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Preface

This book introduces probability and statistics to students of engineering and
the physical sciences. It is primarily applications focused but it contains
optional enrichment material. Each chapter begins with an introductory state-

ment and concludes with a set of statistical guidelines for correctly applying
statistical procedures and avoiding common pitfalls. These Do’s and Don’ts are then
followed by a checklist of key terms. Important formulas, theorems, and rules are
set out from the text in boxes.

The exposition of the concepts and statistical methods is especially clear. It in-
cludes a careful introduction to probability and some basic distributions. It continues
by placing emphasis on understanding the meaning of confidence intervals and the
logic of testing statistical hypotheses. Confidence intervals are stressed as the ma-
jor procedure for making inferences. Their properties are carefully described and
their interpretation is reviewed in the examples. The steps for hypothesis testing
are clearly and consistently delineated in each application. The interpretation and
calculation of the P-value is reinforced with many examples.

In this ninth edition, we have continued to build on the strengths of the previ-
ous editions by adding several more data sets and examples showing application of
statistics in scientific investigations. The new data sets, like many of those already
in the text, arose in the author’s consulting activities or in discussions with scientists
and engineers about their statistical problems. Data from some companies have been
disguised, but they still retain all of the features necessary to illustrate the statistical
methods and the reasoning required to make generalizations from data collected in
an experiment.

The time has arrived when software computations have replaced table lookups
for percentiles and probabilities as well as performing the calculations for a statisti-
cal analysis. Today’s widespread availability of statistical software packages makes
it imperative that students now become acquainted with at least one of them. We sug-
gest using software for performing some analysis with larger samples and for per-
forming regression analysis. Besides having several existing exercises describing the
use of MINITAB, we now give the R commands within many of the examples. This
new material augments the basics of the freeware R that are already in Appendix C.

NEW FEATURES OF THE NINTH EDITION INCLUDE:
Large number of new examples. Many new examples are included. Most are based
on important current engineering or scientific data. The many contexts further
strengthen the orientation towards an applications-based introduction to statistics.

More emphasis on P-values. New graphs illustrating P-values appear in several
examples along with an interpretation.

More details about using R. Throughout the book, R commands are included in a
number of examples. This makes it easy for students to check the calculations, on
their own laptop or tablet, while reading an example.

Stress on key formulas and downplay of calculation formulas. Generally, com-
putation formulas now appear only at the end of sections where they can easily be
skipped. This is accomplished by setting key formulas in the context of an applica-
tion which only requires all, or mostly all, integer arithmetic. The student can then
check their results with their choice of software.
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8 Preface

Visual presentation of 22 and 23 designs. Two-level factorial designs have a
50-year tradition in the teaching of engineering statistics at the University of
Wisconsin. It is critical that engineering students become acquainted with the key
ideas of (i) systematically varying several input variables at a time and (ii) how to
interpret interactions. Major revisions have produced Section 13.3 that is now self-
contained. Instructors can cover this material in two or three lectures at the end of
course.

New data based exercises. A large number of exercises have been changed to fea-
ture real applications. These contexts help both stimulate interest and strengthen a
student’s appreciation of the role of statistics in engineering applications.

Examples and now numbered. All examples are now numbered within each
chapter.

This text has been tested extensively in courses for university students as well as
by in-plant training of engineers. The whole book can be covered in a two-semester
or three-quarter course consisting of three lectures a week. The book also makes
an excellent basis for a one-semester course where the lecturer can choose topics
to emphasize theory or application. The author covers most of the first seven chap-
ters, straight-line regression, and the graphic presentation of factorial designs in one
semester (see the basic applications syllabus below for the details).

To give students an early preview of statistics, descriptive statistics are covered
in Chapter 2. Chapters 3 through 6 provide a brief, though rigorous, introduction
to the basics of probability, popular distributions for modeling population variation,
and sampling distributions. Chapters 7, 8, and 9 form the core material on the key
concepts and elementary methods of statistical inference. Chapters 11, 12, and 13
comprise an introduction to some of the standard, though more advanced, topics of
experimental design and regression. Chapter 14 concerns nonparametric tests and
goodness-of-fit test. Chapter 15 stresses the key underlying statistical ideas for qual-
ity improvement, and Chapter 16 treats the associated ideas of reliability and the
fitting of life length models.

The mathematical background expected of the reader is a year course in calcu-
lus. Calculus is required mainly for Chapter 5 dealing with basic distribution theory
in the continuous case and some sections of Chapter 6.

It is important, in a one-semester course, to make sure engineers and scientists
become acquainted with the least squares method, at least in fitting a straight line. A
short presentation of two predictor variables is desirable, if there is time. Also, not
to be missed, is the exposure to 2-level factorial designs. Section 13.3 now stands
alone and can be covered in two or three lectures.

For an audience requiring more exposure to mathematical statistics, or if this is
the first of a two-semester course, we suggest a careful development of the properties
of expectation (5.10), representations of normal theory distributions (6.5), and then
moment generating functions (5.11) and their role in distribution theory (6.6).

For each of the two cases, we suggest a syllabus that the instructor can easily
modify according to their own preferences.
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One-semester introduction to probability and
statistics emphasizing the understanding of
basic applications of statistics.

A first semester introduction that develops
the tools of probability and some statistical
inferences.

Chapter 1 especially 1.6 Chapter 1 especially 1.6
Chapter 2 Chapter 2
Chapter 3 Chapter 3
Chapter 4 4.4–4.7 Chapter 4 4.4–4.7

4.8 (geometric, negative
binomial)

Chapter 5 5.1–5.4, 5.6, 5.12
5.10 Select examples of joint
distribution, independence,
mean and variance of linear
combinations.

Chapter 5 5.1–5.4, 5.6, 5.12
5.5, 5.7, 5.8 (gamma, beta)
5.10 Develop joint distributions,
independence expectation and
moments of linear combinations.

Chapter 6 6.1–6.4 Chapter 6 6.1–6.4
6.5–6.7 (Representations,

mgf’s, transformation)
Chapter 7 7.1–7.7 Chapter 7 7.1–7.7
Chapter 8 Chapter 8
Chapter 9 (could skip) Chapter 9 (could skip)
Chapter 10 10.1–10.4 Chapter 10 10.1–10.4
Chapter 11 11.1–11.2

11.3 and 11.4 Examples
Chapter 13 13.3 22 and 23 designs

also 13.1 if possible

Any table whose number ends in W can be downloaded from the book’s section
of the website

http://www.pearsonglobaleditions.com/Johnson

We wish to thank MINITAB (State College, Pennsylvania) for permission to
include commands and output from their MINITAB software package, the SAS in-
stitute (Gary, North Carolina) for permission to include output from their SAS pack-
age and the software package R (R project http://CRAN.R-project.org), which we
connect to many examples and discuss in Appendix C.

We wish to heartily thank all of those who contributed the data sets that appear
in this edition. They have greatly enriched the presentation of statistical methods by
setting each of them in the context of an important engineering problem.

The current edition benefited from the input of the reviewers.

Kamran Iqbal, University of Arakansas at Little Rock
Young Bal Moon, Syracuse University
Nabin Sapkota, University of Central Florida
Kiran Bhutani, Catholic University of America
Xianggui Qu, Oakland University
Christopher Chung, University of Houston.

All revisions in this edition were the responsibility of Richard. A. Johnson.

Richard A. Johnson
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E verything dealing with the collection, processing, analysis, and interpretation of nu-
merical data belongs to the domain of statistics. In engineering, this includes such
diversified tasks as calculating the average length of computer downtimes, collect-

ing and presenting data on the numbers of persons attending seminars on solar energy,
evaluating the effectiveness of commercial products, predicting the reliability of a launch
vehicle, and studying the vibrations of airplane wings.

In Sections 1.2, 1.3, 1.4, and 1.5 we discuss the recent growth of statistics and its
applications to problems of engineering. Statistics plays a major role in the improvement
of quality of any product or service. An engineer using the techniques described in this
book can become much more effective in all phases of work relating to research, devel-
opment, or production. In Section 1.6 we begin our introduction to statistical concepts
by emphasizing the distinction between a population and a sample.

1.1 Why Study Statistics?
Answers provided by statistical analysis can provide the basis for making better
decisions and choices of actions. For example, city officials might want to know
whether the level of lead in the water supply is within safety standards. Because not
all of the water can be checked, answers must be based on the partial information
from samples of water that are collected for this purpose. As another example, an
engineer must determine the strength of supports for generators at a power plant.
First, loading a few supports to failure, she obtains their strengths. These values
provide a basis for assessing the strength of all the other supports that were not
tested.

When information is sought, statistical ideas suggest a typical collection process
with four crucial steps.

1. Set clearly defined goals for the investigation.
2. Make a plan of what data to collect and how to collect it.
3. Apply appropriate statistical methods to efficiently extract information

from the data.
4. Interpret the information and draw conclusions.

These indispensable steps will provide a frame of reference throughout as we
develop the key ideas of statistics. Statistical reasoning and methods can help you
become efficient at obtaining information and making useful conclusions.
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1.2 Modern Statistics
The origin of statistics can be traced to two areas of interest that, on the surface, have
little in common: games of chance and what is now called political science. Mid-
eighteenth-century studies in probability, motivated largely by interest in games of
chance, led to the mathematical treatment of errors of measurement and the theory
that now forms the foundation of statistics. In the same century, interest in the nu-
merical description of political units (cities, provinces, countries, etc.) led to what is
now called descriptive statistics. At first, descriptive statistics consisted merely of
the presentation of data in tables and charts; nowadays, it includes the summariza-
tion of data by means of numerical descriptions and graphs.

In recent decades, the growth of statistics has made itself felt in almost every
major phase of activity. The most important feature of its growth has been the shift
in emphasis from descriptive statistics to statistical inference. Statistical inference
concerns generalizations based on sample data. It applies to such problems as esti-
mating an engine’s average emission of pollutants from trial runs, testing a manu-
facturer’s claim on the basis of measurements performed on samples of his product,
and predicting the success of a launch vehicle in putting a communications satel-
lite in orbit on the basis of sample data pertaining to the performance of the launch
vehicle’s components.

When making a statistical inference, namely, an inference that goes beyond the
information contained in a set of data, always proceed with caution. One must decide
carefully how far to go in generalizing from a given set of data. Careful consider-
ation must be given to determining whether such generalizations are reasonable or
justifiable and whether it might be wise to collect more data. Indeed, some of the
most important problems of statistical inference concern the appraisal of the risks
and the consequences that arise by making generalizations from sample data. This
includes an appraisal of the probabilities of making wrong decisions, the chances of
making incorrect predictions, and the possibility of obtaining estimates that do not
adequately reflect the true situation.

We approach the subject of statistics as a science whenever possible, we develop
each statistical idea from its probabilistic foundation, and immediately apply each
idea to problems of physical or engineering science as soon as it has been developed.
The great majority of the methods we shall use in stating and solving these problems
belong to the frequency or classical approach, where statistical inferences concern
fixed but unknown quantities. This approach does not formally take into account the
various subjective factors mentioned above. When appropriate, we remind the reader
that subjective factors do exist and also indicate what role they might play in making
a final decision. This “bread-and-butter” approach to statistics presents the subject
in the form in which it has successfully contributed to engineering science, as well
as to the natural and social sciences, in the last half of the twentieth century, into the
first part of the twenty-first century, and beyond.

1.3 Statistics and Engineering
The impact of the recent growth of statistics has been felt strongly in engineering
and industrial management. Indeed, it would be difficult to overestimate the contri-
butions statistics has made to solving production problems, to the effective use of
materials and labor, to basic research, and to the development of new products. As
in other sciences, statistics has become a vital tool to engineers. It enables them to
understand phenomena subject to variation and to effectively predict or control them.
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In this text, our attention will be directed largely toward engineering applica-
tions, but we shall not hesitate to refer also to other areas to impress upon the reader
the great generality of most statistical techniques. The statistical method used to
estimate the average coefficient of thermal expansion of a metal serves also to es-
timate the average time it takes a health care worker to perform a given task, the
average thickness of a pelican eggshell, or the average IQ of first-year college stu-
dents. Similarly, the statistical method used to compare the strength of two alloys
serves also to compare the effectiveness of two teaching methods, or the merits of
two insect sprays.

1.4 The Role of the Scientist and Engineer
in Quality Improvement

During the last 3 decades, the United States has found itself in an increasingly com-
petitive world market. This competition has fostered an international revolution in
quality improvement. The teaching and ideas of W. Edwards Deming (1900–1993)
were instrumental in the rejuvenation of Japanese industry. He stressed that Amer-
ican industry, in order to survive, must mobilize with a continuing commitment to
quality improvement. From design to production, processes need to be continually
improved. The engineer and scientist, with their technical knowledge and armed
with basic statistical skills in data collection and graphical display, can be main par-
ticipants in attaining this goal.

Quality improvement is based on the philosophy of “make it right the first
time.” Furthermore, one should not be content with any process or product but should
continue to look for ways of improving it. We will emphasize the key statistical com-
ponents of any modern quality-improvement program. In Chapter 15, we outline the
basic issues of quality improvement and present some of the specialized statistical
techniques for studying production processes. The experimental designs discussed
in Chapter 13 are also basic to the process of quality improvement.

Closely related to quality-improvement techniques are the statistical techniques
that have been developed to meet the reliability needs of the highly complex prod-
ucts of space-age technology. Chapter 16 provides an introduction to this area.

1.5 A Case Study: Visually Inspecting Data to Improve Product Quality
This study1 dramatically illustrates the important advantages gained by appropri-
ately plotting and then monitoring manufacturing data. It concerns a ceramic part
used in popular coffee makers. This ceramic part is made by filling the cavity be-
tween two dies of a pressing machine with a mixture of clay, water, and oil. After
pressing, but before the part is dried to a hardened state, critical dimensions are
measured. The depth of the slot is of interest here.

Because of natural uncontrolled variation in the clay-water-oil mixture, the con-
dition of the press, differences in operators, and so on, we cannot expect all of the
slot measurements to be exactly the same. Some variation in the depth of slots is
inevitable, but the depth needs to be controlled within certain limits for the part to
fit when assembled.

1Courtesy of Don Ermer
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Table 1.1 Slot depth (thousandths of an inch)

Time 6:30 7:00 7:30 8:00 8:30 9:00 9:30 10:00

1 214 218 218 216 217 218 218 219
2 211 217 218 218 220 219 217 219
3 218 219 217 219 221 216 217 218

Sum 643 654 653 653 658 653 652 656

x 214.3 218.0 217.7 217.7 219.3 217.7 217.3 218.7

Time 10:30 11:00 11:30 12:30 1:00 1:30 2:00 2:30

1 216 216 218 219 217 219 217 215
2 219 218 219 220 220 219 220 215
3 218 217 220 221 216 220 218 214

Sum 653 651 657 660 653 658 655 644

x 217.7 217.0 219.0 220.0 217.7 219.3 218.3 214.7

Slot depth was measured on three ceramic parts selected from production every
half hour during the first shift from 6 a.m. to 3 p.m. The data in Table 1.1 were
obtained on a Friday. The sample mean, or average, for the first sample of 214, 211,
and 218 (thousandths of an inch) is

214 + 211 + 218
3

= 643
3

= 214.3

This value is the first entry in row marked x̄.
The graphical procedure, called an X-bar chart, consists of plotting the sample

averages versus time order. This plot will indicate when changes have occurred and
actions need to be taken to correct the process.

From a prior statistical study, it was known that the process was stable and that
it varied about a value of 217.5 thousandths of an inch. This value will be taken as
the central line of the X-bar chart in Figure 1.1.

central line: x = 217.5

It was further established that the process was capable of making mostly good
ceramic parts if the average slot dimension for a sample remained between certain
control limits.

Lower control limit: LCL = 215.0

Upper control limit: UCL = 220.0

What does the chart tell us? The mean of 214.3 for the first sample, taken at
approximately 6:30 a.m., is outside the lower control limit. Further, a measure of
the variation in this sample

range = largest − smallest = 218 − 211 = 7
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Figure 1.1
X-bar chart for depth
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is large compared to the others. This evidence suggests that the pressing machine
had not yet reached a steady state. The control chart suggests that it is necessary to
warm up the pressing machine before the first shift begins at 6 a.m. Management and
engineering implemented an early start-up and thereby improved the process. The
operator and foreman did not have the authority to make this change. Deming claims
that 85% or more of our quality problems are in the system and that the operator and
others responsible for the day-to-day operation are responsible for 15% or less of
our quality problems.

The X-bar chart further shows that, throughout the day, the process was stable
but a little on the high side, although no points were out of control until the last
sample of the day. Here an unfortunate oversight occurred. The operator did not
report the out-of-control value to either the set-up person or the foreman because it
was near the end of her shift and the start of her weekend. She also knew the set-
up person was already cleaning up for the end of the shift and that the foreman was
likely thinking about going across the street to the Legion Bar for some refreshments
as soon as the shift ended. She did not want to ruin anyone’s plans, so she kept quiet.

On Monday morning when the operator started up the pressing machine, one of
the dies broke. The cost of the die was over a thousand dollars. But this was not the
biggest cost. When a customer was called and told there would be a delay in deliv-
ering the ceramic parts, he canceled the order. Certainly the loss of a customer is an
expensive item. Deming refers to this type of cost as the unknown and unknowable,
but at the same time it is probably the most important cost of poor quality.

On Friday the chart had predicted a problem. Afterward it was determined that
the most likely difficulty was that the clay had dried and stuck to the die, leading to
the break. The chart indicated the problem, but someone had to act. For a statistical
charting procedure to be truly effective, action must be taken.

1.6 Two Basic Concepts—Population and Sample
The preceding senarios which illustrate how the evaluation of actual information is
essential for acquiring new knowledge, motivate the development of statistical rea-
soning and tools taught in this text. Most experiments and investigations conducted
by engineers in the course of investigating, be it a physical phenomenon, production
process, or manufactured unit, share some common characteristics.
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A first step in any study is to develop a clear, well-defined statement of pur-
pose. For example, a mechanical engineer wants to determine whether a new ad-
ditive will increase the tensile strength of plastic parts produced on an injection
molding machine. Not only must the additive increase the tensile strength, it needs
to increase it by enough to be of engineering importance. He therefore created the
following statement.
Purpose: Determine whether a particular amount of an additive can be found that
will increase the tensile strength of the plastic parts by at least 10 pounds per square
inch.

In any statement of purpose, try to avoid words such as soft, hard, large enough,
and so on, which are difficult to quantify. The statement of purpose can help us to
decide on what data to collect. For example, the mechanical engineer takes two
different amounts of additive and produces 25 specimens of the plastic part with
each mixture. The tensile strength is obtained for each of 50 specimens.

Relevant data must be collected. But it is often physically impossible or infea-
sible from a practical standpoint to obtain a complete set of data. When data are
obtained from laboratory experiments, no matter how much experimentation is per-
formed, more could always be done. To collect an exhaustive set of data related to
the damage sustained by all cars of a particular model under collision at a specified
speed, every car of that model coming off the production lines would have to be
subjected to a collision!

In most situations, we must work with only partial information. The distinction
between the data actually acquired and the vast collection of all potential observa-
tions is a key to understanding statistics.

The source of each measurement is called a unit. It is usually an object or a
person. To emphasize the term population for the entire collection of units, we call
the entire collection the population of units.

unit: A single entity, usually an object or person, whose characteristics are of
interest.
population of units: The complete collection of units about which information
is sought.

Units and population
of units

Guided by the statement of purpose, we have a characteristic of interest for
each unit in the population. The characteristic, which could be a qualitative trait, is
called a variable if it can be expressed as a number.

There can be several characteristics of interest for a given population of units.
Some examples are given in Table 1.2.

For any population there is the value, for each unit, of a characteristic or variable
of interest. For a given variable or characteristic of interest, we call the collection
of values, evaluated for every unit in the population, the statistical population or
just the population. This collection of values is the population we will address in
all later chapters. Here we refer to the collection of units as the population of units
when there is a need to differentiate it from the collection of values.

A statistical population is the set of all measurements (or record of some quality
trait) corresponding to each unit in the entire population of units about which
information is sought.

Statistical population

Generally, any statistical approach to learning about the population begins by
taking a sample.
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Table 1.2 Examples of populations, units, and variables

Population Unit Variables/Characteristics

All students currently enrolled student GPA
in school number of credits

hours of work per week
major
right/left-handed

All printed circuit boards board type of defects
manufactured during a month number of defects

location of defects

All campus fast food restaurants restaurant number of employees
seating capacity
hiring/not hiring

All books in library book replacement cost
frequency of checkout
repairs needed

Samples from a population A sample from a statistical population is the subset of measurements that are
actually collected in the course of an investigation.

EXAMPLE 1 Variable of interest, statistical population, and sample
Transceivers provide wireless communication between electronic components of
consumer products, especially transceivers of Bluetooth standards. Addressing a
need for a fast, low-cost test of transceivers, engineers2 developed a test at the wafer
level. In one set of trials with 60 devices selected from different wafer lots, 49 de-
vices passed.

Identify the population unit, variable of interest, statistical population, and
sample.

Solution The population unit is an individual wafer, and the population is all the wafers in
lots currently on hand. There is some arbitrariness because we could use a larger
population of all wafers that would arrive within some fixed period of time.

The variable of interest is pass or fail for each wafer.
The statistical population is the collection of pass/fail conditions, one for each

population unit.
The sample is the collection of 60 pass/fail records, one for each unit in the

sample. These can be summarized by their totals, 49 pass and 11 fail. j

The sample needs both to be representative of the population and to be large
enough to contain sufficient information to answer the questions about the popula-
tion that are crucial to the investigation.

2G. Srinivasan, F. Taenzler, and A. Chatterjee, Loopback DFT for low-cost test of single-VCO-based
wireless transceivers, IEEE Design & Test of Computers 25 (2008), 150–159.
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EXAMPLE 2 Self-selected samples—a bad practice
A magazine which features the latest computer hardware and software for home-
office use asks readers to go to their website and indicate whether or not they owned
specific new software packages or hardware products. In past issues, this maga-
zine used similar information to make such statements as “40% of readers have
purchased software package P.” Is this sample representative of the population of
magazine readers?

Solution It is clearly impossible to contact all magazine readers since not all are subscribers.
One must necessarily settle for taking a sample. Unfortunately, the method used by
this magazine’s editors is not representative and is badly biased. Readers who reg-
ularly upgrade their systems and try most of the new software will be more likely
to respond positively indicating their purchases. In contrast, those who did not pur-
chase any of the software or hardware mentioned in the survey will very likely not
bother to report their status. That is, the proportion of purchasers of software pack-
age P in the sample will likely be much higher than it is for the whole population
consisting of the purchase/not purchase record for each reader. j

To avoid bias due to self-selected samples, we must take an active role in the
selection process.

Using a random number table to select samples
The selection of a sample from a finite population must be done impartially and
objectively. But writing the unit names on slips of paper, putting the slips in a box,
and drawing them out may not only be cumbersome, but proper mixing may not
be possible. However, the selection is easy to carry out using a chance mechanism
called a random number table.

Random number table

Suppose ten balls numbered 0, 1, . . . , 9 are placed in an urn and shuffled. One is
drawn and the digit recorded. It is then replaced, the balls shuffled, another one
drawn, and the digit recorded. The digits in Table 7W3 were actually generated
by a computer that closely simulates this procedure. A portion of this table is
shown as Table 1.3.
The chance mechanism that generated the random number table ensures that each
of the single digits has the same chance of occurrence, that all pairs 00, 01, . . . , 99
have the same chance of occurrence, and so on. Further, any collection of digits
is unrelated to any other digit in the table. Because of these properties, the digits
are called random.

EXAMPLE 3 Using the table of random digits
Eighty specialty pumps were manufactured last week. Use Table 1.3 to select a sam-
ple of size n = 5 to carefully test and recheck for possible defects before they are
sent to the purchaser. Select the sample without replacement so that the same pump
does not appear twice in the sample.

Solution The first step is to number the pumps from 1 to 80, or to arrange them in some
order so they can be identified. The digits must be selected two at a time because
the population size N = 80 is a two-digit number. We begin by arbitrarily selecting

3The W indicates that the table is on the website for this book. See Appendix B for details.
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Table 1.3 Random digits (portion of Table 7W)

1306 1189 5731 3968 5606 5084 8947 3897 1636 7810
0422 2431 0649 8085 5053 4722 6598 5044 9040 5121
6597 2022 6168 5060 8656 6733 6364 7649 1871 4328
7965 6541 5645 6243 7658 6903 9911 5740 7824 8520
7695 6937 0406 8894 0441 8135 9797 7285 5905 9539

5160 7851 8464 6789 3938 4197 6511 0407 9239 2232
2961 0551 0539 8288 7478 7565 5581 5771 5442 8761
1428 4183 4312 5445 4854 9157 9158 5218 1464 3634
3666 5642 4539 1561 7849 7520 2547 0756 1206 2033
6543 6799 7454 9052 6689 1946 2574 9386 0304 7945

9975 6080 7423 3175 9377 6951 6519 8287 8994 5532
4866 0956 7545 7723 8085 4948 2228 9583 4415 7065
8239 7068 6694 5168 3117 1568 0237 6160 9585 1133
8722 9191 3386 3443 0434 4586 4150 1224 6204 0937
1330 9120 8785 8382 2929 7089 3109 6742 2468 7025

a row and column. We select row 6 and column 21. Reading the digits in columns
21 and 22, and proceeding downward, we obtain

41 75 91 75 19 69 49

We ignore the number 91 because it is greater than the population size 80. We also
ignore any number when it appears a second time, as 75 does here. That is, we
continue reading until five different numbers in the appropriate range are selected.
Here the five pumps numbered

41 75 19 69 49

will be carefully tested and rechecked for defects.
For situations involving large samples or frequent applications, it is more con-

venient to use computer software to choose the random numbers. j

EXAMPLE 4 Selecting a sample by random digit dialing
Suppose there is a single three-digit exchange for the area in which you wish to con-
duct a phone survey. Use the random digit Table 7W to select five phone numbers.

Solution We arbitrarily decide to start on the second page of Table 7W at row 53 and col-
umn 13. Reading the digits in columns 13 through 16, and proceeding downward,
we obtain

5619 0812 9167 3802 4449

These five numbers, together with the designated exchange, become the phone num-
bers to be called in the survey. Every phone number, listed or unlisted, has the same
chance of being selected. The same holds for every pair, every triplet, and so on.
Commercial phones may have to be discarded and another number drawn from the
table. If there are two exchanges in the area, separate selections could be done for
each exchange. j
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Do’s and Don’ts

Do’s
1. Create a clear statement of purpose before deciding upon which variables

to observe.

2. Carefully define the population of interest.

3. Whenever possible, select samples using a random device or random num-
ber table.

Don’ts
1. Don’t unquestioningly accept conclusions based on self-selected samples.

Review Exercises
1.1 An article in a civil engineering magazine asks “How

Strong Are the Pillars of Our Overhead Bridges?” and
goes on to say that samples were collected of materials
being used in the construction of 294 overhead bridges
across the country. Let the variable of interest be a nu-
merical measure of quality. Identify the population and
the sample.

1.2 A television channel announced a vote for their view-
ers’ favorite television show. Viewers were asked to
visit the channel’s website and vote online for their fa-
vorite show. Identify the population in terms of prefer-
ences, and the sample. Is the sample likely to be rep-
resentative? Comment. Also describe how to obtain a
sample that is likely to be more representative.

1.3 Consider the population of all cars owned by women
in your neighborhood. You want to know the model of
the car.

(a) Specify the population unit.

(b) Specify the variable of interest.

(c) Specify the statistical population.

1.4 Identify the statistical population, sample, and variable
of interest in each of the following situations:

(a) Tensile strength is measured on 20 specimens of
super strength thread made of the same nano-
fibers. The intent is to learn about the strengths
for all specimens that could conceivably be made
by the same method.

(b) Fifteen calls to the computer help desk are se-
lected from the hundreds received one day. Only
4 of these calls ended without a satisfactory reso-
lution of the problem.

(c) Thirty flash memory cards are selected from the
thousands manufactured one day. Tests reveal that
6 cards do not meet manufacturing specifications.

1.5 For ceiling fans to rotate effectively, the bending an-
gle of the individual paddles of the fan must remain
between tight limits. From each hour’s production,
25 fans are selected and the angle is measured.

Identify the population unit, variable of interest,
statistical population, and sample.

1.6 Ten seniors have applied to be on the team that will
build a high-mileage car to compete against teams
from other universities. Use Table 7 of random digits
to select 5 of the 10 seniors to form the team.

1.7 Refer to the slot depth data in Table 1.1. After the
machine was repaired, a sample of three new ceramic
parts had slot depths 215, 216, and 213 (thousandths
of an inch).

(a) Redraw the X-bar chart and include the additional
mean x.

(b) Does the new x fall within the control limits?

1.8 A Canadian manufacturer identified a critical diameter
on a crank bore that needed to be maintained within a
close tolerance for the product to be successful. Sam-
ples of size 4 were taken every hour. The values of
the differences (measurement − specification), in ten-
thousandths of an inch, are given in Table 1.4.

(a) Calculate the central line for an X-bar chart for
the 24 hourly sample means. The centerline is
x = (4.25 − 3.00 − · · · − 1.50 + 3.25)/24.

(b) Is the average of all the numbers in the table, 4 for
each hour, the same as the average of the 24 hourly
averages? Should it be?

(c) A computer calculation gives the control limits

LCL = −4.48
UCL = 7.88

Construct the X-bar chart. Identify hours where
the process was out of control.
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Table 1.4 The differences (measurement – specification), in ten-
thousandths of an inch

Hour 1 2 3 4 5 6 7 8 9 10 11 12

10 −6 −1 −8 −14 −6 −1 8 −1 5 2 5
3 1 −3 −3 −5 −2 −6 −3 7 6 1 3
6 −4 0 −7 −6 −1 −1 9 1 3 1 10

−2 −3 −7 −2 2 −6 7 11 7 2 4 4

x 4.25 −3.00 −2.75 −5.00 −5.75 −3.75 −0.25 6.25 3.50 4.00 2.00 5.50

Hour 13 14 15 16 17 18 19 20 21 22 23 24

5 6 −5 −8 2 7 8 5 8 −5 −2 −1
9 6 4 −5 8 7 13 4 1 7 −4 5
9 8 −5 1 −4 5 6 7 0 1 −7 9
7 10 −2 0 1 3 6 10 −6 2 7 0

x 7.50 7.50 −2.00 −3.00 1.75 5.50 8.25 6.50 0.75 1.25 −1.50 3.25

Key Terms
Characteristic of interest 16
Classical approach to statistics 12
Descriptive statistics 12
Population 16
Population of units 16

Quality improvement 13
Random number table 18
Reliability 13
Sample 17
Statement of purpose 16

Statistical inference 12
Statistical population 16
X-bar chart 14
Unit 16
Variable 16
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S
tatistical data, obtained from surveys, experiments, or any series of measurements,
are often so numerous that they are virtually useless unless they are condensed, or
reduced into a more suitable form. We begin with the use of simple graphics in

Section 2.1. Sections 2.2 and 2.3 deal with problems relating to the grouping of data and
the presentation of such groupings in graphical form. In Section 2.4 we discuss a relatively
new way of presenting data.

Sometimes it may be satisfactory to present data just as they are and let them speak
for themselves; on other occasions it may be necessary only to group the data and present
the result in tabular or graphical form. However, most of the time data have to be sum-
marized further, and in Sections 2.5 through 2.7 we introduce some of the most widely
used kinds of statistical descriptions.

2.1 Pareto Diagrams and Dot Diagrams
Data need to be collected to provide the vital information necessary to solve en-
gineering problems. Once gathered, these data must be described and analyzed to
produce summary information. Graphical presentations can often be the most ef-
fective way to communicate this information. To illustrate the power of graphical
techniques, we first describe a Pareto diagram. This display, which orders each type
of failure or defect according to its frequency, can help engineers identify important
defects and their causes.

When a company identifies a process as a candidate for improvement, the first
step is to collect data on the frequency of each type of failure. For example, the
performance of a computer-controlled lathe is below par so workers record the fol-
lowing causes of malfunctions and their frequencies:

power fluctuations 6
controller not stable 22
operator error 13
worn tool not replaced 2
other 5

These data are presented as a special case of a bar chart called a Pareto diagram
in Figure 2.1. This diagram graphically depicts Pareto’s empirical law that any as-
sortment of events consists of a few major and many minor elements. Typically, two
or three elements will account for more than half of the total frequency.

Concerning the lathe, 22 or 100(22/48) = 46% of the cases are due to an un-
stable controller and 22 + 13 = 35 or 100(35/48) = 73% are due to either unstable
controller or operator error. These cumulative percentages are shown in Figure 2.1 as
a line graph whose scale is on the right-hand side of the Pareto diagram, as appears
again in Figure 15.2.
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Figure 2.1
A Pareto diagram of failures
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In the context of quality improvement, to make the most impact we want to
select the few vital major opportunities for improvement. This graph visually em-
phasizes the importance of reducing the frequency of controller misbehavior. An
initial goal may be to cut it in half.

As a second step toward improvement of the process, data were collected on
the deviations of cutting speed from the target value set by the controller. The seven
observed values of (cutting speed) − (target),

3 6 −2 4 7 4 3

are plotted as a dot diagram in Figure 2.2. The dot diagram visually summarizes the
information that the lathe is, generally, running fast. In Chapters 13 and 15 we will
develop efficient experimental designs and methods for identifying primary causal
factors that contribute to the variability in a response such as cutting speed.

Figure 2.2
Dot diagram of cutting speed
deviations 22 0 2 4 6 8

When the number of observations is small, it is often difficult to identify any
pattern of variation. Still, it is a good idea to plot the data and look for unusual
features.

EXAMPLE 1 Dot diagrams expose outliers
A major food processor regularly monitors bacteria along production lines that in-
clude a stuffing process for meat products. An industrial engineer records the maxi-
mum amount of bacteria present along the production line, in the units Aerobic Plate
Count per square inch (APC/in2), for n = 7 days. (Courtesy of David Brauch)

96.3 155.6 3408.0 333.3 122.2 38.9 58.0

Create a dot diagram and comment.

Solution The ordered data

38.9 58.0 96.3 122.2 155.6 333.3 3408.0

are shown as the dot diagram in Figure 2.3. By using open circles, we help differen-
tiate the crowded smaller values. The one very large bacteria count is the prominent
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Figure 2.3
Maximum bacteria counts on
seven days.

0 500 1000 1500 2000 2500 3000 3500
Bacteria Count (APC/sq.in)

feature. It indicates a possible health concern. Statisticians call such an unusual ob-
servation an outlier. Usually, outliers merit further attention. j

EXAMPLE 2 A dot diagram for multiple samples reveals differences
The vessels that contain the reactions at some nuclear power plants consist of two
hemispherical components welded together. Copper in the welds could cause them
to become brittle after years of service. Samples of welding material from one pro-
duction run or “heat” used in one plant had the copper contents 0.27, 0.35, 0.37.
Samples from the next heat had values 0.23, 0.15, 0.25, 0.24, 0.30, 0.33, 0.26. Draw
a dot diagram that highlights possible differences in the two production runs (heats)
of welding material. If the copper contents for the two runs are different, they should
not be combined to form a single estimate.

Solution We plot the first group as solid circles and the second as open circles (see Figure 2.4).
It seems unlikely that the two production runs are alike because the top two values
are from the first run. (In Exercise 14.23, you are asked to confirm this fact.) The
two runs should be treated separately.

The copper content of the welding material used at the power plant is directly
related to the determination of safe operating life. Combining the sample would
lead to an unrealistically low estimate of copper content and too long an estimate of
safe life. j

Figure 2.4
Dot diagram of copper content

0.15 0.20 0.25 0.30 0.35 0.40
copper content

When a set of data consists of a large number of observations, we take the ap-
proach described in the next section. The observations are first summarized in the
form of a table.

2.2 Frequency Distributions
A frequency distribution is a table that divides a set of data into a suitable number
of classes (categories), showing also the number of items belonging to each class.
The table sacrifices some of the information contained in the data. Instead of know-
ing the exact value of each item, we only know that it belongs to a certain class. On
the other hand, grouping often brings out important features of the data, and the gain
in “legibility” usually more than compensates for the loss of information.

We shall consider mainly numerical distributions; that is, frequency distribu-
tions where the data are grouped according to size. If the data are grouped accord-
ing to some quality, or attribute, we refer to such a distribution as a categorical
distribution.

The first step in constructing a frequency distribution consists of deciding how
many classes to use and choosing the class limits for each class. That is, deciding
from where to where each class is to go. Generally speaking, the number of classes
we use depends on the number of observations, but it is seldom profitable to use
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fewer than 5 or more than 15. The exception to the upper limit is when the size of
the data set is several hundred or even a few thousand. It also depends on the range
of the data, namely, the difference between the largest observation and the smallest.

Once the classes are set, we count the number of observations in each class,
called the class frequencies. This task is simplified if the data are first sorted from
smallest to largest.

Figure 2.5
Nanopillars

To illustrate the construction of a frequency distribution, we consider data
collected in a nanotechnology setting. Engineers fabricating a new transmission-
type electron multiplier created an array of silicon nanopillars on a flat silicon
membrane. The precise structure can influence the electrical properties, so the
heights of 50 nanopillars were measured in nanometers (nm), or 10−9× meters.
(See Figure 2.5.)1

245 333 296 304 276 336 289 234 253 292
366 323 309 284 310 338 297 314 305 330
266 391 315 305 290 300 292 311 272 312
315 355 346 337 303 265 278 276 373 271
308 276 364 390 298 290 308 221 274 343

Since the largest observation is 391 and the smallest is 221 and the range is
391−221 = 170, we might choose five classes having the limits 206–245, 246–285,
286–325, 326–365, 366–405, or the six classes 216–245, 246–275, …, 366–395.
Note that, in either case, the classes do not overlap, they accommodate all the
data, and they are all of the same width.

Initially, deciding on the first of these classifications, we count the number of
observations in each class to obtain the frequency distribution:

Limits of Classes Frequency

206–245 3
246–285 11
286–325 23
326–365 9
366–405 4

Total 50

Note that the class limits are given to as many decimal places as the original
data. Had the original data been given to one decimal place, we would have used the
class limits 205.9–245.0, 245.1–285.0, …, 365.1–405.0. If they had been rounded to
the nearest 10 nanometers, we would have used the class limits 210–240, 250–280,
290–320, 330–360, 370–400.

In the preceding example, the data on heights of nanopillars may be thought of
as values of a continuous variable which, conceivably, can be any value in an interval.
But if we use classes such as 205–245, 245–285, 285–325, 325–365,
365–405, there exists the possibility of ambiguities; 245 could go into the first class
or the second, 285 could go into the second class or the third, and so on. To avoid
this difficulty, we take an alternative approach.

We make an endpoint convention. For the pillar height data, we can take (205,

245] as the first class, (245, 285] as the second, and so on through (365, 405]. That
is, for this data set, we adopt the convention that the right-hand endpoint is included

1Data and photo from H. Qin, H. Kim, and R. Blick, Nanopillar arrays on semiconductor membranes as
electron emission amplifiers, Nanotechnology 19 (2008), used with permission from IOP Publishing Ltd.
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but the left-hand endpoint is not. For other data sets we may prefer to reverse the end-
point convention so the left-hand endpoint is included but the right-hand endpoint is
not. Whichever endpoint convention is adopted, it should appear in the description
of the frequency distribution.

Under the convention that the right-hand endpoint is included, the frequency
distribution of the nanopillar data is

Height (nm) Frequency

(205, 245] 3
(245, 285] 11
(285, 325] 23
(325, 365] 9
(365, 405] 4

Total 50

The class boundaries are the endpoints of the intervals that specify each class.
As we pointed out earlier, once data have been grouped, each observation has lost
its identity in the sense that its exact value is no longer known. This may lead
to difficulties when we want to give further descriptions of the data, but we can
avoid them by representing each observation in a class by its midpoint, called the
class mark. In general, the class marks of a frequency distribution are obtained
by averaging successive class boundaries. If the classes of a distribution are all of
equal length, as in our example, we refer to the common interval between any suc-
cessive class marks as the class interval of the distribution. Note that the class
interval may also be obtained from the difference between any successive class
boundaries.

EXAMPLE 3 Class marks and class interval for grouped data
With reference to the distribution of the heights of nanopillars, find (a) the class
marks and (b) the class interval.

Solution (a) The class marks are

205 + 245
2

= 225
245 + 285

2
= 265, 305, 345, 385

(b) The class interval is 245 − 205 = 40. j

There are several alternative forms of distributions into which data are some-
times grouped. Foremost among these are the “less than or equal to,” “less than,”
“or more,” and “equal or more” cumulative distributions. A cumulative “less than
or equal to” distribution shows the total number of observations that are less than
or equal to the given values. These values must be class boundaries, with an appro-
priate endpoint convention, when the data are grouped into a frequency distribution.

EXAMPLE 4 Cumulative distribution of the nanopillar heights
Convert the distribution of the heights of nanopillars into a distribution according to
how many observations are less than or equal to 205, less than or equal to 245, …,
less than or equal to 405.



Sec 2.3 Graphs of Frequency Distributions 27

Solution Since none of the values is less than 205, 3 are less than or equal to 245, 3 + 11 = 14
are less than or equal to 285, 14 + 23 = 37 are less than or equal to 325, 37+9 = 46
are less than or equal to 365, and all 50 are less than or equal to 405, we have

Heights (mM) Cumulative Frequency

(205, 245] 3
(245, 285] 14
(285, 325] 37
(325, 365] 46
(365, 405] 50

j

When the endpoint convention for a class includes the left-hand endpoint but not the
right-hand endpoint, the cumulative distribution becomes a “less than” cumulative
distribution.

Cumulative “more than” and “or more” distributions are constructed similarly
by adding the frequencies, one by one, starting at the other end of the frequency
distribution. In practice, “less than or equal to” cumulative distributions are used
most widely, and it is not uncommon to refer to “less than or equal to” cumulative
distributions simply as cumulative distributions.

2.3 Graphs of Frequency Distributions
Properties of frequency distributions relating to their shape are best exhibited through
the use of graphs, and in this section we shall introduce some of the most widely
used forms of graphical presentations of frequency distributions and cumulative
distributions.

The most common form of graphical presentation of a frequency distribution is
the histogram. The histogram of a frequency distribution is constructed of adjacent
rectangles. Provided that the class intervals are equal, the heights of the rectangles
represent the class frequencies and the bases of the rectangles extend between suc-
cessive class boundaries. A histogram of the heights of nanopillars data is shown in
Figure 2.6.

Using our endpoint convention, the interval (205, 245] that defines the first class
has frequency 3, so the rectangle has height 3, the second rectangle, over the interval

Figure 2.6
Histogram of pillar height Height (nm)

Fr
eq

ue
nc

y

225 265 305 345 385

20

10

0



28 Chapter 2 Organization and Description of Data

(245, 285], has height 9, and so on. The tallest rectangle is over the interval (285,
325] and has height 23. The histogram has a single peak and is reasonably symmet-
ric. Almost half of the area, representing half of the observations, is over the interval
285 to 325 nanometers.

The choice of frequency, or relative frequency, for the vertical scale is only valid
when all of the classes have the same width.

Inspection of the graph of a frequency distribution as a histogram often brings
out features that are not immediately apparent from the data themselves. Aside from
the fact that such a graph presents a good overall picture of the data, it can also em-
phasize irregularities and unusual features. It can reveal outlying observations which
somehow do not fit the overall picture. Their distruption of the overall pattern of
variation in the data may be due to errors of measurement, equipment failure, and
similar causes. Also, the fact that a histogram exhibits two or more peaks (maxima)
can provide pertinent information. The appearance of two peaks may imply, for ex-
ample, a shift in the process that is being measured, or it may imply that the data
come from two or more sources. With some experience one learns to spot such irreg-
ularities or anomalies, and an experienced engineer would find it just as surprising if
the histogram of a distribution of integrated-circuit failure times were symmetrical
as if a distribution of American men’s hat sizes were bimodal.

Sometimes it can be enough to draw a histogram in order to solve an engineering
problem.

EXAMPLE 5 A histogram reveals the solution to a grinding operation problem
A metallurgical engineer was experiencing trouble with a grinding operation. The
grinding action was produced by pellets. After some thought he collected a sample
of pellets used for grinding, took them home, spread them out on his kitchen table,
and measured their diameters with a ruler. His histogram is displayed in Figure 2.7.
What does the histogram reveal?

Solution The histogram exhibits two distinct peaks, one for a group of pellets whose diameters
are centered near 25 and the other centered near 40.

By getting his supplier to do a better sort, so all the pellets would be essentially
from the first group, the engineer completely solved his problem. Taking the action
to obtain the data was the big step. The analysis was simple. j

Figure 2.7
Histogram of pellet diameter
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As illustrated by the next example concerning a system of supercomputers, not
all histograms are symmetric.
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EXAMPLE 6 A histogram reveals the pattern of a supercomputer systems data
A computer scientist, trying to optimize system performance, collected data on the
time, in microseconds, between requests for a particular process service.

2,808 4,201 3,848 9,112 2,082 5,913 1,620 6,719 21,657
3,072 2,949 11,768 4,731 14,211 1,583 9,853 78,811 6,655
1,803 7,012 1,892 4,227 6,583 15,147 4,740 8,528 10,563

43,003 16,723 2,613 26,463 34,867 4,191 4,030 2,472 28,840
24,487 14,001 15,241 1,643 5,732 5,419 28,608 2,487 995

3,116 29,508 11,440 28,336 3,440

Draw a histogram using the equal length classes [0, 10,000), [10,000, 20,000),
. . . , [70,000, 80,000) where the left-hand endpoint is included but the right-hand
endpoint is not.

Solution The histogram of this interrequest time data, shown in Figure 2.8, has a long right-
hand tail. Notice that, with this choice of equal length intervals, two classes are
empty. To emphasize that it is still possible to observe interrequest times in these
intervals, it is preferable to regroup the data in the right-hand tail into classes of
unequal lengths (see Exercise 2.62). j

Figure 2.8
Histogram of interrequest time
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When a histogram is constructed from a frequency table having classes of
unequal lengths, the height of each rectangle must be changed to

height = relative frequency
width

The area of the rectangle then represents the relative frequency for the class and the
total area of the histogram is 1. We call this a density histogram.

EXAMPLE 7 A density histogram has total area 1
Compressive strength was measured on 58 specimens of a new aluminum alloy un-
dergoing development as a material for the next generation of aircraft.

66.4 67.7 68.0 68.0 68.3 68.4 68.6 68.8 68.9 69.0 69.1
69.2 69.3 69.3 69.5 69.5 69.6 69.7 69.8 69.8 69.9 70.0
70.0 70.1 70.2 70.3 70.3 70.4 70.5 70.6 70.6 70.8 70.9
71.0 71.1 71.2 71.3 71.3 71.5 71.6 71.6 71.7 71.8 71.8
71.9 72.1 72.2 72.3 72.4 72.6 72.7 72.9 73.1 73.3 73.5
74.2 74.5 75.3
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Draw a density histogram, that is, a histogram scaled to have a total area of
1 unit. For reasons to become apparent in Chapter 6, we call the vertical scale
density.

Solution We make the height of each rectangle equal to relative frequency / width, so that its
area equals the relative frequency. The resulting histogram, constructed by computer,
has a nearly symmetric shape (see Figure 2.9). We have also graphed a continuous
curve that approximates the overall shape. In Chapter 5, we will introduce this bell-
shaped family of curves.

j

Figure 2.9
Histogram of aluminum alloy
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[ Using R: with (sample, hist (strength,prob=TRUE,las=1)) after sample=read.
table (“C2Ex.TXT”,header=TRUE) ]

This example suggests that histograms, for observations that come from a con-
tinuous scale, can be approximated by smooth curves.

Cumulative distributions are usually presented graphically in the form of ogives,
where we plot the cumulative frequencies at the class boundaries. The resulting
points are connected by means of straight lines, as shown in Figure 2.10, which
represents the cumulative “less than or equal to” distribution of nanopillar height
data on page 25. The curve is steepest over the class with highest frequency.

When the endpoint convention for a class includes the left-hand endpoint
but not the right-hand endpoint, the ogive represents a “less than” cumulative
distribution.

Figure 2.10
Ogive of heights of nanopillars
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2.4 Stem-and-Leaf Displays
In the two preceding sections we directed our attention to the grouping of relatively
large sets of data with the objective of putting such data into a manageable form.
As we saw, this entailed some loss of information. Similar techniques have been
proposed for the preliminary explorations of small sets of data, which yield a good
overall picture of the data without any loss of information.

To illustrate, consider the following humidity readings rounded to the nearest
percent:

29 44 12 53 21 34 39 25 48 23
17 24 27 32 34 15 42 21 28 37

Proceeding as in Section 2.2, we might group these data into the following
distribution:

Humidity Readings Frequency

10–19 3
20–29 8
30–39 5
40–49 3
50–59 1

If we wanted to avoid the loss of information inherent in the preceding table,
we could keep track of the last digits of the readings within each class, getting

10–19 2 7 5
20–29 9 1 5 3 4 7 1 8
30–39 4 9 2 4 7
40–49 4 8 2
50–59 3

This can also be written as

1 2 7 5
2 9 1 5 3 4 7 1 8
3 4 9 2 4 7
4 4 8 2
5 3

or

1 2 5 7
2 1 1 3 4 5 7 8 9
3 2 4 4 7 9
4 2 4 8
5 3

where the left-hand column, the stem, gives the tens digits 10, 20, 30, 40, and 50.
The numbers in a row, the leaves, have the unit 1.0. In the last step, the leaves are
written in ascending order. The three numbers in the first row are 12, 15, and 17.
This table is called a stem-and-leaf display or simply a stem-leaf display. The
left-hand column forms the stem, and the numbers to the left of the vertical line are
the stem labels, which in our example are 1, 2, . . . , 5. Each number to the right of
the vertical line is a leaf. There should not be any gaps in the stem even if there are
no leaves for that particular value.

Essentially, a stem-and-leaf display presents the same picture as the correspond-
ing tally, yet it retains all the original information. For instance, if a stem-and-leaf
display has the two-digit stem

1.2 | 0 2 3 5 8
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where the leaf unit = 0.01, the corresponding data are 1.20, 1.22, 1.23, 1.25, and
1.28. If a stem-and-leaf display has the two digit leaves

0.3 | 03 17 55 89

where the first leaf digit unit = 0.01, the corresponding data are 0.303, 0.317, 0.355,
and 0.389.

There are various ways in which stem-and-leaf displays can be modified to
meet particular needs (see Exercises 2.25 and 2.26), but we shall not go
into this here in any detail as it has been our objective to present only one of the rel-
atively new techniques, which come under the general heading of exploratory
data analysis.

Exercises
2.1 Damages at a factory manufacturing chairs are catego-

rized according to the material wasted.

plastic 75
iron 31
cloth 22
spares 8

Draw a Pareto chart.

2.2 Losses at an oil refinery (in millions of dollars) due
to excess heat can be divided according to the reason
behind the generation of excessive heat.

oversupplying fuel 202
excess air 124
carelessness of operator 96
incomplete combustion 27

(a) Draw a Pareto chart.

(b) What percent of the loss occurs due to

(1) excess air?

(2) excess air and oversupplying fuel?

2.3 Tests were conducted to measure the running temper-
ature for engines (in °F). A sample of 15 tests yielded
the temperature values:

182 184 184 186 180 198 195 194
197 200 188 188 194 197 184

Construct a dot diagram.

2.4 To determine the strengths of various detergents, the
following are 20 measurements of the total dissolved
salts (parts per million) in water:

168 170 148 160 168 164 175 178
165 168 152 170 172 192 182 164
152 160 170 172

Construct a dot diagram.

2.5 Civil engineers help municipal wastewater treatment
plants operate more efficiently by collecting data on
the quality of the effluent. On seven occasions, the
amounts of suspended solids (parts per million) at one
plant were

14 12 21 28 30 65 26

Display the data in a dot diagram. Comment on your
findings.

2.6 A dam on a river holds water in its reservoir to gener-
ate electricity. Because the dam is in a rainforest area,
the flow of water is highly uncertain. In December last
year, the overflow from the reservoir (in million cubic
meters) on 14 different days was

26 24 25.5 23.5 25.5 23 23
24 25 24 26 23.5 25 20

Display the data in a dot diagram.

2.7 Physicists first observed neutrinos from a supernova
that occurred outside of our solar system when the de-
tector near Kamiokande, Japan, recorded twelve ar-
rivals. The times(seconds) between the neutrinos are

0.107 0.196 0.021 0.281 0.179 0.854 0.58

0.19 7.30 1.18 2.00

(a) Draw a dot diagram.

(b) Identify any outliers.

2.8 The power generated (MW) by liquid hydrogen turbo
pumps, given to the nearest tenth, is grouped into
a table having the classes [40.0, 45.0), [45.0, 50.0),
[50.0, 55.0), [55.0, 60.0) and [60.0, 65.0), where the
left-hand endpoint is included but the right-hand end-
point is not. Find

(a) the class marks

(b) the class interval

2.9 With reference to the preceding exercise, is it possible
to determine from the grouped data how many turbo
pumps have a power generation of

(a) more than 50.0?

(b) less than 50.0?

(c) at most 60.0?

(d) at least 60.0?

(e) 50.0 to 60.0 inclusive?

2.10 To continually increase the speed of computers, elec-
trical engineers are working on ever-decreasing scales.
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The size of devices currently undergoing development
is measured in nanometers (nm), or 10−9× meters.
Engineers fabricating a new transmission-type
electron multiplier2 created an array of silicon nanopil-
lars on a flat silicon membrane. Subsequently, they
measured the diameters (nm) of 50 pillars.

62 68 69 80 68 79 83 70 74 73
74 75 80 77 80 83 73 79 100 93
92 101 87 96 99 94 102 95 90 98
86 93 91 90 95 97 87 89 100 93
92 98 101 97 102 91 87 110 106 118

Group these measurements into a frequency distribu-
tion and construct a histogram using (60,70], (70, 80],
(80,90], (90,100], (100, 110], (110,120], where the
right-hand endpoint is included but the left-hand end-
point is not.

2.11 Convert the distribution obtained in the preceding ex-
ercise into a cumulative “less than or equal to” distri-
bution and graph its ogive.

2.12 The following are the sizes of particles of cement dust
(given to the nearest hundredth of a micron) in a ce-
ment factory:

16.12 10.48 11.12 16.18 18.13 19.10 13.21 10.12
21.18 15.12 10.11 13.31 18.61 11.43 18.26 13.77
13.24 12.16 17.19 11.36 12.53 13.25 10.67 15.45
14.28 14.32 15.18 14.21 10.20 15.64 11.68 18.76
19.32 17.50 11.46 20.59 16.38 21.42 16.27 21.30
16.12 10.55 11.49 15.48 11.62 13.54 13.69 16.72
15.11 14.33 17.23 17.22 19.37 10.41 18.28 19.29
21.23 12.56 12.57 11.60 15.24 21.65 20.70 11.44
12.22 19.34 20.35 19.47 21.63 19.40 19.75 21.71
15.19 18.51 10.58 13.52 11.39 13.66 21.73 11.74

Group these figures into a table with a suitable number
of equal classes and construct a histogram.

2.13 Convert the distribution obtained in Exercise 2.12 into
a cumulative “less than” distribution and plot its ogive.

2.14 An engineer uses a thermocouple to monitor the tem-
perature of a stable reaction. The ordered values of 50
observations (Courtesy of Scott Sanders), in tenths of
◦C, are

1.11 1.21 1.21 1.21 1.23 1.24 1.25 1.25 1.27 1.27 1.28
1.29 1.31 1.31 1.31 1.32 1.34 1.34 1.35 1.36 1.36 1.36
1.36 1.36 1.36 1.36 1.37 1.39 1.40 1.41 1.42 1.42 1.42
1.42 1.43 1.43 1.43 1.44 1.44 1.44 1.47 1.48 1.48 1.50
1.50 1.56 1.56 1.60 1.60 1.68

Group these figures into a distribution having the
classes 1.10–1.19, 1.20–1.29, 1.30–1.39, . . . , and
1.60–1.69, and plot a histogram using [1.10, 1.20), . . . ,

2H. Qin, H. Kim, and R. Blick, Nanotechnology 19 (2008),
095504. (5pp)

[1.60, 1.70), where the left-hand endpoint is included
but the right-hand endpoint is not.

2.15 Convert the distribution obtained in Exercise 2.14 into
a cumulative “less than” distribution and plot its ogive.

2.16 The following are the number of transistors failing a
quality check per hour during 72 observed hours of
production:

2 4 6 8 1 2 1 8 5 4 6 1
0 1 8 2 3 4 1 2 5 1 1 8
2 1 9 1 4 2 5 6 8 1 7 1
4 9 1 8 2 4 1 1 8 5 5 3
0 9 1 9 7 1 8 8 7 7 7 2
7 1 2 7 3 5 8 8 5 9 9 0

Group these data into a frequency distribution show-
ing how often each of the values occurs and draw a
bar chart.

2.17 Given a set of observations x1, x2, . . . , xn, we define
their empirical cumulative distribution as the function
whose values F (x) equals the proportion of the ob-
servations less than or equal to x. Graph the empiri-
cal cumulative distribution for the 15 measurements of
Exercise 2.3.

2.18 Referring to Exercise 2.17, graph the empirical cumu-
lative distribution for the data in Exercise 2.16.

2.19 The pictogram of Figure 2.11 is intended to illustrate
the fact that per capita income in the United States dou-
bled from $21,385 in 1993 to $42,643 in 2012. Does
this pictogram convey a fair impression of the actual
change? If not, state how it might be modified.

$21,385

$42,643

1993 2012

Per capita income

Figure 2.11 Pictogram for Exercise 2.19

2.20 Categorical distributions are often presented graphi-
cally by means of pie charts, in which a circle is
divided into sectors proportional in size to the fre-
quencies (or percentages) with which the data are
distributed among the categories. Draw a pie chart to
represent the following data, obtained in a study in
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which 40 drivers were asked to judge the maneuver-
ability of a certain make of car:

Very good, good, good, fair, excellent, good, good,
good, very good, poor, good, good, good, good, very
good, good, fair, good, good, very poor, very good,
fair, good, good, excellent, very good, good, good,
good, fair, fair, very good, good, very good, excellent,
very good, fair, good, good, and very good.

2.21 Convert the distribution of nanopillar heights on
page 26 into a distribution having the classes (205,
245], (245, 325], (325, 365], (365, 405], where the
right-hand endpoint is included. Draw two histograms
of this distribution, one in which the class frequencies
are given by the heights of the rectangles and one in
which the class frequencies are given by the area of the
rectangles. Explain why the first of these histograms
gives a very misleading picture.

2.22 The following are figures on sacks of cement used
daily at a construction site: 75, 77, 82, 45, 55, 90, 80,
81, 76, 47, 59, 52, 71, 83, 91, 76, 57, 59, 43 and 79.
Construct a stem-and-leaf display with the stem labels
4, 5, . . . , and 9.

2.23 The following are determinations of a river’s annual
maximum flow in cubic meters per second: 405, 355,
419, 267, 370, 391, 612, 383, 434, 462, 288, 317, 540,
295, and 508. Construct a stem-and-leaf display with
two-digit leaves.

2.24 List the data that correspond to the following stems of
stem-and-leaf displays:

(a) 4 | 0 1 1 2 5 7 Leaf unit = 1.0

(b) 62 | 3 5 5 8 9 Leaf unit = 1.0

(c) 8 | 01 23 62 91 First leaf digit unit = 10.0

(d) 2.28 | 4 5 6 6 8 9 Leaf unit = 0.001

2.25 To construct a stem-and-leaf display with more stems
than there would be otherwise, we might repeat each

stem. The leaves 0, 1, 2, 3, and 4 would be attached to
the first stem and leaves 5, 6, 7, 8, and 9 to the second.
For the humidity readings on page 31, we would thus
get the double-stem display:

1 2
1 5 7
2 1 1 3 4
2 5 7 8 9
3 2 4 4
3 7 9
4 2 4
4 8
5 3

where we doubled the number of stems by cutting
the interval covered by each stem in half. Construct a
double-stem display with one-digit leaves for the data
in Exercise 2.14.

2.26 If the double-stem display has too few stems, we create
5 stems where the first holds leaves 0 and 1, the second
holds 2 and 3, and so on. The resulting stem-and-leaf
display is called a five-stem display.

(a) The following are the IQs of 20 applicants to
an undergraduate engineering program: 109, 111,
106, 106, 125, 108, 115, 109, 107, 109, 108, 110,
112, 104, 110, 112, 128, 106, 111, and 108. Con-
struct a five-stem display with one-digit leaves.

(b) The following is part of a five-stem display:

53 4 4 4 4 5 5 Leaf unit = 1.0
53 6 6 6 7
53 8 9
54 1

List the corresponding measurements.

2.5 Descriptive Measures
Histograms, dot diagrams, and stem-and-leaf diagrams summarize a data set pictori-
ally so we can visually discern the overall pattern of variation. Numerical measures
can augment visual displays when describing a data set. To proceed, we introduce
the notation

x1, x2, . . . , xi, . . . , xn

for a general sample consisting of n measurements. Here xi is the ith observation in
the list so x1 represents the value of the first measurement, x2 represents the value
of the second measurement, and so on.

Given a set of n measurements or observations, x1, x2, . . . , xn, there are many
ways in which we can describe their center (middle, or central location). Most pop-
ular among these are the arithmetic mean and the median, although other kinds
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of “averages” are sometimes used for special purposes. The arithmetic mean—or,
more succinctly, the mean—is defined as the sum of the observations divided by
sample size.

x =

n∑
i=1

xi

n
Sample mean

The notation x̄, read x bar, represents the mean of the xi. To emphasize that it is
based on the observations in a data set, we often refer to x as the sample mean.

Sometimes it is preferable to use the sample median as a descriptive measure
of the center, or location, of a set of data. This is particularly true if it is desired
to minimize the calculations or if it is desired to eliminate the effect of extreme
(very large or very small) values. The median of n observations x1, x2, . . . , xn can
be defined loosely as the “middlemost” value once the data are arranged according
to size. More precisely, if the observations are arranged according to size and n is
an odd number, the median is the value of the observation numbered n + 1

2 ; if n is
an even number, the median is defined as the mean (average) of the observations
numbered n

2 and n + 2
2 .

Order the n observations from smallest to largest.

sample median = observation in position n + 1
2

, if n odd.

= average of two observations in

positions n
2

and n + 2
2

, if n even.

Sample median

EXAMPLE 8 Calculation of the sample mean and median
A sample of five university students responded to the question “How much time, in
minutes, did you spend on the social network site yesterday?”

100 45 60 130 30

Find the mean and the median.

Solution The mean is

x = 100 + 45 + 60 + 130 + 30
5

= 73 minutes

and, ordering the data from smallest to largest

30 45 60︸︷︷︸ 100 130

the median is the third largest value, namely, 60 minutes.
The two very large values cause the mean to be much larger than the median. j
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EXAMPLE 9 Calculation of the sample median with even sample size
An engineering group receives e-mail requests for technical information from sales
and service. The daily numbers of e-mails for six days are

11 9 17 19 4 15

Find the mean and the median.

Solution The mean is

x = 11 + 9 + 17 + 19 + 4 + 15
6

= 12.5 requests

and, ordering the data from the smallest to largest

4 9 11 15︸ ︷︷ ︸ 17 19

the median, the mean of the third and fourth largest values, is 13 requests. j

The sample mean has a physical interpretation as the balance point, or center
of mass, of a data set. Figure 2.12 is the dot diagram for the data on the number of
e-mail requests given in the previous example. In the dot diagram, each observation
is represented by a ball placed at the appropriate distance along the horizontal axis.
If the balls are considered as masses having equal weights and the horizontal axis is
weightless, then the mean corresponds to the center of inertia or balance point of the
data. This interpretation of the sample mean, as the balance point of the observations,
holds for any data set.

Figure 2.12
The interpretation of the
sample mean as a balance point

0 5 10 15
e-mail requests

x 5 12.5

20

Although the mean and the median each provide a single number to represent
an entire set of data, the mean is usually preferred in problems of estimation and
other problems of statistical inference. An intuitive reason for preferring the mean
is that the median does not utilize all the information contained in the observations.

The following is an example where the median actually gives a more useful
description of a set of data than the mean.

EXAMPLE 10 The median is unaffected by a few outliers
A small company employs four young engineers, who each earn $80,000, and the
owner (also an engineer), who gets $200,000. Comment on the claim that on the
average the company pays $104,000 to its engineers and, hence, is a good place
to work.

Solution The mean of the five salaries is $104,000, but it hardly describes the situation. The
median, on the other hand, is $80,000, and it is most representative of what a young
engineer earns with the firm. Moneywise, the company is not such a good place for
young engineers. j

This example illustrates that there is always an inherent danger when summa-
rizing a set of data in terms of a single number.

One of the most important characteristics of almost any set of data is that the
values are not all alike; indeed, the extent to which they are unlike, or vary among
themselves, is of basic importance in statistics. The mean and median describe one



Sec 2.5 Descriptive Measures 37

important aspect of a set of data—their “middle” or their “average”—but they tell
us nothing about the extent of variation.

We observe that the dispersion of a set of data is small if the values are closely
bunched about their mean, and that it is large if the values are scattered widely about
their mean. It would seem reasonable, therefore, to measure the variation of a set of
data in terms of the amounts by which the values deviate from their mean.

If a set of numbers x1, x2, . . . , xn has mean x, the differences

x1 − x, x2 − x, . . . , xn − x

are called the deviations from the mean. We might use the average of the deviations
as a measure of variation in the data set. Unfortunately, this will not do. For instance,
refer to the observations 11, 9, 17, 19, 4, 15, displayed above in Figure 2.12, where
x = 12.5 is the balance point. The six deviations are −1.5, −3.5, 4.5, 6.5, −8.5, and
2.5. The sum of positive deviations

4.5 + 6.5 + 2.5 = 13.5

exactly cancels the sum of the negative deviations

−1.5 − 3.5 − 8.5 = −13.5

so the sum of all the deviations is 0.
As you will be asked to show in Exercise 2.50, the sum of the deviations is

always zero. That is,
n∑

i=1

( xi − x ) = 0

so the mean of the deviations is always zero. Because the deviations sum to zero, we
need to remove their signs. Absolute value and square are two natural choices. If we
take their absolute value, so each negative deviation is treated as positive, we would
obtain a measure of variation. However, to obtain the most common measure of vari-
ation, we square each deviation. The sample variance, s2, is essentially the average
of the squared deviations from the mean, x, and is defined by the following formula.

s2 =

n∑
i=1

( xi − x )2

n − 1

Sample Variance

Our reason for dividing by n−1 instead of n is that there are only n−1 indepen-
dent deviations xi − x. Because their sum is always zero, the value of any particular
one is always equal to the negative of the sum of the other n − 1 deviations.

If many of the deviations are large in magnitude, either positive or negative,
their squares will be large and s2 will be large. When all the deviations are small, s2

will be small.

EXAMPLE 11 Calculation of sample variance
The delay times (handling, setting, and positioning the tools) for cutting 6 parts on
an engine lathe are 0.6, 1.2, 0.9, 1.0, 0.6, and 0.8 minutes. Calculate s2.

Solution First we calculate the mean:

x = 0.6 + 1.2 + 0.9 + 1.0 + 0.6 + 0.8
6

= 0.85
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To find
∑

( xi − x )2, we set up the table:

xi xi − x ( xi − x )2

0.6 −0.25 0.0625
1.2 0.35 0.1225
0.9 0.05 0.0025
1.0 0.15 0.0225
0.6 −0.25 0.0625
0.8 −0.05 0.0025

5.1 0.00 0.2750

where the total of the third column 0.2750 = ∑
(xi − x̄)2.

We divide 0.2750 by 6 − 1 = 5 to obtain

s2 = 0.2750
5

= 0.055 (minute)2

By calculating the sum of deviations in the second column, we obtain a check
on our work. For all data sets, this sum should be 0 up to rounding error. j

Notice that the units of s2 are not those of the original observations. The data
are delay times in minutes, but s2 has the unit (minute)2. Consequently, we define
the standard deviation of n observations x1, x2, . . . , xn as the square root of their
variance, namely

s =

√√√√√ n∑
i=1

( xi − x )2

n − 1

Sample standard deviation

The standard deviation is by far the most generally useful measure of variation. Its
advantage over the variance is that it is expressed in the same units as the
observations.

EXAMPLE 12 Calculation of sample standard deviation
With reference to the previous example, calculate s.

Solution From the previous example, s2 = 0.055. Take the square root and get

s =
√

0.055 = 0.23 minute

[ Using R: Enter data x = c(.6, 1.2, .9, l, .6, .8). Then mean(x), var(x), and sd(x) ]
j

The standard deviation s has a rough interpretation as the average distance from
an observation to the sample mean.

The standard deviation and the variance are measures of absolute variation;
that is, they measure the actual amount of variation in a set of data, and they depend
on the scale of measurement. To compare the variation in several sets of data, it is
generally desirable to use a measure of relative variation, for instance, the coeffi-
cient of variation, which gives the standard deviation as a percentage of the mean.
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V = s
x

· 100%Coefficient of variation

EXAMPLE 13 The coefficient of variation for comparing relative preciseness
Measurements made with one micrometer of the diameter of a ball bearing have a
mean of 3.92 mm and a standard deviation of 0.0152 mm, whereas measurements
made with another micrometer of the unstretched length of a spring have a mean of
1.54 inches and a standard deviation of 0.0086 inch. Which of these two measuring
instruments is relatively more precise?

Solution For the first micrometer the coefficient of variation is

V = 0.0152
3.92

· 100 = 0.39%

and for the second micrometer the coefficient of variation is

V = 0.0086
1.54

· 100 = 0.56%

Thus, the measurements made with the first micrometer are relatively more
precise. j

In this section, we have limited the discussion to the sample mean, median,
variance, and standard deviation. However, there are many other ways of describing
sets of data.

2.6 Quartiles and Percentiles
In addition to the median, which divides a set of data into halves, we can consider
other division points. When an ordered data set is divided into quarters, the resulting
division points are called sample quartiles. The first quartile, Q1, is a value that has
one-fourth, or 25%, of the observations below its value. The first quartile is also
the sample 25th percentile P0.25. More generally, we define the sample 100 pth
percentile as follows.

The sample 100 pth percentile is a value such that at least 100p% of the obser-
vations are at or below this value, and at least 100(1 − p)% are at or above this
value.

Sample percentiles

As in the case of the median, which is the 50th percentile, this may not uniquely
define a percentile. Our convention is to take an observed value for the sample
percentile unless two adjacent values both satisfy the definition. In this latter case,
take their mean. This coincides with the procedure for obtaining the median when
the sample size is even. (Most computer programs linearly interpolate between the
two adjacent values. For moderate or large sample sizes, the particular convention
used to locate a sample percentile between the two observations is inconsequential.)
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The following rule simplifies the calculation of sample percentiles.

Calculating the sample 100 pth percentile:

1. Order the n observations from smallest to largest.

2. Determine the product np.

If np is not an integer, round it up to the next integer and find the
corresponding ordered value.

If np is an integer, say k, calculate the mean of the kth and ( k + 1 )st ordered
observations.

The quartiles are the 25th, 50th, and 75th percentiles.

first quartile Q1 = 25th percentile
second quartile Q2 = 50th percentile
third quartile Q3 = 75th percentile

Sample quartiles

EXAMPLE 14 Calculation of percentiles for the strength of green materials
Of all the waste materials entering landfills, a substantial proportion consists of con-
struction and demolition materials. From the standpoint of green engineering, before
incorporating these materials into the base for new or rehabilitated roadways, engi-
neers must assess their strength. Generally, higher values imply a stiffer base which
increases pavement life.

Measurements of the resiliency modulus (MPa) on n = 18 specimens of recycled
concrete aggregate produce the ordered values (Courtesy of Tuncer Edil)

136 143 147 151 158 160
161 163 165 167 173 174
181 181 185 188 190 205

Obtain the quartiles and the 10th percentile.

Solution According to our calculation rule, np = 18
(

1
4

)
= 4.5, which we round up to 5.

The first quartile is the 5th ordered observation

Q1 = 158 MPa

Since p = 1
2 for the second quartile, or median,

np = 18
(

1
2

)
= 9

which is an integer. Therefore, we average the 9th and 10th ordered values

Q2 = 165 + 167
2

= 166 MPa

The third quartile is the 14th observation, Q3 = 181 seconds. We could also have
started at the largest value and counted down to the 5th position.

To obtain the 10th percentile, we determine that np = 18 × 0.10 = 1.8, which
we round up to 2. Counting to the 2nd position, we obtain

P0.10 = 143 MPa
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The 10th percentile provides a useful description regarding the resiliency modulus
of the lowest 10% green pavement specimens.

In the context of monitoring green materials we also record that the maximum
resiliency modulus measured was 205 MPa.

[ Using R: with(x, quantile(resiliency, c(.25,.5,.75,.10),type=2)) after x=read.
table(“C2Ex14.TXT”,header=TRUE) ] j

The minimum and maximum observations also convey information concern-
ing the amount of variability present in a set of data. Together, they describe the
interval containing all of the observed values and whose length is the

range = maximum − minimum

Care must be taken when interpreting the range since a single large or small
observation can greatly inflate its value.

The amount of variation in the middle half of the data is described by the

interquartile range = third quartile − first quartile = Q3 − Q1

EXAMPLE 15 The range and interquartile range for the materials data
Obtain the range and interquartile range for the resiliency modulus data in
Example 14.

Solution The minimum = 136. From the previous example, the maximum = 205, Q1 = 158,
and Q3 = 181.

range = maximum − minimum = 205 − 136 = 69 MPa

interquartile range = Q3 − Q1 = 181 − 158 = 23 MPa j

Boxplots
The summary information contained in the quartiles is highlighted in a graphic dis-
play called a boxplot. The center half of the data, extending from the first to the
third quartile, is represented by a rectangle. The median is identified by a bar within
this box. A line extends from the third quartile to the maximum, and another line
extends from the first quartile to the minimum. (For large data sets the lines may
only extend to the 95th and 5th percentiles.)

Figure 2.13 gives the boxplot for the green pavement data. The median is closer
to Q1 than Q3.

A modified boxplot can both identify outliers and reduce their effect on the
shape of the boxplot. The outer line extends to the largest observation only if it
is not too far from the third quartile. That is, for the line to extend to the largest
observation, it must be within 1.5 × (interquartile range) units of Q3. The line from

Figure 2.13
Boxplot of the resiliency
modulus of green pavement.
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Resiliency Modulus (MPa)
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Q1 extends to the smallest observation if it is within that same limit. Otherwise the
line extends to the next most extreme observations that fall within this interval.

EXAMPLE 16 A modified boxplot—possible outliers are detached
Physicists, trying to learn about neutrinos, detected twelve of them coming from a
supernova outside of our solar system. The n = 11 times (seconds) between the
arrivals are presented in their original order in Exercise 2.7, page 32.

The ordered interarrival times are

0.021 0.107 0.179 0.190 0.196 0.283 0.580 0.854 1.18 2.00 7.30

Construct a modified boxplot.

Solution Since n/4 = 11/4 = 2.75, the first quartile is the third ordered time 0.179 and
Q3 = 1.18, so the interquartile range is 1.18 − 0.179 = 1.001. Further, 1.5 ×
1.001 = 1.502 and the smallest observation is closer than this to Q1 = 0.179, but

maximum − Q3 = 7.30 − 1.18 = 6.12

exceeds 1.502 = 1.5 × (interquartile range)
As shown in Figure 2.14, the line to the right extends to 2.00, the most extreme

observation within 1.502 units, but not to the largest observation, which is shown as
detached from the line.

[ Using R: with(x, boxplot(time,horizontal=TRUE) after x=read.table
(“C2Exl4.TXT”,header=TRUE) ] j

Figure 2.14
Modified boxplot for neutrino
data

0 1 2 3 4 5 6 7 8

Time (s)

Boxplots are particularly effective for graphically portraying comparisons
among sets of observations. They are easy to understand and have a high visual
impact.

EXAMPLE 17 Multiple boxplots can reveal differences and similarities
Sometimes, with rather complicated components like hard-disk drives or random
access memory (RAM) chips for computers, quality is quantified as an index with
target value 100. Typically, a quality index will be based upon the deviations of
several physical characteristics from their engineering specifications. Figure 2.15
shows the quality index at 4 manufacturing plants.

Comment on the relationships between quality at different plants.

Solution It is clear from the graphic that plant 2 needs to reduce its variability and that plants 2
and 4 need to improve their quality level. j

We conclude this section with a warning. Sometimes it is a trend over time that
is the most important feature of data. This feature would be lost entirely if the set
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Figure 2.15
Boxplot of the quality index
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of data were summarized in a dot diagram, stem-and-leaf display, or boxplot. In
one instance, a major international company purchased two identical machines to
rapidly measure the thickness of the material and test its strength. The machines
were expensive but much faster than the current testing procedure. Before sending
one across the United States and the other to Europe, engineers needed to confirm
that the two machines were giving consistent results. Following one failed compar-
ison, the problem machine was worked on for a couple of months by the engineers.
In the second series of comparative trials, the average value from this machine was
appropriate, but fortunately the individual values were plotted as in Figure 2.16. The

Figure 2.16
Machine measurement of
thickness shows trend
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time plot made it clear that the trend was the key feature, not the average, which was
a poor summary. The testing machine required more work.

2.7 The Calculation of x and s
Here, we discuss methods for calculating x̄ and s from data that are already grouped
into intervals. These calculations are, in turn, based on the formulas for the mean
and standard deviation for data consisting of all of the individual observations. In
this latter case, we obtain x̄ by summing all of the observations and dividing by the
sample size n.

An alternative formula for s2 forms the basis of the grouped data formula for
variance. It was originally introduced to simplify hand calculations.

s2 =

n∑
i=1

x2
i −

(
n∑

i=1
xi

)2

/n

n − 1

Variance (handheld
calculator formula)

(In Exercise 2.51 you will be asked to show that this formula is, in fact, equivalent
to the one on page 37.) This expression for variance is without x, which reduces
roundoff error when using a handheld calculator.

EXAMPLE 18 Calculating variance using the handheld calculator formula
Find the mean and the standard deviation of the following miles per gallon (mpg)
obtained in 20 test runs performed on urban roads with an intermediate-size car:

19.7 21.5 22.5 22.2 22.6
21.9 20.5 19.3 19.9 21.7
22.8 23.2 21.4 20.8 19.4
22.0 23.0 21.1 20.9 21.3

Solution Using a calculator, we find that the sum of these figures is 427.7 and that the sum of
their squares is 9,173.19. Consequently,

x = 427.7
20

= 21.39 mpg

and

s2 = 9,173.19 − ( 427.7 )2/20
19

= 1.412

and it follows that s = 1.19 mpg. In computing the necessary sums we usually retain
all decimal places, but at the end, as in this example, we usually round to one more
decimal than we had in the original data. j

See Exercise 2.58 for a computer calculation. This is the recommended proce-
dure because it is easy to check the data entered for accuracy, and the calculation is
free of human error. Most importantly, the calculation of variance can be done using
the square of the deviations xi − x rather than the squares of the observations xi, and
this is numerically more stable.

Historically, data were grouped to simplify the calculation of the mean and
the standard deviation. Calculators and computers have eliminated the calculation
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problem. Nevertheless, it is sometimes necessary to calculate x̄ and s from grouped
data since some data (for instance, from government publications) is available only
in grouped form.

To calculate x and s from grouped data, we must assume something about the
distribution of the values within each class. We represent each value within a class by
the corresponding class mark. Then the sum of the x’s and the sum of their squares
can be written

k∑
i=1

xi fi and
k∑

i=1

x2
i fi

where xi is the class mark of the ith class, fi is the corresponding class frequency,
and k is the number of classes in the distribution. Substituting these sums into the
formula for x and the computing formula for s2, we get

x =

k∑
i=1

xi fi

n

s2 =

k∑
i=1

x2
i fi −

(
k∑

i=1
xi fi

)2

/n

n − 1

Mean and variance
(grouped data)

EXAMPLE 19 Calculating a mean and variance from grouped data
Use the distribution obtained on page 27 to calculate the mean, variance, and stan-
dard deviation of the nanopillar heights data.

Solution Recording the class marks and the class frequencies in the first two columns and the
products xi fi and x2

i fi in the third and fourth columns, we obtain

xi fi xi fi x2
i fi

225 3 675 151,875
265 11 2,915 772,475
305 23 7,015 2,139,575
345 9 3,105 1,071,225
385 4 1,540 592,900

Total 50 15,250 4,728,050

Then, substitution into the formula yields

x = 15,250
50

= 305.0

and

s2 = 4,728,050 − 15,250 2/ 50
49

= 1,567.35 so s = 39.6

For comparison, the original data have mean = 305.6 and standard deviation = 37.0.
j
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Exercises
2.27 In each of the following situations, should your value

be near the average or an outlier? If an outlier, should
it be too large or too small?

(a) Income on your starting job

(b) Your score on the final exam in a physics class

(c) Your weight in 10 years

2.28 In each of the following situations, should your value
be near the average or an outlier? If outlier, should it
be too large or too small?

(a) The time you take to complete a lab assignment
next week

(b) Your white blood cell count

2.29 Is the influence of a single outlier greater on the mean
or the median? Explain.

2.30 Is the influence of a single outlier greater on the sample
range or the interquartile range? Explain.

2.31 Referring to Exercise 1.8 in Chapter 1, we see that
the sample of 4 deviations (observation − specifica-
tion) during the second hour for a critical crank-bore
diameter is

−6 1 −4 −3

ten-thousandths of an inch. For these 4 deviations

(a) calculate the sample mean x

(b) calculate the sample standard deviation s

(c) On average, is the hole too large or too small?

2.32 At the end of 2012, nine skyscrapers in the world were
over 300 meters tall. The ordered values of height are

366 381 442 452 484 492 508 601 828

The tallest is in Dubai.

(a) Calculate the sample mean

(b) Drop the largest value and re-calculate the mean.

(c) Comment on effect of dropping the single very
large value.

2.33 Engineers3 are developing a miniaturized robotic cap-
sule for exploration of a human gastrointestinal tract.
One novel solution uses motor-driven legs. The engi-
neers’ best design worked for a few trials, and then
debris covered the tip of the leg and performance got

3M. Quirini and S. Scapellato, Design and fabrication of a mo-
tor legged capsule for the active exploration of the gastrointesti-
nal tract. IEEE/ASME Transactions on Mechatronics (2008) 13,
169–179.

worse. After cleaning, the next trial resulted in

35 37 38 34 30 24 13

distances covered (mm/min).

(a) Calculate the sample mean distance.

(b) Does the sample mean provide a good summary
of these trials? If not, write a sentence or two to
summarize more accurately.

2.34 A contract for the maintenance of a leading manufac-
turer’s computers was given to a team of specialists.
After six months, the supervisor of the team felt that
computer performance could be improved by modify-
ing the existing IC board. To document the current sta-
tus, the team collected data on the number of IC board
failures. Use the data below to:

(a) calculate the sample mean x,

(b) calculate the sample standard deviation s.

Number of IC board failures:

12 3 8 6 19 1 2 5
1 11 14 3 13 2 9 8
2 1 4 13 3 11 9 15

14 5 12 7 6 16 10 0

2.35 If the mean annual compensation paid to the chief ex-
ecutives of three engineering firms is $175,000, can
one of them receive $550,000?

2.36 Records show that the normal daily precipitation for
each month in the Gobi desert, Asia is 1, 1, 2, 4, 7,
15, 29, 27, 10, 3, 2 and 1 mm. Verify that the mean
of these figures is 8.5 and comment on the claim that
the average daily precipitation is a very comfortable
8.5 mm.

2.37 The output of an instrument is often a waveform.
With the goal of developing a numerical measure of
closeness, scientists asked 11 experts to look at two
waveforms on the same graph and give a number be-
tween 0 and 1 to quantify how well the two wave-
forms agree.4 The agreement numbers for one pair of
waveforms are

0.50 0.40 0.04 0.45 0.65 0.40 0.20 0.30 0.60 0.45

(a) Calculate the sample mean x.

(b) Calculate sample standard deviation s.

4L. Schwer, Validation metrics for response histories: Perspec-
tives and case studies. Engineering with Computers 23 (2007),
295–309.
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2.38 With reference to the preceding exercise, find s using

(a) the formula that defines s;

(b) the handheld calculator formula for s.

2.39 Meat products are regularly monitored for freshness.
A trained inspector selects a sample of the product and
assigns an offensive smell score between 1 and 7 where
1 is very fresh. The resulting offensive smell scores, for
each of 16 samples, are (Courtesy of David Brauch)

3.2 3.9 1.7 5.0 1.9 2.6 2.4 5.3
1.0 2.7 3.8 5.2 1.0 6.3 3.3 4.3

(a) Find the mean.

(b) Find the median.

(c) Draw a boxplot.

2.40 With reference to Exercise 2.31, find s2 using

(a) the formula that defines s2;

(b) the handheld calculator formula for s2.

2.41 The Aerokopter AK1-3 is an ultra-lightweight manned
kit helicopter with a high rotor tip speed. A sample
of 8 measurements of speed, in meters per second,
yielded

204 208 205 211 207 201 201 203

Find the mean and quartiles for this sample.

2.42 For the five observations 8 2 10 6 9

(a) calculate the deviations ( xi − x ) and check that
they add to 0.

(b) calculate the variance and the standard deviation.

2.43 With reference to Exercise 2.14 on page 34, draw a
boxplot.

2.44 A factory experiencing a board-solder defect problem
with an LED panel board product tested each board
manufactured for LED failure. Data were collected on
the area of the board on which LEDs were soldered for
8 bad panels and 8 good panels that passed the failure
test.

Failure 32.5 34.5 33.5 36.5 34.0 32.25 33.75 35.25

(a) Calculate the sample mean x.

(b) Calculate the sample standard deviation s.

2.45 Refer to Exercise 2.44. The measurements for the
8 panels that did not fail were

Good 33.5 32.25 34.75 34.25 35.5 33.0 36.25 35.75

(a) Calculate the sample mean x.

(b) Calculate the sample standard deviation s.

(c) Does there appear to be a major difference in
board area between panels in which LEDs failed
and those in which LEDs did not?

2.46 Find the mean and the standard deviation of the 20 hu-
midity readings on page 31 by using

(a) the raw (ungrouped) data

(b) the distribution obtained in that example

2.47 Use the distribution in Exercise 2.10 on page 32
to find the mean and the variance of the nanopillar
diameters.

2.48 Use the distribution obtained in Exercise 2.12 on page
33 to find the mean and the standard deviation of
the particle sizes. Also determine the coefficient of
variation.

2.49 Use the distribution obtained in Exercise 2.14 on
page 33 to find the coefficient of variation of the tem-
perature data.

2.50 Show that

n∑
i=1

( xi − x ) = 0

for any set of observations x1, x2, . . . , xn.

2.51 Show that the computing formula for s2 on page 44 is
equivalent to the one used to define s2 on page 37.

2.52 If data are coded so that xi = c · ui + a, show that
x = c · u + a and sx = | c | · su.

2.53 Median of grouped data To find the median of a dis-
tribution obtained for n observations, we first deter-
mine the class into which the median must fall. Then, if
there are j values in this class and k values below it, the
median is located (n/2) − k

j of the way into this class,

and to obtain the median we multiply this fraction by
the class interval and add the result to the lower bound-
ary of the class into which the median must fall. This
method is based on the assumption that the observa-
tions in each class are “spread uniformly” throughout
the class interval, and this is why we count

n
2

of the

observations instead of
n + 1

2
as on page 35.

To illustrate, let us refer to the nanopillar height
data on page 25 and the frequency distribution on
page 26. Since n = 50, it can be seen that the median
must fall in class (285, 325], which contains j = 23
observations. The class has width 40 and there are
k = 3 + 11 = 14 values below it, so the median is

285 + 25 − 14
23

× 40 = 264.13

(a) Use the distribution obtained in Exercise 2.10 on
page 32 to find the median of the grouped nanopil-
lar diameters.

(b) Use the distribution obtained in Exercise 2.12 on
page 33 to find the median of the grouped particle
sizes.
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2.54 For each of the following distributions, decide whether
it is possible to find the mean and whether it is possible
to find the median. Explain your answers.

(a) Grade Frequency

40–49 5
50–59 18
60–69 27
70–79 15
80–89 6

(b) IQ Frequency

less than 90 3
90–99 14

100–109 22
110–119 19

more than 119 7

(c) Weight Frequency

110 or less 41
101–110 13
111–120 8
121–130 3
131–140 1

2.55 To find the first and third quartiles Q1 and Q3 for
grouped data, we proceed as in Exercise 2.53, but
count n

4 and 3 n
4 of the observations instead of n

2 .

(a) With reference to the distribution of the nanopillar
height data on page 25 and the frequency distribu-
tion on page 26, find Q1, Q3, and the interquartile
range.

(b) Find Q1 and Q3 for the distribution of the particle
size data obtained in Exercise 2.12.

2.56 If k sets of data consist, respectively, of n1, n2, . . . , nk
observations and have the means x1, x2, . . . , xk, then
the overall mean of all the data is given by the formula

x =
∑k

i=1 ni xi∑k
i=1 ni

(a) There are 15 students in semester I, 25 students in
semester II and 16 students in semester III in an
engineering program. If the average attendance of
students is 82, 74, and 79 in semesters I, II and
III respectively, what is the mean for the entire
program?

(b) The average monthly expenses on repairs of
machines in four factories are $1,800, $4,200,
$12,000 and $800. If the number of machines in
these factories is 12, 18, 42, and 8 respectively,
find the average amount spent on repairs of these
80 machines.

2.57 The formula for the preceding exercise is a special case
of the following formula for the weighted mean:

xw =

k∑
i=1

wi xi

k∑
i=1

wi

where wi is a weight indicating the relative importance
of the ith observation.

(a) If an instructor counts the final examination in a
course four times as much as each 1-hour exam-
ination, what is the weighted average grade of a
student who received grades of 69, 75, 56, and 72
in four 1-hour examinations and a final examina-
tion grade of 78?

(b) From 2010 to 2015, the cost of food in a cer-
tain city increased by 60%, the cost of housing
increased by 30%, and the cost of transportation
increased by 40%. If the average salaried worker
spent 24% of his or her income on food, 33% on
housing, and 15% on transportation, what is the
combined percentage increase in the total cost of
these items.

2.58 Modern computer software programs have come a
long way toward removing the tedium of calculating
statistics. MINITAB is one common and easy-to-use
program. We illustrate the use of the computer us-
ing MINITAB commands. Other easy-to-use programs
have a quite similar command structure.

The lumber used in the construction of buildings
must be monitored for strength. Data for the strength
of 2 × 4 pieces of lumber in pounds per square inch
are in the file 2-58.TXT. We give the basic commands
that calculate n, x, and s as well as the quartiles.

The session commands require the data to be set
in the first column, C1, of the MINITAB work sheet.
The command for creating a boxplot is also included.

Data in 2-58.TXT

strength

Dialog box:

Stat> Basic Statistics > Descriptive Statistics

Type strength in Variables.

Click OK.

Output (partial)
Variable N Mean Median StDev
Strength 30 1908.8 1863.0 327.1

Variable Minimum Maximum Q1 Q3
Strength 1325.0 2983.0 1711.5 2071.8
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Figure 2.17
MINITAB 14 output

1600 2000 2400 2800

Summary for Strength

Mean 1908.8
StDev 327.1
Variance 107004.3
Skewness 1.11841
Kurtosis 2.88335
N 30
Minimum 1325.0
1st Quartile 1711.5
Median 1863.0
3rd Quartile 2071.8
Maximum 2983.0

Use MINITAB, or some other statistical package, to
find x and s for

(a) the decay times on page 156

(b) the interrequest times on page 29

2.59 (Further MINITAB calculation and graphs.) With the
observations on the strength (in pounds per square
inch) of 2 × 4 pieces of lumber already set in C1,
the sequence of choices and clicks produces an even
more complete summary (see Figure 2.17).

Stat> Basic Statistics > Graphical Summary

Type strength in Variables. Click OK.

The ordered strength data are

1325 1419 1490 1633 1645 1655 1710 1712 1725 1727 1745
1828 1840 1856 1859 1867 1889 1899 1943 1954 1976 2046
2061 2104 2168 2199 2276 2326 2403 2983

From the ordered data

(a) obtain the quartiles

(b) construct a histogram and locate the mean, me-
dian, Q1, and Q3 on the horizontal axes

(c) repeat parts (a) and (b) with the aluminum alloy
data on page 29.

2.8 A Case Study: Problems with Aggregating Data
As circuit boards and other components move through a company’s surface mount
technology assembly line, a significant amount of data is collected for each assem-
bly. The data (courtesy of Don Ermer) are recorded at several stages of manufacture
in a serial tracking database by means of computer terminals located throughout the
factory. The data include the board serial number, the type of defect, number of de-
fects, and their location. The challenge here is to transform a large amount of data
into manageable and useful information. When there is a variety of products and lots
of data are collected on each, record management and the extraction of appropriate
data for product improvement must be done well.

Originally, an attempt was made to understand this large database by aggregat-
ing, or grouping together, data from all products and performing an analysis of the
data as if it were one product! This was a poor practice that decreased the resolution
of the information obtained from the database. The products on the assembly line
ranged in complexity, maturity, method of processing, and lot size.

To see the difficulties caused by aggregation, consider a typical week’s pro-
duction, where 100 printed circuit boards of Product A were produced, 40 boards
of Product B, and 60 boards of Product C. Following a wave-soldering process, a
total of 400 solder defects was reported. This translates to an overall average of
400/200 = 2 defects per board. It was this company’s practice to circulate the
weekly aggregate average throughout the factory floor for review and comment.
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It was then the operator’s responsibility to take action according to the misleading
report. Over time, it became apparent that this process was ineffective for improving
quality.

However, further analysis of this data on a product-by-product basis revealed
that products A, B, and C actually contributed 151, 231, and 18 defects. Thus, the
number of defects per board was 1.51, 5.78, and 0.30 for products A, B, and C, re-
spectively. Figure 2.18 correctly shows the average number of defects. Product C has
a significantly lower defect rate and Product B has a significantly higher defect rate
relative to the incorrect aggregated average. These latter are also the more complex
boards.

Figure 2.18
Average number of defects per
product type
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These data concern the number of defects that occurred when boards were wave-
soldered after an assembly stage. The next step was to implement control charts for
the number of defects for each of the three products. The numbers of defects for
Product B were

10 8 8 4 6 8 8 10 6 7 4 2 4 5 5
5 2 11 6 6 5 7 3 4 3 2 6 5 1 7
3 1 1 5 4 5 12 13 11 8

The appropriate control chart is a time plot where the serial numbers of the product
or sample are on the horizontal axis and the corresponding number of defects on
the vertical axis. In this C-chart, the central line labeled C is the average number of
defects over all cases in the plot. The dashed lines are the control limits set at three
standard deviations about the central line. (For reasons explained in Section 15.6,
we use

√
C rather than s when the data are numbers of defects.)

LCL = C − 3
√

C

UCL = C + 3
√

C

Figure 2.19(a) gives a C-chart constructed for Product B, but where the centerline is
incorrectly calculated from the aggregated data is C = 2.0. This is far too low and
so is the upper control limit 6.24. The lower control limit is negative so we use 0. It
looks like a great many of the observations are out of control because they exceed
the upper control limit.

When the C-chart is correctly constructed on the basis of data from Product B
alone, the centerline is C = 231/40 = 5.775 and the upper control limit is 12.98.
The lower control limit is again negative so we use 0. From Figure 2.19(b), the
correct C-chart, the wave soldering process for Product B appears to be in control
except for time 38 when 13 defects were observed.
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Figure 2.19
C-charts for defects
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With the data segregated into products, separate charts were constructed for
each of the three products. With this new outlook on data interpretation, a number of
improvement opportunities surfaced that were previously disguised by aggregation.
For example, by reducing the dimensions of an electrical pad, a significant reduction
was achieved in the number of solder bridges between pins. This same design change
was added to all of the board specifications and improvements were obtained on all
products.

In summary, the aggregation of data from different products, or more generally
from different sources, can lead to incorrect conclusions and mask opportunities for
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quality improvement. Segregating data by product, although more time-consuming
initially, can lead to significant reduction in waste and manufacturing costs.

Do’s and Don’ts

Do’s
1. Graph the data as a dot diagram or histogram to assess the overall pattern

of data.

2. Calculate the summary statistics—sample mean, standard deviation, and
quartiles—to describe the data set.

Don’ts
1. Don’t routinely calculate summary statistics without identifying unusual

observations which may have undue influence on the values of the statistics.

Review Exercises
2.60 From 1,500 wall clocks inspected by a manufacturer,

the following defects were recorded.

hands touch each other 112
defective gears 16
faulty machinery 18
rotating pin 6
others 3

Create a Pareto chart.

2.61 Create

(a) a frequency table of the aluminum alloy strength
data on page 29 using the classes [66.0, 67.5),
[67.5, 69.0), [69.0, 70.5), [70.5, 72.0), [72.0,
73.5), [73.5, 75.0), [75.0, 76.5), where the right-
hand endpoint is excluded

(b) a histogram using the frequency table in part (a)

2.62 Create

(a) a frequency table of the interrequest time data
on page 29 using the intervals [0, 2,500),
[2,500, 5,000), [5,000, 10,000), [10,000, 20,000),
[20,000, 40,000), [40,000, 60,000), [60,000,
80,000), where the left-hand endpoint is included
but the right-hand endpoint is not

(b) a histogram using the frequency table in part (a)
(Note that the intervals are unequal, so make the
height of the rectangle equal to relative frequency
divided by width.)

2.63 Direct evidence of Newton’s universal law of grav-
itation was provided from a renowned experiment
by Henry Cavendish (1731–1810). In the experiment,
masses of objects were determined by weighing, and
the measured force of attraction was used to calculate

the density of the earth. The values of the earth’s
density, in time order by row, are

5.36 5.29 5.58 5.65 5.57 5.53 5.62 5.29
5.44 5.34 5.79 5.10 5.27 5.39 5.42 5.47
5.63 5.34 5.46 5.30 5.75 5.68 5.85

(Source: Philosophical Transactions 17 (1798); 469.)

(a) Find the mean and standard deviation.

(b) Find the median, Q1, and Q3.

(c) Plot the observations versus time order. Is there
any obvious trend?

2.64 J. J. Thomson (1856–1940) discovered the electron
by isolating negatively charged particles for which he
could measure the mass/charge ratio. This ratio ap-
peared to be constant over a wide range of experimen-
tal conditions and, consequently, could be a charac-
teristic of a new particle. His observations, from two
different cathode-ray tubes that used air as the gas, are

Tube 1 0.57 0.34 0.43 0.32 0.48 0.40 0.40

Tube 2 0.53 0.47 0.47 0.51 0.63 0.61 0.48

(Source: Philosophical Magazine 44; 5 (1897): 293.)

(a) Draw a dot diagram with solid dots for Tube 1 ob-
servations and circles for Tube 2 observations.

(b) Calculate the mean and standard deviation for the
Tube 1 observations.

(c) Calculate the mean and standard deviation for the
Tube 2 observations.

2.65 With reference to Exercise 2.64,

(a) calculate the median, maximum, minimum, and
range for Tube 1 observations;
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(b) calculate the median, maximum, minimum, and
range for the Tube 2 observations.

2.66 A. A. Michelson (1852–1931) made many series of
measurements of the speed of light. Using a revolving
mirror technique, he obtained

12 30 30 27 30 39 18 27 48 24 18
for the differences

(velocity of light in air) − (229,700) km/s

(Source: The Astrophysical Journal 65 (1927): 11.)

(a) Create a dot diagram.

(b) Find the median and the mean. Locate both on the
dot diagram.

(c) Find the variance and standard deviation.

2.67 With reference to Exercise 2.66,

(a) find the quartiles;

(b) find the minimum, maximum, range, and in-
terquartile range;

(c) create a boxplot.

2.68 An electric engineer monitored the flow of current in a
circuit by measuring the flow of electrons and the re-
sistance of the medium. Over 11 hours, she observed
a flow of

5 12 8 16 13 10 9 11 14 7 8

amperes.

(a) Create a dot diagram.

(b) Find the median and the mean. Locate both on the
dot diagram.

(c) Find the variance and the standard deviation.

2.69 With reference to Exercise 2.68,

(a) find the quartiles;

(b) find the minimum, maximum, range, and inter-
quartile range;

(c) construct a boxplot.

2.70 The weight (grams) of meat in a pizza product pro-
duced by a large meat processor is measured for a
sample of n = 20 packages. The ordered values are
(Courtesy of Dave Brauch)

16.12 16.77 16.87 16.91 16.96 16.99 17.02
17.19 17.20 17.26 17.36 17.39 17.39 17.62
17.63 17.76 17.85 17.86 17.91 19.00

(a) find the quartiles;

(b) find the minimum, maximum, range, and in-
terquartile range;

(c) find the 10th percentile and 20th percentile.

2.71 With reference to Exercise 2.70, construct

(a) a boxplot.

(b) a modified boxplot.

2.72 With reference to the aluminum-alloy strength data in
Example 7, make a stem-and-leaf display.

2.73 During the laying of gas pipelines, the depth of the
pipeline (in mm) must be controlled. One service
provider recorded depths of

418 428 431 420 412 425 423
433 417 420 410 431 429 425

(a) Find the sample mean.

(b) Find the sample standard deviation.

(c) Find the coefficient of variation.

(d) Measurements by another service provider have
a sample mean of 425 and standard deviation of
6.36. Which provider’s set of measurements is rel-
atively more variable?

2.74 With reference to the lumber-strength data in
Exercise 2.59, the statistical software package SAS
produced the output in Figure 2.20. Using this output,

(a) identify the mean and standard deviation and
compare these answers with the values given in
Exercise 2.59.

(b) Create a boxplot.

The UNIVARIATE Procedure
Variable: Strength

Moments

N 30 Sum Weights 30
Mean 1908.76667 Sum Observations 57263
Std Deviation 327.115047 Variance 107004.254

Basic Statistical Measures

Location Variability

Mean 1908.767 Std Deviation 327.11505
Median 1863.000 Variance 107004

Range 1658
Interquartile Range 349.00000

Quantiles (Definition 5)

Level Quantile
100% Max 2983.0
99% 2983.0
95% 2403.0
90% 2301.0
75% Q3 2061.0
50% Median 1863.0
25% Q1 1712.0
10% 1561.5
5% 1419.0
1% 1325.0
0% Min 1325.0

Figure 2.20 Selected SAS output to describe
the lumber strength data from Exercise 2.59

2.75 An engineer was assigned the task of calculating
the average time spent by vehicles waiting at traffic
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signals. The signal timing (in seconds) would then be
modified to reduce the pressure of traffic. The obser-
vations of average waiting time during the month of
January are:

58 63 58 12 24 47
46 29 42 68 33
43 37 39 52 35
44 35 49 36 64
53 28 55 27 53
55 64 37 31 61

(a) Obtain the quartiles.

(b) Obtain the 80th percentile.

(c) Construct a histogram.

2.76 The National Highway Traffic Safety Administration
reported the relative speed (rounded to the nearest
5 mph) of automobiles involved in accidents one year.
The percentages at different speeds were

20 mph or less 2.0%
25 or 30 mph 29.7%
35 or 40 mph 30.4%
45 or 50 mph 16.5%
55 mph 19.2%
60 or 65 mph 2.2%

(a) From these data, can we conclude that it is safe to
drive at high speeds? Why or why not?

(b) Why do most accidents occur in the 35 or 40 mph
and in the 25 or 30 mph ranges?

(c) Construct a density histogram using the end-
points 0, 22.5, 32.5, 42.5, 52.5, 57.5, 67.5 for the
intervals.

2.77 Given a five-number summary,

minimum Q1 Q2 Q3 maximum

is it possible to determine whether or not an outlier is
present? Explain.

2.78 Given a stem-and-leaf display, is it possible to deter-
mine whether or not an outlier is present? Explain.

2.79 Traversing the same section of interstate highway on
11 different days, a driver recorded the number of cars
pulled over by the highway patrol:

0 1 3 0 2 0 1 0 2 1 0

(a) Create a dot plot.

(b) There is a long tail to the right. You might expect
the sample mean to be larger than the median. Cal-
culate the sample mean and median and compare
the two measures of center. Comment.

2.80 An experimental study of the atomization characteris-
tics of biodiesel fuel5 was aimed at reducing the pol-
lution produced by diesel engines. Biodiesel fuel is
recyclable and has low emission characteristics. One
aspect of the study is the droplet size (μm) injected
into the engine, at a fixed distance from the nozzle.
From data provided by the authors on droplet size,
we consider a sample of size 41 that has already been
ordered.

2.1 2.2 2.2 2.3 2.3 2.4 2.5 2.5 2.5
2.8 2.9 2.9 2.9 3.0 3.1 3.1 3.2 3.3
3.3 3.3 3.4 3.5 3.6 3.6 3.6 3.7 3.7
4.0 4.2 4.5 4.9 5.1 5.2 5.3 5.7 6.0
6.1 7.1 7.8 7.9 8.9

(a) Group these droplet sizes and obtain a frequency
table using [2, 3), [3, 4), [4, 5) as the first three
classes, but try larger classes for the other cases.
Here the left-hand endpoint is included but the
right-hand endpoint is not.

(b) Construct a density histogram.

(c) Obtain x and s2.

(d) Obtain the quartiles.

5H. Kim, H. Suh, S. Park, and C. Lee, An experimental and nu-
merical investigation of atomization characteristics of biodiesel,
dimethyl ether, and biodiesel-ethanol blended fuel, Energy and
Fuels, 22 (2008), 2091–2098.

Key Terms
Absolute variation 38
Arithmetic mean 34
Bar chart 22
Boxplot 41
Categorical distribution 24
Class boundary 26
Class frequency 25
Class interval 26
Class limit 24
Class mark 26

Coefficient of variation 39
Cumulative distribution 26
Density histogram 29
Deviation from the mean 37
Dot diagram 23
Double-stem display 34
Empirical cumulative distribution 33
Endpoint convention 25
Exploratory data analysis 32
Five-stem display 34

Frequency distribution 24
Histogram 27
Interquartile range 41
Leaf 31
Maximum 41
Mean 35
Median 34
Minimum 41
Modified boxplot 41
Numerical distribution 24
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Ogive 30
Outlier 24
Pareto diagram 22
Percentile 39
Pie chart 33
Quartile 40

Range 41
Relative variation 38
Sample mean 35
Sample median 35
Sample variance 37
Standard deviation 38

Stem 31
Stem-and-leaf display 31
Stem label 31
Variance 37
Weighted mean 48
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I n the study of probability there are basically three kinds of questions: (1) What do
we mean when we say that the probability of an event is, say, 0.50, 0.02, or 0.81?
(2) How are the numbers we call probabilities determined, or measured in actual prac-

tice? (3) What are the mathematical rules that probabilities must obey?
After some mathematical preliminaries in Sections 3.1 and 3.2, we study the first

two kinds of questions in Section 3.3 and the third kind of question in Sections 3.4
through 3.7.

3.1 Sample Spaces and Events
Probability allows us to quantify the variability in the outcome of any experiment
whose exact outcome cannot be predicted with certainty. However, before we can
introduce probability, it is necessary to specify the space of outcomes and the events
on which it will be defined.

In statistics, a set of all possible outcomes of an experiment is called a sample
space, because it consists of all the things that can happen when one takes a sample.
Sample spaces are usually denoted by a distinctive font S. To avoid misunderstand-
ings about the words experiment and outcome as we have used them here, it should
be understood that statisticians use these terms in a very wide sense. An experiment
may consist of the simple process of noting whether a switch is turned on or off; it
may consist of determining the time it takes a car to accelerate to 30 miles per hour;
or it may consist of the complicated process of finding the mass of a sub atomic
particle. Thus, the outcome of an experiment may be a simple choice between two
possibilities: it may be the result of a direct measurement or count, or it may be an
answer obtained after extensive measurements and calculations.

When we study the outcomes of an experiment, we usually identify the various
possibilities with numbers, points, or some other kinds of symbols. For instance, if
four contractors bid on a highway construction job and we let a, b, c, and d denote
that it is awarded to Mr. Adam, Mrs. Brown, Mr. Clark, or Ms. Dean, then the sample
space for this experiment is the set S = {a, b, c, d}.

Also, if a government agency must decide where to locate two new computer
research facilities and that (for a certain purpose) it is of interest to indicate how
many of them will be located in Texas and how many in California, we can write the
sample space as

S = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}
where the first coordinate is the number of research facilities that will be located
in Texas and the second coordinate is the number that will be located in California.
Geometrically, this sample space may be pictured as in Figure 3.1, from which it is
apparent, for example, that in two of the six possibilities Texas and California will
get an equal number of the new research facilities.



Sec 3.1 Sample Spaces and Events 57

Figure 3.1
Sample space for the number
of new computer research
facilities to be located in Texas
and in California
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The use of points rather than letters or numbers has the advantage that it makes
it easier to visualize the various possibilities, and perhaps discover some special
features which several of the outcomes may have in common.

Generally, sample spaces are classified according to the number of elements
(points) that they contain. In the two preceding examples, the sample spaces had
four and six elements, and they are both referred to as finite sample spaces. Other
examples of finite sample spaces are the one for the various ways in which a pres-
ident and a vice president can be selected from among the 25 members of a union
local and the one for the various ways in which a student can answer the 12 ques-
tions on a true-false test. As we see on page 61, the first of these sample spaces has
600 elements and the other has 4,096.

The following are examples of sample spaces that are not finite. If persons
checking the nitrogen-oxide emission of cars are interested in the number of cars
they have to inspect before they observe the first one that does not meet government
regulations, it could be the first, the second, . . . , the fiftieth, . . . , and for all we know
they may have to check thousands of cars before they find one that does not meet
government regulations. Not knowing how far they may have to go, it is appropriate
in an example like this to take as the sample space the whole set of natural numbers,
of which there is a countable infinity. To go one step further, if they were interested
in the nitrogen oxide emission of a given car in grams per mile, the sample space
would have to consist of all the points on a continuous scale (a certain interval on
the line of real numbers), of which there is a continuum.

In general, a sample space is said to be a discrete sample space if it has finitely
many or a countable infinity of elements. If the elements (points) of a sample space
constitute a continuum—for example, all the points on a line, all the points on a line
segment, or all the points in a plane—the sample space is said to be a continuous
sample space.

In the remainder of this chapter we shall consider only discrete and mainly finite
sample spaces.

In statistics, any subset of a sample space is called an event. By subset we mean
any part of a set, including the whole set and, trivially, a set called the empty set
and denoted by φ, which has no elements at all. For instance, with reference to
Figure 3.1,

C = {(1, 0), (0, 1)}
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is the event that, between them, Texas and California will get one of the two research
facilities,

D = {(0, 0), (0, 1), (0, 2)}
is the event that Texas will not get either of the two research facilities, and

E = {(0, 0), (1, 1)}
is the event that Texas and California will get an equal number of the facilities. Note
that events C and E have no elements in common—they are mutually exclusive
events.

In many probability problems we are interested in events which can be expressed
in terms of two or more events by forming unions, intersections, and complements.
Although the reader must surely be familiar with these terms, let us review briefly
that if A and B are any two sets in a sample space S, their union A ∪ B is the subset
of S that contains all elements that are either in A, in B, or in both; their intersection
A ∩ B is the subset of S that contains all elements that are in both A and B; and the
complement A of A is the subset of S that contains all the elements of S that are
not in A.

EXAMPLE 1 Combining events by union, intersection, and complement
With reference to the sample space of Figure 3.1 and the events C, D, and E just
defined, list the outcomes comprising each of the following events and also express
the events in words:

(a) C ∪ E;

(b) C ∩ D;
(c) D.

Solution (a) Since C ∪ E contains all the elements that are in C, in E, or in both,

C ∪ E = {(1, 0), (0, 1), (0, 0), (1, 1)}
is the event that neither Texas nor California will get both of the new research
facilities.

(b) Since C ∩ D contains all the elements that are in both C and D,

C ∩ D = {(0, 1)}
is the event that Texas will not get either of the two new facilities and
California will get one.

(c) Since D contains all the elements of the sample space that are not in D,

D = {(1, 0), (1, 1), (2, 0)}
is the event that Texas will get at least one of the new computer research
facilities. j

Sample spaces and events, particularly relationships among events, are often
depicted by means of Venn diagrams like those of Figures 3.2–3.4. In each case
the sample space is represented by a rectangle, whereas events are represented by
regions within the rectangle, usually by circles or parts of circles. The shaded regions
of the four Venn diagrams of Figure 3.2 represent event A, the complement of event
A, the union of events A and B, and the intersection of events A and B.
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Figure 3.2
Venn diagrams showing
complement, union, and
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EXAMPLE 2 Relation of regions in Venn diagrams to events
If A is the event that a certain student is taking a course in calculus and B is the event
that the student is taking a course in applied mechanics, what events are represented
by the shaded regions of the four Venn diagrams of Figure 3.2?

Solution The shaded region of the first diagram represents the event that the student is taking
a course in calculus. That of the second diagram represents the event that the student
is not taking a course in calculus. The shaded area of the third diagram represents
the event that the student is taking a course in calculus and/or a course in applied
mechanics. Finally, that of the fourth diagram represents the event that the student
is taking a course in calculus as well as a course in applied mechanics. j

Venn diagrams are often used to verify relationships among sets, thus making
it unnecessary to give formal proofs based on the algebra of sets. To illustrate, let
us show that A ∪ B = A ∩ B, which expresses the fact that the complement of the
union of two sets equals the intersection of their complements. To begin, note that
the shaded region of the first Venn diagram of Figure 3.3 represents the set A ∪ B
(compare this diagram with the third diagram of Figure 3.2). The cross-hatched re-
gion of the second Venn diagram of Figure 3.3 was obtained by shading the region
representing A with lines going in one direction and that representing B with lines
going in another direction. Thus, the cross-hatched region represents the intersec-
tion of A and B. Clearly, the cross-hatched area is identical with the shaded region
of the first Venn diagram of Figure 3.3.

When we deal with three events, we draw the circles as in Figure 3.4. In this
diagram, the circles divide the sample space into eight regions, numbered 1 through
8, and it is easy to determine whether the corresponding events are parts of A or A,

B or B, and C or C.

Figure 3.3
Use of Venn diagrams to show
that A ∪ B = A ∩ B

A B

(A ø B) A ù B

A B

SS
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Figure 3.4
Venn diagram
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EXAMPLE 3 Relating events to regions of the Venn diagram
A manufacturer of small motors is concerned with three major types of defects.
If A is the event that the shaft size is too large, B is the event that the windings
are improper, and C is the event that the electrical connections are unsatisfactory,
express in words what events are represented by the following regions of the Venn
diagram of Figure 3.4:

(a) region 2

(b) regions 1 and 3 together

(c) regions 3, 5, 6, and 8 together

Solution (a) Since this region is contained in A and B but not in C, it represents the event
that the shaft is too large and the windings improper, but the electrical
connections are satisfactory.

(b) Since this region is common to B and C, it represents the event that the
windings are improper and the electrical connections are unsatisfactory.

(c) Since this is the entire region outside A, it represents the event that the shaft
size is not too large. j

3.2 Counting
At times it can be quite difficult, or at least tedious, to determine the number of ele-
ments in a finite sample space by direct enumeration. To illustrate, suppose all newer
used cars in a large city can be classified as low, medium, or high current mileage;
moderate or high priced; and be inexpensive, average, or expensive to operate. In
how many ways can a used car be categorized?

Clearly, there are many possibilities; a used car can have low current mileage, be
moderately priced, and be inexpensive to operate; have neither low or high mileage,
be high priced, and be average cost to operate; and so on. Continuing in this way,
we may be able to list all 18 possibilities, but the chances are that we will omit at
least one or two.

To handle this kind of problem systematically, it helps to draw a tree diagram
like that of Figure 3.5, where the three alternatives for current mileage are denoted
by M1, M2, and M3, where M1 is low mileage. The price is either P1 or P2, where
P1 is moderate; and the three alternatives for operating costs are denoted by C1, C2,
and C3, where C1 is inexpensive. Following a given path from left to right along
the branches of the tree, we obtain a particular categorization, namely a particular
element of the sample space. It can be seen that all together there are 18 possibilities.

This result could also have been obtained by observing that there are three
M-branches, that each M-branch forks into two P-branches, and that each P-branch
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Figure 3.5
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forks into three C-branches. Thus, there are 3 · 2 · 3 = 18 combinations of branches,
or paths. This result is a special case of the following theorem often called the
fundamental theorem of counting.

Theorem 3.1 If sets A1, A2, · · · , Ak contain, respectively, n1, n2, · · · , nk
elements, there are n1 · n2 · · · nk ways of choosing first an element of A1, then
an element of A2, · · · , and finally an element of Ak.

Multiplication of choices

In our example we had n1 = 3, n2 = 2, and n3 = 3, and hence, 3 · 2 · 3 = 18
possibilities.

EXAMPLE 4 The multiplication rule for k = 2 stages of choices
In how many different ways can a union local with a membership of 25 choose a
vice president and a president?

Solution Since the vice president can be chosen in 25 ways and, subsequently, the president
in 24 ways, there are altogether 25 · 24 = 600 ways in which the whole choice can
be made. j

EXAMPLE 5 The multiplication rule with k = 12 stages of choices
If a test consists of 12 true-false questions, in how many different ways can a student
mark the test paper with one answer to each question?
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Solution Since each question can be answered in two ways, there are all together

2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 212 = 4,096 possibilities j

EXAMPLE 6 Determining the size of an experiment
A manufacturer is experiencing difficulty getting consistent readings of tensile
strength between three machines located on the production floor, research lab, and
quality control lab, respectively. There are also four possible technicians—Tom, Joe,
Ken, and Carol—who operate at least one of the test machines regularly.

(a) How many operator-machine pairs must be included in a designed experiment
where every operator tries every machine?

(b) If each operator-machine pair is required to test eight specimens, how many
test specimens are required for the entire procedure? Note: A specimen is
destroyed when its tensile strength is measured.

Solution (a) There are n1 = 4 operators and n2 = 3 machines, so 4 · 3 = 12 pairs are
required.

(b) There are n3 = 8 test specimens required for each operator-machine pair,
so 8 · 12 = 96 test specimens are required for the designed experiment. j

As in the first of these three examples, the rule for the multiplication of choices
is often used when several choices are made from one set and we are concerned
with the order in which they are made. In general, if r objects are chosen from a
set of n distinct objects, any particular arrangement, or order, of these objects is
called a permutation. For instance, 4 1 2 3 is a permutation of the first four positive
integers, and Maine, Vermont, and Connecticut is a permutation, a particular ordered
arrangement, of three of the six New England states.

To find a formula for the total number of permutations of r objects selected from
a set of n distinct objects, we observe that the first selection is made from the whole
set of n objects, the second selection is made from the n − 1 objects which remain
after the first selection has been made, . . . , and the rth selection is made from the
n − (r − 1) = n − r + 1 objects which remain after the first r − 1 selections have
been made. Therefore, by the rule for the multiplication of choices, the total number
of permutations of r objects selected from a set of n distinct objects is

nPr = n(n − 1)(n − 2) · · · (n − r + 1)

for r = 1, 2, . . . , n.
Since products of consecutive integers arise in many problems relating to per-

mutations or other kinds of special selections, it will be convenient to introduce here
the factorial notation, where 1! = 1, 2! = 2 · 1 = 2, 3! = 3 · 2 · 1 = 6, 4! =
4 · 3 · 2 · 1 = 24.

For any integer n, n factorial is defined as

n! = n(n − 1)(n − 2) · · · 2 · 1
factorial notation

Also, to make various formulas more generally applicable, we let 0! = 1 by
definition.
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To express the formula for nPr in terms of factorials, we multiply and divide by
(n − r)!, getting

nPr = n(n − 1)(n − 2) · · · (n − r + 1)(n − r)!
(n − r)!

= n!
(n − r)!

To summarize:

Number of permutations
of n objects taken r

at a time

Theorem 3.2 The number of permutations of r objects selected from a set of
n distinct objects is

nPr = n( n − 1)( n − 2) · · · ( n − r + 1)

or, in factorial notation,

nPr = n!
( n − r)!

Note that the second formula also holds for r = 0.

EXAMPLE 7 The number of ways to assemble chips in a controller
An electronic controlling mechanism requires 5 distinct, but interchangeable, mem-
ory chips. In how many ways can this mechanism be assembled

(a) by placing the 5 chips in the 5 positions within the controller?

(b) by placing 3 chips in the odd numbered positions within the controller?

Solution

(a) When all 5 chips must be placed, the answer is 5!. Alternatively, in the
permutation notation with n = 5 and r = 5, the first formula yields

5P5 = 5 · 4 · 3 · 2 · 1 = 120

and the second formula yields

5P5 = 5!
(5 − 5)!

= 5!
0!

= 5! = 120

The first formula for nPr is generally easier to use unless we can use a
calculator which directly yields factorials and/or ratios of factorials.

(b) For n = 5 chips placed in r = 3 positions, the permutation is

5P3 = 5!
2!

= 5 · 4 · 3 · 2 · 1
2 · 1

= 5 · 4 · 3 = 60

[ Using R: (a) factorial(5) (b) factorial(5) / factorial (2) ] j

There are many problems in which we must find the number of ways in which r
objects can be selected from a set of n objects, but we do not care about the order in
which the selection is made. For instance, we may want to know in how many ways
3 of 20 laboratory assistants can be chosen to assist with an experiment. In general,
there are r! permutations of any r objects we select from a set of n distinct objects.
So, the nPr permutations of r objects, selected from a set of n objects, contains each
set of r objects r! times. Therefore, to find the number of ways in which r objects can
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be selected from a set of n distinct objects, also called the number of combinations

of n objects taken r at a time and denoted by nCr or
(

n
r

)
, we divide nPr by r!

and get

Number of combinations
of n objects taken r at a

time

Theorem 3.3 The number of ways in which r objects can be selected from a
set of n distinct objects is(

n
r

)
= n(n − 1)(n − 1) · · · (n − r + 1)

r!

or, in factorial notation, (
n
r

)
= n!

r!(n − r)!

EXAMPLE 8 Evaluating a combination
In how many different ways can 3 of 18 automotive engineers be chosen for a team
to develop a new ceramic diesel engine.

Solution For n = 18 and r = 3, the first formula for
(

n
r

)
yields

(
18
3

)
= 18 · 17 · 16

3!
= 816

j

EXAMPLE 9 Selection of machines for an experiment
A calibration study needs to be conducted to see if the readings on 15 test machines
are giving similar results. In how many ways can 3 of the 15 be selected for the
initial investigation?

Solution
(

15
3

)
= 15 · 14 · 13

3 · 2 · 1
= 455 ways

Note that selecting which 3 machines to use is the same as selecting which 12 not
to include. That is, according to the second formula,(

15
12

)
= 15!

12! 3!
= 15!

3! 12!
=

(
15
3

)
j

EXAMPLE 10 The number of choices of new researchers
In how many different ways can the director of a research laboratory choose
2 chemists from among 7 applicants and 3 physicists from among 9 applicants?

Solution The 2 chemists can be chosen in
(

7
2

)
= 21 ways and the 3 physicists can be chosen

in
(

9
3

)
= 84 ways. By the multiplication rule, the whole selection can be made in

21 · 84 = 1,764 ways. j
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Exercises
3.1 A civil engineer suspects that the cement being sup-

plied for constructing a dam is adulterated. There are
three units of white cement and three units of black
cement. He will check all six for adulteration.

(a) Express each outcome using two coordinates, so
(1, 2), for example, represents the event that
one of the white cement units and two of the
black cement units are adulterated. Draw a dia-
gram similar to that of Figure 3.1 showing the 16
outcomes in the sample space.

(b) If A is the event that equally many white cement
and black cement units are adulterated, B is the
event that none of the white cement units is adul-
terated, and C is the event that fewer white cement
units are adulterated than black cement units, ex-
press each of these events symbolically by listing
its elements.

3.2 With reference to Exercise 3.1, which of the three pairs
of events, A and B, B and C, and B and C, are mutually
exclusive?

3.3 With reference to Exercise 3.1, list the outcomes com-
prising each of the following events, and also express
the events in words.

(a) A ∪ B

(b) B ∩ C

(c) B

3.4 With reference to the sample space of Figure 3.1, ex-
press each of the following events in words.

(a) F = {(1, 0), (1, 1)}
(b) G = {(0, 2), (1, 1), (2, 0)}
(c) F ∩ G

3.5 To construct sample spaces for experiments in which
we deal with non-numerical data, we often code the
various alternatives by assigning them numbers. For
instance, if an engineer is asked to rate the perfor-
mance of a new machine with respect to its replace-
ment as poor, not satisfactory, no change, satisfactory,
or excellent, we might assign these alternatives the
codes, 1, 2, 3, 4, and 5. If P = {1, 2}, Q = {4, 5},
R = {2, 3}, and S = {3, 4, 5}, express each of the fol-
lowing symbolically by listing its elements and also
in words.

(a) P ∪ R

(b) P ∩ R

(c) Q ∪ S

(d) P

3.6 With reference to Exercise 3.5, which of the pairs of
events, P and Q, Q and R, R and S, and P and S, are
mutually exclusive?

3.7 Four supervisors and 3 engineers are responsible for
work at a construction site, and at least 2 supervisors
and one engineer have to be present at all times.

(a) Using two coordinates so that (2, 1), for exam-
ple, represents the event that 2 supervisors and one
engineer are present, draw a diagram similar to
that of Figure 3.1 showing the points of the cor-
responding sample space.

(b) Describe in words the events which are repre-
sented by X = {(2, 2), (3, 3)},Y = {(2, 1), (2, 2),
(2, 3)} and Z = {(2, 1), (3, 1), (4, 1)}.

(c) With reference to part (b), express X ∪Y symbol-
ically by listing its elements, and also express this
event in words.

(d) With reference to part (b), are X and Y mutually
exclusive?

3.8 For each of the following experiments, decide whether
it would be appropriate to use a sample space which is
finite, countably infinite, or continuous.

(a) A Geiger counter, located adjacent to a building
containing a reactor, will record the total number
of alpha particles during a one-hour period.

(b) Five of the members of a professional society
with 12,600 members are chosen to serve on a
nominating committee.

(c) An experiment is conducted to measure the thick-
ness of a new synthetic silk thread in nanometers.

(d) A study is made to determine in how many of
450 airplane accidents the main cause is pilot
error.

(e) Measurements are made to determine the uranium
content of a certain ore.

(f) In a torture test, a watch is dropped a number of
times from a tall building until it stops running.

3.9 In Figure 3.6, C is the event that an ore contains copper
and U is the event that it contains uranium. Explain in

2 1 3
C U

4
S

Figure 3.6 Venn diagram for Exercises 3.9
and 3.10
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words what events are represented by regions 1, 2, 3,
and 4.

3.10 With reference to Exercise 3.9, what events are repre-
sented by
(a) regions 1 and 3 together;

(b) regions 3 and 4 together;

(c) regions 1, 2, and 3 together?

3.11 With reference to Figure 3.4, what events are repre-
sented by

(a) region 5;

(b) regions 4 and 6 together;

(c) regions 7 and 8 together;

(d) regions 1, 2, 3 and 5 together?

3.12 With reference to Figure 3.4, what regions or combi-
nations of regions represent the events that a motor
will have

(a) none of the major defects;

(b) a shaft that is large and windings improper;

(c) a shaft that is large and/or windings improper but
the electrical connections are satisfactory;

(d) a shaft that is large and the windings improper and/
or the electrical connections are unsatisfactory?

3.13 Use Venn diagrams to verify that

(a) A ∪ B = A ∩ B

(b) B ∩ (A ∪ B) = B

(c) (A ∪ B) ∩ (A ∪ B) = B

(d) A ∩ B = (A ∪ B) ∩ (A ∪ B ) ∩ (A ∪ B )

(e) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

3.14 A building inspector has to check the wiring in a
new apartment building either on Monday, Tuesday,
Wednesday, or Thursday, and at 8 a.m., 1 p.m., or 2 p.m.
Draw a tree diagram which shows the various ways in
which the inspector can schedule the inspection of the
wiring of the new apartment building.

3.15 If the five finalists in an international volleyball tourna-
ment are Spain, the United States, Uruguay, Portugal,
and Japan, draw a tree diagram that shows the various
possible first- and second-place finishers.

3.16 If a number cannot be immediately repeated, how
many different three number combinations are possi-
ble for a combination lock with numbers 0, 1, . . . , 29.

3.17 Students are offered three cooperative training pro-
grams at local companies and four training pro-
grams outside the state. Count the number of possible
training opportunities if an opportunity consists of
training at

(a) one local company or one company outside of the
state.

(b) one local company and one company outside of
the state.

3.18 You are required to choose a four digit personal identi-
fication number (PIN) for a new debit card. Each digit
is selected from 0, 1, . . . , 9. How many choices do
you have.

3.19 An Engineers Association consists of 5 civil engineers
and 5 mechanical engineers.

(a) In how many ways can a committee of 3 civil en-
gineers and 2 mechanical engineers be appointed?

(b) If 2 civil engineers disagree with each other and
refuse to be on the same committee together,
how many different ways can a committee of 3
civil engineers and 2 mechanical engineers be
formed?

3.20 If there are 9 cars in a race, in how many different
ways can they place first, second, and third?

3.21 In how many ordered ways can a television director
schedule 6 different commercials during the 6 time
slots allocated to commercials during the telecast of
the first period of a hockey game?

3.22 If among n objects k are alike and the others are all
distinct, the number of permutations of these n objects
taken all together is n!/k!.

(a) How many permutations are there of the letters of
the word class?

(b) In how many ways can the television director of
Exercise 3.21 fill the 6 time slots allocated to com-
mercials, if there are 4 different commercials, of
which a given one is to be shown 3 times while
each of the others is to be shown once?

3.23 Determine the number of ways in which a software
professional can choose 4 of 25 laptops to test a newly
designed application.

3.24 How many ways can a company select 4 candidates to
interview from a short list of 12 engineers?

3.25 A box of 15 spark plugs contains one that is defective.
In how many ways can 4 spark plugs be selected so that

(a) the defective one is selected;

(b) the defective plug is not selected?

3.26 With reference to Exercise 3.25, suppose that three of
the spark plugs are defective. In how many ways can
4 spark plugs be selected so that

(a) one of the defective plugs is selected;

(b) two of the defective plugs are selected;

(c) all three defective plugs are selected?

3.27 An engineering student has 6 different ball bearings
and 9 different gears. In how many ways can 3 ball
bearings and 3 gears be selected for an experiment on
friction in machine parts?
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3.3 Probability
So far we have studied only what is possible in a given situation. Now we go one
step further and judge also what is probable and what is improbable. Historically, the
oldest way of measuring uncertainties is the classical probability concept, which
was developed originally in connection with games of chance. It applies when all
possible outcomes are equally likely.

If there are m equally likely possibilities, of which one must occur and s are
regarded as favorable, or as a “success,” then the probability of a “success” is
given by

s
m

.

The classical probability
concept

In the application of this rule, the terms favorable and success are used rather loosely—
favorable may mean that a television set does not work and success may mean that
someone catches the flu.

EXAMPLE 11 Well-shuffled cards are equally likely to be selected
What is the probability of drawing an ace from a well-shuffled deck of 52 playing
cards?

Solution There are s = 4 aces among the m = 52 cards, so we get

s
m

= 4
52

= 1
13

j

Although equally likely possibilities are found mostly in games of chance, the
classical probability concept applies also to a great variety of situations where gam-
bling devices are used to make random selections. They occur when offices are
assigned to research assistants by lot, when laboratory animals are chosen for an
experiment so that each one has the same chance of being selected, or when washing-
machine parts are chosen for inspection so that each part produced has the same
chance of being selected.

EXAMPLE 12 Random selection results in the equally likely case
The next generation of miniaturized wireless capsules with active locomotion will
require two miniature electric1 motors to maneuver each capsule. Suppose 10 motors
have been fabricated but that, in spite of tests performed on the individual motors, 2
will not operate satisfactorily when placed into a capsule.

To fabricate a new capsule, 2 motors will be randomly selected (that is, each
pair of motors has the same chance of being selected). Find the probability that

(a) both motors will operate satisfactorily in the capsule

(b) one motor will operate satisfactorily and the other will not

Solution (a) There are
(

10
2

)
= 45 equally likely ways of choosing 2 of 10 motors, so

m = 45.

1M. Quirini et al, Design and fabrication of a motor legged capsule for the active exploration of the
gastrointestinal tract, IEEE/ASME Transactions on Mechatronics (2008), 13, 169–179.
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The number of favorable outcomes is the number of ways in which two good
motors can be selected from eight:

s =
(

8
2

)
= 28

so the probability that both motors will operate satisfactorily in the capsule is

s
m

= 28
45

or approximately 0.622.

(b) The number of favorable outcomes is the number of ways in which one
satisfactory motor and one unsatisfactory motor can be selected, or

s =
(

8
1

)(
2
1

)
= 8 · 2 = 16

It follows that the probability is
s
m

= 16
45

= 0.356 j

A major shortcoming of the classical probability concept is its limited applica-
bility, for there are many situations in which the various possibilities cannot all be
regarded as equally likely. This would be the case, for example, if we are concerned
with the question of whether it will rain the next day, whether a missile launching
will be a success, whether a newly designed engine will function for at least 1,000
hours, or whether a certain candidate will win an election.

Among the various probability concepts, most widely held is the frequency
interpretation.

The probability of an event (or outcome) is the proportion of times the event will
occur in a long run of repeated experiments.

The frequency
interpretation of

probability

If we say that the probability is 0.78 that a jet from New York to Boston will arrive on
time, we mean that such flights arrive on time 78% of the time. Also, if the Weather
Service predicts that there is a 40% chance for rain (that the probability is 0.40), this
means that under the same weather conditions it will rain 40% of the time.

We illustrate the long run behavior of relative frequency by performing an ex-
periment where an event A occurs with probability 0.4. This experiment could be as
simple of reading a random digit from Table 7W and deciding the event has occurred
if 1, 2, 3, or 4 are selected. Instead, we use computer software to generate a 1, with
probability 0.4, to indicate that A occurs and a 0 otherwise. We then repeat this ex-
periment a large number of times. After each time, or trial, we calculate the relative
frequency of A. Let rN be the relative frequency of an event A after the experiment
has been performed N times.

rN = Number of times A occurs in N trials
N

.

In our sequence of experiments, the event does occur on the first trial and third
trial but not of the second. The first three relative frequencies are then 1, 0.5, and
0.667.

Figure 3.7 displays the typical behavior of rN as the number of repetitions
grows. This relative frequency begins to stabilize for large N. Figure 3.7 actually has
two parts. Figure 3.7(a) shows the results for the first 50 trials and the fluctuations are
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Figure 3.7
Relative frequency stabilizes
after many trials.
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quite large. Figure 3.7(b) shows 1000 trials where it is clear that the fluctuations in
rN become damped with increasing N. Even with 1000 trials, the relative frequency
is approaching the probability 0.4.

This behavior of relative frequency, after many repeated trials of an experiment,
is a key fundamental in statistics. You are encouraged to conduct your own computer
based simulation experiment (See Exercise 3.100 for the MINITAB and Appendix C
for the R commands).

In accordance with the frequency interpretation of probability, we will this change
estimate the probability of an event by observing what fraction of the time similar
events have occurred in the past.

EXAMPLE 13 Long-run relative frequency approximation to probability
If records show that 294 of 300 ceramic insulators tested were able to withstand a
certain thermal shock, what is the probability that any one untested insulator will be
able to withstand the thermal shock?

Solution Among the insulators tested,
294
300

= 0.98 were able to withstand the thermal shock,

and we use this figure as an estimate of the probability. j

An alternative point of view is to interpret probabilities as personal or subjective
evaluations. Such subjective probabilities express the strength of one’s belief with
regard to the uncertainties that are involved, and they apply especially when there
is little or no direct evidence, so that there is no choice but to consider collateral
(indirect) evidence, educated guesses, and perhaps intuition and other subjective
factors. Subjective probabilities are best determined by referring to risk taking, or
betting situations, as will be explained in Exercise 3.53.

3.4 The Axioms of Probability
In this section we define probabilities mathematically as the values of additive set
functions. Since the reader is probably most familiar with functions for which the
elements of the domain and the range are all numbers, let us first give a very sim-
ple example where the elements of the domain are sets, while the elements of the
range are nonnegative integers, namely, a set function that assigns to each subset A
of a finite sample space S the number of elements in A, written N(A). Suppose that
500 machine parts are inspected before they are shipped, that I denotes that a ma-
chine part is improperly assembled, D denotes that it contains one or more defective
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components, and the distribution of the 500 machine parts among the various cate-
gories is as shown in the Venn diagram of Figure 3.7.

20 10 5

465

DI

S

Figure 3.8
Classification of 500 machine
parts

The numbers in Figure 3.8 are N( I∩D ) = 20, N( I∩D ) = 10, N( I∩D ) = 5,
and N( I ∩D ) = 465. Using these values and the fact that the set function is additive
(meaning that the number which it assigns to the union of two subsets which have no
elements in common is the sum of the numbers assigned to the individual subsets),
we can determine the value of N(A) for any other subset A of S. For instance,

N( I ) = N( I ∩ D ) + N( I ∩ D ) = 5 + 465 = 470

N( I ∪ D) = N( I ∩ D ) + N( I ∩ D ) + N( I ∩ D )

= 20 + 10 + 5 = 35

N( I ∪ D) = N( I ∩ D ) + N( I ∩ D ) + N( I ∩ D )

= 10 + 5 + 465 = 480

and

N(D) = N( I ∩ D ) + N( I ∩ D ) = 10 + 5 = 15

Using the concept of an additive set function, let us now explain what we mean
by the probability of an event. Given a finite sample space S and an event A in S,
we define P(A), the probability of A, to be a value of an additive set function that
satisfies the following three conditions.

Axiom 1 0 ≤ P( A ) ≤ 1 for each event A in S.
Axiom 2 P(S ) = 1.
Axiom 3 If A and B are mutually exclusive events in S, then

P( A ∪ B ) = P( A ) + P( B )

The axioms of probability
for a finite sample space

The first axiom states that probabilities are real numbers on the interval from 0 to
1, inclusive. The second axiom states that the sample space as a whole is assigned
a probability of 1. Since S contains all possible outcomes, and one of these must
always occur, S is certain to occur. The third axiom states that probability functions
must be additive—the probability of the union is the sum of the two probabilities
when the two events have no outcomes in common.

Axioms for a mathematical theory require no proof, but if such a theory is to be
applied to the physical world, we must show somehow that the axioms are “realistic.”
Thus, let us show that the three postulates are consistent with the classical probability
concept and the frequency interpretation.

So far as the first axiom is concerned, fractions of the form
s
m

, where 0 ≤ s ≤ m

and m is a positive integer, cannot be negative or exceed 1, and the same is true also
for the proportion of the time that an event will occur. To show that the second axiom
is consistent with the classical probability concept and the frequency interpretation
for a long series of repeated experiments, we have only to observe that for the whole
sample space

P(S ) = m
m

= 1

and for the frequency interpretation that some outcome must happen 100% of the
time.

So far as the third axiom is concerned, if

P( A ) = s1
m

, P( B ) = s2
m
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and A and B are mutually exclusive, then

P( A ∪ B ) = s1 + s2
m

= P( A ) + P( B )

Also, if one event occurs in proportion 0.36 or 36% of the time, another event occurs
41% of the time, and the two events are mutually exclusive, then one or the other
will occur in proportion 0.36 + 0.41 = 0.77 or 77%.

Before we go any further, it is important to stress the point that the axioms
of probability do not tell us how to assign probabilities to the various outcomes
of an experiment; they merely restrict the ways in which it can be done. In actual
practice, probabilities are assigned on the basis of past experience, on the basis of a
careful analysis of conditions underlying the experiment, on the basis of subjective
evaluations, or on the basis of assumptions—say, the common assumption that all
the outcomes are equiprobable.

EXAMPLE 14 Checking possible assignments of probability
If an experiment has the three possible and mutually exclusive outcomes A, B, and
C, check in each case whether the assignment of probabilities is permissible:

(a) P(A) = 1
3
, P(B) = 1

3
, and P(C) = 1

3
(b) P(A) = 0.64, P(B) = 0.38, and P(C) = −0.02

(c) P(A) = 0.35, P(B) = 0.52, and P(C) = 0.26

(d) P(A) = 0.57, P(B) = 0.24, and P(C) = 0.19

Solution (a) The assignment of probabilities is permissible because the values are all on the

interval from 0 to 1, and their sum is
1
3

+ 1
3

+ 1
3

= 1.

(b) The assignment is not permissible because P(C) is negative.

(c) The assignment is not permissible because 0.35 + 0.52 + 0.26 = 1.13, which
exceeds 1.

(d) The assignment is permissible because the values are all on the interval from 0
to 1 and their sum is 0.57 + 0.24 + 0.19 = 1. j

The approach in the last example extends to any experiment where the sample
space S is discrete so the outcomes can be arranged in a sequence. An amount of
probability pi is assigned to the ith outcome, where

0 ≤ pi and
∑

all outcomes in S
pi = 1

and then the probability of any event A is defined as

P(A) =
∑

all outcomes in A

pi

When probability is assigned in this manner, the axioms of probability are always
satisfied.

Intuitively, we can think of the scientist as starting with a unit amount of clay
(probability) and placing a proportion p1 on the first outcome, p2 on the second
outcome, and so on. Some outcomes can be assigned a large amount and others lesser
amounts. The total unit amount of clay (probability) is assigned to the outcomes in
the sample space. Then, an event A is assigned the total of all the clay (probability)
assigned to each outcome in A.
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3.5 Some Elementary Theorems
With the use of mathematical induction, the third axiom of probability can be
extended to include any number of mutually exclusive events; in other words, the
following can be shown.

Theorem 3.4 If A1, A2, . . . , An are mutually exclusive events in a sample space
S, then

P( A1 ∪ A2 ∪ · · · ∪ An ) = P( A1 ) + P( A2 ) + · · · + P( An )

Generalization of the third
axiom of probability

In the next chapter we shall see how the third axiom of probability must be modified
so that the axioms apply also to sample spaces which are not finite.

EXAMPLE 15 Probabilities add for mutually exclusive events
The probability that a consumer testing service will rate a new antipollution device
for cars very poor, poor, fair, good, very good, or excellent are 0.07, 0.12, 0.17, 0.32,
0.21, and 0.11. What are the probabilities that it will rate the device

(a) very poor, poor, fair, or good;

(b) good, very good, or excellent?

Solution Since the probabilities are all mutually exclusive, direct substitution into the formula
of Theorem 3.4 yields

0.07 + 0.12 + 0.17 + 0.32 = 0.68

for part (a) and

0.32 + 0.21 + 0.11 = 0.64

for part (b). j

As it can be shown that a sample space of n points (outcomes) has 2n subsets, it
would seem that the problem of specifying a probability function (namely, a proba-
bility for each subset or event) can easily become very tedious. Indeed, for n = 20
there are already more than 1 million possible events. Fortunately, this task can be
simplified considerably by the use of the following theorem:

Theorem 3.5 If A is an event in the finite sample space S, then P(A) equals
the sum of the probabilities of the individual outcomes comprising A.

Rule for calculating
probability of an event

To prove this theorem, let E1, E2, . . . , En be the n outcomes comprising event
A, so that we can write A = E1 ∪ E2 ∪ · · · ∪ En. Since the E’s are individual
outcomes, they are mutually exclusive, and by Theorem 3.4 we have

P(A) = P(E1 ∪ E2 ∪ · · · ∪ En)

= P(E1) + P(E2) + · · · + P(En)

which completes the proof.

EXAMPLE 16 Using a Venn diagram to visualize probability calculations
Refer to the used car classification example on page 60. Suppose that the proba-
bilities of the 18 outcomes are as shown in Figure 3.9 (which, except for the the
probabilities, is identical to Figure 3.5).
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Figure 3.9
Used car classifications and
their probabilities C3
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Find P(M1), P(P1), P(C3), P(M1 ∩ P1), and P(M1 ∩ C3).

Solution Adding the probabilities of the outcomes comprising the respective events, we get

P(M1) = 0.03 + 0.06 + 0.07 + 0.02 + 0.01 + 0.01 = 0.20

P(P1) = 0.03 + 0.06 + 0.07 + 0.09 + 0.16 + 0.10 + 0.05

0.05 + 0.14 = 0.75

P(C3) = 0.07 + 0.01 + 0.10 + 0.06 + 0.14 + 0.02 = 0.40

P(M1 ∩ P1) = 0.03 + 0.06 + 0.07 = 0.16

and

P(M1 ∩ C3) = 0.07 + 0.01 = 0.08 j

In Theorem 3.4 we saw that the third axiom of probability can be extended
to include more than two mutually exclusive events. Another useful and important
extension of this axiom allows us to find the probability of the union of any two
events in S regardless of whether or not they are mutually exclusive. To motivate
the theorem which follows, let us consider the Venn diagram of Figure 3.10, which
concerns the job offers received by recent engineering-school graduates. The letters
I and G stand for a job offer from industry and a job offer from the government,
respectively.

It follows from the Venn diagram that

P(I) = 0.18 + 0.12 = 0.30

P(G) = 0.12 + 0.24 = 0.36
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Figure 3.10
Venn diagram for job offers

0.18 0.12 0.24

I G

S

and

P(I ∪ G) = 0.18 + 0.12 + 0.24 = 0.54

We were able to add the various probabilities because they represent mutually ex-
clusive events.

Had we erroneously used the third axiom of probability to calculate P(I ∪ G),
we would have obtained P(I) + P(G) = 0.30 + 0.36, which exceeds the correct
value by 0.12. This error results from adding in P(I ∩ G) twice, once in P(I) = 0.30
and once in P(G) = 0.36 and, we could correct for it by subtracting 0.12 from 0.66.
Thus, we would get

P(I ∪ G) = P(I) + P(G) − P(I ∩ G)

= 0.30 + 0.36 − 0.12

= 0.54

and this agrees, as it should, with the result obtained before.
In line with this motivation, let us now state and prove the following theorem:

Theorem 3.6 If A and B are any events in S, then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

General addition rule for
probability

To prove this theorem,

P(A ∪ B) = P(A ∩ B) + P(A ∩ B ) + P( A ∩ B)
= [P(A ∩ B) + P(A ∩ B )]

+ [P(A ∩ B) + P( A ∩ B)] − P(A ∩ B)
= P(A) + P(B) − P(A ∩ B).

where, in the third line, we add and subtract P(A ∩ B). Note that when A and B are
mutually exclusive so that P(A ∩ B) = 0, Theorem 3.6 reduces to the third axiom of
probability. For this reason, we sometimes refer to the third axiom of probability as
the special addition rule.

EXAMPLE 17 Using the general addition rule for probability
With reference to the used car example of page 60, find the probability that a car
will have low mileage or be expensive to operate, namely P(M1 ∪ C3).

Solution Making use of the results obtained on page 73, P(M1) = 0.20, P(C3) = 0.40,
and P(M1 ∩ C3) = 0.08, we substitute into the general addition rule of
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Theorem 3.6 to get

P(M1 ∪ C3) = P(M1) + P(C3) − P(M1 ∩ C3)

= 0.20 + 0.40 − 0.08

= 0.52 j

EXAMPLE 18 The probability of requiring repair under warranty
If the probabilities are 0.87, 0.36, and 0.29 that, while under warranty, a new car will
require repairs on the engine, drive train, or both, what is the probability that a car
will require one or the other or both kinds of repairs under the warranty?

Solution Substituting these given values into the formula of Theorem 3.6, we get

0.87 + 0.36 − 0.29 = 0.94 j

Note that the general addition rule, Theorem 3.6, can be generalized further so
that it applies to more than two events (see Exercise 3.49).

Using axioms of probability, we can derive many other theorems which play
important roles in applications. For instance, let us show the following:

Theorem 3.7 If A is any event in S, then P( A ) = 1 − P(A).
Probability rule of the

complement

To prove this theorem, we make use of the fact that A and A are mutually exclusive
by definition, and that A ∪ A = S (namely, that among them A and A contain all the
elements in S). Hence we can write

P(A) + P( A ) = P(A ∪ A )
= P(S )
= 1

so that P( A ) = 1−P(A). As a special case we find that P(φ) = 1−P(S ) = 0 since
the empty set φ is the complement of S.

EXAMPLE 19 Using the probability rule of the complement
Referring to the used car example of page 60 and the results on page 73, find

(a) the probability that a used car will not have low mileage

(b) the probability that a used car will either not have low mileage or not be
expensive to operate

Solution By the rule of the complement

(a) P( M1) = 1 − P(M1) = 1 − 0.20 = 0.80

(b) Since M1 ∪ C3 = M1 ∩ C3 by the rule of the complement we get

P( M1 ∪ C3) = 1 − P(M1 ∩ C3) = 1 − 0.08 = 0.92 j

Exercises
3.28 (a) Among 880 smart phones sold by a retailer, 72

required repairs under the warranty. Estimate the
probability that a new phone, which has just been
sold, will require repairs under the warranty. Ex-
plain your reasoning.

(b) Last year 8,400 students applied for the 6,000
student season tickets available for football
games. Next year you will apply and would
like to estimate the probability of receiv-
ing a season ticket. Give your estimate and
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comment on one factor that might influence the
accuracy of your estimate.

3.29 When we roll a pair of balanced dice, what are the
probabilities of getting

(a) 7;

(b) 11;

(c) 7 or 11;

(d) 3;

(e) 2 or 12;

(f) 2, 3, or 12?

3.30 The registration numbers for the candidates of an en-
trance test are numbered from 000001 to 200000.
What is the probability that a candidate will get a reg-
istration number divisible by 40?

3.31 A car rental agency has 19 compact cars and 12
intermediate-size cars. If four of the cars are randomly
selected for a safety check, what is the probability of
getting two of each kind?

3.32 Last year; the maximum daily temperature in a plants’
server room exceeded 68◦F in 12 days. Estimate the
probability that the maximum temperature will exceed
68◦F tomorrow.

3.33 In a group of 160 graduate engineering students, 92 are
enrolled in an advanced course in statistics, 63 are
enrolled in a course in operations research, and
40 are enrolled in both. How many of these students
are not enrolled in either course?

3.34 Among 150 persons interviewed as part of an urban
mass transportation study, some live more than 3 miles
from the center of the city (A), some now regularly
drive their own car to work (B), and some would gladly
switch to public mass transportation if it were available
(C). Use the information given in Figure 3.11 to find

(a) N(A);

(b) N(B);

(c) N(C);

(d) N(A ∩ B);

A B

C
27

2 16
20

54
8 9

14

S

Figure 3.11 Diagram for Exercise 3.34

(e) N(A ∩ C);

(f) N(A ∩ B ∩ C);

(g) N(A ∪ B);

(h) N(B ∪ C);

(i) N( A ∪ B ∪ C);

(j) N[ B ∩ (A ∪ C) ].

3.35 An experiment has the four possible mutually exclu-
sive outcomes A, B,C, and D. Check whether the fol-
lowing assignments of probability are permissible:

(a) P(A) = 0.38, P(B) = 0.16, P(C) = 0.11, P(D) =
0.35;

(b) P(A) = 0.27, P(B) = 0.30, P(C) = 0.28, P(D) =
0.16;

(c) P(A) = 0.32, P(B) = 0.27, P(C) = −0.06,

P(D) = 0.47;

(d) P(A) = 1

2
, P(B) = 1

4
, P(C) = 1

8
, P(D) = 1

16
;

(e) P(A) = 5
18

, P(B) = 1
6
, P(C) = 1

3
, P(D) = 2

9
.

3.36 With reference to Exercise 3.1, suppose that the points
(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3),
(2, 0), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), and
(3, 3) have the probabilities 0.080, 0.032, 0.086, 0.064,
0.085, 0.073, 0.065, 0.091, 0.071, 0.050, 0.046, 0.075,
0.040, 0.021, 0.080, and 0.041.

(a) Verify that this assignment of probabilities is
permissible.

(b) Find the probabilities of events A, B, and C given
in part (b) of that exercise.

(c) Calculate the probabilities that one, two, or three
supplies of white cement are adulterated.

3.37 With reference to Exercise 3.7, suppose that each point
(i, j) of the sample space is assigned the probability
420/401

2(i + j)
.

(a) Verify that this assignment of probabilities is
permissible.

(b) Find the probabilities of events X , Y , and Z
described in part (b) of that exercise.

(c) Find the probabilities that two, three, or four of the
supervisors will be present on the site.

3.38 Explain why there must be a mistake in each of the
following statements:

(a) The probability that a mineral sample will contain
silver is 0.38 and the probability that it will not
contain silver is 0.52.

(b) The probability that a drilling operation will be a
success is 0.34 and the probability that it will not
be a success is −0.66.
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(c) An air-conditioning repair person claims that the
probability is 0.82 that the compressor is all right,
0.64 that the fan motor is all right, and 0.41 that
they are both all right.

3.39 Refer to parts (d) and (c) of Exercise 3.13 to show that

(a) P(A ∩ B) ≤ P(A);

(b) P(A ∪ B) ≥ P(A).

3.40 Explain why there must be a mistake in each of the
following statements:

(a) The probability that a student will get an A in a
geology course is 0.3, and the probability that he
or she will get either an A or a B is 0.27.

(b) A company is working on the construction of two
shopping centers; the probability that the larger one
will be completed on time is 0.35 and the probability
that both will be completed on time is 0.42.

3.41 If A and B are mutually exclusive events, P(A) = 0.45,
and P(B) = 0.30, find

(a) P( A );

(b) P( A ∪ B );

(c) P( A ∩ B );

(d) P( A ∩ B ).

3.42 With reference to Exercise 3.34, suppose that the ques-
tionnaire filled in by one of the 150 persons is to be
double-checked. If it is chosen in such a way that each

questionnaire has a probability of
1

150
of being se-

lected, find the probabilities that the person

(a) lives more than 3 miles from the center of the city;

(b) regularly drives his or her car to work;

(c) does not live more than 3 miles from the center
of the city and would not want to switch to public
mass transportation if it were available;

(d) regularly drives his or her car to work but would
gladly switch to public mass transportation if it
were available.

3.43 A rotary plug valve needs to be replaced to repair a
machine, and the probabilities that the replacement
will be a flange style (low pressure), flange style (high
pressure),wafer style, or lug style are 0.16, 0.29, 0.26,
and 0.15. Find the probabilities that the replacement
will be

(a) a flange-style plug;

(b) a flange- (low pressure) or a wafer-style plug;

(c) a wafer-style or a lug-style plug;

(d) a flange-style (high pressure) or a wafer-style or a
lug-style plug.

3.44 The probabilities that a TV station will receive
0, 1, 2, 3, . . . , 8 or at least 9 complaints after
showing a controversial program are, respectively,

0.01, 0.03, 0.07, 0.15, 0.19, 0.18, 0.14, 0.12, 0.09,

and 0.02. What are the probabilities that after showing
such a program the station will receive

(a) at most 4 complaints;

(b) at least 6 complaints;

(c) from 5 to 8 complaints?

3.45 If each point of the sample space of Figure 3.12 repre-

sents an outcome having the probability
1

32
, find

(a) P(A);

(b) P(B);

(c) P(A ∩ B );

(d) P(A ∪ B );

(e) P( A ∩ B );

(f) P( A ∩ B ).

A B

S

Figure 3.12 Diagram for Exercise 3.45

3.46 The probability that a turbine will have a defective
coil is 0.10, the probability that it will have defective
blades is 0.15, and the probability that it will have both
defects is 0.04.

(a) What is the probability that a turbine will have one
of these defects?

(b) What is the probability that a turbine will have
neither of these defects?

3.47 The probability that a construction company will get
the tender for constructing a flyover is 0.33, the prob-
ability that it will get the tender for constructing an
underpass is 0.28, and the probability that it will get
both tenders is 0.13.

(a) What is the probability that it will get at least one
tender?

(b) What is the probability that it will get neither
tender?

3.48 Given P(A) = 0.30, P(B) = 0.62, and P( A ∩ B ) =
0.12, find

(a) P( A ∪ B );

(b) P( A ∩ B );

(c) P(A ∩ B );

(d) P( A ∪ B ).
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3.49 It can be shown that for any three events A, B, and C,
the probability that at least one of them will occur is
given by

P( A ∪ B ∪ C ) = P( A ) + P( B ) + P( C )

− P( A ∩ B ) − P( A ∩ C )

− P( B ∩ C ) + P( A ∩ B ∩ C )

Verify that this formula holds for the probabilities of
Figure 3.13.

A B

C 0.11

0.24 0.190.06

0.04
0.16 0.11

0.09

S

Figure 3.13 Diagram for Exercise 3.49

3.50 Suppose that in the maintenance of a large medical-
records file for insurance purposes the probability of
an error in processing is 0.0010, the probability of an
error in filing is 0.0009, the probability of an error in
retrieving is 0.0012, the probability of an error in pro-
cessing as well as filing is 0.0002, the probability of
an error in processing as well as retrieving is 0.0003,
the probability of an error in filing as well as retrieving
is 0.0003, and the probability of an error in processing
and filing as well as retrieving is 0.0001. What is the
probability of making at least one of these errors?

3.51 If the probability of event A is p, then the odds that it
will occur are given by the ratio of p to 1− p. Odds are
usually given as a ratio of two positive integers having
no common factor, and if an event is more likely not
to occur than to occur, it is customary to give the odds
that it will not occur rather than the odds that it will
occur. What are the odds for or against the occurrence
of an event if its probability is

(a)
4

7
; (b) 0.05; (c) 0.80?

3.52 Use the definition of Exercise 3.51 to show that if the
odds for the occurrence of event A are a to b, where a
and b are positive integers, then

p = a
a + b

3.53 The formula of Exercise 3.52 is often used to deter-
mine subjective probabilities. For instance, if an appli-
cant for a job “feels” that the odds are 7 to 4 of getting
the job, the subjective probability the applicant assigns
to getting the job is

p = 7
7 + 4

= 7
11

(a) If a businessperson feels that the odds are 3 to 2
that a new venture will succeed (say, by betting
$300 against $200 that it will succeed), what sub-
jective probability is he or she assigning to its
success?

(b) If a student is willing to bet $30 against $10, but
not $40 against $10, that he or she will get a pass-
ing grade in a certain course, what does this tell
us about the subjective probability the student as-
signs to getting a passing grade in the course?

3.54 Subjective probabilities may or may not satisfy the
third axiom of probability. When they do, we say that
they are consistent; when they do not, they ought not
to be taken too seriously.

(a) The supplier of delicate optical equipment feels
that the odds are 7 to 5 against a shipment arriv-
ing late, and 11 to 1 against it not arriving at all.
Furthermore, he feels that there is a 50/50 chance
(the odds are 1 to 1) that such a shipment will
either arrive late or not at all. Are the correspond-
ing probabilities consistent?

(b) There are two Ferraris in a race, and an expert feels
that the odds against their winning are, respec-
tively, 2 to 1 and 3 to 1. Furthermore, she claims
that there is a less-than-even chance that either of
the two Ferraris will win. Discuss the consistency
of these claims.

3.6 Conditional Probability
As we have defined probability, it is meaningful to ask for the probability of an
event only if we refer to a given sample space S. To ask for the probability that an
engineer earns at least $90,000 a year is meaningless unless we specify whether we
are referring to all engineers in the western hemisphere, all engineers in the United
States, all those in a particular industry, all those affiliated with a university, and so
forth. Thus, when we use the symbol P(A) for the probability of A, we really mean
the probability of A given some sample space S. Since the choice of S is not always
evident, or we are interested in the probabilities of A with respect to more than one
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sample space, the notation P(A|S ) makes it clear that we are referring to a particular
sample space S. We read P(A|S ) as the conditional probability of A relative to S, and
every probability is thus a conditional probability. Of course, we use the simplified
notation P(A) whenever the choice of S is clearly understood.

20 D ù I
10

I

Figure 3.14
Reduced sample space

To illustrate some of the ideas connected with conditional probabilities, let us
consider again the 500 machine parts of which some are improperly assembled and
some contain one or more defective components as shown in Figure 3.8. Assum-
ing equal probabilities in the selection of one of the machine parts for inspection, it
can be seen that the probability of getting a part with one or more defective compo-
nents is

P(D) = 10 + 5
500

= 3
100

To check whether the probability is the same if the choice is restricted to the machine
parts that are improperly assembled, we have only to look at the reduced sample
space of Figure 3.14 and assume that each of the 30 improperly assembled parts has
the same chance of being selected. We thus get

P(D | I) = N(D ∩ I)
N(I)

= 10
30

= 1
3

and it can be seen that the probability of getting a machine part with one or more

defective components has increased from
3

100
to

1
3

. Note that if we divide the nu-

merator and denominator of the preceding formula for P(D | I) by N(S ), we get

P(D | I) =
N(D ∩ I)

N(S )
N(I)
N(S )

= P(D ∩ I)
P(I)

where P(D | I) is given by the ratio of P(D ∩ I) to P(I).
Looking at this example in another way, note that with respect to the whole

sample space S we have

P( D ∩ I ) = 10
500

= 1
50

and P( D ∩ I) = 20
500

= 2
50

assuming, as before, that each of the 500 machine parts has the same chance of
being selected. Thus, the probabilities that the machine part selected will or will not
contain one or more defective components, given that it is improperly assembled,
should be in the ratio 1 to 2. Since the probabilities of D and D in the reduced sample
space must add up to 1, it follows that

P(D | I) = 1
3

and P( D | I ) = 2
3

which agrees with the result obtained before. This explains why, in the last step, we
had to divide by P(I) to

P(D | I) = P( D ∩ I )
P( I )

Division by P(I), or multiplication by 1/P(I), takes care of the proportionality factor,
which makes the sum of the probabilities over the reduced sample space equal to 1.
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Following these observations, let us now make the following general definition:

If A and B are any events in S and P(B) �= 0, the conditional probability of A
given B is

P( A | B ) = P( A ∩ B )
P( B )

Conditional probability

EXAMPLE 20 Calculating a conditional probability
If the probability that a communication system will have high fidelity is 0.81 and
the probability that it will have high fidelity and high selectivity is 0.18, what is
probability that a system with high fidelity will also have high selectivity?

Solution If A is the event that a communication system has high selectivity and B is the event
that it has high fidelity, we have P(B) = 0.81 and P(A ∩ B) = 0.18, and substitution
into the formula yields

P( A | B ) = 0.18
0.81

= 2
9 j

EXAMPLE 21 The conditional probability that a used car has low mileage given
that it is expensive to operate
Referring to the used car example, for which the probabilities of the individual out-
comes are given in Figure 3.9, use the results on page 73 to find P( M1 |C3 ).

Solution Since we had P( M1 ∩ C3 ) = 0.08 and P(C3 ) = 0.40, substitution into the formula
for conditional probability yields

P( M1 |C3 ) = P( M1 ∩ C3 )
P( C3 )

= 0.08
0.40

= 0.20

It is of interest to note that the value of the conditional probability obtained here,
P(M1 |C3) = 0.20, equals the value for P(M1) obtained on page 73. This means that
the probability a used car has low mileage is the same whether or not it is expensive
to operate. We say that M1 is independent of C3. As the reader is asked to verify in
Exercise 3.59, it also follows from the results on page 73 that M1 is not independent
of P1, namely, that low mileage is related to the car’s price. j

In general, if A and B are any two events in a sample space S, we say that A is
independent of B if and only if P(A | B ) = P( A ), but as it can be shown that B is
independent of A whenever A is independent of B, it is customary to say simply that
A and B are independent events.

Theorem 3.8 If A and B are any events in S, then

P( A ∩ B ) = P( A ) · P( B | A ) if P( A ) �= 0

= P( B ) · P( A | B ) if P( B ) �= 0

General multiplication
rule of probability

The second of these rules is obtained directly from the definition of conditional
probability by multiplying both sides by P(B); the first is obtained from the second
by interchanging the letters A and B.
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EXAMPLE 22 Using the general multiplication rule of probability
The supervisor of a group of 20 construction workers wants to get the opinion of 2 of
them (to be selected at random) about certain new safety regulations. If 12 workers
favor the new regulations and the other 8 are against them, what is the probability
that both of the workers chosen by the supervisor will be against the new safety
regulations?

Solution Assuming equal probabilities for each selection (which is what we mean by the
selections being random), the probability that the first worker selected will be against

the new safety regulations is
8
20

, and the probability that the second worker selected
will be against the new safety regulations given that the first one is against them is
7
19

. Thus, the desired probability is

8
20

· 7
19

= 14
95 j

In the special case where A and B are independent so P(A | B) = P(A), Theo-
rem 3.8 leads to the following result:

Theorem 3.9 Two events A and B are independent events if and only if

P( A ∩ B ) = P( A ) · P( B )
Special product rule of

probability

Thus, the probability that two independent events will both occur is simply the prod-
uct of their probabilities. This rule is sometimes used as the definition of indepen-
dence. It applies even when P(A) or P(B) or both equal 0. In any case, it may be
used to determine whether two given events are independent.

EXAMPLE 23 The outcomes to unrelated parts of an experiment can be treated
as independent
What is the probability of getting two heads in two flips of a balanced coin?

Solution Since the probability of heads is
1
2

for each flip and the two flips are not physically
connected, we treat them as independent. The probability is

1
2

· 1
2

= 1
4

j

EXAMPLE 24 Independence and selection with and without replacement
Two cards are drawn at random from an ordinary deck of 52 playing cards. What is
the probability of getting two aces if

(a) the first card is replaced before the second card is drawn;

(b) the first card is not replaced before the second card is drawn?

Solution (a) Since there are four aces among the 52 cards, we get

4
52

· 4
52

= 1
169
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(b) Since there are only three aces among the 51 cards that remain after one ace
has been removed from the deck, we get

4
52

· 3
51

= 1
221

Note that

1
221

�= 4
52

· 4
52

so independence is violated when the sampling is without replacement. j

EXAMPLE 25 Checking if two events are independent under an assigned
probability
If P(C) = 0.65, P(D) = 0.40, and P(C ∩ D) = 0.24, are the events C and D
independent?

Solution Since P(C) · P(D) = (0.65)(0.40) = 0.26 and not 0.24, the two events are not
independent. j

In the preceding examples we have used the assigned probabilities to check if
two events are independent. The concept of independence can be—and frequently
is—employed when probabilities are assigned to events that concern unrelated parts
of an experiment.

EXAMPLE 26 Assigning probability by the special product rule
Let A be the event that raw material is available when needed and B be the event
that the machining time is less than 1 hour. If P(A) = 0.8 and P(B) = 0.7, assign
probability to the event A ∩ B.

Solution Since the events A and B concern unrelated steps in the manufacturing process, we
invoke independence and make the assignment

P(A ∩ B) = P(A)P(B) = 0.8 × 0.7 = 0.56 j

The special product rule can easily be extended so that it applies to more than
two independent events—again, we multiply together all the individual probabilities.

EXAMPLE 27 The extended special product rule of probability
What is the probability of not rolling any 6’s in four rolls of a balanced die?

Solution The probability is
5
6

· 5
6

· 5
6

· 5
6

= 625
1,296

j

For three or more dependent events the multiplication rule becomes more com-
plicated, as is illustrated in Exercise 3.70.

EXAMPLE 28 The probability of falsely signaling a pollution problem
Many companies must monitor the effluent that is discharged from their plants into
rivers and waterways. In some states, it is the law that some substances have water-
quality limits that are below the limit of detection, L, for the current method of
measurement. The effluent is judged to satisfy the quality limit if every test spec-
imen is below the limit of detection L. Otherwise it will be declared to fail compli-
ance with the quality limit. Suppose the water does not contain the contaminant of
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interest but that the variability in the chemical analysis still gives a 1% chance that
a measurement on a test specimen will exceed L.

(a) Find the probability that neither of two test specimens, both free of the
contaminant, will fail to be in compliance.

(b) If one test specimen is taken each week for two years, and they are all free of
the contaminant, find the probability that none of the test specimens will fail
to be in compliance.

(c) Comment on the incorrect reasoning of having a fixed limit of detection no
matter how many tests are conducted.

Solution (a) If the two samples are not taken too closely in time or space, we treat them as
independent. We use the special product rule to obtain the probability that both
are in compliance:

0.99 × 0.99 = 0.9801

(b) Treating the results for different weeks as independent,

(0.99)104 = 0.35

so, even with excellent water quality, there is almost a two-thirds chance that
at least once the water quality will be declared to fail to be in compliance with
the law.

(c) With this type of law, no company would want to collect test specimens more
than maybe once a year. This is in direct opposition to the scientific idea that
more information is better than less information on water quality. Some effort
should be made to allow for higher limits when the testing is more frequent. j

EXAMPLE 29 Using probability to compare the accuracy of two schemes for
sending messages
Electrical engineers are considering two alternative systems for sending messages.
A message consists of a word that is either a 0 or a 1. However, because of random
noise in the channel, a 1 that is transmitted could be received as a 0 and vice versa.
That is, there is a small probability, p, that

P[A transmitted 1 is received as 0] = p

P[A transmitted 0 is received as 1] = p

One scheme is to send a single digit. The message is short but may be unreliable.
A second scheme is to repeat the selected digit three times in succession. At the
receiving end, the majority rule will be used to decode. That is, when any of 101,
110, 011, or 111 are received, it is interpreted to mean a 1 was sent.

(a) Evaluate the probability that a transmitted 1 will be received as a 1 under the
three-digit scheme when p = 0.01, 0.02, or 0.05. Compare this with the
scheme where a single digit is transmitted as a word. Treat the results for
different digits as independent.

(b) Suppose a message, consisting of the two words, a 1 followed by 0, is to be
transmitted using the three-digit scheme. What is the probability that the total
message will be correctly decoded under the majority rule with p = 0.05?
Compare with the scheme where a single digit is transmitted as a word.

Solution (a) The three digits 111 are transmitted. By independence, the sequence 111 has
probability (1 − p)(1 − p)(1 − p) of being received as 111. Also the
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probability of receiving 011 is p(1 − p)(1 − p), so the probability of exactly
one 0 among the three received is 3p(1 − p)2. Using the majority rule,

P[Correct] = P[transmitted 1 received as 1] = (1 − p)3 + 3p(1 − p)2

p 0.01 0.02 0.05

P[Correct] 0.9997 0.9988 0.9928

All three probabilities are considerably above the corresponding single-digit
scheme probabilities 0.99, 0.98, and 0.95, respectively.

(b) Both of the words 1 and 0 must be received correctly. As in part (a), the
probability that a 0 is received correctly is also 0.9928. Consequently, using
independence, the probability that the total message is correctly received is
(0.9928)2 = 0.986. This improves over the scheme where single digits are
sent for each word since that scheme has only the probability (0.95)2 = 0.903
of correctly receiving the total message.

Redundancy helps improve accuracy, but more digits need to be transmitted,
which results in a significantly lower throughput. j

3.7 Bayes’ Theorem
The general multiplication rules are useful in solving many problems in which the
ultimate outcome of an experiment depends on the outcomes of various intermediate
stages. A manufacturer of tablets receives its LED screens from three different sup-
pliers, 60% from supplier B1, 30% from supplier B2, and 10% from supplier B3. In
other words, the probabilities that any one LED screens received by the plant comes
from these three suppliers are 0.60, 0.30, and 0.10. Also suppose that 95% of the
LED screens from B1, 80% of those from B2, and 65% of those from B3 perform
according to specifications. We would like to know the probability that any one LED
screen received by the plant will perform according to specifications.

If A denotes the event that a LED screen received by the plant performs ac-
cording to specifications, and B1, B2, and B3 are the events that it comes from the
respective suppliers, we can write

A = A ∩ [B1 ∪ B2 ∪ B3]

= ( A ∩ B1 ) ∪ ( A ∩ B2 ) ∪ ( A ∩ B3 )

where B1, B2, and B3 are mutually exclusive events of which one must occur. It
follows that A ∩ B1, A ∩ B2, and A ∩ B3 are also mutually exclusive. By the
generalization of the third axiom of probability on page 70, we get

P( A ) = P( A ∩ B1 ) + P( A ∩ B2 ) + P( A ∩ B3 )

Then, if we apply the second of the general multiplication rules to P(A ∩ B1),
P(A ∩ B2), and P(A ∩ B3), we get

P( A ) = P( B1 ) · P( A | B1 ) + P( B2 ) · P( A | B2 ) + P( B3 ) · P( A | B3 )

and substitution of the given numerical values yields

P( A ) = ( 0.60 )( 0.95 ) + ( 0.30 )( 0.80 ) + ( 0.10 )( 0.65 )

= 0.875
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Figure 3.15
Tree diagram for example
dealing with three suppliers of
LED screens
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for the probability that any one LED screen received by the plant will perform ac-
cording to specifications.

To visualize this result, we have only to construct a tree diagram like that of
Figure 3.15, where the probability of the final outcome is given by the sum of the
products of the probabilities corresponding to each branch of the tree.

In the preceding example there were only 3 possibilities at the intermediate
stage, but if there are n mutually exclusive possibilities B1, B2, . . . , Bn at the in-
termediate stage, a similar argument will lead to the following result, sometimes
called the rule of elimination or the rule of total probability:

Theorem 3.10 If B1, B2, . . . , Bn are mutually exclusive events of which one
must occur, then

P( A ) =
n∑

i=1

P( Bi ) · P( A | Bi )
Rule of total probability

The tree diagram like that of Figure 3.16, where the probability of the final
outcome is again given by the sum of the products of the probabilities corresponding
to each branch of the tree, graphically explains the calculation.

Figure 3.16
Tree diagram for rule of
elimination
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A

P (AuB2)
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P(B2)
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To consider a problem that is closely related to the one we have just discussed,
suppose we want to know the probability that a particular LED screen, which is
known to perform according to specifications, came from supplier B3. Symbolically,
we want to know the value of P(B3 | A), and to find a formula for this probability we
first write

P( B3 | A ) = P( A ∩ B3 )
P( A )

Then, substituting P(B3) · P(A | B3) for P(A ∩ B3) and
3∑

i=1
P(Bi) · P(A | Bi) for P(A)

in accordance with Theorems 3.8 and 3.10, we get

P( B3 | A ) = P( B3 ) · P( A | B3 )
3∑

i=1
P( Bi ) · P( A | Bi )
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which expresses P(B3 | A) in terms of given probabilities. Substituting the values
from page 84 (or from Figure 3.15), we finally obtain

P( B3 | A ) = ( 0.10 )( 0.65 )
( 0.60 )( 0.95 ) + ( 0.30 )( 0.80 ) + ( 0.10 )( 0.65 )

= 0.074

Note that the probability that an LED screen is supplied by B3 decreases from 0.10
to 0.074 once it is known that it performs according to specifications.

The method used to solve the preceding example can easily be generalized to
yield the following formula, called Bayes’ theorem:

Theorem 3.11 If B1, B2, . . . , Bn are mutually exclusive events of which one
must occur, then

P( Br | A ) = P( Br ) · P( A | Br )
n∑

i=1
P( Bi ) · P( A | Bi )

for r = 1, 2, . . . , n.

Bayes’ theorem

Note that the expression in the numerator is the probability of reaching A via the
rth branch of the tree and that the expression in the denominator is the sum of the
probabilities of reaching A via the n branches of the tree.

Bayes’ theorem provides a formula for finding the probability that the “effect” A
was “caused” by the event Br. For instance, in our example we found the probabil-
ity that an acceptable LED screen was made by supplier B3. The probabilities P(Bi)
are called the prior, or a priori, probabilities of the “causes” Bi, and in practice it
is often difficult to assign them numerical values. For many years Bayes’ theorem
was looked upon with suspicion because it was used with the often erroneous as-
sumption that the prior probabilities are all equal. A good deal of the controversy
once surrounding Bayes’ theorem has been cleared up with the realization that the
probabilities P(Bi) must be determined separately in each case from the nature of
the problem, preferably on the basis of specific knowledge or past experience.

EXAMPLE 30 Using Bayes’ theorem
Four technicians regularly make repairs when breakdowns occur on an automated
production line. Janet, who services 20% of the breakdowns, makes an incomplete
repair 1 time in 20; Tom, who services 60% of the breakdowns, makes an incomplete
repair 1 time in 10; Georgia, who services 15% of the breakdowns, makes an incom-
plete repair 1 time in 10; and Peter, who services 5% of the breakdowns, makes an
incomplete repair 1 time in 20. For the next problem with the production line diag-
nosed as being due to an initial repair that was incomplete, what is the probability
that this initial repair was made by Janet?

Solution Let A be the event that the initial repair was incomplete, B1 that the initial repair was
made by Janet, B2 that it was made by Tom, B3 that it was made by Georgia, and
B4 that it was made by Peter.

Substituting the various probabilities into the formula of Theorem 3.11, we get

P( B1 | A) = ( 0.20 )( 0.05 )
( 0.20 )( 0.05 ) + ( 0.60 )( 0.10 ) + ( 0.15 )( 0.10 ) + ( 0.05 )( 0.05 )

= 0.114
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and it is of interest to note that although Janet makes an incomplete repair only 1
out of 20 times, namely, 5% of the breakdowns she services, more than 11% of the
incomplete repairs are her responsibility. j

Bayes’ Theorem plays an integral part in most schemes for filtering spam. It
gives the probability that a chance message is really spam given the presence of
certain words.

EXAMPLE 31 Identifying spam using Bayes’ Theorem
A first step towards identifying spam is to create a list of words that are more likely to
appear in spam than in normal messages. For instance, words like buy or the brand
name of an enhancement drug are more likely to occur in spam messages than in
normal messages. Suppose a specified list of words is available and that your data
base of 5000 messages contains 1700 that are spam. Among the spam messages,
1343 contain words in the list. Of the 3300 normal messages, only 297 contain words
in the list.

Obtain the probability that a message is spam given that the message contains
words in the list.

Solution Let A = [message contains words in list] be the event a message is identified as spam
and let B1 = [message is spam] and B2 = [message is normal]. We use the observed
relative frequencies from the data base as approximations to the probabilities.

P(B1) = 1700
5000

= .34 P(B2) = 3300
5000

= .66

P(A | B1) = 1343
1700

= .79 P(A | B2) = 297
3300

= .09

Bayes’ Theorem expresses the probability of being spam, given that a message is
identified as spam, as

P(B1 | A) = P(A | B1)P(B1)
P(A | B1)P(B1) + P(A | B2)P(B2)

The updated, or posterior probability, is

P(B1 | A) = .79 × .34
.79 × .34 + .09 × .66

= .2686
.328

= .819

Because this posterior probability of being spam is quite large, we suspect that
this message really is spam. Since P(B1) = .34, or 34% of the incoming messages
are spam, we likely would want the spam filter to remove this message. Existing
spam filer programs learn and improve as you mark your incoming messages spam. j

Exercises
3.55 With reference to Figure 3.8, find P(I | D) and

P(I | D ), assuming that originally each of the 500 ma-
chine parts has the same chance of being chosen for
inspection.

3.56 (a) Would you expect the probability that a randomly
selected car will need major repairs in the next
year to be smaller, remain the same, or increase if
you are told it already has high mileage? Explain.

(b) Would you expect the probability that a randomly
selected senior would know the second law of
thermodynamics, to be smaller, remain the same,
or increase if the person selected is a mechanical
engineering major? Explain.

(c) In Part (a), identify the two events with sym-
bols A and B and the conditional probability of
interest.
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3.57 With reference to Exercise 3.34 and Figure 3.11, as-
sume that each of 150 persons has the same chance of
being selected, and find the probabilities that he or she

(a) lives more than 3 miles from the center of the city
given that he or she would gladly switch to public
mass transportation;

(b) regularly drives his or her car to work given that
he or she lives more than 3 miles from the center
of the city;

(c) would not want to switch to public mass trans-
portation given that he or she does not regularly
drive his or her car to work.

3.58 With reference to Figure 3.13, find

(a) P(A | B);

(b) P(B |C );

(c) P(A ∩ B |C);

(d) P(B ∪ C | A );

(e) P(A | B ∪ C);

(f) P(A | B ∩ C);

(g) P(A ∩ B ∩ C | B ∩ C);

(h) P(A ∩ B ∩ C | B ∪ C).

3.59 With reference to the used car example and the proba-
bilities given in Figure 3.9, find

(a) P(M1 | P1) and compare its value with that of
P(M1);

(b) P(C3 | P2) and compare its value with that of
P(C3);

(c) P(M1 | P1 ∩C3) and compare its value with that of
P(M1).

3.60 With reference to Exercise 3.47, find the probabilities
that the company will get the tender for constructing
an underpass given that

(a) it got the tender for constructing a flyover;

(b) it did not get the tender for constructing a flyover.

3.61 Prove that P(A | B) = P(A) implies that P(B | A) =
P(B) provided that P(A) �= 0 and P(B) �= 0.

3.62 In a certain city, sports bikes are being targeted by
thieves. Assume that the probability of a sports bike
being stolen is 0.09 while the probability is only 0.5
for a regular bike. Taking, as an approximation for all
bikes in that area, the nationwide proportion 0.19 of
sports bikes, find

(a) the probability that a bike will be stolen.

(b) the probability that a stolen bike is a sports bike.

3.63 Given that P (A) = 0.60, P (B) = 0.40, and P (A∩B) =
0.24, verify that

(a) P(A | B) = P(A);

(b) P(A | B ) = P(A);

(c) P(B | A) = P(B);

(d) P(B | A ) = P(B).

3.64 Among 40 condensers produced by a machine, 6 are
defective. If we randomly check 5 condensers, what
are the probabilities that

(a) none are defective;

(b) all are defective?

3.65 Among 50 students enrolled in a college, 40 had ap-
plied for civil engineering and 10 had applied for me-
chanical engineering. If two students have been en-
rolled in software engineering by mistake, and the
“selection” is random, what are the probabilities that

(a) both had applied for civil engineering;

(b) both had applied for mechanical engineering;

(c) one had applied for civil engineering and one had
applied for mechanical engineering?

3.66 A large firm has 85% of its service calls made by a con-
tractor, and 10% of these calls result in customer com-
plaints. The other 15% of the service calls are made by
their own employees, and these calls have a 5% com-
plaint rate. Find the

(a) probability of receiving a complaint.

(b) probability that the complaint was from a cus-
tomer serviced by the contractor.

3.67 If P(X ) = 0.33, P(Y ) = 0.75, and P(X ∩ Y ) = 0.30,
are X and Y independent?

3.68 If the odds are 5 to 3 that an event M will not occur, 2 to
1 that event N will occur, and 4 to 1 that they will not
both occur, are the two events M and N independent?

3.69 Find the probabilities of getting

(a) eight heads in a row with a balanced coin;

(b) three 3’s and then a 4 or a 5 in four rolls of a bal-
anced die;

(c) five multiple-choice questions answered correctly,
if for each question the probability of answering it

correctly is
1

3
.

3.70 For three or more events which are not independent,
the probability that they will all occur is obtained
by multiplying the probability that one of the events
will occur, times the probability that a second of the
events will occur given that the first event has oc-
curred, times the probability that a third of the events
will occur given that the first two events have oc-
curred, and so on. For instance, for three events we
can write

P( A ∩ B ∩ C ) = P( A ) · P( B | A ) · P( C | A ∩ B )

and we find that the probability of drawing without re-
placement three aces in a row from an ordinary deck
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of 52 playing cards is

4
52

· 3
51

· 2
50

= 1
5,525

(a) If six bullets, of which three are blanks, are ran-
domly inserted into a gun, what is the probability
that the first three bullets fired will all be blanks?

(b) In a certain city during the month of May, the
probability that a rainy day will be followed by an-
other rainy day is 0.80 and the probability that a
sunny day will be followed by a rainy day is 0.60.
Assuming that each day is classified as being ei-
ther rainy or sunny and that the weather on any
given day depends only on the weather the day
before, find the probability that in the given city a
rainy day in May is followed by two more rainy
days, then a sunny day, and finally another rainy
day.

(c) A department store which bills its charge-account
customers once a month has found that if a cus-
tomer pays promptly one month, the probabil-
ity is 0.90 that he will also pay promptly the
next month; however, if a customer does not pay
promptly one month, the probability that he will
pay promptly the next month is only 0.50. What
is the probability that a customer who has paid
promptly one month will not pay promptly the
next three months?

(d) If 5 of a company’s 12 delivery trucks do not meet
emission standards and 4 of the 12 trucks are ran-
domly picked for inspection, what is the probabil-
ity that none of them meets emission standards?

3.71 Use the information on the tree diagram of Figure 3.17
to determine the value of

(a) P(Y );

(b) P(X |Y );

(c) P(X |Y ).

X

Y

Y

Y

Y

0.75

0.35

0.45

X

Figure 3.17 Diagram for Exercise 3.71

3.72 There are over twenty thousand objects orbiting in
space. For a given object, let A be the event that the
charred remains do hit the earth. Suppose experts, us-
ing their knowledge of the size and composition of

the object as well as its re-entry angle, determine that
P(A) = 0.25.

Next, let B be the event that your city is hit, given
that charred remains reach the earth. The probability
P(B | A) will depend on both the size of your city and
its location relative to the current orbit of the object.
Suppose that, the experts conclude that P(B | A) =
0.0002.

(a) Find the probability that your city is hit with
charred remains.

(b) Change P(B | A) to 0.0004 and repeat the calcula-
tion.

3.73 An insurance company’s records of 12,299 automo-
bile insurance policies showed that 2073 policy hold-
ers made a claim (Courtesy J. Hickman). Among in-
sured drivers under age 25, there were 1032 claims
out of 5192 policies. For person selected at random
from the policy holders, let A = [Claim was filed] and
B = [Under age 25] .

(a) Fill in the four probabilities, and the marginal to-
tals, in the table

B B̄

A

Ā

(b) Use Bayes’ Theorem to obtain the probability that
the person is under age 25 given that a claim was
filed .

(c) Check your answer using directly from your table
in Part (a) and the definition of P(B | A).

3.74 Identity theft is a growing problem in the United
States. According to a Federal Trade Commission Re-
port about 280,000 identity complaints were filed for
2011. Among the 43.2 million persons in the 20–29
year old age group, 56,689 complaints were filed. The
20–29 year old age group makes up proportion .139
of the total population. Use the relative frequencies to
approximate the probability, that for the current year,

(a) a person in the 20–29 age group files an identity
theft complaint.

(b) a person not in the 20–29 age group files an iden-
tity theft complaint. Comment on your answers to
Parts (a) and (b).

(c) a random person will file an identity theft com-
plaint.

(d) If a complaint is filed, what is the probability it
was by someone in the 20–29 age group.

3.75 Refer to the example on page 84 but suppose the man-
ufacturer has difficulty getting enough LED screens.
Because of the shortage, the manufacturer had to
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obtain 40% of the screens from the second supplier
and 15% from the third supplier. Find the

(a) probability that a LED screen will meet specifica-
tions.

(b) probability that a LED screen that meets specifi-
cations, was sent by the second supplier.

3.76 Refer to Example 31 concerning spam but now sup-
pose that among the 5000 messages, the 1750 spam
messages have 1570 that contain the words on a new
list and that the 3250 normal messages have 300 that
contain the words.

(a) Find the probability that a message is spam given
that the message contains words on the new list.

(b) Would you prefer the new list here or the one in
Example 31? Why?

3.77 With reference to the Example 30, for a problem diag-
nosed as being due to an incomplete initial repair, find
the probability that the initial repair was made by

(a) Tom;

(b) Georgia;

(c) Peter.

3.78 Two firms V and W consider bidding on a road-
building job, which may or may not be awarded de-
pending on the amounts of the bids. Firm V submits
a bid and the probability is 0.8 that it will get the job
provided firm W does not bid. The probability is 0.7
that W will bid, and if it does, the probability that V
will get the job is only 0.4.

(a) What is the probability that V will get the job?

(b) If V gets the job, what is the probability that W did
not bid?

3.79 Engineers in charge of maintaining our nuclear fleet
must continually check for corrosion inside the pipes
that are part of the cooling systems. The inside con-

dition of the pipes cannot be observed directly but a
nondestructive test can give an indication of possible
corrosion. This test is not infallible. The test has prob-
ability 0.7 of detecting corrosion when it is present but
it also has probability 0.2 of falsely indicating internal
corrosion. Suppose the probability that any section of
pipe has internal corrosion is 0.1.

(a) Determine the probability that a section of pipe
has internal corrosion, given that the test indicates
its presence.

(b) Determine the probability that a section of pipe
has internal corrosion, given that the test is
negative.

3.80 An East Coast manufacturer of printed circuit boards
exposes all finished boards to an online automated ver-
ification test. During one period, 900 boards were com-
pleted and 890 passed the test. The test is not infallible.
Of 30 boards intentionally made to have noticeable de-
fects, 25 were detected by the test. Use the relative fre-
quencies to approximate the conditional probabilities
needed below.

(a) Give an approximate value for P[Pass test | board
has defects].

(b) Explain why your answer in part a may be too
small.

(c) Give an approximate value for the probability that
a manufactured board will have defects. In or-
der to answer the question, you need information
about the conditional probability that a good board
will fail the test. This is important to know but was
not available at the time an answer was required.
To proceed, you can assume that this probability
is zero.

(d) Approximate the probability that a board has de-
fects given that it passed the automated test.

Do’s and Don’ts

Do’s
1. Begin by creating a sample space S which specifies all possible outcomes.

2. Always assign probabilities to events that satisfy the axioms of probability.
In the discrete case, the possible outcomes can be arranged in a sequence.
The axioms are then automatically satisfied when probability pi is assigned
to the ith outcome, where

0 ≤ pi and
∑

all outcomes in S
pi = 1

and the probability of any event A is defined as

P(A) =
∑

all outcomes in A

pi
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3. Combine the probabilities of events according to rules of probability.

General Addition Rule: P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
Rule of the Complement: P( A ) = 1 − P(A)
General Multiplication Rule: P(A ∩ B) = P(A)P(B | A) if P(A) �= 0

= P(B)P(A | B) if P(B) �= 0

Conditional Probability: P(A | B) = P(A ∩ B)

P(B)
if P(B) �= 0

Don’ts
1. Don’t confuse independent events with mutually exclusive events. When A

and B are mutually exclusive, only one of them can occur. Their intersection
is empty and so has probability 0.

2. Don’t assign probability to A ∩ B according to special product rule

P(A ∩ B) = P(A)P(B)

unless the conditions for independence hold. Independence may be plausi-
ble when the events A and B pertain to physically unrelated parts of a large
system and there are no common causes that jointly affect the occurrence
of both events.

Review Exercises
3.81 (a) Last year, 425 companies applied for 52 tenders

floated by the government. This year, you will
be applying for one of 52 similar tenders being
floated, and would like to estimate the probabil-
ity of being allotted one. Give your estimate and
comment on one factor that might influence your
estimate.

(b) In a recent random check of 650 valves at a plant,
39 were defective. For a randomly selected valve
today, what is the probability that it is defective?

3.82 A construction engineer has to inspect 5 construction
sites in a 2-day inspection schedule. He may or may
not be able to visit these sites in two days. He will not
visit any site more than once.

(a) Using two coordinates so that (3, 1), for example,
represents the event that he will visit 3 sites on
Day 1 and 1 site on Day 2, draw a diagram simi-
lar to that of Figure 3.1 showing the points of the
corresponding sample space.

(b) List the points of the sample space that constitutes
the events X , Y , and Z that he will visit only 2 sites
on Day 2, he will visit all 5 sites, and he will visit
more sites on Day 2 than on Day 1.

(c) Which of the three pairs of events, X and Y , Y and
Z, and X and Z, are mutually exclusive?

3.83 With reference to the preceding exercise, express each
of the following events symbolically by listing its
elements, and also express it in words:

(a) Y ;

(b) X ∩ Y ;

(c) Y ∪ Z;

(d) X ∪ Y .

3.84 Use Venn diagrams to verify that

(a) A ∩ B = A ∪ B ;

(b) A ∪ B = A ∩ B .

3.85 The quality of surround sound from four digital movie
systems is to be rated superior, average, or inferior,
and we are interested only in how many of the systems
get each of these ratings. Draw a tree diagram which
shows the 12 different possibilities.

3.86 CCTV cameras are to be fitted at six fixed places in a
bank. In how many ways can the six available CCTV
cameras be fitted at the six places in the bank?

3.87 In how many ways can 4 out of 11 similar propellers
be fitted on an airplane?
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3.88 Refer to Example 12 of motors for miniaturized cap-
sules, but instead suppose that 20 motors are avail-
able and that 4 will not operate satisfactorily, when
placed in a capsule. If the scientist wishes to fab-
ricate two capsules, with two motors each, find the
probability that among the four randomly selected
motors

(a) all four operate satisfactorily;

(b) three operate satisfactorily and one does not.

3.89 Given P(A) = 0.30, P(B) = 0.40, and P(A ∩ B) =
0.20, find

(a) P(A ∪ B);
(b) P( A ∩ B);

(c) P(A ∩ B );

(d) P( A ∪ B ).

(e) Are A and B independent?

3.90 In a sample of 652 engines tested, only 28 of them
have cylinders with a mild leak. Estimate the probabil-
ity that an engine tested will have a leak in its cylinder.

3.91 The marketing manager reported to the head engineer
regarding a survey concerning the company’s portable
cleaning tool. He claims that, among the 200 cus-
tomers surveyed, 165 said the product is reliable, 117
said it is easy to use, 88 said it is both reliable and easy
to use, and 33 said it is neither reliable nor easy to use.
Explain why the head engineer should question this
claim.

3.92 The probabilities that a satellite launching rocket will
explode during lift-off or have its guidance system fail
in flight are 0.0002 and 0.0005. Assuming indepen-
dence find the probabilities that such a rocket will

(a) not explode during lift-off;

(b) explode during lift-off or have its guidance system
fail in flight;

(c) neither explode during lift-off nor have its guid-
ance system fail in flight.

3.93 Given P(A) = 0.40, P(B) = 0.55 and P(A ∩ B) =
0.10, find

(a) P(A | B );

(b) P(A | B );

(c) P(B | A );

(d) P(B | A ).

3.94 If events A and B are independent, and P(A) = 0.45
and P(B) = 0.20, find

(a) P(A ∩ B);

(b) P(A ∪ B);

(c) P(A ∪ B );

(d) P(B | A).

3.95 The following frequency table shows the classification
of 90 students in their sophomore year of college ac-
cording to their understanding of physics, chemistry,
and mathematics.

Physics

Average Extensive

Chemistry Chemistry

Average Extensive Average Extensive

Mathematics Average 8 16 12 18

Extensive 14 4 14 4

If a student is selected at random, find the probability
that the student has

(a) an extensive understanding of chemistry;

(b) an extensive understanding of physics and an aver-
age understanding of mathematics and chemistry;

(c) an extensive understanding of any two subjects
and an average understanding of the third;

(d) an extensive understanding of any one subject and
an average knowledge of the other two.

3.96 Refer to Exercise 3.95. Given that a student, selected at
random, is found to have an extensive understanding of
physics, what is the probability that the student has

(a) an extensive understanding of chemistry;

(b) an extensive understanding of both chemistry and
mathematics;

(c) an extensive understanding of either chemistry or
mathematics?

3.97 An explosion in an LNG storage tank in the process
of being repaired could have occurred as the result of
static electricity, malfunctioning electrical equipment,
an open flame in contact with the liner, or purposeful
action (industrial sabotage). Interviews with engineers
who were analyzing the risks involved led to estimates
that such a explosion would occur with probability
0.25 as a result of static electricity, 0.20 as a result
of malfunctioning electric equipment, 0.40 as a result
of an open flame, and 0.75 as a result of purposeful
action. These interviews also yielded subjective esti-
mates of the prior probabilities of these four causes of
0.30, 0.40, 0.15, and 0.15, respectively. What was the
most likely cause of the explosion?

3.98 During the inspection of a rejected integrated circuit
(IC), it was observed that the rejected IC could have an
incorrect circuit, it could be bent, or it could have both
defects. The probability of having an incorrect circuit
is 0.45, the probability of being bent is 0.65, and the
probability of having both defects is 0.25.

(a) For a randomly selected rejected IC, what is the
probability that the IC is not bent but has an in-
correct circuit?
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(b) What is the probability that the IC has exactly one
defect?

(c) Given that the IC has one defect, what is the prob-
ability of the IC being bent?

3.99 Amy commutes to work by two different routes A and
B. If she comes home by route A, then she will be
home no later than 6 p.m. with probability 0.8, but if

she comes home by route B, then she will be home no
later than 6 p.m. with probability 0.7. In the past, the
proportion of times that Amy chose route A is 0.4.

(a) What proportion of times is Amy home no later
than 6 p.m.?

(b) If Amy is home after 6 p.m. today, what is the prob-
ability that she took route B?

3.100 Long run relative frequency interpretation of probability. A simulation.
A long series of experiments can be simulated using MINITAB and then the
relative frequencies plotted as in Figure 3.7b.

Dialog box:
To start, enter 0 and 1 in C1, .6 and .4 in C2 to represent the values and the
probabilities.
Label C3 Trial no. and select
Calc > Make Patterned Data > Simple Set of Numbers.
Type C3 in Store, 1000 in last value and 1 in the other three boxes.
Next, label C4 Outcomes and select Calc > Random Data > Discrete.
Type 1000 in Number, C4 in Store, C1 in Values and C2 in Probabilities.
Label C5 Relative frequency and select Calc > Calculator > partial sum.
Type C5 in Store and C4 in Expression to read PARS(C4) and then /C3 to read
PARS(C4)/C3.
Click O K.
Select Graph > Scatterplot > With Connect Lines.
Type C5 in Y and C3 in X. Click OK.

Change the probability of 1 to .7 and repeat.
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I n most statistical problems we are concerned with one number or a few numbers
that are associated with the outcomes of experiments. When inspecting a manufac-
tured product we may be interested only in the number of defectives; in the analysis

of a road test we may be interested only in the average speed and the average fuel con-
sumption; and in the study of the performance of a miniature rechargeable battery we
may be interested only in its power and lifelength. All these numbers are associated with
situations involving an element of chance—in other words, they are values of random
variables.

In the study of random variables we are usually interested in their probability distri-
butions, namely, in the probabilities with which they take on the various values in their
range. The introduction to random variables and probability distributions in Section 4.1
is followed by a discussion of various special probability distributions in Sections 4.2, 4.3,
4.6, 4.7, 4.8, and 4.9, and descriptions of the most important features of probability
distributions in Sections 4.4 and 4.5.

4.1 Random Variables
To be more explicit about the concept of a random variable, let us refer again to the
used car example of page 70 and the corresponding probabilities shown in
Figure 3.9. Now let us refer to M1 (low current mileage), P1 (moderate price), and
C1 (inexpensive to operate) as preferred attributes. Suppose we are interested only
in the number of preferred attributes a used car possesses. To find the probabilities
that a used car will get 0, 1, 2, or 3 preferred attributes, let us refer to Figure 4.1,
which is like Figure 3.9 in Chapter 3 except that we indicate for each outcome the
number of preferred attributes. Adding the respective probabilities, we find that for
0 preferred attributes the probability is

0.07 + 0.06 + 0.03 + 0.02 = 0.18

and for one preferred attribute the probability is

0.01 + 0.01 + 0.16 + 0.10 + 0.02 + 0.05 + 0.14 + 0.01 = 0.50

For two preferred attributes, the probability is

0.06 + 0.07 + 0.02 + 0.09 + 0.05 = 0.29

and for three preferred attributes the probability is 0.03.
These results may be summarized, as in the following table, where x denotes a

possible number of preferred attributes

x 0 1 2 3
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Figure 4.1
Used cars and numbers of
preferred attributes
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The numbers 0, 1, 2, and 3 in this table are values of a random variable—the
number of preferred attributes. Corresponding to each elementary outcome in the
sample space there is exactly one value x for this random variable. That is, the ran-
dom variable may be thought of as a function defined over the elements of the sample
space. This is how we define random variables in general; they are functions defined
over the elements of a sample space.

Random variables A random variable is any function that assigns a numerical value to each
possible outcome.

The numerical value should be chosen to quantify an important characteristic of the
outcome.

Random variables are denoted by capital letters X,Y, and so on, to distinguish
them from their possible values given in lowercase x, y.

To find the probability that a random variable will take on any one value within
its range, we proceed as in the above example. Indeed, the table which we obtained
displays another function, called the probability distribution of the random vari-
able. To denote the values of a probability distribution, we shall use such symbols as
f (x), g(x), ϕ(y), h(z), and so on. Strictly speaking, it is the function f (x) = P(X = x)
which assigns probability to each possible outcome x that is called the probability
distribution. However, we will follow the common practice of also calling f(x) the
probability distribution, with the understanding that we are referring to the function
and that the range of x values is part of the definition.
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Random variables are usually classified according to the number of values they
can assume. In this chapter we shall limit our discussion to discrete random vari-
ables, which can take on only a finite number, or a countable infinity of values;
continuous random variables are taken up in Chapter 5.

Whenever possible, we try to express probability distributions by means of
equations. Otherwise, we must give a table that actually exhibits the correspon-
dence between the values of the random variable and the associated probabilities. For
instance,

f (x) = 1
6

for x = 1, 2, 3, 4, 5, 6

gives the probability distribution for the number of points we roll with a
balanced die.

Of course, not every function defined for the values of a random variable can
serve as a probability distribution. Since the values of probability distributions are
probabilities and one value of a random variable must always occur, it follows that
if f (x) is a probability distribution, then

f (x) ≥ 0 for all x

and ∑
all x

f (x) = 1

Probability distributions

The probability distribution of a discrete random variable X is a list of the
possible values of X together with their probabilities

f (x) = P[X = x]

The probability distribution always satisfies the conditions

f (x) ≥ 0 and
∑
all x

f (x) = 1

EXAMPLE 1 Checking for nonnegativity and total probability equals one
Check whether the following can serve as probability distributions:

(a) f (x) = x − 2
2

for x = 1, 2, 3, 4

(b) h(x) = x2

25
for x = 0, 1, 2, 3, 4

Solution (a) This function cannot serve as a probability distribution because f (1) is
negative.

(b) The function cannot serve as a probability distribution because the sum of the

five probabilities is
6
5

and not 1. j

It is often helpful to visualize probability distributions by means of graphs like
those of Figure 4.2. The one on the left is called a probability histogram; the areas
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Figure 4.2
Graphs of the probability
distribution of the number of
preferred attributes
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of the rectangles are equal to the corresponding probabilities so their heights are
proportional to the probabilities. The bases touch so that there are no gaps between
the rectangles representing the successive values of the random variable. The one
on the right is called a bar chart; the heights of the rectangles are also propor-
tional to the corresponding probabilities, but they are narrow and their width is of no
significance.

Besides the probability f (x) that the value of a random variable is x, there is an
important related function. It gives the probability F (x) that the value of a random
variable is less than or equal to x. Specifically,

F (x) = P[X ≤ x] for all −∞ < x < ∞

and we refer to the function F (x) as the cumulative distribution function or just
the distribution function of the random variable. For any value x, it adds up, or
accumulates, all the probability assigned to that value and smaller values.

Referring to the used car example and basing our calculations on the table on
page 104, we get

x 0 1 2 3

F (x) 0.18 0.68 0.97 1.00

for the cumulative distribution function of the number of preferred attributes.
The cumulative distribution jumps the amount f ( x ) at x = 0, 1, 2, 3 and is

constant between the values in the table as illustrated in Figure 4.3. The solid dots
emphasize the fact that F (x) takes the upper value at jumps and this makes it con-
tinuous from the right.

Figure 4.3
The cumulative distribution has
jumps corresponding to
f (x) = P[X = x]

1.0

0 1 2 3

x

F (x)

0.8

0.6

0.4

0.2

1.0

0 1 2 3

x

f (x)

0.8

0.6

0.4

0.2



98 Chapter 4 Probability Distributions

4.2 The Binomial Distribution
Many statistical problems deal with the situations referred to as repeated trials. For
example, we may want to know the probability that 1 of 5 rivets will rupture in a
tensile test, the probability that 9 of 10 DVR players will run at least 1,000 hours, the
probability that 45 of 300 drivers stopped at a roadblock will be wearing seatbelts,
or the probability that 66 of 200 television viewers (interviewed by a rating service)
will recall what products were advertised on a given program. To borrow from the
language of games of chance, we might say that in each of these examples we are
interested in the probability of getting x successes in n trials, or, in other words, x
successes and n − x failures in n attempts.

There are common features to each of the examples. They are all composed of
a series of trials which we refer to as Bernoulli trials if the following assumptions
hold.

1. There are only two possible outcomes for each trial (arbitrarily called
“success” and “failure,” without inferring that a success is necessarily
desirable).

2. The probability of success is the same for each trial.
3. The outcomes from different trials are independent.

If the assumptions cannot be met, the theory we develop does not apply.

EXAMPLE 2 Checking the adequacy of the Bernoulli trials assumptions
Can the following be treated as Bernoulli trials? Drivers stopped at a roadblock will
be checked for failure to wear a seatbelt.

Solution There are only two outcomes, and we call not wearing a seatbelt a success. (Success
in this context does not mean success in life.)

If all cars are treated alike, their drivers would all have the same probability
of not wearing a seatbelt. If drivers are grouped by age, you may need different
probabilities for persons under 20 than for those 30 to 40 years old. Then you would
not have Bernoulli trials.

The results on seatbelt wear, for different drivers, should be independent. There
is no obvious common cause. If someone caught without a seatbelt were to inform
oncoming cars about the checkpoint, that would introduce dependence. j

In the problems we study in this section, we add the additional assumption that
the number of trials is fixed in advance.

4. There are a fixed number n of Bernoulli trials conducted.

EXAMPLE 3 Binomial probability distribution n = 3
When a relay tower for wireless phone service breaks down, it quickly becomes an
expensive proposition for the phone company, and the cost increases with the time
it is inoperable. From company records, it is postulated that the probability is 0.90
that the breakdown can be repaired within one hour. For the next three breakdowns,
on different days and different towers,

(a) List all possible outcomes in terms of success, S, repaired within one hour, and
failure, F , not repaired within one hour.

(b) Find the probability distribution of the number of successes, X , among the
3 repairs.
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Solution (a) We write FSS for the outcome where the first repair is not made within one
hour and the second and third are successful. The 2 × 2 × 2 = 8 possible
outcomes can be systematically arranged as follows:

FFF FFS FSS SSS
FSF SFS
SFF SSF

X = 0 X = 1 X = 2 X = 3

where the number of successes X is the same for each outcome in a column.
This value is recorded at the bottom of the column.

(b) The results of repairs on different days and different towers should be
independent. Also, the probability of success 0.90 is the same for each repair.
Therefore, the probability that X = 0 is 0.1 × 0.1 × 0.1 = 0.001. Next, the
probability of FFS is 0.1 × 0.1 × 0.9 = 0.009 and both SFS and FSS have the
same probability. Consequently, the probability that X = 1 is 3 × 0.009 =
0.027. Note that the number of outcomes where X = 1 is just the number of
ways to select 1 or 3 trials for an S and the others are F .
By similar reasoning, the probability that X = 2 is

3 ( 0.1 × 0.9 × 0.9 ) = 0.243 =
(

3
2

)
(0.9)2 (0.1)1

Finally, the probability that X = 3, no repair takes over one hour, is

0.9 × 0.9 × 0.9 = 0.729 =
(

3
3

)
(0.9)3 (0.1)0

All of these probabilities can be expressed by the formula

f (x) = P(X = x) =
(

3
x

)
(0.9)x (0.1)3−x for x = 0, 1, 2, 3

This is the probability distribution for a binomial random variable when the
success probability is p = 0.9 and there are n = 3 trials. j

Let X be the random variable that equals the number of successes in n trials.
To obtain probabilities concerning X , we proceed as follows: If p and 1 − p are the
probabilities of success and failure on any one trial, then the probability of getting x
successes and n − x failures, in some specific order, is px(1 − p)n−x. Clearly, in this
product of p’s and (1−p)’s there is one factor p for each success, one factor 1−p for
each failure. The x factors p and n−x factors 1−p are all multiplied together by virtue
of the generalized multiplication rule for more than two independent events. Since
this probability applies to any point of the sample space that represents x successes
and n − x failures (in any specific order), we have only to count how many points of
this kind there are, and then multiply px(1 − p)n−x by this. The number of ways in

which we can select the x trials on which there is to be a success is
(

n
x

)
, the number

of combinations of x objects selected from a set of n objects. Multiplying, we arrive

at the following result:

Binomial distribution b ( x; n, p ) =
(

n
x

)
px( 1 − p )n−x x = 0, 1, 2, . . . , n
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This probability distribution is called the binomial distribution because for x = 0, 1,

2, . . . , and n, the values of the probabilities are the successive terms of the binomial

expansion of [p+ (1− p)]n. For the same reason, the combinatorial quantities
(

n
x

)
are referred to as binomial coefficients. Actually, the preceding equation defines a
family of probability distributions, with each member characterized by a given value
of the parameter p and the number of trials n.

Important information about the shape of binomial distributions is shown in
Figures 4.4. First, if p = 0.50, the equation for the binomial distribution is

b(x; n, 0.50) =
(

n
x

)
(0.5)n

and since (
n

n − x

)
=

(
n
x

)
it follows that b( x; n, 0.50) = b( n − x; n, 0.50). For any n, the binomial distribu-
tion with p = 0.5 is a symmetrical distribution. This means that the probability
histograms of such binomial distributions are symmetrical, as is illustrated in Fig-
ure 4.4(b). Note, however, that if p is less than 0.50, it is more likely that X will be
small rather than large compared to n/2 and that the opposite is true if p is greater
than 0.50. This is illustrated in Figure 4.4(a) and (c), showing binomial distributions
with n = 5 and p = 0.30 and p = 0.70. These two are mirror images of each other
as can be verified more generally in Exercise 4.7.

Figure 4.4
Binomial distributions for
n = 5 and (a) p = 0.3
(b) p = 0.5 (c) p = 0.7
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Finally, a probability distribution that has a probability bar chart like those in
Figure 4.4(a) and 4.4(c) is said to be a long-tailed or skewed distribution. It is said
to be a positively skewed distribution if the tail is on the right, and it is said to be
negatively skewed if the tail is on the left.

EXAMPLE 4 Evaluating binomial probabilities
It has been claimed that in 60% of all solar-heat installations the utility bill is reduced
by at least one-third. Accordingly, what are the probabilities that the utility bill will
be reduced by at least one-third in

(a) four of five installations;

(b) at least four of five installations?

Solution (a) Substituting x = 4, n = 5, and p = 0.60 into the formula for the binomial
distribution, we get

b(4; 5, 0.60) =
(

5
4

)
(0.60)4(1 − 0.60)5−4

= 0.259
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(b) Substituting x = 5, n = 5, and p = 0.60 into the formula for the binomial
distribution, we get

b(5; 5, 0.60) =
(

5
5

)
(0.60)5(1 − 0.60)5−5

= 0.078

and the answer is b(4; 5, 0.60) + b(5; 5, 0.60) = 0.259 + 0.078 = 0.337. j

If n is large, the calculation of binomial probabilities can become quite tedious.
Many statistical software programs have binomial distribution commands (see Ex-
ercises 4.30 and 4.31), as do some statistical calculators. Otherwise it is convenient
to refer to special tables. Table 1 at the end of the book gives the values of

B( x; n, p) =
x∑

k=0

b( k; n, p) for x = 0, 1, 2, . . . , n

for n = 2 to n = 20 and p = 0.05, 0.10, 0.15, . . . , 0.90, 0.95. We tabulated the
cumulative probabilities rather than the values of b( x; n, p), because the values
of B( x; n, p) are the ones needed more often in statistical applications. Note, how-
ever, that the values of b( x; n, p) can be obtained by subtracting adjacent entries in
Table 1. Because the two cumulative probabilities B( x; n, p) and B( x−1; n, p) differ
by the single term b( x; n, p)

b( x; n, p) = B( x; n, p) − B( x − 1; n, p)

where B(−1) = 0. The examples that follow illustrate the direct use of Table 1 and
the use of this relationship.

EXAMPLE 5 Evaluating cumulative binomial probabilities
If the probability is 0.05 that a certain wide-flange column will fail under a given
axial load, what are the probabilities that among 16 such columns

(a) at most two will fail;

(b) at least four will fail?

Solution (a) Table 1 shows that B(2; 16, 0.05) = 0.9571.

(b) Since

16∑
x=4

b( x; 16, 0.05) = 1 − B(3; 16, 0.05)

Table 1 yields 1 − 0.9930 = 0.0070. j

EXAMPLE 6 Finding a binomial probability using cumulative binomial
probabilities
Sport stories and financial reports, written by algorithms based on artificial intelli-
gence, have become common place. One company fed its algorithm with box scores
and play-by-play information and created over one million on-line reports of little
league games in 2011. They now write many stories on the Big Ten Network site.1

1S. Levy, “The Rise of the Robot Reporter”, Wired, May, (2012) pp.



102 Chapter 4 Probability Distributions

Suppose that the algorithm, or robot reporter, typically writes proportion 0.65
of the stories on the site. If 15 new stories are scheduled to appear on a web site next
weekend, find the probability that

(a) 11 will be written by the algorithm.

(b) at least 10 will be written by the algorithm

(c) between 8 and 11 inclusive will be written by the algorithm.

Solution (a) Using the relationship to cumulative probabilities and then looking up these
probabilities in Table 1, we get

b ( 11, 15, 0.65 ) = B ( 11, 15, 0.65 ) − B ( 10, 15, 0.65 )

= 0.8273 − 0.6481 = 0.1792

(b) 1 − B ( 9, 18, 0.65 ) = 1 − 0.4357 = 0.5643

(c) B ( 11, 15, 0.65 ) − B ( 7, 15, 0.65 ) = 0.8273 − 0.1132 = 0.7141
This last calculation, depicted in Figure 4.5, visually demonstrates the
calculation of the probability of an interval as the cumulative probabilities up
to the upper value minus the cumulative probabilities up to one less than the
lower limit.

[ Using R: (a) dbinom(11, 15, .65) (b) 1 - pbinom(9, 15, .65)
(c) pbinom(11, 15, .65) - pbinom(7, 15, .65) ]

Figure 4.5
The calculation of
P ( 8 ≤ X ≤ 11 )
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P ( 8 ≤ X ≤ 11 ) = B ( 11 ; 15, 0.65 ) − B ( 7 ; 15, 0.65 ) j

The following example illustrates the use of the binomial distribution in a prob-
lem of decision making.

EXAMPLE 7 A binomial probability to guide decision making
A manufacturer of external hard drives claims that only 10% of his drives require
repairs within the warranty period of 12 months. If 5 of 20 of his drives required
repairs within the first year, does this tend to support or refute the claim?

Solution Let us first find the probability that 5 or more of 20 of the drives will require repairs
within a year when the probability that any one will require repairs within a year is
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0.10. Using Table 1, we get

20∑
x=5

b( x; 20, 0.10) = 1 − B(4; 20, 0.10)

= 1 − 0.9568

= 0.0432

Since this probability is very small, it would seem reasonable to reject the hard drive
manufacturer’s claim. j

4.3 The Hypergeometric Distribution
Suppose that we are interested in the number of defectives in a sample of n units
drawn without replacement from a lot containing N units, of which a are defective.
Let the sample be drawn in such a way that at each successive drawing, whatever
units are left in the lot have the same chance of being selected. The probability that
the first drawing will yield a defective unit is

a
N

, but for the second drawing it is
a − 1
N − 1

or
a

N − 1
, depending on whether or not the first unit drawn was defective.

Thus, the trials are not independent, the third assumption underlying the binomial
distribution is not met, and the binomial distribution does not apply. Note that the
binomial distribution would apply if we do sampling with replacement, namely, if
each unit selected for the sample is replaced before the next one is drawn.

To solve the problem of sampling without replacement (that is, as we
originally formulated the problem), let us proceed as follows: The x successes

(defectives) can be chosen in
(

a
x

)
ways, the n − x failures (nondefectives)

can be chosen in
(

N − a
n − x

)
ways, and hence, x successes and n − x failures

can be chosen in
(

a
x

)(
N − a
n − x

)
ways. Also, n objects can be chosen from

a set of N objects in
(

N
n

)
ways, and if we consider all the possibilities as equally

likely, it follows that for sampling without replacement the probability of getting
“x successes in n trials” is

Hypergeometric
distribution

h(x; n, a, N ) =

(
a
x

)(
N − a
n − x

)
(

N
n

) for x = 0, 1, . . . , n

where x cannot exceed a and n − x cannot exceed N − a. This equation defines the
hypergeometric distribution, whose parameters are the sample size n, the lot size
(or population size) N, and the number of “successes” in the lot a.

EXAMPLE 8 Calculating a probability using the hypergeometric distribution
An Internet-based company that sells discount accessories for cell phones often
ships an excessive number of defective products. The company needs better control
of quality. Suppose it has 20 identical car chargers on hand but that 5 are defective.
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If the company decides to randomly select 10 of these items, what is the probability
that 2 of the 10 will be defective?

Solution Substituting x = 2, n = 10, a = 5, and N = 20 into the formula for the hypergeo-
metric distribution, we get

h(2; 10, 5, 20) =

(
5
2

)(
15
8

)
(

20
10

) = 10 × 6,435
184,756

= 0.348 j

In the preceding example, n was not small compared to N, and if we had made

the mistake of using the binomial distribution with n = 10 and p = 5
20

= 0.25
to calculate the probability of two defectives, the result would have been 0.282,

which is much too small. However, when n is small compared to N, less than
N
10

,
the composition of the lot is not seriously affected by drawing the sample without
replacement, and the binomial distribution with the parameters n and p = a

N
will

yield a good approximation.

EXAMPLE 9 A numerical comparison of the hypergeometric and
binomial distributions
Repeat the preceding example but with 100 car chargers, of which 25 are defective,
by using

(a) the formula for the hypergeometric distribution;

(b) the formula for the binomial distribution as an approximation.

Solution (a) Substituting x = 2, n = 10, a = 25, and N = 100 into the formula for the
hypergeometric distribution, we get

h(2; 10, 25, 100) =

(
25
2

)(
75
8

)
(

100
10

) = 0.292

(b) Substituting x = 2, n = 10, and p = 25
100

= 0.25 into the formula for the
binomial distribution, we get

b(2; 10, 0.25) =
(

10
2

)
(0.25)2(1 − 0.25)10−2

= 0.282 j

Observe that the difference between the two values is only 0.010. In general, it
can be shown that h(x; n, a, N ) approaches b(x; n, p) with p = a

N
when N → ∞,

and a good rule of thumb is to use the binomial distribution as an approximation to

the hypergeometric distribution if n ≤ N
10

.
Although we have introduced the hypergeometric distribution in connection

with a problem of sampling inspection, it has many other applications. For instance,
it can be used to find the probability that 3 of 12 homemakers prefer Brand A deter-
gent to Brand B, if they are selected from among 200 homemakers among whom 40
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actually prefer Brand A to Brand B. Also, it can be used in connection with a problem
of selecting industrial diamonds, some of which have superior qualities and some
of which do not, or in connection with a problem of sampling income tax returns,
where a among N returns filed contain questionable deductions, and so on.

Exercises
4.1 Suppose that a probability of 1

16 is assigned to each
point of the sample space of part (a) of Exercise 3.1
on page 65. Find the probability distribution of the
total number of units of black and white cement that
are adulterated.

4.2 An experiment consists of five draws from a pack of
cards. Denoting the outcomes BRRBR, BRRRB,. . .,
for black and red cards and assuming that all 32 out-
comes are equally likely, find the probability for the
total number of red cards.

4.3 Determine whether the following can be probability
distributions of a random variable which can take on
only the values 1, 2, 3, and 4.

(a) f (1) = 0.19, f (2) = 0.27, f (3) = 0.27, and
f (4) = 0.27;

(b) f (1) = 0.24, f (2) = 0.24, f (3) = 0.24, and
f (4) = 0.24;

(c) f (1) = 0.35, f (2) = 0.33, f (3) = 0.34, and
f (4) = −0.02.

4.4 Check whether the following can define probability
distributions and explain your answers.

(a) f (x) = 1

4
for x = 10, 11, 12, 13

(b) f (x) = 2x
5

for x = 0, 1, 2, 3, 4, 5

(c) f (x) = x − 15
20

for x = 8, 9, 10, 11, 12

(d) f (x) = 1 + x2

61
for x = 0, 1, 2, 3, 4, 5

4.5 Given that f (x) = k
2x is a probability distribution for

a random variable that can take on the values x =
0, 1, 2, 3, and 4, find k.

4.6 With reference to Exercise 4.5, find an expression for
the distribution function F (x) of the random variable.

4.7 Prove that b( x; n, p) = b( n − x; n, 1 − p).

4.8 Prove that B( x; n, p) = 1 − B( n − x − 1; n, 1 − p).

4.9 Do the assumptions for Bernoulli trials appear to hold?
Explain. If the assumptions hold, identify success and
the probability of interest.

(a) A TV ratings company will use their electronic
equipment to check a sample of homes around the
city to see whether or not each has a set tuned to
the mayor’s speech on the local channel.

(b) Among 6 nuclear power plants in a state, 2 have
had serious violations in last five years. Two plants
will be selected at random, one after the other, and
the outcome of interest is a serious violation in the
last five years.

4.10 What conditions for the binomial distribution, if any,
fail to hold in the following situations?

(a) For each of a company’s eight production facili-
ties, record whether or not there was an accident in
the past week. The largest facility has three times
the number of production workers as the smallest
facility.

(b) For each of three shifts, the number of units pro-
duced will be compared with the long-term av-
erage of 560 and it will be determined whether
or not production exceeds 560 units. The second
shift will know the result for the first shift before
they start working, and the third shift will start
with the knowledge of how the first two shifts
performed.

4.11 Which conditions for the binomial distribution, if any,
fail to hold in the following situations?

(a) The number of persons having a cold at a family
reunion attended by 30 persons.

(b) Among 8 projectors in the department office, 2 do
not work properly but are not marked defective.
Two are selected and the number that do not work
properly will be recorded.

4.12 Use Table 1, or software, to find

(a) B(8; 16, 0.40);

(b) b(8; 16, 0.40);

(c) B(9; 12, 0.60);

(d) b(9; 12, 0.60);

(e)
20∑

k=6
b( k; 20, 0.15);

(f)
9∑

k=6
b( k; 9, 0.70).

4.13 Use Table 1, or software, to find

(a) B(7; 18, 0.45);

(b) b(7; 18, 0.45);

(c) B(8; 11, 0.95);

(d) b(8; 11, 0.95);
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(e)
11∑

k=4
b( k; 11, 0.35);

(f)
4∑

k=2
b( k; 10, 0.30).

4.14 Rework the decision problem in Example 7, suppos-
ing that only 3 of the 20 hard drives required repairs
within the first year.

4.15 Voltage fluctuation is given as the reason for 80% of all
defaults in nonstabilized equipment in a plant. Use the
formula for the binomial distribution to find the prob-
ability that voltage fluctuation will be given as the rea-
son for three of the next eight defaults.

4.16 If the probability is 0.40 that steam will condense in a
thin-walled aluminum tube at 10 atm pressure, use the
formula for the binomial distribution to find the proba-
bility that, under the stated conditions, steam will con-
dense in 4 of 12 such tubes.

4.17 During the assembly of an exhaust valve, sufficient dis-
tance must be maintained between the valve tip and
the cylinder wall. If 85% of valve assemblies have the
required distance, use Table 1 or software to find the
probabilities that among 20 such valves:

(a) at least 15 will have the required distance;

(b) at most 10 will have the required distance;

(c) exactly 18 will have the required distance.

4.18 The probability that the noise level of a wide-band
amplifier will exceed 2 dB is 0.05. Use Table 1 or soft-
ware to find the probabilities that among 12 such am-
plifiers the noise level of

(a) one will exceed 2 dB;

(b) at most two will exceed 2 dB;

(c) two or more will exceed 2 dB.

4.19 A milk processing unit claims that, of the processed
milk converted to powdered milk, 95% does not
spoil. Find the probabilities that among 15 samples of
powdered milk

(a) all 15 will not spoil;

(b) at most 12 will not spoil;

(c) at least 9 will not spoil.

4.20 A quality-control engineer wants to check whether (in
accordance with specifications) 95% of the electronic
components shipped by his company are in good work-
ing condition. To this end, he randomly selects 15 from
each large lot ready to be shipped and passes the lot if
the selected components are all in good working con-
dition; otherwise, each of the components in the lot is
checked. Find the probabilities that the quality-control
engineer will commit the error of

(a) holding a lot for further inspection even though
95% of the components are in good working
condition;

(b) letting a lot pass through without further inspec-
tion even though only 90% of the components are
in good working condition;

(c) letting a lot pass through without further inspec-
tion even though only 80% of the components are
in good condition.

4.21 A food processor claims that at most 10% of her jars of
instant coffee contain less coffee than claimed on the
label. To test this claim, 16 jars of her instant coffee
are randomly selected and the contents are weighed;
her claim is accepted if fewer than 3 of the jars contain
less coffee than claimed on the label. Find the proba-
bilities that the food processor’s claim will be accepted
when the actual percentage of her jars containing less
coffee than claimed on the label is

(a) 5%; (b) 10%; (c) 15%; (d) 20%.

4.22 Refer to Exercise 4.2.

(a) Determine the cumulative probability distribution
F (x).

(b) Graph the probability distribution of f (x) as a bar
chart and below it graph F (x).

4.23 Four emergency radios are available for rescue
workers but one does not work properly. Two ran-
domly selected radios are taken on a rescue mission.
Let X be the number that work properly between the
two.

(a) Determine the probability distribution f (x) of X .

(b) Determine the cumulative probability distribution
F (x) of X .

(c) Graph f (x) as a bar chart and below it graph F (x).

4.24 Suppose that, next month, the quality control division
will inspect 30 units. Among these, 20 will undergo
a speed test and 10 will be tested for current flow. If
an engineer is randomly assigned 4 units, what are the
probabilities that

(a) none of them will need a speed test?

(b) only 2 will need a speed test?

(c) at least 3 will need a speed test?

4.25 A maker of specialized instruments receives shipments
of 24 circuit boards. Suppose one shipment contains 4
that are defective. An engineer selects a random sam-
ple of size 4. What are the probabilities that the sample
will contain

(a) 0 defective circuit boards?

(b) 1 defective circuit board ?

(c) 2 or more defective circuit boards?

4.26 If 6 of 18 new buildings in a city violate the building
code, what is the probability that a building inspector,
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who randomly selects 4 of the new buildings for in-
spection, will catch

(a) none of the buildings that violate the building
code?

(b) 1 of the new buildings that violate the building
code?

(c) 2 of the new buildings that violate the building
code?

(d) at least 3 of the new buildings that violate the
building code?

4.27 Among the 13 countries that an international trade fed-
eration is considering for their next 4 annual confer-
ences, 6 are in Asia. To avoid arguments, the selection
is left to chance. If none of the countries can be
selected more than once, what are the probabilities
that

(a) all the conferences will be held in Asia?

(b) none of the conferences will be held in Asia?

4.28 A shipment of 120 burglar alarms contains 5 that are
defective. If 3 of these alarms are randomly selected
and shipped to a customer, find the probability that the
customer will get one bad unit by using

(a) the formula for the hypergeometric distribution;

(b) the formula for the binomial distribution as an
approximation.

4.29 Refer to Exercise 4.24 but now suppose there will be
75 units among which 45 will need to undergo a speed
test and 30 will be tested for current flow. Find the
probability that, among the four inspections assigned
to the engineers, 3 will be speed tests and 1 will not,
by using

(a) the binomial distribution as an approximation;

(b) the hypergeometric distribution.

4.30 Binomial probabilities can be calculated using
MINITAB.

Dialog box:
Calc > Probability Distribution > Binomial
Choose Probability.
Enter 7 in Number of trials and .33 in Probability
of success.
Choose Input constant and enter 2.
Click OK.

Output:
Probability Density Function
Binomial with n = 7 and p = 0.33

x P( X = x )
2 0.308760

Find the binomial probabilities for x = 5, 10, 15 and
20 when n = 27 and p = 0.47.

4.31 Cumulative binomial probabilities can be calculated
using MINITAB.

Dialog Box:
Calc > Probability Distribution > Binomial
Choose Cumulative Distribution.
Enter 7 in Number of trials and .33 in Probability
of success.
Choose Input constant and enter 2.
Click OK.

Output:
Cumulative Distribution Function

Binomial with n = 7 and p = 0.33
x P( X <= x )
2 0.578326

Find the cumulative binomial probabilities x = 5, 10,
15 and 20 when n = 27 and p = 0.47.

4.4 The Mean and the Variance of a Probability
Distribution

Besides the binomial and hypergeometric distributions, there are many other prob-
ability distributions that have important engineering applications. However, before
we go any further, let us discuss some general characteristics of probability
distributions.

One such characteristic, that of the symmetry or skewness of a probability dis-
tribution, was illustrated in Figure 4.4; two other characteristics are apparent in Fig-
ure 4.6, which shows the probability histograms of two binomial distributions. One
of these binomial distributions has the parameters n = 4 and p = 1/2, and the other
has the parameters n = 16 and p = 1/2. Essentially, these two probability distribu-
tions differ in two respects. The first probability distribution is centered about x = 2,
whereas the other (whose histogram is shaded) is centered about x = 8, and we say
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Figure 4.6
Probability histograms of two
binomial distributions
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that the two distributions differ in their location. Another distinction is that the his-
togram of the second distribution is broader, and we say that the two distributions
differ in variation. To make such comparisons more specific, we shall introduce
in this section two of the most important statistical measures, describing the loca-
tion and the variation of a probability distribution—the mean and the variance,
respectively.

The mean of a probability distribution is simply the mathematical expectation of
a random variable having that distribution. If a random variable X takes on the values
x1, x2, . . . , or xk, with the probabilities f (x1), f (x2), . . . , and f (xk ), its mathemat-
ical expectation or expected value is

x1 · f (x1) + x2 · f (x2) + · · · + xk · f (xk ) =
∑

(value) × (probability)

using the
∑

notation.
The mean of a probability distribution is denoted by the Greek letter μ (mu).
Alternatively, the mean of a random variable X , or its probability distribution,

is called its expected value and is denoted by E ( X ). Both μ and E ( X ) refer to the
same quantity.

Mean of discrete
probability distribution

μ = E ( X )

=
∑
all x

x · f ( x )

The mean of a probability distribution measures its center in the sense of an
average, or by analogy to physics, in the sense of a center of gravity. Note that the
above formula for μ is, in fact, that for the first moment about the origin of a
discrete system of masses f (x) arranged on a weightless straight line at distances x
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from the origin. We do not have to divide here by∑
all x

f (x)

as we do in the usual formula for the x-coordinate of the center of gravity, since the
sum equals 1 by definition.

EXAMPLE 10 The mean number of heads in three tosses of a fair coin
Find the mean of the probability distribution of the number of heads obtained in
3 flips of a balanced coin.

Solution The probabilities for 0, 1, 2, or 3 heads are
1
8
,

3
8
,

3
8

, and
1
8

as can easily be verified

by counting equally likely possibilities or by using the formula for the binomial

distribution with n = 3 and p = 1
2

. Thus,

μ = 0 · 1
8

+ 1 · 3
8

+ 2 · 3
8

+ 3 · 1
8

= 3
2

j

EXAMPLE 11 The mean number of preferred used car attributes
With reference to the used car example and the probabilities given on page 105, find
the mean of the probability distribution of the number of preferred attributes.

Solution Substituting x = 0, 1, 2, and 3 and the corresponding probabilities into the formula
for μ, we get

μ = 0 (0.18) + 1 (0.50) + 2 (0.29) + 3 (0.03)

= 1.17 j

Returning to the second probability distribution of Figure 4.6, we could find its
mean by calculating all the necessary probabilities (or by looking them up in Table 1)
and substituting them into the formula for μ. However, if we reflect for a moment,
we might argue that there is a 50-50 chance for a success on each trial, there are 16
trials, and it would seem reasonable to expect 8 heads and 8 tails (in the sense of a
mathematical expectation). Similarly, we might argue that if a binomial distribution
has the parameters n = 200 and p = 0.20, we can expect a success 20% of the time
and, hence, on the average 200(0.20) = 40 successes in 200 trials. These two values
are, indeed, correct, and it can be shown in general that

Mean of binomial
distribution

μ = n · p

for the mean of a binomial distribution. To prove this formula, we substitute the
expression that defines b(x; n, p) into the formula for μ, and we get

μ =
n∑

x=0

x · n!
x!(n − x)!

px(1 − p)n−x

Then, making use of the fact that

x
x!

= 1
(x − 1)!
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and n! = n(n − 1)!, we factor out n and p to obtain

μ = np
n∑

x=1

(n − 1)!

(x − 1)!(n − x)!
px−1(1 − p)n−x

where the summation starts with x = 1 since the original summand is zero for x = 0.
If we now let y = x − 1 and m = n − 1, we obtain

μ = np
m∑

y=0

m!
y!(m − y)!

py(1 − p)m−y

and this last sum can easily be recognized as that of all the terms of the binomial
distribution with the parameters m and p. Hence, this sum equals 1 and it follows
that μ = np.

EXAMPLE 12 Using μ = np to find the mean number of heads in three tosses
Find the mean of the probability distribution of the number of heads obtained in
3 flips of a balanced coin.

Solution For a binomial distribution with n = 3 and p = 1
2

, we get μ = 3 · 1
2

= 3
2

, and this
agrees with the result obtained on page 109. j

The formula μ = np applies, of course, only to binomial distributions. For
other special distributions, we can express the mean in terms of their parameters.
For instance, for the mean of the hypergeometric distribution with the parameters
n, a, and N, we can write

Mean of hypergeometric
distribution

μ = n · a
N

In Exercise 4.43, the reader will be asked to derive this formula by a method similar
to the one we used to derive the formula for the mean of a binomial distribution.

EXAMPLE 13 Using the formula for the mean of a hypergeometric distribution
With reference to Example 8 in which 5 of 20 cell phone chargers are defective, find
the mean of the probability distribution of the number of defectives in a sample of
10 randomly chosen for inspection.

Solution Substituting n = 10, a = 5, and N = 20 into the above formula for μ, we get

μ = 10 · 5
20

= 2.5

In other words, if we inspect 10 of the chargers, we can expect 2.5 defectives, where
expect is to be interpreted in the sense, it represents the long-run average number
of defectives if 10 chargers are repeatedly selected from 20 chargers of which 5 are
defective. j

To study the second of the two properties of probability distributions mentioned
on page 118, their variation, let us refer again to the two probability distributions of
Figure 4.6. For the one where n = 4, there is a high probability of getting values close
to the mean, but for the one where n = 16, there is a high probability of getting values
scattered over considerable distances away from the mean. Using this property, it
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may seem reasonable to measure the variation of a probability distribution with the
quantity ∑

all x

(x − μ) · f (x)

namely, the average amount by which the values of the random variable deviate from
the mean. Unfortunately,∑

all x

( x − μ ) · f (x) =
∑
all x

x · f (x) −
∑
all x

μ · f (x)

= μ − μ ·
∑
all x

f (x) = μ − μ = 0

so that this expression is always equal to zero. However, since we are really inter-
ested in the magnitude of the deviations x−μ and not in their signs, it suggests itself
that we average the absolute values of these deviations from the mean. This would,
indeed, provide a measure of variation, but on purely theoretical grounds we prefer
to work instead with the squares of the deviations from the mean. These quantities
are also nonnegative, and their average is indicative of the spread or dispersion of
a probability distribution. We thus define the variance of a probability distribution
f (x), or that of the random variable X which has that probability distribution, as

Variance of probability
distribution

σ 2 =
∑
all x

( x − μ)2 · f (x)

where σ is the lowercase Greek letter for s. This measure is not in the same units
(or dimension) as the values of the random variable, but we can adjust for this by
taking the square root. This results in a measure of variation that is expressed in the
same units in which the random variable is expressed. The standard deviation is
defined as

Standard deviation of
probability distribution

σ =
√ ∑

all x

( x − μ)2 · f (x)

EXAMPLE 14 Calculating the standard deviations of two probability distributions
Compare the standard deviations of the two probability distributions of Figure 4.6,
on page 118.

Solution Since μ = 4 · 1
2

= 2 for the binomial distribution with n = 4 and p = 1
2

, we find
that the variance of this probability distribution is

σ 2 = (0 − 2)2 · 1
16

+ (1 − 2)2 · 4
16

+ (2 − 2)2 · 6
16

+ (3 − 2)2 · 4
16

+ (4 − 2)2 · 1
16

= 1

and, hence, that its standard deviation is σ = 1. Similarly, it can be shown that for
the other distribution σ = 2, and we find that the second (shaded) distribution with
the greater spread also has the greater standard deviation. j
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An alternative formula for variance, that the reader is asked to verify in Exer-
cise 4.49, sometimes simplifies the calculation of variance.

Computing formula
for variance

σ 2 =
∑
all x

x2 · f ( x ) − μ2

= E [ X2 ] − μ2

where E [ X2 ] is defined as
∑
all x

x2 · f ( x ) .

EXAMPLE 15 Calculating variance using the alternative computing formula
Use the preceding computing formula to determine the variance of the probability
distribution of the number of points rolled with a balanced die.

Solution Since f (x) = 1
6

for x = 1, 2, 3, 4, 5, and 6, we get

μ = 1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6

= 7
2

E( X2 ) = 12 · 1
6

+ 22 · 1
6

+ 32 · 1
6

+ 42 · 1
6

+ 52 · 1
6

+ 62 · 1
6

= 91
6

and, hence,

σ 2 = 91
6

−
(

7
2

)2
= 35

12
j

EXAMPLE 16 The mean and variance of the number of incorrect addresses
As part of a quality-improvement project focused on the delivery of mail at a depart-
ment office within a large company, data were gathered on the number of different
addresses that had to be changed so the mail could be redirected to the correct mail
stop. The distribution, given in the first two columns of the table below, describes
the number of redirects per delivery. Compute the mean and variance.

Solution We determine the columns x f (x) and x2 f (x)

x f (x) x f (x) x2 f (x)

0 .05 .0 0.0
1 .20 .2 0.2
2 .45 .9 1.8
3 .20 .6 1.8
4 .10 .4 1.6

Total 2.1 5.4

so μ = 2.1 and σ 2 = 5.4 − (2.1)2 = 0.990. j
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Given any probability distribution, we can always calculate σ 2 by substituting
the corresponding probabilities f (x) into the formula which defines the variance. As
in the case of the mean, however, this work can be simplified to a considerable extent
when we deal with special kinds of distributions. For instance, it can be shown that
the variance of the binomial distribution with the parameters n and p is given by the
formula

Variance of binomial
distribution σ 2 = n · p · (1 − p)

EXAMPLE 17 Using the formula for variance of the binomial distribution
Verify the result stated in the preceding example, that σ = 2 for the binomial distri-

bution with n = 16 and p = 1
2

.

Solution Substituting n = 16 and p= 1
2

into the formula for the variance of a binomial distri-
bution, we get

σ 2 = 16 · 1
2

· 1
2

= 4

and, hence, σ = √
4 = 2. j

The variance of the hypergeometric distribution with the parameters n, a, and N is

Variance of
hypergeometric

distribution
σ 2 = n

a
N

(
1 − a

N

)(
N − n
N − 1

)

The factor (N − n)/(N − 1) adjusts for the finite population.

EXAMPLE 18 Using the formula for variance of the hypergeometric distribution
With reference to Example 8 in which 5 of 20 cell phone chargers are defective, find
the standard deviation of the probability distribution of the number of defectives in
a sample of 10 randomly chosen for inspection.

Solution Substituting n = 10, a = 5, and N = 20 into the formula for the variance of a hyper-
geometric distribution, we get

σ 2 = 10
5
20

(
1 − 5

20

) (
20 − 10
20 − 1

)
= 75

76

and, hence, σ =
√

75/76 = 0.99. j

When we first defined the variance of a probability distribution, it may have
occurred to the reader that the formula looked exactly like the one which we use in
physics to define second moments, or moments of inertia. Indeed, it is customary in
statistics to define the kth moment about the origin as

μ′
k =

∑
all x

xk · f (x)
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and the kth moment about the mean as

μk =
∑
all x

(x − μ)k · f (x)

Thus, the mean μ is the first moment about the origin, and the variance σ 2 is the sec-
ond moment about the mean. Higher moments are often used in statistics to give fur-
ther descriptions of probability distributions. For instance, the third moment about
the mean (divided by σ 3 to make this measure independent of the scale of mea-
surement) is used to describe the symmetry or skewness of a distribution; the fourth
moment about the mean (divided by σ 4) is, similarly, used to describe its “peaked-
ness,” or kurtosis. To determine moments about the mean, it is usually easiest to
express moments about the mean in terms of moments about the origin and then to
calculate the necessary moments about the mean. For the second moment about the
mean we thus have the important formula σ 2 = μ′

2 − μ2.

4.5 Chebyshev’s Theorem
Earlier in this chapter we used examples to show how the standard deviation mea-
sures the variation of a probability distribution, that is, how it reflects the concen-
tration of probability in the neighborhood of the mean. If σ is large, there is a
correspondingly higher probability of getting values farther away from the mean.
Formally, the idea is expressed by the following theorem.

Chebyshev’s theorem

Theorem 4.1 If a probability distribution has mean μ and standard deviation
σ , the probability of getting a value which deviates from μ by at least kσ is at

most
1

k2
.

Symbolically,

P( | X − μ | ≥ kσ ) ≤ 1

k2

where P( | X − μ | ≥ kσ ) is the probability associated with the set of outcomes for
which x, the value of a random variable having the given probability distribution, is
such that | x − μ | ≥ kσ .

Thus, the probability that a random variable will take on a value which deviates
(differs) from the mean by at least 2 standard deviations is at most 1

4 , the probability
that it will take on a value which deviates from the mean by at least 5 standard
deviations is at most 1

25 , and the probability that it will take on a value which deviates

from the mean by 10 standard deviations or more is less than or equal to 1
100 .

To prove this theorem, consider any probability distribution f (x), having mean
μ, and variance σ 2. Dividing the sum defining the variance into three parts as indi-
cated in Figure 4.7, we have

σ 2 =
∑
all x

( x − μ)2 f (x)

=
∑
R1

( x − μ)2 f (x) +
∑
R2

( x − μ)2 f (x) +
∑
R3

( x − μ)2 f (x)

where R1 is the region for which x ≤ μ − kσ, R2 is the region for which μ − kσ <

x < μ + kσ , and R3 is the region for which x ≥ μ + kσ . Since (x − μ)2 f (x) cannot
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Figure 4.7
Diagram for proof of
Chebyshev’s theorem R1 R2 R3

x

f (x)

m2ks m1ksm

be negative, the above sum over R2 is nonnegative, and without it the sum of the
summations over R1 and R3 is less than or equal to σ 2; that is,

σ 2 ≥
∑
R1

( x − μ)2 f (x) +
∑
R3

( x − μ)2 f (x)

But x − μ ≤ −kσ in the region R1 and x − μ ≥ kσ in the region R3, so that in
either case | x − μ | ≥ kσ . In both regions (x − μ)2 ≥ k2σ 2. If we now replace
(x − μ)2 in each sum by k2σ 2, a number less than or equal to (x − μ)2, we obtain
the inequality

σ 2 ≥
∑
R1

k2σ 2 f (x) +
∑
R1

k2σ 2 f (x)

or
1

k2
≥

∑
R1

f (x) +
∑
R3

f (x)

Since ∑
R1

f (x) +
∑
R3

f (x)

represents the probability assigned to the region R1 ∪ R3, namely, P( | X − μ | ≥
kσ ), this completes the proof of Theorem 4.1.

To obtain an alternative form of Chebyshev’s theorem, note that the event
| x − μ | < kσ is the complement of the event | x − μ | ≥ kσ ; hence, the proba-

bility of getting a value which deviates from μ by less than kσ is at least 1 − 1

k2
.

EXAMPLE 19 A probability bound using Chebyshev’s theorem
The number of customers who visit a car dealer’s showroom on a Saturday morning
is a random variable with μ = 18 and σ = 2.5. With what probability can we assert
that there will be more than 8 but fewer than 28 customers?

Solution Let X be the number of customers. Since

k = 28 − 18
2.5

= 18 − 8
2.5

= 4

P( | X − μ |< kσ ) ≥ 1 − 1

k2
and P(8 < X < 28) ≥ 1 − 1

42
= 15

16 j
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Theoretically speaking, the most important feature of Chebyshev’s theorem is
that it applies to any probability distribution for which μ and σ exist. However, so
far as applications are concerned, this generally is also its greatest weakness—it
provides only an upper limit (often a very poor one) to the probability of getting a
value that deviates from the mean by k standard deviations or more. For instance,
we can assert in general that the probability of getting a value which differs from the
mean by at least 2 standard deviations is at most 0.25, whereas the corresponding
exact probability for the binomial distribution with n = 16 and p = 1

2 is only
0.0768—“at most 0.25” is correct, but it does not tell us that the actual probability
may be as small as 0.0768.

An important result is obtained if we apply Chebyshev’s theorem to the binomial
distribution when the number of trials is large. To illustrate this result, consider the
following example.

EXAMPLE 20 Chebyshev’s theorem with a large number of Bernoulli trials
Show that for 40,000 flips of a balanced coin, the probability is at least 0.99 that the
proportion of heads will fall between 0.475 and 0.525.

Solution Since

μ = 40,000 · 1
2

= 20,000 σ =
√

40,000 · 1
2

· 1
2

= 100

and

1 − 1

k2
= 0.99

yields k = 10, the alternative form of Chebyshev’s theorem tells us that the prob-
ability is at least 0.99 that we will get between 20,000 − 10(100) = 19,000 and
20,000 + 10(100) = 21,000 heads. Hence, the probability is at least 0.99 that the
proportion of heads will fall between

19,000
40,000

= 0.475 and
21,000
40,000

= 0.525 j

Correspondingly, the reader will be asked to show in Exercise 4.47 that for
48 million draws from a fair deck of cards the probability is at least 0.94 that the
proportion of spades will fall between 0.24975 and 0.25025, and these results sug-
gest that when n is large, the chances are that the proportion of spades will be very
close to p = 1

4 .
When formulated for any binomial distribution with the parameters n and p, this

result is referred to as the law of large numbers. Recall Figure 3.7 which demon-
strates the stabilition of the long run relative frequency for the case p = 0.6. The
law of large numbers guarantees this for all applications.

Exercises
4.32 Suppose that the probabilities are 0.4, 0.3, 0.2, and 0.1

that there will be 0, 1, 2, or 3 power failures in a certain
city during the month of July. Use the formulas which
define μ and σ 2 to find

(a) the mean of this probability distribution;

(b) the variance of this probability distribution.

4.33 Use the computing formula for σ 2 to rework part (b)
of the preceding exercise.

4.34 The following table gives the probabilities that a cer-
tain computer will malfunction 0, 1, 2, 3, 4, 5, or
6 times on any one day:

Number of
malfunctions: x 0 1 2 3 4 5 6

Probability: f (x) 0.17 0.29 0.27 0.16 0.07 0.03 0.01
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Use the formulas which define μ and σ to find

(a) the mean of this probability distribution;

(b) the standard deviation of this probability
distribution.

4.35 Use the computing formula for σ 2 to rework part (b)
of the preceding exercise.

4.36 Find the mean and the variance of the uniform proba-
bility distribution given by

f (x) = 1
n

for x = 1, 2, 3, . . . , n

[Hint: The sum of the first n positive integers is
n(n + 1)/2, and the sum of their squares is n(n + 1)
(2n + 1)/6.]

4.37 Find the mean and variance of the binomial distribu-
tion with n = 6 and p = 0.55 by using

(a) Table 1 and the formulas defining μ and σ 2;

(b) the special formulas for the mean and the variance
of a binomial distribution.

4.38 As can easily be verified by means of the formula for
the binomial distribution (or by listing all 16 possibil-
ities), the probabilities of getting 0, 1, 2, 3, or 4 red
cards in four draws from a fair deck of cards are

1
16

4
16

6
16

4
16

1
16

Find the mean of this probability distribution using

(a) the formula that defines μ;

(b) the specific formula for the mean of a binomial
distribution.

4.39 With reference to Exercise 4.38, find the variance of
the probability distribution using

(a) the formula that defines σ 2;

(b) the computing formula for σ 2;

(c) the special formula for the variance of a binomial
distribution.

4.40 If 95% of certain high-performance radial tires last at
least 30,000 miles, find the mean and the standard de-
viation of the distribution of the number of these tires,
among 20 selected at random, that last at least 30,000
miles, using

(a) Table 1, the formula which defines μ, and the
computing formula for σ 2.

(b) the special formulas for the mean and the variance
of a binomial distribution.

4.41 Find the mean and the standard deviation of the dis-
tribution of each of the following random variables
(having binomial distributions):

(a) The number of heads obtained in 676 flips of a
balanced coin.

(b) The number of 4’s obtained in 720 rolls of a bal-
anced die.

(c) The number of defectives in a sample of 600 parts
made by a machine, when the probability is 0.04
that any one of the parts is defective.

(d) The number of students among 800 interviewed
who do not like the food served at the university
cafeteria, when the probability is 0.65 that any one
of them does not like the food.

4.42 Find the mean and the standard deviation of the hy-
pergeometric distribution with the parameters n = 3,

a = 4, and N = 8

(a) by first calculating the necessary probabilities and
then using the formulas which define μ and σ ;

(b) by using the special formulas for the mean and the
variance of a hypergeometric distribution.

4.43 Prove the formula for the mean of the hypergeometric
distribution with the parameters n, a, and N, namely,
μ = n · a

N
.

[Hint: Make use of the identity

k∑
r=0

(
m
r

) (
s

k − r

)
=

(
m + s

k

)

which can be obtained by equating the coefficients of
xk in (1 + x)m(1 + x)s and in (1 + x)m+s.]

4.44 Construct a table showing the upper limits provided
by Chebyshev’s theorem for the probabilities of ob-
taining values differing from the mean by at least 1,
2, and 3 standard deviations and also the correspond-
ing probabilities for the binomial distribution with

n = 16 and p = 1
2

.

4.45 Over the range of cylindrical parts manufactured on
a computer-controlled lathe, the standard deviation of
the diameters is 0.002 millimeter.

(a) What does Chebyshev’s theorem tell us about the
probability that a new part will be within 0.006
unit of the mean μ for that run?

(b) If the 400 parts are made during the run, about
what proportion do you expect will lie in the in-
terval in part (a)?

4.46 In 1 out of 22 cases, the plastic used in microwave-
friendly containers fails to meet heat standards. If 979
specimens are tested, what does Chebyshev’s theorem tell
us about the probability of getting at most 25 or more than
64 containers that do not meet the heat standards?

4.47 Show that for 48 million draws from a fair deck of
cards, the probability is at least 0.9375 that the pro-
portion of spades drawn will fall between 0.24975 and
0.25025.
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4.48 The time taken by students to fill out a loan request
form has standard deviation 1.2 hours. What does
Chebyshev’s theorem tell us about the probability that
a students’ time will be within 4 hours of the mean μ

for all potential loan applicants?

4.49 Prove that

(a) σ 2 = E(X2) − μ2;

(b) μ3 = μ′
3 − 3μ′

2 · μ + 2μ3.

4.6 The Poisson Distribution and Rare Events
The Poisson distribution often serves as a model for counts which do not have a
natural upper bound. It is an important probability distribution for describing the
number of times an event randomly occurs in one unit of time or one unit of space.
In one unit of time, each instant can be regarded as a potential trial in which the
event may or may not occur. Although there are conceivably an infinite number of
trials, usually only a few or moderate number of events take place.

The Poisson distribution, with mean λ (lambda), has probabilities given by

Poisson distribution f (x; λ) = λxe−λ

x!
for x = 0, 1, 2, . . . λ > 0

Using a method similar to that employed on page 119 to derive the formula for
the mean of the binomial distribution, we can show that the mean and the variance
of the Poisson distribution with the parameter λ are given by

Mean and variance of
Poisson distribution μ = λ and σ 2 = λ

There is a different Poisson distribution for different values λ. They are all
asymmetrical. If λ is an integer f ( λ − 1; λ) = f ( λ; λ) and each is larger than
any other probability. Otherwise, when λ is not an integer, the largest probability
is assigned to the integer part of λ. When 0 < λ < 1, the probability of 0 is the
largest and the probabilities f ( x; λ) decrease as the value x increases as illustrated
in Figure 4.8(a) for λ = .7. The distribution for λ = 3, representing λ > 1, has a
more typical behavior. As illustrated in Figure 4.8 (b) the probabilities f (x; λ) in-
crease to f (2; 3) = f (3; 3)) and then decrease as x increases. This distribution has
a long right-hand tail. As λ becomes large, the distribution becomes approximately
symmetric.

Figure 4.8
Two Poisson distributions
(a) λ = .7 and (b) λ = 3.
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Since the Poisson distribution has many important applications, it has been ex-
tensively tabulated. Table 2W on the book’s web site gives the values of the proba-
bilities

F (x; λ) =
x∑

k=0

f (k; λ)

for values of λ in varying increments from 0.02 to 25, and its use is very similar to
that of Table 1. Poisson probabilities are also calculated by many statistical software
programs (see Exercises 4.70 and 4.71).

EXAMPLE 21 A Poisson distribution for counts of particles
For health reasons, homes need to be inspected for radon gas which decays and
produces alpha particles. One device counts the number of alpha particles that hit its
detector. To a good approximation, in one area, the count for the next week follows
a Poisson distribution with mean 1.3. Determine

(a) the probability of exactly one particle next week.

(b) the probability of one or more particles next week.

(c) the probability of at least two but no more than four particles next week.

(d) The variance of the Poisson distribution.

Solution Unlike the binomial case, there is no choice of a fixed Bernoulli trial here because
one can always work with smaller intervals.

(a) P ( X = 1 ) = λ1 e−λ

1 !
= 1.3 e−1.3

1
= .3543

Alternatively, using Table 2W, F (1, 1.3) − F (0, 1.3) = 0.627 − 0.273 = 0.354

(b) P ( X ≥ 1 ) = 1 − P ( X = 0 ) = 1 − e−1.3 = 0.727

(c) P ( 2 ≤ X ≤ 4 ) = F (4, 1.3) − F (1, 1.3) = 0.989 − 0.627 = 0.362

This last calculation, depicted in Figure 4.9, visually demonstrates the subtraction
of the cumulative probabilities for values below the upper limit, for the cumulative
probabilities through the upper limit.

[ Using R: (a) dpois(1, 1.3) (b) 1 - ppois(0, 1.3) (c) ppois(4, 1.3) - ppois(1, 1.3) ]

Figure 4.9
The calculation of
P ( 2 ≤ X ≤ 4 ) F(4, 1.3)

x

f(x; 1.3)

0 1 43 5 62 7

.2
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.1

0 x

f(x; 1.3)

0 1 4 5 62 3 7

.2

.3

.1

0 x

f(x; 1.3)

0 1 4 5 62 3 7

.2

.3

.1

0

 F(1, 1.3) P(2 # X # 4)                   5 ]
j
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Let us point out that x = 0, 1, 2, . . . means that there is a countable infinity of
possibilities, and this requires that we modify the third axiom of probability given
on page 82. In its place we substitute the following axiom.

Modification of third
axiom of probability

Axiom 3’ If A1, A2, A3, . . . is a finite or infinite sequence of mutually exclusive
events in S, then

P(A1 ∪ A2 ∪ A3 ∪ · · ·) = P(A1) + P(A2) + P(A3) + · · ·

The other postulates remain unchanged. To verify that P(S ) = 1 for this formula,
we make use of Axiom 3′ and write

∞∑
x=0

f (x; λ) =
∞∑

x=0

e−λλx

x!
= e−λ

∞∑
x=0

λx

x!

Since the infinite series in the expression on the right is the Maclaurin’s series for
eλ, it follows that

∞∑
x=0

f (x; λ) = e−λ · eλ = 1

The Poisson Approximation to the Binomial Distribution
One interpretation of a rare event is one that occurs with a small probability in a
single trial. When n is large and p is small, binomial probabilities are often approx-
imated by means of the Poisson distribution with λ equal to the product np.

Let us now show that when n → ∞ and p → 0, while np = λ remains constant,
the limiting form of the binomial distribution is the Poisson distribution given above.

First let us substitute
λ

n
for p into the formula for the binomial distribution and

simplify the resulting expression; thus, we get

b(x; n, p) = n!
x! (n − x)!

(
λ

n

)x (
1 − λ

n

)n−x

= n(n − 1)(n − 2) · · · (n − x + 1)
x! nx (λ)x

(
1 − λ

n

)n−x

=

(
1 − 1

n

)(
1 − 2

n

)
· · ·

(
1 − x − 1

n

)
x!

(λ)x
(

1 − λ

n

)n−x

Letting n → ∞, we find that(
1 − 1

n

)(
1 − 2

n

)
· · ·

(
1 − x − 1

n

)
→ 1

and that

(
1 − λ

n

)n−x
=

[(
1 − λ

n

)n/λ
]λ (

1 − λ

n

)−x
→ e−λ
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Hence, the binomial distribution b(x; n, p) approaches

λxe−λ

x!
for x = 0, 1, 2, . . .

This completes our proof; the distribution at which we arrived is called the Poisson
distribution, as we already indicated on the page 128.

An acceptable rule of thumb is to use Poisson approximation of binomial proba-
bilities if n ≥ 20 and p ≤ 0.05; if n ≥ 100, the approximation is generally excellent
so long as np ≤ 10.

EXAMPLE 22 Comparing Poisson and binomial probabilities
It is known that 5% of the books bound at a certain bindery have defective bindings.
Find the probability that 2 of 100 books bound by this bindery will have defective
bindings using

(a) the formula for the binomial distribution;

(b) the Poisson approximation to the binomial distribution.

Solution (a) Substituting x = 2, n = 100, and p = 0.05 into the formula for the binomial
distribution, we get

b(2; 100, 0.05) =
(

100
2

)
(0.05)2(0.95)98 = 0.081

(b) Substituting x = 2 and λ = 100(0.05) = 5 into the formula for the Poisson
distribution, we get

f (2; 5) = 52 · e−5

2!
= 0.084

It is of interest to note that the difference between the two values we obtained
(the error we would make by using the Poisson approximation) is only 0.003. [Had
we used Table 2W instead of using a calculator to obtain e−5, we would have ob-
tained f (2; 5) = F (2; 5) − F (1; 5) = 0.125 − 0.040 = 0.085.] j

EXAMPLE 23 A Poisson approximation to binomial probabilities
A heavy machinery manufacturer has 3,840 large generators in the field that are
under warranty. If the probability is 1/1,200 that any one will fail during the given
year, find the probabilities that 0, 1, 2, 3, 4, . . . of the generators will fail during the
given year.

Solution The binomial distribution could be used when appropriate computer software is
available. However, the expected number is small and the number of generators is
large so the Poisson approximation is valid. We take

λ = 3,840 · 1
1,200

= 3.2

Consulting Table 2W with λ = 3.2, and using the identity f ( x; λ) = F ( x; λ) −
F ( x − 1; λ), we obtain the results shown in the probability histogram of
Figure 4.10. j

In our justification of the Poisson approximation to the binomial distribution we let
λ = np. For the variance we can write σ 2 = np(1−p) = λ(1−p), which approaches
λ as p → 0. This matches the mean and variance of the Poisson distribution.
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Figure 4.10
Probability histogram of
Poisson distribution with
λ = 3.2 Number of generators that fail
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4.7 Poisson Processes
In general, a random process is a physical process that is wholly or in part con-
trolled by some sort of chance mechanism. It may be a sequence of repeated flips
of a coin, measurements of the quality of manufactured products coming off an as-
sembly line, the vibrations of airplane wings, the noise in a radio signal, or any one
of numerous other phenomena. What characterizes such processes is their time de-
pendence, namely, the fact that certain events do or do not take place (depending on
chance) at regular intervals of time or throughout continuous intervals of time.

In this section we shall be concerned with processes taking place over continu-
ous intervals of time or space, such as the occurrence of imperfections on a continu-
ously produced bolt of cloth, the recording of radiation by means of a Geiger counter,
the arrival of telephone calls at a virtual switchboard, or the passing by cars over an
electronic counting device. We will now show that the mathematical model which
we can use to describe many situations like these is that of the Poisson distribution.
To find the probability of x successes during a time interval of length T , we divide
the interval into n equal parts of length �t, so that T = n · �t, and we assume that

1. The probability of a success during a very small interval of time �t is given by
α · �t.

2. The probability of more than one success during such a small time interval �t
is negligible.

3. The probability of a success during such a time interval does not depend on
what happened prior to that time.

This means that the assumptions underlying the binomial distribution are satisfied,
and the probability of x successes in the time interval T is given by the binomial
probability b(x; n, p) with

n = T
�t

and p = α · �t



Sec 4.7 Poisson Processes 123

Then, following the argument on page 130, we find that when n → ∞ the probability
of x successes during the time interval T is given by the corresponding Poisson
probability with the parameter

λ = n · p = T
�t

· ( α · �t ) = αT

Since λ is the mean of this Poisson distribution, note that α is the average (mean)
number of successes per unit time.

EXAMPLE 24 Calculating probabilities concerning bad checks
If a bank receives on the average α = 6 bad checks per day, what are the probabilities
that it will receive

(a) 4 bad checks on any given day?

(b) 10 bad checks over any 2 consecutive days?

Solution (a) Substituting x = 4 and λ = αT = 6 · 1 = 6 into the formula for the Poisson
distribution, we get

f (4; 6) = 64 · e−6

4!
= 1,296(0.00248)

24
= 0.134

(b) Here λ = α · 2 = 12 so we want to find f (10; 12). We write

f (10; 12) = F (10; 12) − F (9; 12)

= 0.347 − 0.242

= 0.105

where the values of F (10; 12) and F (9; 12) were obtained from Table 2W. j

EXAMPLE 25 Calculating the probabilities of internet interruptions
A computing system manager states that the rate of interruptions to the internet
service is 0.2 per week. Use the Poisson distribution to find the probability of

(a) one interruption in 3 weeks

(b) at least two interruptions in 5 weeks

(c) at most one interruption in 15 weeks.

Solution Interruptions to the network occur randomly and the conditions for the Poisson dis-
tribution initially appear reasonable. We have λ = 0.2 for the expected number of
interruptions in one week.

In terms of the cumulative probabilities,

(a) with λ = (0.2) · 3 = 0.6, we get

F (1; 0.6) − F (0; 0.6) = 0.878 − 0.549

= 0.329

(b) With λ = (0.2) · 5 = 1.0, we get

1 − F (1; 1.0) = 1 − 0.736

= 0.264

(c) With λ = (0.2) · 15 = 3.0 we get

F (1; 3.0) = 0.199 j
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The Poisson distribution has many important applications in queuing problems,
where we may be interested, for example, in the number of customers arriving for
service at a cafeteria, the number of ships or trucks arriving to be unloaded at a
receiving dock, the number of aircraft arriving at an airport, and so forth. Thus, if,
on average, 0.3 customer arrives per minute at a cafeteria, then the probability that
exactly 3 customers will arrive during a 5-minute span is

F (3; 1.5) − F (2; 1.5) = 0.934 − 0.809 = 0.125

and if, on the average, 3 trucks arrive per hour to be unloaded at a warehouse, then
the probability that at most 20 will arrive during an 8-hour day is

F (20; 24) = 0.243

4.8 The Geometric and Negative Binomial
Distribution

On page 67 we indicated that a countably infinite sample space would be needed if
we are interested in the number of cars persons have to inspect until they find one
whose nitrogen oxide emission does not meet government standards. To treat this
kind of problem in general, suppose that in a sequence of trials we are interested
in the number of the trial on which the first success occurs. The three assumptions
for Bernoulli trials are satisfied but the extra assumption underlying the binomial
distribution is not. In other words, n is not fixed.

Clearly, if the first success is to come on the xth trial, it has to be preceded by
x − 1 failures, and if the probability of a successes is p, the probability of x − 1
failures in x − 1 trials is (1 − p)x−1. Then, if we multiply this expression by the
probability p of a success on the xth trial, we find that the probability of getting the
first success on the xth trial is given by

Geometric distribution g(x; p) = p(1 − p)x−1 for x = 1, 2, 3, 4, . . .

This probability distribution is called the geometric distribution. The reader will
be asked to verify its mean and variance in Exercise 5.100.

Mean and variance of
geometric distribution μ = 1

p
σ 2 = 1 − p

p2

EXAMPLE 26 Calculating a probability using the geometric distribution
If the probability is 0.05 that a certain kind of measuring device will show excessive
drift, what is the probability that the sixth measuring device tested will be the first
to show excessive drift?

Solution Substituting x = 6 and p = 0.05 into the formula for the geometric distribution, we
get

g(6; 0.05) = (0.05)(1 − 0.05)6−1

= 0.039 j
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The negative binomial distribution describes the total number of Bernoulli
trials, X , to obtain a specified number r successes. When r = 1, the negative binomial
reduces to the geometric distribution.

If the rth success occurs at trial number x, it must be that r−1 successes occurred
in the first x − 1 trials and the last trial is a success. The probability distribution is
then the product of the binomial probability b ( r − 1 ; x − 1, p ) and p.

Negative binomial
distribution

f (x) =
(

x − 1
r − 1

)
pr( 1 − p ) x−r for x = r, r + 1, . . .

The reader is asked, in Exercise 6.40, to show the mean and variance are given
by

Mean and variance of
negative binomial

distribution

μ = r p
p

σ 2 = ( 1 − p ) r

p2

Exercises
4.50 Prove that for the Poisson distribution

f (x + 1; λ)
f (x; λ)

= λ

x + 1

for x = 0, 1, 2, . . . .

4.51 Use the recursion formula of Exercise 4.50 to calcu-
late the value of the Poisson distribution with λ = 3
for x = 0, 1, 2, . . . , and 9, and draw the probability
histogram of this distribution. Verify your results by
referring to Table 2W or software.

4.52 Use Table 2W or software to find

(a) F (4; 7); (b) f (4; 7); (c)
19∑

k=6
f (k; 8).

4.53 Use Table 2W or software to find

(a) F (9; 12); (b) f (9; 12); (c)
12∑

k=3
f (k; 7.5).

4.54 Use the Poisson distribution to approximate the bino-
mial probability b(3; 100, 0.03).

4.55 In a factory, 8% of all machines break down at least
once a year. Use the Poisson approximation to the
binomial distribution to determine the probabilities
that among 25 machines (randomly chosen in the
factory):

(a) 5 will break down at least once a year;

(b) at least 4 will break down once a year;

(c) anywhere from 3 to 8, inclusive, will break down
at least once a year.

4.56 During inspection of the continuous process of mak-
ing large rolls of floor coverings, 0.5 imperfections are
spotted per minute on average. Use the Poison distri-
bution to find the probabilities

(a) one imperfection in 4 minutes

(b) at least two in 8 minutes

(c) at most one in 10 minutes.

4.57 The number of gamma rays emitted per second by
a certain radioactive substance is a random variable
having the Poisson distribution with λ = 5.8. If a
recording instrument becomes inoperative when there
are more than 12 rays per second, what is the proba-
bility that this instrument becomes inoperative during
any given second?

4.58 A consulting engineer receives, on average, 0.7 re-
quests per week. If the number of requests follows a
Poisson process, find the probability that

(a) in a given week, there will be at least 1 request;

(b) in a given 4-week period there will be at least 3
requests.

4.59 A conveyor belt conveys finished products to the ware-
house at an average of 2 per minute. Find the proba-
bilities that

(a) at most 3 will be conveyed in a given minute;

(b) at least 2 will be conveyed in an interval of
3 minutes;

(c) at most 20 will be conveyed during an interval of
5 minutes.
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4.60 Environmental engineers, concerned about the effects
of releasing warm water from a power plants’ cool-
ing system into a Great Lake, decided to sample many
organisms both inside and outside of a warm wa-
ter plume. For the zoo-plankton Cyclops, they collect
100 cc of water and count the number of Cyclops. The
expected number is 1.7 per 100 cc.

Use the Poisson distribution to find the probabil-
ity of

(a) 1 Cyclops in a 100 cc sample

(b) less than or equal to 6 but more than one in a 100cc
sample

(c) exactly 4 Cyclops in a sample of size 200cc.

(d) 2 or more Cyclops in a sample of size 200cc.

4.61 In a “torture test,” a light switch is turned on and off
until it fails. If the probability that the switch will fail
any time it is turned on or off is 0.001, what is the prob-
ability that the switch will fail after it has been turned
on or off 1,200 times? Assume that the conditions
underlying the geometric distribution are met. [Hint:
Use the formula for the value of an infinite geometric
progression.]

4.62 An automated weight monitor can detect underfilled
cans of beverages with probability 0.98. What is the
probability it fails to detect an underfilled can for the
first time when it encounters the 10th underfilled can?

4.63 A company manufactures hydraulic gears, and records
show that the probability is 0.04 that one of its new
gears will fail its inspection test. What is the probabil-
ity that the fifth gear in a day will be the first one to
fail the test?

4.64 Referring to Exercise 4.63, find the probability that
the 15th gear in a day is the fourth to fail the test.

4.65 During an assembly process, parts arrive just as they
are needed. However, at one station, the probability
is 0.01 that a defective part will arrive in a one-hour
period. Find the probability that

(a) exactly 1 defective part arrives in a 4-hour span;

(b) 1 or more defective parts arrive in a 4-hour span;

(c) exactly 1 defective part arrives in a 4-hour span
and exactly 1 defective part arrives in the next
4-hour span.

4.66 The arrival of trucks at a receiving dock is a Poisson
process with a mean arrival rate of 2 per hour.

(a) Find the probability that exactly 5 trucks arrive in
a two-hour period.

(b) Find the probability that 8 or more trucks arrive
in a two-hour period.

(c) Find the probability that exactly 2 trucks arrive in
a one-hour period and exactly 3 trucks arrive in
the next one-hour period.

4.67 The number of flaws in a fiber optic cable follows a
Poisson process with an average of 0.6 per 100 feet.

(a) Find the probability of exactly 2 flaws in a 200-
foot cable.

(b) Find the probability of exactly 1 flaw in the first
100 feet and exactly 1 flaw in the second 100 feet.

4.68 Differentiating with respect to p on both sides of the
equation

∞∑
x=1

p(1 − p)x−1 = 1

show that the geometric distribution

f (x) = p(1 − p)x−1 for x = 1, 2, 3, . . .

has the mean 1/p.

4.69 Use the formulas defining μ and σ 2 to show that the
mean and the variance of the Poisson distribution are
both equal to λ.

4.70 Poisson probabilities can be calculated using
MINITAB.

Dialog box:
Calc > Probability Distribution > Poisson
Choose Probability.
Choose Input constant and enter 2. Type 1.64 in Mean.
Click OK.

Output:
Poisson with mean = 1.64

x P(X = x)
2 0.260864

Find the Poisson probabilities for x = 2 and x = 3 when

(a) λ = 2.73; (b) λ = 4.33.

4.71 Cumulative Poisson probabilities can be calculated
using MINITAB.

Dialog box:
Calc > Probability Distribution > Poisson
Choose Cumulative Distribution.
Choose Input constant and enter 2. Type 1.64 in Mean.
Click OK.

Output:
Poisson with mean = 1.64
x P(X <= x)
2 0.772972

Find the cumulative Poisson probabilities for x = 2
and x = 3 when

(a) λ = 2.73; (b) λ = 4.33.
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4.9 The Multinomial Distribution
An immediate generalization of the binomial distribution arises when each trial can
have more than two possible outcomes. This happens, for example, when a manu-
factured product is classified as superior, average, or poor, when a student’s perfor-
mance is graded as an A, B, C, D, or F, or when an experiment is judged successful,
unsuccessful, or inconclusive. To treat this kind of problem in general, let us consider
the case where there are n independent trials, with each trial permitting k mutually
exclusive outcomes whose respective probabilities are

p1, p2, . . . , pk with
k∑

i=1

pi = 1

Referring to the outcomes as being of the first kind, the second kind, . . . , and the
kth kind, we shall be interested in the probability f (x1, x2, . . . , xk ) of getting x1
outcomes of the first kind, x2 outcomes of the second kind, . . . , and xk outcomes of
the kth kind, with

k∑
i=1

xi = n

Using arguments similar to those which we employed in deriving the equation for
the binomial distribution in Section 4.2, it can be shown that the desired probability
is given by

Multinomial distribution f (x1, x2, . . . , xk ) = n!
x1!x2! . . . xk!

px1
1 px2

2 . . . pxk
k

for xi = 0, 1, . . . , n for each i, but with the xi subject to the restriction

k∑
i=1

xi = n

The joint probability distribution whose values are given by these probabilities
is called the multinomial distribution; it owes its name to the fact that for the
various values of the xi the probabilities are given by the corresponding terms of the
multinomial expansion of ( p1 + p2 + · · · + pk )n.

EXAMPLE 27 Calculating a probability using the multinomial distribution
The probabilities that the light bulb of a certain kind of projector will last fewer than
40 hours of continuous use, anywhere from 40 to 80 hours of continuous use, or
more than 80 hours of continuous use are 0.30, 0.50, and 0.20. Find the probability
that among eight such bulbs 2 will last fewer than 40 hours, 5 will last anywhere
from 40 to 80 hours, and 1 will last more than 80 hours.

Solution Substituting n = 8, x1 = 2, x2 = 5, x3 = 1, p1 = 0.30, p2 = 0.50, and p3 = 0.20
into the formula, we get

f (2, 5, 1) = 8!
2!5!1!

(0.30)2(0.50)5(0.20)1

= 0.0945 j



128 Chapter 4 Probability Distributions

Exercises
4.72 Suppose that the probabilities are, respectively, 0.40,

0.40, and 0.20 that in city driving a certain kind of im-
ported car will average less than 22 miles per gallon,
anywhere from 22 to 25 miles per gallon, or more than
25 miles per gallon. Find the probability that among 12
such cars tested, 4 will average less than 22 miles per
gallon, 6 will average anywhere from 22 to 25 miles
per gallon, and 2 will average more than 25 miles per
gallon.

4.73 As can easily be shown, the probabilities of getting 0,

1, or 2 heads with a pair of balanced coins are
1
4
,

1
2
,

and
1
4

. What is the probability of getting 2 tails twice,
1 head and 1 tail 3 times, and 2 heads once in 6 tosses
of a pair of balanced coins?

4.74 Suppose the probabilities are 0.89, 0.09, and 0.02 that
the finish on a new car will be rated acceptable, easily
repairable, or unacceptable. Find the probability that,
among 20 cars painted one morning, 17 have accept-
able finishes, 2 have repairable finishes, and 1 finish is
unacceptable.

4.75 Using the same sort of reasoning as in the derivation
of the formula for the hypergeometric distribution, we
can derive a formula which is analogous to the multi-

nomial distribution but applies to sampling without re-
placement. A set of N objects contains a1 objects of the
first kind, a2 objects of the second kind, . . . , and ak ob-
jects of the kth kind, so that a1 + a2 + · · · + ak = N.
The number of ways in which we can select x1 objects
of the first kind, x2 objects of the second kind, . . . , and
xk objects of the kth kind is given by the product of the
number of ways in which we can select x1 of the a1
objects of the first kind, x2 of the a2 objects of the sec-
ond kind, . . . , and xk of the ak objects of the kth kind.
Thus, the probability of getting that many objects of
each kind is simply this product divided by the total
number of ways in which x1 + x2 + · · · + xk = n ob-
jects can be selected from the whole set of N objects.

(a) Write a formula for the probability of obtaining x1
objects of the first kind, x2 objects of the second
kind, . . . and xk objects of the kth kind.

(b) If 20 defective glass bricks include 10 that have
cracks but no discoloration, 7 that are discolored
but have no cracks, and 3 that have cracks and dis-
coloration, what is the probability that among 6 of
the bricks chosen at random for further checks 3
will have cracks only, 2 will only be discolored,
and 1 will have cracks as well as discoloration?

4.10 Simulation
In recent years, simulation techniques have been applied to many problems in the
various sciences. If the processes being simulated involve an element of chance,
these techniques are referred to as Monte Carlo methods. Very often, the use of
Monte Carlo simulation eliminates the cost of building and operating expensive
equipment. It is used, for instance, in the study of collisions of photons with elec-
trons, the scattering of neutrons, and similar complicated phenomena. Monte Carlo
methods are also useful in situations where direct experimentation is impossible—
say, in studies of the spread of cholera epidemics, which, of course, cannot be in-
duced experimentally on human populations. In addition, Monte Carlo techniques
are sometimes applied to the solution of mathematical problems which cannot be
solved by direct means, or where a direct solution is too costly or requires too
much time.

A classical example of the use of Monte Carlo methods in the solution of a prob-
lem of pure mathematics is the determination of π (the ratio of the circumference
of a circle to its diameter) by probabilistic means. Early in the eighteenth century,
George de Buffon, a French naturalist, proved that if a very fine needle of length a
is thrown at random on a board ruled with equidistant parallel lines, the probabil-
ity that the needle will intersect one of the lines is 2a/πb, where b is the distance
between the parallel lines. What is remarkable about this fact is that it involves the
constant π = 3.1415926 …, which in elementary geometry is approximated by the

circumferences of regular polygons enclosed in a circle of radius
1
2

. Buffon’s result

implies that if such a needle is actually tossed a great many times, the proportion
of the time it crosses one of the lines gives an estimate of 2a/πb and, hence, an
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estimate of π since a and b are known. Early experiments of this kind yielded an
estimate of 3.1596 (based on 5,000 trials) and an estimate of 3.155 (based on 3,204
trials) in the middle of the nineteenth century.

Although Monte Carlo methods are sometimes based on actual gambling de-
vices (for example, the needle tossing in the estimation of π ), it is usually expedient
to use so-called random digits or random numbers generated by computer soft-
ware. We will illustrate an application using a table of random numbers that consists
of many pages on which the digits of 0, 1, 2, …, and 9 are set down in a “random”
fashion, much as they would appear if they were generated one at a time by a gam-
bling device giving each digit an equal probability of being selected. Actually, we
could also construct such tables ourselves—say, by repeatedly drawing numbered
slips out of a hat or by using a perfectly constructed spinner—but in practice such
tables are usually generated by means of computers.

Although tables of random numbers are constructed so that the digits can be
looked upon as values of a random variable having the discrete uniform distribution

f (x) = 1
10

for x = 0, 1, 2, . . . , or 9, they can be used to simulate values of any
discrete random variable, and even continuous random variables.

To illustrate the use of a table of random numbers, let us simulate, say, tossing
three balanced coins. The distribution for the number of heads is

Number of Heads Probability

0 1/8 = 0.125
1 3/8 = 0.375
2 3/8 = 0.375
3 1/8 = 0.125

Since the probabilities in this distribution are given to three decimal places, we use
three-digit random numbers. Our scheme is to allocate 125 (or one-eighth) of the
1,000 random numbers from 000 to 999 to 0 heads, 375 (or three-eighths) to 1 head,
375 (or three-eighths) to 2 heads, and 125 (or one-eighth) to 3 heads.

We use the following scheme:

Cumulative Random
Number of Heads Probability Probability Numbers

0 0.125 0.125 000–124
1 0.375 0.500 125–449
2 0.375 0.875 500–874
3 0.125 1.000 875–999

The column of cumulative probabilities was added to facilitate the assignment of
the random numbers. Observe that in each case the last random digit is one less
than the number formed by the three decimal digits of the corresponding cumulative
probability.

With this scheme, if we arbitrarily use the twenty-second, twenty-third, and
twenty-fourth columns of the first page of Table 7W, starting with the sixth row and
going down the page, we get 197, 365, 157, 520, 946, 951, 948, 568, 586, and 089,
and we interpret this as 1, 1, 1, 2, 3, 3, 3, 2, 2, and 0 heads.

The method we have illustrated here with reference to a game of chance can
be used to simulate observations of any random variable with a given probability
distribution.
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However, in practice it is much more efficient to use common computer software
based on this scheme.

EXAMPLE 28 Simulation of arrival of cars at toll booth
Suppose that the probabilities are 0.082, 0.205, 0.256, 0.214, 0.134, 0.067, 0.028,
0.010, 0.003, and 0.001 that 0, 1, 2, 3, . . . , or 9 cars will arrive at a toll booth of a
turnpike during any one-minute interval in the early afternoon.

Use computer software to simulate the arrival of cars at the toll booth during 20
one-minute intervals in the early afternoon.

Solution We illustrate using MINITAB with the values set in C1 and the probabilities
in C2.

Data:
C1: 0, 1, . . . , 9
C2: 0.082, 0.205, . . . , 0.001

Dialog box:
Calc > Random Data > Discrete
Type 20 after Generate. Type C3 below Store. Type C1
in Values in:. Type C2 in Probabilities in Click OK.

Output:

4 1 5 4 1 2 5 0 1 4

3 3 1 0 1 1 2 5 1 2

Suppose we are interested in a somewhat complex event, say, 11 or more cars arrive
in at least one three-minute interval among the 20 one-minute intervals. It is a simple
manner to repeat the simulation of 20 one-minute periods 100 times. The probability
that 11 or more cars arrive in at least one three-minute interval is estimated by the
proportion of times that event occurs. In the single sample of size 20 here, that event
does not occur. j

Exercises
4.76 Simulate tossing a coin.

(a) For a balanced coin, generate 100 flips.

(b) For a coin with probability of heads 0.8, generate
100 flips.

4.77 The probabilities that a quality control team will visit
0, 1, 2, 3, or 4 production sites on a single day are 0.15,
0.22, 0.35, 0.21, and 0.07.

(a) Simulate the inspection team’s visits on 30 days.

(b) Repeat the simulation of visits on 30 days a total of
100 times. Estimate the probability that there are
more than 10 visits over five consecutive days.

4.78 Depending on the availability of parts, a company can
manufacture 3, 4, 5, or 6 units of a certain item per
week with corresponding probabilities of 0.10, 0.40,
0.30, and 0.20. The probabilities that there will be a
weekly demand for 0, 1, 2, 3, …, or 8 units are, respec-
tively, 0.05, 0.10, 0.30, 0.30, 0.10, 0.05, 0.05, 0.04, and
0.01. If a unit is sold during the week that it is made,
it will yield a profit of $100; this profit is reduced by
$20 for each week that a unit has to be stored. Simu-
late the operation of this company for 50 consecutive
weeks and estimate its expected weekly profit.
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Do’s and Don’ts

Do’s
1. Keep in mind that any scheme for assigning a numerical value to each pos-

sible outcome should quantify a feature of the outcome that is important to
the scientist. That is, any random variable should convey pertinent infor-
mation about the outcome.

2. Describe the chance behavior of a discrete random variable X by its prob-
ability distribution function

f (x) = P[X = x] for each possible value x

3. Summarize a probability distribution, or the random variable, by its

mean: μ =
∑
all x

x · f (x) variance: σ 2 =
∑
all x

(x − μ)2 · f (x)

standard deviation: σ =
√∑

all x

(x − μ)2 · f (x)

4. Use a special family of distributions, for instance the binomial distribution

b( x; n, p) =
(

n
x

)
px(1 − p)n−x for x = 0, 1, . . . , n

having mean np and variance np(1 − p), if the underlying assumptions
are reasonable. The hypergeometric distribution might be entertained when
sampling without replacement from a finite collection of units each of
which is one of two possible types. It will be well approximated by the
binomial when the sample size n is a small fraction of the population
size N.

5. For counts whose possible values do not have a specified upper limit, con-
sider the Poisson distribution

f (x; λ) = λxe−λ

x!
for x = 0, 1, 2, . . . λ > 0

having mean λ and variance λ. You do need to check that the Poisson dis-
tribution is reasonable. The sample mean and variance should be about the
same size.

Don’ts
1. Never apply the binomial distribution to counts without first checking that

the conditions hold for Bernoulli trials: independent trials with the same
probability of success for each trial. If the conditions are satisfied, then the
binomial distribution is appropriate for the number of successes in a fixed
number of trials.

2. Never use the formula np(1 − p) for the variance of a count of successes
without checking that the trials are independent.
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Review Exercises
4.79 A manufacturer of smart phones has the following

probability distribution for the number of defects per
phone:

x f (x)

0 .89
1 .07
2 .03
3 .01

(a) Determine the probability of 2 or more defects.

(b) Is a randomly selected phone more likely to have
0 defects or 1 or more defects?

4.80 Upon reviewing recent use of conference rooms at
an engineering consulting firm, an industrial engineer
determined the following probability distribution for
the number of requests for a conference room per
half-day:

x f (x)

0 .07
1 .15
2 .45
3 .25
4 .08

(a) Currently, the building has two conference rooms.
What is the probability that the number of requests
will exceed the number of rooms for a given half-
day?

(b) What is the probability that the two conference
rooms will not be fully utilized on a given half-
day?

(c) How many additional conference rooms are re-
quired so that the probability of denying a request
is not more than 0.10?

4.81 Refer to Exercise 4.80 and obtain the
(a) mean; (b) variance; (c) standard deviation for the
number of requests for conference rooms.

4.82 Determine whether the following can be probability
distributions of a random variable that can take on only
the values of 0, 1, and 2:

(a) f (0) = 0.34 f (1) = 0.34 and f (2) = 0.34.

(b) f (0) = 0.2 f (1) = 0.6 and f (2) = 0.2.

(c) f (0) = 0.7 f (1) = 0.4 and f (2) = −0.1.

4.83 Check whether the following can define probability
distributions, and explain your answers.

(a) f (x) = x

10
, for x = 0, 1, 2, 3, 4.

(b) f (x) = 1
3

, for x = −1, 0, 1.

(c) f (x) = (x − 1)2

4
, for x = 0, 1, 2, 3.

4.84 An engineering student correctly answers 85% of all
questions she attempts. What is the probability that the
first incorrect answer was the fourth one?

4.85 If the probability is 0.20 that a downtime of an auto-
mated production process will exceed 2 minutes, find
the probability that 3 of 8 downtimes of the process
will exceed 2 minutes using (a) the formula for the bi-
nomial distribution; (b) Table 1 or software.

4.86 If the probability is 0.90 that a new machine will
produce 40 or more chairs, find the probabilities that
among 16 such machines

(a) 12 will produce 40 or more chairs;

(b) at least 10 will produce 40 or more chairs;

(c) at most 3 will not produce 40 or more chairs.

4.87 In 16 experiments studying the electrical behavior of
single cells, 12 use micro-electrodes made of metal
and the other 4 use micro-electrodes made from glass
tubing. If 2 of the experiments are to be terminated
for financial reasons, and they are selected at random,
what are the probabilities that

(a) neither uses micro-electrodes made from glass
tubing?

(b) only one uses micro-electrodes made from glass
tubing?

(c) both use micro-electrodes made from glass
tubing?

4.88 As can be easily verified by means of the formula for
the binomial distribution, the probabilities of getting 0,
1, 2, or 3 heads in 3 flips of a coin whose probability of
heads is 0.4 are 0.216, 0.432, 0.288, and 0.064. Find
the mean of this probability distribution using

(a) the formula that defines μ;

(b) the special formula for the mean of a binomial dis-
tribution.

4.89 With reference to Exercise 4.88, find the variance of
the probability distribution using

(a) the formula that defines σ 2;

(b) the special formula for the variance of a binomial
distribution.

4.90 Find the mean and the standard deviation of the distri-
bution of each of the following random variables (hav-
ing binomial distributions):

(a) The number of heads in 440 flips of a balanced
coin.

(b) The number of 6’s in 300 rolls of a balanced die.
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(c) The number of defectives in a sample of 700 parts
made by a machine, when the probability is 0.03
that any one of the parts is defective.

4.91 Use the Poisson distribution to approximate the bino-
mial probability b(1; 100, 0.02).

4.92 With reference to Exercise 4.87, find the mean and the
variance of the distribution of the number of micro-
electrodes made from glass tubing using

(a) the probabilities obtained in that exercise;

(b) the special formulas for the mean and the variance
of a hypergeometric distribution.

4.93 The daily number of orders filled by the parts de-
partment of a repair shop is a random variable with
μ = 142 and σ = 12. According to Chebyshev’s the-
orem, with what probability can we assert that on any
one day it will fill between 82 and 202 orders?

4.94 Records show that the probability is 0.00008 that a
truck will have an accident on a certain highway. Use
the formula for the Poisson distribution to approximate
the probability that at least 5 of 20,000 trucks on that
highway will have an accident.

4.95 The number of weekly breakdowns of a computer is
a random variable having a Poisson distribution with
λ = 0.2. What is the probability that the computer

will operate without a breakdown for 3 consecutive
weeks?

4.96 A manufacturer determines that a big screen HDTV set
had probabilities of 0.8, 0.15, 0.05, respectively, of be-
ing placed in the categories acceptable, minor defect,
or major defect. If 3 HDTVs are inspected,

(a) find the probability that 2 are acceptable and 1 is
a minor defect;

(b) find the marginal distribution of the number in
minor defect;

(c) compare your answer in part (b) with the binomial
probabilities b(x; 3, 0.15). Comment.

4.97 Suppose that the probabilities are 0.2466, 0.3452,
0.2417, 0.1128, 0.0395, 0.0111, 0.0026, and 0.0005
that there will be 0, 1, 2, 3, 4, 5, 6, or 7 polluting spills
in the Great Lakes on any one day. Simulate the num-
bers of polluting spills in the Great Lakes in 30 days.

4.98 A candidate invited for a visit has probability 0.6 of
being hired. Let X be the number of candidates that
visit before 2 are hired. Find

(a) P ( X ≤ 4 );

(b) P ( X ≥ 5 ).
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C
ontinuous sample spaces and continuous random variables rise when we deal
with quantities that are measured on a continuous scale. For instance, when we
can measure the speed of a car, the amount of alcohol in a person’s blood, the

efficiency of a solar collector, or the tensile strength of a new alloy.
In this chapter we learn how to determine and work with probabilities relating to

continuous sample spaces and continuous random variables. We first introduce proba-
bility densities in Section 5.1. The discussion expands to the normal distribution in Sec-
tions 5.2 and 5.3 and various other special probability densities in Sections 5.4 through
5.9. Problems involving more than one random variable are discussed in Section 5.10.
Section 5.11 presents the moment generating function method, a tool for finding the dis-
tribution of the sum of independent random variables. A method for checking whether
a data set appears to be generated by a normal distribution is introduced in Section 5.12.

5.1 Continuous Random Variables
When we first introduced the concept of a random variable in Chapter 4, we pre-
sented it as a real-valued function defined over the sample space of an experiment.
We illustrated this idea with the random variable giving the number of preferred at-
tributes possessed by a used car, assigning the numbers 0, 1, 2, or 3 (whichever was
appropriate) to the 18 possible outcomes of the experiment. In the continuous case,
where random variables can assume values on a continuous scale, the procedure is
very much the same. The outcomes of an experiment are represented by the points
on a line segment or a line. Then, a random variable is created by appropriately
assigning a number to each point by means of some rule or equation.

When the value of a random variable is given directly by a measurement or ob-
servation, we usually do not bother to differentiate among the value of the random
variable, the measurement which we obtain, and the outcome of the experiment,
which is the corresponding point on the real axis. If an experiment consists of de-
termining what force is required to break a given tensile-test specimen, the result
itself, say, 138.4 pounds, is the value of the random variable, X , with which we are
concerned. There is no real need in that case to add that the sample space of the
experiment consists of all (or part of) the points on the positive real axis.

In general, we write P( a ≤ X ≤ b ) for the probability associated with the
points of the sample space for which the value of a random variable falls on the
interval from a to b. The problem of defining probabilities in connection with con-
tinuous sample spaces and continuous random variables involves some complica-
tions. To illustrate the nature of these complications, let us consider the following
situation.

Suppose we want to know the probability that if an accident occurs on a free-
way whose length is 200 miles, it will happen at some given location or, perhaps,
some particular stretch of the road. The outcomes of this experiment can be looked
upon as a continuum of points. Namely, those on the continuous interval from
0 to 200.
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Next, suppose the probability that the accident occurs on any interval of length
L is L/200, with L measured in miles. Note that this arbitrary assignment of prob-
ability is consistent with Axioms 1 and 2 on page 70, since the probabilities are all

nonnegative and less than or equal to 1, and P(S ) = 200
200

= 1.

So far, we are considering only events represented by intervals which form part
of the line segment from 0 to 200. Using Axiom 3′ on page 120, we can also obtain
probabilities of events that are not intervals but which can be represented by the
union of finitely many or countably many intervals. Thus, for two nonoverlapping
intervals of length L1 and L2 we have a probability of

L1 + L2
200

and for an infinite sequence of nonoverlapping intervals of length L1, L2,

L3, . . . , we have a probability of

L1 + L2 + L3 + · · ·
200

Note that the probability that the accident occurs at any given point is equal to zero
because we can look upon a point as an interval of zero length. However, the prob-
ability that the accident occurs in a very short interval is positive; for instance, for
an interval of length 1 foot the probability is (5,280 × 200)−1 = 9.5 × 10−7.

Thus, in extending the concept of probability to the continuous case, we again
use Axioms 1, 2, and 3′, but we shall have to restrict the meaning of the term event.
So far as practical considerations are concerned, this restriction is of no conse-
quence. We simply do not assign probabilities to some rather abstruse point sets,
which cannot be expressed as the unions or intersections of finitely many or count-
ably many intervals.

The way in which we assigned probabilities in the preceding example is, of
course, very special; it is similar in nature to the way in which we assign equal
probabilities to the six faces of a die, heads and tails, the 52 cards in a standard
deck, and so forth. To treat the problem of associating probabilities with continuous
random variables generally, suppose we are interested in the probability that a given
random variable will take on a value on the interval from a to b, where a and b
are constants with a ≤ b. Suppose, furthermore, that we divide the interval from
a to b into m equal subintervals of width �x containing, respectively, the points
x1, x2, . . . , xm, and that the probability that the random variable will take on a value
in the subinterval containing xi is given by f (xi) · �x. Then the probability that the
random variable with which we are concerned will take on a value in the interval
from a to b is given by

P( a ≤ X ≤ b ) =
m∑

i=1

f (xi) · �x

When f is an integrable function defined for all values of the random variable with
which we are concerned, we shall define the probability that the value of the random
variable falls between a and b by letting �x → 0. Namely,

P( a ≤ X ≤ b ) =
∫ b

a
f (x) dx

As illustrated in Figure 5.1, this definition of probability in the continuous case
presupposes the existence of an appropriate function f which, integrated from any
constant a to any constant b ( with a ≤ b ), gives the probability that the correspond-
ing random variable takes on a value on the interval from a to b. Note that the value
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Figure 5.1
Probability as area under f a b

P (a # X # b)

f (x) does not give the probability that the corresponding random variable takes on
the value x. In the continuous case, probabilities are given by integrals and not by
the values f (x).

To obtain the probability that a random variable will actually take on a given
value x, we might first determine the probability that it will take on a value on the
interval from x−�x to x+�x, and then let �x → 0. However, if we did this it would
become apparent that the result is always zero. The fact that the probability is always
zero that a continuous random variable will take on any given value x should not be
disturbing. Indeed, our definition of probability for the continuous case provides a
remarkably good model for dealing with measurements or observations. Owing to
the limits of our ability to measure, experimental data never seem to come from
a continuous sample space. Thus, while temperatures are productively thought of
as points on a continuous scale, if we report a temperature measurement of 74.8
degrees centigrade, we really mean that the temperature lies in the interval from
74.75 to 74.85 degrees centigrade, and not that it is exactly 74.800 . . . .

It is important to add that when we say that there is a zero probability that a ran-
dom variable will take on any given value x, this does not mean that it is impossible
that the random variable will take on the value x. In the continuous case, a zero prob-
ability does not imply logical impossibility, but the whole matter is largely academic
since, owing to the limitations of our ability to measure and observe, we are always
interested in probabilities connected with intervals and not with isolated points.

As an immediate consequence of the fact that in the continuous case probabil-
ities associated with individual points are always zero, we find that if we speak of
the probability associated with the interval from a to b, it does not matter whether
either endpoint is included. Symbolically,

P( a ≤ X ≤ b ) = P( a ≤ X < b ) = P( a < X ≤ b ) = P( a < X < b )

Drawing an analogy with the concept of a density function in physics, we call the
functions f , whose existence we stipulated in extending our definition of probabil-
ity to the continuous cases, probability density functions, or simply probability
densities. Whereas density functions are integrated to obtain weights, probability
density functions are integrated to obtain probabilities. We will follow the common
practice of also calling f (x) the probability density function with the understanding
that we are referring to the function f which assigns the value f (x) to x, for each x
that is a possible value for the random variable X .

Since a probability density, integrated between any two constants a and b, gives
the probability that a random variable assumes a value between these limits, f cannot
be just any real-valued integrable function. However, imposing the conditions that

f (x) ≥ 0 for all x

and ∫ ∞

−∞
f (x) dx = 1
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insures that the axioms of probability (with the modification about events discussed
on page 135) are satisfied. Note the similarity between these conditions and those
for probability distributions given on page 96.

As in the discrete case, we let F (x) be the probability that a random variable
with the probability density f (x) takes on a value less than or equal to x. We again
refer to the corresponding function F as the cumulative distribution function or
just the distribution function of the random variable. Thus, for any value x, F (x) =
P( X ≤ x ) is the area under the probability density function over the interval −∞
to x. In the usual calculus notation for the integral,

F (x) =
∫ x

−∞
f (t ) dt

Consequently, the probability that the random variable will take on a value on the
interval from a to b is F ( b) − F ( a), and according to the fundamental theorem of
integral calculus it follows that

dF (x)
dx

= f (x)

wherever this derivative exists.

EXAMPLE 1 Calculating probabilities from the probability density function
If a random variable has the probability density

f (x) =
{

2 e−2x for x > 0

0 for x ≤ 0

find the probabilities that it will take on a value

(a) between 1 and 3;

(b) greater than 0.5.

Solution Evaluating the necessary integrals, we get

(a)
∫ 3

1
2 e−2x dx = e−2 − e−6 = 0.133

(b)
∫ ∞

0.5
2 e−2x dx = e−1 = 0.368 j

Note that in the preceding example we make the domain of f include all the
real numbers even though the probability is zero that x will be negative. This is a
practice we shall follow throughout the book. It is also apparent from the graph of
this function in Figure 5.2 that it has a discontinuity at x = 0; indeed, a probability
density need not be everywhere continuous, as long as it is integrable between any
two limits a and b (with a ≤ b).

Figure 5.2
Graph of probability density
f ( x ) = 2 e−2 x, x > 0

f (x)

2

0 1 2 3 4

x
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EXAMPLE 2 Determining a distribution function from its density function
With reference to the preceding example, find the distribution function and use it to
determine the probability that the random variable will take on a value less than or
equal to 1.

Solution Performing the necessary integrations, we get

F (x) =

⎧⎪⎨
⎪⎩

0 for x ≤ 0∫ x

0
2 e−2tdt = 1 − e−2x for x > 0

and substitution of x = 1 yields

F (1) = 1 − e−2 = 0.865 j

Note that the distribution function of this example is nondecreasing and that
F (−∞) = 0 and F (∞) = 1. Indeed, it follows by definition that these properties
are shared by all distribution functions.

EXAMPLE 3 A probability density function assigns probability one to (−∞, ∞)
Find k so that the following can serve as the probability density of a random variable:

f (x) =
{

0 for x ≤ 0

kxe−4x2
for x > 0

Solution To satisfy the first of the two conditions on page 136, k must be nonnegative, and to
satisfy the second condition we must have∫ ∞

−∞
f (x) dx =

∫ ∞

0
kxe−4x2

dx =
∫ ∞

0

k
8

· e−u du = k
8

= 1

so that k = 8. j

To describe probability densities, we define statistical measures that are very
similar the ones that describe probability distributions. The first moment about the
origin is again called the mean, and it is denoted by μ. Alternatively, it is also called
the expected value of a random variable having the probability density f (x) and
denoted by E( X ).

Mean of a probability
density

μ = E( X ) =
∫ ∞

−∞
x f (x) dx

This expected value is analogous to that for the discrete case introduced in Sec-
tion 4.4 but with an integral replacing the summation.

The kth moment about the origin is E( Xk ) or

μ′
k =

∫ ∞

−∞
xk · f (x) dx

analogous to the definition we gave on page 113.
Further, the kth moment about the mean is E( X − μ )k, or

μk =
∫ ∞

−∞
( x − μ )k · f (x) dx
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In particular, the second moment about the mean is again referred to as the variance
and it is written as σ 2. As before, it measures the spread of a probability density in
the sense that it gives the expected value of the squared deviation from the mean.

σ 2 =
∫ ∞

−∞
( x − μ )2 f (x) dx =

∫ ∞

−∞
x2 f (x) dx − μ2Variance of a probability

density

Alternately, σ 2 = E( X − μ )2 = E( X2 ) − μ2

Again, σ is referred to as the standard deviation.

EXAMPLE 4 Determining the mean and variance using the probability density
function
With reference to Example 1, find the mean and the variance of the given probability
density.

Solution Performing the necessary integrations, using integrations by parts, we get

μ =
∫ ∞

−∞
x f (x) dx =

∫ ∞

0
x · 2 e−2x dx = 1

2

Alternatively, the expectation of x is E(X ) = 0.5

σ 2 =
∫ ∞

−∞
( x − μ )2 f (x) dx =

∫ ∞

0

(
x − 1

2

)2
· 2 e−2x dx = 1

4 j

Exercises
5.1 Verify that the function of Example 1 is, in fact, a prob-

ability density.

5.2 If the probability density of a random variable is given by

f (x) =
{

(k + 2)x3 0 < x < 1

0 elsewhere

find the value k and the probability that the random
variable takes on a value

(a) greater than
3
4

; (b) between
1
3

and
2
3

.

5.3 With reference to the preceding exercise, find the cor-
responding distribution function and use it to deter-
mine the probabilities that a random variable having
this distribution function will take on a value

(a) between 0.45 and 0.75; (b) less than 0.6.

5.4 If the probability density of a random variable is given
by

f (x) =
⎧⎨
⎩

x for 0 < x < 1
2 − x for 1 ≤ x < 2
0 elsewhere

find the probabilities that a random variable having this
probability density will take on a value

(a) between 0.2 and 0.8; (b) between 0.6 and 1.2.

5.5 With reference to the preceding exercise, find the cor-
responding distribution function, and use it to deter-
mine the probabilities that a random variable having
the distribution function will take on a value

(a) greater than 1.8;

(b) between 0.4 and 1.6.

5.6 Given the probability density f (x) = k

1 + x2 for

−∞ < x < ∞, find k.

5.7 If the distribution function of a random variable is
given by

F (x) =
⎧⎨
⎩ 1 − 4

x2 for x > 2

0 for x ≤ 2

find the probabilities that this random variable will
take on a value

(a) less than 3; (b) between 4 and 5.

5.8 Find the probability density that corresponds to the
distribution function of Exercise 5.7. Are there any
points at which it is undefined? Also sketch the
graphs of the distribution function and the probability
density.
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5.9 Let the phase error in a tracking device have probabil-
ity density

f (x) =
{

cos x 0 < x < π/2
0 elsewhere

Find the probability that the phase error is

(a) between 0 and π/4; (b) greater than π/3.

5.10 The length of satisfactory service (years) provided by a
certain model of laptop computer is a random variable
having the probability density

f (x) =
⎧⎨
⎩

1

4.5
e−x/4.5 for x > 0

0 for x ≤ 0

Find the probabilities that one of these laptops will pro-
vide satisfactory service for

(a) at most 2.5 years;

(b) anywhere from 4 to 6 years;

(c) at least 6.75 years.

5.11 At a certain construction site, the daily requirement of
gneiss (in metric tons) is a random variable having the

probability density

f (x) =
⎧⎨
⎩

4
81

(x + 2)−(x+2)/9 for x > 0

0 for x ≤ 0

If the supplier’s daily supply capacity is 25 metric tons,
what is the probability that this capacity will be inad-
equate on any given day?

5.12 Prove that the identity σ 2 = μ′
2 − μ2 holds for any

probability density for which these moments exist.

5.13 Find μ and σ 2 for the probability density of Exer-
cise 5.2.

5.14 Find μ and σ 2 for the probability density of Exer-
cise 5.4.

5.15 Find μ and σ for the probability density obtained in
Exercise 5.8.

5.16 Find μ and σ for the distribution of the phase error of
Exercise 5.9.

5.17 Find μ for the distribution of the satisfactory service
of Exercise 5.10.

5.18 Show that μ′
2 and, hence, σ 2 do not exist for the prob-

ability density of Exercise 5.6.

5.2 The Normal Distribution
Among the special probability densities we study in this chapter, the normal prob-
ability density, usually referred to simply as the normal distribution, is by far the
most important.1 It was studied first in the eighteenth century when scientists ob-
served an astonishing degree of regularity in errors of measurement. They found that
the patterns (distributions) they observed were closely approximated by a continu-
ous distribution, which they referred to as the “normal curve of errors” and attributed
to the laws of chance. The equation of the normal probability density, whose graph
(shaped like the cross section of a bell) is shown in Figure 5.3, is

Normal distribution f ( x; μ, σ 2 ) = 1√
2πσ

e−( x−μ )2/2σ 2 − ∞ < x < ∞

In Exercises 5.42 and 5.43, the reader will be asked to verify that its parameters μ

and σ are indeed its mean and its standard deviation.

Figure 5.3
Graph of normal probability
density m 2 2s m 2 s

s

m m 1 2sm 1 s

x

1The words density and distribution are often used interchangeably in the literature of applied statistics.
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Figure 5.4
The standard normal
probabilities F (z) = P( Z ≤ z ) 0

z

F(z)

Since the normal probability density cannot be integrated in closed form be-
tween every pair of limits a and b, probabilities relating to normal distributions are
usually obtained from special tables, such as Table 3 at the back endpapers of this
book. This table pertains to the standard normal distribution, namely, the normal
distribution with μ = 0 and σ = 1, and its entries are the values of

a b

F(b) 2 F(a)

Figure 5.5
The standard normal
probability F (b) − F (a) =
P( a < Z ≤ b )

F (z) = 1√
2π

∫ z

−∞
e−t2/2 dt = P( Z ≤ z )

for positive or negative z = 0.00, 0.01, 0.02, . . . , 3.49, and also z = 3.50, z = 4.00,

and z = 5.00. The cumulative probabilities F (z) correspond to the area under the
standard normal density to the left of z, as shown by the shaded area in Figure 5.4.

To find the probability that a random variable having the standard normal dis-
tribution will take on a value between a and b, we use the equation

P( a < Z ≤ b ) = F (b) − F (a)

as shown by the shaded area in Figure 5.5. We also sometimes make use of the
identity F (−z) = 1 − F (z), which holds for all symmetric distributions centered
around 0. The reader is asked to verify this in Exercise 5.41.

Given access to statistical software or a statistical calculator, that approach is
preferable to looking in tables. The solution to Example 5 includes the R commands
(see Appendix C on R and Exercise 5.44 for MINITAB).

EXAMPLE 5 Calculating some standard normal probabilities
Find the probabilities that a random variable having the standard normal distribution
will take on a value

(a) between 0.87 and 1.28;

(b) between −0.34 and 0.62;

(c) greater than 0.85;

(d) greater than −0.65.

Solution It is helpful to first indicate the area of interest in a graph as in Figure 5.6.

Figure 5.6
P( 0.87 < Z < 1.28 ) 0.87

z

0.0919

1.280
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Looking up the necessary values in Table 3, for part (a) we get

F (1.28) − F (0.87) = 0.8997 − 0.8078

= 0.0919

As indicated in Figure 5.7 for part (b),

F (0.62) − F (−0.34) = 0.7324 − 0.3669

= 0.3655

Figure 5.7
P( −0.34 < Z < 0.62 ) 20.34

z

0.3655

0.620

As indicated in Figure 5.8 for part (c),

1 − F (0.85) = 1 − 0.8023

= 0.1977

Figure 5.8
P( Z > 0.85 ) 0.85

z

0.1977

0

As indicated in Figure 5.9 for part (d)

1 − F (−0.65) = 1 − 0.2578 = 0.7422

or, alternatively,

1 − F (−0.65) = 1 − [1 − F (0.65)]

= F (0.65)

= 0.7422

Figure 5.9
P( Z > −0.65 ) 20.65

z

0.7422

0 j

[ Using R: (a) pnorm(1.28) - pnorm(.87) (b) 1 - pnorm(.85) ]
There are also problems in which we are given probabilities relating to standard

normal distributions and asked to find the corresponding values of z.
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Figure 5.10
The zα notation for a standard
normal distribution 0

za

a

Let zα be such that the probability is α that it will be exceeded by a random vari-
able having the standard normal distribution. That is, α = P( Z > zα ) as illustrated
in Figure 5.10.

The results of the next example are used extensively in subsequent chapters.

EXAMPLE 6 Two important values for zα

Find (a) z0.01; (b) z0.05.

Solution (a) Since F (z0.01) = 0.99, we look for the entry in Table 3 which is closest to
0.99 and get 0.9901 corresponding to z = 2.33. Thus z0.01 = 2.33.

(b) Since F (z0.05) = 0.95, we look for the entry in Table 3 which is closest to
0.95 and get 0.9495 and 0.9505 corresponding to z = 1.64 and z = 1.65. Thus,
by interpolation, z0.05 = 1.645. j

[ Using R: (a) qnorm(.99) (b) qnorm(.95) ]
To use Table 3 in connection with a random variable X which has a normal

distribution with the mean μ and the variance σ 2, we refer to the corresponding
standardized random variable,

Z = X − μ

σ

which can be shown to have the standard normal distribution. Thus, to find the prob-
ability that the original random variable will take on a value less than or equal to a,
in Table 3 we look up

F
(

a − μ

σ

)
Also, to find the probability that a random variable having the normal distri-

bution with the mean μ and the variance σ 2 will take on a value between a and b,
we have only to calculate the probability that a random variable having the standard
normal distribution will take on a value between

a − μ

σ
and

b − μ

σ

That is, to find probabilities concerning X , we convert its values to z scores using

Z = X − μ

σ

Normal probabilities

When X has the normal distribution with mean μ and standard deviation σ .

P( a < X ≤ b ) = F
(

b − μ

σ

)
− F

(
a − μ

σ

)
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According to Figure 2.9 on page 30, the observations on the strength of an alu-
minum alloy appear to be normally distributed. The normal distribution is often used
to model variation when the distribution is symmetric and has a single mode.

EXAMPLE 7 Calculation of probabilities using a normal distribution
With an eye toward improving performance, industrial engineers study the ability of
scanners to read the bar codes of various food and household products. The maxi-
mum reduction in power, occurring just before the scanner cannot read the bar code
at a fixed distance, is called the maximum attenuation. This quantity, measured in
decibels, varies from product to product. After collecting considerable data, the en-
gineers decided to model the variation in maximum attenuation as a normal distri-
bution with mean 10.1 dB and standard deviation 2.7 dB.

(a) For the next food or product, what is the probability that its maximum
attenuation is between 8.5 dB and 13.0 dB?

(b) According to the normal model, what proportion of the products have
maximum attenuation between 8.5 dB and 13.0 dB?

(c) What proportion of the products have maximum attenuation greater than
15.1 dB?

Solution (a) We treat the maximum attenuation of the next product, X , as a random
selection for the normal distribution with μ = 10.1 and σ = 2.7.
Consequently, Z = (X − 10.1)/2.7 and, from Table 3, we get

F
(

13.0 − 10.1
2.7

)
− F

(
8.5 − 10.1

2.7

)
= F (1.07) − F (−0.59)

= 0.8577 − 0.2776
= 0.5801

as illustrated in Figure 5.11.

Figure 5.11
P( 8.5 < X < 13.0 ) =
P( −0.59 < Z < 1.07 ) 23 22 21

z

0.5801

0 1 2 3

z

1050

.1

.2

15
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(b) The variation in maximum attenuation for the vast, but finite, collection of all
different products is modeled by a normal distribution. The proportion of
products having maximum attenuation between 8.5 and 13.0 dB corresponds
to the probability in part (a). When we consider the even larger infinite
population of all existing products and those that could have been made, we
still refer to 0.5801 as the proportion having maximum attenuation between
8.5 and 13.0 dB.

(c) Looking up the necessary value in Table 3,

1 − F
(

15.1 − 10.1
2.7

)
= 1 − F (1.85)

= 1 − 0.9678
= 0.0322

corresponding to the shaded area in Figure 5.12.

Figure 5.12
P( X ≥ 15.1 ) 0

z

0.0322

1 2 3212223

[ Using R: (a) pnorm(13.0, 10.1, 2.7) − pnorm(8.5, 10.1, 2.7)
(c) 1 − pnorm(15.1, 10.1, 2.7) ] j

EXAMPLE 8 Normal Distribution as a Population Distribution
A major manufacturer of processed meats monitors the amount of each ingredient.
The weight(lb) of cheese per run is measured on n = 80 occasions. (courtesy of David

Brauch))

72.2 67.8 78.0 64.4 76.3 72.3 73.1 71.7 66.2 63.3 85.4 67.4
66.3 76.3 57.7 50.3 77.4 63.1 73.9 67.4 74.7 68.2 87.4 86.4
69.4 58.0 63.3 72.7 73.6 68.8 63.3 63.3 73.0 64.8 73.1 70.9
85.9 74.4 75.9 72.3 84.3 61.8 79.2 64.3 65.4 66.7 77.2 50.0
70.3 90.4 63.9 62.1 68.2 55.1 52.6 68.5 55.2 73.5 53.7 61.7
47.9 72.3 61.1 71.8 83.1 71.2 58.8 61.8 86.8 64.5 52.3 58.3
65.9 80.2 75.1 59.9 62.3 48.8 64.3 75.4

Figure 5.13 suggests that the histogram, and therefore the population distribu-
tion, is well approximated by a normal distribution with mean μ = 68.4 and stan-
dard deviation σ = 9.6 pounds. You are asked to examine the assumption of a
normal distribution more closely in Exercise 5.102.

Using the normal population distribution,

(a) Find the probability of using 80 or more pounds of cheese.

(b) Set a limit so that only 10 % of production runs have less than L pounds of
cheese.

(c) Determine a new mean for the distribution so that only 5 % of the runs have
less than L pounds.
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Figure 5.13
A normal distribution models
weight of cheese. Weigh (lb)
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Solution (a) Z = ( X − 68.4 ) / 9.6 and, from Table 3, we get

1 − F
(

80 − 68.4
9.6

)
= 1 − F ( 1.208) = 1 − .8865 = .1135

About 1 out of 9 production runs will result in more than 80 pounds of cheese.

(b) From Table 3, the entry with probability closest to .1000 is z0.10 = 1.28. The
limit L is given by

L = μ − σ z0.10 = 68.4 − 9.6 × 1.28 = 56.1 pounds

(c) The new value of the mean μ must satisfy

− z.05 = L − μ

9.6

where z0.05 = 1.645 so

μ = L + 9.6 × z0.05 = 56.1 + 9.6 × 1.645 = 71.9 pounds

The mean must be increased by 3.5 pounds to decrease the percentage of units
below the limit L from 10% to 5%. j

[ Using R: (a) 1-pnorm(80,68.4,9.6) (b) L = 68.4+9.6*qnorm(.10)
(c) L+9.6*qnorm(.95) ]

EXAMPLE 9 Calculating probabilities when ln X has a normal distribution
After collecting a large number of assays of the gold content in rocks from an open
pit mine, a mining engineer postulates that the natural log of the gold content (oz/st
gold) follows a normal distribution with mean −4.6 and variance 1.21. Under this
distribution, would it be unusual to get 0.0015 oz/st gold or less in an assay?

Solution Because it is ln X that has a normal distribution, the question concerns the standard-
ized value

ln ( 0.0015 ) − (−4.6)√
1.21

= −1.729

The standard normal probability of obtaining this value or smaller (see Figure 5.14) is

F
(

ln ( 0.0015 ) − (−4.6)√
1.21

)
= F (−1.73) = 0.0419
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Figure 5.14
P( Z ≤ −1.73 ) =
P( X ≤ 0.0015 )

0.0419

0 1 2 3212223

z

This probability is small, so we suspect that the postulated normal distribution with
mean −4.6 does not apply. An assay with this small amount of gold content could
suggest that the specimen was collected outside of the vein. j

Although the normal distribution applies to continuous random variables, it is
often used to approximate distributions of discrete random variables. Quite often,
this yields satisfactory results, provided that we make the continuity correction
illustrated in the following example.

EXAMPLE 10 A continuity correction to improve the normal approximation to a
count variable
In a certain city, the number of power outages per month is a random variable, having
a distribution with μ = 11.6 and σ = 3.3. If this distribution can be approximated
closely with a normal distribution, what is the probability that there will be at least
8 outages in any one month?

Solution The answer is given by the area of the shaded region of Figure 5.15—the area to
the right of 7.5, not 8. The reason for this is that the number of outages is a dis-
crete random variable, and if we want to approximate its distribution with a normal
distribution, we must “spread” its values over a continuous scale. We do this by
representing each integer k by the interval from k − 1

2 to k + 1
2 . For instance, 3 is

represented by the interval from 2.5 to 3.5, 10 is represented by the interval from
9.5 to 10.5, and “at least 8” is represented by the interval to the right of 7.5. Thus
the desired probability is approximated by

1 − F
(

7.5 − 11.6
3.3

)
= 1 − F (−1.24)

= F (1.24)

= 0.8925 j

Figure 5.15
Diagram for example dealing
with power outages

0.8925

7.5 11.6

Number
outages
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5.3 The Normal Approximation to the Binomial
Distribution

Unlike the Poisson approximation that applies when p is small, the normal distribu-
tion approximates the binomial distribution when n is large and p, the probability of
a success, is not close to 0 or 1. We state, without proof, the following theorem:

Normal approximation to
binomial distribution

Theorem 5.1 If X is a random variable having the binomial distribution with
the parameters n and p, the limiting form of the distribution function of the stan-
dardized random variable

Z = X − np√
np(1 − p)

as n → ∞, is given by the standard normal distribution

F (z) =
∫ z

−∞
1√
2π

e−t2/2 dt − ∞ < z < ∞

Note that although X takes on only the values 0, 1, 2, . . . , n, in the limit as n → ∞,
the distribution of the corresponding standardized random variable is continuous,
and the corresponding probability density is the standard normal density.

A good rule of thumb for
the normal approximation

Use the normal approximation to the binomial distribution only when np and
n(1 − p) are both greater than 15.

Note that in Example 11, which is an application of Theorem 5.1, we use again
the continuity correction given on page 147.

EXAMPLE 11 The current consensus is that there are three types of neutrinos and each is accom-
panied by an antimatter version. Further, any single neutrino can change (oscillate)
from one type to another. When one type of antimatter neutron, called an electron
antineutrino, travels two kilometers from a reactor to the detector it will disappear
if it interacts with an electron neutrino and changes into another type. At one site,
physicists have performed a path breaking experiment2 that measured an important
constant for this change. At a specific detector, with electron antineutrinos of average
energy, this constant translates into probability .056 of disappearing.

Consider the outcomes of the next 300 electron antineutrinos leaving the reactor
and heading toward the detector. Assuming that the conditions for Bernoulli trials
hold,

(a) find the mean and standard deviation of the number which will disappear.

(b) Approximate the probability that 12 or more will disappear.

(c) Approximate the probability of exactly 12.

(d) Comment on a possible violation of independence.

2F. P. An et. al (2013) An improved measurement of Electron Antineutrino disappearances at Day Bay,
Chin.Phys. C37
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Figure 5.16
Normal approximation to
Binomial (b) P ( X ≥ 12 )
(c) P ( X = 12 ).

0.9172

0 1 2 3212223
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Solution We take the probability p = 0.056 which is the value estimated from the physics
experiment.

(a) Using the formulas for mean and standard deviation, we find

Mean = n p = 300 × 0.056 = 16.80
Standard deviation = √

n p ( 1 − p ) = √
300 × 0.056 × 0.944 = 3.982

(b) Since n p > 15, the normal distribution provides a good approximation to the
probability

1 − F
(

11.5 − 16.80
3.982

)
= 0.9084

as illustrated in Figure 5.16. Over ninety percent of the time there will be 12 or
more disappearances among the 300.
The exact value .9142 is obtained using 1 - pbinom(11,300,.056) in R.

(c) F
(

12.5 − 16.80
3.982

)
− F

(
11.5 − 16.80

3.982

)
= 0.1401 − 0.0916 = 0.0485

(d) If two or more electron antineutrinos are so close that they interfere with each
other, or even collide, independence is violated.

The exact calculation is always preferrable when p is given but the approxima-
tion is important for inference when it is not. j

Exercises
5.19 If a random variable has the standard normal distribu-

tion, find the probability that it will take on a value

(a) less than 1.75;

(b) less than −1.25;

(c) greater than 2.06;

(d) greater than −1.82.

5.20 If a random variable has the standard normal distribu-
tion, find the probability that it will take on a value

(a) between 0 and 2.3;

(b) between 1.22 and 2.43;

(c) between −1.45 and −0.45;

(d) between −1.70 and 1.35.

5.21 The nozzle of a mixing vibrator is tested for its
number of vibrations. The vibration frequency, for
each nozzle sample, can be modeled by a normal

distribution with mean 128 and standard deviation
16 PdM.

(a) If engineering specifications require the sample
to have a vibration frequency of 100 PdM, what
is the probability that a sample will fail to meet
specifications?

(b) In the long run, what proportion of samples will
fail? Explain your answer.

(c) The mean vibration frequency can be increased by
using different materials. What new mean is re-
quired, when the standard deviation is 16, to re-
duce the probability of not meeting specifications
to 0.05?

5.22 If a random variable has a normal distribution, what
are the probabilities that it will take on a value within

(a) 1 standard deviation of the mean;

(b) 2 standard deviations of the mean;
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(c) 3 standard deviations of the mean;

(d) 4 standard deviations of the mean?

5.23 Verify that

(a) z0.005 = 2.575;

(b) z0.025 = 1.96.

5.24 Given a random variable having the normal distribu-
tion with μ = 16.2 and σ 2 = 1.5625, find the proba-
bilities that it will take on a value

(a) greater than 16.8;

(b) less than 14.9;

(c) between 13.6 and 18.8;

(d) between 16.5 and 16.7.

5.25 The time for oil to percolate to all parts of an engine
can be treated as a random variable having a normal
distribution with mean 20 seconds. Find its standard
deviation if the probability is 0.25 that it will take a
value greater than 31.5 seconds.

5.26 Butterfly-style valves used in heating and ventilat-
ing industries have a high flow coefficient. Flow co-
efficient can be modeled by a normal distribution
with mean 496 Cv and standard deviation 25 Cv.
Find the probability that a valve will have a flow
coefficient of

(a) at least 450 Cv;

(b) between 445.5 and 522 Cv.

5.27 Refer to Exercise 5.26 but suppose that a large po-
tential contract contains the specification that at most
7.5% can have a flow coefficient less than 420 Cv. If
the manufacturing process is improved to meet this
specification, determine

(a) the new mean μ if the standard deviation is
25 Cv;

(b) the new standard deviation if the mean is 496 Cv.

5.28 Find the quartiles

−z0.25 z0.50 z0.25

of the standard normal distribution.

5.29 The daily high temperature in a computer server room
at the university can be modeled by a normal distribu-
tion with mean 68.7◦F and standard deviation 1.2◦F.
Find the probability that, on a given day, the high tem-
perature will be

(a) between 68.3 and 70.3◦F

(b) greater than 71.5◦F.

5.30 With reference to the preceding exercise, for which
temperature is the probability 0.05 that it will be ex-
ceeded during one day?

5.31 A machine produces soap bars with a weight of 80 ±
0.10 g. If the weight of the soap bars manufactured by

the machine may be looked upon as a random vari-
able having normal distribution with μ = 80.05 g and
σ = 0.05 g, what percentage of these bars will meet
specifications?

5.32 The number of teeth of a 12% tooth gear produced by
a machine follows a normal distribution. Verify that if
σ = 1.5 and the mean number of teeth is 13, 74% of
the gears contain at least 12 teeth.

5.33 The quantity of aerated water that a machine puts in a
bottle of a carbonated beverage follows a normal dis-
tribution with a standard deviation of 0.25 g. At what
“normal” (mean) weight should the machine be set so
that no more than 8% of the bottles have more than
20 g of aerated water?

5.34 An automatic machine fills distilled water in 500-ml
bottles. Actual volumes are normally distributed about
a mean of 500 ml and their standard deviation is
20 ml.

(a) What proportion of the bottles are filled with
water outside the tolerance limit of 475 ml to
525 ml?

(b) To what value does the standard deviation need to
be increased if 99% of the bottles must be within
tolerance limits?

5.35 If a random variable has the binomial distribution
with n = 25 and p = 0.65, use the normal ap-
proximation to determine the probabilities that it will
take on

(a) the value 15;

(b) a value less than 10.

5.36 From past experience, a company knows that, on aver-
age, 5% of their concrete does not meet standards. Use
the normal approximation of the binomial distribution
to determine the probability that among 2000 bags of
concrete, 75 bags contain concrete that does not meet
standards.

5.37 The probability that an electronic component will fail
in less than 1,000 hours of continuous use is 0.25. Use
the normal approximation to find the probability that
among 200 such components fewer than 45 will fail in
less than 1,000 hours of continuous use.

5.38 Workers in silicon factories are prone to a lung dis-
ease called silicosis. In a recent survey in a factory,
about 11% of the workers have been infected by it.
Assume the same rate of infection holds everywhere.
Use the normal distribution to approximate the prob-
ability that, out of a random sample of 425 workers,
the numbers that are prone to infection at present
will be

(a) 30 or more;

(b) 28 or less.
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5.39 Refer to Example 11 concerning the experiment that
confirms electron antineutrinos change type. Suppose
instead that there are 400 electron antineutrinos leav-
ing the reactor. Repeat parts (a)–(c) of the example.

5.40 To illustrate the law of large numbers mentioned on
Page 116, find the probabilities that the proportion of
drawing a club from a fair deck of cards will be any-
where from 0.24 to 0.26 when a card is drawn

(a) 100 times;

(b) 10,000 times.

5.41 Verify the identity F (−z) = 1 − F (z) given on
page 141.

5.42 Verify that the parameter μ in the expression for the
normal density on page 140, is, in fact, its mean.

5.43 Verify that the parameter σ 2 in the expression for the
normal density on page 140 is, in fact, its variance.

5.44 Normal probabilities can be calculated using
MINITAB. Let X have a normal distribution with mean

11.3 and standard deviation 5.7. The following steps
yield the cumulative probability of 9.31 or smaller, or
P(X ≤ 9.31).

Dialog box:
Calc > Probability Distribution > Normal
Choose Cumulative Distribution. Choose Input
constant and enter 9.31.
Type 11.3 in Mean and 5.7 in standard deviation.
Click OK.

Output: Normal with mean = 11.3000 and standard
deviation = 5.70000

x P(X <= x)
9.3100 0.3635

For this same normal distribution, find the probability

(a) of 8.493 or smaller;

(b) of 16.074 or smaller.

5.4 Other Probability Densities
In the application of statistics to problems in engineering and physical science, we
encounter many probability densities other than the normal distribution. These in-
clude the t, F , and chi square distributions; the fundamental sampling distributions
that we introduce in Chapter 6. We also treat the exponential and Weibull distribu-
tions, which we apply to problems of reliability and life testing in Chapter 16.

In the remainder of this chapter we shall discuss five continuous distributions,
the uniform distribution, the log-normal distribution, the gamma distribution, the
beta distribution, and the Weibull distribution, for the twofold purpose of widening
your familiarity with well known probability densities and to lay the foundation for
future applications.

5.5 The Uniform Distribution
The uniform distribution, with the parameters α and β, has probability density
function

Uniform distribution f (x) =

⎧⎪⎨
⎪⎩

1
β − α

for α < x < β

0 elsewhere

whose graph is shown in Figure 5.17. Note that all values of x from α to β are
“equally likely” in the sense that the probability that x lies in an interval of width �x
entirely contained in the interval from α to β is equal to �x/(β − α), regardless of
the exact location of the interval.

To illustrate how a physical situation might give rise to a uniform distribution,
suppose that a wheel of a locomotive has the radius r and that x is the location of a
point on its circumference measured along the circumference from some reference
point 0. When the brakes are applied, some point will make sliding contact with the
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Figure 5.17
Graph of uniform probability
density b a

f (x)

x
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b 2 a
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rail, and heavy wear will occur at that point. For repeated application of the brakes,
it would seem reasonable to assume that x is a value of a random variable having the
uniform distribution with α = 0 and β = 2πr. If this assumption were incorrect,
that is, if some set of points on the wheel made contact more often than others, the
wheel would eventually exhibit “flat spots” or wear out of round.

To determine the mean and the variance of the uniform distribution, we first
evaluate the two integrals

μ =
∫ β

α
x · 1

β − α
dx = α + β

2
and

μ′
2 =

∫ β

α
x2 · 1

β − α
dx = α2 + αβ + β2

3

Thus,

Mean of uniform
distribution

μ = α + β

2

and, making use of the formula σ 2 = μ′
2 − μ2, we find that

Variance of uniform
distribution σ 2 = 1

12
( β − α )2

5.6 The Log-Normal Distribution
The log-normal distribution occurs in practice whenever we encounter a random
variable which is such that its logarithm has a normal distribution. Its probability
density is given by

Log-normal distribution f (x) =

⎧⎪⎨
⎪⎩

1√
2πβ

x−1 e−(ln x−α)2/2β2
for x > 0, β > 0

0 elsewhere

where ln x is the natural logarithm of x. A graph of the log-normal distribution with
α = 0 and β = 1 is shown in Figure 5.18. It can be seen from the figure that this
distribution is positively skewed, that is, it has a long right-hand tail.
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Figure 5.18
Graph of log-normal
probability density, α = 0,
β = 1.
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To find the probability that a random variable having the log-normal distribution
will take on a value between a and b (0 < a < b), we must evaluate the integral∫ b

a

1√
2πβ

x−1 e−(ln x−α)2/2β2
dx

Changing variable by letting y = ln x and identifying the integrand as the normal
density with μ = α and σ = β, we find that the desired probability is given by

∫ ln b

ln a

1√
2πβ

e−(y−α)2/2β2
dy = F

(
ln b − α

β

)
− F

(
ln a − α

β

)

where F is the distribution function of the standard normal distribution.

EXAMPLE 12 Calculating a log-normal probability
The current gain of certain transistors is measured in units which make it equal to
the logarithm of Io/Ii, the ratio of the output to the input current. If this logarithm
is normally distributed with μ = 2 and σ = 0.1, find the probability that Io/Ii will
take on a value between 6.1 and 8.2.

Solution Since α = 2 and β = 0.1, we get

F
(

ln 8.2 − 2
0.1

)
− F

(
ln 6.1 − 2

0.1

)
= F (1.0) − F (−1.92)

= 0.8139 j

EXAMPLE 13 Graphing a probability density function on top of a density
histogram to help assess fit
Make a density histogram of the interrequest times on page 29 and relate it to a
log-normal distribution.

Solution Figure 5.19 gives the density histogram. To accurately portray the pattern, shorter
intervals are used for the smaller times. We have also plotted the log-normal density
with α = 8.85 and β = 1.03. The log-normal fit is explored further in Section 5.12.
(See also Exercise 5.103.) j

EXAMPLE 14 A log-normal probability calculation for a risk analysis
As part of a risk analysis concerning a nuclear power plant, engineers must model
the strength of steam generator supports in terms of their ability to withstand the
peak acceleration caused by earthquakes. Expert opinion suggests that ln (strength)
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Figure 5.19
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is normally distributed with μ = 4.0 and σ 2 = 0.09. Find the probability that the
supports will survive a peak acceleration of 33.

Solution Since α = 4.0 and β = 0.30, we find

1 − F
(

ln(33) − 4.0
0.30

)
= 1 − F (−1.68) = 0.9535 j

To find a formula for the mean of the log-normal distribution, we write

μ = 1√
2πβ

∫ ∞

0
x · x−1 e−(ln x−α)2/2β2

dx

and let y = ln x, so

μ = 1√
2πβ

∫ ∞

−∞
ey e−(y−α)2/2β2

dy

This integral is evaluated by completing the square on the exponent y −
(y − α)2/2β2, to produce an integrand in the form of a normal density. The final
result, which the reader will be asked to verify in Exercise 5.48, is

Mean of log-normal
distribution

μ = eα +β2/2

Similar, but more lengthy, calculations yield

Variance of log-normal
distribution σ 2 = e2 α+β2

( eβ2 − 1 )

EXAMPLE 15 Calculating the mean and variance for a log-normal distribution
With reference to Example 12, find the mean and the variance of the distribution of
the ratio of the output to the input current.
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Solution Substituting α = 2 and β = 0.1 into the above formulas, we get

μ = e2 + ( 0.1 )2/2 = 7.43

and

σ 2 = e4 + ( 0.1 )2
( e( 0.1 )2 − 1 ) = 0.55 j

5.7 The Gamma Distribution
Several important probability densities whose applications will be discussed later
are special cases of the gamma distribution. This distribution has probability
density

Gamma distribution f (x) =

⎧⎪⎨
⎪⎩

1
βα�(α)

xα−1e−x/β for x > 0, α > 0, β > 0

0 elsewhere

where �(α) is a value of the gamma function, defined by

�(α) =
∫ ∞

0
xα−1 e−x dx

Integration by parts shows that

�(α) = (α − 1)�(α − 1)

for any α > 1 and, hence, that �(α) = (α − 1)! when α is a positive integer. Graphs
of several gamma distributions are shown in Figure 5.20 and they exhibit the fact
that these distributions are positively skewed. In fact, the skewness decreases as α

increases for any fixed value of β.

Figure 5.20
Graph of some gamma
probability density functions
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The mean and the variance of the gamma distribution are obtained by making
use of the gamma function and its special properties mentioned above. The mean

μ = 1
βα�(α)

∫ ∞

0
x · xα−1 e−x/β dx

and, after letting y = x/β, we get

μ = β

�(α)

∫ ∞

0
yαe−y dy = β�(α + 1)

�(α)

Then, using the identity �(α + 1) = α · �(α), we arrive at the result.
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Mean of gamma
distribution

μ = α β

Using similar methods, it can also be shown that the variance of the gamma distri-
bution is given by

Variance of gamma
distribution σ 2 = α β2

In the special case where α = 1, we get the exponential distribution, whose
probability density is thus

Exponential distribution f (x) =

⎧⎪⎨
⎪⎩

1
β

e−x/β for x > 0, β > 0

0 elsewhere

and whose mean and variance are μ = β and σ 2 = β2. Note that the distribution
of Example 1 is an exponential distribution with β = 1

2 .

EXAMPLE 16 An exponential density function on top of a density histogram
An engineer observing a nuclear reaction measures the time intervals between the
emissions of beta particles. (Courtesy of consulting client)

0.894 0.991 0.261 0.186 0.311 0.817 2.267 0.091 0.139 0.083
0.235 0.424 0.216 0.579 0.429 0.612 0.143 0.055 0.752 0.188
0.071 0.159 0.082 1.653 2.010 0.158 0.527 1.033 2.863 0.365
0.459 0.431 0.092 0.830 1.718 0.099 0.162 0.076 0.107 0.278
0.100 0.919 0.900 0.093 0.041 0.712 0.994 0.149 0.866 0.054

Make a density histogram and plot an exponential density as an approximation.

Solution These decay times (in milliseconds) are presented as a density histogram in Fig-
ure 5.21. The smooth curve is the exponential density with β = 0.55. Fit to an ex-
ponential density is further explored in Section 16.3. The exponential density has
mean β = 0.55 and standard deviation 0.55. j

Figure 5.21
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times
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The exponential distribution has many important applications. For instance, it
can be shown that in connection with Poisson processes (see Section 4.7) the waiting
time between successive arrivals (successes) has an exponential distribution. More
specifically, it can be shown that if in a Poisson process the mean arrival rate (average
number of arrivals per unit time) is α, the time until the first arrival, or the waiting

time between successive arrivals, has an exponential distribution with β = 1
α

(see
Exercise 5.62).

EXAMPLE 17 Probability calculations using the exponential distribution
With reference to the example on page 124, where on the average three trucks arrived
per hour to be unloaded at a warehouse, what are the probabilities that the time
between the arrival of successive trucks will be

(a) less than 5 minutes? (b) at least 45 minutes?

Solution Assuming the arrivals follow a Poisson process with α = 3, then β = 1
3 and we get

(a)
∫ 1/12

0
3 e−3x dx = 1 − e−1/4 = 0.221

(b)
∫ ∞

3/4
3 e−3x dx = e−9/4 = 0.105 j

5.8 The Beta Distribution
When a random variable takes on values on the interval from 0 to 1, one choice of a
probability density is the beta distribution whose probability density is

Beta distribution f (x) =

⎧⎪⎨
⎪⎩

�(α + β )
�(α) · �(β )

xα−1( 1 − x )β−1 for 0 < x < 1, α > 0, β > 0

0 elsewhere

The mean and the variance of this distribution are given by

Mean and variance of beta
distribution

μ = α

α + β
and σ 2 = α β

( α + β )2 ( α + β + 1 )

Note that for α = 1 and β = 1 we obtain as a special case the uniform distribution
of Section 5.5 defined on the interval from 0 to 1. The following example, pertaining
to a proportion, illustrates a typical application of the beta distribution.

EXAMPLE 18 Probability calculations using a beta distribution
In a certain county, the proportion of highway sections requiring repairs in any given
year is a random variable having the beta distribution with α = 3 and β = 2 (shown
in Figure 5.22).
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Figure 5.22
Graph of the beta density with
α = 3 and β = 2
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(a) On the average, what percentage of the highway sections require repairs in any
given year?

(b) Find the probability that at most half of the highway sections will require
repairs in any given year.

Solution (a) μ = 3
3 + 2

= 0.60,

which means that on the average 60% of the highway sections require repairs
in any given year.

(b) Substituting α = 3 and β = 2 into the formula for the beta distribution and
making use of the fact that �(5) = 4! = 24, �(3) = 2! = 2, and
�(2) = 1! = 1, we get

f (x) =
{

12 x 2 (1 − x) for 0 < x < 1
0 elsewhere

Thus, the desired probability is given by∫ 1/2

0
12 x 2 (1 − x) dx = 5

16
j

In most realistically complex situations, probabilities relating to gamma and beta
distributions are obtained from computer programs.

5.9 The Weibull Distribution
Closely related to the exponential distribution is the Weibull distribution, whose
probability density is given by

Weibull distribution f (x) =
{

α βxβ−1 e−αxβ
for x > 0, α > 0, β > 0

0 elsewhere
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The Weibull distribution has cumulative distribution function

F ( x ) = 1 − e−αxβ
x > 0

which is obtained from

F ( x ) =
∫ x

0
α β wβ−1 e−αwβ

dw

by making the change of variable y = wβ . Then

F ( x ) =
∫ xβ

0
α e− αy dy = 1 − e−αxβ

.

If X has the Weibull distribution and Y = Xβ , then

P ( Xβ ≤ y ) = P ( X ≤ y1/β ) = 1 − e−α(y1/β )β = 1 − e−αy

which is the cumulative distribution of the exponential distribution. That is, when
X has the Weibull distribution then Y = Xβ has an exponential distribution. The
graphs of several Weibull distributions with α = 1 and β = 1

2 , 1, and 2 are shown
in Figure 5.23.

Figure 5.23
Graphs of Weibull densities

with α = 1 and β = 1
2
, 1,

and 2

b 5 0.5

b 5 1

b 5 2

0
x

f(x)

The mean of the Weibull distribution having the parameters α and β may be
obtained by evaluating the integral

μ =
∫ ∞

0
x · αβxβ−1 e−αxβ dx

Making the change of variable u = αxβ , we get

μ = α−1/β
∫ ∞

0
u1/β e−u du

Recognizing the integral as

�

(
1 + 1

β

)
where the gamma function is defined on page 155, we obtain the mean of the Weibull
distribution.
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Mean of Weibull
distribution

μ = α−1/β �

(
1 + 1

β

)

Using a similar method to determine first μ′
2, the reader will be asked to show in

Exercise 5.70 that the variance of this distribution is given by

Variance of Weibull
distribution

σ 2 = α−2/β

{
�

(
1 + 2

β

)
−

[
�

(
1 + 1

β

)]2
}

EXAMPLE 19 Probability calculations using a Weibull distribution
Suppose that the lifetime of a certain kind of an emergency backup battery (in hours)
is a random variable X having the Weibull distribution with α = 0.1 and β = 0.5.
Find

(a) the mean lifetime of these batteries;

(b) the probability that such a battery will last more than 300 hours.

Solution (a) Substitution into the formula for the mean yields

μ = (0.1)−2 �(3) = 200 hours

(b) Performing the necessary integration, we get∫ ∞

300
(0.05)x−0.5 e−0.1x0.5

dx = e−0.1(300)0.5

= 0.177 j

Exercises
5.45 Find the distribution function of a random variable

having a uniform distribution on (0, 1).

5.46 In a manufacturing process, the error made in deter-
mining the composition of an alloy is a random vari-
able having the uniform density with α = −0.075 and
β = 0.010. What are the probabilities that such an
error will be

(a) between 0.050 and 0.001?

(b) between 0.001 and 0.008?

5.47 From experience Mr. Harris has found that the low bid
on a construction job can be regarded as a random vari-
able having the uniform density

f (x) =

⎧⎪⎨
⎪⎩

3

4C
for

2C
3

< x < 2C

0 elsewhere

where C is his own estimate of the cost of the job. What
percentage should Mr. Harris add to his cost estimate
when submitting bids to maximize his expected profit?

5.48 Verify the expression given on page 154 for the mean
of the log-normal distribution.

5.49 With reference to the Example 12, find the probability
that Io/Ii will take on a value between 7.0 and 7.5.

5.50 If a random variable has the log-normal distribution
with α = −3 and β = 3, find its mean and its stan-
dard deviation.

5.51 With reference to the preceding exercise, find the prob-
abilities that the random variable will take on a value

(a) less than 8.0;

(b) between 4.5 and 6.5.

5.52 If a random variable has the gamma distribution with
α = 2 and β = 3, find the mean and the standard de-
viation of this distribution.

5.53 With reference to Exercise 5.52, find the probabil-
ity that the random variable will take on a value less
than 5.

5.54 At a construction site, the daily requirement of gneiss
(in metric tons) is a random variable having a gamma
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distribution with α = 2 and β = 5. If their supplier’s
daily supply capacity is 25 metric tons, what is the
probability that this capacity will be inadequate on
any given day?

5.55 With reference to the Example 14, suppose the expert
opinion is in error. Calculate the probability that the
supports will survive if

(a) μ = 3.0 and σ 2 = 0.09;

(b) μ = 4.0 and σ 2 = 0.25.

5.56 Verify the expression for the variance of the gamma
distribution given on page 156.

5.57 Show that when α > 1, the graph of the gamma den-
sity has a relative maximum at x = β(α − 1). What
happens when 0 < α < 1 and when α = 1?

5.58 The server of a multinational corporate network can
run for an amount of time without having to be re-
booted and this amount of time is a random variable
having the exponential distribution β = 30 days. Find
the probabilities that such a server will

(a) have to be rebooted in less than 10 days;

(b) not have to be rebooted in at least 45 days.

5.59 With reference to Exercise 4.95, find the percent of
the time that the interval between breakdowns of the
computer will be

(a) less than 1 week;

(b) at least 5 weeks.

5.60 With reference to Exercise 4.58, find the probabilities
that the time between successive requests for consult-
ing will be

(a) less than 0.5 week;

(b) more than 3 weeks.

5.61 Given a Poisson process with on the average α arrivals
per unit time, find the probability that there will be no
arrivals during a time interval of length t, namely, the
probability that the waiting times between successive
arrivals will be at least of length t.

5.62 Use the result of Exercise 5.61 to find an expression
for the probability density of the waiting time between
successive arrivals.

5.63 Verify for α = 3 and β = 3 that the integral of the
beta density, from 0 to 1, is equal to 1.

5.64 If the ratio of defective switches produced during com-
plete production cycles in the previous month can be
looked upon as a random variable having a beta distri-
bution with α = 3 and β = 6, what is the probability
that in any given year, there will be fewer than 5%
defective switches produced?

5.65 Suppose the proportion of error in code developed by a
programmer, which varies from software to software,
may be looked upon as a random variable having the
beta distribution with α = 2 and β = 7.

(a) Find the mean of this beta distribution, namely,
the average proportion of errors in a code from
this engineer.

(b) Find the probability that a software developed by
this engineer will contain 30% or more errors.

5.66 Show that when α > 1 and β > 1, the beta density
has a relative maximum at

x = α − 1

α + β − 2

5.67 With reference to the Example 19, find the probability
that such a battery will not last 100 hours.

5.68 Suppose that the time to failure (in minutes) of certain
electronic components subjected to continuous vibra-
tions may be looked upon as a random variable having

the Weibull distribution with α = 1
5

and β = 1
3

.

(a) How long can such a component be expected to
last?

(b) What is the probability that such a component will
fail in less than 5 hours?

5.69 Suppose that the processing speed (in milliseconds)
of a supercomputer is a random variable having the
Weibull distribution with α = 0.005 and β = 0.125.
What is the probability that such a supercomputer
will have similar processing speeds after running for
50,000 ms?

5.70 Verify the formula for the variance of the Weibull dis-
tribution given on page 160.

5.10 Joint Distributions—Discrete and Continuous

Discrete Variables
Often, experiments are conducted where two random variables are observed simul-
taneously in order to determine not only their individual behavior but also the degree
of relationship between them.

For two discrete random variables X1 and X2, we write the probability that X1
will take the value x1 and X2 will take the value x2 as P( X1 = x1, X2 = x2 ). Con-
sequently, P( X1 = x1, X2 = x2 ) is the probability of the intersection of the events
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X1 = x1 and X2 = x2. The distribution of probability is specified by listing the prob-
abilities associated with all possible pairs of values x1 and x2, either by formula or in
a table. We refer to the function f ( x1, x2 ) = P( X1 = x1, X2 = x2 ) and the corre-
sponding possible values (x1, x2) as the joint probability distribution of X1 and X2.

EXAMPLE 20 Calculating probabilities from a discrete joint probability
distribution
Let X1 and X2 have the joint probability distribution in the table below.

Joint Probability Distribution
f (x1, x2) of X1 and X2

x1
0 1 2

0 0.1 0.4 0.1
x2

1 0.2 0.2 0

(a) Find P( X1 + X2 > 1 ).

(b) Find the probability distribution f1(x1) = P( X1 = x1 ) of the individual
random variable X1.

Solution (a) The event X1 + X2 > 1 is composed of the pairs of values (1, 1), (2, 0), and
(2,1). Adding their corresponding probabilities

P(X1 + X2 > 1) = f (1, 1) + f (2, 0) + f (2, 1) = 0.2 + 0.1 + 0 = 0.3

(b) Since the event X1 = 0 is composed of the two pairs of values (0, 0) and (0, 1),
we add their corresponding probabilities to obtain

P(X1 = 0) = f (0, 0) + f (0, 1) = 0.1 + 0.2 = 0.3

Continuing, we obtain P(X1 = 1) = 0.6 and P(X1 = 2) = 0.1. In summary,
f1(0) = 0.3, f1(1) = 0.6, and f1(2) = 0.1 is the probability distribution of X1.

Rewriting the frequency table but including the row and column totals,

Joint Probability Distribution f (x1, x2) of X1 and X2

with Marginal Distributions
x1 Total

0 1 2 f2(x2)

0 0.1 0.4 0.1 0.6
x2

1 0.2 0.2 0 0.4

Total f1(x1) 0.3 0.6 0.1 1.0

Note that the probability distribution f1(x1) of X1 appears in the lower margin of this
enlarged table. The probability distribution f2(x2) of X2 appears in the right-hand
margin of the table. Consequently, the individual distributions are called marginal
probability distributions. j
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From the example, we see that for each fixed value x1 of X1, the marginal prob-
ability distribution is obtained as

P(X1 = x1) = f1(x1) =
∑

values x2

f (x1, x2)

where the sum is over all possible values of the second variable with x1 fixed.
Consistent with the definition of conditional probability of events when A is the

event X1 = x1 and B is the event X2 = x2, the conditional probability distribution
of X1 given X2 = x2 is defined as

f1( x1 | x2 ) = f ( x1, x2 )
f2( x2 )

for all x1 provided f2 ( x2 ) 	= 0

If f1( x1 | x2 ) = f1( x1 ) for all x1 and x2, so the conditional probability distribution
is free of x2, or, equivalently, if

f ( x1, x2 ) = f1( x1 ) f2( x2 ) for all x1, x2

the two random variables are independent.

EXAMPLE 21 A conditional probability distribution
With reference to the previous example, find the conditional probability distribution
of X1 given X2 = 1. Are X1 and X2 independent?

Solution f1(0 | 1) = f (0, 1)
f2(1)

= 0.2
0.4

= 0.5, f1(1 | 1) = f (1, 1)
f2(1)

= 0.2
0.4

= 0.5, and

f1(2 | 1) = f (2, 1)
f2(1)

= 0
0.4

= 0

Since f1(0 | 1) = 0.5 	= 0.3 = f1(0), the conditional probability distribution is not
free of the value x2. Equivalently, f (0, 1) = 0.2 	= (0.3)(0.4) = f1(0) f2(1) so X1
and X2 are dependent. j

Suppose that instead we are concerned with k random variables X1,

X2, . . . , Xk. Let x1 be a possible value for the first random variable X1, x2 be a
possible value for the second random variable X2, and so on with xk a possible value
for the kth random variable. Then the probabilities

P( X1 = x1, X2 = x2, . . . , Xk = xk ) = f ( x1, x2, . . . , xk )

need to be specified. We refer to the function f and the corresponding k-tuples of
possible values ( x1, x2, . . . , xk ) as the joint probability distribution of these dis-
crete random variables.

The probability distribution fi(xi) of the individual variable Xi is called the
marginal probability distribution of the ith random variable

fi( xi) =
∑
x1

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xk

f ( x1, x2, . . . , xk )

where the summation is over all possible k-tuples where the ith component is held
fixed at the specified value xi.
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Continuous Variables
There are many situations in which we describe an outcome by giving the values
of several continuous random variables. For instance, we may measure the weight
and the hardness of a rock; the volume, pressure, and temperature of a gas; or
the thickness, compressive strength, and potassium content of a piece of glass. If
X1, X2, . . . , Xk are k continuous random variables, we shall refer to f ( x1, x2, . . . , xk )
as the joint probability density of these random variables, if the probability that
a1 ≤ X1 ≤ b1, a2 ≤ X2 ≤ b2 , . . . , and ak ≤ Xk ≤ bk is given by the multiple
integral ∫ bk

ak

· · ·
∫ b2

a2

∫ b1

a1

f ( x1, x2, . . . , xk ) dx1 dx2 . . . dxk

Thus, not every function f (x1, x2, . . . , xk ) can serve as a joint probability density,
but if

f ( x1, x2, . . . , xk ) ≥ 0

for all values of x1, x2, . . . , xk, and∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
f ( x1, x2, . . . , xk ) dx1 dx2 . . . dxk = 1

it can be shown that the axioms of probability (with the modification of the definition
of “event” discussed in Section 5.1) are satisfied.

To extend the concept of a cumulative distribution function to the k-variable
case, we write as F (x1, x2, . . . , xk ) the probability that the first random variable
will take on a value less than or equal to x1, the second random variable will take
on a value less than or equal to x2, . . . , and the kth random variable will take on a
value less than or equal to xk, and we refer to the corresponding function F as the
joint cumulative distribution function of the k random variables.

EXAMPLE 22 Calculating probabilities from a joint probability density function
If the joint probability density of two random variables is given by

f (x1, x2) =
{

6 e−2x1−3x2 for x1 > 0, x2 > 0

0 elsewhere

find the probabilities that

(a) the first random variable will take on a value between 1 and 2 and the second
random variable will take on a value between 2 and 3;

(b) the first random variable will take on a value less than 2 and the second
random variable will take on a value greater than 2.

Solution Performing the necessary integrations, we get

(a) ∫ 3

2

∫ 2

1
6 e−2x1−3x2 dx1 dx2 = ( e−2 − e−4 ) ( e−6 − e−9 )

= 0.0003

(b) ∫ ∞

2

∫ 2

0
6 e−2x1−3x2 dx1 dx2 = ( 1 − e−4 ) e−6

= 0.0024 j
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EXAMPLE 23 Determining a joint cumulative distribution function
Find the joint cumulative distribution function of the two random variables of the
preceding exercise, and use it to find the probability that both random variables will
take on values less than 1.

Solution By definition,

F (x1, x2) =

⎧⎪⎨
⎪⎩

∫ x2

0

∫ x1

0
6 e−2u−3v du dv for x1 > 0, x2 > 0

0 elsewhere

so that

F (x1, x2) =
{

(1 − e−2x1 ) (1 − e−3x2 ) for x1 > 0, x2 > 0

0 elsewhere

and, hence,

F (1, 1) = (1 − e−2) (1 − e−3)

= 0.8216 j

Given the joint probability density of k random variables, the probability density
of the ith random variable can be obtained by integrating out the other variables;
symbolically,

Marginal density fi(xi) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
f (x1, x2, . . . , xk ) dx1 . . . dxi−1 dxi+1 . . . dxk

and, in this context, the function fi is called the marginal density of the ith random
variable. Integrating out only some of the k random variables, we can similarly define
joint marginal densities of any two, three, or more of the k random variables.

EXAMPLE 24 Determining a marginal density from a joint density
With reference to Example 22. find the marginal density of the first random variable.

Solution Integrating out x2, we get

f1(x1) =

⎧⎪⎨
⎪⎩

∫ ∞

0
6 e−2x1−3x2 dx2 for x1 > 0

0 elsewhere

or

f1(x1) =
{

2 e−2x1 for x1 > 0

0 elsewhere j

To explain what we mean by the independence of continuous random vari-
ables, we could proceed as with discrete random variables and define conditional
probability densities first; however, it will be easier to say that
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Independent random
variables

k random variables X1, . . . , Xk are independent if and only if

F ( x1, x2, . . . , xk ) = F1(x1) · F2(x2) · · · Fk(xk )

for all values x1, x2, . . . , xk of these random variables.

In this notation F ( x1, x2, . . . , xk ) is, as before, the joint distribution function of the
k random variables, while Fi( xi) for i = 1, 2, . . . , k are the corresponding individual
distribution function of the respective random variables. The same condition applies
for discrete random variables.

EXAMPLE 25 Checking independence via the joint cumulative distribution
With reference to Example 23, check whether the two random variables are inde-
pendent.

Solution As we already saw in Example 23, the joint distribution function of the two random
variables is given by

F (x1, x2) =
{

(1 − e−2x1 ) (1 − e−3x2 ) for x1 > 0 and x2 > 0

0 elsewhere

Now, since F1(x1) = F (x1, ∞) and F2(x2) = F (∞, x2), it follows that

F1(x1) =
{

1 − e−2x1 for x1 > 0

0 elsewhere

and

F2(x2) =
{

1 − e−3x2 for x2 > 0

0 elsewhere

Thus, F (x1, x2) = F1(x1) · F2(x2) for all (x1, x2) and the two random variables are
independent. j

When k random variables have a joint probability density, the k random vari-
ables are independent if and only if their joint probability density equals the prod-
uct of the corresponding values of the marginal densities of the k random variables;
symbolically,

f ( x1, x2, . . . , xk ) = f1( x1) · f2( x2 ) · · · fk( xk ) for all ( x1, . . . , xk ).

EXAMPLE 26 Establishing independence by factoring the joint probability density
With reference to Example 22, verify that

f (x1, x2) = f1(x1) · f2(x2)

Solution Example 24 shows that

f1(x1) =
{

2 e−2x1 for x1 > 0

0 elsewhere
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and in the same way,

f2(x2) =
{

3 e−3x2 for x2 > 0

0 elsewhere

Thus,

f1(x1) · f2(x2) =
{

6 e−2x1−3x2 for x1 > 0 and x2 > 0

0 elsewhere

and it can be seen that f1(x1) · f2(x2) = f (x1, x2) for all (x1, x2). j

Given two continuous random variables X1 and X2, we define the conditional
probability density of the first given that the second takes on the value x2 as

Conditional probability
density f1( x1 | x2 ) = f ( x1, x2 )

f2( x2 )
provided f2( x2 ) 	= 0

where f (x1, x2) and f2(x2) are, as before, the joint density of the two random vari-
ables and the marginal density of the second. Note that this definition parallels that
of the conditional probability distribution on page 163. Also, the joint probability
density is the product

f ( x1, x2 ) = f1 ( x1 | x2 ) f2 ( x2 ).

EXAMPLE 27 Determining a conditional probability density
If two random variables have the joint probability density

f (x1, x2) =

⎧⎪⎨
⎪⎩

2
3

( x1 + 2x2 ) for 0 < x1 < 1, 0 < x2 < 1

0 elsewhere

find the conditional density of the first given that the second takes on the value x2.

Solution First we find the marginal density of the second random variable by integrating out
x1, and we get

f2(x2) =
∫ 1

0

2
3

( x1 + 2 x2 ) dx1 = 1
3

( 1 + 4 x2 ) for 0 < x2 < 1

and f2(x2) = 0 elsewhere. Hence, by definition, the conditional density of the first
random variable given that the second takes on the value x2 is given by

f1(x1 | x2) =
2
3

( x1 + 2 x2 )

1
3

( 1 + 4 x2 )
= 2 x1 + 4 x2

1 + 4 x2
for 0 < x1 < 1, 0 < x2 < 1

and f1(x1 | x2) = 0 for x1 ≤ 0 or x1 ≥ 1 and 0 < x2 < 1. j
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Properties of Expectation
Consider a function g(X ) of a single random variable X . For instance, if X is an oven
temperature in degrees centigrade, then

g(X ) = 9
5

X + 32

is the same temperature in degrees Fahrenheit.
The expectation of the function g( X ) is again the sum of the products value ×

probability.

Expected value of g( X )

In the discrete case, where X has probability distribution f (x)

E [ g(X )] =
∑
xi

g(xi) f (xi)

In the continuous case, where X has probability density function f (x)

E [ g(X )] =
∫ ∞

−∞
g(x) f (x) dx

If X has mean μ = E( X ), then taking g(x) = ( x − μ )2, we have E [ g( X )] =
E( X − μ )2, which is just the variance σ 2 of X .

For any random variable Y , let E(Y ) denote its expectation, which is also its
mean μY . Its variance is Var (Y ) which is also written as σ 2

Y .
When g(x) = a x + b, for given constants a and b, then random variable g( X )

has expectation

E( aX + b ) =
∫ ∞

−∞
( ax + b ) f ( x ) dx = a

∫ ∞

−∞
x f ( x ) dx + b

∫ ∞

−∞
f ( x ) dx

= aE( X ) + b

and variance

Var ( aX + b ) =
∫ ∞

−∞
( ax + b − aμX − b )2 f (x) dx

= a2
∫ ∞

−∞
( x − μX )2 f (x) dx = a2Var (X )

To summarize,

For given constants a and b

E( aX + b ) = aE(X ) + b and Var ( aX + b ) = a2 Var ( X )

EXAMPLE 28 The mean and standard deviation of a standardized random variable
Let X have mean μ and standard deviation σ . Use the properties of expectation to
show that the standardized random variable

Z = X − μ

σ

has mean 0 and standard deviation 1.

Solution Since Z is of the form

Z = X − μ

σ
= 1

σ
X − μ

σ
= aX + b
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where a = 1/σ and b = −μ/σ ,

E(Z) = 1
σ

E(X ) − μ

σ
= μ

σ
− μ

σ
= 0

and the variance of Z is (
1
σ

)2
Var (X ) = σ 2

σ 2
= 1

because E(X ) = μ and Var (X ) = σ 2. j

EXAMPLE 29 Determining the mean and variance of 20 X
Suppose the daily amount of electricity X required for a plating process has mean
10 and standard deviation 3 kilowatt-hours. If the cost of electricity is 20 dollars per
kilowatt hour, find the mean, variance, and standard deviation of the daily cost of
electricity.

Solution The daily cost of electricity, g(X ) = 20 X , has mean 20 E(X ) = 20 × 10 = 200
dollars and variance (20)2 Var (X ) = (20)2 32 = 3,600. Its standard deviation is√

3,600 = 60 dollars. j

Given any collection of k random variables, the function Y = g(X1, X2, . . . , Xk )
is also a random variable. Examples include Y = X1 − X2 when g(x1, x2) = x1 −x2
and Y = 2X1 + 3X2 when g(x1, x2) = 2x1 + 3x2. The random variable g(X1,

X2, . . . , Xk ) has expected value, or mean, which is the sum of the products
value × probability.

Expected value of
g( X1, X2, . . . , Xk )

In the discrete case,

E [g( X1, X2, . . . , Xk )] =
∑
x1

∑
x2

· · ·
∑
xk

g(x1, x2, . . . , xk ) f (x1, x2, . . . , xk )

In the continuous case,

E [g( X1, X2, . . . , Xk ) ]

=
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
g( x1, x2, . . . , xk ) f ( x1, x2, . . . , xk ) dx1 dx2 · · · dxk

Several important properties of expectation can be deduced from this definition.
Taking g ( x1, x2 ) = ( x1 − μ1 ) ( x2 − μ2 ), we see that the product ( x1 − μ1 )
( x2 −μ2 ) will be positive if both values x1 and x2 are above their respective means
or both are below their respective means. Otherwise it will be negative. The expected
value E [ ( X1 −μ1 ) ( X2 −μ2 ) ] will tend to be positive when large X1 and X2 tend
to occur together and small X1 and X2 tend to occur together, with high probability.
This measure E [ ( X1 − μ1 ) ( X2 − μ2 ) ] of joint variation is called the population
covariance of X1 and X2.

If X1 and X2 are independent so f (x1, x2) = f1(x1) f2(x2),∫ ∞

−∞

∫ ∞

−∞
( x1 − μ1 ) ( x2 − μ2 ) f ( x1, x2 ) dx1 dx2

=
∫ ∞

−∞
( x1 − μ1 ) f1(x1) dx1 ·

∫ ∞

−∞
( x2 − μ2 ) f2(x2) dx2 = 0
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This result concerning zero covariance can be stated as

Independence implies that
the covariance is zero

When X1 and X2 are independent, their covariance

E[ ( X1 − μ1 ) ( X2 − μ2 ) ] = 0

Further, the expectation of a linear combination of two independent random
variables Y = a1X1 + a2X2 is

μY = E(Y ) = E( a1X1 + a2X2 )

=
∫ ∞

−∞

∫ ∞

−∞
( a1x1 + a2x2) f1(x) f2(x2) dx1 dx2

= a1

∫ ∞

−∞
x1 f1(x1) dx1

∫ ∞

−∞
f2(x2) dx2

+ a2

∫ ∞

−∞
f1(x1) dx1

∫ ∞

−∞
x2 f2(x2) dx2

= a1E(X1) + a2E(X2)

This result holds even if the two random variables are not independent. Also,

Var (Y ) = E ( Y − μY )2 = E[ ( a1X1 + a2X2 − a1μ1 − a2μ2 )2 ]

= E [ ( a1( X1 − μ1 ) + a2( X2 − μ2 ))2 ]

= E [ a2
1 (X1 − μ1)2 + a2

2 (X2 − μ2 )2 + 2 a1 a2 ( X1 − μ1 )( X2 − μ2 ) ]

= a2
1E[ ( X1 − μ1)2 ] + a2

2E[ ( X2 − μ2)2 ] + 2 a1a2E [ ( X1 − μ1 ) ( X2 − μ2 ) ]

= a2
1 Var ( X1 ) + a2

2 Var (X2)

since the third term is zero because we assumed X1 and X2 are independent.
These properties hold for any number of random variables whether they are

continuous or discrete.

The mean and variance of
linear combinations

Let Xi have mean μi and variance σ 2
i for i = 1, 2, . . . , k. The linear combination

Y = a1X1 + a2X2 + · · · + akXk has

E ( a1X1 + a2X2 + · · · + akXk ) = a1E(X1) + a2E(X2) + · · · + akE(Xk )

or

μY =
k∑

i=1

ai μi

When the random variables are independent,

Var ( a1X1 + a2X2 + · · · + akXk ) = a2
1 Var (X1)

+ a2
2 Var (X2) + · · · + a2

k Var (Xk )

or

σ 2
Y =

k∑
i=1

a2
i σ 2

i
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EXAMPLE 30 Variances of X1 − X2 and X1 + X2 when X1 and X2 are independent

Let X1 have mean μ1 and variance σ 2
1 and let X2 have mean μ2 and variance σ 2

2 .
Find the mean and variance of

(a) X1 − X2 and (b) X1 + X2

if X1 and X2 are independent.

Solution (a) Note that X1 − X2 is of the form a1X1 + a2X2 with a1 = −a2 = 1 so it
has mean

1 · μ1 + (−1)μ2 = μ1 − μ2

and variance

(1)2 · σ 2
1 + (−1)2σ 2

2 = σ 2
1 + σ 2

2

(b) Since X1 + X2 corresponds to the case with a1 = a2 = 1, it has mean

1 · μ1 + 1 · μ2 = μ1 + μ2

and variance

12 · σ 2
1 + 12 · σ 2

2 = σ 2
1 + σ 2

2
j

EXAMPLE 31 Finding the mean and variance of 2X1 + X2 − 5
If X1 has mean 4 and variance 9 while X2 has mean −2 and variance 6, and the two
are independent, find

(a) E ( 2X1 + X2 − 5 )

(b) Var ( 2X1 + X2 − 5 )

Solution According to the properties of expectation, the constant −5 is added to the expecta-
tion of 2X1 + X2 but the variance is unchanged.

(a) E( 2X1 + X2 − 5 ) = E( 2X1 + X2 ) − 5

= 2E ( X1 ) + E( X2 ) − 5 = 2(4) + (−2) − 5 = 1

(b) Var ( 2X1 + X2 − 5 ) = Var ( 2X1 + X2 )

= 22 Var ( X1 ) + Var ( X2 ) = 22(9) + 6 = 42 j

EXAMPLE 32 The mean and variance of total time to coat and rinse
The time to complete a coating process, X1, has mean 35 minutes and variance 11,
while the time to rinse, X2, has mean 8 minutes and variance 5. Find the mean and
standard deviation of the total time to coat and rinse.

Solution According to properties of expectation, the total time X1 + X2 has mean 35 + 8 =
43 minutes. Treating the coating and rinsing times as independent, the variance is
11 + 5 = 16, so that the standard deviation is 4. j
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EXAMPLE 33 The mean and variance of the sample mean
—
X

Let the n random variables X1, X2, . . . , Xn be independent and each have the same
distribution with mean μ and variance σ 2. Use the properties of expectation to show
that the sample mean X has

(a) mean: μX = E( X ) = μ

(b) variance: σ 2
X

= Var ( X ) = σ 2

n
Solution (a) The sample mean

X = X1 + X2 + · · · + Xn

n
= 1

n
X1 + 1

n
X2 + · · · + 1

n
Xn

is a linear combination with constants ai = 1/n for i = 1, 2, . . . , n.
Consequently,

E( X ) = 1
n

E(X1) + 1
n

E(X2) + · · · + 1
n

E(Xn) =
n∑

i=1

1
n
μ = 1

n
nμ = μ

so the expected value or mean of X is the same as the mean of each
observation.

(b) The variance of X is

Var ( X ) =
(

1
n

)2
Var (X1) +

(
1
n

)2
Var (X2) + · · · +

(
1
n

)2
Var (Xn)

=
n∑

i=1

(
1
n

)2
σ 2 =

(
1
n

)2
n σ 2 = σ 2

n

so the variance of X equals the variance of a single observation divided by n. j

EXAMPLE 34 The expected value of the sample variance
Let the n random variables X1, X2, . . . , Xn be independent and each have the same
distribution with mean μ and variance σ 2. Use the properties of expectation to show
that σ 2 is the mean, or expectation, of the sample variance

n∑
i=1

( Xi − X )2/(n − 1)

Solution We write ( Xi − X )2 = ( Xi − μ + μ − X )2 = ( Xi − μ )2 + ( μ − X )2 +
2( Xi − μ )( μ − X ) so the numerator of the sample variance is

n∑
i=1

( Xi − X )2 =
n∑

i=1

( Xi − μ )2 +
n∑

i=1

( μ − X )2 + 2
n∑

i=1

( Xi − μ )( μ − X )

and the last term equals −2 ( X −μ )
n∑

i=1
( Xi −μ ) = −2 n ( X −μ )2. Consequently,

n∑
i=1

( Xi − X )2 =
n∑

i=1

( Xi − μ )2 − n( X − μ )2
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Now E( Xi − μ )2 = Var ( Xi ) = σ 2 and, by Example 34, E( X ) = μ and E( X −
μ )2 = Var ( X ) = σ 2/n. Taking expectation term by term and summing,

E

⎡
⎣ n∑

i=1

( Xi − X )2

⎤
⎦ =

n∑
i=1

σ 2 − n
σ 2

n
= ( n − 1 ) σ 2

Dividing both sides by n−1, we conclude that σ 2 is the expected value of the sample
variance. j

Exercises
5.71 Two transistors are needed for an integrated circuit. Of

the eight available, three have broken insulation layers,
two have poor diodes, and three are in good condition.
Two transistors are selected at random.

(a) Find the joint probability distribution of X1 = the
number of transistors with broken insulation lay-
ers and X2 = the number having poor diodes.

(b) Find the probability of 1 or 2 total defects among
the two selected.

(c) Find the marginal probability distribution of X2.

(d) Find the conditional probability distribution of X2
given X1 = 0.

5.72 Two random variables are independent and each has a
binomial distribution with success probability 0.7 and
4 trials.

(a) Find the joint probability distribution.

(b) Find the probability that the first random variable
is greater than the second.

5.73 If two random variables have the joint density

f (x1, x2) =
{

x1x2 for 0 < x1 < 2, 0 < x2 < 1

0 elsewhere

find the probabilities that

(a) both random variables will take on values less
than 1;

(b) the sum of the values taken on by the two random
variables will be less than 1.

5.74 With reference to the preceding exercise, find the
marginal densities of the two random variables.

5.75 With reference to Exercise 5.73, find the joint cumula-
tive distribution function of the two random variables,
the cumulative distribution functions of the individual
random variables, and check whether the two random
variables are independent.

5.76 If two random variables have the joint density

f (x, y) =
⎧⎨
⎩

6

5
( x + y2 ) for 0 < x < 1, 0 < y < 1

0 elsewhere

find the probability that 0.2 < X < 0.5 and 0.4 < Y <

0.6.

5.77 With reference to the preceding exercise, find the
joint cumulative distribution function of the two ran-
dom variables and use it to verify the value obtained
for the probability.

5.78 With reference to Exercise 5.76, find both marginal
densities and use them to find the probabilities that

(a) X > 0.8;

(b) Y < 0.5.

5.79 With reference to Exercise 5.76, find

(a) an expression for f1(x | y) for 0 < y < 1;

(b) an expression for f1(x | 0.5);

(c) the mean of the conditional density of the first ran-
dom variable when the second takes on the value
0.5.

5.80 With reference to Example 27, find expressions for

(a) the conditional density of the first random variable
when the second takes on the value x2 = 0.25;

(b) the conditional density of the second random vari-
able when the first takes on the value x1.

5.81 If three random variables have the joint density

f (x, y, z) =
⎧⎨
⎩

k ( x + y ) e−z for 0 < x < 2,

0 < y < 1, z > 0

0 elsewhere

find

(a) the value of k;

(b) the probability that X > Y and Z > 1.

5.82 With reference to the preceding exercise, check
whether

(a) the three random variables are independent;

(b) any two of the three random variables are pairwise
independent.
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5.83 A pair of random variables has the circular normal
distribution if their joint density is given by

f (x1, x2)

= 1

2πσ 2 e− [ ( x1 − μ1 )2 + ( x2 − μ2 )2 ] /2σ 2

for −∞ < x1 < ∞ and −∞ < x2 < ∞.

(a) If μ1 = 2 and μ2 = −2, and σ = 10, use Table 3
to find the probability that −8 < X1 < 14 and
−9 < X2 < 3.

(b) If μ1 = μ2 = 0 and σ = 3, find the probability
that (X1, X2) is contained in the region between
the two circles x2

1 + x2
2 = 9 and x2

1 + x2
2 = 36.

5.84 A precision drill positioned over a target point will
make an acceptable hole if it is within 5 microns of
the target. Using the target as the origin of a rectan-
gular system of coordinates, assume that the coordi-
nates (x, y) of the point of contact are values of a pair
of random variables having the circular normal distri-
bution (see Exercise 5.83) with μ1 = μ2 = 0 and
σ = 2. What is the probability that the hole will be
acceptable?

5.85 With reference to Exercise 5.73, find the expected
value of the random variable whose values are given
by g(x1, x2) = x1 + x2.

5.86 With reference to Exercise 5.76, find the expected
value of the random variable whose values are given
by g(x, y) = x2y.

5.87 If measurements of the length and the width of a rect-
angle have the joint density

f (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
a b

for L − a
2

< x < L + a
2
,

W − b
2

< y < W + b
2

0 elsewhere

find the mean and the variance of the corresponding
distribution of the area of the rectangle.

5.88 Establish a relationship between f1(x1 | x2),
f2(x2 | x1), f1(x1), and f2(x2).

5.89 If X1 has mean 1 and variance 5 while X2 has mean −1
and variance 5, and the two are independent, find

(a) E( X1 + X2 );

(b) Var ( X1 + X2 ).

5.90 If X1 has mean 8 and variance 2 while X2 has mean
−12.5 and variance 2.25, and the two are independent,
find

(a) E( X1 − X2 );

(b) Var ( X1 − X2 ).

5.91 If X1 has mean 1 and variance 3 while X2 has mean −2
and variance 5, and the two are independent, find

(a) E ( X1 + 2X2 − 3 );

(b) Var ( X1 + 2X2 − 3 ).

5.92 The time taken by a traditional nuclear reactor to gen-
erate one nuclear chain reaction with fast neutrons,
X1, has mean 10 nanoseconds and variance 4, while
the time taken by an improved design of the reac-
tor, X2, has mean 8 nanoseconds and variance 2.5.
Find the expected time savings using the improved
design when

(a) generating a single chain reaction;

(b) generating 5000 chain reactions.

(c) Find the standard deviation in part (a) and (b),
assuming all of the generating times are independent.

5.93 Let X1, X2, . . . , X20 be independent and let each have
the same marginal distribution with mean 10 and vari-
ance 3. Find

(a) E( X1 + X2 + · · · + X20 );

(b) Var ( X1 + X2 + · · · + X20 ).

5.11 Moment Generating Functions*
An alternative to a probability distribution can sometimes greatly simplify the cal-
culation of moments. The moment generating function (mgf) of a random variable
X , or its probability distribution, is the function defined by

M(t ) = E( etX )

which is the expectation of the exponential function etX . In the discrete case,

M(t ) = E( etX ) =
∑
all xi

etxi f ( xi )

and

M(t ) = E( etX ) =
∫ ∞

−∞
etx f (x) dx

∗This section may be skipped on first reading.
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in the continuous case. For each fixed t, the integrand is a positive function of x so
M(t ) is either finite or infinite. Note that M(0) = E(e0X ) = E(1) = 1 always exists,
but we require M(t ) to exist for an interval of values of t.

The probability distribution, or random variable X , is said to possess a moment
generating function M(t ) if this function is finite for t in some interval containing
zero, say | t| ≤ T for some T > 0.

Under the condition that M(t ) is finite for | t| ≤ T , for some T > 0, we can
obtain successive derivatives by differentiating under the integral or summation sign.
In the continuous case, we obtain

M′(t ) = d
dt

M(t ) =
∫ ∞

−∞
d
dt

etx f (x) dx =
∫ ∞

−∞
x etx f (x) dx

M′′(t ) = d2

dt2
M(t ) =

∫ ∞

−∞
d
dt

xetx f (x) dx =
∫ ∞

−∞
x2etx f (x) dx

For either the continuous or discrete case,

M(k)(t ) = dk

dtk
M(t ) = E( XketX ) for k = 1, 2, . . .

Setting t = 0, we obtain the moments about the origin

M′(0) = E( X )

M′′(0) = E( X2 )

Differentiating k times, the kth derivative is related to the kth moment

M(k)(0) = E( Xk ) for k = 1, 2, . . .

Basic properties of
moment generating

functions

Theorem 5.2 If the moment generating function is finite for | t| ≤ T , for some
T > 0, it uniquely determines the probability distribution.

Then, all moments exist and can be obtained from the relation

M(k)(0) = E( Xk )

From the definition of expectation, the moments of any random variable must
be obtained by integration or summation of a series. When the moment generating
function is available, this process can be replaced by a straightforward differentia-
tion. We find the moment generating functions and illustrate the calculation of mean
and variance for several common distributions in the next examples.

EXAMPLE 35 Moment generating function for binomial distribution
Let X have the binomial distribution with probability distribution

b(x | n, p) =
(

n
x

)
px( 1 − p )n−x for x = 0, 1, . . . , n

Show that

(a) M(t ) = ( 1 − p + pet )n for all t

(b) E(X ) = np and Var(X ) = np ( 1 − p )
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Solution (a) By definition of the moment generating function

M(t ) =
n∑

x=0

etx
(

n
x

)
px( 1 − p )n−x

=
n∑

x=0

(
n
x

)
(et p)x( 1 − p )n−x

= ( pet + 1 − p )n for all t

where we have used the binomial formula

(a + b)n =
n∑

x=0

(
n
x

)
ax bn−x

(b) Differentiating M(t ), we find

M′(t ) = n p et ( p et + 1 − p )n−1

M′′(t ) = ( n − 1 ) n p2 e2t ( p et + 1 − p )n−2 + n p et ( p et + 1 − p )n−1

Evaluating these derivatives at t = 0, we obtain the moments

E( X ) = np

E( X2 ) = ( n − 1 ) n p2 + np

Also, the variance is

Var ( X ) = E( X2 ) − [E( X )]2 = np ( 1 − p ) j

EXAMPLE 36 Moment generating function for Poisson distribution
Let X have the Poisson distribution with probability distribution

f (x) = λx

x!
e−λ for x = 0, 1, . . . ,∞

Show that

(a) M(t ) = e λ ( e t−1 ) for all t

(b) E(X ) = λ and Var (X ) = λ

The mean and variance of the Poisson distribution are equal.

Solution (a) By definition of the moment generating function

M(t ) =
∞∑

x=0

etx λx

x!
e−λ =

∞∑
x=0

( λet )x

x!
e−λ

= e−λeλe t = eλ ( e t−1 ) for − ∞ < t < ∞

where we have used the series ey = ∑∞
k=0

yk

k!
(b) Differentiating M(t ), we find

M′(t ) = λ eteλ ( et−1 )

M′′(t ) = λ eteλ ( et−1 ) + λ2e2 t eλ ( et−1 )
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Evaluating these derivatives at t = 0, we obtain the moments

E(X ) = λ

E( X2 ) = λ + λ2

Also, the variance is

Var (X ) = E( X2 ) − [E(X )]2 = λ j

EXAMPLE 37 Moment generating function for gamma distribution
The gamma distribution has probability density function

f (x) = 1
βα�(α)

xα−1e−x/β for x > 0

Show that its moment generating function is

M(t ) = 1
( 1 − βt )α

and verify the mean and variance.

Solution
M(t ) =

∫ ∞

0
etx 1

βα �(α)
xα−1 e−x/βdx

= 1
βα �(α)

∫ ∞

0
xα−1e−x(1−βt )/βdx

This last integral is finite for all t < 1/β and can be evaluated by multiplying and
dividing by (1−βt )α to obtain a gamma density with parameters α and β/(1−βt ).
We conclude that

M(t ) = 1
βα�(α)

�(α)
βα

( 1 − βt )α
= 1

( 1 − βt )α

To obtain the moments, we differentiate and find

M′(t ) = α
1

( 1 − βt )α+1
β

M′′(t ) = (α + 1 ) α
1

( 1 − βt )α+2
β2

Setting t = 0,

E(X ) = M′(0) = α β and E( X2 ) = M′′(0) = α( α + 1 )β2

so Var (X ) = α β2. j

EXAMPLE 38 Moment generating function for chi square distribution
The gamma distribution having α = ν/2 and β = 2 is called the chi square distri-
bution with ν degrees of freedom. Show that the moment generating function is

M(t ) = 1

( 1 − 2 t ) ν/2

and that E(X ) = ν and Var (X ) = 2ν.
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Solution These results follow from the previous example because this is a gamma distribution
with α = ν/2 and β = 2. j

EXAMPLE 39 Moment generating function for normal distribution
Show that the normal distribution, whose probability density function

f (x) = 1√
2πσ

e−( x − μ )2/2 σ 2
has M(t ) = etμ+ 1

2 t2σ 2

which exists for all t. Also, verify the first two moments.

Solution To obtain the moment generating function, we use the identity

tx − 1
2

( x − μ )2

σ 2
= −1

2
[ x − ( t σ 2 + μ ) ]2

σ 2
+ tμ + 1

2
t2σ 2

obtained by completing the square. Then

M(t ) = E(etX ) =
∫ ∞

−∞
etx 1√

2πσ
e−( x−μ )2/ 2 σ 2

dx

=
∫ ∞

−∞
1√

2πσ
e− 1

2 [ x−( t σ 2+μ ) ]2/σ 2
dx × etμ+ 1

2 t2σ 2 = etμ+ 1
2 t2σ 2

To obtain the moments of the normal, we differentiate once to obtain

M′(t ) = etμ + 1
2 t2σ 2

( μ + tσ 2 )

and a second time to get

M′′(t ) = etμ + 1
2 t2σ 2

[ ( μ + tσ 2 )2 + σ 2 ].

Setting t = 0,

E[X] = M′(0) = μ and E(X2) = M′′(0) = σ 2 + μ2

so Var (X ) = σ 2 as the notation suggests. j

A basic property relates the moment generating function of a + bX to that of X .

Moment generating
function of a + bX

Theorem 5.3 Let X have moment generating function M(t ) and let a and b be
constants. Then

Ma+bX (t ) = E
(
e( a + bX ) t ) = ea t · M(b t )

For instance, the moment generating function of X − μ, corresponding to b = 1
and a = −μ, is

MX−μ(t ) = e−μ t · MX (t )

EXAMPLE 40 Converting to the standard normal distribution

Let X be distributed as normal with mean μ and variance σ 2. Use moment generating
functions to show that

Z = X − μ

σ

has a standard normal distribution.
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Solution By the previous example, X has moment generating function

M(t ) = etμ+ 1
2 t2σ 2

Further

Z = X − μ

σ
= a + bX with a = −μ

σ
and b = 1

σ

Therefore, the moment generating function of Z is

MZ (t ) = eat · M(b t ) = e−( μ/σ ) t e( t/σ ) μ+ 1
2 ( t/σ )2σ 2 = e

1
2 t2

This last expression is the moment generating function of a normal distribution hav-
ing mean 0 and variance 1. It exists for all t so the moment generating function
uniquely determines the distribution. j

One of most useful properties of moment generating functions is a multiplica-
tion property for independent random variables.

Moment generating
function of sum under

independence

Theorem 5.4 Let X and Y be independent random variables with moment gen-
erating functions MX and MY . The sum Z = X + Y has moment generating
function

MZ (t ) = MX (t ) MY (t )

on the interval of t where MX (t ) and MY (t ) exist.

Proof

MZ (t ) = E( etZ ) = E( et(X +Y ) ) = E( etX etY )

Then, from the assumption of independence,

= E( etX etY ) = E( etX ) E( etY ) = MX (t ) MY (t )

EXAMPLE 41 Sum of two independent normal random variables is normal
Let X and Y be independent normal random variables. Let X have mean μX and vari-
ance σ 2

X while Y has mean μY and variance σ 2
Y . Use moment generating functions

to show that

(a) X + Y has a normal distribution with mean μX + μY and variance σ 2
X + σ 2

Y .

(b) X − Y has a normal distribution with mean μX − μY and variance σ 2
X + σ 2

Y .

Solution (a) From a previous example, the two moment generating functions are

MX (t ) = etμX + 1
2 t2σ 2

X

MY (t ) = etμY + 1
2 t2σ 2

Y

Their product is

MX (t )MY (t ) = etμX + 1
2 t2σ 2

X etμY + 1
2 t2 σ 2

Y

= et( μX +μY ) + 1
2 t2( σ 2

X + σ 2
Y )

which we identify as the moment generating function of a normal random
variable having mean μX + μY and variance σ 2

X + σ 2
Y .

(b) Since X and −Y are independent and −Y has moment generating function
MY (−t ), the result follows (see Exercise 5.98). j
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Exercises
5.94 Let f (x) = 0.2 for x = 0, 1, 2, 3, 4.

(a) Find the moment generating function.

(b) Obtain E(X ) and E(X2) by differentiating the mo-
ment generating function.

5.95 Let

f (x) = 0.40
(

4
x

)
for x = 0, 1, 2, 3, 4

(a) Find the moment generating function.

(b) Obtain E(X ) and E(X2) by differentiating the mo-
ment generating function.

5.96 Let Z have a normal distribution with mean 0 and vari-
ance 1.

(a) Find the moment generating function of Z2.

(b) Identify the distribution of Z2 by recognizing the
form of the moment generating function.

5.97 Let X be a continuous random variable having proba-
bility density function

f (x) =
{

2 e−2 x for x > 0
0 elsewhere

(a) Find the moment generating function.

(b) Obtain E(X ) and E(X2) by differentiating the mo-
ment generating function.

5.98 Establish the result in Example 41 concerning the dif-
ference of two independent normal random variables,
X and Y .

5.99 Let X and Y be independent normal random variables
with

E(X ) = 4 and σ 2
X = 25

E(Y ) = 3 and σ 2
Y = 16

(a) Use moment generating functions to show that
5X − 4Y + 7 has a normal distribution.

(b) Find the mean and variance of the random variable
in part (a).

5.100 Let X have the geometric distribution

f (x) = p ( 1 − p )x−1 for x = 1, 2, . . .

(a) Obtain the moment generating function for

t < − ln ( 1 − p )

[ Hint: Recall that
∑∞

k=0 rk = 1
1 − r

for | r | < 1. ]

(b) Obtain E(X ) and E(X2) by differentiating the mo-
ment generating function.

5.12 Checking If the Data Are Normal
In many instances, an experimenter needs to check whether a data set appears to be
generated by a normally distributed random variable. As indicated in Figure 2.8, the
normal distribution can serve to model variation in some quantities. Further, many
commonly used statistical procedures, which we describe in later chapters, require
that the probability distribution be nearly normal. Consequently, in a great number
of applications it is prudent to check the assumption that the data are normal.

Although they involve an element of subjective judgment, graphical procedures
are the most helpful for detecting serious departures from normality. Histograms
can be checked for lack of symmetry. A single long tail certainly contradicts the as-
sumption of a normal distribution. However, another special graph, called a normal
scores plot or normal quantile plot, is even more effective in detecting departures
from normality. To introduce such a plot, we consider a sample of size 4. In practice,
we need a minimum of 15–20 observations in order to evaluate the agreement with
normality.

The term normal scores refers to an idealized sample from the standard normal
distribution. It consists of the values of z that divide the axes into equal probability
intervals. For sample size n = 4, the normal scores are

m1 = −z0.20 = −0.84
m2 = −z0.40 = −0.25
m3 = z0.40 = 0.25
m4 = z0.20 = 0.84

as illustrated in Figure 5.24.
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Figure 5.24
The standard normal
distribution and the normal
scores for n = 4 m1 m2 m3 m4

0.2 0.2 0.2 0.20.2

To construct a normal scores plot,

1. Order the data from smallest to largest;

2. Obtain the normal scores;

3. Plot the ith largest observation, versus the ith normal score mi, for all i.

EXAMPLE 42 A simple normal scores plot
Suppose the four observations are 67, 48, 76, 81. Construct a normal scores plot.

Solution The ordered observations are 48, 67, 76, 81. Above, we found that m1 = −z0.20 =
−0.84, so we plot the pair (−0.84, 48). Continuing, we obtain Figure 5.25.

Figure 5.25
The normal scores plot
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If the data were from a standard normal distribution, we would expect the ith
largest observation to approximate the ith normal score so that the normal scores
plot would resemble a 45◦ line through the origin. When the distribution is normal
with an unspecified μ and σ ,

z = x − μ

σ

so the idealized z values can be converted to idealized x values through the relation
x = μ + σ z. Because the idealized values have this linear relation, it is sufficient to
plot the ordered observations versus the normal scores obtained from the standard
normal distribution. If the normal distribution prevails, the pattern should still be a
straight line. But the line need not pass through the origin or have slope 1.

The construction of normal scores plots by hand is a difficult task at best. Fortu-
nately, they can be treated easily with most statistical programs. (See Exercise 5.102.)
Many slight variants are used in the calculation of the normal scores but the plots
are very similar if more than 20 observations are plotted. Whichever computer pro-
gram you use, if a normal distribution is plausible, the plot will have a straight-line
appearance.
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Figure 5.26
The normal scores plot of the
interrequest times
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Figure 5.27
Normal scores plot of
nanopillar heights
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Figure 5.26 shows the normal scores plot for the interrequest times given on
page 29. The bending shows that the largest values are larger than would be ex-
pected under a normal distribution. On the other hand, Figure 5.27 exhibits a normal
scores plot of the nanopillar height data (see the example on page 25), and a normal
distribution appears to be plausible.

5.13 Transforming Observations to Near Normality
When the histogram or normal scores plot indicate that the assumption of a normal
distribution is invalid, transformations of the data can often improve the agreement
with normality. Scientists regularly express their observations in natural logs. We
consider a few other transformations, as indicated in Table 5.1.

Table 5.1 Some useful transformations
Make Large Values Smaller : Make Large Values Larger :

−1
x

ln x x1/4 √
x x2 x3

If the observations are positive and the distribution has a long tail or a few strag-
glers on the right, then the ln x or

√
x transformations will pull the large values down

farther than they pull the central or small values. If the transformed observations
have a nearly straight line normal scores plot, it is usually advantageous to use the
normality of this new scale to perform any statistical analysis. Further, the validity
of many of the powerful statistical methods described in later chapters rests on the
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assumption that the probability distribution is nearly normal. By choosing a trans-
formation that leads to nearly normal data, the investigator can greatly extend the
range of validity of these techniques.

EXAMPLE 43 A transformation to better approximate a normal distribution
Transform the interrequest times in the example on page 29 to better approximate a
normal distribution.

Solution On a computer, we calculate
√

x, take the square root again to obtain x1/4, and
take the natural logarithm ln x of all 50 values. The transformation ln x appears to
work best. The histogram and normal scores plot are shown in Figure 5.28 for both
the original and transformed data. The quality of the fit further confirms the log-
normal model. j
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Figure 5.28
(a) The normal scores plot of
interrequest time (b) The
normal scores plot of
ln (interrequest time)
(c) Histogram of interrequest
time (d) Histogram of
ln (interrequest time)
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Exercises
5.101 For any 11 observations,

(a) Use software or Table 3 to verify the normal scores

−1.38 − 0.97 − 0.67 − 0.43 − 0.21 0 0.21 0.43 0.67 0.97 1.38

(b) Construct a normal scores plot using the observa-
tions on the times between neutrinos in Exercise
2.7.

5.102 (Normal scores plots) The MINITAB commands

Dialog box:

Calc > Calculator Type C2 in Store. Type
NSCOR(C1) in Expression.
Click OK.

Graph > Scatteplot > Simple. Click OK. Type
C1 under Y and C2 under X. Click OK.

will create a normal scores plot from observations that
were set in C1. (MINITAB uses a variant of the normal
scores, mi, that we defined.) Construct a normal scores
plot of

(a) the cheese data of Example 8,

(b) the decay time data on page 156.

5.103 (Transformations) The MINITAB commands

Dialog box:

Calc > Calculator Type C2 in Store. Type
LOGE(C1) in Expression.
Click OK.

Calc > Calculator Type C3 in Store. Type
SQRT(C1) Expression.
Click OK.

Calc > Calculator Type C4 in Store. Type
SQRT(C3) Expression.
Click OK.

will place ln x in C2,
√

x in C3, and x1/4 in C4 for
observations that are set in C1. Normal scores plots
can then be constructed as in Exercise 5.102. Try these
three transformations and construct the corresponding
normal scores plots for

(a) the decay time data on page 156;

(b) the interrequest time data on page 29.

5.14 Simulation
Simulation techniques have grown up with computers. They are ideally suited for
doing the repetitious calculations required. To simulate the observation of contin-
uous random variables, we usually start with uniform random numbers and relate
these to the distribution function of interest. We could use two- or three-digit ran-
dom integers, perhaps selected from Table 7W, but most software programs have a
continuous uniform random number generator. That is, they produce approximations
to random numbers from the uniform distribution

f (x) =
{

1 0 < x < 1

0 elsewhere

Suppose we wish to simulate an observation from the exponential distribution

F (x) = 1 − e−0.3x, 0 < x < ∞
The computer would first produce the value u from the uniform distribution. Then
we solve (see Exercise 5.104)

u = F (x) = 1 − e−0.3x

so x = [− ln(1 − u)]/0.3 is the corresponding value of an exponential random
variable. For instance, if u = 0.45, then x = [− ln(1 − 0.45)]/0.3 = 1.993. This is
illustrated graphically in Figure 5.29, where u is located on the vertical scale and the
corresponding x value is read from the horizontal scale. (The theory on which this
method is based involves the so-called probability integral transformation, which is
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Figure 5.29
Exponential cumulative
distribution with mean 10
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presented in Example 15, Chapter 6.) If we wish to simulate a sample from F , the
preceding process is repeated with a different u for each new observation x.

A similar procedure applies to the simulation of observations from a Weibull
distribution. Starting with the value of a uniform variable u, we now solve (see
Exercise 5.105)

u = F (x) = 1 − e−αxβ

for

x =
[
− 1

α
ln ( 1 − u )

]1/β

which is the corresponding value of a Weibull random variable.

EXAMPLE 44 Simulating five values from a Weibull distribution
Simulate five observations of a random variable having the Weibull distribution with
α = 0.05 and β = 2.0.

Solution A computer generates the five values 0.57, 0.74, 0.26, 0.77, 0.12. (Alternatively, we
could read two digits at a time from a random number table.) We calculate

x = [−20.0 ln(1 − 0.57)]1/2 = 4.108

x = [−20.0 ln(1 − 0.74)]1/2 = 5.191

The reader can show that the last three uniform numbers yield x = 2.454, 5.422,
1.599. j

Suppose we need to simulate values from the normal distribution with a speci-
fied μ and σ 2. By the relation

z = x − μ

σ

it follows that x = μ + σ z, so a value x can be calculated from the value of a
standard normal variable z. Although z can be obtained from the value for a uni-
form variable u by numerically solving u = F (z), another approach called the
Box-Muller-Marsaglia method is almost universally preferred. It starts with a pair of
independent uniform variables (u1, u2) and produces two standard normal variables

z1 = √−2 ln ( u2) cos( 2 πu1)

z2 = √−2 ln ( u2) sin( 2 πu1)
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where the angle is expressed in radians. Then x1 = μ + σ z1 and x2 = μ +
σ z2 are treated as two independent observations of normal random variables (see
Exercise 5.106). Most statistical packages include a normal random number gener-
ator (see Exercise 5.108).

EXAMPLE 45 Simulating two values from a normal distribution
Simulate two observations of a random variable having the normal distribution with
μ = 50 and σ = 5.

Solution A computer generates the two values 0.253 and 0.531 from a uniform distribution.
(Alternatively, they could have been obtained by reading three digits at a time from
a random number table.) We first calculate the standard normal values

z1 =
√

−2 ln ( 0.531 ) cos(2 π · 0.253) = −0.021

z2 =
√

−2 ln ( 0.531 ) sin(2 π · 0.253) = 1.125

and then the normal values

x1 = 50 + 5z1 = 50 + 5 (−0.021) = 49.895

x2 = 50 + 5z2 = 50 + 5 (1.125) = 55.625 j

Exercises
5.104 Verify that

(a) the exponential density 0.3 e−0.3x, x > 0 cor-
responds to the distribution function F (x) =
1 − e−0.3x, x > 0;

(b) the solution of u = F (x) is given by x =
[− ln ( 1 − u ) ] / 0.3.

5.105 Verify that

(a) the Weibull density α β xβ−1 e−a xβ

, x > 0,
corresponds to the distribution function F (x) =
1 − e−a xβ

, x > 0;

(b) the solution of u = F (x) is given by x =[
− 1

α
ln ( 1 − u )

]1/β

.

5.106 Consider two independent standard normal variables
whose joint probability density is

1
2π

e−(z2
1 + z2

2)/2

Under a change to polar coordinates, z1 =
r cos( θ ), z2 = r sin( θ ), we have r2 = z2

1 + z2
2 and

dz1 dz2 = r dr dθ , so the joint density of r and θ is

r e−r2/2 1
2π

, 0 < θ < 2π, r > 0

Show that

(a) r and θ are independent and that θ has a uniform
distribution on the interval from 0 to 2π ;

(b) u1 = θ/2π and u2 = 1−e−r2/2 have independent
uniform distributions;

(c) the relations between (u1, u2) and (z1, z2) on
page 185 hold [note that 1 − u2 also has a uni-
form distribution, so ln ( u2 ) can be used in place
of ln ( 1 − u2 ) ].

5.107 The statistical package MINITAB has a random num-
ber generator. To simulate 5 values from an exponen-
tial distribution having mean β = 0.05, choose

Dialog Box:

Calc > Random Data > Exponential
Type 5 after Generate, C1 in Column and 0.05 in
Mean.
Then click OK.

Output:
One call produced the output

0.031949 0.004643 0.030029 0.112834 0.064642

Generate 8 values from the exponential distribution
with β = 0.2.

5.108 The statistical package MINITAB has a normal random
number generator. To simulate 5 values from a normal
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distribution having mean 7 and standard deviation 4,
and place them in C1, use the commands

Dialog Box:

Calc > Random Sample > Normal
Type 5 after Generate, C1 in Column, 7 in Mean
and 4 in standard deviation
Click OK.

Output:
One call produced the output

5.42137 6.98061 9.41352 7.05932 5.87297

Generate 8 values for a normal variable with μ = 123
and σ 2 = 23.5.

Do’s and Don’ts

Do’s
1. Describe the behavior of a continuous random variable X by specifying its

probability density function which satisfies

f (x) ≥ 0 for all x and
∫ ∞

−∞
f (x) dx = 1

2. Remember that it is only meaningful to talk about the probability that a
continuous random variable X lies in an interval. It is always the case that
P( X = x ) = 0 for every possible value x.

3. Obtain the probability that the value of X will lie in an interval by finding
the area under the curve f over the interval.

P( X ≤ b ) =
∫ b

−∞
f (x) dx

= area under the density function to the left of x = b

P( a < X ≤ b ) =
∫ b

a
f (x) dx

= area under the density function between

x = a and x = b

4. Summarize a probability density of the continuous random variable X by its

mean: μ =
∫ ∞

−∞
x f (x) dx variance: σ 2 =

∫ ∞

−∞
( x − μ )2 f (x) dx

standard deviation: σ =
√∫ ∞

−∞
(x − μ)2 f (x) dx

5. When X has a normal distribution with mean μ and variance σ 2, obtain
the probability of an interval P( X ≤ b ) by converting the limit b to the
standardized value ( b − μ )/σ = z and obtaining the probability

P
(

Z ≤ b − μ

σ

)
= P( X ≤ b )

from the standard normal table.
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6. Use the properties of expectation and variance

E( a X + b ) = aE(X ) + b and Var ( a X + b ) = a2 Var (X )

More generally,

E ( a1X1 + a2X2 + b ) = a1E(X1) + a2 E( X2 ) + b

and, if X1 and X2 are independent,

Var ( a1X1 + a2X2 + b ) = a2
1 Var ( X1 ) + a2

2 Var ( X2 )

Don’ts
1. Never apply the normal approximation to the binomial

Z = X − np√
np ( 1 − p )

when the expected number of successes (or failures) is too small. That is,
when either

np or n ( 1 − p ) is 15 or less

2. Don’t add variances according to

Var ( X1 + X2 ) = Var ( X1 ) + Var ( X2 )

unless the two random variables are independent or have zero covariance.

3. Don’t just assume that data come from a normal distribution. When there
are at least 20 to 25 observations, it is good practice to construct a normal
scores plot to check this assumption.

Review Exercises
5.109 If the probability density of a random variable is

given by

f (x) =
{

k ( 1 − x2 ) for 0 < x < 1

0 elsewhere

find the value of k and the probabilities that a random
variable having this probability density will take on a
value

(a) between 0.1 and 0.2;

(b) greater than 0.5.

(c) Find μ and σ 2.

5.110 With reference to the preceding exercise, find the cor-
responding distribution function and use it to deter-
mine the probabilities that a random variable having
this distribution function will take on a value

(a) less than 0.3;

(b) between 0.4 and 0.6.

5.111 In certain experiments, the error made in determining
the density of a silicon compound is a random variable
having the probability density

f (x) =
{

25 for − 0.02 < x < 0.02

0 elsewhere

Find the probabilities that such an error will be

(a) between −0.03 and 0.04;

(b) between −0.005 and 0.005.

5.112 A coil is rotated in a magnetic field to generate current.
The voltage generated can be modeled by a normal dis-
tribution having mean μ and standard deviation 0.5 V
where μ is the true voltage. Find the probability that
voltage generated will differ from the true voltage by

(a) less than 0.06 V;

(b) more than 0.085 V.
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5.113 Referring to Exercise 5.112, suppose the rotation
speed of the coil can be increased and standard devia-
tion decreased. Determine the new value for the stan-
dard deviation that would restrict the probability of an
error greater than 0.085 V to be less than 0.02.

5.114 The burning time of an experimental rocket is a
random variable having the normal distribution with
μ = 4.76 seconds and σ = 0.04 second. What is the
probability that this kind of rocket will burn

(a) less than 4.66 seconds;

(b) more than 4.80 seconds;

(c) anywhere from 4.70 to 4.82 seconds?

5.115 Verify that

(a) z0.10 = 1.28;

(b) z0.001 = 3.09.

5.116 Referring to Exercise 5.28, find the quartiles of the
normal distribution with μ = 102 and σ = 27.

5.117 The probability density shown in Figure 5.19 is the
log-normal distribution with α = 8.85 and β = 1.03.
Find the probability that

(a) the interrequest time is more than 200 micro-
seconds;

(b) the interrequest time is less than 300 micro-
seconds.

5.118 The probability density shown in Figure 5.21 is the ex-
ponential distribution

f (x) =
{

0.55 e−0.55x 0 < x

0 elsewhere

Find the probability that

(a) the time to observe a particle is more than
200 microseconds;

(b) the time to observe a particle is less than
10 microseconds.

5.119 Referring to the normal scores in Exercise 5.101, con-
struct a normal scores plot of the current flow data in
Exercise 2.68.

5.120 A change is made to one product page on the re-
tail companies’ web site. To determine if the change
does improve the efficiency of that product page, data
must be collected on the proportion of visitors to the
new page that ultimately purchase the product. It is
known that 3.2% of visitors, to the original page,
make purchases. Assume that this proportion holds for
the next 500 visitors to the new page. Use the nor-
mal distribution to approximate the probability that,
among these 500 visitors, the number who purchase
will be

(a) 11 or fewer.

(b) 21 or more.

5.121 If n salespeople are employed in a door-to-door selling
campaign, the gross sales volume in thousands of dol-
lars may be regarded as a random variable having the

gamma distribution with α = 100
√

n and β = 1
2

. If

the sales costs are $5,000 per salesperson, how many
salespeople should be employed to maximize the ex-
pected profit?

5.122 A software engineer models the crashes encountered
when executing a new software as a random variable
having the Weibull distribution with α = 0.06 and
β = 6.0. What is the probability that the software
crashes after 6 minutes?

5.123 Let the times to breakdown for the processors of a par-
allel processing machine have joint density

f (x, y) =
{

0.04 e−0.2x−0.2y for x > 0, y > 0

0 elsewhere

where x is the time for the first processor and y is the
time for the second. Find

(a) the marginal distributions and their means;

(b) the expected value of the random variable whose
values are given by g(x, y) = x + y.

(c) Verify in this example that the mean of a sum is
the sum of the means.

5.124 Two random variables are independent and each has a
binomial distribution with success probability 0.6 and
2 trials.

(a) Find the joint probability distribution.

(b) Find the probability that the second random vari-
able is greater than the first.

5.125 If X1 has mean −5 and variance 3 while X2 has mean
1 and variance 4, and the two are independent, find

(a) E ( 3X1 + 5X2 + 2 ) ;

(b) Var ( 3X1 + 5X2 + 2 ) .

5.126 Let X1, X2, . . . , X50 be independent and let each have
the same marginal distribution with mean −5 and vari-
ance 8. Find

(a) E ( X1 + X2 + · · · + X50 ) ;

(b) Var ( X1 + X2 + · · · + X50 ) .

5.127 Refer to Example 7 concerning scanners. The maxi-
mum attenuation has a normal distribution with mean
10.1 dB and standard deviation 2.7 dB.

(a) What proportion of the products has maximum
attenuation less than 6 dB?

(b) What proportion of the products has maximum
attenuation between 6 dB and 14 dB?

5.128 Refer to the heights of pillars in the example on
page 25. The variation in the population of heights of
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pillars can be modeled as a normal distribution with
mean 306.6 nm and standard deviation 37.0 nm.

(a) For a pillar selected at random, what is the proba-
bility that its height is greater than 350 nm?

(b) According to the normal model, what propor-
tion of all existing pillars has heights greater than
350 nm? Explain your answer.

(c) What proportion of the pillars has heights between
270 nm and 350 nm?

Summary of Distributions
The formulas for the discrete and continuous distributions, together with their means,
variances, and moment generating functions, are given in Table 5.2(a) and (b).

Key Terms
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Circular normal distribution 174
Conditional probability density 167
Conditional probability

distribution 163
Continuity correction 147
Covariance 169
Cumulative distribution function 137
Distribution function 137
Expectation 168
Exponential distribution 156
Gamma distribution 155
Gamma function 155
Independence 166

Joint cumulative distribution
function 164

Joint marginal density 165
Joint probability density 164
Joint probability distribution 162
kth moment about the mean 138
kth moment about the origin 138
Log-normal distribution 152
Marginal density 165
Marginal probability distribution 162
Mean 138
Moment generating function 174
Normal distribution 140
Normal probability density 140

Normal scores 180
Normal scores plot 180
Probability density 136
Probability density function 136
Simulation 184
Standard deviation 139
Standard normal distribution 141
Standardized random variable 143
Uniform distribution 151
Variance 139
Waiting time 157
Weibull distribution 158
z-score 143
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Table 5.2(a) Discrete distributions
Probability Distribution Moment Generating

Distribution f (x) Mean Variance Function

Binomial

b ( x; n, p )

(
n
x

)
px ( 1 − p ) n − x, x = 0, 1, . . . , n n p n p ( 1 − p ) ( pet + 1 − p ) n

Geometric

g ( x; p )
p ( 1 − p ) x − 1, x = 1, 2, . . .

1
p

1 − p

p2
p et

1 − ( 1 − p ) et

Hypergeometric

h ( x; n, a, N )

(
a
x

)(
N − a
n − x

) / (
N
n

)
n

a
N

n
a
N

(
1 − a

N

)
( N − n )
( N − 1 )

complicated

x = 0, 1, 2, . . . , min ( N − a, n ) p = a/N

Poisson

f ( x; λ )

λx e−λ

x!
, x = 0, 1, . . . λ λ eλ ( et − 1 )

Negative

binomial

(
x − 1
r − 1

)
pr q x − r, x = r, r + 1, . . . r/p r( 1 − p )/p2

(
p et

1 − ( 1 − p ) et

) r
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Table 5.2(b) Continuous distributions
Probability Density Moment Generating

Distribution Function f (x) Mean Variance Function

Uniform
1

β −α
, α < x <β

α + β

2
( β −α )2

12
eβ t − eα t

( β − α ) t

Normal
1√

2πσ
e
− 1

2σ2
( x −μ )2

, −∞< x <∞ μ σ2 e
μ t + 1

2
σ2 t2

Exponential
1
β

e−x /β, 0 ≤ x <∞ β β2 1
1 − β t

, t <
1
β

Lognormal
1√
2πβ

x−1 e− ( ln x − α ) 2 / 2β 2
, 0 < x <∞ eα + β 2/2 (

eβ 2 − 1
)

e 2 α + β2
complicated

Gamma
1

�( α ) βα xα − 1 e−x/β, 0 < x < ∞ α β α β2 1
( 1 − β t )α

, t <
1
β

Beta
1

B( α, β )
xα − 1( 1 − x )β − 1, 0 < x < 1

α

α + β

α β

( α + β )2 ( α + β + 1 )
complicated

Weibull α β xβ − 1 e−α xβ , 0 < x α−1/β�
(

1 + 1
β

)
α−2/β

{
�

(
1 + 2

β

) −
[
�

(
1 + 1

β

) ]2}
complicated
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I n most of the inference methods we shall study in this book, it will be assumed that
we are dealing with a particular kind of sample called a random sample. This attention
to random samples, which we discuss in Section 6.1, is due to their permitting valid, or

logical, generalizations from sample data. Then, in Sections 6.2 through 6.4, we see how
certain statistics (that is, certain quantities determined from samples) can be expected
to vary from sample to sample. Section 6.5 connects the sampling distributions arising
from normal distributions. Techniques for deriving sampling distributions are described
in Sections 6.6 and 6.7. The concept of a sampling distribution—the distribution of a
statistic calculated on the basis of a random sample—is basic to all of statistical inference.

6.1 Populations and Samples
Usage of the term population in statistics is a carryover from the days when statistics
was applied mainly to sociological and economic phenomena. Recall from Chapter 1
that today the term population of units applies to sets or collections of objects, actual
or conceptual. In contrast, statistical population, or just population, refers to sets of
numbers, measurements, or observations under investigation. For example, if we are
interested in determining the average number of television sets per household in the
United States, the totality of these numbers of sets, one for each household, consti-
tutes the population for this study. Similarly, the population from which inspectors
draw a sample to determine some quality characteristic of a manufactured product
may be the corresponding measurements for all units in a given lot; depending on the
objectives of the inspection, it may also consist of the corresponding measurements
for all units that may conceivably be manufactured.

In some cases, such as the one above concerning the number of television sets
per household, the population is finite. In other cases, such as the determination
of some characteristic of all units past, present, and future that might conceivably
be manufactured by a given process, it is convenient to think of the population as
infinite. Similarly, we look upon the results obtained in an unending series of flips
of a coin as a sample from the hypothetically infinite population consisting of all
conceivably possible flips of the coin.

Populations are often described by the distribution of their values. It is common
practice to refer to a population in terms of its corresponding probability distribution
or density function. For example, we may refer to a fixed number of flips of a coin
as a sample from a “binomial population” or to certain measurements as a sample
from a “normal population.” Hereafter, when referring to a “population f (x)” we
shall mean a population described by a probability distribution or a density f (x).

If a population is infinite, it is impossible to observe all its values, and even
if it is finite it may be impractical or uneconomical to observe it in its entirety.
Thus, it is usually necessary to use a sample, a part of a population, and infer
from it results pertaining to the entire population. Clearly, such results can be useful
only if the sample is in some way “representative” of the population. It would be
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unreasonable, for instance, to expect useful generalizations about the population of
family incomes in the United States in the year 2015 on the basis of data pertaining
to home owners only. Similarly, we can hardly expect reasonable generalizations
about the performance of a tire if it is tested only on smooth roads.

To assure that a sample is representative of the population from which it is
obtained, and to provide a framework for the application of probability theory to
problems of sampling, we shall limit our discussion to random samples. Before a
random sample of size n is selected, the observations are modeled as the random
variables X1, X2, . . . , Xn. For sampling from finite populations, random samples are
defined as follows:

A set of observations X1, X2, . . . , Xn constitutes a random sample of size n from
a finite population of size N, if its values are chosen so that each subset of n of
the N elements of the population has the same probability of being selected.

Random sample (finite
population)

Note that this definition of randomness pertains essentially to the manner in
which the sample values are selected. This holds also for the following definition of
a random sample from an infinite population:

A set of observations X1, X2, . . . , Xn constitutes a random sample of size n from
the infinite population f (x) if

1. Each Xi is a random variable whose distribution is given by f (x).

2. These n random variables are independent.

Random sample (infinite
population)

We also apply the term random sample to the set of observed values x1, x2, . . . , xn
of the random variables. The lower case distinguishes the realization of a random
sample from the upper case, which represents the random variables before they are
observed.

There are several ways of assuring the selection of a sample that is at least
approximately random. When dealing with a finite population, we can serially num-
ber the elements of the population and then select a sample with the aid of a random
number generator or a table of random digits (see discussion on page 18). For in-
stance, if a population has N = 500 elements and we wish to select a random sample
of size n = 10, we can use three arbitrarily selected columns of Table 7W to obtain
10 different three-digit numbers less than or equal to 500, which will then serve as
the serial numbers of the elements to be included in the sample.

When the population size is large, the use of random numbers can become very
laborious and at times practically impossible. For instance, if a sample of five cartons
of canned peaches is to be chosen for inspection from among the many thousands
stored in a warehouse, one can hardly expect to number all the cartons, make a selec-
tion with the use of random numbers, and then pull out the ones that were chosen.
In a situation like this, one really has very little choice but to make the selection
relatively haphazard, hoping that this will not seriously violate the assumption of
randomness which is basic to most statistical theory.

When dealing with infinite populations, the situation is somewhat different since
we cannot physically number the elements of the population; but efforts should be
made to approach conditions of randomness by the use of artificial devices. For
example, in selecting a sample from a production line we may be able to approximate
conditions of randomness by choosing one unit each half hour; when tossing a coin
we can try to flip it in such a way that neither side is intentionally favored; and
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so forth. The proper use of artificial or mechanical devices for selecting random
samples is always preferable to human judgment, as it is extremely difficult to avoid
unconscious biases when making almost any kind of selection.

Even with the careful choice of artificial devices, it is all too easy to commit
gross errors in the selection of a random sample. To illustrate some of these pitfalls,
suppose we have the task of selecting logs being fed into a sawmill by a constant-
speed conveyor belt, for the purpose of obtaining a random sample of their lengths.
One sampling device, which at first sight would seem to assure randomness, consists
of measuring the logs which pass a given point at the end of a certain number of
10-minute intervals. However, further thought reveals that this method of selection
favors the longer logs, since they require more time to pass the given point. Thus, the
sample is not random since the longer logs have a better chance of being included.

Another common mistake in selecting a sample is that of sampling from the
wrong population or from a poorly specified population. As we have pointed out
earlier, we would hardly get a sample from which we could generalize about family
incomes in the United States if we limited our sample to home owners. Similarly, if
we wanted to determine the effect of vibrations on a structural member, we should
be careful to delineate the frequency band of vibrations that is of relevance, and to
vibrate test specimens only at frequencies selected randomly from this band.

EXAMPLE 46 Selecting where to sample in an area that may be contaminated
In many environmental cleanup studies, engineers are faced with the problem of
evaluating the status of land areas or bodies of water. It is not always easy to collect
a representative sample where the observations can be treated as independent and
from the same distribution. To illustrate some of the key issues, consider sampling
from a contaminated area in City C that covers a city block. Locations must be se-
lected for taking the soil samples that will then be analyzed for the presence of heavy
metals.

Solution One recommended approach for homogeneous land areas is to sample according
to a rectangular grid as shown in Figure 6.1(a). This grid could even be randomly
placed over the area.

However, more was known about this area. At the time the pollution occurred, a
smelter was located in the position indicted by the shaded area in Figure 6.1(b). The
soil contamination by heavy metals is definitely not homogeneous! Materials from
the smelter flowed toward the north side of the smelter. This area is definitely a “hot
spot.” The average amount of heavy metals, obtained by averaging the measurements
from all locations, is not representative of the contamination problem. Using the
average from the whole area as a summary description downplays the seriousness
of the contamination around the smelter.

The smelter runoff area should be treated as a separate population. Soil should
be collected from at least two locations within the area of this suspected hot spot.

Figure 6.1
Choosing where to sample (a) (b)
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We suggest three sites indicated by solid circles. The corresponding measurements
of heavy metals should be used to describe only that area.

While sampling the “hot spot” separately might seem like the obvious approach,
the owners of the site in the situation on which the example is based wanted to col-
lect data from more locations throughout the whole block. This, they hoped, would
lower the average amount of heavy metals enough so that only simple cleanup tac-
tics would be required rather than resorting to the expensive solution of trucking
out the soil. j

EXAMPLE 47 Always replicate at least one key measurement
Refer to the environmental cleanup study in the previous example. Explain why soil
samples should be taken in at least two locations within the hot spot, rather than just
doing two chemical analyses on essentially a single soil sample.

Solution One major aspect of understanding the contamination problem is to evaluate the con-
dition of the known hot spot. Even within the hot spot, the amount of contamination
could vary considerably because of, for instance, any particular location’s position
relative to the old stream of runoff from the smelter. We strongly recommend that soil
be collected from at least two soil samples—not just that two chemical analyses be
performed on soil from a single location. This approach will provide measurements
that can also be used to estimate the total amount of variability in the measurements
from the “hot spot.”

By repeating the chemical analysis on soil from a single location, we could
estimate the variability in the chemical analysis and possibly identify an outlier that
might suggest a faulty chemical analysis. However, no matter how many times we
repeated the chemical analysis, we would not know how much variation to expect
if we sampled soil from the same hot spot but several feet from the first sample.
That is, nearby locations are likely to be very much alike but those farther apart are
less alike. We need to sample from at least two different locations to determine the
degree of homogeneity within the hot spot. j

The purpose of most statistical investigations is to generalize from information
contained in random samples about the population from which the samples were
obtained. In particular, we are usually concerned with the problem of making in-
ferences about the parameters of populations, such as the mean μ or the standard
deviation σ . In making such inferences, we use statistics such as x and s, namely
quantities calculated on the basis of sample observations. In practice, the term statis-
tic is also applied to the corresponding random variables.

EXAMPLE 48 Sample-to-sample variation must be understood to accurately
assess total water quality
The quality of water leaving a plant must be maintained. It is monitored by tak-
ing a tiny volume of water called a test specimen. If the quality of the water in the
specimen is bad, action may be taken. The action could range from taking more
specimens, making a phone call to alert the plant operators, preparing a written re-
port, changing how the plant is run, to shutting down the plant. If the water in the
specimen is of good quality, we often infer that the total volume of discharge is
satisfactory. Discuss sampling.

Solution Besides sound laboratory practice, judgments depend crucially on getting test spec-
imens which are representative of the total volume of effluent discharged. Because
the quality of water will vary over the total effluent at any one time, the actual test
specimens selected may or may not correctly convey the water quality.
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The key idea in this discussion is that of sampling variability. Not all choices of
actual test specimens will produce the same values for water quality or even a correct
appraisal of quality. This variability can be overcome, to a greater or lesser extent, by
taking a large enough number of test specimens. The results from examining enough
test specimens should then quite accurately reflect water quality most of the time. j

Since the selection of a random sample is controlled largely by chance, so are
the values we obtain for statistics. The remainder of this chapter will be devoted to
sampling distributions, namely, to distributions which describe the chance fluctua-
tions of statistics calculated on the basis of random samples.

6.2 The Sampling Distribution of the Mean
(σ known)

Suppose that a random sample of n observations, from some population, leads to
the observed value x as an estimate of the population mean. It should be clear that
if we took a second random sample of size n from the population, it would be quite
unreasonable to expect the identical value for x, and if we took several more sam-
ples, probably no two of the x ’s would be alike. The differences among such x ’s
are generally attributed to chance. This raises important questions concerning their
distribution, specifically concerning the extent of their chance fluctuations.

To approach this question experimentally, suppose that 50 random samples of
size n = 10 are to be taken from a population having the discrete uniform
distribution

f (x) =

⎧⎪⎨
⎪⎩

1
10

for x = 0, 1, 2, . . . , 9

0 elsewhere

Sampling is with replacement, so to speak, so that we are sampling from an infinite
population. A convenient way of obtaining these samples is to use a table of random
digits letting each sample consist of 10 consecutive digits in arbitrarily chosen rows
or columns. Actually proceeding in this way, we get 50 samples whose means are

4.4 3.2 5.0 3.5 4.1 4.4 3.6 6.5 5.3 4.4
3.1 5.3 3.8 4.3 3.3 5.0 4.9 4.8 3.1 5.3
3.0 3.0 4.6 5.8 4.6 4.0 3.7 5.2 3.7 3.8
5.3 5.5 4.8 6.4 4.9 6.5 3.5 4.5 4.9 5.3
3.6 2.7 4.0 5.0 2.6 4.2 4.4 5.6 4.7 4.3

Grouping these means into a distribution with the classes [2.0, 3.0), [3.0, 4.0),
[4.0, 5.0), [5.0, 6.0), and [6.0, 7.0), where the left endpoint is included, we get

x Frequency

[2.0, 3.0) 2
[3.0, 4.0) 14
[4.0, 5.0) 19
[5.0, 6.0) 12
[6.0, 7.0) 3

50



198 Chapter 6 Sampling Distributions

Figure 6.2
Experimental sampling
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and it is apparent from this distribution as well as its histogram shown in Figure 6.2
that the distribution of the means is fairly bell-shaped, even though the population
itself has a uniform distribution. This raises the question whether our result is typical
of what we might expect; that is, whether we would get similar distributions if we
repeated the experiment again and again.

To answer this kind of question, we shall have to investigate the theoretical
sampling distribution of the mean which, for the given example, provides us with
the probabilities of getting means in the interval [2.0, 3.0) or in [3.0, 4.0), . . . ,
[6.0, 7.0) and perhaps values less than 2.0 or greater than or equal to 7.0. Although
we could evaluate these probabilities for this particular example, it is usually prefer-
able to refer to some general theorems concerning sampling distributions. The first
of these gives expressions for the mean μx and the variance σ 2

x of sampling distri-
butions of the mean X .

Theorem 6.1 If a random sample of size n is taken from a population having
the mean μ and the variance σ 2, then X is a random variable whose distribution
has the mean μ.

For samples from infinite populations the variance of this distribution is
σ 2

n
.

For samples from a finite population of size N the variance is
σ 2

n
· N − n

N − 1
.

Formulas for μX and σ2
X

The result for infinite populations was established in Example 33 on page 172
using the properties of expectation. Alternatively, we now prove that μX = μ for
the continuous case directly starting from the definition on page 169.

μX =
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞

n∑
i=1

xi
n

f (x1, x2, . . . , xn) dx1 dx2 . . . dxn

= 1
n

n∑
i=1

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
xi f (x1, x2, . . . , xn) dx1 dx2 . . . dxn

where f (x1, x2, . . . , xn) is the joint density of the random variables which constitute
the random sample. Using the assumption of a random sample, we can write

f (x1, x2, . . . , xn) = f (x1) f (x2) . . . f (xn)
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and we now have

μX = 1
n

n∑
i=1

∫ ∞

−∞
f (x1) dx1 . . .

∫ ∞

−∞
xi f (xi) dxi . . .

∫ ∞

−∞
f (xn) dxn

Since each integral except the one with the integrand xi f (xi) equals 1, and the one
with the integrand xi f (xi) equals μ, we finally obtain

μX = 1
n

n∑
i=1

μ = μ

and this completes the proof. (For the discrete case the proof follows the same steps,
with integral signs replaced by

∑
’s.)

To prove that σ 2
X

= σ 2/n for the continuous case, we shall make the simpli-
fying assumption that μ = 0, which does not involve any loss of generality as the
reader will be asked to show in Exercise 6.18. Using the definition on page 169, we
thus have

σ 2
X

=
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
x2 f (x1, x2, . . . , xn) dx1 dx2 . . . dxn

and making use of the fact that

x2 = 1

n2

⎛
⎝ n∑

i=1

xi

⎞
⎠2

= 1

n2

⎛
⎝ n∑

i=1

x2
i +

∑ ∑
i �= j

xi x j

⎞
⎠

we obtain

σ 2
X

= 1

n2

n∑
i=1

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
x2

i f (x1, x2, . . . , xn) dx1 dx2 . . . dxn

+ 1

n2

∑∑
i �= j

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
xi x j f (x1, x2, . . . , xn) dx1 dx2 . . . dxn

where
∑∑

i �= j
extends over all i and j from 1 to n, not including the terms where

i = j. Again using the fact that

f (x1, x2, . . . , xn) = f (x1) f (x2) . . . f (xn)

we can write each of the preceding multiple integrals as a product of simple integrals,
where each integral with integrand f (x) equals 1. We thus obtain

σ 2
X

= 1

n2

n∑
i=1

∫ ∞

−∞
x2

i f (xi) dxi + 1

n2

∑ ∑
i �= j

∫ ∞

−∞
xi f (xi) dxi

×
∫ ∞

−∞
x j f (x j ) dx j

and since each integral in the first sum equals σ 2 while each integral in the second
sum equals 0, we finally have

σ 2
X

= 1

n2

n∑
i=1

σ 2 = σ 2

n

This completes the proof of the second part of the theorem. We shall not prove the
corresponding result for random samples from finite populations. But it should be
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noted that in the resulting formula for σ 2
X

the factor

N − n
N − 1

often called the finite population correction factor, is close to 1 (and can be omit-
ted for most practical purposes) unless the sample constitutes a substantial portion
of the population.

EXAMPLE 49 Calculating a finite population correction factor
Find the value of the finite population correction factor for n = 10 and N = 1,000.

Solution 1,000 − 10
1,000 − 1

= 0.991 j

Although it should not come as a surprise that μX = μ, the fact that σ 2
X

= σ 2/n
for random samples from infinite populations is interesting and important. To point
out its implications, let us apply Chebyshev’s theorem to the sampling distribution
of the mean, substituting X for X and σ/

√
n for σ in the formula for the alternate

form of the theorem (see page 114). We thus obtain

P
(

| X − μ | <
kσ√

n

)
≥ 1 − 1

k2

and, letting kσ/
√

n = ε, we get

P( | X − μ | < ε ) ≥ 1 − σ 2

n ε2

Thus, for any given ε > 0, the probability that X differs from μ by less than ε

can be made arbitrarily close to 1 by choosing n sufficiently large. In less rigorous
language, the larger the sample size, the closer we can expect X to be to the mean
of the population. In this sense we can say that the mean becomes more and more
reliable as an estimate of μ as the sample size is increased. This result—that X
becomes arbitrarily close to μ with arbitrarily high probability—is called the law of
large numbers.

Theorem 6.2 Let X1, X2, . . . , Xn be independent random variables each hav-
ing the same mean μ and variance σ 2. Then, for any positive ε,

P( | X − μ| > ε ) → 0 as n → ∞
As the sample size increases, unboundedly, the probability that the sample mean
differs from the population mean μ, by more than an arbitrary amount ε, con-
verges to zero.

Law of large numbers

EXAMPLE 50 Law of large numbers and long-run relative frequency
Consider an experiment where a specified event A has probability p of occurring.
Suppose that, when the experiment is repeated n times, outcomes from different
trials are independent. Show that

relative frequency of A = number of times A occurs in n trials
n

becomes arbitrarily close to p, with arbitrarily high probability, as the number of
times the experiment is repeated grows unboundedly.



Sec 6.2 The Sampling Distribution of the Mean (σ known) 201

Solution We can define n random variables X1, X2, . . . , Xn where Xi = 1 if A occurs on the ith
trial and Xi = 0 otherwise. The Xi are independent and identically distributed with
mean μ = p and variance σ 2 = p(1−p) since E ( X2

1 ) = 12·p + 02(1−p) = p. Then
X1 + · · · + Xn is the number of times that A occurs in n trials of the experiment and
X is the relative frequency of A.

We apply the law of large numbers and conclude that, for an arbitrary positive
amount ε,

P ( | relative frequency of A − p | > ε ) = P( | X − p | > ε ) → 0 as n → ∞
Beginning with the axioms of probability, we are led to a theorem that deter-

mines the long-run relative frequency of an event. j

The reliability of the mean as an estimate of μ is often measured by σX = σ/
√

n,
also called the standard error of the mean. Note that this measure of the reliability
of the mean decreases in proportion to the square root of n; for instance, it is nec-
essary to quadruple the size of the sample in order to halve the standard deviation
of the sampling distribution of the mean. This also indicates what might be called
a “law of diminishing returns” so far as increasing the sample size is concerned.
Usually it does not pay to take excessively large samples since the extra labor and
expense is not accompanied by a proportional gain in reliability. For instance, if we
increase the size of a sample from 25 to 2,500, the errors to which we are exposed
are reduced only by a factor of 10.

Let us now return to the experimental sampling distribution on page 197, and
let us check how closely its mean and variance correspond to the values we should
expect in accordance with Theorem 6.1. Since the population from which the 50
samples of size n = 10 were obtained has the mean

μ =
9∑

x=0

x · 1
10

= 4.5

and the variance

σ 2 =
9∑

x=0

(x − 4.5)2 1
10

= 8.25

Theorem 6.1 leads us to expect a mean of μX = 4.5 and a variance of σ 2
X

=
8.25/10 = 0.825. Calculating the mean and the variance from the 50 sample means
on page 197, we get xx = 4.43 and s2

x = 0.930, which are reasonably close to the
theoretical values.

Theorem 6.1 provides only partial information about the theoretical sampling
distribution of the mean. In general, it is impossible to determine such a distribution
exactly without knowledge of the actual form of the population. Even then, it can
be quite difficult. But it is possible to find the limiting distribution as n → ∞ of
a random variable whose values are closely related to X , assuming only that the
population has a finite variance σ 2. The random variable we are referring to here is
the standardized sample mean

Z = X − μ

σ/
√

n

whose values are given by the difference between x and μ divided by the standard
error of the mean. With reference to this random variable, we can now state the
following theorem, called the central limit theorem:
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Theorem 6.3 If X is the mean of a random sample of size n taken from a
population having the mean μ and the finite variance σ 2, then

Z = X − μ

σ/
√

n
is a random variable whose distribution function approaches that of the standard
normal distributions as n → ∞.

Central limit theorem

The central limit theorem provides a normal distribution that allows us to assign
probabilities to intervals of values for X . Regardless of the form of the population
distribution, the distribution of X is approximately normal with mean μ and variance
σ 2/n whenever n is large. This tendency toward normality is illustrated in Figure 6.3
for a uniform population distribution and an exponential population distribution.

Figure 6.3
An illustration of the approach
toward normality for the
sampling distribution of X as
sample size increases

Population distribution Population distribution
x x

n 5 2 n 5 2

n 5 6 n 5 6

n 5 25 n 5 25

Sampling distribution of  XSampling distribution of  X

x x

x x

x x
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Figure 6.4
Experimental verification of
the central limit theorem
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Although proving the central limit theorem is beyond the scope of this text,
we can obtain experimental verification by constructing a normal scores plot of the
50 sample means on page 197, which were obtained by sampling with replacement
from a discrete uniform population. In Figure 6.4, the points fall close to a straight
line. It seems that, even for n = 10, the sampling distribution of the mean for this
example exhibits a pattern that generally resembles that of a normal distribution.

In practice, the normal distribution provides an excellent approximation
to the sampling distribution of the mean X for n as small as 25 or 30, with
hardly any restrictions on the shape of the population. As we see in our example,
the sampling distribution of the mean has the general shape of a normal distribution
even for samples of size n = 10 from a discrete uniform distribution.

A stronger result holds for normal populations.

When the random samples come from a normal population, the sampling dis-
tribution of the mean is normal regardless of the size of the random sample.

EXAMPLE 51 A probability calculation based on the central limit theorem
concerns operator time
Car mufflers are constructed by nearly automatic machines. One manufacturer finds
that, for any type of car muffler, the time for a person to set up and complete a pro-
duction run has a normal distribution with mean 1.82 hours and standard deviation
1.20. What is the probability that the sample mean of the next 40 runs will be from
1.65 to 2.04 hours.

Solution Theorem 6.3, the central limit theorem, applies whatever the form of the population
distribution. We need only find the normal curve area between

z = 1.65 − 1.82

1.20/
√

40
= −0.896 and z = 2.04 − 1.82

1.20/
√

40
= 1.16

From Table 3, we obtain the probability 0.6917.
If it turns out that x is 2.33 hours, serious doubt will be cast on whether the

sample came from a population having μ = 1.82 and σ = 1.20. The probability of
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exceeding 2.33, with z-value 2.688, is only 0.0036. These large values would occur
less than 4 times in 1000. If one occurs, it is prudent to look for a cause. Maybe a
run of a rare and complicated speciality muffler was required. j

[ Using R: pnorm(2.04, 1.82, 1.2/sqrt(40)) - pnorm(1.65, 1.82, 1.2/sqrt(40)) ]

Exercises
6.1 An inspector examines every twentieth piece coming

off an assembly line. List some of the conditions un-
der which this method of sampling might not yield a
random sample.

6.2 Large maps are printed on a plotter and rolled up.
The supervisor randomly selects 12 printed maps
and unfolds a part of each map to verify the qual-
ity of the printing. List one condition under which
this method of sampling might not yield a random
sample.

6.3 Explain why the following will not lead to random
samples from the desired populations.

(a) To determine what the average person spends on
a vacation, a market researcher interviews passen-
gers on a luxury cruise.

(b) To determine the average income of its graduates
10 years after graduation, the alumni office of a
university sent questionnaires in 2016 to all the
members of the class of 2006 and based its esti-
mate on the questionnaires returned.

(c) To determine public sentiment about certain im-
port restrictions, an interviewer asks voters: “Do
you feel that this unfair practice should be
stopped?”

6.4 A market research organization wants to try a new
product in 8 of 50 states. Use Table 7W or software
to make this selection.

6.5 How many different samples of size n = 4 can be cho-
sen from a finite population of size

(a) N = 15?

(b) N = 35?

6.6 With reference to Exercise 6.5, what is the probability
of each sample in part (a) and the probability of each
sample in part (b) if the samples are to be random?

6.7 Take 30 slips of paper and label five each −4 and 4,
four each −3 and 3, three each −2 and 2, and two each
−1, 0 and 1.

(a) If each slip of paper has the same probability
of being drawn, find the probability of getting
−4,−3,−2,−1, 0, 1, 2, 3, 4 and find the mean
and the variance of this distribution.

(b) Draw 50 samples of size 10 from this population,
each sample being drawn without replacement,
and calculate their means.

(c) Calculate the mean and the variance of the
50 means obtained in part (b).

(d) Compare the results obtained in part (c) with
the corresponding values expected according to
Theorem 6.1. [Note that μ and σ 2 were obtained
in part (a).]

6.8 Repeat Exercise 6.7, but select each sample with re-
placement; that is, replace each slip of paper and
reshuffle before the next one is drawn.

6.9 Given an infinite population whose distribution is
given by

x f (x)

1 0.20
2 0.20
3 0.20
4 0.20
5 0.20

list the 25 possible samples of size 2 and use this list to
construct the distribution of X for random samples of
size 2 from the given population. Verify that the mean
and the variance of this sampling distribution are iden-
tical with the corresponding values expected according
to Theorem 6.1.

6.10 Suppose that we convert the 50 samples referred to on
page 197 into 25 samples of size n = 20 by combining
the first two, the next two, and so on. Find the means of
these samples and calculate their mean and their stan-
dard deviation. Compare this mean and this standard
deviation with the corresponding values expected in
accordance with Theorem 6.1.

6.11 When we sample from an infinite population, what
happens to the standard error of the mean if the sample
size is

(a) increased from 40 to 1,000?

(b) decreased from 256 to 65?

(c) increased from 225 to 1,225?

(d) decreased from 450 to 18?

6.12 What is the value of the finite population correction
factor in the formula for σ 2

X
when

(a) n = 8 and N = 640?

(b) n = 100 and N = 8,000?

(c) n = 250 and N = 20,000?
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6.13 For large sample size n, verify that there is a 50-50
chance that the mean of a random sample from an infi-
nite population with the standard deviation σ will dif-
fer from μ by less than 0.6745 · σ/

√
n. It has been the

custom to refer to this quantity as the probable error
of the mean.

6.14 The mean of a random sample of size n = 25 is used
to estimate the mean of an infinite population that has
standard deviation σ = 2.4. What can we assert about
the probability that the error will be less than 1.2, if
we use

(a) Chebyshev’s theorem;

(b) the central limit theorem?

6.15 Engine bearings depend on a film of oil to keep shaft
and bearing surfaces separated. Insufficient lubrication
causes bearings to be overloaded. The insufficient lu-
brication can be modeled as a random variable hav-
ing mean 0.6520 ml and standard deviation 0.0125 ml.

The sample mean of insufficient lubrication will be ob-
tained from a random sample of 60 bearings. What is
the probability that X will be between 0.600 ml and
0.640 ml?

6.16 A wire-bonding process is said to be in control if the
mean pull strength is 10 pounds. It is known that the
pull-strength measurements are normally distributed
with a standard deviation of 1.5 pounds. Periodic ran-
dom samples of size 4 are taken from this process and
the process is said to be “out of control” if a sample
mean is less than 7.75 pounds. Comment.

6.17 If the distribution of scores of all students in an
examination has a mean of 296 and a standard deviation of
14, what is the probability that the combined gross score
of 49 randomly selected students is less than 14,250?

6.18 If X is a continuous random variable and Y = X − μ,
show that σ 2

Y = σ 2
X .

6.19 Prove that μX = μ for random samples from discrete
(finite or countably infinite) populations.

6.3 The Sampling Distribution of the Mean
(σ unknown)

Application of the theory of the preceding section requires knowledge of the popu-
lation standard deviation σ . If n is large, this does not pose any problems even when
σ is unknown, as it is reasonable in that case to substitute for it the sample stan-
dard deviation s. However, when it comes to the random variable whose values are
given by

x − μ

s/
√

n

very little is known about its exact sampling distribution for small values of n unless
we make the assumption that the sample comes from a normal population. Under
this assumption, one can prove the following:

Theorem 6.4 If X is the mean of a random sample of size n taken from a nor-

mal population having the mean μ and the variance σ 2, and S2 =
n∑

i=1

(Xi − X )2

n − 1
,

then
t = X − μ

S/
√

n

is a random variable having the t distribution with the parameter ν = n − 1.

A random variable having
the t distribution

The lowercase t notation helps differentiate this important statistic from others. This
theorem is more general than Theorem 6.3 in the sense that it does not require knowl-
edge of σ ; on the other hand, it is less general than Theorem 6.3 in the sense that it
requires the assumption of a normal population.
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Figure 6.5
t distribution and standard
normal distribution

Normal

t(n 5 4)

0

As can be seen from Figure 6.5, the overall shape of a t distribution is similar
to that of a normal distribution—both are bell-shaped and symmetrical about the
mean. Like the standard normal distribution, the t distribution has the mean 0, but its
variance depends on the parameter ν (nu), called the number of degrees of freedom.
The variance of the t distribution exceeds 1, but it approaches 1 as n → ∞. In fact,
it can be shown that the t distribution with ν degrees of freedom approaches the
standard normal distribution as ν → ∞.

Table 4 in Appendix B contains selected values of tα for various values of ν,
where tα is such that the area under the t distribution to its right is equal to α. In
this table the left-hand column contains values of ν, the column headings are areas
α in the right-hand tail of the t distribution, and the entries are values of tα . (See also
Figure 6.6.) It is not necessary to tabulate values of tα for α > 0.50, as it follows
from the symmetry of the t distribution that t1−α = −tα . Thus, the value of t that
corresponds to a left-hand tail area of α is −tα .

Figure 6.6
Tabulated value of tα 0

a

t
ta

t distribution with n degrees of freedom

f(t)

Note that in the bottom row of Table 4 the entries correspond to the values of
z that cut off right-hand tails of area α under the standard normal curve. Using the
notation zα for such a value of z, it can be seen, for example, that z0.025 = 1.96 =
t0.025 for ν = ∞. In fact, observing that the values of tα for 29 or more degrees of
freedom are close to the corresponding values of zα , we conclude that the standard
normal distribution provides a good approximation to the t distribution for
samples of size 30 or more.

EXAMPLE 52 Using a probability calculation from the t distribution
to refute a claim
A treatment plant that sends effluent into the river claims the mean suspended solids
is never above 40 mg/l. Measurements of the suspended solids in river water on
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n = 14 Monday mornings yield x = 46 and s = 9.4 mg/l. Based on data col-
lected over a period of many years, it is reasonable to assume that the individual
measurements follow a normal distribution.

Do the data support or refute the treatment plant’s claim?

Solution We calculate

t = X − 40

S/
√

n
= 46 − 40

9.4/
√

20
= 2.855

which is a value of a random variable having a t distribution with ν = 20 − 1 = 19
degrees of freedom provided the mean is 40. Since the probability that t will exceed
2.531 = t0.01 is 0.01, the probability of observing a value as large or larger than
2.855 is even smaller. We conclude that the data strongly refute the treament plant’s
claim. In all likelihood the mean suspended solids is more than 40 mg/l. j

[ Using R: For the upper tail, use .99 in qt(.99,19) and 1 - pt(2.855,19) ]
The assumption that the sample must come from a normal population is not

so severe a restriction as it may seem. Studies have shown that the distribution of
random variable

X − μ

S/
√

n

is fairly close to a t distribution even for samples from certain nonnormal popu-
lations. In practice, it is necessary to make sure primarily that the population from
which we are sampling is approximately bell-shaped and not too skewed. A practical
way of checking this assumption is to construct a normal scores plot, as described
on page 180. (If such a plot shows a distinct curve rather than a straight line, it
may be possible to “straighten it out” by transforming the data—say, by taking their
logarithms or their square roots, as discussed in Chapter 5, Section 5.13.)

6.4 The Sampling Distribution of the Variance
So far we have discussed only the sampling distribution of the mean. If we take the
medians or the standard deviations of the 50 samples on page 197, we would sim-
ilarly obtain experimental sampling distributions of these statistics. In this section
we shall be concerned with the theoretical sampling distribution of the sample vari-
ance for random samples from normal populations. Since S2 cannot be negative, we
should suspect that this sampling distribution is not a normal curve; in fact, it is re-
lated to the gamma distribution (see page 165) with α = ν/2 and β = 2, called the
chi square distribution. Specifically, using the square of the Greek letter χ (chi),
we have the following theorem.

A random variable having
the chi square distribution

Theorem 6.5 If S2 is the variance of a random sample of size n taken from a
normal population having the variance σ 2, then

χ2 = (n − 1)S2

σ 2
=

n∑
i=1

(Xi − X )2

σ 2

is a random variable having the chi square distribution with the parameter
ν = n − 1.
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Figure 6.7
Tabulated values of chi square

a

x2
a

x2

0

x2 distribution with n degrees of freedom

f(x2)

Table 5W on the book website contains selected values of χ2
α for various values

of ν, again called the number of degrees of freedom, where χ2
α is such that the area

under the chi square distribution to its right is equal to α. In this table the left-hand
column contains values of ν, the column headings are areas α in the right-hand tail
of the chi square distribution, and the entries are values of χ2

α . (See also Figure 6.7.)
Unlike the t distribution, it is necessary to tabulate values of χ2

α for α > 0.50,
because the chi square distribution is not symmetrical.

EXAMPLE 53 A probability calculation based on the χ2 helps monitor variability
Plastic sheeting produced by a machine must be periodically monitored for possible
fluctuations in thickness. Uncontrollable variation in the viscosity of the liquid mold
produces some variation in thickness. Based on experience with a great many sam-
ples, when the machine is working well, an observation on thickness has a normal
distribution with standard deviation σ = 1.35 mm.

Samples of 20 thickness measurements are collected regularly. A value of the
sample standard deviation exceeding 1.4 mm signals concern about the product. Find
the probability that, when σ = 1.35, the next sample will signal concern about the
product.

Solution The chi square statistic

χ2 = (n − 1 ) s2

σ 2
= 19 · 1.42

1.22
= 30.6

From Table 5W, for 19 degrees of freedom, χ2
0.05 = 30.1. The probability of a false

signal of concern is less than 0.05. In the long run, a false signal will occur less than
5 times in 100 samples. j

[ Using R: For the upper tail, use 1 − .05 = .95 in qchisq(39.6,19) and 1 -
pchisq(30.6, 19) ]

A problem closely related to that of finding the distribution of the sample vari-
ance is that a finding the distribution of the ratio of the variances of two independent
random samples. This problem is important because it arises in tests in which we
want to determine whether two samples come from populations having equal vari-
ances. If they do, the two sample variances should be nearly the same; that is, their
ratio should be close to 1. To determine whether the ratio of two sample variances
is too small or too large, we use the F distribution.
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A random variable having
the F distribution

Theorem 6.6 If S2
1 and S2

2 are the variances of independent random samples
of size n1 and n2, respectively, taken from two normal populations having the
same variance, then

F = S2
1

S2
2

is a random variable having the F distribution with the parameters ν1 = n1 − 1
and ν2 = n2 − 1.

The F distribution is related to the beta distribution (page 167), and its two
parameters, ν1 and ν2, are called the numerator and denominator degrees of free-
dom. As it would require too large a table to give values of Fα corresponding to
many different right-hand tail probabilities α, and since α = 0.05 and α = 0.01 are
most commonly used in practice, Table 6W contains only values F0.05 and F0.01 for
various combinations of values of ν1 and ν2. (See also Figure 6.8.)

Figure 6.8
Tabulated values of F 0

F
F0.05 F0.01

0.01
0.05

F distribution with n1 and n2 degrees of freedom

f(F)

EXAMPLE 54 Using the F distribution, Table 6W, to evaluate a probability
If two independent random samples of size n1 = 7 and n2 = 13 are taken from a
normal population, what is the probability that the variance of the first sample will
be at least three times as large as that of the second sample?

Solution From Table 6W we find that F0.05 = 3.00 for ν1 = 7−1 = 6 and ν2 = 13−1 = 12;
thus, the desired probability is 0.05. j

[ Using R: For the upper tail, use 1 − .05 = .95 in qf(.95, 6, 12) ]
It is possible to use Table 6W also to find values of F corresponding to left-hand

tail probabilities of 0.05 or 0.01. Writing Fα (ν1, ν2) for Fα with ν1 and ν2 degrees
of freedom, we simply use the identity

F1−α (ν1, ν2) = 1
Fα (ν2, ν1)

EXAMPLE 55 Using the F distribution, Table 6W, to find a left-hand tail probability
Find the value of F0.95 (corresponding to a left-hand tail probability of 0.05 ) for
ν1 = 10 and ν2 = 20 degrees of freedom.

Solution Making use of the identity and Table 6W, we get

F0.95(10, 20) = 1
F0.05(20, 10)

= 1
2.77

= 0.36 j

[ Using R: For the lower tail, use 1 − .95 = .05 in qf(.05,10,20) ]
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Note that Theorems 6.4 and 6.5 require the assumption that we are sampling
from normal populations. Unlike the situation with the t distribution, deviations from
an underlying normal distribution, such as a long tail, may have a serious effect on
these sampling distributions. Consequently, it is best to transform to near normality
using the approach in Section 5.13 before invoking the sampling distributions in this
section.

Exercises
6.20 The tensile strength (1,000 psi) of a new composite can

be modeled as a normal distribution. A random sample
of size 25 specimens has mean x = 45.3 and standard
deviation s = 7.9. Does this information tend to sup-
port or refute the claim that the mean of the population
is 40.5?

6.21 The following is the time taken (in hours) for the
delivery of 8 parcels within a city: 28, 32, 20, 26,
42, 40, 28, and 30. Use these figures to judge the
reasonableness of delivery services when they say it
takes 30 hours on average to deliver a parcel within
the city.

6.22 The process of making concrete in a mixer is under
control if the rotations per minute of the mixer has a
mean of 22 rpm. What can we say about this process
if a sample of 20 of these mixers has a mean rpm of
22.75 rpm and a standard deviation of 3 rpm?

6.23 Engine bearings depend on a film of oil to keep shaft
and bearing surfaces separated. Samples are regularly
taken from production lines and each bearing in a sam-
ple is tested to measure the thickness of the oil film.
After many samples, it is concluded that the popula-
tion is normal. The variance is σ 2 = 0.012 when the
process is in control. A sample of size 25 is collected
each week. The process will be declared out of con-
trol if the sample variance exceeds 0.020. What is the
probability that it will be declared out of control even
though σ 2 = 0.012?

6.24 A random sample of 15 observations is taken from a
normal population having variance σ 2 = 90.25. Find
the approximate probability of obtaining a sample
standard deviation between 7.25 and 10.75.

6.25 If independent random samples of size n1 = n2 = 8
come from normal populations having the same vari-
ance, what is the probability that either sample vari-
ance will be at least 7 times as large as the other?

6.26 Find the values of

(a) F0.95 for 15 and 12 degrees of freedom;

(b) F0.99 for 5 and 20 degrees of freedom.

6.27 The chi square distribution with 4 degrees of freedom
is given by

f (x) =
⎧⎨
⎩

1
4

· x · e−x/2 x > 0

0 x ≤ 0

Find the probability that the variance of a random sam-
ple of size 5 from a normal population with σ = 15
will exceed 180.

6.28 The t distribution with 1 degree of freedom is given by

f (t ) = 1
π

(1 + t2)−1 − ∞ < t < ∞

Verify the value given for t0.05 for ν = 1 in Table 4.

6.29 The F distribution with 4 and 4 degrees of freedom is
given by

f (F ) =
{

6F (1 + F )−4 F > 0

0 F ≤ 0

If random samples of size 5 are taken from two normal
populations having the same variance, find the proba-
bility that the ratio of the larger to the smaller sample
variance will exceed 3.

6.5 Representations of the Normal Theory
Distributions

The basic distributions of normal theory can all be defined in terms of independent
standard normal random variables. The defining of a new random variable in terms
of others is called a representation.

Let Z, Z1, Z2, . . . , be independent standard normal random variables with mean
0 and variance 1. First, we define a chi square variable.



Sec 6.5 Representations of the Normal Theory Distributions 211

Representation of chi
square random variable

Let Z1, Z2, . . . , Zν be independent standard normal random variables.

χ2 = sum of squares of ν independent standard normal variables

=
∑ν

i=1
Z2

i has a chi square distribution with ν degrees of freedom.

Consider two chi square random variables which have the representations χ2
1 =∑ν1

i=1 Z2
i and χ2

2 = ∑ν1 + ν2
i= ν1 +1 Z2

i . Since they depend on different sets of Zi’s, they
are independent. Adding these two representations we conclude, as in Exercise 6.33,
that the sum of two independent chi square variables, χ2

1 + χ2
2, has a chi square

distribution with degrees of freedom ν1 + ν2.
Next, since χ2 = ∑ν

i=1 Z2
i depends only on Z1, Z2, . . . , Zν and they are inde-

pendent of Z this χ2 and Z are independent. We define a t random variable in terms
of two independent random variables Z and χ2.

Representation of t
random variable

Let the standard normal Z and chi square (χ2), having ν degrees of freedom, be
independent.

t = standard normal√
chi square

degrees of freedom

= Z√
χ2

ν

= Z√∑ν
i=1 Z2

i
ν

has a t distribution with ν degrees of freedom.

We define an F random variable in terms of two independent chi square variables
χ2

1 and χ2
2 with ν1 and ν2 degrees of freedom, respectively.

Let the chi square variables χ2
1 , with ν1 degrees of freedom, and χ2

2 , with ν2
degrees of freedom, be independent.

Fν1,ν2 =
chi square

degrees of freedom
chi square

degrees of freedom

=

χ2
1

ν1

χ2
2

ν2

=

∑ν1
i=1 Z2

i
ν1∑ν1 + ν2

i= ν1 +1 Z2
i

ν2

has an F distribution with (ν1, ν2) degrees of freedom.

Representation of F
random variable

The basic case arises starting with n independent normal random variables X1,
X2, . . . , Xn all having the same mean μ and standard deviation σ . Then

Zi = Xi − μ

σ

has a standard normal distribution for each i. It then holds that

√
n Z = √

n
1
n

n∑
i=1

Zi = √
n

(
X − μ

σ

)

has a standard normal distribution.
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Next,

n∑
i=1

Z2
i =

n∑
i=1

( Zi − Z + Z )2 =
n∑

i=1

( Zi − Z )2 + n Z2

The left-hand side has a chi square distribution with n degrees of freedom. The last
term on the right is the square of the standard normal variable

√
n Z and so has a chi

square distribution with 1 degree of freedom. It can be shown that the two terms on
the right-hand side of the equation are independent and that

n∑
i=1

( Zi − Z )2

has a chi square distribution with n − 1 degrees of freedom. Since

(n − 1)S2

σ 2
=

n∑
i=1

(Xi − X )2

σ 2
=

n∑
i=1

( Zi − Z )2

we conclude that (n − 1)S2/σ 2 has a chi square distribution with n − 1 degrees of
freedom.

EXAMPLE 56 t2 has an F distribution
Let t be distributed as a t distribution with ν degrees of freedom.

(a) Use the representation of t to show that t2 has an F distribution with (1, ν )
degrees of freedom.

(b) Use part (a) to show that tα / 2 = Fα ( 1, ν).

Solution (a) Using the representation of a t random variable,

t2 =

⎛
⎜⎜⎜⎜⎝

Z√
χ2

ν

⎞
⎟⎟⎟⎟⎠

2

= Z2

χ2

ν

Since, by the first representation above, Z2 has a chi square distribution with 1
degree of freedom and it is independent of the denominator, we confirm the
representation of the F distribution with (1, ν ) degrees of freedom.

(b) 1 − α = P ( − tα / 2 ≤ t ≤ tα / 2 ) = P
(

t2 ≤ t2
α / 2

)
By part (a), t2 = F so we have

1 − α = P
(
F ≤ t2

α / 2
)

Because t2
α / 2 satisfies the definition of Fα ( 1, ν), the two must be equal. j

Exercises
6.30 Let Z1, . . . , Z5 be independent and let each have a

standard normal distribution.

(a) Specify the distribution of Z2
2 + Z2

3 + Z2
4 + Z2

5 .

(b) Specify the distribution of
Z1√

Z2
2 + Z2

3 + Z2
4 + Z2

5

4



Sec 6.6 The Moment Generating Function Method to Obtain Distributions 213

6.31 Let Z1, . . . , Z6 be independent and let each have a
standard normal distribution. Specify the distribution
of

Z1 − Z2√
Z2

3 + Z2
4 + Z2

5 + Z2
6

8

6.32 Let Z1, . . . , Z7 be independent and let each have a
standard normal distribution.

(a) Specify the distribution of Z2
1 + Z2

2 + Z2
3 + Z2

4 .

(b) Specify the distribution of Z2
5 + Z2

6 + Z2
7 .

(c) Specify the distribution of the sum of variables in
part (a) and part (b).

6.33 Let the chi square variables χ2
1 , with ν1 degrees of free-

dom, and χ2
2 , with ν2 degrees of freedom, be indepen-

dent. Establish the result on page 211, that their sum is
a chi square variable with ν1 + ν2 degrees of freedom.

6.6 The Moment Generating Function Method
to Obtain Distributions*

The mgf method is a very convenient tool for obtaining the distribution function
of the sum of independent random variables. Let X1 have mgf M1(t ), X2 have mgf
M2(t ), X3 have mgf M3(t ), and so on. Then, by independence, the mgf of the sum
X1 + X2 + X3 is

MX1+X2+X3 (t ) = E( et(X1+X2+X3) ) = E( etX1etX2etX3 )

= E( etX1 ) · E( etX2 ) · E( etX3 )

or
MX1+X2+X3 (t ) = M1(t ) · M2(t ) · M3(t )

For any number of independent random variables, we have the following result.

Theorem 6.7 Let X1, . . . , Xn be independent random variables and let Xi have
moment generating function MXi (t ) for i = 1, . . . , n, where all moment gener-
ating functions exist for all | t | ≤ T some T > 0. Then the moment generating
function of the sum exists for all t ≤ T and

MX1+X2+ ··· + Xn (t ) = MX1 (t ) · MX2 (t ) · · · MXn (t )

Moment generating
function for sum of n
independent random

variables

The mgf of the sum of random variables is the product of the component mgf,
under independence. When the product can be identified, we know the distribution
of the sum. This argument is called the moment generating function method.

EXAMPLE 57 Sum of n independent normal random variables is normal

Let X1 be N(μ1, σ 2
1 ), X2 be N(μ2, σ 2

2 ), and X3 be N(μ3, σ 2
3 ), where the three ran-

dom variables are independent.

(a) Find the distribution of X1 + X2 + X3.

(b) Let Xi be N(μi, σ
2
i ), for i = 1, 2, . . . , n and let the Xi be independent. Show

that the distribution of their sum,
∑n

i=1 Xi, is normal with

mean =
n∑

i=1

μi

variance =
n∑

i=1

σ 2
i

∗This section may be skipped on first reading. Some key sampling distributions are verified.
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Solution (a) We know that X1 has mgf

M1(t ) = etμ1+ 1
2 t2σ 2

1

so

MX1+X2+X3 (t ) = etμ1+ 1
2 t2σ 2

1 · etμ2+ 1
2 t2σ 2

2 · etμ3+ 1
2 t2σ 2

3

= et
(
μ1+μ2+μ3

)
+ 1

2 t2
(
σ 2

1 +σ 2
2 +σ 2

3

)
This last form we identify as being an N(μ1 + μ2 + μ3, σ 2

1 + σ 2
2 + σ 2

3 ). That
is, the sum has a normal distribution where the mean is the sum of the
component means and the variance is the sum of the variances.

(b)
M∑n

i=1 Xi
(t ) =

n∏
i=1

etμi+ 1
2 t2σ 2

i = et
(∑n

i=1 μi
)
+ 1

2 t2
(∑n

i=1 σ 2
i

)

so the sum has a normal distribution with mean equal the sum of the
component means and variance equal to the sum of variances. j

EXAMPLE 58 Sum of independent Poisson random variables is Poisson
Let Xi have a Poisson distribution with parameter λi, for i = 1, 2, . . . , n and let the
Xi be independent. Show that the distribution of the their sum,

∑n
i=1 Xi, is Poisson

with parameter

λ =
n∑

i=1

λi

Solution We know that Xi has mgf

Mi(t ) = e−λi+λiet

Consequently,

M∑n
i=1 Xi

(t ) =
n∏

i=1

e−λi+λiet = e
(∑n

i=1 λi
)
+

(∑n
i=1 λi

)
et

This is the mgf of a Poisson distribution with parameter
∑n

i=1 λi. j

EXAMPLE 59 Sum of chi square random variables is chi square
Let Xi have a chi square distribution with νi degrees of freedom, for i = 1, 2, . . . , n
and let the Xi be independent. Use the moment generating function method to show
that the distribution of their sum,

∑n
i=1 Xi is chi square with degrees of freedom∑n

i=1 νi.

Solution (a) We know from Example 38, Chapter 5, that Xi has mgf (1 − 2t )− νi/2 so that∑n
i=1 Xi has mgf

M∑n
i=1 Xi

(t ) =
n∏

i=1

1

( 1 − 2 t ) νi/2
= 1

( 1 − 2 t )
∑n

i=1 νi/2

which we identify as the mgf of a chi square distribution with
∑n

i=1 νi degrees
of freedom. j
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Exercises
6.34 Let X1, X2, . . . , X8 be 8 independent random variables.

Find the moment generating function

M∑
Xi

(t ) = E( et(X1+X2+ ···+X8 ) )

of the sum when Xi has a Poisson distribution with
mean

(a) λi = 0.5

(b) λi = 0.04

6.35 Let X1, X2, . . . , X5 be 5 independent random variables.
Find the moment generating function

M∑
Xi

(t ) = E( et(X1+X2+ ···+X5 ) )

of the sum when Xi has a gamma distribution with
αi = 2 i and βi = 2.

6.36 Let X1, X2, and X3 be independent normal variables
with

E(X1) = 5 and σ 2
1 = 9

E(X2) = −2 and σ 2
2 = 2.25

E(X3) = 5 and σ 2
3 = 4

(a) Show that 2X1 + 2 X2 + 5X3 has a normal distri-
bution.

(b) Find the mean and the variance of the random vari-
able in part (a).

6.37 Refer to Exercise 6.36.

(a) Show that 2X1 − X2 − 4X3 − 12 has a normal
distribution.

(b) Find the mean and variance of the random variable
in part (a).

6.38 Let X1, X2, and X3 be independent normal variables
with

E(X1) = −4 and σ 2
1 = 1

E(X2) = 0 and σ 2
2 = 4

E(X3) = 3 and σ 2
3 = 1

(a) Show that 2 X1 − X2 + 5X3 has a normal
distribution.

(b) Find the mean and variance of the random variable
in part (a).

6.39 Refer to Exercise 6.38.

(a) Show that 7X1 + X2 − 2X3 + 7 has a normal dis-
tribution.

(b) Find the mean and variance of the random variable
in part (a).

6.40 Let X1, X2, . . . , Xr be r independent random variables
each having the same geometric distribution.

(a) Show that the moment generating function

M∑
Xi

(t ) = E( et(X1+X2+···+Xr ) ) of the sum is

[pet/(1 − (1 − p) et )]r

(b) Relate the sum to the total number of trials to ob-
tain r successes. This distribution, is given by(

x − 1
r − 1

)
prqx−r, x = r, r + 1, · · ·

(see page 135)

(c) Obtain the first two moments of this negative bi-
nomial by differentiating the mgf.

6.41 Refer to Exercise 6.40. Let X1, X2, . . . , Xn be n inde-
pendent random variables each having a negative bino-
mial distribution with success probability p but where
Xi has parameter ri.

(a) Show that the mgf M∑
Xi

(t ) = E( et(X1+X2+ ···+Xr ) )
of the sum

∑
Xi is

[pet/ (1 − (1 − p) et )]
∑n

i = 0 ri

(b) Identify the form of this mgf and specify the dis-
tribution of

∑
Xi.

6.7 Transformation Methods to Obtain
Distributions*

We briefly1 introduce two further techniques for obtaining the probability distribu-
tion, or density, of a random variable that is a function of a random variable whose
distribution is known. These are the distribution function method and the trans-
formation method.

∗This section may be skipped on first reading since the techniques are not used later in the book.
1An extended Section 6.7 is available at the book’s companion Web site.
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Distribution Function Method
The approach of the distribution function method is to first obtain the distribution
function G(y) of Y = h(X ), where X has known distribution function F (x). The
density, if needed, can be obtained by differentiation.

G( y ) = P( Y ≤ y) = P[ h(X ) ≤ y]

Two examples will illustrate this method.

EXAMPLE 60 The probability integral transformation
Let X have distribution function F (x) and density function f (x) which is positive
on an open interval and 0 elsewhere. Consider the probability integral transfor-
mation Y = F (X ) where the cumulative distribution distribution is evaluated at the
random variable X . Show that F (X ) has a uniform distribution on (0, 1).

Solution Choose any value y between 0 and 1. Since F (x) has a positive derivative, there is a
unique value x such that F (x) = y. This correspondence can be written as a function
x = w( y ) and F (w( y )) = y for all 0 < y < 1. Then,

G( y ) = P ( Y ≤ y ) = P ( F ( X ) ≤ y )

= P ( X ≤ w( y ) )

= F ( w( y )) = y

for any 0 < y < 1. The cumulative distribution function G( y ) = y is that of the
uniform distribution. j

EXAMPLE 61 Distribution function method applied to X 2

Let X have distribution function F (x) and density function f (x).

(a) Show that its square, Y = X2, has distribution function

G( y ) = P(Y ≤ y) = F (
√

y ) − F ( −√
y )

(b) If X has a standard normal distribution, show that its square has

g( y ) = 1√
2 π

y−1/2 e−y/2

which is a chi square distribution with 1 degree of freedom

Solution (a) We have

G( y ) = P ( Y ≤ y ) = P ( X2 ≤ y )

= P ( −√
y ≤ X ≤ √

y )

= F (
√

y ) − F ( −√
y )

(b) Upon differentiating,

g( y ) = f (
√

y )
d

√
y

dy
− f ( − √

y )
d − √

y

dy
= f (

√
y )

y−1/2

2
+ f ( − √

y )
y−1/2

2
The reader is asked, in Exercise 6.42, to verify the stated density. j

For any differentiable strictly increasing function h(x), with inverse function
w( y ), we have G( y ) = F (w( y )). By taking the derivative of both sides with respect
to y, we obtain the expression for the density function of h( X ) presented next when
discussing the transformation method.
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Transformation Method
The transformation method expresses the probability density for a function of a
random variable in terms of the density of the original variable. Consider Y = h(X )
where X has density f (x). Initially, we assume that h(x) is differentiable and either
strictly increasing or strictly decreasing. Then, y = h(x) can be solved for x. That
is, h(x) has an inverse w( y ) = x.

Density function of h(X )

Theorem 6.8 Let Y = h(X ) where X has density f (x), and let h(x) be differ-
entiable and either strictly increasing or strictly decreasing on the range where
f (x) �= 0. The inverse function w(y) exists and the density of Y is given by

g(y) =
⎧⎨
⎩

f ( w( y ) ) | w′( y ) | where w′( y ) �= 0

0 elsewhere

EXAMPLE 62 Transformation method: square root of chi square / degrees of
freedom
Let X have a chi square distribution with ν degrees of freedom. Apply the transfor-
mation to show that the density of Y = √

X/ν is

νν/2


( ν
2 ) 2(ν − 2)/2

yν − 1 e− ν y2/2, y > 0

Solution The density of the chi square distribution with ν degrees of freedom is given by

f (x) = 1


( ν
2 ) 2ν/2

x
ν
2 −1 e− x/2

and y = √
x/ν = h( x) has inverse x = ν y2 = w( y). Since w′( y) = 2 ν y is

continuous and greater than 0 for y > 0,

g( y ) = 1


( ν
2 ) 2ν/2

( ν y2)
ν
2 −1 e− ν y2/2 2ν y

= νν / 2


( ν
2 ) 2( ν − 2 )/2

yν − 1 e− ν y2/2
j

We state two important transformations to obtain the sum or the ratio of two
independent random variables.

Theorem 6.9 Let X and Y be independent and let X have density fX ( x ) and Y
have density fY ( y ). Then the density of Z = X + Y is given by the convolution
formula

fX+Y (z) =
∫ ∞

−∞
fX (x) fY (z − x) dx for all z

The ratio of random variables Z = Y/X has density

fY/X (z) =
∫ ∞

−∞
| x | fX (x) fY (x z ) dx for all z

Convolution formula
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EXAMPLE 63 Student’s t distribution
Let Y have a standard normal distribution and be independent of X which has a chi
square distribution with ν degrees of freedom. Apply the transformation technique
to show that the density of

standard normal√
chi square

degrees of freedom

= Y√
X
ν

is given by



(

ν + 1
2

)
√

π ν 

(
ν
2
)

(
1 + t2

ν

)− ν + 1
2

for − ∞ < t < ∞

This distribution is called the student’s t distribution, or the t distribution.

Solution Since Y has a standard normal distribution, using the conclusion from Example 17
but with Y replaced by X , the density of the ratio T = Y/X is∫ ∞

−∞
| x | fX (x) fY (x t ) dx

=
∫ ∞

0
| x | 1√

2 π
e−(t x)2/2 νν / 2


( ν
2 ) 2( ν − 2 ) / 2

xν − 1 e− ν x2/2 d x

=
∫ ∞

0

νν/2
√

π 
( ν
2 ) 2( ν − 1 )/2

xν e− 1
2 ( ν + t2 )x2

d x

Making the change of variable u = x2 ( ν + t2 )/2, we obtain

( ν + t2 )−
ν + 1

2
νν/2

√
π 
( ν

2 )

∫ ∞

0
u

ν − 1
2 e−u du

and the result follows from the definition of 
 ( ν + 1
2 ). j

Convolution Formula for Discrete Random Variables
There is also a convolution formula for the sum, Z = X + Y , of two independent
discrete random variables X and Y . Let fX (x) denote the probability distribution of
X and fY (y) denote the probability distribution of Y . We restrict attention to cases
where X and Y take on nonnegative integer values.

To find fZ (z) = P ( Z = z ), for each z, we recognize that the event [Z = z]
is the union of the disjoint events [X = x and Y = z − x] for x = 0, 1, . . . , z.
Consequently,

P( Z = z ) = fZ (z) =
z∑

x=0

P(X = x and Y = z − x)

=
z∑

x=0

fX (x) fY (z − x)

where the last step follows by independence. This last result is called the convolu-
tion formula for discrete random variables.
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Discrete convolution
formula

Theorem 6.10 Let X and Y be non-negative and integer valued. The random
variable Z = X + Y has probability distribution fZ (z) given by

fZ (z) = fX+Y (z) = P( Z = z ) =
z∑

x=0

fX (x) fY (z − x) for z = 0, 1, . . .

EXAMPLE 64 Sum of two independent Poisson random variables
Let X and Y be independent Poisson random variables where X has parameter λ1
and Y has parameter λ2. Show that the sum

X + Y has a Poisson distribution with parameter λ1 + λ2

Solution By the discrete convolution formula, Z = X + Y has probability distribution

fZ (z) =
z∑

x=0

fX (x) fY (z − x)

so

fZ (z) =
z∑

x=0

λx
1

x!
e−λ1

λz−x
2

(z − x)!
e−λ2

= e−(λ1+λ2)
z∑

x=0

λx
1

x!

λz−x
2

(z − x)!

Using the binomial formula

(a + b)m =
m∑

x=0

(
m
x

)
axbm−x

with m = z, a = λ1, and b = λ2, then multiplying and dividing by z!, we conclude
that

z∑
x=0

λx
1

x!

λz−x
2

(z − x)!
= ( λ1 + λ2 )z

z!

and the result is established.
Remark: Note that the rate parameters λi add. j

Exercises
6.42 Referring to Example 16, verify that

g( y ) = 1√
2 π

y−1/2 e−y/2

6.43 Use the distribution function method to obtain the den-
sity of Z3 when Z has a standard normal distribution.

6.44 Use the distribution function method to obtain the
density of 1 − e−X when X has the exponential dis-
tribution with β = 1.

6.45 Use the distribution function method to obtain the den-
sity of ln (X ) when X has the exponential distribution
with β = 1.

6.46 Use the transformation method to obtain the den-
sity of X3 when X has density f ( x ) = 1.5 X for
0 < x < 4.

6.47 Use the transformation method to obtain the distribu-
tion of − ln ( X ) when X has the uniform distribution
on (0, 1).
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6.48 Use the convolution formula, Theorem 6.9, to obtain
the density of X + Y when X and Y are indepen-
dent and each has the exponential distribution with
β = 1.

6.49 Use the transformation method, Theorem 6.9, to ob-
tain the distribution of the ratio Y/X when when X and

Y are independent and each has the same gamma dis-
tribution.

6.50 Use the discrete convolution formula, Theorem 6.10,
to obtain the probability distribution of X + Y when
X and Y are independent and each has the uniform dis-
tribution on {0, 1, 2}.

Do’s and Don’ts

Do’s
1. Understand the concept of a sampling distribution. Each observation is the

value of a random variable so a sample of n observations varies from one
possible sample to another. Consequently, a statistic such as a sample mean
varies from one possible sample to another. The probability distribution or
density function which describes the chance behavior of the sample mean
is called its sampling distribution.

2. When the underlying distribution has mean μ and variance σ 2, remember
that the sampling distribution of X has

mean of X = μ = population mean

variance of X = σ 2

n
= population variance

n
3. When the underlying distribution is normal with mean μ and variance σ 2,

calculate exact probabilities for X using the normal distribution with mean

μ and variance
σ 2

n

P( X ≤ b ) = P
(

Z ≤ b − μ

σ/
√

n

)
4. Apply the central limit theorem, when the sample size is large, to approxi-

mate the sampling distribution of X by a normal distribution with mean μ

and variance
σ 2

n
. The probability P( X ≤ b ) is approximately equal to the

standard normal probability P
(

Z ≤ b − μ

σ/
√

n

)
.

Don’ts
1. Don’t confuse the population distribution, which describes the variation for

a single random variable, with the sampling distribution of a statistic.

2. When sampling from a finite population of size N, don’t use σ/
√

n as
the standard deviation of X unless the finite population correction factor
is nearly 1.

3. When the population distribution is noticeably nonnormal, don’t try to con-
clude that the sampling distribution of X is normal unless the sample size
is at least moderately large, 30 or more.
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Review Exercises
6.51 The panel for a national science fair wishes to select

10 states from which a student representative will be
chosen at random from the students participating in the
state science fair.

(a) Use Table 7W or software to select the 10 states.

(b) Does the total selection process give each stu-
dent who participates in some state science fair an
equal chance of being selected to be a representa-
tive at the national science fair?

6.52 How many different samples of size n = 2 can be cho-
sen from a finite population of size

(a) N = 12;

(b) N = 20?

6.53 With reference to Exercise 6.52, what is the probability
of choosing each sample in part (a) and the probability
of choosing each sample in part (b), if the samples are
to be random?

6.54 Referring to Exercise 6.52, find the value of the finite
population correction factor in the formula for σ 2

X
for

part (a) and part (b).

6.55 The time to check out and process payment informa-
tion at an office supplies Web site can be modeled as a
random variable with mean μ = 63 seconds and vari-
ance σ 2 = 81. If the sample mean X will be based on
a random sample of n = 36 times, what can we assert
about the probability of getting a sample mean greater
than 66.75, if we use

(a) Chebyshev’s theorem;

(b) the central limit theorem?

6.56 The number of pieces of mail that a department re-
ceives each day can be modeled by a distribution hav-
ing mean 44 and standard deviation 8. For a random
sample of 35 days, what can be said about the prob-
ability that the sample mean will be less than 40 or
greater than 48 using

(a) Chebyshev’s theorem;

(b) the central limit theorem?

6.57 If measurements of the elasticity of a fabric yarn can
be looked upon as a sample from a normal population
having a standard deviation of 1.8, what is the proba-
bility that the mean of a random sample of size 26 will
be less elastic by 0.63?

6.58 Adding graphite to iron can improve its ductile qual-
ities. If measurements of the diameter of graphite
spheres within an iron matrix can be modeled as a nor-
mal distribution having standard deviation 0.16, what
is the probability that the mean of a sample of size
36 will differ from the population mean by more than
0.06?

6.59 If 2 independent random samples of size n1 = 31 and
n2 = 11 are taken from a normal population, what is
the probability that the variance of the first sample will
be at least 2.7 times as large as the variance of the sec-
ond sample?

6.60 If 2 independent samples of sizes n1 = 26 and n2 = 8
are taken from a normal population, what is the prob-
ability that the variance of the second sample will be
at least 2.4 times the variance of the first sample?

6.61 When we sample from an infinite population, what
happens to the standard error of the mean if the sample
size is

(a) increased from 100 to 200;

(b) increased from 200 to 300;

(c) decreased from 360 to 90?

6.62 A traffic engineer collects data on traffic flow at a
busy intersection during the rush hour by recording the
number of westbound cars that are waiting for a green
light. The observations are made for each light change.
Explain why this sampling technique will not lead to a
random sample.

6.63 Explain why the following may not lead to random
samples from the desired population:

(a) To determine the mix of animals in a forest, a for-
est officer records the animals observed after each
interval of 2 minutes.

(b) To determine the quality of print, an observer ob-
serves the quality of the first printout each day on
a scale of 0 to 5.

6.64 Several pickers are each asked to gather 30 ripe apples
and put them in a bag.

(a) Would you expect all of the bags to weigh the
same? For one bag, let X1 be the weight of the first
apple, X2 the weight of the second apple, and so
on. Relate the weight of this bag,

30∑
i=1

Xi

to the approximate sampling distribution of X .

(b) Explain how your answer to part (a) leads to
the sampling distribution for the variation in bag
weights.

(c) If the weight of an individual apple has mean
μ = 0.2 pound and standard deviation σ =
0.03 pound, find the probability that the total
weight of the bag will exceed 6.2 pounds.
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Recall from Chapter 6 that the purpose of most statistical investigations is to gen-
eralize from information contained in random samples about the populations from
which the samples were obtained. In the classical approach the methods of sta-

tistical inference are divided into two major areas—estimation and tests of hypotheses.
In Sections 7.2 and 7.3 we shall present some theory and some methods which pertain
to the estimation of means. A general estimation procedure is introduced in Section 7.4.
Sections 7.5, and 7.6 deal with the basic concepts of hypothesis testing, and Sections 7.7
and 7.8 deal with tests of hypotheses concerning a mean. Test performance, including
power, is the subject of Section 7.9.

7.1 Statistical Approaches to Making
Generalizations

To obtain new knowledge about a process or phenomena, relevant data must be col-
lected. Usually, it is not possible to obtain a complete set of data but only a sample.
Statistical inference arises whenever we need to make generalizations about a pop-
ulation on the basis of a sample. The main features of the sample can be described
by the methods presented in Chapter 2. However, the central issue is not just the
particular observed data but what can be said about the population that produced the
sample. We call any generalization a statistical inference or just an inference.

The first step in making a statistical inference is to model the population by a
probability distribution or density function that has a numerical feature of interest
called a parameter. Earlier, we encountered parameters including μ and σ for nor-
mal distributions and p for binomial distributions. Next, a statistic, whose value can
be calculated for every sample, serves as the source of information about a parame-
ter. Any statistic, such as X , S2, or the sample median, is just a function of the sample.

Three points must be kept in mind when making inferences.

1. Because a sample is only part of the population, the numerical value of the
statistic will not be the exact value of the parameter.

2. The observed value of the statistic depends on the particular sample selected.

3. Variability in the values of a statistic, over different samples, is unavoidable.

Statistical inferences are founded on an understanding of the manner is which vari-
ation in the population is transmitted, via sampling, to variation in a statistic.

How do we extract relevant information about the population by analyzing the
sample? The two main classes of statistical inference are estimation of parameters
and testing hypotheses. Estimation can be either a point estimator that gives a single
number estimate of the value of the parameter or an interval estimate that specifies
an interval of plausible values for the parameter. A test of hypotheses provides the
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answer to whether the data support or contradict an investigator’s claim about the
value of the parameter. Example 1 illustrates these three approaches to statistical
inference.

EXAMPLE 1 Types of Inference: point estimation, interval estimation, and testing
hypotheses
Refer to Example 14, Chapter 2, and the data on recycled concrete pavement. Green
engineering practices require that their strength be accessed before using them in
the base of roadways. Measurements of the resiliency modulus(MPa) on n = 18
specimens of recycled concrete aggregate produce the ordered values (Courtesy of
Tuncer Edil).

136 143 147 151 158 160
161 163 165 167 173 174
181 181 185 188 190 205

The descriptive summary for the sample is

sample mean x = 168.2 sample standard deviation s = 18.10
sample median 166 first quartile 158 third quartile 181

However, our goal here is not just the particular measurements recorded here but
rather, it concerns the vast population of values for all possible recycled concrete
pavements.

Discuss approaches for generalizing from this sample to the population.

Solution We model the collection of values of the modulus, from all possible specimens of re-
cycled concrete pavement, by a density function. The purpose of taking the sample is
to learn about a feature of this unknown density function. The feature, or parameter,
could be its mean μ or σ .

Concerning the parameter μ, we may wish to make one, two, or all three of
following types of inference.

1. Point estimation: Estimate, by a single value, the unknown μ.

2. Interval estimation: Determine an interval of plausible values for μ.

3. Testing hypotheses: Determine whether or not the mean μ is 170 MPa, which
is the mean value of an alternative material. j

Logical deductions from the general to specific case are always correct. In con-
trast, when making statistical inferences, variability is unavoidable even when obser-
vations are made under the same, or nearly the same, conditions. Necessarily then,
statistical inferences are based on a sample so they will sometimes be in error. An
interval may not contain the value of parameter or the test of hypotheses may reach
the wrong conclusion concerning the correctness of the hypothesis.

The realization that many highly variable observations can provide the basis for
strong scientific evidence must be considered one the great intellectual advances of
the twentieth century.

7.2 Point Estimation
Basically, point estimation concerns the choosing of a statistic, that is, a single num-
ber calculated from sample data. We should have some expectation, or assurance,
that it is reasonably close to the parameter it is supposed to estimate. To explain what
we mean here by reasonably close is not an easy task. First, the value of the parameter
is unknown, and second, the value of the statistic is unknown until after the sample
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has been obtained. Thus, we can only ask whether, upon repeated sampling, the
distribution of the statistic has certain desirable properties akin to closeness.

We know from Theorem 6.1 that the sampling distribution of the mean has the
same mean as the population. This property suggests considering the sample mean
X as a point estimator of the population mean μ. Closeness can then be expressed
in terms of its standard deviation σ/

√
n. In the context of point estimation, we call

this quantity the standard error and the value of its estimator S/
√

n the estimated
standard error.

Point estimation of a mean

Parameter: Population mean μ

Data: A random sample X1, . . . , Xn
Estimator: X

Estimate of standard error:
S√
n

EXAMPLE 2 Point Estimation of the Stiffness of Recycled Road Material
Refer to Example 1 and the data on recycled concrete pavement. Obtain a point
estimate of μ, the mean resiliency modulus for recycled concrete. Also give the
estimated standard error.

Solution Our point estimator is X and its value for this sample

x = 168.2 is the point estimate of μ.

The estimated standard error is

s√
n

= 18.10√
18

= 4.27

where s = 18.10 MPa is given in Example 1. j

Maximum Error of Estimate with High Probability
When we use a sample mean to estimate the mean of a population, we know that
although we are using a method of estimation which has certain desirable proper-
ties, the chances are slim, virtually nonexistent, that the estimate will actually equal
μ. Hence, it would seem desirable to accompany such a point estimate of μ with
some statement as to how close we might reasonably expect the estimate to be. The
error, X − μ, is the difference between the estimator and the quantity it is supposed
to estimate.

To examine this error, let us make use of the fact that for large n

X − μ

σ/
√

n

is a random variable having approximately the standard normal distribution.
As illustrated in Figure 7.1, for any specified value of α

P
(

−zα/2 ≤ X − μ

σ/
√

n
≤ zα/2

)
= 1 − α

or, equivalently,

P
( |X − μ|

σ/
√

n
≤ zα/2

)
= 1 − α
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Figure 7.1
The sampling distribution

of
X − μ

σ/
√

n

0 1212za/2 za/2

1 2 a

a/2a/2

where zα/2 is such that the normal curve area to its right equals α/2.
We now let E, called the maximum error of estimate stand for the maximum

of these values of |X − μ|. Then, the error |X − μ|, will be less than

Maximum error of
estimate

E = zα/2 · σ√
n

with probability 1 − α. In other words, if we intend to estimate μ with the mean of
a large (n ≥ 30) random sample, we can assert with probability 1 −α that the error,
|X−μ|, will be at most zα/2 · σ√

n
. The most widely used values for 1−α are 0.95 and

0.99, and the corresponding values of zα/2 are z0.025 = 1.96 and z0.005 = 2.575.
(See Exercise 5.23 on page 150.)

EXAMPLE 3 Specifying a high probability for the maximum error (σ known)
An industrial engineer intends to use the mean of a random sample of size n = 150 to
estimate the average mechanical aptitude (as measured by a certain test) of assembly
line workers in a large industry. If, on the basis of experience, the engineer can
assume that σ = 6.2 for such data, what can he assert with probability 0.99 about
the maximum size of his error?

Solution Substituting n = 150, σ = 6.2, and z0.005 = 2.575 into the preceding formula for
E, we get

E = 2.575 · 6.2√
150

= 1.30.

Thus, the engineer can assert with probability 0.99 that his error will be at
most 1.30. j

Suppose now that the engineer of this example collects his data and gets x =
69.5. Can he still assert with probability 0.99 that the error is at most 1.30? First of
all, x = 69.5 either differs from the true average by at most 1.30 or it does not, and he
does not know which. Consequently, it must be understood that the 0.99 probability
applies to the method he used to determine the maximum error (getting the sample
data and using the formula for E) and not directly to the parameter he is trying to
estimate. To make this distinction, it has become the custom to use the word con-
fidence here instead of probability. In general, we make probability statements
about future values of random variables (say, the potential error of an estimate)
and confidence statements once the data have been obtained. Accordingly, we
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would say in our example that the engineer can be 99% confident that the error of
his estimate, x = 69.5, is at most 1.30.

The methods discussed so far in this section require that σ be known or that
it can be approximated with the sample standard deviation s, thus requiring that n
be large. However, if it is reasonable to assume that we are sampling from a nor-
mal population, we can base our argument on Theorem 6.4 instead of Theorem 6.3,
namely on the fact that

t = X − μ

S/
√

n

is a random variable having the t distribution with n − 1 degrees of freedom. Dupli-
cating the steps on page 215, we thus arrive at the result that with probability 1 − α

the error we make in using X to estimate μ will be at most tα/2S/
√

n. Here tα/2 has
probability α/2 of being exceeded by a t random variable having n − 1 degrees of
freedom. (See page 206.)

When X and S become available, we assert with (1 − α)100% confidence that
the error made in using x to estimate μ is at most

Maximum error of
estimate, normal

population (σ unknown)

E = tα/2 · s√
n

EXAMPLE 4 A 98% confidence bound on the maximum error
In six determinations of the melting point of an aluminum alloy, a chemist obtained a
mean of 532.26 degrees Celsius with a standard deviation of 1.14 degree. If he uses
this mean to estimate the actual melting point of the alloy, what can the chemist
assert with 98% confidence about the maximum error?

Solution Substituting n = 6, s = 1.14, and t0.01 = 3.365 (for n − 1 = 5 degrees of freedom)
into the formula for E, we get

E = 3.365 · 1.14√
6

= 4.24

Thus the chemist can assert with 98% confidence that his figure for the melting point
of the aluminum alloy is off by at most 4.24 degrees. j

Determination of Sample Size
The formula for E on page 226 can also be used to determine the sample size that is
needed to attain a desired degree of precision. Suppose that we want to use the mean
of a large random sample to estimate the mean of a population, and we want to be
able to assert with probability 1 − α that the error will be at most some prescribed
quantity E [or assert later with (1 − α)100% confidence that the error is at most E].
As before, we write

E = zα/2 · σ√
n

and upon solving this equation for n we get

Sample size determination n =
[

zα/2 · σ

E

]2
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To be able to use this formula we must know 1 − α, E, and σ , and for the latter we
often substitute an estimate based on prior data of a similar kind (or, if necessary, a
good guess).

EXAMPLE 5 Selecting the sample size
A research worker wants to determine the average time it takes a mechanic to rotate
the tires of a car, and she wants to be able to assert with 95% confidence that the
mean of her sample is off by at most 0.50 minute. If she can presume from past
experience that σ = 1.6 minutes, how large a sample will she have to take?

Solution Substituting E = 0.50, σ = 1.6, and z0.025 = 1.96 into the formula for n, we get

n =
[

1.96 · 1.6
0.50

]2
= 39.3

or 40 rounded up to the nearest integer. Thus, the research worker will have to time
40 mechanics performing the task of rotating the tires of a car. j

We know from Theorem 6.1 that the sampling distribution of the mean has the
same mean as the population from which the sample is obtained. Hence, we can
expect that the means of repeated random samples from a given population will
center on the mean of this population and not about some other value.

To formulate this property more generally, let θ be the parameter of interest and
θ̂ be a statistic. The hat notation distinguishes the sample-based quantity from the
parameter. We now make the following definition:

Unbiased estimator
A statistic θ̂ is said to be an unbiased estimator, or its value an unbiased es-
timate, if and only if the mean of the sampling distribution of the estimator
E(θ̂ ) = θ , whatever the value of θ .

Thus, we call a statistic unbiased if “on the average” its values will equal the pa-
rameter it is supposed to estimate. Note that we have distinguished here between an
estimator, a random variable, and an estimate, which is one of its values. Also, it is
customary to apply the term statistic to both estimates and estimators.

It is a mathematical fact that X is an unbiased estimator of the population mean
μ provided the observations are a random sample.

Generally speaking, the property of unbiasedness is one of the more desirable
properties in point estimation, although it is by no means essential and it is some-
times out weighed by other factors. One shortcoming of the criterion of unbiasedness
is that it will generally not provide a unique statistic for a given problem of estima-
tion. For instance, it can be shown that for a random sample of size n = 2 the mean
X1 + X2

2
as well as the weighted mean

aX1 + bX2
a + b

, where a and b are positive con-

stants, are unbiased estimates of the mean of the population. If we further assume
that the population is symmetric, so are the median and the midrange (the mean of
the largest value and the smallest) for random samples of any size.

This suggests that we must seek a further criterion for deciding which of sev-
eral unbiased estimators is best for estimating a given parameter. Such a criterion
becomes evident when we compare the sampling distributions of the median and the
mean for random samples of size n from the same normal population. The sampling
distribution of the mean is normal and that of the median is nearly normal. Although
these two sampling distributions have the same mean, the population mean μ, and
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although they are both symmetrical and bell-shaped, their variances differ. From
Theorem 6.1, the variance of the sampling distribution of the mean for random sam-

ples from infinite populations is
σ 2

n
, and it can be shown that for random samples of

the same size from normal populations the variance of the sampling distribution of

the median is approximately 1.5708·σ
2

n
. Thus, it is more likely that the mean will

be closer to μ than the median is to μ. Despite this long-run average property, given
a particular sample we have no way of knowing which of the two is closest.

We formalize this important comparison of sampling distributions of statistics
on the basis of their variances.

More efficient unbiased
estimator

A statistic θ̂1 is said to be a more efficient unbiased estimator of the parameter θ

than the statistic θ̂2 if

1. θ̂1 and θ̂2 are both unbiased estimators of θ ;

2. the variance of the sampling distribution of the first estimator is no larger
than that of the second and is smaller for at least one value of θ .

We have thus seen that for random samples from normal populations the mean X
is more efficient than the median as an estimator of μ. In fact, it can be shown that
in most practical situations where we estimate a population mean μ, the variance
of the sampling distribution of no other unbiased statistic is less than that of the
sampling distribution of the mean. In other words, in most practical situations the
sample mean is an acceptable statistic for estimating a population mean μ. (There
exist several other criteria for assigning the goodness of methods of point estimation,
but we shall not discuss them in this book.)

7.3 Interval Estimation
Since point estimates cannot really be expected to coincide with the quantities they
are intended to estimate, it is sometimes preferable to replace them with interval
estimates. That is, with intervals for which we can assert with a reasonable degree
of certainty that they will contain the parameter under consideration. To illustrate
the construction of such an interval, suppose that we have a large (n ≥ 30) random
sample from a population with the unknown mean μ and the known variance σ 2.

Referring to the probability statement

P
(

−zα/2 ≤ X − μ

σ/
√

n
≤ zα/2

)
= 1 − α

shown on page 225, and rewriting the event as[
−zα/2

σ√
n

≤ X − μ ≤ zα/2
σ√

n

]
=

[
X − zα/2

σ√
n

≤ μ ≤ X + zα/2
σ√

n

]
we have

P
(

X − zα/2
σ√

n
≤ μ ≤ X + zα/2

σ√
n

)
= 1 − α

This last probability statement concerns a random interval covering the unknown
parameter μ with probability 1 − α.
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Before the data are obtained, we write the event as X − za/2 σ/
√

n < μ <

X + za/2 · σ/
√

n. When the observed value x becomes available, we obtain

x − zα/2 · σ√
n

< μ < x + zα/2 · σ√
n

Large sample confidence
interval for μ (σ known)

Thus, when a sample has been obtained and the value of x has been calculated, we
can claim with (1 − α)100% confidence that the interval from x − zα/2 · σ√

n
to

x + zα/2 · σ√
n

contains μ. It is customary to refer to an interval of this kind as a

confidence interval for μ having the degree of confidence 1 − α or (1 − α) 100%
and to its endpoints as the confidence limits.

EXAMPLE 6 Calculating and interpreting a large sample confidence interval
A random sample of size n = 100 is taken from a population with σ = 5.1. Given
that the sample mean is x = 21.6, construct a 95% confidence interval for the pop-
ulation mean μ.

Solution Substituting the given values of n, x, σ , and z0.025 = 1.96 into the confidence
interval formula, we get

21.6 − 1.96 · 5.1√
100

< μ < 21.6 + 1.96 · 5.1√
100

or 20.6 < μ < 22.6. Of course, either the interval from 20.6 to 22.6 contains
the population mean μ, or it does not, but we are 95% confident that it does. As
was explained on page 226, this means that the method by which the interval was
obtained “works” 95% of the time. In other words, in repeated applications of the
confidence interval formula, 95% of the intervals can be expected to contain the
means of the respective populations. j

The preceding confidence interval formula is exact only for random samples
from normal populations, but for large samples it will generally provide good
approximations. Since σ is unknown in most applications, we may have to make
the further approximation of substituting the sample standard deviation s for σ .

Large sample confidence
interval for μ

x − zα/2 · s√
n

< μ < x + zα/2 · s√
n

EXAMPLE 7 A 99% confidence interval for the mean nanopillar height
With reference to the nanopillar height data on page 25, for which we have n =
50, x = 305.58 nm, and s2 = 1,366.86 (hence, s = 36.97 nm), construct a 99%
confidence interval for the population mean of all nanopillars.

Solution Substituting into the confidence interval formula with x = 305.58, s = 36.97, and
z0.005 = 2.575, we get

305.58 − 2.575 · 36.97√
50

< μ < 305.58 + 2.575 · 36.97√
50

or 292.12 < μ < 319.04. We are 99% confident that the interval from 292.12 nm
to 319.04 nm contains the true mean nanopillar height. j
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For small samples (n < 30), we proceed as on page 225, provided it is rea-
sonable to assume that we are sampling from a normal population. Thus, with tα/2
defined as on page 227, we get the (1 − α)100% confidence interval formula

x − tα/2 · s√
n

< μ < x + tα/2 · s√
n

Small sample confidence
interval for μ of normal

population

This formula applies to samples from normal populations, but in accordance with
the discussion on page 207, it may be used as long as the sample does not exhibit
any pronounced departures from normality.

EXAMPLE 8 95% confidence interval for the mean of a normal population
We know that silk fibers are very tough but in short supply. Engineers are making
breakthroughs to create synthetic silk fibers that can improve everything from car
bumpers to bullet-proof vests or to make artificial blood vessels . One research group
reports the summary statistics1

n = 18 x = 22.6 s = 15.7

for the toughness (MJ/m3) of processed fibers.
Construct a 95% confidence interval for the mean toughness of these fibers.

Assume that the population is normal.

Solution The sample size is n = 18 and t0.025 = 2.110 for n − 1 = 17 degrees of freedom.
The 95% confidence formula for μ becomes

22.6 − 2.110 · 15.7√
18

< μ < 22.6 + 2.110 · 15.7√
18

or 14.79 < μ < 30.41 MJ/m3

We are 95 % confident that the interval from 14.79 to 36.41 MJ/m3 contains the
mean toughness of all possible artificial fibers created by the current process.

The article does not give the original data but, since n = 18 is moderately large,
the normal assumption is not critical unless an outlier exists. j

Because confidence intervals are an important way of making inferences, we
review their interpretation in the context of 95% confidence intervals for μ.

Before the observations are made, X and S are random variables, so

1. The interval from X − t0.025
S√
n

to X + t0.025
S√
n

is a random interval. It is

centered at X and its length is proportional to S.

2. The interval from X − t0.025
S√
n

to X + t0.025
S√
n

will cover the true (fixed)

μ with probability 0.95.

Once the observations are made and we have the numerical values x and s.

1F. Teulé, et. al. (2012) Combining flagelliform and dragline spider silk motifs to produce tunable synthetic
biopolymer fibers. Biopolymers, 97(6), 418–431.
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3. The calculated interval from x − t0.025
s√
n

to x + t0.025
s√
n

is fixed. It is no

longer possible to talk about the probability of covering μ. The interval either
covers μ or it does not. Further, in any particular application, we have no way
of knowing if μ is covered or not.
However, because 0.95 is the probability that we cover μ in each application,
the long-run relative frequency interpretation of probability (or law of large
numbers) promises that

number of intervals that cover the true mean
number of intervals calculated

→ 0.95

when the intervals are calculated for a large number of different problems. This
is what gives us 95% confidence! Over many different applications of the
method, the proportion of intervals that cover μ should be nearly 0.95.

To emphasize these points, we simulated a sample of size n = 10 from a normal
distribution with μ = 20 and σ = 5. The 95% confidence interval was then calcu-
lated and graphed in Figure 7.2. This procedure was repeated 20 times. The different
samples produce different values for x and, consequently, the intervals are centered
at different points. The different values of the standard deviation s gave rise to inter-
vals of different lengths. Unlike a real application, here we know that the true fixed
mean is μ = 20. The proportion of intervals that cover the true value of μ = 20
should be near 0.95 and, in this instance, we happen to have exactly that proportion
19/20 = 0.95.

Figure 7.2
Interpretation of the confidence
interval for population mean,
true mean μ = 20
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Exercises
7.1 A construction engineer collected data from some con-

struction sites on the quantity of gravel (in metric tons)
used in mixing concrete. The quantity of gravel for
n = 24 sites

4861 5158 8642 2896 7654 9891 8381 6215 1116 7918 2313 8114
3517 8852 5712 4312 8023 1215 3598 2429 8211 4613 9168 6819

has x = 5818 tons and s2 = 2697 tons. What can one
assert with 90% confidence about the maximum error
if x = 5818 tons is used as a point estimate of the
true population mean amount of gravel used in con-
crete mixes?

7.2 With reference to the previous exercise, construct a
90% confidence interval for the true population mean
quantity of gravel in concrete mixes.

7.3 An industrial engineer collected data on the labor time
required to produce an order of automobile mufflers
using a heavy stamping machine. The data on times
(hours) for n = 52 orders of different parts

2.15 2.27 0.99 0.63 2.45 1.30 2.63 2.20 0.99 1.00 1.05
3.44 0.49 0.93 2.52 1.05 1.39 1.22 3.17 0.85 1.18 2.27
1.52 0.48 1.33 4.20 1.37 2.70 0.63 1.13 3.81 0.20 1.08
2.92 2.87 2.62 1.03 2.76 0.97 0.78 4.68 5.20 1.90 0.55
1.00 2.95 0.45 0.70 2.43 3.65 4.55 0.33

has x = 1.865 hours and s2 = 1.5623 so s = 1.250
hours. What can one assert with 95% confidence about
the maximum error if x = 1.865 hours is used as a
point estimate of the true population mean labor time
required to run the heavy stamping machine?

7.4 With reference to the previous exercise, construct a
95% confidence interval for the true population mean
labor time.

7.5 The manufacture of large liquid crystal displays
(LCD’s) is difficult. Some defects are minor and can
be removed; others are unremovable. The number of
unremovable defects, for each of n = 45 displays
(Courtesy of Shiyu Zhou)

1 0 5 3 0 7 6 0 0 4 6 8
5 0 9 1 0 8 6 0 3 2 0 0
0 6 0 10 0 6 0 0 1 0 0 0
0 1 5 1 0 5 0 0 2

has x = 2.467 and s = 3.057 unremovable defects.
What can one assert with 98% confidence about the
maximum error if x = 2.467 is used as a point esti-
mate of the true population mean number of unremov-
able defects?

7.6 With reference to the previous exercise, construct a
98% confidence interval for the true population mean
number of unremovable defects per display.

7.7 With reference to the n = 50 interrequest time ob-
servations in Example 6, Chapter 2, which have mean
11,795 and standard deviation 14,056, what can one
assert with 95% confidence about the maximum error
if x = 11,795 is used as a point estimate of the true
population mean interrequest time?

7.8 With reference to the previous exercise, construct a
95% confidence interval for the true mean interre-
quest time.

7.9 In a study of automobile collision insurance costs, a
random sample of 80 body repair costs for a particular
kind of damage had a mean of $472.36 and a standard
deviation of $62.35. If x = $472.36 is used as a point
estimate of the true average repair cost of this kind of
damage, with what confidence can one assert that the
error does not exceed $10?

7.10 Refer to Example 8. How large a sample will we need
in order to assert with probability 0.95 that the sample
mean will not differ from the true mean by more than
1.5. (replacing σ by s is reasonable here because the
estimate is based on a sample of size eighteen.)

7.11 The dean of a college wants to use the mean of a ran-
dom sample to estimate the average amount of time
students take to get from one class to the next, and she
wants to be able to assert with 99% confidence that the
error is at most 0.25 minute. If it can be presumed from
experience that σ = 1.40 minutes, how large a sample
will she have to take?

7.12 An effective way to tap rubber is to cut a panel in the
rubber tree’s bark in vertical spirals. In a pilot process,
an engineer measures the output of latex from such
cuts. Eight cuts on different trees produced latex (in
liters) in a week

26.8 32.5 29.7 24.6 31.5 39.8 26.5 19.9

What can the engineer assert with 99% confidence
about the maximum error if she uses the sample mean
to estimate true mean yield?

7.13 With reference to the previous exercise, assume that
production has a normal distribution and obtain a 99%
confidence interval for the true mean production of the
pilot process.

7.14 To monitor complex chemical processes, chemical
engineers will consider key process indicators, which
may be just yield but most often depend on several
quantities. Before trying to improve a process, n = 9
measurements were made on a key performance
indicator.

123 106 114 128 113 109 120 102 111
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What can the engineer assert with 95% confidence
about the maximum error if he uses the sample mean
to estimate true mean value of the performance indi-
cator?

7.15 With reference to the previous exercise, assume that
the key performance indicator has a normal distribu-
tion and obtain a 95% confidence interval for the true
value of the indicator.

7.16 Refer to Exercise 2.34, page 46, concerning the num-
ber for board failures for n = 32 integrated cir-
cuits (IC). A computer calculates x = 7.6563 and
s = 5.2216. Obtain a 95% confidence interval for the
mean IC board failures.

7.17 Refer to the 2×4 lumber strength data in Exercise 2.58,
page 48. According to the computer output, a sam-
ple of n = 30 specimens had x = 1908.8 and s =
327.1. Find a 95% confidence interval for the popula-
tion mean strength.

7.18 Refer to the data on page 50, on the number of de-
fects per board for Product B. Obtain a 95% confi-
dence interval for the population mean number of de-
fects per board.

7.19 With reference to the thickness measurements in Ex-
ercise 2.41, page 47, obtain a 95% confidence interval
for the mean thickness.

7.20 Ten bearings made by a certain process have a mean
diameter of 0.5060 cm and a standard deviation of
0.0040 cm. Assuming that the data may be looked
upon as a random sample from a normal population,
construct a 95% confidence interval for the actual av-
erage diameter of bearings made by this process.

7.21 The freshness of produce at a mega-store is rated a
scale of 1 to 5, with 5 being very fresh. From a ran-
dom sample of 36 customers, the average score was
3.5 with a standard deviation of 0.8.

(a) Obtain a 90% confidence interval for the popula-
tion mean, μ, or the mean score for all customers.

(b) Does μ lie in your interval obtained in part (a)?
Explain.

(c) In long series of repeated experiments, with new
random samples collected for each experiment,
what proportion of the resulting confidence inter-
vals will contain the true population mean? Ex-
plain your reasoning.

7.22 A café records that in n = 81 cases, the coffee beans
for the coffee machine lasted an average of 225 cups
with a standard deviation of 22 cups.

(a) Obtain a 90% confidence interval for μ, the pop-
ulation mean number of cups before the coffee
machine needs to be refilled with beans.

(b) Does μ lie in your interval obtained in part (a)?
Explain.

(c) In a long series of repeated experiments, what
proportions of the respective confidence intervals
contain the true mean? Explain your reasoning.

7.23 Refer to Example 1 and the data on the resiliency mod-
ulus of recycled concrete.

(a) Obtain a 95% confidence interval for the popula-
tion mean resiliency modulus μ.

(b) Is the population mean contained in your interval
in part (a)? Explain.

(c) What did you assume about the population in your
answer to part (a)?

(d) Why are you 95% confident about the interval in
part (a)?

7.24 In an air-pollution study performed at an experiment
station, the following amount of suspended benzene-
soluble organic matter (in micrograms per cubic me-
ter) was obtained for eight different samples of air:

2.2 1.8 3.1 2.0 2.4 2.0 2.1 1.2

Assuming that the population sampled is normal, con-
struct a 95% confidence interval for the corresponding
true mean.

7.25 Modify the formula for E on page 216 so that it applies
to large samples which constitute substantial portions
of finite populations, and use the resulting formula for
the following problems:

(a) A sample of 50 scores on the admission test for
a school of engineering is drawn at random from
the scores of the 420 persons who applied to the
school in 2015. If the sample mean and the stan-
dard deviation are x = 546 and s = 85, what can
we assert with 95% confidence about the maxi-
mum error if x = 546 is used as an estimate of the
mean score of all the applicants?

(b) A random sample of 40 drums of a chemi-
cal, drawn from among 200 such drums whose
weights can be expected to have the standard de-
viation σ = 12.2 pounds, has a mean weight of
240.8 pounds. If we estimate the mean weight of
all 200 drums as 240.8 pounds, what can we assert
with 99% confidence about the maximum error?

7.26 Instead of the large sample confidence interval formula
for μ on page 230, we could have given the alternative
formula

x − zα/3 · σ√
n

< μ < x + z2α/3 · σ√
n

Explain why the one on page 230 is narrower, and
hence preferable, to the one given here.

7.27 Suppose that we observe a random variable having the
binomial distribution. Let X be the number of suc-
cesses in n trials.
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(a) Show that
X
n

is an unbiased estimate of the bino-

mial parameter p.

(b) Show that
X + 1
n + 2

is not an unbiased estimate of

the binomial parameter p.

7.28 The statistical program MINITAB will calculate the small sample confidence
interval for μ. With the nanopillar height data in C1,

Dialog box:
Stat > Basic Statistics > 1-Sample t. Click on box and type C1. Choose Options.
Type 0.95 in Confidence level and choose not equal. Click OK. Click OK

produces the output

N Mean StDev SE Mean 95% CI

C1 50 305.580 36.971 5.229 (295.073, 316.087)

The R command t.test(x,conf.level=.95) produces similar results when the
data are in x.

(a) Obtain a 90% confidence interval for μ.

(b) Obtain a 95% confidence interval for μ with the aluminum alloy data on
page 29.

Alternatively, you can use the MINITAB commands
Stat > Basic statistics > Graphical summary
to produce the more complete output

Summary for height (nm)

Anderson-Darling Normality Test

A-Squared

P-Value

Mean

StDev

Variance

Skewness

Kurtosis

N

0.38

0.398

305.58

36.97

1366.86

0.260823

0.202664

50

Minimum

1st Quartile

Median

3rd Quartile

Maximum

95% Confidence Interval for Mean

95% Confidence Interval for Median

295.07

292.00

30.88

316.09

311.33

46.07

95% Confidence Interval for StDev

221.00

277.50

304.50

330.75

391.00

240 280 320 360 400

290

Median

Mean

95% Confidence Intervals

295 300 305 310 315

7.29 You can simulate the coverage of the small sample confidence intervals for μ by
generating 20 samples of size 10 from a normal distribution with μ = 20 and σ = 5
and computing the 95% confidence intervals according to the formula on page 231.
Using MINITAB:
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Calc > Random Data > Normal
Type 10 in Generate, C1 − C20 in Store, 20 in Mean, and
5 in standard deviation. Click OK.

Stat > Basic Statistics > 1-sample t, Click on box and
Type C1 − C20. Click OK.

(a) From your output, determine the proportion of the 20 intervals that cover the
true mean μ = 20.

(b) Repeat with 20 samples of size 5.

7.4 Maximum Likelihood Estimation
Sometimes it is necessary to estimate parameters other than a mean or variance. A
very general approach to estimation, proposed by R. A. Fisher, is called the method
of maximum likelihood. To set the ideas, we begin with a special case. Suppose that
one of just two distributions must prevail. For example, let X take the possible values
0, 1, 2, 3, or 4 with probabilities specified by distribution 1 or with probabilities
specified by distribution 2 (see Table 7.1 and Figure 7.3).

The first is the binomial distribution with p = 0.5 and the second the binomial
with p = 0.3, but this fact is not important to the argument.

Table 7.1 Two Possible Distributions for X
Distribution 1

x 0 1 2 3 4

f (x) 0.0625 0.2500 0.3750 0.2500 0.0625

Distribution 2

x 0 1 2 3 4

f (x) 0.2401 0.4116 0.2646 0.0756 0.0081

Figure 7.3
The two possible distributions
for X
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If we observe X = 3, should our estimate of the underlying distribution be
distribution 1 or distribution 2? Suppose we take the attitude that we will select
the distribution for which the observed value x = 3 has the highest probability of
occurring. Because this calculation is done after the data are obtained, we use the
terminology of maximizing likelihood rather than probability. For the first distribu-
tion, P[X = 3] = 0.2500 and for the second distribution P[X = 3] = 0.0756, so
we estimate that the first distribution is the distribution that actually produced the
observation 3.

If, instead, we observed X = 1, the estimate would be distribution 2 since
0.4116 is larger than 0.2500.

Let us take this example a step further and assume that X follows a binomial
distribution with n = 4 but that 0 ≤ p ≤ 1 is unknown. The count X then has the
distribution (

4
x

)
px(1 − p)4−x for x = 0, 1, 2, 3, 4

If we again observe X = 3, we evaluate the binomial distribution at x = 3 and
obtain

4p3(1 − p)4−3 for 0 ≤ p ≤ 1

which is a function of p. We now vary p to best explain the observed result. This
curve, L(p), is shown in Figure 7.4.

Figure 7.4
The likelihood curve
L(p) = 4p3(1 − p)

0.4

0.2

L
(p

)

p

0.0
0.4 0.8

To obtain the best explanation for what we did observe, we choose a value for
the unknown p at which the maximum occurs. Using calculus, the maximum occurs
at the value of p for which the derivative is zero.

d
d p

4p3(1 − p) = 4(3p2 − 4p3) = 0

Since the solution p = 0 yields a minimum, our estimate is p̂ = 0.75. Note that
this derivative is positive for p < 3/4 and negative for p > 3/4, confirming that
p̂ = 0.75 gives the global maximum. To review, this value maximizes the after-the-
fact probability, or likelihood, of observing the value 3.

More generally, a random sample of size n is taken from a probability distribu-
tion, or density, f (x; θ ) that depends on a parameter θ . The random sample produces
n values x1, x2, . . . , xn, which we substitute into the joint probability distribution,
or probability density function, and then study the resulting function of θ .

The function of θ that is obtained by substituting the observed values of the
random sample X1 = x1, . . . , Xn = xn into the joint probability distribution or the
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density function for X1, X2, . . . , Xn

L(θ |x1, . . . , xn) =
n∏

i=1

f (xi; θ )

is called the likelihood function for θ .
We often simplify the notation and write L(θ ) with the understanding that the

likelihood function does depend on the values x1, x2, . . . , xn from the random
sample.

Given the values x1, x2, . . . , xn from a random sample, one distinctive feature
of the likelihood function is the value or values of θ at which it attains its maximum.

A statistic θ̂ (X1, . . . , Xn) is a maximum likelihood estimator of θ

if, for each sample x1, . . . , xn, θ̂ (x1, . . . , xn) is a value for the parameter
that maximizes the likelihood function L(θ |x1, . . . , xn).

EXAMPLE 9 The maximum likelihood estimator with Bernoulli trials
Consider a characteristic that occurs in proportion p of a population. Let X1, . . . , Xn
be a random sample of size n so

P[Xi = 0] = 1 − p and P[Xi = 1] = p for i = 1, . . . , n

where 0 ≤ p ≤ 1. Obtain the maximum likelihood estimator of p.

Solution The likelihood function is

L(p|x1, x2, . . . , xn) =
n∏

i=1

pxi (1 − p)1−xi = p
∑n

i=1 xi (1 − p)n−∑n
i=1 xi

We first check two special cases. If
∑n

i=1 xi = 0, then L(p) = (1 − p)n has the
maximum value 1 at p = 0. The derivative does not vanish here. If

∑n
i=1 xi = n,

then L(p) = pn has the maximum value 1 at p = 1. Otherwise, L(p) goes to 0 as
p goes to 0 or 1 and the maximum must occur at a value of p where the derivative
L(p) is zero. Equivalently, we maximize the log-likelihood function ln L(p) over
0 < p < 1. Setting the derivative equal to zero,

d
d p

ln L(p) = d
d p

⎛
⎝ n∑

i=1

xi ln(p) +
(

n −
n∑

i=1

xi

)
ln(1 − p)

⎞
⎠

=
∑n

i=1 xi

p
− n − ∑n

i=1 xi

1 − p
= 0

we obtain the maximum likelihood estimator p̂ = ∑n
i=1 xi/n. That is, p̂ is the frac-

tion of persons in the sample that have the characteristic. Note that this definition of
the estimator also includes the two special cases

∑n
i=1 xi = 0 or = n even though

the derivative does not vanish is these cases. j

EXAMPLE 10 Maximum likelihood estimator: Poisson distribution
Let X1, . . . , Xn be a random sample of size n from the Poisson distribution

f (x|λ) = λxe−λ

x!
,

where 0 ≤ λ < ∞. Obtain the maximum likelihood estimator of λ.
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Solution The likelihood function is

L(λ|x1, . . . , xn) =
n∏

i=1

λxie−λ

xi!
= λ

∑n
i=1 xie−nλ × 1∏n

i=1 xi!

If
∑n

i=1 xi = 0, then L(λ) = e−nλ has its maximum at λ̂ = 0. Otherwise, we can
maximize ln L(λ) by setting its derivative equal to zero.

∂

∂λ
ln L(λ) =

∑n
i=1 xi

λ
− n = 0

so the maximum likelihood estimator is λ̂ = ∑n
i=1 xi/n = x. This same formula

works for the special case
∑n

i=1 xi = 0. j

The method of maximum likelihood also applies to continuous distributions.

EXAMPLE 11 Maximum likelihood estimator: normal distribution mean
Let X1, . . . , Xn be a random sample of size n from a normal distribution with known
variance. Obtain the maximum likelihood estimator of μ.

Solution Writing (xi − μ)2 = (xi − x + x − μ)2, the likelihood function is

L(μ|x1, . . . , xn) =
n∏

i=1

1√
2πσ 2

e−(xi−μ)2/2σ 2

= e−n(x−μ)2/2σ 2 × 1

(2πσ 2)n/2
e−∑n

i=1(xi−x)2/2σ 2

This likelihood is maximized over all values of μ when the exponent n(x−μ)2/2σ 2

is minimized. Therefore, the maximum likelihood estimator μ̂ = x. j

EXAMPLE 12 Maximum likelihood estimator: normal distribution variance
Let X1, . . . , Xn be a random sample of size n from a normal distribution with known
mean. Obtain the maximum likelihood estimator of σ 2.

Solution The likelihood function is

L(σ 2|x1, . . . , xn) =
n∏

i=1

1√
2πσ 2

e−(xi−μ)2/2σ 2 = 1

(2πσ 2)n/2
e− ∑n

i=1(xi−μ)2/2σ 2

The function zbe−cz has a maximum at z = b/c for z ≥ 0 when b and c are positive.
Taking z = 1/σ 2, b = n/2, and c = ∑n

i=1(xi − μ)2/2, we obtain the maximum

likelihood estimator σ̂ 2 = ∑n
i=1(xi − μ)2/n, when μ is known. j

Suppose that, in the example above, we were interested in estimating σ rather
than σ 2. The likelihood is still

1

(2πσ 2)n/2
e− ∑n

i=1(xi−μ)2/2σ 2

but is now considered to be a function of σ . Taking logarithms and differentiating,
you may verify that, for d, c > 0, zde−cz2

has a maximum at z =
√

d/2c when
z > 0. Consequently, taking z = 1/σ , d = n, and c = ∑n

i=1(xi − μ)2/2, we obtain
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the maximum likelihood estimator

σ̂ =
√

σ̂ 2 =
√∑n

i=1(xi − μ)2

n

This same argument can be extended to a more general invariance property for
maximum likelihood estimators, which we state but do not prove. Specifically, if g(θ )
is a continuous one-to-one function of θ and θ̂ is the maximum likelihood estimator
of θ , the maximum likelihood estimator of g(θ ) is obtained by simple substitution.

ĝ(θ ) = maximum likelihood estimator of g(θ ) = g(θ̂ )

EXAMPLE 13 Maximum likelihood estimator of function of λ

The number of defective hard drives produced daily by a production line can be
modeled as a Poisson distribution. The counts for ten days are

7 3 1 2 4 1 2 3 1 2

Obtain the maximum likelihood estimate of the probability of 0 or 1 defectives
on one day.

Solution From Example 10, the maximum likelihood estimate of λ is λ̂ = x = 26/10 = 2.6.
Consequently, by the invariance property, the maximum likelihood estimate of

P(X = 0 or 1) = e−λ + λe−λ

1!
is

e−̂λ + λ̂e−̂λ

1!
= e−2.6 + 2.6 · e−2.6

1!
= 0.267

There will 1 or fewer defectives on just over one-quarter of the days. j

The method of maximum likelihood applies to more than one parameter.

EXAMPLE 14 Maximum likelihood estimator: normal distributions
Let X1, . . . , Xn be a random sample of size n from a normal distribution. Obtain the
maximum likelihood estimators of μ and σ 2. Also obtain the maximum likelihood
estimator σ .

Solution Using the expression in Example 11 for the joint probability density function, the
likelihood function is

L(μ, σ 2|x1, . . . , xn) =
n∏

i=1

1√
2πσ 2

e−(xi−μ)2/2σ 2

= e−n(x−μ)2/2σ 2 × 1

(2πσ 2)n/2
e−∑n

i=1(xi−x)2/2σ 2

Only the first term contains μ, and it is maximized at μ̂ = x whatever the value of
σ 2. The maximum of this first term is 1. Then, as in Example 12, the function zbe−cz

has a maximum at z = b/c. Taking z = 1/σ 2, b = n/2, and c = ∑n
i=1(xi − x)2/2,

we obtain the maximum likelihood estimator σ̂ 2 = ∑n
i=1(xi − x)2/n. In summary

μ̂ = x and σ̂ 2 = ∑n
i=1(xi − x)2/n are the maximum likelihood estimators of μ and

σ 2.
Here σ̂ 2 contains the divisor n, not n − 1, so it is a biased estimate of σ 2.
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Because the sample standard deviation σ is the square root of σ 2, the maximum
likelihood estimator of σ is

σ̂ =
√

σ̂ 2 =
√√√√ n∑

i=1

(xi − x)2/n

Consequently, we commonly write σ̂ 2 for the maximum likelihood estimator
of σ 2. j

EXAMPLE 15 Estimation of yield for a green gas process
One process of making green gasoline takes biomass in the form of sucrose and con-
verts it into gasoline using catalytic reactions. At one step in a pilot plant process, the
output includes carbon chains of length 3. Fifteen runs with same catalyst produced
the yields (gal)

5.57 5.76 4.18 4.64 7.02 6.62 6.33 7.24
5.57 7.89 4.67 7.24 6.43 5.59 5.39

Treating the yields as a random sample from a normal population,

(a) Obtain the maximum likelihood estimates of the mean yield and the variance.

(b) Obtain the maximum likelihood estimate of the coefficient of variation σ/μ.

Solution (a) We calculate

μ̂ = x = 5.57 + 5.76 + · · · + 5.39
15

= 90.14
15

= 6.009 gal

Recall that the maximum likelihood estimate of variance uses divisor n, not
n − 1.

σ̂ 2 = 1
n

15∑
i=1

(xi − x)2 = 1
15

(16.2631) = 1.084

(b) The coefficient of variation is a function of μ and σ 2, so its maximum
likelihood estimate is that same function of μ̂ and σ̂ 2.(̂

σ

μ

)
= σ̂

μ̂
=

√
1.084

6.009
= 0.173 j

Exercises
7.30 Refer to Example 13, Chapter 3, where 294 out of

300 ceramic insulators were able to survive a thermal
shock.

(a) Obtain the maximum likelihood estimate of the
probability that a ceramic insulator will survive a
thermal shock.

(b) Suppose a device contains 3 ceramic insulators
and all must survive the shock in order for the de-
vice to work. Find the maximum likelihood esti-
mate of the probability that all three will survive a
thermal shock.

7.31 Refer to Example 7, Chapter 10, where 48 of 60
transceivers passed inspection.

(a) Obtain the maximum likelihood estimate of the
probability that a transceiver will pass inspection.

(b) Obtain the maximum likelihood estimate that the
next two transceivers tested will pass inspection.

7.32 The daily number of accidental disconnects with a
server follows a Poisson distribution. On five days

2 5 3 3 7

accidental disconnects are observed.

(a) Obtain the maximum likelihood estimate of λ.

(b) Find the maximum likelihood estimate of the
probability that 3 or more accidental disconnects
will occur.
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7.33 In one area along the interstate, the number of dropped
wireless phone connections per call follows a Poisson
distribution. From four calls, the number of dropped
connections is

2 0 3 1

(a) Find the maximum likelihood estimate of λ.

(b) Obtain the maximum likelihood estimate that the
next two calls will be completed without any ac-
cidental drops.

7.34 Refer to Exercise 7.12.

(a) Obtain the maximum likelihood estimates of μ

and σ .

(b) Find the maximum likelihood of the probability
that the next run will have a production greater
than 38 liters.

7.35 Refer to Exercise 7.14.

(a) Obtain the maximum likelihood estimates of μ

and σ .

(b) Find the maximum likelihood of the coefficient of
variation σ/μ.

7.36 Find the maximum likelihood estimator of p when

f (x; p) = px(1 − p)1−x for x = 0, 1

7.37 Let x1, . . . , xn be the observed values of a random
sample of size n from the exponential distribution
f (x;β ) = β−1e−x/β for x > 0.

(a) Find the maximum likelihood estimator of β.

(b) Obtain the maximum likelihood estimator of the
probability that the next observation is greater
than 1.

7.38 Let X have the negative binomial distribution

f (x) =
(

x − 1
r − 1

)
pr(1 − p)x−r for x = r, r + 1, . . .

(a) Obtain the maximum likelihood estimator of p.

(b) For one engineering application, it is best to use
components with a superior finish. Suppose X =
27 identical components are inspected, one at a
time, before the r = 3rd component with superior
finish is found. Find the maximum likelihood esti-
mate of the probability that a component will have
a superior finish.

7.5 Tests of Hypotheses
There are many problems in which, rather than estimate the value of a parameter, we
must decide whether a statement concerning a parameter is true or false. Statistically
speaking we test a hypothesis about a parameter. For example, in quality control
work a random sample may serve to determine whether the “process mean” (for
a given kind of measurement) has remained unchanged or whether it has changed
to such an extent that the process has gone out of control and adjustments have to
be made.

EXAMPLE 16 Not all samples will lead to a correct assessment of water quality
Refer to Example 1 of monitoring the quality of water leaving a plant. Why does
evaluating a sample of specimens not always lead to correct conclusions regarding
water quality?

Solution The observed values of water quality will depend on the particular specimens in
the sample. Because these values can vary from sample to sample, particular sam-
ples can produce misleading values and hence incorrect decisions. The possibility
of making a mistake about water quality, on the basis of test specimens, cannot
be completely eliminated unless the entire discharge could be accurately measured
for the entire reporting period. This is, of course, technologically and economically
infeasible. j

We consider the problem of improving lithium car batteries. A research group
is making great advances using a new type anode and they claim that the mean life is
greater than 1600 recharge cycles. To support this claim, they create 36 new batteries
and subject them to recharge cycles until they fail. The claim will be established if
the sample mean lifetime is greater than 1660 cycles. Otherwise, the claim will not
be established and further improvements are needed.
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Figure 7.5
Probability of falsely rejecting
claim

m 5 1600 1660

0.0304
x Cycles

Fail to reject
m 5 1600

reject
m 5 1600

This provides a clear-cut criterion for accepting or not accepting the claim., but
unfortunately, it is not infallible. Since the decision is based on a sample, the sample
mean may exceed 1660 cycles even though the mean life is 1600 cycles. There is
also the possibility that the sample mean will be less than 1660 cycles even though
the mean life length is, say, 1680 cycles. Before adopting the criterion it is wise to
investigate the chances that the criterion leads to wrong decisions.

To simplify this initial presentation of testing hypotheses, we assume that the
standard deviation σ = 192 cycles is known. Let us first investigate the possibil-
ity that the sample mean will exceed 1660 even when the true mean life length is
μ = 1600. The probability this happens, purely due to chance, is the area of the
shaded region in Figure 7.5. This area is determine by approximating the sampling
distribution of X by a normal distribution. We have σX = 192√

36
= 32. In standard

units, the dividing line for the criterion is

z = 1660 − 1600
32

= 1.875

It follows from Table 3 that the area of the shaded region of Figure 7.5 is 1−0.9696 =
0.0304 (by interpolation). Hence the probability of erroneously rejecting the hypoth-
esis μ = 1600 cycles is approximately 0.03.

Let us now consider the other possibility, where the procedure fails to detect
that μ > 1600 cycles. Suppose again, for the sake of argument, that the true mean
is μ = 1680 cycles, so that the probability of getting a sample mean less than or
equal to 1660 cycles (and, hence, erroneously failing to reject μ = 1600 cycles) is
given by the area of the ruled region of Figure 7.6. As before, σX = 192, so that the
dividing line of the criterion, in standard units, is now

z = 1660 − 1680
32

= −0.625

Figure 7.6
Probability of failing to reject
claim

m 5 16801660

0.2660

Fail to reject
m 5 1600

Reject
m 5 1600

x Cycles
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It follows from Table 3 that the area of the shaded region of Figure 7.6 is 0.2660
(by interpolation), and hence that the probability of erroneously failing to reject the
hypothesis μ = 1600 is approximately 0.27.

Reviewing the reasoning, we first take H to be hypothesis that the population
mean is only 1600. When H is rejected, we establish the claim that mean life length
is greater that 1600 cycles. All possible conclusions are summarized in the following
table.

Fail to Reject Reject H

H is true Correct decision Type I error

H is false Type II error Correct decision

If hypothesis H is true and not rejected or false and rejected, the decision is in ei-
ther case correct. If hypothesis H is true but rejected, it is rejected in error, and if
hypothesis H is false but not rejected, this is also an error. The first of these errors
is called a Type I error. The probability of committing it, when the hypothesis is
true, is designated by the Greek letter α (alpha). The second error is called a Type II
error and the probability of committing it is designated by the Greek letter β (beta).
Thus, in our example we showed that for the given test criterion, α = 0.03 when
μ = 1600 cycles, and β = 0.27 when μ = 1680 cycles.

In calculating the probability of a Type II error in our example, we arbitrarily
choose the alternative value μ = 1680 cycles. However, in this problem, as in most
others, there are infinitely many other alternatives, and for each one of them there
is a positive probability β of erroneously accepting the hypotheses H. What to do
about this will be discussed further in Section 7.9.

7.6 Null Hypotheses and Tests of Hypotheses
In the electric car battery example of the preceding section, we were able to calculate
the probability of a Type I error because we formulated the hypothesis H as a single
value for the parameter μ. That is, we formulated the hypothesis H so that μ was
completely specified. Had we formulated instead μ ≤ 1600 cycles, where μ can take
on more than one possible value, we would not have been able to calculate the prob-
ability of a Type I error without specifying by how much μ is less than 1600 cycles.

We often formulate hypotheses to be tested as a single value for a parameter; at
least, we do this whenever possible. This usually requires that we hypothesize the
opposite of what we hope to prove. For instance, if we want to show that one method
of teaching computer programming is more efficient than another, we hypothesize
that the two methods are equally effective. Similarly, if we want to show that one
method of irrigating the soil is more expensive than another, we hypothesize that
the two methods are equally expensive; and if we want to show that a new copper-
bearing steel has a higher yield strength than ordinary steel, we hypothesize that the
two yield strengths are the same. Since we hypothesize that there is no difference in
the effectiveness of the two teaching methods, no difference in the cost of the two
methods of irrigation, and no difference in the yield strength of the two kinds of steel,
we call hypotheses like these null hypotheses and denote them H0. Nowadays, the
term null hypothesis is used for any hypothesis set up primarily to see whether it can
be rejected.

The idea of setting up a null hypothesis is not an uncommon one, even in non-
statistical thinking. In fact, this is exactly what is done in an American criminal
court of law, where an accused person is assumed to be innocent unless he is proved
guilty “beyond a reasonable doubt.” The null hypothesis states that the accused is not
guilty, and the probability expressed subjectively by the phrase “beyond reasonable
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doubt” reflects the probability α of risking a Type I error. Note that the “burden of
proof” is always on the prosecution in the sense that the accused is found not guilty
unless the null hypothesis of innocence is clearly disproved. This does not imply that
the defendant has been proved innocent if found not guilty. It implies only that he
has not been proved guilty. Of course, since we cannot legally “reserve judgment”
if proof of guilt is not established, the accused is freed and we act as if the null hy-
pothesis of innocence were accepted. Note that this is precisely what we may have
to do in tests of statistical hypotheses, when we cannot afford the luxury of reserving
judgment.

We develop procedures for hypothesis testing in the context of the electric car
battery example. When the goal is to establish the long life claim, the alternative
hypothesis should be μ > 1600 cycles.

To approach problems of hypothesis testing systematically, it will help to pro-
ceed as outlined in the following five steps.

1. Formulate a null hypothesis and an appropriate alternative hypothesis
which we accept when the null hypothesis must be rejected.2

In the electric car battery example, the null hypothesis is μ = 1600 cycles and
the alternative hypothesis is μ > 1600 cycles. This kind of alternative, which is
called a one-sided alternative, may also have the inequality going the other way.
For instance, if we hope to be able to show that the average time required to do a
certain job is less than 15 minutes, we would test the null hypothesis μ = 15 against
the alternative hypothesis μ < 15.

The following is an example in which we would use the two-sided alternative
μ �= μ0, where μ0 is the value assumed under the null hypothesis: A food processor
wants to check whether the average amount of coffee that goes into his 4-ounce jars
is indeed 4 ounces. Since the food processor cannot afford to put much less than
4 ounces into each jar for fear of losing customer acceptance, nor can he afford to
put much more than 4 ounces into each jar for fear of losing part of his profit, the
appropriate alternative hypothesis is μ �= 4.

As in the examples of the two preceding paragraphs, alternative hypotheses
usually specify that the population mean (or whatever other parameter may be of
concern) is either not equal to, greater than, or less than the value assumed under
the null hypothesis. For any given problem, the choice of an appropriate alternative
depends mostly on what we hope to be able to show.

EXAMPLE 17 Formulating the alternative hypothesis
An appliance manufacturer is considering the purchase of a new machine for stamp-
ing out sheet metal parts. If μ0 is the average number of good parts stamped out per
hour by her old machine and μ is the corresponding average for the new machine,
the manufacturer wants to test the null hypothesis μ = μ0 against a suitable alter-
native. What should the alternative be if she does not want to buy the new machine
unless it is more productive than the old one?

Solution The manufacturer should use the alternative hypothesis μ > μ0 and purchase the
new machine only if the null hypothesis can be rejected. j

Having formulated the null hypothesis and an alternative hypothesis, we pro-
ceed with the following step:

2. Specify the probability of a Type I error. If possible, desired, or necessary,
also specify the probabilities of Type II errors for particular alternatives.

2See also the discussion on page 247.
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The probability of a Type I error is also called the level of significance, and it is
usually set at α = 0.05 or α = 0.01. Which value we choose in any given problem
will have to depend on the risks, or consequences, of committing a Type I error.
Observe, however, that we should not make the probability of a Type I error too
small, because this will have the tendency to make the probabilities of serious Type II
errors too large.

Step 2 can often be performed even when the null hypothesis specifies a range
of values for the parameter. To illustrate, let us investigate briefly what might be
done in the electric car battery example if we wanted to allow for the possibility that
the mean battery life is less than 1600 cycles. That is, we test the null hypothesis
μ ≤ 1600 cycles against the alternative hypothesis μ > 1600 cycles. Observe that
if μ is less than 1600 cycles, the normal curve of Figure 7.5 on page 243 is shifted to
the left, and the area under the curve to the right of 1660 becomes less than 0.0304.
Thus, if the null hypothesis is μ ≤ 1600 cycles, we can say that the probability of
a Type I error is at most 0.0304, and we write α ≤ 0.0304. In general, if the null
hypothesis is of the form μ ≤ μ0 or μ ≥ μ0, we need only specify the maximum
probability of a Type I error. By performing the test as if the null hypothesis were
μ = μ0, we protect ourselves against the worst possibility. (See the example on
page 251.)

After the null hypothesis, the alternative hypothesis, and the level of significance
have been specified, the remaining steps are as follows:

3. Based on the sampling distribution of an appropriate statistic, we construct
a criterion for testing the null hypothesis against the given alternative.

4. We calculate from the data the value of the statistic on which the decision
is to be based.

5. We decide whether to reject the null hypothesis or whether to fail to
reject it.

In the electric car battery example we studied the criterion using the normal-
curve approximation to the sampling distribution of the mean. In general, step 3
depends not only on the statistic on which we want to base the decision and on its
sampling distribution, but also on the alternative hypothesis we happen to choose. In
the car battery example we used a one-sided criterion (one-sided test or one-tailed
test) with the one-sided alternative μ > 1600 cycles, rejecting the null hypothesis
only for large values of the sample mean. In the example dealing with coffee jars,
we choose a two-sided criterion (two-sided test or two-tailed test) to go with the
two-sided alternative μ �= 4 ounces. In general, a test is said to be two-sided if the
null hypothesis is rejected for values of the test statistic falling into either tail of its
sampling distribution.

The purpose of this discussion has been to introduce some of the basic problems
connected with the testing of statistical hypotheses. Although the methods we have
presented are objective—that is, two experimenters analyzing the same data under
the same conditions would arrive at identical results—their use does entail some
arbitrary, or subjective, considerations. For instance, in the example on page 243 it
was partially a subjective decision to draw the line between satisfactory and unsat-
isfactory values of μ at 1660 cycles. It is also partially a subjective decision to use
a sample of 36 batteries, and to reject the manufacturer’s claim for values of X ex-
ceeding 1660 cycles. Approaching the problem differently, the government agency
investigating the manufacturer’s claim could have specified values of α and β, thus
controlling the risks to which they are willing to be exposed. The choice of α, the
probability of a Type I error, could have been based on the consequences of mak-
ing that kind of error, namely, the manufacturer’s cost of having a good product
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condemned, the possible cost of subsequent litigation, the manufacturer’s cost of
unnecessarily adjusting his machinery, the cost to the public of not having the prod-
uct available when needed, and so forth. The choice of β, the probability of a Type II
error, could similarly have been based on the consequences of making that kind of
error. Namely, the cost to the public of buying an inferior product, the manufacturer’s
savings in using inferior components but loss in good will, again the cost of possible
ligation, and so forth. It should be obvious that it would be extremely difficult to put
cash values on all these eventualities, but they must nevertheless be considered, at
least indirectly, in choosing suitable criteria for testing statistical hypotheses.

In this text we shall discuss mainly the Neyman-Pearson theory, also called
the classical theory of testing hypothesis. This means that cost factors and other
considerations that are partly arbitrary and partly subjective only informally affect
the choice of a sample size, the choice of an alternative hypothesis, the choice of α

and β, and so forth.
In this approach, the maximum value of α is controlled over the null hypothesis.

For instance, if the null hypothesis is μ ≤ μ0 , then μ as well as σ is unspecified.
This is a composite hypothesis. Otherwise, if all the parameters are completely
specified, the hypothesis is simple. Even with a composite null hypothesis, we set
the critical region so that the error probability is α on the boundary μ = μ0 . Then,
the error probabilities will be even smaller under values of μ that are less than μ0.

Because the probability of falsely rejecting the null hypothesis is controlled,
the null hypothesis is retained unless the observations strongly contradict it. Conse-
quently, if the goal of an experiment is to establish an assertion or hypothesis, that
hypothesis must be taken as the alternative hypothesis.

Guideline for selecting the
null hypothesis

When the goal of an experiment is to establish an assertion, the negation of the
assertion should be taken as the null hypothesis. The assertion becomes the al-
ternative hypothesis.

Similar reasoning suggests that even when costs of making a wrong decision are
difficult to determine but the consequences of one error are much more serious than
for the other, the hypotheses should be labeled so that the most serious error is the
Type I error.

The alternative hypothesis is often denoted by H1. In the electric car battery
example, H1: μ > 1600. Recalling the notation H0 for the null hypothesis, we sum-
marize the concepts and notation for hypotheses, types of error, and the probability
of error.

Notation for the
hypotheses

H1: The alternative hypothesis is the claim we wish to establish.
H0: The null hypothesis is the negation of the claim.

The two kinds of error and their probabilities are

The errors and their
probabilities

Type I error: Rejection of H0 when H0 is true.
Type II error: Nonrejection of H0 when H1 is true.

α = probability of making a Type I error (also called the level of
significance)

β = probability of making a Type II error
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It is important to understand that tests of hypotheses are structured to control
the probability, α, of falsely rejecting the null hypothesis. To interpret this, suppose
the null hypothesis prevails and the test is repeated many times with independent
sets of data. When α = 0.05, the law of large numbers tells us that

number of times the null hypothesis is falsely rejected
number of times a test is conducted

→ α

This is, of course, the long-run frequency interpretation of probability. In the long
run only 1 in 20 times will the null hypothesis be falsely rejected.

Before we discuss various special tests about means in the remainder of this
chapter, let us point out that the concepts we have introduced here apply equally
well to hypotheses concerning proportions, standard deviations, the randomness of
samples, and relationships among several variables.

Exercises
7.39 A civil engineer wants to establish that the average

time to construct a new two-storey building is less than
6 months.

(a) Formulate the null and alternative hypotheses.

(b) What error could be made if μ = 6? Explain in
the context of the problem.

(c) What error could be made if μ = 5.5? Explain in
the context of the problem.

7.40 A manufacturer of four-speed clutches for automo-
biles claims that the clutch will not fail until after
50,000 miles.

(a) Interpreting this as a statement about the mean,
formulate a null and alternative hypothesis for
verifying the claim.

(b) If the true mean is 55,000 miles, what error can be
made? Explain your answer in the context of the
problem.

(c) What error could be made if the true mean is
50,000 miles?

7.41 An airline claims that the typical flying time between
two cities is 56 minutes.

(a) Formulate a test of hypotheses with the intent
of establishing that the population mean fly-
ing time is different from the published time of
56 minutes.

(b) If the true mean is 50 minutes, what error can be
made? Explain your answer in the context of the
problem.

(c) What error could be made if the true mean is
56 minutes?

7.42 A manufacturer wants to establish that the mean life of
a gear when used in a crusher is over 55 days. The data
will consist of how long gears in 80 different crushers
have lasted.

(a) Formulate the null and alternative hypotheses.

(b) If the true mean is 55 days, what error could be
made? Explain your answer in the context of the
problem.

7.43 A statistical test of hypotheses includes the step of
setting a maximum for the probability of falsely
rejecting the null hypothesis. Engineers make many
measurements on critical bridge components to decide
if a bridge is safe or unsafe.

(a) Explain how you would formulate the null
hypothesis.

(b) Would you prefer α = 0.05 or α = 0.01? Explain
your reasoning.

7.44 Suppose you are scheduled to ride a space vehicle
that will orbit the earth and return. A statistical test
of hypotheses includes the step of setting a maximum
for the probability of falsely rejecting the null hy-
pothesis. Engineers need to make various measure-
ments to decide if it is safe or unsafe to launch the
vehicle.

(a) Explain how you would formulate the null
hypothesis.

(b) Would you prefer α = 0.05 or α = 0.01? Explain
your reasoning.

7.45 Suppose that an engineering firm is asked to check
the safety of a dam. What type of error would it com-
mit if it erroneously rejects the null hypothesis that the
dam is safe? What type of error would it commit if it
erroneously fails to reject the null hypothesis that the
dam is safe? Would would the likely impact of these
errors be?

7.46 Suppose that we want to test the null hypothesis that
an antipollution device for cars is effective. Explain
under what conditions we would commit a Type I
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error and under what conditions we would commit a
Type II error.

7.47 If the criterion on page 242 is modified so that the man-
ufacturer’s claim is accepted for X > 1640 cycles, find

(a) the probability of a Type I error;

(b) the probability of a Type II error when μ = 1680
cycles.

7.48 Suppose that in the electric car battery example on
page 242, n is changed from 36 to 50 while everything
else remains the same. Find

(a) the probability of a Type I error;

(b) the probability of a Type II error when μ = 1680
cycles.

7.49 It is desired to test the null hypothesis μ = 30 min-
utes against the alternative hypothesis μ < 30 minutes
on the basis of the time taken by a newly developed
oven for n = 50 cakes baked. The population has σ =
5 minutes. For what values of X must the null hypoth-
esis be rejected if the probability of a Type I error is to
be α = 0.05.

7.50 Several square inches of gold leaf are required in the
manufacture of a high-end component. Suppose that,
the population of the amount of gold leaf has σ = 8.4
square inches. We want to test the null hypothesis
μ = 80.0 square inches against the alternative hypoth-
esis μ < 80.0 square inches on the basis of a random
sample of size n = 100.

(a) If the null hypothesis is rejected for X < 78.0
square inches and otherwise it is accepted, what
is the probability of Type I error?

(b) What is the answer to part (a) if the null hypothe-
sis is μ ≥ 80.0 square inches instead of μ = 80.0
square inches?

7.51 A producer of extruded plastic products finds that his
mean daily inventory is 1,250 pieces. A new marketing
policy has been put into effect and it is desired to test the
null hypothesis that the mean daily inventory is still the
same. What alternative hypothesis should be used if

(a) it is desired to know whether or not the new policy
changes the mean daily inventory;

(b) it is desired to demonstrate that the new policy
actually reduces the mean daily inventory;

(c) the new policy will be retained so long as it cannot
be shown that it actually increases the mean daily
inventory?

7.52 Specify the null and alternative hypotheses in each of
the following cases.

(a) A car manufacturer wants to establish the fact that
in case of an accident, the installed safety gadgets
saved the lives of the passengers in more than 90%
of accidents.

(b) An electrical engineer wants to establish the fact
that the number of short circuits when wiring is
done with a new fiberwire is less than 15.

7.7 Hypotheses Concerning One Mean
The example concerning the long life electric car batteries illustrates the basic ther-
minology and principles of hypothesis testing. Now let us see how we proceed in
actual practice. Suppose, for instance, we want to establish that the thermal conduc-
tivity of a certain kind of cement brick differs from 0.340, the value claimed. We
will test on the basis of n = 35 determinations and at the 0.05 level of significance.
From information gathered in similar studies, we can expect that the variability of
such determinations is given by σ = 0.010.

Following the outline of the preceding section, we begin with steps 1 and 2 by
writing

1. Null hypothesis: μ = 0.340

Alternative hypothesis: μ �= 0.340

2. Level of significance: α = 0.05

The alternative hypothesis is two-sided because we shall want to reject the null hy-
pothesis if the mean of the determinations is significantly less than or significantly
greater than 0.340.

Next, in step 3, we depart from the procedure used in the example of the pre-
ceding section and base the test on the standardized statistic

Statistic for test
concerning mean

(σ known)
Z = X − μ0

σ/
√

n



250 Chapter 7 Inferences Concerning a Mean

instead of X . The reason for working with standard units, or Z values, is that it
enables us to formulate criteria which are applicable to a great variety of problems,
not just one.

If zα is, as before, such that the area under the standard normal curve to its
right equals α, the rejection regions or critical regions, namely, the sets of values
of Z for which we reject the null hypothesis μ = μ0, can be expressed as in the
following table:

Level α Rejection Regions for Testing μ = μ0

(normal population and σ known)
Alternative hypothesis Reject null hypothesis if:

μ < μ0 Z < −zα

μ > μ0 Z > zα

μ �= μ0 Z < −zα/2
or Z > zα/2

If α = 0.05, the dividing lines, or critical values, of the criteria are −1.645 and
1.645 for the one-sided alternatives, and −1.96 and 1.96 for the two-sided alter-
native. If α = 0.01, the dividing lines of the criteria are −2.33 and 2.33 for the
one-sided alternatives, and −2.575 and 2.575 for the two-sided alternative. These
results come from Example 6, Chapter 5 and Exercise 5.23.

Returning now to the example dealing with the thermal conductivity of the
cement bricks where α = 0.05, suppose that the mean of the 35 determinations is
0.343. We continue by writing

3. Criterion: Reject the null hypothesis if Z < −1.96 or Z > 1.96, where

Z = X − μ0
σ/

√
n

4. Calculations:

Z = 0.343 − 0.340

0.010/
√

35
= 1.77

5. Decision: Since Z = 1.77 falls on the interval from −1.96 to 1.96, the null
hypothesis cannot be rejected; to put it another way, the difference between
x = 0.343 and μ = 0.340 can be attributed to chance. We actually never
establish that the null hypothesis holds. Instead, the conclusion is that we fail
to reject the null hypothesis.

In problems like this, many research workers accompany the calculated value
of Z with a corresponding tail probability, or P-value, which is the probability of
getting a difference between x and μ0 greater than or equal to that actually observed.
Figure 7.7 illustrates the reasoning behind the P-value for a two-sided test. It shows
the observed value of the test statistic, in the example above, as a solid dot at z =
1.77. It also shows the corresponding potential extreme value in the lower tail, the
same distance from 0, as the dotted circle at z = −1.77. Because the alternative is
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Figure 7.7
P-value = 0.0384 + 0.0384 =
0.0768 when Z = 1.77 0

0.03840.0384

21.96 1.96

z

two-sided, we must consider both of the tails to be more extreme than the observed
value. The P-value is given by the total area under the standard normal curve to the
left of −1.77 and to the right of 1.77, and it equals 2(1 − 0.9616) = 0.0768. This
P-value exceeds 0.05, which agrees with our earlier result. To review, Figure 7.7
shows that the rejection region, the value of Z, and the two tail areas.

EXAMPLE 18 Calculating the P-value for a two-sided test
A process for producing vinyl floor covering has been stable for a long period of
time, and the surface hardness measurement of the flooring produced has a normal
distribution with mean 4.5 and standard deviation σ = 1.5. A second shift has been
hired and trained and their production needs to be monitored. Consider testing the
hypothesis H0: μ = 4.5 versus H1: μ �= 4.5. A random sample of hardness measure-
ments is made of n = 25 vinyl specimens produced by the second shift. Calculate
the P-value when using the test statistic

Z = X − 4.5

1.5/
√

25

if X = 3.9.

Solution The observed value of the test statistic is

z = 3.9 − 4.5

1.5/
√

25
= −2.00

Figure 7.8 reviews the reasoning behind the P-value for a two-sided test. It shows
the observed value of the test statistic as a solid dot at z = −2.00. It also shows the
corresponding potential extreme value in the upper tail, at an equal distance from
0, as the dotted circle at z = 2.00. Because the alternative is two-sided, we must
consider both large positive values of Z as well as large negative values to be more
extreme than the observed value.

Figure 7.8
The P-value = 0.0228 +
0.0228 = 0.0456 for
Z = −2.00

0.02280.0228

21.96 1.960

z

From the normal table, P(Z > 2.00) = 0.0228. The probability that Z is smaller
than −2.00 is also 0.0228. Consequently, the P-value is 0.0228+0.0228 = 0.0456.
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This is the probability, under the null hypothesis, of getting the same or a more
extreme value of the test statistic than was observed. The small P-value suggests
that the mean of the second shift is not at the target value of 4.5. j

The P-value can be defined for any test statistic in any hypotheses testing
problem.

P-value for a given test
statistic and null

hypothesis

The P-value is the probability of obtaining a value for the test statistic that is as
extreme or more extreme than the value actually observed.
Probability is calculated under the null hypothesis.

If the alternative hypothesis is right-sided—for instance, H1: μ>μo—then only
values greater than the observed value are more extreme. If the alternative hypothesis
is left-sided, only values less than the observed value are more extreme. For two-
sided alternatives, values in both tails need to be considered as in the example above.

Observe that giving a tail probability does not relieve us of the responsibility of
specifying the level of significance before the test is actually performed.

The test we have described in this section is essentially an approximate large
sample test. It is exact only when the population we are sampling is normal and σ

is known. Typically, σ is unknown. If the sample size is large, we can approximate
the original Z by substituting the sample standard deviation S for σ . This results in
the one-sample Z test.

Statistic for large sample
test concerning mean

Z = X − μ0
S/

√
n

Level α Rejection Regions for Testing μ = μ0

(large sample)
Alternative hypothesis Reject null hypothesis if:

μ < μ0 Z < −zα

μ > μ0 Z > zα

μ �= μ0 Z < −zα/2
or Z > zα/2

EXAMPLE 19 A large sample test of the mean amount of cheese
Refer to Example 8, Chapter 5, where the manufacturer of a pizza like product mea-
sures the amount of cheese used per run. Suppose that a consumer agency wishes to
establish that the population mean is less than 71 pounds, the target amount estab-
lished for this product. There are n = 80 observations and a computer calculation
gives x = 68.45 and s = 9.583. What can it conclude if the probability of a Type I
error is to be at most 0.01?

Solution 1. Null hypothesis: μ ≥ 71 pounds
Alternative hypothesis: μ < 71 pounds

2. Level of significance: α ≤ 0.01

3. Criterion: Since the probability of a Type I error is greatest when μ = 71
pounds, we proceed as if we were testing the null hypothesis μ = 71 pounds
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against the alternative hypothesis μ < 71 pounds at the 0.01 level of
significance. Thus, the null hypothesis must be rejected if Z < −2.33, where

Z = X − μ0
S/

√
n

4. Calculations:

Z = 68.45 − 71

9.583/
√

80
= −2.38

5. Decision: Since Z = −2.38 is less than −2.33, the null hypothesis must be
rejected at level of significance 0.01. In other words, the suspicion that μ < 71
pounds is confirmed.

The small P-value 0.009, as shown in Figure 7.9, strengthens the conclusion.
j

Figure 7.9
The P-value = 0.009 for
Z = −2.38

0.009

22.38 0

z

If the sample size is small and σ is unknown, the tests just described cannot be
used. However, if the sample comes from a normal population (to within a reasonable
degree of approximation), we can make use of the theory discussed in Section 6.3
and base the test of the null hypothesis μ = μ0 on the statistic

Statistic for small sample
test concerning mean

(normal population)
t = X − μ0

S/
√

n

which is a random variable having the t distribution with n − 1 degrees of freedom.
The criteria for the one sample t test are like those for Z but are based on the t
distribution.

Level α Rejection Regions for Testing μ = μ0

(normal population and σ unknown) one sam-
ple t test
Alternative hypothesis Reject null hypothesis if:

μ < μ0 t < −tα

μ > μ0 t > tα

μ �= μ0 t < −tα/2
or t > tα/2

where tα and tα/2 are based on n − 1 degrees of freedom.
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EXAMPLE 20 A t test of a normal population mean
Scientists need to be able to detect small amounts of contaminants in the environ-
ment. As a check on current capabilities, measurements of lead content( μ g / L) are
taken from twelve water specimens spiked with a known concentration. (courtesy
of Paul Berthouex).

2.4 2.9 2.7 2.6 2.9 2.0 2.8 2.2 2.4 2.4 2.0 2.5

Test the null hypothesis μ = 2.25 against the alternative hypothesis μ > 2.25
at the 0.025 level of significance.

There are no outliers or other indications of non-normality. As a preliminary
step we calculate x = 2.483 and s = 0.3129.

Solution 1. Null hypothesis: μ = 2.25 μg/L
Alternative hypothesis: μ > 2.25 μg/L

2. Level of significance: α = 0.025

3. Criterion: Reject the null hypothesis if t > 2.201, where 2.201 is the value of
t0.025 for 12 − 1 = 11 degrees of freedom and

t = X − μ0
S/

√
n

4. Calculations:

t = 2.483 − 2.25

0.3129/
√

12
= 2.58

5. Decision: Since t = 2.58 is greater than 2.201, the null hypothesis must
be rejected at level α = 0.025. In other words, the mean lead content is above
2.25 μg/L. The exact tail probability, or P-value, cannot be determined from
Table 4, but it is 0.013 (see Figure 7.10). The evidence against the mean lead con-
tent being 2.25 is even stronger than 0.025. Only about 13 in 1,000 times would
we observe a value of t that is 2.58 or larger, if the mean really were 2.25 μg/L.

Figure 7.10
P-value = 0.013 for t = 2.58 0 2.201

t
0.013

Unfortunately, this statistical inference does not solve the original measurement
capabilities question. The engineers did spike the samples but at level 1.25 μ g/L lead
content. Either the laboratory procedure for determining lead content is producing
high readings or the samples are contaminated. A new series of samples is needed
to sort this out.

[ Using R: data x t.test(x,mu=2.25, alt=“greater”,conf=.95)
Drop alt=“greater”, for two-sided test or confidence interval ] j

Exercises
7.53 Refer to Exercise 7.1 where a construction engineer

recorded the quantity of gravel (in metric tons) used
in concrete mixes. The quantity of gravel for n = 24
sites has x = 5,818 tons and s2 = 7,273,809 so s =
2,697 tons.

(a) Construct a test of hypotheses with the intent of
showing that the mean gravel usage in the con-
crete mix is less than 5,800 tons. Take α = 0.10.

(b) Based on your conclusion in part (a), what error
could you have made? Explain in context of the
problem.
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7.54 Refer to data in Exercise 7.3 on the labor time re-
quired to produce an order of automobile mufflers us-
ing a heavy stamping machine. The times (hours) for
n = 52 orders of different parts has x = 1.865 hours
and s2 = 1.5623, so s = 1.250 hours.

(a) Conduct a test of hypotheses with the intent of
showing that the mean labor time is more than
1.5 hours. Take α = 0.05.

(b) Based on your conclusion in part (a), what error
could you have made? Explain in the context of
the problem.

7.55 Refer to Exercise 7.5, where the number of unremov-
able defects, for each of n = 45 displays, has x =
2.467 and s = 3.057 unremovable defects.

(a) Conduct a test of hypotheses with the intent of
showing that the mean number of unremovable
defects is less than 3.6. Take α = 0.025.

(b) Based on your conclusion in part (a), what error
could you have made? Explain in the context of
the problem.

7.56 Refer to Exercise 7.12, where, in a pilot process, verti-
cal spirals were cut to produce latex from n = 8 trees
to yield (in liters) in a week.

26.8 32.5 29.7 24.6 31.5 39.8 26.5 19.9

(a) Conduct a test of hypotheses with the intent of
showing that the mean production is less than
36.2. Take α = 0.01 and assume a normal
population.

(b) Based on your conclusion in part (a), what error
could you have made? Explain in the context of
the problem.

7.57 Refer to Exercise 7.14, where n = 9 measurements
were made on a key performance indicator.

123 106 114 128 113 109 120 102 111

(a) Conduct a test of hypotheses with the intent of
showing that the mean key performance indicator
is different from 107. Take α = 0.05 and assume
a normal population.

(b) Based on your conclusion in part (a), what error
could you have made? Explain in the context of
the problem.

7.58 Refer to Exercise 7.22, where, in n = 81 cases, the
coffee machine needed to be refilled with beans after
225 cups with a standard deviation of 22 cups.

(a) Conduct a test of hypotheses with the intent of
showing that the mean number of cups is greater
than 218 cups. Take α = 0.01.

(b) Based on your conclusion in part (a), what error
could you have made? Explain in the context of
the problem.

7.59 Refer to Exercise 2.34, page 46, concerning the num-
ber of board failures for n = 32 integrated circuits.
A computer calculation gives x = 7.6563 and s =
5.2216. At the 0.01 level of significance, conduct a test
of hypotheses with the intent of showing that the mean
is greater than 7.

7.60 In 64 randomly selected hours of production, the mean
and the standard deviation of the number of accept-
able pieces produced by a automatic stamping ma-
chine are x = 1,038 and s = 146. At the 0.05 level of
significance, does this enable us to reject the null hy-
pothesis μ = 1,000 against the alternative hypothesis
μ > 1,000?

7.61 With reference to the thickness measurements in Exer-
cise 2.41, test the null hypothesis that μ = 30.0 versus
a two-sided alternative. Take α = 0.05.

7.62 A random sample of 6 steel beams has a mean com-
pressive strength of 58,392 psi (pounds per square
inch) with a standard deviation of 648 psi. Use this
information and the level of significance α = 0.05 to
test whether the true average compressive strength of
the steel from which this sample came is 58,000 psi.
Assume normality.

7.63 A manufacturer claims that the average tar content of
a certain kind of cigarette is μ = 14.0. In an attempt to
show that it differs from this value, five measurements
are made of the tar content (mg per cigarette):

14.5 14.2 14.4 14.3 14.6

Show that the difference between the mean of this
sample, x = 14.4, and the average tar claimed by the
manufacturer, μ = 14.0, is significant at α = 0.05.
Assume normality.

7.64 Suppose that in the preceding exercise the first mea-
surement is recorded incorrectly as 16.0 instead of
14.5. Show that, even though the mean of the sample
increases to x = 14.7, the null hypothesis H0: μ =
14.0 is not rejected at level α = 0.05. Explain the
apparent paradox that even though the difference be-
tween observed x and μ has increased, the null hypoth-
esis is no longer rejected.

7.65 The statistical program MINITAB will calculate t tests.
With the nanopillar height data in C1,

Dialog box:
Stat > Basic Statistics > 1-Sample t. Click on
box and type C1.
Click Perform hypothesis test and Type 300 in
Hypothesized mean.
Choose Options. Type 0.95 in Confidence level
and choose not equal. Click OK. Click OK

produces the output
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Test of mu = 300 vs not = 300

N Mean StDev SE Mean T P
C1 50 305.580 36.971 5.229 1.07 0.291

You must compare your preselected α with the printed
P-value in order to obtain the conclusion of your test.
To perform a Z test, you need to find the P-value cor-
responding to the value 1.07 for the test statistic.

Here, with the two-sided alternative, we cannot
reject H0:μ = 300 nm unless we take the significance
level almost as large as 0.30.

(a) Test H0: μ = 295 with α = 0.05.

(b) Test H0: μ = 16.0 for the speed of light data in
Exercise 2.66 with α = 0.05.

7.8 The Relation between Tests and
Confidence Intervals

We now describe an important connection between tests for two-sided alternatives
and confidence intervals. This relation provides the reason that most statisticians
prefer the information available in a confidence interval statement as opposed to the
information that the null hypothesis μ = μ0 was or was not rejected.

To develop the relation, we consider the (1 −α)100% confidence interval for μ

given on page 231:

x − tα/2
s√
n

< μ < x + tα/2
s√
n

This interval is closely connected to a level α test of H0: μ = μ0 versus the two-
sided alternative H1: μ �= μ0. In terms of the values of x and s, this test has rejection
region ∣∣∣∣x − μ0

s/
√

n

∣∣∣∣ = | t | ≥ tα/2

The acceptance region of this test is obtained by reversing the inequality to obtain
all the values of x and s that do not lead to the rejection of H0: μ = μ0.

acceptance region:

∣∣∣∣x − μ0
s/

√
n

∣∣∣∣ < tα/2

The acceptance region can also be expressed as

acceptance region: x − tα/2
s√
n

< μ0 < x + tα/2
s√
n

where the limits of the interval are identical to the preceding confidence interval.
That is, the null hypothesis will not be rejected at level α if μ0 lies within the
(1 − α)100% confidence interval for μ.

The (1 − α)100% confidence interval gives the interval of plausible values for
μ, so if μ0 is contained in this interval, then it cannot be ruled out (i.e., cannot
be rejected). The set of plausible values for μ, as determined by the (1 − α)100%
confidence interval, tells us at once about the outcome of all possible two-sided tests
of hypothesis that specify a single value for μ.

EXAMPLE 21 Illustrating the relation between tests and confidence intervals
Referring to Example 20, n = 12 measurements of lead concentration yielded
x = 2.483 and s = 0.3129. Since t0.025 = 2.201 with 11 degrees of freedom,
the 95% confidence interval is

x − tα/2
s√
n

< μ < x + tα/2
s√
n
, or 2.28 < μ < 2.68.
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Use the relation between 95% confidence intervals and α = 0.05 level tests to test
the null hypothesis μ = 2.37 versus two-sided the alternative hypothesis μ �= 2.37.
Also test the null hypothesis μ = 2.26 versus the alternative hypothesis μ �= 2.26.

Solution In view of the relation just established, a test of μ = 2.37 versus μ �= 2.37 would
not reject H0: μ = 2.37, at the 5% level, since μ = 2.37 falls within the confidence
interval.

On the other hand μ = 2.26 does not fall within the 95% confidence interval
and hence that null hypothesis would be rejected at level α = 0.05. j

The relation between tests and confidence intervals holds quite generally. Sup-
pose, for any value θ0 of a parameter θ , we have a level α test of the null hypothesis
θ = θ0 versus the alternative θ �= θ0. Collect all the values θ0 that would not be
rejected. These form a (1 − α)100% confidence interval for θ .

A confidence interval statement provides a more comprehensive inference than
a statement concerning a two-sided test of a single null hypothesis. Consequently,
we favor a confidence interval approach when one is available.

Exercises
7.66 Refer to the nanopillar height data on page 25. Using

the 95% confidence interval, based on the t distribu-
tion, for the mean nanopillar height

N Mean StDev SE Mean 95% CI

50 305.580 36.971 5.229 (295.073, 316.087)

(a) decide whether or not to reject H0 : μ = 320 nm
in favor of H1 : μ �= 320 at α = 0.05;

(b) decide whether or not to reject H0 : μ = 310 nm
in favor of H1 : μ �= 310 at α = 0.05.

(c) What is your decision in part (b) if α = 0.02?
Explain.

7.67 Repeat Exercise 7.66 but replace the t test with the
large sample Z test.

7.68 Refer to the green gas data on page 241. Using the 95%
confidence interval, based on the t distribution for the
mean yield

N Mean StDev SE Mean 95% CI

15 6.00933 1.07780 0.27829 (5.41247, 6.60620)

(a) decide whether or not to reject H0 : μ = 5.5 gal
in favor of H0 : μ �= 5.5 at α = 0.05;

(b) decide whether or not to reject H0 : μ = 5.3 gal
in favor of H1 : μ �= 5.3 at α = 0.05.

(c) Perform the t test for part (b) to verify your
conclusion.

7.69 Refer to the labor time data in Exercise 7.3. Using the
90% confidence interval, based on the t distribution,
for the mean labor time

N Mean StDev SE Mean 90% CI

52 1.86462 1.24992 0.17333 (1.57423, 2.15500)

(a) decide whether or not to reject H0 : μ = 1.6 in
favor of H1 : μ �= 1.6 at α = 0.10;

(b) decide whether or not to reject H0 : μ = 2.2 in
favor of H1 : μ �= 2.2 at α = 0.10.

(c) What is your decision in part (a) if α = 0.05?
Explain.

7.70 Repeat Exercise 7.69 but replace the t test with the
large sample Z test.

7.9 Power, Sample Size, and Operating
Characteristic Curves*

So far we have not paid much attention to Type II errors. In the electric car battery
example of Section 7.6 we calculated one probability of a Type II error. Since the
choice of the alternative hypothesis μ = 1680 cycles in the electric car battery ex-
ample was essentially arbitrary, it may be of interest to see how the testing procedure

∗This section can be omitted on first reading.
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will perform when other values of μ prevail. The actual mean battery life depends
on the chemical reactions governing the battery life. Lacking a total scientific ex-
planation, we do not know precisely what value to expect for this population mean.
Consequently, we must investigate the probability of not rejecting (accepting) the
null hypothesis under a range of possible values for μ. To this end, let

L(μ) = probability of accepting the null hypothesis when μ prevails

Figure 7.11 presents the picture of a typical operating characteristic (OC) curve
for the case where the alternative hypothesis is μ > μ0. When the alternative hy-
pothesis is μ < μ0, the OC curve becomes the mirror image of that of Figure 7.11,
reflected about the dashed vertical line through μ0.

Figure 7.11
Operating characteristic curve

m

1500 1650 1700 1750 1800
Alternative
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Null
hypothesis

0.2
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0.6

0.8

1.0
L(m)

1600
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The function L(μ) completely characterizes the testing procedure whatever the
value of population mean μ. If μ equals a value where the null hypothesis is true,
then 1 − L(μ) is the probability of the Type I error. When μ has a value where the
alternative hypothesis is true, then L(μ) is the probability of a Type II error. That is,
the function L(μ) carries complete information about the probabilities of both types
of error.

To illustrate the calculation of L(μ), we continue with the electric car battery
example on page 242, where we had μ0 = 1600, σ = 192, n = 36, and the dividing
line of the criterion is x = 1660. If the prevailing population mean is μ = 1640,
then Z = √

n ( X − 1640)/σ = 6 ( X − 1640)/192 is a standard normal variable.
We reason that L(1640) is the probability of observing

X < 1660, or
6 ( X − 1640 )

192
<

6 ( 1660 − 1640 )
192

= 0.625

or Z < 0.625. Therefore, from Table 3, L(1640) = 0.73. Continuing with other
possible values for μ, we obtain the results shown in the following table.
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Values of μ Probability of accepting null hypothesis

1560 0.999
1580 0.99
1600 0.97
1620 0.90
1640 0.74
1660 0.50
1680 0.27
1700 0.11
1720 0.03
1740 0.01
1760 0.001

Note that under the alternative hypothesis where μ > 1600, the probability of com-
mitting a Type II error diminishes when μ is increased. Also the probability of not
committing a Type I error approaches 1 when μ becomes much smaller than 1600
(and battery life is shorter).

The graph of L(μ) for various values of μ shown in Figure 7.11 is called the
operating characteristic curve, or simply the OC curve, of the test.

In the context of sampling in order to decide whether or not to accept a ship-
ment of electric car batteries on the basis of battery life, we would like to accept
the shipment if the mean life is high and reject it if it is low. Based on the operating
characteristic curve in Figure 7.11, the engineer can decide if the proposed proce-
dure has small enough error probabilities at values of μ she deems important. Ideally
we should want to reject the null hypothesis μ = μ0 when actually μ exceeds μ0,
and to accept it when μ is less than or equal to μ0. Thus, the ideal OC curve for our
example would be given by the horizontal lines of Figure 7.11. In actual practice, OC
curves can only approximate such ideal curves, with the approximation becoming
better as the sample size is increased.

In contexts other than acceptance sampling plans, and for most statistical soft-
ware packages, the performance of a test is expressed in terms of power:

power = γ (μ) = P(reject H0)

when μ is a value for the mean under the alternative hypothesis. Consequently,
power and the operating characteristic are equivalent since γ (μ) = 1 − L(μ).

For the one-sided alternative H0 : μ > μ0, with σ known, the rejection region
for a level α Z test is

√
n

( X − μ0)
σ

> zα or X >
σ√

n
zα + μ0

When the mean has the particular value μ1 greater than μ0,
√

n ( X − μ1)/σ has a
standard normal distribution and H0 is rejected when

X − μ1 >
σ√

n
zα + μ0 − μ1

The power at μ1 is

γ (μ1) = P
(√

n
( X − μ1)

σ
> zα + √

n
( μ0 − μ1)

σ

)

= P
(

Z > zα + √
n

( μ0 − μ1)
σ

)
when H1: μ > μ0 and μ1 > μ0.
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Similarly,

γ ( μ1) = P
(√

n
( X − μ1)

σ
< −zα + √

n
( μ0 − μ1)

σ

)

= P
(

Z < −zα + √
n

( μ0 − μ1)
σ

)
when H1:μ < μ0 and μ1 < μ0. Under a two-sided alternative,

γ ( μ1) = P
(

Z < −zα/2 + √
n

( μ0 − μ1)
σ

)
+ P

(
Z > zα/2 + √

n
( μ0 − μ1)

σ

)
when H1:μ �= μ0 and the population mean has value μ1 �= μ0.

We observe that power and the Type II error probability β depend upon the

1. choice of significance level α. As α increases, power increases (β decreases).

2. difference between the null hypothesis value μ0 and the particular value μ1
under the alternative. Power increases (β decreases) as the difference between
μ0 and μ1 increases.

3. value of the population standard deviation σ . Power decreases (β increases) as
σ increases.

4. sample size n. Power increases (β decreases) as sample size increases.

Power calculations are most conveniently performed with statistical software
(see Exercises 7.72 and 7.75).

EXAMPLE 22 Determining the probability of a Type II error—one-sided test
We want to investigate a claim about the average sound intensity of certain vac-
uum cleaners. Suppose the sound is a random variable having a normal distribution
with a standard deviation of 3.6 dB. Specifically, we shall want to test the null hy-
pothesis μ = 75.20 against the alternative hypothesis μ > 75.20 on the basis of
measurements of the sound intensity of n = 15 of these machines. If the probability
of a Type I error is to be α = 0.05, what is the probability of a Type II error for
μ = 77.00 dB?

Solution The test is one-sided, α = 0.05, z0.05 = 1.645, and

zα + √
n

( μ0 − μ1)
σ

= 1.645 +
√

15
(75.20 − 77.0)

3.6
= −0.291

so the power is γ ( 77.0) = P( Z > −0.291) = 0.614. The Type II error probability
β = 1 − 0.614 = 0.386. j

EXAMPLE 23 Determining the probability of a Type II error—two-sided test
Suppose that the length of certain machine parts may be looked upon as a random
variable having a normal distribution with a mean of 2.000 cm and a standard devi-
ation of 0.050 cm. Specifically, we shall want to test the null hypothesis μ = 2.000
against the alternative hypothesis μ �= 2.000 on the basis of the mean of a random
sample of size n = 30. If the probability of a Type I error is to be α = 0.05, what is
the probability of a Type II error for μ = 2.010?

Solution The test is two-tailed, α = 0.05, α/2 = 0.025, z0.025 = 1.96, and

−zα/2 + √
n

( μ0 − μ1)
σ

= −1.96 +
√

30
(2.000 − 2.010)

0.050
= −3.055

zα/2 + √
n

( μ0 − μ1)
σ

= 1.96 +
√

30
(2.000 − 2.010)

0.050
= 0.865
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The power is

γ (2.010) = P(Z < −3.055) + P(Z > .865) = 0.001 + 0.194 = 0.195

The Type II error probability β = 1 − 0.195 = 0.805. j

When the alternative is one-sided, we can obtain an equation for the sample size
required to give a specified power γ = 1 −β at some value μ1. For, H1:μ > μ0 we
require n so that

γ = 1 − β = P
(

Z > zα + √
n

( μ0 − μ1)
σ

)
but then, by the definition zβ , we must have

−zβ = zα + √
n

( μ0 − μ1)
σ

Solving for n, we obtain the required sample size. The same expression for required
sample size holds when H1:μ < μ0.

Required sample size

When conducting a one-sided large sample Z test, the required sample size n
must be at least as large as

n =
(

σ
( zβ + zα )

( μ0 − μ1)

)2

For two-sided tests, the calculation of sample size is best relegated to computer
software (see Exercise 7.72).

EXAMPLE 24 Determining a sample size—one-sided test
With reference to the electric car battery example on page 242, where we have μ0 =
1600 and σ = 192, when α = 0.05, how large a sample do we need so that β = 0.10
for μ = 1680?

Solution The test is one-sided, μ0 = 1600, μ1 = 1680, and σ = 192. Also, α = 0.05,
z0.05 = 1.645, β = 0.10, z0.10 = 1.28. The required sample size is no smaller than

n =
(

σ
( zβ + zα )

( μ0 − μ1)

)2
=

(
192

(1.28 + 1.645)
(1600 − 1680)

)2
= 49.2

so n = 50 is the required sample size. j

Exercises
7.71 Refer to the example concerning average sound inten-

sity on page 260. Calculate the power at μ1 = 77
when

(a) the level is changed to α = 0.03.

(b) α = 0.05 but the alternative is changed to the two-
sided H1 : μ �= 75.2.

7.72 MINITAB calculation of power
These calculations pertain to normal populations with
known variance and provide an accurate approxima-
tion in the large sample case where σ is unknown. To
calculate the power of the Z test at μ1, you need to
enter the

difference = μ1 − μ0.
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Although n = 15 is not large, we illustrate with
reference to the example concerning average sound
intensity on page 260, where α = 0.05, σ = 3.6,
and H1 : μ > 75.2. We are given μ1 = 77, so the
difference = μ1 − μ0 = 77 − 75.2 = 1.80.

Stat > Power and sample size > 1-Sample Z. Type 15 in
Sample sizes, 1.8 in differences and 3.6 in Standard deviation.
Click Options and choose Greater than. Type 0.05 in Significance level.
Click OK. Click OK.

Notice that you have a choice of an alternative that
is less than, not equal to or greater than.

Output: (partial)

Sample
Difference Size Power

1.8 15 0.614718

Referring to the example of machine parts on
page 260.

(a) Calculate the power at μ1 = 2.020.

(b) Repeat part (a) but take α = 0.03.

7.73 Use computer software to repeat Exercise 7.71.

7.74 MINITAB calculation of sample size
Refer to Exercise 7.72, but this time leave Sample size blank but

Type 0.90 in power

to obtain the partial output concerning sample size

Sample Target
Difference Size Power Actual Power

1.8 35 0.9 0.905440

Refer to the example concerning sound intensity on page 260. Find the required
sample size if power must be at least 0.96 at μ1 = 77.

7.75 MINITAB calculation of power or OC curve
Refer to the steps in Exercise 7.72, but enter a range of values for the difference.
Here 0:3/.1 goes in steps from 0 to 3 in steps of .1 for Example 22.

Stat > Power and sample size > 1-Sample Z. Type 15 in Sample sizes,
0:3/.1 in differences and 3.6 in Standard deviation.
Click Options and choose Greater than. Type 0.05 in Significance level.
Click OK. Click OK.

With reference to the electric car battery example on page 242, use computer
software to obtain the power curve for the α = 0.05 one-sided test.

Do’s and Don’ts

Do’s
1. Calculate the estimated standard error s/

√
n to accompany the point esti-

mate x of a population mean.
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2. Whatever the population, when the sample size is large, calculate the
100(1 − α)% confidence interval for the mean

x − zα/2
s√
n

< μ < x + zα/2
s√
n

3. When the population is normal, calculate the 100(1 − α)% confidence in-
terval for the mean

x − tα/2
s√
n

< μ < x + tα/2
s√
n

where tα/2 is obtained from the t distribution with n−1 degrees of freedom.

4. Understand the interpretation of a 100(1 −α)% confidence interval. When
the population is normal, before the data are collected,(

X − tα/2
S√
n
, X + tα/2

S√
n

)
is a random interval that will cover the fixed unknown mean with probabil-
ity 1 − α. In many repeated applications of this method, about proportion
1 − α of the times the interval will cover the respective population mean.

5. When conducting a test of hypothesis, formulate the assertion that the ex-
periment seeks to confirm as the alternative hypothesis.

6. When the sample size is large, base a test of the null hypothesis H0:μ = μ0
on the test statistic

X − μ0
S/

√
n

which has, approximately, a standard normal distribution. When the pop-
ulation is normal, the same statistic has a t distribution with n − 1 degrees
of freedom.

7. Understand the interpretation of a level α test. If the null hypothesis is true,
before the data are collected, the probability is α that the experiment will
produce observations that lead to the rejection of the null hypothesis. Con-
sequently, after many independent experiments, the proportion that lead to
rejection of the null hypothesis will be nearly α.

Don’ts
1. Don’t routinely apply the statistical procedures above if the sample is not

random but collected from convenient units or the data show a trend in time.

Review Exercises
7.76 Specify the null hypothesis and the alternative hypoth-

esis in each of the following cases.

(a) An engineer hopes to establish that an additive
will increase the viscosity of an oil.

(b) An electrical engineer hopes to establish that a
modified circuit board will give a computer a
higher average operating speed.

7.77 With reference to Example 7 on page 29, find a
95% confidence interval for the mean strength of the
aluminum alloy.

7.78 While performing a certain task under simulated
weightlessness, the pulse rate of 32 astronaut trainees
increased on the average by 26.4 beats per minute with
a standard deviation of 4.28 beats per minute. What
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can one assert with 95% confidence about the maxi-
mum error if x = 26.4 is used as a point estimate of
the true average increase in the pulse rate of astronaut
trainees performing the given task?

7.79 With reference to the preceding exercise, construct a
95% confidence interval for the true average increase
in the pulse rate of astronaut trainees performing the
given task.

7.80 It is desired to estimate the mean number of hours of
continuous use until a printer overheats. If it can be as-
sumed that σ = 4 hours, how large a sample is needed
so that one will be able to assert with 95% confidence
that the sample mean is off by at least 15 hours?

7.81 A sample of 15 pneumatic thermostats intended for
use in a centralized heating unit has an average output
pressure of 9 psi and a standard deviation of 1.5 psi.
Assuming the data may be treated as a random sam-
ple from a normal population, determine a 90% con-
fidence interval for the actual mean pressure of the
thermostat.

7.82 In order to test the durability of a new paint, a high-
way department had test strips painted across heavily
traveled roads in 15 different locations. If on the av-
erage the test strips disappeared after they had been
crossed by 146,692 cars with standard deviation of
14,380 cars, construct a 99% confidence interval for
the true average number of cars it takes to wear off the
paint. Assume a normal population.

7.83 Referring to Exercise 7.82 and using 14,380 as an es-
timate of σ , find the sample size that would have been
needed to be able to assert with 95% confidence that
the sample mean is off by at most 10,000. [Hint: First
estimate n1 by using z = 1.96, then use t0.025 for n1−1
degrees of freedom to obtain a second estimate n2, and
repeat this procedure until the last two values of n thus
obtained are equal.]

7.84 A laboratory technician is timed 20 times in the per-
formance of a task, getting x = 7.9 and s = 1.2 min-
utes. If the probability of a Type I error is to be at most
0.05, does this constitute evidence against the null hy-
pothesis that the average time is less than or equal to
7.5 minutes?

7.85 Suppose that in the lithium car battery example on
page 242, n is changed from 36 to 50 while the other
quantities remain μ0 = 1600, σ = 192, and α =
0.03. Find

(a) the new dividing line of the test criterion;

(b) the probability of Type II errors for the values of
μ = 1620, 1640, 1660, 1680, 1700, 1720, 1740,
1760 included in the table on page 259.

7.86 In a fatigue study, the time spent working by employ-
ees in a factory was observed. The ten readings (in
hours) were

4.8 3.6 10.8 5.7 8.2 6.8 7.5 7.7 6.3 8.6

Assuming the population sampled is normal, construct
a 90% confidence interval for the corresponding true
mean.

7.87 An industrial engineer concerned with service at a
large medical clinic recorded the duration of time from
the time a patient called until a doctor or nurse re-
turned the call. A sample of size 180 calls had a mean
of 1.65 hours and a standard deviation of 0.82.

(a) Obtain a 95% confidence interval for the popula-
tion mean of time to return a call.

(b) Does μ lie in your interval obtained in part (a)?
Explain.

(c) In a long series or repeated experiments, with
new random samples collected for each experi-
ment, what proportion of the resulting confidence
intervals will contain the true population mean?
Explain your reasoning.

7.88 Refer to Exercise 7.87.

(a) Perform a test with the intention of establishing
that the mean time to return a call is greater than
1.5 hours. Use α = 0.05.

(b) In light of your conclusion in part (a), what error
could you have made? Explain in the context of
this problem.

(c) In a long series of repeated experiments, with new
random samples collected for each experiment,
what proportion of the resulting tests would reject
the null hypothesis if it prevailed? Explain your
reasoning.

7.89 The compressive strength of parts made from a
composite material are known to be nearly normally
distributed. A scientist, using the testing device for
the first time, obtains the tensile strength (psi) of
20 specimens

95 102 105 107 109 110 111 112 114 115
134 135 136 138 139 141 142 144 150 155

shown in Figure 7.12. Should the scientist report the
95% confidence interval based on the t-distribution?
Explain your reasoning.

Figure 7.12
Dot diagram of tensile strength

90 100 110

Strength (psi)

120 130 140 150 160
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Advances occur in engineering when new ideas lead to better equipment, new
materials, or revision of existing production processes. Any new procedure or
device must be compared with the existing one and the amount of improve-

ment assessed. As we describe in Section 8.1, statistical methods of comparison begin
by deciding on one of two schemes for collecting data. Sections 8.2 and 8.3 concern the
independent samples design and Section 8.4 the matched pairs sample design. These two
designs are compared and contrasted in Section 8.5.

8.1 Experimental Designs for Comparing
Two Treatments

Progress in science and engineering begins when new devices or materials are in-
vented or when existing processes are revised. Advances occur whenever the new
technique is shown to be better than the old. We perform experiments, collect data
on performance, and then use statistical methods to make comparisons between the
new and the old techniques.

It is common to use the statistical term treatment to refer to the procedures,
machines, or processes that are being compared. The basic unit that is exposed to
one treatment or the other is called the experimental unit, and the observed char-
acteristic that forms the basis of the comparison is called the response.

EXAMPLE 1 Randomly assigning treatment to units
It is an extremely expensive event for a cell phone company when one of its relay
towers breaks down. Because of a shortage of experts, sometimes a novice must be
sent to fix the problem. A cell phone company wants to conduct an experiment to
compare the average time for an expert to fix a problem and the average time for a
novice to fix the problem.

The next 15 breakdowns can be used in the experiment. Describe the scheme
for conducting a comparative experiment.

Solution A breakdown is the unit, and expert and novice will be Treatment 1 and Treatment 2,
respectively. The response is the time for the tower to be fixed. One person will be
assigned to each breakdown. The times for the group of breakdowns where novices
are assigned should be independent of the times for the group of breakdowns where
experts are assigned. This is the independent samples design.

Before we know anything about the breakdown, its location, or its possible
severity, seven of the breakdowns should be chosen to receive Treatment 1, ex-
pert. This selection should be made using random numbers. Numbering the order
of breakdowns from 1 to 15, seven different random numbers should be selected
within this range. Randomization, without restriction, gives rise to the alternative
name completely randomized design. j
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EXAMPLE 2 Pairing to eliminate a known source of variation
A civil engineer needs to compare the durability of two different paints for marking
lanes on a divided highway. One year after applying the paint, she will return and
assign a number to the current quality of the marking. Ten widely separated 1-mile
sections of divided highway are available. From experience, she expects that the
sections would carry substantially different traffic volumes. Describe an experiment
for making the comparison.

Solution The two paints are the treatments which we call Treatment 1 and Treatment 2. The
1-mile sections, in either direction, will carry approximately the same traffic volume
for the whole mile. A 1-mile section, with traffic going in one direction, is a unit.
The response is quality of marking after one year. The civil engineer expects traffic
volume to heavily influence the response. The traffic volume could be eliminated
from the comparison if we pair the two 1-mile sections with traffic going in opposite
directions. Then a comparison will only be made within the pair. This is called a
matched pairs design.

Still the road for one side may be subject to more shade, higher temperature,
or other conditions different from the other. For each 1-mile section, the engineer
should flip a coin. If heads, the north or west direction receives Treatment 1. Ran-
domization helps prevent these other uncontrolled variables from influencing the
response in a systematic manner.

Note that by pairing like experimental units, we have eliminated traffic volume
as an influencing variable. j

The term experimental design refers to the manner in which units are chosen
and assigned to receive treatments. As introduced in the last two examples, there are
two basic designs for comparing two treatments:

1. Independent samples (complete randomization)
2. Matched pairs sample (randomization within each matched pair)

We investigate the independent samples design in the next two sections and the
matched pairs sample design in the following section.

8.2 Comparisons—Two Independent Large Samples
In this section, we consider the independent samples design when both sample sizes
are large. To state the assumptions, we use X and Y for the observations and the
subscript 1 or 2 for the mean and variance to distinguish the two populations.

Assumptions—Large Samples
1. X1, X2, . . . , Xn1 is a random sample of size n1 from population 1 which has

mean = μ1 and variance = σ 2
1 .

2. Y1,Y2, . . . ,Yn2 is a random sample of size n2 from population 2 which has
mean = μ2 and variance = σ 2

2 .

3. The two samples X1, X2, . . . , Xn1 and Y1,Y2, . . . ,Yn2 are independent.

Inferences will be made about the difference in means μ1 − μ2 = δ. Since, by
Theorem 6.1,

E( X ) = μ1 Var( X ) = σ 2
1

n1
E( Y ) = μ2 Var( Y ) = σ 2

2
n2
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the mean of X − Y is E( X − Y ) = μ1 − μ2 and, by independence (see Example
30, Chapter 5),

Var( X − Y ) = σ 2
1

n1
+ σ 2

2
n2

When the sample sizes n1 and n2 are large, the central limit theorem implies
that both X and Y are approximately normal. Because they are independent, their
difference is also approximately normal and the two sample Z statistic

Z = X − Y − δ√
σ 2

1
n1

+ σ 2
2

n2

is approximately standard normal. Because the sample sizes n1 and n2 are large—
namely, both are greater than or equal to 30—the normal approximation remains
valid when the sample variances replace the population variances.

When the sample sizes n1 and n2 are large—namely, n1, n2 ≥ 30

Z = X − Y − δ√
S2

1
n1

+
S2

2
n2

is approximately standard normal.

Statistic for large samples
inference concerning

difference between two
means

Large Samples Confidence Intervals
Large samples confidence intervals, for the difference of means δ = μ1 − μ2, are
determined from the standard normal probability

1 − α = P

⎛
⎜⎜⎜⎜⎝−zα/2 <

X − Y − δ√
S2

1
n1

+
S2

2
n2

< zα/2

⎞
⎟⎟⎟⎟⎠

= P

⎛
⎝−zα/2

√
S2

1
n1

+ S2
2

n2
< X − Y − δ < zα/2

√
S2

1
n1

+ S2
2

n2

⎞
⎠

or

1 − α = P

⎛
⎝X − Y − zα/2

√
S2

1
n1

+ S2
2

n2
< δ < X − Y + zα/2

√
S2

1
n1

+ S2
2

n2

⎞
⎠

This last statement asserts that, before we obtain the data, the probability is 1 − α

that the random interval will cover the true unknown difference in the means δ =
μ1 − μ2.

Confidence limits for large
samples confidence
interval for μ1 − μ2

Limits of 100(1 − d)% confidence interval for μ1 − μ2

x − y ± zα/2

√
s2
1

n1
+ s2

2
n2
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This confidence interval can also be obtained from the acceptance regions for the
two-sided test on page 270.

EXAMPLE 3 Large samples confidence interval for difference of means
As a baseline for a study on the effects of changing electrical pricing for electricity
during peak hours, July usage during peak hours was obtained for n1 = 45 homes
with air-conditioning and n2 = 55 homes without.1 The July on-peak usage (kWh)
is summarized as

Sample
Population Size Mean Variance

With 45 204.4 13,825.3
Without 55 130.0 8,632.0

Obtain a 95% confidence interval for δ = μ1 − μ2.

Solution For a 95% confidence interval, α = 0.05 and z0.025 = 1.96. We are given n1 = 45,
n2 = 55, x = 204.4, s2

1 = 13,825.3, y = 130.0, and s2
2 = 8,632.0. Then the limits

of the confidence interval are

x − y ± zα/2

√
s2
1

n1
+ s2

2
n2

= 204.4 − 130.0 ± 1.96

√
13,825.3

45
+ 8,632.0

55

= 74.4 ± 1.96
√

464.17

so the 95% confidence interval is ( 32.17, 116.63 ). The mean on-peak usage for
homes with air-conditioning is higher than for homes without, from 32.17 to
116.63 kWh per month.

The confidence interval not only reveals that the two population means are statis-
tically different, because the confidence interval does not cover 0, but also quantifies
the amount of difference. j

Large Samples Tests for Differences of Means
There are many statistical problems in which we are faced with decisions about
the relative size of the means of two populations. For example, if two methods of
welding are being considered, we may take samples and decide which is better by
comparing their mean strengths.

Formulating the problem more generally, we shall consider two populations
having the means μ1 and μ2 and the variances of σ 2

1 and σ 2
2 . We want to test the

null hypothesis

H0: μ1 − μ2 = δ0

where δ0 is a specified constant, on the basis of independent random samples of size
n1 and n2. Analogous to the tests concerning one mean, we shall consider tests of
this null hypothesis against each of the alternatives μ1 −μ2 <δ0, μ1 −μ2 >δ0,
and μ1 − μ2 �= δ0. The test itself will depend on the distance, measured in esti-
mated standard deviation units, from the difference in sample means X − Y to the
hypothesized value, δ0. When the sample sizes are large—namely, n1 and n2 are

1Richard Johnson and Dean Wichern (2007), Applied Multivariate Statistical Analysis, 6th ed., page 299,
Prentice Hall: Upper Saddle River, NJ.
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both greater than or equal to 30—we obtain this test statistic by specifying the null
value δ0 for the difference of means in the random Z defined above.

When n1, n2 ≥ 30 , test H0 : μ1 − μ2 = δ0 using

Z = ( X − Y ) − δ0√
S2

1
n1

+ S2
2

n2

which has, approximately, a standard normal distribution.

Test statistic for large
samples concerning

difference between two
means

Analogous to the table of level α rejection region on page 252, the rejection
regions for testing the null hypothesis μ1 − μ2 = δ0, using the two sample Z test
are;

Rejection Regions for Testing μ1 − μ2 = δ0 (normal popula-
tions and σ1 and σ2 known, or large samples n1, n2 ≥ 30)

Alternative hypothesis Reject null hypothesis if:

μ1 − μ2 < δ0 Z < −zα

μ1 − μ2 > δ0 Z > zα

μ1 − μ2 �= δ0 Z < −zα/2
or Z > zα/2

Although δ0 can be any constant, it is worth noting that in the great majority of
problems its value is zero and we test the null hypothesis of no difference, namely,
the null hypothesis μ1 = μ2.

EXAMPLE 4 A test for a the mean difference in driving performance
With the goal of improving driving safety, engineers are quantifying the effects of
such factors as drowsiness and alcohol on driver performance.2 Volunteers drive a
fixed course in a mid-sized car mounted in a sophisticated driving simulator. One
performance measure is a standard deviation like score of the lateral deviation from
center line.

We consider the experiment where the first treatment specifies that the driver
has a blood alcohol reading of 0 percent and the second treatment specifies that the
driver imbibe and then be carefully monitored to reach a blood alcohol reading of
0.10 percent. The summary statistics for one segment of the drive are (courtesy of
John Lee)

Treatment 1 Treatment 2
0 Blood Alcohol .1 % Blood Alcohol

n1 = 54 n2 = 54

x = 1.63 y = 1.77

s1 = 0.177 s2 = 0.183

2D. Das, S. Zhou, and John Lee, Differentiating alcohol-induced driving behavior using steering wheel
signals, IEEE Trans. Intell. Transp. Syst. 13, (2012), 1355–1368.
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Conduct a test of hypotheses with the intent of establishing that the mean lateral
deviation scores are different. Take α = 0.02.

Solution The test concerns δ = μ1 − μ2 and the sample sizes n1 = 54 and n2 = 54 are
large.

1. Null hypothesis: δ = 0
Alternative hypothesis: δ �= 0

2. Level of significance: α = 0.02

3. Criterion: Reject the null hypothesis if Z < −2.33 or Z > 2.33 where Z is
given by the large sample formula above.

4. Calculations: The observed value of the test statistic is

z = x − y − δ0√
s2
1

n1
+ s2

2
n2

= 1.63 − 1.77 − 0√
(0.177)2

54
+ (0.183)2

54

= − 4.04

5. Decision: Since z = −4.04 is less than −2.33, the null hypothesis must be
rejected at level of significance 0.02. The small P-value 0.000053 (see
Figure 8.1) provides very strong evidence that the mean lateral deviation scores
for drinkers is different from that of non-drinkers.

Figure 8.1
P-value for testing equality of
mean lane deviation scores.

0.00002660.0000266

24.04 22.33 21 0 1 2.33 4.04

z

j

EXAMPLE 5 Testing a difference in means with two large samples
To test the claim that the resistance of electric wire can be reduced by more than
0.050 ohm by alloying, 32 values obtained for standard wire yielded x = 0.136 ohm
and s1 = 0.004 ohm, and 32 values obtained for alloyed wire yielded y = 0.083 ohm
and s2 = 0.005 ohm. At the 0.05 level of significance, does this support the claim?

Solution 1. Null hypothesis: μ1 − μ2 = 0.050
Alternative hypothesis: μ1 − μ2 > 0.050

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if Z > 1.645, where Z is given by the large
samples formula above.

4. Calculations:

z = 0.136 − 0.083 − 0.050√
(0.004)2

32
+ (0.005)2

32

= 2.65

5. Decision: Since z = 2.65 exceeds 1.645, the null hypothesis must be rejected;
that is, the data substantiate the claim. From Table 3, the P-value is 0.004 (see
Figure 8.2), so the evidence for alloying is very strong. Only 4 in 1,000 times
would Z be at least 2.65, if the mean difference was 0.05. j
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Figure 8.2
Large samples P-value =
0.004 for Z = 2.65

0.004

22 0 1.645 2.65

z

To judge the strength of support for the null hypothesis when it is not rejected,
we consider Type II errors, for which the probabilities depend on the actual alterna-
tive differences δ′ = μ1 −μ2. Fortunately, these can be determined using the single
sample results (as long as we are sampling from normal populations with known
standard deviations or both samples are large).

The calculation of Type II error is based on the results for a single sample on
page 260 and a fictitious single variance σ 2 and sample size n, where

σ 2 = σ 2
1 + σ 2

2 n = σ 2
1 + σ 2

2

σ 2
1

n1
+

σ 2
2

n2

Also, replace μ0 − μ1 by δ0 − δ′.
The preferred method for calculation of Type II error is to use a computer soft-

ware (see Exercise 7.72).

EXAMPLE 6 Approximating the probability of Type II error
With reference to the preceding example, what is the probability of a Type II error
for δ′ = 0.054 ohms?

Solution Refer to the formula on page 261. Since δ0 = 0.050, σ 2 = 0.0042 + 0.0052 =
0.000041, and n = 32

zα +√
n

( δ0 − δ′ )
σ

= 1.645 +
√

32
( 0.050 − 0.054 )√

0.000041
= 1.645−3.534 = −1.889

so the power is γ (0.054) = P( Z > −1.889) = 0.971. The Type II error probability
β = 1 − 0.971 = 0.029. j

8.3 Comparisons—Two Independent Small Samples
When n1 and n2 are both small and the population variances are unknown, we must
impose additional assumptions, which we label 4 or 5 to emphasize that the three
original assumptions still prevail.

Additional Assumptions for Small Samples
4. Both populations are normal.

5. The two standard deviations have a common value σ1 = σ2 = σ .

Because the populations are normal, X and Y are normal and, because
they are independent, their difference is also normal (see Example 41, Chapter 5).
Recall, E( X − Y ) = μ1 − μ2 = δ. Under the assumption of common standard
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deviation σ , the expression above for the variance of X − Y becomes

Var( X − Y ) = σ 2
1

n1
+ σ 2

2
n2

= σ 2
(

1
n1

+ 1
n2

)

and the standardized version of X − Y

Z = X − Y − δ

σ

√
1
n1

+ 1
n2

has a normal distribution.
The unknown σ must be estimated. Reasoning that each squared deviation

(Xi − X )2 is an estimate of σ 2 and so is each (Yi − Y )2 from the second sample,
we estimate σ 2 by pooling the sums of squared deviations from the respective sam-
ple means. That is, we estimate σ 2 by the pooled estimator

S2
p =

n1∑
i=1

( Xi − X )2 +
n2∑

i=1

( Yi − Y )2

n1 + n2 − 2
= ( n1 − 1 ) S2

1 + ( n2 − 1 ) S2
2

n1 + n2 − 2

where
∑

( Xi − X )2 is the sum of the squared deviations from the mean for the first
sample, while

∑
( Yi − Y )2 is the sum of the squared deviations from the mean for

the second sample. We divide by n1 + n2 − 2, since there are n1 − 1 independent
deviations from the mean in the first sample, n2 − 1 in the second, and we have
n1 + n2 − 2 independent deviations from their mean to estimate the population
variance.

More specifically, from the single sample results we know that both S2
1 and S2

2
are estimates of σ 2 and that

( n1 − 1 ) S2
1

σ 2
has a chi square distribution with n1 − 1 degrees of freedom

( n2 − 1 ) S2
2

σ 2
has a chi square distribution with n2 − 1 degrees of freedom

and these two random quantities are independent since the samples on which they
are based are independent. By either the result on page 211 or Example 14, Chap-
ter 6, the sum of the two chi square variables has a chi square distribution with
degrees of freedom equal to the sum of the two degrees of freedom n1 + n2 − 2.
Further,

( n1 − 1 ) S2
1

σ 2
+ ( n2 − 1 ) S2

2
σ 2

= ( n1 + n2 − 2 ) S2
p

σ 2

so

( n1 − 1 ) S2
1

σ 2
+ ( n2 − 1 ) S2

2

σ 2

n1 + n2 − 2
=

( n1 + n2 − 2 ) S2
p

σ 2

n1 + n2 − 2
= S2

p

σ 2

and we conclude that

Sp

σ
=

√
chi square variable
degrees of freedom
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and this can be shown to be independent of the standard normal based on X1 − X2.
Using the representation of t on page 211 as a standard normal over the square root
of a chi square divided by its degrees of freedom, we obtain

t = X − Y − δ

Sp

√
1
n1

+ 1
n2

where S2
p = ( n1 − 1 ) S2

1 + ( n2 − 1 ) S2
2

n1 + n2 − 2

has a t distribution with n1 + n2 − 2 degrees of freedom (d.f.).

Statistic for small sample
test concerning difference

between two means

Note that by substituting Sp for σ in the expression for Z on page 273, we ar-
rive at the same statistic. With small sample sizes, the distribution is not standard
normal but a t.

The criteria for the two sample t test based on this statistic are like those for Z
for testing the null hypothesis: H0: μ1 − μ2 = δ0.

Level α Rejection Regions for Testing μ1 − μ2 = δ0

(normal populations with σ1 = σ2) two sample t test

Alternative hypothesis Reject null hypothesis if:

μ1 − μ2 < δ0 t < −tα

μ1 − μ2 > δ0 t > tα

μ1 − μ2 �= δ0 t < −tα/2
or t > tα/2

In the application of this test, n1 and n2 may be small, yet n1 + n2 − 2 may be 30
or more; in that case we use the normal critical value (also bottom line of Table 4.)

EXAMPLE 7 A two sample t test to show a difference in strength
To reduce the amount of recycled construction materials entering landfills it is
crushed for use in the base of roadways. Green engineering practices require that
their strength, resiliency modulus (MPa), be accessed. Measurements on n1 =
n2 = 6 specimens of recycled materials from two different locations produce the
data (Courtesy of Tuncer Edil)

Location 1 : 707 632 604 652 669 674

Location 2 : 552 554 484 630 648 610

Use the 0.05 level of significance to establish a difference in mean strength for
materials from the two locations.

Solution The test concerns δ = μ1 − μ2 and the sample sizes n1 = n2 = 6 are small.
There are no obvious departure from normality.

1. Null hypothesis: δ = 0
Alternative hypothesis: δ �= 0

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if t < − t0.025 or t > t0.025 where
t0.025 = 2.228 for 6 + 6 − 2 = 10 degrees of freedom.
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4. Calculations: The means and variances of the two samples are

x = 656.3 y = 579.7

s2
1 = 6, 389.3

5
= 1, 277.9 s2

2 = 18, 699.3
5

= 3, 739.9

so that s2
P = ( 6, 389.3 + 18, 699.3 ) / (5 + 5 ) = 2, 508.5, sP = 50.09 and

the observed value of the test statistic is

t = x − y − δ0

sP

√
1
n1

+ 1
n2

= 656.3 − 579.7 − 0

50.09
√

1
6 + 1

6

= 2.65

5. Decision: Since t = 2.65 is greater than 2.228, the null hypothesis must be
rejected at the 0.05 level of significance. The P-value 0.0243 (see Figure 8.3)
provides stronger evidence that the mean strength of recycled materials is
different at the two locations.

Figure 8.3
P-value for Example 7. 22.228 21 0 1 2.228

0.0120.012
t

[ Using R: data x and y t.test(x,y,var.equal=T). ] j

In the preceding example we went ahead and performed the two sample t test,
tacitly assuming that the population variances are equal. Fortunately, the test is not
overly sensitive to small differences between the population variances, and the pro-
cedure used in this instance is justifiable. As a rule of thumb, if one variance is four
times the other, we should be concerned. A transformation will often improve the sit-
uation. As another alternative there is the Smith-Satterthwaite test discussed below.

Confidence intervals follow directly from the acceptance region for the tests.
For two normal populations with equal variances,

The (1 − α)100% confidence interval for δ = μ1 − μ2 has limits

x − y ± tα/2

√
( n1 − 1 ) s2

1 + ( n2 − 1 ) s2
2

n1 + n2 − 2

√
1
n1

+ 1
n2

where tα/2 is based on ν = n1 + n2 − 2 degrees of freedom.

Small sample confidence
interval concerning
difference between

two means

EXAMPLE 8 Graphics to accompany a two sample t test
Example 7, Chapter 2, presents strength measurements on an aluminum alloy. A
second alloy yielded measurements given in the following stem-and-leaf display.
Find a 95% confidence interval for the difference in mean strength δ.
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Solution We first place the observations on the two alloys in stem-and-leaf displays. Note
that the observations from the first alloy appear normal, but those on the second
alloy may deviate from a normal distribution. Since the sample sizes are relatively
large, this will not cause any difficulty.

Alloy 1, N = 58 Alloy 2, N = 27

Leaf unit = 0.10 Leaf unit = 0.10

66 4 66

67 7 67

68 0 0 3 4 6 8 9 68

69 0 1 2 3 3 5 5 6 7 8 8 9 69

70 0 0 1 2 3 3 4 5 6 6 8 9 70

71 0 1 2 3 3 5 6 6 7 8 8 9 71 2 8

72 1 2 3 4 6 7 9 72 6 8

73 1 3 5 73 4 7 9

74 2 5 74 4 9

75 3 75 5 9

76 76 3 5 7 9

77 77 1 3 6 7 8

78 78 1 2 4 6

79 79 0 3 8

A computer calculation gives the sample means and standard deviations.

N MEAN STDEV
ALLOY 1 58 70.70 1.80
ALLOY 2 27 76.13 2.42

From another computer calculation (or by interpolation in Table 4), we find t0.025 =
1.99 for 83 degrees of freedom, so the 95% confidence limits are

x − y ± tα/2

√
( n1 − 1 ) s2

1 + ( n2 − 1 ) s2
2

n1 + n2 − 2

√
1
n1

+ 1
n1

= 70.70 − 76.13 ± 1.99

√
57(1.80)2 + 26(2.42)2

83

√
1
58

+ 1
27

and

−6.4 < μ1 − μ2 < −4.5

We are 95% confident that the mean strength of alloy 2 is 4.5 to 6.4 thousand
pounds per square inch higher than the mean strength of alloy 1. j

It is good practice to show stem-and-leaf displays, boxplots, or histograms.
Often they reveal more than a mean difference. For instance, in the last example,
the first population is nearly symmetric but the second has a long tail to the left.

The large sample confidence interval is obtained from the acceptance regions
for the test on page 270.
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EXAMPLE 9 Comparing the two confidence intervals
Referring to the previous example, find the 95% large sample confidence interval.

Solution x − y ± zα/2

√
s2
1

n1
+ s2

2
n2

= 70.70 − 76.13 ± 1.96

√
(1.80)2

58
+ (2.42)2

27

so

−6.5 < μ1 − μ2 < −4.4

There is not much difference between this 95% confidence interval and the one in
the previous example, where the variances were pooled. j

Small Sample Sizes but Unequal Standard
Deviations—Normal Populations
When we deal with independent random samples from normal populations whose
variances seem to be unequal, we should not pool. As long as the populations are
normal, an approximate t distribution is available for making inferences. The statistic
t′ is the same as the large samples statistic but, because sample sizes are small, its
distribution is approximated as a t distribution.

For normal populations, when the sample sizes n1 and n2 are not large and
σ1 �= σ2,

t′ = ( X − Y ) − δ√
S2

1
n1

+
S2

2
n2

is approximately distributed as a t with estimated degrees of freedom.

Statistic for small samples
inference, σ1 �= σ2, normal

populations

The estimated degrees of freedom for t′ are calculated from the observed values of
the sample variances s2

1 and s2
2.

estimated degrees of freedom =

(
s2
1

n1
+

s2
2

n2

)2

(
s2
1/n1

)2

n1 − 1 +
(
s2
2/n2

)2

n2 − 1

The estimated degrees of freedom are often rounded down to an integer so a t table
can be consulted.

The test based on t′ is called the Smith-Satterthwaite test.

EXAMPLE 10 Testing equality of mean product volume
One process of making green gasoline takes sucrose, which can be derived from
biomass, and converts it into gasoline using catalytic reactions. This is not a process
for making a gasoline additive but fuel itself, so research is still at the pilot plant
stage. At one step in a pilot plant process, the product consists of carbon chains of
length 3. Nine runs were made with each of two catalysts and the product volumes
(gal) are

Catalyst 1 0.63 2.64 1.85 1.68 1.09 1.67 0.73 1.04 0.68
Catalyst 2 3.71 4.09 4.11 3.75 3.49 3.27 3.72 3.49 4.26
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The sample sizes n1 = n2 = 9 and the summary statistics are

x = 1.334, s2
1 = 0.4548 y = 3.766 s2

2 = 0.1089

A chemical engineer wants to show that the mean product volumes are different.
Test with α = 0.05.

Solution The test concerns δ = μ1 − μ2 and the sample sizes n1 = n2 = 9 are small. We
note that there are no outliers and no obvious departure from normality. However,
s2
1 = 0.4548 is more than four times s2

2 = 0.1089. We should not pool.

1. Null hypothesis: δ = 0
Alternative hypothesis: δ �= 0

2. Level of significance: α = 0.05

3. Criterion: We choose the Smith-Satterthwaite test statistic with δ0 = 0,

t′ = X − Y − δ0√
S2

1
n1

+
S2

2
n2

The null hypothesis will be rejected if t′ < −t0.025 or t′ > t0.025, but the value
of t0.025 depends on the estimated degrees of freedom.

4. Calculations: As a first step, we estimate the degrees of freedom(
s2
1

n1
+

s2
2

n2

)2

( s2
1/n1 )2

n1 − 1 +
( s2

2/n2 )2

n2 − 1

=
(

0.4548
9 + 0.1089

9

)2

( 0.4548/9 )2

9 − 1 + ( 0.1089/9 )2

9 − 1

= 11.62

To use the t table, we round down to 11 and obtain t0.025 = 2.201.
The observed value of the test statistic is

t′ = X − Y − δ0√
S2

1
n1

+
S2

2
n2

= 1.334 − 3.766 − 0√
0.4548

9 + 0.1089
9

= −9.71

5. Decision: Since t′ = −9.71 is less than −2.201, the null hypothesis must be
rejected at level of significance 0.05. The value of t′ is so small that the P-value
is 0.0000 when rounded. In other words, there is extremely strong evidence that
the mean product volumes are different for the two catalysts.

[ Using R: data x and y t.test(x,y) Use alt=“greater”, for one-sided upper tail
test. ] j

Confidence intervals can tell us what differences in means are plausible, not just
that the means are different.

Confidence interval for
δ = μ1 − μ2, normal
populations σ1 �= σ2

A 100 (1 − α)% confidence interval for δ = μ1 − μ2⎛
⎝ x − y − tα/2

√
s2
1

n1
+ s2

2
n2

, x − y + tα/2

√
s2
1

n1
+ s2

2
n2

⎞
⎠

where tα/2 has the degrees of freedom estimated for t′.



Sec 8.3 Comparisons—Two Independent Small Samples 279

EXAMPLE 11 A confidence interval for the difference of mean yields when
variances are unequal
With reference to the previous example, obtain the 95% confidence interval for
δ = μ1 − μ2

Solution From the previous example we have x = 1.334, s2
1 = 0.4548, y = 3.766, s2

2 =
0.1089, and t0.025 = 2.201 for 11 degrees of freedom. We get(

1.334 − 3.776 − 2.201

√
0.45489

9
+ 0.1089

9
,

1.334 − 3.776 + 2.201

√
0.45489

9
+ 0.1089

9

)

or (−2.982, −1.880) gallons. The mean product volume for the second catalyst is
greater than that of the first catalyst by 1.880 to 2.982 gallons. j

Although the computations for unequal standard deviations seem tedious by
hand, popular statistical software will allow this option in addition to pooling (see
Exercise 8.35).

Exercises
8.1 Refer to Exercise 2.58, where n1 = 30 specimens

of 2 × 4 lumber have x = 1,908.8 and s1 = 327.1
psi. A second sample of size n2 = 40 specimens of
larger dimension, 2 × 6, lumber yielded y = 2,114.3
and s2 = 472.3. Test, with α = 0.05, the null hy-
pothesis of equality of mean tensile strengths versus
the one-sided alternative that the mean tensile strength
for the second population is greater than that of
the first.

8.2 Refer to Exercise 8.1 and obtain a 95% confidence in-
terval for the difference in mean tensile strength.

8.3 The dynamic modulus of concrete is obtained for two
different concrete mixes. For the first mix, n1 = 33,
x = 115.1, and s1 = 0.47 psi. For the second mix,
n2 = 31, y = 114.6, and s2 = 0.38. Test, with α = 0.05,
the null hypothesis of equality of mean dynamic mod-
ulus versus the two-sided alternative.

8.4 Refer to Exercise 8.3 and obtain a 95% confidence in-
terval for the difference in mean dynamic modulus.

8.5 An investigation of two types of bulldozers showed
that 50 failures of one type of bulldozer took on an
average 6.8 hours to repair with a standard deviation
of 0.85 hours, while 50 failures of the other type of
bulldozer took on an average 7.3 hours to repair with
a standard deviation of 1.2 hours.

(a) Test the null hypothesis μ1 − μ2 = 0 (namely,
the hypothesis that on an average, it takes an equal
amount of time to repair either kind of bulldozer)
against the alternative hypothesis μ1 − μ2 �= 0 at
the level of significance, α = 0.10.

(b) Using 0.85 and 1.2 as estimates of σ1 and σ2, find
the probability of failing to reject the null hypoth-
esis μ1 − μ2 = 0 with the criterion of part (a)
when actually μ1 − μ2 = −3.

8.6 Studying the flow of traffic at two busy intersections
between 4 p.m. and 6 p.m. (to determine the possible
need for turn signals), it was found that on 40 week-
days there were on the average 247.3 cars approach-
ing the first intersection from the south that made left
turns while on 30 weekdays there were on the average
254.1 cars approaching the second intersection from
the south that made left turns. The corresponding sam-
ple standard deviations are s1 = 15.2 and s2 = 18.7.

(a) Test the null hypothesis μ1 − μ2 = 0 against the
alternative hypothesis μ1 − μ2 �= 0 at the level of
significance α = 0.01.

(b) Using 15.2 and 18.7 as estimates of σ1 and σ2,
find the probability of failing to reject (accepting)
the null hypothesis μ1 − μ2 = 0 when actually
| μ1 − μ2 | = 15.6.

8.7 Given the n1 = 3 and n2 = 2 observations from Pop-
ulation 1 and Population 2, respectively,

Population 1 6 2 7

Population 2 14 10

(a) Calculate the three deviations x − x and two devi-
ations y − y.

(b) Use your results from part (a) to obtain the pooled
variance.
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8.8 Two methods for manufacturing a product are to be
compared. Given 12 units, six are manufactured using
method M and six are manufactured using method N.

(a) How would you assign manufacturing methods to
the 12 units?

(b) The response is the percent of finished product
that did not meet quality standards. Suppose the
results are

Method M Method N

3 0
8 2
1 1
4 5
6 1
2 9

Find a 99% confidence interval for the difference
in means.

(c) What assumption did you make for your answer
to part (b)?

8.9 Measuring specimens of nylon yarn taken from two
spinning machines, it was found that 8 specimens from
the first machine had a mean denier of 9.67 with a stan-
dard deviation of 1.81, while 10 specimens from the
second machine had a mean denier of 7.43 with a stan-
dard deviation of 1.48. Assuming that the populations
sampled are normal and have the same variance, test
the null hypothesis μ1 − μ2 = 1.5 against the alter-
native hypothesis μ1 − μ2 > 1.5 at the 0.05 level of
significance.

8.10 We know that silk fibers are very tough but in short
supply. Breakthroughs by one research group result in
the summary statistics for the stress (MPa) of synthetic
silk fibers (Source: F. Teulé, et. al. (2012), Combining flagelli-
form and dragline spider silk motifs to produce tunable synthetic
biopolymer fibers, Biopolymers, 97(6), 418–431.)

Small diameter n = 7 x = 123.0 s1 = 15.0
Large diameter n = 6 y = 92.0 s2 = 21.0

Use the 0.05 level of significance to test the claim
that mean stress is largest for the small diameter fibers.
Assume that both sampled populations have normal
distributions with the same variance.

8.11 The following are the number of hydraulic pumps
which a sample of 10 industrial machines of Type A
and a sample of 8 industrial machines of Type B man-
ufactured over a certain fixed period of time:

Type A: 8 6 7 9 4 11 8 10 6 9
Type B: 4 3 6 7 7 1 9 6

Assuming that the populations sampled can be approx-
imated closely with normal distributions having the
same variance, test the null hypothesis μ1 − μ2 = 0
against the alternative hypothesis μ1 − μ2 �= 0 at the
0.05 level of significance.

8.12 With reference to Example 5 construct a 95% confi-
dence interval for the true difference between the av-
erage resistance of the two kinds of wire.

8.13 In each of the parts below, first decide whether or not
to use the pooled estimator of variance. Assume that
the populations are normal.

(a) The following are the Brinell hardness values ob-
tained for samples of two magnesium alloys be-
fore testing:

Alloy 1: 66.3 63.5 64.9 61.8 64.3 64.7 65.1 64.5 68.4 63.2
Alloy 2: 71.3 60.4 62.6 63.9 68.8 70.1 64.8 68.9 65.8 66.2

Use the 0.05 level of significance to test the null
hypothesis μ1 − μ2 = 0 against the alternative
hypothesis μ1 − μ2 < 0.

(b) To compare two kinds of bumper guards, 6 of each
kind, were mounted on a certain kind, of compact
car. Then each car was run into a concrete wall at
5 miles per hour, and the following are the costs
of the repairs (in dollars):

Bumper guard 1: 407 448 423 465 402 419
Bumper guard 2: 434 415 412 451 433 429

Use the 0.01 level of significance to test whether
the difference between the two sample means is
significant.

8.4 Matched Pairs Comparisons
In the application of the two sample t test we need to watch that the samples are
really independent. For instance, the test cannot be used when we deal with “before
and after” data, the IQs of husbands and wives, and numerous other kinds of sit-
uations where the data are naturally paired. Instead, comparisons are based on the
matched pairs.

A manufacturer is concerned about the loss of weight of ceramic parts during a
baking step. The readings before and after baking, on the same specimen, are nat-
urally paired. It would make no sense to compare the before-baking weight of one
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specimen with the after-baking weight of another specimen. Let the pair of ran-
dom variables (Xi,Yi) denote the weight before and weight after baking for the ith
specimen, for i = 1, 2, . . . , n. A statistical analysis proceeds by considering the
differences

Di = Xi − Yi for i = 1, 2, . . . , n

This collection of (signed) differences is then treated as a random sample of size
n from a population having mean μD. We interpret μD = 0 as indicating that the
means of the two responses are the same and μD > 0 as indicating that the mean
response of the first is higher than that of the second.

Tests of the null hypothesis H0: μD = μD,0 are based on the ratio

D − μD,0

SD/
√

n
where D =

n∑
i=1

Di

n
S2

D =

n∑
i=1

( Di − D )2

n − 1

If n is small, and the distribution of a difference is approximately normal, we treat
this ratio as the one sample t statistic on page 253. Otherwise, we treat this ratio as
the large sample statistic on page 252.

EXAMPLE 12 Conducting a paired t test
The following are the average weekly losses of worker-hours due to accidents in
10 industrial plants before and after a certain safety program was put into operation:

Before: 45 73 46 124 33 57 83 34 26 17
After: 36 60 44 119 35 51 77 29 24 11

Use the 0.05 level of significance to test whether the safety program is effective.

Solution We cannot apply the independent samples test because the before and after weekly
losses of worker-hours in the same industrial plant are correlated. Here there is the
obvious pairing of these two observations.

1. Null hypothesis: μD = 0
Alternative hypothesis: μD > 0

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if t > 1.833, the value of t0.05 for
10 − 1 = 9 degrees of freedom, where

t = D − 0

SD/
√

n

and D and SD are the mean and the standard deviation of the differences.

4. Calculations: The differences are

9 13 2 5 −2 6 6 5 2 6

their mean is d = 5.2, their standard deviation is sD = 4.08, so that

t = 5.2 − 0

4.08/
√

10
= 4.03

5. Decision: Since t = 4.03 exceeds 1.833, the null hypothesis must be rejected at
level α = 0.05. We conclude that the industrial safety program is effective. The
evidence is very strong, since a computer calculation gives the P-value 0.0015
(see Figure 8.4). If μD = 0, only in 15 out of 10,000 times would we observe t
greater than or equal to 4.03. j
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Figure 8.4
The paired t test: P-value =
0.0015 for t = 4.03 and
degrees of freedom (d.f.) = 9

0.0015

2224 0 1.833 4.03

t

In connection with this kind of problem, the one sample t test is referred to as a
matched pairs t test or just the paired t test.

EXAMPLE 13 95% confidence interval for the mean of a paired difference
Scientists are making a major breakthrough by creating devices that can smell toxic
chemicals.3 An array of sites, each coated with different nanoporous pigments, change
colors when exposed to various chemicals. Computer software produces the numer-
ical value of the change, or difference, by subtracting an initial scanned image from
the image after exposure to the chemical. The red component of the difference of
images, caused by exposure to a toxic level of formaldehyde, was measured seven
times. (Courtesy of authors)

1.26 1.34 1.82 0.55 0.73 0.78 1.10

Construct a 95% confidence interval for the mean change of the red color com-
ponent at this site when exposed to a toxic level of formaldehyde.

Solution The sample size is n = 7 and t0.025 = 2.447 for n − 1 = 6 degrees of freedom.
We first calculate

d = 1.083 and s = 0.436

and the 95% confidence formula for μD becomes

1.083 − 2.447 · 0.436√
7

< μD < 1.083 + 2.447 · 0.436√
7

or 0.68 < μD < 1.49 . We are 95% confident that the interval from 0.68 to 1.49
contains the mean change in the red color component. The mean change is different
from zero.

This site by itself contributes a substantial information for detecting formalde-
hyde. By combining the measurements from all of the different sites in the array,
scientists are actually able to identify many specific toxic chemicals. These arrays
can actually smell. j

The next example illustrates some practical points when conducting a matched
pairs experiment, including randomization.

EXAMPLE 14 Comparing measurements made at two laboratories
A state law requires municipal wastewater treatment plants to monitor their dis-
charges into rivers and streams. A treatment plant could choose to send its samples
to a commercial laboratory of its choosing. Concern over this self-monitoring led
a civil engineer to design a matched pairs experiment.4 Exactly the same bottle of

3Liang Feng, et. al., Colorimetric sensor array for determination and identification of toxic industrial
chemicals, Anal. Chem., 82 (2010), 9433–9440.
4R. Johnson and D. Wichern, (2007), Applied Multivariate Statistical Analysis, Prentice Hall, page 286.
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effluent cannot be sent to two different laboratories. To match “identical" as closely
as possible, she takes a sample of effluent in a large sample bottle and pours it back
and forth over two open specimen bottles. When they are filled and capped, a coin
is flipped to see if the one on the right was sent to Commercial Laboratory A or the
Wisconsin State Laboratory of Hygiene. This process was repeated 11 times. The
results, for the response suspended solids (SS) are

Sample 1 2 3 4 5 6 7 8 9 10 11

Commercial lab 27 23 64 44 30 75 26 124 54 30 14
State lab 15 13 22 29 31 64 30 64 56 20 21

Difference xi − yi 12 10 42 15 −1 11 −4 60 −2 10 −7

Obtain a 95% confidence interval and look for any unusual features in the data.

Solution The sample size is relatively small so we assume normality and base the confidence
interval on the t distribution. We have n = 11 and calculate d = 13.27 and s2

D =
418.61. Then, with n − 1 = 11 − 1 = 10 degrees of freedom and t0.025 = 2.228,
the 95% confidence interval is

(
13.27 − 2.228

√
418.61

11
, 13.27 + 2.228

√
418.61

11

)
or (−0.47, 27.01)

This 95% confidence interval just covers 0, so no difference is indicated with this
small sample size. But wait, look at the dot diagram of the differences in Figure 8.5.
There are two very large differences that would be unusual if the sample were taken
from a normal population. The validity of the confidence interval is, at least, under
suspicion. In Exercise 8.17 you are asked to try the square root transformation to
see if it improves the situation. j

Figure 8.5
Dot diagram of differences in
suspended solids; outliers
present

0 9–9
ss

18 27 36 45 54 63

Exercises
8.14 A civil engineer wants to compare two machines

for grinding cement and sand. A sample of a fixed
quantity of cement and sand is taken and put in
each machine. The machines are run and the fine-
ness of each mixture is noted. This process is re-
peated five times. The results, in microns, are as
follows:

Sample No. Machine A Machine B

1 7 3
2 9 5
3 6 3
4 8 6
5 4 9



284 Chapter 8 Comparing Two Treatments

Find a 99% confidence interval for the mean difference
in machine readings assuming the differences have a
normal distribution.

8.15 Refer to Exercise 8.14. Test with α = 0.01, that the
mean difference is 0 versus a two-sided alternative.

8.16 The following data were obtained in an experiment de-
signed to check whether there is a systematic differ-
ence in the weights obtained with two different scales:

Weight in grams

Scale I Scale II

Rock Specimen 1 11.23 11.27
Rock Specimen 2 14.36 14.41
Rock Specimen 3 8.33 8.35
Rock Specimen 4 10.50 10.52
Rock Specimen 5 23.42 23.41
Rock Specimen 6 9.15 9.17
Rock Specimen 7 13.47 13.52
Rock Specimen 8 6.47 6.46
Rock Specimen 9 12.40 12.45
Rock Specimen 10 19.38 19.35

Use the paired t test at the 0.05 level of significance to
try to establish that the mean difference of the weights
obtained with the two scales is nonzero.

8.17 Refer to Example 14 concerning suspended solids in
effluent from a treatment plant. Take the square root of
each of the measurements and then take the difference.

(a) Construct a 95% confidence interval for μD.

(b) Conduct a level α = 0.05 level test of H0: μD =
0 against a two-sided alternative. Verify that the

conclusion is the same as that obtained from the
confidence interval.

(c) Make a dot diagram of these differences and de-
cide if the transformation has essentially removed
the outliers.

8.18 Refer to Example 14 concerning suspended solids in
effluent from a treatment plant. Take the natural loga-
rithm of each of the measurements and then take the
difference.

(a) Construct a 95% confidence interval for μD.

(b) Conduct a level α = 0.05 level test of H0: μD =
0 against a two-sided alternative. Verify that the
conclusion is the same as that obtained from the
confidence interval.

(c) Make a dot diagram of these differences and de-
cide if the transformation has essentially removed
the outliers.

8.19 A shoe manufacturer wants potential customers to
compare two types of shoes, one made of the current
PVC material X and one made of a new PVC material
Y . Shoes made of both are available. Each person, in a
sample of 52, is asked to wear one pair of each type for
a whole day. After a walk of 2 km, they are asked to
score that day’s pair on a scale of 1 to 10, with higher
scores being better. The differences in scores

(New PVC Y ) − (Current PVC X )

have mean 2.6 and variance 3.9. Construct a 90% con-
fidence interval for the mean difference.

8.20 Referring to Example 13, conduct a test to show
that the mean change μD is different from 0. Take
α = 0.05.

8.21 In a study of the effectiveness of physical exercise in weight reduction, a group of
16 persons engaged in a prescribed program of physical exercise for one month
showed the following results:

Weight before Weight after Weight before Weight after
(pounds) (pounds) (pounds) (pounds)

209 196 170 164
178 171 153 152
169 170 183 179
212 207 165 162
180 177 201 199
192 190 179 173
158 159 243 231
180 180 144 140

Use the 0.01 level of significance to test whether the prescribed program of exercise
is effective.
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8.5 Design Issues—Randomization and Pairing
Often, the experimenter can make the choice of which of the two treatments is ap-
plied to an individual unit. Then it is possible to conduct either an independent sam-
ples comparison or a matched pairs comparison of means. The method of assign-
ment of units to two groups or pairs can be crucial to the validity of the statistical
procedures for comparing the means of two populations. We first emphasize the im-
portance of randomization in the context of the independent samples design of a
comparative experiment.

Independent Samples Design: Randomization
In many comparative studies the investigator applies one or the other treatment to
an object we call an experimental unit. The method of assigning the treatments to
the experimental units can be crucial to the validity of the statistical procedures.
Suppose a chemist has a new formula for waterproofing that she applies to several
pairs of shoes that are almost like new. She also applies the old formula to several
pairs of scuffed shoes. At the end of a month, she will measure the ability of each
pair of shoes to withstand water. It doesn’t take a statistician to see that this is not a
good experimental design. The persons with scuffed shoes probably walk a lot more
and do so in all kinds of weather. These sources of variation could very well lead
to systematic biases that make the new formula seem better than the old even when
this is not the case. The pairs of shoes need to be assigned to the treatments with old
and new waterproofing formula in a random manner.

When possible, the n = n1 + n2 experimental units should be assigned at

random to the two treatments. This means that all
(

n
n1

)
possible selections of

n1 units to receive the first treatment are equally likely. Practically, the assignment
is accomplished by selecting n1 random integers between 1 and n. The correspond-
ing experimental units are assigned to the first treatment. Generally, a test will have
more power if the two sample sizes are equal.

In summary, we must actively assign treatments at random to experimental
units. This process is called randomization.

Randomization of treatments helps prevent uncontrolled sources of variation
from exerting a systematic influence on the responses.

Purpose of randomization

Matched Pairs Design: Pairing and Randomization
The object of pairing experimental units, according to a characteristic that is likely
to influence the response, is to eliminate this source of variation from the compari-
son. In the context of waterproofing for shoes, each person could have the old for-
mula on one shoe and the new formula on the other. Since the paired t analysis only
uses differences from the same pair, this experimental strategy should eliminate most
of the variation in response due to different terrain, distance covered, and weather
conditions.

Pairing according to some variable(s) thought to influence the response will re-
move the effect of that variable from analysis.
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Even after units are paired, there is a need for randomization. For each pair, a
fair coin should be flipped to assign the treatments. In the context of the waterproof-
ing example, the old formula could be applied to the right shoe if heads and left shoe
if tails. The new formula is applied to the other shoe. This randomization, restricted
to be within pairs, would prevent systematic influences such as those caused by the
fact that a majority of persons would tend to kick things with their right shoe.

Randomizing the assignment of treatments within a pair helps prevent any other
uncontrolled variables from influencing the responses in a systematic
manner.

Notice that in Example 12 the experimenter had no control over the before and
after. Many uncontrolled variables may also have changed over the course of the
experiment: fewer working hours due to strikes, phasing out of an old type of equip-
ment, etc. One of these could have been the cause for the improvement rather than
the safety program.

We pursue the ideas of randomization and blocking in Chapter 12. Our purpose
here was to show what practical steps can be taken to meet the idealistic assumptions
of random samples when comparing two treatments.

Exercises
8.22 An engineer wants to compare two busy hydraulic

belts by recording the number of finished goods that
are successfully transferred by the belts in a day. De-
scribe how to select 3 of the next 6 working days to try
Belt A. Belt B would then be tried on the other 3 days.

8.23 An electrical engineer has developed a modified cir-
cuit board for elevators. Suppose 3 modified circuit
boards and 6 elevators are available for a comparative
test of the old versus the modified circuit boards.

(a) Describe how you would select the 3 elevators in
which to install the modified circuit boards. The
old circuit boards will be installed in the other
3 elevators.

(b) Alternatively, describe how you would conduct a
paired comparison and then randomize within the
pair.

8.24 It takes an average of 30 classes for an instructor to
teach a civil engineering student probability. The in-
structor introduces a new software which they feel
will lead to faster calculations. The instructor intends
to teach 10 students with the new software and com-
pare their calculation times with those of 10 randomly
selected students taught with the old software. In order
to obtain 10 students from a class of 40 students, they
ask for volunteers. Why is this a bad idea?

8.25 How would you randomize, for a two sample test, if
50 cars are available for an emissions study and you
want to compare a modified air pollution device with
that used in current production?

Do’s and Don’ts

Do’s
1. When sample sizes are large, determine the limits of a 100(1 − α)% confi-

dence interval for the difference of means μ1 − μ2 as

x − y ± zα/2

√
s2
1

n1
+ s2

2
n2
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2. When each of the two samples are from normal populations having the
same variance, determine the limits of a 100(1 − α)% confidence interval
for the difference of means μ1 − μ2 as

x − y ± tα/2 sp

√
1
n1

+ 1
n2

where the pooled estimate of variance

s2
p = (n1 − 1) s2

1 + (n2 − 1) s2
2

(n1 − 1) + (n2 − 1)

and tα/2 is based on n1 + n2 − 2 degrees of freedom.

3. When analyzing data from a matched pair design, use the results for one
sample but applied to the differences from each matched pair. If the differ-
ence of paired measurements has a normal distribution, determine a
100(1 − α)% confidence interval for the mean difference μD as(

d − tα/2
sD√

n
, d + tα/2

sD√
n

)
where tα/2 is based on n − 1 degrees of freedom.

4. When comparing two treatments using the independent samples design,
randomly assign the treatments to groups whenever possible. With the
matched pair design, randomly assign the treatments within each pair.

Don’ts
1. Don’t pool the two sample variances s2

1 and s2
2 if they are very different. We

suggest a factor of 4 as being too different.

Review Exercises
8.26 With reference to Exercise 2.64, test that the mean

charge of the electron is the same for both tubes. Use
α = 0.05.

8.27 With reference to the previous exercise, find a 90%
confidence interval for the difference of the two
means.

8.28 Two adhesives for pasting plywood boards are to be
compared. 10 tubes are prepared using Adhesive I and
8 tubes are prepared using Adhesive II. Then 18 differ-
ent pairs of plywood boards are pasted together, one
tube per pair of boards.

(a) The response is the time in minutes for the boards
to stick together, and the summary statistics are

Sample Standard
size Mean deviation

Adhesive I 10 8.5 0.9
Adhesive II 8 9.25 2.6

Should you or should you not pool the estimates
of variance in order to conduct a test of hy-
potheses that is intended to show that there is
a difference in means? Explain how you would
proceed.

(b) Conduct the test for part (a) using α = 0.01.

(c) Describe how you would randomize the assign-
ment of adhesives when conducting this experi-
ment.

8.29 With reference to Example 2, Chapter 2, test that the
mean copper content is the same for both heats.

8.30 With reference to the previous exercise, find a 90%
confidence interval for the difference of the two
means.

8.31 Random samples are taken from two normal popula-
tions with σ1 = 9.6 and σ2 = 13.2 to test the null
hypothesis μ1 − μ2 = 41.2 against the alternative
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hypothesis μ1 − μ2 > 41.2 at the level of signifi-
cance α = 0.05. Determine the common sample size
n = n1 − n2 that is required if the probability of not
rejecting the null hypothesis is to be 0.08 when
μ1 − μ2 = 54.7.

8.32 With reference to Example 8, find a 90% confidence
interval for the difference of mean strengths of the
alloys

(a) using the pooled procedure;

(b) using the large samples procedure.

8.33 How would you randomize, for a two sample test, in
each of the following cases?

(a) Forty combustion engines are available for a speed
test and you want to compare a modified exhaust
valve with the regular valve.

(b) A new cold storage freezer will be compared with
the old. Twenty jugs of water are available for
freezing.

8.34 With reference to part (a) of Exercise 8.33, how would
you pair and then randomize for a paired test?

8.35 Two samples in C1 and C2 can be analyzed using the
MINITAB commands

Dialog box:

Stat > Basic Statistics > 2-Sample t
Pull down Each sample in its own column
Type C1 in Sample 1 and C2 in Sample 2.
Click Options and then Assume equal variances.
Click OK. Click OK.

If you do not click Assume equal variances, the
Smith-Satterthwaite test is performed.

The output relating to Example 8 is

TWO SAMPLE T FOR ALLOY 1 VS ALLOY 2
N MEAN STDEV SE MEAN

ALLOY 1 58 70.70 1.80 0.24
ALLOY 2 27 76.13 2.42 0.47

95 PCT C1 FOR MU ALLOY 1 − MU ALLOY 2:
(−6.36,−4.50)

T TEST MU ALLOY 1 = MU ALLOY 2 ( VS NE ):
T = −11.58 P = 0.000 DF = 83.0

Perform the test for the data in Exercise 8.11.

8.36 Refer to Example 13 concerning an array of sites that
smell toxic chemicals. When exposed to the common
manufacturing chemical Arsine, a product of arsenic
and acid, the change in the red component is measured
six times. (Courtesy of the authors)

0.10 −0.33 −1.12 −1.95 −3.63 −1.48

(a) Test, with α = 0.05, that the mean change μD is
different from 0.

(b) Obtain a 95% confidence interval for the mean
change μD.

8.37 Refer to Example 12 concerning the improvement in
lost worker-hours. Obtain a 90% confidence interval
for the mean of this paired difference.
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Table 8.1 Summary of the formulas for inferences about a mean (μ), or a difference of two means ( μ1 − μ2)

Confidence interval = Point estimator ± (Tabled value) (Estimated or true std. dev.)

Test statistic = Point estimator − Parameter value at H0 (null hypothesis)

(Estimated or true) std. dev. of point estimator

Single sample Independent samples Matched pairs

Normal with Normal Normal Normal for the
Population(s) General unknown σ σ1 = σ2 = σ σ1 �= σ2 General difference Di = Xi − Yi

Inference on Mean μ Mean μ μ1 − μ2 = δ μ1 − μ2 = δ μ1 − μ2 = δ μD

Sample(s) X1, . . . , Xn X1, . . . , Xn X1, . . . , Xn1

Y1, . . . ,Yn2

X1, . . . , Xn1

Y1, . . . ,Yn2

X1, . . . , Xn1

Y1, . . . ,Yn2

D1 = X1 − Y1
...

Dn = Xn − Yn

Sample size n
Large
n ≥ 30

n ≥ 2 n1 ≥ 2
n2 ≥ 2

n1 ≥ 2
n2 ≥ 2

n1 ≥ 30
n2 ≥ 30

n ≥ 2

Point estimator X X X − Y X − Y X − Y D = X − Y

Variance of point estimator
σ 2

n
σ 2

n
σ 2

(
1
n1

+ 1
n2

)
σ 2

1

n1
+ σ 2

2

n2

σ 2
1

n1
+ σ 2

2

n2

σ 2
D

n

Estimator
std. dev.

S√
n

S√
n

Sp

√
1
n1

+ 1
n2

√
S2

1

n1
+ S2

2

n2

√
S2

1

n1
+ S2

2

n2

SD√
n

Distribution Normal t with t with t with Normal t with
d.f. = n − 1 d.f. = n1 + n2 − 2 d.f. estimated† d.f. = n − 1

Test statistic
X − μ0

S/
√

n

X − μ0

S/
√

n

( X − Y ) − δ0

Sp

√
1
n1

+ 1
n2

( X − Y ) − δ0√
S2

1

n1
+ S2

2

n2

( X − Y ) − δ0√
S2

1

n1
+ S2

2

n2

D − μD,0

SD/
√

n

S2
p =

SD = sample std.
( n1 − 1 ) S2

1 + ( n2 − 1 ) S2
2

n1 + n2 − 2
dev. of the Di’s

†d.f. = [ ( s2
1 / n1 ) + ( s2

2 / n2 ) ]2 / [ ( n1 − 1 ) − 1 ( s2
1 / n1 )2 + ( n2 − 1 )−1 ( s2

2 / n2 )2 ]
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I n Chapters 7 and 8 we learned how to judge the size of the error in estimating a
population mean, how to construct confidence intervals for means, and how to per-
form tests of hypotheses about the means of one and of two populations. Very similar

methods apply to inferences about other population parameters.
In this chapter we shall concentrate on population variances, or standard deviations,

which are not only important in their own right, but which must sometimes be estimated
before inferences about other parameters can be made. Section 9.1 is devoted to the
estimation of σ 2 and σ , and Sections 9.2 and 9.3 deal with tests of hypotheses about
these parameters.

9.1 The Estimation of Variances
In the preceding chapters, there were several instances where we estimated a popu-
lation standard deviation by means of a sample standard deviation—we substituted
the sample standard deviation S for σ in the large sample confidence interval for μ

on page 230, in the large sample test concerning μ on page 252, and in the large
sample test concerning the difference between two means on page 270. There are
many statistical procedures in which S is thus substituted for σ , or S2 for σ 2.

Let

S2 =

n∑
i=1

( Xi − X )2

n − 1

be the sample variance, based on a random sample from any population, discrete or
continuous, having variance σ 2. It follows from Example 34 of Chapter 5 that the
mean of the sampling distribution of S2 is E(S2) = σ 2 whatever the value if σ 2.

The sample variance

S2 =

n∑
i=1

( Xi − X )2

n − 1
is an unbiased estimator of σ 2

Unbiased estimation of a
population variance

Although the sample variance is an unbiased estimator of σ 2, it does not follow
that the sample standard deviation is also an unbiased estimator of σ . In fact, it is not.
However, for large samples the bias is small and it is common practice to estimate
σ with s.
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Besides s, population standard deviations are sometimes estimated in terms of
the sample range R, which we defined in Section 2.6 as the largest value of a sample
minus the smallest. Given a random sample of size n from a normal population, it
can be shown that the sampling distribution of the range has the mean d2 σ and the
standard deviation d3 σ , where d2 and d3 are constants which depend on the size
of the sample. For n = 1, 2, . . . , and 10, their values are as shown in the following
table:

n 2 3 4 5 6 7 8 9 10

d2 1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.078

d3 0.853 0.888 0.880 0.864 0.848 0.833 0.820 0.808 0.797

Thus, R/d2 is an unbiased estimate of σ , and for very small samples, n ≤ 5, it
provides nearly as good an estimate of σ as does s. As the sample size increases,
it becomes more efficient to use s instead of R/d2. Nowadays, the range is used to
estimate σ primarily in problems of industrial quality control, where sample sizes
are usually small and computational ease is of prime concern. This application will
be discussed in Chapter 15, where we shall need the above values of the constant d3.

EXAMPLE 1 Using the sample range to estimate σ

With reference to Example 7, Chapter 8, use the range of the first sample to estimate
σ for the resiliency modulus of recycled materials from the first location.

Solution Since the smallest value is 604, the largest value is 707, and n = 6 so that d2 =
2.534, we get

R
d2

= 707 − 604
2.534

= 40.6

Note that this is moderately close to the sample standard deviation s = 34.7. j

In most practical applications, interval estimates of σ or σ 2 are based on the
sample standard deviation or the sample variance. For random samples from normal
populations, we make use of Theorem 6.5, according to which

( n − 1 ) S2

σ 2

is a random variable having the chi square distribution with n − 1 degrees of
freedom.

As illustrated in Figure 9.1, with χ2
α as defined on page 208, the two quantities

χ2
1 −α / 2 and χ2

α / 2 cut off area α / 2 in the left and right tail, respectively. We can

then assert that, whatever the value of σ 2,

P

(
χ2

1−α/2 <
( n − 1 ) S2

σ 2
< χ2

α/2

)
= 1 − α

Once the data have been obtained, we make the same assertion with (1 − α)100%
confidence. Solving each inequality for σ 2, we obtain the confidence interval:
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Figure 9.1
Two percentiles of the χ2

distribution

a/2 a/2

0 a/2χ2

χ2

]a/21
χ2

( n − 1 ) s2

χ2
α/2

< σ 2 <
( n − 1 ) s2

χ2
1−α/2

Confidence interval for σ2

If we take the square root of each member of this inequality, we obtain a correspond-
ing (1 − α)100% confidence interval for σ .

√√√√ (n − 1 ) s2

χ2
α / 2

< σ <

√√√√ (n − 1 ) s2

χ2
1 −α / 2

Confidence interval for σ

Note that confidence intervals for σ or σ 2 obtained by taking equal tails, as
in the above formulae, do not actually give the narrowest confidence intervals, be-
cause the chi square distribution is not symmetrical. (See Exercise 7.26.) Neverthe-
less, they are used in most applications in order to avoid fairly complicated calcula-
tions. For moderate degrees of freedom, the choice of equal tails is inconsequential.

EXAMPLE 2 A 95% confidence interval for the standard deviation σ of weight
Referring to Example 8, Chapter 5, and the n = 80 measurements of the weight of
cheese, construct a 95% confidence interval for the population standard deviation σ .

Solution From Example 8, it is very reasonable to assume that the population is normal.
With 80 − 1 = 79 degrees of freedom, we could interpolate in Table 5W but

computer calculations first give χ2
.975 = 56.309 and χ2

.025 = 105.473. and then
s = 9.583. Substituting into the formula for the confidence interval for σ 2 yields

( 79 ) ( 9.583 )2

105.473
< σ 2 <

( 79 ) ( 9.583 )2

56.309

or

68.8 < σ 2 < 128.8

and, taking the square root,

8.29 < σ < 11.35



Sec 9.2 Hypotheses Concerning One Variance 293

This means we are 95% confident that the interval from 8.29 to 11.35 pounds
contains σ , the population standard deviation of the weight of cheese. j

The method which we have discussed applies only to random samples from
normal populations (or at least to random samples from populations which can be
approximated closely with normal distributions).

Exercises
9.1 Use the data of Exercise 7.14 to estimate σ for the key

performance indicator in terms of

(a) the sample standard deviation;

(b) the sample range.

Compare the two estimates by expressing their differ-
ence as a percentage of the first.

9.2 With reference to Example 7, Chapter 8, use the range
of the second sample to estimate σ for the resiliency
modulus of recycled materials from the second loca-
tion. Compare the result with the standard deviation
of the second sample.

9.3 Use the data of part (a) of Exercise 8.13 to estimate
σ for the Brinell hardness of Alloy 1 in terms of

(a) the sample standard deviation;

(b) the sample range.

Compare the two estimates by expressing their differ-
ence as a percentage of the first.

9.4 With reference to Exercise 7.56, construct a 95% con-
fidence interval for the variance of the yield.

9.5 With reference to Exercise 7.63, construct a 99%
confidence interval for the variance of the population
sampled.

9.6 Use the value s obtained in Exercise 9.3 to construct
a 98% confidence interval for σ , measuring the actual
variability in the hardness of Alloy 1.

9.2 Hypotheses Concerning One Variance
In this section we shall consider the problem of testing the null hypothesis that a
population variance equals a specified constant against a suitable one-sided or two-
sided alternative; that is, we shall test the null hypothesis σ 2 = σ 2

0 against one of
the alternatives σ 2 < σ 2

0 , σ 2 > σ 2
0 , or σ 2 �= σ 2

0 . Tests like these are important
whenever it is desired to control the uniformity of a product or an operation. For
example, suppose that a silicon disk or wafer is to be cut into small squares, or dice,
to be used in the manufacture of a semiconductor device. Since certain electrical
characteristics of the finished device may depend on the thickness of the die, it is
important that all dice cut from a wafer have approximately the same thickness.
Thus, not only must the mean thickness of a wafer be kept within specifications, but
also the variation in thickness from location to location on the wafer.

Using the same sampling theory as on page 291, we base such tests on the fact
that for a random sample from a normal population with the variance σ 2

0

Statistic for test
concerning variance
(normal population)

χ2 = ( n − 1 ) S2

σ 2
0

is a random variable having the chi square distribution with n−1 degrees of freedom.
The critical regions for such tests are as shown in the following table:
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Level α rejection regions for testing σ2 = σ2
0

(normal population)
Alternative hypothesis Reject null hypothesis if:

σ 2 < σ 2
0 χ2 < χ2

1−α

σ 2 > σ 2
0 χ2 > χ2

α

σ 2 �= σ 2
0 χ2 < χ2

1−α/2
or χ2 > χ2

α/2

where χ2
α is as defined on page 208. Note that equal tails are used for the two-

sided alternative, although this is actually not the best procedure since the chi square
distribution is not symmetrical. For moderate degrees of freedom, the two tests are
nearly the same.

EXAMPLE 3 Testing hypotheses concerning a standard deviation
The lapping process which is used to grind certain silicon wafers to the proper
thickness is acceptable only if σ , the population standard deviation of the thick-
ness of dice cut from the wafers, is at most 0.50 mil. Use the 0.05 level of signif-
icance to test the null hypothesis σ = 0.50 against the alternative hypothesis σ >

0.50, if the thicknesses of 15 dice cut from such wafers have a standard deviation
of 0.64 mil.

Solution 1. Null hypothesis: σ = 0.50
Alternative hypothesis: σ > 0.50

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if χ2 > 23.685, the value of χ2
0.05 for

14 degrees of freedom, where

χ2 = ( n − 1 ) S2

σ 2
0

4. Calculations:

χ2 = ( 15 − 1 )( 0.64 )2

( 0.50 )2
= 22.94

5. Decision: Since χ2 = 22.94 does not exceed 23.685, the null hypothesis cannot
be rejected; even though the sample standard deviation exceeds 0.50, there is
not sufficient evidence to conclude that the lapping process is unsatisfactory.

The rejection region and P-value are shown in Figure 9.2.

Figure 9.2
The rejection region and
P-value for Example 3 0 23.68

0.061
χ2

j

Statistical software is readily available to obtain other values of χ2
α . See Exer-

cise 9.23 for the MINITAB and Example 8, Chapter 6 for the R commands.
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9.3 Hypotheses Concerning Two Variances
The two sample t test described in Section 8.2 requires that the variances of the
two populations sampled are equal. In this section we describe a test of the null hy-
pothesis σ 2

1 = σ 2
2 , which applies to independent random samples from two normal

populations. It must be used with some discretion as it is very sensitive to departures
from this assumption.

If independent random samples of size n1 and n2 are taken from normal popu-
lations having the same variance, it follows from Theorem 6.6 that

F = S2
1

S2
2

Statistic for test of
equality of two variances

(normal populations)

is a random variable having the F distribution with n1 − 1 and n2 − 1 degrees
of freedom. Thus, if the null hypothesis σ 2

1 = σ 2
2 is true, the ratio of the sample

variances S2
1 and S2

2 provides a statistic on which tests of the null hypothesis can
be based.

The critical region for testing the null hypothesis σ 2
1 = σ 2

2 against the alterna-
tive hypothesis σ 2

1 >σ 2
2 is F > Fα , where Fα is as defined on page 209. Similarly,

the critical region for testing the null hypothesis against the alternative hypothesis
σ 2

1 < σ 2
2 is F < F1−α, and this causes some difficulties since Table 6W only con-

tains values corresponding to right-hand tails of α = 0.05 and α = 0.01. However,
we can use the reciprocal of the original test statistic and make use of the relation

F1−α (ν1, ν2) = 1
Fα (ν2, ν1)

first given on page 209. Thus, we base the test on the statistic F = S2
2/S2

1 and the
critical region for testing the null hypothesis σ 2

1 = σ 2
2 against the alternative hy-

pothesis σ 2
1 < σ 2

2 becomes F > Fα, where Fα is the appropriate critical value of F
for n2 − 1 and n1 − 1 degrees of freedom.

For the two-sided alternative σ 2
1 �= σ 2

2 , the critical region is F < F1−α/2 or
F > Fα/2, where F = S2

1/S2
2 and the degrees of freedom are n1 − 1 and n2 − 1. In

practice, we modify this test as in the preceding paragraph, so that we can again use
the table of F values corresponding to right-hand tails of α = 0.05 and α = 0.01. To
this end we let S2

M represent the larger of the two sample variances, S2
m the smaller,

and we write the corresponding sample sizes as nM and nm. Thus, the test statistic
becomes F = S2

M/S2
m and the critical region is as shown in the following table:

Level α rejection regions for testing σ2
1 = σ2

2
(normal populations)

Alternative Test
hypothesis statistic Reject null hypothesis if:

σ 2
1 < σ 2

2 F = S2
2

S2
1

F > Fα ( n2 − 1, n1 − 1 )

σ 2
1 > σ 2

2 F = S2
1

S2
2

F > Fα ( n1 − 1, n2 − 1 )

σ 2
1 �= σ 2

2 F = S2
M

S2
m

F > Fα/2( nM − 1, nm − 1 )
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The level of significance of these tests is α and the figures indicated in parentheses
are the respective degrees of freedom. Note that, as in the chi square test, equal tails
are used in the two-tailed test as a matter of mathematical convenience, even though
the F distribution is not symmetrical.

EXAMPLE 4 A one-sided F test of the equality of two variances
It is desired to determine whether there is less variability in the silver plating done
by Company 1 than in that done by Company 2. If independent random samples of
size 12 of the two companies’ work yield s1 = 0.035 mil and s2 = 0.062 mil, test
the null hypothesis σ 2

1 = σ 2
2 against the alternative hypothesis σ 2

1 < σ 2
2 at the 0.05

level of significance.

Solution 1. Null hypothesis: σ 2
1 = σ 2

2
Alternative hypothesis: σ 2

1 < σ 2
2

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if F > 2.82, the value of F0.05 for 11 and
11 degrees of freedom, where

F = S2
2

S2
1

4. Calculations:

F = ( 0.062 )2

( 0.035 )2
= 3.14

5. Decision: Since F = 3.14 exceeds 2.82, the null hypothesis must be rejected; at
level α = 0.05. The P-value 0.0352 is shown in Figure 9.3 along with the
rejection region. The evidence against equality of variances, and in favor of
Company 1’s variance being smaller, is moderately strong. The data support the
contention that the plating done by Company 1 is less variable than that done by
Company 2.

Figure 9.3
The rejection region and
P-value for Example 4 0 3.14

0.0352
F

j

EXAMPLE 5 A two-sided test for the equality of two variances
Refer to Example 7, Chapter 8, dealing with the strength of recycled materials for
use in pavements. Use the 0.02 level of significance to test for evidence that the
variances are different.

Solution 1. Null hypothesis: σ 2
1 = σ 2

2
Alternative hypothesis: σ 2

1 �= σ 2
2

2. Level of significance: α = 0.02
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3. Criterion: Reject the null hypothesis if F > 10.97, the value of F0.01 for 5 and
5 degrees of freedom, where

F = S2
2

S2
1

since s2
1 = 1277.87 is less than s2

2 = 3739.87.

4. Calculations:

F = 3739.87
1277.87

= 2.93

5. Decision: Since F = 2.93 does not exceed 10.97, the null hypothesis cannot be
rejected at level of significance 0.02. However, failure to reject the null
hypothesis is not the same as showing it holds true. j

To obtain confidence intervals for the ratio of variances, we need a slightly more
general sampling distribution. From the single sample result,

( n1 − 1 ) S2
1

σ 2
1

has a chi square distribution with n1 − 1 degrees of freedom

( n2 − 1 ) S2
2

σ 2
2

has a chi square distribution with n2 − 1 degrees of freedom

and these two random quantities are independent since the samples on which they
are based are independent. Consequently,

S2
1/σ 2

1

S2
2/σ 2

2

= chi square/degrees of freedom
chi square/degrees of freedom

= F

where the right-hand side has an F distribution with ( n1 − 1, n2 − 1 ) degrees of
freedom according to the representation on page 211. The 100 (1 − α)% confidence
intervals use the two percentiles illustrated in Figure 9.4.

Figure 9.4
Two percentiles of the
F ( n1 − 1 , n2 − 1 )
distribution

a/2 a/2

0
]a/21F

F

a/2F

Then, prior to sampling, we can assert that

1 − α = P

(
F1−α/2 ( n1 − 1, n2 − 1 ) <

S2
1

S2
2

σ 2
2

σ 2
1

< Fα/2 ( n1 − 1, n2 − 1 )

)
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Multiplying by S2
2/S2

1, we obtain a confidence interval in terms of the observed
s2
1 and s2

2.

Confidence interval for
σ2

2/σ2
1 normal populations

F1−α/2 ( n1 − 1, n2 − 1 )
s2
2

s2
1

<
σ 2

2

σ 2
1

< Fα/2 ( n1 − 1, n2 − 1 )
s2
2

s2
1

EXAMPLE 6 Confidence interval for ratio of variances of yield
Refer to Example 10 on page 277 of making green gasoline from sucrose. The equal
sample sizes are n1 = n2 = 9, s2

1 = 0.4548, and s2
2 = 0.1089. Obtain a 98%

confidence interval for σ 2
2 /σ 2

1 .

Solution Since the degrees of freedom for the F are (n1−1, n2−1) = (8, 8) and α/2 = 0.01,
we find F0.01 = 6.03 and F0.99 = 1/F0.01 = 1/6.03. The 98% confidence interval
for σ 2

2 /σ 2
1 becomes(

1
6.03

0.1089
0.4548

, 6.03
0.1089
0.4548

)
or ( 0.04, 1.44 )

The wideness of the interval illustrates the large amount of variability in variances
when sample sizes are small. The second variance σ 2

2 could be as small as one-
twenty-fifth of σ 2

1 or it could be larger than σ 2
1 . j

Statistical software is readily available to obtain other values of Fα ( ν1, ν2 ). See
Exercise 9.23 for the MINITAB and Appendix C for the R commands.

Caution
In marked contrast to the procedures for making inferences about μ, the validity of
the procedures in this chapter depends rather strongly on the assumption that the
underlying population is normal. The sampling variance of S2 can change when the
population departs from normality by having, for instance, a single long tail. It can
be shown that, when the underlying population is normal, the sampling variance of
S2 is 2σ 4/( n − 1 ). However, for nonnormal distributions, the sampling variance of
S2 depends not only on σ 2 but also on the population third and fourth moments, μ3
and μ4 (see page 104). Consequently, it could be much larger than 2 σ 4/( n − 1 ).
This behavior completely invalidates any tests of hypothesis or confidence intervals
for σ 2. We say that these procedures for making inferences about σ 2 are not robust
with respect to deviations from normality.

Exercises
9.7 With reference to Exercise 7.62, test the null hypoth-

esis σ = 600 psi for the compressive strength of the
given kind of steel against the alternative hypothesis
σ > 600 psi. Use the 0.05 level of significance.

9.8 If 15 determinations of the purity of gold have a stan-
dard deviation of 0.0015, test the null hypothesis that
σ = 0.002 for such determinations. Use the alterna-
tive hypothesis σ �= 0.002 and the level of significance
α = 0.05.

9.9 With reference to Exercise 8.5, test the null hypoth-
esis that σ = 0.75 hours for the time that is re-
quired for repairs of the second type of bulldozer
against the alternative hypothesis that σ > 0.75
hours. Use the 0.10 level of significance and assume
normality.

9.10 Use the 0.01 level of significance to test the null hy-
pothesis that σ = 0.015 inch for the diameters of
certain bolts against the alternative hypothesis that
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σ �= 0.015 inch, given that a random sample of size
15 yielded s2 = 0.00011.

9.11 Playing 10 rounds of golf on his home course, a golf
professional averaged 71.3 with a standard deviation
of 2.64.

(a) Test the null hypothesis that the consistency of his
game on his home course is actually measured by
σ = 2.40, against the alternative hypothesis that
he is less consistent. Use the level of significance
0.05. Assume that the distribution of his score, al-
though discrete, is approximately normal.

(b) If the distribution of his scores has a long right-
hand tail, are your calculations in part (a) valid?
Explain.

9.12 The fire department of a city wants to test the null hy-
pothesis that σ = 10 minutes for the time it takes a
fire truck to reach a fire site against the alternative hy-
pothesis σ �= 10 minutes. What can it conclude at the
0.05 level of significance if a random sample of size
n = 48 yields s = 9.5 minutes?

9.13 Explore the use of the two sample t test in
Exercise 8.9 by testing the null hypothesis that the two

populations have equal variances. Use the 0.02 level of
significance.

9.14 With reference to Exercise 8.10, use the 0.10 level of
significance to test the assumption that the two popu-
lations have equal variances.

9.15 Two different computer processors are compared by
measuring the processing speed for different opera-
tions performed by computers using the two proces-
sors. If 12 measurements with the first processor had a
standard deviation of 0.1 GHz and 16 measurements
with the second processor had a standard deviation
of 0.15 GHz, can it be concluded that the processing
speed of the second processor is less uniform? Use a
0.05 level of significance. What assumptions must be
made as to how the two samples are obtained?

9.16 With reference to Exercise 8.6, where we had n1 =
40, n2 = 30, s1 = 15.2, and s2 = 18.7, use the 0.05
level of significance to test the claim that there is a
greater variability in the number of cars which make
left turns approaching from the south between 4 p.m.
and 6 p.m. at the second intersection. Assume the dis-
tributions are normal.

Do’s and Don’ts

Do’s
1. Before applying the procedures in this chapter, always plot the data to look

for outliers or presence of a long tail. Lack of normality can seriously affect
tests of hypotheses and confidence intervals for variances.

Don’ts
1. Don’t routinely calculate confidence intervals for variances or standard

deviations using the formulas in this chapter. The confidence levels can
deviate substantially from their specified level, say 95%, because of non-
normality.

Review Exercises
9.17 With reference to Example 20, Chapter 7, construct a

95% confidence interval for the true standard deviation
of the lead content.

9.18 If 44 measurements of the refractive index of a dia-
mond have a standard deviation of 2.419, construct a
95% confidence interval for the true standard devia-
tion of such measurements. What assumptions did you
make about the population?

9.19 Past data indicate that the variance of measure-
ments made on sheet metal stampings by experienced

quality-control inspectors is 0.18 (inch)2. Such mea-
surements made by an inexperienced inspector could
have too large a variance (perhaps because of inability
to read instruments properly) or too small a variance
(perhaps because unusually high or low measure-
ments are discarded). If a new inspector measures
101 stampings with a variance of 0.13 (inch)2, test
at the 0.05 level of significance whether the inspec-
tor is making satisfactory measurements. Assume
normality.
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9.20 Thermal resistance tests on 13 samples of Enterococ-
cus hirae, present in milk, yield the following results
in degrees Celsius:

65.5 65.8 68.1 67.9 66.6 66.2 65.7
67.8 65.4 67.5 66.8 65.2 67.8

Another set of seven samples of milk was tested after
pasteurization to determine whether thermal resistance
had been increased by pasteurization of milk, with the
following results:

72.5 77.1 74.8 73.9 76.5 74.3 77.7

Use the 0.02 level of significance to test whether it is
reasonable to assume that the two samples come from
populations with equal variances.

9.21 With reference to the Example 8, Chapter 8, test the
equality of the variances for the two aluminum alloys.
Use the 0.02 level of significance.

9.22 With reference to the Example 8, Chapter 8, find a 98%
confidence interval for the ratio of variances of the two
aluminum alloys.

9.23 MINITAB calculation of tα, χ2
ν , and Fα

The software finds percentiles, so to obtain Fα , we first convert from α to 1 − α. We
illustrate with the calculation of F0.025(4, 7), where 1 − 0.025 = 0.975.

Dialog box:

Calc> Probability distributions > F. Choose Inverse cumulative probability.
Type 4 in Numerator degrees of freedom, 7 in Denominator degrees of freedom.
Choose Input constant and type .975. Click OK.

Output:

F distribution with 4 DF in numerator and 7 DF in denominator
P( X <= x ) x

0.975 5.52259

In the first line, you may instead select Chi square or t and then there is only one
Degrees of Freedom in the second line.

Obtain F0.975(7, 4) and check that it equals 1/F0.025(4, 7) = 1/5.52259.

9.24 A bioengineering company manufactures a device for externally measuring blood
flow. Measurements of the electrical output (milliwatts) on a sample of 16 units
yields the data

11 1 5 3 2 23 37 5
18 7 1 11 2 2 30 3

plotted in Figure 9.5.

(a) Should you report the 95% confidence interval for σ using the formula in this
chapter? Explain.

(b) What is your answer to part (a) if you first take natural logarithms and then
calculate the confidence interval for the variance of ln (output)?

(c) Does your conclusion in part (b) readily imply anything about variance on the
original scale? Explain.

Figure 9.5
Output in milliwatts

0 10 20 30 40
Output (mW)
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Many engineering problems deal with proportions, percentages, or probabilities.
In acceptance sampling we are concerned with the proportion of defectives in a
lot, and in life testing we are concerned with the percentage of certain compo-

nents which will perform satisfactorily during a stated period of time, or the probability
that a given component will last at least a given number of hours. It should be clear from
these examples that problems concerning proportions, percentages, or probabilities are
really equivalent; a percentage is merely a proportion multiplied by 100, and a probability
may be interpreted as a proportion in a long series of trials.

Section 10.1 deals with the estimation of proportions; Section 10.2 deals with tests
concerning proportions; Section 10.3 deals with tests concerning two or more propor-
tions. In Section 10.4 we shall learn how to analyze data tallied into a two-way classifi-
cation. In Section 10.5 we shall learn how to judge whether differences between an ob-
served frequency distribution and corresponding expectations can be attributed to chance.

10.1 Estimation of Proportions
The information that is usually available for the estimation of a proportion is the
number of times, X , that an appropriate event occurs in n trials, occasions, or ob-
servations. The point estimator of the population proportion, itself, is usually the
sample proportion X

n , namely, the proportion of the time that the event actually
occurs. If the n trials satisfy the assumptions underlying the binomial distribution
listed on page 98, we know that the mean and the standard deviation of the number
of successes are given by np and

√
np(1 − p). If we divide both of these quantities

by n, we find that the mean and the standard deviation of the proportion of successes
(namely, of the sample proportion) are given by

np
n

= p and

√
np(1 − p)

n
=

√
p(1 − p)

n
The first of these results shows that the sample proportion is an unbiased estimator
of the binomial parameter p, namely, of the true proportion we are trying to estimate
on the basis of a sample.

Parameter: Population proportion p

Data: X = number of times event occurs in n trials.

Estimator: p̂ = X
n

Estimate of standard error:

√
p̂ ( 1 − p̂ )

n
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EXAMPLE 1 Point estimate of a binomial proportion p
An engineering firm responsible for maintaining and improving the performance of
thousands of wind turbines is asked to check on the sound levels. The purpose is to
determine the proportion that currently would not meet proposed new sound level
restrictions.

A random selection of n = 55 wind turbines reveals that 8 operate too loudly
according to the proposed new restrictions. Obtain a point estimate of the proportion
of their wind turbines that do not meet specifications.

Solution The point estimate is

p̂ = X
n

= 8
55

= 0.1455

and the estimate of its standard error is√
p̂ ( 1 − p̂ )

n
=

√
0.1455 ( 1 − 0.1455)

55
= 0.0475

The point estimate is p̂ = 0.146 with estimated standard error 0.048. j

In the construction of confidence intervals for the binomial parameter p, we
meet several obstacles. First, since x and

x
n

are values of discrete random variables,
it may be impossible to get an interval for which the degree of confidence is exactly
(1 − α)100%. Second, the standard deviation of the sampling distribution of the
number of successes, as well as that of the proportion of successes, involves the
parameter p that we are trying to estimate.

A Conservative Confidence Interval of a Proportion
To construct a conservative confidence interval for p having approximately the
degree of confidence (1 − α)100%, we first determine for a given set of values of p
the corresponding quantities x1 and x2, where x1 is the largest integer for which the
binomial probabilities b(k; n,p) = P[X = k] satisfy

x1∑
k=0

b ( k; n, p ) ≤ α

2

while x2 is the smallest integer for which
n∑

k=x2

b ( k; n, p ) ≤ α

2

To emphasize the point that x1 and x2 depend on the value of p, we shall write these
quantities as x1(p) and x2(p).

We can then assert, with a probability of at least 1 − α, but approximately 1 − α,
that

P
(

x1(p) ≤ X ≤ x2(p)
) ≥ 1 − α

where the value of p is the one that produces the binomial count X .
A confidence interval for p results from changing the inequalities to statements

about a random interval that covers the true unknown p. To indicate what is
involved in this step, we first give a graphical approach. However, we then eliminate
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the graphical step by recommending the use of computer software which works for
almost any sample size. Suppose, for instance, that we want to find approximate
95% confidence intervals for p for samples of size n = 20. Using Table 1 at the end
of the book, we first determine x1 and x2 for selected values of p such that x1 is the
largest integer for which

B ( x1; 20, p ) ≤ 0.025

while x2 is the smallest integer for which

1 − B ( x2 − 1; 20, p ) ≤ 0.025

Letting p equal 0.1, 0.2, . . . , and 0.9, we thus obtain the values shown in the
following table:

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x1 − 0 1 3 5 7 9 11 14

x2 6 9 11 13 15 17 19 20 −

Plotting the points with coordinates p and x(p) as in Figure 10.1, and drawing
smooth curves, one through the x1 points and one through the x2 points, we can now
“solve” for p. For any given value of x we can obtain approximate 95% confidence
limits for p by going horizontally to the two curves and marking off the correspond-
ing values of p. (See Figure 10.1.) Thus, for x = 4 we obtain the approximate 95%
confidence interval

0.06 < p < 0.45

We again emphasize that this procedure is conservative. Before the count X
is observed, the probability is at least ( 1 − α ) that the interval will cover p. For
instance, with α = 0.95, n = 20, and p = .3, we find B(1; 20 .3 ) = 0.0076 and
1 − B(10; 20 .3 ) = 1 − 0.9829 = 0.0171 so that

P(1 < X < 11) = B(10; 20.3) − B(1; 20.3) = 0.9829 − 0.0076 = 0.9753

Figure 10.1
95% confidence intervals for
proportions (n = 20)
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which is somewhat larger than 0.95 With the aid of a computer software, this confi-
dence interval is easily obtained for almost any sample size n.

EXAMPLE 2 Conservative 95% confidence interval for binomial proportion p
Refer to Example 1 where 8 out of 55 wind turbines were too noisy according to new
restricted guidelines. Using computer software (see Exercise 10.13) obtain the 95%
conservative confidence interval for the proportion of all wind turbines managed by
the company that are too noisy.

Solution A computer calculation (see Exercise 10.13) gives

CI for One Proportion

Sample X N Sample p 95% CI
1 8 55 0.145455 (0.064951, 0.266632)

We are 95% confident that for proportion p of wind turbines that are too noisy is
between 0.065 and 0.267. The larger values in this interval suggest their could be a
major problem with noise.

[ Using R: (a) binom.confint( 8, 55, conf.level=0.95) ] j

A Large Sample Confidence Interval for a Proportion
On page 149 we gave the general rule of thumb that the normal distribution provides
a good approximation to the binomial distribution when np and n(1 − p) are both
greater than 15. Thus, for n = 50 the normal curve approximation may be used if it
can be assumed that p lies between 0.30 and 0.70; for n = 200 it may be used if it
can be assumed that p lies between 0.075 and 0.925; and so forth. This is what we
shall mean here, and later in this chapter, by “n being large.”

When n is large, we can construct approximate confidence intervals for the bi-
nomial parameter p by using the normal approximation to the binomial distribution.
Accordingly, we can assert that approximately

P

(
−zα/2 <

X − np√
np ( 1 − p)

< zα/2

)
= 1 − α

Solving this quadratic inequality for p, we can obtain a corresponding set of approx-
imate confidence limits for p in terms of the observed value x (see Exercise 10.15),
but since the necessary calculations are complex, we shall make the further approx-

imation of substituting
x
n

for p in
√

np ( 1 − p). This yields

Large sample confidence
interval for p

x
n

− zα/2

√√√√ x
n

(
1 − x

n

)
n

< p <
x
n

+ zα/2

√√√√ x
n

(
1 − x

n

)
n

where the degree of confidence is (1 − α)100%.

EXAMPLE 3 A large sample 95% confidence interval for p
If x = 36 of n = 100 persons interviewed are familiar with the tax incentives for
installing certain energy-saving devices, construct a 95% confidence interval for the
corresponding true proportion.
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Solution Substituting

x
n

= 36
100

= 0.36

and zα/2 = 1.96 into the above formula, we get

0.36 − 1.96

√
(0.36)(0.64)

100
< p < 0.36 + 1.96

√
(0.36)(0.64)

100

or

0.266 < p < 0.454

We are 95% confident that the population proportion of persons familiar with
the tax incentives, p, is contained in the interval from 0.266 to 0.454. Note that if
we had used the computer calculation in Exercise 10.13, we would have obtained

0.27 < p < 0.46 j

The magnitude of the error we make when we use
X
n

as an estimator of p is
given by ∣∣∣∣ X

n
− p

∣∣∣∣
Again using the normal approximation, we can assert that the

P

(∣∣∣∣ X
n

− p

∣∣∣∣ ≤ zα/2

√
p ( 1 − p)

n

)
= 1 − α

Namely, with probability 1 − α, the error will be at most

zα/2

√
p ( 1 − p)

n

Maximum error of
estimate E = zα/2

√
p ( 1 − p)

n

With the observed value
x
n

substituted for p, we obtain an estimate of E.

EXAMPLE 4 An estimate of the maximum error
In a sample survey conducted in a large city, 136 of 400 persons answered yes to the
question of whether their city’s public transportation is adequate. With 99% confi-
dence, what can we say about the maximum error, if

x
n

= 136
400

= 0.34

is used as an estimate of the corresponding true proportion?
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Solution Substituting
x
n

= 0.34 and zα/2 = 2.575 into the above formula, we estimate that
the maximum error is at most

Ê = 2.575

√
(0.34)(0.66)

400
= 0.061 j

The preceding formula for E can also be used to determine the sample size that
is needed to attain a desired degree of precision. Solving for n, we get

Sample size determination n = p (1 − p)
[ zα/2

E

]2

but this formula cannot be used as it stands unless we have some information about
the possible size of p (on the basis of collateral data, say a pilot sample). If no such
information is available, we can make use of the fact that p(1 − p) is at most 1

4 ,
corresponding to p = 1

2 , as can be shown by the methods of elementary calculus. If
a range for p is known, the value closest to 1

2 should be used.
Thus, if

Sample size (p unknown) n = 1
4

[ zα/2

E

]2

we can assert with a probability of at least 1 − α that the error in using
X
n

as an

estimate of p will not exceed E. Once the data have been obtained, we will be able
to assert with at least (1 − α)100% confidence that the error does not exceed E.

EXAMPLE 5 Selecting a sample size for estimating a proportion
Suppose that we want to estimate the true proportion of defectives in a very large
shipment of adobe bricks, and that we want to be at least 95% confident that the
error is at most 0.04. How large a sample will we need if

(a) we have no idea what the true proportion might be;

(b) we know that the true proportion does not exceed 0.12?

Solution (a) Using the second of the two formulas for the sample size, we get

n = 1
4

[
1.96
0.04

]2
= 600.25

or n = 601 rounded up to the nearest integer.

(b) Using the first of the two formulas for the sample size with p = 0.12 (the
possible value closest to p = 1

2 ), we get

n = (0.12)(0.88)
[

1.96
0.04

]2
= 253.55

or n = 254 rounded up to the nearest integer. This serves to illustrate how
some collateral information about the possible size of p can substantially
reduce the size of the required sample. j
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Exercises
10.1 In a random sample of 150 complaints filed against a

construction company for mixing excess sand in their
concrete mixture, 95 complaints showed that the pro-
portion of sand in the mix exceeded 75 percent. Con-
struct a 90% confidence interval for the true proportion
of complaints filed against this construction company
where the proportion of sand exceeded 75 percent, us-
ing the large sample confidence interval formula.

10.2 With reference to Exercise 10.1, what can we say with
95% confidence about the maximum error if we use the
sample proportion as an estimate of the true proportion
of complaints filed against this construction company
where the proportion of sand exceeds 75 percent?

10.3 In a random sample of 400 industrial accidents, it was
found that 231 were due at least partially to unsafe
working conditions. Construct a 99% confidence in-
terval for the corresponding true proportion using the
large sample confidence interval formula.

10.4 With reference to Exercise 10.3, what can we say with
95% confidence about the maximum error if we use the
sample proportion to estimate the corresponding true
proportion?

10.5 In a random sample of 140 observations of workers
on a site, 25 were found to be idle. Construct a 99%
confidence interval for the true proportion of workers
found idle, using the large sample confidence interval
formula.

10.6 In an experiment, 85 of 125 processors were observed
to process data at a speed of 4,700 MIPS. If we esti-
mate the corresponding true proportion as 85

125 = 0.68,
what can we say with 99% confidence about the max-
imum error?

10.7 Among 100 fish caught in a large lake, 18 were inedi-
ble due to the pollution of the environment. If we use
18

100 = 0.18 as an estimate of the corresponding true
proportion, with what confidence can we assert that
the error of this estimate is at most 0.065?

10.8 New findings suggest many persons possess symp-
toms of motion sickness after watching a 3D movie.
One scientist administered a questionnaire to n = 451
adults after they watched a 3D movie of their choice.
Based on these self-reported results, 247 are deter-
mined to have some motion sickness.
(Source: A. Solimini (2013) Are there side effects to watching
3D movies? A prospective crossover observational study on vi-
sually induced motion sickness, PLOS ONe, 8 (2), 1–8, e56160)

Find a 98% confidence interval for the proportion
of adults who would have some motion sickness after
watching a 3D movie.

10.9 What is the size of the smallest sample required to esti-
mate an unknown proportion of customers who would
pay for an additional service, to within a maximum er-
ror of 0.06 with at least 95% confidence?

10.10 With reference to Exercise 10.9, how would the re-
quired sample size be affected if it is known that the
proportion to be estimated is at least 0.75?

10.11 Suppose that we want to estimate what percentage of
all bearings wears out due to friction within a year of
installation. How large a sample will we need to be at
least 90% confident that the error of our estimate, the
sample percentage, is at most 2.25%?

10.12 Refer to Example 1. How large a sample of wind tur-
bines is needed to ensure that, with at least 95% confi-
dence, the error in our estimate of the sample propor-
tion is at most 0.06 if

(a) nothing is known about the population propor-
tion?

(b) the population proportion is known not to
exceed 0.20?

10.13 MINITAB determination of confidence interval for p
When the sample size is not large, the confidence interval for a proportion p can be
obtained using the following commands. We illustrate the case n = 20 and x = 4.

Stat > Basic Statistics > 1-Proportion. Choose Summarized outcomes.
Type 4 in Number of events and 20 in Number of trials.
Click Options and then type 95.0 in Confidence level.
Choose exact in Method. Click OK. Click OK.

The partial output includes the 95% confidence interval (0.057334, 0.436614).

Obtain the 95% confidence interval when n = 20 and x = 16.

10.14 Use Exercise 10.13 or other software to obtain the interval requested in
Exercise 10.3.
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10.15 Show that the inequality on page 304 leads to the
following (1 − α)100% confidence limits:

x + 1
2

z2
α/2 ± zα/2

√
x ( n − x)

n
+ 1

4
z2
α/2

n + z2
α/2

10.16 Use the formula of Exercise 10.15 to rework
Exercise 10.3.

10.17 A chemical laboratory was facing issues with the con-
centration of the sulfuric acid they prepared. The first
step was to collect data on the magnitude of the prob-
lem. Of 5,186 recently supplied acid vials, 846 had

concentration issues that could easily be detected by
a basic chemical test. Obtain a 99% confidence inter-
val for the population proportion of vials with incorrect
concentrations of sulfuric acid.

10.18 An international corporation needed several millions
of words, from thousands of documents and manuals,
translated. The work was contracted to a company that
used computer-assisted translation, along with some
human checks. The corporation conducted its own
quality check by sampling the translation. Among the
2,037 mistakes found, 834 were an incorrect word. Ob-
tain a 99% confidence interval for the population pro-
portion of mistakes that are incorrect words.

10.2 Hypotheses Concerning One Proportion
Many of the methods used in sampling inspection, quality control, and reliability
verification are based on tests of the null hypothesis that a proportion (percentage,
or probability) equals some specified constant.

Exact Test with Conservative Significance Level
It is possible to construct tests of hypotheses that have level of significance no greater
than a specified Type 1 error probability αB. To test the null hypothesis H0: p = p0
versus a two-sided alternative H1: p �= p0, choose the largest integer x1 and smallest
integer x2 for which

x1∑
k=0

b(k; n, p0) ≤ αB
2

and
n∑

k=x2

b(k; n, p0) ≤ αB
2

are both satisfied. Alternatively, in terms of the cumulative distribution, both
B(x1; n, p0) and 1 − B(x2 − 1, n, p0) are less than αB/2. The test statistic is the
binomial count X and the rejection region is then X ≤ x1 or X ≥ x2.

Suppose that the Type 1 error probability cannot exceed αB = 0.05 and the
sample size is n = 20. Using Table 1, you may confirm that the rejection region
for testing H0: p = 0.4 versus a two-sided alternative H1: p �= 0.4, is X ≤ 3 or
X ≥ 13. The level of significance is then

P(X ≤ 3 or X ≥ 13) = B(3 20, 0.4) + 1 − B(12 20, 0.4)

= 0.0160 + (1 − 0.9790) = 0.0370

The rejection regions, depending on the specified bound for the Type 1 error
probability αB, are given in the following table.

Level α rejection regions for testing p = p0 when αB = specified bound
on Type 1 error probability

Alternative
hypothesis Rejection region

p ≤ p0 X ≤ x1 where x1 is the largest integer with B(x1 ; n, p0) ≤ αB

p ≥ p0 X ≥ x2 where x2 is the smallest integer with 1 − B(x2 ; n, p0) ≤ αB

p �= p0 X ≤ x1 or X ≥ x2 where x1 is the largest and x2 the smallest integer

with B(x1 ; n, p0) ≤ αB
2 and 1 − B(x2 ; n, p0) ≤ αB

2
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Advances in computer software make it possible to perform this exact conservative
test even for sample sizes in the thousands. When the sample size is moderate to
large, the significance level is nearly equal to the specified bound.

EXAMPLE 6 An exact test of a binomial proportion p
Miniature drones are being programmed to posses swarm behavior. Engineers make
34 drones based on a new design. Each must be shown to fly for 2 hours before
group activities can begin. Suppose 4 of the 34 drones fail this initial test.

(a) Using computer software (see Exercise 10.13), conduct a test that intends to
establish that the probability of failing is less than 0.3 for any drone that can
possibly be made using the new design. Control the Type 1 error probability to
be below 0.05.

(b) Determine the level of significance for the test.

Solution (a) A computer calculation gives

Test of p = 0.3 vs p < 0.3

Exact
Sample X N Sample p P-Value
1 4 34 0.1176 0.012

The P-value = 0.012 provides quite strong evidence against the null
hypothesis H0 : p = 0.3 and in favor of the alternative that the probability is
less than 0.3.

(b) Another computer calculation gives B(5; 34, 0.3) = 0.0334 and
B(6; 34, 0.3) = 0.0785. The rejection region is then X ≤ 5 and the level of
significance for testing H0 : p = 0.3 versus the one-sided alternative
H1 : p < 0.3 is P ( X ≤ 5) = 0.0334.

[ Using R: (a) binom.test(4, 34, conf.level=0.95, p=.3, alternative = “less”)
(b) pbinom(5,34,.3) ] j

Large Sample Test of a Proportion
We now consider approximate large sample tests based on the normal approximation
to the binomial distribution. In other words, we shall test the null hypothesis p = p0
against one of the alternatives p < p0, p > p0, or p �= p0 with the use of the
statistic

Z = X − n p0√
n p0 ( 1 − p0)

=
X
n

− p0√
p0( 1 − p0)

n

Statistic for large sample
test concerning p

which is a random variable having approximately the standard normal distribution.1

The second form emphasizes that Z is based on the difference between the sample
proportion and the hypothesized probability p0.

1Some authors write the numerator of this formula for Z as X ± 1
2 − np0, whichever is numerically smaller,

but there is generally no need for this continuity correction so long as n is large.
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The critical regions are like those shown in the table on page 250 with p and p0
substituted for μ and μ0.

Level α rejection Regions for
Testing p = p0 (large sample)
Alternative Reject null
hypothesis hypothesis if:

p < p0 Z < −zα

p > p0 Z > zα

p �= p0 Z < −zα/2
or Z > zα/2

EXAMPLE 7 A one-sided test of the proportion of transceivers
Transceivers provide wireless communication among electronic components of con-
sumer products. Responding to a need for a fast, low-cost test of Bluetooth-capable
transceivers, engineers2 developed a product test at the wafer level. In one set of
trials with 60 devices selected from different wafer lots, 48 devices passed. Test
the null hypothesis p = 0.70 against the alternative hypothesis p > 0.70 at the
0.05 level of significance.

Solution 1. Null hypothesis: p = 0.70
Alternative hypothesis: p > 0.70

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if Z > 1.645, where

Z = X − n p0√
n p0 ( 1 − p0)

4. Calculations: Substituting x = 48, n = 60, and p0 = 0.70 into the formula
above, we get

z = 48 − 60 ( 0.70)√
60 ( 0.70) ( 0.30)

= 1.69

5. Decision: Since z = 1.69 is greater than 1.645, we reject the null hypothesis at
level 0.05. In other words, there is sufficient evidence to conclude that the
proportion of good transceivers that would be produced is greater than 0.70.
The P-value, P(Z > 1.69) = .0455, somewhat strengthens this conclusion. j

10.3 Hypotheses Concerning Several Proportions
When we compare the consumer response (percentage favorable and percentage un-
favorable) to two different products, when we decide whether the proportion of de-
fectives of a given process remains constant from day to day, when we judge whether
there is a difference in political persuasion among several nationality groups, and in
many similar situations, we are interested in testing whether two or more binomial
populations have the same parameter p. Referring to these parameters as p1, p2, . . . ,

2G. Srinivasan, F. Taenzler, and A. Chatterjee, Loopback DFT for low-cost test of single-VCO-based
wireless Transceivers, IEEE Design & Test of Computers (2008), 150–159.
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and pk, we are, in fact, interested in testing the null hypothesis

p1 = p2 = · · · = pk = p

against the alternative hypothesis that these population proportions are not all equal.
To perform a suitable large sample test of this hypothesis, we require independent
random samples of size n1, n2, . . . , and nk from the k populations; then, if the cor-
responding numbers of “successes” are X1, X2, . . . , and Xk, the test we shall use is
based on the fact that

1. for large samples the sampling distribution of

Zi = Xi − ni pi√
ni pi ( 1 − pi)

is approximately the standard normal distribution,

2. the square of random variable having the standard normal distribution is a
random variable having the chi square distribution with 1 degree of freedom,
and

3. the sum of k independent random variables having chi square distributions with
1 degree of freedom is a random variable having the chi square distribution with
k degrees of freedom. (See Examples 14 and Example 16, Chapter 6, for proofs
of these last two results.) Thus,

χ2 =
k∑

i=1

( xi − ni pi)
2

ni pi( 1 − pi)

is a value of a random variable having approximately the chi square distribution
with k degrees of freedom. In practice we substitute for the pi, which under the
null hypothesis are all equal, the pooled estimate

p̂ = x1 + x2 + · · · + xk
n1 + n2 + · · · + nk

Since the null hypothesis should be rejected if the differences between the xi and
the ni p̂ are large, the critical region is χ2 > χ2

α , where χ2
α is as defined on page 208

and the number of degrees of freedom is k − 1. The loss of one degree of freedom
results from substituting for p the estimate p̂.

In actual practice, when we compare two or more sample proportions, it is con-
venient to determine the value of the χ2 statistic by looking at the data as arranged
in the following way:

Sample 1 Sample 2 · · · Sample k Total

Successes x1 x2 · · · xk x

Failures n1 − x1 n2 − x2 · · · nk − xk n − x

Total n1 n2 · · · nk n

The notation is the same as before, except for x and n, which represent, respectively,
the total number of successes and the total number of trials for all samples combined.
With reference to this table, the entry in the cell belonging to the ith row and jth
column is called the observed cell frequency oi j with i = 1, 2 and j = 1, 2, . . . , k.

Under the null hypothesis p1 = p2 = · · · = pk = p, we estimate p, as before,
as the total number of successes divided by the total number of trials, which we now



312 Chapter 10 Inferences Concerning Proportions

write as p̂ = x
n

. Hence, the expected number of successes and failures for the jth

sample are estimated by

e1 j = n j · p̂ = n j · x

n

and

e2 j = n j(1 − p̂) = n j( n − x)

n

The quantities e1 j and e2 j are called the expected cell frequencies for
j = 1, 2, . . . , k. Note that the expected frequency for any given cell may be ob-
tained by multiplying the totals of the column and the row to which it belongs
and then dividing by the grand total n.

A chi square test is based on the χ2 statistic on page 311, with p̂ substituted
for the pi. The χ2 statistic can be written in the form

χ2 statistic for test
concerning difference

among proportions

χ2 =
2∑

i=1

k∑
j=1

( oi j − ei j )
2

ei j

as the reader will be asked to verify in Exercise 10.36. This formula has the ad-
vantage that it can easily be extended to the more general case, to be treated in
Section 10.4, where each trial permits more than two possible outcomes. There are
then more than two rows in the tabular presentation of the various frequencies.

EXAMPLE 8 Testing the equality of three proportions using the χ2 statistic
Samples of three kinds of materials, subjected to extreme temperature changes, pro-
duced the results shown in the following table:

Material A Material B Material C Total

Crumbled 41 27 22 90

Remained intact 79 53 78 210

Total 120 80 100 300

Use the 0.05 level of significance to test whether, under the stated conditions, the
probability of crumbling is the same for the three kinds of materials.

Solution 1. Null hypothesis: p1 = p2 = p3
Alternative hypothesis: p1, p2, and p3 are not all equal.

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if χ2 > 5.991, the value of χ2
0.05 for

3 − 1 = 2 degrees of freedom, where χ2 is given by the formula above.

4. Calculations: The expected frequencies for the first two cells of the first row are

e11 = 90 · 120
300

= 36 and e12 = 90 · 80
300

= 24

and, as it can be shown that the sum of the expected frequencies for any row
or column equals that of the corresponding observed frequencies (see
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Exercise 10.37), we find by subtraction that e13 = 90 − (36 + 24) = 30, and
that the expected frequencies for the second row are e21 = 120 − 36 = 84,
e22 = 80 − 24 = 56, and e23 = 100 − 30 = 70. Then, substituting these values
together with the observed frequencies into the formula for χ2, we get

χ2 = (41 − 36)2

36
+ (27 − 24)2

24
+ (22 − 30)2

30

+ (79 − 84)2

84
+ (53 − 56)2

56
+ (78 − 70)2

70
= 4.575

5. Decision: Since χ2 = 4.575 does not exceed 5.991, the null hypothesis cannot
be rejected. In other words, the data do not refute the hypothesis that, under the
stated conditions, the probability of crumbling is the same for all three
materials.

[ Using R: A box in Appendix C contains the commands for Example 8. ] j

Most of the entries of Table 5W are given to three decimal places. But because
its sampling distribution is only approximate, the final value of the χ2 statistics is
usually rounded to two decimals. We caution that it should not be used when one or
more of the expected frequencies is less than 5. If this is the case, we can sometimes
combine two or more of the samples in such a way that none of the e’s is less than 5.

If the null hypothesis of equal proportions is rejected, it is a good practice to
graph the confidence intervals (see page 304) for the individual proportions pi. The
graph helps illuminate differences between the proportions.

EXAMPLE 9 Graphical display of confidence intervals
Four methods are under development for turning metal disks into a superconducting
material. Fifty disks are made by each method and they are checked for supercon-
ductivity when cooled with liquid nitrogen.

Method 1 Method 2 Method 3 Method 4 Total

Superconductors 31 42 22 25 120

Failures 19 8 28 25 80

Total 50 50 50 50 200

Perform a chi square test with α = 0.05. If there is a significant difference be-
tween the proportions of superconductors produced, plot the individual confidence
intervals.

Solution 1. Null hypothesis: p1 = p2 = p3 = p4
Alternative hypothesis: p1, p2, p3, and p4 are not all equal.

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if χ2 > 7.815, the value of χ2
0.05 for

4 − 1 = 3 degrees of freedom.

4. Calculations: Each cell in the first row has expected frequency

120 · 50
200

= 30
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and each cell in the second row has expected frequency

80 · 50
200

= 20

The chi square statistic is

χ2 = 1
30

+ 144
30

+ 64
30

+ 25
30

+ 1
20

+ 144
20

+ 64
20

+ 25
20

= 19.50

5. Decision: Since 19.50 greatly exceeds 7.815, we reject the null hypothesis of
equal proportions at the 5% level of significance.
The confidence intervals obtained from the large sample formula on page 304
have confidence limits

0.62 ± 0.13, 0.84 ± 0.10, 0.44 ± 0.14, 0.50 ± 0.14.

They are plotted in Figure 10.2. Note how Method 2 stands out as being better.

Figure 10.2
Confidence intervals for
several proportions

Method 4

Method 1

Method 2

Method 3

0 0.2 0.4
p

0.6 0.8 1.0
j

Although there has been no mention of randomization in the development of the
χ2 statistic, wherever possible the experimental units should be randomly assigned
to methods. In the example above, the disks could be numbered from 1 to 200 and
random numbers selected from 1 to 200 without replacement. The disks correspond-
ing to the first fifty numbers drawn would be assigned to method 1, and so on. This
will prevent uncontrolled sources of variation from systematically influencing the
test concerning the four methods.

So far, the alternative hypothesis has been that p1, p2, . . . , and pk are not all
equal, and for k = 2 this reduces to the alternative hypothesis p1 �= p2. In problems
where the alternative hypothesis may also be p1 < p2 or p1 > p2, we can base the
test on the statistic

Statistic for test
concerning difference

between two proportions

Z =
X1
n1

− X2
n2√

p̂ ( 1 − p̂)
(

1
n1

+ 1
n2

) with p̂ = X1 + X2
n1 + n2

which, for large samples, is a random variable having approximately the standard
normal distribution. The test based on this statistic is equivalent to the one based
on the χ2 statistic on page 312 with k = 2, in the sense that the square of this Z
statistic actually equals the χ2 statistic (see Exercise 10.38). The critical regions for
this alternative test of the null hypothesis p1 = p2 are like those shown in the table
on page 270 with p1 and p2 substituted for μ1 and μ2.
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EXAMPLE 10 A large sample test concerning two proportions
A strategy called A/B testing is being implemented by many e-commerce companies
to increase internet sales. An improvement project begins by selecting a web page
to change. Maybe the product description is changed or maybe a picture changed.
Next, a fraction of the incoming traffic to the product page is directed to the modified
page. Daily counts of the number of visitors to the product page and the number who
purchase are recorded both for the original page and for the modified page. The two
different versions of the web page give rise to the terminology A and B.

A major online electronics retailer gets over a million hits each day on its web
site. When a modified main page is compared with the existing main page, there will
be millions of hits for each in a day. Further downstream, where traffic falls off, the
object is to improve sales performance from a visitor who reach the selected product
page.

For one product, a picture of someone using the product is added. Suppose the
total weekly totals are

Original page Modified page
Number of visitors 2841 2297
Number that purchase 77 107

Is there strong evidence that the modified page increase sales?

Solution Let p1 be the probability a visitor to the original page purchases and item and let p2
be the probability for the modified page.

1. We want to establish that p1 < p2 so
Null hypothesis: p1 = p2
Alternative hypothesis: p1 < p2

2. Level of significance: α = 0.01

3. Criterion: Reject the null hypothesis if Z < − 2.33 where Z is given by the
formula on page 314.

4. Calculations: Substituting x1 = 77, n1 = 2841, x2 = 107 , n2 = 2297, and

p̂ = 77 + 107
2841 + 2297

= 0.0358

into the formula for Z, we obtain the observed value of the test statistic

77
2841

− 107
2297√

(0.0358)(0.9642)
(

1
2841

+ 1
2297

) = − 3.74

5. Decision: Since Z = − 3.74 is less than −2.33, the null hypothesis must be
rejected at level of significance 0.01. We conclude that the proportion of
purchasers is higher for the modified page than the original page.
The significance probability

P-value = P [ Z ≤ −3.74 ] = .0001

shown in Figure 10.3, further strengthens the conclusion.
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Figure 10.3
Rejection region and P-value
for Example 10
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The statistic for testing p1 − p2 = δ0 leads to a confidence interval which
provides the set of plausible values for p1 − p2. The confidence limits are

x1
n1

− x2
n2

± zα/2

√√√√√ x1
n1

(
1 − x1

n1

)
n1

+
x2
n2

(
1 − x2

n2

)
n2

Large sample confidence
limits for the difference of

two proportions

EXAMPLE 11 A large sample confidence interval for the difference of two
proportions
With reference to the web site improvement in Example 9, find a 95% confidence
interval for p1 − p2.

Solution Since
x1
n1

= p̂1 = 77
2841

= 0.0271 and
x2
n2

= p̂2 = 107
2297

= 0.0466 ,

x1
n1

− x2
n2

± zα / 2

√√√√√ x1
n1

(
1 − x1

n1

)
n1

+
x2
n2

(
1 − x2

n2

)
n2

= 0.0271 − 0.0466 ± 1.96

√
( 0.0271) ( 0.9729)

2841
+ ( 0.0466) ( 0.9534)

2297

so the 95% confidence interval is − 0.030 < p1 − p2 < −0.009
The modified web page leads to a higher proportion of purchasers. Although the

increase in proportions is small, because of the extremely large number of visitors
to the web page, there will be substantially more sales in a month. j

Exercises
10.19 A manufacturer of submersible pumps claims that at

most 30% of the pumps require repairs within the first
5 years of operation. If a random sample of 120 of
these pumps includes 47 which required repairs within
the first 5 years, test the null hypothesis p = 0.30
against the alternative hypothesis p > 0.30 at the 0.05
level of significance.

10.20 A supplier of imported vernier calipers claims that
90% of their instruments have a precision of 0.999.

Testing the null hypothesis p= 0.90 against the al-
ternative hypothesis p �= 0.90, what can we con-
clude at the level of significance α = 0.10, if there
were 665 calipers out of 700 with a precision
of 0.999?

10.21 To check on an ambulance service’s claim that at least
40% of its calls are life-threatening emergencies, a ran-
dom sample was taken from its files, and it was found
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that only 49 of 150 calls were life-threatening emer-
gencies. Can the null hypothesis p = 0.40 be rejected
against the alternative hypothesis p < 0.40 if the prob-
ability of a Type I error is to be at most 0.01?

10.22 In a random sample of 600 cars making a right turn
at a certain intersection, 157 pulled into the wrong
lane. Test the null hypothesis that actually 30% of all
drivers make this mistake at the given intersection,
using the alternative hypothesis p �= 0.30 and the level
of significance

(a) α = 0.05;

(b) α = 0.01.

10.23 An airline claims that only 6% of all lost luggage is
never found. If, in a random sample, 17 of 200 pieces
of lost luggage are not found, test the null hypothesis
p = 0.06 against the alternative hypothesis p > 0.06
at the 0.05 level of significance.

10.24 Suppose that 4 of 13 undergraduate engineering stu-
dents are going on to graduate school. Test the dean’s
claim that 60% of the undergraduate students will go
on to graduate school, using the alternative hypoth-
esis p < 0.60 and the level of significance α =
0.05. [Hint: Use Table 1 to determine the probabil-
ity of getting “at most 4 successes in 13 trials” when
p = 0.60.]

10.25 A manufacturer of machine bearings claims that 90%
of the heavy machine bearings have a work life of more
than 5 years. You doubt this claim and want to refute
it on the basis of a sample of 200 bearings where 170
did work for more than 5 years. First,

(a) Conduct a test of hypotheses using α = 0.10.

(b) In light of your discussion in part (a), what error
could you have made? Explain in the context of
this exercise.

10.26 Refer to Exercise 10.25. Suppose a sample of 650
moderate machine bearings yielded 550 bearings that
had a work life of more than 5 years. Obtain a 90%
confidence interval for the difference in proportions.

10.27 Tests are made on the proportion of defective cast-
ings produced by 5 different molds. If there were
14 defectives among 100 castings made with Mold I,
33 defectives among 200 castings made with
Mold II, 21 defectives among 180 castings made with
Mold III, 17 defectives among 120 castings made
with Mold IV, and 25 defectives among 150 castings
made with Mold V, use the 0.01 level of significance
to test whether the true proportion of defectives is the
same for each mold.

10.28 A study showed that 64 of 180 persons who saw a
photocopying machine advertised during the telecast
of a baseball game and 75 of 180 other persons who
saw it advertised on a variety show remembered the
brand name 2 hours later. Use the χ2 statistic to test
at the 0.05 level of significance whether the differ-

ence between the corresponding sample proportions is
significant.

10.29 The following data come from a study in which
random samples of the employees of three govern-
ment agencies were asked questions about their pen-
sion plan:

Agency 1 Agency 2 Agency 3

For the
pension plan 67 84 109

Against the
pension plan 33 66 41

Use the 0.01 level of significance to test the null
hypothesis that the actual proportions of employees fa-
voring the pension plan are the same.

10.30 A factory owner must decide which of two alternative
electric generator systems should be installed in their
factory. If each generator is tested 175 times and the
first generator fails to work (does not start or does not
transmit electricity) 15 times and the second generator
fails to work 25 times, test at the 0.01 level of signifi-
cance whether the difference between the correspond-
ing sample proportions is significant, using

(a) the χ2 statistic on page 312;

(b) the Z statistic on page 314.

10.31 With reference to the preceding exercise, verify that
the square of the value obtained for Z in part (b) equals
the value obtained for χ2 in part (a).

10.32 Photolithography plays a central role in manufacturing
integrated circuits made on thin disks of silicon. Prior
to a quality-improvement program, too many rework
operations were required. In a sample of 200 units,
26 required reworking of the photolithographic step.
Following training in the use of Pareto charts and other
approaches to identify significant problems, improve-
ments were made. A new sample of size 200 had only
12 that needed rework.

Is this sufficient evidence to conclude at the
0.01 level of significance that the improvements have
been effective in reducing the rework?

10.33 With reference to Exercise 10.32, find a large sample
99% confidence interval for the true difference of the
proportions.

10.34 To test the null hypothesis that the difference be-
tween two population proportions equals some con-
stant δ0, not necessarily 0, we can use the statistic

Z =
X1

n1
− X2

n2
− δ0√√√√√ X1

n1

(
1 − X1

n1

)
n1

+
X2

n2

(
1 − X2

n2

)
n2
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which, for large samples, is a random variable having
the standard normal distribution.

(a) With reference to Exercise 10.32, use this statistic
to test at the 0.05 level of significance whether the
true proportion of units requiring rework is now at
least 4% less than before the improvements were
made.

(b) In a true-false test, a test item is considered to
be good if it discriminates between well-prepared
students and poorly prepared students. If 205 of
250 well-prepared students and 137 of 250 poorly
prepared students answer a certain item correctly,
test at the 0.01 level of significance whether for
the given item the proportion of correct answers
can be expected to be at least 15% higher among

well-prepared students than among poorly pre-
pared students.

10.35 With reference to part (b) of Exercise 10.34, find a
large sample 99% confidence interval for the true dif-
ference of the proportions.

10.36 Verify that the formulas for the χ2 statistic on page 311
(with p̂ substituted for the pi) and on page 312 are
equivalent.

10.37 Verify that if the expected frequencies are determined
in accordance with the rule on page 312, the sum of the
expected frequencies for each row and column equals
the sum of the corresponding observed frequencies.

10.38 Verify that the square of the Z statistic on page 314
equals the χ2 statistic on page 312 for k = 2.

10.4 Analysis of r × c Tables
As we suggested earlier, the method by which we analyzed the example on page 312
lends itself also to the analysis of r × c tables, or r-by-c tables; that is, tables in
which data are tallied into a two-way classification having r rows and c columns.
Such tables arise in essentially two kinds of problems. First, we might again have
samples from several populations, with the distinction that now each trial permits
more than two possible outcomes. This might happen, for example, if persons be-
longing to different income groups are asked whether they favor a certain political
candidate, whether they are against him, or whether they are indifferent or unde-
cided. The other situation giving rise to an r × c table is one in which we sample
from one population but classify each item with respect to two (usually qualitative)
categories. This might happen, for example, if a consumer testing service rates cars
as excellent, superior, average, or poor with regard to performance and also with
regard to appearance. Each car tested would then fall into one of the 16 cells of a
4×4 table, and it is mainly in connection with problems of this kind that r×c tables
are referred to as contingency tables.

The essential difference between the two kinds of situations giving rise to r × c
tables is that in the first case the column totals (the sample sizes) are fixed, while in
the second case only the grand total (the total for the entire table) is fixed. As a re-
sult, there are also differences in the null hypotheses we shall want to test. In the first
case we want to test whether the probability of obtaining an observation in the ith row
is the same for each column; symbolically, we shall want to test the null hypothesis

pi1 = pi2 = · · · = pic for i = 1, 2, . . . , r

where pi j is the probability of obtaining an observation belonging to the ith row and
the jth column, and

r∑
i=1

pi j = 1

for each column, the alternative hypothesis is that the p’s are not all equal for at
least one row. In the second case we shall want to test the null hypothesis that the
random variables represented by the two classifications are independent, so that pi j
is the product of the probability of getting a value belonging to the ith row and the
probability of getting a value belonging to the jth column. The alternative hypothesis
is that the two random variables are dependent.
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In spite of the differences we have described, the analysis of an r × c table is
the same for both cases. First we calculate the expected cell frequencies.

ei j = ( ith row total) × ( jth column total)
grand total

When the column totals are fixed, the test is called a test of homogeneity.

Null hypothesis of
homogeneity

H0 : pi1 = pi2 = · · · = pic for all rows i = 1, 2, . . . , r

EXAMPLE 12 Contingency table with column totals fixed
Three different shops are used to repair electric motors. One hundred motors are sent
to each shop. When a motor is returned, it is put in use and then the repair is classified
as complete, requiring an adjustment, or an incomplete repair. The column totals are
fixed at 100 each and the grand total at 300. Shop 1 produced 78 complete repairs,
15 minor adjustments, and 7 incomplete repairs. Shop 2 produced 56, 30, and 14,
respectively; while Shop 3 produced 54, 31, and 15 complete, minor adjustments,
and incomplete repairs, respectively.

Shop 1 Shop 2 Shop 3 Total
Complete 78 56 54 188

Repair Adjustment 15 30 31 76
Incomplete 7 14 15 36
Total 100 100 100 300

Calculate the expected frequencies.

Solution For the Complete–Shop 2 cell of the table,

e12 = 1st row total × 2nd column total
grand total

= 188 × 100
300

= 62.67

Continuing, we obtain all of the expected frequencies, which are shown in bold
below the frequencies.

Shop 1 Shop 2 Shop 3 Total
Complete 78 56 54 188

62.7 62.67 62.67
Repair Adjustment 15 30 31 76

25.33 25.33 25.33
Incomplete 7 14 15 36

12.00 12.00 12.00
Total 100 100 100 300

Visually, Shop 1 has more than expected complete repairs and lower minor adjust-
ments and incomplete repairs. A chi square test, described below, verifies that repair
probabilities for the three shops are not homogeneous (see Exercise 10.39). j

The observed frequencies and the expected frequencies total the same for each
row and column, so that only (r − 1)(c − 1) of the ei j have to be calculated directly,
while the others can be obtained by subtraction from appropriate row or column
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totals. To perform a chi square test we then substitute into the formula

χ2 statistic for analysis
of r × c table

χ2 =
r∑

i=1

c∑
j=1

( oi j − ei j )
2

ei j

and reject the null hypothesis if this statistic exceeds χ2
α for (r − 1)(c − 1) degrees

of freedom. The number of degrees of freedom is justified because after we deter-
mine (r − 1)(c − 1) of the expected cell frequencies, the others are automatically
determined. That is, they may be obtained by subtraction from appropriate row or
column totals.

A test of association arises when each unit in a single sample is classified
according to two characteristics. Only the total sample size is fixed but the chi
square test remains the same. The null of hypothesis of independence specifies that
each cell probability pi j is the product of the marginal totals pi· = ∑c

j=1 pi j and
p· j = ∑r

i=1 pi j.

H0: pi j = pi· p· j for all i, j

where pi· = ∑c
j=1 pi j and p· j = ∑r

i=1 pi j

Null hypothesis
of independence

EXAMPLE 13 The chi square test of independence
To determine whether there really is a relationship between an employee’s perfor-
mance in the company’s training program and his or her ultimate success in the job,
the company takes a sample of 400 cases from its very extensive files and obtains
the results shown in the following table:

Performance in training program

Below Above
average Average average Total

Poor 23 60 29 112

Success in job Average 28 79 60 167
(employer’s rating) Very good 9 49 63 121

Total 60 188 152 400

Use the 0.01 level of significance to test the null hypothesis that performance in the
training program and success in the job are independent.

Solution 1. Null hypothesis: Performance in training program and success in job are
independent.
Alternative hypothesis: Performance in training program and success in job are
dependent.

2. Level of significance: α = 0.01

3. Criterion: Reject the null hypothesis if χ2 > 13.277, the value of χ2
0.01 for

(3 − 1)(3 − 1) = 4 degrees of freedom, where χ2 is given by the formula above.

4. Calculations: Calculating first the expected cell frequencies for the first two
cells of the first two rows, we get

e11 = 112 · 60
400

= 16.80 e12 = 112 · 188
400

= 52.64

e21 = 167 · 60
400

= 25.05 e22 = 167 · 188
400

= 78.49
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Then, by subtraction, we find the expected frequencies e13 = 42.56 and
e23 = 63.46. Those for the third row are 18.15, 56.87, and 45.98. Thus,

χ2 = (23 − 16.80)2

16.80
+ (60 − 52.64)2

52.64
+ (29 − 42.56)2

42.56

+ (28 − 25.05)2

25.05
+ (79 − 78.49)2

78.49
+ (60 − 63.46)2

63.46

+ (9 − 18.15)2

18.15
+ (49 − 56.87)2

56.87
+ (63 − 45.98)2

45.98

= 20.179

5. Decision: Since χ2 = 20.179 exceeds 13.277, the null hypothesis must be
rejected. Performance and success are dependent.

[ Using R: Dat=as.table(rbind(c(23,60,29),c(28,79,60),c(9,49,63)) dim-
names(Dat) = list(Success = c(“Poor”, “Average”,“Very Good”),
Performance = c(“Below avg”, “Average”, “Above avg”))
Then (Xsq=chisq.test(Dat)) and Xsq$expected ] j

EXAMPLE 14 Exploring the form of dependence
With reference Example 13, find a pattern in the departure from independence.

Solution We display the contingency table, but this time we conclude the expected frequencies
just below the observed frequencies.

Performance in training program

Below Above
average Average average Total

Poor
23 60 29

112
16.80 52.64 42.56

Success in job Average
28 79 60

167
25.05 78.49 63.46

(employer’s rating)

Very good
9 49 63

121
18.15 56.87 45.98

Total 60 188 152 400

Also, we write the χ2 statistic as the sum of the contributions.

χ2 = 2.288 + 1.029 + 4.320

+ 0.347 + 0.003 + 0.189

+ 4.613 + 1.089 + 6.300

= 20.179

From these two displays, it is clear that there is a positive dependence between per-
formance in training and job success. For the three individual cells with the largest
contributions to χ2, the above average–very good cell frequency is high, whereas
the above average–poor and below average–very good cell frequencies are low. j
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10.5 Goodness of Fit
We speak of goodness of fit when we try to compare an observed frequency dis-
tribution with the corresponding values of an expected, or theoretical, distribution.
To illustrate, suppose that during 400 five-minute intervals the air-traffic control of
an airport received 0, 1, 2, . . . , or 13 radio messages with respective frequencies of
3, 15, 47, 76, 68, 74, 46, 39, 15, 9, 5, 2, 0, and 1. Suppose, furthermore, that we want
to check whether these data substantiate the claim that the number of radio messages
which they receive during a 5-minute interval may be looked upon as a random vari-
able having the Poisson distribution with λ = 4.6. Looking up the corresponding
Poisson probabilities in Table 2W and multiplying them by 400 to get the expected
frequencies, we arrive at the result shown in the following table, together with the
original data:

Number of Observed Poisson Expected
radio messages frequencies probabilities frequencies

0
1

3
15

}
18

0.010
0.046

4.0
18.4

}
22.4

2 47 0.107 42.8
3 76 0.163 65.2
4 68 0.187 74.8
5 74 0.173 69.2
6 46 0.132 52.8
7 39 0.087 34.8
8 15 0.050 20.0
9 9 0.025 10.0

10
11
12
13

5
2
0
1

⎫⎪⎪⎬
⎪⎪⎭ 8

0.012
0.005
0.002
0.001

4.8
2.0
0.8
0.4

⎫⎪⎪⎬
⎪⎪⎭ 8.0

400 400.0

Note that we combined some of the data so that none of the expected frequencies is
less than 5.

To test whether the discrepancies between the observed and expected frequen-
cies can be attributed to chance, we use the statistic

χ2 statistic for test of
goodness of fit

χ2 =
k∑

i=1

( oi − ei)
2

ei

where the oi and ei are the observed and expected frequencies. The sampling distri-
bution of this statistic is approximately the chi square distribution with k−m degrees
of freedom, where k is the number of terms in the formula for χ2 and m is the num-
ber of quantities, obtained from the observed data, that are needed to calculate the
expected frequencies.

EXAMPLE 15 A chi square goodness of fit to the Poisson distribution
With reference to the radio message data above, test at the 0.01 level of significance
whether the data can be looked upon as values of a random variable having the
Poisson distribution with λ = 4.6.
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Solution 1. Null hypothesis: Random variable has a Poisson distribution with λ = 4.6.
Alternative hypothesis: Random variable does not have the Poisson distribution
with λ = 4.6.

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if χ2 > 16.919, the value of χ2
0.05 for

k − m = 10 − 1 = 9 degrees of freedom, where χ2 is given by the formula
above. (The number of degrees of freedom is 10 − 1 = 9, since only one
quantity, the total frequency of 400, is needed from the observed data to
calculate the expected frequencies.)

4. Calculations: Substitution into the formula for χ2 yields

χ2 = (18 − 22.4)2

22.4
+ (47 − 42.8)2

42.8
+ · · · + (9 − 10.0)2

10.0
+ (8 − 8.0)2

8.0
= 6.749

5. Decision: Since χ2 = 6.749 does not exceed 16.919, the null hypothesis cannot
be rejected; we cannot reject that the Poisson distribution with λ = 4.6 provides
a good fit at level α = 0.05. j

Exercises
10.39 Referring to Example 12 and the data on repair,

use the 0.05 level of significance to test whether
there is homogeneity among the shops’ repair
distributions.

10.40 A large electronics firm that hires many workers with
disabilities wants to determine whether their disabil-
ities affect such workers’ performance. Use the level
of significance α = 0.05 to decide on the basis of the
sample data shown in the following table whether it
is reasonable to maintain that the disabilities have no
effect on the workers’ performance:

Performance
Above Below

average Average average

Disability 21 64 17

No disability 29 93 28

10.41 Tests of the fidelity and the selectivity of 190 digital
radio receivers produced the results shown in the fol-
lowing table:

Fidelity
Low Average High

Low 6 12 32

Selectivity Average 33 61 18

High 13 15 0

Use the 0.01 level of significance to test whether there
is a relationship (dependence) between fidelity and
selectivity.

10.42 An engineer takes samples on a daily basis of n = 5
cars coming to a workshop to be checked for repairs
and on 250 consecutive days the data summarized in
the following table are obtained:

Number requiring Number
repairs of days

0 25
1 112
2 63
3 68
4 12

To test the claim that 20% of all cars coming to the
workshop need to be repaired, look up the correspond-
ing probabilities in Table 1, calculate the expected fre-
quencies, and perform the chi square test at the 0.05
level of significance. (Combine data so number of
days ≥ 6.)

10.43 With reference to Exercise 10.42, verify that the mean
of the observed distribution is 1.6, corresponding to
40% of the cars requiring repairs. Then look up the
probabilities for n = 5 and p = 0.25 in Table 1, calcu-
late the expected frequencies, and test at the 0.05 level
of significance whether the binomial distribution with
n = 5 and p = 0.25 provides a suitable model for the
situation.
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10.44 The following is the distribution of the hourly number
of trucks arriving at a company’s warehouse:

Trucks arriving
per hour Frequency

0 52
1 151
2 130
3 102
4 45
5 12
6 5
7 1
8 2

Find the mean of this distribution, and using it
(rounded to one decimal place) as the parameter λ, fit
a Poisson distribution. Test for goodness of fit at the
0.05 level of significance.

10.45 Among 100 purification filters used in an experiment,
46 had a service life of less than 20 hours, 19 had a
service life of 20 or more but less than 40 hours, 17
had a service life of 40 or more but less than 60 hours,
12 had a service life of 60 or more but less than 80
hours, and 6 had a service life of 80 hours or more.
Test at the 0.01 level of significance whether the life-
times may be regarded as a sample from an exponential
population with μ = 40 hours.

Calculate P[0 < X < 20] and multiply by 100 to
obtain e1, and so on.

10.46 A chi square test is easily implemented on a computer.
With the counts

31 42 22 25
19 8 28 25

from Example 8 in columns 1–4, the MINITAB
commands

Dialog box:
Stat > Tables > Chi-square Test for Association
Pull down Summarized data in a two-way table.
Type C1 − C4 in columns containing the table.
Click Statistics and then check chi-square
statistic, Display counts, Expected cell counts
and Each cells contribution to chi-square.
Click OK. Click OK.

produce the output
Expected counts are printed below observed counts

Method 1 Method 2 Method 3 Method 4 Total
1 31 42 22 25 120

30.00 30.00 30.00 30.00
2 19 8 28 25 80

20.00 20.00 20.00 20.00
Total 50 50 50 50 200

Chi sq = 0.033 + 4.800 + 2.133

+ 0.050 + 7.200 + 3.200 + 1.250 = 19.550

df = 3

Repeat the analysis using only the data from the first
three methods.

10.47 The procedure in Exercise 10.46 also calculates the chi
square test for independence. Do Exercise 10.40 using
the computer.

Do’s and Don’ts

Do’s
1. Remember that it usually takes a sample size of a few hundred to get precise

estimates of a proportion. When the sample size is large, calculate the appro-
ximate 100(1 − α)% confidence interval for the population proportion p

x
n

− zα/2

√√√√ x
n

(
1 − x

n

)
n

< p <
x
n

+ zα/2

√√√√ x
n

(
1 − x

n

)
n

Base a test of the null hypothesis H0: p = p0 on the approximately standard
normal test statistic

Z = X − n p0√
n p0 ( 1 − p0)

2. When both sample sizes are large, compare two proportions by calculating
the approximate 100(1 − α)% confidence interval for p1 − p2 with limits

x1
n1

− x2
n2

± zα/2

√√√√√ x1
n1

(
1 − x1

n1

)
n1

+
x2
n2

(
1 − x2

n2

)
n2
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Base tests of the null hypothesis H0: p1 = p2 on the approximately stan-
dard normal test statistic

Z =
x1
n1

− x2
n2√

p̂ ( 1 − p̂ )
(

1
n1

+ 1
n2

) with p̂ = X1 + X2
n1 + n2

3. Use the chi square test to analyze r×c contingency tables. The test statistic

χ2 =
r∑

i=1

c∑
j=1

( oi j − ei j )
2

ei j

with estimated expected values

ei j = ( ith row total) × ( jth column total)
grand total

and observed values oi j is approximately chi square distributed with
(r−1) (c−1) degrees of freedom. This statistic applies to comparing several
proportions when samples of size n j are selected from the jth population.
The same statistic applies to testing independence of the two sets of cate-
gories when a single sample of size n is cross-tabulated to create the r × c
table.

Don’ts
1. Don’t routinely apply the inference procedures for a proportion p without

confirming that the outcomes from different trials are independent.

2. When sampling without replacement from a finite population of size N,
don’t forget to account for dependence when the finite population correc-
tion factor is substantially different from 1.

Review Exercises
10.48 In a sample of 100 ceramic pistons made for an ex-

perimental diesel engine, 18 were cracked. Construct
a 95% confidence interval for the true proportion of
cracked pistons using the large sample confidence in-
terval formula.

10.49 With reference to Exercise 10.48, test the null hy-
pothesis p = 0.20 versus the alternative hypothesis
p < 0.20 at the 0.05 level.

10.50 In a random sample of 160 workers exposed to a
certain amount of radiation, 24 experienced some ill
effects. Construct a 99% confidence interval for the
corresponding true percentage using the large sample
confidence interval formula.

10.51 With reference to Exercise 10.50, test the null hy-
pothesis p = 0.18 versus the alternative hypothesis
p �= 0.18 at the 0.01 level.

10.52 In a random sample of 150 trainees at a factory, 12
did not complete the training. Construct a 99% con-
fidence interval for the true proportion of trainees not

completing their training using the large sample con-
fidence interval formula.

10.53 With reference to Exercise 10.52, test the hypothesis
p = 0.05 versus the alternative hypothesis p > 0.05
at the 0.05 level.

10.54 Refer to Example 5 but suppose there are two ad-
ditional design plans B and C for making miniature
drones. Under B, 10 of 40 drones failed the initial test
and under C 15 of 39 failed. Consider the results for all
three design plans. Use the 0.05 level of significance
to test the null hypothesis of no difference in the three
probabilities of failing the test.

10.55 As a check on the quality of eye glasses purchased over
the internet, glasses were individually ordered from
several different online vendors. Among the 92 lenses
with antireflection coating, 61 prescriptions required
a thickness at the center greater than 1.9 mm and 31
were thinner. Of the 61 thicker lenses, 12 failed im-
pact testing while 18 of the 31 thinner lens failed.
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(Source: K. Citek, et al., Safety and compliance of prescription
spectacles ordered by the public via the Internet,”Optometry 82
(2011), 549–555.)
Can we conclude, at the 0.05 level of significance, that
a larger proportion of the thicker lenses will survive
the impact test?

10.56 With reference to Exercise 10.55, find a large sample
95% confidence interval for the true difference of prob-
abilities.

10.57 Two bonding agents, A and B, are available for mak-
ing a laminated beam. Of 50 beams made with Agent
A, 11 failed a stress test, whereas 19 of the 50 beams
made with Agent B failed. At the 0.05 level, can we
conclude that Agent A is better than Agent B?

10.58 With reference to Exercise 10.57, find a large sample
95% confidence interval for the true difference of the
probabilities of failure.

10.59 Cooling pipes at three nuclear power plants are inves-
tigated for deposits that would inhibit the flow of wa-
ter. From 30 randomly selected spots at each plant,
13 from the first plant, 8 from the second plant, and
19 from the third were clogged.

(a) Use the 0.05 level to test the null hypothesis of
equality.

(b) Plot the confidence intervals for the three proba-
bilities of being clogged.

10.60 Two hundred tires of each of four brands are individu-
ally placed in a testing apparatus and run until failure.
The results are obtained the results shown in the fol-
lowing table:

Brand A Brand B Brand C Brand D

Failed to
last 30,000
miles

26 23 15 32

Lasted from
30,000
to 40,000

118 93 116 121

Lasted more
than 40,000
miles

56 84 69 47

Total 200 200 200 200

(a) Use the 0.01 level of significance to test the null
hypothesis that there is no difference in the qual-

ity of the four kinds of tires with regard to their
durability.

(b) Plot the four individual 99% confidence in-
tervals for proportions that last more than
40,000 miles.

10.61 The following is the distribution of the daily num-
ber of power failures reported in a western city on
300 days:

Number of Number
power failures of days

0 9
1 43
2 64
3 62
4 42
5 36
6 22
7 14
8 6
9 2

Test at the 0.05 level of significance whether the daily
number of power failures in this city is a random vari-
able having the Poisson distribution with λ = 3.2.

10.62 With reference to Example 13, repeat the analysis after
combining the categories below average and average
in the training program and the categories poor and
average in success. Comment on the form of the
dependence.

10.63 Mechanical engineers, testing a new arc-welding tech-
nique, classified welds both with respect to appearance
and an X-ray inspection.

Appearance
Bad Normal Good Total

Bad 20 7 3 30

X-ray Normal 13 51 16 80

Good 7 12 21 40

Total 40 70 40 150

Test for independence using α = 0.05 and find the
individual cell contributions to the χ2 statistic.

Key Terms
Chi square test 312
Contingency table 318
Expected cell frequency 312

Goodness of fit 322
Observed cell frequency 311
r × c table 318

Sample proportion 301
Test of association 320
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The main objective of many statistical investigations is to make predictions, prefer-
ably on the basis of mathematical equations. For instance, an engineer may wish
to predict the amount of oxide that will form on the surface of a metal baked in

an oven for one hour at 200 degrees Celsius, or the amount of deformation of a ring
subjected to a compressive force of 1,000 pounds, or the number of miles to wear out
a tire as a function of tread thickness and composition. Usually, such predictions require
that a formula be found which relates the dependent variable (whose value one wants to
predict) to one or more independent variables.

Problems relating to predictions based on the known value of one variable are treated
in Sections 11.1 through 11.3 and 11.6; the case where predictions are based on the
known values of several variables is treated in Section 11.4. The importance of checking
the assumptions concerning the prediction model is considered in Section 11.5.

11.1 The Method of Least Squares
We introduce the ideas of regression analysis in the simple setting where the distri-
bution of a random variable Y depends on the value x of one other variable. Calling
the two variables x and y, the terminology is

x = independent variable, also called predictor variable, or input variable.

y = dependent variable, or response variable.

Typically, the independent variable is observed without error, or with an error which
is negligible when compared with the error (chance variation) in the dependent vari-
able. For example, in measuring the amount of oxide on the surface of a metal spec-
imen, the baking temperature can usually be controlled with good precision, but the
oxide-thickness measurement may be subject to considerable chance variation. Even
though the independent variable may be fixed at x, repeated measurements of the de-
pendent variable may lead to y values which differ considerably. Such differences
among y values can be attributed to several causes, chiefly to errors of measurement
and to the existence of other, uncontrolled variables which may influence the mea-
sured thickness, y, when x is fixed. Thus, measurements of the thickness of oxide
layers may vary over several specimens baked for the same length of time at the
same temperature because of the difficulty in measuring thickness as well as pos-
sible differences in the uncontrolled variables such as the composition of the oven
atmosphere and surface conditions of the specimen.

It should be apparent from this discussion that, in this context, the measured
thickness of oxide layers Y is a random variable whose distribution depends on x.
In most situations of this sort we are interested mainly in the relationship between
x and the mean E [Y | x ] of the corresponding distribution of Y . We refer to this
relationship as the regression of Y on x. (For the time being we shall consider the
case where x is fixed, that is, not random. In Section 11.6 we shall consider the case
where x and y are both values of random variables.)
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Let us first treat the case where the regression curve of Y on x is a linear re-
gression curve. That is, for any given x, the mean of the distribution of the Y ’s is
given by α + βx. In general, Y will differ from this mean, and we shall denote this
difference by ε, writing

Y = α + βx + ε

Thus, ε is a random variable and under this linear regression model we can always
choose α so that the mean of the distribution of this random variable is equal to zero.
The value of ε for any given observation will depend on a possible error of measure-
ment and on the values of variables other than x which might have an influence on Y .

An engineer conducts an experiment with the purpose of showing that adding a
new component to the existing metal alloy increases the cooling rate. Faster cooling
rates lead to stronger materials and improve other properties. Let

x = percentage of the new component present in the metal.

y = cooling rate, during a heat-treatment stage, in ◦F per hour .

The engineer decides to consider several different percentages of the new com-
ponent. Suppose the observed data are

x 0 1 2 2 4 4 5 6

y 25 20 30 40 45 50 60 50

The first step in any analysis of the relationship between the two variables is to
plot the data in a scatter plot or scattergram. The predictor variable x is located on
the horizontal axes and the response variable y on the vertical axis.

First step in the analysis
Creating a scatter plot is an important preliminary step preceding any statisti-
cal analysis of the two variables. The existence of any increasing, or decreasing,
relationship becomes readily apparent.

The pattern of data in the scatter plot will suggest whether or not there is a
straight line relationship. The scatter plot of the cooling data appears in Figure 11.1.
The points cluster around a straight line but the linear relation is masked by moder-
ately sized departures from a line.

Figure 11.1
Scatter plot of cooling rate data
suggests straight line model
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Now we face the problem of using the observed data to estimate the parameters
α and β of the regression line in a manner that somehow provides the best fit to the
data. If different experimenters fit a line by eye, the lines would likely be different.
Consequently, to handle problems of this kind, we must seek a nonsubjective method
for fitting straight lines which reflects some desirable statistical properties.

To state the problem formally, we have n paired observations (xi, yi) for which it
is reasonable to assume that the regression of Y on x is linear. We want to determine
the line (that is, the equation of the line) which in some sense provides the best
fit. There are several ways in which we interpret the word “best,” and the meaning
we shall give it here may be explained as follows. If we predict y by means of the
equation

ŷ = a + bx

where a and b are constants, then ei, the error in predicting the value of y corre-
sponding to the given xi, is

ei = yi − ŷi

and we shall want to determine a and b so that these errors are in some sense as
small as possible.

Since we cannot simultaneously minimize each of the ei individually, we might

try to make their sum
n∑

i=1
ei as close as possible to zero. However, since this sum

can be made equal to zero by many choices of totally unsuitable lines for which the
positive and negative errors cancel, we shall minimize the sum of the squares of the
ei (for the same reason we worked with the squares of the deviations from the mean
in the definition of the standard deviation). In other words, we apply the principle
of least squares and choose a and b so that

n∑
i=1

e2
i =

n∑
i=1

[ yi − ( a + b xi ) ]2

is a minimum. This is equivalent to minimizing the sum of the squares of the vertical
distances from the points to the line in any scatter plot (see Figure 11.2).

Figure 11.2
Diagram for least squares
criterion showing the vertical
deviations whose sum of
squares is minimized
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The procedure of finding the equation of the line which best fits a given set of
paired data, called the method of least squares, yields values for a and b (estimates
of α and β) that have many desirable properties; some of these are mentioned on
page 336.

Before minimizing the sum of squared deviations to obtain the least squares
estimators, it is convenient to introduce some notation for the sums of squares and
sums of cross-products.

Sxx =
n∑

i=1

( xi − x )2 =
n∑

i=1

x2
i −

( ∑n
i=1 xi

)2

n

Syy =
n∑

i=1

( yi − y )2 =
n∑

i=1

y2
i −

( ∑n
i=1 yi

)2

n

Sxy =
n∑

i=1

( xi − x )( yi − y ) =
n∑

i=1

xi yi −
( ∑n

i=1 xi
) (∑n

i=1 yi
)

n

The first expressions are preferred on conceptual grounds because they highlight de-
viations from the mean and on computing grounds because they are less susceptible
to roundoff error. The second expressions are for handheld calculators.

Least squares estimates

Below, we show that the least squares estimates are

α̂ = y − b · x and β̂ = Sxy

Sxx

where x and y are, respectively, the means of the values of x and y.
The least squares estimates determine the best-fitting line

ŷ = α̂ + β̂ x

where thêon y, α, and β indicates the estimated value.

Fitted (or estimated)
regression line

The individual deviations of the observations yi from their fitted values
ŷi = α̂ + β̂ xi are called the residuals.

observation − fitted value = yi − α̂ − β̂ xiResiduals

The minimum value of the sum of squares is called the residual sum of squares
or error sum of squares. Below we show that

SSE = residual sum of squares =
n∑

i=1

( yi − α̂ − β̂ xi )2

= Syy − S2
xy / Sxx
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Example 1 illustrates the least squares calculations when the sample means are
subtracted to center the data.

EXAMPLE 1 Least squares calculations for the cooling rate data
Calculate the least squares estimates and sum of squares error for the cooling rate
data.

Solution The structure of the table guides the calculations.

x y x − x̄ y − ȳ (x − x̄)2 (x − x̄)(y − ȳ) (y − ȳ)2 residual

0 25 −3 −15 9 45 225 3
1 20 −2 −20 4 40 400 −8
2 30 −1 −10 1 10 100 −4
2 40 −1 0 1 0 0 6
4 45 1 5 1 5 25 −1
4 50 1 10 1 10 100 4
5 60 2 20 4 40 400 8
6 50 3 10 9 30 100 −8

x̄ = 3 ȳ = 40 0 0 Sxx = 30 Sxy = 180 Syy = 1350

so β̂ = Sxy/Sxx = 180 / 30 = 6 and α̂ = ȳ − β̂ x̄ = 40 − 6(3) = 22.
Since β̂ = 6 and α̂ = 22, the least squares line is

ŷ = α̂ + β̂ x = 22 + 6x

The residuals are yi − α̂ − β̂ xi = yi − 22 − 6 xi, or, 25 − 22 − 6(0) = 3, −8, −4,
6, −1, 4, 8, −8.

The sum of squares error is then

SSE =
n∑

i=1

(yi − α̂ − β̂ xi)
2

= 32 + (− 8)2 + (− 4)2 + 62 + (− 1)2 + 42 + 82 + (− 8)2 = 270

Alternatively,

SSE = Syy − S2
xy/Sxx = 1350 − 1802/30 = 270 j

When the observations themselves, or the means, have several digits, the ap-
proach in Example 1 proves tedious and cumbersome. Although the second expres-
sions for Sxx , Syy, and Sxy are somewhat easy to evaluate on hand held calculators,
we strongly recommend performing regression analysis with computer software.
The specifics for using MINITAB and R are given later in Examples 4 to 6 and
Exercise 11.22.

EXAMPLE 2 A numerical example of fitting a straight line by least squares
The following are measurements of the air velocity and evaporation coefficient of
burning fuel droplets in an impulse engine:
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Air velocity Evaporation coefficient
(cm/s) (mm2/s)

x y

20 0.18
60 0.37

100 0.35
140 0.78
180 0.56
220 0.75
260 1.18
300 1.36
340 1.17
380 1.65

Fit a straight line to these data by the method of least squares, and use it to estimate
the evaporation coefficient of a droplet when the air velocity is 190 cm/s.

Solution Typical output from statistical software includes the information

The regression equation is

y = 0.0692 + 0.003829x

Source SS
Regression 1.93507
Error 0.20238
Total 2.13745

In our notation, α̂ = 0.692 , β̂ = 0.003829, and SSE = 0.20238. The least
squares line predicts an increase of 0.003829 mm2/s in the evaporation coefficient
for each increase of 1 cm/s in air velocity.

It is instructive, at least once, to confirm the computer software using a simple
hand held calculator.

For these n = 10 pairs ( xi, yi ) we first calculate

n∑
i=1

xi = 2,000
n∑

i=1

x2
i = 532,000

n∑
i=1

yi = 8.35
n∑

i=1

xi yi = 2,175.40

n∑
i=1

y2
i = 9.1097

and then we obtain

Sxx = 532,000 − (2,000)2/10 = 132,000

Sxy = 2,175.40 − (2,000)(8.35)/10 = 505.40

Syy = 9.1097 − (8.35)2/10 = 2.13745
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Consequently, the estimate of slope is

β̂ = Sxy

Sxx
= 505.40

132,000
= 0.003829

and then the estimate of intercept becomes

α̂ = y − β̂ x = 8.35
10

− 0.003829
2,000

10
= 0.0692

The equation of the straight line that best fits the given data in the sense of least
squares,

ŷ = 0.0692 + 0.003829 x

confirms the computer software calculation.
For x = 190, we predict that the evaporation coefficient will be

ŷ = 0.0692 + 0.003829(190) = 0.80 mm2/s

Finally, the residual sum of squares is

Syy − S2
xy

Sxx
= 2.13745 − (505.40)2

132,000
= 0.20238 j

To avoid confusion, we make it clear that there are two possible regression lines.

EXAMPLE 3 One scatter plot but two different fitted lines
Engineers fabricating a new transmission-type electron multiplier1 created an
array of silicon nanopillars (see Figure 2.5) on a flat silicon membrane. The pre-
cise structure can influence the electrical properties so, subsequently, the height and
widths of 50 nanopillars (see Exercise 11.23) were measured in nanometers (nm) or
10−9 × meters. The summary statistics, with x = width and y = height, are

n = 50 x = 88.34 y = 305.58

Sxx = 7,239.22 Sxy = 17,840.1 Syy = 66,976.2

(a) Find the least squares line for predicting height from width.

(b) Find the least squares line for predicting width from height.

(c) Make a scatter plot and show both lines. Comment.

Solution (a) Here y = height and the least squares estimates are

slope = β̂ = Sxy

Sxx
= 17,840.1

7,239.22
= 2.464 and

α̂ = y − β̂ x = 305.58 − 17,840.1
7,239.22

× 88.34 = 87.88

The fitted line is

height = 87.88 + 2.464 width.

1H. Qin, H. Kim, and R. Blick, Nanopillar arrays on semiconductor membranes as electron emission
amplifiers, Nanotechnology 19 (2008), 095504 (5pp).
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Figure 11.3
Scatter plot and two fitted lines

60 70

y = –26.11 + 3.759 width

y = 87.88 + 2.464 width

80 90
Width

H
ei

gh
t

100 110 120

200

250

300

350

400

(b) Width is now the response variable and height the predictor, so x and y must be
interchanged.

slope = β̂ = 17,840.1
66,976.2

= 0.266 and

α̂ = 88.34 − 0.2664 × 305.58 = 6.944

The fitted line is

width = 6.944 + 0.266 height.

(c) Using the data in Exercise 11.23, we construct the scatter plot in Figure 11.3
and include the two lines. The line from part (b) is written as

height = − 6.944
0.266

+ 1
0.266

width = − 26.11 + 3.759 width

Notice that both pass through the mean point (x, y ) = (88.34 , 305.58).
The choice of fitted line depends on which variable you wish to predict. j

Determining the Least Squares Estimators
We now show that the choice of estimates

β̂ = Sxy

Sxx
α̂ = y − b x

minimizes the sum of squares,

S(a, b) =
n∑

i=1

( yi − a − b xi )2

over all choices of a and b. We first find an alternative expression for the sum of
squares for any a and b. Adding and subtracting b x − y, we have

yi − a − b xi = ( yi − y ) − b ( xi − x) + ( y − a − b x )

Squaring both sides, we obtain

( yi − a − b xi)
2 = ( yi − y )2 + b2 ( xi − x )2 + ( y − a − b x ) 2

− 2b ( yi − y ) ( xi − x )

− 2b ( y − a − b x ) ( xi − x )

+ 2 ( yi − y ) ( y − a − b x )
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Now, summing over both sides, the last two terms vanish so we obtain

S(a, b) = Syy + b2 Sxx + n ( y − a − b x )2 − 2b Sxy

= n ( y − a − b x )2 +
(

b2 Sxx − 2b Sxy + S2
xy

Sxx

)
+ Syy − S2

xy

Sxx

= n ( y − a − b x )2 +
(

b
√

Sxx − Sxy√
Sxx

)2
+ Syy − S2

xy

Sxx

According to the principle of least squares, we must select values for a and b which
will minimize this sum of squares. All three terms on the right-hand side are non-
negative and the third term does not depend on the choice of a and b. The second
term can be made to equal zero, its minimum value, by taking β̂ = Sxy/Sxx. With
this choice for b, the first term can be made equal to zero by taking α̂ = y− β̂x. This
confirms the formula for the least squares estimators on page 330.

Further, we have shown that the minimized sum of squares equals the third term.
That is, the sum of squares error

SSE = Syy − S2
xy/Sxx

as stated on page 330.
The estimate of σ 2 is

s2
e =

n∑
i=1

( yi − α̂ − β̂ xi )2

n − 2
or s2

e = Syy − S2
xy/Sxx

n − 2

Normal Equations for the Least Squares Estimators
A necessary condition that the sum of squared deviations,

n∑
i=1

( yi − a − bxi )2

be a minimum is the vanishing of the partial derivatives with respect to a and b.
We thus have

2
n∑

i=1

[ yi − ( a + b xi ) ] (−1) = 0

2
n∑

i=1

[ yi − ( a + b xi ) ] (−xi) = 0

and we can rewrite these two equations as

Normal equations

n∑
i=1

yi = an + b
n∑

i=1

xi

n∑
i=1

xi yi = a
n∑

i=1

xi + b
n∑

i=1

x2
i
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This set of two linear equations in the unknowns a and b, called the normal equa-
tions, gives the same values of α̂ and β̂ for the line which provides the best fit to a
given set of paired data in accordance with the criterion of least squares.

EXAMPLE 4 The least squares estimates obtained from the normal equations
Solve the normal equations for the data in Example 2 and confirm the values for the
least squares estimates.

Solution Using the calculations in Example 2, the normal equations are

8.35 = 10 a + 2,000 b

2,175.40 = 2,000 a + 532,000 b

Solving this system of equations by use of determinants or the method of elimina-
tion, we obtain a = 0.069 and b = 0.00383.

As they must be, these values are the same, up to rounding error, as those
obtained in Example 2. j

It is impossible to make any exact statement about the “goodness” of an estimate
like this unless we make some assumptions about the underlying distributions of the
random variables with which we are concerned and about the true nature of the
regression. Looking upon α̂ and β̂ as estimators of the actual regression coefficients
α and β, the reader will be asked to show in Exercise 11.20 that these estimators are
linear in the observations Yi and that they are unbiased estimators of α and β. With
these properties, we can refer to the remarkable Gauss-Markov theorem, which
states that among all unbiased estimators for α and β which are linear in the Yi, the
least squares estimators have the smallest variance. In other words, the least squares
estimators are the most reliable in the sense that they are subject to the smallest
chance variations. A proof of the Gauss-Markov theorem may be found in the book
by Johnson and Wichern referred to in the bibliography.

11.2 Inferences Based on the Least
Squares Estimators

The method of the preceding section is used when the relationship between x and
the mean of Y is linear or close enough to a straight line so that the least squares
line yields reasonably good predictions. In what follows we shall assume that the
regression is linear in x and, furthermore, that the n random variables Yi are inde-
pendently normally distributed with the means α + β xi and the common variance
σ 2 for i = 1, 2, . . . , n. Equivalently, we write the model as

Yi = α + β xi + εi for i = 1, 2, . . . , n
Statistical model for

straight-line regression

where it is assumed that the εi are independent normally distributed random vari-
ables having zero means and the common variance σ 2.

The various assumptions we have made here are illustrated in Figure 11.4, show-
ing the distributions of Yi for several values of xi. Note that these additional assump-
tions are required to discuss the goodness of predictions based on least squares equa-
tions, the properties of α̂ and β̂ as estimators of α and β, and so on. They were not
required to obtain the original estimates based on the method of least squares.
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Figure 11.4
Diagram showing assumptions
underlying Theorem 11.1
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Before we state a theorem concerning the distribution of the least squares esti-
mators of α and β, we review the formulas for calculating the least squares estima-
tors and then present an estimate of the error variance σ 2.

Recall from page 330 that the values for the least squares estimators of α and β

are given by

α̂ = y − β̂ · x β̂ = Sxy

Sxx

where Sxx and Sxy are defined also along with Syy.
Note the close relationship between Sxx and Syy and the respective sample vari-

ances of the x’s and the y’s; in fact, s2
x = Sxx /(n − 1) and s2

y = Syy /(n − 1), and
we shall sometimes use this alternative notation.

The variance σ 2 defined on page 336 is usually estimated in terms of the vertical
deviations of the sample points from the least squares line. The ith such deviation is
yi − ŷi = yi − ( α̂ + β̂ xi ) and the estimate of σ 2 is

s2
e = 1

n − 2

n∑
i=1

[ yi − ( α̂ + β̂ xi ) ]2

Traditionally, se is referred to as the standard error of the estimate. The s2
e estimate

is the residual sum of squares, or the error sum of squares, divided by n − 2. An
equivalent formula for this estimate of σ 2, which is more convenient for handheld
calculators, is given by

Estimate of σ2 s2
e = Syy − (Sxy)2 /Sxx

n − 2

In these formulas the divisor n − 2 is used to make the resulting estimator for σ 2

unbiased. It can be shown that under the given assumptions ( n − 2 ) s2
e /σ 2 is a

value of a random variable having the chi square distribution with n − 2 degrees of
freedom. The “loss” of two degrees of freedom is explained by the fact that the two
regression coefficients α and β had to be replaced by their least squares estimates.
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Based on the assumptions made concerning the distribution of the values of Y ,
one can prove the following theorem concerning the distributions of the least squares
estimators of the regression coefficients α and β.

Theorem 11.1 Under the assumptions given on page 336 the statistics

t = ( α̂ − α )
se

√
nSxx

Sxx + n ( x )2

and

t = ( β̂ − β )
se

√
Sxx

are random variables having the t distribution with n − 2 degrees of freedom.

Statistics for inferences
about α and β

To construct confidence intervals for the regression coefficients α and β, we sub-
stitute for the middle term of −tα/2 < t < tα/2 the appropriate t statistic of
Theorem 11.1. Then, simple algebra leads to

α : α̂ ± tα/2 · se

√
1
n

+ ( x )2

Sxx
and

β : β̂ ± tα/2 · se
1√
Sxx

Confidence limits for
regression coefficients

EXAMPLE 5 A confidence interval for the intercept
With reference to Example 2, construct a 95% confidence interval for the regression
coefficient α.

Solution The relevant output of regression analysis software is

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0692424 0.1009737 0.686 0.512
velocity 0.0038288 0.0004378 8.746 2.29e-05

Residual standard error: 0.1591 on 8 degrees of freedom

Since t0.025 = 2.306 for 10 − 2 = 8, the 95% confidence limits are

Estimate ± t0.025 Std. Error = 0.0692424 ± 2.306 ( 0.1009737)

The 95% confidence interval becomes

−0.164 < α < 0.302

Note that 0 is a plausible value for the intercept α so the line could pass through the
origin.

To use the formula above this example, recall from Example 2 that n = 10,
x = 200, and Syy − S2

xy /Sxx = 0.20238. Then,

s2
e = 2.13745 − (505.40)2/132,000

8
= 0.20238

8
= 0.0253
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se = √
.0253 = 0.1591. The 95% confidence limits are

0.0692 ± ( 2.306 ) ( 0.1591 )

√
1
10

+ (200)2

132,000

and, consistent with the computer-based calculation, the 95% confidence interval is

−0.164 < α < 0.302

[ Using R: Read the file C11Ex12.txt into Dat and then use summary(lm(evap ˜
velocity), data = Dat) ] j

In connection with tests of hypotheses concerning the regression coefficients α

and β, those concerning β are of special importance because β is the slope of the
regression line. That is, β is the change in the mean of Y corresponding to a unit
increase in x. If β = 0, the regression line is horizontal and the mean of Y does not
depend linearly on x. For tests of the null hypothesis β = β0, we use the second
statistic of Theorem 11.1 and the criteria are like those in the table on page 253 with
μ replaced by β.

EXAMPLE 6 A test of hypotheses concerning the slope parameter
With reference to Example 2, test the null hypothesis β = 0 against the alternative
hypothesis β �= 0 at the 0.05 level of significance.

Solution 1. Null hypothesis: β = 0
Alternative hypothesis: β �= 0

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if t < −2.306 or t > 2.306, where 2.306
is the value of t0.025 for 10 − 2 = 8 degrees of freedom, and t is given by the
second formula of Theorem 11.1.

4. Calculations: Using the quantities obtained in Examples 2 and 5, we get

t = 0.003829 − 0
0.1591

√
132,000 = 8.744

5. Decision: Since t = 8.744 exceeds 2.306, the null hypothesis must be rejected;
we conclude that there is a relationship between air velocity and the average
evaporation coefficient. (According to the scatter plot in Figure 11.2, the
assumption of a straight-line relationship appears to be valid.)

The evidence for nonzero slope β is extremely strong with P-value less than
0.00003. (See the computer output in Example 5 and Figure 11.5.) j

Figure 11.5
The extremely small P-value

0.0000 0.0000

2.30622.306 0
t
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Most statistical software programs include a least squares fit of a straight line.
When the number of ( xi, yi ) pairs is moderate to large, a computer should be used.
We illustrate with the cooling rate data on page 328. The first step is to plot the
data; but this is already done on page 328. Typical output from a regression analysis
program includes

1

5

REGRESSION EQUATION
Y = 22.00 + 6.00x

S = 6.70820

TERM
CONSTANT
X

COEFFICIENTS

SE COEF
4.37
1.22

3
T-VALUE

5.03
4.90

4
P-VALUE
0.002
0.003

2
COEF
22.00
6.00

The least squares line 1© is ŷ = 22.00 + 6.00x and the estimate of σ 2 is s2
e =

(6.70820)2 = 45.00 using 5© se = 6.70820.
Since 3© t = 4.90, with n−2 = 10 degrees of freedom, is highly significant, the

slope is different from zero. The small P-value 4© P-value = 0.002 for the constant
term confirms that it is needed in the model data.

In Exercise 11.22, more MINITAB output is described.
Figure 11.6 gives the SAS output for a least squares fit with the cooling rate data.

Notice that more decimal places are given. For instance the 4© P-value 0.0027 =
Prob > |T | is given for testing β = 0 versus β �= 0.

Figure 11.6
Selected SAS output for a
regression analysis using the
cooling rate data on page 328

3 42

Parameter
Estimate

Standard
Error

t Value
Pr > |t|

Intercept
x

1
1

22.00000
6.00000

4.37321
1.22474

5.03
4.90

0.0024
0.0027

5 6.70820
40.00000

Root MSE
Dependent Mean

Parameter Estimates

Source DF

Model
Error
Corrected Total

1
6
7

1080.00000
270.00000
1350.00000

Sum of
Squares

Mean
Square

1080.00000
45.00000

F Value

24.00

Pr > F

DF

Analysis of Variance

Dependent Variable: y

Variable

0.0027

We will return to this least squares fit in Section 11.5, where we investigate the
assumptions of a straight-line model and the normal distribution for errors.

Another problem, closely related to the problem of estimating the regression
coefficients α and β, is that of estimating α + β x, namely, the mean of the distri-
bution of Y for a given value of x. If x is held fixed at x0, the quantity we want to
estimate is α + β x0 and it would seem reasonable to use α̂ + β̂ x0, where α̂ and β̂

are again the values obtained by the method of least squares. In fact, it can be shown
that this estimator is unbiased, has the variance

σ 2

[
1
n

+ ( x0 − x )2

Sxx

]
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and that (1 − α)100% confidence limits for α + βx0 are given by

( α̂ + β̂x0 ) ± tα/2 · se

√
1
n

+ ( x0 − x )2

Sxx

where the number of degrees of freedom for tα/2 is n − 2.

Confidence limits
for α + βx0

The next example, illustrates a complete approach to fitting and interpreting
a straight line. Typically, we rely on computer software to produce the regression
analysis (see Exercise 11.22 for MINITAB commands).

EXAMPLE 7 Modeling and making inferences concerning the effect of
prestressing sheets of aluminum alloy
Because of their strength and lightness, sheets of an aluminum alloy are an attractive
option for structural members in automobiles. Engineers discovered that prestrain-
ing a sheet of one aluminum alloy may increase its strength. One aspect of their ex-
periments concerns the effect of prestrain(%) on the peak load(kN) that corresponds
to the critical buckling load.

Peak Peak Peak
Prestrain load load load

0 8.6 8.9 9.1
3 9.0 9.3 9.4
6 9.5 9.8 9.8

12 10.2 10.2 10.3

(Source: Data read from Figure 5, Wowk, E. and

Pilkey, K (2013), An experimental and numerical

study of prestrained AA5754 sheet in bending.

J Materials Processing Technology, 213(1), 1–10)

(a) Does prestraining increase the strength of the aluminum alloy?

(b) Obtain a 95% confidence interval for the mean increase in strength when strain
is increased by 1 percent.

(c) Obtain a 95% confidence interval for the mean peak load when the prestrain is
set at 9 percent.

(d) Comment on the fit of the straight line model.

Solution (a) The scatter plot in Figure 11.7 suggests fitting a straight line model.
Using computer software, we obtain

Predictor Coef SE Coef T P
Constant 8.90667 0.08078 110.26 0.000
C1 0.11460 0.01175 9.75 0.000
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Figure 11.7
Scatter plot suggests straight
line model Prestrain (%)
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Analysis of Variance

Source DF SS MS F P
Regression 1 3.1029 3.1029 95.10 0.000
Residual Error 10 0.3263 0.0326
Total 11 3.4292

Summary of Model

S = 0.180634

The estimated slope of the regression line is β̂ = 0.1146 which is positive.
Since the value of test statistic for testing H0: β = 0

t = β̂

se /
√

Sxx
= Coef

SE Coef
= 0.1146

0.01175
= 9.75

is so large, the P-value for the one-sided test is less than 0.0000 when rounded
down. This is very strong evidence that prestressing results in stronger
material.
According to the definition of slope, we estimate that increasing x by one unit
(1%) will result in an increase of strength of 0.1146 kN.

(b) The estimated regression line is

ŷ = α̂ + β̂ x = 8.90667 + 0.1146 x

With x = 9 percent prestrain, we estimate ŷ = 8.90667 + 0.1146(9) = 9.938 kN
Next, a further simple calculation gives x = 5.25 and Sxx = ∑12

i=1(xi − x)2 =
236.250. Since t0.25 = 2.228 for n − 2 = 10 d.f., the half length of the 95%
confidence interval is

t0.025 se

√
1
n

+ (x0 − x)2

Sxx
= 2.228 ( 0.180634)

√
1
12

+ (9 − 5.25)2

236.250
= 0.1521

The 95% confidence interval becomes

( 9.938 − 0.152, 9.938 + 0.152 ) or ( 9.79, 10.09 ) kN

We are 95% confident that mean strength is between 9.79 and 10.09 kN for all
alloy sheets that could undergo a prestrain of 9 percent.
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(c) The scatter plot Figure 11.7 confirms the model is reasonable. Further, as you
are asked to confirm to Exercise 11.44, there are no outliers in the residuals
and the assumption of normal errors appears reasonable. We can rely upon the
statistical conclusions above.

[ Using R: (a) With the data in x and y, use summary(lm(y˜x)) (b) new=data
.frame(x=c(9)) then predict (lm(y ˜ x), new, level=.95, interval=“confidence”) ]

j

To emphasize the danger inherent when extrapolating beyond the range of ex-
perimentation, consider the plot of conductivity versus temperature in Figure 11.8.
(Source: K. Onnes (1912) Communications of the Physical Laboratory at the Uni-
versity of Leiden, no. 124, unnumbered figure.) If the line is extended to predict
conductivity at 4.10◦ Kelvin, we would predict 0.10 ohms. This is much greater
than the value of 0, which Onnes observed when he discovered superconductivity
at 4.19◦ Kelvin. That is, the physical model changes drastically outside the experi-
mental range shown.

Figure 11.8
Resistance versus temperature
for a specimen of mercury. A
model change invalidates
extrapolation below 4.2◦ K
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Now let us indicate a method of constructing an interval in which a future ob-
servation, Y , can be expected to lie with a given probability (or confidence) when
x = x0. If α and β were known, we could use the fact that Y is a random variable
having a normal distribution with the mean α + βx0 and the variance σ 2 (or that
Y − α − β x0 is a random variable having a normal distribution with zero mean
and the variance σ 2 ). However, if α and β are not known, we must consider the
quantity Y − α̂ − β̂ x0, where Y, α̂, and β̂ are all random variables, and the result-
ing theory leads to the following limits of prediction for a future observed value Y
when x = x0 :

Limits of prediction
for future Y at x0

( α̂ + β̂ x0 ) ± tα/2 · se

√
1 + 1

n
+ ( x0 − x )2

Sxx

where the number of degrees of freedom for tα/2 is n − 2.
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EXAMPLE 8 95% prediction limits for the strength of a future sheet of aluminum
alloy
With reference to Example 7, find 95% limits of prediction for an observation of the
peak load for a new sheet of aluminum that was subject to a prestrain of 9 percent.

Solution Adding a 1 under the radical in Example 7, we get

9.938 ± 2.228 ( 0.180634 )

√
1 + 1

12
+ ( 9 − 5.25 )2

236.250

and the limits of prediction are 9.94 − 0.43 = 9.51 and 10.37 = 9.94 + 0.43 We are
95% confident that the observed value of peak load for this new sheet of aluminum
lies between 9.51 and 10.37 kN.

[ Using R: predict(lm(y˜ x), new, level=.95, interval = “prediction”) with x,
y and new as in Example 7, part(b). ] j

Note that although the mean of the distribution ofY when x = 9 can be estimated
fairly closely, the value of a single future observation cannot be predicted with much
precision. Indeed, even as n → ∞, the difference between the limits of prediction
does not approach zero; the limiting width of the interval of prediction depends on
se, which measures the inherent variability of the data.

Note further that if we do wish to extrapolate, the interval of prediction (and
also the confidence interval for α + β x0 ) becomes increasingly wide.

EXAMPLE 9 The limits of prediction become wider if x0 is farther from x
With reference to Example 7, assume that the linear relationship continues beyond
the range of experimentation and find 95% limits of prediction for an observation of
the peak load of a new sheet of aluminum that is subject to a prestrain of 18 percent.

Solution Substituting the various quantities already calculated in Example 7 and Example 8,
but now using x0 = 18. The least squares line predicts

8.90667 + 0.1146(18 ) = 10.9695

The 95% limits of prediction are

10.9695 ± 2.228 ( 0.180634 )

√
1 + 1

12
+ ( 18 − 5.25 )2

236.250

or, 10.9695 − 0.5356 = 10.4339 and 11.5051 = 10.9695 + 0.5356 kN. We are 95%
confident that the observed value of peak load for this new sheet of aluminum lies
between 10.43 and 11.51 kN. This confidence is misplaced if the linear relationship
does not extend quite far beyond the range of values for x included in the experiment.

Even if the linear relationship holds, out to z = 18, the width of this interval of
prediction is 2 ( 0.54 ) = 1.08 compared to the width of 2 ( 0.43 ) = 0.86 obtained
in Example 8 for x0 = 9 which is closer to x. The band that results from calculating
the 95% prediction limits for 0 ≤ x ≤ 20 is shown as the solid line in Figure 11.9.
The band for confidence intervals for the mean are the dotted lines. Notice that this
band is substantially narrower except for extrapolations to the right of the data.

[ Using R: new = data.frame(x=c(18)) then predict(lm(y˜x), new, level=.95,
interval = “prediction”) but with with x and y as in Example 7. ] j
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Figure 11.9
The 95% limits of prediction
(solid) and confidence intervals
(dotted) for aluminum sheets.
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Exercises
11.1 A chemical engineer found that by adding different

amounts of an additive to gasoline, she could reduce
the amount of nitrous oxides (NOx) coming from an
automobile engine. A specified amount will be added
to a gallon of gas and the total amount of NOx in the
exhaust collected. Initially, five runs with 1, 2, 3, 4, and
5 units of additive will be conducted.

(a) How would you randomize in this experiment?

(b) Suppose you properly calculate a point estimate of
the mean value of NOx when the amount of addi-
tive is 8. What additional danger is there in using
this estimate?

11.2 A motorist found that the efficiency of her engine could
be increased by adding lubricating oil to fuel. She ex-
perimented with different amounts of lubricating oil
and the data are

Amount of lubricating oil (ml) Efficiency (%)

0 60
25 70
50 75
75 81

100 84

(a) Obtain the least squares fit of a straight line to the
amount of lubricating oil.

(b) Test whether or not the slope β = 0. Take α =
0.05 as your level of significance.

(c) Give a point estimate of the mean engine ef-
ficiency when the amount of lubricating oil is
450 ml.

(d) What additional danger is there when using your
estimate in part (c)?

(e) How would you randomize this experiment?

11.3 A textile company, wanting to know the effect of tem-
perature on the tearing strength of a fiber, obtained the
data shown in the following table.

Temperature Tearing strength
(◦C) (g)

x y

20 1,600
22 1,700
25 2,100
35 2,500
18 1,550
29 2,600
31 2,550
16 1,100
13 1,050
48 2,650

(a) Draw a scatter plot to verify that a straight line
will provide a good fit to the data, draw a straight
line by eye, and use it to predict the tearing
strength one can expect when the temperature
is 29◦C.

(b) Fit a straight line to the given data by the method
of least squares and use it to predict the tear-
ing strength one can expect when the temperature
is 29◦C.

11.4 In the accompanying table, x is the tensile force ap-
plied to a steel specimen in thousands of pounds,
and y is the resulting elongation in thousandths of an
inch:

x 1 2 3 4 5 6
y 14 33 40 63 76 85
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(a) Graph the data to verify that it is reasonable to as-
sume that the regression of Y on x is linear.

(b) Find the equation of the least squares line, and use
it to predict the elongation when the tensile force
is 3.5 thousand pounds.

11.5 With reference to the preceding exercise,

(a) construct a 95% confidence interval for β, the
elongation per thousand pounds of tensile stress;

(b) find 95% limits of prediction for the elongation of
a specimen with x = 3.5 thousand pounds.

11.6 The following table shows how many days in
December a sample of 6 students were present at their
university and the number of lectures each attended on
a given day.

Number of Number of
days present lectures attended

x y

12 3
8 2

13 5
10 4

7 1
10 3

(a) Find the equation of the least squares line which
will enable us to predict y in terms of x.

(b) Use the result in part (a) to estimate how many lec-
tures someone who has been present for 15 days
can be expected to attend each day.

11.7 With reference to the preceding exercise, test the null
hypothesis β = 0.75 against the alternative hypothesis
β < 0.75 at the 0.10 level of significance.

11.8 With reference to Exercise 11.6, find

(a) a 90% confidence interval for the average number
of classes attended each day by a student present
for 15 days;

(b) 90% limits of prediction for the number of
classes attended each day by a student present for
15 days.

11.9 Scientists searching for higher performance flexible
structures created a diode with organic and inorganic
layers. It has excellent mechanical bending proper-
ties. Applying a bending strain to the diode actually
leads to higher current density(mA/cm2). Metal curva-
ture molds, each having a different radius, were used
to apply strain(%). For one demonstration of the phe-
nomena, the data are

(Courtesy of Jung-Hun Seo see Jung-Hun Seo et. al. (2013), A
multifunction heterojunction formed between pentacene and a
single-crystal silicon nanomembrane, Advanced Functional Ma-
terials, 23(27), 3398–3403.)

Strain(%) Current density(mA/cm2)
x y

0.00 3.47
0.25 3.57
0.49 3.68
0.64 3.73
0.80 3.86
1.08 3.99

(a) Obtain the least squares line.

(b) Predict the current density when the strain x =
0.50.

11.10 With reference to Exercise 11.9, construct a 95% con-
fidence interval for α.

11.11 With reference to Exercise 11.9, test the null hypoth-
esis β = 0.40 against the alternative hypothesis β >

0.40 at the 0.05 level of significance.

11.12 The level of pollution because of vehicular emissions
in a city is not regulated. Measurements by the local
government of the change in flow of vehicles and the
change in the level of air pollution (both in percent-
ages) on 12 days yielded the following results:

Change in flow Change in level
of vehicles of air pollution

x y

28 22
36 26
15 15
19 18
24 21
18 17
25 21
40 31
63 52
12 8
16 17
21 20

(a) Make a scatter plot to verify that it is reasonable
to assume that the regression of y on x is linear.

(b) Fit a straight line by the method of least squares.
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(c) Find a 95% confidence interval for the mean
change in the level of air pollution when the
change in the flow of vehicles is 30%.

11.13 With reference to the preceding exercise, find 99%
limits of prediction for the level of air pollution when
the flow of vehicles is 30%. Also indicate to what ex-
tent the width of the interval is affected by the size of
the sample and to what extent it is affected by the in-
herent variability of the data.

11.14 With reference to Exercise 11.3, express 90% limits
of prediction for the tearing strength in terms of the
temperature x0. Choosing suitable values of x0, sketch
graphs of the loci of upper and lower limits of predic-
tion on the diagram of part (a) of Exercise 11.3. Note
that since any two sets of limits of prediction obtained
from these bands are dependent, they should be used
only for a single temperature x0.

11.15 In Exercise 11.4 it would have been entirely reason-
able to impose the condition α = 0 before fitting a
straight line by the method of least squares.

(a) Use the method of least squares to derive a for-
mula for estimating β when the regression line has
the form y = βx.

(b) With reference to Exercise 11.4, use the formula
obtained in part (a) to estimate β and compare the
result with the estimate previously obtained with-
out the condition that the line must pass through
the origin.

11.16 Recycling concrete aggregate is an important compo-
nent of green engineering. The strength of any po-
tential material, expressed in terms of its resilient
modulus, must meet standards before it is incorpo-
rated in the base of new roadways. There are two
methods of obtaining the resilient modulus. The ex-
terior measurement Mext (MPa) and interior mea-
surement Mint(MPa) can be measured on each sam-
ple. The results for n = 9 samples are (Courtesy of
Tuncer Edil)

Mext 204.7 184.8 181.1 166.5 165.2 154.1 135.8 173.4 142.7
Mint 707.1 632.2 603.6 522.4 554.4 483.5 449.7 545.1 473.8

(a) Draw a scatter plot to verify the assumption that
the relationship is linear, letting Mint be x and
Mext be y.

(b) Fit a straight line to these data by the method of
least squares, and draw its graph on the diagram
obtained in part (a).

11.17 With reference to Exercise 11.16, find a 90% confi-
dence interval for α.

11.18 With reference to Exercise 11.16, fit a straight line to
the data by the method of least squares, using Mext
as the independent variable, and draw its graph on the

diagram obtained in part (a) of Exercise 11.16.
Note that the two estimated regression lines do not
coincide.

11.19 When the sum of the x values is equal to zero, the cal-
culation of the coefficients of the regression line of Y
on x is greatly simplified; in fact, their estimates are
given by

α̂ =
∑

y

n
and β̂ =

∑
x y∑
x2

This simplification can also be attained when the val-
ues of x are equally spaced; that is, when they are
in arithmetic progression. We then code the data by
substituting for x the values . . . ,−2,−1, 0, 1, 2, . . . ,
when n is odd, or the values . . . ,−3,−1, 1, 3, . . . ,

when n is even. The preceding formulas are then used
in connection with the coded data.

(a) Because of high lead residue, a faucet manufac-
turer cannot sell his product for home use unless
each item is labeled as being hazardous to health.
A consulting engineer suggests adding an acid
bath at the end of the production line. An exper-
iment is conducted with the bath having 0.2, 0.4,
0.6, 0.8, 1.0, 1.2 and 1.4 percent acid solutions.
Suppose the corresponding values of lead residue
are 4.6, 4.0, 3.3, 3.6, 3.0, 2.4, and 1.6 ppm.

Fit a least squares line and give the point pre-
diction of the lead residue when using a 1.3 per-
cent solution.

(b) Encouraged by the responses in Part (a), one fur-
ther test was conducted with a 1.6 percent so-
lution. Suppose the resulting lead residue is 1.1
ppm. Fit a least squares line using all eight runs.
Again predict the lead residue for a 1.3 percent
solution.

11.20 Using the formulas on page 330 for α̂ and β̂, show that

(a) the expression for α̂ is linear in the Yi

(b) α̂ is an unbiased estimate of α

(c) the expression for β̂ is linear in the Yi

(d) β̂ is an unbiased estimate of β

11.21 The decomposition of the sums of squares into a con-
tribution due to error and a contribution due to regres-
sion underlies the least squares analysis. Consider the
identity

yi − y − (̂yi − y) = (yi − ŷi)

Note that

ŷi = a + b xi = y − b x + b xi = y + b (xi − x) so

ŷi − y = b(xi − x)
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Using this last expression, then the definition of b and
again the last expression, we see that

∑
(yi − y)(̂yi − y) = b

∑
(yi − y)(xi − x)

= b2 ∑
(xi − x)2 = ∑

(̂yi − y)2

and the sum of squares about the mean can be decom-
posed as

n∑
i=1

(yi − y)2

total sum of squares

=
n∑

i=1
(yi − ŷi)2 +

n∑
i=1

(̂yi − y)2

error sum of squares regression sum of squares

Generally, we find the straight-line fit acceptable if the
ratio

r2 = regression sum of squares
total sum of squares

= 1 −

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − y)2

is near 1.
Calculate the decomposition of the sum of

squares and calculate r2 using the observations in Ex-
ercise 11.9.

11.22 It is tedious to perform a least squares analy-
sis without using a computer. We illustrate here a
computer-based analysis using the MINITAB package.
The observations on page 328 are entered in C1 and
C2 of the worksheet.

DATA 11-22.DAT
x: 0 1 2 2 4 4 5 6
y: 25 20 30 40 45 50 60 50

We first obtain the scatter plot to see if a straight-line
pattern is evident.

Dialog box:
Graph > Scatterplot. Click on Simple. Click OK.
Type C2 in Y column and Type C1 in X column. Click OK.

Then

Dialog box:
Stat > Regression > Regression > Fit Regression model
Type C2 in Response. Type C1 in Continuous predictors.
Click OK.

produces the output

S
6.70820

R-sq
80.00%

Model Summary

Coefficients

Source DF
Regression
Error
Total

1
6
7

1080.00
270.00
1350.00

SS MS
1080.00

45.00

F-Value P-Value
24.00

Term
Constant
x

Regression Equation
y = 22.00 + 6.00 x

Coef
22.00
6.00

SE Coef
4.37
1.22

T-Value
5.03
4.90

P-Value
0.002
0.003

Analysis of Variance

0.003

After the first two steps above and before you Click OK,
Click Graphs. Choose Four in one. Click OK
This will produce the three graphs that we introduce later for checking the assumptions.
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(a) One further run with 3.5% of the new component produced the cooling rate 42.
Obtain the regression equation using all 9 cases.

(b) Referring to your computer output, identify the decomposition of sums of
squares given as the analysis of variance.

11.23 Referring to Example 3, the nanopillar data on height (nm) and width (nm) are

Width Height

62 221
68 234
69 245
80 266
68 265
79 253
83 274
70 278
74 290
73 276
74 272
75 276
80 276

Width Height

77 290
80 292
83 289
73 284
79 271

100 292
93 308
92 303

101 308
87 315
96 309
99 300
94 305

Width Height

102 298
95 312
90 297
98 314
86 305
93 296
91 304
90 310
95 315
97 311
87 337
89 338

100 336

Width Height

93 323
92 343
98 330

101 333
97 346

102 364
91 366
87 355

110 390
106 373
118 391

(a) Fit a straight line with y = height and x = width by least squares.

(b) Test, with α = 0.05, that the slope is different from zero.

(c) Find a 95% confidence interval for the mean height when width = 100.

(d) Plot the residuals versus the predicted values.
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11.24 Nanowires, tiny wires just a few millionths of a centimeter thick, which spiral and
have a pine tree-like appearance, have recently been created.2 The investigators’
ultimate goal is to make better nanowires for high-performance integrated circuits,
lasers, and biosensors. The twist, in radians per unit length, should follow a theory
of mechanical deformation called Eshelby twist. The amount of twist should be
linearly related to the reciprocal of cross section. The authors provided some of
their data on y (rad/μm) =twist and x (μm−2) = reciprocal cross section.

x y

62 46
57 46
49 90

161 113
180 121
103 193
103 89

43 122
144 124
182 124

x y

286 126
72 162

168 172
286 248
337 288
315 262
354 224
509 381
144 76
127 90

x y

92 94
138 112
250 306
189 291
96 133
45 143

168 120
25 122

326 137
169 100

(Courtesy of Song Jin)

(a) Fit a straight line by least squares.

(b) Test, with α = 0.05, that the slope is different from zero.

(c) Find a 98% confidence interval for the mean twist angle when x = 148.

(d) Does this aspect of the Eshelby twist theory seem to apply?

11.3 Curvilinear Regression
So far we have studied only the case where the regression curve of Y on x is a
straight line; that is, where for any given x, the mean of the distribution of Y is given
by α + βx. In this section we first investigate cases where the regression curve is
nonlinear but where the methods of Section 11.1 can nevertheless be applied. Then
we take up the problem of polynomial regression where for any given x the mean of
the distribution of Y is given by

β0 + β1 x + β2 x2 + · · · + βp xp

Polynomial curve fitting is also used to obtain approximations when the exact func-
tional form of the regression curve is unknown.

It is common practice for engineers to plot paired data on various transformed
scales such as square root or logarithm scale, in order to determine whether the
transformed points will fall close to a straight line. If there is the transformation that
suggests a straight-line regression equation, the necessary constants (parameters)
can be estimated by applying the method of Section 11.1 to the transformed data.
For instance, if a set of paired data consisting of n points (xi, yi) “straightens out”
when log yi is plotted versus xi, this indicates that the regression curve of Y on x is

2M. Bierman, Y. Lau, A. Kvit, A. Schmitt, and S. Jin. Dislocation-driven nanowire growth and Eshelby
Twist, Science, 23 May 2008, Vol. 320, 1060–1063.
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exponential, namely, that for any given x, the mean of the distribution of values of
Y is given by α · βx. If we take logarithms to the base 10 (or any convenient base),
the predicting equation y = α · βx becomes

log y = log α + x · log β

and we can now get estimates of log α and log β, and hence of α and β, by applying
the method of Section 11.1 to the n pairs of values (xi, log yi).

EXAMPLE 10 A plot of ln y versus x leads to fitting a straight line
Electric and hybrid cars require NI-MN batteries having a high capacity. Battery
capacity decreases as the rate of discharge increases. Let y = battery capacity, mea-
sured in amp-hours, and x = rate of discharge in amps. Suppose tests of six NI-MN
batteries, of the same model produce the results

Rate of discharge(A) Capacity(Ah)
x y

2 164.7
3 156.1
6 142.5

10 133.8
15 114.6
20 107.1

(a) Plot log yi versus xi to verify that it is reasonable to assume that the
relationship is exponential.

(b) Fit an exponential curve by applying the method of least squares to the data
points (xi, log yi).

(c) Use the result of part (b) to estimate the capacity when the discharge rate is
5 amps.

Solution (a) Although there are too few points to firmly establish a linear pattern, the
pattern in Figure 11.10 is approximately linear. This suggests we try fitting an
exponential curve.

Figure 11.10
Plot of transformed data for
Example 10 Discharge rate (A)
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(b) We prefer statistical software to fit ln y, the natural logarithm of y, to x.
MINITAB output includes

Model Summary

S R-sq
0.0256849 98.17%

Coefficients

Term Coef SE Coef T-Value P-Value
Constant 5.1257 0.0184 278.55 0.000
x -0.02372 0.00162 -14.64 0.000

Regression Equation

ln y = 5.1257 - 0.02372 x

The output tells us that the estimated regression curve is

l̂n y = 5.1257 − 0.02372 x

in logarithmic form which becomes

predicted y = 168.29 e− 0.02372 x

in exponential form.

A hand-held calculator solution could require the calculations

x = 56/6 = 9.3333 and ln y = 29.42552/6 = 4.9043

Sx ln y = 268.6762 − 29.42552(56) / 6 = −5.961987

Sxx = 774 − (56)2 / 6 = 251.3333

Then, the estimated slope = −5.961987 / 251.3333 = −0.02372 and the
estimated intercept is 4.9043 + 9.3333(0.02372) = 5.1257

(c) Using the logarithmic form which is more convenient, we predict

l̂n y = 5.1257 − 0.02372 (5) = 5.007

or, on the original scale, predicted y = 149.5 Ah.

[ Using R: summary(lm(log(y)˜ x)) when x contains the discharge rates and y
contains the capacities. ] j

The analysis of transformed relationships is easily implemented on a computer
(see Exercise 11.41).

Two other relationships that frequently arise in engineering applications and
can be fitted by the method of Section 11.1 after suitable transformations are the
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reciprocal function

y = 1
α + β x

and the power function y = α · xβ . The first of these represents a linear relationship
between x and 1

y , namely,

1
y

= α + βx

and we obtain estimates of α and β by applying the method of Section 11.1 to

the points
(

xi,
1
yi

)
. The second represents a linear relationship between log x and

log y, namely,

log y = log α + β log x

and we obtain estimates of log α and β, and hence of α and β, by applying the
method of Section 11.1 to the points (log xi, log yi). Another example of a curve
that can be fitted by the method of least squares after a suitable transformation is
given in Exercise 11.29.

If there is no clear indication about the functional form of the regression of Y
on x, we often assume that the underlying relationship is at least “well-behaved” to
the extent that it has a Taylor series expansion and that the first few terms of this ex-
pansion will yield a fairly good approximation. We thus fit to our data a polynomial
regression, that is, the mean of Y at x has the form

β0 + β1 x + β2 x2 + · · · + βp xp

where the degree is determined by inspection of the data or by a more rigorous
method to be discussed below.

Given a set of data consisting of n points (xi, yi), we estimate the coefficients
β0, β1, β2, . . . , βp of the pth-degree polynomial by minimizing

n∑
i=1

[ yi − (β0 + β1 xi + β2 x2
i + · · · + βp xp

i ) ]2

In other words, we are now applying the least squares criterion by minimizing the
sum of the squares of the vertical distances from the points to the curve (see
Figure 11.11).

Figure 11.11
Least squares criterion for
polynomial curve fitting

x

y

0
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Taking the partial derivatives with respect to β0, β1, β2, . . . , βp, equating these
partial derivatives to zero, rearranging some of the terms, and letting bi be the
estimate of βi, we obtain the p + 1 normal equations

Normal equations for
polynomial regression

∑
y = n b0 + b1

∑
x + · · · + bp

∑
xp∑

x y = b0
∑

x + b1
∑

x2 + · · · + bp
∑

xp+1

...∑
xpy = b0

∑
xp + b1

∑
xp+1 + · · · + bp

∑
x2p

where the subscripts and limits of summation are omitted for simplicity. Note that
this is a system of p + 1 linear equations in the p + 1 unknowns b0, b1, b2, . . . ,

and bp. If the x’s include p + 1 distinct values, then the normal equations will have
a unique solution.

EXAMPLE 11 Fitting a quadratic function by the method of least squares
The following are data on the drying time of a certain varnish and the amount of an
additive that is intended to reduce the drying time:

Amount of varnish additive Drying time
(grams) (hours)

x y

0 12.0
1 10.5
2 10.0
3 8.0
4 7.0
5 8.0
6 7.5
7 8.5
8 9.0

(a) Draw a scatter plot to verify that it is reasonable to assume that the
relationship is parabolic.

(b) Fit a second-degree polynomial by the method of least squares.

(c) Use the result of part (b) to predict the drying time of the varnish when
6.5 grams of the additive is being used.

Solution (a) As can be seen from Figure 11.12, the overall pattern suggests fitting a
second-degree polynomial having one relative minimum.

(b) The preferred approach is to use computer software (see Exercise 11.42).
A partial output includes

Polynomial Regression

Y = 12.1848 − 1.84654X + 0.182900X ∗ ∗2

R-Sq = 92.3%.



Sec 11.3 Curvilinear Regression 355

Figure 11.12
Parabola fitted to data of
Example 11 1 2 3 4 5 6 7 8
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Alternatively, the summations required for substitution into the normal
equations are

∑
x = 36

∑
x2 = 204

∑
x3 = 1,296

∑
x4 = 8,772∑

y = 80.5
∑

x y = 299.0
∑

x2 y = 1,697.0

Thus we have to solve the following system of three linear equations in the
unknowns b0, b1, and b2:

80.5 = 9 b0 + 36 b1 + 204 b2

299.0 = 36 b0 + 204 b1 + 1,296 b2

1,697.0 = 204 b0 + 1,296 b1 + 8,772 b2

Getting β̂0 = 12.2, β̂1 = −1.85, and β̂2 = 0.183, the equation of the least
squares polynomial is

ŷ = 12.2 − 1.85x + 0.183x2

(c) Substituting x = 6.5 into this equation, we get

ŷ = 12.2 − 1.85(6.5) + 0.183(6.5)2

= 7.9

that is, a predicted drying time of 7.9 hours.
j

Note that it would have been rather dangerous in the preceding example to predict
the drying time that corresponds to, say, 24.5 grams of the additive. The risks in-
herent in extrapolation, discussed on page 343 in connection with fitting straight
lines, increase greatly when polynomials are used to approximate unknown regres-
sion functions.

In actual practice, it may be difficult to determine the degree of the polynomial
to fit to a given set of paired data. As it is always possible to find a polynomial of
degree at most n − 1 that will pass through each of n points corresponding to n dis-
tinct values of x, it should be clear that what we actually seek is a polynomial of
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lowest possible degree that “adequately” describes the data. As we did in our exam-
ple, it is often possible to determine the degree of the polynomial by inspection of
the data.

There also exists a more rigorous method for determining the degree of the
polynomial to be fitted to a given set of data. Essentially, it consists of first fitting
a straight line as well as a second-degree polynomial and testing the null hypothe-
sis β2 = 0, namely, that nothing is gained by including the quadratic term. If this
null hypothesis can be rejected, we then fit a third-degree polynomial and test the
hypothesis β3 = 0, namely, that nothing is gained by including the cubic term. This
procedure is continued until the null hypothesis βi = 0 cannot be rejected in two
successive steps and there is, thus, no apparent advantage to carrying the extra terms.
Note that in order to perform these tests it is necessary to impose the assumptions
of normality, independence, and equal variances introduced in Section 11.2. Also,
these tests should never be used blindly; that is, without inspection of the overall
pattern of the data.

The use of this technique is fairly tedious and we shall not illustrate it in the
text. In Exercise 11.33 the reader will be given detailed instructions to apply it to the
varnish-additive drying-time data in order to check whether it was really worthwhile
to carry the quadratic term.

11.4 Multiple Regression
Before we extend the methods of the preceding sections to problems involving more
than one independent variable, let us point out that the curves obtained (and the sur-
faces we will obtain) are not used only to make predictions. They are often used also
for purposes of optimization—namely, to determine for what values of the indepen-
dent variable (or variables) the dependent variable is a maximum or minimum. For
instance, in Example 11 we might use the polynomial fitted to the data to conclude
that the drying time is a minimum when the amount of varnish additive used is 5.1
grams (see Exercise 11.34).

Statistical methods of prediction and optimization are often referred to under
the general heading of response surface analysis. Within the scope of this text,
we shall be able to introduce two further methods of response surface analysis:
multiple regression here and related problems of factorial experimentation in
Chapter 13.

In multiple regression, we deal with data consisting of n (r + 1)-tuples
(xi1, xi2, . . . , xir, yi), where the x’s are predictor variables whose values are assumed
to be known without error while the y’s are values of random variables. Data of this
kind arise, for example, in studies designed to determine the effect of various cli-
matic conditions on a metal’s resistance to corrosion; or the effect of kiln tempera-
ture, humidity, and iron content on the strength of a ceramic coating.

As in the case of one independent variable, we shall first treat the problem
where the regression equation is linear, namely, where for any given set of values
x1, x2, . . . , and xr, for the r independent variables, the mean of the distribution of
Y is given by

β0 + β1 x1 + β2 x2 + · · · + βr xr

For two independent variables, this is the problem of fitting a plane to a set of n
points with coordinates (xi1, xi2, yi) as is illustrated in Figure 11.13.
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Figure 11.13
Regression plane
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Applying the method of least squares to obtain estimates of the coefficients β0, β1,
and β2, we minimize the sum of the squares of the vertical distances from the ob-
servations yi to the plane (see Figure 11.13); symbolically, we minimize

n∑
i=1

[ yi − (b0 + b1 xi1 + b2 xi2) ]2

and it will be left to the reader to verify in Exercise 11.35 that the resulting normal
equations are

Normal equations for
multiple regression

with r = 2

∑
y = n b0 + b1

∑
x1 + b2

∑
x2∑

x1 y = b0
∑

x1 + b1
∑

x2
1 + b2

∑
x1 x2∑

x2 y = b0
∑

x2 + b1
∑

x1 x2 + b2
∑

x2
2

As before, we write the least squares estimates of β0, β1, and β2 as β̂0, β̂1, and

β̂2 . Note that in the abbreviated notation
∑

x1 stands for
n∑

i=1
xi1,

∑
x1 x2 stands

for
n∑

i=1
xi1 xi2,

∑
x1 y stands for

n∑
i=1

xi1 yi, and so forth.

EXAMPLE 12 A multiple regression with two predictor variables
The following are data on the number of twists required to break a certain kind of
forged alloy bar and the percentages of two alloying elements present in the metal:



358 Chapter 11 Regression Analysis

Number of twists Percentage of element A Percentage of element B
y x1 x2

41 1 5
49 2 5
69 3 5
65 4 5
40 1 10
50 2 10
58 3 10
57 4 10
31 1 15
36 2 15
44 3 15
57 4 15
19 1 20
31 2 20
33 3 20
43 4 20

Fit a least squares regression plane and use its equation to estimate the number
of twists required to break one of the bars when x1 = 2.5 and x2 = 12.

Solution Computers remove the drudgery of calculations from a multiple-regression analysis.
(See Exercise 11.40.) Typical output includes

THE REGRESSION EQUATION IS
Y = 46.4 + 7.78 X1 - 1.65 X2

2

6

1

3

4

5

7

PREDICTOR
CONSTANT
X1
X2

COEF
46.438
7.7750
-1.6550

STDEV
3.517
0.9485
0.1897

T-RATIO
13.20
8.20
-8.72

p
0.000
0.000
0.000

ANALYSIS OF VARIANCE

SOURCE
REGRESSION
ERROR
TOTAL

DF
2
13
15

SS
2578.5
233.9
2812.4

MS
1289.3

18.0

S = 4.242 R-SQ = 91.7%

We now identify some important parts of the output.

1. The least squares regression plane is

1© ŷ = 46.4 + 7.78 x1 − 1.65 x2

This equation estimates that the average number of twists required to break a
bar increases by 7.78 if the percent of element A is increased by 1% and x2
remains fixed.

2. The least squares estimates and their corresponding estimated standard error are

β̂0 = 46.438 with estimated standard error 3.517

2© β̂1 = 7.7750 with estimated standard error 0.9485

β̂2 = −1.6550 with estimated standard error 0.1897
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3. The t ratios 13.20, 8.20, −8.72 are all highly significant, so all the terms are
needed in the model 3©.

4. In any regression analysis having a β0 term, the decomposition

yi − y = ( yi − ŷi ) + ( ŷi − y )

produces the decomposition of the sum of squares

4©
n∑

i=1

( yi − y )2

total sum of squares

=
n∑

i=1

( yi − ŷi )2

error sum of squares

+
n∑

i=1

( ŷi − y )2

regression sum of squares

or

2,812.4 = 233.9 + 2,578.5

Thus, the proportion of variability explained by the regression is (see
Exercise 11.61)

5© R2 = 2,578.5
2,812.4

= 1 − 233.9
2,812.4

= 0.917

5. The estimate of σ 2 is s2
e = 233.9/13 = 18.0 so se = 4.242. 6©

6. The 7© P-values confirm the significance of the t ratios and thus the fact that all
the terms are required in the model.

Alternatively, a hand held calculator can be used to obtain the sums and then
the normal equations.

723 = 16 b0 + 40 b1 + 200 b2
1,963 = 40 b0 + 120 b1 + 500 b2
8,210 = 200 b0 + 500 b1 + 3,000 b2

The unique solution of this system of equations is β̂0 = 46.4, β̂1 = 7.78,

β̂2 = −1.65, and the equation of the estimated regression plane is

ŷ = 46.4 + 7.78 x1 − 1.65 x2

Finally, substituting x1 = 2.5 and x2 = 12 into this equation, we get

ŷ = 46.4 + 7.78 (2.5) − 1.65 (12)

= 46.0 j

Note that ̂β1 and ̂β2 are estimates of the change in the mean of Y resulting
from a unit increase in the corresponding independent variable when the other
independent variable is held fixed.

Categorical variables can be included in any regression analysis. When there are
only two categories, we create a dummy variable x1 = 1 if the case corresponds to
the second category and 0 otherwise. When a variable has 3 categories, two dummy
variables need to be constructed. Let x1 = 1 if the case corresponds to the second
category and x2 = 1 if it corresponds to the third. The rapidly increasing number
of predictor variables places strong limits on the number of categorical variables
that can be included in most regression problems. The next example illustrates the
dummy variable technique.
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EXAMPLE 13 Multiple regression to understand problems fixing relay towers
Wireless providers lose a great deal of income when relay towers do not function
properly. Breakdowns must be assessed and fixed in a timely manner. To gain un-
derstanding of the problems involved, engineers collected the data (Source: Courtesy of

Don Porter but extracted from Tables 6.20 and Exercise 7.27 of R. A. Johnson and D. W. Wichern (2006), Ap-

plied multivariate statistical analysis, Prentice Hall. A suitable number of years replaces the three categories

of experience).
Table 11.1 already contains the dummy variable for difficulty.

Table 11.1 Time to assess problem when a relay tower
breaks down

Difficulty Assessment
Level Difficulty Experience(yr) Time

Simple 0 1.5 3.0
Simple 0 2.0 2.3
Simple 0 4.5 1.7
Simple 0 8.0 1.2
Complex 1 1.5 6.7
Complex 1 0.5 7.1
Complex 1 2.5 5.3
Complex 1 3.0 5.0
Complex 1 5.0 5.6
Complex 1 6.0 4.5
Simple 0 0.0 4.5
Simple 0 0.5 4.7
Simple 0 3.5 4.0
Simple 0 4.0 4.5
Simple 0 5.0 3.1
Simple 0 6.0 3.0
Complex 1 0.0 7.9
Complex 1 3.0 6.9
Complex 1 5.5 5.0
Complex 1 5.0 5.3
Complex 1 3.5 6.9

Fit a multiple regression of assessment time to difficulty and experience.

Solution We use software to produce the statistical analysis.

The regression equation is
AssessTime = 4.47 + 2.72 Difficulty -0.364 Exper

Predictor
Constant
Difficulty
Exper

Coef
4.4743
2.7189

-0.36407

 SE Coef
0.3986
0.3681
0.08485

T
11.23
7.39
-4.29

p
0.000
0.000
0.000

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
18
20

SS
54.616
12.722
67.338

MS
27.308
0.707

F
38.64

P
0.000

S = 0.840713 R-Sq = 81.1%
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All of the parameter estimates are significantly different from 0. The estimated
regression

ŷ = α̂ + β̂1 x1 + β̂2 x2 = 4.474 + 2.719 x1 − 0.3641 x2

The value β̂1 = 2.719 tells us that if x1 is increased by one unit, while x2 is held
constant, the estimated mean assessment time will increase by 2.719 hours. This
change in x1 corresponds to changing from a simple to difficult problem. Similarly,
β̂2 = − 0.3641 implies that if x2 is increased by one unit, while x1 is held constant,
the estimated mean assessment time decreases by 0.3641 hours. That is, for either a
simple or difficult problem, one more year experience decreases the estimated mean
assessment time by 0.3641 hours.

Notice that R2 = 0.81 is quite large. As you are asked to check in Exercise
11.43, there are no unusual values among the residuals and the assumption of normal
errors is reasonable.

[ Using R : Read the file C11Ex13.txt into Dat and then use summary(lm(Time

˜ Exper+Difficult), data = Dat) ] j

11.5 Checking the Adequacy of the Model
Assuming that the regression model is adequate, we can use the fitted equation to
make inferences. Before doing so, it is imperative that we check the assumptions
underlying the analysis. In the context of the regression model with two predictors,
we question whether Yi is equal to β0 + β1xi1 + β2xi2 + εi, where the errors εi are
independent and have the same variation σ 2.

All of the information on lack of fit is contained in the residuals

e1 = y1 − ŷ1 = y1 − β̂0 − β̂1 x11 − β̂2 x12
e2 = y2 − ŷ2 = y2 − β̂0 − β̂1 x21 − β̂2 x22

...

en = yn − ŷn = yn − β̂0 − β̂1 xn1 − β̂2 xn2

The residuals should be plotted in various ways to detect systematic departures from
the assumptions.

A plot of the residuals versus the predicted values is a major diagnostic tool.
Figure 11.14 shows (a) the ideal constant band and two typical violations; (b) that
variance increases with the response and a transformation is needed; and (c) that the
model β0 + β1x1 + β2x2 is not adequate. In the latter case, terms with x2

1 and x2
2

may be needed.
We also recommend plotting the residuals versus time in order to detect possible

trends over time.
Figure 11.15 gives the plot of residual versus predicted value for the velocity-

evaporation rate data in Example 2. The horizontal band pattern is somewhat pinched
on the left-hand side. Nevertheless, 10 is too few residuals to confirm this pattern.
There appears to be no serious violation of the constant variance assumption.

Although it is nearly impossible to assess normality with only 10 residuals, the
normal scores plot in Figure 11.16 has a bit of an S shaped appearance. It would
have a straighter line appearance if the smallest residual were smaller and the largest
residual were larger. The tails of the distribution of a residual may be thinner than
those of a normal distribution. Fortunately, the normal assumption is generally not
critical for inference as long as serious outliers are not present.
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Exercises
11.25 The following data pertain to the growth of a colony

of bacteria in a culture medium:

Days since inoculation Count
x y

3 115,000
6 147,000
9 239,000

12 356,000
15 579,000
18 864,000

(a) Plot log yi versus xi to verify that it is reasonable
to fit an exponential curve.

(b) Fit an exponential curve to the given data.

(c) Use the result obtained in part (b) to estimate the
bacteria count at the end of 20 days.

11.26 The following data pertain to water pressure at various
depths below sea level:

Depth (m) Pressure (psi)
x y

10 140
50 74

150 218
1,600 2,400
2,110 3,060
3,580 5,150
4,800 7,000

(a) Fit an exponential curve.

(b) Use the result obtained in part (a) to estimate the
mean pressure at a depth of 1,000 m.

11.27 With reference to the preceding exercise, change the
equation obtained in part (a) to the form ŷ = a · e−cx,
and use the result to rework part (b).

11.28 Refer to Example 10. Two new observations are
available.

Rate of discharge(A) Capacity(Ah) ln(Capacity)

5 149.4 5.0066
18 108.2 6.5840

Add these observations to the data set in Example 10
and rework the example.

11.29 Fit a Gompertz curve of the form

y = eeαx + β

to the data of Exercise 11.26.

11.30 Plot the curve obtained in the preceding exercise and
the one obtained in Exercise 11.26 on one diagram and
compare the fit of these two curves.

11.31 The number of inches which a newly built structure is
settling into the ground is given by

y = 3 − 3 e−α x

where x is its age in months.

x 2 4 6 12 18 24
y 1.07 1.88 2.26 2.78 2.97 2.99

Use the method of least squares to estimate α. [Hint:
Note that the relationship between ln (3 − y ) and
x is linear.]

11.32 The following data pertain to the amount of hydrogen
present, y, in parts per million in core drillings made
at 1-foot intervals along the length of a vacuum-cast
ingot, x, core location in feet from base:

x 1 2 3 4 5 6 7 8 9 10
y 1.28 1.53 1.03 0.81 0.74 0.65 0.87 0.81 1.10 1.03

(a) Draw a scatter plot to check whether it is reason-
able to fit a parabola to the given data.

(b) Fit a parabola by the method of least squares.

(c) Use the equation obtained in part (b) to estimate
the amount of hydrogen present at x = 7.5.

11.33 When fitting a polynomial to a set of paired data,
we usually begin by fitting a straight line and
using the method on page 339 to test the null hy-
pothesis β1 = 0. Then we fit a second-degree poly-
nomial and test whether it is worthwhile to carry
the quadratic term by comparing σ̂ 2

1 , the residual
variance after fitting the straight line, with σ̂ 2

2 , the
residual variance after fitting the second-degree poly-
nomial. Each of these residual variances is given by the
formula

∑
(y − ŷ )2

degrees of freedom
= SSE

ν

with ŷ determined, respectively, from the equation of
the line and the equation of the second-degree polyno-
mial. The decision whether to carry the quadratic term
is based on the statistic

F = SSE1 − SSE2

σ̂ 2
2

= ν1 σ̂ 2
1 − ν2 σ̂ 2

2

σ̂ 2
2
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which (under the assumptions of Section 11.2) is a
value of a random variable having the F distribution
with 1 and n − 3 degrees of freedom.

(a) Fit a straight line to the varnish-additive drying-
time data in Example 11, test the null hypothesis
β1 = 0 at the 0.05 level of significance, and cal-
culate σ̂ 2

1 .

(b) Using the result in the varnish-additive example,
calculate σ̂ 2

2 for the given data and test at the
0.05 level whether we should carry the quadratic
term. (Note that we could continue this proce-
dure and test whether to carry a cubic term by
means of a corresponding comparison of resid-
ual variances. Then we could test whether to
carry a fourth-degree term, and so on. It is cus-
tomary to terminate this procedure after two
successive steps have not produced significant
results.)

11.34 With reference to Example 11, verify that the predicted
drying time is minimum when the amount of additive
used is 5.1 grams.

11.35 Verify that the system of normal equations on page 357
corresponds to the minimization of the sum of
squares.

11.36 Twelve specimens of cold-reduced sheet steel,
having different copper contents and annealing
temperatures, are measured for hardness with the fol-
lowing results:

Copper Annealing
Hardness content temperature

(Rockwell 30-T) (%) (degrees F)

78.9 0.02 1,000
65.1 0.02 1,100
55.2 0.02 1,200
56.4 0.02 1,300
80.9 0.10 1,000
69.7 0.10 1,100
57.4 0.10 1,200
55.4 0.10 1,300
85.3 0.18 1,000
71.8 0.18 1,100
60.7 0.18 1,200
58.9 0.18 1,300

Fit an equation of the form y = β0 + β1 x1 + β2 x2,
where x1 represents the copper content, x2 repre-
sents the annealing temperature, and y represents the
hardness.

11.37 With reference to Exercise 11.36, estimate the hard-
ness of a sheet of steel with a copper content of

0.05% and an annealing temperature of 1,150 degrees
Fahrenheit.

11.38 A compound is produced for a coating process. It is
added to an otherwise fixed recipe and the coating
process is completed. Adhesion is then measured. The
following data concern the amount of adhesion and its
relation to the amount of an additive and temperature
of a reaction.

Additive Temperature Adhesion
x1 x2 y

0 100 10
70 100 48
35 140 41

0 180 40
70 180 39
70 140 44

0 140 24
35 100 31
35 180 44

(Courtesy of Asit Banerjee)

Fit an equation of the form y = β0 + β1x1 + β2x2
to the given data and use it to estimate the amount of
adhesion when the amount of additive is 40 and the
temperature is 130.

11.39 The following sample data were collected to determine
the relationship between processing variables and the
current gain of a transistor in the integrated circuit:

Diffusion time Sheet resistance
(hours) (�-cm) Current gain

x1 x2 y

1.5 66 5.3
2.5 87 7.8
0.5 69 7.4
1.2 141 9.8
2.6 93 10.8
0.3 105 9.1
2.4 111 8.1
2.0 78 7.2
0.7 66 6.5
1.6 123 12.6

Fit a regression plane and use its equation to estimate
the expected current gain when the diffusion time is
2.2 hours and the sheet resistance is 90 �-cm.
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11.40 Multiple regression is best implemented on a computer. The following MINITAB
commands fits the y values in C1 to predictor values in C2 and C3.

Dialog box:
Stat > Regression > Regression > Fit Regression Model.
Type C1 in Response. Type C2 and C3 in Continuous predictors. Click OK.

It produces output like that on page 360. Use a computer to perform the multiple
regression analysis in Exercise 11.36.

11.41 Using MINITAB we can transform the x values in C1 and/or the y values in C2. For
instance, to obtain the logarithm to the base 10 of y, select

Dialog box:
Calc > Calculator
Type C3 in Store, LOGT(C2) in Expression. Click OK.

Use the computer to repeat the analysis of Exercise 11.27.

11.42 To fit the quadratic regression model using MINITAB, when the x values are in C1
and the y values in C2, you must select

Dialog box:
Stat >Regression > Fitted Line Plot
Enter C2 in Response (Y) and enter C1 in Predictor (X).
Under Type of Regression Model choose Quadratic. Click OK.

Use the computer to repeat the analysis of Example 11.

11.43 With reference to Exercise 11.40, in order to plot residuals, before clicking OK,
you must select

Dialog box:
Click Storage. Check Residuals and Fits. Click OK twice.

The additional steps, before clicking the second OK.

Dialog box:
Click Graphs. Check Residuals versus fits.
Click OK twice.

will produce a plot of the residuals versus ŷ. See Exercise 5.102, page 184, to obtain
a normal-scores plot of the residuals.
Use a computer to analyze the residuals from the multiple-regression analysis in
Example 13.

11.44 With reference to Exercise 11.39, analyze the residuals from the regression plane.
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11.45 The following residuals and predicted values were obtained from an experiment
that related yield of a chemical process (y) to the initial concentration (x) of a
component (the time order of the experiments is given in parentheses):

Predicted Residual Predicted Residual

4.1 (5) −2 3.5 (3) 0
3.2 (9) −1 4.0 (12) 3
3.5 (13) 3 4.2 (4) −2
4.3 (1) −3 3.9 (11) 2
3.3 (7) −1 4.3 (2) −5
4.6 (14) 5 3.7 (10) 0
3.6 (8) 0 3.2 (6) 1

Examine the residuals for evidence of a violation of the assumptions.

11.6 Correlation
So far in this chapter, we have studied problems where the independent variable (or
variables) was assumed to be known without error. Although this applies to many
experimental situations, there are also problems where the x’s as well as the y’s are
values assumed by random variables. This would be the case, for instance, if we
studied the relationship between input and output of a wastewater treatment plant,
the relationship between the tensile strength and the hardness of aluminum, or the
relationship between impurities in the air and the incidence of a certain disease.
Problems like these are referred to as problems of correlation analysis, where it
is assumed that the data points (xi, yi) for i = 1, 2, . . . , n are values of a pair of
random variables whose joint density is given by f (x, y).

The scatter plot provides a visual impression of the relation between the x and
y values in a bivariate data set. Often the points appear to scatter about a straight
line. The closeness of the scatter to a straight line can be expressed numerically in
terms of the correlation coefficient. The best interpretation of the sample correlation
coefficient is in terms of the standardized observations

Observation − Sample mean
Sample standard deviation

= xi − x
sx

where the subscript x on s distinguishes the sample variance of the x observations,

s2
x =

n∑
i=1

(xi − x)2/ (n − 1) = Sxx / (n − 1)

from the sample variance of the y observations.
The sample correlation coefficient r is the sum of products of the standardized

variables divided by n − 1, the same divisor used for sample variance.

Sample correlation
coefficient

r = 1
n − 1

n∑
i=1

(
xi − x

sx

)(
yi − y

sy

)
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Figure 11.17
Correspondence between the
values of r and the pattern of
scatter

r 5 0.9

(a)

r 5 0.5

(b)

r 5 ]0.5

(c)

r 5 ] 0.9

(d)

r 5 0

(e)

r 5 0

(f)

When most of the pairs of observations are such that either both components are
simultaneously above their sample means or both are simultaneously below their
sample means, the products of the standardized values will tend to be large and
positive so r will be positive. This case corresponds to a southwest to northeast
pattern in the scatter plot. [See Figure 11.17 (a)–(b).]

Alternatively, if one component of the pair tends to be large when the other is
small, and vice versa, the correlation coefficient r is negative. This case corresponds
to a northwest to southeast pattern in the scatter plot.

It can be shown that the value of r is always between −1 and 1, inclusive.

1. The magnitude of r describes the strength of a linear relation and its sign
indicates the direction.
r = +1 if all pairs (xi, yi) lie exactly on a straight line having a positive slope.
r > 0 if the pattern in the scatter plot runs from lower left to upper right.
r < 0 if the pattern in the scatter plot runs from upper left to lower right.
r = −1 if all pairs (xi, yi) lie exactly on a straight line having a negative slope.
A value of r near −1 or +1 describes a strong linear relation.

2. A value of r close to zero implies that the linear association is weak. There
may still be a strong association along a curve. [See Figure 11.17(f).]

From the definitions of Sxx, Sxy, and Syy on page 330, we obtain a simpler cal-
culation formula for r.

r = Sxy√
Sxx · Syy

Alternative calculation for
the sample correlation

coefficient
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EXAMPLE 14 Calculating the sample correlation coefficient
The following are the numbers of minutes it took 10 mechanics to assemble a piece
of machinery in the morning, x, and in the late afternoon, y:

x y

11.1 10.9
10.3 14.2
12.0 13.8
15.1 21.5
13.7 13.2
18.5 21.1
17.3 16.4
14.2 19.3
14.8 17.4
15.3 19.0

Calculate r.

Solution The first step is always to plot the data to make sure a linear pattern exists and that
there are no outliers. A computer calculation provides the scatter plot in Figure 11.18
and the value r = 0.732 (see Exercise 11.64 for details).

Figure 11.18
(Pearson) Correlation of x and
y, r = 0.732
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Alternatively, using a calculator, we determine the summations needed for the
formulas on page 330. We get

Sxx = 2,085.31 − (142.3)2/10 = 60.381

Sxy = 2,434.69 − (142.3)(166.8)/10 = 61.126

Syy = 2,897.80 − (166.8)2/10 = 115.576

so,

r = 61.126√
(60.381) (115.576)

= 0.732

The positive value for r confirms a positive association where long assembly times
tend to pair together and so do short assembly times. Further, it captures the orienta-
tion of the pattern in Figure 11.18, which runs from lower left to upper right. Since
r = 0.732 is moderately large, the pattern of scatter is moderately narrow.

[ Using R: cor(x , y) with afternoon times in y and morning times in x. ] j
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EXAMPLE 15 Exploring the interpreting correlation
Heavy metals can inhibit the biological treatment of waste in municipal treatment
plants. Monthly measurements were made at a state-of-the-art treatment plant of
the amount of chromium (μg/l) in both the influent and effluent. (Courtesy of Paul
Berthouex)

influent 250 290 270 100 300 410 110 130 1100
effluent 19 10 17 11 70 60 18 30 180

(a) Make a scatter plot.

(b) Make a scatter plot after taking the natural logarithm of both variables.

(c) Calculate the correlation coefficient, r, in part (a) and part (b).

(d) Comment on the appropriateness of r in each case.

Solution The scatter plots are shown in Figures 11.19 (a) and (b), respectively.

(c) A computer calculation gives r = 0.942 and r = 0.747, respectively.

(d) r is not really appropriate for the original data since the one large observation
in the upper-right-hand corner has too much influence. If the pair (1100, 180)
is dropped, r drops to 0.578. The situation in (b) is better. j

Figure 11.19
Scatter plots, original and
transformed data
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Correlation and Regression
There are two important relationships between r and the least squares fit of a straight
line. First,

r = Sxy√
Sxx Syy

=
√

Sxx√
Syy

Sxy

Sxx
=

√
Sxx√
Syy

β̂

so the sample correlation coefficient, r, and the least squares estimate of slope, β̂,
have the same sign.

The second relationship concerns the proportion of variability in y explained by
x in a least squares fit. The total variation in y is

Syy =
n∑

i=1

( yi − y )2
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while the unexplained part of the variation is the sum of squares residuals or
Syy − S2

xy / Sxx. This leaves the difference Syy − (Syy − S2
xy / Sxx) = S2

xy / Sxx as
the regression sum of squares due to fitting x. This decomposes the total variabil-
ity in y into two components: one due to regression and the other due to error.

Syy = S2
xy / Sxx + Syy − S2

xy / Sxx
Total variability Variability explained Residual or unexplained

of y by the linear relation variability

Decomposition of
variability

For the straight line to provide a good fit to the data, the sum of squares due to re-
gression, S2

xy / Sxx, should be a substantial proportion of the total sum of
squares Syy .

The proportion of the y variability explained by the linear relation is

Sum of squares due to regression
Total sum of squares of y

= S2
xy / Sxx

Syy
= S2

xy

Sxx Syy
= r2

where r is the sample correlation coefficient. To summarize, the strength of the linear
relationship is measured by the proportion of the y variability explained by the linear
relation, the square of the sample correlation coefficient.

The proportion of y variability explained by the linear relation = r2

EXAMPLE 16 Calculating the proportion of y variation attributed
to the linear relation
Refer to Example 14 concerning the data on assembly times. Find the proportion of
variation in y, the afternoon assembly times, that can be explained by a straight-line
fit to x, the morning assembly times.

Solution In the earlier example, we obtained r = 0.732. Consequently, the proportion of
variation in y attributed to x is r2 = (0.732)2 = 0.536.

The result we have obtained here implies that 100 r2 = 53.6% of the variation
among the afternoon times is explained by (is accounted for or may be attributed to)
the corresponding differences among the morning times. j

Correlation and Causation
Scientists have sometimes jumped to unjustified conclusions by mistaking a high
observed correlation for a cause-and-effect relationship. The observation that two
variables tend to vary simultaneously in the same direction does not imply a direct
relationship between them. It would not be surprising, for example, to obtain a high
positive correlation between the annual sales of chewing gum and the incidence of
crime in cities of various sizes within the United States, but one cannot conclude
that crime might be reduced by prohibiting the sale of chewing gum. Both variables
depend upon the size of the population, and it is this mutual relationship with a
third variable (population size) which produces the positive correlation. This third
variable, called a lurking variable, is often overlooked when mistaken claims are
made about x causing y.

When using the correlation coefficient as a measure of relationship, we must try
to avoid the possibility that an important lurking variable is influencing the
calculation.
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A causal relationship may also exist that is opposite to the observed correlation.
During the manufacture of high-quality printer paper, the whiteness and amount
of metallic particles are measured. The whitest runs of paper have the lowest metal
content and vice versa. That is, there is a strong but negative correlation. To someone
unacquainted with the paper-making process, this would suggest eliminating the
metallic particles. However, the causal relationship is just the opposite—there is a
strong positive correlation. The metallic particles improve whiteness but they are
only added to borderline papers to make sure they pass the standards test.

Inference about the Correlation Coefficient
(Normal Populations)
To develop a population measure of association, or correlation, for two random vari-
ables X and Y , we begin with the two standardized variables

X − μ1
σ1

and
Y − μ2

σ2

Each of these two standardized variables is free of its unit of measurement so their
product is free of both units of measurement. The expected value of this product,
which is also the covariance, is then the measure of association between X and Y
called the population correlation coefficient. This measure of relationship or asso-
ciation is denoted by ρ (rho).

ρ = E
[(

X − μ1
σ1

) (
Y − μ2

σ2

) ]
Population correlation

coefficient

The population correlation coefficient ρ is positive when both components (X,Y )
are simultaneously large or simultaneously small with high probability. A negative
value for ρ prevails when, with high probability, one member of the pair (X,Y ) is
large and the other is small. The value of ρ is always between −1 and 1, inclusive.
The extreme values ±1 arise only when probability 1 is assigned to pairs (x, y) where
(y − μ2) / σ2 = (±1) (x − μ1) / σ1, respectively. That is, probability 1 is assigned
to a straight line and probability 0 to the rest of the plane.

In summary, when ρ = ± 1, we say that there is a perfect linear correlation
(relationship, or association) between the two random variables; when ρ = 0, we
say there is no correlation (relationship, or association) between the two random
variables.

Although the sample correlation coefficient is not an unbiased estimator of ρ, it
is widely used as a point estimator whatever the form of the bivariate population.

Tests of hypotheses about ρ and confidence intervals require more restrictive
assumptions. In the remainder of this section, we assume that the joint distribution
of X and Y is, to a reasonable approximation, the bivariate normal distribution.
This distribution has joint density function

f (x, y) = 1

2π · σ1 σ2
√

1 − ρ2
·

e
− 1

2(1 − ρ2)

[(
x − μ1

σ1

)2
− 2ρ

(
x − μ1

σ1

) (
y − μ2

σ2

)
+

(
y − μ2

σ2

)2
]

for −∞ < x < ∞ and −∞ < y < ∞.
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For the bivariate normal distribution, we have a stronger property. When ρ = 0,
the joint density factors (see Exercise 11.60) so zero correlation also implies that the
two random variables are independent.

Inferences about ρ are based on the sample correlation coefficient. Whenever r
is based on a random sample from a bivariate normal population, we can perform a
test of significance (a test of the null hypothesis ρ = ρ0) or construct a confidence
interval for ρ on the basis of the Fisher Z transformation:

Z = 1
2

ln
1 + r
1 − r

Fisher Z transformation

This statistic is a value of a random variable having approximately a normal distri-
bution with

mean μZ = 1
2

ln
1 + ρ

1 − ρ
and variance

1
n − 3

Thus, we can base inferences about ρ on

Z = Z − μZ

1/
√

n − 3
=

√
n − 3
2

· ln
(1 + r) (1 − ρ)
(1 − r) (1 + ρ)

Statistic for inferences
about ρ

which is a random variable having approximately the standard normal distribution.
In particular, we can test the null hypothesis of no correlation, namely, the null

hypothesis ρ = 0, with the statistic

Z = √
n − 3 · Z =

√
n − 3
2

· ln
1 + r
1 − r

Statistic for test of null
hypothesis ρ = 0

EXAMPLE 17 Testing for nonzero correlation in a normal population
With reference to Example 14, where n = 10 and r = 0.732, test the null hypothesis
ρ = 0 against the null hypothesis ρ �= 0 at the 0.05 level of significance.

Solution 1. Null hypothesis: ρ = 0
Alternative hyptohesis: ρ �= 0

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if Z < −1.96 or Z > 1.96, where
Z = √

n − 3 · Z .

4. Calculations: The value of Z corresponding to r = 0.732 is

1
2

ln
(

1 + 0.732
1 − 0.732

)
= 0.933

so that

Z = √
10 − 3 · (0.933) = 2.47
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5. Decision: Since z = 2.47 exceeds 1.96, the null hypothesis must be rejected; we
conclude that there is a relationship between the morning and later afternoon
times it takes a mechanic to assemble the given kind of machinery. j

To construct a confidence interval for ρ, we first construct a confidence interval
for μZ , the mean of the sampling distribution of Z , and convert to r and ρ using the
inverse transformation. To obtain this transformation, we solve

Z = 1
2

ln
1 + r
1 − r

for r to obtain

r = eZ − e−Z

eZ + e−Z

Making use of the theory above, we can write the first of these confidence in-
tervals as

Z − zα/2√
n − 3

< μZ < Z + zα/2√
n − 3

Confidence interval for μZ
(normal population)

Example 18 gives the steps for converting this interval into a confidence interval
for ρ.

EXAMPLE 18 Determining a confidence interval for ρ (normal population)
If r = 0.70 for the mathematics and physics grades of 30 students, construct a
95% confidence interval for the population correlation coefficient.

Solution The value of Z that corresponds to r = 0.70 is

Z = 1
2

ln
(

1 + r
1 − r

)
= 1

2
ln

(
1 + .7
1 − .7

)
= 0.867

Substituting it together with n = 30 and z0.025 = 1.96 into the preceding confidence
interval formula for μZ , we get

0.867 − 1.96√
27

< μZ < 0.867 + 1.96√
27

or

0.490 < μZ < 1.244

Then, transforming the confidence limits back to the corresponding values of r,

r = e0.490 − e−0.490

e0.490 + e−0.490
= 0.45 and

e1.244 − e−1.244

e1.244 + e−1.244
= 0.85

we get the 95% confidence interval

0.45 < ρ < 0.85

for the true strength of the linear relationship between grades of students in the two
given subjects. j
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Note that, in Example 18, the confidence interval for ρ is fairly wide. This
illustrates the fact that correlation coefficients based on relatively small samples are
generally not very informative.

Two serious pitfalls in the interpretation of the coefficient of correlation are
worth repeating. First, it must be emphasized that r is an estimate of the strength
of the linear relationship between the values of two random variables. Thus, as is
shown in Figure 11.17(f), r may be close to 0 when there is actually a strong (but
nonlinear) relationship. Second, and perhaps of greatest importance, a significant
correlation does not necessarily imply a causal relationship between the two random
variables.

(Optional) The Bivariate Normal Distribution
and the Straight-Line Regression Model
Here we develop the bivariate normal joint density function in terms of the condi-
tional density f2(y | x) and the marginal density f1(x), as defined in Section 5.10. So
far as f2(y | x) is concerned, the conditions we shall impose are practically identical
with the ones we used in connection with the sampling theory of Section 11.2. For
any given x, it will be assumed that f2(y | x) is a normal distribution with the mean
α + βx and the variance σ 2.

E(Y | x) is called the regression of Y on x

ant it is linear. The variance of the conditional density does not depend on x. Inter-
changing x and y, we get the other regression which is estimated in Figure 11.3.

Furthermore, we shall assume that the marginal density f1(x) is normal with
the mean μ1 and the variance σ 2

1 . Making use of the relationship f (x, y) = f1(x) ·
f2(y | x) given on page 167, we thus obtain

f (x, y) = 1√
2π σ1

e
− (x − μ1)2

2σ 2
1 · 1√

2π σ
e
− [y − (α + βx)]2

2σ 2

= 1
2π · σ · σ1

e
−

{
[y − (α + βx)]2

2σ 2
+ (x − μ1)2

2σ 2
1

}

for −∞ < x < ∞ and −∞ < y < ∞. Note that this joint distribution involves the
five parameters μ1, σ1, α, β , and σ .

For reasons of symmetry and other considerations to be explained later, it is
customary to express the bivariate normal density in terms of the parameters μ1,
σ1, μ2, σ2, and ρ. Here μ2 and σ 2

2 are the mean and the variance of the marginal
distribution f2(y), while ρ, in this notation, is given by

ρ2 = 1 − σ 2

σ 2
2

with ρ taken to be positive when β is positive and negative when β is negative.
Leaving it to the reader to show in Exercise 11.59 that

μ2 = α + β μ1 and σ 2
2 = σ 2 + β2 σ 2

1
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we next substitute into the preceding expression for f (x, y) and obtain the following
form of the bivariate normal distribution:

f (x, y) = 1

2π · σ1 σ2
√

1 − ρ2
·

e
− 1

2(1 − ρ2)

[(
x − μ1

σ1

)2
− 2ρ

(
x − μ1

σ1

) (
y − μ2

σ2

)
+

(
y − μ2

σ2

)2
]

for −∞ < x < ∞ and −∞ < y < ∞ (see Exercise 11.59).
Concerning the correlation coefficient ρ, note that −1 ≤ ρ ≤ +1 since

σ 2
2 = σ 2 + β2σ 2

1 and, hence, σ 2
2 ≥ σ 2. Furthermore, ρ can equal −1 or +1 only

when σ 2 = 0, which represents the degenerate case where all the probability is con-
centrated along the line y = α + βx and there is, thus, a perfect linear relationship
between the two random variables. (That is, for a given value of x,Y must equal
α + βx.)

Exercises
11.46 Data, collected over seven years, reveals a positive

correlation between the annual starting salary of en-
gineers and the annual sales of diet soft drinks. Will
buying more diet drinks increase starting salaries?
Explain your answer and suggest a possible lurking
variable.

11.47 Data, collected from cities of widely varying sizes, re-
vealed a high positive correlation between the amount
of beer consumed and the number of weddings in the
past year. Will consuming lots of beer increase the
number of weddings? Explain your answer.

11.48 Use the expressions on page 367, involving the devi-
ations from the mean, to calculate r for the following
data:

x y

6 6
9 2

10 4
2 8
8 10

11.49 Calculate r for the air velocities and evaporation coef-
ficients of Example 2. Also, assuming that the neces-
sary assumptions can be met, test the null hypothesis
ρ = 0 against the alternative hypothesis ρ �= 0 at the
0.05 level of significance.

11.50 The following data pertain to the processing speed
(GHz) of a computer and the time (minutes) it takes
to boot up:

Processing Speed Boot Time

1.2 5
1.0 1
1.3 3
1.6 2
1.8 4
1.1 8
0.8 1
0.9 7
1.1 1
1.4 2
1.3 4
1.2 3
1.1 8
1.7 1
0.5 6
0.8 2
1.5 9
1.6 1
1.3 10
1.7 5
2.0 1
1.4 2
1.2 3
1.5 6

Calculate r.
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11.51 With reference to Exercise 11.50, test ρ = 0 against
ρ �= 0 at α = 0.05.

11.52 Calculate r for the temperatures and tearing strengths
of Exercise 11.3. Assuming that the necessary assump-
tions can be met, test the null hypothesis ρ = 0.60
against the alternative hypothesis ρ > 0.60 at the 0.10
level of significance.

11.53 Calculate r for the changes in the flow of vehicles and
the level of pollution in Exercise 11.12. Assuming that
the necessary assumptions can be met, construct a 99%
confidence interval for the population correlation co-
efficient ρ.

11.54 The following are measurements of the total dissolved
salts (TDS) and hardness index of 22 samples of water.

TDS (ppm) Hardness Index

200 15
325 24
110 8
465 34
580 43
925 69
680 50
290 21
775 57
375 28
850 63
625 46
430 32
275 20
170 13
555 41
595 44
850 63
245 18
195 14
650 48
775 57

(a) Calculate r.

(b) Find 95% confidence limits for ρ.

11.55 Referring to Example 3 concerning nanopillars, cal-
culate the correlation coefficient between height and
width.

11.56 If r = 0.83 for one set of paired data and r =
0.60 for another, compare the strengths of the two
relationships.

11.57 If data on the ages and prices of 25 pieces of equipment
yielded r = −0.58, test the null hypothesis ρ = −0.40
against the alternative hypothesis ρ < −0.40 at the
0.05 level of significance. Assume bivariate normality.

11.58 Assuming that the necessary assumptions are met,
construct a 95% confidence interval for ρ when

(a) r = 0.72 and n = 19;

(b) r = 0.35 and n = 25;

(c) r = 0.57 and n = 40.

11.59 (a) Evaluating the necessary integrals, verify the
identities

μ2 = α + β μ1 and σ 2
2 = σ 2 + β2 σ 2

1

on page 374.

(b) Substitute μ2 = α + βμ1 and σ 2
2 = σ 2 + β2σ 2

1
into the formula for the bivariate density given on
page 374, and show that this gives the final form
shown on page 375.

11.60 Show that for the bivariate normal distribution

(a) independence implies zero correlation;

(b) zero correlation implies independence.

11.61 Instead of using the computing formula on page 367,
we can obtain the correlation coefficient r with the for-
mula

r = ±
√

1 −
∑

(y − ŷ)2∑
(y − y)2

which is analogous to the formula used to define ρ.
Although the computations required by the use of this
formula are tedious, the formula has the advantage
that it can be used also to measure the strength of
nonlinear relationships or relationships in several vari-
ables. For instance, in the multiple linear regression in
Example 12, one could calculate the predicted values
by means of the equation

ŷ = 46.4 + 7.78 x1 − 1.65 x2

and then determine r as a measure of how strongly
y, the twists required to break one of the forged al-
loy bars, depends on both percentages of alloying ele-
ments present.

(a) Using the data in Example 12, find
∑

( y − y )2

(b) Using the regression equation obtained in Exam-
ple 12, calculate ŷ for the 16 points and then de-
termine

∑
( y − ŷ )2.



Sec 11.7 Multiple Linear Regression (Matrix Notation) 377

(c) Substitute the results obtained in (a) and (b) into
the above formula for r. The result is called the
multiple correlation coefficient.

11.62 With reference to Exercise 11.39, use the theory of the
preceding exercise to calculate the multiple correlation
coefficient (which measures how strongly the current
gain is related to the two independent variables).

11.63 Referring to the nano twisting data in Exercise 11.24,
calculate the correlation coefficient.

11.64 To calculate r using MINITAB when the x values are
in C1 and the y values are in C2, use

Dialog box:
Stat>Basic Statistics>Correlation
Type C1 and C2 in Variables. Click OK.

Also, you can make a scatter plot using the plot proce-
dure in Exercise 11.22.
Use the computer to do Exercise 11.50.

11.7 Multiple Linear Regression (Matrix Notation)
The model we are using in multiple linear regression lends itself uniquely to a uni-
fied treatment in matrix notation.4 This notation makes it possible to state general
results in compact form and to use to great advantage many of the results of matrix
theory.

It is customary to denote matrices by capital letters in boldface type and vectors
by lowercase boldface type. To express the normal equations on page 357 in matrix
notation, let us define the following three matrices.

X =

⎡
⎢⎢⎣

1 x11 x12
1 x21 x22
...

...
...

1 xn1 xn2

⎤
⎥⎥⎦

y =

⎡
⎢⎢⎣

y1
y2
...

yn

⎤
⎥⎥⎦ and b =

⎡
⎣b0

b1
b2

⎤
⎦

The first one, X, is an n×(1+2) matrix consisting essentially of the given values
of the x’s with the column of 1’s appended to accommodate the constant term. y is
an n × 1 matrix (or column vector) consisting of observed values of the response
variable and b is the (1 + 2) × 1 matrix (or column vector) consisting of possible
values of the regression coefficients.

Using these matrices, we can now write the following symbolic ̂β, the least
squares estimates of the multiple regression coefficients are given by

̂β = (X′X )−1X′ y

where X′ is the transpose of X and (X′X )−1 is the inverse of X′X.

4It is assumed for this section that the reader is familiar with the material ordinarily covered in a first course
on matrix algebra. Since matrix notation is not used elsewhere in this book, this section may be omitted
without loss of continuity.
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To verify this relation, we first determine X′X, X′X b, and X′ y.

X′X =

⎡
⎢⎣

n
∑

x1
∑

x2∑
x1

∑
x2

1
∑

x1 x2∑
x2

∑
x2 x1

∑
x2

2

⎤
⎥⎦

X′X b =

⎡
⎢⎣

b0 n + b1
∑

x1 + b2
∑

x2

b0
∑

x1 + b1
∑

x2
1 + b2

∑
x1 x2

b0
∑

x2 + b1
∑

x2 x1 + b2
∑

x2
2

⎤
⎥⎦

X′ y =

⎡
⎢⎣

∑
y∑
x1 y∑
x2 y

⎤
⎥⎦

Identifying the elements X′Xb as the expressions on the right-hand side of the
normal equations on page 357 and those of X′y as the expressions on the left-hand
side, we can write

X′X b = X′ y

Multiplying on the left by (X′X)−1, we get

(X′X)−1X′ X b = (X′X )−1X′ y

and, finally, the solution ̂β satisfies

̂β = (X′X )−1X′ y

since (X′X)−1X′X equals the (1 + 2) × (1 + 2) identity matrix I, and by definition
I b = b. We have assumed here that X′X is nonsingular, so that its inverse exists.

EXAMPLE 19 Calculating the least squares estimates using (X′X)−1 X′y
With reference to the Example 12, use the matrix expressions to determine the least
squares estimates of the multiple regression coefficients.

Solution Substituting
∑

x1 = 40,
∑

x2 = 200,
∑

x2
1 = 120,

∑
x1 x2 = 500,

∑
x2

2 =
3,000, and n = 16 into the expression for X′X above, we get

X′X =
⎡
⎣ 16 40 200

40 120 500
200 500 3,000

⎤
⎦

Then the inverse of this matrix can be obtained by any one of a number of different
techniques; using the one based on cofactors, we find that

(X′X)−1 = 1
160,000

⎡
⎣ 110,000 −20,000 −4,000

−20,000 8,000 0
−4,000 0 320

⎤
⎦

where 160,000 is the value of |X′X|, the determinant of X′X.
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Substituting
∑

y = 723,
∑

x1 y = 1963, and
∑

x2 y = 8210 into the expres-
sion for X′y on page 378, we then get

X′ y =
⎡
⎣ 723

1,963
8,210

⎤
⎦

and, finally,

̂β = (X′X)−1X′ y = 1
160,000

⎡
⎣ 110,000 −20,000 −4,000

−20,000 8,000 0
−4,000 0 320

⎤
⎦

⎡
⎣ 723

1,963
8,210

⎤
⎦

= 1
160,000

⎡
⎣7,430,000

1,244,000
−264,800

⎤
⎦

=
⎡
⎣ 46.4375

7.7750
−1.6550

⎤
⎦

Note that the results obtained here are identical with those shown in the computer
printout on page 358. j

The residual sum of squares also has a convenient matrix expression. The
predicted values ŷi = β̂0 + β̂1 xi1 + β̂2 xi2 can be collected as a matrix (column
vector).

ŷ =

⎡
⎢⎢⎣

ŷ1
ŷ2
...

ŷn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 x11 x12
1 x21 x22
...

...
...

1 xn1 xn2

⎤
⎥⎥⎦

⎡
⎣ β̂0

β̂1
β̂2

⎤
⎦ = X̂β

Then the residual sum of squares

n∑
i=1

( yi − ŷi )2 = ( y − ŷ )′( y − ŷ ) = ( y − X ̂β )′ ( y − X ̂β )

Consequently, the estimate s2
e of σ 2 can be expressed as

s2
e = 1

n − 3
( y − X ̂β )′( y − X ̂β )

The same matrix expressions for b and the residual sum of squares hold for any
number of predictor variables. If the mean of Y has the form β0 + β1 x1 + β2 x2 +
· · · + βk xk, we define the matrices

X =

⎡
⎢⎢⎣

1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

. . .
...

1 xn1 xn2 · · · xnk

⎤
⎥⎥⎦ ̂β =

⎡
⎢⎢⎢⎢⎢⎣

β̂0
β̂1
β̂2
...

β̂k

⎤
⎥⎥⎥⎥⎥⎦ y =

⎡
⎢⎢⎣

y1
y2
...

yn

⎤
⎥⎥⎦

Then

̂β = (X′X)−1X′ y and s2
e = 1

n − k − 1
( y − X ̂β )′ ( y − X ̂β )
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Generally, the sum of squares error, SSE, has degrees of freedom (d.f.)

d.f. = n − number of β ′s in model = n − (k + 1)

EXAMPLE 20 Fitting a straight line using the matrix formulas
Use the matrix relations to fit a straight line to the data

x 0 1 2 3 4

y 8 9 4 3 1

Solution Here k = 1 and, dropping the subscript 1, we have

X′ y X′X (X′X)−1 X′y

[
1 1 1 1 1
0 1 2 3 4

] ⎡
⎢⎢⎢⎣

8
9
4
3
1

⎤
⎥⎥⎥⎦

[
5 10

10 30

] [
0.6 −0.2

−0.2 0.1

] [
25
30

]

Consequently,

̂β = (X′X)−1X′y =
[

0.6 −0.2
−0.2 0.1

] [
25
30

]
=

[
9

−2

]
and the fitted equation is

ŷ = 9 − 2 x

The vector of fitted values is

ŷ = X̂β =

⎡
⎢⎢⎢⎣

1 0
1 1
1 2
1 3
1 4

⎤
⎥⎥⎥⎦

[
9

−2

]
=

⎡
⎢⎢⎢⎣

9
7
5
3
1

⎤
⎥⎥⎥⎦

so the vector of residuals

y − ŷ =

⎡
⎢⎢⎢⎣

8
9
4
3
1

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

9
7
5
3
1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−1
2

−1
0
0

⎤
⎥⎥⎥⎦

and the residual sum of squares is

[ −1 2 − 1 0 0 ]

⎡
⎢⎢⎢⎣

−1
2

−1
0
0

⎤
⎥⎥⎥⎦ = 6

Finally,

s2
e = 1

n − k − 1
( y − ŷ )′ ( y − ŷ ) = 1

5 − 2
(6) = 2.00 j
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The elegance of the expressions using matrices goes one step further. We can
express the estimated variances and covariances of the least squares estimators as

⎡
⎢⎢⎢⎢⎣

V̂ar (β̂0) Ĉov (β̂0, β̂1) · · · Ĉov (β̂0, β̂k )

Ĉov (β̂1, β̂0) V̂ar (β̂1) · · · Ĉov (β̂1, β̂k )
...

...
. . .

...

Ĉov (β̂k, β̂0) Ĉov (β̂k, β̂1) · · · V̂ar (β̂k )

⎤
⎥⎥⎥⎥⎦ = s2

e (X′X)−1

That is, to obtain the estimated variance, V̂ar(β̂i), of β̂i, we multiply the correspond-
ing diagonal entry of (X′X)−1 by s2

e , which is the estimate of σ 2.

EXAMPLE 21 Estimating the variance of the least squares estimators
With reference to the preceding example, use the matrix relations to obtain the esti-
mated variances V̂ar(β̂0) and V̂ar(β̂1).

Solution We have [
V̂ar(β̂0) Ĉov(β̂0, β̂1)

Ĉov(β̂1, β̂0) V̂ar(β̂1)

]
= s2

e (X′X)−1

= (2.00)
[

0.6 −0.2

−0.2 0.1

]
=

[
1.2 −0.4

−0.4 0.2

]

where the values for (X′X)−1 and s2
e are those obtained in Example 20. Therefore,

the estimates are V̂ar(β̂0) = 1.2 and V̂ar(β̂1) = 0.2. Note also that the estimated
covariance of β̂0 and β̂1 is Ĉov(β̂0, β̂1) = −0.4. j

Do’s and Don’ts

Do’s
1. As a first step, plot the response variable versus the predictor variable. If

there is more than one predictor variable, make separate plots for each.
Examine the plot to see if a linear or other relationship exists.

2. Apply the principle of least squares to obtain estimates of the coefficients
when fitting a straight line or a multiple regression model.

3. Estimate the least squares line ŷ = a + bx with the least squares estimates

β̂ = Sxy

Sxx
=

n∑
i=1

(xi − x)(yi − y)

n∑
i=1

(xi − x)2
α̂ = y − b x

and the variance σ 2 of the error term by

s2
e =

n∑
i=1

(yi − (α̂ + β̂ xi))
2

n − 2
= Syy − S2

xy/Sxx

n − 2
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where Sxx =
n∑

i=1
(xi − x)2 , Sxy =

n∑
i=1

(xi − x)(yi − y), and

Syy =
n∑

i=1
(yi − y)2.

4. Determine the 100(1−α)% confidence intervals using the confidence limits

intercept α: α̂ ± tα/2 · se

√
1
n

+ x2

Sxx

slope β: β̂ ± tα/2 · se
1√
Sxx

5. Remember that the sample correlation coefficient

r = Sxy√
Sxx · Syy

is a unit free measure of the linear association between the two variables.

Don’ts
1. Don’t routinely accept the regression analysis presented in computer out-

put. Instead, examine the model by inspecting the residuals for outliers and
moderate to severe lack of normality. A normal-scores plot is useful if there
are more than 20 or so residuals. It may suggest a transformation.

2. Don’t confuse a high correlation with a causal relationship.

Review Exercises
11.65 The data below pertains to the number of hours a lap-

top has been charged for and the number of hours of
backup provided by the battery.

(a) Use the first set of expressions on page 330, in-
volving deviations from the mean, to fit a least
squares line to the observations.

(b) Use the equation of the least squares line to esti-
mate the mean battery backup time at x = 3.

Charged for Battery backup
(hours) (hours)

0.5 0.75
1.0 1.75
1.5 2.5
2.0 4.5
2.5 6.0

(c) What difficulty might you encounter if you use
the least squares line to predict the mean battery
backup time for a laptop that has been charged for
5 hours?

11.66 With reference to Exercise 11.65, construct a 99% con-
fidence interval for α.

11.67 With reference to Exercise 11.65, test the null hypothe-
sis β = 1.5 against the alternative hypothesis β > 1.5
at the 0.01 level of significance.

11.68 With reference to Exercise 11.65,

(a) find a 99% confidence interval for the mean bat-
tery backup at x = 1.25;

(b) find 95% limits of prediction for the battery backup
provided by a laptop charged for 1.25 hours.

11.69 A chemical engineer found that by adding different
amounts of an additive to gasoline, she could reduce
the amount of nitrous oxides (NOx) coming from an
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automobile engine. A specified amount was added to
a gallon of gas and the total amount of NOx in the ex-
haust collected. Suppose, in suitable units, the data are

Amount of additive NOx

1 19
2 17
3 14
4 13
5 12

(a) Obtain the least squares fit, of a straight line, to
the amount of NOx.

(b) Test whether or not the slope β = 0. Take α =
0.10 as your level of significance.

(c) Give a 99% confidence interval for the mean value
of NOx when the amount of additive is 9.

(d) What additional danger is there when using your
estimate in part (c)?

11.70 With reference to Exercise 11.69, find the 95% limits
of prediction when the amount of additive is 4.5.

11.71 With reference to Exercise 11.69, find the proportion
of variance in the amount of NOx explained by the
amount of additive.

11.72 To determine how well existing chemical analyses can
detect lead in test specimens in water, a civil engineer
submits specimens spiked with known concentrations
of lead to a laboratory. The chemists are told only that
all samples are from a study about measurements on
“low” concentrations, but they are not told the range
of values to expect. This is sometimes called a calibra-
tion problem because the goal is to relate the measured
concentration (y) to the known concentration (x).
Given the data (Courtesy of Paul Berthouex)

x 0.00 0.00 1.25 1.25 2.50 2.50 2.50 5.00 10.00 10.00
y 0.7 0.5 1.1 2.0 2.8 3.5 2.3 5.3 9.1 9.4

(a) plot measured concentration versus known con-
centration; comment on the pattern;

(b) fit a straight line by least squares;

(c) if the chemical test is correct, on average, we
would expect a straight line that has slope 1. Ob-
tain a 95% confidence interval for β;

(d) test H0: β = 1 versus H1: β �= 1 at level α = 0.05.

11.73 With reference to the preceding exercise, construct a
95% confidence interval for α.

11.74 With reference to Example 15,

(a) find the least squares line for predicting the
chromium in the effluent from that in the influent
after taking natural logarithms of each variable;

(b) predict the mean ln (effluent) when the influent has
500 μg/l chromium.

11.75 In an experiment designed to determine the specific
heat ratio γ for a certain gas, measurements of the vol-
ume and corresponding pressure p produced the data:

p (lb/in.2) 16.6 39.7 78.5 115.5 195.3 546.1

V (in.3 ) 50 30 20 15 10 5

Assuming the ideal gas law p ·V γ = C, use these data
to estimate γ for this gas.

11.76 With reference to Exercise 11.75, use the method of
Section 11.2 to construct a 95% confidence interval for
γ . State what assumptions will have to be made.

11.77 The rise of current in an inductive circuit having the
time constant τ is given by

I = 1 − e−t/τ

where t is the time measured from the instant the
switch is closed, and I is the ratio of the current at time
t to the full value of the current given by Ohm’s law.
Given the measurements

I 0.073 0.220 0.301 0.370 0.418 0.467 0.517 0.578
t (sec) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

estimate the time constant of this circuit from the ex-
perimental results given. [Hint: Note that the relation-
ship between ln (1 − I) and t is linear.]

11.78 The following are sample data provided by a mov-
ing company on the weights of six shipments, the dis-
tances they are moved, and the damage that was in-
curred:

Weight Distance Damage
(1,000 pounds) (1,000 miles) (dollars)

x1 x2 y

4.0 1.5 160
3.0 2.2 112
1.6 1.0 69
1.2 2.0 90
3.4 0.8 123
4.8 1.6 186

(a) Fit an equation of the form y = β0+β1 x1+β2 x2.

(b) Use the equation obtained in part (a) to esti-
mate the damage when a shipment weighing 2,400
pounds is moved 1,200 miles.
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11.79 With reference to Exercise 11.9,

(a) find a 95% confidence interval for the mean cur-
rent density when the strain is x = 0.50;

(b) find 95% limits of prediction for the current den-
sity when a new diode has stress x = 0.50.

11.80 Use the expression on page 367, involving deviations
from the mean, to calculate r for the following data:

x y

3 8
1 6
2 3
9 6
5 7

11.81 If r = 0.41 for one set of paired data and r = 0.29
for another, compare the strengths of the two relation-
ships.

11.82 If for certain paired data n = 18 and r = 0.44, test
the null hypothesis ρ = 0.30 against the alternative
hypothesis ρ > 0.30 at the 0.01 level of significance.

11.83 Assuming that the necessary assumptions are met,
construct a 95% confidence interval for ρ when

(a) r = 0.78 and n = 15;

(b) r = −0.62 and n = 32;

(c) r = 0.17 and n = 35.

11.84 With reference to Exercise 11.78, use the theory of Ex-
ercise 11.61 to calculate the multiple correlation coef-
ficient (which measures how strongly the damage is
related to both weight and distance).

11.85 Robert A. Millikan (1865–1953) produced the first accurate measurements on the
charge e of an electron. He devised a method to observe a single drop of water or oil
under the influence of both electric and gravitational fields. Usually, a droplet
carried multiple electrons, and direct calculations based on voltage, time of fall,
etc., provided an estimate of the total charge. [Source: Philosophical Magazine 19
(1910); 209–228.]

x
(No. of e’s) Observations (109 × charge)

3 1.392 1.392 1.398 1.368 1.368 1.368 1.345
4 1.768 1.768 1.910 1.768 1.746 1.746 1.886 1.768 1.768 1.768
5 2.471 2.471 2.256 2.256 2.471
2 0.944 0.992
6 2.981 2.688

(a) Find the equation of the least squares line for Millikan’s data.

(b) Find a 95% confidence interval for the slope β, the charge e on a single electron.

(c) Test the null hypothesis α = 0 against the alternative hypothesis α �= 0.

(d) Examine the residuals.

11.86 Robert Boyle (1627–1691) established the law that (pressure × volume) = constant
for a gas at a constant temperature. By pouring mercury into the open top of the
long side of a J-shaped tube, he increased the pressure on the air trapped in the short
leg. The volume of trapped air = h × cross section, where h is the height of the
air in the short leg. If y = height of mercury, adjusted for the pressure of the
atmosphere on the open end, then y and x = 1/h should obey a straight-line
relationship. [Source: The Laws of Gases, edited by Carl Barus (1899), New York:
Harper and Brothers Publishers.]

h 48 46 44 42 40 38 36 34 32 30 28 26 24

y 29
2
16

30
9

16
31

15
16

33
8
16

35
5
16

37 39
5
16

41
10
16

44
3
16

47
1
16

50
5
16

54
5

16
58

13
16
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h 23 22 21 20 19 18 17 16 15 14 13 12

y 61
5
16

64
1

16
67

1
16

70
11
16

74
2
16

77
14
16

82
12
16

87
14
16

93
1
16

100
7
16

107
13
16

117
9
16

(a) Fit a straight line by least squares to Boyle’s data.

(b) Check the residuals for a possible violation of the assumptions.

Key Terms
Bivariate normal distribution 371
Correlation analysis 366
Dummy variable 359
Error sum of squares 330
Exponential form 352
Exponential regression 351
Fisher Z transformation 372
Gauss-Markov theorem 336
Least squares estimators 330
Limits of prediction 343
Linear regression 328

Logarithmic form 352
Lurking variable 370
Method of least squares 330
Multiple correlation coefficient 377
Multiple regression 356
Normal equations 336, 357
Polynomial regression 353
Population correlation coefficient 371
Power function 353
Predictor variable 327
Principle of least squares 329

Reciprocal function 353
Regression of Y on x 327
Regression sum of squares 370
Residual 330
Residual sum of squares 330
Response variable 327
Sample correlation coefficient 366
Scattergram 328
Scatter plot 328
Slope of regression line 339
Standard error of estimate 337
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S
ome examples in Chapter 11 show us that considerable economies in calculation
result from planning an experiment in advance. More importantly, proper experi-
mental planning can give a reasonable assurance that the experiment will provide

clear-cut answers to questions under investigation. Two experimental designs, (i) inde-
pendent samples design and (ii) matched pairs design, appear in Chapter 8.

We begin by presenting some general principles of experimental design. Sections
12.2 and 12.3 discuss the often used one-way design and randomized block design. The
first generalizes the independent samples design and the second the matched pairs design.
In the remainder of the chapter, we introduce tests for comparing several means. Besides
developing tests for one-way classifications and randomized block experiments, we also
treat a balanced experiment in the presence of covariate. The presence of a covariate
allows us to test the equality of means after adjusting for its values on each experimental
unit.

12.1 Some General Principles
Many of the most important aspects of experimental design can be illustrated by
means of an example drawn from the important field of engineering measurement.

Suppose that a steel mill supplies tin plate to 3 can manufacturers, the major
specification being that the tin-coating weight should be at least 0.25 pound per base
box. The mill and each can manufacturer has a laboratory where measurements are
made of the tin-coating weights of samples taken from each shipment. Because some
disagreement has arisen about the actual tin-coating weights of the tin plate being
shipped, it is decided to plan an experiment to determine whether the 4 laborato-
ries are making consistent measurements. A complicating factor is that part of the
measuring process consists of the chemical removal of the tin from the surface of
the base metal; thus, it is impossible to have the identical sample measured by each
laboratory.

One possibility is to send several samples (in the form of circular disks having
equal areas) to each of the laboratories. Although these disks may not actually have
identical tin-coating weights, it is hoped that such differences will be small and that
they will more or less average out. In other words, it will be assumed that whatever
differences there will be among the means of the 4 samples can be attributed to no
other causes but systematic differences in measuring techniques and chance vari-
ability. This would make it possible to determine whether the results produced by
the laboratories are consistent by comparing the variability of the 4 sample means
with an appropriate measure of chance variation.

Now there remains the problem of deciding how many disks are to be sent to each
laboratory and how the disks are actually to be selected. The question of sample
size can be answered in many different ways, one of which is to use the formula
on page 268 to obtain the standard deviation of the difference between two means.
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Substituting known values of σ1 and σ2 and specifying what differences between
the true means of any 2 of the laboratories would be detected with a probability of
at least 0.95 (or 0.98, or 0.99), it is possible to determine n1 = n2 = n (see Exer-
cise 12.13). Suppose that this method and, perhaps, also considerations of cost and
availability of the necessary specimens lead to the decision to send a sample of 12
disks to each laboratory.

The problem of selecting the required 48 disks and allocating 12 to each labo-
ratory is not as straightforward as it may seem at first. To begin with, suppose that
a sheet of tin plate, sufficiently long and sufficiently wide, is selected and that the
48 disks are cut as shown in Figure 12.1. The 12 disks cut from strip 1 are sent to
the first laboratory, the 12 disks from strip 2 are sent to the second laboratory, and
so forth.

Figure 12.1
Numbering of tin-plate samples

37 48

25 36

13 24

1 121

2

3

4

Strip

2 3 4 5 6 7 8 9 10 11

14 15 16 17 18 19 20 21 22 23

26 27 28 29 30 31 32 33 34 35

38 39 40 41 42 43 44 45 46 47

Rolling direction

If the 4 mean coating weights are subsequently found to differ significantly,
would this allow us to conclude that these differences can be attributed to lack of
consistency in the measuring techniques? Suppose, for instance, that additional in-
vestigation shows that the amount of tin deposited electrolytically on a long sheet of
steel has a distinct and repeated pattern of variation perpendicular to the direction in
which it is rolled. (Such a pattern might be caused by the placement of electrodes,
edge effects, and so forth.) Thus, even if all 4 laboratories measured the amount of tin
consistently and without error, there could be cause for differences in the tin-coating
weight determinations. The allocation of an entire strip of disks to each laboratory
is such that the inconsistencies among the laboratories’ measuring techniques are
inseparable from (or confounded with) whatever differences may exist in the actual
amount of tin deposited perpendicular to the direction in which the sheet of steel
is rolled.

One way to avoid this kind of confounding is to number the disks and allocate
them to the four laboratories at random. With the aid of random numbers, we obtain

Laboratory A: 3 38 17 32 24 30 48 19 11 31 22 41

Laboratory B: 44 20 15 25 45 4 14 5 39 7 40 34

Laboratory C: 12 21 42 8 27 16 47 46 18 43 35 26

Laboratory D: 9 2 28 23 37 1 10 6 29 36 33 13

If there is any actual pattern of tin-coating thickness on the sheet of tin plate, it will
be broken up by the randomization.

Although we have identified and counteracted one possible systematic pattern of
variation, there is no assurance that there will be no others. For instance, there may
be systematic differences in the areas of the disks caused by progressive wear of
the cutting instrument, or there may be scratches or other imperfections on one part
of the sheet that could affect the measurements. There is always the possibility that
differences in means attributed to inconsistencies among the laboratories are actually
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caused by some other uncontrolled variable. It is the purpose of randomization
to avoid confounding the variable under investigation with other uncontrolled
variables.

By distributing the 48 disks among the 4 laboratories entirely at random, we
have no choice but to include whatever variation may be attributable to extraneous
causes under the heading of chance variation. This may give us an excessively large
estimate of chance variation, which, in turn, may make it difficult to detect differ-
ences between the true laboratory means. In order to avoid this, we could, perhaps,
use only disks cut from the same strip (or from an otherwise homogeneous region).
Unfortunately, this kind of controlled experimentation presents us with new com-
plications. Of what use would it be, for example, to perform an experiment that
allows us to conclude that the laboratories are consistent (or inconsistent), if such a
conclusion is limited to measurements made at a fixed distance from one edge of a
sheet?

To consider another example, suppose that a manufacturer of plumbing mate-
rials wishes to compare the performance of several kinds of material to be used in
underground water pipes. If such conditions as soil acidity, depth of pipe, and min-
eral content of water were all held fixed, any conclusions as to which material is best
would be valid only for the given set of conditions. What the manufacturer really
wants to know is which material is best over a fairly wide variety of conditions, and
in designing a suitable experiment it would be advisable (indeed, necessary) to spec-
ify that pipe of each material be buried at each of several depths in each of several
kinds of soil, and in locations where the water varies in hardness.

It is seldom desirable to hold all or most extraneous factors fixed throughout
an experiment in order to obtain an estimate of chance variation that is not inflated
by variations due to other causes. (In fact, it is rarely, if ever, possible to exercise
such strict control; that is, to hold all extraneous variables fixed.) In actual practice,
experiments should be planned so that known sources of variability are deliberately
varied over as wide a range as necessary. Furthermore, they should be varied in such
a way that their variability can be eliminated from the estimate of chance variation.
One way to accomplish this is to repeat the experiment in several blocks, where
known sources of variability (that is, extraneous variables) are held fixed in each
block, but vary from block to block.

Recall the reasoning behind the matched pairs design. In the tin-plating problem
we might account for variations across the sheet of steel by randomly allocating 3
disks from each strip to each of the laboratories as in the arrangement:

Strip 1 Strip 2 Strip 3 Strip 4

Laboratory A 8, 4, 10 23, 24, 19 26, 29, 35 37, 44, 48

Laboratory B 2, 6, 12 21, 15, 22 34, 33, 32 45, 43, 46

Laboratory C 1, 5, 11 16, 20, 13 36, 27, 30 41, 38, 47

Laboratory D 7, 3, 9 17, 18, 14 28, 31, 25 39, 40, 42

In this experimental layout, the strips form the blocks, and if we base our estimate of
chance variation on the variability within each of the 16 sets of 3 disks, this estimate
will not be inflated by the extraneous variable; that is, differences among the strips.
(Note also that, with this arrangement, differences among the means obtained from
the 4 laboratories cannot be attributed to differences among the strips. The arrange-
ment on page 387 does not have this property, since, for instance, 5 disks from strip
1 are allocated to Laboratory D.)

The analysis of experiments in which blocking is used to eliminate one source
of variability is discussed in Section 12.3.
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12.2 Completely Randomized Designs
In this section we consider the statistical analysis of the completely randomized
design, or one-way classification. We shall suppose that the experimenter has avail-
able the results of k independent random samples, from k different populations (that
is, data concerning k treatments, k groups, k methods of production, etc.). A primary
goal is to test the hypothesis that the means of these k populations are all equal.

In general, we denote the jth observation in the ith sample by yi j, and the scheme
for a one-way classification is as follows:

Observations Means Sum of Squares

Sample 1 : y11, y12, . . . , y1 j, . . . , y1 n1
y1

n1∑
j=1

( y1 j − y1 )2

Sample 2 : y21, y22, . . . , y2 j, . . . , y2 n2
y2

n2∑
j=1

( y2 j − y2 )2

...
...

...
...

Sample i : yi1, yi2, . . . , yi j, . . . , yi ni yi

ni∑
j=1

( yi j − yi )2

...
...

...
...

Sample k : yk1, yk2, . . . , yk j, . . . , yk nk
yk

nk∑
j=1

( yk j − yk )2

To simplify the calculations below, we use the notation T• for the sum of all the
observations and N for the total sample size.

T• =
k∑

i=1

ni∑
j=1

yi j N =
k∑

i=1

ni

The overall sample mean y is

y =

k∑
i=1

ni∑
j=1

yi j

k∑
i=1

ni

=

k∑
i=1

niyi

k∑
i=1

ni

= T•

N

An example of such an experiment with k = 4 treatments and equal sample sizes
ni = 12 is given on page 387, where yi j is the jth tin-coating weight measured by
the ith laboratory, yi is the mean of the measurements obtained by the ith laboratory,
and y is the overall mean (or grand mean) of all n = 48 observations.

The statistical analysis leading to a comparison of the k different population
means consists essentially of splitting the sum of squares about the overall grand
mean y into a component due to treatment differences and a component due to error
or variation within a sample. It is instructive to see how this analysis emanates from
a decomposition of the individual observations.

Suppose 3 drying formulas for curing a glue are studied and the following times
observed.

Formula A: 13 10 8 11 8
Formula B: 13 11 14 14
Formula C: 4 1 3 4 2 4

There are N = 5 + 4 + 6 = 15 observations in all, and these total T• = 120.
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The grand mean is

y = T•/N =
k∑

i=1

ni∑
j=1

yi j/N = 120 / 15 = 8

Each observation yi j will be decomposed as

yi j = y + ( yi − y ) + ( yi j − yi )
observation grand deviation due error

mean to treatment

For instance, 13 = 8 + (10 − 8) + (13 − 10) = 8 + 2 + 3. Repeating the
decomposition for each observation, we obtain the arrays

observation grand mean
yi j y⎡

⎣13 10 8 11 8
13 11 14 14

4 1 3 4 2 4

⎤
⎦ =

⎡
⎣8 8 8 8 8

8 8 8 8
8 8 8 8 8 8

⎤
⎦

treatment effects error
yi − y yi j − yi

+
⎡
⎣ 2 2 2 2 2

5 5 5 5
−5 −5 −5 −5 −5 −5

⎤
⎦ +

⎡
⎣3 0 −2 1 −2

0 −2 1 1
1 −2 0 1 −1 1

⎤
⎦

Taking the sum of squares as a measure of variation for the whole array,

treatment sum of squares =
k∑

i=1

ni ( yi − y )2

= 5(2)2 + 4(5)2 + 6(−5)2 = 270

error sum of squares =
k∑

i=1

ni∑
j=1

( yi j − yi )2

= 32 + 02 + (−2)2 + · · · + (−1)2 + 12 = 32

Their sum, 302 = 270+32, the total sum of squares, also equals the sum of squared
entries in the observation array minus the sum of squares of the entries in the grand
mean array. That is, the array for total sum of squares has entries yi j − y whose sum
of squares is 302.

The decomposition also provides us with an interpretation of the degrees of
freedom associated with each sum of squares. In this example, the treatment effects
array has only 3 possibly distinct entries: y1 −y, y2 −y, and y3 −y. Further, the sum
of entries in the treatment effects array,

k∑
i=1

ni( yi − y )

is always zero. So, for instance, the third value is determined by the first two. Con-
sequently, there are 3 − 1 = 2 degrees of freedom associated with treatments. In the
general case, there are k − 1 degrees of freedom.
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Among the entries of the error array, each row sums to zero, so 1 degree of
freedom is lost for each row. The array has n1 + n2 + n3 − 3 = 5 + 4 + 6 − 3 = 12
degrees of freedom. In the general case, there are n1 + n2 + · · · + nk − k degrees of
freedom.

The grand mean array has a single value y and hence has 1 degree of freedom,
whereas the observation array has n1 + n2 + · · · + nk possible distinct entries and
hence that number of degrees of freedom. The total sum of squares, based on the
difference of these last two arrays, has

n1 + n2 + · · · + nk − 1 = 5 + 4 + 6 − 1 = 14

degrees of freedom.
To summarize our calculations for the curing times, we enter the degrees of

freedom and sums of squares in a table called an analysis of variance table.

Analysis of Variance Table for Cure Times
Source of Degrees of Sum of
variation freedom squares

Treatment 2 270

Error 12 32

Total 14 302

For further reference, we also summarize the decomposition of the degrees of free-
dom associated with total, treatment, and error sum of squares, for the general one-
way analysis of variance.

Decomposition of the
degrees of freedom

d.f. Total = d.f. Treatment + d.f. Error
k∑

i=1

ni − 1 = k − 1 +
k∑

i=1

ni − k

With reference to the total sum of squares

k∑
i=1

ni∑
j=1

( yi j − y )2

we shall now prove the following theorem.

Identity for one-way
analysis of variance

Theorem 12.1

k∑
i=1

ni∑
j=1

( yi j − y )2 =
k∑

i=1

ni∑
j=1

( yi j − yi )2 +
k∑

i=1

ni( yi − y )2

The proof of this theorem is based on the identity

yi j − y = ( yi j − yi ) + ( yi − y )
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Squaring both sides and summing on i and j, we obtain

k∑
i=1

ni∑
j=1

( yi j − y )2 =
k∑

i=1

ni∑
j=1

( yi j − yi )2 +
k∑

i=1

ni∑
j=1

( yi − y )2

+ 2
k∑

i=1

ni∑
j=1

( yi j − yi ) ( yi − y )

Next, we observe that

k∑
i=1

ni∑
j=1

( yi j − yi ) ( yi − y ) =
k∑

i=1

( yi − y )
ni∑

j=1

( yi j − yi ) = 0

since yi is the mean of the ith sample and, hence,

ni∑
j=1

( yi j − yi ) = 0 for all i

To complete the proof of Theorem 12.1, we have only to observe that the summand
of the second sum of the right-hand side of the above identity does not involve the
subscript j and that, consequently,

k∑
i=1

ni∑
j=1

( yi − y )2 =
k∑

i=1

ni ( yi − y )2

It is customary to denote the total sum of squares, the left-hand member of the
identity of Theorem 12.1, by SST. We refer to the first term on the right-hand side as
the error sum of squares, SSE. The term error sum of squares expresses the idea that
the quantity estimates random (or chance) error. The second term on the right-hand
side of the identity of Theorem 12.1 we refer to as the between-samples sum of
squares or the treatment sum of squares, SS(Tr). (Most of the early applications
of this kind of analysis were in the field of agriculture, where the k populations
represented different treatments, such as fertilizers, applied to agricultural plots.)

To be able to test the hypothesis that the samples were obtained from k popu-
lations with equal means, we shall make several assumptions. Specifically, it will
be assumed that we are dealing with normal populations having equal variances.
However, the methods we develop in this chapter are fairly robust; that is, they
are relatively insensitive to violations of the assumption of normality as well as the
assumption of equal variances.

If μi denotes the mean of the ith population and σ 2 denotes the common vari-
ance of the k populations, we can express each observation Yi j as μi, plus the value
of a random component; that is, we can write1

Yi j = μi + εi j for i = 1, 2, . . . , k j = 1, 2, . . . , ni

In accordance with the preceding assumptions, the εi j are independent, normally
distributed random variables with zero means and the common variance σ 2.

1Note that this equation, or model, can be regarded as a multiple regression equation; by introducing the
variables xil that equal 0 or 1, depending on whether the two subscripts are unequal or equal, we can write

Yi j = μ1xi1 + μ2xi2 + · · · + μkxik + εi j

The parameters μi can be interpreted as regression coefficients, and they can be estimated by the least
squares methods of Chapter 11.
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To attain uniformity with corresponding equations for more complicated kinds
of designs, it is customary to replace μi by μ + αi, where μ is the mean

k∑
i=1

ni μi/N

of the μi in the experiment and αi is the effect of the ith treatment; hence,

k∑
i=1

ni αi = 0

(See Exercise 12.14.)
Using these new parameters, we can write the model equation for the one-way

classification as

Model equation for
one-way classification

Yi j = μ + αi + εi j for i = 1, 2, . . . , k; j = 1, 2, . . . , ni

and the null hypothesis that the k population means are all equal is replaced by the
null hypothesis that α1 = α2 = · · · = αk = 0. The alternative hypothesis that
at least two of the population means are unequal is equivalent to the alternative
hypothesis that αi �= 0 for some i.

To test the null hypothesis that the k population means are all equal, we shall
compare two estimates of σ 2—one based on the variation, or differences between,
the sample means, and one based on the variation within the samples.

Each sum of squares is first converted to a mean square so a test for the equality
of treatment means can be performed.

Mean square mean square = sum of squares
degrees of freedom

When the population means are equal, both the

treatment mean square: MS(Tr) =

k∑
i=1

ni ( yi − y )2

k − 1

and the

error mean square: MSE =

k∑
i=1

ni∑
j=1

( yi j − yi )2

N − k

are estimates of σ 2. However, when the null hypothesis is false, the treatment or
between-sample mean square can be expected to exceed the error or within-
sample mean square. If the null hypothesis is true, it can be shown that the two
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mean squares are independent and that their ratio

F =

k∑
i=1

ni ( Y i − Y )2 / ( k − 1 )

k∑
i=1

ni∑
j=1

( Yi j − Y i )2 / ( N − k )

= SS( Tr ) / ( k − 1 )

SSE / ( N − k )

has an F distribution with k − 1 and N − k degrees of freedom.

F ratio for treatments

A large value for F indicates large differences between the sample means. There-
fore, the null hypothesis will be rejected, at level α, if the value of F exceeds Fα

where Fα is obtained from Table 6W with k − 1 and N − k degrees of freedom.
To test for the equality of the mean curing times, we complete the Analysis of

Variance (ANOVA) table by including the mean square errors and value of F .

Analysis of Variance Table for Cure Times
Source of Degrees of Sum of
variation freedom squares Mean square F

Treatment 2 270 135 50.6

Error 12 32 2.667

Total 14 302

The value of F0.05 with 2 and 12 degrees of freedom is 3.89 so we reject the null
hypothesis of equal means.

In general, the results obtained in analyzing the total sum of squares into its
components are conveniently summarized by means of the analysis of variance
table:

Source of Degrees of Sum of
variation freedom squares Mean square F

Treatments k − 1 SS(Tr) MS(Tr) = SS(Tr)/(k − 1)
MS(Tr)

MSE
Error N − k SSE MSE = SSE/(N − k)

Total N − 1 SST

where

N =
k∑

i=1

ni

Note that each mean square is obtained by dividing the corresponding sum of
squares by its degrees of freedom.

The calculations can become quite cumbersome and we recommend the use of
a statistical software program. (See Exercises 12.18 for using MINITAB.)
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EXAMPLE 1 Conducting a one-way analysis of variance
To illustrate the analysis of variance (as this technique is appropriately called) for a
one-way classification, suppose that in accordance with the layout on page 387 each
laboratory measures the tin-coating weights of 12 disks and that the results are as
follows:

Laboratory A Laboratory B Laboratory C Laboratory D

0.25 0.18 0.19 0.23
0.27 0.28 0.25 0.30
0.22 0.21 0.27 0.28
0.30 0.23 0.24 0.28
0.27 0.25 0.18 0.24
0.28 0.20 0.26 0.34
0.32 0.27 0.28 0.20
0.24 0.19 0.24 0.18
0.31 0.24 0.25 0.24
0.26 0.22 0.20 0.28
0.22 0.29 0.21 0.22
0.28 0.16 0.19 0.21

Construct an analysis of variance table, and test the equality of mean weights with
α = 0.05.

Solution 1. Null hypothesis: μ1 = μ2 = μ3 = μ4
Alternative hypothesis: The μi’s are not all equal

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if F > 2.82, the value of F0.05 with 3 and
44 degrees of freedom.

4. Calculations: Statistical software produces an ANOVA table that includes the
P-value.

Source of Degrees of Sum of Mean
variation freedom squares square F P-value

Laboratory 3 0.01349 0.00450 2.96 0.042
Error 44 0.06683 0.00152

Total 47 0.08033

5. Decision: Since the observed value of F exceeds 2.82 = F0.05, the null
hypothesis of equal mean weights is rejected at the 0.05 level of significance.
We conclude that the laboratories are not obtaining consistent results.

The P-value 0.042, shown in Figure 12.2, only provides minimal additional sup-
port for the conclusion.

[ Using R : Read the file C12Ex1.TXT into Dat. Then, use anova(lm(Weight˜
Laboratory,data=Dat)) ] j
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Figure 12.2
P-value and rejection region
for Example 1 0 2.96

0.042
f

To estimate the parameters μ, α1, α2, α3, . . . , αk (or μ1, μ2, μ3, . . . , μk ),
we can use the method of least squares, minimizing

k∑
i=1

ni∑
j=1

(yi j − μ − αi)
2

with respect to μ and αi subject to the restriction that

k∑
i=1

ni αi = 0

This may be done by eliminating one of the α’s or, better, by using the method
of Lagrange multipliers, which is treated in most texts on advanced calculus. In
either case we obtain the intuitively obvious estimate μ̂ = y and α̂i = yi − y for
i = 1, 2, . . . , k, and the corresponding estimates for the μi are given by μ̂i = yi.

EXAMPLE 2 Estimating the treatment effects
Estimate the parameters of the one-way classification model for the tin-coating
weights given in the preceding example.

Solution For the data from the 4 laboratories we get

μ̂ = 11.70
48

= 0.244, α̂1 = 3.22
12

− 0.244 = 0.024

α̂2 = 2.72
12

− 0.244 = −0.017, α̂3 = 2.76
12

− 0.244 = −0.014

and

α̂4 = 3.00
12

− 0.244 = 0.006 j

When the null hypothesis of equal treatment effects is rejected, the magnitudes
of the differences should be estimated using confidence intervals. The difference of
sample means for treatment i and treatment l, yi−yl estimates the difference in mean
response μ+αi −μ−αl . Using the mean square error, s2, from the ANOVA table,
the (1 − α)100% confidence interval for the true difference in mean response is

yi − yl ± tα/2

√
s2

(
1
ni

+ 1
nl

)

When several means need to be compared, α can be modified according to
Bonferroni’s procedure, discussed in Section 12.4.
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EXAMPLE 3 Confidence intervals for different resins
The internal bonding strengths of 3 different resins, ED, MD, and PF, need to be
compared. Five specimens were prepared with each of the resins.

Resin Strength Mean

ED 0.99 1.19 0.79 0.95 0.90 0.964

MD 1.11 1.53 1.37 1.24 1.42 1.334

PF 0.83 0.68 0.94 0.86 0.57 0.776

The analysis of variance table shows that there is a statistically significant difference
at level α = 0.05. (See Exercise 12.44.)

Source of Degrees of Sum of Mean
variation freedom squares square F P value

Resin 2 0.8060 0.4030 17.2 0.000

Error 12 0.2810 0.0234

Total 14 1.0870

Determine the individual 95% confidence intervals for the 3 differences of means.

Solution The confidence intervals use the MSE = 0.0234 as the estimate s2 and the degrees
of freedom = 12, so t0.025 = 2.179. The three confidence intervals become

MD − ED : 1.334 − 0.964 ± 2.179

√
0.0.234

(
1
5

+ 1
5

)
or ( 0.159, 0.581 )

MD − PF : 1.334 − 0.776 ± 2.179

√
0.0.234

(
1
5

+ 1
5

)
or ( 0.347, 0.769 )

ED − PF : 0.964 − 0.776 ± 2.179

√
0.0.234

(
1
5

+ 1
5

)
or ( −0.023, 0.399 )

The resin MD has a higher internal bound strength than the other two, which
cannot be distinguished. j

EXAMPLE 4 Confidence intervals quantify the amount of difference
The old way of testing the strength of paper with a special tearing machine is by
testing a single sheet (ply). It has been suggested that measuring 5 sheets together
(5 plys) and then adjusting to the single-thickness strength would be a better pro-
cedure. The first question is whether or not the two procedures give essentially the
same value for strength. There is a strong element of experimental design involved
here. Five pieces of paper are cut in half. One-half of each piece is randomly selected
and its strength obtained. Next, the 5 remaining halves are tested together as the
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5-ply specimen. The scientist then calculates the average of the 5 individual read-
ings minus the adjusted 5-ply reading. This procedure is repeated 3 times for each
of 4 different but representative types of paper. The observations of the differences
are given in the following table. (Courtesy of Steve Verrill)

Paper
type Rep. 1 Rep. 2 Rep. 3 Mean

No. 1 2.80 0.75 3.70 2.417
No. 2 0.00 −0.10 3.45 1.117
No. 3 1.15 1.75 4.20 2.367
No. 4 1.88 2.65 2.70 2.410

Test, at level 0.05, the null hypothesis that there is no difference between the two
methods of testing paper strength. Also summarize the results using confidence
intervals.

Solution Formally, we test whether the mean difference changes with paper type. Omitting
the details, a computer calculation gives the ANOVA table:

Source of Degrees of Sum of Mean
variation freedom squares square F

Type 3 3.70 1.23 0.54

Error 8 18.39 2.30

Total 11 22.08

Because F = 0.54 is less than 1, we cannot reject H0: α1 = α2 = α3 = α4 = 0,
even at the 50% level. Because of this evidence, it is reasonable to treat all 12 of
the differences as coming from the same population. We calculate y = 2.078
and the standard deviation = 1.417. Since, with the degrees of freedom 12−1 = 11,
t0.025 = 2.201 and the 95% confidence interval for the mean of the
differences is

2.078 ± 2.201
1.417√

12
or (1.18, 2.98)

The tearing strength based on the 5-ply reading is about 1 to 3 units lower than that
of the individual readings. It is up to the scientist to decide if this discrepancy is of
importance in the engineering application. j

Alternative Calculation of Sums of Squares
We conclude our discussion of the completely randomized design by presenting
alternative formulas that help simplify the calculations of the sums of squares when
statistical software is unavailable or when students are restricted to simple handheld
calculators. The reader is asked to very the formulas in Exercise 12.15.
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First calculate SST and SS(Tr) using the formulas

SST =
k∑

i=1

ni∑
j=1

y2
i j − C

SS(Tr) =
k∑

i=1

Ti
2

ni
− C

where C, called the correction term for the mean, is given by

C = T 2
•

N
with

N =
k∑

i=1

ni, T• =
k∑

i=1

Ti, and Ti =
ni∑

j=1

yi j

Alternative formulas —
Sums of squares

That is, in these formulas, Ti is the total of the ni observations in the ith sample,
whereas T• is the grand total of all N observations. The error sum of squares, SSE,
is then obtained by subtraction; according to Theorem 12.1, we can write

Error sum of squares SSE = SST − SS(Tr)

EXAMPLE 5 Referring to the weights of disks in Example 1, use the alternative
formulas to verify the analysis of variance table.

Solution The totals for the k = 4 samples all of sample size ni = 12, are 3.22, 2.72, 2.76, and
3.00, respectively. The grand total is T• = 11.70. The alternative calculations become

N = 12 + 12 + 12 + 12 = 48

C = (11.70)2

48
= 2.8519

SST = (0.25)2 + (0.27)2 + · · · + (0.21)2 − 2.8519 = 0.0803

SS(Tr) = (3.22)2

12
+ (2.72)2

12
+ (2.76)2

12
+ (3.00)2

12
− 2.8519 = 0.0135

SSE = 0.0809 − 0.0130 = 0.0679

The resulting analysis of variance table

Source of Degrees of Sum of Mean
variation freedom squares square F

Laboratory 3 0.0135 0.0045 2.96

Error 44 0.0668 0.0015

Total 47 0.0803

verifies, up to the number of decimal places retained here, the table in Example 1. j
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Exercises
12.1 An experiment is performed to compare the rotational

speed of two conveyers, Conveyer X and Conveyer Y .
30 belts are loaded with an optimal weight, each is put
on one of the conveyers, and the speed of the conveyer
is measured. Criticize the following aspects of the
experiment.

(a) To accelerate the testing procedure, high-
performance motors are used and movement is
measured in 30-second intervals.

(b) The entire experiment is performed with loads of
elongated objects.

(c) The speeds of all observations of Conveyer X are
taken first.

(d) 10 of the belts are put on Conveyer X and 20 on
Conveyer Y .

12.2 A certain bon vivant, wishing to ascertain the cause
of his frequent hangovers, conducted the following
experiment. On the first night, he drank nothing but
whiskey and water; on the second night, he drank
vodka and water; on the third night, he drank gin and
water; and on the fourth night, he drank rum and water.
On each of the following mornings he had a hangover,
and he concluded that it was the common factor, the
water, that made him ill.

(a) This conclusion is obviously unwarranted, but can
you state what principles of sound experimental
design are violated?

(b) Give a less obvious example of an experiment
having the same shortcoming.

(c) Suppose that our friend has modified his experi-
ment so that each of the 4 alcoholic beverages was
used both with and without water, so that the ex-
periment lasted 8 nights. Could the results of this
enlarged experiment serve to support or refute the
hypothesis that water was the cause of the hang-
overs? Explain.

12.3 Three alternatives are suggested for electroplating to
reduce dissolved metal cations so that they form a
coherent metal coating on an electrode. In an exper-
iment conducted to compare the manufacturing yields
using the three alternatives, experimenters record the
number of electrodes coated before the metal cations
are exhausted. Suppose the data are

Alternative X Alternative Y Alternative Z

321 327 319
325 324 331
318 326 328
330 329 322

Without using the alternative formulas, calculate

k∑
i=1

ni∑
j=1

( yi j − y )2
k∑

i=1

ni∑
j=1

( yi j − yi )2

and
k∑

i=1

ni ( yi − y )2

and verify the identity of Theorem 12.1.

12.4 Using the sum of squares obtained in Exercise 12.3,
test at the level of significance α = 0.01 whether the
differences among the means obtained for the 3 sam-
ples are significant.

12.5 The following are the numbers of mistakes made in
5 successive days for 4 technicians working for a pho-
tographic laboratory:

Technician Technician Technician Technician
I II III IV

5 17 9 9
12 12 11 13

9 15 6 7
8 14 14 10

11 17 10 11

Test at the level of significance α = 0.01 whether
the differences among the 4 sample means can be
attributed to chance.

12.6 With reference to the example on page 389, suppose
one additional observation y25 = 8 is available us-
ing formula B. Construct the analysis of variance table
and test the equality of the mean curing times using
α = 0.05.

12.7 Given the following observations collected according
to the one-way analysis of variance design,

Setting 1 18 17 15 18
Setting 2 2 4 5 8 6
Setting 3 16 10 7
Setting 4 14 18

(a) decompose each observation yi j as

yi j = y + ( yi − y ) + ( yi j − yi )

and obtain the sum of squares and degrees of free-
dom for each component;

(b) construct the analysis of variance table and test the
equality of settings using α = 0.01.
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12.8 The one-way analysis of variance is conveniently implemented using MINITAB. With
reference to the example on page 389, we first set the observations in columns:

DATA:

C1: 13 10 8 11 8
C2: 13 11 14 14
C3: 4 1 3 4 2 4

Dialog Box:
Stat > ANOVA > One-way. Pull down Response data are in separate · · ·
Enter C1 − C3 in Responses. Click OK.

One-Way Analysis of Variance

ANALYSIS  OF  VARIANCE
SOURCE
FACTOR
ERROR
TOTAL

DF
2

12
14

SS
270.00
32.00

302.00

MS
135.00
2.667

F-Value
50.62

P-Value
0.000

STDEV
2.121
1.414
1.265

95% CI
( 8.409, 11.591)
(11.221, 14.779)
( 1.547, 4.453 )

MEAN
10.000
13.000
3.000

N
5
4
6

Factor
C1
C2
C3

POOLED STDEV = 1.63299

S
1.63299

R-sq
89.40%

0

2

4

6

8

10

12

14

16

C1 C2 C3

D
at

a

Interval Plot of C1, C2, ... 95% CI for the Mean

Use the computer to perform the analysis of variance suggested in Exercise 12.5.

12.9 To find the best arrangement of equipment at the rear
of a fire truck, 3 different arrangements were tested by
simulating a fire condition and observing the reaction
time required to extinguish the fire. The reaction time
(in seconds) of 24 firefighters (randomly assigned to
the different arrangements) were as follows:

Arrangement 1: 40 35 30 32 34 29 36
Arrangement 2: 34 30 28 35 39 28 39 42 38 27
Arrangement 3: 28 35 39 26 31 30 28

Test at the level of significance α = 0.05 whether
we can reject the null hypothesis that the differences
among the arrangements have no effect.

12.10 Several different aluminum alloys are under consid-
eration for use in heavy-duty circuit-wiring applica-
tions. Among the desired properties is low electrical
resistance, and specimens of each wire are tested by
applying a fixed voltage to a given length of wire
and measuring the current passing through the wire.
Given the following results, would you conclude that

these alloys differ in resistance? (Use the 0.01 level of
significance.)

Alloy Current (amperes)

1 1.085 1.016 1.009 1.034
2 1.051 0.993 1.022
3 0.985 1.001 0.990 0.988 1.011
4 1.101 1.015

12.11 Two tests are made of the compressive strength of each
of 6 samples of poured concrete. The force required to
crumble each of 12 cylindrical specimens, measured
in kilograms, is as follows:

Sample

A B C D E F

Test 1 110 125 98 95 104 115

Test 2 105 130 107 91 96 121

Test at the 0.05 level of significance whether these
samples differ in compressive strength.
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12.12 Corrosion rates (percent) were measured for 4 differ-
ent metals that were immersed in a highly corrosive
solution:

Aluminum: 75 77 76 79 74 77 75
Stainless Steel: 74 76 75 78 74 77 75 77
Alloy I: 73 74 72 74 70 73 74 71
Alloy II: 71 74 74 73 74 73 71

(a) Perform an the analysis of variance and test for
differences due to metals using α = 0.05.

(b) Give the estimates of corrosion rates for each
metal.

(c) Find 95% confidence intervals for the differences
of mean corrosion rates.

12.13 Referring to the discussion on page 386, assume that
the standard deviations of the tin-coating weights
determined by any one of the 4 laboratories have
the common value σ = 0.012, and that it is de-
sired to be 95% confident of detecting a difference in
means between any 2 of the laboratories in excess of
0.01 pound per base box. Show that these assumptions
lead to the decision to send a sample of 12 disks to each
laboratory.

12.14 Show that if μi = μ + αi and μ is the mean of the μi,
it follows that

k∑
i=1

ni αi = 0

12.15 Verify the alternative formulas for computing SST and
SS(Tr) given on page 399.

12.16 With reference to Exercise 12.9, determine individual
95% confidence intervals for the differences of mean
reaction times.

12.17 Samples of peanut butter produced by 2 different man-
ufacturers are tested for aflatoxin content, with the
following results:

Aflatoxin Content (ppb)

Brand A Brand B

0.5 4.7
0.0 6.2
3.2 0.0
1.4 10.5
0.0 2.1
1.0 0.8
8.6 2.9

(a) Use analysis of variance to test whether the two
brands differ in aflatoxin content.

(b) Test the same hypothesis using a two sample t test.

(c) We have shown on page 212 that the t statistic with
ν degrees of freedom and the F statistic with 1 and
ν degrees of freedom are related by the formula

F (1, ν) = t2(ν)

Using this result, prove that the analysis of vari-
ance and two sample t test methods are equivalent
in this case.

12.3 Randomized-Block Designs
As we observed in Section 12.1, the estimate of chance variation (the experimental
error) can often be reduced—that is, freed of variability due to extraneous causes—
by dividing the observations in each classification into blocks. This is accomplished
when known sources of variability (that is, extraneous variables) are fixed in each
block but vary from block to block.

In this section we shall suppose that the experimenter has available measure-
ments pertaining to a treatments distributed over b blocks. First, we shall consider
the case where there is exactly one observation from each treatment in each block.
With reference to Figure 12.1 on page 387, this case would arise if each labora-
tory tested one disk from each strip. Letting yi j denote the observation pertaining
to the ith treatment and the jth block, yi• the mean of the b observations for the ith
treatment, y• j the mean of the a observations in the jth block, and y• • the grand
mean of all the ab observations, we shall use the following layout for this kind of
two-way classification:
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Blocks

B1 B2 · · · B j · · · Bb Means

Treatment 1 y11 y12 · · · y1 j · · · y1b y1•

Treatment 2 y21 y22 · · · y2 j · · · y2b y2•
...

Treatment i yi1 yi2 · · · yi j · · · yib yi•
...

Treatment a ya1 ya2 · · · ya j · · · yab ya•

Means y•1 y•2 · · · y• j · · · y•b y••

This kind of arrangement is also called a randomized-block design, provided the
treatments are allocated at random within each block. Note that when a dot is used
in place of a subscript, this means that the mean is obtained by summing over that
subscript.

The statistical analysis of a randomized block experiment tests on the decom-
position of the total sum of squares into three components.

Theorem 12.2

a∑
i=1

b∑
j=1

( yi j − y• • ) 2 =
a∑

i=1

b∑
j=1

( yi j − yi• − y• j + y• • )2

+ b
a∑

i=1

( yi• − y• • )2 + a
b∑

j=1

( y• j − y• • )2

Identity for analysis of
two-way classification

The left-hand side of this identity represents the total sum of squares, SST, and the
terms of the right-hand side are, respectively, the error sum of squares, SSE; the
treatment sum of squares, SS(Tr); and the block sum of squares, SS(Bl). To prove
this theorem, we would make use of the identity

yi j − y• • = ( yi j − yi• − y• j + y• • ) + ( yi• − y• • ) + ( y• j − y• • )

and follow essentially the same argument as in the proof of Theorem 12.1.
Engineers are considering three different air filters for a clean room. Because

production activities in the room vary from day to day, they will block according
to the nuisance variable day. They run all three filters for two hours each day and
measure the amount of particulate matter captured. Randomization is an important
aspect of this design. Each day, there must be a random choice of which filter to run
first, second, and third. This randomization ensures that any time of day differences
in the amount of particulate matter cannot systematically influence the experimental
results.

Suppose the results for four days are
Blocks

1 2 3 4

Treatment 1 13 8 9 6

Treatment 2 7 3 6 4

Treatment 3 13 7 12 8



404 Chapter 12 Analysis of Variance

each observation yi j will be decomposed as

yi j = y• • + ( yi• − y• • ) + ( y• j − y• • )

observation grand deviation deviation
mean due to due to

treatment block

+ ( yi j − yi• − y• j + y• • )

error

For instance, 13 = 8 + (9 − 8) + (11 − 8) + (13 − 9 − 11 + 8) = 8 + 1 + 3 + 1.
Repeating this decomposition for each observation, we obtain the arrays

observation mean treatment
yi j y• • yi• − y• •⎡

⎣13 8 9 6
7 3 6 4

13 7 12 8

⎤
⎦ =

⎡
⎣8 8 8 8

8 8 8 8
8 8 8 8

⎤
⎦ +

⎡
⎣ 1 1 1 1

−3 −3 −3 −3
2 2 2 2

⎤
⎦

block error
y• j − y• • yi j − yi• − y• j + y• •

+
⎡
⎣3 −2 1 −2

3 −2 1 −2
3 −2 1 −2

⎤
⎦ +

⎡
⎣ 1 1 −1 −1

−1 0 0 1
0 −1 1 0

⎤
⎦

Taking the sum of squares for each array,

treatment sum of squares = b
a∑

i=1

( yi• − y• • )2

= 4(1)2 + 4(−3)2 + 4(2)2 = 56

block sum of squares = a
b∑

j=1

( y• j − y• • )2

= 3(3)2 + 3(−2)2 + 3(1)2 + 3(−2)2 = 54

error sum of squares =
a∑

i=1

b∑
j=1

( yi j − yi• − y• j + y• • )2

= 12 + 12 + · · · + 12 + 02 = 8

we obtain the entries in the body of the analysis of variance table. Their sum, 56 +
54 + 8 = 118, the total sum of squares, is also equal to the sum of squares of the
observations, 886, minus the sum of squares 12 × 82 = 768 for the grand mean
array.

The mean array, which has a single entry y• •, has 1 degree of freedom. The
3 distinct values in the treatment array always sum to zero, so it has 3 − 1 = 2
degrees of freedom. In general, it has a − 1 degrees of freedom when there are a
treatments. Similarly, the block array has 4 − 1 = 3 degrees of freedom in this
example and b − 1 when there are b blocks.
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The number of degrees of freedom associated with the error array is (a − 1) ·
(b − 1) = (2)(3) = 6. Because every row sum is zero, the last column is always
determined from the first b − 1. Similarly, the last row is always determined by the
first a − 1. Thus there are ( a − 1 ) ( b − 1 ) unconstrained entries. In summary, the
degrees of freedom can be decomposed as

ab − 1 = ( a − 1 ) + ( b − 1 ) + ( a − 1 ) ( b − 1 )
total treatment blocks error

An analysis of variance table presents the breakdowns, or decompositions, for
the sums of squares and degrees of freedom.

Source Degrees of Sum of
variation freedom squares

Treatments 2 56
Blocks 3 54
Error 6 8

Total 11 118

We summarize the expressions for the sums of squares and their degrees of
freedom, for the general case.

Sums of squares for
two-way analysis of

variance

Treatment sum of squares: SS(T R) = b
a∑

i=1

( yi• − y•• )2

Block sum of squares: SS(Bl) = a
b∑

j=1

( y• j − y•• )2

Error sum of squares: SSE =
a∑

i=1

b∑
j=1

( yi j − yi• − y• j + y•• )2

Total sum of squares: SST =
a∑

i=1

b∑
j=1

( yi j − y•• )2

Degrees of freedom for
two-way ANOVA

ab − 1 = (a − 1) + (b − 1) + (a − 1)(b − 1)
total treatment blocks error

The underlying model which we shall assume for the analysis of this kind of
experiment with one observation per cell (that is, there is one observation corre-
sponding to each treatment within each block) is given by

Model equation for
randomized-block design

Yi j = μ + αi + β j + εi j for i = 1, 2, . . . , a; j = 1, 2, . . . , b

Here μ is the grand mean, αi is the effect of the ith treatment, β j is the effect
of the jth block, and the εi j are independent, normally distributed random vari-
ables having zero means and the common variance σ 2. Analogous to the model for
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the one-way classification, we restrict the parameters by imposing the conditions

that
a∑

i=1
αi = 0 and

b∑
j=1

β j = 0. (See Exercise 12.29.)

In the analysis of a two-way classification where each treatment is represented
once in each block, the major objective is to test the significance of the differences
among the yi•. That is, the null hypothesis becomes

α1 = α2 = · · · = αa = 0

In addition, it may also be desirable to test whether the blocking has been effective.
That is, we test the null hypothesis

β1 = β2 = · · · = βb = 0

can be rejected. In either case, the alternative hypothesis is that at least one of the
effects is different from zero.

As in the one-way analysis of variance, we shall base these significance tests on
comparisons of estimates of σ 2—one based on the variation among treatments, one
based on the variation among blocks, and one measuring the experimental error.

Using the sums of squares, we can reject the null hypothesis that the αi are all
equal to zero at the level of significance α if

F ratio for treatments FTr = MS(Tr)
MSE

= SS(Tr) / ( a − 1 )
SSE / ( a − 1 ) ( b − 1 )

exceeds Fα with a−1 and ( a−1 ) ( b−1 ) degrees of freedom. The null hypothesis
that the β j are all equal to zero can be rejected at the level of significance α if

F ratio for blocks FBl = MS(Bl)
MSE

= SS(Bl) / ( b − 1 )
SSE / ( a − 1 ) ( b − 1 )

exceeds Fα with b − 1 and ( a − 1 ) ( b − 1 ) degrees of freedom. Note that the mean
squares, MS(Tr), MS(Bl), and MSE, are again defined as the corresponding sums of
squares divided by their degrees of freedom.

The results obtained in this analysis are summarized in the following analysis
of variance table:

Source of Degrees of Sum of
variation freedom squares Mean square F

Treatments a − 1 SS(Tr) MS(Tr) = SS(Tr)
( a − 1 )

FTr = MS(Tr)
MSE

Blocks b − 1 SS(Bl) MS(Bl) = SS(Bl)
( b − 1 )

FBl = MS(Bl)
MSE

Error ( a − 1 ) ( b − 1 ) SSE MSE = SSE
( a − 1 ) ( b − 1 )

Total ab − 1 SST
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EXAMPLE 6 Constructing the randomized-block analysis of variance table
Construct the analysis of variance from the decomposition of the observations given
on page 404.

Solution Using the sums of squares and their associated degrees of freedom, we have

Source of Degrees of Sum of Mean
variation freedom squares square F

Treatments 2 56.0 28.000 21.0
Blocks 3 54.0 18.000 13.50
Error 6 8.0 1.333

Total 11 118.0

The value of F0.05 with 2 and 6 degrees of freedom is 5.14, so we reject the null
hypothesis of equal mean particulate material removal. Blocking was important be-
cause we also reject the null hypothesis of equal block means. j

In practice, computer calculations are preferrable.

EXAMPLE 7 Comparing four detergents using an F test
An experiment was designed to study the performance of 4 different detergents for
cleaning fuel injectors. The following “cleanness” readings were obtained with spe-
cially designed equipment for 12 tanks of gas distributed over 3 different models of
engines:

Engine 1 Engine 2 Engine 3 Totals

Detergent A

Detergent B

Detergent C

Detergent D

45 43 51

47 46 52

48 50 55

42 37 49

139

145

153

128

Totals 182 176 207 565

Looking at the detergents as treatments and the engines as blocks, obtain the appro-
priate analysis of variance table and test at the 0.01 level of significance whether
there are differences in the detergents or in the engines.

Solution 1. Null hypotheses: α1 = α2 = α3 = α4 = 0; β1 = β2 = β3 = 0
Alternative hypotheses: The α’s are not all equal to zero; the β’s are not all
equal to zero.

2. Level of significance: α = 0.01

3. Criteria: For treatments, reject the null hypothesis if F > 9.78, the value of
F0.01 with a − 1 = 4 − 1 = 3, and (a − 1)(b − 1) = (4 − 1)(3 − 1) = 6
degrees of freedom; for blocks, reject the null hypothesis if F > 10.92, the
value of F0.01 for b − 1 = 3 − 1 = 2, and (a − 1)(b − 1) = (4 − 1)(3 − 1) = 6
degrees of freedom.
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4. Calculations: A statistical software program produces the analysis of variance
table

Source of Degrees of Sum of Mean
variation freedom squares square F P

Detergents 3 110.917 36.972 11.78 0.006

Engines 2 135.167 67.583 21.53 0.002

Error 6 18.833 3.139

Total 11 264.917

5. Decisions: Since FTr = 11.6 exceeds 9.78, the value of F0.01 with 3 and
6 degrees of freedom, we conclude that there are differences in the effectiveness
of the 4 detergents. Also, since FBl = 21.2 exceeds 10.92, the value of F0.01
with 2 and 6 degrees of freedom, we conclude that the differences among the
results obtained for the 3 engines are significant. There is an effect due to the
engines, so blocking was important. To make the effect of this blocking even
more evident, the reader will be asked to verify in Exercise 12.25 that the test
for differences among the detergents would not yield significant results if we
looked at the data as a one-way classification.

[ Using R : Read data file with Dat = read.table(“C12Ex7.TXT”, header=T,
colClasses=c(“factor”, “factor”, “numeric”)). Then use
anova(lm(Cleanness˜ Detergent + Engine, data=Dat)) ] j

The effect of the ith detergent can be estimated by means of the formula α̂i =
yi• − y• •, which may be obtained by the method of least squares. The resulting esti-
mates are

α̂1 = 46.3 − 47.1 = −0.8 α̂2 = 48.3 − 47.1 = 1.2

α̂3 = 51.0 − 47.1 = 3.9 α̂4 = 42.7 − 47.1 = −4.4

Similar calculations lead to β̂1 = −1.6, β̂2 = −3.1, and β̂3 = 4.7 for the estimated
effects of the engines.

It should be observed that a two-way classification automatically allows for rep-
etitions of the experimental conditions; for example, in the preceding experiment
each detergent was tested 3 times. Further repetitions may be handled in several
ways, and care must be taken that the model used appropriately describes the situa-
tion. One way to provide further repetition in a two-way classification is to include
additional blocks—for example, to test each detergent using several additional en-
gines, randomizing the order of testing for each engine. Note that the model remains
essentially the same as before, the only change being an increase in b and a corre-
sponding increase in the degrees of freedom for blocks and for error. The latter is
important because an increase in the degrees of freedom for error makes the test of
the null hypothesis αi = 0 for all i more sensitive to small differences among the
treatment means. In fact, the real purpose of this kind of repetition is to increase the
degrees of freedom for error, thereby increasing the sensitivity of the F tests (see
Exercise 12.28).

A second method is to repeat the entire experiment, using a new pattern of ran-
domization to obtain a ·b additional observations. This is possible only if the blocks
are strips across the rolling direction of a sheet of tin plate, and, given a new sheet, it
is possible to identify which is strip 1, which is strip 2, and so forth. In the example of
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this section, the kind of repetition (usually called replication) would require that the
conditions of the engines be exactly duplicated; see also Exercises 12.26 and 12.27.

A third method of repetition is to include n observations for each treatment in
each block. When an experiment is designed in this way, the n observations in each
“cell” are regarded as duplicates, and it is to be expected that their variability will
be somewhat less than experimental error. To illustrate this point, suppose that the
tin-coating weights of 3 disks from adjacent positions in a strip are measured in se-
quence by one of the laboratories, using the same chemical solutions. The variability
of these measurements will probably be considerably less than that of 3 disks from
the same strip measured in that laboratory at different times, using different chemical
solutions, and perhaps different technicians. The analysis of variance appropriate for
this kind of repetition reduces essentially to a two-way analysis of variance applied
to the means of the n duplicates in the a · b cells; thus, there would be no gain in de-
grees of freedom for error, and, consequently, no gain in sensitivity of the F tests. It
can be expected, however, that there will be some reduction in the error mean square,
since it now measures the residual variance of the means of several observations.

Alternative Calculation of Sums of Squares
We conclude our discussion of the randomized block design by presenting alterna-
tive formulas that help simplify the calculations of the sums of squares when sta-
tistical software is unavailable or when students are restricted to simple handheld
calculators. The reader is asked to very the formulas in Exercise 12.30.

Convenient formulas are available to calculate SST, SS(Tr), and SS(Bl) using
handheld calculators.

Sums of squares for
two-way analysis of

variance

SST =
a∑

i=1

b∑
j=1

y2
i j − C

SS(Tr) =

a∑
i=1

T 2
i•

b
− C

SS(Bl) =

b∑
j=1

T 2
• j

a
− C

where C, the correction term, is given by

C = T 2
• •

ab

In these formulas, Ti• is the sum of the b observations for the ith treatment, T• j is
the sum of the a observations in the jth block, and T• • is the grand total of all the
observations. Note that the divisors for SS(Tr) and SS(Bl) are the number of obser-
vations in the respective totals, Ti• and T• j. The error sum of squares is then obtained
by subtraction; according to Theorem 12.2 we can write

Error sum of squares SSE = SST − SS(Tr) − SS(Bl)
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In Exercise 12.30, the reader will be asked to verify that all these computing formulas
are, indeed, equivalent to the corresponding terms of the identity of Theorem 12.2.

EXAMPLE 8 Referring to the detergent data in Example 7, use the alternative
formulas to verify the analysis of variance table

Solution Substituting a = 4, b = 3, T1• = 139, T2• = 145, T3• = 153, T4• = 128, T•1 = 182,
T•2 = 176, T•3 = 207, T• • = 565, and∑ ∑

y2
i j = 26,867

into the formulas for the sums of squares, we get

C = (565)2

12
= 26,602

SST = 452 + 432 + · · · + 492 − 26,602 = 26,867 − 26,602 = 265

SS(Tr) = 1392 + 1452 + 1532 + 1282

3
− 26,602 = 111

SS(Bl) = 1822 + 1762 + 2072

4
− 26,602 = 135

SSE = 265 − 111 − 135 = 19

Dividing the sums of squares by their respective degrees of freedom we obtain the
appropriate mean squares, and then an analysis variance table that agrees up to the
number of decimal places retained here, with the table in Example 7. j

12.4 Multiple Comparisons
The F tests used so far in this chapter showed whether differences among several
means are significant, but they did not tells us whether a given mean (or groups
of means) differs significantly from another given mean (or group of means). In
actual practice, the latter is the kind of information an investigator really wants. For
instance, having determined in Example 1 that the means of the tin-coating weights
obtained by the 4 laboratories differ significantly, it may be important to find out
which laboratory (or laboratories) differs from which others.

If an experimenter is confronted with k means, it may seem reasonable at first
to test for significant differences between all possible pairs, that is, to perform(

k
2

)
= k(k − 1)

2

two sample t tests as described on page 274. Aside from the fact that this would
require a large number of tests even if k is relatively small, these tests would not
be independent, and it would be virtually impossible to assign an overall level of
significance to this procedure.

Several multiple comparisons procedures have been proposed to overcome
these difficulties. The goal of a multiple confidence interval method is to guaran-
tee, with a specified probability, that all of the intervals will cover their respective
differences in means. One method of multiple comparisons, called the Bonferroni
method, takes a conservative approach by guaranteeing that all of the confidence
intervals will cover their true differences of means with at least probability 1 − α.
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To do so, it simply modifies the level from α to 2α/k(k − 1) for each of k(k − 1)/2
differences. This requires entering the t table with α/k(k − 1) rather than α/2. The
confidence level α then pertains to all of the k(k−1)/2 confidence intervals covering
their respective differences of population means. (See Exercise 12.36.) The confi-
dence intervals help to judge if statistically significant differences are large enough
to be of practical importance.

The Bonferroni approach uses the MSE as the estimate s2 of the common
variance.

Bonferroni simultaenous
confidence intervals

With probability at least 1 − α, simultaneously, each confidence interval

yi − y� ± tα/k(k−1)

√
MSE

(
1
ni

+ 1
n�

)

will cover μi − μ� for all i < �,

EXAMPLE 9 Calculating Bonferroni simultaneous confidence intervals for mean
resin strength
With reference to the resin strength data in Example 3, obtain the 94% Bonferroni
simultaneous confidence intervals for the three differences of means.

Solution The confidence intervals use the MSE = 0.0234 as the estimate s2. Since α = 0.06
and k = 3, the Bonferroni procedure uses the α/k(k − 1) = 0.01 point of the t
distribution with 12 degrees of freedom so t0.01 = 2.681. The three confidence
intervals become

MD − ED : 1.334 − 0.964 ± 2.681

√
0.0234

(
1
5

+ 1
5

)
or ( 0.111, 0.629 )

MD − PF : 1.334 − 0.776 ± 2.681

√
0.0234

(
1
5

+ 1
5

)
or ( 0.299, 0.817 )

ED − PF : 0.964 − 0.776 ± 2.681

√
0.0234

(
1
5

+ 1
5

)
or ( −0.071, 0.447 )

Resin MD is higher internal bonding strength than the other resins. It is be-
tween 0.111 to 0.629 units stronger than resin ED and 0.299 to 0.817 stronger than
resin PF. Notice that these are longer than the individual 95% intervals calculated in
Example 3.

Even though 94% confidence is less than 95% confidence, all 3 of these
Bonferroni intervals hold simultaneously. j

The Bonferroni approach is conservative in the sense that it maintains a proba-
bility of at least 1 − α that all pairwise mean differences μi − μ� with i < � are
covered by their confidence intervals. The method is, however, very general and the
sample sizes can be very different.

A better simultaneous method is available for the equal sample size case when
the sample means are independent. Called the Tukey honest significant difference
method (Tukey HSD), it maintains probability exactly 1 − α that all pairwise mean
differences μi − μ� for i < � will be covered by their confidence intervals. The
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Tukey HSD method is based on the Standarized range distribution for the random
variable

Q = maxi Y i − mini Y i√
MSE / n

All of the random variables have the same normal distribution and are independent.
The common sample size is n. Here qα cuts off probability α to the right so α =
P ( Q ≥ qα ).

Notice that qα depends on the number of means being compared, k, and the
degrees of freedom for the mean square error. The value for qα is available in many
statistical software programs including SAS and R. Tukey defines the

honest significant difference = qα

√
MSE

n
= qα√

2

√
2 MSE

n

where the right hand side is the usual notation. We see that the Tukey HSD approach
replaces the two sample value tα / 2 with a larger value qα/

√
2.

Tukey HSD simultaneous
confidence intervals

Let the sample size for each mean equal n.
With probability 1 − α, simultaneously, each confidence interval

yi − y� ± qα√
2

√
2 MSE

n

will cover μi − μ� for all i < �,

EXAMPLE 10 Calculating the Tukey HSD confidence intervals for differences in
mean resin strength
With reference to the internal bonding strengths in Example 3, obtain the Tukey
HSD 94% simultaneous confidence intervals for the differences in mean strength.
Here q0.04 = 3.6256.

Solution The Tukey HSD method uses MSE = 0.0234 with 12 degrees of freedom and the
means from Example 3. The three confidence intervals become

MD − ED: 1.334 − 0.964 ± 3.6256√
2

√
2 × 0.0234

5
or (0.122, 0.618)

MD − PF: 1.334 − 0.776 ± 3.6256√
2

√
2 × 0.0234

5
or (0.310, 0.806)

ED − PF: 0.964 − 0.776 ± 3.6256√
2

√
2 × 0.0234

5
or (−0.060, 0.436)

Each of these intervals is contained in the corresponding 94% Bonferroni inter-
val in Example 9.

[ Using R : qtukey(0.94,3,12) produces q0.06
With Dat = read.table(“C12Ex9.TXT”, header=T),
use summary(fm1<−aov(lm(Strength˜ Resin, data=Dat)))
TukeyHSD(fm1, “Resin”, conf.level=0.94) ] j
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In the equal sample size case, the Tukey HSD intervals are always shorter than
the Bonferroni intervals. The probability is exactly 1−α that all of the intervals cover
their respective difference in means. Although the sample sizes must be equal for
the exact probability to hold, see Exercise 12.34 for an approximation when sample
sizes are not quite equal.

Exercises
12.18 A randomized-block experiment is run with three

treatments and four blocks. The three treatment means
are y1• = 6, y2• = 7, and y3• = 11.

The total (corrected) sum of squares is

220 =
3∑

i=1

b∑
j=1

( yi j − y• • )2

The analysis of variance (ANOVA) table takes the
form

Source of Degrees of Sum of Mean
variation freedom squares square F

Treatments
Blocks 132
Error

Total 11 220

(a) Fill in all of the missing entries in the analysis
table.

(b) Conduct the F test for treatments and the F test
for blocks. Use α = 0.05.

12.20 The analysis of variance for a randomized-block design is conveniently implemented
using MINITAB.

With reference to Example 7, first open C12Ex7.MTW in the MINITAB data bank.

Dialog Box:
Stat > ANOVA > Balanced ANOVA.
Enter Cleanness in Responses. Enter
Engine and Detergent in Model.
Click OK.

ANOVA: Cleanness versus Engine, Detergent

Factor
Engine
Detergent

Type
fixed
fixed

Levels
3
4

Values
1, 2, 3
A, B, C, D

Analysis of variance for Cleanness

Source
Engine
Detergent
Error
Total

DF
2
3
6

11

SS
135.167
110.917
18.833

264.917

MS
67.583
36.972
3.139

F
21.53
11.78

P
0.002
0.006

Use computer software to re-work Example 6.

12.19 Concerns about the increasing friction between some
machine parts prompted an investigation of four dif-
ferent types of ball bearings. Five different machines
were available and each type of ball bearing was tried
in each machine. Given the observations on tempera-
ture, coded by subtracting the smallest value,

Machines
1 2 3 4 5

Ball bearing 1 10 8 7 4 6
Ball bearing 2 10 7 12 5 11
Ball bearing 3 8 9 11 12 10
Ball bearing 4 12 8 6 11 13

(a) decompose each observation yi j as

yi j = y• • + (yi• − y• •) + (y• j − y• •)

+ (yi j − yi• − y• j + y• •)

(b) obtain the sum of squares and the degrees of free-
dom for each component;

(c) construct the analysis of variance table and test for
differences among the bearings using α = 0.01.
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12.21 Looking at the days (rows) as blocks, rework Exer-
cise 12.5 by the method of Section 12.3.

12.22 Four different, though supposedly equivalent, forms of
a standardized reading achievement test were given to
each of 5 students, and the following are the scores
which they obtained:

Student 1 Student 2 Student 3 Student 4 Student 5

Form A

Form B

Form C

Form D

75 73 59 69 84

83 72 56 70 92

86 61 53 72 88

73 67 62 79 95

Treating students as blocks, perform an analysis of
variance to test at the level of significance α =
0.01 whether it is reasonable to treat the 4 forms as
equivalent.

12.23 A laboratory technician measures the breaking
strength of each of 5 kinds of linen thread by means
of 4 different instruments and obtains the following
results (in ounces):

Measuring Instrument
I1 I2 I3 I4

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

20.6 20.7 20.0 21.4

24.7 26.5 27.1 24.3

25.2 23.4 21.6 23.9

24.5 21.5 23.6 25.2

19.3 21.5 22.2 20.6

Looking at the threads as treatments and the instru-
ments as blocks, perform an analysis of variance at the
level of significance α = 0.01.

12.24 An industrial engineer tests 4 different shop-floor
layouts by having each of 6 work crews construct a
subassembly and measuring the construction times
(minutes) as follows:

Layout 1 Layout 2 Layout 3 Layout 4

Crew A

Crew B

Crew C

Crew D

Crew E

Crew F

48.2 53.1 51.2 58.6

49.5 52.9 50.0 60.1

50.7 56.8 49.9 62.4

48.6 50.6 47.5 57.5

47.1 51.8 49.1 55.3

52.4 57.2 53.5 61.7

Test at the 0.01 level of significance whether the 4 floor
layouts produce different assembly times and whether
some of the work crews are consistently faster in
constructing this subassembly than the others.

12.25 To emphasize the importance of blocking, reanalyze
the cleanness data Example 7 as a one-way clas-
sification with the 4 detergents being the different
treatments.

12.26 If, in a two-way classification, the entire experiment is
repeated r times, the model becomes

Yi jk = μ + αi + β j + εi jk

for i = 1, 2, . . . , a, j = 1, 2, . . . , b, and k = 1,

2, . . . , r, where the sum of the α’s the sum and the β’s
are equal to zero. The εi jk are independent normally
distributed random variables with zero means and the
common variance σ 2.

(a) Write down (but do not prove) an identity analo-
gous to the one of Theorem 12.2, subdividing the
total sum of squares into components attributable
to treatments, blocks, and error.

(b) Give the corresponding degrees of freedom.

12.27 The following are the number of defectives produced
by the 4 workers operating, in turn, 3 different ma-
chines. In each case, the first figure represents the num-
ber of defectives produced on a Friday and the second
figure represents the number of defectives produced on
the following Monday:

Worker

B1 B2 B3 B4

Machine A1

Machine A2

Machine A3

37, 43 38, 44 38, 40 32, 36

31, 36 40, 44 43, 41 31, 38

36, 40 33, 37 41, 39 38, 45

Use the theory developed in Exercise 12.26 to analyze
the combined figures for the 2 days as a two-way clas-
sification with replication. Use the level of significance
α = 0.05.

12.28 As was pointed out on page 308, two ways of increas-
ing the size of a two-way classification experiment are
(a) to double the number of blocks, and (b) to replicate
the entire experiment. Discuss and compare the gain
in degrees of freedom for the error sum of squares by
the two methods.

12.29 Show that if μi j = μ + αi + β j, the mean of the μi j
(summed on j) is equal to μ+αi, and the mean of μi j
(summed on i and j) is equal to μ, it follows that

a∑
i=1

αi =
b∑

j=1

β j = 0

12.30 Verify that the computing formulas for SST, SS( Tr ),
SS( Bl ), and SSE, given on page 409, are equiva-
lent to the corresponding terms of the identity of
Theorem 12.2.
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12.31 Using q0.01 = 5.499 for the Tukey HSD method, ex-
amine differences among the ball bearings in Exercise
12.19.

12.32 Referring to Example 1, use q0.05 = 3.776 for the
Tukey HSD method to examine differences in mean
coating weights.

12.33 Referring to Exercise 12.3, use Bonferroni simultane-
ous confidence intervals with α = 0.06 to compare the
mean number of electrodes coated by the experiment
under the 3 different alternatives.

12.34 An approximation to Tukey HSD confidence in-
tervals for mildly unequal sample sizes When the
there are only small differences in the sample sizes,
an approximation is available. The MSE and its de-
grees of freedom still come from the ANOVA table but√

2 MSE / n is replaced by√
MSE

(
1
ni

+ 1
n�

)

Referring to the example concerning the drying time
of glue on page 389, use q0.05 = 3.773 with this

approximate Tukey HSD approach to examine the
three differences in means.

12.35 (a) Using q0.10 = 3.921 for the Tukey HSD method,
compare the strength of the 5 linen threads in Ex-
ercise 12.23.

(b) Use the Bonferroni confidence interval approach
on page 411, with α = 0.10, to compare the mean
linen thread strengths in Exercise 12.20.

12.36 The Bonferroni inequality states that

P ( ∩i Ci ) ≥ 1 −
∑

i

P ( Ci )

(a) Show that this holds for 3 events.

(b) Let Ci be the event that the ith confidence inter-
val will cover the true value of the parameter for
i = 1, . . . , m. If P(Ci) ≤ α/m, so the probabil-
ity of not covering the ith parameter is at most
α/m, show that the probability that all of the con-
fidence intervals cover their respective parameters
is at least 1 − α.

12.5 Analysis of Covariance
The purpose of the method of Section 12.3 was to free the experimental error from
variability due to an identifiable and controllable extraneous causes. In this section,
we shall introduce a method called the analysis of covariance. It applies when such
extraneous, or concomitant, variables cannot be held fixed but can be measured.
This would be the case, for example, if we wanted to compare the effectiveness of
several industrial training programs and the results depended on the trainees’ IQs;
if we wanted to compare the durability of several kinds of leather soles and the
results depended on the weight of the persons wearing the shoes; or if we wanted
to compare the merits of several cleaning agents and the results depended on the
original condition of the surfaces cleaned.

The analysis of covariance for comparing treatments, when a single covariate x
is present, blends the linear regression method of Section 11.1 with the analysis of
variance of Section 12.2. The underlying model has terms for treatment effects and
a regression term.

The underlying model is given by

Model equation for
analysis of covariance

Yi j = μ + αi + βxi j + εi j

for i = 1, 2, . . . , k; j = 1, 2, . . . , n. As in the model on page 393, μ is the grand
mean, treatment effects satisfy

∑k
i=1 αi = 0, and the εi j are independent, normally

distributed variables with zero means and the common variance σ 2. As in the model
on page 336, β is the slope of the linear regression equation.

Under the ith treatment, the expected value for an observation having covariate
value x, is

E(Y | given ith treatment and x ) = μ + αi + β x for i = 1 , 2 ... , k
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As a function of x, the expected value for each treatment is a straight line. There
is only one slope parameter, common to all treatments, so all of lines are parallel.
Figure 12.3 depicts the three lines of expected values for k = 3 treatments.

Figure 12.3
Parallel lines of expected
values for each treatment x
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A manufacturer of activity tracking wristbands is developing an App to motivate
users to exercise. Two versions are currently operational. Eight subjects are available
and four are randomly chosen to use App 1 while the other four use App 2. The
response Y is an index that combines the subjects walking, jogging, and running
during a one-week trial period. The covariate x is the average index for the previous
four weeks when no App was available. Suppose the data are

App 1
x y
1 7
2 8
2 10
3 11

App 2
x y
2 2
3 3
5 6
6 9

We tentatively assume the analysis of covariance model above with k = 2 and
n = 4.

Correlations between the observed treatment means and the covariate compli-
cate the statistical analysis. We cannot decompose the observations as we did for the
one-way analysis of variance. Our alternative approach is to fit the full model and
then fit the model without the αi treatment terms. Let

SSEtr, x = sum of squares error for the full model.

SSEx = sum of squares error for the reduced model having μ and the β

term.

SSEtr. = sum of squares error for the other reduced model having μ and
the αi terms.

Section 11.1 describes the calculation of the sum of squares error SSEx for the
reduced model with slope and Section 12.2 describes the calculation of SSEtr. for
the one-way analysis of variance. For the full model, with both the treatment effects
and a common slope term, we obtain SSEtr., x by adjusting the sum of squares error
SSEtr. from the one-way analysis of variance.
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Sums of squares error for
full model

SSEtr., x = SSEtr.

−
( ∑k

i=1
∑n

j=1 ( xi j − x )( yi j − y ) − ∑k
i=1 n ( xi − x )( yi − y )

)
∑k

i=1
∑n

j=1 ( xi j − xi )2

where x and y are the grand mean for the covariate and response, respectively.

The appropriate sum of squares for treatments, adjusted for the covariate, is
the change in sum of squares error when the treatment terms are dropped. The sum
of squares for the regression variable x is the change in sum of squares error when
the x term is dropped.

Sums of squares for the
analysis of covariance

SS(Tr) = SSEx − SSEtr, x with k − 1 degrees of freedom

SS(x) = SSEtr. − SSEtr., x with 1 degree of freedom

SSEtr., x with nk − k − 1 degrees of freedom

Note that the sum of squares error for the full model has 1 fewer degrees of freedom
than in the one-way analysis of variance. This is due to the estimate of β.

Tests of hypotheses concerning treatment effects or the slope parameter involve
the mean square errors

MS(Tr) = SS(Tr)
k − 1

MS(x) = SS(x)
1

and the mean square error from the full model

MSE = SSEtr., x

n k − k − 1

F ratios for the
analysis of variance

Reject the null hypothesis α1 = α2 = · · · = αk = 0 if

F = MS(Tr)
MSE

exceeds the tabled value Fα having k − 1 and nk − k − 1 degrees of freedom
Reject the null hypothesis β = 0 if

F = MS(x)
MSE

exceeds the tabled value Fα having 1 and nk − k − 1 degrees of freedom

Concerning the fitness wristband data, we obtain the residuals from fitting the
line as in Example 1, Chapter 11. The sum of squares error is then

SSEx = (−0.25)2 + (−1.00)2 + (1.00)2 + (0.25)2 + (0.50)2

+ (−0.25)2 + (−0.75)2 + (0.50)2 = 70.75
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Obtaining the decomposition of observations as in Section 12.2, the sum of
squares error when only the treatment terms are included is

SSEtr. = (− 2 )2 + (−2 )2 + 12 + 22 + (−3 )2 + (−2 )2 + 12 + 42 = 40

The full model with both the treatments and common slope, we obtain SSEtr., x
by adjusting the the smaller model sum of squares error SSEtr. according to

SSEtr. −
(∑k

i=1
∑n

j=1 ( xi j − x )( yi j − y ) − ∑k
i=1 n ( xi − x )( yi − y )

)2

∑k
i=1

∑n
j=1 ( xi j − xi )2

In our fitness wristband example,

k∑
i=1

n∑
j=1

(xi j − x)(yi j − y) = −2 · 0 − 1 · 1 − 1 · 3 + 0 · 4 − 1(−5)

+ 0(−4) + 2(−1) + 3 · 4 = 5

k∑
i=1

n(xi − x)(yi − y) = 4(−1)2 + 4 · 1(−2) = −16

k∑
i=1

n∑
j=1

(xi j − xi)
2 = (−1)2 + 02 + 02 + 12 + (−2)2 + (−1)2 + 12 + 22 = 12

It follows that sum of squares error for the full model is

SSEtr., x = SSEtr. − ( 5 − (−16 ) )2

12
= 40 − 212

12
= 3.25

Then

SS(Tr) = SSEx −SSEtr.,x = 70.75−3.25 = 67.50 with 2−1 degrees of freedom

SS(x) = SSEtr. − SSEtr., x = 40 − 3.25 = 36.75 with 1 degree of freedom

The corresponding values of the F statistic are

F = 67.5 / 1
3.25/ 5

= 103.85 and F = 36.75 / 1
3.25 / 5

= 56.54

Both are highly significant with P-values 0.000 and 0.001, respectively. APP 1 better
motivates users to exercise by walking.

An analysis of covariance table summarizes this analysis.

EXAMPLE 11 Creating an analysis of covariance table with one covariate
Suppose that a research worker has three different cleaning agents, A1, A2, and A3,
and he wishes to select the most efficient agent for cleaning a metallic surface. The
cleanliness of a surface is measured by its reflectivity, expressed in arbitrary units
as the ratio of the reflectivity observed to that of a standard mirror surface. Analysis
of covariance must be used because the effect of a cleaning agent on reflectivity will
depend on the original cleanliness, namely, the original reflectivity of the surface.
The research worker obtained the following results:
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Original reflectivity, x 0.90 0.95 0.80 0.50
A1

Final reflectivity, y 1.05 0.95 1.15 0.85

Original reflectivity, x 0.50 0.40 0.15 0.25
A2

Final reflectivity, y 1.10 1.00 0.90 0.80

Original reflectivity, x 0.20 0.55 0.30 0.40
A3

Final reflectivity, y 0.75 1.05 0.95 0.90

Perform an analysis of covariance to determine (at the 0.05 level of significance)
whether there are differences in the reflectivity improvements by the 3 cleaning
agents.

Solution 1. Null hypothesis: α1 = α2 = α3 = 0
Alternative hypothesis: The α’s are not all equal to zero.

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if F > 4.46, the value of F0.05 for
k − 1 = 3 − 1 = 2 and nk − k − 1 = 4 × 3 − 3 − 1 = 8 degrees of freedom.

4. Calculations: The calculations associated with an analysis of covariance can
become quite cumbersome and we recommend the use of a statistical software
program. MINITAB (see Exercise 12.38) calculates the adjusted sum of
squares, mean squares and F statistics. The corresponding SAS output is shown
in Figure 12.4.

Adjusted
Sources of Degrees of Sum of Adjusted
Variation Freedom Squares Mean Square F-Value P-Value

x 1 0.10506 0.105057 20.10 0.002
Treatment 2 0.06776 0.033878 6.48 0.021
Error 8 0.04182 0.005227

Total 11 0.16229

The sums of squares, mean squares and F-statistics are those based on the
calculation of the sum of squares error under the full model and then under the
reduced model. The interplay of the treatments and covariate then results in the
sum of the three sums of squares in the table being greater than the sum of
squares total, SST = 0.16229.

5. Decision: Since the F- ratio for treatments

F = 0.033878
0.005227

= 6.48

we reject the null hypothesis of equal αi’s in favor of the alternative that not all
are equal. The P-value 0.021 further strengthens this conclusion.

The very small P-value of 0.002 confirms that it is very important to
include the original reflection as a covariate when comparing the treatments.
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Additional calculations give the P-value for each individual term in the model.

Coefficients
Term Coef SE Coef T-Value P-Value
Constant 0.5339 0.0960 5.56 0.001
x 0.782 0.174 4.48 0.002
Treatment
A1 −0.2571 0.0737 −3.49 0.008
A2 0.1620 0.0474 3.42 0.009

According to the constraint that the sum of treatment effects is zero, the estimated
coefficient for A3 is − (−0.2571 + 0.1620 ) = 0.0951. The resulting estimates of
the regression lines, all having the same slope, are

Regression Equation
Treatment
A1 y = 0.2768 + 0.782 x
A2 y = 0.6959 + 0.782 x
A3 y = 0.6291 + 0.782 x

Cleaning agent A1 does not clean as well as the other two cleaning agents.

[ Using R : Read data file with Dat = read.table(“C12Ex8.TXT”, header=T).
Then use res =lm(y ˜ x + treatment, data=Dat) followed by anova(res) for the
ANOVA table and summary(res) for the fit of the lines.

To obtain the correct F-statistic for x you could use
res2 =lm( y˜ treatment + x,data=Dat) and then anova(res2) ] j

Although the calculations may at first appear to be formidable, they are routine
with many computer statistical programs. The output from the SAS program for this
example is presented in Figure 12.4. Because only two decimal points are retained
in the preceding example, the computer calculations for the F statistic are more
accurate. However, the conclusions are the same. You must request Type III sum of
squares to get the correct SAS output. See Exercise 2.38 for MINITAB commands.

Figure 12.4
Selected SAS output for the
analysis of covariance using
the data from Example 11

R-Square
0.742327

Root MSE
0.072300

Sum of
Source

Source
Treatment
x

DF
Model
Error
Corrected Total

3
8
11

DF

2
1

0.06775668
0.10505682

0.03387834
0.10505682

0.12047348
0.04181818
0.16229167

Squares

Type III SS

Mean
Square

Mean
Square

0.04015783
0.00522727

F Value
7.68

F Value

6.48
20.10

Pr > F

Dependent Variable: y

0.0097

Pr > F

0.0212
0.0020

Analysis of covariance methods have not been widely used until recent years,
due mainly to the rather extensive calculations that are required. Of course, with the
widespread availability of computers and appropriate programs, this is no longer a
problem. There are several ways in which the analysis of covariance method pre-
sented here can be generalized. First, there can be more than one concomitant vari-
able; then the method can be applied to more complicated kinds of designs, say, to
a randomized-block design, where the regression coefficient could even assume a
different value for each block.
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Exercises
12.37 An experimenter wants to compare the time to failure y after rebuilding a robotic welder

by three different methods but adjusting for the covariate x = age of robotic welder.
Suppose the data, in thousands of hours, are

Method 1

x y

7 2
11 5
6 2

Method 2

x y

6 4
8 5
4 3

Method 3

x y

5 6
3 5
4 4

The resulting sum of squares error are SSEx = 15.917, SSEtr. = 10.000, and
SSEtr., x = 1.833. Assuming that the analysis of covariance model is reasonable, conduct
the F-test for treatment differences and the F-test for the covariate x. Take α = 0.05.

12.38 MINITAB calculation of balanced analysis of covariance We illustrate the MINTAB
commands for Example 11 concerning surface reflectivity.

Data:

C1(Tr) : 1 1 1 1 2 2 2 2 3 3 3 3
C2(x): 0.90 0.95 1.05 0.80 0.50 0.40 0.15 0.25 0.20 0.55 0.30 0.40
C3(y): 1.05 0.95 1.15 0.85 1.10 1.00 0.90 0.80 0.75 1.05 0.95 0.90

Dialog box:

Stat> ANOVA > General Linear Model > Fit General Linear Model.
Type y in Responses, Treatment in Factors and x in Covariates. Click OK.

The partial output includes

Analysis of variance

Source
  x
  Treatment
Error
Total

S
0.0722999

R-sq
74.23%

DF
1
2
8

11

Adj SS
0.10506
0.06776
0.04182
0.16229

Adj MS
0.105057
0.033878
0.005227

F-Value
20.10
6.48

P-Value
0.002
0.021

Use computer software to perform an analysis of covariance for the fitness wristband
example on page 416.

12.39 Four different railroad-track cross-section configura-
tions were tested to determine which is most resistant
to breakage under use conditions. Ten miles of each
kind of track were laid in each of 5 locations, and the
number of cracks and other fracture-related conditions
(y) was measured over a two-year usage period. To
compare these track designs adequately, however, it
is necessary to correct for extent of usage (x), mea-
sured in terms of the average number of trains per day
that ran over each section of track. Use the following
experimental results to test (0.01 level of significance)
whether the track designs were equally resistant to

breakage and to estimate the effect of usage on break-
age resistance.

Track Track Track Track
design A design B design C design D
x y x y x y x y

10.4 3 16.9 8 17.8 5 19.6 9
19.3 7 23.6 11 24.4 9 25.4 8
13.7 4 14.4 7 13.5 5 35.5 16

7.2 0 17.2 10 20.1 6 16.8 7
16.3 5 9.1 4 11.0 4 31.2 11
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12.40 To compare power consumption by a newly developed low-power USB device under three test
run conditions and record the data transmission rate at the same time, a computer engineer
obtained the following results, where the power consumption, x, is in Watts, and the data
transmission rate, y, is in Gbps.

Test run Test run Test run
condition I condition II condition III

x y x y x y

0.70 4.5 1.00 6.7 1.25 8.0
0.75 4.8 0.80 5.0 1.05 6.7
0.60 3.8 0.90 5.6 1.15 7.5
0.60 3.9 0.75 4.8 1.10 7.2
0.65 4.10 0.65 4.2 0.90 6.0
0.75 4.7 0.85 5.5 0.80 5.4
0.80 5.1 1.25 8.0 0.70 4.6
0.90 5.6 0.75 4.7 0.60 4.0
0.95 6.1 0.95 6.2 0.50 3.1
0.80 5.2 0.80 5.4 0.45 2.9

Perform an analysis of covariance, using the level of significance α = 0.05. Also, estimate the
value of the regression coefficient.

12.41 Use computer software to work Exercise 12.37.

Do’s and Don’ts

Do’s
1. Whenever possible, randomize the assignment of treatments in the com-

pletely randomized design. In other designs, randomize the assignments of
treatment within the restraints of the design.

2. When numerous comparisons must be made, use a multiple comparisons
method to be able to make a confidence statement about the whole set of
confidence intervals.

3. Consider applying the analysis of covariance when an important extraneous
variable cannot be held constant.

Don’ts
1. Don’t routinely accept the analysis of variance presented in a computer

output. Instead, inspect the residuals for outliers and moderate to severe
lack of normality. A normal-scores plot is useful if there are 20 or more
residuals. It may suggest a transformation.

Review Exercises
12.42 Assume the following data obey the one-way analysis

of variance model.

Treatment I: 8 9 12 7
Treatment II: 5 4 8 4 8 1

Treatment III: 3 5 0 0 1

(a) Decompose each observation yi j as

yi j = y + ( yi − y ) + ( yi j − yi )

(b) Obtain the sums of squares and degrees of free-
dom for each array.

(c) Construct the analysis of variance table and test for
differences among the treatments with α = 0.05.

12.43 To determine the effect of height on power generated
in a hydroelectric power plant, the following observa-
tions were made:
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Total height Power generated
(m) (megawatts per turbine)

250 13.25 14.00 13.00 13.75 14.00
300 14.25 13.75 15.00 14.00 14.25
350 15.75 16.00 14.25 15.00 15.00
400 14.50 14.00 13.25 13.50 14.50

Use the level of significance α = 0.05 to test whether
the height of the reservoir has an effect on the power
generated.

12.44 Refer to Example 11. Ignore the covariate origi-
nal reflectivity. Perform an analysis of variance take
α = 0.05

12.45 Given the following data from a randomized block
design,

Blocks
1 2 3 4

Treatment 1 9 10 2 7
Treatment 2 6 13 1 12
Treatment 3 9 16 9 14

(a) Decompose each observation yi j as

yi j = y• • + ( yi• − y• • ) + ( y• j − y• • )

+ ( yi j − yi• − y• j + y• • )

(b) Obtain the sums of squares and degrees of free-
dom for each array.

(c) Construct the analysis of variance table and test
for differences among the treatments with α =
0.05.

12.46 Using q0.05 = 4.339 for the Tukey HSD method, com-
pare the treatments in Exercise 12.45.

12.47 Samples of groundwater were taken from 5 different
toxic-waste dump sites by each of 3 different agen-
cies: the EPA, the company that owned each site, and
an independent consulting engineer. Each sample was
analyzed for the presence of a certain contaminant by
whatever laboratory method was customarily used by
the agency collecting the sample, with the following
results:

Concentration (parts per million)

Agency 1

Agency 2

Agency 3

Site A Site B Site C Site D Site E

23.8 7.6 15.4 30.6 4.2

19.2 6.8 13.2 22.5 3.9

20.9 5.9 14.0 27.1 3.0

Use the α = 0.05 level of significance to decide:

(a) Is there reason to believe that the agencies
are not consistent with one another in their
measurements?

(b) Do the dump sites differ from one another in their
level of contamination?

12.48 Using q0.05 = 4.041 for the Tukey HSD method,
compare the pollution levels of the three agencies in
Exercise 12.47.

12.49 An experiment is conducted with k = 5 treatments,
one covariate x, and n = 6. Calculations result in the
sums of squares error SSEx = 14.4, SSEtr. = 4.69,
and SSEtr,x = 1.21. Assuming that the analysis of
covariance model is reasonable, conduct the F-test for
treatment differences and the F-test for the covariate x.
Take α = 0.01.

12.50 The state highway department does an experiment to
compare three types of surfacing treatments and the
response y is road roughness. The following table also
gives average daily traffic volume x.

Suppose the data are, in suitable units,

Treatment 1

x y

5 12
5 10
2 5

Treatment 2

x y

3 3
2 2
1 1

Treatment 3

x y

4 9
2 5
3 7

(a) Perform an analysis of variance on the response
variable road roughness. Take α = 0.05.

(b) Is there one surface treatment that is better than
the others? Answer by finding the Bonferroni 95%
simultaneous confidence intervals for the differ-
ences of the means.

12.51 Refer to Exercise 12.50.

(a) Perform an analysis of covariance. Test for a
difference in treatments using level of significance
0.05.

(b) Compare your analysis in part (a) with the analy-
sis of variance. Is the covariate important?

12.52 Three different instrument panel configurations were
tested by placing airline pilots in flight simulators and
testing their reaction time to simulated flight emer-
gencies. Eight pilots were assigned to each instru-
ment panel configuration. Each pilot was faced with
10 emergency conditions in a randomized sequence,
and the total time required to take corrective action
for all 10 conditions was measured, with the following
results:
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Instrument Instrument Instrument
panel 1 panel 2 panel 3

x y x y x y

8.1 6.55 12.1 5.74 15.2 6.37
19.4 6.40 2.1 5.93 8.7 6.97
11.6 5.93 3.9 6.16 7.2 7.38
24.9 6.79 5.2 5.68 6.1 6.43

6.2 7.16 4.6 5.41 11.8 7.59
3.8 5.64 14.4 6.29 12.1 7.16

18.4 5.87 16.1 5.55 9.5 7.02
9.4 6.31 8.5 4.82 2.6 6.85

In this table, x is the number of years of experience
of the pilot, and y is the total reaction time in sec-
onds. Perform an analysis of covariance to test whether
the instrument-panel configurations yield significantly
different results (α = 0.05). Also, perform a one-way
analysis of variance (ignoring the covariate, x) and de-
termine in that way what effect experience has on the
results.

12.53 Using the alternative calculation formula verify anal-
ysis of variance table for the paper-strength in
Example 4.

12.54 Benjamin Franklin (1706–1790) conducted an experi-
ment to study the effect of water depth on the amount
of drag on a boat being pulled up a canal. He made
a 14-foot trough and a model boat 6 inches long. A
thread was attached to the bow, put through a pulley,
and then a weight was attached. Not having a second
hand on his watch, he counted as fast as he could to
10 repeatedly. These times, for the model boat to tra-
verse the trough at the different water depths, are

Water 1.5 inches: 100 104 104 106 100 99 100 100
Water 2.0 inches: 94 93 91 87 88 86 90 88
Water 4.5 inches: 79 78 77 79 79 80 79 81

(Source: Letter to John Pringle, May 10, 1768.)

(a) Perform an analysis of variance and test for differ-
ences due to water depth using α = 0.05.

(b) Using α = 0.06 and q0.06 = 3.438 for the Tukey
HSD method, investigate differences.

(c) Use the Bonferroni 94% confidence interval ap-
proach on page 411 to compare the mean times.
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Analysis of variance 395
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C
hapter 12 concentrates mainly on the effects of one variable whose values are
referred to as “treatments”. This chapter expands the discussion to explore the
effects of several variables. The combinations of their values, or levels, now play

the roles of treatments.
Sections 13.1 and 13.2 deal with the analysis of experiments whose treatments can

be regarded as combinations of the levels of two or more factors. Section 13.3 studies
the special case of factors having two levels. Section 13.4 illustrates a design for obtain-
ing the levels of variables where the estimated response is a maximum. The remainder
of the chapter takes up the analysis of experiments where there are too many combina-
tions of all the factors to be included in the same block or experimental program.

13.1 Two-Factor Experiments
We introduce the idea of a two-factor (two variable) experiment in the context
of recycling material for roadways. Recycling of construction and demolition waste
can greatly extend the life of existing landfills. But, any recycled materials used in
roadways must perform as well as the typical natural aggregates.

To establish specifications for the strength of recycled materials, the experi-
menter involves 3 locations, subject to different environmental conditions, with 2
types of recycled materials, recycled concrete aggregate(RCA) and recycled asphalt
pavement aggregate (RAP). The locations are labeled by the state of origin MN, CO,
and TX.

Factor A Factor B
Location Type of material

MN Recycled Concrete Aggregate (RCA)
MN Recycled Pavement Aggregate (RPA)
CO Recycled Concrete Aggregate (RCA)
CO Recycled Pavement Aggregate (RPA)
TX Recycled Concrete Aggregate (RCA)
TX Recycled Pavement Aggregate (RPA)

One key physical property is the resiliency modulus which is obtained by dy-
namic loading. Generally, higher values imply a stiffer base which increases pave-
ment life.

Do changes in location or type of recycled material affect the resiliency modu-
lus? If changes in the modulus are attributable to changes in location, is this change
the same for both types of materials? It is possible to answer questions of this kind
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if the experimental conditions, the treatments, consist of appropriate combinations
of the levels (or values) of the various factors. The factors in the preceding example
are location and type of material; location has 3 levels, MN, CO, and TX while the
type of material has 2 levels RCA and BPA. Note that the 6 treatments were chosen
in such a way that each level of location is used once in conjunction with each level
of type of material. In general, if 2 factors A and B are to be investigated at a and
b levels, respectively, then there are a · b experimental conditions (treatments) cor-
responding to all possible combinations of the levels of the 2 factors. The resulting
experiment is referred to as a complete a × b factorial experiment. Note that if one
or more of the a · b experimental conditions is omitted, the experiment can still be
analyzed as a two-way classification, but it cannot readily be analyzed as a factorial
experiment. It is customary to omit the word complete so that an a × b factorial
experiment is understood to contain experimental conditions corresponding to all
possible combinations of the levels of the two factors.

In order to obtain an estimate of the experimental error in a two-factor experi-
ment, it is necessary to replicate, that is, to repeat the entire set of a · b experimental
conditions, say, a total of r times, randomizing the order of applying the condition
in each replicate. If yi jk is the observation in the kth replicate, taken at the ith level
of factor A and the jth level of factor B, the model assumed for the analysis of this
kind of experiment is usually written as

Model equation for
two-factor experiment Yi jk = μ + αi + β j + ( αβ )i j + εi jk

for i = 1, 2, . . . , a, j = 1, 2, . . . , b, and k = 1, 2, . . . , r. Here μ is the grand mean,
αi is the effect of the ith level of factor A, β j is the effect of the jth level of factor
B, ( αβ )i j is the interaction, or joint effect, of the ith level of factor A and the jth
level of factor B. As in the models used in Chapter 12 we shall assume that the εi jk
are independent random variables having normal distributions with zero means and
the common variance σ 2. Also, analogous to the restrictions imposed on the models
on pages 393 and 406, we shall assume that

a∑
i = 1

αi =
b∑

j = 1

β j =
a∑

i = 1

( αβ )i j =
b∑

j = 1

( αβ )i j = 0

It can be shown that these restrictions will assure unique definitions of the parameters
μ, αi, β j, and ( αβ )i j.

To illustrate the model underlying a two-factor experiment, let us consider an
experiment with two replicates in which factor A occurs at two levels and factor B
occurs at two levels. In view of the restrictions on the parameters, we also have

α2 = − α1 β2 = − β1 ( αβ )21 = ( αβ )12 = − ( αβ )11 = − ( αβ )22

and the population means corresponding to the four experimental conditions defined
by the 2 levels of factor A and the 2 levels of factor B can be written as

μ111 = μ112 = μ + α1 + β1 + ( αβ )11

μ121 = μ122 = μ + α1 − β1 − ( αβ )11

μ211 = μ212 = μ − α1 + β1 − ( αβ )11

μ221 = μ222 = μ − α1 − β1 + ( αβ )11
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Figure 13.1
Factorial effects
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Substituting for μi j1 = μi j2 the mean of all observations obtained for the ith
level of factor A and the jth level of factor B, we get 4 simultaneous linear
equations which can be solved for the parameters μ, α1, β1, and ( αβ )11. (See
Exercise 13.9.)

To continue our illustration, let us now suppose that μ = 10. If all the other
effects equaled zero, each of the μi jk would equal to 10, and the response surface
would be the horizontal plane shown in Figure 13.1(a). If we now add an effect of
factor A, with α1 = −4, the response surface becomes the tilted plane shown in
Figure 13.1(b), and if we add to this an effect of factor B, with β1 = 5, we get the
plane shown in Figure 13.1(c). Note that, so far, the effects of factors A and B are
additive; that is, the change in the mean for either factor in going from level 1 to level
2 does not depend on the level of the other factor, and the response surface is a plane.
If we now include an interaction, with ( αβ )11 = −2, the plane becomes twisted as
shown in Figure 13.1(d), the effects are no longer additive, and the response surface
is no longer a plane.

Generalizing these ideas from a 3 × 2 factorial experiment, our statistical analy-
sis of an a × b factorial experiment is based on the decomposition of the observations
according to the model.

yi jk = y• • • + ( yi• • − y• • • ) + ( y• j• − y• • • )
observation grand factor A factor B

mean effect effect

+ ( yi j• − yi• • − y• j• + y• • • ) + ( yi jk − yi j•)
AB interaction error
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where yi j • = ∑r
k=1 yi j k / r, yi •• = ∑b

j=1
∑r

k=1 yi j k / (b r ), and y• •• =∑a
i=1

∑b
j=1

∑r
k=1 yi j k / ( a b r ).

Transposing y• •• to the left hand side, squaring both sides of the identity, and
then summing yields the decomposition of the sum of squares that is the basis of the
analysis of variance.

Decomposition of sum of
squares for two-way

factorial design

Theorem 13.1

a∑
i=1

b∑
j=1

r∑
k=1

( yi j k − y• • • )2 = b r
a∑

i=1

( yi•• − y••• )2 + a r
b∑

j=1

( y• j• − y••• )2

+ r
a∑

i=1

b∑
j=1

( yi j• − yi ••• − y• j •• + y••• )2

+
a∑

i=1

b∑
j=1

r∑
k=1

( yi jk − yi j• )2

or

SST = SSA + SSB + SS(AB) + SSE

The last term on the right-hand side is the sum of squares due to error.
There are a b r observations so the total sum of squares has a b r − 1 degrees of

freedom. Because of the constraint that the a values of yi•• − y••• sum to 0, SSA has
only a − 1 degrees of freedom. Similarly, SSB has b − 1 degrees of freedom. Next,
for each fixed pair i , j, the error terms yi j k − yi j • sum to 0. Consequently, they
each contribute r − 1 degrees of freedom and SSE has a b ( r − 1 ) degrees of free-
dom. The degrees of freedom for the AB interaction can be obtained by subtraction

abr − 1 − (a − 1) − (b − 1) − ab(r − 1) = (a − 1)(b − 1)

Decomposition of degrees
of freedom for two-way

factorial design

abr − 1 = a − 1 + b − 1 + (a − 1)(b − 1) + ab(r − 1)
Total Factor A Factor B AB Interaction error

The mean square error of any term is obtained by dividing the sum of squares by its
degrees of freedom. The corresponding F-statistic is then obtained by dividing the
mean square error of a factor by the mean square error.

The next example illustrates the successive breakdown of the sum of squares.
For the amount of calculation involved, you can appreciate the widespread availabil-
ity of computer programs for creating an analysis of variance table. (See
Exercise 13.10.)

EXAMPLE 1 Conducting statistical tests for a 3 × 2 factorial experimental design
Referring to the recycling example on page 425, the experimenter obtains values of
the resiliency modulus (MPa) from 3 replications of the experiment. (Courtesy of
Tuncer Edil)
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Factor A Factor B
Location Type of Mat. Rep. 1 Rep.2 Rep. 3

MN RCA 707 632 604
MN RPA 652 669 674
CO RCA 522 554 484
CO RPA 630 648 610
TX RCA 450 545 474
TX RPA 845 810 682

Perform an analysis of variance based on this two-factor experiment and test for the
significance of the factorial effects, using the 0.01 level of significance.

Solution Following steps analogous to those used in the analysis of a two-way classification,
we get

1. Null hypotheses:

α1 = α2 = α3 = 0, β1 = β2 = 0

( αβ )11 = ( αβ )12 = ( αβ )21 = ( αβ )22 = ( αβ )31 = ( αβ )32 = 0

Alternative hypotheses: The α’s are not all equal to zero; the β’s are not all
equal to zero; the ( αβ ) terms are not all equal to zero.

2. Level of significance: α = 0.01 for all tests.

3. Criteria: For replications, reject the null hypotheses if F > 6.93, the value of
F0.01 for r − 1 = 3 − 1 = 2 and ab( r − 1 ) = ( 3 × 2 ) × ( 3 − 1 ) = 12
degrees of freedom; for the main effect of factor A, reject the null hypothesis if
F > 9.33, the value of F0.01 for a − 1 = 3 − 1 = 2 and ab( r − 1 ) =
( 3 × 2 )( 3 − 1 ) = 12 degrees of freedom; for the main effect of factor B, reject
if F > 10.04, the value of F0.01 for b − 1 = 2 − 1 = 1 and ab( r − 1 ) =
( 3 × 2 )( 3 − 1 ) = 12 degrees of freedom; for the interaction effect, reject if
F > 6.93, the value of F0.01 for ( a − 1 )( b − 1 ) = ( 3 − 1 )( 2 − 1 ) = 2 and
ab( r − 1 ) = ( 3 × 2 )( 3 − 1 ) = 12 degrees of freedom.

4. Calculations: It is the best practice to use computer software to obtain the
analysis of variance table. (See Exercise 13.2 for the MINITAB and the end of
this example for the R commands.)

Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P

Main Effects:
A 2 21427 10714 4.48 0.035
B 1 86528 86528 36.1 0.000

Interaction 2 57424 28712 12.0 0.001

Error 12 28724 2394

Total 17 194103

5. Decisions: P-values are given in the last column of the table. The F = 12.0 for
Factor B exceeds F0.01 = 9.33 for 1 and 12 degrees of freedom and that
F = 36.1 for the AB interaction term exceeds F0.01 = 6.93 = for 2 and
12 degrees of freedom. In fact, both P-values are extremely small.
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Because the interaction effect is significant, at level 0.01, we cannot
conclude that Factor A is unimportant. The effect of changing materials on the
estimated response does depend on the location. Location cannot be ignored.

Figure 13.2
Results of recycled materials
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The interaction plot in Figure 13.2 gives a visual representation of any
interaction between the effects of the two factors.

It is apparent that the increase in resiliency modulus when changing from
RCA to RPA is greater at the location TX than at MN. In view of this
interaction, great care must be exercised in stating the results of the experiment.
For instance, it would be very misleading to state that the effect of changing
from RCA to RPA is to increase the resiliency modulus by

6220
9

− 4972
9

= 138.7 MPa

In fact, the resiliency modulus is increased, on average, by 17.3 when the
location is MN and it is increased by 289.3 for TX.

Whenever you have two factors, always visually inspect the interaction plot
for information about the nature of the interaction or lack of interaction. When
there is no interaction, the two profiles will be nearly parallel.

Because of the presence of interaction, the summary must take the form of the
two-way table of cell means:

Summary Table of Cell Means yi j•

Factor B
Type of Material

Concrete (RCA) Pavement (RPA)

Factor A MN 647.7 665.0 656.3
Location CO 520.0 629.3 574.7

T X 489.7 779.0 634.3

552.4 691.1 621.8
j
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Statistical software easily calculates the ANOVA table and allows us to focus
on the analysis. The R software commands

dat=read.table(“C13Ex1.TXT”, header=T)
model=lm(resilmod˜ A + B +A:B, data=dat)
anova(model)

produce the ANOVA table. Then

with(dat, tapply(resilmod, list(A,B), mean))

will produce the two-way table of means.
Repeating the analysis, using the SAS statistical package ANOVA program, we

obtained the output presented in Figure 13.3. The two P values less than 0.0021
confirm our previous analysis and their small values strengthen the conclusions.
Note that the F values in Figure 13.3 differ slightly from those above because more
decimals are retained.

Figure 13.3
Selected SAS output for
ANOVA using the data in
Example 1

Dependent Variable: ResiliencyMod (MPa)

Source

Model

Error

Corrected Total

Source
Location
Type
Location*Type

DF
2
1
2

17

12

5

DF Sum of Squares

165379.1111

194103.1111

Anova SS
21427.11111
86528.00000
57424.00000

Mean Square

33075.8222

Mean Square
10713.55556
86528.00000
28712.00000

F Value
4.48
36.15
11.99

Pr > F
0.0353
<.0001
0.0014

F Value

13.82

Pr>F

0.0001

Root MSE
48.92511

28724.0000 2393.6667

When replications and interactions are not significant, the influence of factor A
and the influence of factor B can be interpreted separately. Then, when a factor is
significant, many statisticians recommend comparing the levels by calculating con-
fidence intervals using the two sample approach but using the mean square error.
The confidence intervals for the difference in mean response at levels i1 and i2 of
factor A have limits

yi1• • − yi2• • ± tα/2

√
s2 2

b · r

where s2 = SSE/(ab( r − 1)) is the mean square error and the tα/2 value is based
on (ab (r − 1)) degrees of freedom.

Similarly, for levels j1 and j2 of factor B, the confidence interval for the differ-
ence in mean response has limits

y• j1• − y• j2• ± tα/2

√
s2 2

a · r

EXAMPLE 2 Using confidence intervals to compare means
at different factor levels
Illustrate the calculation of the confidence intervals for the difference in mean re-
sponse using the means and s2 from the previous example.

Solution From the analysis of variance table, s2 = 2394 is the mean square error based
on 12 degrees of freedom. For these degrees of freedom, we find t0.025 = 2.179.
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Therefore, the confidence intervals for differences in mean due to the a = 3 levels
of location, factor A, are

y1• • − y2• • ± t0.025

√
s2 2

b · r
= 656.3 − 574.7 ± 2.179

√
2394

2
2 · 3

or 20.0 to 143.2 MPa

y1• • − y3• • ± t0.025

√
s2 2

b · r
= 656.3 − 634.3 ± 2.179

√
2394

2
2 · 3

or − 39.6 to 83.6 MPa

y2• • − y3• • ± t0.025

√
s2 2

b · r
= 574.7 − 634.3 ± 2.179

√
2394

2
2 · 3

or − 121.9 to 1.95 MPa

Because the interaction was significant, we cannot interpret these intervals on dif-
ferences of mean resiliency modulus as due to changing location alone.

Similarly, the confidence interval for the single difference in mean due to the
b = 2 types of material is

y•1• − y•2• ± t0.025

√
s2 2

a · r

= 552.4 − 691.1 ± 2.179

√
2394

2
3 · 3

or − 189.0 to − 88.4 MPa j

13.2 Multifactor Experiments
Much industrial research and experimentation is conducted to discover the individ-
ual and joint effects of several factors on variables thought to be most relevant to
response variable under investigation. In the preceeding section, we analyze the
a × b factorial experiment where the experimental conditions represent all possi-
ble combinations of the levels of two or factors A and B. In this section, we extend
the discussion to factorial experiments involving more than 2 factors, that is, to ex-
periments where the experimental conditions represent all possible combinations of
the levels of 3 or more factors.

To illustrate the analysis of a multifactor experiment, let us consider the fol-
lowing situation. A warm sulfuric pickling bath is used to remove oxides from the
surface of a metal prior to plating, and it is desired to determine what factors in addi-
tion to the concentration of the sulfuric acid might affect the electrical conductivity
of the bath. As it is felt that the salt concentration as well as the bath temperature
might also affect the electrical conductivity, an experiment is planned to determine
the individual and joint effects of these 3 variables on the electrical conductivity of
the bath. In order to cover the ranges of concentrations and temperatures normally
encountered, it is decided to use the following levels of the 3 factors:

Factor Level 1 Level 2 Level 3 Level 4

A. Acid concentration ( % ) 0 6 12 18
B. Salt concentration ( % ) 0 10 20
C. Bath temperature ( ◦F ) 80 100



Sec 13.2 Multifactor Experiments 433

The resulting factorial experiment requires 4 · 3 · 2 = 24 experimental conditions
in each replicate, where each experimental condition is a pickling bath made up
according to specifications. The order in which these pickling baths are made up
should be random. Let us suppose that 2 replicates of the experiment have actually
been completed—that is, the electrical conductivities of the various pickling baths
have been measured—and that the results are as shown in the following table:

Results of Acid-Bath Experiment
Level of Factor Conductivity ( mhos/cm2 )

A B C Rep. 1 Rep. 2 Total

1 1 1 0.99 0.93 1.92

1 1 2 1.15 0.99 2.14

1 2 1 0.97 0.91 1.88

1 2 2 0.87 0.86 1.73

1 3 1 0.95 0.86 1.81

1 3 2 0.91 0.85 1.76

2 1 1 1.00 1.17 2.17

2 1 2 1.12 1.13 2.25

2 2 1 0.99 1.04 2.03

2 2 2 0.96 0.98 1.94

2 3 1 0.97 0.95 1.92

2 3 2 0.94 0.99 1.93

3 1 1 1.24 1.22 2.46

3 1 2 1.12 1.15 2.27

3 2 1 1.15 0.95 2.10

3 2 2 1.11 0.95 2.06

3 3 1 1.03 1.01 2.04

3 3 2 1.12 0.96 2.08

4 1 1 1.24 1.20 2.44

4 1 2 1.32 1.24 2.56

4 2 1 1.14 1.10 2.24

4 2 2 1.20 1.19 2.39

4 3 1 1.02 1.01 2.03

4 3 2 1.02 1.00 2.02

Total 25.53 24.64 50.17

The model we shall assume for the analysis of this experiment (or any similar
three-factor experiment) is an immediate extension of the one used in Section 13.1.
If yi jkl is the conductivity measurement obtained at the ith level of acid concentra-
tion, the jth level of salt concentration, the kth level of bath temperature, in the lth
replicate, we write

Model equation for
three-factor experiment

Yi jkl = μ + αi + β j + γk + ( αβ )i j + ( αγ )ik + ( βγ ) jk
+ ( αβγ )i jk + εi jkl
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for i = 1, 2, . . . , a, j = 1, 2, . . . , b, k = 1, 2, . . . , c, and l = 1, 2, . . . , r. We
also assume that the sums of the main effects (α’s, β’s, and γ ’s), that the sums of the
two-way interaction effects summed on either subscript equal zero for any value of
the other subscript, and that the sum of the three-way interaction effects summed
on any one of the subscripts is zero for any values of the other two subscripts. As
before, the εi jkl are assumed to be independent normal random variables having
zero means and the common variance σ 2.

The analysis of variance consists of decomposing the total sum of squares

SST =
a∑

i=1

b∑
j=1

c∑
k=1

r∑
�=1

( yi j k � − y•••• )2

into contributions from each of the model components.

SST = SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC) + SS(ABC) + SSE

What is new here is the three factor interaction term

SS(ABC) = r
a∑

i=1

b∑
j=1

c∑
k=1

( yi jk• − yi j•• − yi•k• − y• jk• + yi••• + y• j•• + y••k• − y•••• )2

This term quantifies the changes in one, or more, of the two-way interactions as the
third variable changes levels.

The sums of squares parallel those for SSA, SSB, and SS(AB) from a two-factor
experiment but with an extra dot in the subscript. The first of three main effects is

SSA = bcr
a∑

i=1

( yi••• − y•••• )2

and the first of three two-way interaction terms is

SS(AB) = cr
a∑

i=1

b∑
j=1

( yi j•• − yi••• − y• j•• + y•••• )2

and the sum of squares error is

SSE =
a∑

i=1

b∑
j=1

c∑
k=1

r∑
�=1

( yi jk� − yi jk• )2

Using a computer software program removes the drudgery of calculation and
produces the ANOVA table.

Note that the degrees of freedom for each main effect is one less than the number
of levels of the corresponding factor. The degrees of freedom for each interaction is
the product of the degrees of freedom for those factors appearing in the interaction.
Thus, the degrees of freedom for the three main effects are 3, 2, and 1 in this example,
while the degrees of freedom for the two-way interactions are 6, 3, and 2, and the
degrees of freedom for the three-way interaction are 6.
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Source of Degrees of Sum of Mean
Variation Freedom Squares Square F P

Main effects:
A 3 0.27504 0.09168 24.0 0.000
B 2 0.22622 0.11311 29.6 0.000
C 1 0.00017 0.00017 <1

Two factor
interactions:

AB 6 0.02882 0.00480 1.26 0.311
AC 3 0.00851 0.00284 <1
BC 2 0.00420 0.00210 <1

Three-factor
interaction:

ABC 6 0.02820 0.00470 1.23 0.323

Error 24 0.09125 0.00382

Total 47 0.66241
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Figure 13.4
Effect of acid concentration
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Figure 13.5
Effect of salt concentration

Obtaining the appropriate values of F0.05 and F0.01 from Table 6, we find that the test
for the factor A and factor B main effects are significant at the 0.01 level. None of the
other F’s is significant at either level. We conclude from this analysis that variation in
acid concentration and salt concentration affect the electrical conductivity, variations
in bath temperature do not, and that there are no interactions. The extremely small
P-values, less than 0.001, further strengthen this conclusion.

To go one step farther, we might investigate the magnitudes of the effects by
studying graphs of means like those shown in Figure 13.4 and 13.5. Here we find
that the conductivity increases as acid is added and decreases as salt is added; using
the methods of Chapter 11, we might even fit lines, curves, or surfaces to describe
the response surface relating conductivity to the variables under consideration.

[ Using R:

dat=read.table(“C13acidb.TXT”,“factor”,
“factor”,“factor”,“numeric”,“factor”, header=T)
model=lm(conduct˜ A + B + A:B + A:C+B:C+A:B:C, data=dat)
anova(model)

produce the ANOVA table. Then

with(dat, tapply(conduct, list(A), mean))
with(dat, tapply(conduct, list(B), mean))

produce the relevant means. ]

For a factorial design having three factors, we can obtain confidence intervals
for the difference of means corresponding to two different levels of any main effect
that does not interact with the other factors. These intervals are based on the estimate
of the variance s2 that is the mean square error in the ANOVA table. This estimate
of the variance of one response is based on a · b · c ( r − 1 ) degrees of freedom.

The 100 ( 1 − α ) confidence interval for the difference between the two levels
i1 and i2 of Factor A has limits

yi1••• − yi2••• ± tα / 2

√
s2 2

b · c · r
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The intervals for the difference between the two levels j1 and j2 of Factor B has
limits

y• j1•• − y• j2•• ± tα / 2

√
s2 2

a · c · r

The intervals for the difference between the two levels k1 and k2 of Factor C has
limits

y••k1• − y••k2• ± tα / 2

√
s2 2

a · b · r

Example 3 illustrates the calculation of these confidence intervals.

EXAMPLE 3 Conducting an analysis of variance to improve
the safety of an ignitor
A customer requested improvements in the safety of an ignitor. Statistically designed
experiments, run at the development stage, can help build quality into this product.
It was decided to study 3 initiators (A), 2 booster charges (B), and 4 main charges
(C). One response measured was the delay time (milliseconds). For safety reasons,
this should remain under 30. Two replicates were run of the factorial design.

Delay Time
(milliseconds)

A B C Rep. 1 Rep. 2

Initiator 1 Powder Mc 1 10.70 9.82
Initiator 1 Pellet Mc 1 10.02 13.66
Initiator 1 Powder Mc 2 14.46 20.86
Initiator 1 Pellet Mc 2 11.44 13.76
Initiator 1 Powder Mc 3 15.04 16.02
Initiator 1 Pellet Mc 3 27.26 21.42
Initiator 1 Powder Mc 4 20.82 14.46
Initiator 1 Pellet Mc 4 24.56 36.48
Initiator 2 Powder Mc 1 18.42 18.62
Initiator 2 Pellet Mc 1 22.80 25.14
Initiator 2 Powder Mc 2 33.40 20.62
Initiator 2 Pellet Mc 2 31.86 19.78
Initiator 2 Powder Mc 3 22.94 31.12
Initiator 2 Pellet Mc 3 32.92 21.38
Initiator 2 Powder Mc 4 27.92 59.86
Initiator 2 Pellet Mc 4 31.94 28.32
Initiator 3 Powder Mc 1 7.14 7.98
Initiator 3 Pellet Mc 1 24.32 10.26
Initiator 3 Powder Mc 2 8.30 7.86
Initiator 3 Pellet Mc 2 7.00 8.40
Initiator 3 Powder Mc 3 8.40 10.94
Initiator 3 Pellet Mc 3 17.82 15.28
Initiator 3 Powder Mc 4 9.56 19.04
Initiator 3 Pellet Mc 4 19.98 18.46

Analyze this experiment.
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Solution A computer program produced the ANOVA table.

SOURCE DF SS MS F P
A 2 1973.18 986.59 22.22 0.000
B 1 74.90 74.90 1.69 0.206
C 3 864.39 288.13 6.49 0.002
AB 2 141.83 70.91 1.60 0.223
AC 6 200.97 33.50 0.75 0.612
BC 3 122.14 40.71 0.92 0.448
ABC 6 319.57 53.26 1.20 0.340
ERROR 24 1065.86 44.41
TOTAL 47 4762.84 101.34

Only the initiators and main charges are significant. They are significant even at
α = 0.01. The experiment can therefore be summarized by the two sets of sample
means, those for initiators and those for main charges:

initiator 1 y1• • • = 17.55 Mc 1 y• •1• = 14.91
initiator 2 y2• • • = 27.94 Mc 2 y• •2• = 16.48
initiator 3 y3• • • = 12.55 Mc 3 y• •3• = 20.05

Mc 4 y• •4• = 25.95

According to the estimated model, where the initiator and main charge effects are
additive,

ŷi•k• = y• • • • + ( yi• • • − y• • • • ) + ( y• •k• − y• • • • )

the lowest estimated delay time would come from using initiator 3 with main charge
1 (Mc 1). This experiment was successful in identifying better components for the
ignitor.

The standard deviation of the delay times is estimated by s, which is the square
root of the mean square error. Since s = 6.66 milliseconds, there is considerable
variation in the individual delay times. The confidence intervals for the difference in
mean delay times for two initiators are

yi• • • − ym• • • ± t0.025

√
s2

2 · 4
= yi• • • − ym• • • ± 2.064

√
44.41

8

or yi• • • − ym• • • ± 4.86, so differences of 4.86 are significant. All three initiator
means are different. The confidence intervals for main charges

y• • k• − y• •m• ± t0.025

√
s2

3 · 2

lead to differences of 5.62 being significant. Consequently, these data do not estab-
lish any difference between the first three main charges Mc 1, Mc 2, and Mc 3.

[ Using R : With short hand notation A ∗ B ∗ C = A : B + A : C + B : C+
A : B : C, we write

dat=read.table(“C13Ex3.TXT”, header=T)
model=lm(delay˜ A + B +C+A*B*C*, data=dat)
anova(model)
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produce the ANOVA table. Then

with(dat, tapply(delay, list(A), mean))
with(dat, tapply(delay, list(C), mean))

produce the relevant means. ] j

It is strongly recommended that you use a standard statistical software program
to perform the statistical analysis of any multifactor experiment and to produce var-
ious plots of the residuals.

Exercises

13.1 Given the two replications of a 2 × 3 factorial experiment, calculate the analysis of
variance table using the formulas on pages *** and ***.

Factor A Factor B Rep. 1 Rep. 2

1 1 15 21
1 2 1 3
1 3 10 8
2 1 1 1
2 2 16 14
2 3 5 13

13.2 MINITAB can create the analysis of variance table for Example 1 concerning
recycled road materials. The three levels of A are coded 1, 2, and 3, and the two
levels of B are coded 1 and 2. The third column contains the values of the resiliency
modulus.

1 1 707
1 1 632
1 1 604
1 2 652

…

Dialog box:
Stat > ANOVA > Balanced ANOVA
Type Y in Responses. In Model type A B A ∗ B . Click OK.

Source
A
B
A*B
Error
Total

DF
2
1
2

12
17

SS
21427
86528
57424
28724

194103

MS
10714
86528
28712
2394

F
4.48
36.15
11.99

P
0.035
0.000
0.001

To obtain the two-way table of means, click on Results and type A ∗ B in the
Display means box. Then, click OK.
Repeat Exercise 13.1 using computer calculations.

13.3 To determine optimum condition for a circuit board, the effects of bond strength of
FR-4 (an insulating substrate) and thickness of copper lamination on the current
flow are studied in a 2 × 5 factorial experiment. The results of three replicates are as
follows:
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Current flowBond Strength Thickness of copper
FR-4 (kg) lamination (micrometers) Rep. 1 Rep. 2 Rep. 3

1000 104 52 59 54
1000 108 48 52 52
1000 112 46 50 50
1000 116 42 48 42
1000 120 34 42 38
1250 104 68 78 75
1250 108 66 70 71
1250 112 60 74 72
1250 116 64 69 66
1250 120 54 65 61

Analyze these results and determine the circuit board condition or conditions that
produce the highest current flow. Also construct a 99% confidence interval for the
current flow of the board corresponding to these optimum conditions.

13.4 A spoilage-retarding ingredient is added in brewing beer. To determine the extent to
which the taste of the beer is affected by the amount of this ingredient added to each
batch, and how such taste changes might depend on the age of the beer, a 3 × 4
factorial experiment in two replications was designed. The taste of the beer was
rated on a scale of 0, 1, 2, or 3 (3 being the most desirable) by a panel of trained
experts, who reported the following mean ratings:

Mean RatingsAmount of Ingredient Aging Period
(grams per batch) (weeks) Rep. 1 Rep. 2

2 2 2.1 1.6
2 4 2.6 1.9
2 6 2.9 2.4
3 2 1.4 1.7
3 4 1.9 2.2
3 6 2.3 2.7
4 2 0.5 0.9
4 4 1.2 0.8
4 6 1.7 1.4
5 2 1.0 1.6
5 4 2.2 1.3
5 6 2.3 2.1

Interpret the results of this experiment.

13.5 Suppose that in the experiment described in Example 7, Chapter 12, it is desired to
determine also whether there is an interaction between the detergents and the
engines; that is, whether one detergent might perform better in Engine 1, another
might perform better in Engine 2, and so on. Combining the data in Example 7,
Chapter 12, with the following replicate of the experiment, test for a significant
interaction and discuss the results.

Engine 1 Engine 2 Engine 3

Detergent A

Detergent B

Detergent C

Detergent D

39 42 58

44 46 48

34 47 45

47 45 57
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13.6 An experiment was conducted to study the effects of temperature (◦C) and quantity
(g) on the solubility of a chemical in the laboratory.

Temperature Quantity Situation 1 Situation 2

44 50 12 14
44 75 13 11
44 100 15 18
50 50 14 13
50 75 13 12
50 100 17 19
65 50 16 15
65 75 14 12
65 100 20 20

Analyze this experiment.

13.7 The commercial value of softwood species would be increased if the wood could be
treated to meet preserver’s standards. The response, y, is the amount of retention
(lb/ft3) of the preservative. Two treatments (preservatives) were considered and the
samples were either incised or unincised. Further, the conditions of spruce trees
were not defoliated, partially defoliated, or totally defoliated.

Replicate 1 Replicate 2

Treatment 1 Treatment 2 Treatment 1 Treatment 2

Not

Defoliated

Incised

Unincised

1.28 1.22

1.28 1.22

0.77 1.09

1.22 1.17

Replicate 1 Replicate 2

Treatment 1 Treatment 2 Treatment 1 Treatment 2

Partially

Defoliated

Incised

Unincised

0.63 0.78

0.39 0.49

0.64 0.74

0.39 0.53

Replicate 1 Replicate 2

Treatment 1 Treatment 2 Treatment 1 Treatment 2

Totally

Defoliated

Incised

Unincised

0.65 1.09

0.40 0.82

0.38 0.63

0.40 0.60

Perform an appropriate analysis of variance and interpret the results.

13.8 A market test was performed to evaluate the impact of shelf position, and label
color of a canned food product on sales.
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Sales (dollars)Shelf Label
Position Color Day 1 Day 2 Day 3

Low Red 70.10 68.00 69.50
Low Red 72.25 71.90 74.70
Low Red 78.05 74.85 82.60
Low Red 61.50 62.10 59.15
Low Green 65.75 62.35 68.60
Low Green 69.45 71.05 75.45
Low Green 75.15 70.70 71.25
Low Green 64.80 60.85 59.90
Medium Red 94.10 90.20 88.05
Medium Red 104.85 99.55 96.80
Medium Red 109.10 105.80 112.60
Medium Red 59.90 62.50 54.75
Medium Green 88.95 91.10 90.15
Medium Green 100.60 94.05 101.35
Medium Green 98.70 99.90 96.75
Medium Green 62.50 53.85 59.40
High Red 92.60 88.80 85.50
High Red 100.55 102.15 99.10
High Red 111.95 108.25 109.45
High Red 61.40 65.20 59.70
High Green 97.35 98.70 92.60
High Green 120.65 115.45 108.65
High Green 118.10 116.35 121.90
High Green 70.30 65.05 71.40

Analyze this experiment.

13.9 Solve the 4 equations on page 426 for μ, α1, β1, and ( αβ )11 in terms of the
population means μi jl corresponding to the 4 experimental conditions in the first
replicate. Note that these equations serve as a guide for estimating the parameters in
terms of the sample means corresponding to the various experimental conditions.

13.3 The Graphic Presentation of 22 and
23 Experiments

Too often in the past, engineers and scientists have taken the change one variable
at a time approach to designing experiments. After first determining possible causal
variables, one variable is changed at a time while the others are held fixed. This
approach may initially appear reasonable, but it is both inefficient and can produce
seriously misleading conclusions.

To see how important it is to change more than one variable at a time, suppose
two input variables, x1 and x2, are varied in an attempt to locate the maximum re-
sponse. In the situation illustrated in Figure 13.6, moving ( x1, x2 ) toward the upper
right-hand corner will increase the response from 6 to 10 and even higher. However,
if the experimenter fixes x1 at 1.6 and varies x2, it will look like a maximum occurs
at x2 = 1.7. If x2 is fixed at 1.7 and x1 varied, it will then appear as if a maxi-
mum is confirmed. That is, the classical method of varying one variable at a time
can lead to a false location for maximum response. Factorial designs are well suited
for studying the influence of several factors on a response.

Experimental designs based on only two or three input variables, each having
two possible values, can greatly aid our understanding of complex phenomena. The
key ingredient is the systematic variation of all the input variables. Each input vari-
able is called a factor and its values are called levels. All combinations of the levels
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Figure 13.6
False location of a maximum
response

6 8 10

x1

x2

32
1.6

1
0

1

1.7

2

3

of the factors are considered as treatments. When there are two factors and only 2
levels of each factor, there are 2 × 2 = 22, or four treatments or experimental
conditions. This design is called a 22 factorial design and a 23 factorial design is
created when three factors are included.

Both the 22 and 23 factorial designs have the added advantage that dramatic
graphical displays are available to convey the results of the experiment. In spite of its
simplicity, even the 22 design is a powerful tool to improve products and processes.
The key is the decision to perform any designed experiment at all.

22 Design
Every 22 factorial design has two factors and each has two levels. To begin, we code
the two levels each factor as −1 for the low level and +1 for the high level. If the two
levels of a factor are non-quantitative, say two different brands of detergent, simply
designate one brand as level −1 and the other as +1.

We record the four possible experimental conditions in the standard order for
a 22 factorial experiment.

Design
x1 x2

−1 −1
1 −1

−1 1
1 1

The first column alternates signs between − 1 and + 1 starting with − 1, while the
second column alternates doubles starting with two − 1’s.

Geometrically, the four conditions comprising the 22 design are the corners of
the square in Figure 13.7. Attached at these corners are the four values of the corre-
sponding mean responses y1, y2, y3, and y4. Their subscripts match the row number
in the design.

Suppose the yield of a new chemical process for growing crystals needs im-
provement. Because temperature and pH are thought to influence yield, a 22 design
is attempted with two replicates. The following results are obtained for yield.
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Figure 13.7
The graphical presentation of
the results of a 22 factorial
experiment

y3 y4

y2y1

x2

x1

Factor A Factor B
Temperature pH Rep. 1 Rep. 2 Mean

300 2 10 14 y1 = 12
350 2 21 19 y2 = 20
300 3 17 15 y3 = 16
350 3 20 24 y4 = 22

Coding the low levels as −1 and the high levels as +1 confirms that the design is in
the standard order. Because both factors are quantitative, the coding can be expressed
by formula.

x1 = Temperature − ( 300 + 350 ) / 2
( 350 − 300 ) / 2

and x2 = pH − ( 2 + 3 ) / 2
( 3 − 2 ) / 2

Figure 13.8 shows the square representing the design with the sample means
written at the corners. For instance y1 = 12 is attached to the lower-left hand corner.

Figure 13.8
Visual presentation of yield
from a 22 factorial experiment

22 5 y4

20 5 y2y1  5 12 

pH (x2)

Temperature (x1)

y3  5 16 

It is clear from Figure 13.8 that increasing the temperature from low (300◦) to
high (350◦) increases the yield substantially at both levels of pH. Below we develop
confidence intervals that enable us to confirm the size of the improvement. This
figure very effectively presents the information contained in the experiment.
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We continue our analysis by finding point estimates and confidence intervals
for the magnitude of the difference in mean response that results when a factor is
changed from its low to high level.

Estimates of effects
To estimate the main effect of temperature, we see that runs 1 and 2 both have x2
at the low level. Their difference ( 20 − 12 ) = 8, along the bottom of the box in
Figure 13.8, is one measure of the effect of increasing x1 from −1 to +1. Runs 3
and 4 also have the same x2 value so the difference ( 22 − 16 ) = 6 is another
estimate of the effect of changing x1. The estimate of the main effect of factor A,
temperature, is the average of these two estimates.

Main effect Factor A = ( y2 − y1 ) + ( y4 − y3 )
2

= ( 20 − 12 ) + ( 22 − 16 )
2

= 7

Similarly, the main effect of factor B is the average of two estimates

Main effect Factor B = ( y3 − y1 ) + ( y4 − y2 )
2

= ( 16 − 12 ) + ( 22 − 20 )
2

= 3

These estimates also have the interpretation as the average response on the face of
the square with level +1 minus the average on the face of the square with level −1.
Both interpretations for the estimate of the main effect of Factor A are illustrated in
Figure 13.9 (a) and (b).

Figure 13.9
Two interpretations of estimate
of main effect of Factor A from
a 22 factorial experiment
(a) Difference of face means
(b) Mean of differences top and
bottom

2
12 1 16 

2
1

20 1 22
2

1 (22 2 16)/2

1 (20 2 12)/2

Next, consider the increase in yield ( 22 − 16 ) = 6 at the high level of Factor
B and the increase ( 20 − 12 ) = 8 at the low level. If the two factors, temperature
and pH, do not interact with each other, these two increases should be approximately
equal. To estimate the AB interaction effect, we divide their difference by 2.

AB interaction = ( y4 − y3 ) − ( y2 − y1 )
2

= ( 22 − 16 ) − ( 20 − 12 )
2

= −1

Note the same answer can be obtained using the difference of increases due to second
factor [ ( 22 − 20 ) − ( 16 − 12 ) ] / 2 = −1. A second interpretation in terms of
average response on the diagonals is illustrated in Figure 13.10.

2
16 1 20

2

1
12 1 22

2

Figure 13.10
Geometric
interpretation of
estimate of AB
interaction
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An important connection between the plus and minus signs of the estimators
becomes apparent by augmenting the design for x1 and x2 to include a column for
the product term x1 x2. Notice that the signs in the x1, x2 and x1 x2 columns in
the following table are the signs for the coefficients of the yi’s for estimating the
corresponding effects.

Factor A Factor B Interaction
x1 x2 x1 x2 Mean

−1 −1 1 y1
1 −1 −1 y2

−1 1 −1 y3
1 1 1 y4

We summarize the estimates of the effects.

Main effect Factor A:
( y2 − y1 ) + ( y4 − y3 )

2

Main effect Factor B:
( y3 − y1 ) + ( y4 − y2 )

2

AB interaction:
( y4 − y3 ) − ( y2 − y1 )

2

Confidence intervals for the effects
To obtain confidence intervals, we introduce model assumptions that are extensions
of the two independent samples case. When the number of replicates r > 1,

Model Assumptions

1. Yi1 ,Yi2 , . . . ,Yir are independent and distributed as N( μi , σ ) for i = 1, 2, 3, 4.

2. The four random samples are independent.

The assumptions state that the four normal populations have a common variance.
We develop an estimate of standard error of an estimator of an effect by first

noting that all estimators are of the form

1
2

[±Y 1 ± Y 2 ± Y 3 ± Y 4
]

Each sample mean is the average of r independent observations so that Var ( Yi ) =
σ 2 /r . Then, because the means Y 1 Y 2 ,Y 3 and Y 4 are independent, the variances
add.

Var ( estimator effect ) = 1
4

[
σ 2

r
+ σ 2

r
+ σ 2

r
+ σ 2

r

]
= σ 2

r

To estimate σ 2, we extend the concept of pooling connected with the two sample t
statistic. Expressing the observations as random variables, the treatment with x1 =
− 1 and x2 = − 1 contributes (r − 1 ) S2

1 = ∑r
j=1 ( Y1 j − Y 1 )2 to the pooled

estimate of variance. Similarly, the other three treatments contribute (r − 1 ) S2
2 ,

(r − 1 ) S2
3 , and (r − 1 ) S2

4 . The pooled estimate of σ 2 is the sum of these four
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contributions divided by the number of degrees of freedom ( r − 1 ) + ( r − 1 ) +
( r − 1 ) + ( r − 1 ) = 4 ( r − 1 ).

S2 =
∑4

i=1
∑r

j=1 ( Yi j − Y i )2

4 ( r − 1 )
= 1

4

(
S2

1 + S2
2 + S2

3 + S2
4

)
(See Theorem 6.5 and Example 14, Chapter 6, that relate the numerator to a χ2

distribution and that leads to the t distribution for making inferences about effect.)
In our example of growing crystals, the observed variance s is

s2 = 1
4

( 4 + 4 + 1 + 1 + 1 + 1 + 4 + 4 ) = 5

A 95% confidence interval for an effect based on r replications of a 22

design.

Estimated effect ±
√

s2

r
t0.025

where s2 = 1
4 ( s2

1 + s2
2 + s2

3 + s2
4 ) and t0.025 is based on 4 ( r − 1 ) degrees

of freedom.

We can now summarize the crystal growing experiment where r = 2 so the de-

grees of freedom = 4 and t0.025 = 2.776 . Also, s2 = 5 and t0.025

√
s2 / 2 =

2.776
√

5 / 2 = 4.39.

temperature effect: 7 ± 4.39 or ( 2.61 , 11.39 )
pH effect: 3 ± 4.39 or ( − 1.39 , 7.39 )
temperature × pH interaction: − 1 ± 4.39 or ( − 5.39 , 3.39 )

The confidence intervals have not only revealed that only the main effect of
temperature is non-zero but have indicated the size of the effect when temperature
is increased from 300◦ to 350◦.

Whenever the interaction effect is judged to be significant, we cannot conclude
that either main effect is not significant. In the presence of interaction, the two factors
must be considered jointly. The proper summary is the two-way table of means

Factor B

Factor A Low High

Low y1 y3
High y2 y4

or, equivalently, the square with the average responses in Figure 13.8.

23 Design
We now turn to graphic displays for the 23 factorial design. First, we record the eight
possible experimental conditions in the standard order for the 23 factorial design
using the coded values −1 and +1.
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Design
x1 x2 x3

−1 −1 −1
1 −1 −1

−1 1 −1
1 1 −1

−1 −1 1
1 −1 1

−1 1 1
1 1 1

The first column alternates signs between − 1 and + 1 starting with − 1, while the
second column alternates doubles starting with two − 1’s. The third column alter-
nates four rows at a time starting with four − 1’s.

In order to help expand the company’s market for a plastic wrapping material,
engineers were asked to improve the opacity. They felt that three factors—rate of
extrusion, amount of an additive, and nozzle setting—might have an effect. Two
levels were selected for each factor, and a 23 factorial experiment produced the
observations:

Factor A Factor B Factor C
Rate Amount Additive Nozzle Setting Rep. 1 Rep. 2

−1 −1 −1 4.5 4.1
1 −1 −1 3.8 3.4

−1 1 −1 3.1 4.3
1 1 −1 7.2 6.8

−1 −1 1 5.4 5.0
1 −1 1 4.5 4.9

−1 1 1 4.2 5.4
1 1 1 7.3 6.9

A cube representing the factors is shown in Figure 13.11. At the corners of the
cube, we have attached the mean response for that set of experimental conditions.
For instance, ( 7.3 + 6.9 )/2 = 7.1 appears at the upper right corner of the front
face. It is clear from Figure 13.11 that the response increases as both factor A and
factor B are simultaneously changed from their low to high levels. This is an in-
teraction effect since just changing one of the factors does not always increase the
response. Factor C, nozzle setting, also seems to have an effect.

Estimates of effects
The estimate of the main effect of A is the average of the four yi’s on the front face
minus the average of the four on the back face.

main effect Factor A = 1
4

(
y2 + y4 + y6 + y8

) − 1
4

(
y1 + y3 + y5 + y7

)
= − y1 + y2 − y3 + y4 − y5 + y6 − y7 + y8

4

= 1
4

(−4.3 + 3.6 − 3.7 + 7.0 − 5.2 + 4.7 − 4.8 + 7.1)

= 1.1
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Figure 13.11
Visual display of 23 experiment
with replication y4  5 7.0

y7  5 4.8

y8  5 7.1

y3  5 3.7

5.2 5 y5

4.7 5 y6

3.6 5 y2

4.3 5 y1

x2

x1

x3

Alternatively, this estimate is the average of the four increases along the edges where
a factor is changed from its low to high level. (See Figure 13.12(a)). The estimates
of the other two main effects have similar interpretations.

main effect Factor B = − y1 − y2 + y3 + y4 − y5 − y6 + y7 + y8

4
= 1.2

main effect Factor C = − y1 − y2 − y3 − y4 + y5 + y6 + y7 + y8

4
= 0.8

The AB interaction is estimated as the average of the interaction on the top face
and the interaction on the bottom face. Figure 13.12 gives the signs for the yi. We
estimate

AB interaction = ( y1 − y2 − y3 + y4 ) / 2 + ( y5 − y6 − y7 + y8 ) / 2

2

= 1

4

[
y1 − y2 − y3 + y4 + y5 − y6 − y7 + y8

]
= 1

4
[ 4.3 − 3.6 − 3.7 + 7.0 + 5.2 − 4.7 − 4.8 + 7.1 ]

= 1.7

The combination of signs for the 8 means are obtained in a similar manner for the
other 2 factor interactions.

AC interaction = 1

4

[
y1 − y2 + y3 − y4 − y5 + y6 − y7 + y8

]
= 1

4
[ 4.3 − 3.6 + 3.7 − 7.0 − 5.2 + 4.7 − 4.8 + 7.1 ]

= − 0.2
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BC interaction = 1

4

[
y1 + y2 − y3 − y4 − y5 − y6 + y7 + y8

]
= 1

4
[ 4.3 + 3.6 − 3.7 − 7.0 − 5.2 − 4.7 + 4.8 + 7.1 ]

= − 0.2

The three-factor interaction ABC is a measure of the difference of the AB interaction
on the top faces and the interaction on the bottom face. (See Figure 13.12.) That is,
it quantifies the influence of C on the AB interaction. (There is a symmetry here,
and, up to a minus sign, the same result is obtained starting with any two-factor
interaction.)

ABC interaction = ( y5 − y6 − y7 + y8 ) / 2 − ( y1 − y2 − y3 + y4 ) / 2

2

= 1

4

[ − y1 + y2 + y3 − y4 + y5 − y6 − y7 + y8
]

= 1

4
[ − 4.3 + 3.6 + 3.7 − 7.0 + 5.2 − 4.7 − 4.8 + 7.1 ]

= −0.3

Figure 13.12
The signs for estimating effects
in a 23 design

y6 2  y5

(a)  Main effect of A

(b)  AB interaction

(c)  ABC interaction

1 1

1

2 2

2 2

2

2

1 1

1

1 2

2

2

2

2

2

2

1

1

1

1

1

1
1

y2 2  y1

y8 2  y7

y4 2  y3

( y1 1 y3 1 y5 1 y7)1
42

( y2 1 y4 1 y6 1 y8)1
41

( y2 1 y3 1 y6 1 y7)1
42

( y1 1 y4 1 y5 1 y8)1
41
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The geometrical interpretation of the estimates is given in Figure 13.13.
An alternative method of determining the sign of any ȳi arises when we augment

the design by including additional columns for products of the original columns.

Design
Rate Additive Nozzle

x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3 Rep. 1 Rep. 2 Mean

−1 −1 −1 1 1 1 −1 4.5 4.1 4.3
1 −1 −1 −1 −1 1 1 3.8 3.4 3.6

−1 1 −1 −1 1 −1 1 3.1 4.3 3.7
1 1 −1 1 −1 −1 −1 7.2 6.8 7.0

−1 −1 1 1 −1 −1 1 5.4 5.0 5.2
1 −1 1 −1 1 −1 −1 4.5 4.9 4.7

−1 1 1 −1 −1 1 −1 4.2 5.4 4.8
1 1 1 1 1 1 1 7.3 6.9 7.1

Notice that again the signs of the columns are the coefficients of the linear combina-
tion of means. The value of each linear combination, when divided by 23−1, is the
estimated effect when changing from the low to high values of the input variables.
For the main effect of rate,

1

23−1
( −4.3 + 3.6 − 3.7 + 7.0 − 5.2 + 4.7 − 4.8 + 7.1 ) = 1.1

The estimates of the other main effects and interactions are similarly obtained using
the appropriate columns of signs.

Confidence intervals for the effects
To obtain confidence intervals, we must specify the model assumptions. When the
number of replicates r > 1,

Model Assumptions

1. Yi1 ,Yi2 , . . . ,Yir are independent and distributed as N( μi , σ ) for
i = 1, 2, . . . , 8.

2. The eight random samples are independent.

All seven estimates of effects are of the form

1
4

[±Y 1 ± Y 2 ± Y 3 ± Y 4 ± Y 5 ± Y 6 ± Y 7 ± Y 8]

and Var(Yi) = σ 2/r for i = 2, . . . , 8. Then, because the means are independent,

Var (estimator effect) = 1
16

(
σ 2

r
+ σ 2

r
+ σ 2

r
+ σ 2

r
+ σ 2

r
+ σ 2

r
+ σ 2

r
+ σ 2

r

)

= 1
2

σ 2

r

To estimate σ 2, we pool the eight contributions (r − 1)S2
i = ∑r

j=1(Yi j − Y i)
2 and

divide by the number of degrees of freedom 8(r−1). (See Theorem 6.5 and Example
14, Chapter 6)
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A 95% confidence interval for an effect in a 23 design,
Based on r replicates,

Estimated effect ±
√

s2

2 r
t0.025

where s2 = 1
8 ( s2

1 + s2
2 + s2

3 + s2
4 + s2

5 + s2
6 + s2

7 + s2
8 ) and t0.025

is based on 8 ( r − 1 ) degrees of freedom.

In our example

s2 = 1
8

(0.08 + 0.08 + 0.72 + 0.08 + 0.08 + 0.08 + 0.72 + 0.08)

= 1
8

(1.92) = 0.24

and t0.025 = 2.306 for (r − 1)23 = 8 degrees of freedom. The half length of the
confidence interval is t0.025

√
s2/(2r) = 2.306

√
0.24/4 = 0.56.

Naming the factors according to our application, the resulting 95% individual
confidence intervals are

rate effect: 1.1 ± 0.56, or 0.54 to 1.66

additive effect: 1.2 ± 0.56, or 0.64 to 1.76

nozzle effect: 0.8 ± 0.56, or 0.24 to 1.36

rate × additive interaction: 1.7 ± 0.56, or 1.14 to 2.26

rate × nozzle interaction: − 0.2 ± 0.56, or −0.76 to 0.36

additive × nozzle interaction: − 0.2 ± 0.56, or −0.76 to 0.36

rate × additive × nozzle interaction: − 0.3 ± 0.56 or −0.86 to 0.26

Here the confidence interval for the three-factor interaction covers 0, so we ne-
glect this interaction. However, we are 95% confident that the interval from 1.14 to
2.26 contains the rate × additive interaction, so we cannot interpret the rate and ad-
ditive factors individually. Factor C, nozzle setting, is not involved in any significant
interaction. With 95% confidence, we conclude that using the high nozzle setting
will increase the mean opacity of the plastic wrap by 0.24 to 1.36 units.

Blocking in a 23 design
It is always desirable to conduct the 8 runs of a 23 factorial design under conditions
that are as homogeneous as possible except for the settings of the 3 factors. However,
limitations of time, space, equipment or available people may make it impossible to
perform all 8 runs under homogeneous conditions. For instance, if large ceramic
parts need to be baked, the oven may only hold 4 at one time. In our example of a
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23 design for investigating factors that influence opacity, the time to manufacture the
large rolls of plastic could be a limiting condition. Suppose a maximum of 4 runs
can be conducted during one day. Consequently, the experiment needs to be divided
up so 4 runs can be conducted one day and the other 4 the next day. How should the
4 runs for the first day be selected from among the total of 8 runs?

Figure 13.13
A 23 experiment arranged
in 2 blocks of 4 runs; the
solid circles have
x1x2x3 = −1

The answer lies in the fact that the three-factor interaction can often be ne-
glected. Figure 13.13 shows how the 23 design can be divided into two groups of
runs or blocks, each consisting of four runs. The 4 runs in each block all have the
same sign for the three-factor interaction term x1x2x3.

The 4 runs in the first block, with x1 x2 x3 = − 1, are

Block I

x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

−1 −1 −1 1 1 1 −1
1 1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1

−1 1 1 −1 −1 1 −1

Those in the second block are

Block II

x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

1 −1 −1 −1 −1 1 1
−1 1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1

1 1 1 1 1 1 1

This division of the 8 runs into 2 blocks tends to neutralize the effect of dif-
ferences in uncontrolled variables between the 2 days on which the experiment
is conducted. Suppose that, due to some uncontrollable variable, all the runs on
the second day were d units higher than if they were performed on the first day.
Whatever the value of d, it will cancel out in the estimation of the 3 main effects
and the two-factor interactions. To see this, we inspect the appropriate column in
the tables of signs for each of the 2 blocks. The column corresponding to each of
these effects, in each block, has 2 plus signs and 2 minus signs, so the d term can-
cels. Alternatively, from the geometric representation, each face of the cube has
2 solid dots and 2 white dots. Consequently, the average over any face is unaf-
fected by the additive effect d and hence the estimates of the main effects are unaf-
fected. The diagonal contrasts for a two-factor interaction have the same property
on each face.

To be able to split the experiment into 2 blocks, we did have to give up informa-
tion about the three-factor interaction. We deliberately confused or confounded the
three-factor interaction with the day-to-day differences. Where the three-factor in-
teraction is unimportant, this choice ensures that the main effects and the two-factor
interactions can be estimated more precisely than would be the case if the 8 runs had
to be conducted over a two-day period under less homogeneous conditions.
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Exercises

13.10 As a preliminary step in optimizing the coating process of iron oxide nanoparticles
engineers explored the effects, of two factors each having two levels on the
response y = increase in particle size (%).

Factor Low level High Level

Factor A molecular weight of chitosan low high

Factor B concentration ratio of chitosan-TPP 2:1 6:1

Given the following observations (Source: Replicate 1 extracted from the
design in S. Honary et al. (2013), International Nano Letters, 3(48).
doi:10.1186/2228-5326-3-48):

x1 x2 Rep. 1 Rep. 2

−1 −1 96.0 90.8
1 −1 91.0 93.6

−1 1 76.0 88.4
1 1 223.8 214.2

(a) Attach the sample means at the corners of a square. Comment on any obvious
pattern.

(b) Obtain the point estimates of the effects and 95% confidence intervals.

13.11 Shape memory alloys can undergo a reversible phase transformation. These
materials display dramatic shape memory temperature-induced deformations that
are recoverable. Investigators want to evaluate the influence of two factors

Factor A: Temperature at levels 350 ◦C and 450◦C

Factor B: Time at levels 1 h and 5 h.

on the phase transformation temperature.
Given the following observations (Source: Replicate 1 extracted from the

design in W. de Castro and G. Anselmo (2013), A Factorial design study of Ageing
heat treatment influence on phase transformation of Ni-44.8wt%Ti Alloy, 22nd
International Congress of Mechanical Engineering (COBEM 2013), 907–911):

Factor A Factor B Rep. 1 Rep. 2

−1 −1 31.7 31.3
1 −1 33.5 33.1

−1 1 33.9 34.5
1 1 38.8 39.6

(a) Attach the sample means at the corners of a square. Comment on any obvious
pattern.

(b) Obtain the point estimates of the effects and 95% confidence intervals.
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13.12 Given the following observations

Factor A Factor B Rep. 1 Rep. 2

1 1 20 16
1 −1 12 16
1 1 15 17
1 −1 18 12

(a) Attach the sample means at the corner of a square. Comment on any obvious
pattern.

(b) Obtain the point estimates of the effects and 99% confidence intervals.

13.13 Two factors are thought to influence the deposition rate (seconds) for a pulse laser
to deposit one monolayer of material. Initially, a 22 design was run with two
factors: spot size 50 mm or 60 mm and laser energy 1.5 J/cm2 or 2.0 J/cm2.

Spot Size Laser Energy Rep. 1 Rep. 2

−1 −1 8.34 7.44
1 −1 5.20 4.96

−1 1 7.01 7.09
1 1 4.45 4.73

Summarize the experiment according to the visual procedure. Interpret the effects
based on confidence intervals.

13.14 Tomatoes have one of highest production volumes in the world and drying is one
major process for preservation. Color is an important quality index for consumers.
Three factors of storage, each at two levels, are considered in a replicated 23 design.

Factor Low level High level

A: Storage temperature (◦ C) 4 20
B: Packaging Vacuum (≤ 40 mbar) Normal (1023 mbar)
C: Storage time(month) 0 9

The response is color as measured by a redness index. (Source: B. Akdeniz, et
al. (2012), Use of factorial experimental design for analyzing the effect of storage
conditions on quality of sum-dried tomatoes, Scientific Research and Essays, 7(4),
477–489.)

Factor A Factor C Factor C Rep. 1 Rep. 2

−1 −1 −1 2.38 2.40
1 −1 −1 2.40 2.38

−1 1 −1 2.38 2.40
1 1 −1 2.38 2.40

−1 −1 1 2.40 2.42
1 −1 1 2.29 2.31

−1 1 1 1.94 1.94
1 1 1 1.92 1.93

(a) Attach the sample means at the corners of a cube. Comment on any obvious
pattern.

(b) Obtain the point estimates of the effects and 95 % confidence intervals.
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13.15 An engineering student wanted to know which factors influence the time (in
seconds) for his car to go from 0 to 30 to 0 miles per hour. Factor A was the launch,
which was either no wheel spin or dropping the clutch at 2,500 rpm. Factor B is
either stopping with transmission in neutral or in second gear. Factor C is the air
conditioning off or on.

Factor Factor B Factor C
Launch Transmission A/C Rep. 1 Rep. 2

−1 −1 −1 9.43 9.34
1 −1 −1 8.80 8.52

−1 1 −1 9.17 9.15
1 1 −1 8.36 8.43

−1 −1 1 9.87 9.66
1 −1 1 8.81 8.92

−1 1 1 9.56 8.94
1 1 1 8.40 8.46

Summarize the experiment according to the visual procedure. Interpret the effects
based on confidence intervals.

13.16 The effect on engine wear of oil viscosity, temperature, and a special additive was
tested using a 23 factorial design. Given the following results from the experiment,

Factor A Factor B Factor C
Viscosity Temperature Additive Rep. 1 Rep. 2

−1 −1 −1 3.7 4.1
1 −1 −1 4.6 5.0

−1 1 −1 3.1 2.7
1 1 −1 3.4 3.8

−1 −1 1 3.4 3.6
1 −1 1 5.3 4.9

−1 1 1 2.4 3.2
1 1 1 4.7 4.1

summarize the experiment according to the visual procedure given in Section 13.3.
Interpret the effects based on the confidence intervals.

13.17 Two machines X and Y were used to produce two types of plastic polymers, PPET
and PAMI. The polymers were produced using materials BA and PP. The
production was run 3 times. The y values given below are the logarithms of the
quantity of polymers produced.

Polymer Machine Material Run. 1 Run. 2 Run. 3

PPET X BA 2.86 2.42 2.18
PAMI X BA 3.14 3.28 3.96
PPET Y BA 4.12 4.59 4.18
PAMI Y BA 2.18 2.96 2.54
PPET X PP 1.19 1.11 1.45
PAMI X PP 3.15 3.99 3.21
PPET Y PP 3.21 3.85 2.99
PAMI Y PP 4.11 3.98 4.05

Analyze this experiment using the visual procedure and determine if there is a
difference between the two machines.
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13.18 The response variable Yi j in a 22 design can also be expressed as a regression model

Yi j = μ + β1 x1 + β2 x2 + β12 x1 x2 + εi j

where the εi j are independent normal random variables and each has mean 0 and
variance σ 2.

Because β1 is a regression coefficient, it quantifies the change in the expected
response when x1 is changed by one unit. The effects are calculated on a change
from −1 to 1 or 2 units.

(a) Obtain the expected values of Y 1 ,Y 2 ,Y 3, and Y 4 .

(b) Show that the expected value of the main effect of Factor A is 2 β1.

(c) Show that the expected value of the AB interaction effect is 2 β12.

13.4 Response Surface Analysis
The aim of a response surface analysis is to use designed experiments to obtain an
optimal response. The two-level factorial designs help experimenters locate regions
where the response is a maximum, or, if desired, a minimum. Once the general region
is located, another experiment should be conducted that allows for the estimation of
a quadratic surface. Then it is usually possible to more accurately determine the best
setting of the factors. We will illustrate the general idea with an example involving
two factors. The response surface is then the surface traced out by the expected
value of the response as the values of the two variables are changed.

We choose an experimental design which is composed of (i) a square and (ii) star
plus center point. These two components are illustrated in Figure 13.14.

Figure 13.14
Design for fitting a quadratic
surface in two variables

+=

Notice that, with only two variables, the design is the same as a 3 × 3 factorial
design. But with three factors, the cube has 8 points and there are 6 star points plus
1 center point, making a total of 15, not 27 = 3 × 3 × 3 runs.

With only two factors, we fit the quadratic model in two variables x1 and x2:

E( Y ) = β0 + β1x1 + β2x2 + β11x2
1 + β22x2

2 + β12x1x2

which provides an approximation to the response surface.

EXAMPLE 4 A response surface design to maximize yield
A compound is produced for a coating process. It is added to an otherwise fixed
recipe and the coating process is completed. Yield is the response variable. Two
factors x1 and x2 have been identified as “vital,” and they are

Factor (xi) Range

Additive amount 0–70 gm/kg
Reaction temperature 100–180◦C

The goal of the experiment is to improve the yield. The business requires that yield
be greater than 95%.
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An experimental design, square plus star and center points, was implemented
and the response yield measured.

Run Additive Temperature Yield

1 0 100 81
2 70 100 65
3 35 140 92
4 0 180 50
5 70 180 75
6 70 140 75
7 0 140 68
8 35 100 90
9 35 180 77

(Courtesy of Asit Banerjee)

Estimate the response surface and suggest a good region in which to operate.

Solution MINTAB software (see Exercise 13.20) provides the regression analysis

Estimated Regression Coefficients for Yield

Term Coef SE Coef T P
Constant 60.2639 18.5242 3.253 0.047
Additive 0.0417 0.1421 0.293 0.788
Temperature 0.5354 0.2714 1.972 0.143
Additive*Additive -0.0141 0.0013 -11.269 0.001
Temperature*Temperature -0.0033 0.0010 -3.467 0.040
Additive*Temperature 0.0073 0.0008 9.424 0.003

S = 2.175 R-Sq = 98.9%

The estimated response surface is

ŷ = 60.2639 + 0.0417 x1 + 0.5354 x2 − 0.0141 x2
1 − 0.0033 x2

2 + 0.0073 x1 x2

It is usually not reasonable to drop a linear term when the associated square term is
in the response surface model. Figure 13.15 presents a contour and 3d surface plot.
There is a small region, near x1 = 33 and x2 = 117, where the estimated yield is
nearly maximum. j

The book by Box and Draper, listed in the bibliography, provides a comprehen-
sive introduction to response surface methodology.

Exercises

13.19 Refer to the Example 4. Use calculus to obtain the location of the estimated maximum
yield when all terms are included in the model.

13.20 MINITAB response surface analysis
We illustrate the commands for the coating data in Example 4 where yield is the
response. Start with the Run, Additive, Temperature, Yield in C1–C4.
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Figure 13.15
Estimated response surface for
yield
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Dialog box:

Stat> DOE > Response Surface. Click Define Custom Response . . .
Type Additive and Temperature in Factors. Click High/Low and
Type 0 and 70 for Additive and 100 and 180 for Temperature.
Click OK. Click OK.

Stat> DOE > Response Surface. Click Analyze Response Surface Design
Type Yield in Response. Click Uncoded units. Choose Terms
and then full Quadratic. Click OK. Click OK.

The graph of the estimated response surface is produced by the commands

Stat> DOE > Response Surface > Contour/Surface Plots

Click Surface plot and then fill in choices similar to the analyze step shown above.
Repeat the analysis in the example after adding one more center point where the

measured yield is 93%.

13.21 Refer to Exercise 13.20. In Example 4, the experimenters also obtained the nine
responses for adhesion. The business wants adhesion greater than 45 grams.

Adhesion 10 48 41 40 39 44 24 31 44

Repeat the analysis in Example 4 but change the response to adhesion.

13.22 Is there a region within the experimental region where estimated adhesion is greater than
45 grams? Construct a contour plot to show this region. Note that MINITAB does keep
nonsignificant terms. Refer to Exercise 13.21.
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Do’s and Don’ts

Do’s
1. Whenever possible, randomize the assignment of treatments in a factorial

design.

2. Always create a graphic presentation of the data from 22 and 23 designs,
along with confidence intervals for the main effects and interactions.

Don’ts
1. Don’t routinely accept the analysis of the factorial design presented in a

computer output. Instead, inspect the residuals for outliers and moderate to
severe lack of normality. A normal-scores plot is useful if there are more
than 20 or so residuals. It may suggest a transformation.

Review Exercises

13.23 A footwear manufacturing machine manufactures each piece separately. Suppose
pairs are manufactured, with the following results obtained for the range (number).

Rubber 1 Rubber 2 Rubber 3 Rubber 4

Left foot
Sole 1
Sole 2

262 279 236 248

384 349 321 363

Rubber 1 Rubber 2 Rubber 3 Rubber 4

Right foot
Sole 1
Sole 2

261 281 239 246

385 352 318 363

Perform an appropriate analysis of variance, and test for the presence of an
interaction.

13.24 A study was conducted to measure the effect of 3 different meat tenderizers on the
weight loss of steaks having the same initial (precooked) weights. The effects of
cooking temperatures and cooking times also were measured by performing a
3 × 2 × 2 factorial experiment in 3 replicates. The results are as follows:

Weight Loss (ounces)Cooking Time Cooking
Tenderizer (minutes) Temperature (◦F) Rep. 1 Rep. 2 Rep. 3

A 20 350 1.5 1.3 1.4
A 20 400 1.6 1.4 1.5
A 30 350 1.7 1.8 1.7
A 30 400 1.8 1.9 2.0
B 20 350 1.9 2.1 2.0
B 20 400 2.2 2.4 2.5
B 30 350 2.6 2.3 2.4
B 30 400 2.6 2.7 2.5
C 20 350 0.9 0.8 0.8
C 20 400 1.1 1.0 0.9
C 30 350 0.8 0.9 1.0
C 30 400 1.2 1.0 1.1

Present the results in an analysis of variance table and interpret the experiment.
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13.25 An experiment was conducted to determine the effects of certain alloying elements
on the ductility of a metal, and the following results were obtained:

Breaking Strength (ft-lb)

Nickel Carbon Manganese Rep. 1 Rep. 2 Rep. 3

0.0% 0.3% 0.5% 36.7 39.6 38.2
0.0 0.3 1.0 47.5 43.5 45.9
0.0 0.6 0.5 40.6 36.8 36.0
0.0 0.6 1.0 41.1 45.8 46.4
4.0 0.3 0.5 37.8 32.7 31.6
4.0 0.3 1.0 34.2 37.2 36.5
4.0 0.6 0.5 39.5 41.7 39.1
4.0 0.6 1.0 46.4 43.7 49.4

Perform an appropriate analysis of variance and interpret the results.

13.26 Given the two replicates of a 2 × 3 factorial experiment, calculate the analysis of
variance tables using the formulas on page 428.

Factor A Factor B Rep. 1 Rep. 2

1 1 29 35
1 2 15 17
1 3 14 22
2 1 15 13
2 2 27 25
2 3 16 24

13.27 Given the following observations,

Factor P Factor Q Rep. 1 Rep. 2

−1 1 18 12
−1 −1 8 14

1 1 10 16
1 −1 6 10

Summarize the experiment according to the visual procedure given in Section 13.3.
Interpret the effects based on the confidence intervals.

13.28 With reference to the example on page 443, suppose a third replicate

Temperature pH Rep. 3

300 2 9
350 2 23
300 3 13
350 3 25

is run. Analyze the experiment, using all 3 replicates, according to the visual
procedure given in Section 13.3. Interpret the effects based on the confidence
intervals.

13.29 Trouble was being experienced by a new high-tech machine for joining two pieces
of sheet metal. The two factors considered first are the pressure (low/high) and
temperature of the pump low/high. The response is the diameter (mm) of a
button-shaped joint which is an indirect measure of strength.
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Pressure Temperature Rep. 1 Rep. 2

−1 −1 8 12
1 −1 16 22

−1 1 5 11
1 1 16 21

Summarize the experiment according to the visual procedure. Interpret the effects
based on confidence intervals.

13.30 A computer engineer studied the working of a motherboard under different
conditions. The response is heating effect (coded units). The factors are fan
connectors (no. of pins), power connection (type), and chipsets (direction).

Factor A Factor B Factor C Rep. 1 Rep. 2

−1 −1 −1 24.8 26.4
−1 −1 1 32.1 30.9
−1 1 −1 36.5 34.5
−1 1 1 29.4 24.8

1 −1 −1 23.5 26.7
1 −1 1 24.8 19.6
1 1 −1 26.9 24.3
1 1 1 25.1 21.7

Summarize the experiment according to the visual procedure. Interpret the effects
based on confidence intervals.

13.31 Given the following results from a 23 factorial experiment,

Factor A Factor B Factor C Rep. 1 Rep. 2

−1 −1 −1 13.8 14.6
1 −1 −1 10.8 8.4

−1 1 −1 9.0 9.8
1 1 −1 10.1 10.9

−1 −1 1 14.4 13.6
1 −1 1 6.2 8.6

−1 1 1 7.7 7.9
1 1 1 9.0 8.2

summarize the experiment according to the visual procedure given in Section 13.3.
Interpret the effects based on the confidence intervals.

13.32 The total sum of squares is given by
∑k

i=1
∑r

j=1(yi j − y)2 where the overall mean

y = ∑k
i=1

∑r
j=1(yi j/n). With reference to Exercise 13.27, show that the total sum

of squares can be expressed as the sum of squares due to each of the treatment SSA,
SSB, and SSAB plus the error of the sum of squares.

This decomposition is the basis for the analysis of variance and it is
summarized in the first column of the ANOVA table.
[Hint: Sum of squares for any treatment in a 22 design is (estimated effect)2 × r.
The error of the sum of squares is

∑k
i=1

∑r
j=1(yi j − yi)

2]

13.33 With reference to the example of the 23 design on page ***, express the total sum
of squares as the sum of the contributions from each of the seven treatments plus
the error sum of squares.

This decomposition is the basis for the analysis variance and it is summarized
in the first column of the ANOVA table.
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[Hint: Sum of squares for any treatment in a 23 design is ( estimated effect )2 2 × r.
Refer to Exercise 13.32 for the total and error sum of squares.]

13.34 With reference to the Example 3 concerning improvements in the safety of an
ignitor, the time to reach maximum pressure was also recorded. Two replicates were
run of the factorial design and the times to reach maximum pressure recorded.
Analyze the results of this experiment.

Time
(milliseconds)

A B C Rep. 1 Rep. 2

Initiator 1 Powder Mc 1 54.02 49.64
Initiator 1 Pellet Mc 1 60.74 70.66
Initiator 1 Powder Mc 2 37.56 43.72
Initiator 1 Pellet Mc 2 46.40 42.04
Initiator 1 Powder Mc 3 40.54 41.60
Initiator 1 Pellet Mc 3 50.56 45.44
Initiator 1 Powder Mc 4 47.08 44.28
Initiator 1 Pellet Mc 4 47.68 60.22
Initiator 2 Powder Mc 1 47.00 58.74
Initiator 2 Pellet Mc 1 51.30 53.96
Initiator 2 Powder Mc 2 59.82 45.66
Initiator 2 Pellet Mc 2 52.20 57.82
Initiator 2 Powder Mc 3 68.46 59.86
Initiator 2 Pellet Mc 3 82.78 57.16
Initiator 2 Powder Mc 4 75.14 90.82
Initiator 2 Pellet Mc 4 82.38 75.38
Initiator 3 Powder Mc 1 35.78 30.34
Initiator 3 Pellet Mc 1 56.06 38.30
Initiator 3 Powder Mc 2 20.60 22.18
Initiator 3 Pellet Mc 2 21.38 21.50
Initiator 3 Powder Mc 3 45.06 43.18
Initiator 3 Pellet Mc 3 50.24 56.74
Initiator 3 Powder Mc 4 44.54 69.96
Initiator 3 Pellet Mc 4 63.42 49.66

13.35 Refer to Exercise 13.10 where the response is y = increase in particle size. Besides
the first replicate, the investigators also performed the experiments that form the
star part of the design.

x1 x2 y

−1 0 116.0
+1 0 138.0

0 −1 78.0
0 +1 118.0
0 0 97.0

Using all 9 measurements, fit a response surface as in Example 4.
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Most of the methods of inference that we have studied are based on the assump-
tion that the observations come from normal populations. If this is the case,
these methods extract all the information available in a sample, and they usually

attain the best possible precision. However, since there are many situations where it is
doubtful whether the assumption of normality can be met, statisticians have developed
alternative techniques based on less stringent assumptions, which have become known
as nonparametric tests.

Here, we present the sign test in Section 14.2; tests based on rank sums in Sec-
tion 14.3; a rank-based correlation coefficient in Section 14.4; a test of randomness in
Section 14.5; and goodness-of-fit tests in Section 14.6.

14.1 Introduction
In this chapter, we expand the choice of statistical methods available for inferences
concerning one or more populations. The assumption of a normal population
underlies most of the “standard methods” discussed in the previous chapters.
Understandably, it is often difficult to verify this tentative assumption, especially
when sample sizes are small. Here we introduce tests that depend only on order
relationships among the observations. Consequently, much less has to be assumed
about the form of the underlying populations. The main advantage of these nonpara-
metric tests is that exact inferences can be made when the assumptions underlying
the so-called standard methods cannot be met. When the normal assumption is met,
the standard tests will have more power. However, asymmetry or other departures
from normality will have no effect on the sampling distribution of any nonparametric
statistic when the null hypothesis prevails. Moreover, their power is usually satis-
factory even when the populations deviate from normality.

Also, nonparametric tests apply even when the choice of a particular numerical
scale of measurement is arbitrary. Still, their strongest value is the fact that the level
of significance is exact even when the populations are quite nonnormal.

14.2 The Sign Test
We now describe a simple nonparametric alternative to the one-sample t test, the
paired-sample t test, and corresponding large-sample tests. The sign test applies
when we sample a continuous symmetrical population, so that the probability of
getting a sample value less than the mean and the probability of getting a sample
value greater than the mean are both 1

2 . More generally, because symmetry is often
difficult to verify with small or moderate sample sizes, we can formulate the hy-
potheses in terms of the population median μ̃. To test the null hypothesis μ̃ = μ̃0
against an appropriate alternative on the basis of a random sample of size n, we re-
place each sample value greater than μ̃0 with a plus sign and each sample value less
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than μ̃0 with a minus sign. We then test the null hypothesis that these plus and minus
signs are the outcomes of binomial trials with p = 1

2 . If a sample value equals μ̃0,
which may well happen since the values of continuous random variables are virtually
always rounded, it is discarded.

To perform this kind of test when the sample is small, we refer directly to a table
of binomial probabilities such as Table 1 at the end of the book; when the sample is
large we use the test described in Section 10.2.

EXAMPLE 1 Conducting a sign test
The following data constitute a random sample of 15 measurements of the octane
rating of a certain kind of gasoline:

99.0 102.3 99.8 100.5 99.7 96.2 99.1 102.5
103.3 97.4 100.4 98.9 98.3 98.0 101.6

Test the null hypothesis μ̃ = 98.0 against the alternative hypothesis μ̃ > 98.0 at the
0.01 level of significance.

Solution Since one of the sample values equals 98.0 and must be discarded, the sample size
for the sign test is only n = 14.

1. Null hypothesis: μ̃ = 98.0 ( p = 1
2 )

Alternative hypothesis: μ̃ > 98.0 ( p > 1
2 )

2. Level of significance: α = 0.01

3. Criterion: The criterion may be based on the number of plus signs or the
number of minus signs. Using the number of plus signs, denoted by x, reject the
null hypothesis if the probability of getting x or more plus signs is less than or
equal to 0.01.

4. Calculations: Replacing each value greater than 98.0 with a plus sign and each
value less than 98.0 with a minus sign, the 14 sample values yield

+ + + + + − + + + − + + + +

Thus x = 12 and Table 1 shows that for n = 14 and p = 0.50 the probability of
X ≥ 12 is 1 − 0.9935 = 0.0065.

5. Decision: Since 0.0065 is less than 0.01, the null hypothesis must be rejected;
we conclude that the median octane rating of the given kind of gasoline
exceeds 98.0. j

The sign test can also be used as a nonparametric alternative to the paired-t
test or the corresponding large-sample test. In such problems, each pair of sample
values is replaced with a plus sign if the first is greater than the second, with a minus
sign if the first value is smaller than the second, or it is discarded if the two values
are equal. The procedure is the same as before. Let μ̃D denote the median of the
differences.

EXAMPLE 2 A sign test of the effectiveness of a safety program
With reference to Example 12, Chapter 8, which deals with the effectiveness of an
industrial safety program, use the sign test at the 0.051 level of significance to test
whether the safety program is effective.
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Solution 1. Null hypothesis: μ̃D = 0
(

p = 1
2

)

Alternative hypothesis: μ̃D > 0
(

p >
1
2

)
2. Level of significance: α = 0.05

3. Criterion: If x is the number of plus signs, reject the null hypothesis if the
probability of getting x or more plus signs is less than or equal to 0.05.

4. Calculations: Replacing each pair of values with a plus sign if the first value is
greater than the second or with a minus sign if the first value is smaller than the
second, the 10 sample pairs yield

+ + + + − + + + + +
Thus x = 9 and Table 1 shows that for n = 10 and p = 0.50 the probability of
X ≥ 9 is 1 − 0.9893 = 0.0107.

5. Decision: Since 0.0107 is less than 0.05, the null hypothesis must be rejected;
we conclude that the safety program is effective. j

14.3 Rank-Sum Tests
In this section we shall introduce two tests based on rank sums—the U test will be
presented as a nonparametric alternative to the two-sample t test, and the H test will
be presented as a nonparametric alternative to the one-way analysis of variance,
which we studied in Chapter 12. In other words, the H test serves to test the null
hypothesis that k samples come from identical populations against the alternative
that the populations are not identical.

To illustrate how theU test (also called the Wilcoxon test or the Mann-Whitney
test, named after the statisticians who contributed to its development) is performed,
suppose that in a study of sedimentary rocks, the following diameters (in millime-
ters) were obtained for two kinds of sand:

Sand I: 0.63 0.17 0.35 0.49 0.18 0.43 0.12 0.20
0.47 1.36 0.51 0.45 0.84 0.32 0.40

Sand II: 1.13 0.54 0.96 0.26 0.39 0.88 0.92 0.53
1.01 0.48 0.89 1.07 1.11 0.58

The problem is to decide whether the two populations are the same or if one
is more likely to produce larger observations than the other. Let X1 be a random
variable having the first distribution and X2 a random variable having the second
distribution. If P(a < X1) ≤ P(a < X2) for all a, with strict inequality for some
a, we say that the second population (distribution) is stochastically larger than the
first population (distribution). We formulate one-sided hypotheses in terms of this
stochastic order relation.

We begin the U test by ranking the data jointly, as if they comprise one sample,
in an increasing order of magnitude, and for our data we get

0.12 0.17 0.18 0.20 0.26 0.32 0.35 0.39 0.40 0.43
I I I I II I I II I I

0.45 0.47 0.48 0.49 0.51 0.53 0.54 0.58 0.63 0.84
I I II I I II II II I I

0.88 0.89 0.92 0.96 1.01 1.07 1.11 1.13 1.36
II II II II II II II II I
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Note that, for each value, we indicate whether it is a measurement of Sand I or
Sand II. Assigning the data in this order the ranks 1, 2, 3, . . . , and 29, we find that
the values of the first sample (Sand I) occupy ranks 1, 2, 3, 4, 6, 7, 9, 10, 11, 12,
14, 15, 19, 20, and 29, while those of the second sample (Sand II) occupy ranks 5,
8, 13, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, and 28. There are no ties here among
values belonging to different samples, but if there were, we would assign to each of
the tied observations the mean of the ranks which they jointly occupy. For instance,
if the third and fourth values are identical we would assign each the rank

3 + 4
2

= 3.5

and if the ninth, tenth, and eleventh values are identical we would assign each the
rank

9 + 10 + 11
3

= 10

The null hypothesis we want to test is that the two samples come from identical
populations, and it stands to reason that, in that case, the means of the ranks assigned
to the values of the two samples should be more or less the same. Instead of the
means, we can also compare the sums of the ranks assigned to the values of the
two samples, suitably accounting for a possible difference in their size. For our two
samples, the sums of the ranks are W1 = 162 and W2 = 273, and it remains to be
seen whether their difference is large enough to reject the null hypothesis.

When the use of rank sums was first proposed as a nonparametric alternative to
the two sample t test, the decision was based on W1 or W2, but now the decision is
based on either of the related statistics

U1 and U2 statistics

U1 = W1 − n1 ( n1 + 1 )
2

or

U2 = W2 − n2 ( n2 + 1 )
2

or on the statistic U which equals the smaller of the two. The sizes of the two samples
are n1 and n2, and as it does not matter how we number the samples, we shall use
here the statistic U1.1

Under the null hypothesis that the two samples come from identical populations,
it can be shown that the mean and the variance of the sampling distribution of U1 are

Mean and variance
of U1 statistic

μU1 = n1n2
2

and

σ 2
U1

= n1n2 ( n1 + n2 + 1 )
12

If there are ties in rank, these formulas provide only approximations, but if the num-
ber of ties is small, these approximations will generally be good.

1The tests based on U1 and U2 are equivalent to those based on W1 or W2, but they have the advantage that
they lend themselves more readily to the construction of tables of critical values. Not only do U1 and U2 take
on values on the interval from 0 to n1n2—indeed, their sum is always equal to n1n2—but their sampling
distributions are symmetrical about n1 n2

2 .
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Since numerical studies have shown that the sampling distribution of U1 can
be approximated closely by a normal distribution when n1 and n2 are both greater
than 8, the test of the null hypothesis that the two samples come from identical
populations can be based on

Statistic for large
sample U test

Z = U1 − μU1

σU1

which is a random variable having approximately the standard normal distribution.
For small samples, we can base the test on special tables; for instance, on those in
the book by Johnson and Bhattacharyya, listed in the bibliography.

Note that when we test the null hypothesis—the two samples come from iden-
tical populations—against the alternative hypothesis

population 2 is stochastically larger than population 1

we reject the null hypothesis, if Z < − zα , since small values of U1 correspond to
small values of W1; correspondingly, if the alternative hypothesis is

population 1 is stochastically larger than population 2

we reject the null hypothesis, if Z > zα , since large values of U1 correspond to large
values of W1.

EXAMPLE 3 Conducting the Wilcoxon test with large samples
With reference to the grain-size data on page 466, use the U test at the 0.01 level
of significance to test the null hypothesis that the two samples come from identical
populations against the alternative hypothesis that the populations are not identical.

Solution 1. Null hypothesis: Populations are identical.
Alternative hypothesis: The populations are not identical.

2. Level of significance: α = 0.01

3. Criterion: Reject the null hypothesis if Z < − 2.575 or Z > 2.575, where Z is
given by the formula above.

4. Calculations: Since n1 = 15, n2 = 14, and we have already shown that
W1 = 162, we find that

U1 = 162 − 15 · 16
2

= 42

μU1 = 15 · 14
2

= 105

and

σ 2
U1

= 15 · 14 · 30
12

= 525

and it follows that

z = 42 − 105√
525

= −2.75

5. Decision: Since z = −2.75 is less than −2.575, the null hypothesis must
be rejected at α = 0.01. The P-value = 0.0060 and we conclude that there is a
strong evidence of difference in the populations of grain size. j
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The H test, or Kruskal-Wallis test, is a generalization of the U test in that it
enables us to test the null hypothesis that k independent random samples come from
identical populations. As in the U test, all the observations are ranked jointly, and
if Ri is the sum of the ranks occupied by the ni observations of the ith sample and
n1 + n2 + · · · + nk = n, the test is based on the statistic

Statistic for H test H = 12
n ( n + 1 )

k∑
i=1

R2
i

ni
− 3 ( n + 1 )

When ni > 5 for all i and the null hypothesis is true, the sampling distribution of the
H statistic is well approximated by the chi square distribution with k − 1 degrees of
freedom. There exist special tables of critical values for the H test for selected small
values of the ni and k.

EXAMPLE 4 Conducting an H test to compare three methods
An experiment, designed to compare three methods for preventing corrosion, yielded
the following maximum depths of pits (in thousandths of an inch) in pieces of wire
subjected to the respective treatments:

Method A: 77 54 67 74 71 66

Method B: 60 41 59 65 62 64 52

Method C: 49 52 69 47 56

Use the 0.05 level of significance to test the null hypothesis that the three samples
come from identical populations.

Solution 1. Null hypothesis: Populations are identical.
Alternative hypothesis: The populations are not all equal.

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if H > 5.991, the value of χ2
0.05 for

2 degrees of freedom, where H is given by the formula above.

4. Calculations: Ranking these measurements jointly from smallest to largest, we
find that those of the first sample occupy ranks 6, 13, 14, 16, 17, and 18; those
of the second sample occupy ranks 1, 4.5, 8, 9, 10, 11, and 12; and those of the
third sample occupy ranks 2, 3, 4.5, 7, and 15. Thus, R1 = 84, R2 = 55.5,
R3 = 31.5, and substitution into the formula for H yields

H = 12
18 · 19

(
842

6
+ 55.52

7
+ 31.52

5

)
− 3 · 19

= 6.7

5. Decision: Since H = 6.7 exceeds 5.991, the null hypothesis must be rejected at
α = 0.05. The P-value = P(χ2

2 > 6.7) = 0.035 and we conclude that the three
preventive methods against corrosion are not equally effective. j

14.4 Correlation Based on Ranks
In Chapter 11, we introduced Pearson’s product moment correlation coefficient as a
measure of association. An alternative measure, called Spearman’s rank-
correlation or the rank-correlation coefficient, is analogous to Pearson’s
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correlation, r, except that Spearman replaces the observations with their ranks:

rS =

n∑
i=1

( Ri − R )( Si − S )

√√√√ n∑
i=1

( Ri − R )2

√√√√ n∑
i=1

( Si − S )2

where Ri is the rank of xi among the x’s and Si is the rank of yi among the y’s. Because
each of the ranks, 1, 2, …, n, must occur exactly once in the set R1, R2, . . . , Rn, it
can be shown that R = S = ( n + 1 )/2 and

∑n
i=1( Ri − R )2 = n( n2 − 1 )/12 =∑n

i=1( Si − S )2.

Spearman’s rank
correlation coefficient

The rank-correlation coefficient

rS =

n∑
i=1

(
Ri − n + 1

2

)(
Si − n + 1

2

)
n( n2 − 1 )/12

=

n∑
i=1

RiSi − n( n + 1 )2/4

n( n2 − 1 )/12

1. −1 ≤ rS ≤ 1

2. Values of rS near 1 indicate a tendency of large values for X and Y to be
paired together. An rS near −1 indicates the opposite relationship.

3. rS is a measure of a monotone increasing/decreasing relationship that is not
necessarily linear.

When ties are present, assign the average of the corresponding ranks to each tied
observation. It can be shown that

Large sample statistic for
testing independence

if X and Y are independent, then

Z = √
n rS is approximately distributed as standard normal

provided the sample size is large.

EXAMPLE 5 Rank correlation of before and after plant safety
Refer to Example 12 of Chapter 8 concerning losses of worker-hours before and
after safety programs in 10 industrial plants. Calculate rS.

Solution The two sets of ranks are

Ri = rank ( xi ): 5 8 6 10 3 7 9 4 2 1
Si = rank ( yi ): 5 8 6 10 4 7 9 3 2 1

We calculate
∑10

i=1 RiSi = 384, ( n + 1 )/2 = 5.5, and n( n2 − 1 ) = 990 so

rS =

n∑
i=1

RiSi − n( n + 1 )2/4

n( n2 − 1 )/12
= 384 − 10( 5.5 )2

990/12
= 0.988

This large positive value indicates strong association along an increasing curve.
Since

√
n rS = 3.12, there is strong evidence against independence. j
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Exercises
14.1 In a factory, 20 observations of the factors that could

heat up a conveyor belt yielded the following results:
0.36, 0.41, 0.25, 0.34, 0.28, 0.26, 0.39, 0.28, 0.40,
0.26, 0.35, 0.38, 0.29, 0.42, 0.37, 0.37, 0.39, 0.32, 0.29
and 0.36. Use the sign test at the 0.01 level of signifi-
cance to test the null hypothesis μ̃ = 0.34 against the
alternative hypothesis μ̃ �= 0.34.

14.2 The time sheet of a factory showed the following sam-
ple data (in hours) on the time spent by a worker op-
erating a hydraulic gear lift: 1.0, 0.8, 0.5, 0.9, 1.2, 0.9,
1.4, 10, 1.3, 0.8, 1.5, 1.2, 1.9, 1.1, 0.7, 0.8, 1.1, 1.2,
1.5, 1.1, 1.8, 0.5, 0.8, 0.9, and 1.6. Use the sign test
at the 0.05 level of significance to test the null hy-
pothesis μ̃ = 1.1 against the alternative hypothesis
μ̃ > 1.1.

14.3 With reference to Exercise 2.12, which pertained to the
particle size of cement dust in a factory producing ce-
ment, use the sign test at the 0.05 level of significance
to test the null hypothesis μ̃ = 15.13 hundredth of a
micron against the alternative hypothesis μ̃ < 15.13
hundredth of a micron.

14.4 The following are the number of classes attended by 2
students on 20 days: 3 and 5, 1 and 2, 3 and 4, 2 and 5,
5 and 3, 4 and 2, 1 and 3, 1 and 4, 1 and 2, 2 and 4, 3
and 2, 2 and 5, 5 and 5, 1 and 3, 2 and 4, 2 and 2, 2 and
3, 3 and 5, 3 and 3, 2 and 1. Use the sign test at the 0.01
level of significance to test the null hypothesis that on
average the 2 students attend equally many classes per
day against the alternative hypothesis that the second
student tends to attend more classes than the first.

14.5 Comparing two types of automobile engines, a consumer testing service obtained
the following pickup (0 – 100 kmph) times (rounded to the nearest tenth of a
second):

Engine A: 13.3 12.1 14 .6 8.9 9.5 12.4 13.2 13.5 13.9 12.9

Engine B: 12.6 13.1 9.8 10.4 12.5 13.6 13.0 12.2 9.9 11.5

Use the U test at the 0.05 level of significance to check whether it is reasonable to
say that the population of pickup times of the two engines is identical.

14.6 The following are the self-reported times (hours for month), spent on homework, by
random samples of juniors in two different majors.

Major 1: 63 72 29 58 81 65 79 57 40 76 47 55 60

Major 2: 41 32 26 43 78 49 39 56 15 54 8 66 64

Use the U test at the 0.05 level of significance to test whether or not students from
the 2 groups devote the same amounts of time to homework.

14.7 The following are the data on the strength (in psi) of 2 kinds of adhesives:

Adhesive 1: 4500 4400 4110 4450 4280 4940 4450 4610 4320 4210 4250
4280 4800 4340 4480 4450 4410 4190 4250 4800

Adhesive 2: 4100 4800 4720 4620 4610 4180 4190 4250 4360 4290 4400
4310 5080 4550 4980 4780 4860 4440 4870 4990

Use the U test at the 0.01 level of significance to test the claim that the strength of
Adhesive 1 is stochastically larger than the strength of Adhesive 2.

14.8 A company that processes health claims maintains three centers. Software was
installed so they could monitor non-business internet usage by their employees.
Initially, six employees were randomly selected from each of three service centers
and the number of hours of non-business internet usage recorded.

Service Center 1 4.1 10.4 2.2 5.7 3.8 12.3
Service Center 2 7.9 5.4 13.1 7.7 8.3 9.8
Service Center 2 6.9 9.3 11.2 1.9 13.8 7.3

Use the H test at the 0.05 level of significance to test the null hypothesis that the
3 samples come from identical populations.
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14.9 So-called Franklin tests were performed to determine the insulation properties of
grain-oriented silicon steel specimens that were annealed in five different
atmospheres with the following results:

Atmosphere Test Results (amperes)

1 0.58 0.61 0.69 0.79 0.61 0.59
2 0.37 0.37 0.58 0.40 0.28 0.44 0.35
3 0.29 0.19 0.34 0.17 0.29 0.16
4 0.81 0.69 0.75 0.72 0.68 0.85 0.57 0.77
5 0.26 0.34 0.29 0.47 0.30 0.42

Use the H test at the 0.05 level of significance to decide whether or not these
5 samples can be assumed to come from identical populations.

14.10 A panel of 8 judges was asked to rate each of 3 models developed by engineering
students on the likelihood that these models can be practically implemented to
harness the controlled fusion energy. Their ratings (in the form of judgmental
probabilities) are as follows:

Model

Judge X Y Z

A 0.21 0.24 0.38
B 0.42 0.48 0.06
C 0.53 0.46 0.24
D 0.26 0.51 0.42
E 0.85 0.76 0.92
F 0.28 0.35 0.19
G 0.12 0.30 0.22
H 0.90 0.65 0.78

Calculate the rank correlation coefficient, rS

(a) using Models X and Y;

(b) using Models Y and Z.

14.5 Tests of Randomness
When we discussed random sampling in Chapter 6, we gave several methods which
provide some assurance in advance that the selected sample will be random. In some
situations however, we have no control over the way in which the data are selected.
Then, it is useful to have a technique for testing whether the selected sample may
be looked upon as random. One such technique is based on the order in which the
sample values were obtained. More specifically, it is based on the number of runs
exhibited in the sample results.

Given a sequence of two symbols, such as H and T (which might represent
the occurrence of heads and tails in repeated tosses of a coin), a run is defined as a
succession of identical symbols contained between different symbols or none at all.
For example, the sequence

T T H H T T H H H T H H H T T T T H H H

contains 8 runs, as indicated by the underlines. The total number of runs in a se-
quence of n trials often serves as an indication that the arrangement is not random.
For instance, if there had been only two runs consisting of 10 heads followed by
10 tails, we should suspect that the probability of a success did not remain constant
from trial to trial. On the other hand, had the sequence of 20 tosses consisted of
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alternating heads and tails, we might have suspected that the trials were not inde-
pendent. In either case, there are grounds to suspect a lack of randomness. Note that
our suspicion is not aroused by the numbers of H’s and T ’s, but by the order in which
they appeared.

If a sequence contains n1 symbols of one kind and n2 of another kind (and
neither n1 nor n2 is less than 10), the sampling distribution of the total number of
runs, u, can be approximated closely by a normal distribution with

Mean and standard
deviation of u

μu = 2 n1n2
n1 + n2

+ 1 and σu =
√

2 n1n2( 2 n1n2 − n1 − n2 )

( n1 + n2 )2 ( n1 + n2 − 1 )

Thus, the test of the null hypothesis that the arrangement of the symbols (and, hence,
the sample) is random can be based on the statistic

Statistic for tests of
randomness

Z = u − μu

σu

which has approximately the standard normal distribution. Special tables are avail-
able for performing the test when n1, n2, or both are small.

EXAMPLE 6 Conducting a test for randomness
The following is the arrangement of defective, d, and nondefective, n, pieces pro-
duced in the given order by a certain machine:

n n n n n d d d d n n n n n n n n n n d d n n d d d d

Test for randomness at the 0.01 level of significance.

Solution 1. Null hypothesis: Arrangement is random.
Alternative hypothesis: Arrangement is not random.

2. Level of significance: α = 0.01

3. Criterion: Reject the null hypothesis if Z < −2.575 or Z > 2.575, where Z is
given by the above formula.

4. Calculations: Since n1 = 10, n2 = 17, and u = 6, we get

μu = 2 · 10 · 17
10 + 17

+ 1 = 13.59

σu =
√

2 · 10 · 17 ( 2 · 10 · 17 − 10 − 17 )

( 10 + 17 )2 ( 10 + 17 − 1 )
= 2.37

and

z = 6 − 13.59
2.37

= −3.20

5. Decision: Since z = −3.20 is less than −2.575, the null hypothesis must be
rejected. We conclude that the arrangement is not random. The small P-value =
.0014 = P(Z < −3.20) + P(Z > 3.20) strengthens the conclusion. Indeed, the
total number of runs is much smaller than expected and there is a strong
indication that the defective pieces appear in clusters or groups. The reason for
this will have to be uncovered by an engineer who is familiar with the process. j



474 Chapter 14 Nonparametric Tests

The run test can be used also to test the randomness of samples consisting of
numerical data by counting runs above and below the median. Denoting an ob-
servation exceeding the median of the sample by the letter a and an observation less
than the median by the letter b, we can use the resulting sequence of a’s and b’s to
test for randomness by the method just indicated. A frequent application of this test
is in quality control, where the means of successive small samples are exhibited on
a graph in chronological order. The run test can then be used to check whether there
might be a trend in the data. If so, it may be possible to adjust a machine setting or
some other process variable before any serious damage occurs.

EXAMPLE 7 Testing for too many changes
An engineer is concerned about the possibility that too many changes are being made
in the settings of an automatic lathe. Given the following mean diameters (in inches)
of 40 successive shafts turned on the lathe

0.261 0.258 0.249 0.251 0.247 0.256 0.250 0.247 0.255 0.243
0.252 0.250 0.253 0.247 0.251 0.243 0.258 0.251 0.245 0.250
0.248 0.252 0.254 0.250 0.247 0.253 0.251 0.246 0.249 0.252
0.247 0.250 0.253 0.247 0.249 0.253 0.246 0.251 0.249 0.253

use the 0.01 level of significance to test the null hypotheses of randomness against
the alternative that there is a frequently alternating pattern.

Solution 1. Null hypothesis: Arrangement of sample values is random.
Alternative hypothesis: There is a frequently alternating pattern.

2. Level of significance: α = 0.01

3. Criterion: Reject the null hypothesis if Z > 2.33, where Z is given by the
formula on page 473 for the total number of runs above and below the median.

4. Calculations: The median of the 40 measurements is 0.250, so that we get the
following arrangement of values above and below 0.250:

a a b a b a b a b a a b a b a a b b a a b a a b b a b a b b a b a b a

Thus, n1 = 19, n2 = 16, and u = 27, so that

μu = 2 · 19 · 16
35

+ 1 = 18.37

σu =
√

2 · 19 · 16 ( 2 · 19 · 16 − 19 − 16 )

( 19 + 16 )2 ( 19 + 16 − 1 )
= 2.89

and

z = 27 − 18.37
2.89

= 2.98

5. Decision: Since z = 2.98 exceeds 2.33, the null hypothesis of randomness must
be rejected. The number of runs is much larger than one might expect due to
chance, so it is reasonable to conclude that the lathe is being adjusted too often.
The P-value = .0014 = P(Z > 2.98) strengthens this conclusion. j
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14.6 The Kolmogorov-Smirnov and
Anderson-Darling Tests

The Kolmogorov-Smirnov tests are nonparametric tests for differences between
cumulative distributions. The one sample test concerns the agreement between an
observed, or empirical, cumulative distribution of sample values and a specified con-
tinuous distribution function; thus, it is a test of goodness of fit. The two sample
test concerns the agreement between two observed cumulative distributions; it tests
the hypothesis whether two independent samples come from identical continuous
distributions, and it is sensitive to population differences with respect to location,
dispersion, or skewness.

The Kolmogorov-Smirnov one sample test is generally more efficient than the
chi square test for goodness of fit for small samples, and it can be used for very
small samples where the chi square test does not apply. It must be remembered,
however, that the chi square test of Section 10.5 can be used in connection with
discrete distributions, whereas the Kolmogorov-Smirnov test cannot.

The one sample test is based on the maximum absolute difference D between
the values of the empirical cumulative distribution of a random sample of size n and
a specified theoretical cumulative distribution. To determine whether this difference
is larger than can reasonably be expected for a given level of significance, we obtain
a P-value (see Exercise 14.15).

EXAMPLE 8 Using the Kolmogorov-Smirnov test for uniformity
It is desired to check whether pinholes in electrolytic tin plate are uniformly dis-
tributed across a plated coil on the basis of the following distances in inches of
10 pinholes from one edge of a long strip of tin plate 30 inches wide:

4.8 14.8 28.2 23.1 4.4 28.7 19.5 2.4 25.0 6.2

Test the null hypothesis at the 0.05 level of significance.

Solution 1. Null hypothesis:

F (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x ≤ 0
x

30
for 0 < x < 30

1 for x ≥ 30

where x is the distance of a pinhole from the edge.
Alternative hypothesis: The pinholes are not uniformly distributed across the
tin plate.

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if D is large, where D is the maximum
difference between the empirical cumulative distribution and the cumulative
distribution assumed under the null hypothesis.

4. Calculations: Plotting the 2 cumulative distributions as in Figure 14.1, we find
that the difference is greatest at x = 6.2, and that its value is

D = 0.40 − 6.2
30

= 0.193
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Figure 14.1
Diagram for Kolmogorov-
Smirnov test
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5. Decision: We use the software R to perform the test and calculate the P-value
(see Exercise 14.14). The resulting P-value

P( | D | > 0.193 ) = 0.783

is so large that the null hypothesis (that the pinholes are uniformly distributed
across the tin plate) cannot be rejected. j

Despite their intuitive appeal, the Kolmogorov-Smirnov tests do not have good
power. Differences in the tails can be easier to detect if the difference between the

empirical cumulative distribution, Fn, and F is divided by
√

F ( x )( 1 − F ( x ) ). In
particular, the Anderson-Darling test is based on the large values of the statistic

A2 = n
∫ ∞

−∞
[ Fn( x ) − F ( x ) ]2 1

F ( x )( 1 − F ( x ) )
f ( x ) dx

At first sight the numerical calculation of this statistic looks difficult. But, it can
be shown that, for continuous distributions

A2 = −
⎡
⎣ n∑

i=1

( 2 i − 1 ) ( ln( ui ) + ln( 1 − un+1−i ) )

⎤
⎦ /

n − n

where ui = F ( x(i) ) is the value of the theoretical cumulative distribution at the ith
largest observation x(i).

The null hypothesis is rejected for large values of the statistic A2. As a guideline,
the large sample 10%, 5%, and 1% points are 1.933, 2.492, and 3.878. It has been
suggested that these critical values are quite accurate even for samples as small as 10.

EXAMPLE 9 Evaluating the Anderson-Darling statistic

With reference to the preceding example, evaluate the Anderson-Darling statistic A2.

Solution The smallest observation is 2.4 so u1 = F (2.4) = 2.4/30 = 0.08000. Continuing,
the ordered values of the observations and the ui are

2.4 4.4 4.8 6.2 14.8 19.5 23.1 25.0 28.2 28.7
0.08000 0.14667 0.16000 0.20667 0.49333 0.65000 0.77000 0.83333 0.94000 0.95667



Sec 14.6 The Kolmogorov-Smirnov and Anderson-Darling Tests 477

Therefore,

A2 = −[ ( 2 × 1 − 1 )( ln( 0.080000 ) + ln( 1 − 0.95667 ) ) + · · ·
+ ( 2 × 10 − 1 )( ln( 0.95667 ) + ln( 1 − 0.08000 ) ) ]/10 − 10

= 0.5267

According to the large sample critical value, we fail to reject the null hypothesis that
the distribution of pin holes is uniform, with α = 0.05. j

Exercises

14.11 The following arrangement indicates whether 60 consecutive cars which went by
the toll booth of a bridge had local plates, L, or out-of-state plates, O:

L L O L L L L O O L L L L O L O O L L L L O L O O L L L L L

O L L L O L O L L L L O O L O O O O L L L L O L O O L L L O

Test at the 0.05 level of significance whether this arrangement of L’s and O’s may
be regarded as random.

14.12 The following are the graded scores (out of 20) obtained by a class of 28 students in
statistics: 12, 8, 6, 10, 9, 15, 18, 19, 20, 18, 20, 16, 12, 10, 14, 16, 17, 19, 20, 20, 14,
11, 12, 15, 17, 16, 12, and 17. Test for randomness at the 0.05 level of significance.

14.13 The following are 42 consecutive pizza breads baked by a newly improved oven
model during 6 weeks: 25, 28, 32, 31, 30, 29, 16, 18, 31, 24, 72, 55, 61, 33, 30, 44,
46, 59, 62, 75, 75, 80, 70, 64, 48, 52, 39, 38, 61, 64, 38, 48, 35, 34, 49, 58, 63, 36,
75, 80, 32, and 48. Use the method of runs above and below the median and the
0.01 level of significance to test the null hypothesis of randomness against the
alternative that there is a trend.

14.14 The P-value on page 476 was calculated using the R software command

ks.test(x, "punif", 0,30, alternative = "t")

The following are 15 measurements of the boiling point of a silicon compound
(in degrees Celsius):

166 141 136 154 170 162 155 146 183 157 148 132 160 175 150

(a) Use the Kolmogorov-Smirnov test at the 0.01 level of significance to test the
null hypothesis that the boiling points come from a normal population with
μ = 160 degrees Celsius and σ = 10 degrees Celsius. Use the R software
commands

y = c (166,141,136,154,170,162,155,146,183,157,148,132,160,175,150)

ks.test(y, "pnorm", m = 160, sd = 10)

(b) Calculate the Anderson-Darling statistic.

14.15 In a vibration study, certain airplane components were subjected to severe
vibrations until they showed structural failures. Given the following failure times
(in minutes), test whether they can be looked upon as a sample from an exponential
population with the mean μ = 10:

1.5 10.3 3.6 13.4 18.4 7.7 24.3 10.7 8.4
15.4 4.9 2.8 7.9 11.9 12.0 16.2 6.8 14.7

Use the Kolmogorov-Smirnov test with a 0.05 level of significance. Refer to
Exercise 14.14, but use the R command

ks.test(x, "pweibull", shape = 1, scale = 10)
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Do’s and Don’ts

Do’s
1. When comparing the locations of two samples and the sample sizes are

small, consider applying the Wilcoxon test. This test does not require the
population to be normal, an assumption difficult to check with small sample
sizes.

Don’ts
1. Don’t apply the Wilcoxon test if the dot diagrams of the two samples sug-

gest very different amounts of variation as well a different locations. It will
not tell the whole story about differences between the two populations.

2. Don’t routinely apply nonparametric rank tests without confirming that the
observations are independent. Even moderate time dependence in the ob-
servations can seriously affect the level of significance of a rank test. Rank
tests are not distribution-free in the presence of dependence. Also, when
sampling without replacement from a finite population of size N, you need
to account for dependence when the sample size becomes about as large as
5% to 10% of the population.

Review Exercises
14.16 According to Einstein’s theory of relativity, light

should bend when it passes through a gravitational
field. This was first tested experimentally in 1919
when photographs were taken of stars near the sun dur-
ing a total eclipse and again when the sun had moved to
another part of the sky. These eclipse pictures should
show the stars displaced outward from the position of
the sun. The direction, in the first of 2 coordinate axes,
predicted by the theory was matched by the observed
direction for 6 out of 7 stars. Record + for a match
and − for a mismatch. Guessing would give probabil-
ity 1

2 of a match. Use the sign test with level 0.063 to
support the claim that the theory holds with respect to
matching the direction of displacement.

14.17 Referring to Exercise 12.6, use the U statistic at the
0.05 level of significance to test whether weight loss
using lubricant A tends to be less than the loss using
lubricant B.

14.18 To find the best order of tools on a factory workbench,
two different orders were compared by simulating an
operational condition and measuring the response time
taken to respond to the condition change. The response
time (in minutes) of 16 engineers (randomly assigned
to the two different orders) was as follows:

Order 1: 10 8 3 14 5 6 4 12
Order 2: 4 9 10 5 8 1 2 6

Use the U test at the 0.01 level of significance to check
the claim that the first order is better than the second.

14.19 The following are the data on time taken by a computer
engineer to assemble 8 computers each for 3 types of
mother boards.

Motherboard 1: 16 12 8 15 19 10 7 15
Motherboard 2: 16 13 10 14 13 19 21 11
Motherboard 3: 7 15 9 16 14 18 15 26

Use the H test at the 0.05 level of significance to test
whether there is a difference in the assembly times of
the three types of motherboards.

14.20 To test whether radio signals from deep space contain
a message, an interval of time could be subdivided into
a number of very short intervals and it could then be
determined whether the signal strength exceeded a cer-
tain level (background noise) in each short interval.
Suppose that the following is part of such a record,
where H denotes a high signal strength and L denotes
that the signal strength does not exceed a given noise
level.

L L H L H L H L H H H L H H H

L H H H L H L H L H L L L L

Test this sequence for randomness (using the 0.05 level
of significance) and ascertain whether it is reasonable
to assume that the signal contains a message.
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14.21 The total number of vehicles crossing a toll booth each
day during the month of November were:

326 246 341 148 251 296 321 196 255 751
128 506 681 186 269 345 883 543 663 429
861 189 482 683 296 199 495 330 428 196

Making use of the fact that the median is 328, test at
the 0.01 level of significance whether there is a signif-
icant trend.

14.22 When two populations have the same probability den-
sity function, each outcome of n1 ranks for the first
sample, out of the possible values 1, 2, . . . , n1 +n2, is
equally likely.

(a) Write out all of the possible outcomes when
n1 = 3 = n2.

(b) Evaluate U1 at each of the outcomes and construct
its probability distribution.

14.23 With reference to Example 2, Chapter 2, use the U
statistic to test the null hypothesis of equality ver-
sus the alternative that the distribution of copper con-
tent from the first heat is stochastically larger than the
distribution for the second heat. Following the

approach in Exercise 14.22, it can be shown that the
exact distribution gives P( Ui ≥ 19 ) = 0.033. Use
this as the level of significance.

14.24 The difference between the observed flux and the theo-
retical value was observed at 20 points within a reactor.
The values were

2 −2 −4 −6 −3 −6 3 −5 2 6

8 5 3 9 7 3 2 −1 −3 −1

Use a sign test at the 0.036 level to test the null hypoth-
esis μ̃ = 0 versus the alternative hypothesis μ̃ �= 0.

14.25 With reference to Exercise 14.24, test for randomness
with level 0.05.

14.26 Survival times (days) of fuel rods in a nuclear reactor
are as follows:

16 11 24 18 31 15 12 21

Test at the 0.01 level of significance whether these data
are consistent with the assumption of a log-normal
distribution of survival times. Use the Kolmogorov-
Smirnov test and see Exercise 14.14.
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A lthough there is a tendency to think of monitoring quality as a recent develop-
ment, there is nothing new about the basic idea of making a quality product char-
acterized by a high degree of uniformity. For centuries skilled artisans have striven

to make products distinctive through superior quality, and once a standard of quality was
achieved, to eliminate insofar as possible all variability between products that were nom-
inally alike.

What is new in quality improvement is the idea that a product is never good
enough and should be continually improved. This concept, honed to a fine edge in Japan,
created a crisis in the international marketplace for firms that did not follow suit. In quality-
improvement programs, the emphasis is on employing designed experiments to improve
the product in the design, production, and assembly stages rather than in futile attempts
to inspect quality into a product after it is produced. We introduce these ideas in Sec-
tions 15.1 through 15.3.

Three special techniques of (statistical) quality assurance are also treated in this
chapter—quality control is discussed in Sections 15.4 through 15.6, and the establishment
of tolerance limits in Section 15.7. Note that the word quality, when used technically as
in this discussion, refers to some measurable or countable property of a product, the
breaking strength of a nano-circuit board, the number of imperfections in a piece of
cloth, the potency of a drug, and so forth.

15.1 Quality-Improvement Programs
What is a quality-improvement program? To answer this question, we present a sce-
nario of what happens when action is taken to improve quality. In the context of a
machine tooling operation, we first plot the fraction of defective pieces per day [see
Figure 15.1(a)] for each day over a 5-week period. This plot reveals stable variation
about a value of nearly 15% defective pieces. That is, the process is predictable. We
can estimate the mean by the average over days and we can also estimate the amount
of variation (see Section 15.4). The fact that the process is stable does not make it
good! It is turning out too many defective pieces.

Once it is realized that the process needs improvement, action can be taken.
Data collected on several possible sources of variation are displayed in the Pareto
diagram (see Section 2.1) in Figure 15.2. The cumulative percentages are given by
the broken-line curve and are read from the right-hand scale.

Based on these data, it was decided to give the operators more training on the
use of the machine. The record for the next 5 weeks of the daily fraction defectives,
after the training, is plotted in Figure 15.1(b). The new process also appears stable
but this time about a lower mean. Should we be satisfied? No. The central precept
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Figure 15.1
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Figure 15.2
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of quality improvement calls for the process of improvement to be continual. Maybe
the gains will be smaller at each progressive stage, but efforts must be continued to
reduce the amount of variation and the proportion of defectives. Further substan-
tial improvements will come only by taking action on the system. However, since
the process is stable, the effects of change can be observed. Engineers can make
innovations to improve the process. The two-level factorial designs discussed in the
Chapter 13 are particularly relevant.

There is some folklore that high quality and low production costs are incompat-
ible. But time and again it is the cost of reworking bad products that is a major com-
ponent of production cost. It really is low quality that results in high costs. Besides
the high costs of reworking pieces to make them usable, there are also high costs
associated with lost customers who were sold inferior products.

The transformation to quality production in Japan, starting in 1950, created a
new economic age leading to a crisis in the 1980s for American businesses. Briefly,
Japanese merchandise of the time was known to be shoddy. Several highly placed
engineers in Japan studied the literature on quality control produced at Bell Lab-
oratories by Walter Shewhart and others. W. Edwards Deming (1900–1993) was
brought in by the Japanese as a foreign expert. Unlike in America, where the ap-
plications of statistical methods to problems of quality fell far below their wartime
successes because managers did not fully appreciate them, in Japan the top man-
agers came with their engineers to learn about the techniques. What followed was
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company- and industrywide commitments to improve quality through education,
which included statistical methods. This transformation has taken many Japanese
companies to world market leadership. In order to compete in the international mar-
ketplace, other companies and countries have also had to stress quality improvement.

A theory of management for product or service improvement was pioneered by
W. Edwards Deming. It contains concise statements of the elements of the transfor-
mation that must take place. Deming summed up his ideas on the transformation of
American industry in 14 points for management (see book by Deming, listed in the
bibliography). They apply not only to manufacturing but also service industries, and
pertain to organizations of all sizes, large and small.

The main thrust of the statistical approach to quality improvement is that, in
order to improve quality, it is better to work upstream on the processes. That is,
build quality into the product by concentrating on the equipment, components, and
materials that go into making it.

The consumer also has a role in the new way of quality improvement. It has
always been (1) design a product, (2) make it, and (3) market it. Now, there is a
new fourth step, (4) find out the purchasers’ reactions to the product. Also find out
why others did not purchase. Statistical methods of sampling will provide a way of
finding out what the consumer thinks. Changes can then be made in design and pro-
duction to better match the product to the market. These four steps must be repeated
over and over again in the search for continual product improvement.

15.2 Starting a Quality-Improvement Program
It is the prevailing wisdom that top managers must be involved in any quality-
improvement program. Once committed, they must take action and select initial pro-
cesses to serve as flagship projects. It is good to start with processes that have a large
potential for improvement and where the prospect for large financial gains is great-
est. Even though that is management’s decision, the most successful programs start
with committees formed with employees from all levels. More enthusiasm can be
generated when there is a consensus regarding the selection of the process. A modi-
fied Delphi technique can help groups reach unanimity. Each person writes down his
or her top three choices. With 3 points for first place, 2 for second, and 1 for third,
the totals for each candidate process are tabulated for all to see. Perhaps after some
discussion, each person votes again and the process continues until a unanimous
choice is reached.

Suppose the process selected concerns piston rings. The first step is to collect
data. We will talk to those who run the process about causes and types of defects,
but to start we want fresh data on all of the defectives that occur over a period of
two weeks.

Defect Number

Height 30
Diameter 14
Cracks 4
Scratches 2
Other 5

This information is presented as a Pareto diagram in Figure 15.3. We see that 30 out
of 55 defective rings have incorrect heights.

To proceed, we gather the engineers, supervisors, and operators who
make the rings for a brainstorming session. They construct a list of the possible
causes for the variation in height. These may be graphically displayed in a
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Figure 15.3
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cause-and-effect diagram. It arranges causes, and causes of causes, as shown in
Figure 15.4. The cause-and-effect diagram, which resembles the skeleton of a fish,
starts with a central horizontal line for a major problem such as incorrect height.
Major factors that affect height are listed on diagonal lines attached to the central
horizontal line. Factors that affect the major factors, such as cooling time affects tem-
pering, are labeled on horizontal lines connected to the diagonal lines. To proceed
further, action must be taken on the system.

Figure 15.4
Cause-and-effect diagram for
piston rings
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A two-level factorial design is run with the suppliers as Factor A and two speeds
for the grinder as Factor B. The response, the number of defectives out of 200 rings
made at each condition, is recorded in Figure 15.5. The results confirm one of
Deming’s points: Work with a single supplier.

If the process is stable with the material from supplier 1, then it is time to make
another Pareto diagram and continue the cycle of improvement.

Figure 15.5
Number of defective rings
from a 22 design Materials

Supplier 1 Supplier 2

Speed

High

Low

8

9

31

28



484 Chapter 15 The Statistical Content of Quality-Improvement Programs

One outgrowth of the Japanese way of working together has been the forma-
tion of small groups of employees called quality circles. These groups, consisting
of employees at all levels, meet on a regular basis to discuss ways of continually
improving processes.

With all the workers given some statistical training and engineers some training
in experimental design, all the processes within the company can receive attention
and be improved.

15.3 Experimental Designs for Quality
The modern emphasis, developed in Japan, has been to build quality into the product
rather than waiting until the end of the line and trying to inspect bad quality out. The
job of quality becomes a full-time job for everyone in the company, working as a
team. They must learn about the process by observing and conducting statistically
designed experiments.

In addition to the factorial designs discussed in Chapter 13, the Japanese, and
Professor Genichi Taguchi in particular, have introduced good engineering ideas
to produce new design procedures. Two of his major contributions involve using
designed experiments to

(a) select one input variable to minimize variation while another input
variable holds the response on target;

(b) create products that are not sensitive to variations in their components or
environmental conditions.

To illustrate the minimization of variation concept, suppose a 23 factorial design is
run to study the effects of initial concentration of Acid A, rag content, and digester
time on the tear strength of writing paper. Rather than summarize the experiment in
terms of the means yi at each experimental condition, the statistician G. E. P. Box
suggests a chart of the individual values. This graph portrays both the level with
respect to the indicated target and the amount of variation.

Figure 15.6
The summary of a design to
study the effect on both mean
response and variation

Rag content

Acid concentration

Digester time

From Figure 15.6 we see that the acid concentration can influence the mean
level, whereas rag content can be used to reduce variation. The third factor, digester
time, does not seem to have an effect. That is, we can manipulate rag content and
initial concentration together to both be on target and to reduce variation.

In studying the effect of various factors on variance, it is usually better to con-
sider ln(s2), as this is apt to be more nearly normal.
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EXAMPLE 1 Estimating the factor effects on variance

Investigators replicated a 23 experiment three times to study the effects of x1 = type
of solvent, x2 = time in oven, and x3 = temperature of oven on the tensile strength
of test specimens of synthetic fiber to be used in carpeting. The main effects and
interactions would be estimated as described in Section 13.3. Here, for each run,
we have computed the variance of the 3 responses and placed them in the second to
last column of the table. The values of their natural logarithms are given in the last
column. Determine if any of the factors have an influence on the variance.

Design
Solvent Time Temp.

x1 x2 x3 s2
i ln(s2

i )

−1 −1 −1 2,048 7.6246
1 −1 −1 2,813 7.9420

−1 1 −1 800 6.6846
1 1 −1 1,352 7.2093

−1 −1 1 2,113 7.6559
1 −1 1 1,568 7.3576

−1 1 1 882 6.7822
1 1 1 1,013 6.9207

Solution Multiplying the column of ln(variance) by the appropriate column and dividing by
4, we obtain the estimated effects on ln(variance);

solvent:
−7.6246 + 7.9420 − 6.6846 + · · · + 6.9207

4
= 0.171

time: −0.746 temp: −0.186 solvent × time: 0.161

solvent × temp: − 0.250 time × temp: −0.090

solvent × time × temp: 0.057

Because there is no replication of values for s2
i , we cannot compute an F statistic.

Instead we create a half-normal plot. Plotting the absolute values of the estimated
effects in Figure 15.7, we see that the second factor, B (time in oven), seems impor-
tant. It is far above the straight-line pattern formed by the small estimated effects. If
the oven time is kept at its higher level, the variance will be reduced.

Figure 15.7
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We caution that 7 may be too few effects in order to read patterns from the
half-normal plot, so this tentative conclusion needs to be verified by further
experimentation. j

To illustrate the idea of making products that are insensitive to variation, sup-
pose that the output voltage of a circuit is related to the value of a resistor, as in
Figure 15.8. It is possible to exploit the nonlinear relationship to obtain a more sta-
ble output. Even if the resistors have a 10% tolerance (the nominal 200-ohm resistor
would vary between 180 and 220, whereas the 400-ohm resistor would vary between
360 and 440), it would be better to use the higher value resistor because the variation
in the response, output voltage, is much smaller. Then, as in Figure 15.6, we could
seek a device that would bring the output voltage into the desired range.

Figure 15.8
A nonlinear relation between
output voltage and a resistance
can be exploited to reduce
variation
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G. Taguchi, Chowdhury and Y. Wu, in the reference listed in the bibliography,
give an example of making a product insensitive to environmental conditions. The
Ina Tile company had experienced large amounts of scrap because of temperature
variations within their kiln. Rather than immediately buy a new, expensive kiln, they
experimented with new recipes for making the tiles. After running a fractional fac-
torial design with 7 factors, it was found that only lime content was important. As
suggested by the Pareto rule, which postulates a vital few and many trivial elements,
only 1 out of 7 variables had an effect. A low-cost solution was found and the prob-
lem surmounted by increasing the lime content.

15.4 Quality Control
It may surprise some persons to learn that two apparently identical parts made under
carefully controlled conditions, from the same batch of raw material, and only sec-
onds apart by the same machine, can nevertheless be different in many respects.
Indeed, any manufacturing process, however good, is characterized by a certain
amount of variability, which is of a random nature and which cannot be completely
eliminated.

Usually manufacturing processes go through several stages of development be-
fore actual production begins. Assessments must be made to determine whether the
process can produce units that meet engineering specifications. If a characteristic is
nearly normally distributed, its natural variation is within plus or minus 3 standard
deviations of its mean. A typical baseline assessment is to determine if this interval
of length 6σ is within the specification limits. Process capability can be quantified on
this basis. Let LSL be the lower specification limit and USL the upper specification
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limit for the process. Then process potential can be assessed from a process capa-
bility index, which is estimated by

Ĉp = USL − LSL
6 s

where s is the standard deviation obtained by measuring a sample of units.

Because we must deal with the estimated capability index, Ĉp, practitioners
suggest that a value of at least 1.33 is required before an ongoing process is deemed
capable.

When the process mean is not centered between the specification limits, the
closest specification may be most important. An alternative process capability index
having estimated value

Ĉpk = min( x − LSL , USL − x )
3 s

takes this distance into account.

EXAMPLE 2 Calculating the process capability index
The specification limits on a valve diameter (mm) are LSL = 10.98 and USL =
11.01. Measurements on 80 valves gave x = 10.991 and s = 0.0035. Estimate the
process capability indices Cp and Cpk.

Solution
Ĉp = USL − LSL

6 s
= 11.01 − 10.98

6 ( 0.0035 )
= 1.43

so the process would be judged to be capable.

Ĉpk = min ( x − LSL , USL − x )
3 s

= min (10.991 − 10.98 , 11.01 − 10.991)
3 ( 0.0035 )

= 1.048

This second index is substantially smaller than the first because the mean is
off-center. j

According to the ideas of quality improvement, getting the six-sigma interval
within specifications is just a first step. Further improvements can lead to tighter
specifications and the production of better units. However, before any assessment of
capability can be made, the process must be made stable or in control.

When the variability present in a production process is confined to chance vari-
ation, the process is said to be in a state of statistical control. Such a state is usually
attained by finding and eliminating trouble of the sort causing another kind of vari-
ation, called assignable variation, which may be due to poorly trained operators,
poor-quality raw materials, faulty machine settings, worn parts, and the like. Since
manufacturing processes are rarely free from trouble of this kind, it is important to
have some systematic method of detecting serious deviations from a state of statis-
tical control when, or if possible before, they actually occur. It is to this end that
control charts are principally used.

In what follows, we shall differentiate between control charts for measure-
ments and control charts for attributes, depending on whether the observations
with which we are concerned are measurements or count data (say, the numbers of
defectives in a sample of a given size). In either case, a control chart consists of
a central line (see Figure 15.9) corresponding to the average quality at which the
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Figure 15.9
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process is to perform, and lines corresponding to the upper and lower control lim-
its. These limits are chosen so that values falling between them can be attributed
to chance, while values falling beyond them are interpreted as indicating a lack of
control. By plotting the results obtained from samples taken periodically at frequent
intervals, it is possible to check by means of such a chart whether the process is un-
der control, or whether trouble of the sort indicated above has entered the process.
When a sample point falls beyond the control limits, one looks for trouble, but even
if the point falls between the control limits, a trend of some other systematic pattern
may serve notice that action should be taken to avoid serious trouble.

The ability to read control charts and to determine from them just what correc-
tive action should be taken is a matter of experience and highly developed judgment.

A quality-control engineer must not only understand the statistical foundation
of the subject but must also be thoroughly acquainted with the processes themselves.
The engineering and managerial aspects of quality control (and quality assurance in
general), which nowadays includes incoming raw materials, outgoing products, and
in-process control, constitute an extensive subject in themselves. In the following
sections we present only the statistical aspects of the subject.

15.5 Control Charts for Measurements
When dealing with measurements, it is customary to exercise control over the av-
erage quality of a process as well as its variability. The first goal is accomplished
by plotting the means of periodic samples on a control chart for means, called an
X-bar or x chart. Variability is controlled by plotting the sample ranges or standard
deviations, respectively, on an R chart, or a σ chart, depending on which statistic
is used to estimate the population standard deviation.

If the process mean and standard deviation, μ and σ , are known, and it is reason-
able to treat the measurements as samples from a normal population, we can assert
with probability 1 − α that the mean of a random sample of size n will fall between

μ − zα/2
σ√

n
and μ + zα/2

σ√
n

These two limits on x provide upper and lower control limits, and, under the given
assumptions, they enable the quality-control engineer to determine whether or not
to make an adjustment in the process.

In actual practice, μ and σ are usually unknown and it is necessary to estimate
their values from a large sample (or samples) taken while the process is in con-
trol. For this reason and because there may be no assurance that the measurements
can be treated as samples from a normal population, the (1 − α)100% confidence
level associated with the control limits is only approximate, and such probability
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limits are seldom used in practice. Instead, it is common industrial practice to use
three-sigma limits obtained by substituting 3 for zα/2. With three-sigma limits one
usually is highly confident that the process will not be declared out of control when,
in fact, it is actually in control.

If there exists a long history of a process in good control, μ and σ can be esti-
mated from past data practically without error. Thus, the central line of an x chart is
given by μ, and the upper and lower three-sigma control limits are given by μ ± A σ ,
where A = 3/

√
n and n is the size of each sample.1 For convenience, values of A

for n = 2, 3, . . . , and 15 are given in Table 8W. The use of a constant sample size
n simplifies the maintenance and interpretation of an x chart, but as the reader will
observe in Exercise 15.4, this restriction is not absolutely necessary.

In the more common case where the population parameters are unknown, it is
necessary to estimate these parameters on the basis of preliminary samples. For this
purpose, it is usually desirable to obtain the results of 20 or 25 consecutive samples
taken when the process is in control. If k samples are used, each of size n, we shall
denote the mean of the ith sample by xi, and the grand mean of the k sample means
by x , that is,

Grand mean of sample
means

x = 1
k

k∑
i=1

xi

The process variability σ can be estimated either from the standard deviations
or the ranges of the k samples. Since the sample size commonly used in connection
with control charts for measurements is small, there is usually very little loss of
efficiency in estimating σ from the sample ranges. (For an example where sample
standard deviations are used in this connection, see Exercise 15.5.) Denoting the
range of the ith sample by Ri , we shall thus make use of the statistic

Mean sample range R = 1
k

k∑
i=1

Ri

Since x provides an unbiased estimate of the population mean μ, the central line
for the x chart is given by x. The statistic R does not provide an unbiased estimate of
σ , but multiplying R by the constant A2 , we obtain an unbiased estimate of 3 σ/

√
n.

The constant multiplier A2 , tabulated in Table 8W for various values of n, depends
on the assumption that the measurements constitute a sample from a normal popula-
tion. Thus, the central line and the upper and lower three-sigma control limits, UCL
and LCL, for an x chart (with μ and σ estimated from past data) are given by

Control-chart values
for an x chart

central line = x

UCL = x + A2 R

LCL = x − A2 R

1Throughout this chapter we depart somewhat from the customary quality-control notation in order to be
consistent with the more widely accepted statistical notation used elsewhere in this book. (For instance, in
quality control it is customary to denote the sample mean and standard deviation by x and σ and the
corresponding population parameters by x′ and σ ′.)



490 Chapter 15 The Statistical Content of Quality-Improvement Programs

Figure 15.10
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An example of this kind of control chart for the mean is shown in Figure 15.10.
In controlling a process, it may not be enough to monitor the population mean.

Although an increase in process variability may become apparent from increased
fluctuations of the x’s, a more sensitive test of shifts in process variability is provided
by a separate control chart, an R chart based on the sample ranges or a σ chart
based on the sample standard deviations. An example of the latter may be found in
Exercise 15.5.

The central line and control limits of an R chart are based on the distribution
of the range of samples of size n from a normal population. As we observed on
page 291, the mean and the standard deviation of this sampling distribution are given
by d2 σ and d3 σ , respectively, when σ is known. Thus, three-sigma control limits
for the range are given by d2 σ ± 3 d3 σ , and the complete set of control-chart values
for an R chart (with σ known) is given by

Control-chart values for an
R chart (σ known)

central line = d 2 σ

UCL = D 2 σ

LCL = D 1 σ

Here D1 = d2 − 3 d3 and D2 = d2 + 3 d3, and values of these constants can
be found in Table 8W for various values of n.

If σ is unknown, it is estimated from past data as previously described, and the
control-chart values for R chart (with σ unknown) are as follows:

Control-chart values for an
R chart (σ unknown)

central line = R

UCL = D 4 R

LCL = D 3 R

Here D 3 = D 1/d 2 and D4 = D 2/d 2, and values of these constants can also be
found in Table 8W for various values of n.

To illustrate the construction of an x chart and an R chart, suppose a manufac-
turer of a certain bearing knows from a preliminary record of 20 hourly samples of
size 4 that, for the diameters of these bearings, x = 0.9752 and R = 0.0002. Coding
her data by means of the expression

x − 0.9750
0.0001
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Figure 15.11
R chart
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that is, expressing each measurement as a deviation from 0.9750 in 0.0001 inch, she
obtains

x Chart (coded) R Chart (coded)

central line x = 2.0 central line R = 2.0

UCL x + A2 R = 3.5 UCL D4 R = 4.6

LCL x − A2 R = 0.5 LCL D3 R = 0.0

The values of A2 = 0.729, D3 = 0, and D4 = 2.282 for samples of size 4 were ob-
tained from Table 8W. Graphically, these control charts are shown in Figures 15.10
and 15.11, where we have also indicated the results subsequently obtained in the
following 20 samples:

Hour Coded Sample Values x R

1 1.7 2.2 1.9 1.2 1.75 1.0
2 0.8 1.5 2.1 0.9 1.32 1.3
3 1.0 1.4 1.0 1.3 1.18 0.4
4 0.4 −0.6 0.7 0.2 0.18 1.3
5 1.4 2.3 2.8 2.7 2.30 1.4
6 1.8 2.0 1.1 0.1 1.25 1.9
7 1.6 1.0 1.5 2.0 1.52 1.0
8 2.5 1.6 1.8 1.2 1.78 1.3
9 2.9 2.0 0.5 2.2 1.90 2.4

10 1.1 1.1 3.1 1.6 1.72 2.0
11 1.7 3.6 2.5 1.8 2.40 1.9
12 4.6 2.8 3.5 1.9 3.20 2.7
13 2.6 2.8 3.2 1.5 2.52 1.7
14 2.3 2.1 2.1 1.7 2.05 0.6
15 1.9 1.6 1.8 1.4 1.68 0.5
16 1.3 2.0 3.9 0.8 2.00 3.1
17 2.8 1.5 0.6 0.2 1.28 2.6
18 1.7 3.6 0.9 1.5 1.92 2.7
19 1.6 0.6 1.0 0.8 1.00 1.0
20 1.7 1.0 0.5 2.2 1.35 1.7

Inspection of Figure 15.10 shows that only one of the points falls outside of the
control limits, but it also shows that there may nevertheless have been a downward
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shift in the process average. Figure 15.11 shows a definite downward shift in the
process variability; note especially that most of the sample ranges fall below the
central line of the R chart.

The reader may have observed the close connection between the use of control
charts and the testing of hypotheses. A point on an x chart that is out of control
corresponds to a sample for which the null hypotheses that μ = μ0 is rejected.
To be more precise, we should say that control-chart techniques provide sequential,
temporally ordered sets of tests. We are interested not only in the position of indi-
vidual points, but also in possible trends or other patterns exhibited by the points
representing successive samples.

A different graph, called a cumulative sum (CUSUM) chart, is more effective
for detecting small shifts in the mean. Consider the deviations observation − target
value. In the context of our example, the target value should be 2.00. To construct
the CUSUM chart, plot the CUSUM statistic versus time order

S1 = (1.75 − 2.00) = −0.25 versus 1

S2 = (1.75 − 2.00) + (1.32 − 2.00) = −0.93 versus 2

S3 = (−0.25) + (−0.68) + (1.18 − 2.00) = −1.75 versus 3
...

In Figure 15.12 we see evidence of an initial constant downward trend, masked
somewhat by random variation. This behavior indicates that the level of the process
is a fixed amount below the target value of 2.00. At observation 11 there is a distinct
shift up in level, as if a change has been made, but after a few hours a shift to a level
below 2.0 appears to occur.

Figure 15.12
A CUSUM plot
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CUSUM chart of St

25

S t 0

5

R. Crosier proposed a two-sided CUSUM scheme, which first updates the pre-
vious CUSUM by a new observation. Depending on the updated value of this sum,
the new value of the CUSUM is either set equal to zero or the CUSUM is shrunk
toward zero. This modification reduces the chance of raising a false alarm.

In particular, Crosier’s two-sided CUSUM starts with S0 = 0. At each step,
the tentative absolute value of the sum Cn = | Sn−1 + ( Xn − a ) | is first calculated.
Then the next value of the statistic Sn is defined as

Sn =
{

0, if Cn ≤ ks
( Sn−1 + Xn − a ) ( 1 − ks/Cn ), otherwise

If μ0 denotes the in-control mean and μ1 a value that should be detected quickly,
the constant k can be set to one-half of the specified mean-shift (expressed in stan-
dard deviations).

k = 1
2

( μ1 − μ0 )
σ
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Crosier’s scheme signals that the mean has shifted when

Sn ≥ hs (increase) or Sn ≤ −hs (decrease)

where h is a specified constant. See R. Johnson and R. Li, listed in the bibliography,
for examples and more details on CUSUM statistics.

15.6 Control Charts for Attributes
Although more complete information can usually be gained from measurements
made on a finished product, it is often quicker and cheaper to check the product
against specifications on an “attribute” or “go, no-go” basis. For example, in check-
ing the diameter and eccentricity of a ball bearing it is far simpler to determine
whether it will pass through circular holes cut in a template than to make several
measurements of the diameter with a micrometer. In this section we discuss two
fundamental kinds of control charts used in connection with attribute sampling, the
fraction-defective chart, also called a p chart, and the number-of-defects chart,
also called a c chart. To clarify the distinction between “number of defective” and
“number of defects,” note that a unit tested can have several defects, whereas on the
other hand, it is either defective or it is not. In many applications a unit is referred
to as defective if it has at least one defect.

Control limits for a fraction-defective chart are based on the sampling theory for
proportions introduced in Section 10.1 and on the normal curve approximation to the
binomial distribution. Thus, if a standard is given—that is, if the fraction defective
should take on some preassigned value p—the central line is p and three-sigma
control limits for the fraction defective in random samples of size n are given by

p ± 3

√
p ( 1 − p )

n

If no standard is given, which is more frequently the case in actual practice, p will
have to be estimated from past data. If k samples are available, di is the number of
defectives in the ith sample, and ni is the number of observations in the ith sample,
it is customary to estimate p as the proportion of defectives in the combined sample,
namely, as

Proportion of defectives in
combined sample

p = d1 + d2 + · · · + dk
n1 + n2 + · · · + nk

Control-chart values for a
fraction-defective chart

central line = p

UCL = p + 3

√
p ( 1 − p )

n

LCL = p − 3

√
p ( 1 − p )

n

Note that if p is small, as is often the case in practice, substitution in the for-
mula for the lower control limit might yield a negative number. When this occurs,
it is customary to regard the lower control limit as if it were zero and, in effect, to
use only the upper control limit. Another complication that can arise if p is small
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is that the binomial distribution may not be adequately approximated by the normal
distribution. Generally speaking, the use of the above control limits for p charts is
unrealistic whenever n and p are such that the underlying binomial (or hypergeomet-
ric) distribution cannot be approximated by a normal curve (see page 148). In such
cases it is best to use an upper control limit obtained directly from a table of binomial
probabilities, or, perhaps use the Poisson approximation to the binomial distribution.

As an illustration of a p chart, suppose that it is desired to control the output
of a certain integrated circuit production line to maintain a yield of 60 percent, that
is, a proportion defective of 40 percent. To this end, daily samples of 100 units are
checked to electrical specifications, with the following results:

Number of Number of Number of
Date Defectives Date Defectives Date Defectives

3-12 24 3-26 44 4-09 23
3-13 38 3-27 52 4-10 31
3-16 62 3-30 45 4-13 26
3-17 34 3-31 30 4-14 32
3-18 26 4-01 34 4-15 35
3-19 36 4-02 33 4-16 15
3-20 38 4-03 22 4-17 24
3-23 52 4-06 34 4-20 38
3-24 33 4-07 43 4-21 21
3-25 44 4-08 28 4-22 16

Since the standard is given as p = 0.40, the control-chart values are

central line = 0.40

UCL = 0.40 + 3

√
( 0.40 ) ( 0.60 )

100
= 0.55

LCL = 0.40 − 3

√
( 0.40 ) ( 0.60 )

100
= 0.25

The corresponding control chart with points for the 30 sample fractions defective
is shown in Figure 15.13, and it exhibits some interesting characteristics. Note that
there is only 1 point out of control on the high side, but there are 7 points out of
control on the low side. Most of these 7 low points occurred after April 1, and there
appears to be a general downward trend. In fact, there is an unbroken run of 11 points
below the central line after April 7. It would appear from this chart that the yield is
not yet stabilized and that the process is potentially capable of maintaining a yield
well above the nominal 60 percent value.

Figure 15.13
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Equivalent to the p chart for the fraction defective is the control chart for the
number of defectives. Instead of plotting the fraction defective in a sample of size n,
one plots the number of defectives. The control-chart values for this kind of chart are
obtained by multiplying the above values for the central line and the control-limits by
n. Thus, if p is estimated by p , the control-chart values for a number-of-defectives
chart are as follows:

Control-chart values for a
number-of-defectives chart

central line = np

UCL = np + 3
√

np ( 1 − p )

LCL = np − 3
√

np ( 1 − p )

There are situations where it is necessary to control the number of defects in a
unit of product, rather than the fraction defective or the number of defectives. For
example, in the production of carpeting, it is important to control the number of
defects per hundred yards; in the production of newsprint one may wish to control
the number of defects per roll. These situations are similar to the one described in
Section 4.7, which led to the Poisson distribution. Thus, if c is the number of defects
per manufactured unit, c is taken to be a value of a random variable having the
Poisson distribution.

It follows that the center line for a number-of-defects chart is the parameter λ

of the corresponding Poisson distribution, and the three-sigma control limits can be
based on the fact that the standard deviation of this distribution is

√
λ . If λ is un-

known, that is, if no standard is given, its value is usually estimated from at least
20 values of c observed from past data. If k is the number of units of product avail-
able for estimating λ, and if ci is the number of defects in the ith unit, then λ is
estimated by

Mean number of defects c = 1
k

k∑
i=1

ci

and the control-chart values for the c chart, or number-of-defects chart, are

Control-chart values for a
number-of-defects chart

central line = c

UCL = c + 3
√

c

LCL = c − 3
√

c

To illustrate this kind of control chart, suppose that it is known from past expe-
rience that on the average an aircraft assembly made by a certain company has c = 4
missing rivets. The corresponding control chart for the number of missing rivets is
shown in Figure 15.14, on which we have also plotted the results of inspections that
revealed 4, 6, 5, 1, 2, 3, 5, 7, 1, 2, 2, 4, 6, 5, 3, 2, 4, 1, 8, 4, 5, 6, 3, 4, and 2 missing
rivets in 25 assemblies.

For any x chart, p chart, or c chart, one point outside of the control limits is
enough to suggest that a special cause has influenced the process. It is now common
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Figure 15.14
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practice to increase the sensitivity of the chart to detect special causes by adding
other tests for special causes. Two of these extra tests merit special mention. In ad-
dition to one point outside of the control limits, a chart will signal a special cause if
either

Additional tests for special
causes

1. There are 9 points in a row on the same side of the central line.

2. There are 6 points in a row, all increasing or all decreasing.

As mentioned above, there is a run of 11 points below the central line in
Figure 15.13.

Exercises

15.1 A steel manufacturer extrudes scrap for manufacturing blades. Specifications
require that the thickness of this scrap has μ = 0.020 mm and σ = 0.005 mm.

(a) Use the specifications to calculate a central line and three-sigma control limits
for an x chart with n = 10.

(b) Use the specifications to calculate a central line and three-sigma control limits
for an R chart with n = 10.

(c) Plot the following means and ranges, obtained in 20 successive random
samples of size 10 on charts based on the control-chart constants obtained in
parts (a) and (b) and discuss the process.

Sample x R

1 0.022 0.004
2 0.021 0.002
3 0.029 0.007
4 0.018 0.006
5 0.019 0.003
6 0.027 0.004
7 0.021 0.005
8 0.022 0.002
9 0.019 0.007

10 0.018 0.002

Sample x R

11 0.017 0.003
12 0.016 0.008
13 0.022 0.006
14 0.023 0.004
15 0.019 0.002
16 0.020 0.005
17 0.021 0.003
18 0.022 0.002
19 0.018 0.008
20 0.010 0.006

15.2 Calculate x and R of the data of part (c) of Exercise 15.1, and use these values to
construct the central lines and three-sigma control limits for new x and R charts to
be used in the control of the thickness of the scrap steel.
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15.3 The following data give the means and ranges of 25 samples, each consisting of
4 compression test results on steel forgings, in thousands of pounds per
square inch:

Sample 1 2 3 4 5 6 7 8

x 45.4 48.1 46.2 45.7 41.9 49.4 52.6 54.5

R 2.7 3.1 5.0 1.6 2.2 5.7 6.5 3.6

Sample 9 10 11 12 13 14 15 16

x 45.1 47.6 42.8 41.4 43.7 49.2 51.1 42.8

R 2.5 1.0 3.9 5.6 2.7 3.1 1.5 2.2

Sample 17 18 19 20 21 22 23 24 25

x 51.1 52.4 47.9 48.6 53.3 49.7 48.2 51.6 52.3

R 1.4 4.3 2.2 2.7 3.0 1.1 2.1 1.6 2.4

(a) Use these data to find the central line and control limits for an x chart.

(b) Use these data to find the central line and control limits for an R chart.

(c) Plot the given data on x and R charts based on the control-chart constants
computed in parts (a) and (b), and interpret the results.

(d) Using runs above and below the central line (similar to runs above and below
the median discussed on page 474), test at a level of significance of 0.05
whether there is a trend in the x values.

(e) Would it be reasonable to use the control limits found in this exercise in
connection with subsequent compression test measurements from the same
process? Why or why not?

15.4 Reverse-current readings (in nanoamperes) are made at the location of a transistor
on an integrated circuit. A sample of size 10 is taken every half hour. Since some of
the units may prove to be “shorts” or “opens,” it is not always possible to obtain 10
readings. The following table shows the number of readings made at the end of each
half-hour interval during an 8-hour shift, and the mean reverse currents obtained:

Sample 1 2 3 4 5 6 7 8

n 10 6 9 8 8 10 7 9

x 12.5 11.1 10.2 11.6 21.9 12.3 9.7 15.6

Sample 9 10 11 12 13 14 15 16

n 7 8 10 9 7 8 9 10

x 16.7 9.8 11.6 17.2 10.1 9.5 13.1 14.2

(a) Find the central line for an x chart by taking the weighted mean of the 16 x’s,
weighting each value with the size of the corresponding sample.

(b) Construct a table showing the central line in part (a) and three-sigma control
limits corresponding to n = 6, 7, 8, 9, and 10. Use R = 4.0, a value based on
prior data.

(c) Plot the data on a control chart like the one in Figure 15.15 and interpret the
results.
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Figure 15.15
Exercise 15.4
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15.5 If the sample standard deviations instead of the sam-
ple ranges are used to estimate σ , the control limits for
the resulting x chart are given by x ± A1 s, where s is
the mean of the sample standard deviations obtained
from given data, and A1 can be found in Table 8W.
Note that in connection with problems of quality con-
trol the sample standard deviation is defined using the
divisor n instead of n−1. The corresponding R chart is
replaced by a σ chart, having the central line c2 s and
the lower and upper control limits B3 s and B4 s, where
c2, B3 and B4 can be obtained from Table 8W.

(a) Construct an x chart and a σ chart for these sam-
ples of size 3 which had x equal to 25, 28, 26, 29,
30, 32, 22, 24, 27, 26, 29, 20, 25, 24, 27, 28, 24,
23, 27, 28 and s equal to 1, 2, 3, 5, 4, 2, 1, 3, 1, 4,
4, 3, 2, 1, 5, 4, 1, 3, 2, 2.

(b) Would it be reasonable to use these control limits
for subsequent data? Why?

15.6 In order to establish control charts for an extraction
job, 30 samples of five measurements of the extracted
ores are taken, and the results are x = 25.96 tons and
s = 1.5 tons. Using the method of Exercise 15.5, con-
struct an x chart for n = 5 and on it plot the following
means obtained in 25 successive samples: 24.15 25.16
27.86 26.89 27.85 28.96 32.45 19.95 22.15 23.96
25.18 25.15 24.19 29.86 25.81 22.45 26.95 28.42
27.35 24.12 21.36 28.45 27.61 23.95 24.81. Discuss
the results.

15.7 Suppose that with the samples of Exercise 15.6, it is
desired to establish control also over the variability of
the process. Using the method of Exercise 15.5 and the

values of x and s given in Exercise 15.6, calculate the
central line and the central limits for a σ chart with
n = 5.

15.8 Thirty-five consecutive samples of 100 bearings each,
taken from a factory, had, respectively, 1, 2, 5, 3, 4,
2, 6, 8, 1, 2, 3, 9, 8, 0, 12, 10, 5, 4, 1, 8, 6, 7, 9, 4,
8, 1, 2, 6, 7, 5, 8, 1, 3, 4 and 2 unusable bearings. If
the fraction unusable is to be maintained at 0.03, con-
struct a p chart for these data and state whether or not
this standard is being met.

15.9 The data of Exercise 15.8 may be looked upon as ev-
idence that the standard of 3% unusable bearings is
being exceeded.

(a) Use the data from Exercise 15.8 to construct new
control limits for the fraction unusable.

(b) Using the control limits found in part (a), continue
the control of the process by plotting the following
data on the number of unusable bearings obtained
in 20 subsequent samples of size n = 100: 2, 4, 1,
3, 6, 8, 10, 4, 6, 8, 9, 13, 0, 1, 6, 2, 3, 5, 7 and 5.

15.10 The specifications for a certain mass-produced valve
prescribe a testing procedure according to which each
valve can be classified as satisfactory or unsatisfactory
(defective). Past experience has shown that the process
can perform so that p = 0.03. Construct a three-sigma
control chart for the number of defectives obtained in
samples of size 100, and on it plot the following num-
bers of defectives obtained in such samples randomly
selected from 30 successive half-days of production:
3, 4, 2, 1, 5, 2, 1, 2, 3, 1, 3, 2, 2, 2, 1, 1, 2, 0, 4, 3, 1, 0,
2, 4, 0, 1, 5, 7, 3, and 2.

15.11 The standard for a process producing tin plate in a continuous strip is 5 defects in
the form of pinholes or visual blemishes per 100 feet. Based on the following set of
25 observations, giving the number of defects per 100 feet, can it be concluded that
the process is in control to this standard?

Inspection number 1 2 3 4 5 6 7 8 9 10 11 12

Number of defects 3 2 2 4 4 4 6 4 1 7 5 5

Inspection number 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of defects 4 6 6 9 5 2 6 5 11 6 6 8 2
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15.12 A process for the manufacturer of 4-by-8-foot woodgrained panels has performed
in the past with an average of 2.7 imperfections per 100 panels. Construct a chart
to be used in the inspection of the panels and discuss the control if 25 successive
100-panel lots contained, respectively, 4, 1, 0, 3, 5, 3, 5, 4, 1, 4, 0, 1, 4, 2, 3, 7, 4, 2,
1, 3, 0, 2, 6, 1, and 3 imperfections.

15.7 Tolerance Limits
Any process that is stable has natural limits of its own. A random sample of any
quality characteristic can then lead to tolerance limits that locate a reasonably high
proportion of the values of the quality characteristic being produced.

Suppose, long experience with a product strongly suggests that a certain dimen-
sion is normally distributed with the mean μ and the standard deviation σ . Then, it
is easy to construct limits between which we can expect to find any given proportion
P of the population. For P = 0.90, we have the tolerance limits μ ± 1.645 σ , and
for P = 0.95 we have μ ± 1.96 σ , as can easily be verified from Table 3.

In most practical situations the true values of μ and σ are not known, and toler-
ance limits must be based on the mean X and the standard deviation S of a random
sample. Whereas μ ± 1.96 σ are limits including 95% of a normal population, the
same cannot be said for the limits X ± 1.96 S. These limits are random variables
and they may or may not include a given proportion of the population. Nevertheless,
it is possible to determine a constant K so that one can assert with ( 1 − α )100%
confidence that the proportion of the population contained between x − Ks and
x + Ks is at least P.

Data: A random sample for a normal population X1 , X2 , ... , Xn

Given n, a specified confidence level ( 1 − α ) 100 %, and population
proportion P, let K be determined from Table 9W(a), Appendix B.

Tolerance limits: x ± K s

With ( 1 − α ) % confidence, the interval contains at least proportion
P of the population.

Table 9W(a), Appendix B, gives the value of K for P = 0.90, 0.95, and 0.99,
with 95% or 99% levels of confidence, and selected values of n from 2 to 1,000.

EXAMPLE 3 A tolerance interval for the free length of springs
A manufacturer produces compression springs in very large lots. It is helpful to find
an interval that locates a large majority of the free lengths of these springs. A sample
of size n = 100 yields x = 1.507 and s = 0.004 inch.

With 99% confidence determine an interval that contains a minimum proportion
P = 0.95 of all springs that will be produced. Assume that the distribution of free
length is normal.

Solution From Appendix B, Table 9W(a), with n = 100, 1 − α = 0.99, and P = 0.95, we
find K = 2.335. The resulting tolerance interval is

x ± K s = 1.507 ± 2.335 ( 0.004 ) or (1.497, 1.517 )

We assert, with 99% confidence, that at least 95 % of springs have free lengths from
1.497 to 1.517 inches.
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Note that, in problems like this, the lower tolerance limit is rounded down and
the upper tolerance limit is rounded up. j

To avoid confusion, let us also point out that there is an essential difference
between confidence limits and tolerance limits. Whereas confidence limits are used
to estimate a parameter of a population, tolerance limits are used to indicate between
what limits one can find a certain proportion of a population. This distinction is
emphasized by the fact that when n becomes large the length of a confidence interval
approaches zero, while the tolerance limits will approach the corresponding values
for the population. Thus, for large n, K approaches 1.96 in the columns for P = 0.95
in Table 9W(a).

The situation for one-sided tolerance bounds is different. In the context of
strength of materials, it is the weaker specimens that break. Consequently, it is im-
portant for engineers to have an accurate estimate of the lower tail of the population
of strengths. Recently engineers have realized that it is wiser to set specifications for
strength in terms of a lower percentile ηβ rather than the mean μ. It is the weaker
specimens, not those of average strength, which break. The lumber industry and
many space-age materials groups specify that a 95% one-sided confidence bound be
calculated for the fifth percentile η0.05. That is, a lower bound L(x1, x2, . . . , xn) is
calculated from the observations and, prior to taking the observations,

P [ L(X1, X2, . . . , Xn ) < η0.05 ] = 0.95

But this one-sided confidence bound is just a one-sided tolerance bound, since the
event the bound L(x1, x2, . . . , xn) is less than the population 0.05 point η0.05 is the
same as the event at least 95% of the population is above L(x1, x2, . . . , xn).

For normal populations

L( x1, x2 , . . . , xn ) = x − Ks

where K can be obtained from Table 9W(b).

EXAMPLE 4 Calculating a lower tolerance bound for the strength of cardboard
The cardboard industry is considering new standards for the cardboard used in boxes.
One test involves placing weight on the box until it bursts. The burst strengths, in
pounds per square inch, for 40 boxes are

210 234 216 232 262 183 227 197
248 218 256 218 244 259 263 185
218 196 235 223 212 237 275 240
217 263 240 247 253 269 231 254
248 261 268 262 247 292 238 215

Obtain a 95% tolerance bound that will be less than proportion 0.95 of the population
of burst strengths.

Solution By computer, we determine that x = 237.32 and s = 25.10. From Table 9W(b),
K = 2.125, so

L = x − Ks = 237.32 − 2.125 ( 25.10 ) = 183.93

which is rounded down to 183.
We are 95% confident that at least a proportion 0.95 of the population of burst

strengths, for cardboard boxes, is above 183 psi.
In Exercise 15.25 you are asked to verify that the strength measurements fail to

exhibit departures from normality. j
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Exercises
15.13 To check the strength of carbon steel for use in chain

links, the yield stress of a random sample of 25 pieces
was measured, yielding a mean and a standard devia-
tion of 52,800 psi and 4,600 psi, respectively. Establish
tolerance limits with α = 0.05 and P = 0.99, and ex-
press in words what these tolerance limits mean.

15.14 In a study designed to determine the number of turns
required for an artillery-shell fuse to arm, 80 fuses, ro-
tated on a turntable, average 45.6 turns with a stan-
dard deviation of 5.5 turns. Establish tolerance limits
for which one can assert with 95% confidence that at
least 99% of the fuses will arm within these limits.

15.15 In a random sample of 50 electrodes, the mean di-
ameter was 0.4 cm, and the standard deviation was
0.005 cm.

(a) Between what limits can it be said with 99% con-
fidence that at least 95% of the diameters of elec-
trodes produced will lie?

(b) Find 99% confidence limits for the true mean di-
ameter, and explain the difference between these
limits and the tolerance limits found in part (a).

15.16 Nonparametric tolerance limits can be based on the
extreme values in a random sample of size n from any
continuous population. The following equation relates
the quantities n, P, and α, where P is the minimum pro-
portion of the population contained between the small-
est and the largest observations with (1 − α)100%
confidence:

n Pn−1 − (n − 1) Pn = α

An approximate solution for n is given by

n = 1
2

+ 1 + P
1 − P

· χ2
α

4

where χ2
α is the value of chi square for 4 degrees of

freedom that corresponds to a right-hand tail area α.

(a) How large a sample is required to be 95% certain
that at least 90% of the population will be included
between the extreme values of a sample?

(b) With 95% confidence, at least what proportion of
the population can be expected to be included be-
tween the extreme values of a sample of size 100?

Do’s and Don’ts

Do’s
1. Make sure the process is operating in a stable manner before calculating a

central line and limits for a control chart. There should be no trends over
time, either in location or amount of variation.

2. Continue to improve any product or service by finding ways to reduce variation.

Don’ts
1. Don’t forget to check for dependence between adjacent values that are plot-

ted on a control chart. When means are plotted, you might graph the adja-
cent pairs (xi, xi−1). Even moderate correlation between adjacent points
can greatly deteriorate the performance of control charts.

Review Exercises

15.17 The specifications require that the height of shock shafts have μ = 1.6 meters and
σ = 0.03 meters.

(a) Use the specifications to calculate a central line and three-sigma control limits
for an x chart with n = 5.

(b) Use the specifications to calculate a central line and three-sigma control limits
for an R chart with n = 5.
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(c) Plot the following means and ranges, obtained in 20 successive random
samples of size 5, on charts based on the control-chart constants obtained in
part (a) and (b), and discuss the process.

Sample x R

1 1.65 0.05
2 1.63 0.08
3 1.58 0.19
4 1.46 0.04
5 1.69 0.02
6 1.55 0.01
7 1.58 0.03
8 1.60 0.06
9 1.59 0.01

10 1.63 0.12

Sample x R

11 1.66 0.19
12 1.64 0.26
13 1.68 0.21
14 1.69 0.18
15 1.49 0.12
16 1.53 0.34
17 1.56 0.32
18 1.59 0.36
19 1.59 0.29
20 1.61 0.15

15.18 Calculate x and R for the data of part (c) of Exercise 15.17 and use these values to
construct the central lines and three-sigma control limits for new x and R charts to
be used in the control of the heights of the shock shafts.

15.19 Twenty-five successive samples of 200 propellers, each taken from a production
line, contained, respectively, 1, 8, 4, 6, 10, 7, 9, 5, 1, 0, 4, 8, 10, 3, 12, 5, 9, 16, 13,
7, 8, 4, 2, 9 and 2 defectives. If the fraction of defectives is to be maintained at 0.04,
construct a p chart for these data and state whether or not this standard is being met.

15.20 The data of Exercise 15.19 may be looked upon as evidence that the standard of 4%
defectives is being exceeded.

(a) Use the data of Exercise 15.19 to construct new control limits for the fraction
defective.

(b) Using the limits found in part (a), continue the control of the process by
plotting the following data on the next ten samples of size n = 200: 8, 6, 4, 2,
3, 5, 10, 9, 1, 8.

15.21 A process for the manufacture of film has performed in the past with an average of
0.8 imperfections per 10 linear feet.

(a) Construct a chart to be used in the inspection of 10-foot sections.

(b) Discuss the control if 20 successive 10-foot sections contained, respectively, 1,
0, 0, 1, 3, 1, 2, 1, 0, 2, 1, 3, 0, 0, 1, 1, 2, 0, 4 and 1 imperfections.

15.22 With reference to the aluminum alloy strength data on page 29, obtain two-sided
95% tolerance limits on the proportion P = 0.90 of the population of strengths.

15.23 With reference to the interrequest time data on page 29, obtain 95% tolerance limits
on the proportion P = 0.90 of the population of interrequest times. Take logs, use
the normal theory approach, and then transform back to the original scale.

15.24 With reference to the discussion on page 492, calculate the CUSUM using 2.25 in
place of 2.00 as the centering value. Also make the CUSUM chart.

15.25 With reference to Example 4.

(a) verify the calculation of the tolerance bound L;

(b) if the confidence is decreased to 90%, calculate the new tolerance bound (use
K = 2.010);

(c) check the cardboard strength data for departures from normality using a
normal-score plot.

15.26 Explain, from the perspective of quality improvement programs, why the x, R, and
fraction defective charts should be used to listen to the process and observe its
natural variability, at any stage, rather than for the long-run control of the process.
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15.27 A critical width dimension on an integrated circuit board was measured on 100 boards. The ordered measurements are:

2.500 2.502 2.502 2.502 2.503 2.503 2.503 2.504 2.504
2.504 2.504 2.504 2.504 2.504 2.504 2.504 2.504 2.504
2.504 2.504 2.504 2.504 2.504 2.505 2.505 2.505 2.505
2.505 2.505 2.505 2.505 2.505 2.505 2.505 2.505 2.505
2.505 2.506 2.506 2.506 2.506 2.506 2.506 2.506 2.506
2.506 2.506 2.506 2.506 2.506 2.506 2.506 2.506 2.507
2.507 2.507 2.507 2.507 2.507 2.507 2.507 2.507 2.507
2.507 2.508 2.508 2.508 2.508 2.508 2.508 2.508 2.508
2.508 2.508 2.508 2.508 2.508 2.508 2.509 2.509 2.509
2.509 2.509 2.509 2.509 2.509 2.509 2.509 2.509 2.509
2.509 2.509 2.509 2.509 2.509 2.509 2.509 2.510 2.511
2.511

Given the specification limits LSL = 2.496 and USL = 2.516, evaluate the process capability by determining the
estimates (a) Ĉp and (b) Ĉpk.

15.28 The following are the number of pounds per day shipped by a trucking company.

222,415 140,670 396,868 240,678 101,786 166,217 177,900
349,900 131,100 465,800 417,700 305,600 264,500 224,400
360,400 211,600 378,200 285,400 166,100 230,900 593,300
214,200 147,800 119,510 159,200 353,200 408,300 275,100
254,100 423,500 324,800 304,500 298,600 202,200

It is suggested that the shipments be treated as a process. Because these data are not symmetrically distributed, you
could try a transformation. For the choice of the fourth root of weight, set the specification limits LSL and USL
symmetrically about 22.6 (pounds)1/4, so that the estimated capability index Ĉpk is 1.5.
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The task of designing and supervising the manufacture of a product has been made
increasingly difficult by rapid strides in the sophistication of modern products and
the severity of the environmental conditions under which they must perform. No

longer can an engineer be satisfied if the operation of a product is technically feasible, or
if it can be made to work under optimum conditions. In addition to such considerations as
cost and ease of manufacture, increasing attention must now be paid to size and weight,
ease of maintenance, and reliability. The magnitude of the problem of maintainability and
reliability is illustrated by surveys which have uncovered the fact that a high percentage of
space-age electronic equipment is inoperative. Military surveys have further shown that
maintenance and repair expenses for electronic equipment often exceed the original cost
of procurement, even during the first year of operation.

In Section 16.1, we define the concept of reliability. In Section 16.2, we discuss and
apply special probability distributions to the calculation of reliabilities. In Sections 16.3
and 16.4, some theory and applications relating to testing products for useful lifetime are
introduced.

16.1 Reliability
The problem of assuring and maintaining reliability has many facets, including
original-equipment design, control of quality during production, acceptance inspec-
tion, field trials, life testing, and design modifications. To complicate matters further,
reliability competes directly or indirectly with a host of other engineering consid-
erations, chiefly cost, complexity, size and weight, and maintainability. In spite of
its complicated engineering aspects, it is possible to give a relatively simple mathe-
matical definition for reliability. To motivate this definition, we can call the reader’s
attention to the fact that a product may function satisfactorily under one set of condi-
tions but not under other conditions. Also satisfactory performance for one purpose
does not assure adequate performance for another purpose. For example, a microchip
perfectly satisfactory for use in a home audio system may be entirely unsatisfactory
for use in the airborne guidance system of a missile. Accordingly, we shall define
reliability of any unit in terms of the probability it will operate successfully under
specified environmental conditions.

Reliability of a unit The reliability of a unit is probability that it will function within specified limits
for at least a specified period of time under specified environmental conditions.
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Thus, the reliability of a standard-equipment automobile tire is close to unity
for 10,000 miles of normal operation on a passenger car, but it is virtually zero for
use at the Indianapolis 500.

Since reliability is defined as a probability, the theoretical treatment of this sub-
ject is based essentially on the material introduced in the early chapters of this
book. Thus, the rules of probability introduced in Chapter 3 can be applied directly
to the calculation of the reliability of a complex system, if the reliabilities of the
individual components are known. (Estimates of the reliabilities of the individual
components are usually obtained from statistical life tests, such as those discussed
in Sections 16.3 and 16.4.)

Many systems can be considered to be series or parallel systems, or a combi-
nation of both. A series system is one in which all components are so interrelated
that the entire system will fail if any one of its components fails; a parallel system
is one that will fail only if all of its components fail.

Let us first discuss a system of n components connected in series, and let us
suppose that the components are independent, namely, that the performance of any
one part does not affect the reliability of the others. Under these conditions, the
probability that the system will function is given by the special rule of multiplication
for probabilities, and we have

Product law of reliabilities RS =
n∏

i=1

Ri

where Ri is the reliability of the ith component and RS is the reliability of the series
system. This simple product law of reliabilities, applicable to series systems of
independent components, vividly demonstrates the effect of increased complexity
on reliability.

EXAMPLE 1 Calculating the reliability of a series system
A system consists of 5 independent components in series, each having a reliability of
0.970. What is the reliability of the system? What happens to the system reliability
if its complexity is increased so that it contains 10 similar components?

Solution The reliability of the 5-component system is

(0.970)5 = 0.859

Increasing system complexity to 10 components will decrease the system relia-
bility to

(0.970)10 = 0.737

Looking at the effect of increasing complexity in another way, we find that each of
the components in the 10-component system would require a reliability of 0.985,
instead of 0.970, for the 10-component system to have a reliability equal to that of
the original 5-component system. j

One way to increase the reliability of a system is to replace certain components
by several similar components connected in parallel. If a system consists of n in-
dependent components connected in parallel, it will fail to function only if all n
components fail. Thus, if Fi = 1 − Ri is the “unreliability” of the ith component,
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we can again apply the special rule of multiplication for probabilities to obtain

FP =
n∏

i=1

Fi

where FP is the unreliability of the parallel system and RP = 1 − FP is the reliability
of the parallel system. Thus, for parallel systems, we have a product law of unreli-
abilities analogous to the product law of reliabilities for series systems. Writing this
law in another way, we get

Product law of
unreliabilities

RP = 1 −
n∏

i=1

( 1 − Ri )

for the reliability of a parallel system.

EXAMPLE 2 Calculating reliability for a complex system
The two basic formulas for the reliability of series and parallel systems can be used
in combination to calculate the reliability of a system having both series and parallel
parts. To illustrate such a calculation, consider the system diagramed in Figure 16.1,
which consists of eight components having the reliabilities shown in that figure. Find
the reliability of this system.

Figure 16.1
System reliability

HBA

F

G

C

D

E

0.70

0.70

0.70

0.990.95

0.75

0.75

0.90

Solution The parallel assembly C, D, E can be replaced by an equivalent component C′ hav-
ing the reliability 1 − ( 1 − 0.70 )3 = 0.973, without affecting the overall reliability
of the system. Similarly, the parallel assembly F, G can be replaced by a single com-
ponent F ′ having the reliability 1 − ( 1 − 0.75 )2 = 0.9375. The resulting series
system A, B,C′, F ′, H, equivalent to the original system, has the reliability

(0.95)(0.99)(0.973)(0.9375)(0.90) = 0.772 j

16.2 Failure-Time Distribution
According to the definition of reliability given in the preceding section, the reliabil-
ity of a system or a component will often depend on the length of time it has been
in service. Thus, of fundamental importance in reliability studies is the failure-time
distribution. Specifically, this is, the distribution of the time to failure of a compo-
nent under given environmental conditions. A useful way to characterize this dis-
tribution is by means of its associated instantaneous failure rate. To develop this
concept, first let f (t ) be the probability density of the time to failure of a given com-
ponent. The probability that the component will fail between times t and t + �t is



Sec 16.2 Failure-Time Distribution 507

approximately f (t ) · �t. Then, the probability that the component will fail on the
interval from 0 to t is given by

F (t ) =
∫ t

0
f (x) dx

and the reliability function, expressing the probability that it survives to time t, is
given by

R(t ) = 1 − F (t )

We can then express the probability that the component will fail in the interval from
t to t + �t as F (t + �t ) − F (t ), and the conditional probability of failure in this
interval, given that the component survived to time t, is expressed by

F (t + �t ) − F (t )
R(t )

Dividing by �t, we find that the average rate of failure in the interval from t to t+�t,
given that the component survived to time t, is

F (t + �t ) − F (t )
�t

· 1
R(t )

Taking the limit as �t → 0, we then get the instantaneous failure rate, or simply the
failure rate or hazard rate

Z(t ) = F ′(t )
R(t )

where F ′(t ) is the derivative of F (t ) with respect to t. Finally, observing that f (t ) =
F ′(t ) (see page 137), we get the relation

General equation for
failure-rate function

Z(t ) = f (t )

R(t )
= f (t )

1 − F (t )

The failure-rate function expresses the failure rate in terms of the failure-time dis-
tribution.

A failure-rate curve that is typical of many manufactured items is shown in
Figure 16.2. The curve is conveniently divided into three parts. The first part is
characterized by a decreasing failure rate and it represents the period during which
poorly manufactured items are weeded out. (It is common in the electronics industry
to burn in components prior to actual use in order to eliminate any early failures.)
The second part, which is often characterized by a constant failure rate, is normally
regarded as the period of useful life during which only chance failures occur. The

Figure 16.2
Typical failure-rate curve

Failure
rate

Early
failures

Chance failures Wear-out
failures

Time0
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third part is characterized by an increasing failure rate, and it is the period during
which components fail primarily because they are worn out. Note that the same gen-
eral failure-rate curve is typical of human mortality, where the first part represents
infant mortality, and the third part corresponds to old-age mortality.

Let us now derive an important relationship expressing the failure-time density
in terms of the failure-rate function. Making use of the fact that R(t ) = 1 − F (t )
and, hence, that F ′(t ) = −R′(t ), we can write

Z(t ) = −R′(t )

R(t )
= −d [ ln R(t ) ]

dt

Solving this differential equation for R(t ), we obtain

R(t ) = e
−

∫ t

0
Z(x) dx

and, making use of the relation f (t ) = Z(t ) · R(t ), we finally get

General equation for
failure-time distribution f (t ) = Z(t ) · e

−
∫ t

0
Z(x) dx

As illustrated in Figure 16.2, it is often assumed that the failure rate is constant
during the period of useful life of a component. Denoting this constant failure rate
by α, where α > 0, and substituting α for Z(t ) in the formula for f (t ), we obtain

f (t ) = α · e− α t , t > 0

Thus, we have an exponential failure-time distribution when it can be assumed
that the failure rate is constant. For this reason, the assumption of constant failure
rates is sometimes also called the exponential assumption. The time to failure also
has an interpretation as a waiting time. If a component which fails is immediately
replaced with a new one having the same constant failure rate α and the occurrence
of failures follows a Poisson process, then the waiting times have this exponen-
tial distribution according to results in Section 5.7. As we observed on page 157,
the mean waiting time between successive failures is 1/α, or the reciprocal of the
failure rate. Thus, the constant 1/α is often referred to as the mean time between
failures (MTBF).

There are situations in which the assumption of a constant failure rate is not
realistic, and in many of these situations one assumes instead that the failure-rate
function increases or decreases smoothly with time. In other words, it is assumed
that there are no discontinuities or turning points. This assumption would be con-
sistent with either the initial or the last stage of the failure-rate curve shown in
Figure 16.2.

A useful function often used to approximate such failure-rate curves is given by

Z(t ) = α β tβ − 1, t > 0

where α and β are positive constants. Note the generality of this function: If β < 1,
the failure rate decreases with time; if β > 1, it increases with time; and if β = 1,
the failure rate equals α. Note that the assumption of a constant failure rate, the
exponential assumption, is thus included as a special case.

If we substitute the above expression for Z(t ) into the formula for f (t ) above,
we obtain

f (t ) = α β tβ − 1 e−α tβ , t > 0
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where α and β are positive constants. This density, or distribution, is the Weibull
distribution, introduced in Section 5.9, and we discuss its application to problems of
life testing in Section 16.4.

Exercises
16.1 An electric circuit consists of 7 transistors connected

in parallel. Determine the reliability of each transistor
if the overall reliability of the circuit is to be 0.99.

16.2 A system consists of 5 identical components con-
nected in parallel. Determine the reliability of each
component if the overall reliability of the system is to
be 0.96?

16.3 A system consists of 6 components connected as
in Figure 16.3. Find the overall reliability of the
system, given that the reliabilities of A, B,C, D, E,

and F are, respectively, 0.95, 0.80, 0.90, 0.99, 0.90,
and 0.85.

A

B

C

D

E

F

Figure 16.3 System for Exercise 16.3

16.4 Suppose that a machine’s operation is regarded as
a system having three main components: A (team),
B (power supply), and C (assembly). Suppose, further-
more, that component A can be regarded as a parallel
subsystem consisting of A1 (worker), A2 (supervisor),
and A3 (operations manager); and C is a parallel sub-
system consisting of C1 (factory assembly) and C2
(warehouse assembly). Under given operating condi-
tions, the reliabilities of components A1, A2, A3, B, C1,
and C2 (defined as the probabilities that they can con-
tribute to successful operation of a machine) are 0.985,
0.45, 0.99, 0.95, 0.995 and 0.85 respectively.

(a) What is the reliability of the system?

(b) What is the effect on system reliability of having a
skilled machine operator as supervisor, so that the
reliability of A2 is increased from 0.45 to 0.85?

(c) If the team does not have an operations manager,
then what would be the effect of increasing the re-
liability of A2 from 0.45 to 0.85?

(d) What is the effect of adding an alternate power
supply, B2, with reliability 0.75?

16.5 In some reliability problems we are concerned only
with initial failures, treating a component as if (for all
practical purposes) it never fails, once it has survived
past a certain time t = α. In a problem like this, it may
be reasonable to use the failure rate

Z(t ) =

⎧⎪⎨
⎪⎩

β

(
1 − t

α

)
for 0 < t < α

0 elsewhere

(a) Find expressions for f (t ) and F (t ).

(b) Show that the probability of an initial failure is
given by

1 − e−αβ/2

16.6 As indicated in the text, one often distinguishes be-
tween initial failures, random failures during the useful
life of the product, and wear-out failures. For a given
product, suppose the probability of an initial failure (a
failure prior to time t = α) is θ1, the probability of a
wear-out failure (a failure beyond time t = β) is θ2,
and that for the interval α ≤ t ≤ β the failure-time
density is given by

f (t ) = 1 − θ1 − θ2

β − α

(a) Find an expression for F (t ) for the interval
α ≤ t ≤ β.

(b) Show that for the interval α ≤ t ≤ β, the failure
rate is given by

Z(t ) = 1 − θ1 − θ2

( β − α )( 1 − θ1 ) − ( 1 − θ1 − θ2 )( t − α )

(c) Suppose that the failure of a digital television set
is considered to be an initial failure if it occurs dur-
ing the first 100 hours of usage and a wear-out fail-
ure if it occurs after 15,000 hours. Assuming that
the model given in this exercise holds and that θ1
and θ2 equal 0.05 and 0.75, respectively, sketch
the graph of the failure-rate function from t = 100
to t = 15,000 hours.

16.7 A transistor has a constant failure rate of 0.005 per ten
thousand hours.

(a) What is the probability that it will perform satis-
factorily for at least 75,000 hours?
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(b) What is the 20,000-hour reliability of a chip con-
sisting of 6 such transistors connected in series?

16.8 After installation, the lifetime of a ball bearing is mod-
eled as an exponential distribution with failure rate
α = 0.001 failures per day.

(a) What is the probability that the ball bearing will
fail within the first 90 days of installation?

(b) What is the probability that three such ball bear-
ings, installed independently, will all survive the
first 90 days of installation?

16.9 If the spare part of a cement mixer has the Weibull
failure-time distribution with the parameters α =
0.001 per hour and β = 0.65, find the probability that
it will not operate successfully for at least 1,000 hours.

16.3 The Exponential Model in Life Testing
An effective and widely used method of handling problems of reliability is that of life
testing. For the purpose of such tests, a random sample of n components is selected
from a lot, put on test under specified environmental conditions, and the times to
failure of the individual components are observed. If each component that fails is
immediately replaced by a new one, the resulting life test is called a replacement
test; otherwise, the life test is called a nonreplacement test. Whenever the mean
lifetime of the components is so large that it is not practical, or economically feasible,
to test each component to failure, the life test may be truncated, after a fixed period
of time has elapsed. Alternatively, it may be terminated after the first r failures have
occurred ( r ≤ n ).

A special method often used when early results are required in connection with
very high reliability components is that of accelerated life testing. In an accelerated
life test the components are put on test under environmental conditions far more se-
vere than those normally encountered in practice. This causes the components to
fail more quickly, and it can drastically reduce both the time required for the test
and the number of components that must be tested. Accelerated life testing can be
used to compare two or more types of components for the purpose of obtaining a
rapid assessment of which one is the most reliable. Sometimes, preliminary exper-
imentation is carried out to determine the relationship between the proportion of
failures that can be expected under nominal conditions and under various levels of
accelerated environmental conditions. The methods of Sections 11.3 and 13.2 can
be applied in this connection to determine “derating curves,” relating the reliability
of the component to the severity of the environmental conditions under which it is
to operate.

In the remainder of this section we shall assume that the exponential model
holds, namely, that the failure-time distribution of each component is given by

f (t ) = α · e−αt t > 0, where α > 0

In what follows, we shall assume that n components are put on test, life testing is
discontinued after a fixed number, r ( r ≤ n ), of components have failed, and that
the observed failure times are t1 ≤ t2 ≤ · · · ≤ tr. We shall be concerned with
estimating and testing hypotheses about the mean life of the component, namely,
μ = 1/α.

It can be shown (see the reference to Lawless in the bibliography) that unbiased
estimates of the mean life of the component are given by

Estimate of mean life μ̂ = Tr

r
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where Tr is the accumulated life of test until the rth failure occurs, and hence

Accumulated
life to r failures

(nonreplacement test)
Tr =

r∑
i=1

ti + ( n − r ) tr

for nonreplacement tests and

Accumulated life to r
failures (replacement test) Tr = n tr

if the test is with replacement. Note that if the test is without replacement and r =
n , μ̂ is simply the mean of the observed times to failure.

To make inferences concerning the mean life μ of the component, we use the
fact that 2 Tr/μ is a value of a random variable having the chi square distribution
with 2r degrees of freedom. With the appropriate expression substituted for Tr, this
is true regardless of whether the test is conducted with or without replacement. Thus,
in either case a two-sided ( 1 − α )100% confidence interval for μ is given by

Confidence interval
for mean life

2Tr

χ2
α/2

< μ <
2Tr

χ2
1 −α/2

where χ2
1−α/2 and χ2

α/2 cut off the left- and right-hand tails of area α/2 under the
chi square distribution with 2r degrees of freedom. (See Exercise 16.15.)

Tests of the null hypothesis that μ = μ0 can also be based on the sampling
distribution of 2 Tr/μ , using the appropriate expression for Tr depending on whether
the test is with or without replacement. Thus, if the alternative hypothesis is μ >

μ0, we reject the null hypothesis at the level of significance α when 2 Tr/μ0 exceeds
χ2

α , or

Critical region for testing
H0: μ= μ0 against

H1: μ > μ0

Tr >
1
2

μ0 χ2
α

where χ2
α , to be determined for 2r degrees of freedom, is as defined on page 208. In

Exercises 16.10 and 16.13 the reader is asked to construct and perform similar tests
corresponding to the alternative hypotheses μ < μ0 and μ �= μ0 .

EXAMPLE 3 Obtaining a confidence interval for mean life
Suppose that 50 units are placed on life test (without replacement) and the test is
to be truncated after r = 10 of them have failed. We shall suppose, furthermore,
that the first 10 failure times are 65, 110, 380, 420, 505, 580, 650, 840, 910, and
950 hours. Estimate the mean life of the component, and its failure rate, and calculate
a 90% confidence interval for μ.
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Solution Since n = 50, r = 10,

T10 = ( 65 + 100 + · · · + 950 ) + ( 50 − 10 ) 950

= 43,410 hours

We estimate the mean life of the component as

μ̂ = 43,410
10

= 4,341 hours

The failure rate α is estimated by 1/μ̂ = 0.00023 failure per hour, or 0.23 failure
per thousand hours. Using χ2

0.05 = 31.410 and χ2
0.95 = 10.851 for 2(10) =

20 degrees of freedom, a 90% confidence interval for μ is given by

2(43,410)

31.410
< μ <

2(43,410)

10.851

or

2,764 < μ < 8,001 j

EXAMPLE 4 Testing hypotheses concerning mean life
Using the data of the preceding example, test whether the failure rate is 0.40 fail-
ure per thousand hours against the alternative that the failure rate is less. Use the
0.05 level of significance.

Solution 1. Null hypothesis: μ = 1,000
0.40

= 2,500 hours = μ0

Alternative hypothesis: μ > 2,500 hours

2. Level of significance: α = 0.05

3. Criterion: Reject the null hypothesis if Tr >
1
2

μ0 χ2
0.05 where

χ2
0.05 = 31.410 is the chi square value for 2 r = 20 degrees of freedom.

4. Calculations: Substituting χ2
0.05 = 31.410 and μ0 = 2,500, we find the

critical value for this test to be

1
2

μ0 χ2
0.05 = 1

2
(2,500)(31.410) = 39,263

5. Decision: Since T10 = 43,410 exceeds the critical value, we must reject the
null hypothesis, concluding that the mean lifetime exceeds 2,500 hours, or,
equivalently, that the failure rate is less than 0.40 failure per thousand hours. j

Because of the simplicity of the statistical procedures, the exponential model is
frequently considered. Before making inferences, it is imperative that this model be
checked for adequacy. We recommend making a total time on test plot. Plot the
total time on test until the ith failure, Ti, divided by the total time on test through the
last (rth) observed failure, against i/r. If the population is exponential, we would
expect to see a straight line along the 45-degree line. When this straight-line pattern
occurs, we conclude that no violations of the exponential model are evident over the
range of failure times. If the plot is a curve above the 45-degree line, the evidence
favors an increasing hazard rate model.

We illustrate the total time on test plot using the data of Example 3. For t1 = 65,
we calculate the total time on test

T1 = 65 + ( 50 − 1 ) 65 = 3,250
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Next, for t2 = 110,

T2 = 65 + 110 + ( 50 − 2 ) 110 = 5,455

Continuing, we obtain all the values

3,250 5,455 18,415 20,295 24,205
27,580 30,660 38,830 41,770 43,410

so the total time on test until the last, r = 10, failure is Tr = 43,410. The first ratio
T1/T10 = 3,250/43,410 = 0.0749 is plotted against 1/10 = 0.10. The ratios for
all 10 failures are plotted in Figure 16.4. Over the range of failure times observed, the
plot does not exhibit any marked departures from the assumed exponential model.

Figure 16.4
The total time on test plot for
data in Example 3
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16.4 The Weibull Model in Life Testing
Although life testing of components during the period of useful life is generally
based on the exponential model, we have already pointed out that the failure rate of
a component may not be constant throughout a period under investigation. In some
instances the period of initial failure may be so long that the component’s main use
is during this period. However, the main purpose of most life testing is to determine
the time to wear-out failure rather than chance failure of a critical component in a
complex system. In such cases the exponential model generally does not apply, and
it is necessary to consider a more general assumption for the failure rate.

As we observed earlier, the Weibull distribution may adequately describe the
failure time of components when their failure rate either increases or decreases with
time. It has the parameters α and β and its formula is given by

Weibull distribution f (t ) = α β tβ − 1 e−α tβ t > 0, where α > 0, β > 0

and it follows (see Exercise 16.20) that the reliability function associated with the
Weibull failure-time distribution is given by

Weibull reliability function R(t ) = e−α tβ
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We already showed on page 508 that the failure rate leading to the Weibull distribu-
tion is given by

Weibull failure-rate
function Z(t ) = α β tβ − 1

The Weibull density can take a wide range of shapes depending primarily on
the value of the parameter β. As illustrated in Figure 16.5, the Weibull curve is
asymptotic to both axes and highly skewed to the right for values of β less than
1; it is identical to that of the exponential density for β = 1, and it is somewhat
bell-shaped but skewed for values of β greater than 1.

Figure 16.5
Weibull density functions
( α = 1 )
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The mean of the Weibull distribution having the parameters α and β may be
obtained by evaluating the integral

μ =
∫ ∞

0
t · α β tβ − 1 e−α tβ dt

Making the change of variable u = α tβ , we get

μ = α−1/β
∫ ∞

0
u1/β e−u du

Recognizing the integral as �

(
1 + 1

β

)
, the gamma function evaluated at 1+β−1,

we find that the mean time to failure for the Weibull model is

μ = α−1/β �

(
1 + 1

β

)
Mean time to failure

(Weibull model)

The reader will be asked to show in Exercise 16.21 that the variance of this distri-
bution is given by

Variance of Weibull model σ 2 = α−2/β

{
�

(
1 + 2

β

)
−

[
�

(
1 + 1

β

)]2
}
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Estimates of the parameters α and β of the Weibull distribution are somewhat
difficult to obtain. The most widely accepted approach, the maximum likelihood
method, maximizes the likelihood. Because the partial derivatives with respect to
α and β must vanish at the maximum, the method selects the solution to these two
equations as the estimates of α and β. If the lifetimes are censored at the rth failure
(the test is terminated at the rth failure), or uncensored so r = n, the equations are

r∑
i=1

tβi ln ti + ( n − r ) tβr ln tr

r∑
i=1

tβi + ( n − r ) tβr

− 1
β

− 1
r

r∑
i=1

ln ti = 0

α = 1

1
r

⎡
⎣ r∑

i=1

tβi + ( n − r ) tβr

⎤
⎦

The first equation is solved for β̂ by numerical techniques. Then the second yields
the estimate of α̂. These are easy computer calculations.

If the lifetimes are time truncated at time T0, the terms with a factor n − r are
modified by replacing each tr by T0.

A graphical method provides a check on the adequacy of the Weibull model.
This method is based on the fact that the reliability function of the Weibull dis-
tribution can be transformed into a linear function of ln t by means of a double-
logarithmic transformation. Taking the natural logarithm of R(t ), we obtain

ln R(t ) = −α tβ or ln
1

R(t )
= α tβ

Again taking logarithms, we have

ln ln
1

R(t )
= ln α + β · ln t

and it can be seen that the right-hand side is linear in ln t.
The usual experimental procedure is to place n units on life test and observe

their failure times. If the ith failure occurs at time ti, we estimate F (ti) = 1 − R(ti)
by the same method used for the normal-scores plot (see page 180), namely,

F̂ (ti) = i
n + 1

To construct a Weibull plot, we plot ln ti versus

ln ln
1

1 − F̂ (t1)

If the points do not fall reasonably close to a straight line, the assumption that the
underlying failure-time distribution is of the Weibull type is contradicted.

A sample of 100 components is put on life test for 500 hours and the times to
failure of the 12 components that failed during the test are as follows: 6, 21, 50, 84,
95, 130, 205, 260, 270, 370, 440, and 480 hours. Setting

xi = ln ln
1

1 − F̂ (ti)

yi = ln ti
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we obtain

̂F (t i) t i y i x i

0.010 6 1.79 −4.61
0.020 21 3.04 −3.91
0.030 50 3.91 −3.50
0.040 84 4.43 −3.21
0.050 95 4.55 −2.98
0.059 130 4.87 −2.79
0.069 205 5.32 −2.63
0.079 260 5.56 −2.49
0.089 270 5.60 −2.37
0.099 370 5.91 −2.26
0.109 440 6.09 −2.16
0.119 480 6.17 −2.07

The points (xi, yi) are plotted in Figure 16.6, and it can be seen that they fall fairly
close to a straight line. After checking the adequacy of the Weibull distribution,
we obtain the maximum likelihood estimators defined on page 515. Our computer
calculations yield α̂ = 0.001505 and β̂ = 0.7148. It follows that the mean time to
failure is estimated as

μ̂ = (0.001505)−1/0.7148 �

(
1 + 1

0.7148

)
which equals approximately 11,000 hours. Also, values of the failure-rate function
may be obtained by substituting for t into

Ẑ(t ) = (0.001505)(0.7148) t0.7148−1 = 0.00108 t−0.2852

Since β̂ < 1, the failure rate is decreasing with time. After 1 hour ( t = 1 ), units
are failing at the rate of 0.00108 unit per hour, and after 1,000 hours the failure rate
has decreased to 0.00108 (1000)−0.2852 = 0.00015 unit per hour.

Figure 16.6
A Weibull plot of failure times
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Exercises
16.10 Suppose that 75 units are put on a life test, each unit

that fails is immediately replaced, and the test is dis-
continued after 10 units have failed. If the tenth fail-
ure occurred at 850 hours, assuming an exponential
model,

(a) construct a 99% confidence interval for the mean
life of such units;

(b) test at the 0.01 level of confidence whether or not
the mean life is less than 15,000 hours.

16.11 In a nonreplacement life test, 50 water turbines were
put into continuous operation, and the first 3 failures
occurred after 400, 600, and 1,050 hours.

(a) Assuming the exponential model, construct an
85% confidence interval for the mean life of this
kind of water turbines.

(b) To check the manufacturer’s claim that the mean
life of these turbines is greater than 7,500 hours,
test the null hypothesis μ = 7,500 against an ap-
propriate alternative, so that the burden of proof is
put on the manufacturer. Use α = 0.005.

16.12 With reference to the data in Exercise 16.11, make a
total time on test plot.

16.13 To investigate the average time to failure of a certain
soldered object subject to continuous flow of current, 5
soldered objects were subjected to specified volts and
amperes of current and their times to failure were 426,
589, 694, 810 and 1,100 circuits of current.

(a) Assuming the exponential model, construct a 90%
confidence interval for the mean life (in thou-
sands) of circuits of such a solder under the given
current flow conditions.

(b) Assuming the exponential model, test the null hy-
pothesis that the mean life of the solder under the
given current flow conditions is 1 million circuits
against the two-sided alternative μ �= 1 million.
Use the level of significance 0.05.

16.14 In life testing, we are sometimes interested in estab-
lishing tolerance limits for the life of a component (see
Section 15.7); in particular, we may be interested in a
one-sided tolerance limit t∗, for which we can assert
with a (1 − α)100% confidence that at least 100 · P
percent of the components have a life exceeding t∗.
Using the exponential model, it can be shown that

t∗ = − 2 Tr ( ln P )

χ2
α

where Tr is as defined on page 511, and the value of
χ2

a is to be obtained from Table 5W with 2r degrees of
freedom.

(a) Using the data of Exercise 16.11, establish a lower
tolerance limit for which one can assert with 99%
confidence that it is exceeded by at least 75% of
the lifetimes of water turbines.

(b) Using the data of Exercise 16.13, establish a lower
tolerance limit for which one can assert with 95%
confidence that it is exceeded by at least 80% of
the lifetimes of a given solder.

16.15 Using the fact that 2 Tr /μ is a value of a random vari-
able having the chi square distribution with 2 r degrees
of freedom, derive the confidence interval for μ given
on page 511.

16.16 One hundred devices are put on life test and the times
to failure (in hours) of the first 10 that fail are

7.0 14.1 18.9 31.6 52.8
80.0 164.5 355.4 451.0 795.1

Assuming a Weibull failure-time distribution, estimate
the parameters α and β as well as the failure rate at
1,000 hours. How does this value of the failure rate
compare with the value we would obtain if we assumed
the exponential model?

16.17 A sample of 450 bulbs was placed on a life test consist-
ing of repeated on-off cycles. The test was terminated
after the fifth failure. The first five failure times were
469, 724, 862, 995 and 1,246. Find a 99% lower con-
fidence limit for the mean life, in number of cycles, of
the bulbs. Use the exponential model.

16.18 A sample of 60 diaphragm valves, used in the con-
trol system of a chemical process, are placed on life
test without replacement. The first 9 failures are ob-
served after

3.6 6.9 9.5 15.7 27.3 41.2 81.7 178.3 227.1

hours. Using the Weibull model, estimate the mean life
of this valve. How does this value compare with the
mean life that would have been obtained under the ex-
ponential assumption?

16.19 Using the estimates of the parameters of the Weibull
model obtained in Exercise 16.18, estimate the prob-
ability that this kind of diaphragm valve will perform
satisfactorily for at least 150 hours.

16.20 Show that the reliability function associated with the
Weibull failure-time distribution is given by

R(t ) = e−α tβ

16.21 Derive the formula for the variance of the Weibull dis-
tribution given on page 514.
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Do’s and Don’ts

Do’s
1. Be aware that reliability analyses based on the exponential model can be

quite misleading when components have an increasing failure rate.

2. When fitting an exponential model to data, it is good practice to also fit a
Weibull distribution to see if its shape parameter is near one.

Don’ts
1. Don’t routinely accept a reliability analysis of a system if the analysis is

based on the independence of components. External shocks to the system
can often cause multiple components to fail.

2. Don’t routinely accept a reliability analysis of a system if the analysis is
based on the assumption that the components have exponential distribu-
tions. It may be too optimistic since most real components eventually age
and so eventually have increasing hazard rates.

Review Exercises
16.22 A system consists of 7 identical components con-

nected in parallel. Determine the reliability of each
component if the overall reliability of the system is to
be 0.90?

16.23 A transmitter has an exponential life distribution with
a failure rate of α = 0.00025 failures per hour.

(a) What is the probability that the transmitter will fail
during the first 400 hours it is in operation?

(b) What is the probability that three such transmitters
will all survive the first 200 hours of operation?

16.24 Twenty motors are put on an accelerated life test with-
out replacement and the test is truncated after 5 fail-
ures. If the first 5 failures occurred at 12.5, 16.8,
24.3, 27.6 and 32.1 hours, assuming an exponential
model,

(a) determine a 95% confidence interval for the fail-
ure rate of such motors under these accelerated
conditions;

(b) test the null hypothesis that the failure rate is 0.005
failures per hour against the alternative that it is
less that 0.005, using the 0.05 level of significance.

16.25 A sample of 400 high-reliability switches was placed
on a life test until the first five failures occurred and the
test was then terminated. The first five failures were at
268, 395, 479, 685 and 964 hours. Find a 99% lower
confidence limit for the mean life of the switches as-
suming an exponential model.

16.26 To investigate the performance of a logic circuit for a
small electronic calculator, a laboratory puts 75 of the
circuits on life test without replacement under speci-
fied environmental conditions, and the first 10 failures
are observed after 28, 46, 50, 63, 81, 101, 116, 137,
159, and 175 hours. Using the Weibull model, estimate
the mean life of such a circuit. How does this value
compare with the mean life that would have been ob-
tained under the exponential assumption?

16.27 Using the estimates of the parameters of the Weibull
model obtained in Exercise 16.26, estimate the proba-
bility that this kind of circuit will perform satisfactorily
for at least 100 hours.

16.28 With reference to Exercise 16.26, make

(a) a total time on test plot

(b) a Weibull plot

16.29 (Stress-strength models for reliability) An alterna-
tive model used in reliability treats the environmental
stress as a random variable X , with probability den-
sity f (x), and the strength of the component to with-
stand this stress as an independent random variable Y
having probability density g(y). Then, the reliability is
defined as

R = P[Y > X ] =
∫ ∞

−∞

∫ y

−∞
f (x) g(y) dx dy

=
∫ ∞

−∞
F (y) g(y) dy
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where F (x) is the distribution function of X . Evaluate
this reliability when

(a) X has an exponential distribution with α = 0.01
and Y has an exponential distribution with failure
rate 0.005;

(b) X has an exponential distribution with α = 0.005
and Y has an exponential distribution with failure
rate 0.005;

(c) ln X has a normal distribution with μ= 60 and
σ = 5 and ln Y has a normal distribution with μ =
80 and σ = 5.
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1. Binomial Distribution Function 523

2W. Poisson Distribution Function

3. Standard Normal Distribution Function (see 550)

4. Values of tα 528

5W. Values of χ2
α

6W. (a). Values of F0.05
6W. (b). Values of F0.01
7W. Random Digits

8W. Control Chart Constants

9W. (a). Factors for Two-Sided Tolerance Limits

9W. (b). Factors for One-Sided Tolerance Limits

Despite the increasing emphasis on using statistical software to obtain probabilities
and percentiles, we still make several statistical tables available for download at the
book’s section of the website

www.pearsonglobaleditions.com/johnson

Appendix B lists these tables each of whose number ends in W. Then, for instance,
in the text Table 5W refers to the website Table 5W which contains percentiles of the
chi-square distribution. An expansion of Section 6.7 and Section 15.8 on Acceptance
Sampling are also posted.

The binomial, normal and t tables are retained in the text.

Statistical Tables
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Table 1 Binomial Distribution Function

B ( x: n, p ) =
x∑

k = 0

(
n
k

)
p k ( 1 − p ) n − k

p
n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
2 0 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4225 0.3600 0.3025 0.2500 0.2025 0.1600 0.1225 0.0900 0.0625 0.0400 0.0225 0.0100 0.0025

1 0.9975 0.9900 0.9775 0.9600 0.9375 0.9100 0.8775 0.8400 0.7975 0.7500 0.6975 0.6400 0.5775 0.5100 0.4375 0.3600 0.2775 0.1900 0.0975

3 0 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.2746 0.2160 0.1664 0.1250 0.0911 0.0640 0.0429 0.0270 0.0156 0.0080 0.0034 0.0010 0.0001
1 0.9927 0.9720 0.9393 0.8960 0.8438 0.7840 0.7183 0.6480 0.5748 0.5000 0.4252 0.3520 0.2818 0.2160 0.1563 0.1040 0.0607 0.0280 0.0073
2 0.9999 0.9990 0.9966 0.9920 0.9844 0.9730 0.9571 0.9360 0.9089 0.8750 0.8336 0.7840 0.7254 0.6570 0.5781 0.4880 0.3859 0.2710 0.1426

4 0 0.8145 0.6561 0.5220 0.4096 0.3164 0.2401 0.1785 0.1296 0.0915 0.0625 0.0410 0.0256 0.0150 0.0081 0.0039 0.0016 0.0005 0.0001 0.0000
1 0.9860 0.9477 0.8905 0.8192 0.7383 0.6517 0.5630 0.4752 0.3910 0.3125 0.2415 0.1792 0.1265 0.0837 0.0508 0.0272 0.0120 0.0037 0.0005
2 0.9995 0.9963 0.9880 0.9728 0.9492 0.9163 0.8735 0.8208 0.7585 0.6875 0.6090 0.5248 0.4370 0.3483 0.2617 0.1808 0.1095 0.0523 0.0140
3 1.0000 0.9999 0.9995 0.9984 0.9961 0.9919 0.9850 0.9744 0.9590 0.9375 0.9085 0.8704 0.8215 0.7599 0.6836 0.5904 0.4780 0.3439 0.1855

5 0 0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.1160 0.0778 0.0503 0.0313 0.0185 0.0102 0.0053 0.0024 0.0010 0.0003 0.0001 0.0000 0.0000
1 0.9774 0.9185 0.8352 0.7373 0.6328 0.5282 0.4284 0.3370 0.2562 0.1875 0.1312 0.0870 0.0540 0.0308 0.0156 0.0067 0.0022 0.0005 0.0000
2 0.9988 0.9914 0.9734 0.9421 0.8965 0.8369 0.7648 0.6826 0.5931 0.5000 0.4069 0.3174 0.2352 0.1631 0.1035 0.0579 0.0266 0.0086 0.0012
3 1.0000 0.9995 0.9978 0.9933 0.9844 0.9692 0.9460 0.9130 0.8688 0.8125 0.7438 0.6630 0.5716 0.4718 0.3672 0.2627 0.1648 0.0815 0.0226
4 1.0000 1.0000 0.9999 0.9997 0.9990 0.9976 0.9947 0.9898 0.9815 0.9688 0.9497 0.9222 0.8840 0.8319 0.7627 0.6723 0.5563 0.4095 0.2262

6 0 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0754 0.0467 0.0277 0.0156 0.0083 0.0041 0.0018 0.0007 0.0002 0.0001 0.0000 0.0000 0.0000
1 0.9672 0.8857 0.7765 0.6554 0.5339 0.4202 0.3191 0.2333 0.1636 0.1094 0.0692 0.0410 0.0223 0.0109 0.0046 0.0016 0.0004 0.0001 0.0000
2 0.9978 0.9841 0.9527 0.9011 0.8306 0.7443 0.6471 0.5443 0.4415 0.3438 0.2553 0.1792 0.1174 0.0705 0.0376 0.0170 0.0059 0.0013 0.0001
3 0.9999 0.9987 0.9941 0.9830 0.9624 0.9295 0.8826 0.8208 0.7447 0.6563 0.5585 0.4557 0.3529 0.2557 0.1694 0.0989 0.0473 0.0158 0.0022
4 1.0000 0.9999 0.9996 0.9984 0.9954 0.9891 0.9777 0.9590 0.9308 0.8906 0.8364 0.7667 0.6809 0.5798 0.4661 0.3446 0.2235 0.1143 0.0328
5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9982 0.9959 0.9917 0.9844 0.9723 0.9533 0.9246 0.8824 0.8220 0.7379 0.6229 0.4686 0.2649

7 0 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0490 0.0280 0.0152 0.0078 0.0037 0.0016 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
1 0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625 0.0357 0.0188 0.0090 0.0038 0.0013 0.0004 0.0001 0.0000 0.0000
2 0.9962 0.9743 0.9262 0.8520 0.7564 0.6471 0.5323 0.4199 0.3164 0.2266 0.1529 0.0963 0.0556 0.0288 0.0129 0.0047 0.0012 0.0002 0.0000
3 0.9998 0.9973 0.9879 0.9667 0.9294 0.8740 0.8002 0.7102 0.6083 0.5000 0.3917 0.2898 0.1998 0.1260 0.0706 0.0333 0.0121 0.0027 0.0002
4 1.0000 0.9998 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734 0.6836 0.5801 0.4677 0.3529 0.2436 0.1480 0.0738 0.0257 0.0038
5 1.0000 1.0000 0.9999 0.9996 0.9987 0.9962 0.9910 0.9812 0.9643 0.9375 0.8976 0.8414 0.7662 0.6706 0.5551 0.4233 0.2834 0.1497 0.0344
6 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9984 0.9963 0.9922 0.9848 0.9720 0.9510 0.9176 0.8665 0.7903 0.6794 0.5217 0.3017

8 0 0.6634 0.4305 0.2775 0.1678 0.1001 0.0576 0.0319 0.0168 0.0084 0.0039 0.0017 0.0007 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1691 0.1064 0.0632 0.0352 0.0181 0.0085 0.0036 0.0013 0.0004 0.0001 0.0000 0.0000 0.0000
2 0.9942 0.9619 0.8948 0.7969 0.6785 0.5518 0.4278 0.3154 0.2201 0.1445 0.0885 0.0498 0.0253 0.0113 0.0042 0.0012 0.0002 0.0000 0.0000
3 0.9996 0.9950 0.9786 0.9437 0.8862 0.8059 0.7064 0.5941 0.4770 0.3633 0.2604 0.1737 0.1061 0.0580 0.0273 0.0104 0.0029 0.0004 0.0000
4 1.0000 0.9996 0.9971 0.9896 0.9727 0.9420 0.8939 0.8263 0.7396 0.6367 0.5230 0.4059 0.2936 0.1941 0.1138 0.0563 0.0214 0.0050 0.0004
5 1.0000 1.0000 0.9998 0.9988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555 0.7799 0.6846 0.5722 0.4482 0.3215 0.2031 0.1052 0.0381 0.0058
6 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648 0.9368 0.8936 0.8309 0.7447 0.6329 0.4967 0.3428 0.1869 0.0572
7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9983 0.9961 0.9916 0.9832 0.9681 0.9424 0.8999 0.8322 0.7275 0.5695 0.3366

(continued on following page)
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p
n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
9 0 0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0207 0.0101 0.0046 0.0020 0.0008 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.9288 0.7748 0.5995 0.4362 0.3003 0.1960 0.1211 0.0705 0.0385 0.0195 0.0091 0.0038 0.0014 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000
2 0.9916 0.9470 0.8591 0.7382 0.6007 0.4628 0.3373 0.2318 0.1495 0.0898 0.0498 0.0250 0.0112 0.0043 0.0013 0.0003 0.0000 0.0000 0.0000
3 0.9994 0.9917 0.9661 0.9144 0.8343 0.7297 0.6089 0.4826 0.3614 0.2539 0.1658 0.0994 0.0536 0.0253 0.0100 0.0031 0.0006 0.0001 0.0000
4 1.0000 0.9991 0.9944 0.9804 0.9511 0.9012 0.8283 0.7334 0.6214 0.5000 0.3786 0.2666 0.1717 0.0988 0.0489 0.0196 0.0056 0.0009 0.0000
5 1.0000 0.9999 0.9994 0.9969 0.9900 0.9747 0.9464 0.9006 0.8342 0.7461 0.6386 0.5174 0.3911 0.2703 0.1657 0.0856 0.0339 0.0083 0.0006
6 1.0000 1.0000 1.0000 0.9997 0.9987 0.9957 0.9888 0.9750 0.9502 0.9102 0.8505 0.7682 0.6627 0.5372 0.3993 0.2618 0.1409 0.0530 0.0084
7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9986 0.9962 0.9909 0.9805 0.9615 0.9295 0.8789 0.8040 0.6997 0.5638 0.4005 0.2252 0.0712
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9992 0.9980 0.9954 0.9899 0.9793 0.9596 0.9249 0.8658 0.7684 0.6126 0.3698

10 0 0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.9139 0.7361 0.5443 0.3758 0.2440 0.1493 0.0860 0.0464 0.0233 0.0107 0.0045 0.0017 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.0996 0.0547 0.0274 0.0123 0.0048 0.0016 0.0004 0.0001 0.0000 0.0000 0.0000
3 0.9990 0.9872 0.9500 0.8791 0.7759 0.6496 0.5138 0.3823 0.2660 0.1719 0.1020 0.0548 0.0260 0.0106 0.0035 0.0009 0.0001 0.0000 0.0000
4 0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.3770 0.2616 0.1662 0.0949 0.0473 0.0197 0.0064 0.0014 0.0001 0.0000
5 1.0000 0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.6230 0.4956 0.3669 0.2485 0.1503 0.0781 0.0328 0.0099 0.0016 0.0001
6 1.0000 1.0000 0.9999 0.9991 0.9965 0.9894 0.9740 0.9452 0.8980 0.8281 0.7340 0.6177 0.4862 0.3504 0.2241 0.1209 0.0500 0.0128 0.0010
7 1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453 0.9004 0.8327 0.7384 0.6172 0.4744 0.3222 0.1798 0.0702 0.0115
8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9955 0.9893 0.9767 0.9536 0.9140 0.8507 0.7560 0.6242 0.4557 0.2639 0.0861
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990 0.9975 0.9940 0.9865 0.9718 0.9437 0.8926 0.8031 0.6513 0.4023

11 0 0.5688 0.3138 0.1673 0.0859 0.0422 0.0198 0.0088 0.0036 0.0014 0.0005 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.8981 0.6974 0.4922 0.3221 0.1971 0.1130 0.0606 0.0302 0.0139 0.0059 0.0022 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.0652 0.0327 0.0148 0.0059 0.0020 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000
3 0.9984 0.9815 0.9306 0.8389 0.7133 0.5696 0.4256 0.2963 0.1911 0.1133 0.0610 0.0293 0.0122 0.0043 0.0012 0.0002 0.0000 0.0000 0.0000
4 0.9999 0.9972 0.9841 0.9496 0.8854 0.7897 0.6683 0.5328 0.3971 0.2744 0.1738 0.0994 0.0501 0.0216 0.0076 0.0020 0.0003 0.0000 0.0000
5 1.0000 0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331 0.5000 0.3669 0.2465 0.1487 0.0782 0.0343 0.0117 0.0027 0.0003 0.0000
6 1.0000 1.0000 0.9997 0.9980 0.9924 0.9784 0.9499 0.9006 0.8262 0.7256 0.6029 0.4672 0.3317 0.2103 0.1146 0.0504 0.0159 0.0028 0.0001
7 1.0000 1.0000 1.0000 0.9998 0.9988 0.9957 0.9878 0.9707 0.9390 0.8867 0.8089 0.7037 0.5744 0.4304 0.2867 0.1611 0.0694 0.0185 0.0016
8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980 0.9941 0.9852 0.9673 0.9348 0.8811 0.7999 0.6873 0.5448 0.3826 0.2212 0.0896 0.0152
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9993 0.9978 0.9941 0.9861 0.9698 0.9394 0.8870 0.8029 0.6779 0.5078 0.3026 0.1019

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9995 0.9986 0.9964 0.9912 0.9802 0.9578 0.9141 0.8327 0.6862 0.4312

12 0 0.5404 0.2824 0.1422 0.0687 0.0317 0.0138 0.0057 0.0022 0.0008 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.8816 0.6590 0.4435 0.2749 0.1584 0.0850 0.0424 0.0196 0.0083 0.0032 0.0011 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9804 0.8891 0.7358 0.5583 0.3907 0.2528 0.1513 0.0834 0.0421 0.0193 0.0079 0.0028 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.0730 0.0356 0.0153 0.0056 0.0017 0.0004 0.0001 0.0000 0.0000 0.0000
4 0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938 0.1117 0.0573 0.0255 0.0095 0.0028 0.0006 0.0001 0.0000 0.0000
5 1.0000 0.9995 0.9954 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872 0.2607 0.1582 0.0846 0.0386 0.0143 0.0039 0.0007 0.0001 0.0000
6 1.0000 0.9999 0.9993 0.9961 0.9857 0.9614 0.9154 0.8418 0.7393 0.6128 0.4731 0.3348 0.2127 0.1178 0.0544 0.0194 0.0046 0.0005 0.0000
7 1.0000 1.0000 0.9999 0.9994 0.9972 0.9905 0.9745 0.9427 0.8883 0.8062 0.6956 0.5618 0.4167 0.2763 0.1576 0.0726 0.0239 0.0043 0.0002
8 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9847 0.9644 0.9270 0.8655 0.7747 0.6533 0.5075 0.3512 0.2054 0.0922 0.0256 0.0022
9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9972 0.9921 0.9807 0.9579 0.9166 0.8487 0.7472 0.6093 0.4417 0.2642 0.1109 0.0196

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9968 0.9917 0.9804 0.9576 0.9150 0.8416 0.7251 0.5565 0.3410 0.1184
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9992 0.9978 0.9943 0.9862 0.9683 0.9313 0.8578 0.7176 0.4596

(continued on following page)
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p
n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
13 0 0.5133 0.2542 0.1209 0.0550 0.0238 0.0097 0.0037 0.0013 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.8646 0.6213 0.3983 0.2336 0.1267 0.0637 0.0296 0.0126 0.0049 0.0017 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9755 0.8661 0.6920 0.5017 0.3326 0.2025 0.1132 0.0579 0.0269 0.0112 0.0041 0.0013 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9969 0.9658 0.8820 0.7473 0.5843 0.4206 0.2783 0.1686 0.0929 0.0461 0.0203 0.0078 0.0025 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000
4 0.9997 0.9935 0.9658 0.9009 0.7940 0.6543 0.5005 0.3530 0.2279 0.1334 0.0698 0.0321 0.0126 0.0040 0.0010 0.0002 0.0000 0.0000 0.0000
5 1.0000 0.9991 0.9925 0.9700 0.9198 0.8346 0.7159 0.5744 0.4268 0.2905 0.1788 0.0977 0.0462 0.0182 0.0056 0.0012 0.0002 0.0000 0.0000
6 1.0000 0.9999 0.9987 0.9930 0.9757 0.9376 0.8705 0.7712 0.6437 0.5000 0.3563 0.2288 0.1295 0.0624 0.0243 0.0070 0.0013 0.0001 0.0000
7 1.0000 1.0000 0.9998 0.9988 0.9944 0.9818 0.9538 0.9023 0.8212 0.7095 0.5732 0.4256 0.2841 0.1654 0.0802 0.0300 0.0075 0.0009 0.0000
8 1.0000 1.0000 1.0000 0.9998 0.9990 0.9960 0.9874 0.9679 0.9302 0.8666 0.7721 0.6470 0.4995 0.3457 0.2060 0.0991 0.0342 0.0065 0.0003
9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9975 0.9922 0.9797 0.9539 0.9071 0.8314 0.7217 0.5794 0.4157 0.2527 0.1180 0.0342 0.0031

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9987 0.9959 0.9888 0.9731 0.9421 0.8868 0.7975 0.6674 0.4983 0.3080 0.1339 0.0245
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9951 0.9874 0.9704 0.9363 0.8733 0.7664 0.6017 0.3787 0.1354
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9963 0.9903 0.9762 0.9450 0.8791 0.7458 0.4867

14 0 0.4877 0.2288 0.1028 0.0440 0.0178 0.0068 0.0024 0.0008 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.8470 0.5846 0.3567 0.1979 0.1010 0.0475 0.0205 0.0081 0.0029 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9699 0.8416 0.6479 0.4481 0.2811 0.1608 0.0839 0.0398 0.0170 0.0065 0.0022 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9958 0.9559 0.8535 0.6982 0.5213 0.3552 0.2205 0.1243 0.0632 0.0287 0.0114 0.0039 0.0011 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.9996 0.9908 0.9533 0.8702 0.7415 0.5842 0.4227 0.2793 0.1672 0.0898 0.0426 0.0175 0.0060 0.0017 0.0003 0.0000 0.0000 0.0000 0.0000
5 1.0000 0.9985 0.9885 0.9561 0.8883 0.7805 0.6405 0.4859 0.3373 0.2120 0.1189 0.0583 0.0243 0.0083 0.0022 0.0004 0.0000 0.0000 0.0000
6 1.0000 0.9998 0.9978 0.9884 0.9617 0.9067 0.8164 0.6925 0.5461 0.3953 0.2586 0.1501 0.0753 0.0315 0.0103 0.0024 0.0003 0.0000 0.0000
7 1.0000 1.0000 0.9997 0.9976 0.9897 0.9685 0.9247 0.8499 0.7414 0.6047 0.4539 0.3075 0.1836 0.0933 0.0383 0.0116 0.0022 0.0002 0.0000
8 1.0000 1.0000 1.0000 0.9996 0.9978 0.9917 0.9757 0.9417 0.8811 0.7880 0.6627 0.5141 0.3595 0.2195 0.1117 0.0439 0.0115 0.0015 0.0000
9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9983 0.9940 0.9825 0.9574 0.9102 0.8328 0.7207 0.5773 0.4158 0.2585 0.1298 0.0467 0.0092 0.0004

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9989 0.9961 0.9886 0.9713 0.9368 0.8757 0.7795 0.6448 0.4787 0.3018 0.1465 0.0441 0.0042
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9978 0.9935 0.9830 0.9602 0.9161 0.8392 0.7189 0.5519 0.3521 0.1584 0.0301
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9991 0.9971 0.9919 0.9795 0.9525 0.8990 0.8021 0.6433 0.4154 0.1530
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9992 0.9976 0.9932 0.9822 0.9560 0.8972 0.7712 0.5123

15 0 0.4633 0.2059 0.0874 0.0352 0.0134 0.0047 0.0016 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.8290 0.5490 0.3186 0.1671 0.0802 0.0353 0.0142 0.0052 0.0017 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9638 0.8159 0.6042 0.3980 0.2361 0.1268 0.0617 0.0271 0.0107 0.0037 0.0011 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9945 0.9444 0.8227 0.6482 0.4613 0.2969 0.1727 0.0905 0.0424 0.0176 0.0063 0.0019 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.9994 0.9873 0.9383 0.8358 0.6865 0.5155 0.3519 0.2173 0.1204 0.0592 0.0255 0.0093 0.0028 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000
5 0.9999 0.9977 0.9832 0.9389 0.8516 0.7216 0.5643 0.4032 0.2608 0.1509 0.0769 0.0338 0.0124 0.0037 0.0008 0.0001 0.0000 0.0000 0.0000
6 1.0000 0.9997 0.9964 0.9819 0.9434 0.8689 0.7548 0.6098 0.4522 0.3036 0.1818 0.0950 0.0422 0.0152 0.0042 0.0008 0.0001 0.0000 0.0000
7 1.0000 1.0000 0.9994 0.9958 0.9827 0.9500 0.8868 0.7869 0.6535 0.5000 0.3465 0.2131 0.1132 0.0500 0.0173 0.0042 0.0006 0.0000 0.0000
8 1.0000 1.0000 0.9999 0.9992 0.9958 0.9848 0.9578 0.9050 0.8182 0.6964 0.5478 0.3902 0.2452 0.1311 0.0566 0.0181 0.0036 0.0003 0.0000
9 1.0000 1.0000 1.0000 0.9999 0.9992 0.9963 0.9876 0.9662 0.9231 0.8491 0.7392 0.5968 0.4357 0.2784 0.1484 0.0611 0.0168 0.0022 0.0001

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9972 0.9907 0.9745 0.9408 0.8796 0.7827 0.6481 0.4845 0.3135 0.1642 0.0617 0.0127 0.0006
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9937 0.9824 0.9576 0.9095 0.8273 0.7031 0.5387 0.3518 0.1773 0.0556 0.0055
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9963 0.9893 0.9729 0.9383 0.8732 0.7639 0.6020 0.3958 0.1841 0.0362
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9948 0.9858 0.9647 0.9198 0.8329 0.6814 0.4510 0.1710
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9984 0.9953 0.9866 0.9648 0.9126 0.7941 0.5367

(continued on following page)
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p
n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
16 0 0.4401 0.1853 0.0743 0.0281 0.0100 0.0033 0.0010 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.8108 0.5147 0.2839 0.1407 0.0635 0.0261 0.0098 0.0033 0.0010 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9571 0.7892 0.5614 0.3518 0.1971 0.0994 0.0451 0.0183 0.0066 0.0021 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9930 0.9316 0.7899 0.5981 0.4050 0.2459 0.1339 0.0651 0.0281 0.0106 0.0035 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.9991 0.9830 0.9209 0.7982 0.6302 0.4499 0.2892 0.1666 0.0853 0.0384 0.0149 0.0049 0.0013 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.9999 0.9967 0.9765 0.9183 0.8103 0.6598 0.4900 0.3288 0.1976 0.1051 0.0486 0.0191 0.0062 0.0016 0.0003 0.0000 0.0000 0.0000 0.0000
6 1.0000 0.9995 0.9944 0.9733 0.9204 0.8247 0.6881 0.5272 0.3660 0.2272 0.1241 0.0583 0.0229 0.0071 0.0016 0.0002 0.0000 0.0000 0.0000
7 1.0000 0.9999 0.9989 0.9930 0.9729 0.9256 0.8406 0.7161 0.5629 0.4018 0.2559 0.1423 0.0671 0.0257 0.0075 0.0015 0.0002 0.0000 0.0000
8 1.0000 1.0000 0.9998 0.9985 0.9925 0.9743 0.9329 0.8577 0.7441 0.5982 0.4371 0.2839 0.1594 0.0744 0.0271 0.0070 0.0011 0.0001 0.0000
9 1.0000 1.0000 1.0000 0.9998 0.9984 0.9929 0.9771 0.9417 0.8759 0.7728 0.6340 0.4728 0.3119 0.1753 0.0796 0.0267 0.0056 0.0005 0.0000

10 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9809 0.9514 0.8949 0.8024 0.6712 0.5100 0.3402 0.1897 0.0817 0.0235 0.0033 0.0001
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9851 0.9616 0.9147 0.8334 0.7108 0.5501 0.3698 0.2018 0.0791 0.0170 0.0009
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894 0.9719 0.9349 0.8661 0.7541 0.5950 0.4019 0.2101 0.0684 0.0070
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979 0.9934 0.9817 0.9549 0.9006 0.8029 0.6482 0.4386 0.2108 0.0429
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990 0.9967 0.9902 0.9739 0.9365 0.8593 0.7161 0.4853 0.1892
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990 0.9967 0.9900 0.9719 0.9257 0.8147 0.5599

17 0 0.4181 0.1668 0.0631 0.0225 0.0075 0.0023 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.7922 0.4818 0.2525 0.1182 0.0501 0.0193 0.0067 0.0021 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9497 0.7618 0.5198 0.3096 0.1637 0.0774 0.0327 0.0123 0.0041 0.0012 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9912 0.9174 0.7556 0.5489 0.3530 0.2019 0.1028 0.0464 0.0184 0.0064 0.0019 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.9988 0.9779 0.9013 0.7582 0.5739 0.3887 0.2348 0.1260 0.0596 0.0245 0.0086 0.0025 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.9999 0.9953 0.9681 0.8943 0.7653 0.5968 0.4197 0.2639 0.1471 0.0717 0.0301 0.0106 0.0030 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000
6 1.0000 0.9992 0.9917 0.9623 0.8929 0.7752 0.6188 0.4478 0.2902 0.1662 0.0826 0.0348 0.0120 0.0032 0.0006 0.0001 0.0000 0.0000 0.0000
7 1.0000 0.9999 0.9983 0.9891 0.9598 0.8954 0.7872 0.6405 0.4743 0.3145 0.1834 0.0919 0.0383 0.0127 0.0031 0.0005 0.0000 0.0000 0.0000
8 1.0000 1.0000 0.9997 0.9974 0.9876 0.9597 0.9006 0.8011 0.6626 0.5000 0.3374 0.1989 0.0994 0.0403 0.0124 0.0026 0.0003 0.0000 0.0000
9 1.0000 1.0000 1.0000 0.9995 0.9969 0.9873 0.9617 0.9081 0.8166 0.6855 0.5257 0.3595 0.2128 0.1046 0.0402 0.0109 0.0017 0.0001 0.0000

10 1.0000 1.0000 1.0000 0.9999 0.9994 0.9968 0.9880 0.9652 0.9174 0.8338 0.7098 0.5522 0.3812 0.2248 0.1071 0.0377 0.0083 0.0008 0.0000
11 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9970 0.9894 0.9699 0.9283 0.8529 0.7361 0.5803 0.4032 0.2347 0.1057 0.0319 0.0047 0.0001
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9975 0.9914 0.9755 0.9404 0.8740 0.7652 0.6113 0.4261 0.2418 0.0987 0.0221 0.0012
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9936 0.9816 0.9536 0.8972 0.7981 0.6470 0.4511 0.2444 0.0826 0.0088
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9988 0.9959 0.9877 0.9673 0.9226 0.8363 0.6904 0.4802 0.2382 0.0503
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979 0.9933 0.9807 0.9499 0.8818 0.7475 0.5182 0.2078
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9993 0.9977 0.9925 0.9775 0.9369 0.8332 0.5819

18 0 0.3972 0.1501 0.0536 0.0180 0.0056 0.0016 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.7735 0.4503 0.2241 0.0991 0.0395 0.0142 0.0046 0.0013 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9419 0.7338 0.4797 0.2713 0.1353 0.0600 0.0236 0.0082 0.0025 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9891 0.9018 0.7202 0.5010 0.3057 0.1646 0.0783 0.0328 0.0120 0.0038 0.0010 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.9985 0.9718 0.8794 0.7164 0.5187 0.3327 0.1886 0.0942 0.0411 0.0154 0.0049 0.0013 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.9998 0.9936 0.9581 0.8671 0.7175 0.5344 0.3550 0.2088 0.1077 0.0481 0.0183 0.0058 0.0014 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
6 1.0000 0.9988 0.9882 0.9487 0.8610 0.7217 0.5491 0.3743 0.2258 0.1189 0.0537 0.0203 0.0062 0.0014 0.0002 0.0000 0.0000 0.0000 0.0000
7 1.0000 0.9998 0.9973 0.9837 0.9431 0.8593 0.7283 0.5634 0.3915 0.2403 0.1280 0.0576 0.0212 0.0061 0.0012 0.0002 0.0000 0.0000 0.0000
8 1.0000 1.0000 0.9995 0.9957 0.9807 0.9404 0.8609 0.7368 0.5778 0.4073 0.2527 0.1347 0.0597 0.0210 0.0054 0.0009 0.0001 0.0000 0.0000
9 1.0000 1.0000 0.9999 0.9991 0.9946 0.9790 0.9403 0.8653 0.7473 0.5927 0.4222 0.2632 0.1391 0.0596 0.0193 0.0043 0.0005 0.0000 0.0000

10 1.0000 1.0000 1.0000 0.9998 0.9988 0.9939 0.9788 0.9424 0.8720 0.7597 0.6085 0.4366 0.2717 0.1407 0.0569 0.0163 0.0027 0.0002 0.0000
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Table 1 (continued from page 526)

p
n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

11 1.0000 1.0000 1.0000 1.0000 0.9998 0.9986 0.9938 0.9797 0.9463 0.8811 0.7742 0.6257 0.4509 0.2783 0.1390 0.0513 0.0118 0.0012 0.0000
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9986 0.9942 0.9817 0.9519 0.8923 0.7912 0.6450 0.4656 0.2825 0.1329 0.0419 0.0064 0.0002
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9846 0.9589 0.9058 0.8114 0.6673 0.4813 0.2836 0.1206 0.0282 0.0015
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9990 0.9962 0.9880 0.9672 0.9217 0.8354 0.6943 0.4990 0.2798 0.0982 0.0109
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9975 0.9918 0.9764 0.9400 0.8647 0.7287 0.5203 0.2662 0.0581
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9987 0.9954 0.9858 0.9605 0.9009 0.7759 0.5497 0.2265
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9944 0.9820 0.9464 0.8499 0.6028

19 0 0.3774 0.1351 0.0456 0.0144 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.7547 0.4203 0.1985 0.0829 0.0310 0.0104 0.0031 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9335 0.7054 0.4413 0.2369 0.1113 0.0462 0.0170 0.0055 0.0015 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9868 0.8850 0.6841 0.4551 0.2631 0.1332 0.0591 0.0230 0.0077 0.0022 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.9980 0.9648 0.8556 0.6733 0.4654 0.2822 0.1500 0.0696 0.0280 0.0096 0.0028 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.9998 0.9914 0.9463 0.8369 0.6678 0.4739 0.2968 0.1629 0.0777 0.0318 0.0109 0.0031 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
6 1.0000 0.9983 0.9837 0.9324 0.8251 0.6655 0.4812 0.3081 0.1727 0.0835 0.0342 0.0116 0.0031 0.0006 0.0001 0.0000 0.0000 0.0000 0.0000
7 1.0000 0.9997 0.9959 0.9767 0.9225 0.8180 0.6656 0.4878 0.3169 0.1796 0.0871 0.0352 0.0114 0.0028 0.0005 0.0000 0.0000 0.0000 0.0000
8 1.0000 1.0000 0.9992 0.9933 0.9713 0.9161 0.8145 0.6675 0.4940 0.3238 0.1841 0.0885 0.0347 0.0105 0.0023 0.0003 0.0000 0.0000 0.0000
9 1.0000 1.0000 0.9999 0.9984 0.9911 0.9674 0.9125 0.8139 0.6710 0.5000 0.3290 0.1861 0.0875 0.0326 0.0089 0.0016 0.0001 0.0000 0.0000

10 1.0000 1.0000 1.0000 0.9997 0.9977 0.9895 0.9653 0.9115 0.8159 0.6762 0.5060 0.3325 0.1855 0.0839 0.0287 0.0067 0.0008 0.0000 0.0000
11 1.0000 1.0000 1.0000 1.0000 0.9995 0.9972 0.9886 0.9648 0.9129 0.8204 0.6831 0.5122 0.3344 0.1820 0.0775 0.0233 0.0041 0.0003 0.0000
12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9969 0.9884 0.9658 0.9165 0.8273 0.6919 0.5188 0.3345 0.1749 0.0676 0.0163 0.0017 0.0000
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9969 0.9891 0.9682 0.9223 0.8371 0.7032 0.5261 0.3322 0.1631 0.0537 0.0086 0.0002
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9972 0.9904 0.9720 0.9304 0.8500 0.7178 0.5346 0.3267 0.1444 0.0352 0.0020
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9978 0.9923 0.9770 0.9409 0.8668 0.7369 0.5449 0.3159 0.1150 0.0132
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9985 0.9945 0.9830 0.9538 0.8887 0.7631 0.5587 0.2946 0.0665
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9969 0.9896 0.9690 0.9171 0.8015 0.5797 0.2453
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9958 0.9856 0.9544 0.8649 0.6226

20 0 0.3585 0.1216 0.0388 0.0115 0.0032 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.7358 0.3917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9245 0.6769 0.4049 0.2061 0.0913 0.0355 0.0121 0.0036 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 0.0049 0.0013 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.9974 0.9568 0.8298 0.6296 0.4148 0.2375 0.1182 0.0510 0.0189 0.0059 0.0015 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.9997 0.9887 0.9327 0.8042 0.6172 0.4164 0.2454 0.1256 0.0553 0.0207 0.0064 0.0016 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 1.0000 0.9976 0.9781 0.9133 0.7858 0.6080 0.4166 0.2500 0.1299 0.0577 0.0214 0.0065 0.0015 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
7 1.0000 0.9996 0.9941 0.9679 0.8982 0.7723 0.6010 0.4159 0.2520 0.1316 0.0580 0.0210 0.0060 0.0013 0.0002 0.0000 0.0000 0.0000 0.0000
8 1.0000 0.9999 0.9987 0.9900 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517 0.1308 0.0565 0.0196 0.0051 0.0009 0.0001 0.0000 0.0000 0.0000
9 1.0000 1.0000 0.9998 0.9974 0.9861 0.9520 0.8782 0.7553 0.5914 0.4119 0.2493 0.1275 0.0532 0.0171 0.0039 0.0006 0.0000 0.0000 0.0000

10 1.0000 1.0000 1.0000 0.9994 0.9961 0.9829 0.9468 0.8725 0.7507 0.5881 0.4086 0.2447 0.1218 0.0480 0.0139 0.0026 0.0002 0.0000 0.0000
11 1.0000 1.0000 1.0000 0.9999 0.9991 0.9949 0.9804 0.9435 0.8692 0.7483 0.5857 0.4044 0.2376 0.1133 0.0409 0.0100 0.0013 0.0001 0.0000
12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9940 0.9790 0.9420 0.8684 0.7480 0.5841 0.3990 0.2277 0.1018 0.0321 0.0059 0.0004 0.0000
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9935 0.9786 0.9423 0.8701 0.7500 0.5834 0.3920 0.2142 0.0867 0.0219 0.0024 0.0000
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9936 0.9793 0.9447 0.8744 0.7546 0.5836 0.3828 0.1958 0.0673 0.0113 0.0003
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9941 0.9811 0.9490 0.8818 0.7625 0.5852 0.3704 0.1702 0.0432 0.0026
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9840 0.9556 0.8929 0.7748 0.5886 0.3523 0.1330 0.0159
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9964 0.9879 0.9645 0.9087 0.7939 0.5951 0.3231 0.0755
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9979 0.9924 0.9757 0.9308 0.8244 0.6083 0.2642
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9968 0.9885 0.9612 0.8784 0.6415
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Table 4 Values of t α

ta0

a

ν α = 0.10 α = 0.05 α = 0.025 α = 0.01 α = 0.00833 α = 0.00625 α = 0.005 ν

1 3.078 6.314 12.706 31.821 38.204 50.923 63.657 1
2 1.886 2.920 4.303 6.965 7.650 8.860 9.925 2
3 1.638 2.353 3.182 4.541 4.857 5.392 5.841 3
4 1.533 2.132 2.776 3.747 3.961 4.315 4.604 4
5 1.476 2.015 2.571 3.365 3.534 3.810 4.032 5

6 1.440 1.943 2.447 3.143 3.288 3.521 3.707 6
7 1.415 1.895 2.365 2.998 3.128 3.335 3.499 7
8 1.397 1.860 2.306 2.896 3.016 3.206 3.355 8
9 1.383 1.833 2.262 2.821 2.934 3.111 3.250 9

10 1.372 1.812 2.228 2.764 2.870 3.038 3.169 10

11 1.363 1.796 2.201 2.718 2.820 2.891 3.106 11
12 1.356 1.782 2.179 2.681 2.780 2.934 3.055 12
13 1.350 1.771 2.160 2.650 2.746 2.896 3.012 13
14 1.345 1.761 2.145 2.624 2.718 2.864 2.977 14
15 1.341 1.753 2.131 2.602 2.694 2.837 2.947 15

16 1.337 1.746 2.120 2.583 2.673 2.813 2.921 16
17 1.333 1.740 2.110 2.567 2.655 2.793 2.898 17
18 1.330 1.734 2.101 2.552 2.639 2.775 2.878 18
19 1.328 1.729 2.093 2.539 2.625 2.759 2.861 19
20 1.325 1.725 2.086 2.528 2.613 2.744 2.845 20

21 1.323 1.721 2.080 2.518 2.602 2.732 2.831 21
22 1.321 1.717 2.074 2.508 2.591 2.720 2.819 22
23 1.319 1.714 2.069 2.500 2.582 2.710 2.807 23
24 1.318 1.711 2.064 2.492 2.574 2.700 2.797 24
25 1.316 1.708 2.060 2.485 2.566 2.692 2.787 25

26 1.315 1.706 2.056 2.479 2.559 2.684 2.779 26
27 1.314 1.703 2.052 2.473 2.553 2.676 2.771 27
28 1.313 1.701 2.048 2.467 2.547 2.669 2.763 28
29 1.311 1.699 2.045 2.462 2.541 2.663 2.756 29

inf. 1.282 1.645 1.960 2.326 2.394 2.498 2.576 inf.



Introduction to R
R is the name of widely used, powerful software free and available on the Web. If
you wish, you can use it on your own computer. The program and help is maintained
at http://www.r-project.org. Manuals can be found at http://www.cran.r-project.org/
doc/manuals. Initially, you may find R-intro.pdf and R-data.pdf useful.

R is a program that is command-driven as opposed to menu-driven. You type in
a command and R responds. R has many built-in functions that operate on objects
generically called x, y, or a more descriptive name. These objects are strings of num-
bers, or vectors, where the order in which the numbers are entered is remembered.
Learning a few functions will enhance your learning of introductory statistics. Typ-
ing a function name and hitting Enter will just display the function name. All func-
tions are followed by ( ), and you must include an argument list between the paren-
theses. The list may be empty. To quit you need to type q(), not just q, and hit Enter.

Entering Data
When the data set is small, the easiest way to enter the data is to use the function
c that concatenates numbers. For example, to create an object named xmpg for the
mpg data in Example 18 of Chapter 2, after the prompt > enter the object name
followed by = c( and then the data. If you do not finish on one line, R changes the
prompt to a + until you finish entering the data and type ).

> xmpg = c(19.7, 21.5, 22.5, 22.2, 22.6, 21.9, 20.5, 19.3, 19.9, 21.7,
+ 22.8, 23.2, 21.4, 20.8, 19.4, 22.0, 23.0, 21.1, 20.9, 21.3)

You can also download data from the Web site associated with this textbook.
You may wish first to create a folder on your hard drive that will contain data files.
The easiest files to read into R are the ASCII formatted files, or plain text files, that
end with .dat or .txt. On your own computer, you need to select the File menu and
make sure your working directory contains the data files.

For the data from Exercise 2.34, the command1

> Dat = read.table(“2-34.txt”,header=T)

will place the data in the object Dat and allow you to refer to the data by the name of
variable(s) in the header line of the data file. In all the files for this text, the columns
represent variables (often just one) and the rows represent observations. You can use
the structure function str() to determine the name of each variable and their structure.

>str(Dat)

‘data.frame’: 32 obs. of 1 variable:
$ failures: num 12 3 8 6 19 1 2 5 1 11 . . .

Here, failures is the name of the variable and there are 32 observations.

1On a windows machine, with the folder EngStatData on the desktop, the command is
read.table(file=“C:/Users/Yourname/Desktop/EngStatDATA/2-34.txt”,header=T)

Using R

http://www.r-project.org
http://www.cran.r-project.org/doc/manuals
http://www.cran.r-project.org/doc/manuals
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Alternatively, if the data files are not in the same directory, the file.choose func-
tion will open a dialog box that will help you move through your folders to find the
proper data file to read into R.

> Dat = read.table(file.choose().header = T)

You can use the structure function str() to determine the name of each variable
and their structure.

Arithmetic Operations
You can use R like a calculator where the asterisk (*) is the symbol for multiplication,
and ˆ is the symbol for exponentiation. Also, the colon (:) is a function, and 2:8
creates an array of numbers from 2 to 8 inclusive. For instance,

> 11*3-8/2+sqrt(25)
[1] 34

where the answer follows the prompt [1].

> 3*(2:6)
[1] 6 9 12 15 18

Arithmetic operations can also be applied to objects like x and y, which them-
selves are strings of numbers. For example, when x = c(1, 9, 4, 0) and y = c(−2, 5,
−3, 7), we obtain the following results.

Arithmetic Function Result

x + y adds the corresponding entries in x and y
−1, 14, 1, 7

x̂2 squares each entry in x
1, 81, 16, 0

sqrt(x) square root of each entry in x
1, 3, 2, 0

We now describe some functions useful for statistical analysis.

Descriptive Statistics
We illustrate the functions to obtain summary statistics using the data xmpg entered
above.

Function Result

mean(xmpg) value of sample mean x
var(xmpg) calculates sample variance s2

sd(xmpg) calculates sample standard deviation s
median(xmpg) value of sample median
summary(xmpg) min Q1 median Q3 max

To summarize the data in Exercise 2.34, you would replace xmpg with Dat$failures
where $ separates the name of the data and the variable name in the header.
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Probability Distributions
The function for each probability distribution can have one of four prefixes:

Prefix Meaning

p cumulative probability distribution
q quantile of distribution
r randomly generated observations from distribution
d probability assigned to a possible value, discrete case.

height of the density function, continuous case.

The following functions can be used instead of tables of distributions:

Function Result

dbinom(3,14,0.15) P[X = 3] binomial n = 14 and p = 0.15
pbinom(3,14,0.15) P[X ≤ 3] binomial n = 14 and p = 0.15
ppois(3,2.1) P[X ≤ 3] Poisson λ = 2.1

Normal Probability Calculations

Function Result

pnorm(1.63) P[Z ≤ 1.63] with Z standard normal

pnorm(9.23, 5.2, 1.7) P[X ≤ 9.23] with X normal with mean 5.2 and
standard deviation 1.7

qnorm(0.75, 5.2, 1.7) x0.75 where P[X ≤ x0.75] = 0.75 when X is normal

with mean 5.2 and standard deviation 1.7

rnorm(5, 5.2, 1.7) sample x1, x2, x3, x4, x5 from a normal distribution
with mean 5.2 and standard deviation 1.7

qqnorm(xmpg,main=’MPG’) normal scores plot for mpg data

Sampling Distributions

Function Result

pt (2.17, 8) P[t ≤ 2.17] for students’ t with 8 d.f.

qt (0.96, 8) t0.04 for students’ t with 8 d.f.

pchisq (30.52, 27) P[χ2 ≤ 30.52] for chi-square with 27 d.f.

qchisq (0.99, 27) χ2
0.01 for chi-square with 27 d.f.

pf (3.68, 2, 19) P[F ≤ 3.68] for F with (2, 19) d.f.

qf (0.90, 2, 19) F0.10 for F with (2, 19) d.f.
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Confidence Intervals and Tests of Means
We illustrate the single sample calculations with the data in x. The other cases also
use data in object y. These can be replaced by the variable names in the header, for
instance, Dat$variable where variable is the name in the file header.

Function

t.test(x) A one sample two-sided test of H0: μ = 0. Also
95% confidence interval by default.

t.test(x,mu=20,alt=“greater”,conf.level =0.90) One sample test of H0: μ = 20 versus H1: μ > 20.
Also 90% confidence interval.

t.test(x,y,mu=15,alt=“less”,var.equal=T) Two sample t test of H0: μ1 − μ2 = 15 versus
H1: μ1 − μ2 < 15, pooled variance. Also 95%
confidence interval for μ1 − μ2.

t.test(x,y,paired=T) Matched paired t test of mean difference 0 versus
two-sided alternative. Also 95% confidence
interval for mean difference.

Inference about Proportions
Two commands produce confidence intervals for a proportion. The large sample
version is prop.test while binomial.test guarantees at least the nominal coverage
value.

We illustrate the chi square test for Example 8, Chapter 10. To input the table
and variables names we encounter two new commands.

Function Result

prop.test(42,100,conf.level=0.90) 90% confidence interval for
proportion when 42 successes in
100 trials. The default test is a
two-sided test of H0: p = 0.5 and
uses continuity correction.

binomial.test( 42,100,conf.level=0.90) A confidence interval with exact
confidence at least 90%.

> Xsq$expected gives the expected values as table.

> Dat=as.table(rbind(c(41,27,22), c(79,53,78)))
> dimnames(Dat) = list(Status = c(“Crumbled”, “Intact”),
Material = c (“Material A”,“Material B”, “Material C”))
> (Xsq=chisq.test(Dat)) performs the χ2 test.
> Xsq$residuals produces the Pearson residuals

(oi j−ei j )/
√

ei j whose square is the
cell’s contribution to the chi-square
statistic.

Regression
We illustrate the regression commands with the data from Exercise 11.78 where y
is damage, x1 is weight(wt) and x2 is distance.
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> Dat=read.table(“11-78.txt”,header=T)
The linear models function lm, read ‘el’ ‘em’, is very versatile.

Function Result

summary (lm(damage∼wt,data=Dat) Regresses y = damage on weight.

model = lm ( damage ∼ wt, data = Dat )
plot(fitted(model),residuals(model),

xlab=“Fitted”,ylab=“Residual”) residuals versus fitted

qqnorm(residuals(model)) normal score plot of residuals

summary (lm(damage∼wt+distance,data=Dat) Multiple regression of y = damage
on x1 = weight and x2 =
distance.

One-Way Analysis of Variance (ANOVA)
We illustrate the commands using the data in Exercise 12.9, from a completely ran-
domized design. After reading in the data having two columns headed times and
arrange

> Dat=read.table(“12-9.txt”, header=T)

the command

> anova(lm(times∼arrange,data=Dat)

produces the ANOVA table.
The analysis of variance for the 3 × 2 factorial design for recycled materials in

Example 1 of Chapter 13 can be analyzed using the following steps.

Dat=read.table(“C13Ex1.txt”,header=T,
colClasses=c(“factor”,“factor”,“numeric”,“factor”)

model=lm(resilmod∼A+B+A:B, data=Dat)
anova(model)

For the analysis of the 23 design on page 447, we illustrate creation of the data
set and design as well.

> y=c(4.5,3.8,3.1,7.2,5.4,4.5,4.2,7.3,4.1,3.4,4.3,6.8,5.0,4.9,5.4,6.9)
> rate=rep(c(-1,1),8)
> additive=rep(c(-1,-1,1,1),4)
> nozzle=rep(c(rep(-1,4),rep(1,4)),2)
> cubeData=data.frame(rate,additive,nozzle,y)
> print(cubeData)
> cubeModel=lm(y∼rate*additive*nozzle)
> summary(cubeModel)
> anova(cubeModel)

There are many other functions that apply to material covered in this book but
we refer the interested reader to the Web sites mentioned at the start of this ap-
pendix. You may also type help(stem), for stem-and-leaf diagram, where stem can
be replaced with many other functions.



CHAPTER 1
1.1 Statistical population could be quality values of materials used
for all overhead bridges being constructed during the period of
study. The sample is the quality values of materials collected from
the 294 overhead bridges.

1.3 (a) Car; (c) Collection of all car models.

1.5 unit: ceiling fan, variable: angle, population: angles for ceiling
fans made in an hour, sample: angles for the 25 fans.

1.7 (a) x = 214.67; (b) Below LCL.

CHAPTER 2
2.7 (b) 7.3 detached.

2.9 (a) no; (b) yes; (c) no; (d) yes; (e) no

2.11 The cumulative “less than or equal to” frequencies are 0, 5,
16, 25, 43, 49 and 50.

2.13 The cumulative “less than” frequencies are 0, 8, 19, 24, 33,
37, 45, 51, 55, 61, 69, 72, 80.

2.15 The cumulative “less than” frequencies are 1, 12, 28, 43, 47,
and 50.

2.19 No, because we tend to compare areas; the large sack should
be modified so that its area is about double that of the small sack.

2.21 The large rectangle over (245, 325], the longest interval, is
misleading. It makes it look like a larger proportion of the data are
in that interval.

2.23 2 67 88 95
3 17 55 70 83 91
4 05 19 34 62
5 08 40
6 12

2.25 2 1 2
2 6 8
3 2 3 4 4
3 5 5 5 5 6 6 7 8 9
4 0 0 1 1 2 3 3 4
4 5 5 5 5 6 7 7 8 8 9
5 0 0 0 1 1 1 2 2 2 3 3 3 4 4
5 5 5 5 6 6 6 7 7 8 9 9
6 0 0 0 1 1 1 2 2 2 3 4
6 5 5 5 7 7 8 8 8 9
7 0 0 2 3 3 4 4 4
7 5 6 6 7 8 9
8 0 2 2 4
8 5 8

2.27 (b) Outlier high. 2.29 Mean.

2.31 (a) x = −3; (b) s = 2.94; (c) hole too small on average.

2.33 (a) x = 30.14; (b) No, trend exists.

2.35 No, the total earnings are only $525,000.

2.37 (a) x = 0.3990; (b) s = 0.1817.

2.39 (a) 3.35; (b) 3.25

2.41 x = 205, Q1 = 202, Q2 = 204.5, Q3 = 207.5

2.43 min = 1.11, Q1 = 1.31, Median = 1.36 Q3 − 1.44,
max = 1.68.

2.45 (a) x = 34.44; (b) s = 1.9989; (c) No major difference.

2.47 x = 87.40, s = 161.47.

2.49 ν = 8.35%. 2.53 (a) 90; (b) 15.5.

2.55 (a) Q1 = 279.55, Q3 = 327.22, and the interquartile range is
47.67; (b) Q1 = 11.2; Q3 = 18.83.

2.57 (a) 73.0; (b) 42.08%.

2.59 (a) Q1 = 1712, Q2 = 1863, Q3 = 2061; (c) Q1 = 69.5,
Q2 = 70.55, Q3 = 71.80.

2.61 (a) The class frequencies are 1, 8, 19, 17, 9, 3, and 1.

2.63 (a) x = 5.4835 and s = 0.1904; (b) median is 5.46, Q1 =
5.34 and Q3 = 5.63; (c) there is no apparent trend.

2.65 (a) median = 0.40, maximum = 0.57, minimum = 0.32 and
the range = 0.25; (b) median = 0.51, maximum = 0.63, minimum
= 0.47 and the range = 0.16.

2.67 (a) Q1 = 18.0, Q2 = 27.0, Q3 = 30.0; (b) minimum = 12,
maximum = 48, range = 36, and the interquartile range = 12.0.

2.69 (a) Q1 = 8, Q2 = 10 and Q2 = 13; (b) minimum = 5,
maximum = 16, range = 11, and the interquartile range = 5.

2.73 (a) x = 423; (b) s = 7.1576; (c) v = 1.69%; (d) the other
service provider has v = 1.50% so is relatively less variable.

2.75 (a) Q1 = 35, Q2 = 44, Q3 = 55; (b) 58.

2.77 No. 2.79 (b) Median = 1 greater than x = 10/11.

CHAPTER 3
3.1 (b) A = {(0, 0), (1, 1), (2, 2), (3, 3)}, B = {(0, 0), (0, 1),
(0, 2), (0, 3)}, C = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}.
3.3 (a) A ∪ B is the event that none of the supplies of white cement
are adulterated or as many are adulterated as supplies of black cement;
(b) B ∩ C is the event that none of the supplies of white cement is
adulterated and at least one supply of black cement is adulterated;
(c) B is the event that at least one of the supplies of white cement
is adulterated.

3.5 (a) P ∪ R = {1, 2, 3} is the event that the new machine’s
performance is poor, not satisfactory, or shows no change; (b)
P ∩ R = {2} is the event that the new machine’s performance is
not satisfactory; (c) Q ∪ S = {1, 2, 3} is the event that the new ma-
chine’s performance is poor, not satisfactory, or shows no change;
(d) P = {3, 4, 5} is the event that the new machine’s performance
shows no change, is satisfactory, or is excellent.

3.7 (b) X is the event that an equal number of supervisors and engi-
neers are present, Y is the event that only 2 supervisors are present,
Z is the event that only 1 engineer is present; (c) X ∪Y is the event
that either 2 supervisors or as many supervisors as engineers are
present. (d) B and D are mutually exclusive.

Answers to Odd-Numbered Exercises
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3.9 Region 1 represents the event that the ore contains copper and
uranium; region 2 represents the event that the ore contains copper
but not uranium; region 3 represents the event that the ore contains
uranium but not copper; region 4 represents the event that the ore
contains neither uranium nor copper.

3.11 (a) Region 5 represents the event that the windings are im-
proper, but the shaft size is not too large and the electrical con-
nections are satisfactory; (b) regions 4 and 6 together represent
the event that the electrical connections are unsatisfactory, but the
windings are proper; (c) regions 7 and 8 together represent the
event that the windings are proper and the electrical connections
are satisfactory; (d) regions 1, 2, 3, and 5 together represent the
event that the windings are improper.

3.17 (a) 7; (b) 12 3.19 (a) 100; (b) 90.

3.21 720. 3.23 12,650

3.25 (a) 364; (b) 1,001. 3.27 1,680.

3.29 (a) 1/6; (b) 1/18; (c) 2/9; (d) 1/18; (e) 1/18; (f) 1/9.

3.31 0.359. 3.33 45.

3.35 (a) Yes; (b) no, sum exceeds 1; (c) no, P(C) is negative;
(d) no, sum is less than 1; (e) yes.

3.37 (b) 175/802, 329/802, 329/802; (c) 329/802, 259/802,
107/401

3.41 (a) 0.55; (b) 0.75; (c) 0.45; (d) 0.25.

3.43 (a) 0.45; (b) 0.42; (c) 0.41; (d) 0.70.

3.45 (a) 15/32; (b) 13/32; (c) 5/32; (d) 23/32; (e) 8/32; (f) 9/32.

3.47 (a) 0.48; (b) 0.35.

3.51 (a) 4 to 3; (b) 19 to 1 against it; (c) 4 to 1.

3.53 (a) 0.60; (b) 0.75 ≤ p < 0.80.

3.55 P(I | D) = 2/3; P(I | D) = 4/97.

3.57 (a) 62/85; (b) 74/84; (c) 29/51.

3.59 (a) 0.2133 different; (b) 0.36 different; (c) 0.2258 different.

3.65 (a) 156/245; (b) 9/245; (c) 16/49

3.67 No.

3.69 (a) 1/256; (b) 1/648; (c) 1/243.

3.71 0.295; (b) 0.534; (c) 0.585

3.73 (b) 0.498.

3.75 (a) 0.845; (b) 0.379.

3.77 (a) 0.686; (b) 0.171; (c) 0.0286.

3.79 (a) 0.28; (b) 0.04.

3.81 (a) 0.122 = 52/425; (b) 0.06 = 39/650.

3.83 (a) Y = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1),
(1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (4, 0)} is the event
that the engineer will not visit all five construction sites;
(b) X ∩ Y = {(3, 2)} is the event that the engineer visits all 5 sites
out of which he will visit only 2 sites on the second day.
(c) Y ∪ Z = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3),
(1, 4), (2, 3), (3, 2), (4, 1), (5, 0)} is the event that he will visit all
5 sites, or more sites on the second day than the first.
(d) X∪Y = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2),
(1, 3), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (4, 0), (3, 2)} is the event

that he will only 2 sites on the second day, or that he will not visit
all 5 sites.

3.87 330

3.89 (a) 0.50; (b) 0.20; (c) 0.10; (d) 0.80; (e) No.

3.91 There is a contradiction in his claim since total > 200.

3.95 (a) 7/15; (b) 2/15; (c) 2/5; (d) 7/15

3.97 Purposeful action is most likely.

3.99 (a) 0.74; (b) 0.6923.

CHAPTER 4
4.1 1/16, 1/8, 3/16, 1/4, 3/16, 1/8 and 1/16.

4.3 (a) Yes; (b) no, sum less than 1; (c) no, f (4) is negative.

4.5 k = 16/31.

4.9 (a) Success: home has TV tuned to speech. Likely to hold.

4.11 (a) Trials not independent.

4.13 (a) 0.3915; (b) 0.1657; (c) 0.0152; (d) 0.0136; (e) 0.05774;
(f) 0.7004.

4.15 3584/390625.

4.17 (a) 0.8298; (b) 0.0002; (c) 0.2293

4.19 (a) 0.4633; (b) 0.0362; (c) 0.9999

4.21 (a) 0.9571; (b) 0.7892; (c) 0.5614; (d) 0.3518.

4.23 (a) 0.5, 0.5; (b) 0, 0.5, 1.0.

4.25 (a) 0.4560; (b) 0.4291; (c) 0.1149.

4.27 (a) 0.0210; (b) 0.0490

4.29 (a) 0.3456; (b) 0.3502.

4.33 σ 2 = 1.0. 4.35 σ 2 = 1.8.

4.37 (a) μ = 3.3 and σ 2 = 1.485.

4.39 (a) σ 2 = 1.

4.41 (a) μ = 338 and σ = 13; (b) μ = 120 and σ = 10;
(c) μ = 24 and σ = 4.8; (d) μ = 520 and σ = 13.49.

4.45 The probability is greater than or equal to 8/9.

4.51 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504,
0.0216, 0.0081, 0.0027.

4.53 (a) 0.242; (b) 0.087; (c) 0.937.

4.55 (a) 0.983; (b) 0.143; (c) 0.322

4.57 0.007.

4.59 (a) 0.857; (b) 0.983; (c) 0.998

4.61 0.3010. 4.63 0.0340

4.65 (a) 0.0384; (c) 0.0015.

4.67 (a) 0.217; (b) 0.108.

4.73 0.117. 4.75 (b) 0.195.

4.77 00−14, 15−36, 37−71, 72−92, 92−99

4.79 (a) 0.04; (b) 0.

4.81 (a) 2.12; (b) 0.9856; (c) 0.9928.

4.83 (a) Yes; (b) Yes; (c) No, sum exceeds 1.

4.85 (a) 0.1468; (b) 0.1468.

4.87 (a) 0.55; (b) 0.40; (c) 0.05.

4.89 (a) 0.72; (b) 0.72. 4.91 0.2707.
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4.93 Probability at least 0.96. 4.95 0.5488.

4.97 (a) 0000–2465, 2466–5917, 5918–8334, 8335–9462,
9463–9857, 9858–9968, 9969–9994, 9995–9999.

CHAPTER 5
5.3 (a) 0.2754; (b) 0.1296 5.5 (a) 0.02; (b) 0.84.

5.7 (a) 0.5556; (b) 0.09. 5.9 (a) 0.707; (b) 0.1339.
5.11 0.7966 5.13 μ = 0.80 and σ 2 = 0.03

5.15 μ = 4 and σ 2 does not exist.

5.17 4.5 years.

5.19 (a) 0.9599; (b) 0.1056; (c) 0.0197; (d) 0.9656.

5.21 (a) 0.0401; (b) 4.01%; (c) 126.3

5.25 σ = 17.04 = 11.5/0.675.

5.27 (a) 456; (b) 52.78. 5.29 (a) 0.5391; (b) 0.0098.

5.31 84% 5.33 μ = 19.649.

5.35 (a) 0.1615; (b) 0.0023 5.37 0.1841.

5.39 (a) 4.5984; (b) 0.9911; (c) 0.0068.

5.45 F (x) = 0 for x ≤ 0, F (x) = x for 0 < x < 1, and F (x) = 1
for x ≥ 1.

5.47 50%. 5.49 0.2646.

5.51 (a) 0.9545; (b) 0.0142.

5.53 0.496. 5.55 (a) 0.049; (b) 0.843.

5.57 No relative maximum when 0 < α < 1; maximum at x = 0
when α = 1.

5.59 (a) 18.1%; (b) 36.8%.

5.61 e−α t .

5.65 (a) μ = 0.2222; (b) 0.8

5.67 0.6321.

5.69 0.3269

5.71 (a)

(
3
x1

)(
2
x2

) (
3

2 − x1 − x2

)
⎛
⎝ 8

2

⎞
⎠

for x1 = 0, 1, 2; x2 =

0, 1, 2; and 0 ≤ x1 + x2 ≤ 2; (b) 0.89; (c) f2(0) = 0.54, f2(1) =
0.42, f2(2) = 0.04; (d) f2(0|0) = 11/36, f2(1|0) = 7/12,

f2(2|0) = 1/9.

5.73 (a) 1/4; (b) 1/24.

5.75 F (x1, x2) = 0 for x1 ≤ 0 or x2 ≤ 0,

= 1
4 x2

1 x2
2 for 0 < x1 < 2 and 0 < x2 < 1,

= x2
2 for 0 < x2 < 1 and x1 ≥ 2,

= 1
4 x2

1 for 0 < x1 < 2 and x2 > 1, and F (x1, x2) = 1 for x1 ≥ 2
and x2 ≥ 1;
F1(x1) = 0 for x1 ≤ 0, F1(x1) = 1

4 x2
1 for 0 < x1 < 2, and

F1(x1) = 1 for x1 ≥ 2;
F2(x2) = 0 for x2 ≤ 0, F2(x2) = x2

2 for 0 < x2 < 1, and F2(x2) = 1
for x2 ≥ 1; they are independent.

5.77 F (x, y) = 0 for x ≤ 0 or y ≤ 0,

= 3
5 x2 y + 2

5 x y3 for 0 < x < 1 and 0 < y < 1,

= 3
5 x2 + 2

5 x for 0 < x < 1, and y ≥ 1,

= 3
5 y + 2

5 y3 for x ≥ 1, and 0 < y < 1,

and F (x, y) = 1 for x ≥ 1 and y ≥ 1.

5.79 (a) f1(x | y) = ( x + y2 ) / ( 1
2 + y2) for 0 < x < 1 and

f1(x | y) = 0 elsewhere; (b) f1(x | 1
2 ) = 1

3 ( 4x + 1 ) for 0 < x < 1

and f1(x | y) = 0 elsewhere; (c) 11/18.

5.81 (a) 1 / 3; (b) 5/(6e) = 0.3066.

5.83 (a) 0.3264; (b) 0.4712.

5.85 2.

5.87 μ = LW and σ 2 = 1
12

(
a2W 2 + b2L2 + 1

12 a2b2
)

.

5.89 (a) 0; (b) 10. 5.91 (a) −6; (b) 23.

5.93 (a) 200; (b) 60.

5.95 (a) 0.4(1 + 4et + 6e2t + 4e3t + e4t ); E(X ) = 12.8 and
E(X2) = 32.0

5.97 (a) (1 − t/2)−1; (b) E(X ) = 0.5 and E(X2) = 0.5.

5.99 (b) mean = 15 and variance = 189.

5.109 (a) 0.1465; (b) 0.3125; (c) μ = 3/8 and σ 2 = 0.0549.

5.111 (a) 1; (b) 0.25. 5.113 0.0365

5.115 (a) 1.28; (b) 3.09.

5.117 (a) 0.9997; (b) .0011. 5.121 n = 25

5.123 (a) f (x) = 0.2 e−0.2x for x > 0 and mean = 5. f (y) =
0.2 e−0.2y for y > 0 and mean = 5; (b) 10.

5.125 (a) −8; (b) 127.

5.127 (a) 0.0644; (b) 0.8613.

CHAPTER 6
6.3 (b) Grads with low incomes less likely to respond.

6.5 (a) 1365 (b) 52360

6.7 (a) μ = 0 and σ 2 = 26/3.

6.9 The samples are 1 and 1, 1 and 2, 1 and 3, 1 and 4, 1 and 5, 2
and 1, 2 and 2, 2 and 3, 2 and 4, 2 and 5, 3 and 1, 3 and 2, 3 and 3,
3 and 4, 3 and 5, 4 and 1, 4 and 2, 4 and 3, 4 and 4, 4 and 5, 5 and
1, 5 and 2, 5 and 3, 5 and 4, 5 and 5. The probabilities that x equals
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 or 5 are 1/25, 2/25, 3/25, 4/25, 5/25,
4/25, 3/25, 2/25 and 1/25

6.11 (a) It is divided by 5; (b) it is multiplied by 2; (c) it is divided
by 7/3; (d) it is multiplied by 4.

6.15 Approximately 0.8621. 6.17 Approximately 0.0048.

6.21 t = 0.29; since t0.10 = 1.415 for 7 degrees of freedom, the
data fail to reject the claim.

6.23 0.010 6.25 0.02. 6.27 0.5249. 6.29 0.3125

6.31 t with 4 degrees of freedom.

6.35
∏5

i=1(1 − 2t )−2i = (1 − 2t )−30.

6.37 (b) mean = −20 and variance = 102.25.

6.39 (b) mean = −27 and variance = 57.
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6.41 (b) Negative binomial r = ∑n
i=1 ri and success

probability p.

6.43 f (y) = (9π/2)−1/2y−2/3e−y2/3/2 for −∞ < y < ∞.

6.45 f (y) = ey e−ey
for −∞ < y < ∞.

6.47 f (y) = e−y for y > 0.

6.49 f (y) = �(2α)
�(α)�(α)

yα−1

(1 + y)2α for 0 < y < 1.

6.51 (b) No, students from states with many participants, usually
the larger states, have less chance.

6.53 (a) 1/66; (b) 1/190.

6.55 (a) not larger than 0.16; (b) 0.0062.

6.57 0.9642 6.59 0.05

6.61 The ratios of standard errors are (a) 0.707; (b) 0.816; (c) 2.0.

CHAPTER 7
7.1 E = 1.714(2697)/

√
24 = 943.6

7.3 E = 1.96(1.250)/
√

52 = 0.3398.

7.5 E = 2.326(3.057)/
√

45 = 1.06.

7.7 E = 1.96(14, 056)/
√

50 = 3,896.1.

7.9 84.7%. 7.11 n = 208.

7.13 21.537 < μ < 36.283.

7.15 107.59 < μ < 120.41.

7.17 1,791.7 < μ < 2,025.8.

7.21 (a) 3.28 < μ < 3.72; (b) cannot tell μ unknown;
(c) about 90%.

7.23 (a) 159.2 < μ < 177.2; (c) normal.

7.25 (a) E = 22.14; (b) E = 4.46.

7.31 (a) 0.8; (b) 0.64.

7.33 (a) λ̂ = 1.5; (b) 0.0498.

7.35 (a) μ̂ = 114 and σ̂ = 7.860; (b) 0.0689.

7.37 (a) β̂ = X ; (b) e−1/x.

7.39 (a) H0 : μ = 6 and H1 : μ < 6; (b) Type I; (c) Type II

7.41 (a) H0: μ = 56 and H1: μ �= 56; (b) Type II; (c) Type I.

7.43 (a) bridge unsafe; (b) 0.01 but prefer even smaller.

7.45 Type I; Type II.

7.47 (a) 0.1056; (b) 0.1056.

7.49 Reject when x < 28.84.

7.51 (a) μ �= 1,250; (b) μ < 1,250; (c) μ > 1,250.

7.53 (a) Z = −1.28; cannot reject H0; (b) Type II.

7.55 (a) Z = −2.49; reject H0; (b) Type I.

7.57 (a) T = 2.52; reject H0; (b) Type I.

7.59 Z = 3.88; reject H0.

7.63 T = 5.66; reject H0.

7.65 (a) Z = 2.02; reject H0; (b) T = 3.82; reject H0.

7.67 (a) Reject H0; (b) Fail to reject H0; (c) Fail to reject.

7.69 (a) Fail to reject H0; (b) reject H0; (c) Fail to reject.

7.71 (a) γ (77) = 0.523; (b) 0.491.

7.77 70.23 < μ < 71.16.

7.79 24.92 < μ < 27.88.

7.81 8.294 < μ < 9.706. 7.83 n = 11.

7.85 (a) c = 1651, 1; (b) For 1620, …, .87, .66, .37, .14, .036,
.006, .0005, .00003.

7.87 (a) 1.530 < μ < 1.770

CHAPTER 8
8.1 z = −2.15; reject H0.

8.3 z = 4.69; reject H0.

8.5 (a) Z = −2.4038; reject H0. (b) 0.100

8.7 (b) 7.333.

8.9 t = 0.96; cannot reject H0.

8.11 t = 2.2121; reject H0.

8.13 (a) t ′ = −1.30 with 13 degrees of freedom; cannot reject H0;
(b) t ′ = −0.145 with 8 degrees of freedom; cannot reject H0.

8.15 t = 0.9461 with 4 degrees of freedom; cannot reject H0.

8.17 (a) 0.048 < μD < 1.848; (b) t = 2.35; reject H0.

8.19 2.149 < μD < 3.051

8.21 t = 3.94 with 15 degrees of freedom; reject H0.

8.23 (a) Select 3 elevators by random drawing; (b) flip coin for
each of the 6 elevators. If heads, elevator gets the modified circuit
board first. After some time, it is replaced by the original board. If
tails, elevator gets modified circuit board second.

8.25 Randomly select 25 cars, and install the modified air-
pollution device. The other 25 cars use the current device.

8.27 −0.183 < μ1 − μ2 < −0.037.

8.29 t = 2.082 with 8 degrees of freedom; fail to reject H0.

8.31 n should be 22.

8.33 (a) Randomly select 20 engines to install the modified ex-
haust valves. The other 20 engines use the regular exhaust valves.
(b) Select 10 jugs randomly to store water in the new freezer. Freeze
water in the remaining jugs in the old freezer.

8.37 2.8 < μD < 7.6

CHAPTER 9
9.1 (a) s = 8.34; (b) 8.75.

9.3 (a) 1.787; (b) 2.144.

9.5 0.0067 < σ 2 < 0.4831.

9.7 χ2 = 5.832; cannot reject H0.

9.9 χ2 = 125.44; reject H0.

9.11 (a) χ2 = 10.89; cannot reject H0. (b) distribution invalid

9.13 F = 1.496; cannot reject H0.

9.15 F = 2.25; cannot reject H0.

9.17 0.22 < σ < 0.53.
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9.19 χ2 = 72.22; reject H0.

9.21 F = 1.81; cannot reject H0.

CHAPTER 10
10.1 0.565 < p < 0.695

10.3 0.514 < p < 0.642.

10.5 0.095 < p < 0.262.

10.7 90.9%. 10.9 n = 267.

10.11 n = 1,337.

10.13 0.563 < p < 0.943.

10.17 0.15 < p < 0.18.

10.19 z = 2.19; reject H0.

10.21 z = −1.83; cannot reject H0.

10.23 z = 1.489; cannot reject H0.

10.25 z = −2.357; reject H0.

10.27 χ2 = 2.37; reject H0.

10.29 χ2 = 9.39; cannot reject H0.

10.33 −0.005 < p1 − p2 < 0.145.

10.35 0.170 < p1 − p2 < 0.374.

10.39 χ2 = 15.168; reject H0.

10.41 χ2 = 54.328; reject H0.

10.43 χ2 = 44.11; reject H0.

10.45 χ2 = 7.91; cannot reject H0.

10.49 z = −0.50; cannot reject H0.

10.51 z = −0.99; cannot reject H0.

10.53 z = 1.686; reject H0 at α = 0.05.

10.55 z = 3.71; reject H0 in favor of p1 > p2.

10.57 z = −1.746; reject H0.

10.59 (a) χ2 = 8.190; reject H0;
(b) 0.256 < p1 < 0.611; 0.108 < p2 < 0.425; 0.461 < p2 < 0.806.

10.61 χ2 = 10.481; cannot reject H0.

10.63 χ2 = 47.862; reject H0.

CHAPTER 11
11.1 (b) Extrapolation beyond x values used.

11.3 (b) ŷ = 591.932 + 52.454x; ŷ = 65.8.

11.5 (a) 11.86 < β < 17.11; (b) 40.0 to 63.71.

11.7 t = −1.533; Cannot reject H0.

11.9 (a) ŷ = 3.452 + 0.4868x; (b) ŷ = 3.695.

11.11 t = 3.30; reject H0.

11.13 17.799 to 32.257.

11.15 (a) � xy/� x2; (b) 14.75.

11.17 4.6 < α < 52.2.

11.19 (a) ŷ = 3.214 − .446x; 2.10. (b) ŷ = 2.95 − .2369x; 2.00.

11.23 (a) ŷ = 87.9 + 2.46x; (b) t = 9.58; reject H0: β = 0;
(c) (325.65, 342.98).

11.25 (b) log10 ŷ = 4.842 + 0.0604x or ŷ = 69,502.4(1.149)x;
(c) 1,122,018.

11.27 289.66

11.29 ŷ = exp[exp(0.000191x + 1.5)].

11.31 α̂ = 0.240.

11.33 (a) t = −2.28; cannot reject β1 = 0; (b) F = 38.59; reject
β2 = 0.

11.37 ŷ = 64.5.

11.39 ŷ = 2.266 + 0.225x1 + 0.0623x2; ŷ = 8.37.

11.43 Normal scores plot nearly straight.

11.45 A serious violation, time trend.

11.47 No; population size.

11.49 (b) Z = 4.89; reject H0: ρ = 0.

11.51 Z = −0.743; cannot reject H0: ρ = 0

11.53 0.9017 < ρ < 0.9967 11.55 r = 0.810.

11.57 Z = −1.120; cannot reject H0: ρ = −0.4.

11.61 (a) 2,812.4; (b) 233.9; (c) 0.958.

11.63 r = 0.738.

11.65 (a) ŷ = −0.875+2.65x (b) 3.7625; (c) Model may not hold
outside experimental range.

11.67 t = 4.373, cannot reject H0: β = 1.5

11.69 (a) ŷ = 20.4 − 1.80x; (b) t = −7.79; reject H0: β = 0;
(c) (−4.12, 12.52) (d) outside range.

11.71 r2 = 0.953.

11.73 0.619 ± 0.427 or 0.192 < α < 1.046.

11.75 γ̂ = 1.499. 11.77 τ̂ = 0.9284.

11.79 (a) 3.67 to 3.72; (b) 3.63 to 3.76.

11.81 The first linear relationship is roughly twice as strong.

11.83 (a) 0.446 < ρ < 0.923; (b) −0.797 < ρ < −0.346;
(c) −0.173 < ρ < 0.476.

11.85 (a) ŷ = −0.075 + 0.480x; (b) 0.44 < β < 0.52;
(c) t = −1.08, cannot reject H0; (d) The variance appears to
increase somewhat with x.

CHAPTER 12
12.1 (b) Use objects of different kinds.

12.3 SS(Tr) = 18

12.5 F = 5.75, significant at the 0.01 level.

12.7 (a) SS(Tr) = 456, with 3 degrees of freedom; SSE = 100
with 11 degrees of freedom, SST = 556, with 14 degrees of
freedom; (b) F = 16.72, significant at the 0.01 level.

12.9 F = 0.91; not significant at the 0.05 level.

12.11 F = 15.7, significant at the 0.05 level.

12.17 (a) For brands, F = 1.047. (b) t = −1.023.

12.19 (a) b = 5, SS(Tr) = 30; (b) For ball bearings, F = 5.95,
significant at the 0.01 level.

12.21 For technicians, F = 5.91, not significant at the 0.01 level;
for days, F = 1.11, not significant at the 0.01 level.
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12.23 (b) SS(Tr) = 70.173 with 4 degrees of freedom;
SS(Bl) = 0.330 with 3 degrees of freedom;
SSE = 23.315 with 12 degrees of freedom;
SST = 95.818, with 19 degrees of freedom.
For treatments, F = 8.314, significant at the 0.01 level. Blocks are
not significant.

12.25 F = 1.95, not significant at the 0.05 level.

12.27 For machines, F = 0.05, not significant at the 0.05 level;
for workers, F = 1.346, not significant at the 0.05 level.

12.31 Tr1 − Tr2 : (−8.43, 4.43) Tr1 − Tr3 : (−9.43, 3.43)
Tr1 − Tr4 : (−9.43, 3.43) Tr2 − Tr3 : (−7.43, 5.43)
Tr2 − Tr4 : (−7.43, 5.43) Tr3 − Tr4 : (−6.43, 6.43)

12.33 μ1 − μ2: −3 ± 9.02; μ2 − μ3: 1.5 ± 9.02; μ1 − μ3:
−1.5 ± 9.02.

12.35 (a) T1 − T2 : (−7.82,−2.13) T1 − T3 : (−5.70,−0.002)
T1 − T4 : (−5.87,−0.18) T1 − T5 : (−3.07, 2.63)
T2 − T3 : (−0.72, 4.97) T2 − T4 : (−.90, 4.80)
T2 − T5 : (1.90, 7.60) T3 − T4 : (−3.02, 2.67)
T3 − T5 : (−0.22, 5.47) T4 − T5 : (−0.05, 5.65)

12.37 For treatments, F = 19.21 with 2 and 5 degrees of freedom.
Reject the null hypothesis of equal treatment means at α = 0.05
For the covariate, F = 22.28 with 1 and 5 degrees of freedom.
Reject the null hypothesis β = 0 at α = 0.05

12.39 For track designs, F = 6.44, significant at the 0.01 level.
The estimated effect of usage on breakage resistance is 0.43.

12.43 F = 7.66, significant at the 0.05 level

12.45 (b) SS(Tr) = 56, with 2 degrees of freedom; SS(Bl) =
138 with 3 degrees of freedom; SSE = 32, with 6 degrees of
freedom; SST = 226, with 11 degrees of freedom. (c) For treat-
ments, F = 5.25, significant at the 0.05 level; for blocks, F = 8.63,
significant at the 0.05 level.

12.47 (a) For agencies, F = 4.84 significant at the 0.05 level.
(b) For sites, F = 101.75 significant at the 0.05 level.

12.49 For treatments, F = 65.40 with 4 and 24 degrees of free-
dom.
Reject the null hypothesis of equal treatment means at α = 0.01.
For covariate, F = 69.02 with 1 and 24 degrees of freedom.
Reject the null hypothesis β = 0 at α = 0.01

12.51 (a) For surface treatments, F = 10.65, significant at the 0.05
level, (b) Both show treatments are significant. But, the coefficient
of traffic volume is significant and the P-value is about half the
value for the analysis of variance.

CHAPTER 13
13.1 Interaction (F = 24.3) is significant at α = 0.050 but
A : (F = 0.58) and B : (F = 0.11) are not.

13.3 Strength (F = 171.46), Thickness (F = 10.95) and their
interaction (F = 5.12) all significant. (66.704, 80.630) at 1250 kg
and 104 micrometers.

13.5 Detergents (F = 0.05) and interaction (F = 0.86) are not
significant at the 0.05 level. Engines (F = 7.33) is significant.

13.7 Defoliation (F = 32.44) and Treatment (F = 6.14) are sig-
nificant at α = 0.05. Surface (F = 1.58) and the two and three

factor interactions (F = 1.72, F = 2.94, F = 0.33, F = 0.18) are
not.

13.11 (b) Factor A: 3.4 ± 0.80; Factor B: 4.3 ± 0.80; AB interac-
tion: 1.6 ± 0.80.

13.13 (b) Factor A: −2.635 ± 0.677; Factor B: −0.665 ± 0.677;
AB interaction: 0.175 ± 0.677.

13.15 (b) A: − 0.803 ± 0.211; B: − 0.360 ± 0.211; C: 0.178 ±
0.211; AB: 0.010 ± 0.211; AC: −0.058 ± 0.211; BC: −0.115 ±
0.211; ABC: 0.030 ± 0.211.

13.17 (b) A: 0.533±0.303; B: 0.902±0.303; C: −0.177±0.303;
AB: − 1.053 ± 0.303; BC: 0.447 ± 0.303; AC: 0.915 ± 0.303;
ABC: 0.302 ± 0.303

13.19 Minimum at (x1, x2) = (31.5, 113.9)

13.21 ŷ = −40.8750 + 1.5036x1 + 0.5604x2 − 0.0037x2
1 −

0.0006x2
2 − 0.0070x1x2

The constant, x2 and x2
2 terms are not significant.

13.23 Rubber (F = 651.85), Sole (F = 16569.97) and interac-
tion (F = 282.69) are significant at the 0.01 level. Because the
interaction is significant, summarize by a two-way table of means.

13.25 Nickel (F = 6.05), carbon (F = 15.37), and their inter-
action (F = 22.44) are significant at α = 0.01 and so is man-
ganese (F = 34, 22). The other interactions are not significant
even at level 0.05. Summarize with a two-way nickel-carbon ta-
ble of means and the two means for manganese.

13.27 (b) None of the main effects or interaction is non-zero.
Factor P: −2.5 ± 7.73, Factor Q: 4.5 ± 7.73
PQ interaction: 0.5 ± 7.73

13.29 Pressure: 9.75 ± 7.38
Temperature: −1.25 ± 7.38
Interaction: 0.75 ± 7.38

13.31 Factor A: − 2.325 ± 1.107
Factor B: − 2.225 ± 1.107
Factor C: − 1.475 ± 1.107
AB interaction: 3.275 ± 1.107
AC interaction: −.575 ± 1.107
BC interaction: −.275 ± 1.107
ABC interaction: .425 ± 1.107

13.33

Total SS = SSA + SSB + SSC + SSAB

+ SSAC + SSBC + SSABC + SSE
27.32 = 4.84 + 5.76 + 2.56 + 11.56

+ .16 + .16 + .36 + 1.92

13.35 ŷ = 99.95 + 29.34x1 + 27.10x2 + 25.571x2
1 + 34.48x1x2 −

3.429x2
2 but x2

2 term is not significant. No maximum in region.

CHAPTER 14
14.1 P(11 or more) = 0.3238; cannot reject H0.

14.3 z = 0.075; cannot reject H0.

14.5 z = 0.98, difference is insignificant.

14.7 z = −1.34; cannot reject H0.

14.9 H = 26.0; the populations are not identical.
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14.11 z = −0.244; cannot reject H0.

14.13 z = −2.499; cannot reject H0.

14.15 Maximum difference is about 0.27; cannot reject H0.

14.17 W1 = 58 and z = −0.447, cannot reject H0.

14.19 H = −13.68; cannot reject H0

14.21 z = −0.039; cannot reject H0.

14.23 W1 = 25 so U1 = 19; reject H0.

14.25 z = −2.24; reject H0.

CHAPTER 15
15.1 (a) Central line = 0.020; LCL = 0.015; UCL = 0.025;
(b) Central line = 0.012; LCL = 0; UCL = 0.025; (c) x: third,
sixth and twentieth sample values outside limits; R: all sample val-
ues within limits.

15.3 (a) Central line = 48.1, UCL = 50.3, LCL = 46.0; (b) cen-
tral line = 2.95, UCL = 6.7, LCL = 0; (c) process mean out of
control, process variability in control; (d) z = −2.24, there is a
trend; (e) no, process is not in control.

15.5 (a) x: Central line = 26.2; UCL = 32.54; LCL = 19.86;
σ : Central line = 1.92; UCL = 6.81; LCL = 0; (b) Yes, process is
in control.

15.7 Central line = 12.6105; LCL = 0; UCL = 3.1335

15.9 (a) Central line = 0.0478; LCL = 0.0162; UCL = 0.1118.

15.11 Yes, central line for c chart is 4.9, UCL = 11.6 and
LCL = 0.

15.13 We can assert with 95% confidence that 99% of the pieces
will have yield strength between 36,843 and 68,757 psi.

15.15 (a) 0.4 ± 0.0129; (b) 0.4 ± 0.0018.

15.17 (a) Central line = 1.6, UCL = 1.64, LCL = 1.56; (b) Cen-
tral line = 0.0698, UCL = 0.1475, LCL = 0; (c) x and R: many
sample values are outside limits.

15.19 Central line = 0.04, UCL = 0.0816, LCL = 0. The stan-
dard is not being met.

15.21 (a) UCL = 3.48, LCL = 0; (b) all the 10-foot sections are
within the control limits except the 19th section, which is out of
the limits.

15.23 We can assert with 95% confidence that 90% of the inter-
request times will be between 887 and 54,377 microseconds.

15.25 (b) L = 186.86; (c) the cardboard strength data seems to be
sampled from a normal distribution.

15.27 (a) 1.515; (b) 1.45.

CHAPTER 16
16.1 R = 0.482

16.3 R = 0.9983.

16.5 (a)

f (t ) =
{

β( 1 − t/α ) exp [ −β( t − t2/( 2α ))] for 0 < t < α

0 otherwise

F (t ) =
{

1 − exp [ −β( t − t2/( 2α ))] for 0 < t < α

1 for t > α

16.7 (a) 0.9632; (b) 0.9418.

16.9 0.085

16.11 (a) 6,114.68 < μ < 62,874.62; (b) Tr = 51,400 <

69,555; reject H0.

16.13 (a) 395.37 < μ < 1,837.06; (b) Tr = 3,619, so we cannot
reject H0 at level 0.01.

16.17 45,150.8

16.19 0.8758.

16.23 (a) 0.0952; (b) 0.8607

16.25 33,053.6

16.27 0.9520.

16.29 (a) 0.6667; (b) 0.50; (c) 0.9977.
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A
a × b factorial experiment, 426
Absolute variation, 38
Accelerated life testing, 510
Additive set functions, 69
Adjusted treatment sum of squares, 417
Alternative hypothesis, 245, 247
Analysis of covariance, 415–420
Analysis of variance

one-way/completely randomized design, 389–399
randomized block design, 402–410
table, 394, 406

Analysis of Variance (ANOVA) table, 394, 406
Anderson-Darling tests, 476
Arithmetic mean, 34
Assignable variation, 487
Axioms of probability, 69–71

B
Bar chart, 22, 97
Bayes’ theorem, 84–87
Bell-shaped, sampling distribution of mean, 198
Bernoulli trials, 98
Beta distribution, 157–158
Between-sample mean square, 393
Between-samples sum of squares, 392
Binomial coefficients, 100
Binomial distribution, 98–103

mean of, 109
normal approximation, 148–149
Poisson approximation to, 120–121
variance of, 113

Bivariate normal distribution, 371, 374–375
Blocks, 388, 452
Block sum of squares, 403
Bonferroni method, 410
Boxplot, 41
Boxplots, 41–44

C
Categorical distribution, 24
Cause-and-effect diagram, 483
c chart, 493, 495
Censored, 515
Central limit theorem, 201–202
Central line, 487
Characteristic of interest, 16
Chebyshev’s theorem, 114–116
Chi square distribution, 207–208, 291
Chi square test

expected cell frequency, 312
association/independence, 320
observed cell frequency, 311

Circular normal distribution, 174
Class

boundaries, 26
frequencies, 25
interval, 26
limits, 24
mark, 26

Classical approach, statistics, 12
Classical probability concept, 67
Classical theory of testing hypothesis, 247
Coefficient of variation, 38–39
Combinations, 64
Complements, 58
Complete a × b factorial experiment, 426
Completely randomized design, 389–399
Composite hypothesis, 247
Concomitant, 415
Conditional probability, 78–84

density, 167
distribution, 163

Confidence intervals, 230
for effects, 445–446, 450–451
for mean 230, 231
for mean difference, 282
for μ1 − μ2, 268, 275, 278
for μZ , 373
for proportions, 302, 303
for standard deviations, 292

Confidence limits, 230
Confounded, 387, 452
Contingency tables, 318
Continuity correction, 147
Continuous random variables, 96, 134–139
Continuous sample space, 57
Control charts, 487

for attributes, 487, 493–496
for means, 488
for measurement, 487, 488–493

Controlled experimentation, 388
Convolution formula, 217, 218
Correlation and causation, 370–371
Correlation coefficient

population, 371
sample, 366
multiple, 377
Spearman’s rank, 469–470

Correlation analysis, 366
Covariance, 169
Critical regions

for testing μ = μ0, 252, 253
for testing μ1 − μ2, 270, 271
for testing p = p0, 308, 310
for testing σ 2 = σ 2

0 , 294
for testing σ 2

1 = σ 2
2 , 295

Critical values, 250
Crosier’s two-sided CUSUM, 492
Cumulative distribution function, 97
Cumulative distributions, 26–27
Cumulative probabilities, 101
Cumulative sum (CUSUM), 492
Curvilinear regression, 350–356
CUSUM statistic, 492

D
Defective, 493
Defects, 493
Degree of confidence, 230
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Degrees of freedom, 206, 208
Denominator degrees of freedom, 209
Density

conditional probability, 167
joint, 164
marginal, 165
normal probabilities, 140

Density histogram, 29
Dependent/response variables, 327
Descriptive statistics, 12
Deviations from mean, 37
Discrete random variables, 96
Discrete sample space, 57
Discrete uniform distribution, 197
Distribution

beta, 157–158
binomial, 98–103
categorical, 24
chi square, 207–208, 291
cumulative, 26–27
F , 209
frequency, 24–27
gamma, 155–157
geometric, 124
hypergeometric, 103–105
joint probability, 127
location, 108
log-normal, 152–155
multinomial, 127
negative binomial, 125
normal, 140–147
numerical, 24
Poisson, 118–122
probability, 95
standard normal, 141
symmetrical, 100
t, 206
uniform, 151–152, 197
Weibull, 158–160

Distribution function, 97, 137
cumulative, 97
method, 216

Dot diagram, 23
Double-stem display, 34
Dummy variable, 359

E
Empirical cumulative distribution, 33
Empty set, 57
Endpoint convention, 25
Error mean square, 393
Error sum of squares, 330, 337, 392, 405
Estimated standard error, 225
Estimation, 223

interval, 224, 229–232
mean life, 510
point, 224–229
of proportions, 301–306
of variance, 290–293

Estimator
least squares, 330
maximum likelihood, 238
pooled, 273
unbiased, 228, 229

Events, 57
mutually exclusive, 58

Expectation, 168
Expected value, 108

function of random variable, 168
function of random variables, 169
properties, 170

Expected cell frequency, 312, 319
Experiment, 56
Experimental design, 267, 386

for quality, 484–486
Experimental unit, 266
Exploratory data analysis, 32
Exponential distribution, 156
Exponential failure-time distribution, 508
Exponential form, 352

F
Factorial experiment, 356, 426

complete, 426
22 and 23, 441–454

Factorial notation, 62
Factors, 426, 441
Failure rate, 507
Failure-rate function, 507
Failure-time distribution, 506–509

Weibull, 513–516
F distribution, 209, 295

representation, 211
Finite population, 193

correction factor, 200
Finite sample spaces, 57
Fisher Z transformation, 372
Five-stem display, 34
Fraction-defective chart, 493
Frequency distribution, 24–27

defined, 24
graphs of, 27–30

Frequency interpretation, 68
Fundamental theorem of counting, 61

G
Gamma distribution, 155–157
Gamma function, 155
Gauss-Markov theorem, 336
General addition rule, 74
General multiplication rule of probability, 80
Geometric distribution, 124
Goodness of fit test, 322–323
Grand mean, 389
Grand total, 318
Graphics

bar chart, 22, 97
boxplot, 41–44
cause-and-effect diagram, 483
dot diagram, 23
Pareto diagram, 22
Pie charts, 33
scatter diagram, 328
Venn diagrams, 58–60

H
Half normal plot, 485
Hat notation, 228
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Hazard rate, 507
Histogram, 27

density, 29
endpoint convention, 25
probability, 96–97

H test, 466
Hypergeometric distribution, 103–105

mean of, 110
variance of, 113

Hypothesis
alternative, 245, 247
composite, 247
null, 244–245, 247
one-sided, 245
simple, 247
two-sided, 245

I
Independence

null hypothesis of, 320
random variables, 163, 165, 166

Independent events, 80
Independent samples design, 266
Independent variable, 327
Infinite population, 193
Input variable, 327
Instantaneous failure rate, 506
Interaction, 426, 441

effects, 444, 449
three-way effects, 434, 449
two-way effects, 434, 444, 448

Interquartile range, 41
Intersections, 58
Interval estimation, 224, 229–232

J
Joint cumulative distribution function, 164
Joint marginal densities, 165
Joint probability density, 164
Joint probability distribution, 127, 162

K
Kolmogorov-Smirnov tests, 475
Kruskal-Wallis test, 469
kth moment about the mean, 114, 138
kth moment about the origin, 113, 138
Kurtosis, 114

L
Large samples

confidence intervals for μ, 230
confidence intervals for μ1 − μ2, 268
confidence intervals for p, 304
tests about μ, 252
tests about μ1 − μ2, 269
tests about p, 309
tests about two proportions, 314

Law of large numbers, 116, 200
Leaf, 31
Least squares estimators, 330
Level of significance, 246
Levels, of factor, 426, 441–442
Life testing, 510–513

Likelihood function, 238
Limits of prediction, 343
Linear regression, 328

multiple, 377–381
Location, distributions, 108
Logarithmic form, 352
Log-normal distribution, 152–155
Lurking variable, 370

M
Main effects, 434, 444
Mann-Whitney test, 466
Marginal density, 165
Marginal probability distribution, 162
Matched pairs, 280
Matched pairs design, 267
Matched pairs t test, 282
Maximum error of estimate, 225–227, 305
Maximum likelihood estimation, 236–241
Maximum likelihood estimator, 238

Bernoulli trials, 238
invariance, 240
Poisson distribution, 238–239

Mean, Population 138
of beta distribution, 157
of binomial distribution, 109
deviations from, 37
of gamma distribution, 156
of geometric distribution, 124
grand, 389
of hypergeometric distribution, 110
of linear combinations, 170
of log-normal distribution, 154
of negative binomial distribution, 125
point estimation of, 225
of Poisson distribution, 118
of probability density, 138
of probability distribution, 107–114
of uniform distribution, 152
of Weibull distribution, 160

Mean, sample, 35
sample, 35
sampling distribution of, 197–204
standardized, 201

Mean square, 393
between-sample, 393
error, 393
treatment, 393
within-sample, 393

Mean time between failures (MTBF), 508
Median, 34
Method of least squares, 330
Model equation, 393

for three-factor experiment, 433
for two-factor experiment, 426

Modified boxplot, 41–42
Moment generating function, 174–179
Moment generating function method, 213–214
Monte Carlo methods, 128
Multifactor experiment, 432–438
Multinomial distribution, 127
Multiple comparisons, 410–413
Multiple correlation coefficient, 377
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Multiple regression, 356–361
Multiplication of choices, 61
Mutually exclusive events, 58

N
Negative binomial distribution, 125
Negatively skewed distribution, 100
Neyman-Pearson theory, 247
n factorial, 62
Nonparametric tests, 464

Anderson-Darling tests, 476
H test, 466, 469
Kolmogorov-Smirnov tests, 475
Kruskal-Wallis test, 469
Mann-Whitney test, 466
rank-sum tests, 466–469
runs test, 472
sign test, 464–466
Spearman’s rank correlation, 469–470

Nonreplacement test, 510
Normal distribution, 140–147

bivariate, 371, 374–375
circular, 174
standard, 141

Normal equations, 335–336, 357
Normal probabilities, 143

density, 140
Normal quantile plot, 180
Normal scores, 180
Normal scores plot, 180
Null hypotheses, 244–245, 247

of homogeneity, 319
of independence, 320
P-value for, 252

Number-of-defectives chart, 495
Number-of-defects chart, 493, 495
Numerator degrees of freedom, 209
Numerical distributions, 24

O
Observed cell frequency, 311
Odds, 78
Ogives, 30
One sample t test, 253
One-sample Z test, 252
One-sided alternative, 245
One-sided criterion/test, 246
One-way classification, 389
Operating characteristic (OC) curve,

257–261
Outcome (of an experiment), 56
Outlier, 24

P
Paired t test, 282
Pairing, 285
Parallel system, 505
Parameters, 100, 196, 223
Pareto diagram, 22, 23, 481
p chart, 493
Percentiles, sample 100 pth, 39
Permutation, 62
Pie charts, 33

Point estimation, 224–229
of mean, 225

Poisson distribution, 118–122
Polynomial regression, 353
Pooled estimator, 273
Population, 16, 17, 193

correlation coefficient, 371
Population of units, 16
Positively skewed distribution, 100
Power, 259
Power function, 353
Prediction, limits of, 343
Predictor variable, 327
Principle of least squares, 329
Probabilities

axioms of, 69–71
classical concept, 67
conditional, 78–84
cumulative, 101, 129
frequency interpretation, 68
normal, 143
skewness, 107
subjective, 69

Probability density functions, 136
Probability distribution, 95, 96

conditional, 163
joint, 127, 162
marginal, 162
mean/variance of, 107–114
standard deviation of, 111

Probability histogram, 96–97
Probability integral transformation, 216
Process capability index, 487
Product law of reliabilities, 505
Product law of unreliabilities, 506
P-value, 250, 251–252

Q
Quality assurance, 480
Quality control, 486–488
Quality improvement, 13, 480
Quartiles, 39, 40

R
Randomization, 285, 286, 387
Randomized block design, 402–410
Random number, 129

table, 18
Random process, 122
Random sample, 194
Random variables, 94–97

continuous, 96, 134–139
discrete, 96
F distribution, 209
independent, 163, 166
standardized, 143
t distribution, 205

Range, 41
sample, 291
standarized distribution, 412

Rank-correlation coefficient, 469
R chart, 488
r × c table, 318
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Reciprocal function, 353
Regression, 374

multiple, 356–361
polynomial, 353

Regression analysis
least squares estimators, 330
method of least squares, 330
principle of least squares, 329

Regression line, slope of, 339
Regression sum of squares, 370
Rejection region

for testing μ = μ0, 252, 253
for testing μ1 − μ2, 270, 271
for testing p = p0, 308, 310
for testing σ 2 = σ 2

0 , 294
for testing σ 2

1 = σ 2
2 , 295

Relative variation, 38
Reliability, 13, 504
Reliability function, 507
Repeated trials, 98
Replacement test, 510
Replication, 409
Representation of random variables, 210

chi square, 211
F, 211
t, 211

Residual plots vs. predicted value, 361
Residuals, 330
Residual sum of squares, 330
Response, 266, 327
Response surface analysis, 356, 456–458
Robust, 298, 392
Rule of complement, 75
Rule of elimination, 85
Rule of total probability, 85
Runs, 472

S
Sample, 17, 193

correlation coefficient, 366
interquartile range, 41
mean, 35
median, 35
percentiles, 39
random, 194
range, 41
standard deviation, 38
variance, 37

Sample correlation coefficient, 366
Sample proportion, 301
Sample range, 291
Sample size

determination of, 227–229
to estimate p, 306

Sample spaces, 56
continuous, 57
discrete, 57
finite, 57

Sampling distribution
of mean, 197–207
moment generating function method, 213–214
theoretical, 198
of variance, 207–210

Sampling without replacement, 103
Sampling with replacement, 103
Scattergram, 328
Scatter plot, 328
σ chart, 488
Series system, 505
Set function, 69
Sign test, 464–466
Simple hypothesis, 247
Simulation, 128–130, 184–186
Skewed distribution, 100
Skewness, 107
Slope (of regression line), 339
Small samples

confidence intervals for μ, 231
inferences about μ1 − μ2, 274, 275, 277
inferences about a proportion, 308
inferences about σ 2, 292–294
relationship of tests and confidence intervals, 256–257
robustness, 298
tests about μ, 250, 253

Smith-Satterthwaite test, 277
Spearman’s rank-correlation, 469
Special addition rule, 74
Special product rule of probability, 81
Standard deviation

confidence intervals for, 292
of probability density, 139
of probability distribution, 111
sample, 38

Standard error, 225
Standard error of estimate, 337
Standard error of the mean, 201
Standard normal distribution, 141
Standard order, 442, 446
Standardized random variable, 143
Standardized sample mean, 201
Standarized range distribution, 412
Statement of purpose, 16
Statistic, 223
Statistical control, 487
Statistical inference, 12, 223
Statistical population, 16
Statistics

classical approach, 12
descriptive, 12
and engineering, 12–13

Stem, 31
Stem-and-leaf displays, 31–32

double-stem display, 34
five-stem display, 34

Stem labels, 31
Stochastically larger, 466
Student’s t distribution, 218
Subjective probabilities, 69
Sum of squares

adjusted treatment, 417
alternative calculation of, 398–399, 409–410
between-samples, 392
block, 403
error, 330, 337, 392, 405
regression, 370
residual, 330, 337
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Sum of squares (Continued )
total, 391
treatment, 392, 417

Symmetrical distribution, 100

T
Tail probability, 250
t distribution, 205–206

representation, 211
density of, 218

Test of association, 320
Test of hypotheses, 242–244

for μ = μ0, 250, 253
for μ1 − μ2, 270, 274, 277
for paired difference, 282
for p = p0, 308, 310
for testing σ 2 = σ 2

0 , 294
Theoretical sampling distribution, 198
Three-sigma limits, 489
Three-way interaction effects, 434
Tolerance limits, 499–500
Total number of runs, 473
Total sum of squares, 391, 405
Total time on test plot, 512
Transformation method, 217–218
Transformations, to normality,

182–183
Treatment mean square, 393
Treatments, 266, 392
Treatment sum of squares, 392, 405
Tree diagram, 60
Truncated test, 510
t test

matched pairs, 282
one sample, 253
paired, 282
two sample, 274

Tukey honest significant difference method
(Tukey HSD), 411

22 factorial design, 242
23 factorial design, 242
Two-factor/variable experiment,

425–432
two sample t test, 274
Two sample Z statistic, 268
Two sample Z test, 270
Two-sided alternative, 245
Two-sided criterion/test, 246
Two-way classification, 402
Two-way interaction effects, 434
Type I error, 244, 247
Type II error, 244, 247

U
Unbiased estimator, 228, 229
Uniform distribution, 151–152, 197
Unions, 58
Units, 16, 17
U test, 466

V
Variables, 16, 17

dependent/response, 327
discrete, 161–163
dummy, 359
independent, 327
input, 327
lurking, 370
predictor, 327
random, 94–97

Variance
of beta distribution, 157
of binomial distribution, 113
calculation of sample, 44–45
estimation of, 290–293
formula for population, 112
of gamma distribution, 156
of geometric distribution, 124
of hypergeometric distribution, 113
of linear combinations, 170
of log-normal distribution, 154
of negative binomial distribution, 125
of Poisson distribution, 118
of probability density, 139
of probability distribution, 107–114
sample, 37
sampling distribution of, 207–210
of uniform distribution, 152
of Weibull distribution, 160

Venn diagrams, 58–60

W
Waiting time, 157
Weibull distribution, 158–160
Weibull failure-time distribution, 513–516
Weibull plot, 515
Wilcoxon test, 466
Within-sample mean square, 393

X
X-bar, 488
X-bar chart, 14, 15
x, 488

Z
z scores, 143



Table 3 Standard Normal Distribution Function

0

F (z)

z

F (z) = 1√
2π

∫ z

−∞
e−t2/2 dt

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−5.0 0.0000003
−4.0 0.00003
−3.5 0.0002

−3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0006 0.0003
−3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
−3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

−2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
−1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
−0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

(continued on following page)



Table 3

0

F (z)

z

F ( z ) = 1√
2π

∫ z

−∞
e−t2/2 dt

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5973 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998
4.0 0.99997
5.0 0.9999997
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