8.34), only on X which in turn is determined by

the stability design, the operating characteristics can be compared for various

designs and storage times as an aid in study planning.

As an example, consider three matrix designs presented in ICH Q1D and the

model as described above. Let ρ be defined as the slope that represents the stability
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for batch 2 of the low strength formulation (and any package). The corresponding

contrast vector is then

cT ¼ 0; 1; 0; 0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0; 1; 0ð Þ ð8:48Þ

so that

cTβ ¼ βT þ βTB2 þ βTS1 þ βTB2S1 ð8:49Þ

Assume the stability potency analysis for submission will occur at the 12 month

time point. Let σ ¼ 1%LC, the lower acceptance limit for potency, L, be 90%LC,

the true initial potency level, η, be 100%LC, and let the true slope, ρ, for the

combination of interest vary between –0.4 and –0.1%LC/month. Figure 8.14 shows

the probability of meeting a shelf life claim ofD¼ 24 months as given by Eq. (8.46)

for various true slopes. Note that very little risk is seen in going from the Full design

(solid line, 135 tests required) to the matrix design on time only (dashed line, ICH

Q1D Table 3a, 108 tests required). However, considerable risk is encountered when

matrixing includes both time, strength, batch, and packaging (dash-dotted line, ICH

Q1D Table 3b, 72 tests required).

8.7.5.3 Implementation in R

The R language (R Core Team 2013) provides a good matrix computation and

graphics platform for making stability design comparisons of power and probability

as described above. The design matrix X (up to the time of proposed analysis) may

be created manually in an Excel spreadsheet and imported as a comma separated

text file to implement the power and probability calculations. R code for estimating

the power of detecting slope differences and estimating the probability of achieving

a desired shelf life is provided in the book web site.

Fig. 8.14 Comparison of

probability of achieving a

24-month shelf life claim at

the 12 month time point for

three stability designs in

ICH Q1D
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Chapter 9

Analytical Comparability and Similarity

Keywords Accelerated stability • Analytical comparability • Analytical

similarity • Biosimilar products • Comparability criterion • Equivalence testing •

Non-profile data • Power calculations • Profile data • Scale comparisons • Stability

data • Tolerance intervals

9.1 Introduction

In all manufacturing settings, there is an inherent drive to improve product through

the reduction in process variation, implementing new technology, increasing

efficiency, optimizing resources, and improving customer experience through

innovation. In the pharmaceutical industry, these improvements come with added

responsibility to the patient such that product made under the post-improvement or

post-change condition maintains the safety and efficacy of the pre-change product.

As described in FDA comparability guidance (1996) and ICH Q5E (2004), regula-

tory agencies also recognize the importance in providing manufacturers the flexi-

bility to improve their manufacturing processes. Agencies also acknowledge that

some changes may not require additional clinical studies to demonstrate safety and

efficacy so that implementation may be more efficient and expeditious to benefit

patients. Activities performed when changes are made to the process include

demonstration of comparability in product parameters. The actual timing of each

activity and the statistical rigor required for the evaluation of pre- and post-change

product is linked to the stage of the product development (e.g., clinical versus

commercial material) and the scope of the change (e.g., process transfer with

similar scale versus a new cell line or formulation).

To set the stage for this chapter, the requirements of comparing pre- and post-

change product are reviewed. Comparability is defined by ICH Q5E as a demon-

stration that the quality attributes of the pre- and post-change product are highly

similar and that the existing knowledge is sufficiently predictive to ensure that any

differences in quality attributes have no adverse impact on safety or efficacy of the

drug product. Guidance provides the manufacturer with flexibility to adjust study

rigor based on the stage of development and prior knowledge.
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9.2 Statistical Methods for Comparability

The FDA comparability guidance (1996) recognized the need for manufacturers

to improve manufacturing processes and analytical methods without performing

additional clinical studies to demonstrate product safety and efficacy. This guidance

was extended in ICH Q5E to provide additional direction for comparing pre- and

post-change manufacturing processes. The direction is related to the scope of the

comparability exercise and the type of change under consideration. Major process

changes should consider a larger array of testing than those of lesser scope.

For example, a change of major scope might reasonably need to consider additional

pharmacokinetic (PK) or clinical studies, whereas a change with lesser scope

may rely only on analytical comparability for a set of critical quality attributes

(e.g., biological activity, purity, and protein structure).

Although product comparability guidance does not cover the comparison of

in-process parameters given similar process changes (e.g., site transfers, scale

changes, and equipment improvements), these issues are addressed in FDA guid-

ance (2011) and were discussed in Chaps. 3–5 of this book.

Across the regulatory documents, there are only high level recommendations for

the design of a comparability study and for setting acceptance criteria to assess the

impact of the change. These documents do not contain prescriptive rules for setting

acceptance criteria, study design, or statistical methods for analysis. This chapter

provides examples of how these issues might be addressed. The study design and

statistics associated with clinical, PK, and animal studies are out of scope.

The design and scope of an analytical comparability study will vary depending

on the product and process complexity, complexity of the change, and the stage of

the clinical/commercial life cycle. The analytical methods used for analytical

comparability minimally include lot release. In addition, non-routine methods

may be used to further understand the impact of the change on the biochemical,

biophysical, and biological properties of the product. Comparison of degradation

rates and degradation profiles from select analytical methods may also enhance the

understanding of the change on key product degradants. Typically, the conditions

considered for evaluating degradation rates are harsher than recommended storage

conditions. By design, the degradation observed for a product at recommended

storage conditions is small. Given the short period of time typically available for

implementing a change, evaluation of degradation rates under recommended stor-

age conditions provides only minimal insight into how a post-change molecule

degrades over time. Instead, the pre- and post-change products are held at stressed

stability conditions. These conditions may be used to detect potential impurities and

structural modifications not otherwise detected by lot release and in-process control

testing of non-degraded material. Analytical procedures used during the assessment

of drug substance and drug product comparability should be validated or qualified

as appropriate for their intended purpose (refer to Chap. 6 for more on this topic).

Chatfield et al. (2011) provide a nice description of statistical techniques that are

useful for demonstrating comparability. They differentiate between the statistical

330 9 Analytical Comparability and Similarity

http://dx.doi.org/10.1007/978-3-319-50186-4_3
http://dx.doi.org/10.1007/978-3-319-50186-4_5
http://dx.doi.org/10.1007/978-3-319-50186-4_6


equivalence tests described in Chap. 2 and other comparability approaches.

Statistical equivalence testing provides a formal statistical approach in which

statistical decision errors can be controlled. Equivalence testing is particularly

desirable when

1. Summary measures such as means and slopes are relevant to the process change

2. Acceptance criteria that considers scientific importance can be defined a priori,

and

3. Data are amenable to the statistical requirements of equivalence testing.

If these conditions are satisfied, then equivalence testing provides the strongest

scientific evidence of comparability. Attributes that are not amenable to equiva-

lence testing can be evaluated with alternative comparability approaches including

graphical summaries and comparison of individual values to pre-specified ranges.

Table 9.1 presents typical comparability approaches categorized by application.

Tolerance intervals and equivalence testing are discussed in Chap. 2 and will be

demonstrated with examples in this chapter.

Once an approach has been selected, the comparability study is designed. Since

equivalence testing involves a statistical test, concepts typically associated with

hypothesis testing such as error rate and statistical power are employed to select an

appropriate study design. With the other approaches, the design will be determined

by availability of relevant pre-change data and heuristic rules used for defining

comparability. The final step is to collect the post-change data and compare it

against the pre-stated criteria. If all of the criteria are met, one declares the product

manufactured under the post-change process is comparable to the product

manufactured under the pre-change process. When one or more acceptance criteria

are not met, further investigation is required to determine if the pre- and post-

change product is comparable. This could include further characterization, analyt-

ical method improvement, or the performance of additional nonclinical or clinical

studies.

Table 9.1 A summary of the comparability approaches

Comparability

approach

Lot

release

Stability at

recommended storage

conditions

Stability at

stressed storage

conditions

Characterization

methods

Comparison of individual values

Visual

comparisons

X X X X

Tolerance intervals X X

Specifications X X

Limit evaluations X X X

Comparison of summary measures

Equivalence

testing

X X X
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9.2.1 Lot Release

Minimally, results from the post-change process are compared to the currently

approved lot release specification limits regardless of where the molecule is in its

development life cycle. As the complexity of the change increases, additional

assessment criteria may be required.

It may be desirable to retest pre-change lots at the same time that post-change

lots are tested. By recording these measurements in the same analytical run,

uncertainty related to precision and changes to analytical methods over time will

be mitigated. In order to use such a design, it must be assumed that product stability

(freeze-thaw or storage stability) has been demonstrated to be negligible.

Lot release tests are implemented early in clinical drug development to assess

safety and efficacy prior to product release. A subset of lot release tests may be

selected for comparability assessment. Typically these methods provide a quanti-

tative assessment of critical product quality attributes. As product progresses

through clinical development, a data set of analytical test results is accumulated.

These data allow an ongoing assessment of patient exposure to levels of product

quality attributes that may vary from lot-to-lot. Specifications and comparability

assessment criteria may be adjusted using these data during clinical development as

patient exposure experience is gained. These limits should factor in the ranges of

analytical test data as well as the statistical and operational components that

influence the variability of the analytical method (determined during method

validation) and the variability of the process (determined during process

characterization).

9.2.2 Stability at Recommended and Stressed Storage
Conditions

Stability at recommended storage condition is typically assessed by comparing

post-change stability results to pre-change stability data. The appropriate stability

indicating assays are identified and implemented as part of the normal GMP

stability program during clinical and commercial development. As product

progresses through clinical development, a data set of stability test results is

accumulated. These data allow an ongoing assessment of patient exposure to drug

substance/drug product stability profiles that may vary due to manufacturing and

formulation variability. Generally speaking, there is typically little to no degrada-

tion of product observed under recommended storage conditions. Appropriate

recommended storage stability comparability limits can be set using the specifica-

tion, visual assessments (chromatographic overlays), or limit tests. Because the

degradation profile estimated from the post-change data at recommended storage is

generally not extrapolated to the established expiry, care must be taken in setting

the acceptance criterion if an equivalence test is performed. This is because the
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pre-change product will have a slope which is estimated across the entire range of

shelf life whereas the post-change product will have limited information to estimate

the slope. This difference in range causes the variances for the two slope estimates

to differ, even if the processes are identical.

Stability at a stressed storage condition is also assessed by comparing post-

change stability results to the pre-change stability data. The stressed stability

conditions may be conducted under elevated temperatures or other stressed condi-

tions such as chemically induced oxidation. The selection of the stressed condition

will be based on the primary degradation pathway. In some cases one or more

analytical methods may detect degradation of the product. For stressed stability

studies, it is desired to compare the slope of the post-change data to the slope of the

pre-change data. Since the comparison of interest concerns the summary measure

slope, a test of equivalence is an appropriate choice to assess comparability. Such a

test is demonstrated in Sect. 9.4.2. It may also be appropriate to include a visual

assessment such as chromatographic overlays at specified time points. Appropriate

accelerated storage stability comparability criteria can be established and adjusted

during clinical development as patient exposure experience is gained.

9.2.3 Characterization Methods

Biochemical, biological, and biophysical analyses are performed on new process

lots as appropriate. These lots are compared side-by-side to representative

pre-change lots as well as to the current reference standard. A side-by-side study

is conducted when an analytical method is not used routinely. A predetermined

number of batches are collected from both the pre-change and post-change process

and placed on the assay at the same point in time. This way, any differences

associated with the analytical method will not manifest itself as differences between

the two processes.

9.3 Comparability Examples for Individual Post-change
Values

In this section, several examples are provided where criteria for post-change

individual values are represented as ranges based on pre-change expectations.

Most typically, comparability is demonstrated if a defined percentage of the post-

change individual values fall within these ranges. The range criteria are computed

with pre-change data using tolerance intervals. In some cases, specification limits or

an LOQ may be appropriate for defining such criteria.

The following examples demonstrate how to compute prediction and tolerance

intervals for several types of data structures. Chapter 2 provides the formulas that
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are demonstrated in this section. The three-step comparability approach is as

follows:

1. Plot the data and visually compare the two groups.

2. Compute a tolerance interval using pre-change data.

3. Assess the post-change data by determining the percentage of post-change

values that fall in the tolerance interval.

Demonstration of comparability requires a pre-specified proportion of post-

change observations falling within the tolerance interval. Therefore, the width of

the computed interval is a key component in setting the interval-based acceptance

criteria. Confidence levels and proportions contained in a tolerance interval are

often based on the amount of both pre- and post-change data. Dong et al. (2015b)

offer considerations when using tolerance intervals to define the quality of a

pre-change process. In general, if the pre- and post-change data sets are small,

confidence intervals and coverage proportions must be reduced to provide mean-

ingful intervals. Use of 99% confidence or 99% coverage with small data sets will

result in intervals that are too wide to be useful in assessing comparability. In such

cases, specifications or other limit evaluations may be required to serve as criteria.

The pre-change data used to compute tolerance intervals must be assessed against

the statistical assumption of normality as described in Chap. 2.

9.3.1 Combining Pre-change Data Sets at Different Scales

This example considers a process transfer where pre-change data are available from

two manufacturing scales: a clinical scale and a commercial scale from a licensed

facility. The process in the licensed facility is to be transferred to a different

commercial facility at the same commercial scale (i.e., the post-change facility).

The parameter of interest is an in-process control parameter that measures yield in

kilograms with a specification of 40.8–75.0 kg. Figure 9.1 presents a plot of the

pre-change data. The n1 ¼ 5 lots on the left are from the clinical scale, and the n2
¼ 5 lots on the right are from the commercial scale. It is clear from the plot that the

yields differ between the clinical and commercial scale processes. The spread in the

data for the clinical and commercial scale appears similar.

These data are now combined to construct a tolerance interval to provide a

comparability criterion. Yields from the post-change process will be expected to

fall in this range. Since the spreads of the two scales in Fig. 9.1 are comparable, it is

desired to pool (combine) the two data sets for estimating the pre-change variance.

Since the commercial scale best represents the expected average of the post-change

facility, it is desired to center a tolerance interval on the commercial scale average.

The tolerance interval formula in Eq. (2.23) can be used to compute the desired

interval with some slight modifications. In particular, �Y now represents the sample

mean of the commercial scale, and S2 is replaced with the pooled variance estimate
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of the two scales. This pooled variance is denoted S2P and is defined in Eq. (2.56).

The value of K is defined in Eq. (2.25) with ne ¼ n2 ¼ 5 and ν ¼ n1 þ n2 � 2 ¼ 5þ
5� 2 ¼ 8: The required values to compute a two-sided 95% tolerance interval with

99% coverage are shown in Table 9.2.

The computed interval using (2.23) with K defined in (2.25) is

L¼ �Y � K
ffiffiffiffiffi
S2

p

U ¼ �Y þ K
ffiffiffiffiffi
S2

p

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ne

� �
Z2

1þPð Þ=2 � ν

χ2α:ν

vuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

5

� �
2:582 � 8

2:73

vuut
¼ 4:83

L¼ 56:36� 4:83� ffiffiffiffiffiffiffiffiffi
6:21

p ¼ 44:3

U ¼ 56:36þ 4:83� ffiffiffiffiffiffiffiffiffi
6:21

p ¼ 68:4

ð9:1Þ
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Fig. 9.1 Clinical and commercial scale pre-change data

Table 9.2 Values required to compute tolerance interval

Statistic description Notation Example values

Sample mean of commercial scale �Y 56.36

Pooled variance S2P in (2.56) 6.21

Error degrees of freedom ν ¼ n1 þ n2 � 2 8

Effective sample size ne ¼ n2 5

Confidence level 1� αð Þ 0.95

Proportion contained P 0.99
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The 95% tolerance interval containing 99% of all future observation is

44.3–68.4 kg which falls within the in-process specification of 40.8–75.0 kg.

The residuals formed by subtracting the appropriate scale mean from each obser-

vation are plotted in the normal quantile plot shown in Fig. 9.2. The plot suggests

the normality assumption is reasonable.

The advantage of combining the two data sets to estimate the variance is seen by

comparing the computed interval in (9.1) to an interval based solely on the

commercial lots. This calculation is

L¼ �Y � K
ffiffiffiffiffi
S2

p

U ¼ �Y þ K
ffiffiffiffiffi
S2

p

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ne

� �
Z2

1þPð Þ=2 � ν

χ2α:ν

vuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

5

� �
2:582 � 4

0:71

vuut
¼ 6:69

L¼ 56:36� 6:69� ffiffiffiffiffiffiffiffiffi
9:90

p ¼ 35:3

U ¼ 56:36þ 6:69� ffiffiffiffiffiffiffiffiffi
9:90

p ¼ 77:4

ð9:2Þ

This interval is so wide that it exceeds the specification range of 40.8–75.0 kg

and has no value as a comparability range.

Figure 9.3 presents the computed tolerance interval (dashed line) and the

specifications (solid line) with the pre-change data used in the computations. The

yields from the post-change facility are expected to fall in the tolerance interval.

Fig. 9.2 Normal quantile plot of yield residuals
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Figure 9.4 presents the computed intervals using the pre-change data with the

first six post-change yield values. Since all post-change values fall within the

tolerance interval, comparability has been demonstrated.

Fig. 9.3 Specifications and tolerance interval for yield data
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Fig. 9.4 Post-change yield data
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9.3.2 Tolerance Intervals with Replicate Measures
on Each Lot

Unlike the data presented in Sect. 9.3.1, this example considers a situation where

there are replicate measurements taken on all or a portion of the batches.

The appropriate formula for a tolerance interval for these data is provided in

Eq. (2.52). Figure 9.5 presents a data set with r ¼ 5 purity measurements taken

on each of a ¼ 11 lots in a pre-change data set. The lot release specification for this

parameter is a one-sided specification of�40.0%. The data are plotted in time order.

Calculation of the 95% tolerance interval that contains 99% coverage is shown

in Table 9.3. The Hoffman and Kringle interval referenced in Sect. 2.7.4 is

from 42.7 to 57.8 (calculations on spreadsheet at website).

Figure 9.6 is a plot of the pre-change data used to compute the tolerance

intervals, the specification (solid line), and the two-sided tolerance interval (long

dashed lines). Note that although the specification is one-sided on the lower end, the

comparability tolerance interval is still two-sided. Comparability is a comparison of

the two processes, apart from the specification. It is possible that two processes are

not comparable, but are both capable of meeting specification.

As an alternative to the interval computed in Table 9.3, one may choose to

compute the comparability interval using lot averages instead of individual values.

In this case, the averages are independent across lots, and so the tolerance interval is

computed using the independent formulas in Sect. 2.6.7. Figure 9.7 presents a plot

of the lot averages for the data set in Fig. 9.5, and Table 9.4 provides the tolerance

interval calculations based on formulas (2.23) and (2.25).

Figure 9.8 includes the tolerance intervals with the plot of lot averages.
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Fig. 9.5 Pre-change batch purity (%) plotted in time order
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As expected, the tolerance interval in Fig. 9.8 is tighter than the tolerance

interval in Fig. 9.6. This is because variability in lot means is smaller than

variability in individual values. One may construct comparability limits in either

manner as long as consistency is maintained between the limits and the post-change

values begin compared (i.e., either individual values or lot averages).

Table 9.3 Statistics needed to compute tolerance interval

Statistic Value

Confidence level 100 1� αð Þ% 95%

Proportion covered 100P% 99%

a 11

r 5

�Y 50.261

S2A 12.260

S2E 0.529

S2Total from Eq. (2.46) 2.875

m from Eq. (2.50) 13.65

m (rounded) 14

K 3.794

Z1þP
2

2.576

L from (2.52) 43.8

U from (2.52) 56.7

Fig. 9.6 Pre-change data acceptance criteria and specification
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9.4 Equivalence Testing for Summary Parameters

When summary parameters are informative, equivalence testing provides the stron-

gest statistical evidence of comparability. Equivalence testing is discussed in Sect.

2.11. Data used in an equivalence test can be either profile or non-profile. Non-

profile data are collected at a single point in time. Examples of non-profile data

include lot release or in-process control measurements. Profile data are collected

over time. In the context of comparability, a stability profile is of interest when data

are collected in this manner. Typically, non-profile data involve a comparison of

averages, and profile data involve a comparison of slopes.
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Fig. 9.7 Plot of lot averages for purity (%)

Table 9.4 Statistics needed to compute tolerance interval

Statistic Value

Confidence level 100 1� αð Þ% 95%

Proportion covered 100P% 99%

ne 11

�Y 50.261

S2 2.452

ν 10

χ2α : ν 3.940

Z1þP
2

2.576

K from (2.25) 4.286

L from (2.23) 43.6

U from (2.23) 57.0
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As noted in Sect. 2.11, the most challenging part of an equivalence test is often

establishment of the equivalence acceptance criterion (EAC). In the next two

sections, guidance is offered for both non-profile and profile data.

9.4.1 Equivalence Acceptance Criterion for Non-profile Data

The equivalence hypotheses used to demonstrate comparability with non-profile

data are

H0 : μPre � μPostj j � EAC

Ha : μPre � μPostj j < EAC
ð9:3Þ

where the subscripts denote the pre- and post-change conditions, respectively. As

discussed in Sect. 2.11, equivalence is assessed by constructing a two-sided 100

1� 2αð Þ% confidence interval on the difference μPre � μPost. The null hypothesis

H0 in Eq. (9.3) is rejected and equivalence is demonstrated if the entire confidence

interval falls in the range from �EAC to þ EAC.

When evaluating product comparability, the EAC defines the maximum differ-

ence in means that has no practical scientific impact. It is ideal if a subject matter

expert (SME) can define the EAC. In the absence of an SME definition, parameters

defined by specifications or other decision making limits are used in the decision

process.

To provide an example, consider a situation where the lot release specification

for protein concentration is LSL¼ 58.5 mg/mL and USL¼ 71.5 mg/mL.
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Fig. 9.8 Tolerance interval based on lot averages
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The pre-change process data are plotted in Fig. 9.9, and the descriptive statistics are

listed in Table 9.5. The data are independent with one value for each lot.

One might ask the question, “Given the pre-change process mean is

65.00 mg/mL and the standard deviation is 1.18 mg/mL, what is the maximum

allowable shift in the post-change mean that would not cause an unacceptable

probability for an out-of-specification (OOS) observation?” This question can be

answered by using a process capability index as presented in Eq. (5.13). This

capability measure is

Ĉ pk ¼ min
USL� �Y

3S
;
�Y � LSL

3S

� �
ð9:4Þ
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Fig. 9.9 Protein concentration (mg/mL) by lot

Table 9.5 Descriptive statistics for pre-change protein concentration

Statistic Value (mg/mL)

Mean �Yð Þ 65.00

Standard deviation (S) 1.18

Minimum 62.47

Maximum 67.02

Lot count 35
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Using the values in Table 9.5, the computed capability measure is

Cpk ¼ min
USL� μY

3σst
;
μY � LSL

3σst

� �

¼ min
71:5� 65:00

3� 1:18
;
65:00� 58:5

3� 1:18

� �
¼ min 1:84; 1:84½ � ¼ 1:84

ð9:5Þ

For this example, the two quantities within the parentheses are equal, implying

that the process is centered within the specification. For this example, let’s assume

that a capability of 1.5 is acceptable. This corresponds to a 0.0007% chance of an

individual value falling outside of the specification limits (see Montgomery 2013).

The largest mean protein concentration for the post-change process that meets this

requirement if the process shifts to the right is computed as follows:

1:5¼ 71:5� μPost
3� 1:18

μPost ¼ 71:5� 1:5� 3� 1:18 ¼ 66:19 mg=mL:

ð9:6Þ

Thus, the allowable shift from the present position is computed as66:19-65:00 ¼
1:19 mg=mL; or the equivalence acceptance criterion is EAC¼ 1.19 mg/mL.

Because the process is centered, a shift of the post-process change to the left

would provide the same EAC.

Figure 9.10 presents a simulated post-change data set with a mean of

66.19 mg/mL and standard deviation of 1.18 mg/mL next to the pre-change data
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Fig. 9.10 Graphical representation of an acceptable process shift
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distribution. This provides an effective representation of a process shift at the EAC.

It is clear from Fig. 9.10 that the amount of tolerable shift is small in order to

maintain a low percentage of observations exceeding the upper specification limit.

When no specification or SME defined EAC is available, one can define an EAC

based on behavior of the pre-change process and a visual assessment as in Fig. 9.10.

This approach describes the difference in means based on “expected” behavior of

the pre-change process as opposed to “acceptable” behavior in terms of safety or

efficacy. The notion of “expected” behavior is proposed by Hauk et al. (2008).

Pre-change process behavior is described with a statistical model that incorporates

the pre-change process average, lot-to-lot variation, and intermediate precision of

the analytical method.

The EAC is defined as the acceptable shift in population means expressed in

terms of the standard deviation of the pre-change response variance. This ratio is

called the effect size (ES). The ES is defined as

ES ¼ μPre - μPostj j
σPre

ð9:7Þ

and discussed in Sect. 2.8.2. An EAC describing the pre-change process is defined

as a function of an acceptable value for ES. In particular,

EAC ¼ ES� σPre ð9:8Þ

where σPre is estimated based on a sample of pre-change lots. In some situations, it

may be reasonable to replace σPre with an upper bound to account for sampling

error. This approach has been advocated by Limentani et al. (2005) using a

confidence coefficient of 80%.

An acceptable value of ES will depend on the application and rigor required to

demonstrate equivalence. For example, demonstration of analytical similarity of a

biosimilar may have a smaller ES compared to a demonstration of comparability for

a process transfer. Selection of ES in Eq. (9.8) is aided using SMEs and visual

representations. By visually representing a variety of ES values, the SME can

evaluate the overlap of the pre-change data and simulated post-change data.

Figure 9.11 represents four possible values of ES with the corresponding

overlapping coefficient as defined by Inman and Bradley (1989). This overlapping

coefficient is defined as

OVL ¼ 2� Φ � μPre � μPostj j
2σ

� �
ð9:9Þ

where σPre ¼ σPost ¼ σ and Φ(•) is the cumulative function of a standard normal

random variable. For example, if two distributions differ by one standard deviation,

then
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OVL¼ 2� Φ � μPre � μPostj j
2σ

� �

¼ 2� Φ � σ

2σ

� �
¼ 2� Φ �1

2

� �
¼ 2� 0:309 ¼ 0:62

ð9:10Þ

The pre-change population is represented by a red dashed line and the post-

change population is represented by a blue solid line in Fig. 9.11. In the top-left

panel, the effect size is zero which corresponds to 100% overlap between the pre-

and post-change populations. As the effect size increases, the amount of overlap

decreases. The most extreme case presented in Fig. 9.11 is an effect size of three. In

this situation there is only 13% overlap between the pre- and post-change

populations. There is an important consideration when using these plots to select

an acceptable value for ES. When the mean shift is equal to the ES in each panel of

Fig. 9.11, there is only a 5% chance that one will pass the statistical test of

equivalence. Thus, in order to reasonably pass a test of equivalence, the true

mean difference must be much less than the EAC.

Table 9.6 presents a summary table of eight pre-change process lots that are to be

used to define a statistically based EAC.

The selected EAC using Eq. (9.8) is

EAC ¼ 2� 0:367 ¼ 0:73 ð9:11Þ
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Fig. 9.11 Plots of effect sizes (ES) with overlapping pre-change (dashed line) and post-change

(solid line) populations
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Using Eq. (2.10) to incorporate an 80% upper bound on the variance, the EAC is

EAC¼ ES

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPre � 1ð ÞS2Pre
χ2α:nPre�1

s

¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 1ð Þ � 0:367ð Þ2

3:82

s
¼ 0:99

ð9:12Þ

At this point, the SME can help evaluate the reasonableness of the EAC. If there

are repeated measures for each lot, one should consider working with lot averages

as discussed in Sect. 9.3.2.

Another option when basing the EAC on effect size is to perform the equivalence

test directly on the effect size. That is, change the hypotheses in Eq. (9.3) to

H0 :
μPre � μPostj j

σPre
� EAC

Ha :
μPre � μPostj j

σPre
< EAC

ð9:13Þ

A confidence interval can be computed to test the effect size in Eq. (9.13) using

results presented in Sect. 2.8.2. An example of such an application is provided in

Sect. 9.7.

9.4.2 Equivalence Acceptance Criterion for Profile Data

The previous section considered the computation of an EAC using non-profile data.

However, ICH Q5E also requires that the stability profiles of the pre- and post-

change products be highly similar. Burdick and Sidor (2013) provide an approach

for defining an EAC with profile data under stressed conditions.

For stability data, the stability profile of the pre-change product is compared to

the post-change product in order to determine if the degradation rates are highly

similar. The hypothesis test is focused on the difference between the pre- and post-

change degradation rates (slopes). The hypotheses are

H0 : βPre � βPostj j � EAC
Ha : βPre � βPostj j < EAC

ð9:14Þ

Table 9.6 Values required to

compute EAC
Description Value

Number of pre-change lots nPre ¼ 8

Pre-change sample standard deviation 0.367

Acceptable effect size 2
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where βPre is the slope of the pre-change profile and βPost is the slope of the post-
change profile. As in the non-profile case, the EAC is a pre-selected constant that

reflects the maximum allowable difference between two parameters such that they

can be deemed equivalent. The challenge with profile data is that degradation at

recommended storage conditions may be slow and differences are manifested over

a very long time period. Typically, product is exposed to non-recommended storage

conditions such as a higher temperature to accelerate degradation. The exposure of

product to specific accelerated conditions allows the stability profiles to be com-

pared in a more timely manner. When comparing degradation rates under either

recommended storage conditions or accelerated conditions, it is assumed that

reaction kinetics driving the stability properties are consistent between the

pre-and post-change processes. With this assumption, the slopes can be compared

using a statistical test of equivalence.

Under recommended storage conditions, the EAC may be directly linked to

product safety and efficacy through the use of the product’s specification. However,
under non-recommended storage conditions, the linkage to specifications is not

meaningful. For small molecules, it might be possible to establish EAC using

Arrhenius kinetics to link acceptable degradation rates at accelerated conditions

to product specifications at recommended conditions. However, such kinetics are

difficult to apply to biological product degradation mechanisms, and thus is not

considered a generally useful approach. Instead, with non-recommended storage

conditions, the EAC can be expressed as an effect size in much the same manner

described for non-profile data.

Assuming that the reaction kinetics driving the stability properties are consistent

between the pre- and post-change processes, the random intercept mixed model in

Eq. (2.115) is used to define the responses. The assumed model for establishing the

preliminary EAC using the pre-change data when all lots are measured at the same

time points is

Yij ¼ μþ Li þ βPre � tj þ Eij

i¼ 1, . . . , n; j ¼ 1, . . . , T
ð9:15Þ

where Yij is a response measured for lot i at time point j, μ is the average y-intercept

across all pre-change lots, βPre is the average slope across all pre-change lots, Li is a
random variable that allows the y-intercept to vary from μ for a given lot, Li has a

normal distribution with mean 0 and variance σ2L, tj is the time point for measure-

ment j of each lot, Eij is a random normal error term created by measurement error

and model misspecification with mean 0 and variance σ2E, n is the number of

sampled lots, T is the number of time points obtained for each pre-change lot, and

Li and Eij are jointly independent.

Once the model has been fit, the EAC is computed. The methodology used to

compute the EAC for profile data is similar to the concept presented in Sect. 9.4.1.

For the accelerated stability model in (9.15), consider the ordinary least squares

estimator of the slope based on the ith lot, β̂ i. The statistical test of equivalence is
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now based on comparing the distribution of the β̂ i for the pre- and post-change

processes. For the pre-change process, the distribution of β̂ i is normal with mean β
and variance

Var β̂
	 
¼ σ2E

SST

SST¼
XT
j¼1

tj � �t
	 
2

�t¼

XT
t¼1

tj

T
:

ð9:16Þ

Treating the pre-change process as the reference distribution, the EAC is

EAC ¼ ES�
ffiffiffiffiffiffiffiffiffiffi
σ2E
SST

:

r
ð9:17Þ

where an estimate σ2E is based on the pre-change sample. Typically, most of the

variability represented by σ2E is due to the analytical method error. If the analytical

method is well characterized, the intermediate precision may be used to estimate

σ2E. Should the intermediate precision not be available, σ2E may be obtained from the

pre-change data collected at the storage condition of interest. In some cases, it may

be reasonable to use a 100 1� αð Þ% upper bound on σ2E.
The next step in computing (9.17) is to determine an appropriate effect size,

ES. Similar to the non-profile case, it is helpful to evaluate the effect size visually.

Figure 9.12 displays plots of two processes for four values of ES. The figure

presents 15 randomly generated individual slope estimates from each process.

The pre-change slope estimates are represented by the solid lines and the post-

change process estimates by the dashed lines. All lines are emanating from the same

y-intercept in order to better focus on the differences in slopes. One can see from

Fig. 9.12 that an ES of three provides essentially two distinct distributions. This

suggests that an ES more extreme than three might be too great a separation to

declare populations comparable. Overlap of the distributions can be defined as with

non-profile data, suggesting a value of ES¼ 2 is reasonable. Recall that for a given

EAC, when the true difference in slopes is equal to the EAC, there is only a 5%

chance of passing the equivalence test.

To demonstrate, consider a pre-change data set collected for a purity assay over a

3 month time period. Samples are held at the stressed condition of 37∘C for the

entirety of the study. There are n ¼ 15 lots in the pre-change data set and all lots

have been evaluated at 0, 1, 2, and 3 months. Figure 9.13 consists of the individual

predicted slopes fit through each lot where all regression lines are emanating from

the average y-intercept of 86.0% to better visualize the range of slopes for the
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Fig. 9.13 Pre-change data with lot specific regression lines and common intercept
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Fig. 9.12 Plots of effect sizes (ES) with stability profiles (solid lines are the pre-change process
and dashed lines the post-change process)
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pre-change data. The slopes range from �0.056%/month (lot G) to �0.727%/

month (lot A). Table 9.7 lists the individual slope estimates for each lot.

The average slope is β̂ Pre ¼ �0:255. The value for the mean squared error is

obtained by regressing Purity on Time and Lot (as a random effect), and using the

estimate of σ2E. For this example, the mean squared error is σ̂ 2
E ¼ 0:200. The

associated degrees of freedom are nPre � T � 1ð Þ � 1 ¼ 15� 4� 1ð Þ � 1 ¼ 44:
Formula (9.17) is used to compute the EAC based on the pre-change data. Here

�t¼

XT
j¼1

tj

T
¼ 0þ 1þ 2þ 3ð Þ

4
¼ 1:5

SST ¼
XT
j¼1

tj � �t
	 
2 ¼ 0� 1:5ð Þ2 þ 1� 1:5ð Þ2 þ 2� 1:5ð Þ2 þ 3� 1:5ð Þ2 ¼ 5

ð9:18Þ

and so

EAC¼ ES

ffiffiffiffiffiffiffiffi
σ̂ 2
E

SST

r

¼ 2�
ffiffiffiffiffiffiffiffiffiffiffi
0:200

5

r
¼ 0:40% per month

ð9:19Þ

The test of the hypotheses

H0 : βPre � βPostj j � 0:40% per month

Ha : βPre � βPostj j < 0:40% per month
ð9:20Þ

was performed by selecting six post-change lots, and subjecting them to the stressed

condition of 37∘C at 0, 1, 2, and 3 months. The slopes and average for these six lots

are shown in Table 9.8. The mean squared error is 0.183 withnPost � T � 1ð Þ � 1 ¼
17 degrees of freedom.

Table 9.7 Slope estimates

of the pre-change lots
Lot ID Slope Lot ID Slope

A �0.727 I �0.165

B �0.090 J -0.402

C �0.610 K �0.082

D �0.092 L �0.115

E �0.368 M �0.188

F �0.137 N �0.521

G �0.056 O �0.220

H �0.059 Average �0.255
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By pooling the two mean squared errors in Table 9.9, the estimate of σ2E is

σ̂ 2
E ¼ 44� 0:200þ 17� 0:183

61
¼ 0:195: ð9:21Þ

Because the same time points are used for each data set,SST ¼ 5 for both groups,

and a 90% two-sided confidence interval on the difference in slopes is

β̂ Pre � β̂ Post � t0:95:61

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂ 2
E

SST

1

nPre
þ 1

nPost

� �s

L ¼ �0:255� �0:459ð Þ � 1:67ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:195

5

1

15
þ 1

6

� �s
¼ 0:045% per month

U ¼ �0:255� �0:459ð Þ þ 1:67ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:195

5

1

15
þ 1

6

� �s
¼ 0:363% per month

ð9:22Þ

As shown in Fig. 9.14, the confidence interval from 0.045 to 0.363% falls

between the EAC range of�0.40 to +0.40%/month. This demonstrates equivalence

of slopes.

9.5 Design and Power Considerations

Before performing any equivalence test, it is important to plan a design that has a

good chance of passing when the groups are indeed equivalent. First, the collected

samples for the study should be run in a random order to minimize the impact of

bias. The randomization of the samples should be discussed with the laboratory

Table 9.9 Summary of slopes and mean squared errors

Group Slope average Mean squared error Error degrees of freedom

Pre-change �0.255 0.200 44

Post-change �0.459 0.183 17

Table 9.8 Slope estimates

of the post-change lots
Lot ID Slope

P �0.547

Q �0.576

R �0.613

S �0.460

T �0.362

U �0.196

Average �0.459
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prior to sample collection so that any logistics with sample freezing and run order

can be agreed upon. Second, the study owner should understand the format of

the data set. This includes significant figures, labeling format, and administration

of the data set. Data precision should align with the maximum precision allowed by

the analytical method. If data are overly rounded, the parameter estimates will be

over- or underestimated depending on the direction of the rounding. Section 2.3

provides more discussion on this topic.

Power is the probability of rejecting the null hypothesis for a given value of the

parameter of interest. It is important to properly power a statistical test in order to

ensure that equivalence can be demonstrated when it is present. Recommendations

for determining the number of post-change lots in an equivalence study are

discussed in the next two sections.

9.5.1 Non-profile Data

Recall the equivalence test used to demonstrate comparability with non-profile

data is

H0 : μPre � μPostj j � EAC

Ha : μPre � μPostj j < EAC
ð9:23Þ

As discussed in Sect. 2.11, equivalence is assessed by constructing a two-sided

100 1� 2αð Þ% confidence interval on the difference μPre � μPost. The null
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Fig. 9.14 Results of equivalence test on slopes
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hypothesis H0 in Eq. (9.23) is rejected and equivalence is demonstrated if the entire

confidence interval falls in the range from �EAC to þ EAC.

Power is defined as the probability of rejecting H0 and claiming equivalence

for a given value of μPre � μPostj j. By definition, if the value μPre � μPostj j ¼
EAC, then the power is equal to α. Typically, α ¼ 0:05 and one constructs a

100 1� 2αð Þ% ¼ 90% confidence interval on the difference μPre � μPost. For values
of μPre � μPostj j less than EAC, the power is greater than 0.05, and for values greater
than EAC, it is less than 0.05. Figure 9.15 presents a power curve for the

EAC¼ 0.734 with a standard deviation of 0.367.

As expected, increasing the number of post-change lots from 3 to 6 increases the

power for any given value ofδ ¼ μPre � μPostj j. In order to determine an appropriate

number of post-change lots, we recommend a power somewhere between at least

0.74–0.87 when μPre � μPostj j ¼ 0:083� EAC. This assumes one is using a

two-sided 90% confidence interval to conduct the test. Applying this rule to our

example, a sample size of three post-change lots is minimally sufficient and six

post-change lots provides more than adequate power.

The power curve in Fig. 9.15 was computed using the SAS program PROC

POWER. This code is shown below for the case where nPost ¼ 6 post-change lots

are tested against nPre ¼ 8 pre-change lots assuming μPre � μPostj j ¼
0:083� EAC ¼ 0:061. The computed power from this code is 0.923.

proc power;

twosamplemeans test¼equiv_diff

lower¼�0.734

Fig. 9.15 Power curve with δ ¼ μPre � μPostj j, nPre ¼ 8, σ ¼ 0:367, and EAC¼ 0.734
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upper¼0.734

meandiff¼0.061

stddev¼0.367

power¼.

groupns¼(8 6);

run;

If software is not available to perform this calculation, one can write a simple

simulation code to compute the power. Consider the same example shown in

Fig. 9.15. A simulation can be constructed using Excel by following these steps

and using the pooled confidence interval shown in Eq. (2.56):

1. Select values for δ ¼ μPre � μPostj j, σ, nPr e, and nPost. For our example select

δ ¼ 0:061, σ ¼ 0:367, nPre ¼ 8, and nPost ¼ 6.

2. Simulate a random value for �YPre � �YPost using the formula

�YPre � �YPost ¼ μPre � μPost þ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

1

nPre
þ 1

nPost

� �s

¼ 0:061þ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:367ð Þ2 1

8
þ 1

6

� �s ð9:24Þ

where Z is a randomly simulated standard normal random variable.

3. Simulate a random value for S2P using the formula

S2P ¼ σ2

nPre þ nPost � 2
�W ¼ 0:367ð Þ2

8þ 6� 2
�W ð9:25Þ

whereW is a chi-squared random variable with nPre þ nPost � 2 degrees of freedom.

4. Compute L and U using Eq. (2.56) to form a 90% confidence interval on

μPre � μPost.
5. If the confidence interval in step 4 falls between –EAC and +EAC, increase a

counter by one, and simulate another iteration of steps 1–5. Repeat 10,000 times.

Figure 9.16 shows the first 25 rows of an Excel spreadsheet with 10,000

iterations of the simulation. (The entire spreadsheet is available at the website for

this book.) Note that in Excel, W needs to be determined by first using the random

uniform function since a chi-squared generator is not available. The percentage of

the simulated 10,000 values that falls within the range –EAC to +EAC is 0.922.

This matches to two decimal places the value computed using PROC POWER.
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9.5.2 Power Considerations with Profile Data

The equivalence test used to demonstrate comparability with profile data as

described in (9.14) is

H0 : βPre � βPostj j � EAC

Ha : βPre � βPostj j < EAC
ð9:26Þ

Equivalence is demonstrated if a two-sided100 1� 2αð Þ%confidence interval on

βPre � βPost falls in the range from �EAC to þ EAC. A simulation to determine

power can be constructed using Excel by following these steps and using the pooled

confidence interval shown in Eq. (9.22):

1. Select values for EAC, βPre � βPostj j, σ2E, T, SST, nPr e, and nPost. For our example

assume we select EAC¼ 0.40%, βPre � βPostj j ¼ 0:083� EAC ¼ 0:033,

σ2E ¼ 0:20, T ¼ 4, SST ¼ 5, nPre ¼ 15, and nPost ¼ 6. Assuming we will

be pooling the data to estimate error, the error df is nPre þ nPostð Þ � T � 1ð Þ�
2¼ 61.

2. Simulate a random value for β̂ Pre � β̂ Post using the formula

β̂ Pre � β̂ Post ¼ βPre � βPost þ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2E
SST

1

nPre
þ 1

nPost

� �s

¼ 0:033þ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:20

5

1

15
þ 1

6

� �s ð9:27Þ

where Z is a randomly simulated standard normal random variable.

Delta: assumed difference in means 0.061
Assumed SD 0.367
Sample size for the pre change 8
Sample size for the post change 6
Two-sided conf level 0.9 Power 0.922
Two-sided t-value 1.782
EAC 0.734

Simulation Z W uniform W chi-square Diff sample means (9.24) Pooled Variance (9.25) L (2.59) U (2.59) CI between -EAC EAC
1 -0.357000545 0.42527543 12.2568888 -0.009758455 0.137572341 -0.366773681 0.347256771 1
2 -0.524848929 0.4741966 11.64982271 -0.04302645 0.130758581 -0.391088179 0.305035279 1
3 0.458624072 0.566148869 10.56925263 0.151900508 0.118630172 -0.179626378 0.483427394 1
4 -0.307602477 0.419446394 12.33138051 3.2373E-05 0.138408442 -0.358066096 0.358130842 1
5 -2.053966455 0.436414686 12.11592975 -0.346101601 0.135990205 -0.701057982 0.008854781 1
6 0.280442691 0.261787774 14.63877075 0.116584485 0.164306783 -0.273581064 0.506750035 1
7 0.071702289 0.836085086 7.315417391 0.075211584 0.082108854 -0.20060233 0.351025497 1
8 0.054455995 0.4242378 12.27011139 0.071793323 0.137720753 -0.285414423 0.429001069 1
9 -0.380582605 0.839381085 7.268366943 -0.014432482 0.081580756 -0.289357991 0.260493027 1

10 0.760979901 0.216803491 15.46861979 0.211828235 0.173621078 -0.189243814 0.612900285 1
11 -0.748975708 0.231269265 15.18888123 -0.087448972 0.170481269 -0.48487793 0.309979986 1
12 0.808336154 0.202185125 15.76610812 0.22121437 0.176960111 -0.183695968 0.626124708 1
13 0.223501502 0.382610553 12.81525564 0.105298591 0.143839497 -0.259758049 0.47035523 1
14 0.082598035 0.653004547 9.577125928 0.07737115 0.10749446 -0.238212296 0.392954596 1
15 0.746547357 0.633075961 9.804854988 0.208967667 0.110050509 -0.110345776 0.52828111 1
16 -1.452704055 0.140842921 17.23852588 -0.226929798 0.193486651 -0.650325727 0.196466131 1
17 1.281673576 0.308297983 13.8821385 0.315031103 0.155814279 -0.064917456 0.694979662 1
18 -0.327878524 0.129520554 17.56591448 -0.003986393 0.197161288 -0.431383913 0.423411126 1
19 -0.913512395 0.007263405 27.18644017 -0.12006058 0.30514287 -0.651768081 0.411646921 1
20 -0.400232238 0.913663137 6.047608267 -0.018327091 0.067878859 -0.269104518 0.232450335 1
21 0.827576514 0.383739738 12.80005278 0.225027861 0.143668859 -0.13981218 0.589867901 1
22 1.772223186 0.481612598 11.56022349 0.412259337 0.129752912 0.06553867 0.758980005 0
23 -0.385275598 0.936460463 5.563720062 -0.015362646 0.062447658 -0.255898184 0.225172892 1
24 0.491164656 0.007812738 26.96677776 0.158350138 0.302677361 -0.371204948 0.687905223 1
25 -0.894633558 0.942533647 5.418214126 -0.116318745 0.060814487 -0.353688126 0.121050636 1

Fig. 9.16 Simulated power spreadsheet
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3. Simulate a random value for σ̂ 2
E using the formula

σ̂ 2
E ¼

σ2E
Error df

�W

¼ 0:20

61
�W

ð9:28Þ

whereW is a chi-squared random variable with 61 error degrees of freedom for this

example.

4. Compute L and U using Eq. (9.22) to form a 90% confidence interval on

βPre � βPost.
5. If the confidence interval in step 4 falls between –EAC and +EAC, increase a

counter by one, and simulate another iteration of steps 1–5. Repeat 10,000 times.

Figure 9.17 shows the first 25 rows of an Excel spreadsheet with 10,000

iterations of the simulation. The percentage of the simulated 10,000 values that

falls within the range –EAC to +EAC is 0.975, which exceeds the target of 0.87.

It is important to note the impact of SST on power. In the previous example, time

points were at 0, 1, 2, and 3 months. If the timeframe is increased, the power will

increase for the same number of lots. For example, suppose we select the three time

points 0, 3, and 6 months. Our range is now 6 months instead of only 3 months.

Using Eq. (9.19) we have SST¼ 18 and given the same EAC, the power is

increased to almost 1.0.

Delta: assumed difference in slopes 0.033
Variance Sigma^2_E 0.2
Sample size for the pre change 15
Sample size for the post change 6
Error df 61
SST 5
Two-sided conf level 0.9 Power 0.975
Two-sided t-value 1.729
EAC 0.4

Simulation Z W uniform W chi-square Diff sample means (9.27) Pooled Variance (9.28) L (9.22) U (9.22) CI between -EAC EAC
1 -0.357000545 0.42527543 62.4261843 -0.001489529 0.204676014 -0.170481168 0.16750211 1
2 -0.524848929 0.4741966 61.04777877 -0.017705224 0.200156652 -0.184820733 0.149410285 1
3 0.458624072 0.566148869 58.52491969 0.077307295 0.191884983 -0.086318676 0.240933265 1
4 -0.307602477 0.419446394 62.59355026 0.003282777 0.205224755 -0.165935245 0.1725008 1
5 -2.053966455 0.436414686 62.10844188 -0.165432011 0.203634236 -0.333993027 0.003129004 1
6 0.280442691 0.261787774 67.60844306 0.060093338 0.221667026 -0.115772826 0.235959502 1
7 0.071702289 0.836085086 50.2238738 0.039927099 0.164668439 -0.111651164 0.191505362 1
8 0.054455995 0.4242378 62.45591999 0.038260949 0.204773508 -0.130770933 0.207292831 1
9 -0.380582605 0.839381085 50.09376796 -0.003767773 0.164241862 -0.155149575 0.14761403 1

10 0.760979901 0.216803491 69.34148331 0.106517643 0.227349126 -0.07158829 0.284623576 1
11 -0.748975708 0.231269265 68.76101338 -0.039357928 0.225445946 -0.216716816 0.13800096 1
12 0.808336154 0.202185125 69.9547871 0.111092692 0.229359958 -0.067799153 0.289984536 1
13 0.223501502 0.382610553 63.67174131 0.054592296 0.208759808 -0.116076917 0.22526151 1
14 0.082598035 0.653004547 56.11914653 0.040979728 0.183997202 -0.119247881 0.201207337 1
15 0.746547357 0.633075961 56.67968794 0.105123327 0.185835042 -0.055902504 0.266149157 1
16 -1.452704055 0.140842921 72.93374974 -0.107344545 0.239127048 -0.290005656 0.075316566 1
17 1.281673576 0.308297983 65.99775278 0.156821431 0.216386075 -0.016937204 0.330580066 1
18 -0.327878524 0.129520554 73.5841801 0.001323925 0.241259607 -0.182149872 0.184797723 1
19 -0.913512395 0.007263405 91.27474884 -0.055253682 0.299261472 -0.25959545 0.149088086 1
20 -0.400232238 0.913663137 46.58077555 -0.005666108 0.152723854 -0.151643358 0.140311143 1
21 0.827576514 0.383739738 63.63809658 0.112951487 0.208649497 -0.057672629 0.283575603 1
22 1.772223186 0.481612598 60.84207369 0.204213026 0.199482209 0.037379308 0.371046743 1
23 -0.385275598 0.936460463 45.10331355 -0.004221159 0.147879717 -0.147864682 0.139422364 1
24 0.491164656 0.007812738 90.89488417 0.080451014 0.298016014 -0.123465099 0.284367126 1
25 -0.894633558 0.942533647 44.64791449 -0.053429813 0.146386605 -0.196346326 0.0894867 1

Fig. 9.17 Simulated power spreadsheet for profile data
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9.6 Reporting Analytical Comparability Results

Once the EAC has been defined, it is time to collect the post-change data using

the study design outlined in the analytical comparability protocol. Regardless of the

approach, plots of the raw data and descriptive statistics should be part of the

analysis. For non-profile data, plot the pre-change data and post-change data in

time order along with descriptive statistics. For profile data, plot the raw data and

the average slope for the pre- and post-change data and report the appropriate

descriptive statistics. Additional plots and results are required if an equivalence test

is performed. We now provide some examples.

9.6.1 Reports for Individual Post-change Values

When the acceptance criterion is based on pre-change data, the subsequent analysis

consists of evaluating each post-change value relative to the acceptance criterion

and the specification. It is recommended to plot the post-change and pre-change

data by time-ordered batch ID (trend plot). This plot provides a visual assessment of

any shift in the post-change mean along with changes in variability. Inclusion of

reference lines for a specification or the acceptance criterion is a matter of personal

preference. However, in cases where the data are far away from the specification,

the excessive white space between the specification and the actual data may not be

of value. In addition, the raw data are difficult to see because they are isolated to a

narrow range of the y-axis. A rule of thumb for graphing data is to retain approx-

imately one-third of the graph for white space.

In addition to the graphical presentation, descriptive statistics should be

presented in the analysis. When the sample size of the post-change data set is at

least four lots, the descriptive statistics (mean, standard deviation, minimum, and

maximum) should be presented for both the pre- and post-change data sets. If there

are fewer than four lots in the post-change data set, providing the minimum and

maximum values is adequate. Table 9.10 reports descriptive statistics, types of

Table 9.10 Guidance on presentations for reporting comparability results for individual post-

change values

Item

Sample size

1–3 lots �4 lots

Descriptive statistics Mean ✓

Standard deviation ✓

Variance Optional

Range (minimum and maximum value) ✓ ✓

Confidence interval on the mean Optional

Plots Trend plot ✓ ✓

Boxplot Optional

Individual value plot Optional
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plots, and guidance on sample size for presentation. Items with a check mark are

strongly recommended. Optional plots and descriptive statistics are listed as such. If

there is a blank, the use of that plot or statistic is not recommended.

9.6.2 Reports for Equivalence Testing with Non-profile Data

Once the data for the post-change process have been collected, the equivalence test

is performed. This test is performed by computing a two-sided 90% confidence

interval on the difference in means. Equivalence is demonstrated if both bounds fall

within the range from –EAC to +EAC. The confidence intervals are computed using

one of the intervals shown in Table 9.11.

Table 9.12 summarizes useful plots and descriptive statistics for reporting an

equivalence test. Check marks denote recommendations and optional items are

defined as such.

To demonstrate, consider a non-profile analysis of lot release data for

protein concentration measured in mg/mL. There are nPre ¼ 35 lots of pre-change

product and nPost ¼ 3 lots of post-change product. The equivalence hypotheses of

interest are

Table 9.11 Confidence intervals used with equivalence tests of mean

Data structure

Compute the two-sided confidence

interval with equation

Independent measurements with equal variances (2.56)

Independent measurements with unequal

variances

(2.58)

Dependent measurements (2.71)

Table 9.12 Guidance on presentations for reporting comparability results for equivalence tests

with non-profile data

Item Guidance

Descriptive statistics Mean ✓

Standard deviation ✓

Variance Optional

Range (minimum and maximum value) Optional

Confidence interval on the mean Optional

Confidence interval on the difference in means ✓

Plots Trend plot ✓

Boxplot Optional

Individual value plot ✓

Equivalence plot ✓
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H0 : μPre � μPostj j � 2:0 mg=mL

Ha : μPre � μPostj j < 2:0 mg=mL:
ð9:29Þ

Table 9.13 shows the statistics recommended in Table 9.12.

Figure 9.18 presents the trend plot recommended in Table 9.12. Figure 9.19

presents the individual value plot, and Fig. 9.20 the equivalence plot.

It is clear that there are no unexpected trends in the post-change data relative to

the pre-change lots. For this example, the specification reference lines are added to

the trend plot.

The plus signs in Fig. 9.19 represent the pre- and post-change process means.

This plot is valuable as it gives a visual assessment of the two process means

relative to each other along with the spread of the data.

Table 9.13 Recommended descriptive statistics in Table 9.12

Statistic Protein concentration (mg/mL)

Pre-change mean 65.00

Post-change mean 65.29

Difference in means (�d) �0.29

Pre-change standard deviation 1.18

Post-change standard deviation 0.48

90% margin of error (ME) 0.73

Lower bound of 90% CI on difference from (2.56) �1.46

Upper bound of 90% CI on difference from (2.56) 0.88

EAC 2.0

Conclusion Statistically equivalent
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Fig. 9.18 Trend plot with pre-change data (circle) and post-change data (triangle)
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The confidence interval in Fig. 9.20 assumes equal variances and is computed

with Eq. (2.56). Since the confidence interval in Fig. 9.20 falls completely inside the

EAC of �2:0, evidence has been provided that the pre- and post-change processes

are statistically equivalent.
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Fig. 9.19 Individual value plot recommended in Table 9.12
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Fig. 9.20 Equivalence plot recommended in Table 9.12
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Burdick et al. (2011) developed a trend chart that can be used to visually present

the test of equivalence. This chart is shown in Fig. 9.21 for the data described in this

section.

The lines in Fig. 9.21 represent algebraic re-expressions of the equivalence

inequalities. In the present example, equivalence is demonstrated using Eq. (2.56) if

�YPre � �YPost �ME > �EAC and

�YPre � �YPost þME < EAC where

ME ¼ t1�α=2:nPreþnPost�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Pooled

1

nPre
þ 1

nPost

� �s ð9:30Þ

Equation (9.30) can be rewritten as

�YPost þME < �YPre þ EAC, and

�YPost �ME > �YPre � EAC
ð9:31Þ

Define the lower test limit LTL ¼ �YPost �ME, the upper test limit

UTL ¼ �YPost þME, the lower equivalence limit LEL ¼ �YPre � EAC, and the

upper equivalence limit UEL ¼ �YPre þ EAC. Average equivalence is demonstrated

whenUTL<UEL and LTL> LEL. Visually this translates into having both theUTL
and LTL (short dashed lines) falling within UEL and LEL (long dashed lines).

Fig. 9.21 Trend chart with equivalence test
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Using the data in Table 9.13, LTL ¼ �YPost �ME ¼ 65:29� 1:17 ¼ 64:12,

UTL ¼ �YPost þME ¼ 65:29þ 1:17 ¼ 66:46, LEL ¼ �YPre � EAC ¼ 65:00� 2:00

¼ 63:00, and UEL ¼ �YPre þ EAC ¼ 65:00þ 2:00 ¼ 67:00. Since LTL and UTL
are contained within UEL and LEL, equivalence is demonstrated. Note that when

using this visualization technique, some individual values are likely to fall outside

the limits, because the limits are based on means.

9.6.3 Reports for Equivalence Testing with Profile Data

Table 9.14 summarizes the recommended descriptive statistics and plots for profile

data.

Recall the example to test the hypotheses in (9.20) presented in Sect. 9.4.2.

Table 9.15 provides a tabular summary of the equivalence test. Figures 9.22 and

9.23 present the two recommended plots. Since the lower and upper confidence

bounds fall within the range from –EAC to +EAC, the two processes are statisti-

cally equivalent.

Table 9.14 Guidance on presentations for reporting comparability results for equivalence tests

with profile data

Item Guidance

Descriptive statistics Slope for each process ✓

Confidence interval on the difference in slopes ✓

Standard deviation for each process slope Optional

Range (minimum and maximum slope for each process) Optional

Individual slopes for each lot Optional

Confidence interval on the slope Optional

Plots Regression plot ✓

Equivalence plot ✓

Regression plot with normalized y-intercept for each lot Optional

Table 9.15 Tabular summary of equivalence test results

Statistic Value

Pre-change slope �0.255%/month

Post-change slope �0.459%/month

Difference in slopes 0.204%/month

SST from (9.18) 5

Lower bound of 90% CI on difference from (9.22) 0.045%/month

Upper bound of 90% CI on difference from (9.22) 0.363%/month

EAC 0.40%/month

Conclusion Statistically equivalent
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9.7 Analytical Similarity for Biosimilar Products

In this section, we provide statistical methods for demonstrating analytical similar-

ity between a proposed biosimilar product (BP) and its associated reference product

(RP). The Biologics Price Competition and Innovation Act (BPCIA) of 2009

created an abbreviated licensure pathway for biological products shown to be
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Fig. 9.23 Equivalence plot

Fig. 9.22 Regression plot
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highly similar to an FDA licensed biological product (also known as the reference

product). Biosimilarity means that the biological product is highly similar to the RP

notwithstanding minor differences in clinically inactive components and that there

are no clinically meaningful differences between the BP and RP in terms of safety,

purity, and potency of the product (FDA 2015b). A biosimilar sponsor can rely on

existing scientific knowledge about the safety and effectiveness of the RP, and

consequently enable a BP to be licensed based on less than a full complement of

preclinical and clinical data typically required with a section 351(a) marketing

application.

The underlying assumption of this abbreviated pathway is that if a molecule is

shown to be analytically and functionally similar to an RP, it will behave like the

RP in the clinic. FDA recommends that sponsors use a stepwise approach of data

collection and the evaluation of residual uncertainty (FDA 2015b). This approach

begins with the assessment of analytical similarity, which includes comparisons of

structural and functional attributes between the BP and RP. Animal studies are

conducted to address any remaining uncertainties concerning the proposed

biosimilar product before initiation of clinical testing of the product in human

subjects. The stepwise approach continues with clinical studies including assess-

ment of immunogenicity and pharmacokinetics or pharmacodynamics to establish

safety and efficacy equivalency as needed. Approval of biosimilar applications is

based on the totality of the evidence and information submitted in the application.

FDA guidance on this topic has been published including FDA (2015a, b, c). There

is also a planned guidance on statistical methods to demonstrate analytical similar-

ity due in 2016.

Although statistical approaches used to demonstrate similarity are generally the

approaches used for comparability, there are some important differences that are

now described.

9.7.1 Differences Between Comparability and Similarity

Burdick et al. (2016) have described several features that distinguish demonstration

of similarity between an RP and a BP from an assessment of comparability. Key

differences include the following:

1. Lack of RP knowledge in a similarity assessment relative to knowledge

concerning the pre-change process in a comparability assessment. Lack of RP

product knowledge includes such items as

a. RP process changes which may make pooling of data inappropriate for

statistical analysis.

b. RP process deviations resulting in quality within permitted specifications but

outside expected variability. For example, a sampled RP lot may have a

measured value that is out of trend with respect to other RP values, even if
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the release of the lot was justified based on impact to quality, safety, and

efficacy.

c. Linkage between drug substance (DS) and drug product (DP) lots is not

identifiable from sampled RP lots in similarity assessments. If sampled DP

lots were manufactured with the same DS, they are correlated, and the

assumption of independence required in many statistical calculations is not

appropriate.

2. RP target specifications and in-process control (IPC) limits are not known for the

majority of the analytical methods in a similarity assessment. This lack of

knowledge makes the selection of meaningful acceptance criteria more difficult.

3. The sampling process used to collect the RP lots has an inherent bias that leads to

RP lots being generally older than newly manufactured TP lots. This bias is

especially problematic for stability indicating methods.

These differences present some important limitations to the statistical methods

that have been recommended for demonstration of analytical similarity. We now

review a statistical approach suggested by FDA as described in an FDA ODAC

briefing document (2015d), Chow (2014, 2015), Dong et al. (2015a), Dong (2015),

Shen et al. (2015), Tsong (2015) and Tsong et al. (2015).

9.7.2 Risk Categories for Critical Quality Attributes

Demonstration of analytical similarity begins with the assessment of the relative

criticality of quality attributes. Table 9.16 reports the three categories described by

the FDA in the previously mentioned references.

Tier 1 attributes require the most statistically rigorous evidence of similarity.

This evidence is provided using a statistical test of equivalence. Tier 2 quality

attributes require a lesser level of statistical rigor. The recommended approach for

Tier 2 attributes are quality ranges. Finally, Tier 3 attributes can be examined using

graphical display. Each of these approaches is now described below.

Table 9.16 Risk categories

Risk

category Definition

Tier 1 High impact on activity, PK/PD, safety, or immunogenicity

Where practical the attributes measured require a statistical test of equivalence

between the proposed biosimilar product and the RP

Tier 2 Moderate impact on activity, PK/PD, safety, or immunogenicity

Attributes measured are consistent with a statistical quality range

Tier 3 Low impact on activity, PK/PD, safety, or immunogenicity

Descriptive raw data and graphical presentations of similarity
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9.7.3 Tier 1 Testing

Table 9.17 reports a data set from Table 6 of the FDA (2016) document presented as

part of the Arthritis Advisory Committee Meeting for ABP 501, a proposed

biosimilar to Humira (adalimumab). The quality attribute comes from an apoptosis

inhibition bioassay and is measured in %. This assay measures the primary mech-

anism of action for the product.

Demonstration of statistical equivalence for a Tier 1 attribute requires testing the

following set of hypotheses:

H0 : μB � μRj j � 1:5σR
H1 : μB � μRj j < 1:5σR

ð9:32Þ

where μB is the mean of BP, μR is the mean of the RP, and σR is the standard

deviation for the RP. The value of 1.5 was established by the FDA based on

numerous simulation studies and is described in Shen et al. (2015).

Equivalence testing is described in Sect. 2.11, with EAC ¼ 1:5σR in this

application. A 90% confidence interval on the difference is computed assuming

equal variances using the formula in (2.56),

S2P ¼
nB � 1ð ÞS2B þ nR � 1ð ÞS2R

nB þ nR � 2
¼ 10� 1ð Þ 4:1ð Þ2 þ 21� 1ð Þ 5:7ð Þ2

10þ 21� 2
¼ 27:6

L¼ �YB � �YR � t1�α=2:nBþnR�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2P

1

nB
þ 1

nR

� �s

L¼ 104� 105� 1:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27:6

1

10
þ 1

21

� �s
¼ �4:1

U ¼ �YB � �YR þ t1�α=2:nBþnR�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2P

1

nB
þ 1

nR

� �s

U ¼ 104� 105þ 1:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27:6

1

10
þ 1

21

� �s
¼ 2:1

ð9:33Þ

Table 9.17 Summary of adalimumab data

Product

Number of

batches

Sample

mean (%)

Sample standard

deviation (%)

Min

(%)

Max

(%)

ABP 501(BP) nB ¼ 10 �YB ¼ 104 SB ¼ 4:1 98 110

US-licensed

Humira (RP)

nR ¼ 21 �YR ¼ 105 SR ¼ 5:7 95 114
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(Note the reported interval in the FDA report was computed to a greater decimal

precision.) The EAC is determined by replacing σR with SR to yield

EAC ¼ 1:5� 5:7 ¼ 8:6. Since the interval from �4.1 to 2.1 falls entirely within

the range from �8.6 to 8.6, equivalence has been demonstrated.

One problem with this approach discussed by Burdick et al. (2016) concerns the

fact that σR is estimated using SR to define EAC. The consequence of estimating

EAC is that the confidence interval in Eq. (9.33) does not maintain the desired

probability of rejecting H0 when H0 is true. This increases the risk of passing the

test when the BP is not equivalent to the RP. This problem can be resolved by

changing the hypotheses in (9.32) to

H0 :
μB � μR

σR

����
���� � 1:5

Ha :
μB � μR

σR

����
���� < 1:5

ð9:34Þ

Note that (9.34) is equivalent to (9.32). The only difference is that σR has moved

to the left-hand side of the equation, and EAC ¼ 1:5 is now a known constant.

The hypotheses in (9.34) are tested by constructing a 90% confidence interval on

the effect size,
μB�BμR

R

σR
, as described in Sect. 2.8.2.

To demonstrate, the confidence interval on the effect size for the data in

Table 9.17 using the procedure described in Sect. 2.8.2 yields

tcalc ¼
�YB � �YRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2P
1

nB
þ 1

nR

� �s

¼ 104� 105ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27:6

1

10
þ 1

21

� �s ¼ �0:5

ð9:35Þ

and the resulting confidence interval is from�0.8 to 0.4. Since the entire confidence

interval falls in the range from �1.5 to +1.5, equivalence is demonstrated.

Yang et al. (2016) have studied the impact on the recommended Tier 1 test when

the RP lots are correlated. They show that when RP lots are correlated, the

probability of rejecting H0 when H0 is true (i.e., falsely concluding equivalence)

will increase, and the probability of passing when the products are equivalent will

decrease. As noted in Sect. 9.7.1, linkage between drug substance (DS) and drug

product (DP) is often not identifiable from sampled RP lots. If sampled RP lots were

manufactured with the same DS, they are correlated, and the Tier 1 equivalence test

is impacted. Yang et al. describe approaches to mitigate this problem, but sponsors

of biosimilar products are cautioned to avoid correlation by selecting a small

number of lots at any given time, and spreading purchase of RP lots over as long

a time period as feasible.
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9.7.4 Tier 2 Testing

Tier 2 testing uses a quality range approach. The quality range is defined as

μR � K � σR ð9:36Þ

where K is appropriately justified. In practice, μR is estimated with �YR and σR is

estimated with SR. The biosimilar product passes Tier 2 if a predefined proportion

(e.g., 90%) of the measured assay responses from the biosimilar lots falls within the

quality range. Yang et al. provide results that justify the use of K ¼ 3, and

demonstrate that correlation among RP lots will cause the quality range to be too

tight, because the lot-to-lot variation will not be fully represented.

The quality interval for the data in Table 9.17 is computed as

�YR � K � SR

105� 3� 5:7

L ¼ 87:9%

U ¼ 122:1%

ð9:37Þ

To pass the Tier 2 test, nine of the ten biosimilar lots (90%) must fall in the range

from 87.9 to 122.1%. Since the range of the biosimilar shown in Table 9.17 is from

98 to 110%, all ten lots fall in the quality range, and Tier 2 similarity is

demonstrated.

More information on the strategy demonstrated in this example is presented by

Velayudhan et al. (2016).
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Appendix: Basic Concepts of Matrix Algebra

Matrix algebra provides a shorthand for describing and implementing some of the

statistical procedures described in this book. The objects and operations of matrix

algebra can now be executed easily in R and Excel spreadsheet software.

This section provides a basic description of these objects and operations.

Vectors and Matrices

The reader is already familiar with the idea of a variable. For instance, the

relationship x ¼ 6 defines a variable x as a “place-holder” for the number. In this

case, the number is equal to 6. We refer to x as a scalar to indicate that the variable
x can contain only a single number. There is no reason why we cannot similarly

define variables as place-holders for more than one number. For instance,

x ¼
4

5

6

0
@

1
A: ðA:1Þ

We refer to the bold-faced lower case x as a column vector. In this example

x includes three rows. A column vector can contain any number of rows but always

contains only a single column. Similarly, a row vector denoted as xT is a single row

that can have any number of columns.

We can also define place-holders with multiple rows and columns such as

X ¼ 1 2 3

7 8 9

� �
: ðA:2Þ
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We refer to the upper case bold-faced X as a matrix. A matrix is always described

by the number of rows and number of columns. In this example, X has r¼ 2 rows

and c¼ 3 columns. As such, it is described as a 2� 3 matrix. A matrix can contain

any number of rows and columns. As noted above, to distinguish vectors and

matrices from scalar variables, we use a bold font. Vectors are shown in lower

case bold and matrices in upper case bold. Note that we can also think of x as a

3� 1 matrix. The scalar values within a matrix are referred to as matrix elements

and are identified by their specific row and column positions as numbered from top

to bottom and left to right, respectively (i.e., the r,c element).

In Excel, a vector or a matrix can be created simply by entering the elements into

adjacent rows and columns of a spreadsheet. The vector or matrix is then referred to

by the appropriate array range. For instance, the column vector in (A.1) might

be referred to as A1:A3 in an Excel spreadsheet and the 2� 3 matrix in (A.2)

might be referred to as A1:C2. In R, the column vector in (A.1) can be created by

the statement x < �c 4; 5; 6ð Þ, and the matrix (A.2) can be created by the statement

X < �matrix c 1; 7; 2; 8; 3; 9ð Þ, nrow ¼ 2ð Þ. Note that the matrix elements are listed

column-wise by default in R.

Matrix Transposition

One convenient matrix (or vector) operation is transposition which is a

simple interchange of the rows and columns. A transpose is indicated by placing

a T superscript on the matrix (or vector). For instance, defining x as in (A.1), one

can write

xT ¼ 4 5 6ð Þ: ðA:3Þ

Similarly, defining X as in (A.2),

XT ¼
1 7

2 8

3 9

0
@

1
A: ðA:4Þ

In Excel, transposition of a vector or matrix is accomplished using the matrix

function TRANSPOSE(). To transpose a 2� 3 matrix in the array range A1:C2,

first select a 3� 2 cell range elsewhere in the sheet. Next, type into the selected

range the statement “¼TRANSPOSE(A1:C2)” (without the quotes), and execute a

control-shift-enter. In R, transposition is accomplished using the t() function. For

example, the transpose of X is obtained using the statement “t(X)”.
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Matrix Addition and Multiplication

When two matrices (or vectors) have the same number of rows and columns, then

matrix addition is allowed and performed by adding elements in the same position.

The resulting matrix has the same number of rows and columns as the summed

matrices. For instance, if

A ¼
1 7

2 8

3 9

0
B@

1
CA,

B ¼
5 8

2 5

6 0

0
B@

1
CA, then

Aþ B ¼
1þ 5 7þ 8

2þ 2 8þ 5

3þ 6 9þ 0

0
B@

1
CA ¼

6 15

4 13

9 9

0
B@

1
CA:

ðA:5Þ

In Excel, two matrices, say in array ranges A1:B3 and D1:E3, respectively,

are added by highlighting a 3� 2 empty array range and entering the

command “¼A1:B3+D1:E3” followed by control-shift-enter. In R, two vectors or

matrices are added by simply using the “+” sign. That is, to add the matrices A and

B, simply write Aþ B.
Matrix multiplication of two matrices A and B (written asA� B) is defined only

if the number of columns in A equals the number of rows in B. For instance, as

defined in (A.5),A and B each has three rows and two columns. Thus,A� B cannot

be defined because the number of columns in A (two) is not equal to the number of

rows in B (three). However, if we take the transpose of B, BT, the transpose will

have two rows and we can then define the multiplication of A� BT. In particular,

A¼
1 7

2 8

3 9

0
B@

1
CA,

BT ¼ 5 2 6

8 5 0

� �

A� BT ¼
1� 5þ 7� 8 1� 2þ 7� 5 1� 6þ 7� 0

2� 5þ 8� 8 2� 2þ 8� 5 2� 6þ 8� 0

3� 5þ 9� 8 3� 2þ 9� 5 3� 6þ 9� 0

0
B@

1
CA

¼
61 37 6

74 44 12

87 51 18

0
B@

1
CA:

ðA:6Þ
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A close examination of the above shows that the resulting matrix has the same

number of rows as A and the same number of columns as BT. The element in

row r and column c in the product matrix is the sum of the pairwise product

of the rth row of A with the cth column of B. Unlike scalar multiplication, it

is not generally true that C� D ¼ D� C. Thus, matrix multiplication is not

commutative. Order matters!

In Excel, the product of two matrices in array ranges A1:B3 and D1:F2 is

obtained by highlighting an empty 3� 3 array range, entering “¼MMULT(A1:

B3,D1:F2),” and typing control-shift-enter. In R, the operator “%*%” is used for

matrix multiplication. For example, to multiply the matrices C and D, type the R

code “C%*%D”.

A special case of matrix multiplication occurs when the first matrix is a scalar.

In this case the resulting matrix is simply the second matrix with each element

multiplied by the scalar. For example,

A ¼
1 7

2 8

3 9

0
B@

1
CA,

3� A ¼
3� 1 3� 7

3� 2 3� 8

3� 3 3� 9

0
@

1
A ¼

3 21

6 24

9 27

0
@

1
A:

ðA:7Þ

In Excel, let 3 be the value in the cell D1 and let the matrix A reside in array range

A1:B3. Then the product 3� A is obtained by highlighting an empty 3� 2 array

range and entering “¼D1*A1:B3” followed by control-shift-enter. In R, the expres-

sion “3*A” is used to obtain the product.

Matrix Inverse

A matrix with an equal number of rows and columns is called a square matrix.

A square matrix with s rows and columns, say E, sometimes has a partner, also with

s rows and columns, which is indicated as E�1 and referred to as the inverse of E.

The inverse, if it exists, has the useful property thatE� E�1¼E�1 � E ¼ I, where

I is a special matrix with s rows and s columns called the identity matrix.

The identity matrix is a square matrix with the value one in every diagonal position

and zeros elsewhere. For example, the identity matrix with s¼ 3 is

I ¼
1 0 0

0 1 0

0 0 1

0
@

1
A: ðA:8Þ
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If the inverse of a square matrix exists, the matrix is said to be invertible. Otherwise,

it is said to be singular.

In Excel, the inverse of a 3� 3 square matrix in the array range A1:C3 is

obtained by highlighting an empty 3� 3 array range, entering “¼MINVERSE(A1:

C3)” followed by control-shift-enter. In R, the expression “solve(E)” is used to

obtain the inverse of a square matrix E. Attempting to invert a singular matrix will

always result in some type of error message.

Expressions with Multiple Matrix Operations

Derivation of complicated matrix algebra expressions can be challenging.

However, using already-derived expressions is straightforward. Such derived

expressions are used in this book when needed to provide a convenient way to

implement the statistical procedures commonly used in software such as Excel or R.

To illustrate a more complex matrix algebraic expression, consider the simple

linear regression model in Eq. (2.78) and rewritten below:

Yi ¼ β0 þ β1Xi þ Ei i ¼ 1, . . . , n: ðA:9Þ

Let n ¼ 4 and note that the data described by (A.9) can be written as

Y1

Y2

Y3

Y4

2
664

3
775 ¼

1 X1

1 X2

1 X3

1 X4

2
664

3
775� β0

β1

� �
þ

E1

E2

E3

E4

2
664

3
775: ðA:10Þ

Now using the previously described notation, this model can be simply written as

y ¼ X� β þ e ðA:11Þ

Here the n� 1 column vectors y and e are the list of response variable values and

unknown normal errors, respectively. The matrix X is a n� 2 matrix with first

column elements all equal 1 and with second column elements equal to the values

of the predictor variable. The 2� 1 column vector β holds the unknown regression

coefficients (i.e., the intercept and slope). The intercept and slope least squares

estimates are given by the matrix expression

β̂ ¼ XT � X
� ��1 � XT � y: ðA:12Þ

Matrix expressions such as this can be evaluated simply by executing the operations

much as one would do in evaluating an algebraic expression. One exception is that

since multiplication is not commutative, expressions cannot be re-arranged and
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must be evaluated as written with operations performed hierarchically. That is,

those within parentheses are computed first.

In Excel, Eq. (A.12) can be evaluated by selecting an empty 2� 1 array range

and entering “¼MMULT(MMULT(MINVERSE(MMULT(TRANSPOSE(X),X)),

TRANSPOSE(X)),y)” followed by a control-shift-enter. In the above Excel

formula, the appropriate array range should be substituted for X and y. In R, the

expression “solve(t(X)%*%X)%*%t(X)%*%y” can be used, where X and y would

be the appropriately defined matrix and vector, respectively.
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