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PREFACE

the physical sciences. It is primarily applications focused but it contains

optional enrichment material. Each chapter begins with an introductory state-
ment and concludes with a set of statistical guidelines for correctly applying
statistical procedures and avoiding common pitfalls. These Do’s and Don’ts are then
followed by a checklist of key terms. Important formulas, theorems, and rules are
set out from the text in boxes.

The exposition of the concepts and statistical methods is especially clear. It in-
cludes a careful introduction to probability and some basic distributions. It continues
by placing emphasis on understanding the meaning of confidence intervals and the
logic of testing statistical hypotheses. Confidence intervals are stressed as the ma-
jor procedure for making inferences. Their properties are carefully described and
their interpretation is reviewed in the examples. The steps for hypothesis testing
are clearly and consistently delineated in each application. The interpretation and
calculation of the P-value is reinforced with many examples.

In this ninth edition, we have continued to build on the strengths of the previ-
ous editions by adding several more data sets and examples showing application of
statistics in scientific investigations. The new data sets, like many of those already
in the text, arose in the author’s consulting activities or in discussions with scientists
and engineers about their statistical problems. Data from some companies have been
disguised, but they still retain all of the features necessary to illustrate the statistical
methods and the reasoning required to make generalizations from data collected in
an experiment.

The time has arrived when software computations have replaced table lookups
for percentiles and probabilities as well as performing the calculations for a statisti-
cal analysis. Today’s widespread availability of statistical software packages makes
it imperative that students now become acquainted with at least one of them. We sug-
gest using software for performing some analysis with larger samples and for per-
forming regression analysis. Besides having several existing exercises describing the
use of MINITAB, we now give the R commands within many of the examples. This
new material augments the basics of the freeware R that are already in Appendix C.

This book introduces probability and statistics to students of engineering and

NEW FEATURES OF THE NINTH EDITION INCLUDE:

Large number of new examples. Many new examples are included. Most are based
on important current engineering or scientific data. The many contexts further
strengthen the orientation towards an applications-based introduction to statistics.

More emphasis on P-values. New graphs illustrating P-values appear in several
examples along with an interpretation.

More details about using R. Throughout the book, R commands are included in a
number of examples. This makes it easy for students to check the calculations, on
their own laptop or tablet, while reading an example.

Stress on key formulas and downplay of calculation formulas. Generally, com-
putation formulas now appear only at the end of sections where they can easily be
skipped. This is accomplished by setting key formulas in the context of an applica-
tion which only requires all, or mostly all, integer arithmetic. The student can then
check their results with their choice of software.
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Visual presentation of 22 and 23 designs. Two-level factorial designs have a
50-year tradition in the teaching of engineering statistics at the University of
Wisconsin. It is critical that engineering students become acquainted with the key
ideas of (i) systematically varying several input variables at a time and (ii) how to
interpret interactions. Major revisions have produced Section 13.3 that is now self-
contained. Instructors can cover this material in two or three lectures at the end of
course.

New data based exercises. A large number of exercises have been changed to fea-
ture real applications. These contexts help both stimulate interest and strengthen a
student’s appreciation of the role of statistics in engineering applications.

Examples and now numbered. All examples are now numbered within each
chapter.

This text has been tested extensively in courses for university students as well as
by in-plant training of engineers. The whole book can be covered in a two-semester
or three-quarter course consisting of three lectures a week. The book also makes
an excellent basis for a one-semester course where the lecturer can choose topics
to emphasize theory or application. The author covers most of the first seven chap-
ters, straight-line regression, and the graphic presentation of factorial designs in one
semester (see the basic applications syllabus below for the details).

To give students an early preview of statistics, descriptive statistics are covered
in Chapter 2. Chapters 3 through 6 provide a brief, though rigorous, introduction
to the basics of probability, popular distributions for modeling population variation,
and sampling distributions. Chapters 7, 8, and 9 form the core material on the key
concepts and elementary methods of statistical inference. Chapters 11, 12, and 13
comprise an introduction to some of the standard, though more advanced, topics of
experimental design and regression. Chapter 14 concerns nonparametric tests and
goodness-of-fit test. Chapter 15 stresses the key underlying statistical ideas for qual-
ity improvement, and Chapter 16 treats the associated ideas of reliability and the
fitting of life length models.

The mathematical background expected of the reader is a year course in calcu-
lus. Calculus is required mainly for Chapter 5 dealing with basic distribution theory
in the continuous case and some sections of Chapter 6.

It is important, in a one-semester course, to make sure engineers and scientists
become acquainted with the least squares method, at least in fitting a straight line. A
short presentation of two predictor variables is desirable, if there is time. Also, not
to be missed, is the exposure to 2-level factorial designs. Section 13.3 now stands
alone and can be covered in two or three lectures.

For an audience requiring more exposure to mathematical statistics, or if this is
the first of a two-semester course, we suggest a careful development of the properties
of expectation (5.10), representations of normal theory distributions (6.5), and then
moment generating functions (5.11) and their role in distribution theory (6.6).

For each of the two cases, we suggest a syllabus that the instructor can easily
modify according to their own preferences.
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One-semester introduction to probability and
statistics emphasizing the understanding of
basic applications of statistics.

Chapter 1 especially 1.6
Chapter 2

Chapter 3

Chapter 4 4.4-477

Chapter 5 5.1-5.4,5.6,5.12
5.10 Select examples of joint
distribution, independence,
mean and variance of linear
combinations.

Chapter 6 6.1-6.4

Chapter 7 7.1-7.7

Chapter 8

Chapter 9 (could skip)

Chapter 10  10.1-10.4

Chapter 11 11.1-11.2
11.3 and 11.4 Examples

Chapter 13 13.3 22 and 23 designs
also 13.1 if possible

A first semester introduction that develops
the tools of probability and some statistical
inferences.

Chapter 1 especially 1.6
Chapter 2
Chapter 3
Chapter 4 4.4-4.7
4.8 (geometric, negative
binomial)
Chapter 5 5.1-5.4,5.6,5.12
5.5,5.7,5.8 (gamma, beta)
5.10 Develop joint distributions,
independence expectation and
moments of linear combinations.
Chapter 6 6.1-6.4
6.5-6.7 (Representations,
mgf’s, transformation)
Chapter 7 7.1-7.7
Chapter 8
Chapter 9 (could skip)
Chapter 10  10.1-10.4

Any table whose number ends in W can be downloaded from the book’s section

of the website

http://www.pearsonglobaleditions.com/Johnson

We wish to thank MINITAB (State College, Pennsylvania) for permission to
include commands and output from their MINITAB software package, the SAS in-
stitute (Gary, North Carolina) for permission to include output from their SAS pack-
age and the software package R (R project http://CRAN.R-project.org), which we
connect to many examples and discuss in Appendix C.

We wish to heartily thank all of those who contributed the data sets that appear
in this edition. They have greatly enriched the presentation of statistical methods by
setting each of them in the context of an important engineering problem.

The current edition benefited from the input of the reviewers.

Kamran Igbal, University of Arakansas at Little Rock
Young Bal Moon, Syracuse University
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All revisions in this edition were the responsibility of Richard. A. Johnson.
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INTRODUCTION

merical data belongs to the domain of statistics. In engineering, this includes such

diversified tasks as calculating the average length of computer downtimes, collect-

ing and presenting data on the numbers of persons attending seminars on solar energy,

evaluating the effectiveness of commercial products, predicting the reliability of a launch
vehicle, and studying the vibrations of airplane wings.

In Sections 1.2, 1.3, 1.4, and 1.5 we discuss the recent growth of statistics and its

applications to problems of engineering. Statistics plays a major role in the improvement

E verything dealing with the collection, processing, analysis, and interpretation of nu-

of quality of any product or service. An engineer using the techniques described in this
book can become much more effective in all phases of work relating to research, devel-
opment, or production. In Section |.6 we begin our introduction to statistical concepts
by emphasizing the distinction between a population and a sample.

I.I Why Study Statistics?

Answers provided by statistical analysis can provide the basis for making better
decisions and choices of actions. For example, city officials might want to know
whether the level of lead in the water supply is within safety standards. Because not
all of the water can be checked, answers must be based on the partial information
from samples of water that are collected for this purpose. As another example, an
engineer must determine the strength of supports for generators at a power plant.
First, loading a few supports to failure, she obtains their strengths. These values
provide a basis for assessing the strength of all the other supports that were not
tested.

When information is sought, statistical ideas suggest a typical collection process
with four crucial steps.

1. Set clearly defined goals for the investigation.
2. Make a plan of what data to collect and how to collect it.

3. Apply appropriate statistical methods to efficiently extract information
from the data.

4. Interpret the information and draw conclusions.

These indispensable steps will provide a frame of reference throughout as we
develop the key ideas of statistics. Statistical reasoning and methods can help you
become efficient at obtaining information and making useful conclusions.

1.2
1.3

CHAPTER
OUTLINE

Why Study

Statistics? |1
Modern Statistics 12
Statistics and
Engineering 12

The Role of the
Scientist and Engineer
in Quality
Improvement |3

A Case Study: Visually
Inspecting Data

to Improve Product
Quality 13

Two Basic Concepts—
Population and
Sample |5

Review Exercises 20

Key Terms 21
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Chapter |

Introduction

I.2 Modern Statistics

The origin of statistics can be traced to two areas of interest that, on the surface, have
little in common: games of chance and what is now called political science. Mid-
eighteenth-century studies in probability, motivated largely by interest in games of
chance, led to the mathematical treatment of errors of measurement and the theory
that now forms the foundation of statistics. In the same century, interest in the nu-
merical description of political units (cities, provinces, countries, etc.) led to what is
now called descriptive statistics. At first, descriptive statistics consisted merely of
the presentation of data in tables and charts; nowadays, it includes the summariza-
tion of data by means of numerical descriptions and graphs.

In recent decades, the growth of statistics has made itself felt in almost every
major phase of activity. The most important feature of its growth has been the shift
in emphasis from descriptive statistics to statistical inference. Statistical inference
concerns generalizations based on sample data. It applies to such problems as esti-
mating an engine’s average emission of pollutants from trial runs, testing a manu-
facturer’s claim on the basis of measurements performed on samples of his product,
and predicting the success of a launch vehicle in putting a communications satel-
lite in orbit on the basis of sample data pertaining to the performance of the launch
vehicle’s components.

When making a statistical inference, namely, an inference that goes beyond the
information contained in a set of data, always proceed with caution. One must decide
carefully how far to go in generalizing from a given set of data. Careful consider-
ation must be given to determining whether such generalizations are reasonable or
justifiable and whether it might be wise to collect more data. Indeed, some of the
most important problems of statistical inference concern the appraisal of the risks
and the consequences that arise by making generalizations from sample data. This
includes an appraisal of the probabilities of making wrong decisions, the chances of
making incorrect predictions, and the possibility of obtaining estimates that do not
adequately reflect the true situation.

We approach the subject of statistics as a science whenever possible, we develop
each statistical idea from its probabilistic foundation, and immediately apply each
idea to problems of physical or engineering science as soon as it has been developed.
The great majority of the methods we shall use in stating and solving these problems
belong to the frequency or classical approach, where statistical inferences concern
fixed but unknown quantities. This approach does not formally take into account the
various subjective factors mentioned above. When appropriate, we remind the reader
that subjective factors do exist and also indicate what role they might play in making
a final decision. This “bread-and-butter” approach to statistics presents the subject
in the form in which it has successfully contributed to engineering science, as well
as to the natural and social sciences, in the last half of the twentieth century, into the
first part of the twenty-first century, and beyond.

.3 Statistics and Engineering

The impact of the recent growth of statistics has been felt strongly in engineering
and industrial management. Indeed, it would be difficult to overestimate the contri-
butions statistics has made to solving production problems, to the effective use of
materials and labor, to basic research, and to the development of new products. As
in other sciences, statistics has become a vital tool to engineers. It enables them to
understand phenomena subject to variation and to effectively predict or control them.
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In this text, our attention will be directed largely toward engineering applica-
tions, but we shall not hesitate to refer also to other areas to impress upon the reader
the great generality of most statistical techniques. The statistical method used to
estimate the average coeflicient of thermal expansion of a metal serves also to es-
timate the average time it takes a health care worker to perform a given task, the
average thickness of a pelican eggshell, or the average 1Q of first-year college stu-
dents. Similarly, the statistical method used to compare the strength of two alloys
serves also to compare the effectiveness of two teaching methods, or the merits of
two insect sprays.

1.4 The Role of the Scientist and Engineer
in Quality Improvement

During the last 3 decades, the United States has found itself in an increasingly com-
petitive world market. This competition has fostered an international revolution in
quality improvement. The teaching and ideas of W. Edwards Deming (1900-1993)
were instrumental in the rejuvenation of Japanese industry. He stressed that Amer-
ican industry, in order to survive, must mobilize with a continuing commitment to
quality improvement. From design to production, processes need to be continually
improved. The engineer and scientist, with their technical knowledge and armed
with basic statistical skills in data collection and graphical display, can be main par-
ticipants in attaining this goal.

Quality improvement is based on the philosophy of “make it right the first
time.” Furthermore, one should not be content with any process or product but should
continue to look for ways of improving it. We will emphasize the key statistical com-
ponents of any modern quality-improvement program. In Chapter 15, we outline the
basic issues of quality improvement and present some of the specialized statistical
techniques for studying production processes. The experimental designs discussed
in Chapter 13 are also basic to the process of quality improvement.

Closely related to quality-improvement techniques are the statistical techniques
that have been developed to meet the reliability needs of the highly complex prod-
ucts of space-age technology. Chapter 16 provides an introduction to this area.

Visually Inspecting Data to Improve Product Quality

This study' dramatically illustrates the important advantages gained by appropri-
ately plotting and then monitoring manufacturing data. It concerns a ceramic part
used in popular coffee makers. This ceramic part is made by filling the cavity be-
tween two dies of a pressing machine with a mixture of clay, water, and oil. After
pressing, but before the part is dried to a hardened state, critical dimensions are
measured. The depth of the slot is of interest here.

Because of natural uncontrolled variation in the clay-water-oil mixture, the con-
dition of the press, differences in operators, and so on, we cannot expect all of the
slot measurements to be exactly the same. Some variation in the depth of slots is
inevitable, but the depth needs to be controlled within certain limits for the part to
fit when assembled.

'Courtesy of Don Ermer
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Table 1.1 Slot depth (thousandths of an inch)

Time 6:30 7:00 7:30 8:00 8:30 9:00 9:30 10:00
1 214 218 218 216 217 218 218 219
2 211 217 218 218 220 219 217 219
3 218 219 217 219 221 216 217 218
Sum 643 654 653 653 658 653 652 656
X 214.3 218.0 217.7 217.7 2193 217.7 2173 2187
Time 10:30 11:00 11:30 12:30 1:00 1:30 2:00 2:30
1 216 216 218 219 217 219 217 215
219 218 219 220 220 219 220 215
3 218 217 220 221 216 220 218 214
Sum 653 651 657 660 653 658 655 644
X 217.7 217.0 219.0 220.0  217.7 2193 2183 2147

Slot depth was measured on three ceramic parts selected from production every
half hour during the first shift from 6 A.M. to 3 p.M. The data in Table 1.1 were
obtained on a Friday. The sample mean, or average, for the first sample of 214, 211,
and 218 (thousandths of an inch) is

214+ 211+ 21 4
+ 3 + 8=63—3=214.3

This value is the first entry in row marked .

The graphical procedure, called an X-bar chart, consists of plotting the sample
averages versus time order. This plot will indicate when changes have occurred and
actions need to be taken to correct the process.

From a prior statistical study, it was known that the process was stable and that
it varied about a value of 217.5 thousandths of an inch. This value will be taken as
the central line of the X-bar chart in Figure 1.1.

central line: x = 217.5

It was further established that the process was capable of making mostly good
ceramic parts if the average slot dimension for a sample remained between certain
control limits.

Lower control limit: LCL. = 215.0
Upper control limit: UCL = 220.0

What does the chart tell us? The mean of 214.3 for the first sample, taken at
approximately 6:30 A.M., is outside the lower control limit. Further, a measure of
the variation in this sample

range = largest — smallest = 218 — 211 =7
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is large compared to the others. This evidence suggests that the pressing machine
had not yet reached a steady state. The control chart suggests that it is necessary to
warm up the pressing machine before the first shift begins at 6 A.M. Management and
engineering implemented an early start-up and thereby improved the process. The
operator and foreman did not have the authority to make this change. Deming claims
that 85% or more of our quality problems are in the system and that the operator and
others responsible for the day-to-day operation are responsible for 15% or less of
our quality problems.

The X-bar chart further shows that, throughout the day, the process was stable
but a little on the high side, although no points were out of control until the last
sample of the day. Here an unfortunate oversight occurred. The operator did not
report the out-of-control value to either the set-up person or the foreman because it
was near the end of her shift and the start of her weekend. She also knew the set-
up person was already cleaning up for the end of the shift and that the foreman was
likely thinking about going across the street to the Legion Bar for some refreshments
as soon as the shift ended. She did not want to ruin anyone’s plans, so she kept quiet.

On Monday morning when the operator started up the pressing machine, one of
the dies broke. The cost of the die was over a thousand dollars. But this was not the
biggest cost. When a customer was called and told there would be a delay in deliv-
ering the ceramic parts, he canceled the order. Certainly the loss of a customer is an
expensive item. Deming refers to this type of cost as the unknown and unknowable,
but at the same time it is probably the most important cost of poor quality.

On Friday the chart had predicted a problem. Afterward it was determined that
the most likely difficulty was that the clay had dried and stuck to the die, leading to
the break. The chart indicated the problem, but someone had to act. For a statistical
charting procedure to be truly effective, action must be taken.

1.6 Two Basic Concepts—Population and Sample

The preceding senarios which illustrate how the evaluation of actual information is
essential for acquiring new knowledge, motivate the development of statistical rea-
soning and tools taught in this text. Most experiments and investigations conducted
by engineers in the course of investigating, be it a physical phenomenon, production
process, or manufactured unit, share some common characteristics.
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Units and population
of units

Statistical population

A first step in any study is to develop a clear, well-defined statement of pur-
pose. For example, a mechanical engineer wants to determine whether a new ad-
ditive will increase the tensile strength of plastic parts produced on an injection
molding machine. Not only must the additive increase the tensile strength, it needs
to increase it by enough to be of engineering importance. He therefore created the
following statement.

Purpose: Determine whether a particular amount of an additive can be found that
will increase the tensile strength of the plastic parts by at least 10 pounds per square
inch.

In any statement of purpose, try to avoid words such as soft, hard, large enough,
and so on, which are difficult to quantify. The statement of purpose can help us to
decide on what data to collect. For example, the mechanical engineer takes two
different amounts of additive and produces 25 specimens of the plastic part with
each mixture. The tensile strength is obtained for each of 50 specimens.

Relevant data must be collected. But it is often physically impossible or infea-
sible from a practical standpoint to obtain a complete set of data. When data are
obtained from laboratory experiments, no matter how much experimentation is per-
formed, more could always be done. To collect an exhaustive set of data related to
the damage sustained by all cars of a particular model under collision at a specified
speed, every car of that model coming off the production lines would have to be
subjected to a collision!

In most situations, we must work with only partial information. The distinction
between the data actually acquired and the vast collection of all potential observa-
tions is a key to understanding statistics.

The source of each measurement is called a unit. It is usually an object or a
person. To emphasize the term population for the entire collection of units, we call
the entire collection the population of units.

unit: A single entity, usually an object or person, whose characteristics are of
interest.

population of units: The complete collection of units about which information
is sought.

Guided by the statement of purpose, we have a characteristic of interest for
each unit in the population. The characteristic, which could be a qualitative trait, is
called a variable if it can be expressed as a number.

There can be several characteristics of interest for a given population of units.
Some examples are given in Table 1.2.

For any population there is the value, for each unit, of a characteristic or variable
of interest. For a given variable or characteristic of interest, we call the collection
of values, evaluated for every unit in the population, the statistical population or
just the population. This collection of values is the population we will address in
all later chapters. Here we refer to the collection of units as the population of units
when there is a need to differentiate it from the collection of values.

A statistical population is the set of all measurements (or record of some quality
trait) corresponding to each unit in the entire population of units about which
information is sought.

Generally, any statistical approach to learning about the population begins by
taking a sample.
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Table 1.2 Examples of populations, units, and variables

Population Unit Variables/Characteristics

All students currently enrolled student GPA

in school number of credits
hours of work per week
major
right/left-handed

All printed circuit boards board type of defects

manufactured during a month number of defects
location of defects

All campus fast food restaurants restaurant number of employees
seating capacity
hiring/not hiring

All books in library book replacement cost
frequency of checkout
repairs needed

A sample from a statistical population is the subset of measurements that are
actually collected in the course of an investigation.

Variable of interest, statistical population, and sample

Transceivers provide wireless communication between electronic components of
consumer products, especially transceivers of Bluetooth standards. Addressing a
need for a fast, low-cost test of transceivers, engineers® developed a test at the wafer
level. In one set of trials with 60 devices selected from different wafer lots, 49 de-
vices passed.

Identify the population unit, variable of interest, statistical population, and
sample.

The population unit is an individual wafer, and the population is all the wafers in
lots currently on hand. There is some arbitrariness because we could use a larger
population of all wafers that would arrive within some fixed period of time.

The variable of interest is pass or fail for each wafer.

The statistical population is the collection of pass/fail conditions, one for each
population unit.

The sample is the collection of 60 pass/fail records, one for each unit in the
sample. These can be summarized by their totals, 49 pass and 11 fail. |

The sample needs both to be representative of the population and to be large
enough to contain sufficient information to answer the questions about the popula-
tion that are crucial to the investigation.

2@. Srinivasan, F. Taenzler, and A. Chatterjee, Loopback DFT for low-cost test of single-VCO-based
wireless transceivers, IEEE Design & Test of Computers 25 (2008), 150-159.
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EXAMPLE 2

Solution

Random number table

EXAMPLE 3

Solution

Self-selected samples—a bad practice

A magazine which features the latest computer hardware and software for home-
office use asks readers to go to their website and indicate whether or not they owned
specific new software packages or hardware products. In past issues, this maga-
zine used similar information to make such statements as “40% of readers have
purchased software package P.” Is this sample representative of the population of
magazine readers?

It is clearly impossible to contact all magazine readers since not all are subscribers.
One must necessarily settle for taking a sample. Unfortunately, the method used by
this magazine’s editors is not representative and is badly biased. Readers who reg-
ularly upgrade their systems and try most of the new software will be more likely
to respond positively indicating their purchases. In contrast, those who did not pur-
chase any of the software or hardware mentioned in the survey will very likely not
bother to report their status. That is, the proportion of purchasers of software pack-
age P in the sample will likely be much higher than it is for the whole population
consisting of the purchase/not purchase record for each reader. [

To avoid bias due to self-selected samples, we must take an active role in the
selection process.

Using a random number table to select samples

The selection of a sample from a finite population must be done impartially and
objectively. But writing the unit names on slips of paper, putting the slips in a box,
and drawing them out may not only be cumbersome, but proper mixing may not
be possible. However, the selection is easy to carry out using a chance mechanism
called a random number table.

Suppose ten balls numbered 0, 1, ..., 9 are placed in an urn and shuffled. One is
drawn and the digit recorded. It is then replaced, the balls shuffled, another one
drawn, and the digit recorded. The digits in Table 7W? were actually generated
by a computer that closely simulates this procedure. A portion of this table is
shown as Table 1.3.

The chance mechanism that generated the random number table ensures that each
of the single digits has the same chance of occurrence, that all pairs 00, 01, ..., 99
have the same chance of occurrence, and so on. Further, any collection of digits
is unrelated to any other digit in the table. Because of these properties, the digits
are called random.

Using the table of random digits

Eighty specialty pumps were manufactured last week. Use Table 1.3 to select a sam-
ple of size n = 5 to carefully test and recheck for possible defects before they are
sent to the purchaser. Select the sample without replacement so that the same pump
does not appear twice in the sample.

The first step is to number the pumps from 1 to 80, or to arrange them in some
order so they can be identified. The digits must be selected two at a time because
the population size N = 80 is a two-digit number. We begin by arbitrarily selecting

3The W indicates that the table is on the website for this book. See Appendix B for details.
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Table 1.3 Random digits (portion of Table 7W)

1306 1189 5731 3968 5606 5084 8947 3897 1636 7810
0422 2431 0649 8085 5053 4722 6598 5044 9040 5121
6597 2022 6168 5060 8656 6733 6364 7649 1871 4328
7965 6541 5645 6243 7658 6903 9911 5740 7824 8520
7695 6937 0406 8894 0441 8135 9797 7285 5905 9539

5160 7851 8464 6789 3938 4197 6511 0407 9239 2232
2961 0551 0539 8288 7478 7565 5581 5771 5442 8761
1428 4183 4312 5445 4854 9157 9158 5218 1464 3634
3666 5642 4539 1561 7849 7520 2547 0756 1206 2033
6543 6799 7454 9052 6689 1946 2574 9386 0304 7945

9975 6080 7423 3175 9377 6951 6519 8287 8994 5532
4866 0956 7545 7723 8085 4948 2228 9583 4415 7065
8239 7068 6694 5168 3117 1568 0237 6160 9585 1133
8722 9191 3386 3443 0434 4586 4150 1224 6204 0937
1330 9120 8785 8382 2929 7089 3109 6742 2468 7025

a row and column. We select row 6 and column 21. Reading the digits in columns
21 and 22, and proceeding downward, we obtain

41 75 91 75 19 69 49

We ignore the number 91 because it is greater than the population size 80. We also
ignore any number when it appears a second time, as 75 does here. That is, we
continue reading until five different numbers in the appropriate range are selected.
Here the five pumps numbered

41 75 19 69 49

will be carefully tested and rechecked for defects.
For situations involving large samples or frequent applications, it is more con-
venient to use computer software to choose the random numbers. [ |

Selecting a sample by random digit dialing

Suppose there is a single three-digit exchange for the area in which you wish to con-
duct a phone survey. Use the random digit Table 7W to select five phone numbers.

We arbitrarily decide to start on the second page of Table 7W at row 53 and col-
umn 13. Reading the digits in columns 13 through 16, and proceeding downward,
we obtain

5619 0812 9167 3802 4449

These five numbers, together with the designated exchange, become the phone num-
bers to be called in the survey. Every phone number, listed or unlisted, has the same
chance of being selected. The same holds for every pair, every triplet, and so on.
Commercial phones may have to be discarded and another number drawn from the
table. If there are two exchanges in the area, separate selections could be done for
each exchange. [
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Do’s and Don’ts

to observe.

ber table.

|. Create a clear statement of purpose before deciding upon which variables

2. Carefully define the population of interest.
3. Whenever possible, select samples using a random device or random num-

|. Don’t unquestioningly accept conclusions based on self-selected samples.

Do’s

Don’ts

Review Exercises

1.1

1.2

1.3

1.4

An article in a civil engineering magazine asks “How
Strong Are the Pillars of Our Overhead Bridges?” and
goes on to say that samples were collected of materials
being used in the construction of 294 overhead bridges
across the country. Let the variable of interest be a nu-
merical measure of quality. Identify the population and
the sample.

A television channel announced a vote for their view-
ers’ favorite television show. Viewers were asked to
visit the channel’s website and vote online for their fa-
vorite show. Identify the population in terms of prefer-
ences, and the sample. Is the sample likely to be rep-
resentative? Comment. Also describe how to obtain a
sample that is likely to be more representative.

Consider the population of all cars owned by women
in your neighborhood. You want to know the model of
the car.

(a) Specify the population unit.
(b) Specify the variable of interest.
(c) Specity the statistical population.

Identify the statistical population, sample, and variable
of interest in each of the following situations:

(a) Tensile strength is measured on 20 specimens of
super strength thread made of the same nano-
fibers. The intent is to learn about the strengths
for all specimens that could conceivably be made
by the same method.

(b) Fifteen calls to the computer help desk are se-
lected from the hundreds received one day. Only
4 of these calls ended without a satisfactory reso-
lution of the problem.

(c) Thirty flash memory cards are selected from the
thousands manufactured one day. Tests reveal that
6 cards do not meet manufacturing specifications.

1.6

1.7

1.8

For ceiling fans to rotate effectively, the bending an-
gle of the individual paddles of the fan must remain
between tight limits. From each hour’s production,
25 fans are selected and the angle is measured.

Identify the population unit, variable of interest,
statistical population, and sample.

Ten seniors have applied to be on the team that will
build a high-mileage car to compete against teams
from other universities. Use Table 7 of random digits
to select 5 of the 10 seniors to form the team.

Refer to the slot depth data in Table 1.1. After the
machine was repaired, a sample of three new ceramic
parts had slot depths 215, 216, and 213 (thousandths
of an inch).

(a) Redraw the X-bar chart and include the additional
mean Xx.

(b) Does the new x fall within the control limits?

A Canadian manufacturer identified a critical diameter
on a crank bore that needed to be maintained within a
close tolerance for the product to be successful. Sam-
ples of size 4 were taken every hour. The values of
the differences (measurement — specification), in ten-
thousandths of an inch, are given in Table 1.4.

(a) Calculate the central line for an X-bar chart for
the 24 hourly sample means. The centerline is
X=(425-3.00—---—1.50+ 3.25)/24.

(b) Is the average of all the numbers in the table, 4 for
each hour, the same as the average of the 24 hourly
averages? Should it be?

(c) A computer calculation gives the control limits
LCL = —4.48
UCL= 7.88

Construct the X-bar chart. Identify hours where
the process was out of control.
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Table 1.4 The differences (measurement - specification), in ten-

thousandths of an inch

Hour | 2 3 4 5 6 7 8 9 10 11 12
10 —6 -1 -8 —-14 -6 -1 8 —1 5 2 5
3 1 -3 -3 -5 -2 -6 -3 7 6 1 3
6 —4 0 -7 —6 —1 —1 9 1 3 1 10
-2 -3 -7 -2 2 —6 7 11 7 2 4 4
x 425 =3.00 —2.75 —5.00 =5.75 —3.75 —0.25 6.25 3.50 4.00 2.00 5.50
Hour 13 14 15 16 17 18 19 20 21 22 23 24
5 6 =5 -8 2 7 8 5 8 -5 -2 -1
9 6 4 -5 8 7 13 4 1 7 —4 5
9 8 -5 1 —4 5 6 7 0 1 =7 9
7 10 -2 0 1 3 6 10 -6 2 7 0
x 750 750 —2.00 —3.00 1.75 5.50 825 6.50 0.75 1.25 —1.50 3.25
Key Terms
Characteristic of interest 16 Quality improvement 13 Statistical inference 12
Classical approach to statistics 12 Random number table 18 Statistical population 16
Descriptive statistics 12 Reliability 13 X-bar chart 14
Population 16 Sample 17 Unit 16
Population of units 16 Statement of purpose 16 Variable 16
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DESCRIPTION OF DATA

are often so numerous that they are virtually useless unless they are condensed, or
reduced into a more suitable form. We begin with the use of simple graphics in
Section 2.1. Sections 2.2 and 2.3 deal with problems relating to the grouping of data and
the presentation of such groupings in graphical form. In Section 2.4 we discuss a relatively

S tatistical data, obtained from surveys, experiments, or any series of measurements,

new way of presenting data.

Sometimes it may be satisfactory to present data just as they are and let them speak
for themselves; on other occasions it may be necessary only to group the data and present
the result in tabular or graphical form. However, most of the time data have to be sum-
marized further, and in Sections 2.5 through 2.7 we introduce some of the most widely
used kinds of statistical descriptions.

2.1 Pareto Diagrams and Dot Diagrams

Data need to be collected to provide the vital information necessary to solve en-
gineering problems. Once gathered, these data must be described and analyzed to
produce summary information. Graphical presentations can often be the most ef-
fective way to communicate this information. To illustrate the power of graphical
techniques, we first describe a Pareto diagram. This display, which orders each type
of failure or defect according to its frequency, can help engineers identify important
defects and their causes.

When a company identifies a process as a candidate for improvement, the first
step is to collect data on the frequency of each type of failure. For example, the
performance of a computer-controlled lathe is below par so workers record the fol-
lowing causes of malfunctions and their frequencies:

power fluctuations 6
controller not stable 22
operator error 13
worn tool not replaced

other 5

These data are presented as a special case of a bar chart called a Pareto diagram
in Figure 2.1. This diagram graphically depicts Pareto’s empirical law that any as-
sortment of events consists of a few major and many minor elements. Typically, two
or three elements will account for more than half of the total frequency.

Concerning the lathe, 22 or 100(22/48) = 46% of the cases are due to an un-
stable controller and 22 4 13 = 35 or 100(35/48) = 73% are due to either unstable
controller or operator error. These cumulative percentages are shown in Figure 2.1 as
a line graph whose scale is on the right-hand side of the Pareto diagram, as appears
again in Figure 15.2.



Figure 2.1

A Pareto diagram of failures

Figure 2.2

Dot diagram of cutting speed

deviations

EXAMPLE |

Solution
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30 — 100
40 — 80
30 —60 =
E 5
CH 2
C 20 v a0 &
10 — — 20
0 T T T T T 0
Defect Unstable Error Power Tool Other
Count 22 13 6 2 5
Percent 45.8 271 12.5 4.2 10.4
Cum % 45.8 72.9 854 89.6 100.0

In the context of quality improvement, to make the most impact we want to
select the few vital major opportunities for improvement. This graph visually em-
phasizes the importance of reducing the frequency of controller misbehavior. An
initial goal may be to cut it in half.

As a second step toward improvement of the process, data were collected on
the deviations of cutting speed from the target value set by the controller. The seven
observed values of (cutting speed) — (target),

3 6 -2 4 7 4 3

are plotted as a dot diagram in Figure 2.2. The dot diagram visually summarizes the
information that the lathe is, generally, running fast. In Chapters 13 and 15 we will
develop efficient experimental designs and methods for identifying primary causal
factors that contribute to the variability in a response such as cutting speed.

When the number of observations is small, it is often difficult to identify any
pattern of variation. Still, it is a good idea to plot the data and look for unusual
features.

Dot diagrams expose outliers

A major food processor regularly monitors bacteria along production lines that in-
clude a stuffing process for meat products. An industrial engineer records the maxi-
mum amount of bacteria present along the production line, in the units Aerobic Plate
Count per square inch (APC/in?), forn =7 days. (Courtesy of David Brauch)

96.3 155.6 3408.0 333.3 1222 38.9 58.0

Create a dot diagram and comment.

The ordered data
389 58.0 96.3 122.2 155.6 333.3 3408.0

are shown as the dot diagram in Figure 2.3. By using open circles, we help differen-
tiate the crowded smaller values. The one very large bacteria count is the prominent
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Figure 2.3
Maximum bacteria counts on
seven days.

EXAMPLE 2

Solution

Figure 2.4
Dot diagram of copper content

O o
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Bacteria Count (APC/sq.in)

feature. It indicates a possible health concern. Statisticians call such an unusual ob-
servation an outlier. Usually, outliers merit further attention. [

A dot diagram for multiple samples reveals differences

The vessels that contain the reactions at some nuclear power plants consist of two
hemispherical components welded together. Copper in the welds could cause them
to become brittle after years of service. Samples of welding material from one pro-
duction run or “heat” used in one plant had the copper contents 0.27, 0.35, 0.37.
Samples from the next heat had values 0.23, 0.15, 0.25, 0.24, 0.30, 0.33, 0.26. Draw
a dot diagram that highlights possible differences in the two production runs (heats)
of welding material. If the copper contents for the two runs are different, they should
not be combined to form a single estimate.

We plot the first group as solid circles and the second as open circles (see Figure 2.4).
It seems unlikely that the two production runs are alike because the top two values
are from the first run. (In Exercise 14.23, you are asked to confirm this fact.) The
two runs should be treated separately.

The copper content of the welding material used at the power plant is directly
related to the determination of safe operating life. Combining the sample would
lead to an unrealistically low estimate of copper content and too long an estimate of

safe life. [ ]
(@] O O O Oe O O [ ) [ )
I [ I I I I
0.15 0.20 0.25 0.30 0.35 0.40

copper content

When a set of data consists of a large number of observations, we take the ap-
proach described in the next section. The observations are first summarized in the
form of a table.

2.2 Frequency Distributions

A frequency distribution is a table that divides a set of data into a suitable number
of classes (categories), showing also the number of items belonging to each class.
The table sacrifices some of the information contained in the data. Instead of know-
ing the exact value of each item, we only know that it belongs to a certain class. On
the other hand, grouping often brings out important features of the data, and the gain
in “legibility” usually more than compensates for the loss of information.

We shall consider mainly numerical distributions; that is, frequency distribu-
tions where the data are grouped according to size. If the data are grouped accord-
ing to some quality, or attribute, we refer to such a distribution as a categorical
distribution.

The first step in constructing a frequency distribution consists of deciding how
many classes to use and choosing the class limits for each class. That is, deciding
from where to where each class is to go. Generally speaking, the number of classes
we use depends on the number of observations, but it is seldom profitable to use



Figure 2.5
Nanopillars
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fewer than 5 or more than 15. The exception to the upper limit is when the size of
the data set is several hundred or even a few thousand. It also depends on the range
of the data, namely, the difference between the largest observation and the smallest.

Once the classes are set, we count the number of observations in each class,
called the class frequencies. This task is simplified if the data are first sorted from
smallest to largest.

To illustrate the construction of a frequency distribution, we consider data
collected in a nanotechnology setting. Engineers fabricating a new transmission-
type electron multiplier created an array of silicon nanopillars on a flat silicon
membrane. The precise structure can influence the electrical properties, so the
heights of 50 nanopillars were measured in nanometers (nm), or 10~?x meters.
(See Figure 2.5.)'

245 333 296 304 276 336 289 234 253 292
366 323 309 284 310 338 297 314 305 330
266 391 315 305 290 300 292 311 272 312
315 355 346 337 303 265 278 276 373 271
308 276 364 390 298 290 308 221 274 343

Since the largest observation is 391 and the smallest is 221 and the range is
391—-221 = 170, we might choose five classes having the limits 206-245, 246-285,
286325, 326-365, 366405, or the six classes 216245, 246-275, ..., 366-395.
Note that, in either case, the classes do not overlap, they accommodate all the
data, and they are all of the same width.

Initially, deciding on the first of these classifications, we count the number of
observations in each class to obtain the frequency distribution:

Limits of Classes Frequency
206-245 3
246-285 11
286-325 23
326-365 9
366405 4

Total 50

Note that the class limits are given to as many decimal places as the original
data. Had the original data been given to one decimal place, we would have used the
class limits 205.9-245.0, 245.1-285.0, ..., 365.1-405.0. If they had been rounded to
the nearest 10 nanometers, we would have used the class limits 210-240, 250-280,
290-320, 330-360, 370-400.

In the preceding example, the data on heights of nanopillars may be thought of
as values of a continuous variable which, conceivably, can be any value in an interval.
But if we use classes such as 205-245, 245-285, 285-325, 325-365,
365-405, there exists the possibility of ambiguities; 245 could go into the first class
or the second, 285 could go into the second class or the third, and so on. To avoid
this difficulty, we take an alternative approach.

We make an endpoint convention. For the pillar height data, we can take (205,
245] as the first class, (245, 285] as the second, and so on through (365, 405]. That
is, for this data set, we adopt the convention that the right-hand endpoint is included

IData and photo from H. Qin, H. Kim, and R. Blick, Nanopillar arrays on semiconductor membranes as
electron emission amplifiers, Nanotechnology 19 (2008), used with permission from IOP Publishing Ltd.
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EXAMPLE 3

Solution

EXAMPLE 4

but the left-hand endpoint is not. For other data sets we may prefer to reverse the end-
point convention so the left-hand endpoint is included but the right-hand endpoint is
not. Whichever endpoint convention is adopted, it should appear in the description
of the frequency distribution.

Under the convention that the right-hand endpoint is included, the frequency
distribution of the nanopillar data is

Height (nm) Frequency
(205, 245] 3
(245, 285] 11
(285, 325] 23
(325, 365] 9
(365, 405] 4

Total 50

The class boundaries are the endpoints of the intervals that specify each class.
As we pointed out earlier, once data have been grouped, each observation has lost
its identity in the sense that its exact value is no longer known. This may lead
to difficulties when we want to give further descriptions of the data, but we can
avoid them by representing each observation in a class by its midpoint, called the
class mark. In general, the class marks of a frequency distribution are obtained
by averaging successive class boundaries. If the classes of a distribution are all of
equal length, as in our example, we refer to the common interval between any suc-
cessive class marks as the class interval of the distribution. Note that the class
interval may also be obtained from the difference between any successive class
boundaries.

Class marks and class interval for grouped data

With reference to the distribution of the heights of nanopillars, find (a) the class
marks and (b) the class interval.

(a) The class marks are

205 + 245 245 + 285
— =225 ——— = 265, 305, 345, 385
2 2
(b) The class interval is 245 — 205 = 40. [ |

There are several alternative forms of distributions into which data are some-
times grouped. Foremost among these are the “less than or equal to,” “less than,”
“or more,” and “equal or more” cumulative distributions. A cumulative “less than
or equal to” distribution shows the total number of observations that are less than
or equal to the given values. These values must be class boundaries, with an appro-
priate endpoint convention, when the data are grouped into a frequency distribution.

Cumulative distribution of the nanopillar heights

Convert the distribution of the heights of nanopillars into a distribution according to
how many observations are less than or equal to 205, less than or equal to 245, ...,
less than or equal to 405.
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Figure 2.6
Histogram of pillar height
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Since none of the values is less than 205, 3 are less than orequal to 245,3 + 11 = 14
are less than or equal to 285, 14 + 23 = 37 are less than or equal to 325, 37+9 = 46
are less than or equal to 365, and all 50 are less than or equal to 405, we have

Heights (mM) Cumulative Frequency
(205, 245] 3
(245, 285] 14
(285, 325] 37
(325, 365] 46
(365, 405] 50

When the endpoint convention for a class includes the left-hand endpoint but not the
right-hand endpoint, the cumulative distribution becomes a “less than” cumulative
distribution.

Cumulative “more than” and “or more” distributions are constructed similarly
by adding the frequencies, one by one, starting at the other end of the frequency
distribution. In practice, “less than or equal to” cumulative distributions are used
most widely, and it is not uncommon to refer to “less than or equal to” cumulative
distributions simply as cumulative distributions.

2.3 Graphs of Frequency Distributions

Properties of frequency distributions relating to their shape are best exhibited through
the use of graphs, and in this section we shall introduce some of the most widely
used forms of graphical presentations of frequency distributions and cumulative
distributions.

The most common form of graphical presentation of a frequency distribution is
the histogram. The histogram of a frequency distribution is constructed of adjacent
rectangles. Provided that the class intervals are equal, the heights of the rectangles
represent the class frequencies and the bases of the rectangles extend between suc-
cessive class boundaries. A histogram of the heights of nanopillars data is shown in
Figure 2.6.

Using our endpoint convention, the interval (205, 245] that defines the first class
has frequency 3, so the rectangle has height 3, the second rectangle, over the interval
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EXAMPLE 5

Solution

Figure 2.7
Histogram of pellet diameter

(245, 285], has height 9, and so on. The tallest rectangle is over the interval (285,
325] and has height 23. The histogram has a single peak and is reasonably symmet-
ric. Almost half of the area, representing half of the observations, is over the interval
285 to 325 nanometers.

The choice of frequency, or relative frequency, for the vertical scale is only valid
when all of the classes have the same width.

Inspection of the graph of a frequency distribution as a histogram often brings
out features that are not immediately apparent from the data themselves. Aside from
the fact that such a graph presents a good overall picture of the data, it can also em-
phasize irregularities and unusual features. It can reveal outlying observations which
somehow do not fit the overall picture. Their distruption of the overall pattern of
variation in the data may be due to errors of measurement, equipment failure, and
similar causes. Also, the fact that a histogram exhibits two or more peaks (maxima)
can provide pertinent information. The appearance of two peaks may imply, for ex-
ample, a shift in the process that is being measured, or it may imply that the data
come from two or more sources. With some experience one learns to spot such irreg-
ularities or anomalies, and an experienced engineer would find it just as surprising if
the histogram of a distribution of integrated-circuit failure times were symmetrical
as if a distribution of American men’s hat sizes were bimodal.

Sometimes it can be enough to draw a histogram in order to solve an engineering
problem.

A histogram reveals the solution to a grinding operation problem

A metallurgical engineer was experiencing trouble with a grinding operation. The
grinding action was produced by pellets. After some thought he collected a sample
of pellets used for grinding, took them home, spread them out on his kitchen table,
and measured their diameters with a ruler. His histogram is displayed in Figure 2.7.
What does the histogram reveal?

The histogram exhibits two distinct peaks, one for a group of pellets whose diameters
are centered near 25 and the other centered near 40.

By getting his supplier to do a better sort, so all the pellets would be essentially
from the first group, the engineer completely solved his problem. Taking the action
to obtain the data was the big step. The analysis was simple. [

25 —

20 —

15 —

10 —

Class frequency

0= T T |

10 20 30 40 50 60
Diameter (mm)

As illustrated by the next example concerning a system of supercomputers, not
all histograms are symmetric.
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D ¢\ [JNHY A histogram reveals the pattern of a supercomputer systems data

Solution

Figure 2.8
Histogram of interrequest time

EXAMPLE 7

A computer scientist, trying to optimize system performance, collected data on the
time, in microseconds, between requests for a particular process service.

2,808 4,201 3,848 9,112 2,082 5913 1,620 6,719 21,657
3,072 2,949 11,768 4,731 14,211 1,583 9,853 78,811 6,655
1,803 7,012 1,892 4227 6,583 15,147 4,740 8,528 10,563
43,003 16,723 2,613 26,463 34,867 4,191 4,030 2,472 28,840
24,487 14,001 15,241 1,643 5,732 5,419 28,608 2,487 995
3,116 29,508 11,440 28,336 3,440

Draw a histogram using the equal length classes [0, 10,000), [10,000, 20,000),
.., [70,000, 80,000) where the left-hand endpoint is included but the right-hand
endpoint is not.

The histogram of this interrequest time data, shown in Figure 2.8, has a long right-
hand tail. Notice that, with this choice of equal length intervals, two classes are
empty. To emphasize that it is still possible to observe interrequest times in these
intervals, it is preferable to regroup the data in the right-hand tail into classes of
unequal lengths (see Exercise 2.62). [
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When a histogram is constructed from a frequency table having classes of
unequal lengths, the height of each rectangle must be changed to

relative frequency

height = -
width

The area of the rectangle then represents the relative frequency for the class and the
total area of the histogram is 1. We call this a density histogram.

A density histogram has total area |

Compressive strength was measured on 58 specimens of a new aluminum alloy un-
dergoing development as a material for the next generation of aircraft.

664 67.7 68.0 680 683 684 686 688 689 69.0 69.1
69.2 693 693 695 695 696 697 698 698 699 70.0
70.0 70.1 702 703 703 704 705 706 70.6 70.8 709
71.0 711 712 713 713 715 716 71.6 71.7 71.8 718
719 721 722 723 724 726 7277 729 73.1 733 735
742 745 753
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Solution

Figure 2.9
Histogram of aluminum alloy
tensile strength

Figure 2.10
Ogive of heights of nanopillars

Draw a density histogram, that is, a histogram scaled to have a total area of
1 unit. For reasons to become apparent in Chapter 6, we call the vertical scale
density.

We make the height of each rectangle equal to relative frequency /width, so that its
area equals the relative frequency. The resulting histogram, constructed by computer,
has a nearly symmetric shape (see Figure 2.9). We have also graphed a continuous
curve that approximates the overall shape. In Chapter 5, we will introduce this bell-
shaped family of curves.

020 //'\\

LR
oA AN

0.00 —

l [
66 68 70 72 74 76

Tensile strength (thousand psi)

Density

[ Using R: with (sample, hist (strength,prob=TRUE,las=1)) after sample=read.
table (““C2Ex.TXT”,header=TRUE) |

This example suggests that histograms, for observations that come from a con-
tinuous scale, can be approximated by smooth curves.

Cumulative distributions are usually presented graphically in the form of ogives,
where we plot the cumulative frequencies at the class boundaries. The resulting
points are connected by means of straight lines, as shown in Figure 2.10, which
represents the cumulative “less than or equal to” distribution of nanopillar height
data on page 25. The curve is steepest over the class with highest frequency.

When the endpoint convention for a class includes the left-hand endpoint
but not the right-hand endpoint, the ogive represents a “less than” cumulative
distribution.

50 —

w I
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| |

Cumulative frequency
)
S
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2.4 Stem-and-Leaf Displays

In the two preceding sections we directed our attention to the grouping of relatively
large sets of data with the objective of putting such data into a manageable form.
As we saw, this entailed some loss of information. Similar techniques have been
proposed for the preliminary explorations of small sets of data, which yield a good
overall picture of the data without any loss of information.

To illustrate, consider the following humidity readings rounded to the nearest
percent:

29 44 12 53 21 34 39 25 48 23
17 24 27 32 34 15 42 21 28 37

Proceeding as in Section 2.2, we might group these data into the following
distribution:

Humidity Readings Frequency
10-19 3
20-29 8
30-39 5
40-49 3
50-59 1

If we wanted to avoid the loss of information inherent in the preceding table,
we could keep track of the last digits of the readings within each class, getting

10-19 275

20-29 91534718
30-39 49247
40-49 482

50-59 3

This can also be written as

1 275 1 257

2 91534718 2 11345789
3 49247 or 3 24479

4 482 4 248

5 3 5 3

where the left-hand column, the stem, gives the tens digits 10, 20, 30, 40, and 50.
The numbers in a row, the leaves, have the unit 1.0. In the last step, the leaves are
written in ascending order. The three numbers in the first row are 12, 15, and 17.
This table is called a stem-and-leaf display or simply a stem-leaf display. The
left-hand column forms the stem, and the numbers to the left of the vertical line are
the stem labels, which in our example are 1, 2, ..., 5. Each number to the right of
the vertical line is a leaf. There should not be any gaps in the stem even if there are
no leaves for that particular value.

Essentially, a stem-and-leaf display presents the same picture as the correspond-
ing tally, yet it retains all the original information. For instance, if a stem-and-leaf
display has the two-digit stem

12102358



32

Chapter 2 Organization and Description of Data

where the leaf unit = 0.01, the corresponding data are 1.20, 1.22, 1.23, 1.25, and
1.28. If a stem-and-leaf display has the two digit leaves

0.3]03 17 55 89
where the first leaf digit unit = 0.01, the corresponding data are 0.303, 0.317, 0.355,

and 0.389.

There are various ways in which stem-and-leaf displays can be modified to
meet particular needs (see Exercises 2.25 and 2.26), but we shall not go
into this here in any detail as it has been our objective to present only one of the rel-
atively new techniques, which come under the general heading of exploratory

data analysis.

Exercises

2.1

2.2

2.3

24

2.5

Damages at a factory manufacturing chairs are catego-
rized according to the material wasted.

plastic 75
iron 31
cloth 22
spares 8

Draw a Pareto chart.

Losses at an oil refinery (in millions of dollars) due
to excess heat can be divided according to the reason
behind the generation of excessive heat.

oversupplying fuel 202
excess air 124
carelessness of operator 96
incomplete combustion 27

(a) Draw a Pareto chart.

(b) What percent of the loss occurs due to
(1) excess air?
(2) excess air and oversupplying fuel?

Tests were conducted to measure the running temper-
ature for engines (in °F). A sample of 15 tests yielded
the temperature values:

182 184 184 186
197 200 188 188

Construct a dot diagram.

180
194

198
197

195
184

194

To determine the strengths of various detergents, the
following are 20 measurements of the total dissolved
salts (parts per million) in water:

168 170 148 160 168 164 175 178
165 168 152 170 172 192 182 164
152 160 170 172

Construct a dot diagram.

Civil engineers help municipal wastewater treatment
plants operate more efficiently by collecting data on
the quality of the effluent. On seven occasions, the
amounts of suspended solids (parts per million) at one
plant were

14 12 21 28 30 65 26

2.6

2.7

2.8

2.9

2.10

Display the data in a dot diagram. Comment on your
findings.

A dam on a river holds water in its reservoir to gener-
ate electricity. Because the dam is in a rainforest area,
the flow of water is highly uncertain. In December last
year, the overflow from the reservoir (in million cubic
meters) on 14 different days was

26 24 255 235 255 23 23
24 25 24 26 235 25 20
Display the data in a dot diagram.

Physicists first observed neutrinos from a supernova
that occurred outside of our solar system when the de-
tector near Kamiokande, Japan, recorded twelve ar-
rivals. The times(seconds) between the neutrinos are

0.107 0.196 0.021 0.281
0.19 7.30 1.18 2.00

0.179 0.854 0.58

(a) Draw a dot diagram.
(b) Identify any outliers.

The power generated (MW) by liquid hydrogen turbo
pumps, given to the nearest tenth, is grouped into
a table having the classes [40.0, 45.0), [45.0, 50.0),
[50.0, 55.0), [55.0, 60.0) and [60.0, 65.0), where the
left-hand endpoint is included but the right-hand end-
point is not. Find

(a) the class marks
(b) the class interval

With reference to the preceding exercise, is it possible
to determine from the grouped data how many turbo
pumps have a power generation of

(a) more than 50.0?

(b) less than 50.0?

(c) at most 60.0?

(d) atleast 60.0?

(e) 50.0 to 60.0 inclusive?

To continually increase the speed of computers, elec-
trical engineers are working on ever-decreasing scales.



2.11

2.12

16.12
21.18
13.24
14.28
19.32
16.12
15.11
21.23
12.22
15.19

2.13

2.14

The size of devices currently undergoing development
is measured in nanometers (nm), or 1079 x meters.
Engineers fabricating a new transmission-type
electron multiplier” created an array of silicon nanopil-
lars on a flat silicon membrane. Subsequently, they
measured the diameters (nm) of 50 pillars.

62 68 69 8 68 79 83 70 74 73
74 75 80 77 80 83 73 79 100 93
92 101 87 96 99 94 102 95 90 98
8 93 91 90 95 97 87 89 100 93
92 98 101 97 102 91 87 110 106 118

Group these measurements into a frequency distribu-
tion and construct a histogram using (60,70], (70, 80],
(80,901, (90,100], (100, 110], (110,120], where the
right-hand endpoint is included but the left-hand end-
point is not.

Convert the distribution obtained in the preceding ex-
ercise into a cumulative “less than or equal to” distri-
bution and graph its ogive.

The following are the sizes of particles of cement dust
(given to the nearest hundredth of a micron) in a ce-
ment factory:

10.48
15.12
12.16
14.32
17.50
10.55
14.33
12.56
19.34
18.51

11.12
10.11
17.19
15.18
11.46
11.49
17.23
12.57
20.35
10.58

16.18
13.31
11.36
14.21
20.59
15.48
17.22
11.60
19.47
13.52

18.13
18.61
12.53
10.20
16.38
11.62
19.37
15.24
21.63
11.39

19.10
11.43
13.25
15.64
21.42
13.54
10.41
21.65
19.40
13.66

13.21
18.26
10.67
11.68
16.27
13.69
18.28
20.70
19.75
21.73

10.12
13.77
15.45
18.76
21.30
16.72
19.29
11.44
21.71
11.74

Group these figures into a table with a suitable number
of equal classes and construct a histogram.

Convert the distribution obtained in Exercise 2.12 into
a cumulative “less than” distribution and plot its ogive.

An engineer uses a thermocouple to monitor the tem-
perature of a stable reaction. The ordered values of 50
observations (Courtesy of Scott Sanders), in tenths of
°C, are

1.11 1.21
1.29 1.31
1.36 1.36
1.42 1.43
1.50 1.56

1.21 1.21 1.23
1.31 1.31 1.32
1.36 1.36 1.37
1.43 143 1.44
1.56 1.60 1.60

1.24 1.25 1.25 1.27 1.27 1.28
1.34 1.34 1.35 1.36 1.36 1.36
1.39 140 1.41 142 1.42 1.42
1.44 144 147 1.48 1.48 1.50
1.68

Group these figures into a distribution having the

classes 1.10-1.19,

1.20-1.29, 1.30-1.39,..., and

1.60-1.69, and plot a histogram using [1.10, 1.20), . . .,

’H. Qin, H. Kim, and R. Blick, Nanotechnology 19 (2008),
095504. (5pp)

2.15

2.16

2.17

2.18

2.19

2.20
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[1.60, 1.70), where the left-hand endpoint is included
but the right-hand endpoint is not.

Convert the distribution obtained in Exercise 2.14 into
a cumulative “less than” distribution and plot its ogive.

The following are the number of transistors failing a
quality check per hour during 72 observed hours of
production:

N O oo
— 0 O = —
D — = O 00 N
~ \O 00 — N o0
W I W=
N = AN
OO0 O0 M= N = =
o0 00 — O\ D oo
WD 3 0 o0 L
O 3 N = =
O N 3 = QN
SN W — 00—

Group these data into a frequency distribution show-
ing how often each of the values occurs and draw a
bar chart.

Given a set of observations xi, x2, ..., X,, we define
their empirical cumulative distribution as the function
whose values F(x) equals the proportion of the ob-
servations less than or equal to x. Graph the empiri-
cal cumulative distribution for the 15 measurements of
Exercise 2.3.

Referring to Exercise 2.17, graph the empirical cumu-
lative distribution for the data in Exercise 2.16.

The pictogram of Figure 2.11 is intended to illustrate
the fact that per capita income in the United States dou-
bled from $21,385 in 1993 to $42,643 in 2012. Does
this pictogram convey a fair impression of the actual
change? If not, state how it might be modified.

Per capita income

Figure 2.11 Pictogram for Exercise 2.19

Categorical distributions are often presented graphi-
cally by means of pie charts, in which a circle is
divided into sectors proportional in size to the fre-
quencies (or percentages) with which the data are
distributed among the categories. Draw a pie chart to
represent the following data, obtained in a study in
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2.21

2.22

2.23

2.24

2.25
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which 40 drivers were asked to judge the maneuver-
ability of a certain make of car:

Very good, good, good, fair, excellent, good, good,
good, very good, poor, good, good, good, good, very
good, good, fair, good, good, very poor, very good,
fair, good, good, excellent, very good, good, good,
good, fair, fair, very good, good, very good, excellent,
very good, fair, good, good, and very good.

Convert the distribution of nanopillar heights on
page 26 into a distribution having the classes (205,
245], (245, 325], (325, 365], (365, 405], where the
right-hand endpoint is included. Draw two histograms
of this distribution, one in which the class frequencies
are given by the heights of the rectangles and one in
which the class frequencies are given by the area of the
rectangles. Explain why the first of these histograms
gives a very misleading picture.

The following are figures on sacks of cement used
daily at a construction site: 75, 77, 82, 45, 55, 90, 80,
81, 76, 47, 59, 52, 71, 83, 91, 76, 57, 59, 43 and 79.
Construct a stem-and-leaf display with the stem labels
4,5,...,and 9.

The following are determinations of a river’s annual
maximum flow in cubic meters per second: 405, 355,
419, 267, 370,391, 612, 383, 434, 462, 288, 317, 540,
295, and 508. Construct a stem-and-leaf display with
two-digit leaves.

List the data that correspond to the following stems of
stem-and-leaf displays:

(@ 4]011257 Leafunit=1.0

(b) 62135589 Leafunit = 1.0

(c) 8101236291 First leaf digit unit = 10.0
(d) 2281456689 Leaf unit = 0.001

To construct a stem-and-leaf display with more stems
than there would be otherwise, we might repeat each

2.26

stem. The leaves 0, 1, 2, 3, and 4 would be attached to
the first stem and leaves 5, 6, 7, 8, and 9 to the second.
For the humidity readings on page 31, we would thus
get the double-stem display:

2

57
1134
5789
244
79
24

8

3

DA R WWN N — =

where we doubled the number of stems by cutting
the interval covered by each stem in half. Construct a
double-stem display with one-digit leaves for the data
in Exercise 2.14.

If the double-stem display has too few stems, we create
5 stems where the first holds leaves 0 and 1, the second
holds 2 and 3, and so on. The resulting stem-and-leaf
display is called a five-stem display.

(a) The following are the IQs of 20 applicants to
an undergraduate engineering program: 109, 111,
106, 106, 125, 108, 115, 109, 107, 109, 108, 110,
112, 104, 110, 112, 128, 106, 111, and 108. Con-
struct a five-stem display with one-digit leaves.

(b) The following is part of a five-stem display:

53 444455 Leaf unit = 1.0

53 6667
53 89
54 1

List the corresponding measurements.

2.5 Descriptive Measures

Histograms, dot diagrams, and stem-and-leaf diagrams summarize a data set pictori-
ally so we can visually discern the overall pattern of variation. Numerical measures
can augment visual displays when describing a data set. To proceed, we introduce
the notation

X1 XDy o ves XiyovesXp

for a general sample consisting of n measurements. Here x; is the ith observation in
the list so x| represents the value of the first measurement, x, represents the value
of the second measurement, and so on.

Given a set of n measurements or observations, x1, xo, ..., X, there are many
ways in which we can describe their center (middle, or central location). Most pop-
ular among these are the arithmetic mean and the median, although other kinds



Sample mean

Sample median

EXAMPLE 8

Solution
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of “averages” are sometimes used for special purposes. The arithmetic mean—or,
more succinctly, the mean—is defined as the sum of the observations divided by
sample size.

The notation X, read x bar, represents the mean of the x;. To emphasize that it is
based on the observations in a data set, we often refer to x as the sample mean.

Sometimes it is preferable to use the sample median as a descriptive measure
of the center, or location, of a set of data. This is particularly true if it is desired
to minimize the calculations or if it is desired to eliminate the effect of extreme
(very large or very small) values. The median of n observations x{, xp, ..., x; can
be defined loosely as the “middlemost” value once the data are arranged according
to size. More precisely, if the observations are arranged according to size and n is

an odd number, the median is the value of the observation numbered 2 +1 ;if nis
an even number, the median is defined as the mean (average) of the observations
numbered 2 and 2% 2

2 2

Order the n observations from smallest to largest.
sample median = observation in position '5 1 , if n odd.
= average of two observations in
positions % and % if n even.

Calculation of the sample mean and median

A sample of five university students responded to the question “How much time, in
minutes, did you spend on the social network site yesterday?”

100 45 60 130 30

Find the mean and the median.

The mean is
_ 100445+ 60+ 130+ 30 .
X = 5 = 73 minutes

and, ordering the data from smallest to largest

30 45 60 100 130
—

the median is the third largest value, namely, 60 minutes.
The two very large values cause the mean to be much larger than the median. m
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EXAMPLE 9

Solution

Figure 2.12
The interpretation of the
sample mean as a balance point

EXAMPLE 10

Solution

Calculation of the sample median with even sample size

An engineering group receives e-mail requests for technical information from sales
and service. The daily numbers of e-mails for six days are

11 9 17 19 4 15

Find the mean and the median.

The mean is
114+94+17+19+4+15

X = G = 12.5 requests

and, ordering the data from the smallest to largest

4 9 11 15 17 19
——

the median, the mean of the third and fourth largest values, is 13 requests. [

The sample mean has a physical interpretation as the balance point, or center
of mass, of a data set. Figure 2.12 is the dot diagram for the data on the number of
e-mail requests given in the previous example. In the dot diagram, each observation
is represented by a ball placed at the appropriate distance along the horizontal axis.
If the balls are considered as masses having equal weights and the horizontal axis is
weightless, then the mean corresponds to the center of inertia or balance point of the
data. This interpretation of the sample mean, as the balance point of the observations,
holds for any data set.

([ J ([ J ® =125 ([ J [ ] o

e-mail requests

Although the mean and the median each provide a single number to represent
an entire set of data, the mean is usually preferred in problems of estimation and
other problems of statistical inference. An intuitive reason for preferring the mean
is that the median does not utilize all the information contained in the observations.

The following is an example where the median actually gives a more useful
description of a set of data than the mean.

The median is unaffected by a few outliers

A small company employs four young engineers, who each earn $80,000, and the
owner (also an engineer), who gets $200,000. Comment on the claim that on the
average the company pays $104,000 to its engineers and, hence, is a good place
to work.

The mean of the five salaries is $104,000, but it hardly describes the situation. The
median, on the other hand, is $80,000, and it is most representative of what a young
engineer earns with the firm. Moneywise, the company is not such a good place for
young engineers. [ |

This example illustrates that there is always an inherent danger when summa-
rizing a set of data in terms of a single number.

One of the most important characteristics of almost any set of data is that the
values are not all alike; indeed, the extent to which they are unlike, or vary among
themselves, is of basic importance in statistics. The mean and median describe one



Sample Variance

EXAMPLE 11

Solution
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important aspect of a set of data—their “middle” or their “average”—but they tell
us nothing about the extent of variation.

We observe that the dispersion of a set of data is small if the values are closely
bunched about their mean, and that it is large if the values are scattered widely about
their mean. It would seem reasonable, therefore, to measure the variation of a set of
data in terms of the amounts by which the values deviate from their mean.

If a set of numbers xp, x, . .., X, has mean X, the differences

X1 =X, X —X,...,xp — X
are called the deviations from the mean. We might use the average of the deviations
as a measure of variation in the data set. Unfortunately, this will not do. For instance,
refer to the observations 11, 9, 17, 19, 4, 15, displayed above in Figure 2.12, where
x = 12.5 is the balance point. The six deviations are —1.5, —3.5,4.5, 6.5, —8.5, and
2.5. The sum of positive deviations

45+654+25=135
exactly cancels the sum of the negative deviations
—-1.5 —-35 —-85=-135

so the sum of all the deviations is 0.
As you will be asked to show in Exercise 2.50, the sum of the deviations is
always zero. That is,

D (xi—%)=0
i=1

so the mean of the deviations is always zero. Because the deviations sum to zero, we
need to remove their signs. Absolute value and square are two natural choices. If we
take their absolute value, so each negative deviation is treated as positive, we would
obtain a measure of variation. However, to obtain the most common measure of vari-
ation, we square each deviation. The sample variance, 52, is essentially the average
of the squared deviations from the mean, x, and is defined by the following formula.

n
> (=%
2= i=1

n—1

Our reason for dividing by n— 1 instead of n is that there are only n — 1 indepen-
dent deviations x; — x. Because their sum is always zero, the value of any particular
one is always equal to the negative of the sum of the other n — 1 deviations.

If many of the deviations are large in magnitude, either positive or negative,
their squares will be large and s% will be large. When all the deviations are small, 52
will be small.

Calculation of sample variance

The delay times (handling, setting, and positioning the tools) for cutting 6 parts on
an engine lathe are 0.6, 1.2, 0.9, 1.0, 0.6, and 0.8 minutes. Calculate 2.

First we calculate the mean:
- 06+124+09+1.0+0.64+0.8

— 085
* 6
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Sample standard deviation

EXAMPLE 12

Solution

To find Z (xj—X )2, we set up the table:

Xi Xj — x (X,' - X )2
0.6 —-0.25 0.0625
1.2 0.35 0.1225
0.9 0.05 0.0025
1.0 0.15 0.0225
0.6 —-0.25 0.0625
0.8 —0.05 0.0025
5.1 0.00 0.2750

where the total of the third column 0.2750 = ) "(x; — JZ)2.
We divide 0.2750 by 6 — 1 = 5 to obtain

5 0.2750 . 5
§° = = 0.055 (minute)

By calculating the sum of deviations in the second column, we obtain a check
on our work. For all data sets, this sum should be 0 up to rounding error. [

Notice that the units of s2 are not those of the original observations. The data
are delay times in minutes, but 52 has the unit (minute)z. Consequently, we define
the standard deviation of n observations xy, xp, ..., x; as the square root of their
variance, namely

The standard deviation is by far the most generally useful measure of variation. Its
advantage over the variance is that it is expressed in the same units as the
observations.

Calculation of sample standard deviation
With reference to the previous example, calculate s.

From the previous example, 52 = 0.055. Take the square root and get
s = +/0.055 = 0.23 minute

[ Using R: Enter data x = ¢(.6, 1.2, .9, 1, .6, .8). Then mean(x), var(x), and sd(x) ]
[

The standard deviation s has a rough interpretation as the average distance from
an observation to the sample mean.

The standard deviation and the variance are measures of absolute variation;
that is, they measure the actual amount of variation in a set of data, and they depend
on the scale of measurement. To compare the variation in several sets of data, it is
generally desirable to use a measure of relative variation, for instance, the coeffi-
cient of variation, which gives the standard deviation as a percentage of the mean.



Coefficient of variation

EXAMPLE 13

Solution

Sample percentiles
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- 100%

=] @

The coefficient of variation for comparing relative preciseness

Measurements made with one micrometer of the diameter of a ball bearing have a
mean of 3.92 mm and a standard deviation of 0.0152 mm, whereas measurements
made with another micrometer of the unstretched length of a spring have a mean of
1.54 inches and a standard deviation of 0.0086 inch. Which of these two measuring
instruments is relatively more precise?

For the first micrometer the coefficient of variation is

~0.0152

-100 = 0.
300 00 = 0.39%

and for the second micrometer the coefficient of variation is

0.0086
V=

-100 = 0.56%

1.54 ‘
Thus, the measurements made with the first micrometer are relatively more
precise. -

In this section, we have limited the discussion to the sample mean, median,
variance, and standard deviation. However, there are many other ways of describing
sets of data.

2.6 Quartiles and Percentiles

In addition to the median, which divides a set of data into halves, we can consider
other division points. When an ordered data set is divided into quarters, the resulting
division points are called sample quartiles. The first quartile, Q1, is a value that has
one-fourth, or 25%, of the observations below its value. The first quartile is also
the sample 25th percentile P ,5. More generally, we define the sample 100 pth
percentile as follows.

The sample 100 pth percentile is a value such that at least 100p% of the obser-
vations are at or below this value, and at least 100(1 — p)% are at or above this
value.

As in the case of the median, which is the 50th percentile, this may not uniquely
define a percentile. Our convention is to take an observed value for the sample
percentile unless two adjacent values both satisfy the definition. In this latter case,
take their mean. This coincides with the procedure for obtaining the median when
the sample size is even. (Most computer programs linearly interpolate between the
two adjacent values. For moderate or large sample sizes, the particular convention
used to locate a sample percentile between the two observations is inconsequential.)
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Sample quartiles

EXAMPLE 14

Solution

The following rule simplifies the calculation of sample percentiles.

Calculating the sample 100 pth percentile:

1. Order the n observations from smallest to largest.
2. Determine the product np.

If np is not an integer, round it up to the next integer and find the
corresponding ordered value.

If np is an integer, say k, calculate the mean of the kth and (k + 1 )st ordered
observations.

The quartiles are the 25th, 50th, and 75th percentiles.

first quartile Q1 = 25th percentile
second quartile 0, = 50th percentile
third quartile Q3 = 75th percentile

Calculation of percentiles for the strength of green materials

Of all the waste materials entering landfills, a substantial proportion consists of con-
struction and demolition materials. From the standpoint of green engineering, before
incorporating these materials into the base for new or rehabilitated roadways, engi-
neers must assess their strength. Generally, higher values imply a stiffer base which
increases pavement life.

Measurements of the resiliency modulus (MPa) on n = 18 specimens of recycled
concrete aggregate produce the ordered values (Courtesy of Tuncer Edil)

136 143 147 151 158 160
161 163 165 167 173 174
181 181 185 188 190 205

Obtain the quartiles and the 10th percentile.
According to our calculation rule, np = 18 ( 4—1‘ ) = 4.5, which we round up to 5.
The first quartile is the 5th ordered observation

Q) = 158 MPa

Since p = % for the second quartile, or median,

1
np =18 (5):9

which is an integer. Therefore, we average the 9th and 10th ordered values

165 + 167
0, = + = 166 MPa

The third quartile is the 14th observation, Q3 = 181 seconds. We could also have
started at the largest value and counted down to the Sth position.

To obtain the 10th percentile, we determine that np = 18 x 0.10 = 1.8, which
we round up to 2. Counting to the 2nd position, we obtain

PO.IO = 143 MPa



EXAMPLE 15

Solution

Figure 2.13
Boxplot of the resiliency
modulus of green pavement.
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The 10th percentile provides a useful description regarding the resiliency modulus
of the lowest 10% green pavement specimens.

In the context of monitoring green materials we also record that the maximum
resiliency modulus measured was 205 MPa.

[ Using R: with(x, quantile(resiliency, c(.25,.5,.75,.10),type=2)) after x=read.
table(‘““C2Ex14.TXT”,header=TRUE) ] [

The minimum and maximum observations also convey information concern-
ing the amount of variability present in a set of data. Together, they describe the
interval containing all of the observed values and whose length is the

range = maximum — minimum

Care must be taken when interpreting the range since a single large or small
observation can greatly inflate its value.
The amount of variation in the middle half of the data is described by the

interquartile range = third quartile — first quartile = Q3 — Q)

The range and interquartile range for the materials data

Obtain the range and interquartile range for the resiliency modulus data in
Example 14.

The minimum = 136. From the previous example, the maximum = 205, Q; = 158,
and Q3 = 181.

range = maximum — minimum = 205 — 136 = 69 MPa

interquartile range = Q3 — Q1 = 181 — 158 = 23 MPa -

Boxplots

The summary information contained in the quartiles is highlighted in a graphic dis-
play called a boxplot. The center half of the data, extending from the first to the
third quartile, is represented by a rectangle. The median is identified by a bar within
this box. A line extends from the third quartile to the maximum, and another line
extends from the first quartile to the minimum. (For large data sets the lines may
only extend to the 95th and 5th percentiles.)

Figure 2.13 gives the boxplot for the green pavement data. The median is closer
to Q1 than Q3.

A modified boxplot can both identify outliers and reduce their effect on the
shape of the boxplot. The outer line extends to the largest observation only if it
is not too far from the third quartile. That is, for the line to extend to the largest
observation, it must be within 1.5 x (interquartile range) units of Q3. The line from

[ I I I |
125 150 175 200 225

Resiliency Modulus (MPa)
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Figure 2.14

EXAMPLE 16

Solution

Modified boxplot for neutrino

data

EXAMPLE 17

Solution

Q) extends to the smallest observation if it is within that same limit. Otherwise the
line extends to the next most extreme observations that fall within this interval.

A modified boxplot—possible outliers are detached

Physicists, trying to learn about neutrinos, detected twelve of them coming from a
supernova outside of our solar system. The n = 11 times (seconds) between the
arrivals are presented in their original order in Exercise 2.7, page 32.

The ordered interarrival times are

0.021 0.107 0.179 0.190 0.196 0.283 0.580 0.854 1.18 2.00 7.30

Construct a modified boxplot.

Since n/4 = 11/4 = 2.75, the first quartile is the third ordered time 0.179 and
Q3 = 1.18, so the interquartile range is 1.18 —0.179 = 1.001. Further, 1.5 x
1.001 = 1.502 and the smallest observation is closer than this to Q| = 0.179, but

maximum — Q3 = 7.30 — 1.18 = 6.12

exceeds 1.502 = 1.5 x (interquartile range)

As shown in Figure 2.14, the line to the right extends to 2.00, the most extreme
observation within 1.502 units, but not to the largest observation, which is shown as
detached from the line.

[ Using R: with(x, boxplot(time,horizontal=TRUE) after x=read.table
(“C2Ex14.TXT”,header=TRUE) | [

Time (s)

Boxplots are particularly effective for graphically portraying comparisons
among sets of observations. They are easy to understand and have a high visual
impact.

Multiple boxplots can reveal differences and similarities

Sometimes, with rather complicated components like hard-disk drives or random
access memory (RAM) chips for computers, quality is quantified as an index with
target value 100. Typically, a quality index will be based upon the deviations of
several physical characteristics from their engineering specifications. Figure 2.15
shows the quality index at 4 manufacturing plants.

Comment on the relationships between quality at different plants.

It is clear from the graphic that plant 2 needs to reduce its variability and that plants 2
and 4 need to improve their quality level. [

We conclude this section with a warning. Sometimes it is a trend over time that
is the most important feature of data. This feature would be lost entirely if the set



Figure 2.15
Boxplot of the quality index

Figure 2.16
Machine measurement of
thickness shows trend
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of data were summarized in a dot diagram, stem-and-leaf display, or boxplot. In
one instance, a major international company purchased two identical machines to
rapidly measure the thickness of the material and test its strength. The machines
were expensive but much faster than the current testing procedure. Before sending
one across the United States and the other to Europe, engineers needed to confirm
that the two machines were giving consistent results. Following one failed compar-
ison, the problem machine was worked on for a couple of months by the engineers.
In the second series of comparative trials, the average value from this machine was
appropriate, but fortunately the individual values were plotted as in Figure 2.16. The
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Variance (handheld
calculator formula)

EXAMPLE 18

Solution

time plot made it clear that the trend was the key feature, not the average, which was
a poor summary. The testing machine required more work.

2.7 The Calculation of x and s

Here, we discuss methods for calculating X and s from data that are already grouped
into intervals. These calculations are, in turn, based on the formulas for the mean
and standard deviation for data consisting of all of the individual observations. In
this latter case, we obtain X by summing all of the observations and dividing by the
sample size n.

An alternative formula for s2 forms the basis of the grouped data formula for
variance. It was originally introduced to simplify hand calculations.

n ) n 2
xi—=\ X x| /n
i=1 i=1
52 =

n—1

(In Exercise 2.51 you will be asked to show that this formula is, in fact, equivalent
to the one on page 37.) This expression for variance is without X, which reduces
roundoff error when using a handheld calculator.

Calculating variance using the handheld calculator formula

Find the mean and the standard deviation of the following miles per gallon (mpg)
obtained in 20 test runs performed on urban roads with an intermediate-size car:

19.7 21.5 22.5 222 22.6
21.9 20.5 19.3 19.9 21.7
22.8 23.2 21.4 20.8 19.4
22.0 23.0 21.1 20.9 21.3

Using a calculator, we find that the sum of these figures is 427.7 and that the sum of
their squares is 9,173.19. Consequently,

427.7
F= o0 =21.39
) g

and

2 9,173.19 — (427.7)2/20
19
and it follows that s = 1.19 mpg. In computing the necessary sums we usually retain

all decimal places, but at the end, as in this example, we usually round to one more
decimal than we had in the original data. [

= 1412

See Exercise 2.58 for a computer calculation. This is the recommended proce-
dure because it is easy to check the data entered for accuracy, and the calculation is
free of human error. Most importantly, the calculation of variance can be done using
the square of the deviations x; — X rather than the squares of the observations x;, and
this is numerically more stable.

Historically, data were grouped to simplify the calculation of the mean and
the standard deviation. Calculators and computers have eliminated the calculation



Mean and variance
(grouped data)

EXAMPLE 19

Solution
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problem. Nevertheless, it is sometimes necessary to calculate X and s from grouped
data since some data (for instance, from government publications) is available only
in grouped form.

To calculate x and s from grouped data, we must assume something about the
distribution of the values within each class. We represent each value within a class by
the corresponding class mark. Then the sum of the x’s and the sum of their squares
can be written

k k
2
E x;f; and E X; fi
i=1 i=1

where x; is the class mark of the ith class, f; is the corresponding class frequency,
and k is the number of classes in the distribution. Substituting these sums into the
formula for x and the computing formula for 52, we get

k
> Xifi
)_C=i:1
n
ko k 2
infi_ o xifi] /n
S2_i=1 i=1
N n—1

Calculating a mean and variance from grouped data

Use the distribution obtained on page 27 to calculate the mean, variance, and stan-
dard deviation of the nanopillar heights data.

Recording the class marks and the class frequencies in the first two columns and the
products x; f; and xi2 /i in the third and fourth columns, we obtain

Xi fi x; fi X,-2 fi
225 3 675 151,875
265 11 2,915 772,475
305 23 7,015 2,139,575
345 9 3,105 1,071,225
385 4 1,540 592,900

Total 50 15,250 4,728,050

Then, substitution into the formula yields

15,250
50

xX= = 305.0

and

) 4,728,050 — 15,2502/ 50
- 49

For comparison, the original data have mean = 305.6 and standard deviation = 37.0.
|

N

= 1,567.35 SO s =39.6
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Exercises

2.27

2.28

2.29

2.30

2.31

2.32

2.33

In each of the following situations, should your value
be near the average or an outlier? If an outlier, should
it be too large or too small?

(a) Income on your starting job
(b) Your score on the final exam in a physics class
(c) Your weight in 10 years

In each of the following situations, should your value
be near the average or an outlier? If outlier, should it
be too large or too small?

(a) The time you take to complete a lab assignment
next week

(b) Your white blood cell count

Is the influence of a single outlier greater on the mean
or the median? Explain.

Is the influence of a single outlier greater on the sample
range or the interquartile range? Explain.

Referring to Exercise 1.8 in Chapter 1, we see that
the sample of 4 deviations (observation — specifica-
tion) during the second hour for a critical crank-bore
diameter is

-6 1 -4 =3

ten-thousandths of an inch. For these 4 deviations
(a) calculate the sample mean x

(b) calculate the sample standard deviation s

(c) On average, is the hole too large or too small?

At the end of 2012, nine skyscrapers in the world were
over 300 meters tall. The ordered values of height are

366 381 442 452 484 492 508 601 828

The tallest is in Dubai.
(a) Calculate the sample mean
(b) Drop the largest value and re-calculate the mean.

(c) Comment on effect of dropping the single very
large value.

Engineers3 are developing a miniaturized robotic cap-
sule for exploration of a human gastrointestinal tract.
One novel solution uses motor-driven legs. The engi-
neers’ best design worked for a few trials, and then
debris covered the tip of the leg and performance got

3M. Quirini and S. Scapellato, Design and fabrication of a mo-
tor legged capsule for the active exploration of the gastrointesti-
nal tract. IEEE/ASME Transactions on Mechatronics (2008) 13,
169-179.

2.34

2.35

2.37

worse. After cleaning, the next trial resulted in
35 37 38 34 30 24 13

distances covered (mm/min).
(a) Calculate the sample mean distance.

(b) Does the sample mean provide a good summary
of these trials? If not, write a sentence or two to
summarize more accurately.

A contract for the maintenance of a leading manufac-
turer’s computers was given to a team of specialists.
After six months, the supervisor of the team felt that
computer performance could be improved by modify-
ing the existing IC board. To document the current sta-
tus, the team collected data on the number of IC board
failures. Use the data below to:

(a) calculate the sample mean X,
(b) calculate the sample standard deviation s.

Number of IC board failures:

12 3 8 619 1 2 5
1 11 14 3 13 2 9 8
2 1 413 3 11 9 15

4 512 7 6 16 10 O

If the mean annual compensation paid to the chief ex-
ecutives of three engineering firms is $175,000, can
one of them receive $550,000?

Records show that the normal daily precipitation for
each month in the Gobi desert, Asiais 1, 1, 2, 4, 7,
15, 29, 27, 10, 3, 2 and 1 mm. Verify that the mean
of these figures is 8.5 and comment on the claim that
the average daily precipitation is a very comfortable
8.5 mm.

The output of an instrument is often a waveform.
With the goal of developing a numerical measure of
closeness, scientists asked 11 experts to look at two
waveforms on the same graph and give a number be-
tween 0 and 1 to quantify how well the two wave-
forms agree.* The agreement numbers for one pair of
waveforms are

0.50 0.40 0.04 0.45 0.65 0.40 0.20 0.30 0.60 0.45

(a) Calculate the sample mean Xx.

(b) Calculate sample standard deviation s.

“L. Schwer, Validation metrics for response histories: Perspec-
tives and case studies. Engineering with Computers 23 (2007),
295-3009.



2.38

2.39

240

241

2.42

243

2.44

With reference to the preceding exercise, find s using
(a) the formula that defines s;
(b) the handheld calculator formula for s.

Meat products are regularly monitored for freshness.
A trained inspector selects a sample of the product and
assigns an offensive smell score between 1 and 7 where
1 is very fresh. The resulting offensive smell scores, for
each of 16 samples, are (Courtesy of David Brauch)

32 39 1.7 50 19 26 24 53
1.0 27 38 52 10 63 33 43

(a) Find the mean.

(b) Find the median.

(c) Draw a boxplot.

With reference to Exercise 2.31, find s2 using
(a) the formula that defines s%;

(b) the handheld calculator formula for s2.

The Aerokopter AK1-3 is an ultra-lightweight manned
kit helicopter with a high rotor tip speed. A sample
of 8 measurements of speed, in meters per second,
yielded

204 208 205 211 207 201 201 203

Find the mean and quartiles for this sample.
For the five observations 8 2 10 6 9

(a) calculate the deviations (x; — x) and check that
they add to 0.

(b) calculate the variance and the standard deviation.

With reference to Exercise 2.14 on page 34, draw a
boxplot.

A factory experiencing a board-solder defect problem
with an LED panel board product tested each board
manufactured for LED failure. Data were collected on
the area of the board on which LEDs were soldered for
8 bad panels and 8 good panels that passed the failure
test.

Failure 32.5 34.5 33.5 36.5 34.0 32.25 33.75 35.25

(a) Calculate the sample mean x.
(b) Calculate the sample standard deviation s.

Refer to Exercise 2.44. The measurements for the
8 panels that did not fail were

Good 33.5 32.25 34.75 34.25 35.5 33.0 36.25 35.75

(a) Calculate the sample mean Xx.
(b) Calculate the sample standard deviation s.

(c) Does there appear to be a major difference in
board area between panels in which LEDs failed
and those in which LEDs did not?

2.46

247

248

249

2.50

47
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Find the mean and the standard deviation of the 20 hu-
midity readings on page 31 by using

(a) the raw (ungrouped) data
(b) the distribution obtained in that example

Use the distribution in Exercise 2.10 on page 32
to find the mean and the variance of the nanopillar
diameters.

Use the distribution obtained in Exercise 2.12 on page
33 to find the mean and the standard deviation of
the particle sizes. Also determine the coefficient of
variation.

Use the distribution obtained in Exercise 2.14 on
page 33 to find the coefficient of variation of the tem-
perature data.

Show that
n
> (xi—x)=0
i=1

for any set of observations xy, xo, ..., Xp.

Show that the computing formula for s% on page 44 is
equivalent to the one used to define s> on page 37.

If data are coded so that x; = ¢ - u; + a, show that
X=c-u+aands, =|c|-sy.

Median of grouped data To find the median of a dis-
tribution obtained for n observations, we first deter-
mine the class into which the median must fall. Then, if
there are j values in this class and k values below it, the

median is located (n/2) — k of the way into this class,

and to obtain the median we multiply this fraction by
the class interval and add the result to the lower bound-
ary of the class into which the median must fall. This
method is based on the assumption that the observa-
tions in each class are “spread uniformly” throughout

the class interval, and this is why we count 3 of the

. . n+1
observations instead of

as on page 35.

To illustrate, let us refer to the nanopillar height
data on page 25 and the frequency distribution on
page 26. Since n = 50, it can be seen that the median
must fall in class (285, 325], which contains j = 23
observations. The class has width 40 and there are
k =3+ 11 = 14 values below it, so the median is

25 — 14

285 + x 40 = 264.13

(a) Use the distribution obtained in Exercise 2.10 on
page 32 to find the median of the grouped nanopil-
lar diameters.

(b) Use the distribution obtained in Exercise 2.12 on
page 33 to find the median of the grouped particle
sizes.
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2.54

2.55

2.56
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For each of the following distributions, decide whether
itis possible to find the mean and whether it is possible
to find the median. Explain your answers.

@) Grade Frequency
4049 5
50-59 18
60-69 27
70-79 15
80-89 6
(b) 1Q Frequency
less than 90 3
90-99 14
100-109 22
110-119 19
more than 119 7
) Weight Frequency
110 or less 41
101-110 13
111-120 8
121-130 3
131-140 1

To find the first and third quartiles Q; and Q3 for
grouped data, we proceed as in Exercise 2.53, but

count % and Tn of the observations instead of %

(a) With reference to the distribution of the nanopillar
height data on page 25 and the frequency distribu-
tion on page 26, find Oy, O3, and the interquartile
range.

(b) Find Q; and Qs for the distribution of the particle
size data obtained in Exercise 2.12.
If k sets of data consist, respectively, of ny, na, ..., ng

observations and have the means X, X», ..., X, then
the overall mean of all the data is given by the formula

k —
Dim1 MiXi
x
i=1 i

X =

(a) There are 15 students in semester I, 25 students in
semester II and 16 students in semester III in an
engineering program. If the average attendance of
students is 82, 74, and 79 in semesters I, II and
III respectively, what is the mean for the entire
program?

(b) The average monthly expenses on repairs of
machines in four factories are $1,800, $4,200,
$12,000 and $800. If the number of machines in
these factories is 12, 18, 42, and 8 respectively,
find the average amount spent on repairs of these
80 machines.

2.57

2.58

The formula for the preceding exercise is a special case
of the following formula for the weighted mean:

k
D WiXi
i=1

Xy =

k
> wi
=1

where w; is a weight indicating the relative importance
of the ith observation.

(a) If an instructor counts the final examination in a
course four times as much as each 1-hour exam-
ination, what is the weighted average grade of a
student who received grades of 69, 75, 56, and 72
in four 1-hour examinations and a final examina-
tion grade of 787

(b) From 2010 to 2015, the cost of food in a cer-
tain city increased by 60%, the cost of housing
increased by 30%, and the cost of transportation
increased by 40%. If the average salaried worker
spent 24% of his or her income on food, 33% on
housing, and 15% on transportation, what is the
combined percentage increase in the total cost of
these items.

Modern computer software programs have come a
long way toward removing the tedium of calculating
statistics. MINITAB is one common and easy-to-use
program. We illustrate the use of the computer us-
ing MINITAB commands. Other easy-to-use programs
have a quite similar command structure.

The lumber used in the construction of buildings
must be monitored for strength. Data for the strength
of 2 x 4 pieces of lumber in pounds per square inch
are in the file 2-58. TXT. We give the basic commands
that calculate n, X, and s as well as the quartiles.

The session commands require the data to be set
in the first column, C1, of the MINITAB work sheet.
The command for creating a boxplot is also included.

Data in 2-58.TXT

strength

Dialog box:

Stat> Basic Statistics > Descriptive Statistics
Type strength in Variables.

Click OK.

QOutput (partial)
Variable N Mean Median StDev
Strength 30 1908.8 1863.0 327.1
Variable Minimum Maximum Q1 Q3
Strength 1325.0 2983.0 1711.5 2071.8




Figure 2.17

MINITAB 14 output

Use MINITAB, or some other statistical package, to
find x and s for

(a) the decay times on page 156
(b) the interrequest times on page 29
2.59 (Further MINITAB calculation and graphs.) With the

Sec 2.8 A Case Study: Problems with Aggregating Data 49

Summary for Strength

Mean 1908.8
StDev 3271
Variance 107004.3

/ Skewness 1.11841
Kurtosis 2.88335

N 30

Minimum 1325.0

/ Ist Quartile 17115
Median 1863.0

3rd Quartile  2071.8
Maximum 2983.0

I I I I
1600 2000 2400 2800

The ordered strength data are

1325 1419 1490 1633 1645 1655 1710 1712 1725 1727 1745
1828 1840 1856 1859 1867 1889 1899 1943 1954 1976 2046
2061 2104 2168 2199 2276 2326 2403 2983

From the ordered data

observations on the strength (in pounds per square

inch) of 2 x 4 pieces of lumber already set in CI,

(a) obtain the quartiles

the sequence of choices and clicks produces an even (b) construct a histogram and locate the mean, me-

more complete summary (see Figure 2.17).

dian, Qy, and Q3 on the horizontal axes

(c) repeat parts (a) and (b) with the aluminum alloy

Stat> Basic Statistics > Graphical Summary data on page 29.
Type strength in Variables. Click OK.

2.8 A Case Study: Problems with Aggregating Data

As circuit boards and other components move through a company’s surface mount
technology assembly line, a significant amount of data is collected for each assem-
bly. The data (courtesy of Don Ermer) are recorded at several stages of manufacture
in a serial tracking database by means of computer terminals located throughout the
factory. The data include the board serial number, the type of defect, number of de-
fects, and their location. The challenge here is to transform a large amount of data
into manageable and useful information. When there is a variety of products and lots
of data are collected on each, record management and the extraction of appropriate
data for product improvement must be done well.

Originally, an attempt was made to understand this large database by aggregat-
ing, or grouping together, data from all products and performing an analysis of the
data as if it were one product! This was a poor practice that decreased the resolution
of the information obtained from the database. The products on the assembly line
ranged in complexity, maturity, method of processing, and lot size.

To see the difficulties caused by aggregation, consider a typical week’s pro-
duction, where 100 printed circuit boards of Product A were produced, 40 boards
of Product B, and 60 boards of Product C. Following a wave-soldering process, a
total of 400 solder defects was reported. This translates to an overall average of
400/200 = 2 defects per board. It was this company’s practice to circulate the
weekly aggregate average throughout the factory floor for review and comment.
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Figure 2.18
Average number of defects per
product type

It was then the operator’s responsibility to take action according to the misleading
report. Over time, it became apparent that this process was ineffective for improving
quality.

However, further analysis of this data on a product-by-product basis revealed
that products A, B, and C actually contributed 151, 231, and 18 defects. Thus, the
number of defects per board was 1.51, 5.78, and 0.30 for products A, B, and C, re-
spectively. Figure 2.18 correctly shows the average number of defects. Product C has
a significantly lower defect rate and Product B has a significantly higher defect rate
relative to the incorrect aggregated average. These latter are also the more complex
boards.

2 — overall mean = 2

Mean of defects
(98]
|

0 T T T
A B C
Product

These data concern the number of defects that occurred when boards were wave-
soldered after an assembly stage. The next step was to implement control charts for
the number of defects for each of the three products. The numbers of defects for
Product B were

10 8 8 4 6 8 8 10 6 7 4 2 4 5 5
52 11 6 6 5 7 3 4 3 2 6 5 17
31 1 5 4 5 12 13 11 8

The appropriate control chart is a time plot where the serial numbers of the product
or sample are on the horizontal axis and the corresponding number of defects on
the vertical axis. In this C-chart, the central line labeled C is the average number of
defects over all cases in the plot. The dashed lines are the control limits set at three
standard deviations about the central line. (For reasons explained in Section 15.6,

we use VC rather than s when the data are numbers of defects.)
LCL =C - 3VC
UCL = C +3VC

Figure 2.19(a) gives a C-chart constructed for Product B, but where the centerline is
incorrectly calculated from the aggregated data is C = 2.0. This is far too low and
so is the upper control limit 6.24. The lower control limit is negative so we use 0. It
looks like a great many of the observations are out of control because they exceed
the upper control limit.

When the C-chart is correctly constructed on the basis of data from Product B
alone, the centerline is C = 231/40 = 5.775 and the upper control limit is 12.98.
The lower control limit is again negative so we use 0. From Figure 2.19(b), the
correct C-chart, the wave soldering process for Product B appears to be in control
except for time 38 when 13 defects were observed.



Figure 2.19
C-charts for defects

Sec 2.8 A Case Study: Problems with Aggregating Data 51

15 —
10 —
=
=
3
(5]
2 A 1 -
E ..V UCL = 6.243
A 5
- & u C =2.000
0 — LCL=0
[ I I I I
0 10 20 30 40
Sample number
(a) Incorrect C-chart
15 —
» UCL = 12.98
q
10 —
=
=
3
()
B R C =5775
3 5 N '
0 — LCL=0
[ I I I I
0 10 20 30 40
Sample number
(b) Correct C-chart

With the data segregated into products, separate charts were constructed for
each of the three products. With this new outlook on data interpretation, a number of
improvement opportunities surfaced that were previously disguised by aggregation.
For example, by reducing the dimensions of an electrical pad, a significant reduction
was achieved in the number of solder bridges between pins. This same design change
was added to all of the board specifications and improvements were obtained on all
products.

In summary, the aggregation of data from different products, or more generally
from different sources, can lead to incorrect conclusions and mask opportunities for
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quality improvement. Segregating data by product, although more time-consuming
initially, can lead to significant reduction in waste and manufacturing costs.

Do’s and Don’ts

of data.

|. Graph the data as a dot diagram or histogram to assess the overall pattern
2. Calculate the summary statistics—sample mean, standard deviation, and

quartiles—to describe the data set.

|. Don’t routinely calculate summary statistics without identifying unusual
observations which may have undue influence on the values of the statistics.

Do’s

Don’ts

Review Exercises

2.60

2.61

2.62

2.63

From 1,500 wall clocks inspected by a manufacturer,
the following defects were recorded.

hands touch each other 112
defective gears 16
faulty machinery 18
rotating pin 6
others 3

Create a Pareto chart.
Create

(a) a frequency table of the aluminum alloy strength
data on page 29 using the classes [66.0, 67.5),
[67.5, 69.0), [69.0, 70.5), [70.5, 72.0), [72.0,
73.5), [73.5, 75.0), [75.0, 76.5), where the right-
hand endpoint is excluded

(b) a histogram using the frequency table in part (a)
Create

(a) a frequency table of the interrequest time data
on page 29 using the intervals [0, 2,500),
[2,500, 5,000), [5,000, 10,000), [10,000, 20,000),
[20,000, 40,000), [40,000, 60,000), [60,000,
80,000), where the left-hand endpoint is included
but the right-hand endpoint is not

(b) a histogram using the frequency table in part (a)
(Note that the intervals are unequal, so make the
height of the rectangle equal to relative frequency
divided by width.)

Direct evidence of Newton’s universal law of grav-
itation was provided from a renowned experiment
by Henry Cavendish (1731-1810). In the experiment,
masses of objects were determined by weighing, and
the measured force of attraction was used to calculate

2.64

2.65

the density of the earth. The values of the earth’s
density, in time order by row, are

536 5.29 558 5.65 557 5.53 5.62 529
544 534 579 5.10 527 539 542 547
5.63 534 546 530 575 5.68 5.85

(Source: Philosophical Transactions 17 (1798); 469.)

(a) Find the mean and standard deviation.
(b) Find the median, Oy, and Q3.

(c) Plot the observations versus time order. Is there
any obvious trend?

J. J. Thomson (1856-1940) discovered the electron
by isolating negatively charged particles for which he
could measure the mass/charge ratio. This ratio ap-
peared to be constant over a wide range of experimen-
tal conditions and, consequently, could be a charac-
teristic of a new particle. His observations, from two
different cathode-ray tubes that used air as the gas, are

Tubel|0.57 0.34 043 032 048 0.40 0.40

Tube 2 | 0.53 047 047 051 063 0.61 0438
(Source: Philosophical Magazine 44; 5 (1897): 293.)

(a) Draw a dot diagram with solid dots for Tube 1 ob-
servations and circles for Tube 2 observations.

(b) Calculate the mean and standard deviation for the
Tube 1 observations.

(c) Calculate the mean and standard deviation for the
Tube 2 observations.

With reference to Exercise 2.64,

(a) calculate the median, maximum, minimum, and
range for Tube 1 observations;
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2.67

2.68

2.69

2.70

2.71

(b) calculate the median, maximum, minimum, and
range for the Tube 2 observations.

A. A. Michelson (1852-1931) made many series of
measurements of the speed of light. Using a revolving
mirror technique, he obtained

12 30 30 27 30 39 18 27 48 24 18
for the differences

(velocity of light in air) — (229,700) km/s
(Source: The Astrophysical Journal 65 (1927): 11.)
(a) Create a dot diagram.

(b) Find the median and the mean. Locate both on the
dot diagram.

(c) Find the variance and standard deviation.
With reference to Exercise 2.66,
(a) find the quartiles;

(b) find the minimum, maximum, range, and in-
terquartile range;

(c) create a boxplot.

An electric engineer monitored the flow of current in a
circuit by measuring the flow of electrons and the re-
sistance of the medium. Over 11 hours, she observed
a flow of

5 12 8 16 13 10 9 11

amperes.

14 7 8

(a) Create a dot diagram.

(b) Find the median and the mean. Locate both on the
dot diagram.

(¢) Find the variance and the standard deviation.
With reference to Exercise 2.68,
(a) find the quartiles;

(b) find the minimum, maximum, range, and inter-
quartile range;

(c) construct a boxplot.

The weight (grams) of meat in a pizza product pro-
duced by a large meat processor is measured for a
sample of n = 20 packages. The ordered values are
(Courtesy of Dave Brauch)

16.12 16.77 16.87 1691 16.96 16.99 17.02
17.19 17.20 17.26 17.36 17.39 17.39 17.62
17.63 17.76 17.85 17.86 17.91 19.00

(a) find the quartiles;

(b) find the minimum, maximum, range, and in-
terquartile range;

(¢) find the 10th percentile and 20th percentile.
With reference to Exercise 2.70, construct

(a) aboxplot.

(b) a modified boxplot.
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2.72 With reference to the aluminum-alloy strength data in

Example 7, make a stem-and-leaf display.

2.73 During the laying of gas pipelines, the depth of the

pipeline (in mm) must be controlled. One service
provider recorded depths of

418 428 431 420 412 425 423
433 417 420 410 431 429 425

(a) Find the sample mean.
(b) Find the sample standard deviation.
(¢) Find the coeflicient of variation.

(d) Measurements by another service provider have
a sample mean of 425 and standard deviation of
6.36. Which provider’s set of measurements is rel-
atively more variable?

2.74 With reference to the Ilumber-strength data in

Exercise 2.59, the statistical software package SAS
produced the output in Figure 2.20. Using this output,

(a) identify the mean and standard deviation and
compare these answers with the values given in
Exercise 2.59.

(b) Create a boxplot.

The UNIVARIATE Procedure
Variable: Strength

Moments
N 30 Sum Weights 30
Mean 1908.76667 Sum Observations 57263
Std Deviation 327.115047 Variance 107004.254
Basic Statistical Measures
Location Variability
Mean 1908.767 Std Deviation 327.11505
Median 1863.000 Variance 107004
Range 1658
Interquartile Range ~ 349.00000

Quantiles (Definition 5)

Level Quantile
100% Max 2983.0
99% 2983.0
95% 2403.0
90% 2301.0
75% Q3 2061.0
50% Median 1863.0
25% Q1 1712.0
10% 1561.5
5% 1419.0
1% 1325.0
0% Min 1325.0

Figure 2.20 Selected SAS output to describe
the lumber strength data from Exercise 2.59

2.75 An engineer was assigned the task of calculating

the average time spent by vehicles waiting at traffic
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2.76

2.77

2.78
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signals. The signal timing (in seconds) would then be
modified to reduce the pressure of traffic. The obser-
vations of average waiting time during the month of
January are:

58 63 58 12 24 47
46 29 42 68 33
43 37 39 52 35
44 35 49 36 64
53 28 55 27 53
55 64 37 31 6l

(a) Obtain the quartiles.
(b) Obtain the 80th percentile.
(c) Construct a histogram.

The National Highway Traffic Safety Administration
reported the relative speed (rounded to the nearest
5 mph) of automobiles involved in accidents one year.
The percentages at different speeds were

20 mph or less 2.0%
25 or 30 mph 29.7%
35 or 40 mph 30.4%
45 or 50 mph 16.5%
55 mph 19.2%
60 or 65 mph 2.2%

(a) From these data, can we conclude that it is safe to
drive at high speeds? Why or why not?

(b) Why do most accidents occur in the 35 or 40 mph
and in the 25 or 30 mph ranges?

(c) Construct a density histogram using the end-
points 0, 22.5, 32.5,42.5, 52.5, 57.5, 67.5 for the
intervals.

Given a five-number summary,

minimum 04 (o)) 03 maximum

is it possible to determine whether or not an outlier is
present? Explain.

Given a stem-and-leaf display, is it possible to deter-
mine whether or not an outlier is present? Explain.

Key Terms

2.79

2.80

Traversing the same section of interstate highway on
11 different days, a driver recorded the number of cars
pulled over by the highway patrol:

0 1

302 010210

(a) Create a dot plot.

(b) There is a long tail to the right. You might expect
the sample mean to be larger than the median. Cal-
culate the sample mean and median and compare
the two measures of center. Comment.

An experimental study of the atomization characteris-
tics of biodiesel fuel® was aimed at reducing the pol-
lution produced by diesel engines. Biodiesel fuel is
recyclable and has low emission characteristics. One
aspect of the study is the droplet size (um) injected
into the engine, at a fixed distance from the nozzle.
From data provided by the authors on droplet size,
we consider a sample of size 41 that has already been
ordered.

21 22 22 23 23 24 25 25 25
28 29 29 29 30 31 31 32 33
33 33 34 35 36 36 36 37 37
40 42 45 49 51 52 53 57 6.0
6.1 7.1 78 79 89

(a) Group these droplet sizes and obtain a frequency
table using [2, 3), [3,4), [4,5) as the first three
classes, but try larger classes for the other cases.
Here the left-hand endpoint is included but the
right-hand endpoint is not.

(b) Construct a density histogram.
(c) Obtain X and s2.
(d) Obtain the quartiles.

SH. Kim, H. Suh, S. Park, and C. Lee, An experimental and nu-
merical investigation of atomization characteristics of biodiesel,
dimethyl ether, and biodiesel-ethanol blended fuel, Energy and
Fuels, 22 (2008), 2091-2098.

Absolute variation 38
Arithmetic mean 34
Bar chart 22

Boxplot 41

Categorical distribution 24
Class boundary 26
Class frequency 25
Class interval 26

Class limit 24

Class mark 26

Coefficient of variation
Cumulative distribution
Density histogram 29
Deviation from the mean
Dot diagram 23
Double-stem display

Endpoint convention

Five-stem display

39
26

34

Empirical cumulative distribution 33

25

Exploratory data analysis

Frequency distribution 24
Histogram 27
Interquartile range 41

37 Leaf 31

Maximum 41
Mean 35

Median 34
Minimum 41

32 Modified boxplot 41

Numerical distribution 24
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Ogive 30 Range 41 Stem 31

Outlier 24 Relative variation 38 Stem-and-leaf display 31
Pareto diagram 22 Sample mean 35 Stem label 31

Percentile 39 Sample median 35 Variance 37

Pie chart 33 Sample variance 37 Weighted mean 48

Quartile 40 Standard deviation 38
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PROBABILITY

n the study of probability there are basically three kinds of questions: (1) What do

I we mean when we say that the probability of an event is, say, 0.50, 0.02, or 0.81?

(2) How are the numbers we call probabilities determined, or measured in actual prac-
tice? (3) What are the mathematical rules that probabilities must obey?

After some mathematical preliminaries in Sections 3.1 and 3.2, we study the first

two kinds of questions in Section 3.3 and the third kind of question in Sections 3.4

through 3.7.

3.1 Sample Spaces and Events

Probability allows us to quantify the variability in the outcome of any experiment
whose exact outcome cannot be predicted with certainty. However, before we can
introduce probability, it is necessary to specify the space of outcomes and the events
on which it will be defined.

In statistics, a set of all possible outcomes of an experiment is called a sample
space, because it consists of all the things that can happen when one takes a sample.
Sample spaces are usually denoted by a distinctive font S. To avoid misunderstand-
ings about the words experiment and outcome as we have used them here, it should
be understood that statisticians use these terms in a very wide sense. An experiment
may consist of the simple process of noting whether a switch is turned on or off; it
may consist of determining the time it takes a car to accelerate to 30 miles per hour;
or it may consist of the complicated process of finding the mass of a sub atomic
particle. Thus, the outcome of an experiment may be a simple choice between two
possibilities: it may be the result of a direct measurement or count, or it may be an
answer obtained after extensive measurements and calculations.

When we study the outcomes of an experiment, we usually identify the various
possibilities with numbers, points, or some other kinds of symbols. For instance, if
four contractors bid on a highway construction job and we let a, b, ¢, and d denote
that it is awarded to Mr. Adam, Mrs. Brown, Mr. Clark, or Ms. Dean, then the sample
space for this experiment is the set S = {a, b, c, d}.

Also, if a government agency must decide where to locate two new computer
research facilities and that (for a certain purpose) it is of interest to indicate how
many of them will be located in Texas and how many in California, we can write the
sample space as

§=1{(0,0),(1,0), (0, 1), (2,0), (1, 1), (0, 2)}

where the first coordinate is the number of research facilities that will be located
in Texas and the second coordinate is the number that will be located in California.
Geometrically, this sample space may be pictured as in Figure 3.1, from which it is
apparent, for example, that in two of the six possibilities Texas and California will
get an equal number of the new research facilities.



Figure 3.1

Sample space for the number
of new computer research
facilities to be located in Texas
and in California
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¢ (0,2)
S
g 0. o (1,1)
(0,0) (1,0 (2,0)

Texas

The use of points rather than letters or numbers has the advantage that it makes
it easier to visualize the various possibilities, and perhaps discover some special
features which several of the outcomes may have in common.

Generally, sample spaces are classified according to the number of elements
(points) that they contain. In the two preceding examples, the sample spaces had
four and six elements, and they are both referred to as finite sample spaces. Other
examples of finite sample spaces are the one for the various ways in which a pres-
ident and a vice president can be selected from among the 25 members of a union
local and the one for the various ways in which a student can answer the 12 ques-
tions on a true-false test. As we see on page 61, the first of these sample spaces has
600 elements and the other has 4,096.

The following are examples of sample spaces that are not finite. If persons
checking the nitrogen-oxide emission of cars are interested in the number of cars
they have to inspect before they observe the first one that does not meet government
regulations, it could be the first, the second, . . ., the fiftieth, . . ., and for all we know
they may have to check thousands of cars before they find one that does not meet
government regulations. Not knowing how far they may have to go, it is appropriate
in an example like this to take as the sample space the whole set of natural numbers,
of which there is a countable infinity. To go one step further, if they were interested
in the nitrogen oxide emission of a given car in grams per mile, the sample space
would have to consist of all the points on a continuous scale (a certain interval on
the line of real numbers), of which there is a continuum.

In general, a sample space is said to be a discrete sample space if it has finitely
many or a countable infinity of elements. If the elements (points) of a sample space
constitute a continuum—for example, all the points on a line, all the points on a line
segment, or all the points in a plane—the sample space is said to be a continuous
sample space.

In the remainder of this chapter we shall consider only discrete and mainly finite
sample spaces.

In statistics, any subset of a sample space is called an event. By subset we mean
any part of a set, including the whole set and, trivially, a set called the empty set
and denoted by ¢, which has no elements at all. For instance, with reference to
Figure 3.1,

C={(1,0),(0, 1)}
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EXAMPLE |

Solution

is the event that, between them, Texas and California will get one of the two research
facilities,

D = {(0,0), (0, 1), (0, 2)}
is the event that Texas will not get either of the two research facilities, and
E ={(0,0), (1, 1)}

is the event that Texas and California will get an equal number of the facilities. Note
that events C and E have no elements in common—they are mutually exclusive
events.

In many probability problems we are interested in events which can be expressed
in terms of two or more events by forming unions, intersections, and complements.
Although the reader must surely be familiar with these terms, let us review briefly
that if A and B are any two sets in a sample space S, their union A U B is the subset
of S that contains all elements that are either in A, in B, or in both; their intersection
A N Bis the sEbset of S that contains all elements that are in both A and B; and the
complement A of A is the subset of S that contains all the elements of S that are
not in A.

Combining events by union, intersection, and complement

With reference to the sample space of Figure 3.1 and the events C, D, and E just
defined, list the outcomes comprising each of the following events and also express
the events in words:

(a) CUE;

(b) CND;

(¢) D.

(a) Since C U E contains all the elements that are in C, in E, or in both,
CUE ={(1,0),(0,1),(0,0), (1, 1)}

is the event that neither Texas nor California will get both of the new research
facilities.

(b) Since C N D contains all the elements that are in both C and D,
CcnD={(, 1)}

is the event that Texas will not get either of the two new facilities and
California will get one.

(c) Since D contains all the elements of the sample space that are not in D,
D ={(1,0), (1, 1), (2,0)}

is the event that Texas will get at least one of the new computer research
facilities. [

Sample spaces and events, particularly relationships among events, are often
depicted by means of Venn diagrams like those of Figures 3.2-3.4. In each case
the sample space is represented by a rectangle, whereas events are represented by
regions within the rectangle, usually by circles or parts of circles. The shaded regions
of the four Venn diagrams of Figure 3.2 represent event A, the complement of event
A, the union of events A and B, and the intersection of events A and B.



Figure 3.2
Venn diagrams showing
complement, union, and

intersection
EXAMPLE 2

Solution

Figure 3.3
Use of Venn diagrams to show
thatt AUB=ANB
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AUB ANB

Relation of regions in Venn diagrams to events

If A is the event that a certain student is taking a course in calculus and B is the event
that the student is taking a course in applied mechanics, what events are represented
by the shaded regions of the four Venn diagrams of Figure 3.2?

The shaded region of the first diagram represents the event that the student is taking
a course in calculus. That of the second diagram represents the event that the student
is not taking a course in calculus. The shaded area of the third diagram represents
the event that the student is taking a course in calculus and/or a course in applied
mechanics. Finally, that of the fourth diagram represents the event that the student
is taking a course in calculus as well as a course in applied mechanics. [

Venn diagrams are often used to verify relationships among sets, thus making
it unnecessary to give formal proofs based on the algebra of sets. To illustrate, let
us show that AU B = A N B, which expresses the fact that the complement of the
union of two sets equals the intersection of their complements. To begin, note that
the shaded region of the first Venn diagram of Figure 3.3 represents the set AU B
(compare this diagram with the third diagram of Figure 3.2). The cross-hatched re-
gion of the second Venn diagram of Figure 3.3 was obtained by shading the region
representing A with lines going in one direction and that representing B with lines
going in another direction. Thus, the cross-hatched region represents the intersec-
tion of A and B. Clearly, the cross-hatched area is identical with the shaded region
of the first Venn diagram of Figure 3.3.

When we deal with three events, we draw the circles as in Figure 3.4. In this
diagram, the circles divide the sample space into eight regions, numbered 1 through
8, and it is easy to determine whether the corresponding events are parts of A or A,
BorB,and Cor C.

|
D
S~

(AUB)
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Figure 3.4
Venn diagram

EXAMPLE 3

Solution

.
)
.

Relating events to regions of the Venn diagram

A manufacturer of small motors is concerned with three major types of defects.
If A is the event that the shaft size is too large, B is the event that the windings
are improper, and C is the event that the electrical connections are unsatisfactory,
express in words what events are represented by the following regions of the Venn
diagram of Figure 3.4:

(a) region 2
(b) regions 1 and 3 together
(c) regions 3, 5, 6, and 8 together

(a) Since this region is contained in A and B but not in C, it represents the event
that the shaft is too large and the windings improper, but the electrical
connections are satisfactory.

(b) Since this region is common to B and C, it represents the event that the
windings are improper and the electrical connections are unsatisfactory.

(c) Since this is the entire region outside A, it represents the event that the shaft
size is not too large. u

3.2 Counting

At times it can be quite difficult, or at least tedious, to determine the number of ele-
ments in a finite sample space by direct enumeration. To illustrate, suppose all newer
used cars in a large city can be classified as low, medium, or high current mileage;
moderate or high priced; and be inexpensive, average, or expensive to operate. In
how many ways can a used car be categorized?

Clearly, there are many possibilities; a used car can have low current mileage, be
moderately priced, and be inexpensive to operate; have neither low or high mileage,
be high priced, and be average cost to operate; and so on. Continuing in this way,
we may be able to list all 18 possibilities, but the chances are that we will omit at
least one or two.

To handle this kind of problem systematically, it helps to draw a tree diagram
like that of Figure 3.5, where the three alternatives for current mileage are denoted
by M|, M,, and M3, where M| is low mileage. The price is either P| or P, where
P is moderate; and the three alternatives for operating costs are denoted by Cy, C,,
and C3, where Cj is inexpensive. Following a given path from left to right along
the branches of the tree, we obtain a particular categorization, namely a particular
element of the sample space. It can be seen that all together there are 18 possibilities.

This result could also have been obtained by observing that there are three
M-branches, that each M-branch forks into two P-branches, and that each P-branch



Figure 3.5
Tree diagram for used cars

Multiplication of choices

EXAMPLE 4

Solution

EXAMPLE 5
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forks into three C-branches. Thus, there are 3 -2 -3 = 18 combinations of branches,
or paths. This result is a special case of the following theorem often called the
Sfundamental theorem of counting.

Theorem 3.1 If sets Ay,Ajp,---,A; contain, respectively, ny,no, -+, n;
elements, there are n| - ny - - - ng ways of choosing first an element of Ay, then
an element of Ay, - - -, and finally an element of Ay.

In our example we had ny = 3,ny =2, and n3 = 3, and hence, 3 -2 -3 = 18
possibilities.

The multiplication rule for k = 2 stages of choices

In how many different ways can a union local with a membership of 25 choose a
vice president and a president?

Since the vice president can be chosen in 25 ways and, subsequently, the president
in 24 ways, there are altogether 25 - 24 = 600 ways in which the whole choice can
be made. [

The multiplication rule with k = 12 stages of choices

If a test consists of 12 true-false questions, in how many different ways can a student
mark the test paper with one answer to each question?



62

Chapter 3 Probability

Solution

EXAMPLE 6

Solution

factorial notation

Since each question can be answered in two ways, there are all together

2-2-2-2-2-2o2~2-2-2-2-2:212:4,096possibilities [

Determining the size of an experiment

A manufacturer is experiencing difficulty getting consistent readings of tensile
strength between three machines located on the production floor, research lab, and
quality control lab, respectively. There are also four possible technicians—Tom, Joe,
Ken, and Carol—who operate at least one of the test machines regularly.

(a) How many operator-machine pairs must be included in a designed experiment
where every operator tries every machine?

(b) If each operator-machine pair is required to test eight specimens, how many
test specimens are required for the entire procedure? Note: A specimen is
destroyed when its tensile strength is measured.

(a) There are ny =4 operators and ny = 3 machines, so 4 - 3 =12 pairs are
required.

(b) There are n3 = 8 test specimens required for each operator-machine pair,
so 8 - 12 = 96 test specimens are required for the designed experiment. u

As in the first of these three examples, the rule for the multiplication of choices
is often used when several choices are made from one set and we are concerned
with the order in which they are made. In general, if r objects are chosen from a
set of n distinct objects, any particular arrangement, or order, of these objects is
called a permutation. For instance, 4 1 2 3 is a permutation of the first four positive
integers, and Maine, Vermont, and Connecticut is a permutation, a particular ordered
arrangement, of three of the six New England states.

To find a formula for the total number of permutations of r objects selected from
a set of n distinct objects, we observe that the first selection is made from the whole
set of n objects, the second selection is made from the n — 1 objects which remain
after the first selection has been made, ..., and the rth selection is made from the
n— (r—1) =n—r+ 1 objects which remain after the first » — 1 selections have
been made. Therefore, by the rule for the multiplication of choices, the total number
of permutations of r objects selected from a set of n distinct objects is

nPr=nn—1)(n-2)---(n—r+1)

forr=1,2,...,n.

Since products of consecutive integers arise in many problems relating to per-
mutations or other kinds of special selections, it will be convenient to introduce here
the factorial notation, where 1! =1, 2! =2-1 =2, 3!=3.2.1 =6, 4! =
4.3.2.1=24.

For any integer n, n factorial is defined as

nl=nn—-1)(n-2)---2-1

Also, to make various formulas more generally applicable, we let 0! = 1 by
definition.
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To express the formula for , P in terms of factorials, we multiply and divide by
(n —r)!, getting

nn—1)n—-2)---(n—r+Hn—r)!  nl

nPr = =
(n—r)! (n—r)!

To summarize:

Theorem 3.2 The number of permutations of r objects selected from a set of
n distinct objects is

nPr=n(n—1)(n—-2)---(n—r+1)
or, in factorial notation,

Number of permutations
of n objects taken r

at a time
n!

Pp=—
T (n=r)!

Note that the second formula also holds for r = 0.

DO\ JNND The number of ways to assemble chips in a controller

An electronic controlling mechanism requires 5 distinct, but interchangeable, mem-
ory chips. In how many ways can this mechanism be assembled

(a) by placing the 5 chips in the 5 positions within the controller?
(b) by placing 3 chips in the odd numbered positions within the controller?

Solution

(a) When all 5 chips must be placed, the answer is 5!. Alternatively, in the
permutation notation with n = 5 and r = 5, the first formula yields

sP5=5-4-3-2.1=120
and the second formula yields

51 5!
Ps = =2 —51=120
ST 5251 0

The first formula for ,,P- is generally easier to use unless we can use a
calculator which directly yields factorials and/or ratios of factorials.

(b) For n = 5 chips placed in r = 3 positions, the permutation is
P 5! 5-4-3.2-1

3T T T 20
[ Using R: (a) factorial(5) (b) factorial(5S) / factorial (2) ] -

=5.4.3=060

There are many problems in which we must find the number of ways in which r
objects can be selected from a set of n objects, but we do not care about the order in
which the selection is made. For instance, we may want to know in how many ways
3 of 20 laboratory assistants can be chosen to assist with an experiment. In general,
there are ! permutations of any r objects we select from a set of n distinct objects.
So, the , P permutations of r objects, selected from a set of n objects, contains each
set of r objects r! times. Therefore, to find the number of ways in which r objects can
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Number of combinations
of n objects taken r at a
time

EXAMPLE 8

Solution

EXAMPLE 9

Solution

EXAMPLE 10

Solution

be selected from a set of n distinct objects, also called the number of combinations
of n objects taken r at a time and denoted by ,C; or (’:) we divide , P by 7!

and get

Theorem 3.3  The number of ways in which r objects can be selected from a
set of n distinct objects is

<n> nn—1)n—1)---(n—r+1)

r

or, in factorial notation,

Evaluating a combination

In how many different ways can 3 of 18 automotive engineers be chosen for a team
to develop a new ceramic diesel engine.

For n = 18 and r = 3, the first formula for <’;) yields

18 18-17-16
()= 1m0y _

Selection of machines for an experiment

A calibration study needs to be conducted to see if the readings on 15 test machines
are giving similar results. In how many ways can 3 of the 15 be selected for the

initial investigation?
15 15-14-13
<3 ) =351 = 455 ways

Note that selecting which 3 machines to use is the same as selecting which 12 not
to include. That is, according to the second formula,

15\ 15t 15! (15
12) 12130 31121\ 3 =

The number of choices of new researchers

In how many different ways can the director of a research laboratory choose
2 chemists from among 7 applicants and 3 physicists from among 9 applicants?

The 2 chemists can be chosen in <;> = 21 ways and the 3 physicists can be chosen
in <3) = 84 ways. By the multiplication rule, the whole selection can be made in

21 -84 = 1,764 ways. [
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3.1

3.2

3.3

34

A civil engineer suspects that the cement being sup-
plied for constructing a dam is adulterated. There are
three units of white cement and three units of black
cement. He will check all six for adulteration.

(a) Express each outcome using two coordinates, so
(1, 2), for example, represents the event that
one of the white cement units and two of the
black cement units are adulterated. Draw a dia-
gram similar to that of Figure 3.1 showing the 16
outcomes in the sample space.

(b) If A is the event that equally many white cement
and black cement units are adulterated, B is the
event that none of the white cement units is adul-
terated, and C is the event that fewer white cement
units are adulterated than black cement units, ex-
press each of these events symbolically by listing
its elements.

With reference to Exercise 3.1, which of the three pairs
of events, A and B, B and C, and B and C, are mutually
exclusive?

With reference to Exercise 3.1, list the outcomes com-
prising each of the following events, and also express
the events in words.

(a) AUB

(by BNC

(c) B

With reference to the sample space of Figure 3.1, ex-
press each of the following events in words.

(@ F={(1,0),d, D}
(b) G =1{(0,2),(1,1),(2,0)}
(c) FNG

To construct sample spaces for experiments in which
we deal with non-numerical data, we often code the
various alternatives by assigning them numbers. For
instance, if an engineer is asked to rate the perfor-
mance of a new machine with respect to its replace-
ment as poor, not satisfactory, no change, satisfactory,
or excellent, we might assign these alternatives the
codes, 1,2,3,4,and 5. If P = {1,2}, Q = {4,5},
R = {2,3},and S = {3, 4, 5}, express each of the fol-
lowing symbolically by listing its elements and also
in words.

(a) PUR

(b) PNR

(¢) QUS

(d P

With reference to Exercise 3.5, which of the pairs of

events, P and Q, Q and R, R and S, and P and S, are
mutually exclusive?

3.7

3.8

3.9

Four supervisors and 3 engineers are responsible for
work at a construction site, and at least 2 supervisors
and one engineer have to be present at all times.

(a) Using two coordinates so that (2, 1), for exam-
ple, represents the event that 2 supervisors and one
engineer are present, draw a diagram similar to
that of Figure 3.1 showing the points of the cor-
responding sample space.

(b) Describe in words the events which are repre-
sentedby X = {(2,2), (3,3)},Y ={(2, 1), (2,2),
(2,3)}and Z = {(2, 1), (3, 1), (4, D}.

(c) With reference to part (b), express X UY symbol-
ically by listing its elements, and also express this
event in words.

(d) With reference to part (b), are X and Y mutually
exclusive?

For each of the following experiments, decide whether
it would be appropriate to use a sample space which is
finite, countably infinite, or continuous.

(a) A Geiger counter, located adjacent to a building
containing a reactor, will record the total number
of alpha particles during a one-hour period.

(b) Five of the members of a professional society
with 12,600 members are chosen to serve on a
nominating committee.

(c) An experiment is conducted to measure the thick-
ness of a new synthetic silk thread in nanometers.

(d) A study is made to determine in how many of
450 airplane accidents the main cause is pilot
error.

(e) Measurements are made to determine the uranium
content of a certain ore.

(f) In a torture test, a watch is dropped a number of
times from a tall building until it stops running.

In Figure 3.6, C is the event that an ore contains copper
and U is the event that it contains uranium. Explain in

S

Figure 3.6 Venn diagram for Exercises 3.9
and 3.10
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3.15

3.16
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words what events are represented by regions 1, 2, 3,
and 4.

With reference to Exercise 3.9, what events are repre-
sented by

(a) regions 1 and 3 together;

(b) regions 3 and 4 together;

(c) regions 1, 2, and 3 together?

With reference to Figure 3.4, what events are repre-
sented by

(a) region 5;

(b) regions 4 and 6 together;

(c) regions 7 and 8 together;

(d) regions 1, 2, 3 and 5 together?

With reference to Figure 3.4, what regions or combi-

nations of regions represent the events that a motor
will have

(a) none of the major defects;
(b) a shaft that is large and windings improper;

(c) a shaft that is large and/or windings improper but
the electrical connections are satisfactory;

(d) ashaftthatis large and the windings improper and/
or the electrical connections are unsatisfactory?

Use Venn diagrams to verify that

(@) AUB=ANB

(b) BN(AUB)=B

(¢c) AUB)N(AUB) =B

(d ANB=(AUBNAUB)NAUB)
) ANBUC)=ANBUMANC)

A building inspector has to check the wiring in a
new apartment building either on Monday, Tuesday,
Wednesday, or Thursday, and at 8 A.m., 1 P.M., or 2 P.M.
Draw a tree diagram which shows the various ways in
which the inspector can schedule the inspection of the
wiring of the new apartment building.

If the five finalists in an international volleyball tourna-
ment are Spain, the United States, Uruguay, Portugal,
and Japan, draw a tree diagram that shows the various
possible first- and second-place finishers.

If a number cannot be immediately repeated, how
many different three number combinations are possi-
ble for a combination lock with numbers O, 1, ..., 29.

Students are offered three cooperative training pro-
grams at local companies and four training pro-
grams outside the state. Count the number of possible
training opportunities if an opportunity consists of
training at

(a) one local company or one company outside of the
state.

3.24

3.25

3.27

(b) one local company and one company outside of
the state.

You are required to choose a four digit personal identi-
fication number (PIN) for a new debit card. Each digit
is selected from 0, 1,...,9. How many choices do
you have.

An Engineers Association consists of 5 civil engineers
and 5 mechanical engineers.

a) In how many ways can a committee of 3 civil en-
y way
gineers and 2 mechanical engineers be appointed?

(b) If 2 civil engineers disagree with each other and
refuse to be on the same committee together,
how many different ways can a committee of 3
civil engineers and 2 mechanical engineers be
formed?

If there are 9 cars in a race, in how many different
ways can they place first, second, and third?

In how many ordered ways can a television director
schedule 6 different commercials during the 6 time
slots allocated to commercials during the telecast of
the first period of a hockey game?

If among n objects k are alike and the others are all
distinct, the number of permutations of these n objects
taken all together is n!/k!.

(a) How many permutations are there of the letters of
the word class?

(b) In how many ways can the television director of
Exercise 3.21 fill the 6 time slots allocated to com-
mercials, if there are 4 different commercials, of
which a given one is to be shown 3 times while
each of the others is to be shown once?

Determine the number of ways in which a software
professional can choose 4 of 25 laptops to test a newly
designed application.

How many ways can a company select 4 candidates to
interview from a short list of 12 engineers?

A box of 15 spark plugs contains one that is defective.
In how many ways can 4 spark plugs be selected so that

(a) the defective one is selected;
(b) the defective plug is not selected?

With reference to Exercise 3.25, suppose that three of
the spark plugs are defective. In how many ways can
4 spark plugs be selected so that

(a) one of the defective plugs is selected;
(b) two of the defective plugs are selected;
(c) all three defective plugs are selected?

An engineering student has 6 different ball bearings
and 9 different gears. In how many ways can 3 ball
bearings and 3 gears be selected for an experiment on
friction in machine parts?
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3.3 Probability

So far we have studied only what is possible in a given situation. Now we go one
step further and judge also what is probable and what is improbable. Historically, the
oldest way of measuring uncertainties is the classical probability concept, which
was developed originally in connection with games of chance. It applies when all
possible outcomes are equally likely.

If there are m equally likely possibilities, of which one must occur and s are
regarded as favorable, or as a “success,” then the probability of a “success” is
s

given by — .
m

In the application of this rule, the terms favorable and success are used rather loosely—
favorable may mean that a television set does not work and success may mean that
someone catches the flu.

Well-shuffled cards are equally likely to be selected

What is the probability of drawing an ace from a well-shuffled deck of 52 playing
cards?

There are s = 4 aces among the m = 52 cards, so we get

s_4_1
m 52 13

Although equally likely possibilities are found mostly in games of chance, the
classical probability concept applies also to a great variety of situations where gam-
bling devices are used to make random selections. They occur when offices are
assigned to research assistants by lot, when laboratory animals are chosen for an
experiment so that each one has the same chance of being selected, or when washing-
machine parts are chosen for inspection so that each part produced has the same
chance of being selected.

Random selection results in the equally likely case

The next generation of miniaturized wireless capsules with active locomotion will
require two miniature electric' motors to maneuver each capsule. Suppose 10 motors
have been fabricated but that, in spite of tests performed on the individual motors, 2
will not operate satisfactorily when placed into a capsule.

To fabricate a new capsule, 2 motors will be randomly selected (that is, each
pair of motors has the same chance of being selected). Find the probability that

(a) both motors will operate satisfactorily in the capsule
(b) one motor will operate satisfactorily and the other will not

(a) There are (10

) ) = 45 equally likely ways of choosing 2 of 10 motors, so
m = 45.

M. Quirini et al, Design and fabrication of a motor legged capsule for the active exploration of the
gastrointestinal tract, IEEE/ASME Transactions on Mechatronics (2008), 13, 169-179.
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The frequency
interpretation of
probability

The number of favorable outcomes is the number of ways in which two good
motors can be selected from eight:

= (5) =2

so the probability that both motors will operate satisfactorily in the capsule is

s 28
m 45
or approximately 0.622.

(b) The number of favorable outcomes is the number of ways in which one
satisfactory motor and one unsatisfactory motor can be selected, or

() (D)

It follows that the probability is

s 16
—=— =10.356 [
m 45
A major shortcoming of the classical probability concept is its limited applica-
bility, for there are many situations in which the various possibilities cannot all be
regarded as equally likely. This would be the case, for example, if we are concerned
with the question of whether it will rain the next day, whether a missile launching
will be a success, whether a newly designed engine will function for at least 1,000
hours, or whether a certain candidate will win an election.
Among the various probability concepts, most widely held is the frequency
interpretation.

The probability of an event (or outcome) is the proportion of times the event will
occur in a long run of repeated experiments.

If we say that the probability is 0.78 that a jet from New York to Boston will arrive on
time, we mean that such flights arrive on time 78% of the time. Also, if the Weather
Service predicts that there is a 40% chance for rain (that the probability is 0.40), this
means that under the same weather conditions it will rain 40% of the time.

We illustrate the long run behavior of relative frequency by performing an ex-
periment where an event A occurs with probability 0.4. This experiment could be as
simple of reading a random digit from Table 7W and deciding the event has occurred
if 1, 2, 3, or 4 are selected. Instead, we use computer software to generate a 1, with
probability 0.4, to indicate that A occurs and a 0 otherwise. We then repeat this ex-
periment a large number of times. After each time, or trial, we calculate the relative
frequency of A. Let ry be the relative frequency of an event A after the experiment
has been performed N times.

Number of times A occurs in N trials
N .

In our sequence of experiments, the event does occur on the first trial and third
trial but not of the second. The first three relative frequencies are then 1, 0.5, and
0.667.

Figure 3.7 displays the typical behavior of ry as the number of repetitions
grows. This relative frequency begins to stabilize for large N. Figure 3.7 actually has
two parts. Figure 3.7(a) shows the results for the first 50 trials and the fluctuations are

N =



Figure 3.7
Relative frequency stabilizes
after many trials.
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(2) (b)

quite large. Figure 3.7(b) shows 1000 trials where it is clear that the fluctuations in
ry become damped with increasing N. Even with 1000 trials, the relative frequency
is approaching the probability 0.4.

This behavior of relative frequency, after many repeated trials of an experiment,
is a key fundamental in statistics. You are encouraged to conduct your own computer
based simulation experiment (See Exercise 3.100 for the MINITAB and Appendix C
for the R commands).

In accordance with the frequency interpretation of probability, we will this change
estimate the probability of an event by observing what fraction of the time similar
events have occurred in the past.

Long-run relative frequency approximation to probability

If records show that 294 of 300 ceramic insulators tested were able to withstand a
certain thermal shock, what is the probability that any one untested insulator will be
able to withstand the thermal shock?

294
Among the insulators tested, 300 = 0.98 were able to withstand the thermal shock,

and we use this figure as an estimate of the probability. [

An alternative point of view is to interpret probabilities as personal or subjective
evaluations. Such subjective probabilities express the strength of one’s belief with
regard to the uncertainties that are involved, and they apply especially when there
is little or no direct evidence, so that there is no choice but to consider collateral
(indirect) evidence, educated guesses, and perhaps intuition and other subjective
factors. Subjective probabilities are best determined by referring to risk taking, or
betting situations, as will be explained in Exercise 3.53.

3.4 The Axioms of Probability

In this section we define probabilities mathematically as the values of additive set
functions. Since the reader is probably most familiar with functions for which the
elements of the domain and the range are all numbers, let us first give a very sim-
ple example where the elements of the domain are sets, while the elements of the
range are nonnegative integers, namely, a set function that assigns to each subset A
of a finite sample space S the number of elements in A, written N(A). Suppose that
500 machine parts are inspected before they are shipped, that / denotes that a ma-
chine part is improperly assembled, D denotes that it contains one or more defective
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465

Figure 3.8
Classification of 500 machine
parts

The axioms of probability
for a finite sample space

components, and the distribution of the 500 machine parts among the various cate-
gories is as shown in the Venn diagram of Figure 3.7.

The numbers in Figure 3.8 are N(IND) =20, N(IND) =10, N(IND) = 5,
and N(IND ) = 465. Using these values and the fact that the set function is additive
(meaning that the number which it assigns to the union of two subsets which have no
elements in common is the sum of the numbers assigned to the individual subsets),
we can determine the value of N(A) for any other subset A of S. For instance,

N(I)=N(IND)+N(IND) =5+ 465 =470
N(IUD)=N(IND)+N(IND)+N(IND)
=20+104+5=35
N(IUD)=N(IND)+N(IND)+N(IND)
=10+ 5+ 465 =480

and
NMD)=N(IND)+N(IND)=10+5=15

Using the concept of an additive set function, let us now explain what we mean
by the probability of an event. Given a finite sample space S and an event A in S,
we define P(A), the probability of A, to be a value of an additive set function that
satisfies the following three conditions.

Axiom 1 0<P(A) <1 foreacheventAinsS.
Axiom 2 P(S)=1.
Axiom 3 If A and B are mutually exclusive events in S, then

P(AUB)=P(A)+P(B)

The first axiom states that probabilities are real numbers on the interval from 0 to
1, inclusive. The second axiom states that the sample space as a whole is assigned
a probability of 1. Since S contains all possible outcomes, and one of these must
always occur, S is certain to occur. The third axiom states that probability functions
must be additive—the probability of the union is the sum of the two probabilities
when the two events have no outcomes in common.

Axioms for a mathematical theory require no proof, but if such a theory is to be
applied to the physical world, we must show somehow that the axioms are “realistic.”
Thus, let us show that the three postulates are consistent with the classical probability
concept and the frequency interpretation.

L . K
So far as the first axiom is concerned, fractions of the form —, where 0 < s < m
m

and m is a positive integer, cannot be negative or exceed 1, and the same is true also
for the proportion of the time that an event will occur. To show that the second axiom
is consistent with the classical probability concept and the frequency interpretation
for a long series of repeated experiments, we have only to observe that for the whole
sample space

P(S):%:l

and for the frequency interpretation that some outcome must happen 100% of the
time.
So far as the third axiom is concerned, if

P(A)="L P(B)="2
m m
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and A and B are mutually exclusive, then

P(AUB) = L%
m

=P(A)+ P(B)

Also, if one event occurs in proportion 0.36 or 36% of the time, another event occurs
41% of the time, and the two events are mutually exclusive, then one or the other
will occur in proportion 0.36 4 0.41 = 0.77 or 77%.

Before we go any further, it is important to stress the point that the axioms
of probability do not tell us how to assign probabilities to the various outcomes
of an experiment; they merely restrict the ways in which it can be done. In actual
practice, probabilities are assigned on the basis of past experience, on the basis of a
careful analysis of conditions underlying the experiment, on the basis of subjective
evaluations, or on the basis of assumptions—say, the common assumption that all
the outcomes are equiprobable.

Checking possible assignments of probability

If an experiment has the three possible and mutually exclusive outcomes A, B, and
C, check in each case whether the assignment of probabilities is permissible:

(a) P(A) = 1 P(B) 1 and P(C) = 3

(b) P(A) = .64, P(B) = 0.38, and P(C) = —0.02
(¢) P(A) =0.35, P(B) =0.52, and P(C) = 0.26
(d) P(A)=0.57, P(B) =0.24, and P(C) = 0.19

(a) The assignment of probabilities is permissible because the values are all on the

interval from O to 1, and their sum is 3 + 3 + 3 =1.

(b) The assignment is not permissible because P(C) is negative.
(¢) The assignment is not permissible because 0.35 4+ 0.52 + 0.26 = 1.13, which
exceeds 1.

(d) The assignment is permissible because the values are all on the interval from O
to 1 and their sum is 0.57 4 0.24 4 0.19 = 1.

The approach in the last example extends to any experiment where the sample
space S is discrete so the outcomes can be arranged in a sequence. An amount of
probability p; is assigned to the ith outcome, where

0<p; and > pi=1

all outcomes in S

and then the probability of any event A is defined as

PA)= Y p

all outcomes in A

When probability is assigned in this manner, the axioms of probability are always
satisfied.

Intuitively, we can think of the scientist as starting with a unit amount of clay
(probability) and placing a proportion p; on the first outcome, p, on the second
outcome, and so on. Some outcomes can be assigned a large amount and others lesser
amounts. The total unit amount of clay (probability) is assigned to the outcomes in
the sample space. Then, an event A is assigned the total of all the clay (probability)
assigned to each outcome in A.
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Generalization of the third
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Rule for calculating
probability of an event

EXAMPLE 16

3.5 Some Elementary Theorems

With the use of mathematical induction, the third axiom of probability can be
extended to include any number of mutually exclusive events; in other words, the
following can be shown.

Theorem 3.4 IfA(, Ay, ..., A, are mutually exclusive events in a sample space
S, then

P(AjUA U ---UAy) =P(A) + P(Ay) + -+ P(Apn)

In the next chapter we shall see how the third axiom of probability must be modified
so that the axioms apply also to sample spaces which are not finite.

Probabilities add for mutually exclusive events

The probability that a consumer testing service will rate a new antipollution device
for cars very poor, poor, fair, good, very good, or excellent are 0.07,0.12, 0.17, 0.32,
0.21, and 0.11. What are the probabilities that it will rate the device

(a) very poor, poor, fair, or good;

(b) good, very good, or excellent?

Since the probabilities are all mutually exclusive, direct substitution into the formula
of Theorem 3.4 yields

0.07+0.12+0.17 + 0.32 = 0.68
for part (a) and
0.32+0.21+0.11 =0.64
for part (b). [

As it can be shown that a sample space of n points (outcomes) has 2" subsets, it
would seem that the problem of specifying a probability function (namely, a proba-
bility for each subset or event) can easily become very tedious. Indeed, for n = 20
there are already more than 1 million possible events. Fortunately, this task can be
simplified considerably by the use of the following theorem:

Theorem 3.5 If A is an event in the finite sample space S, then P(A) equals
the sum of the probabilities of the individual outcomes comprising A.

To prove this theorem, let £y, E, .. ., E;, be the n outcomes comprising event
A, so that we can write A = E| U Ey U ---U Ej,. Since the E’s are individual
outcomes, they are mutually exclusive, and by Theorem 3.4 we have
P(A)=P(E{UE,U---UEy)
= P(Ey) + P(Ey) + -+ P(Ep)

which completes the proof.

Using a Venn diagram to visualize probability calculations

Refer to the used car classification example on page 60. Suppose that the proba-
bilities of the 18 outcomes are as shown in Figure 3.9 (which, except for the the
probabilities, is identical to Figure 3.5).



Figure 3.9

Used car classifications and

their probabilities
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Probability
0.03
0.06
0.07
0.02
0.01
0.01
0.09
0.16
0.10

0.02
0.07
0.06
0.05
0.05
0.14
0.01

0.03
0.02

Find P(M1), P(Py), P(C3), P(M{ N Py), and P(M N C3).
Adding the probabilities of the outcomes comprising the respective events, we get

P(M;) = 0.03 + 0.06 4 0.07 + 0.02 4 0.01 + 0.01 = 0.20
P(P;) = 0.03 4 0.06 4 0.07 + 0.09 + 0.16 + 0.10 + 0.05
0.05+0.14 = 0.75
P(C3) = 0.07 +0.01 4 0.10 + 0.06 4 0.14 + 0.02 = 0.40
P(M; N Pp) =0.03 +0.06 +0.07 = 0.16

and

PM;NC3)=0.07+0.01 =0.08 u

In Theorem 3.4 we saw that the third axiom of probability can be extended
to include more than two mutually exclusive events. Another useful and important
extension of this axiom allows us to find the probability of the union of any two
events in S regardless of whether or not they are mutually exclusive. To motivate
the theorem which follows, let us consider the Venn diagram of Figure 3.10, which
concerns the job offers received by recent engineering-school graduates. The letters
I and G stand for a job offer from industry and a job offer from the government,
respectively.

It follows from the Venn diagram that

P(I)=0.184+0.12 = 0.30
P(G) =0.12+0.24 =0.36
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Figure 3.10
Venn diagram for job offers

General addition rule for
probability

EXAMPLE 17

Solution

0.18 0.24

and
PIUG)=0.1840.124+0.24 = 0.54

We were able to add the various probabilities because they represent mutually ex-
clusive events.

Had we erroneously used the third axiom of probability to calculate P(1 U G),
we would have obtained P(I) + P(G) = 0.30 + 0.36, which exceeds the correct
value by 0.12. This error results from adding in P(I/ N G) twice, once in P(/) = 0.30
and once in P(G) = 0.36 and, we could correct for it by subtracting 0.12 from 0.66.
Thus, we would get

P(IUG) = P(I)+ P(G) — PUN G)
=0.30+0.36 — 0.12
=0.54

and this agrees, as it should, with the result obtained before.
In line with this motivation, let us now state and prove the following theorem:

Theorem 3.6 If A and B are any events in S, then

P(AUB) = P(A) + P(B) — P(A N B)

To prove this theorem,

P(AUB)=P(ANB)+PANB)+ P(ANB)
=[P(ANB)+ P(ANB)]
+[P(ANB)+P(ANB)] — P(ANB)
= P(A) + P(B) — P(ANB).

where, in the third line, we add and subtract P(A N B). Note that when A and B are
mutually exclusive so that P(A N B) = 0, Theorem 3.6 reduces to the third axiom of
probability. For this reason, we sometimes refer to the third axiom of probability as
the special addition rule.

Using the general addition rule for probability

With reference to the used car example of page 60, find the probability that a car
will have low mileage or be expensive to operate, namely P(M; U C3).

Making use of the results obtained on page 73, P(M;) = 0.20, P(C3) = 0.40,
and P(M; N C3) = 0.08, we substitute into the general addition rule of
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Theorem 3.6 to get
P(My UC3) = P(My) + P(C3) — P(M; NC3)
=0.20 4+ 0.40 — 0.08
=0.52 ]

The probability of requiring repair under warranty

If the probabilities are 0.87, 0.36, and 0.29 that, while under warranty, a new car will
require repairs on the engine, drive train, or both, what is the probability that a car
will require one or the other or both kinds of repairs under the warranty?

Substituting these given values into the formula of Theorem 3.6, we get
0.87+0.36 — 0.29 = 0.94 u
Note that the general addition rule, Theorem 3.6, can be generalized further so
that it applies to more than two events (see Exercise 3.49).

Using axioms of probability, we can derive many other theorems which play
important roles in applications. For instance, let us show the following:

Theorem 3.7 IfAisanyeventin S, then P(A) = 1 — P(A).

To prove this theorem, we make use of the fact that A and A are mutually exclusive
by definition, and that AU A = S (namely, that among them A and A contain all the
elements in S). Hence we can write
P(A)+P(A)=PAUA)

= P(S)

=1
sothat P(A) = 1 —P(A). Asa special case we find that P(¢p) = 1 — P(S) = O since
the empty set ¢ is the complement of S.

Using the probability rule of the complement
Referring to the used car example of page 60 and the results on page 73, find

(a) the probability that a used car will not have low mileage

(b) the probability that a used car will either not have low mileage or not be
expensive to operate

Solution By the rule of the complement
(a) P(A_/Il) =1—-PWM;)=1-0.20=0.80

(b) Since M| U C3 = M; N C; by the rule of the complement we get

P(M{UC3)=1—PM;NC3)=1-0.08=0.92 o
Exercises

3.28 (a) Among 880 smart phones sold by a retailer, 72 (b) Last year 8,400 students applied for the 6,000
required repairs under the warranty. Estimate the student season tickets available for football
probability that a new phone, which has just been games. Next year you will apply and would
sold, will require repairs under the warranty. Ex- like to estimate the probability of receiv-

plain your reasoning.

ing a season ticket. Give your estimate and
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comment on one factor that might influence the
accuracy of your estimate.

When we roll a pair of balanced dice, what are the
probabilities of getting

(@ 7,

(b) 11;

(c) 7Torll;
(d 3

(e) 2or12;
) 2,3,0r12?

The registration numbers for the candidates of an en-
trance test are numbered from 000001 to 200000.
What is the probability that a candidate will get a reg-
istration number divisible by 40?

A car rental agency has 19 compact cars and 12
intermediate-size cars. If four of the cars are randomly
selected for a safety check, what is the probability of
getting two of each kind?

Last year; the maximum daily temperature in a plants’
server room exceeded 68°F in 12 days. Estimate the
probability that the maximum temperature will exceed
68°F tomorrow.

In a group of 160 graduate engineering students, 92 are
enrolled in an advanced course in statistics, 63 are
enrolled in a course in operations research, and
40 are enrolled in both. How many of these students
are not enrolled in either course?

Among 150 persons interviewed as part of an urban
mass transportation study, some live more than 3 miles
from the center of the city (A), some now regularly
drive their own car to work (B), and some would gladly
switch to public mass transportation if it were available
(C). Use the information given in Figure 3.11 to find

(a) N(A);
(b) N(B);
(¢) N(C);
(d) N(ANB);

()
(SN

27

S

Figure 3.11 Diagram for Exercise 3.34

3.36

3.37

3.38

(e) N(ANC);

) NANBNCO);
(&) N(AUB);

(h) N(BUC);

(i) N(AUBUO);
G) N[BN(AUO)].

An experiment has the four possible mutually exclu-
sive outcomes A, B, C, and D. Check whether the fol-
lowing assignments of probability are permissible:

(a) P(A)=0.38, P(B)=0.16, P(C)=0.11, P(D)
0.35;

(b) P(A)=0.27, P(B)=0.30, P(C)=0.28, P(D)
0.16;

(¢) P(A)=0.32, P(B)=0.27, P(C)=—0.06,
P(D) =0.47,

1 1 1 1

(d) P(A)_2,P(B)_ 4,P(C)— 8’P(D)_ 6’

P(A > P(B ! P(C ! P(D 2
(e PC )_18’ ( )_6’ ( )—3, ( )—9-
With reference to Exercise 3.1, suppose that the points
(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3),
(2,0), (2, 1), (2,2), (2,3),(3,0), (3, 1), (3, 2), and
(3, 3) have the probabilities 0.080, 0.032, 0.086, 0.064,
0.085,0.073, 0.065, 0.091, 0.071, 0.050, 0.046, 0.075,
0.040, 0.021, 0.080, and 0.041.

(a) Verify that this assignment of probabilities is
permissible.

(b) Find the probabilities of events A, B, and C given
in part (b) of that exercise.

(c) Calculate the probabilities that one, two, or three
supplies of white cement are adulterated.

With reference to Exercise 3.7, suppose that each point

(i, j) of the sample space is assigned the probability

420/401

20+ j)

(a) Verify that this assignment of probabilities is
permissible.

(b) Find the probabilities of events X, Y, and Z
described in part (b) of that exercise.

(c) Find the probabilities that two, three, or four of the
supervisors will be present on the site.

Explain why there must be a mistake in each of the
following statements:

(a) The probability that a mineral sample will contain
silver is 0.38 and the probability that it will not
contain silver is 0.52.

(b) The probability that a drilling operation will be a
success is 0.34 and the probability that it will not
be a success is —0.66.
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(c) An air-conditioning repair person claims that the
probability is 0.82 that the compressor is all right,
0.64 that the fan motor is all right, and 0.41 that
they are both all right.

Refer to parts (d) and (c) of Exercise 3.13 to show that
(@) P(ANB) < PA);
(b) P(AUB) > P(A).

Explain why there must be a mistake in each of the
following statements:

(a) The probability that a student will get an A in a
geology course is 0.3, and the probability that he
or she will get either an A or a B is 0.27.

(b) A company is working on the construction of two
shopping centers; the probability that the larger one
will be completed on time is 0.35 and the probability
that both will be completed on time is 0.42.

If A and B are mutually exclusive events, P(A) = 0.45,
and P(B) = 0.30, find

() P(A);

(b) P(AUB);

(c) P(ANB);

(d) P(ANB).

With reference to Exercise 3.34, suppose that the ques-

tionnaire filled in by one of the 150 persons is to be
double-checked. If it is chosen in such a way that each

questionnaire has a probability of — of being se-
lected, find the probabilities that the person

(a) lives more than 3 miles from the center of the city;
(b) regularly drives his or her car to work;

(c) does not live more than 3 miles from the center
of the city and would not want to switch to public
mass transportation if it were available;

(d) regularly drives his or her car to work but would
gladly switch to public mass transportation if it
were available.

A rotary plug valve needs to be replaced to repair a
machine, and the probabilities that the replacement
will be a flange style (low pressure), flange style (high
pressure),wafer style, or lug style are 0.16, 0.29, 0.26,
and 0.15. Find the probabilities that the replacement
will be

(a) aflange-style plug;
(b) aflange- (low pressure) or a wafer-style plug;
(c) a wafer-style or a lug-style plug;

(d) aflange-style (high pressure) or a wafer-style or a
lug-style plug.

The probabilities that a TV station will receive
0,1,2,3,...,8 or at least 9 complaints after
showing a controversial program are, respectively,

3.46

3.47
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0.01, 0.03, 0.07, 0.15, 0.19, 0.18, 0.14, 0.12, 0.09,
and 0.02. What are the probabilities that after showing
such a program the station will receive

(a) at most 4 complaints;

(b) at least 6 complaints;

(c) from 5 to 8 complaints?

If each point of the sample space of Figure 3.12 repre-
sents an outcome having the probability vk find
(a) P(A);

(b) P(B);

() P(ANB);

(d) P(AUB);

(e) P(ANB);

(f) P(ANB).

° ° S

Figure 3.12 Diagram for Exercise 3.45

The probability that a turbine will have a defective
coil is 0.10, the probability that it will have defective
blades is 0.15, and the probability that it will have both
defects is 0.04.

(a) Whatis the probability that a turbine will have one
of these defects?

(b) What is the probability that a turbine will have
neither of these defects?

The probability that a construction company will get
the tender for constructing a flyover is 0.33, the prob-
ability that it will get the tender for constructing an
underpass is 0.28, and the probability that it will get
both tenders is 0.13.

(a) What is the probability that it will get at least one
tender?

(b) What is the probability that it will get neither
tender?

Given P(A) = 0.30, P(B) = 0.62, and P(AN B) =
0.12, find

(a) P(AUB);
(b) P(ANB);
(c) PANB);
(d) P(AUB).
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It can be shown that for any three events A, B, and C,
the probability that at least one of them will occur is
given by
P(AUBUC)=P(A)+P(B)+P(C)
—P(ANB)—P(ANC)
—P(BNC)+P(ANBNC)

Verify that this formula holds for the probabilities of
Figure 3.13.

o
GSTN

0.11

S

Figure 3.13 Diagram for Exercise 3.49

Suppose that in the maintenance of a large medical-
records file for insurance purposes the probability of
an error in processing is 0.0010, the probability of an
error in filing is 0.0009, the probability of an error in
retrieving is 0.0012, the probability of an error in pro-
cessing as well as filing is 0.0002, the probability of
an error in processing as well as retrieving is 0.0003,
the probability of an error in filing as well as retrieving
is 0.0003, and the probability of an error in processing
and filing as well as retrieving is 0.0001. What is the
probability of making at least one of these errors?

If the probability of event A is p, then the odds that it
will occur are given by the ratio of pto 1 — p. Odds are
usually given as a ratio of two positive integers having
no common factor, and if an event is more likely not
to occur than to occur, it is customary to give the odds
that it will not occur rather than the odds that it will
occur. What are the odds for or against the occurrence
of an event if its probability is

4 .
@ =

(b) 0.05; (c) 0.80?

3.52

3.53

3.54

Use the definition of Exercise 3.51 to show that if the
odds for the occurrence of event A are a to b, where a
and b are positive integers, then

a
a+b

p:

The formula of Exercise 3.52 is often used to deter-
mine subjective probabilities. For instance, if an appli-
cant for a job “feels” that the odds are 7 to 4 of getting
the job, the subjective probability the applicant assigns
to getting the job is

7 7

P=3271

—

(a) If a businessperson feels that the odds are 3 to 2
that a new venture will succeed (say, by betting
$300 against $200 that it will succeed), what sub-
jective probability is he or she assigning to its
success?

(b) If a student is willing to bet $30 against $10, but
not $40 against $10, that he or she will get a pass-
ing grade in a certain course, what does this tell
us about the subjective probability the student as-
signs to getting a passing grade in the course?

Subjective probabilities may or may not satisfy the
third axiom of probability. When they do, we say that
they are consistent; when they do not, they ought not
to be taken too seriously.

(a) The supplier of delicate optical equipment feels
that the odds are 7 to 5 against a shipment arriv-
ing late, and 11 to 1 against it not arriving at all.
Furthermore, he feels that there is a 50/50 chance
(the odds are 1 to 1) that such a shipment will
either arrive late or not at all. Are the correspond-
ing probabilities consistent?

(b) There are two Ferraris in arace, and an expert feels
that the odds against their winning are, respec-
tively, 2 to 1 and 3 to 1. Furthermore, she claims
that there is a less-than-even chance that either of
the two Ferraris will win. Discuss the consistency
of these claims.

3.6 Conditional Probability

As we have defined probability, it is meaningful to ask for the probability of an
event only if we refer to a given sample space S. To ask for the probability that an
engineer earns at least $90,000 a year is meaningless unless we specify whether we
are referring to all engineers in the western hemisphere, all engineers in the United
States, all those in a particular industry, all those affiliated with a university, and so
forth. Thus, when we use the symbol P(A) for the probability of A, we really mean
the probability of A given some sample space S. Since the choice of S is not always
evident, or we are interested in the probabilities of A with respect to more than one



Figure 3.14
Reduced sample space
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sample space, the notation P(A|S) makes it clear that we are referring to a particular
sample space S. We read P(A|S) as the conditional probability of A relative to S, and
every probability is thus a conditional probability. Of course, we use the simplified
notation P(A) whenever the choice of S is clearly understood.

To illustrate some of the ideas connected with conditional probabilities, let us
consider again the 500 machine parts of which some are improperly assembled and
some contain one or more defective components as shown in Figure 3.8. Assum-
ing equal probabilities in the selection of one of the machine parts for inspection, it
can be seen that the probability of getting a part with one or more defective compo-
nents is

10+5 3

To check whether the probability is the same if the choice is restricted to the machine
parts that are improperly assembled, we have only to look at the reduced sample
space of Figure 3.14 and assume that each of the 30 improperly assembled parts has
the same chance of being selected. We thus get

bty NOND 101
(”_zw)_%_§

and it can be seen that the probability of getting a machine part with one or more
defective components has increased from Too to 3 Note that if we divide the nu-

merator and denominator of the preceding formula for P(D | I) by N(S), we get

N(DNI)

_N@S) PN

POID = NI P
N(S)

where P(D | 1) is given by the ratio of P(D N I) to P(I).
Looking at this example in another way, note that with respect to the whole
sample space S we have

10 1 — 20 2
P(DNI)=—=— and P(DN)=-—=—
500 50 500 50
assuming, as before, that each of the 500 machine parts has the same chance of
being selected. Thus, the probabilities that the machine part selected will or will not
contain one or more defective components, given that it is improperly assembled,
should be in the ratio 1 to 2. Since the probabilities of D and D in the reduced sample
space must add up to 1, it follows that

1 _ 2
POID=5 and  P(DI)=3

which agrees with the result obtained before. This explains why, in the last step, we
had to divide by P(/) to

P(DNI)

P(D|I) = o7

Division by P(I), or multiplication by 1/P(1), takes care of the proportionality factor,
which makes the sum of the probabilities over the reduced sample space equal to 1.
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Conditional probability

EXAMPLE 20

Solution

EXAMPLE 21

Solution

General multiplication
rule of probability

Following these observations, let us now make the following general definition:

If A and B are any events in S and P(B) # 0, the conditional probability of A
given B is
P(ANB)

P(A|B) = P(B)

Calculating a conditional probability
If the probability that a communication system will have high fidelity is 0.81 and

the probability that it will have high fidelity and high selectivity is 0.18, what is
probability that a system with high fidelity will also have high selectivity?

If A is the event that a communication system has high selectivity and B is the event
that it has high fidelity, we have P(B) = 0.81 and P(AN B) = 0.18, and substitution
into the formula yields
P(A|B) = 0.18 2

081 9 -
The conditional probability that a used car has low mileage given
that it is expensive to operate
Referring to the used car example, for which the probabilities of the individual out-
comes are given in Figure 3.9, use the results on page 73 to find P(M | C3).

Since we had P(M N C3) = 0.08 and P(C3 ) = 0.40, substitution into the formula
for conditional probability yields

P(M;NC3) _ 0.08

PG =5y = 040

=0.20

It is of interest to note that the value of the conditional probability obtained here,
P(M; | C3) =0.20, equals the value for P(M) obtained on page 73. This means that
the probability a used car has low mileage is the same whether or not it is expensive
to operate. We say that M is independent of C3. As the reader is asked to verify in
Exercise 3.59, it also follows from the results on page 73 that M is not independent
of P, namely, that low mileage is related to the car’s price. [

In general, if A and B are any two events in a sample space S, we say that A is
independent of B if and only if P(A | B) = P(A ), but as it can be shown that B is
independent of A whenever A is independent of B, it is customary to say simply that
A and B are independent events.

Theorem 3.8 If A and B are any events in S, then

P(ANB)=P(A)-P(B|A) if P(A)#0
—P(B)-P(A|B) if P(B)#0

The second of these rules is obtained directly from the definition of conditional
probability by multiplying both sides by P(B); the first is obtained from the second
by interchanging the letters A and B.
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Solution

Special product rule of
probability

EXAMPLE 23

Solution

EXAMPLE 24

Solution
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Using the general multiplication rule of probability

The supervisor of a group of 20 construction workers wants to get the opinion of 2 of
them (to be selected at random) about certain new safety regulations. If 12 workers
favor the new regulations and the other 8 are against them, what is the probability
that both of the workers chosen by the supervisor will be against the new safety
regulations?

Assuming equal probabilities for each selection (which is what we mean by the

selections being random), the probability that the first worker selected will be against
8

the new safety regulations is —, and the probability that the second worker selected

will be against the new safety regulations given that the first one is against them is

7
o Thus, the desired probability is

8 7 14

20 19 95 "

In the special case where A and B are independent so P(A | B) = P(A), Theo-
rem 3.8 leads to the following result:

Theorem 3.9 Two events A and B are independent events if and only if
P(ANB)=P(A)-P(B)

Thus, the probability that two independent events will both occur is simply the prod-
uct of their probabilities. This rule is sometimes used as the definition of indepen-
dence. It applies even when P(A) or P(B) or both equal 0. In any case, it may be
used to determine whether two given events are independent.

The outcomes to unrelated parts of an experiment can be treated
as independent

What is the probability of getting two heads in two flips of a balanced coin?

1
Since the probability of heads is — for each flip and the two flips are not physically
connected, we treat them as independent. The probability is

N =
N —
N

Independence and selection with and without replacement

Two cards are drawn at random from an ordinary deck of 52 playing cards. What is
the probability of getting two aces if

(a) the first card is replaced before the second card is drawn;

(b) the first card is not replaced before the second card is drawn?

(a) Since there are four aces among the 52 cards, we get

4 4 1
52 52 169
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EXAMPLE 25

Solution

EXAMPLE 26

Solution

EXAMPLE 27

Solution

EXAMPLE 28

(b) Since there are only three aces among the 51 cards that remain after one ace
has been removed from the deck, we get

4 3 1
52751 221
Note that
1 4 4
FTRE R
so independence is violated when the sampling is without replacement. [

Checking if two events are independent under an assigned
probability

If P(C) = 0.65,P(D) = 0.40, and P(C N D) = 0.24, are the events C and D
independent?

Since P(C) - P(D) = (0.65)(0.40) = 0.26 and not 0.24, the two events are not
independent. [

In the preceding examples we have used the assigned probabilities to check if
two events are independent. The concept of independence can be—and frequently
is—employed when probabilities are assigned to events that concern unrelated parts
of an experiment.

Assigning probability by the special product rule

Let A be the event that raw material is available when needed and B be the event
that the machining time is less than 1 hour. If P(A) = 0.8 and P(B) = 0.7, assign
probability to the event A N B.

Since the events A and B concern unrelated steps in the manufacturing process, we
invoke independence and make the assignment

P(ANB) =P(A)P(B) =0.8 x0.7=10.56 L

The special product rule can easily be extended so that it applies to more than
two independent events—again, we multiply together all the individual probabilities.

The extended special product rule of probability
What is the probability of not rolling any 6’s in four rolls of a balanced die?

5555 625
The probability is — - — - — - — = —
6 6 6 6 1,296
For three or more dependent events the multiplication rule becomes more com-
plicated, as is illustrated in Exercise 3.70.

The probability of falsely signaling a pollution problem

Many companies must monitor the effluent that is discharged from their plants into
rivers and waterways. In some states, it is the law that some substances have water-
quality limits that are below the limit of detection, L, for the current method of
measurement. The effluent is judged to satisfy the quality limit if every test spec-
imen is below the limit of detection L. Otherwise it will be declared to fail compli-
ance with the quality limit. Suppose the water does not contain the contaminant of
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EXAMPLE 29
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interest but that the variability in the chemical analysis still gives a 1% chance that
a measurement on a test specimen will exceed L.

(a) Find the probability that neither of two test specimens, both free of the
contaminant, will fail to be in compliance.

(b) If one test specimen is taken each week for two years, and they are all free of
the contaminant, find the probability that none of the test specimens will fail
to be in compliance.

(¢) Comment on the incorrect reasoning of having a fixed limit of detection no
matter how many tests are conducted.

(a) If the two samples are not taken too closely in time or space, we treat them as
independent. We use the special product rule to obtain the probability that both
are in compliance:

0.99 x 0.99 = 0.9801

(b) Treating the results for different weeks as independent,
(0.99)19% = 0.35

so, even with excellent water quality, there is almost a two-thirds chance that
at least once the water quality will be declared to fail to be in compliance with
the law.

(c) With this type of law, no company would want to collect test specimens more
than maybe once a year. This is in direct opposition to the scientific idea that
more information is better than less information on water quality. Some effort
should be made to allow for higher limits when the testing is more frequent. ™

Using probability to compare the accuracy of two schemes for
sending messages

Electrical engineers are considering two alternative systems for sending messages.
A message consists of a word that is either a 0 or a 1. However, because of random
noise in the channel, a 1 that is transmitted could be received as a 0 and vice versa.
That is, there is a small probability, p, that

P[A transmitted 1 is received as 0] = p
P[A transmitted O is received as 1] = p

One scheme is to send a single digit. The message is short but may be unreliable.
A second scheme is to repeat the selected digit three times in succession. At the
receiving end, the majority rule will be used to decode. That is, when any of 101,
110, 011, or 111 are received, it is interpreted to mean a 1 was sent.

(a) Evaluate the probability that a transmitted 1 will be received as a 1 under the
three-digit scheme when p = 0.01, 0.02, or 0.05. Compare this with the
scheme where a single digit is transmitted as a word. Treat the results for
different digits as independent.

(b) Suppose a message, consisting of the two words, a 1 followed by 0, is to be
transmitted using the three-digit scheme. What is the probability that the total
message will be correctly decoded under the majority rule with p = 0.05?
Compare with the scheme where a single digit is transmitted as a word.

(a) The three digits 111 are transmitted. By independence, the sequence 111 has
probability (1 — p)(1 — p)(1 — p) of being received as 111. Also the
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probability of receiving 011 is p(1 — p)(1 — p), so the probability of exactly
one 0 among the three received is 3p(1 — ). Using the majority rule,

P[Correct] = P[transmitted 1 received as 1] = (1 — p)3 + 3p(1 — p)2

p 0.01 0.02 0.05

P[Correct] 0.9997 0.9988 0.9928

All three probabilities are considerably above the corresponding single-digit
scheme probabilities 0.99, 0.98, and 0.95, respectively.

(b) Both of the words 1 and 0 must be received correctly. As in part (a), the
probability that a O is received correctly is also 0.9928. Consequently, using
independence, the probability that the total message is correctly received is
(0.9928)% = 0.986. This improves over the scheme where single digits are
sent for each word since that scheme has only the probability (0.95)2 = 0.903
of correctly receiving the total message.

Redundancy helps improve accuracy, but more digits need to be transmitted,
which results in a significantly lower throughput. [

3.7 Bayes’ Theorem

The general multiplication rules are useful in solving many problems in which the
ultimate outcome of an experiment depends on the outcomes of various intermediate
stages. A manufacturer of tablets receives its LED screens from three different sup-
pliers, 60% from supplier By, 30% from supplier By, and 10% from supplier B3. In
other words, the probabilities that any one LED screens received by the plant comes
from these three suppliers are 0.60, 0.30, and 0.10. Also suppose that 95% of the
LED screens from B, 80% of those from B,, and 65% of those from B3 perform
according to specifications. We would like to know the probability that any one LED
screen received by the plant will perform according to specifications.

If A denotes the event that a LED screen received by the plant performs ac-
cording to specifications, and By, By, and B3 are the events that it comes from the
respective suppliers, we can write

A=AN[B;UByUB3]
=(ANB)U(ANBy )U(ANB3)

where B, By, and B3 are mutually exclusive events of which one must occur. It
follows that A N Bj,A N By, and A N B3 are also mutually exclusive. By the
generalization of the third axiom of probability on page 70, we get

P(A)=P(ANB;)+P(ANBy)+ P(ANB3)

Then, if we apply the second of the general multiplication rules to P(A N By),
P(ANBjy), and P(AN By), we get

P(A)=P(By)-P(A|B1)+P(By) -P(A|By)+ P(B3)-P(A|B3)

and substitution of the given numerical values yields

P(A)=(0.60)(0.95)+ (0.30)(0.80) + (0.10)(0.65)
= 0.875



Figure 3.15

Tree diagram for example
dealing with three suppliers of
LED screens

Rule of total probability

Figure 3.16
Tree diagram for rule of
elimination
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0.95 oA
0.80 oA
" 0.65 oA

for the probability that any one LED screen received by the plant will perform ac-
cording to specifications.

To visualize this result, we have only to construct a tree diagram like that of
Figure 3.15, where the probability of the final outcome is given by the sum of the
products of the probabilities corresponding to each branch of the tree.

In the preceding example there were only 3 possibilities at the intermediate
stage, but if there are n mutually exclusive possibilities By, By, ..., By at the in-
termediate stage, a similar argument will lead to the following result, sometimes
called the rule of elimination or the rule of total probability:

Theorem 3.10 If By, By, ..., B, are mutually exclusive events of which one
must occur, then

P(A)= P(B;) P(A|B;)
i=1

The tree diagram like that of Figure 3.16, where the probability of the final
outcome is again given by the sum of the products of the probabilities corresponding
to each branch of the tree, graphically explains the calculation.

P (A|By) oA
PaB)
P (A[B,) A

To consider a problem that is closely related to the one we have just discussed,
suppose we want to know the probability that a particular LED screen, which is
known to perform according to specifications, came from supplier B3. Symbolically,
we want to know the value of P(B3 | A), and to find a formula for this probability we
first write

P(ANBj3)
P(B3|A)=——2°
P(A)

3
Then, substituting P(B3) - P(A | Bz) for P(ANB3z) and Y P(B;)- P(A | B;) for P(A)
=

in accordance with Theorems 3.8 and 3.10, we get l

P(B3)-P(A|B3)

3

> P(B;)-P(A|B;)
i=1

P(B3|A) =
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Solution

which expresses P(B3 |A) in terms of given probabilities. Substituting the values
from page 84 (or from Figure 3.15), we finally obtain

(0.10)(0.65)

- (0.60)(0.95) 4+ (0.30)(0.80) + (0.10)(0.65)
=0.074

Note that the probability that an LED screen is supplied by B3 decreases from 0.10
to 0.074 once it is known that it performs according to specifications.

The method used to solve the preceding example can easily be generalized to
yield the following formula, called Bayes’ theorem:

P(B3|A)

Theorem 3.11 1If By, By, ..., By, are mutually exclusive events of which one
must occur, then
P(By)-P(A|By)

n

> P(Bj)-P(A|B))

i=1

P(Br|A) =

forr=1,2,...,n.

Note that the expression in the numerator is the probability of reaching A via the
rth branch of the tree and that the expression in the denominator is the sum of the
probabilities of reaching A via the n branches of the tree.

Bayes’ theorem provides a formula for finding the probability that the “effect” A
was “caused” by the event B,. For instance, in our example we found the probabil-
ity that an acceptable LED screen was made by supplier B3. The probabilities P(B;)
are called the prior, or a priori, probabilities of the “‘causes” B;, and in practice it
is often difficult to assign them numerical values. For many years Bayes’ theorem
was looked upon with suspicion because it was used with the often erroneous as-
sumption that the prior probabilities are all equal. A good deal of the controversy
once surrounding Bayes’ theorem has been cleared up with the realization that the
probabilities P(B;) must be determined separately in each case from the nature of
the problem, preferably on the basis of specific knowledge or past experience.

Using Bayes’ theorem

Four technicians regularly make repairs when breakdowns occur on an automated
production line. Janet, who services 20% of the breakdowns, makes an incomplete
repair 1 time in 20; Tom, who services 60% of the breakdowns, makes an incomplete
repair 1 time in 10; Georgia, who services 15% of the breakdowns, makes an incom-
plete repair 1 time in 10; and Peter, who services 5% of the breakdowns, makes an
incomplete repair 1 time in 20. For the next problem with the production line diag-
nosed as being due to an initial repair that was incomplete, what is the probability
that this initial repair was made by Janet?

Let A be the event that the initial repair was incomplete, B that the initial repair was
made by Janet, B, that it was made by Tom, B3 that it was made by Georgia, and
B4 that it was made by Peter.

Substituting the various probabilities into the formula of Theorem 3.11, we get

(0.20)(0.05)
(0.20)(0.05) + (0.60)(0.10) + (0.15)(0.10) + (0.05)(0.05)
=0.114

P(By|A) =
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and it is of interest to note that although Janet makes an incomplete repair only 1
out of 20 times, namely, 5% of the breakdowns she services, more than 11% of the
incomplete repairs are her responsibility. [

Bayes’ Theorem plays an integral part in most schemes for filtering spam. It
gives the probability that a chance message is really spam given the presence of
certain words.

Identifying spam using Bayes’ Theorem
A first step towards identifying spam is to create a list of words that are more likely to
appear in spam than in normal messages. For instance, words like buy or the brand
name of an enhancement drug are more likely to occur in spam messages than in
normal messages. Suppose a specified list of words is available and that your data
base of 5000 messages contains 1700 that are spam. Among the spam messages,
1343 contain words in the list. Of the 3300 normal messages, only 297 contain words
in the list.

Obtain the probability that a message is spam given that the message contains
words in the list.

Let A = [message contains words in list] be the event a message is identified as spam
and let B; = [message is spam] and By = [message is normal]. We use the observed
relative frequencies from the data base as approximations to the probabilities.

1700 3300

P(By) = 3000 — .34 P(By) = 3000 — .66

1343 297
=——=.79 P(A|By) = —— = .09
1700 A152) = 3350
Bayes” Theorem expresses the probability of being spam, given that a message is

identified as spam, as

P(A|By)

PGBy 1 A) P(A|B))P(B))
! P(A|B})P(B})+ P(A| By)P(By)

The updated, or posterior probability, is

79 x .34 2686
79 x 34+ .09 x .66 328

Because this posterior probability of being spam is quite large, we suspect that
this message really is spam. Since P(B;) = .34, or 34% of the incoming messages
are spam, we likely would want the spam filter to remove this message. Existing
spam filer programs learn and improve as you mark your incoming messages spam.

P(By|A) =

3.55 With reference to Figure 3.8, find P(/|D) and (b) Would you expect the probability that a randomly
P(I| D), assuming that originally each of the 500 ma- selected senior would know the second law of
chine parts has the same chance of being chosen for thermodynamics, to be smaller, remain the same,

inspection.

3.56 (a) Would you expect the probability that a randomly

or increase if the person selected is a mechanical
engineering major? Explain.

selected car will need major repairs in the next (c) In Part (a), identify the two events with sym-
year to be smaller, remain the same, or increase if bols A and B and the conditional probability of
you are told it already has high mileage? Explain. interest.
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With reference to Exercise 3.34 and Figure 3.11, as-
sume that each of 150 persons has the same chance of
being selected, and find the probabilities that he or she

(a) lives more than 3 miles from the center of the city
given that he or she would gladly switch to public
mass transportation;

(b) regularly drives his or her car to work given that
he or she lives more than 3 miles from the center
of the city;

(c) would not want to switch to public mass trans-
portation given that he or she does not regularly
drive his or her car to work.

With reference to Figure 3.13, find

(a) P(A|B);

(b) PB|C);

() PANBI|C);

(d) P(BUCI|A);

(e) P(AIBUC);

() PAIBNC);

(g PANBNC|BNC);

(h) PANBNC|BUC).

With reference to the used car example and the proba-

bilities given in Figure 3.9, find

(@) P(M;|P;) and compare its value with that of
P(My);

(b) P(C3|P,) and compare its value with that of
P(G3);

(¢) P(M;|P;NC3)and compare its value with that of
P(M).

With reference to Exercise 3.47, find the probabilities
that the company will get the tender for constructing
an underpass given that

(a) it got the tender for constructing a flyover;
(b) itdid not get the tender for constructing a flyover.

Prove that P(A|B) = P(A) implies that P(B|A) =
P(B) provided that P(A) # 0 and P(B) # 0.

In a certain city, sports bikes are being targeted by
thieves. Assume that the probability of a sports bike
being stolen is 0.09 while the probability is only 0.5
for a regular bike. Taking, as an approximation for all
bikes in that area, the nationwide proportion 0.19 of
sports bikes, find

(a) the probability that a bike will be stolen.
(b) the probability that a stolen bike is a sports bike.

Given that P (A) = 0.60, P (B) = 0.40,and P(ANB) =
0.24, verify that

(@) P(A|B) = P(A);
(b) P(A|B) = P(A);
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(c) P(B|A) = P(B);
(d) P(B|A) = P(B).

Among 40 condensers produced by a machine, 6 are
defective. If we randomly check 5 condensers, what
are the probabilities that

(a) none are defective;

(b) all are defective?

Among 50 students enrolled in a college, 40 had ap-
plied for civil engineering and 10 had applied for me-
chanical engineering. If two students have been en-
rolled in software engineering by mistake, and the
“selection” is random, what are the probabilities that

(a) both had applied for civil engineering;
(b) both had applied for mechanical engineering;

(c) one had applied for civil engineering and one had
applied for mechanical engineering?

A large firm has 85% of its service calls made by a con-
tractor, and 10% of these calls result in customer com-
plaints. The other 15% of the service calls are made by
their own employees, and these calls have a 5% com-
plaint rate. Find the

(a) probability of receiving a complaint.

(b) probability that the complaint was from a cus-
tomer serviced by the contractor.

If P(X) =0.33,P(Y)=0.75,and P(X NY) = 0.30,
are X and Y independent?

If the odds are 5 to 3 that an event M will not occur, 2 to
1 that event N will occur, and 4 to 1 that they will not
both occur, are the two events M and N independent?

Find the probabilities of getting
(a) eight heads in a row with a balanced coin;

(b) three 3’s and then a 4 or a 5 in four rolls of a bal-
anced die;

(c) five multiple-choice questions answered correctly,
if for each question the probability of answering it

correctly is 3

For three or more events which are not independent,
the probability that they will all occur is obtained
by multiplying the probability that one of the events
will occur, times the probability that a second of the
events will occur given that the first event has oc-
curred, times the probability that a third of the events
will occur given that the first two events have oc-
curred, and so on. For instance, for three events we
can write

P(ANBNC)=P(A)-P(B|A)-P(C|ANB)

and we find that the probability of drawing without re-
placement three aces in a row from an ordinary deck



of 52 playing cards is

4 3 2 1
52 51 50 5,525

(a) If six bullets, of which three are blanks, are ran-
domly inserted into a gun, what is the probability
that the first three bullets fired will all be blanks?

(b) In a certain city during the month of May, the
probability that a rainy day will be followed by an-
other rainy day is 0.80 and the probability that a
sunny day will be followed by a rainy day is 0.60.
Assuming that each day is classified as being ei-
ther rainy or sunny and that the weather on any
given day depends only on the weather the day
before, find the probability that in the given city a
rainy day in May is followed by two more rainy
days, then a sunny day, and finally another rainy
day.

(c) A department store which bills its charge-account
customers once a month has found that if a cus-
tomer pays promptly one month, the probabil-
ity is 0.90 that he will also pay promptly the
next month; however, if a customer does not pay
promptly one month, the probability that he will
pay promptly the next month is only 0.50. What
is the probability that a customer who has paid
promptly one month will not pay promptly the
next three months?

(d) If 5 of acompany’s 12 delivery trucks do not meet
emission standards and 4 of the 12 trucks are ran-
domly picked for inspection, what is the probabil-
ity that none of them meets emission standards?

Use the information on the tree diagram of Figure 3.17
to determine the value of

(a) P(Y);
(b) P(X|Y);
) P(X|Y).

Figure 3.17 Diagram for Exercise 3.71

There are over twenty thousand objects orbiting in
space. For a given object, let A be the event that the
charred remains do hit the earth. Suppose experts, us-
ing their knowledge of the size and composition of

3.74
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the object as well as its re-entry angle, determine that
P(A) =0.25.

Next, let B be the event that your city is hit, given
that charred remains reach the earth. The probability
P(B|A) will depend on both the size of your city and
its location relative to the current orbit of the object.
Suppose that, the experts conclude that P(B|A) =
0.0002.

(a) Find the probability that your city is hit with
charred remains.

(b) Change P(B|A) to 0.0004 and repeat the calcula-
tion.

3 An insurance company’s records of 12,299 automo-

bile insurance policies showed that 2073 policy hold-
ers made a claim (Courtesy J. Hickman). Among in-
sured drivers under age 25, there were 1032 claims
out of 5192 policies. For person selected at random
from the policy holders, let A = [Claim was filed] and
B = [Under age 25] .

(a) Fill in the four probabilities, and the marginal to-
tals, in the table

N

(b) Use Bayes’ Theorem to obtain the probability that
the person is under age 25 given that a claim was
filed .

(c) Check your answer using directly from your table
in Part (a) and the definition of P(B|A).

Identity theft is a growing problem in the United
States. According to a Federal Trade Commission Re-
port about 280,000 identity complaints were filed for
2011. Among the 43.2 million persons in the 20-29
year old age group, 56,689 complaints were filed. The
20-29 year old age group makes up proportion .139
of the total population. Use the relative frequencies to
approximate the probability, that for the current year,

(a) a person in the 20-29 age group files an identity
theft complaint.

(b) a person not in the 20-29 age group files an iden-
tity theft complaint. Comment on your answers to
Parts (a) and (b).

(c) a random person will file an identity theft com-
plaint.

(d) If a complaint is filed, what is the probability it
was by someone in the 20-29 age group.

Refer to the example on page 84 but suppose the man-
ufacturer has difficulty getting enough LED screens.
Because of the shortage, the manufacturer had to
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obtain 40% of the screens from the second supplier
and 15% from the third supplier. Find the

(a) probability that a LED screen will meet specifica-
tions.

(b) probability that a LED screen that meets specifi-
cations, was sent by the second supplier.

Refer to Example 31 concerning spam but now sup-
pose that among the 5000 messages, the 1750 spam
messages have 1570 that contain the words on a new
list and that the 3250 normal messages have 300 that
contain the words.

(a) Find the probability that a message is spam given
that the message contains words on the new list.

(b) Would you prefer the new list here or the one in
Example 31?7 Why?

With reference to the Example 30, for a problem diag-
nosed as being due to an incomplete initial repair, find
the probability that the initial repair was made by

(a) Tom;
(b) Georgia;
(c) Peter.

Two firms V and W consider bidding on a road-
building job, which may or may not be awarded de-
pending on the amounts of the bids. Firm V submits
a bid and the probability is 0.8 that it will get the job
provided firm W does not bid. The probability is 0.7
that W will bid, and if it does, the probability that V
will get the job is only 0.4.

(a) What is the probability that V will get the job?

(b) IfV gets the job, what is the probability that W did
not bid?

Engineers in charge of maintaining our nuclear fleet
must continually check for corrosion inside the pipes
that are part of the cooling systems. The inside con-

dition of the pipes cannot be observed directly but a
nondestructive test can give an indication of possible
corrosion. This test is not infallible. The test has prob-
ability 0.7 of detecting corrosion when it is present but
it also has probability 0.2 of falsely indicating internal
corrosion. Suppose the probability that any section of
pipe has internal corrosion is 0.1.

(a) Determine the probability that a section of pipe
has internal corrosion, given that the test indicates
its presence.

(b) Determine the probability that a section of pipe
has internal corrosion, given that the test is
negative.

An East Coast manufacturer of printed circuit boards
exposes all finished boards to an online automated ver-
ification test. During one period, 900 boards were com-
pleted and 890 passed the test. The test is not infallible.
Of 30 boards intentionally made to have noticeable de-
fects, 25 were detected by the test. Use the relative fre-
quencies to approximate the conditional probabilities
needed below.

(a) Give an approximate value for P[Pass test | board
has defects].

(b)

Explain why your answer in part a may be too
small.

(c) Give an approximate value for the probability that
a manufactured board will have defects. In or-
der to answer the question, you need information
about the conditional probability that a good board
will fail the test. This is important to know but was
not available at the time an answer was required.
To proceed, you can assume that this probability
is zero.

(d) Approximate the probability that a board has de-

fects given that it passed the automated test.

Do’s and Don’ts

0<pi

|. Begin by creating a sample space S which specifies all possible outcomes.

2. Always assign probabilities to events that satisfy the axioms of probability.
In the discrete case, the possible outcomes can be arranged in a sequence.
The axioms are then automatically satisfied when probability p; is assigned
to the ith outcome, where

and the probability of any event A is defined as

PA) =

Do’s

and

2

all outcomes in S

pi =1

> b

all outcomes in A
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2. Don’t assign probability to A N B according to special product rule

Review Exercises 91

3. Combine the probabilities of events according to rules of probability.

General Addition Rule: P(AUB)=P(A)+ P(B)— P(ANB)

Rule of the Complement: P(A)=1—P(A)

General Multiplication Rule: P(A N B) = P(A)P(B|A) if P(A) # 0
=P(B)P(A|B)it P(B) # 0

. . P(ANB)
Conditional Probability: P(A|B) = W if P(B) #0

Don’ts

|. Don’t confuse independent events with mutually exclusive events. When A
and B are mutually exclusive, only one of them can occur. Their intersection
is empty and so has probability 0.

P(ANB) = P(A)P(B)

unless the conditions for independence hold. Independence may be plausi-
ble when the events A and B pertain to physically unrelated parts of a large
system and there are no common causes that jointly affect the occurrence
of both events.

3.81 (a) Last year, 425 companies applied for 52 tenders 3.83 With reference to the preceding exercise, express each

floated by the government. This year, you will
be applying for one of 52 similar tenders being
floated, and would like to estimate the probabil-
ity of being allotted one. Give your estimate and
comment on one factor that might influence your
estimate.

(b) In arecent random check of 650 valves at a plant,
39 were defective. For a randomly selected valve
today, what is the probability that it is defective?

3.82 A construction engineer has to inspect 5 construction

sites in a 2-day inspection schedule. He may or may
not be able to visit these sites in two days. He will not
visit any site more than once.

(a) Using two coordinates so that (3, 1), for example,
represents the event that he will visit 3 sites on
Day 1 and 1 site on Day 2, draw a diagram simi-
lar to that of Figure 3.1 showing the points of the
corresponding sample space.

(b) List the points of the sample space that constitutes
the events X, Y, and Z that he will visit only 2 sites
on Day 2, he will visit all 5 sites, and he will visit
more sites on Day 2 than on Day 1.

(c) Which of the three pairs of events, X and Y, Y and
Z, and X and Z, are mutually exclusive?

3.84

3.86

3.87

of the following events symbolically by listing its
elements, and also express it in words:

(a) Y;

(b) XNY;
(c) YUZ;
(d) XUY.

Use Venn diagrams to verify that

(a) ANB=AUB;
(b) AUB= ANB.

The quality of surround sound from four digital movie
systems is to be rated superior, average, or inferior,
and we are interested only in how many of the systems
get each of these ratings. Draw a tree diagram which
shows the 12 different possibilities.

CCTV cameras are to be fitted at six fixed places in a
bank. In how many ways can the six available CCTV
cameras be fitted at the six places in the bank?

In how many ways can 4 out of 11 similar propellers
be fitted on an airplane?
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Refer to Example 12 of motors for miniaturized cap-
sules, but instead suppose that 20 motors are avail-
able and that 4 will not operate satisfactorily, when
placed in a capsule. If the scientist wishes to fab-
ricate two capsules, with two motors each, find the
probability that among the four randomly selected
motors

(a) all four operate satisfactorily;

(b) three operate satisfactorily and one does not.
Given P(A) = 0.30, P(B) = 0.40, and P(AN B) =
0.20, find

(a) P(AUB);

(b) P(AN B);

(c) P(ANB);

(d) P(AUB).

(e) Are A and B independent?

In a sample of 652 engines tested, only 28 of them
have cylinders with a mild leak. Estimate the probabil-
ity that an engine tested will have a leak in its cylinder.

The marketing manager reported to the head engineer
regarding a survey concerning the company’s portable
cleaning tool. He claims that, among the 200 cus-
tomers surveyed, 165 said the product is reliable, 117
said it is easy to use, 88 said it is both reliable and easy
to use, and 33 said it is neither reliable nor easy to use.
Explain why the head engineer should question this
claim.

The probabilities that a satellite launching rocket will
explode during lift-off or have its guidance system fail
in flight are 0.0002 and 0.0005. Assuming indepen-
dence find the probabilities that such a rocket will

(a) not explode during lift-off;

(b) explode during lift-off or have its guidance system
fail in flight;

(c) neither explode during lift-off nor have its guid-
ance system fail in flight.

Given P(A) = 0.40, P(B) = 0.55 and P(A N B) =
0.10, find

(a) P(A|B);
(b) P(A|B);
(©) P(BIA);
(d) P(B|A).

If events A and B are independent, and P(A) = 0.45
and P(B) = 0.20, find

(a) P(ANB);
(b) P(A U B);
(c) PAAUB);
(d) P(BIA).

3.95

The following frequency table shows the classification
of 90 students in their sophomore year of college ac-
cording to their understanding of physics, chemistry,
and mathematics.

Physics

Average Extensive

Chemistry Chemistry

Average Extensive | Average Extensive

Mathematics ~ Average 8 16 12 18

Extensive 14 4 14 4

3.96

3.97

3.98

If a student is selected at random, find the probability
that the student has

(a) an extensive understanding of chemistry;

(b) anextensive understanding of physics and an aver-
age understanding of mathematics and chemistry;

(c) an extensive understanding of any two subjects
and an average understanding of the third;

(d) an extensive understanding of any one subject and
an average knowledge of the other two.

Refer to Exercise 3.95. Given that a student, selected at
random, is found to have an extensive understanding of
physics, what is the probability that the student has

(a) an extensive understanding of chemistry;

(b) an extensive understanding of both chemistry and
mathematics;

(c) an extensive understanding of either chemistry or
mathematics?

An explosion in an LNG storage tank in the process
of being repaired could have occurred as the result of
static electricity, malfunctioning electrical equipment,
an open flame in contact with the liner, or purposeful
action (industrial sabotage). Interviews with engineers
who were analyzing the risks involved led to estimates
that such a explosion would occur with probability
0.25 as a result of static electricity, 0.20 as a result
of malfunctioning electric equipment, 0.40 as a result
of an open flame, and 0.75 as a result of purposeful
action. These interviews also yielded subjective esti-
mates of the prior probabilities of these four causes of
0.30, 0.40, 0.15, and 0.15, respectively. What was the
most likely cause of the explosion?

During the inspection of a rejected integrated circuit
(IC), it was observed that the rejected IC could have an
incorrect circuit, it could be bent, or it could have both
defects. The probability of having an incorrect circuit
is 0.45, the probability of being bent is 0.65, and the
probability of having both defects is 0.25.

(a) For a randomly selected rejected IC, what is the
probability that the IC is not bent but has an in-
correct circuit?



(b) What is the probability that the IC has exactly one

defect?

(c) Given that the IC has one defect, what is the prob-
ability of the IC being bent?

3.99 Amy commutes to work by two different routes A and
B. If she comes home by route A, then she will be
home no later than 6 p.Mm. with probability 0.8, but if

Key Terms
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she comes home by route B, then she will be home no
later than 6 p.m. with probability 0.7. In the past, the
proportion of times that Amy chose route A is 0.4.

(a) What proportion of times is Amy home no later
than 6 p.m.?

(b) If Amy is home after 6 p.M. today, what is the prob-
ability that she took route B?

3.100 Long run relative frequency interpretation of probability. A simulation.

A long series of experiments can be simulated using MINITAB and then the
relative frequencies plotted as in Figure 3.7b.

Dialog box:

To start, enter 0 and 1 in C1, .6 and .4 in C2 to represent the values and the
probabilities.

Label C3 Trial no. and select

Calc > Make Patterned Data > Simple Set of Numbers.

Type C3 in Store, 1000 in last value and 1 in the other three boxes.

Next, label C4 Outcomes and select Cale > Random Data > Discrete.

Type 1000 in Number, C4 in Store, C1 in Values and C2 in Probabilities.
Label C5 Relative frequency and select Cale > Calculator > partial sum.

Type CS in Store and C4 in Expression to read PARS(C4) and then /C3 to read
PARS(C4)/C3.

Click O K.

Select Graph > Scatterplot > With Connect Lines.

Type C5in Y and C3 in X. Click OK.

Change the probability of 1 to .7 and repeat.
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PROBABILITY DISTRIBUTIONS

that are associated with the outcomes of experiments. When inspecting a manufac-
tured product we may be interested only in the number of defectives; in the analysis
of a road test we may be interested only in the average speed and the average fuel con-
sumption; and in the study of the performance of a miniature rechargeable battery we
may be interested only in its power and lifelength. All these numbers are associated with
situations involving an element of chance—in other words, they are values of random

| n most statistical problems we are concerned with one number or a few numbers

variables.

In the study of random variables we are usually interested in their probability distri-
butions, namely, in the probabilities with which they take on the various values in their
range. The introduction to random variables and probability distributions in Section 4.1
is followed by a discussion of various special probability distributions in Sections 4.2, 4.3,
4.6, 4.7, 4.8, and 4.9, and descriptions of the most important features of probability
distributions in Sections 4.4 and 4.5.

4.1 Random Variables

To be more explicit about the concept of a random variable, let us refer again to the
used car example of page 70 and the corresponding probabilities shown in
Figure 3.9. Now let us refer to M| (low current mileage), P; (moderate price), and
Cy (inexpensive to operate) as preferred attributes. Suppose we are interested only
in the number of preferred attributes a used car possesses. To find the probabilities
that a used car will get 0, 1, 2, or 3 preferred attributes, let us refer to Figure 4.1,
which is like Figure 3.9 in Chapter 3 except that we indicate for each outcome the
number of preferred attributes. Adding the respective probabilities, we find that for
0 preferred attributes the probability is

0.07 +0.06 + 0.03 + 0.02 = 0.18
and for one preferred attribute the probability is
0.01 +0.01 4+0.16 +0.10 4- 0.02 4 0.05 + 0.14 4- 0.01 = 0.50
For two preferred attributes, the probability is
0.06 +0.07 4+ 0.02 + 0.09 + 0.05 = 0.29

and for three preferred attributes the probability is 0.03.
These results may be summarized, as in the following table, where x denotes a
possible number of preferred attributes

X | 0 1 2 3




Figure 4.1
Used cars and numbers of
preferred attributes

Random variables
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Number of
preferred
Probability ratings

0.03 3
0.06 2
0.07 2
0.02 2
0.01 1
0.01 1
0.09 2
0.16 1
0.10 1
0.02 1
0.07 0
0.06 0
0.05 2
0.05 1
0.14 1
0.01 1
0.03 0
0.02 0

The numbers 0, 1, 2, and 3 in this table are values of a random variable—the
number of preferred attributes. Corresponding to each elementary outcome in the
sample space there is exactly one value x for this random variable. That is, the ran-
dom variable may be thought of as a function defined over the elements of the sample
space. This is how we define random variables in general; they are functions defined
over the elements of a sample space.

A random variable is any function that assigns a numerical value to each
possible outcome.

The numerical value should be chosen to quantify an important characteristic of the
outcome.

Random variables are denoted by capital letters X, Y, and so on, to distinguish
them from their possible values given in lowercase x, y.

To find the probability that a random variable will take on any one value within
its range, we proceed as in the above example. Indeed, the table which we obtained
displays another function, called the probability distribution of the random vari-
able. To denote the values of a probability distribution, we shall use such symbols as
f(x), g(x), o(y), h(z), and so on. Strictly speaking, it is the function f(x) = P(X = x)
which assigns probability to each possible outcome x that is called the probability
distribution. However, we will follow the common practice of also calling f(x) the
probability distribution, with the understanding that we are referring to the function
and that the range of x values is part of the definition.
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Probability distributions

EXAMPLE |

Solution

Random variables are usually classified according to the number of values they
can assume. In this chapter we shall limit our discussion to discrete random vari-
ables, which can take on only a finite number, or a countable infinity of values;
continuous random variables are taken up in Chapter 5.

Whenever possible, we try to express probability distributions by means of
equations. Otherwise, we must give a table that actually exhibits the correspon-
dence between the values of the random variable and the associated probabilities. For
instance,

1
f(x):E forx=1,2,3,4,5,6

gives the probability distribution for the number of points we roll with a
balanced die.

Of course, not every function defined for the values of a random variable can
serve as a probability distribution. Since the values of probability distributions are
probabilities and one value of a random variable must always occur, it follows that
if f(x) is a probability distribution, then

fx)=0 for all x

and

Do r=1

all x

The probability distribution of a discrete random variable X is a list of the
possible values of X together with their probabilities

f(x) = PIX = x]
The probability distribution always satisfies the conditions

f@=0 and Y fx)=1

all x

Checking for nonnegativity and total probability equals one
Check whether the following can serve as probability distributions:

x—2
@@ fx)= - forx=1,2,3,4

x2
(b) h(x):E forx=0,1,2,3,4

(a) This function cannot serve as a probability distribution because f(1) is
negative.

(b) The function cannot serve as a probability distribution because the sum of the

five probabilities is 3 and not 1. ™

It is often helpful to visualize probability distributions by means of graphs like
those of Figure 4.2. The one on the left is called a probability histogram; the areas



Figure 4.2

Graphs of the probability
distribution of the number of
preferred attributes

Figure 4.3

The cumulative distribution has
jumps corresponding to

f(x) =P[X =x]
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f) f)
0.5 — 0.5 —
0.4 — 0.4 —
0.3 — 0.3 —
0.2 — 0.2 —
0.1+ 0.1 —
— n
o 1 2 3 «x 0o 1 2 3 x
Probability histogram Probability bar chart

of the rectangles are equal to the corresponding probabilities so their heights are
proportional to the probabilities. The bases touch so that there are no gaps between
the rectangles representing the successive values of the random variable. The one
on the right is called a bar chart; the heights of the rectangles are also propor-
tional to the corresponding probabilities, but they are narrow and their width is of no
significance.

Besides the probability f(x) that the value of a random variable is x, there is an
important related function. It gives the probability F (x) that the value of a random
variable is less than or equal to x. Specifically,

F(x)=P[X <x] forall —00 <x < o0

and we refer to the function F'(x) as the cumulative distribution function or just
the distribution function of the random variable. For any value x, it adds up, or
accumulates, all the probability assigned to that value and smaller values.

Referring to the used car example and basing our calculations on the table on
page 104, we get

X | 0 1 2 3
F(x) | 0.18  0.68  0.97 1.00

for the cumulative distribution function of the number of preferred attributes.

The cumulative distribution jumps the amount f(x) at x = 0, 1,2, 3 and is
constant between the values in the table as illustrated in Figure 4.3. The solid dots
emphasize the fact that F(x) takes the upper value at jumps and this makes it con-
tinuous from the right.

F(x) f(x)
1.0 - — 1.0 -
0.8 —| 0.8 —|
0.6 - G0 0.6 -
0.4 —| 0.4 —|
0.2 | o) 0.2 —
- | | I x
o 1 2 3 0o 1 2 3
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EXAMPLE 2

Solution

EXAMPLE 3

4.2 The Binomial Distribution

Many statistical problems deal with the situations referred to as repeated trials. For
example, we may want to know the probability that 1 of 5 rivets will rupture in a
tensile test, the probability that 9 of 10 DVR players will run at least 1,000 hours, the
probability that 45 of 300 drivers stopped at a roadblock will be wearing seatbelts,
or the probability that 66 of 200 television viewers (interviewed by a rating service)
will recall what products were advertised on a given program. To borrow from the
language of games of chance, we might say that in each of these examples we are
interested in the probability of getting x successes in # trials, or, in other words, x
successes and n — x failures in n attempts.

There are common features to each of the examples. They are all composed of
a series of trials which we refer to as Bernoulli trials if the following assumptions
hold.

1. There are only two possible outcomes for each trial (arbitrarily called
“success” and “failure,” without inferring that a success is necessarily
desirable).

2. The probability of success is the same for each trial.
3. The outcomes from different trials are independent.

If the assumptions cannot be met, the theory we develop does not apply.

Checking the adequacy of the Bernoulli trials assumptions

Can the following be treated as Bernoulli trials? Drivers stopped at a roadblock will
be checked for failure to wear a seatbelt.

There are only two outcomes, and we call not wearing a seatbelt a success. (Success
in this context does not mean success in life.)

If all cars are treated alike, their drivers would all have the same probability
of not wearing a seatbelt. If drivers are grouped by age, you may need different
probabilities for persons under 20 than for those 30 to 40 years old. Then you would
not have Bernoulli trials.

The results on seatbelt wear, for different drivers, should be independent. There
is no obvious common cause. If someone caught without a seatbelt were to inform
oncoming cars about the checkpoint, that would introduce dependence. [

In the problems we study in this section, we add the additional assumption that
the number of trials is fixed in advance.

4. There are a fixed number n of Bernoulli trials conducted.

Binomial probability distribution n =3

When a relay tower for wireless phone service breaks down, it quickly becomes an
expensive proposition for the phone company, and the cost increases with the time
it is inoperable. From company records, it is postulated that the probability is 0.90
that the breakdown can be repaired within one hour. For the next three breakdowns,
on different days and different towers,

(a) List all possible outcomes in terms of success, S, repaired within one hour, and
failure, F, not repaired within one hour.

(b) Find the probability distribution of the number of successes, X, among the
3 repairs.



Solution

Binomial distribution

Sec 4.2 The Binomial Distribution 929

(a) We write FSS for the outcome where the first repair is not made within one
hour and the second and third are successful. The 2 x 2 x 2 = 8 possible
outcomes can be systematically arranged as follows:

FFF FFS FSS SSS
FSF SFS
SFF SSF

X=0 X=1 X=2 X=3

where the number of successes X is the same for each outcome in a column.
This value is recorded at the bottom of the column.

(b) The results of repairs on different days and different towers should be
independent. Also, the probability of success 0.90 is the same for each repair.
Therefore, the probability that X = 01is 0.1 x 0.1 x 0.1 = 0.001. Next, the
probability of FFSis 0.1 x 0.1 x 0.9 = 0.009 and both SF'S and FSS have the
same probability. Consequently, the probability that X = 11is 3 x 0.009 =
0.027. Note that the number of outcomes where X = 1 is just the number of
ways to select 1 or 3 trials for an S and the others are F.

By similar reasoning, the probability that X = 2 is

3(0.1 x0.9x0.9) =0.243 = (;) (0.9)% (0.1)!
Finally, the probability that X = 3, no repair takes over one hour, is
0.9 x 0.9 x 0.9 = 0.729 = (g) 0.9)° (0.1)°
All of these probabilities can be expressed by the formula
fx) = P(X =x) = C’C) 0.9 (0.1)>*  forx=0,1,2,3

This is the probability distribution for a binomial random variable when the
success probability is p = 0.9 and there are n = 3 trials. u

Let X be the random variable that equals the number of successes in n trials.
To obtain probabilities concerning X, we proceed as follows: If p and 1 — p are the
probabilities of success and failure on any one trial, then the probability of getting x
successes and n — x failures, in some specific order, is p*(1 — p)"~*. Clearly, in this
product of p’s and (1 — p)’s there is one factor p for each success, one factor 1 — p for
each failure. The x factors p and n—x factors 1— p are all multiplied together by virtue
of the generalized multiplication rule for more than two independent events. Since
this probability applies to any point of the sample space that represents x successes
and n — x failures (in any specific order), we have only to count how many points of
this kind there are, and then multiply p*(1 — p)"*~* by this. The number of ways in

. . . . . (n
which we can select the x trials on which there is to be a success is ) the number

of combinations of x objects selected from a set of n objects. Multiplying, we arrive

at the following result:

b(x;n,p):(Z) pr(1—p)y* x=0,1,2,...,n
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Figure 4.4

Binomial distributions for
n = 5and(a) p = 0.3
®)p=05@C)p=07

EXAMPLE 4

Solution

This probability distribution is called the binomial distribution because forx= 0, 1,
2, ..., and n, the values of the probabilities are the successive terms of the binomial

expansion of [p+ (1 — p)]". For the same reason, the combinatorial quantities

are referred to as binomial coefficients. Actually, the preceding equation defines a
family of probability distributions, with each member characterized by a given value
of the parameter p and the number of trials n.

Important information about the shape of binomial distributions is shown in
Figures 4.4. First, if p = 0.50, the equation for the binomial distribution is

b(x; n, 0.50) = (Z) (0.5)"

and since

it follows that b( x; n, 0.50) = b(n — x; n, 0.50). For any n, the binomial distribu-
tion with p = 0.5 is a symmetrical distribution. This means that the probability
histograms of such binomial distributions are symmetrical, as is illustrated in Fig-
ure 4.4(b). Note, however, that if p is less than 0.50, it is more likely that X will be
small rather than large compared to n/2 and that the opposite is true if p is greater
than 0.50. This is illustrated in Figure 4.4(a) and (c), showing binomial distributions
with n = 5 and p = 0.30 and p = 0.70. These two are mirror images of each other
as can be verified more generally in Exercise 4.7.

b(x;5,0.3) b(x;5,0.5) b(x;5,0.7)
0.4 — 0.4 0.4
0.3 0.3 - 0.3 -
0.2 0.2 - 0.2 -
0.1 - 0.1+ 0.1 —
0 - X 0- X 0- X
01 2 3 45 01 2 3 4°5 01 2 3 45

(a) (b) (©

Finally, a probability distribution that has a probability bar chart like those in
Figure 4.4(a) and 4.4(c) is said to be a long-tailed or skewed distribution. It is said
to be a positively skewed distribution if the tail is on the right, and it is said to be
negatively skewed if the tail is on the left.

Evaluating binomial probabilities

It has been claimed that in 60% of all solar-heat installations the utility bill is reduced
by at least one-third. Accordingly, what are the probabilities that the utility bill will
be reduced by at least one-third in

(a) four of five installations;
(b) at least four of five installations?

(a) Substituting x =4, n =5, and p = 0.60 into the formula for the binomial
distribution, we get

b(4;5,0.60) = < i) (0.60)*(1 — 0.60)°—*

= 0.259



EXAMPLE 5

Solution

EXAMPLE 6
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(b) Substituting x = 5,n =5, and p = 0.60 into the formula for the binomial
distribution, we get

b(5;5,0.60) = (2) (0.60)°(1 — 0.60)5_5

=0.078
and the answer is b(4; 5, 0.60) 4+ b(5; 5,0.60) = 0.259 + 0.078 = 0.337. m

If n is large, the calculation of binomial probabilities can become quite tedious.
Many statistical software programs have binomial distribution commands (see Ex-
ercises 4.30 and 4.31), as do some statistical calculators. Otherwise it is convenient
to refer to special tables. Table 1 at the end of the book gives the values of

X
B(x; n,p)=Zb(k; n, p) forx=0,1,2,...,n
k=0

forn = 2ton = 20 and p = 0.05,0.10,0.15, ..., 0.90, 0.95. We tabulated the
cumulative probabilities rather than the values of b(x; n, p), because the values
of B(x; n, p) are the ones needed more often in statistical applications. Note, how-
ever, that the values of b( x; n, p) can be obtained by subtracting adjacent entries in
Table 1. Because the two cumulative probabilities B( x; n, p) and B(x—1; n, p) differ
by the single term b(x; n, p)

b(x; n, p) = B(x; n, p) —B(x—1; n, p)

where B(—1) = 0. The examples that follow illustrate the direct use of Table 1 and
the use of this relationship.

Evaluating cumulative binomial probabilities

If the probability is 0.05 that a certain wide-flange column will fail under a given
axial load, what are the probabilities that among 16 such columns

(a) at most two will fail;
(b) at least four will fail?

(a) Table 1 shows that B(2; 16, 0.05) = 0.9571.

(b) Since
16
Z b(x;16,0.05) =1 — B(3; 16, 0.05)
x=4
Table 1 yields 1 — 0.9930 = 0.0070. L

Finding a binomial probability using cumulative binomial
probabilities

Sport stories and financial reports, written by algorithms based on artificial intelli-
gence, have become common place. One company fed its algorithm with box scores
and play-by-play information and created over one million on-line reports of little
league games in 201 1. They now write many stories on the Big Ten Network site.'

IS. Levy, “The Rise of the Robot Reporter”, Wired, May, (2012) pp.
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Solution

Figure 4.5

The calculation of

P(8< X <11)

EXAMPLE 7

Solution

Suppose that the algorithm, or robot reporter, typically writes proportion 0.65
of the stories on the site. If 15 new stories are scheduled to appear on a web site next
weekend, find the probability that

(a) 11 will be written by the algorithm.
(b) at least 10 will be written by the algorithm
(c) between 8 and 11 inclusive will be written by the algorithm.

(a) Using the relationship to cumulative probabilities and then looking up these
probabilities in Table 1, we get

b(11,15,0.65) = B(11,15,0.65) — B(10,15,0.65)
= 0.8273 — 0.6481 = 0.1792

(b) 1 — B(9,18,0.65) = 1 — 0.4357 = 0.5643

(¢) B(11,15,0.65) — B(7,15,0.65) = 0.8273 — 0.1132 = 0.7141
This last calculation, depicted in Figure 4.5, visually demonstrates the
calculation of the probability of an interval as the cumulative probabilities up
to the upper value minus the cumulative probabilities up to one less than the
lower limit.

[ Using R: (a) dbinom(11, 15, .65) (b) 1 - pbinom(9, 15, .65)
(c) pbinom(11, 15, .65) - pbinom(7, 15, .65) ]

b(x; 15,0.65) b(x;15,0.65) b(x;15,0.65)
2 2] 2 .
1 1 14

0 4 ..W.x 0 4+ ..W.x 0 ....!........W.x
0 5 10 15 0 5 10 15 0 5 10 15
P(8<X <11) = B(11;15,0.65) — B(7; 15, 0.65) (]

The following example illustrates the use of the binomial distribution in a prob-
lem of decision making.

A binomial probability to guide decision making

A manufacturer of external hard drives claims that only 10% of his drives require
repairs within the warranty period of 12 months. If 5 of 20 of his drives required
repairs within the first year, does this tend to support or refute the claim?

Let us first find the probability that 5 or more of 20 of the drives will require repairs
within a year when the probability that any one will require repairs within a year is



Hypergeometric
distribution

EXAMPLE 8
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0.10. Using Table 1, we get

20
> b(x; 20,0.10) = I — B(4; 20,0.10)
x=5

=1-0.9568

= 0.0432

Since this probability is very small, it would seem reasonable to reject the hard drive
manufacturer’s claim. u

4.3 The Hypergeometric Distribution

Suppose that we are interested in the number of defectives in a sample of n units
drawn without replacement from a lot containing N units, of which a are defective.
Let the sample be drawn in such a way that at each successive drawing, whatever
units are left in the lot have the same chance of being selected. The probability that

the first drawing will yield a defective unit is ]%, but for the second drawing it is

;—11 or ﬁ, depending on whether or not the first unit drawn was defective.
Thus, the trials are not independent, the third assumption underlying the binomial
distribution is not met, and the binomial distribution does not apply. Note that the
binomial distribution would apply if we do sampling with replacement, namely, if
each unit selected for the sample is replaced before the next one is drawn.

To solve the problem of sampling without replacement (that is, as we
originally formulated the problem), let us proceed as follows: The x successes

(defectives) can be chosen in (a) ways, the n — x failures (nondefectives)

. a .
can be chosen in (n —x) ways, and hence, x successes and n — x failures

can be chosen in (z) (11\1[:;1) ways. Also, n objects can be chosen from

a set of NV objects in <IZ) ways, and if we consider all the possibilities as equally

likely, it follows that for sampling without replacement the probability of getting
“x successes in n trials” is

where x cannot exceed a and n — x cannot exceed N — a. This equation defines the
hypergeometric distribution, whose parameters are the sample size n, the lot size
(or population size) N, and the number of “successes” in the lot a.

Calculating a probability using the hypergeometric distribution

An Internet-based company that sells discount accessories for cell phones often
ships an excessive number of defective products. The company needs better control
of quality. Suppose it has 20 identical car chargers on hand but that 5 are defective.



104

Chapter 4 Probability Distributions

Solution

EXAMPLE 9

Solution

If the company decides to randomly select 10 of these items, what is the probability
that 2 of the 10 will be defective?

Substituting x = 2, n = 10,a = 5, and N = 20 into the formula for the hypergeo-
metric distribution, we get

(5> ( 15)
2 )\ 8 ) 10x6.435
h(2; 10,5, 20) = == —0.348

20 184,756
10

In the preceding example, n was not small compared to N, and if we had made

the mistake of using the binomial distribution with n = 10 and p = i = 0.25
to calculate the probability of two defectives, the result would have been 0.282,
which is much too small. However, when 7 is small compared to N, less than ﬁ,
the composition of the lot is not seriously affected by drawing the sample without
replacement, and the binomial distribution with the parameters n and p = ]% will
yield a good approximation.

A numerical comparison of the hypergeometric and
binomial distributions

Repeat the preceding example but with 100 car chargers, of which 25 are defective,
by using

(a) the formula for the hypergeometric distribution;

(b) the formula for the binomial distribution as an approximation.

(a) Substituting x = 2,n = 10, a = 25, and N = 100 into the formula for the
hypergeometric distribution, we get

25 75
2 8
h(2; 10, 25,100) = ———= = 0.292
100
10
N 25 )
(b) Substitutingx =2,n =10, and p = 100 = 0.25 into the formula for the
binomial distribution, we get

10
2

= 0.282 o

b(2; 10,0.25) = ( >(0.25)2(1 —0.25)10-2

Observe that the difference between the two values is only 0.010. In general, it
can be shown that h(x; n, a, N) approaches b(x; n, p) with p = N when N — o0,
and a good rule of thumb is to use the binomial distribution as an approximation to
the hypergeometric distribution if n < ﬁ

Although we have introduced the hypergeometric distribution in connection
with a problem of sampling inspection, it has many other applications. For instance,
it can be used to find the probability that 3 of 12 homemakers prefer Brand A deter-
gent to Brand B, if they are selected from among 200 homemakers among whom 40
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actually prefer Brand A to Brand B. Also, it can be used in connection with a problem
of selecting industrial diamonds, some of which have superior qualities and some
of which do not, or in connection with a problem of sampling income tax returns,
where a among N returns filed contain questionable deductions, and so on.

Exercises

4.1

4.2

4.3

44

4.5

4.6

4.7
4.8
4.9

Suppose that a probability of %6 is assigned to each
point of the sample space of part (a) of Exercise 3.1
on page 65. Find the probability distribution of the
total number of units of black and white cement that
are adulterated.

An experiment consists of five draws from a pack of
cards. Denoting the outcomes BRRBR, BRRRB,. . .,
for black and red cards and assuming that all 32 out-
comes are equally likely, find the probability for the
total number of red cards.

Determine whether the following can be probability
distributions of a random variable which can take on
only the values 1, 2, 3, and 4.

@@ f(1)=0.19, f(2)=027, f(3)=0.27, and
f(4) =027,

(b) f(1)=0.24, f(2)=024, f(3)=0.24, and
f(4) = 0.24;

() f(1)=035 f(2)=033, f(3)=0.34, and
F(4) = —0.02.

Check whether the following can define probability
distributions and explain your answers.

1

@ f() =7 forx = 10,11, 12,13
2

(b) fx) = ?x forx=0,1,2,3,4,5
x—15

(c) f(x)=T forx=38,9,10, 11, 12
1+ x2

@ fx) = 6l forx=20,1,2,3,4,5

k
Given that f(x) = o is a probability distribution for

X
a random variable that can take on the values x =
0,1,2,3, and 4, find k.

With reference to Exercise 4.5, find an expression for
the distribution function F(x) of the random variable.

Prove that b(x; n, p) = b(n —x; n, 1 — p).
Prove that B(x; n,p) =1—B(n—x—1; n, 1 — p).
Do the assumptions for Bernoulli trials appear to hold?

Explain. If the assumptions hold, identify success and
the probability of interest.

(a) A TV ratings company will use their electronic
equipment to check a sample of homes around the
city to see whether or not each has a set tuned to
the mayor’s speech on the local channel.

4.10

4.11

4.12

4.13

(b) Among 6 nuclear power plants in a state, 2 have
had serious violations in last five years. Two plants
will be selected at random, one after the other, and
the outcome of interest is a serious violation in the
last five years.

What conditions for the binomial distribution, if any,
fail to hold in the following situations?

(a) For each of a company’s eight production facili-
ties, record whether or not there was an accident in
the past week. The largest facility has three times
the number of production workers as the smallest
facility.

(b) For each of three shifts, the number of units pro-
duced will be compared with the long-term av-
erage of 560 and it will be determined whether
or not production exceeds 560 units. The second
shift will know the result for the first shift before
they start working, and the third shift will start
with the knowledge of how the first two shifts
performed.

Which conditions for the binomial distribution, if any,
fail to hold in the following situations?

(a) The number of persons having a cold at a family
reunion attended by 30 persons.

(b) Among 8 projectors in the department office, 2 do
not work properly but are not marked defective.
Two are selected and the number that do not work
properly will be recorded.

Use Table 1, or software, to find
(a) B(8;16,0.40);
(b) b(8; 16, 0.40);
(¢) B(9;12,0.60);
(d) b(9;12,0.60);

20
() > b(k;20,0.15);
k=6

9
® 3 b(k: 9,0.70).
k=6

Use Table 1, or software, to find
(a) B(7;18,0.45);
(b) b(7;18,0.45);
(c) B(8;11,0.95);
(d) b(8;11,0.95);
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4.14

4.15

4.16

4.17

4.18

4.19

4.20
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11
@ 3 b(k; 11,0.35);
k=4

4
) > b(k; 10, 0.30).
k=2

Rework the decision problem in Example 7, suppos-
ing that only 3 of the 20 hard drives required repairs
within the first year.

Voltage fluctuation is given as the reason for 80% of all
defaults in nonstabilized equipment in a plant. Use the
formula for the binomial distribution to find the prob-
ability that voltage fluctuation will be given as the rea-
son for three of the next eight defaults.

If the probability is 0.40 that steam will condense in a
thin-walled aluminum tube at 10 atm pressure, use the
formula for the binomial distribution to find the proba-
bility that, under the stated conditions, steam will con-
dense in 4 of 12 such tubes.

During the assembly of an exhaust valve, sufficient dis-
tance must be maintained between the valve tip and
the cylinder wall. If 85% of valve assemblies have the
required distance, use Table 1 or software to find the
probabilities that among 20 such valves:

(a) atleast 15 will have the required distance;
(b) at most 10 will have the required distance;
(c) exactly 18 will have the required distance.

The probability that the noise level of a wide-band
amplifier will exceed 2 dB is 0.05. Use Table 1 or soft-
ware to find the probabilities that among 12 such am-
plifiers the noise level of

(a) one will exceed 2 dB;
(b) at most two will exceed 2 dB;
(c) two or more will exceed 2 dB.

A milk processing unit claims that, of the processed
milk converted to powdered milk, 95% does not
spoil. Find the probabilities that among 15 samples of
powdered milk

(a) all 15 will not spoil;
(b) at most 12 will not spoil;
(c) atleast 9 will not spoil.

A quality-control engineer wants to check whether (in
accordance with specifications) 95% of the electronic
components shipped by his company are in good work-
ing condition. To this end, he randomly selects 15 from
each large lot ready to be shipped and passes the lot if
the selected components are all in good working con-
dition; otherwise, each of the components in the lot is
checked. Find the probabilities that the quality-control
engineer will commit the error of

(a) holding a lot for further inspection even though
95% of the components are in good working
condition;

4.21

4.22

4.24

4.25

4.26

(b) letting a lot pass through without further inspec-
tion even though only 90% of the components are
in good working condition;

(c) letting a lot pass through without further inspec-
tion even though only 80% of the components are
in good condition.

A food processor claims that at most 10% of her jars of
instant coffee contain less coffee than claimed on the
label. To test this claim, 16 jars of her instant coffee
are randomly selected and the contents are weighed;
her claim is accepted if fewer than 3 of the jars contain
less coffee than claimed on the label. Find the proba-
bilities that the food processor’s claim will be accepted
when the actual percentage of her jars containing less
coffee than claimed on the label is

(a) 5%; (b) 10%:; (¢) 15%; (d) 20%.
Refer to Exercise 4.2.

(a) Determine the cumulative probability distribution
F(x).

(b) Graph the probability distribution of f(x) as a bar
chart and below it graph F(x).

Four emergency radios are available for rescue
workers but one does not work properly. Two ran-
domly selected radios are taken on a rescue mission.
Let X be the number that work properly between the
two.

(a) Determine the probability distribution f(x) of X.

(b) Determine the cumulative probability distribution
F(x)of X.

(c) Graph f(x) as a bar chart and below it graph F'(x).

Suppose that, next month, the quality control division
will inspect 30 units. Among these, 20 will undergo
a speed test and 10 will be tested for current flow. If
an engineer is randomly assigned 4 units, what are the
probabilities that

(a) none of them will need a speed test?
(b) only 2 will need a speed test?

(c) atleast 3 will need a speed test?

A maker of specialized instruments receives shipments
of 24 circuit boards. Suppose one shipment contains 4
that are defective. An engineer selects a random sam-
ple of size 4. What are the probabilities that the sample
will contain

(a) 0O defective circuit boards?
(b) 1 defective circuit board ?
(c) 2 or more defective circuit boards?

If 6 of 18 new buildings in a city violate the building
code, what is the probability that a building inspector,
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4.28

4.29

who randomly selects 4 of the new buildings for in-
spection, will catch

(a) none of the buildings that violate the building
code?

(b) 1 of the new buildings that violate the building
code?

(c) 2 of the new buildings that violate the building
code?

(d) at least 3 of the new buildings that violate the
building code?

Among the 13 countries that an international trade fed-
eration is considering for their next 4 annual confer-
ences, 6 are in Asia. To avoid arguments, the selection
is left to chance. If none of the countries can be
selected more than once, what are the probabilities
that

(a) all the conferences will be held in Asia?
(b) none of the conferences will be held in Asia?

A shipment of 120 burglar alarms contains 5 that are
defective. If 3 of these alarms are randomly selected
and shipped to a customer, find the probability that the
customer will get one bad unit by using

(a) the formula for the hypergeometric distribution;

(b) the formula for the binomial distribution as an
approximation.

Refer to Exercise 4.24 but now suppose there will be
75 units among which 45 will need to undergo a speed
test and 30 will be tested for current flow. Find the
probability that, among the four inspections assigned
to the engineers, 3 will be speed tests and 1 will not,
by using

(a) the binomial distribution as an approximation;

(b) the hypergeometric distribution.
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Binomial probabilities can be calculated using
MINITAB.

Dialog box:

Calc > Probability Distribution > Binomial
Choose Probability.

Enter 7 in Number of trials and .33 in Probability
of success.

Choose Input constant and enter 2.

Click OK.

Output:
Probability Density Function
Binomial with n = 7 and p = 0.33
X P(X=x)
2 0.308760
Find the binomial probabilities for x = 5, 10, 15 and
20 when n=27 and p = 0.47.

Cumulative binomial probabilities can be calculated
using MINITAB.

Dialog Box:

Calc > Probability Distribution > Binomial
Choose Cumulative Distribution.

Enter 7 in Number of trials and .33 in Probability
of success.

Choose Input constant and enter 2.

Click OK.

Output:
Cumulative Distribution Function
Binomial with n = 7 and p = 0.33
X P(X <=x)
2 0.578326
Find the cumulative binomial probabilities x = 5, 10,
15 and 20 when n = 27 and p = 0.47.

4.4 The Mean and the Variance of a Probability
Distribution

Besides the binomial and hypergeometric distributions, there are many other prob-
ability distributions that have important engineering applications. However, before
we go any further, let us discuss some general characteristics of probability
distributions.

One such characteristic, that of the symmetry or skewness of a probability dis-
tribution, was illustrated in Figure 4.4; two other characteristics are apparent in Fig-
ure 4.6, which shows the probability histograms of two binomial distributions. One
of these binomial distributions has the parameters n = 4 and p = 1/2, and the other
has the parameters n = 16 and p = 1/2. Essentially, these two probability distribu-
tions differ in two respects. The first probability distribution is centered about x = 2,
whereas the other (whose histogram is shaded) is centered about x = 8, and we say
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Figure 4.6
Probability histograms of two
binomial distributions

Mean of discrete
probability distribution
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that the two distributions differ in their location. Another distinction is that the his-
togram of the second distribution is broader, and we say that the two distributions
differ in variation. To make such comparisons more specific, we shall introduce
in this section two of the most important statistical measures, describing the loca-
tion and the variation of a probability distribution—the mean and the variance,
respectively.

The mean of a probability distribution is simply the mathematical expectation of
arandom variable having that distribution. If arandom variable X takes on the values
X1, Xa, ..., OI Xz, with the probabilities f(x;), f(x2), ..., and f(x), its mathemat-
ical expectation or expected value is

Xy fOe) +x0 - f() 4+ x5 - fxg) = Y (value) x (probability)

using the ) notation.
The mean of a probability distribution is denoted by the Greek letter i« (mu).
Alternatively, the mean of a random variable X, or its probability distribution,
is called its expected value and is denoted by £ (X ). Both i and E (X ) refer to the
same quantity.

n=E(X)

D xe f(x)

all x

The mean of a probability distribution measures its center in the sense of an
average, or by analogy to physics, in the sense of a center of gravity. Note that the
above formula for u is, in fact, that for the first moment about the origin of a
discrete system of masses f(x) arranged on a weightless straight line at distances x
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from the origin. We do not have to divide here by

> @

all x

as we do in the usual formula for the x-coordinate of the center of gravity, since the
sum equals 1 by definition.

The mean number of heads in three tosses of a fair coin

Find the mean of the probability distribution of the number of heads obtained in
3 flips of a balanced coin.

1 33 1
The probabilities for 0, 1, 2, or 3 heads are 33 § and — as can easily be verified
by counting equally likely possibilities or by using the formula for the binomial
distribution withn = 3 and p = 7 Thus,
1 3 3 1 3
=0.-- 1. — 2. — 3. = u
n=g Tl g TR g T

The mean number of preferred used car attributes

With reference to the used car example and the probabilities given on page 105, find
the mean of the probability distribution of the number of preferred attributes.

Substituting x = 0, 1, 2, and 3 and the corresponding probabilities into the formula
for u, we get

u=0(0.18) 4+ 1(0.50) + 2 (0.29) + 3 (0.03)
=1.17 [ ]

Returning to the second probability distribution of Figure 4.6, we could find its
mean by calculating all the necessary probabilities (or by looking them up in Table 1)
and substituting them into the formula for x. However, if we reflect for a moment,
we might argue that there is a 50-50 chance for a success on each trial, there are 16
trials, and it would seem reasonable to expect 8 heads and 8 tails (in the sense of a
mathematical expectation). Similarly, we might argue that if a binomial distribution
has the parameters n = 200 and p = 0.20, we can expect a success 20% of the time
and, hence, on the average 200(0.20) = 40 successes in 200 trials. These two values
are, indeed, correct, and it can be shown in general that

for the mean of a binomial distribution. To prove this formula, we substitute the
expression that defines b(x; n, p) into the formula for u, and we get

n

n! ¥ _
— L 1_ n—x
% );) X x!(n_x)!p( p)

Then, making use of the fact that
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EXAMPLE 12

Solution

Mean of hypergeometric
distribution

EXAMPLE 13

Solution

and n! = n(n — 1)!, we factor out n and p to obtain

(n—1)! -1 n—x
h=n PZ ey A

where the summation starts with x = 1 since the original summand is zero for x = 0.
If wenowlety =x—1and m = n — 1, we obtain

p=n pZ pPa—py"

and this last sum can easily be recognized as that of all the terms of the binomial
distribution with the parameters m and p. Hence, this sum equals 1 and it follows
that © = np.

Using i = np to find the mean number of heads in three tosses

Find the mean of the probability distribution of the number of heads obtained in
3 flips of a balanced coin.

1 1 3
For a binomial distribution withn =3 and p= -, weget u =3 - 3 = 5 and this
agrees with the result obtained on page 109. [

The formula u© = np applies, of course, only to binomial distributions. For
other special distributions, we can express the mean in terms of their parameters.
For instance, for the mean of the hypergeometric distribution with the parameters
n, a, and N, we can write

a
=n-.-—
H N

In Exercise 4.43, the reader will be asked to derive this formula by a method similar
to the one we used to derive the formula for the mean of a binomial distribution.

Using the formula for the mean of a hypergeometric distribution

With reference to Example 8 in which 5 of 20 cell phone chargers are defective, find
the mean of the probability distribution of the number of defectives in a sample of
10 randomly chosen for inspection.

Substituting n = 10, @ = 5, and N = 20 into the above formula for 1, we get

5
=10- =25
20

In other words, if we inspect 10 of the chargers, we can expect 2.5 defectives, where
expect is to be interpreted in the sense, it represents the long-run average number
of defectives if 10 chargers are repeatedly selected from 20 chargers of which 5 are
defective. |

To study the second of the two properties of probability distributions mentioned
on page 118, their variation, let us refer again to the two probability distributions of
Figure 4.6. For the one where n = 4, there is a high probability of getting values close
to the mean, but for the one where n = 16, there is a high probability of getting values
scattered over considerable distances away from the mean. Using this property, it
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may seem reasonable to measure the variation of a probability distribution with the
quantity

Y =) f)

all x

namely, the average amount by which the values of the random variable deviate from
the mean. Unfortunately,

Yox—p) f@ =) x f0) =Y p-fx)

all x all x all x

=M—M-Zf(X)=M—M=0

all x

so that this expression is always equal to zero. However, since we are really inter-
ested in the magnitude of the deviations x — x and not in their signs, it suggests itself
that we average the absolute values of these deviations from the mean. This would,
indeed, provide a measure of variation, but on purely theoretical grounds we prefer
to work instead with the squares of the deviations from the mean. These quantities
are also nonnegative, and their average is indicative of the spread or dispersion of
a probability distribution. We thus define the variance of a probability distribution
f(x), or that of the random variable X which has that probability distribution, as

o2 =" (x—pw?- fx)

all x

where o is the lowercase Greek letter for s. This measure is not in the same units
(or dimension) as the values of the random variable, but we can adjust for this by
taking the square root. This results in a measure of variation that is expressed in the
same units in which the random variable is expressed. The standard deviation is
defined as

o= Y (x—w? fx)

all x

Calculating the standard deviations of two probability distributions

Compare the standard deviations of the two probability distributions of Figure 4.6,
on page 118.

1 1
Since u = 4 - — = 2 for the binomial distribution withn = 4 and p = > we find
that the variance of this probability distribution is

1 4 6

2 2 2 2

62 =(0=2)Y —4+(1 =2 4+2=-2)%.—
( ) 15+( ) 15+( ) 16

4 1
322 —4+@4-2?% —=1
TG =27 ¢ +( T
and, hence, that its standard deviation is o = 1. Similarly, it can be shown that for
the other distribution o = 2, and we find that the second (shaded) distribution with
the greater spread also has the greater standard deviation. [



112

Chapter 4 Probability Distributions

An alternative formula for variance, that the reader is asked to verify in Exer-
cise 4.49, sometimes simplifies the calculation of variance.

Computing formula
for variance

02

= > f) -
all x
= E[X*] - u?

whereE[Xz]is defined as Z %2 f(x).

all x

D N IJNHMEY Calculating variance using the alternative computing formula

Use the preceding computing formula to determine the variance of the probability
distribution of the number of points rolled with a balanced die.

1

Solution  Since f(x) = 3 forx=1,2,3,4,5, and 6, we get

R I S I D P
H= 6 6 6 6
7
)
1 1 | | 1 1
2 2 2 2 2 2 2
E(X2)=12.2 42 3 42.245 62. =
(X7) 5 6+ 6+ 6+ 6+ .
91
T 6

and, hence,

2 A

2
Ty o» m
6 \2 12

EXAMPLE 16 The mean and variance of the number of incorrect addresses

As part of a quality-improvement project focused on the delivery of mail at a depart-
ment office within a large company, data were gathered on the number of different
addresses that had to be changed so the mail could be redirected to the correct mail
stop. The distribution, given in the first two columns of the table below, describes
the number of redirects per delivery. Compute the mean and variance.

Solution We determine the columns xf(x) and x2 fx)

x f(x) x f(x) x*f(x)

0 .05 .0 0.0

1 .20 2 0.2

2 45 9 1.8

3 .20 .6 1.8

4 .10 4 1.6
Total 2.1 5.4

sopu=21ando? =5.4—(2.1)% = 0.990. n
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Given any probability distribution, we can always calculate o2 by substituting
the corresponding probabilities f(x) into the formula which defines the variance. As
in the case of the mean, however, this work can be simplified to a considerable extent
when we deal with special kinds of distributions. For instance, it can be shown that
the variance of the binomial distribution with the parameters n and p is given by the
formula

o?=n-p-(1-p)

Using the formula for variance of the binomial distribution
Verify the result stated in the preceding example, that ¢ = 2 for the binomial distri-

1
bution withn = 16 and p = >

1
Substituting n =16 and p = 3 into the formula for the variance of a binomial distri-
bution, we get

NSRS
N =

and, hence, o = V4 = 2. [ ]

The variance of the hypergeometric distribution with the parameters n, a, and N is

) a a\ (N—n
o =n—(1——>
N N/ \N -1

The factor (N — n)/(N — 1) adjusts for the finite population.

Using the formula for variance of the hypergeometric distribution

With reference to Example 8 in which 5 of 20 cell phone chargers are defective, find
the standard deviation of the probability distribution of the number of defectives in
a sample of 10 randomly chosen for inspection.

Substituting n =10, a =5, and N = 20 into the formula for the variance of a hyper-
geometric distribution, we get

) 5 5 20—-10 75
oc"=10—-|1—— = —
20 20 20 -1 76

and, hence, o0 = +/75/76 = 0.99. [ ]

When we first defined the variance of a probability distribution, it may have
occurred to the reader that the formula looked exactly like the one which we use in
physics to define second moments, or moments of inertia. Indeed, it is customary in
statistics to define the kth moment about the origin as

W=y 2k )

all x
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Chebyshev’s theorem

and the kth moment about the mean as

o=y =k £

all x

Thus, the mean p is the first moment about the origin, and the variance o2 is the sec-
ond moment about the mean. Higher moments are often used in statistics to give fur-
ther descriptions of probability distributions. For instance, the third moment about
the mean (divided by o3 to make this measure independent of the scale of mea-
surement) is used to describe the symmetry or skewness of a distribution; the fourth
moment about the mean (divided by o) is, similarly, used to describe its “peaked-
ness,” or kurtosis. To determine moments about the mean, it is usually easiest to
express moments about the mean in terms of moments about the origin and then to
calculate the necessary moments about the mean. For the second moment about the
mean we thus have the important formula o2 = ,u,/2 — ,u,z.

4.5 Chebyshev’s Theorem

Earlier in this chapter we used examples to show how the standard deviation mea-
sures the variation of a probability distribution, that is, how it reflects the concen-
tration of probability in the neighborhood of the mean. If o is large, there is a
correspondingly higher probability of getting values farther away from the mean.
Formally, the idea is expressed by the following theorem.

Theorem 4.1 If a probability distribution has mean w and standard deviation
o, the probability of getting a value which deviates from p by at least ko is at

most k_2 .

Symbolically,
1
P(|X —pl= kd)ik—2

where P(| X — i | > ko ) is the probability associated with the set of outcomes for
which x, the value of a random variable having the given probability distribution, is
such that [x — | > ko.

Thus, the probability that a random variable will take on a value which deviates
(differs) from the mean by at least 2 standard deviations is at most %, the probability
that it will take on a value which deviates from the mean by at least 5 standard
deviations is at most 21—5, and the probability that it will take on a value which deviates

from the mean by 10 standard deviations or more is less than or equal to ﬁ

To prove this theorem, consider any probability distribution f(x), having mean
w, and variance o 2. Dividing the sum defining the variance into three parts as indi-
cated in Figure 4.7, we have

o? = > (x—wrf)

all x
=Y (=P @+ Y (x— )+ Y (x— u)*f(x)
R, Ry R;

where R is the region for which x < p — ko, Rj is the region for which u — ko <
X <+ ko, and Rj3 is the region for which x > 1 4 ko . Since (x — u)zf(x) cannot
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f)

be negative, the above sum over R; is nonnegative, and without it the sum of the
summations over R and Rj is less than or equal to 02; that is,

o? = Y (x— w0+ Y (x— W f@)
R, R;
But x — u < —ko in the region R| and x — u > ko in the region R3, so that in

either case |x — w| > ko. In both regions (x — M)Z > k%02, If we now replace
(x— u)z in each sum by k?02, a number less than or equal to (x — u)z, we obtain

the inequality
02> Y Kolf)+ Y Kot fx)
R R
or

52 Y @+ Y
R R

Since
Y+ > fw
R; R3

represents the probability assigned to the region Ry U Rz, namely, P(| X — p| >
ko ), this completes the proof of Theorem 4.1.

To obtain an alternative form of Chebyshev’s theorem, note that the event
|x — u| < ko is the complement of the event |x — | > ko; hence, the proba-

bility of getting a value which deviates from u by less than ko is at least 1 — 2
A probability bound using Chebyshev’s theorem

The number of customers who visit a car dealer’s showroom on a Saturday morning
is a random variable with u© = 18 and o = 2.5. With what probability can we assert
that there will be more than 8 but fewer than 28 customers?

Let X be the number of customers. Since
28 — 18 18 — 8
k = = = 4
2.5 2.5

1 1 15
P(IX—,u,|<kcr)21—k—2 and P(8<X<28)21—4—2=E -
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Theoretically speaking, the most important feature of Chebyshev’s theorem is
that it applies to any probability distribution for which u and o exist. However, so
far as applications are concerned, this generally is also its greatest weakness—it
provides only an upper limit (often a very poor one) to the probability of getting a
value that deviates from the mean by k standard deviations or more. For instance,
we can assert in general that the probability of getting a value which differs from the
mean by at least 2 standard deviations is at most 0.25, whereas the corresponding
exact probability for the binomial distribution with n = 16 and p = % is only
0.0768—*“at most 0.25” is correct, but it does not tell us that the actual probability
may be as small as 0.0768.

Animportant result is obtained if we apply Chebyshev’s theorem to the binomial
distribution when the number of trials is large. To illustrate this result, consider the
following example.

D G\ JNW]) Chebyshev’s theorem with a large number of Bernoulli trials
Show that for 40,000 flips of a balanced coin, the probability is at least 0.99 that the
proportion of heads will fall between 0.475 and 0.525.
Solution  Since
1 1 1
w = 40,000 - - = 20,000 o =,/40,000- - - = =100
2 2 2
and
1 L 0.99
-5 =0
yields k = 10, the alternative form of Chebyshev’s theorem tells us that the prob-
ability is at least 0.99 that we will get between 20,000 — 10(100) = 19,000 and
20,000 4 10(100) = 21,000 heads. Hence, the probability is at least 0.99 that the
proportion of heads will fall between
19,000 21,000
= 0.475 and =0.525 m
40,000 40,000
Correspondingly, the reader will be asked to show in Exercise 4.47 that for
48 million draws from a fair deck of cards the probability is at least 0.94 that the
proportion of spades will fall between 0.24975 and 0.25025, and these results sug-
gest that when n is large, the chances are that the proportion of spades will be very
close to p = 411
When formulated for any binomial distribution with the parameters n and p, this
result is referred to as the law of large numbers. Recall Figure 3.7 which demon-
strates the stabilition of the long run relative frequency for the case p = 0.6. The
law of large numbers guarantees this for all applications.
Exercises
4.32 Suppose that the probabilities are 0.4, 0.3, 0.2, and 0.1 4.34 The following table gives the probabilities that a cer-
that there will be 0, 1, 2, or 3 power failures in a certain tain computer will malfunction 0, 1, 2, 3, 4, 5, or
city during the month of July. Use the formulas which 6 times on any one day:
define u and o2 to find
(a) the mean of this probability distribution; Number of ‘ 0O 1 2 3 4 5 6
malfunctions:

(b) the variance of this probability distribution.

4.33 Use the computing formula for o2 to rework part (b)
of the preceding exercise.

Probability:  f(x) | 0.17 0.29 0.27 0.16 0.07 0.03 0.01



4.35

4.36

4.39

4.40

4.41

Use the formulas which define © and o to find
(a) the mean of this probability distribution;

(b) the standard deviation of this
distribution.

probability

Use the computing formula for o2 to rework part (b)
of the preceding exercise.

Find the mean and the variance of the uniform proba-
bility distribution given by

forx=1,2,3,...,n

1
f) =~
n

[Hint: The sum of the first n positive integers is
n(n + 1)/2, and the sum of their squares is n(n + 1)
2n+1)/6.]

Find the mean and variance of the binomial distribu-
tion with n = 6 and p = 0.55 by using

(a) Table 1 and the formulas defining © and o2

(b) the special formulas for the mean and the variance
of a binomial distribution.

As can easily be verified by means of the formula for
the binomial distribution (or by listing all 16 possibil-
ities), the probabilities of getting 0, 1, 2, 3, or 4 red
cards in four draws from a fair deck of cards are

Find the mean of this probability distribution using
(a) the formula that defines u;

(b) the specific formula for the mean of a binomial
distribution.

With reference to Exercise 4.38, find the variance of
the probability distribution using

(a) the formula that defines o2;

(b) the computing formula for o2

(c) the special formula for the variance of a binomial
distribution.

If 95% of certain high-performance radial tires last at

least 30,000 miles, find the mean and the standard de-

viation of the distribution of the number of these tires,

among 20 selected at random, that last at least 30,000

miles, using

(a) Table 1, the formula which defines u, and the
computing formula for o2

(b) the special formulas for the mean and the variance
of a binomial distribution.

Find the mean and the standard deviation of the dis-
tribution of each of the following random variables
(having binomial distributions):

4.42

4.44

4.45

4.46

4.47
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(a) The number of heads obtained in 676 flips of a
balanced coin.

(b) The number of 4’s obtained in 720 rolls of a bal-
anced die.

(c) The number of defectives in a sample of 600 parts
made by a machine, when the probability is 0.04
that any one of the parts is defective.

(d) The number of students among 800 interviewed
who do not like the food served at the university
cafeteria, when the probability is 0.65 that any one
of them does not like the food.

Find the mean and the standard deviation of the hy-
pergeometric distribution with the parameters n =3,
a=4,and N =8

(a) by first calculating the necessary probabilities and
then using the formulas which define ¢ and o

(b) by using the special formulas for the mean and the
variance of a hypergeometric distribution.

Prove the formula for the mean of the hypergeometric
distribution with the parameters n, a, and N, namely,
a

[Hint: Make use of the identity
k

2 )= (")

which can be obtained by equating the coefficients of
1in (14 x)™(1 4+ x)* and in (1 4+ x)"+5 ]

Construct a table showing the upper limits provided
by Chebyshev’s theorem for the probabilities of ob-
taining values differing from the mean by at least 1,
2, and 3 standard deviations and also the correspond-
ing probabilities for the binomial distribution with

1
n:l6andp:§.

Over the range of cylindrical parts manufactured on
a computer-controlled lathe, the standard deviation of
the diameters is 0.002 millimeter.

(a) What does Chebyshev’s theorem tell us about the
probability that a new part will be within 0.006
unit of the mean p for that run?

(b) If the 400 parts are made during the run, about
what proportion do you expect will lie in the in-
terval in part (a)?

In 1 out of 22 cases, the plastic used in microwave-
friendly containers fails to meet heat standards. If 979
specimens are tested, what does Chebyshev’s theorem tell
us about the probability of getting at most 25 or more than
64 containers that do not meet the heat standards?

Show that for 48 million draws from a fair deck of
cards, the probability is at least 0.9375 that the pro-
portion of spades drawn will fall between 0.24975 and
0.25025.
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4.48 The time taken by students to fill out a loan request 4.49 Prove that
form has standard deviation 1.2 hours. Whgt does (a) o2 = E(XZ) _ Mz;
Chebyshev’s theorem tell us about the probability that , , 5
a students’ time will be within 4 hours of the mean (b) w3 =p3 =3y pn+2p°

for all potential loan applicants?

Poisson distribution

Mean and variance of
Poisson distribution

Figure 4.8
Two Poisson distributions
(a) A = .7 and (b) A = 3.

4.6 The Poisson Distribution and Rare Events

The Poisson distribution often serves as a model for counts which do not have a
natural upper bound. It is an important probability distribution for describing the
number of times an event randomly occurs in one unit of time or one unit of space.
In one unit of time, each instant can be regarded as a potential trial in which the
event may or may not occur. Although there are conceivably an infinite number of
trials, usually only a few or moderate number of events take place.

The Poisson distribution, with mean A (lambda), has probabilities given by

)\‘xe—)»

forx=0,1,2,... A>0
x!

fr) =

Using a method similar to that employed on page 119 to derive the formula for
the mean of the binomial distribution, we can show that the mean and the variance
of the Poisson distribution with the parameter A are given by

n=Ar and o2 =

There is a different Poisson distribution for different values A. They are all
asymmetrical. If A is an integer f(A — 1; A1) = f(A; A) and each is larger than
any other probability. Otherwise, when X is not an integer, the largest probability
is assigned to the integer part of A. When 0 < A < 1, the probability of O is the
largest and the probabilities f(x; A) decrease as the value x increases as illustrated
in Figure 4.8(a) for A = .7. The distribution for A = 3, representing > > 1, has a
more typical behavior. As illustrated in Figure 4.8 (b) the probabilities f (x; A) in-
crease to f(2; 3) = f(3; 3)) and then decrease as x increases. This distribution has
a long right-hand tail. As A becomes large, the distribution becomes approximately
symmetric.

FxsN) JIERN)
0.5 - 0.5 -
0.4 — 0.4 —
0.3 — 0.3 —
0.2 — 0.2 —
0.1 — 0.1 —
0— - X 0- X
0 5 10 0 5 10

(a) (b)
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Since the Poisson distribution has many important applications, it has been ex-
tensively tabulated. Table 2W on the book’s web site gives the values of the proba-
bilities

FOan) =Y f(k )
k=0

for values of A in varying increments from 0.02 to 25, and its use is very similar to
that of Table 1. Poisson probabilities are also calculated by many statistical software
programs (see Exercises 4.70 and 4.71).

DO\ JNID A Poisson distribution for counts of particles

For health reasons, homes need to be inspected for radon gas which decays and
produces alpha particles. One device counts the number of alpha particles that hit its
detector. To a good approximation, in one area, the count for the next week follows
a Poisson distribution with mean 1.3. Determine

(a) the probability of exactly one particle next week.

(b) the probability of one or more particles next week.

(c) the probability of at least two but no more than four particles next week.
(d) The variance of the Poisson distribution.

Solution Unlike the binomial case, there is no choice of a fixed Bernoulli trial here because
one can always work with smaller intervals.

)\1 —A 1.3 —1.3
@ P(X =1) = le' - el = 3543

Alternatively, using Table 2W, F(1,1.3) — F(0,1.3) = 0.627 — 0.273 = 0.354
M PX>1)=1-P(X=0)=1-e13=0727
(¢) P(2 <X <4)=F#4,13) — F(1,1.3) = 0.989 — 0.627 = 0.362
This last calculation, depicted in Figure 4.9, visually demonstrates the subtraction

of the cumulative probabilities for values below the upper limit, for the cumulative
probabilities through the upper limit.

[ Using R: (a) dpois(1, 1.3) (b) 1 - ppois(0, 1.3) (c) ppois(4, 1.3) - ppois(1, 1.3) ]

f(x;1.3) flx;1.3) f(x;:1.3)

3 3 3]

2 2 2]

1 1 1
. . | . 1.
Figure 4.9 O=—TT T 771 0- e e A U I o
The calculation of 01234567 01234567 01234567
P(2<X <4) PR2=X=4) = F(4,13) - F(1,1.3)



120

Chapter 4 Probability Distributions

Let us point out that x = 0, 1, 2, ... means that there is a countable infinity of
possibilities, and this requires that we modify the third axiom of probability given
on page 82. In its place we substitute the following axiom.

Axiom 3" If Ay, Az, As, ... is afinite or infinite sequence of mutually exclusive
Modification of third events in S, then

axiom of probabilit
P Y P(A) UAy UAs U--2) = P(A)) + P(A3) + P(A3) + - -

The other postulates remain unchanged. To verify that P(S) = 1 for this formula,
we make use of Axiom 3’ and write

o0 O oAy , O ax
Zof(x;m:ZO = X(:);
X=! X=! xX=

Since the infinite series in the expression on the right is the Maclaurin’s series for
e)‘, it follows that

Zf(x;)»):e_)‘~e)‘=l
x=0

The Poisson Approximation to the Binomial Distribution

One interpretation of a rare event is one that occurs with a small probability in a
single trial. When # is large and p is small, binomial probabilities are often approx-
imated by means of the Poisson distribution with A equal to the product np.

Let us now show that when n — oo and p — 0, while np = X remains constant,
the limiting form of the binomial distribution is the Poisson distribution given above.
First let us substitute ~ for p into the formula for the binomial distribution and

simplify the resulting expression; thus, we get

' nt (AN A\
bx:n. p) = x! (n —x)! <;> (1 B ;>

_nln—1)(n—2)---(n—x+ 1)(A)x (1 B &)n—x
n

o x! n¥

(=)0 0-) or(i-2)"

o x!

Letting n — oo, we find that

(=695

and that
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Hence, the binomial distribution b(x; n, p) approaches

)\‘xe—)»
x!

forx=0,1,2,...

This completes our proof; the distribution at which we arrived is called the Poisson
distribution, as we already indicated on the page 128.

An acceptable rule of thumb is to use Poisson approximation of binomial proba-
bilities if n > 20 and p < 0.05; if n > 100, the approximation is generally excellent
so long as np < 10.

Comparing Poisson and binomial probabilities

It is known that 5% of the books bound at a certain bindery have defective bindings.
Find the probability that 2 of 100 books bound by this bindery will have defective
bindings using

(a) the formula for the binomial distribution;
(b) the Poisson approximation to the binomial distribution.

(a) Substituting x = 2, n = 100, and p = 0.05 into the formula for the binomial
distribution, we get

100

b(2; 100, 0.05) = ( 2

) (0.05)2(0.95)”% = 0.081

(b) Substituting x = 2 and A = 100(0.05) = 5 into the formula for the Poisson
distribution, we get
52.¢75
2!
It is of interest to note that the difference between the two values we obtained
(the error we would make by using the Poisson approximation) is only 0.003. [Had

we used Table 2W instead of using a calculator to obtain e_s, we would have ob-
tained f(2;5) = F(2;5) — F(1;5) = 0.125 — 0.040 = 0.085.] [ ]

f(2;5) = = 0.084

A Poisson approximation to binomial probabilities

A heavy machinery manufacturer has 3,840 large generators in the field that are
under warranty. If the probability is 1/1,200 that any one will fail during the given
year, find the probabilities that 0, 1, 2, 3, 4, . .. of the generators will fail during the
given year.

The binomial distribution could be used when appropriate computer software is
available. However, the expected number is small and the number of generators is
large so the Poisson approximation is valid. We take

1
A=3,840- —— =32
1,200
Consulting Table 2W with A =3.2, and using the identity f(x;A)=F(x;A)—
F(x—1; A), we obtain the results shown in the probability histogram of
Figure 4.10. [

In our justification of the Poisson approximation to the binomial distribution we let
A = np. For the variance we can write 62 = np(1—p) = A(1—p), which approaches
A as p — 0. This matches the mean and variance of the Poisson distribution.
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Figure 4.10

Probability histogram of
Poisson distribution with
A=32
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4.7 Poisson Processes

In general, a random process is a physical process that is wholly or in part con-
trolled by some sort of chance mechanism. It may be a sequence of repeated flips
of a coin, measurements of the quality of manufactured products coming off an as-
sembly line, the vibrations of airplane wings, the noise in a radio signal, or any one
of numerous other phenomena. What characterizes such processes is their time de-
pendence, namely, the fact that certain events do or do not take place (depending on
chance) at regular intervals of time or throughout continuous intervals of time.

In this section we shall be concerned with processes taking place over continu-
ous intervals of time or space, such as the occurrence of imperfections on a continu-
ously produced bolt of cloth, the recording of radiation by means of a Geiger counter,
the arrival of telephone calls at a virtual switchboard, or the passing by cars over an
electronic counting device. We will now show that the mathematical model which
we can use to describe many situations like these is that of the Poisson distribution.
To find the probability of x successes during a time interval of length 7', we divide
the interval into n equal parts of length At, so that T = n - At, and we assume that

1. The probability of a success during a very small interval of time Af is given by
o - At.

2. The probability of more than one success during such a small time interval At
is negligible.

3. The probability of a success during such a time interval does not depend on
what happened prior to that time.

This means that the assumptions underlying the binomial distribution are satisfied,
and the probability of x successes in the time interval T is given by the binomial
probability b(x; n, p) with

n=— and

=o- At
Al P
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Then, following the argument on page 130, we find that when n — oo the probability
of x successes during the time interval T is given by the corresponding Poisson
probability with the parameter

T
A=n-p=— - -(a-At)=uoT
P=5 ( )
Since X is the mean of this Poisson distribution, note that « is the average (mean)

number of successes per unit time.

Calculating probabilities concerning bad checks

If abank receives on the average « = 6 bad checks per day, what are the probabilities
that it will receive

(a) 4 bad checks on any given day?
(b) 10 bad checks over any 2 consecutive days?

(a) Substituting x =4 and A = «7 = 6 - 1 = 6 into the formula for the Poisson
distribution, we get

6. e70  1,296(0.00248)
41 24
(b) Here A = o -2 = 12 so we want to find f(10; 12). We write

f4;6)= =0.134

F(10; 12) = F(10; 12) — F(9; 12)
= 0.347 — 0.242
=0.105

where the values of F(10; 12) and F(9; 12) were obtained from Table 2W. ™

Calculating the probabilities of internet interruptions

A computing system manager states that the rate of interruptions to the internet
service is 0.2 per week. Use the Poisson distribution to find the probability of

(a) one interruption in 3 weeks
(b) at least two interruptions in 5 weeks
(c) at most one interruption in 15 weeks.

Interruptions to the network occur randomly and the conditions for the Poisson dis-
tribution initially appear reasonable. We have A = 0.2 for the expected number of
interruptions in one week.

In terms of the cumulative probabilities,

(a) with L = (0.2) -3 = 0.6, we get

F(1;0.6) — F(0;0.6) = 0.878 — 0.549
= 0.329

(b) WithA =(0.2) -5 = 1.0, we get
1—-F(1;1.0)=1-0.736
= 0.264
(¢) With A = (0.2) - 15 = 3.0 we get
F(1;3.0) =0.199 ]
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Geometric distribution

Mean and variance of
geometric distribution

EXAMPLE 26

Solution

The Poisson distribution has many important applications in gueuing problems,
where we may be interested, for example, in the number of customers arriving for
service at a cafeteria, the number of ships or trucks arriving to be unloaded at a
receiving dock, the number of aircraft arriving at an airport, and so forth. Thus, if,
on average, 0.3 customer arrives per minute at a cafeteria, then the probability that
exactly 3 customers will arrive during a 5-minute span is

F3;15)—-F(2;1.5)=0.934 — 0.809 = 0.125

and if, on the average, 3 trucks arrive per hour to be unloaded at a warehouse, then
the probability that at most 20 will arrive during an 8-hour day is

F(20;24) =0.243

4.8 The Geometric and Negative Binomial
Distribution

On page 67 we indicated that a countably infinite sample space would be needed if
we are interested in the number of cars persons have to inspect until they find one
whose nitrogen oxide emission does not meet government standards. To treat this
kind of problem in general, suppose that in a sequence of trials we are interested
in the number of the trial on which the first success occurs. The three assumptions
for Bernoulli trials are satisfied but the extra assumption underlying the binomial
distribution is not. In other words, 7 is not fixed.

Clearly, if the first success is to come on the xth trial, it has to be preceded by
x — 1 failures, and if the probability of a successes is p, the probability of x — 1
failures in x — 1 trials is (1 — p)*~!. Then, if we multiply this expression by the
probability p of a success on the xth trial, we find that the probability of getting the
first success on the xth trial is given by

g(x;p):p(l—p)x_1 forx=1,2,3,4,...

This probability distribution is called the geometric distribution. The reader will
be asked to verify its mean and variance in Exercise 5.100.

Calculating a probability using the geometric distribution

If the probability is 0.05 that a certain kind of measuring device will show excessive
drift, what is the probability that the sixth measuring device tested will be the first
to show excessive drift?

Substituting x = 6 and p = 0.05 into the formula for the geometric distribution, we
get

(6; 0.05) = (0.05)(1 — 0.05)0!
= 0.039 =
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The negative binomial distribution describes the total number of Bernoulli
trials, X, to obtain a specified number » successes. When r = 1, the negative binomial
reduces to the geometric distribution.

If the rth success occurs at trial number x, it must be that r— 1 successes occurred
in the first x — 1 trials and the last trial is a success. The probability distribution is
then the product of the binomial probability b(r — 1;x — 1, p) and p.

Negative binomial
distribution

f) = (f

1
1

)pr(l—p)x_r forx=rr+1,...

The reader is asked, in Exercise 6.40, to show the mean and variance are given

by
Mean and variance of _rp »  (1—p)r
negative binomial K= p o= P
distribution
Exercises
4.50 Prove that for the Poisson distribution 4.56 During inspection of the continuous process of mak-

4.51

4.52

4.53

fe+1La) A
flo ) x+1

forx=0,1,2,....

Use the recursion formula of Exercise 4.50 to calcu-
late the value of the Poisson distribution with A = 3
forx = 0,1,2,..., and 9, and draw the probability
histogram of this distribution. Verify your results by
referring to Table 2W or software.

Use Table 2W or software to find

(@ F47); (b) f(4:7); (o) g f(k; 8).

Use Table 2W or software to 1];(61

(@) F(9;12); (b) f(9:12); (0 § f(k;1.5).

Use the Poisson distribution to akp:p3roximate the bino-
mial probability 5(3; 100, 0.03).

In a factory, 8% of all machines break down at least
once a year. Use the Poisson approximation to the
binomial distribution to determine the probabilities
that among 25 machines (randomly chosen in the
factory):

(a) 5 will break down at least once a year;
(b) at least 4 will break down once a year;

(c) anywhere from 3 to 8, inclusive, will break down
at least once a year.

4.57

4.59

ing large rolls of floor coverings, 0.5 imperfections are
spotted per minute on average. Use the Poison distri-
bution to find the probabilities

(a) one imperfection in 4 minutes

(b) at least two in 8 minutes

(c) at most one in 10 minutes.

The number of gamma rays emitted per second by
a certain radioactive substance is a random variable
having the Poisson distribution with A 58. If a
recording instrument becomes inoperative when there
are more than 12 rays per second, what is the proba-
bility that this instrument becomes inoperative during
any given second?

A consulting engineer receives, on average, 0.7 re-
quests per week. If the number of requests follows a
Poisson process, find the probability that

(a) in a given week, there will be at least 1 request;

(b) in a given 4-week period there will be at least 3
requests.

A conveyor belt conveys finished products to the ware-
house at an average of 2 per minute. Find the proba-
bilities that

(a)
(b)

at most 3 will be conveyed in a given minute;

at least 2 will be conveyed in an interval of
3 minutes;

(©

at most 20 will be conveyed during an interval of
5 minutes.
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4.60

4.61

4.62

4.64

4.65

4.66
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Environmental engineers, concerned about the effects
of releasing warm water from a power plants’ cool-
ing system into a Great Lake, decided to sample many
organisms both inside and outside of a warm wa-
ter plume. For the zoo-plankton Cyclops, they collect
100 cc of water and count the number of Cyclops. The
expected number is 1.7 per 100 cc.

Use the Poisson distribution to find the probabil-
ity of
(a) 1 Cyclops in a 100 cc sample

(b) less than or equal to 6 but more than one in a 100cc
sample

(c) exactly 4 Cyclops in a sample of size 200cc.
(d) 2 or more Cyclops in a sample of size 200cc.

In a “torture test,” a light switch is turned on and off
until it fails. If the probability that the switch will fail
any time it is turned on or off is 0.001, what is the prob-
ability that the switch will fail after it has been turned
on or off 1,200 times? Assume that the conditions
underlying the geometric distribution are met. [Hint:
Use the formula for the value of an infinite geometric
progression.]

An automated weight monitor can detect underfilled
cans of beverages with probability 0.98. What is the
probability it fails to detect an underfilled can for the
first time when it encounters the 10th underfilled can?

A company manufactures hydraulic gears, and records
show that the probability is 0.04 that one of its new
gears will fail its inspection test. What is the probabil-
ity that the fifth gear in a day will be the first one to
fail the test?

Referring to Exercise 4.63, find the probability that
the 15th gear in a day is the fourth to fail the test.

During an assembly process, parts arrive just as they
are needed. However, at one station, the probability
is 0.01 that a defective part will arrive in a one-hour
period. Find the probability that

(a) exactly 1 defective part arrives in a 4-hour span;
(b) 1 or more defective parts arrive in a 4-hour span;

(c) exactly 1 defective part arrives in a 4-hour span
and exactly 1 defective part arrives in the next
4-hour span.

The arrival of trucks at a receiving dock is a Poisson
process with a mean arrival rate of 2 per hour.

(a) Find the probability that exactly 5 trucks arrive in
a two-hour period.

(b) Find the probability that 8 or more trucks arrive
in a two-hour period.

(c) Find the probability that exactly 2 trucks arrive in
a one-hour period and exactly 3 trucks arrive in
the next one-hour period.

4.67

4.68

4.69

4.70

The number of flaws in a fiber optic cable follows a
Poisson process with an average of 0.6 per 100 feet.

(a) Find the probability of exactly 2 flaws in a 200-
foot cable.

(b) Find the probability of exactly 1 flaw in the first
100 feet and exactly 1 flaw in the second 100 feet.

Differentiating with respect to p on both sides of the
equation

o0

D op—pyt=1

x=1

show that the geometric distribution

f)=p(l—p '  forx=1,23,...

has the mean 1/p.

Use the formulas defining p and o2 to show that the
mean and the variance of the Poisson distribution are
both equal to A.

Poisson probabilities
MINITAB.

can be calculated using

Dialog box:

Calc > Probability Distribution > Poisson

Choose Probability.

Choose Input constant and enter 2. Type 1.64 in Mean.
Click OK.

4.71

Output:
Poisson with mean = 1.64
X P(X =x)
2 0.260864
Find the Poisson probabilities for x =2 and x = 3 when

(a) A =2.73;(b) L =4.33.

Cumulative Poisson probabilities can be calculated
using MINITAB.

Dialog box:

Calc > Probability Distribution > Poisson

Choose Cumulative Distribution.

Choose Input constant and enter 2. Type 1.64 in Mean.

Click OK.
Output:
Poisson with mean = 1.64
X P(X <=x)
2 0.772972

Find the cumulative Poisson probabilities for x=2
and x =3 when

(a) A =2.73;(b) L =4.33.
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4.9 The Multinomial Distribution

An immediate generalization of the binomial distribution arises when each trial can
have more than two possible outcomes. This happens, for example, when a manu-
factured product is classified as superior, average, or poor, when a student’s perfor-
mance is graded as an A, B, C, D, or F, or when an experiment is judged successful,
unsuccessful, or inconclusive. To treat this kind of problem in general, let us consider
the case where there are n independent trials, with each trial permitting k mutually
exclusive outcomes whose respective probabilities are

k
i=1

Referring to the outcomes as being of the first kind, the second kind, ..., and the
kth kind, we shall be interested in the probability f(xy, xo, ..., x;) of getting x|
outcomes of the first kind, x, outcomes of the second kind, .. ., and x;, outcomes of

the kth kind, with

Using arguments similar to those which we employed in deriving the equation for
the binomial distribution in Section 4.2, it can be shown that the desired probability
is given by

n! x| X2 Xg
X1, X9, c., X =
fxp, x 9] P Py Py Py
forx; =0, 1, ..., nfor each i, but with the x; subject to the restriction

The joint probability distribution whose values are given by these probabilities
is called the multinomial distribution; it owes its name to the fact that for the
various values of the x; the probabilities are given by the corresponding terms of the
multinomial expansion of (p1 + pp + -+ + pp )"

Calculating a probability using the multinomial distribution

The probabilities that the light bulb of a certain kind of projector will last fewer than
40 hours of continuous use, anywhere from 40 to 80 hours of continuous use, or
more than 80 hours of continuous use are 0.30, 0.50, and 0.20. Find the probability
that among eight such bulbs 2 will last fewer than 40 hours, 5 will last anywhere
from 40 to 80 hours, and 1 will last more than 80 hours.

Substituting n = 8, x; = 2,xp =5,x3 = 1, p; = 0.30, pp = 0.50, and p3 = 0.20
into the formula, we get

8! 2 5 1
f(2,5,1)= M(OSO) (0.50)7(0.20)

= 0.0945 ]
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Exercises

4.72

4.74

4.75

Suppose that the probabilities are, respectively, 0.40,
0.40, and 0.20 that in city driving a certain kind of im-
ported car will average less than 22 miles per gallon,
anywhere from 22 to 25 miles per gallon, or more than
25 miles per gallon. Find the probability that among 12
such cars tested, 4 will average less than 22 miles per
gallon, 6 will average anywhere from 22 to 25 miles
per gallon, and 2 will average more than 25 miles per
gallon.

3 As can easily be shown, the probabilities of getting 0,
11

1, or 2 heads with a pair of balanced coins are 7

1
and —. What is the probability of getting 2 tails twice,

1 head and 1 tail 3 times, and 2 heads once in 6 tosses
of a pair of balanced coins?

Suppose the probabilities are 0.89, 0.09, and 0.02 that
the finish on a new car will be rated acceptable, easily
repairable, or unacceptable. Find the probability that,
among 20 cars painted one morning, 17 have accept-
able finishes, 2 have repairable finishes, and 1 finish is
unacceptable.

Using the same sort of reasoning as in the derivation
of the formula for the hypergeometric distribution, we
can derive a formula which is analogous to the multi-

nomial distribution but applies to sampling without re-
placement. A set of N objects contains a; objects of the
first kind, a; objects of the second kind, . . ., and a; ob-
jects of the kth kind, so thatay +a» +--- +a; = N.
The number of ways in which we can select x| objects
of the first kind, x; objects of the second kind, . . ., and
Xy objects of the kth kind is given by the product of the
number of ways in which we can select x; of the a;
objects of the first kind, x; of the a, objects of the sec-
ond kind, ..., and x; of the a; objects of the kth kind.
Thus, the probability of getting that many objects of
each kind is simply this product divided by the total
number of ways in which x; + x + - -+ + x; = n ob-
jects can be selected from the whole set of N objects.

(a) Write a formula for the probability of obtaining x;
objects of the first kind, x, objects of the second
kind, ... and x; objects of the kth kind.

(b) If 20 defective glass bricks include 10 that have
cracks but no discoloration, 7 that are discolored
but have no cracks, and 3 that have cracks and dis-
coloration, what is the probability that among 6 of
the bricks chosen at random for further checks 3
will have cracks only, 2 will only be discolored,
and 1 will have cracks as well as discoloration?

4.10 Simulation

In recent years, simulation techniques have been applied to many problems in the
various sciences. If the processes being simulated involve an element of chance,
these techniques are referred to as Monte Carlo methods. Very often, the use of
Monte Carlo simulation eliminates the cost of building and operating expensive
equipment. It is used, for instance, in the study of collisions of photons with elec-
trons, the scattering of neutrons, and similar complicated phenomena. Monte Carlo
methods are also useful in situations where direct experimentation is impossible—
say, in studies of the spread of cholera epidemics, which, of course, cannot be in-
duced experimentally on human populations. In addition, Monte Carlo techniques
are sometimes applied to the solution of mathematical problems which cannot be
solved by direct means, or where a direct solution is too costly or requires too
much time.

A classical example of the use of Monte Carlo methods in the solution of a prob-
lem of pure mathematics is the determination of 7 (the ratio of the circumference
of a circle to its diameter) by probabilistic means. Early in the eighteenth century,
George de Buffon, a French naturalist, proved that if a very fine needle of length a
is thrown at random on a board ruled with equidistant parallel lines, the probabil-
ity that the needle will intersect one of the lines is 2a/m b, where b is the distance
between the parallel lines. What is remarkable about this fact is that it involves the
constant 7 = 3.1415926 ..., which in elementary geometry is approximated by the

circumferences of regular polygons enclosed in a circle of radius 7 Buffon’s result

implies that if such a needle is actually tossed a great many times, the proportion
of the time it crosses one of the lines gives an estimate of 2a/mb and, hence, an
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estimate of & since a and b are known. Early experiments of this kind yielded an
estimate of 3.1596 (based on 5,000 trials) and an estimate of 3.155 (based on 3,204
trials) in the middle of the nineteenth century.

Although Monte Carlo methods are sometimes based on actual gambling de-
vices (for example, the needle tossing in the estimation of 1), it is usually expedient
to use so-called random digits or random numbers generated by computer soft-
ware. We will illustrate an application using a table of random numbers that consists
of many pages on which the digits of 0, 1, 2, ..., and 9 are set down in a “random”
fashion, much as they would appear if they were generated one at a time by a gam-
bling device giving each digit an equal probability of being selected. Actually, we
could also construct such tables ourselves—say, by repeatedly drawing numbered
slips out of a hat or by using a perfectly constructed spinner—but in practice such
tables are usually generated by means of computers.

Although tables of random numbers are constructed so that the digits can be
looked upon as values of a random variable having the discrete uniform distribution

fx) = —forx = 0,1,2,..., or 9, they can be used to simulate values of any

discrete random variable, and even continuous random variables.
To illustrate the use of a table of random numbers, let us simulate, say, tossing
three balanced coins. The distribution for the number of heads is

Number of Heads Probability
0 1/8 =0.125
1 3/8=0.375
2 3/8=0.375
3 1/8 =0.125

Since the probabilities in this distribution are given to three decimal places, we use
three-digit random numbers. Our scheme is to allocate 125 (or one-eighth) of the
1,000 random numbers from 000 to 999 to 0 heads, 375 (or three-eighths) to 1 head,
375 (or three-eighths) to 2 heads, and 125 (or one-eighth) to 3 heads.

We use the following scheme:

Cumulative Random

Number of Heads Probability Probability Numbers
0 0.125 0.125 000-124

1 0.375 0.500 125-449

2 0.375 0.875 500-874

3 0.125 1.000 875-999

The column of cumulative probabilities was added to facilitate the assignment of
the random numbers. Observe that in each case the last random digit is one less
than the number formed by the three decimal digits of the corresponding cumulative
probability.

With this scheme, if we arbitrarily use the twenty-second, twenty-third, and
twenty-fourth columns of the first page of Table 7W, starting with the sixth row and
going down the page, we get 197, 365, 157, 520, 946, 951, 948, 568, 586, and 089,
and we interpret this as 1, 1, 1, 2, 3, 3, 3, 2, 2, and O heads.

The method we have illustrated here with reference to a game of chance can
be used to simulate observations of any random variable with a given probability
distribution.
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EXAMPLE 28

Solution

Exercises

However, in practice it is much more efficient to use common computer software
based on this scheme.

Simulation of arrival of cars at toll booth

Suppose that the probabilities are 0.082, 0.205, 0.256, 0.214, 0.134, 0.067, 0.028,
0.010, 0.003, and 0.001 that 0, 1, 2, 3, ..., or 9 cars will arrive at a toll booth of a
turnpike during any one-minute interval in the early afternoon.

Use computer software to simulate the arrival of cars at the toll booth during 20
one-minute intervals in the early afternoon.

We illustrate using MINITAB with the values set in C1 and the probabilities
in C2.

Data:
C1:0,1,...,9
C2:0.082,0.205, ..., 0.001

Dialog box:

Calc > Random Data > Discrete

Type 20 after Generate. Type C3 below Store. Type C1
in Values in:. Type C2 in Probabilities in Click OK.

Output:

41 541 25 01 4
331011 251 2

Suppose we are interested in a somewhat complex event, say, 11 or more cars arrive
in at least one three-minute interval among the 20 one-minute intervals. It is a simple
manner to repeat the simulation of 20 one-minute periods 100 times. The probability
that 11 or more cars arrive in at least one three-minute interval is estimated by the
proportion of times that event occurs. In the single sample of size 20 here, that event
does not occur. [

4.76 Simulate tossing a coin.

(a) For a balanced coin, generate 100 flips.

4.78 Depending on the availability of parts, a company can
manufacture 3, 4, 5, or 6 units of a certain item per
week with corresponding probabilities of 0.10, 0.40,

(b) For a coin with probability of heads 0.8, generate 0.30, and 0.20. The probabilities that there will be a

100 flips. weekly demand for 0, 1,2, 3, ..., or 8 units are, respec-

4.77 The probabilities that a quality control team will visit tively, 0.05, 0.10, 0.30, 0.30, 0.10, 0.05, 0.05, 0.04, and
0, 1,2, 3, or 4 production sites on a single day are 0.15, 0.01. If a unit is sold during the week that it is made,

0.22,0.35, 0.21, and 0.07.

(a) Simulate the inspection team’s visits on 30 days.

it will yield a profit of $100; this profit is reduced by
$20 for each week that a unit has to be stored. Simu-
late the operation of this company for 50 consecutive

(b) Repeat the simulation of visits on 30 days a total of weeks and estimate its expected weekly profit.
100 times. Estimate the probability that there are

more than 10 visits over five consecutive days.
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Do’s and Don’ts

Do’s
. Keep in mind that any scheme for assigning a numerical value to each pos-
sible outcome should quantify a feature of the outcome that is important to

the scientist. That is, any random variable should convey pertinent infor-
mation about the outcome.

. Describe the chance behavior of a discrete random variable X by its prob-
ability distribution function

f(x) =P[X =x] for each possible value x

. Summarize a probability distribution, or the random variable, by its

mean: (4 = Z x- f(x) variance: 02 = Z (x — /,L)2 - f(x)
all x all x
standard deviation: o = \/ Z (x— )2 fx)
all x

. Use a special family of distributions, for instance the binomial distribution

b(x; n, p) = (Z) PA—p"*  forx=0,1,....n

having mean np and variance np(1 — p), if the underlying assumptions
are reasonable. The hypergeometric distribution might be entertained when
sampling without replacement from a finite collection of units each of
which is one of two possible types. It will be well approximated by the
binomial when the sample size n is a small fraction of the population
size N.

. For counts whose possible values do not have a specified upper limit, con-
sider the Poisson distribution

AXe™H

flA) = ' forx=20,1,2,... A>0
x!

having mean A and variance 1. You do need to check that the Poisson dis-
tribution is reasonable. The sample mean and variance should be about the
same size.

Don’ts

. Never apply the binomial distribution to counts without first checking that
the conditions hold for Bernoulli trials: independent trials with the same
probability of success for each trial. If the conditions are satisfied, then the
binomial distribution is appropriate for the number of successes in a fixed
number of trials.

. Never use the formula np(1 — p) for the variance of a count of successes
without checking that the trials are independent.
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Review Exercises

4.79

4.80

4.81

4.82

4.83

A manufacturer of smart phones has the following
probability distribution for the number of defects per
phone:

X f(x)
0 89
1 07
2 03
3 01

(a) Determine the probability of 2 or more defects.

(b) Is arandomly selected phone more likely to have
0 defects or 1 or more defects?

Upon reviewing recent use of conference rooms at
an engineering consulting firm, an industrial engineer
determined the following probability distribution for
the number of requests for a conference room per
half-day:

x f(x)
0 .07
1 15
2 45
3 25
4 .08

(a) Currently, the building has two conference rooms.
What is the probability that the number of requests
will exceed the number of rooms for a given half-
day?

(b) What is the probability that the two conference
rooms will not be fully utilized on a given half-
day?

(c) How many additional conference rooms are re-
quired so that the probability of denying a request
is not more than 0.10?

Refer to Exercise 4.80 and obtain the
(a) mean; (b) variance; (c) standard deviation for the
number of requests for conference rooms.

Determine whether the following can be probability
distributions of a random variable that can take on only
the values of 0, 1, and 2:

(a) f(0)=034 f(1)=0.34and f(2) = 0.34.
(b) f(0)=0.2 f(1)=0.6and f(2) =0.2.

(¢) f(0)=0.7 f(1)=0.4and f(2) = —0.1.
Check whether the following can define probability

distributions, and explain your answers.

(@ flx) = lXT),foch:O, 1,2,3,4.

(b) f(x)= % forx=—1,0, 1.

4.84

4.85

4.86

4.87

4.88

4.89

4.90

(x—17°
4
An engineering student correctly answers 85% of all

questions she attempts. What is the probability that the
first incorrect answer was the fourth one?

(c) f(x)= ,forx=0,1,2,3.

If the probability is 0.20 that a downtime of an auto-
mated production process will exceed 2 minutes, find
the probability that 3 of 8 downtimes of the process
will exceed 2 minutes using (a) the formula for the bi-
nomial distribution; (b) Table 1 or software.

If the probability is 0.90 that a new machine will
produce 40 or more chairs, find the probabilities that
among 16 such machines

(a) 12 will produce 40 or more chairs;
(b) atleast 10 will produce 40 or more chairs;
(c) at most 3 will not produce 40 or more chairs.

In 16 experiments studying the electrical behavior of
single cells, 12 use micro-electrodes made of metal
and the other 4 use micro-electrodes made from glass
tubing. If 2 of the experiments are to be terminated
for financial reasons, and they are selected at random,
what are the probabilities that

(a) neither uses micro-electrodes made from glass
tubing?

(b) only one uses micro-electrodes made from glass
tubing?

(c) both use micro-electrodes made from glass
tubing?

As can be easily verified by means of the formula for

the binomial distribution, the probabilities of getting 0,

1,2, or 3 heads in 3 flips of a coin whose probability of

heads is 0.4 are 0.216, 0.432, 0.288, and 0.064. Find

the mean of this probability distribution using

(a) the formula that defines w;

(b) the special formula for the mean of a binomial dis-
tribution.

With reference to Exercise 4.88, find the variance of
the probability distribution using

(a) the formula that defines o2;

(b) the special formula for the variance of a binomial
distribution.

Find the mean and the standard deviation of the distri-

bution of each of the following random variables (hav-

ing binomial distributions):

(a) The number of heads in 440 flips of a balanced
coin.

(b) The number of 6’s in 300 rolls of a balanced die.



(c) The number of defectives in a sample of 700 parts
made by a machine, when the probability is 0.03
that any one of the parts is defective.

4.96

Key Terms 133

will operate without a breakdown for 3 consecutive
weeks?

A manufacturer determines that a big screen HDTV set

Cumulative distribution function 97
Cumulative probability 101
Discrete random variable 96
Distribution function 97

Expected value 108
Geometric distribution

Parameter 100

124

Multinomial distribution

Poisson distribution

Negative binomial distribution 125
Negatively skewed distribution

118
Positively skewed distribution

Hypergeometric distribution 103 Probability distribution 96
Joint probability distribution 127 Probability histogram 96
kth moment about the mean 114 Random digits 129

4.91 Use the Poisson distribution to approximate the bino- had probabilities of 0.8, 0.15, 0.05, respectively, of be-
mial probability 5(1; 100, 0.02). ing placed in the categories acceptable, minor defect,
4.92 With reference to Exercise 4.87, find the mean and the or major defect. If 3 HDTVs are inspected,
variance of the distribution of the number of micro- (a) find the probability that 2 are acceptable and 1 is
electrodes made from glass tubing using a minor defect;
(a) the probabilities obtained in that exercise; (b) find the marginal distribution of the number in
(b) the special formulas for the mean and the variance minor defect;
of a hypergeometric distribution. (c) compare your answer in part (b) with the binomial
4.93 The daily number of orders filled by the parts de- probabilities b(x; 3, 0.15). Comment.
partment of a repair shop is a random variable with 4.97 Suppose that the probabilities are 0.2466, 0.3452,
u = 142 and 0 = 12. According to Chebyshev’s the- 0.2417, 0.1128, 0.0395, 0.0111, 0.0026, and 0.0005
orem, with what probability can we assert that on any that there will be 0, 1, 2, 3, 4, 5, 6, or 7 polluting spills
one day it will fill between 82 and 202 orders? in the Great Lakes on any one day. Simulate the num-
4.94 Records show that the probability is 0.00008 that a bers of polluting spills in the Great Lakes in 30 days.
truck will have an accident on a certain highway. Use 4.98 A candidate invited for a visit has probability 0.6 of
the formula for the Poisson distribution to approximate being hired. Let X be the number of candidates that
the probability that at least 5 of 20,000 trucks on that visit before 2 are hired. Find
highway will have an accident. (a) P(X <4),
4.95 The number (?f weekl){ breakd(.)wns O.f a 'corr}puter. is (b) P(X >5).
a random variable having a Poisson distribution with
A = 0.2. What is the probability that the computer
Key Terms
Bar chart 97 kth moment about the origin 113 Random numbers 129
Bernoulli trials 98 Kurtosis 114 Random process 122
Binomial coefficient 100 Law of large numbers 116 Random variable 95
Binomial distribution 99 Mean 108 Repeated trials 98
Chebyshev’s theorem 114 Monte Carlo methods 128 Sampling with replacement 103

127 Sampling without replacement 103

Skewed distribution 100

100 Standard deviation 111
Successes 108
Symmetrical distribution 100
100 Trials 108

Variance 111
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PROBABILITY DENSITIES

ontinuous sample spaces and continuous random variables rise when we deal
‘ with quantities that are measured on a continuous scale. For instance, when we

can measure the speed of a car, the amount of alcohol in a person’s blood, the
efficiency of a solar collector, or the tensile strength of a new alloy.

In this chapter we learn how to determine and work with probabilities relating to
continuous sample spaces and continuous random variables. We first introduce proba-
bility densities in Section 5.1. The discussion expands to the normal distribution in Sec-
tions 5.2 and 5.3 and various other special probability densities in Sections 5.4 through
5.9. Problems involving more than one random variable are discussed in Section 5.10.
Section 5.1 | presents the moment generating function method, a tool for finding the dis-
tribution of the sum of independent random variables. A method for checking whether
a data set appears to be generated by a normal distribution is introduced in Section 5.12.

5.1 Continuous Random Variables

When we first introduced the concept of a random variable in Chapter 4, we pre-
sented it as a real-valued function defined over the sample space of an experiment.
We illustrated this idea with the random variable giving the number of preferred at-
tributes possessed by a used car, assigning the numbers 0, 1, 2, or 3 (whichever was
appropriate) to the 18 possible outcomes of the experiment. In the continuous case,
where random variables can assume values on a continuous scale, the procedure is
very much the same. The outcomes of an experiment are represented by the points
on a line segment or a line. Then, a random variable is created by appropriately
assigning a number to each point by means of some rule or equation.

When the value of a random variable is given directly by a measurement or ob-
servation, we usually do not bother to differentiate among the value of the random
variable, the measurement which we obtain, and the outcome of the experiment,
which is the corresponding point on the real axis. If an experiment consists of de-
termining what force is required to break a given tensile-test specimen, the result
itself, say, 138.4 pounds, is the value of the random variable, X, with which we are
concerned. There is no real need in that case to add that the sample space of the
experiment consists of all (or part of) the points on the positive real axis.

In general, we write P(a < X < b) for the probability associated with the
points of the sample space for which the value of a random variable falls on the
interval from a to b. The problem of defining probabilities in connection with con-
tinuous sample spaces and continuous random variables involves some complica-
tions. To illustrate the nature of these complications, let us consider the following
situation.

Suppose we want to know the probability that if an accident occurs on a free-
way whose length is 200 miles, it will happen at some given location or, perhaps,
some particular stretch of the road. The outcomes of this experiment can be looked
upon as a continuum of points. Namely, those on the continuous interval from
0 to 200.
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Next, suppose the probability that the accident occurs on any interval of length
L is L/200, with L measured in miles. Note that this arbitrary assignment of prob-
ability is consistent with Axioms 1 and 2 on page 70, since the probabilities are all
nonnegative and less than or equal to 1, and P(S) = 200 = 1

So far, we are considering only events represented by intervals which form part
of the line segment from 0 to 200. Using Axiom 3’ on page 120, we can also obtain
probabilities of events that are not intervals but which can be represented by the
union of finitely many or countably many intervals. Thus, for two nonoverlapping
intervals of length L and L, we have a probability of

Ll + L2
200

and for an infinite sequence of nonoverlapping intervals of length Ly, L,,
L3, ..., we have a probability of

Li+Ly+Ly+---
200

Note that the probability that the accident occurs at any given point is equal to zero
because we can look upon a point as an interval of zero length. However, the prob-
ability that the accident occurs in a very short interval is positive; for instance, for
an interval of length 1 foot the probability is (5,280 x 200)_1 =9.5x%x 1077,

Thus, in extending the concept of probability to the continuous case, we again
use Axioms 1, 2, and 3/, but we shall have to restrict the meaning of the term event.
So far as practical considerations are concerned, this restriction is of no conse-
quence. We simply do not assign probabilities to some rather abstruse point sets,
which cannot be expressed as the unions or intersections of finitely many or count-
ably many intervals.

The way in which we assigned probabilities in the preceding example is, of
course, very special; it is similar in nature to the way in which we assign equal
probabilities to the six faces of a die, heads and tails, the 52 cards in a standard
deck, and so forth. To treat the problem of associating probabilities with continuous
random variables generally, suppose we are interested in the probability that a given
random variable will take on a value on the interval from a to b, where a and b
are constants with a < b. Suppose, furthermore, that we divide the interval from
a to b into m equal subintervals of width Ax containing, respectively, the points
X1, X2, ..., Xm, and that the probability that the random variable will take on a value
in the subinterval containing x; is given by f(x;) - Ax. Then the probability that the
random variable with which we are concerned will take on a value in the interval
from a to b is given by

m
Pla<X <b) =Y f(x) Ax
i=1
When f is an integrable function defined for all values of the random variable with
which we are concerned, we shall define the probability that the value of the random
variable falls between a and b by letting Ax — 0. Namely,

b
P(anfb):/ fx)dx

As illustrated in Figure 5.1, this definition of probability in the continuous case
presupposes the existence of an appropriate function f which, integrated from any
constant @ to any constant b (with a < b)), gives the probability that the correspond-
ing random variable takes on a value on the interval from a to b. Note that the value
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Figure 5.1
Probability as area under f

Pa=X=b)

f(x) does not give the probability that the corresponding random variable takes on
the value x. In the continuous case, probabilities are given by integrals and not by
the values f(x).

To obtain the probability that a random variable will actually take on a given
value x, we might first determine the probability that it will take on a value on the
interval from x— Ax to x+ Ax, and then let Ax — 0. However, if we did this it would
become apparent that the result is always zero. The fact that the probability is always
zero that a continuous random variable will take on any given value x should not be
disturbing. Indeed, our definition of probability for the continuous case provides a
remarkably good model for dealing with measurements or observations. Owing to
the limits of our ability to measure, experimental data never seem to come from
a continuous sample space. Thus, while temperatures are productively thought of
as points on a continuous scale, if we report a temperature measurement of 74.8
degrees centigrade, we really mean that the temperature lies in the interval from
74.75 to 74.85 degrees centigrade, and not that it is exactly 74.800. . ..

It is important to add that when we say that there is a zero probability that a ran-
dom variable will take on any given value x, this does not mean that it is impossible
that the random variable will take on the value x. In the continuous case, a zero prob-
ability does not imply logical impossibility, but the whole matter is largely academic
since, owing to the limitations of our ability to measure and observe, we are always
interested in probabilities connected with intervals and not with isolated points.

As an immediate consequence of the fact that in the continuous case probabil-
ities associated with individual points are always zero, we find that if we speak of
the probability associated with the interval from a to b, it does not matter whether
either endpoint is included. Symbolically,

Pla<X<b)=Pla<X<b)=Pla<X<b)=Pla<X <b)

Drawing an analogy with the concept of a density function in physics, we call the
functions f, whose existence we stipulated in extending our definition of probabil-
ity to the continuous cases, probability density functions, or simply probability
densities. Whereas density functions are integrated to obtain weights, probability
density functions are integrated to obtain probabilities. We will follow the common
practice of also calling f(x) the probability density function with the understanding
that we are referring to the function f which assigns the value f(x) to x, for each x
that is a possible value for the random variable X.

Since a probability density, integrated between any two constants a and b, gives
the probability that a random variable assumes a value between these limits, f cannot
be just any real-valued integrable function. However, imposing the conditions that

f(x)>0 forallx

and

(o¢]
/ fx)dx =1
—00



EXAMPLE |

Solution

Figure 5.2
Graph of probability density
f(x)=2e2 x>0
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insures that the axioms of probability (with the modification about events discussed
on page 135) are satisfied. Note the similarity between these conditions and those
for probability distributions given on page 96.

As in the discrete case, we let F'(x) be the probability that a random variable
with the probability density f(x) takes on a value less than or equal to x. We again
refer to the corresponding function F as the cumulative distribution function or
just the distribution function of the random variable. Thus, for any value x, F'(x) =
P(X < x) is the area under the probability density function over the interval —oo
to x. In the usual calculus notation for the integral,

F(x) = /x f(t)dt
—00

Consequently, the probability that the random variable will take on a value on the
interval from a to b is F(b) — F(a), and according to the fundamental theorem of
integral calculus it follows that
dF (x)
dx

=f(0

wherever this derivative exists.

Calculating probabilities from the probability density function
If a random variable has the probability density

e forx > 0

0 forx <0

find the probabilities that it will take on a value

o-|

(a) between 1 and 3;
(b) greater than 0.5.

Evaluating the necessary integrals, we get

3
() / e Pdx=e¢2— e 0=0.133
1

o0
(b) / 2e Pdx=e"! =0.368 =
0.5

Note that in the preceding example we make the domain of f include all the
real numbers even though the probability is zero that x will be negative. This is a
practice we shall follow throughout the book. It is also apparent from the graph of
this function in Figure 5.2 that it has a discontinuity at x = 0; indeed, a probability
density need not be everywhere continuous, as long as it is integrable between any
two limits a and b (with a < b).

fx)

2 —
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EXAMPLE 2

Solution

EXAMPLE 3

Solution

Mean of a probability
density

Determining a distribution function from its density function

With reference to the preceding example, find the distribution function and use it to
determine the probability that the random variable will take on a value less than or
equal to 1.

Performing the necessary integrations, we get

0 forx <0

F(x): X
/ 2e it =1—e"2*  forx>0

0

and substitution of x = 1 yields

F()=1—¢2=0.865 n

Note that the distribution function of this example is nondecreasing and that
F(—o0) = 0 and F(oc0) = 1. Indeed, it follows by definition that these properties
are shared by all distribution functions.

A probability density function assigns probability one to (—oo, 00)
Find £ so that the following can serve as the probability density of a random variable:

0 forx <0

2
ke forx > 0

f(x):{

To satisfy the first of the two conditions on page 136, k must be nonnegative, and to
satisfy the second condition we must have

/ F)dx = / fexe ™ dx = f K etau="C21
—o0 0 0o 8 8

so that k = 8. [ ]

To describe probability densities, we define statistical measures that are very
similar the ones that describe probability distributions. The first moment about the
origin is again called the mean, and it is denoted by p. Alternatively, it is also called
the expected value of a random variable having the probability density f(x) and
denoted by E(X ).

o0
M:E(X):/ xf(x)dx

—00

This expected value is analogous to that for the discrete case introduced in Sec-
tion 4.4 but with an integral replacing the summation.
The kth moment about the origin is £( X k ) or

;,L;( = /_ooxk-f(x)dx

analogous to the definition we gave on page 113.
Further, the kth moment about the mean is E(X — )k , or

o k
Mk=/ (x—p)" - fx)dx

—00



Variance of a probability

Sec 5.1 Continuous Random Variables 139

In particular, the second moment about the mean is again referred to as the variance
and it is written as 2. As before, it measures the spread of a probability density in
the sense that it gives the expected value of the squared deviation from the mean.

o2

density

L.

o0

(x— )2 fydx = /

> xzf(x)dx — ,u,2

—00

Alternately, 02 = E(X — )% = E(X?) — u?
Again, o is referred to as the standard deviation.

EXAMPLE 4

function

Determining the mean and variance using the probability density

With reference to Example 1, find the mean and the variance of the given probability

density.

Solution

/,L:

[

o0
xf(x)dx =

Performing the necessary integrations, using integrations by parts, we get

o0 1
f x-2e Py =~
0 2

Alternatively, the expectation of x is E(X) = 0.5

2 [T 2 > 1 2 1
o :/ (x—,u)f(x)dx:/ — =) 2 Hdx=- m
— 0 0 2 4
Exercises
5.1 Verify that the function of Example 1 is, in fact, a prob- 5.5 With reference to the preceding exercise, find the cor-
ability density. responding distribution function, and use it to deter-
5.2 If the probability density of a random variable is given by mine th? pr(.)bablhtle.s that. a random variable having
3 the distribution function will take on a value
flx)= (k+2)x O<x<l (a) greater than 1.8;
Isewh
0 cisewhere (b) between 0.4 and 1.6.
find the value k and the probability that the random . . . k
variable takes on a value 5.6 Given the probability density f(x)= T2 for
3 1 —00 < x < 00, find k.
(a) greater than —; (b) between — and —. o ) ) )
4 3 3 5.7 If the distribution function of a random variable is
5.3 With reference to the preceding exercise, find the cor- given by
responding distribution function and use it to deter-
mine the probabilities that a random variable having
this distribution function will take on a value Flx) = 2 forx > 2
(a) between 0.45 and 0.75; (b) less than 0.6. 0 forx <2
5.4 If the probability density of a random variable is given
by find the probabilities that this random variable will
take on a value
X forO0 <x <1
fy=42—x forl <x<?2 (a) less than 3; (b) between 4 and 5.
0 elsewhere 5.8 Find the probability density that corresponds to the

find the probabilities that a random variable having this
probability density will take on a value

(a) between 0.2 and 0.8; (b) between 0.6 and 1.2.

distribution function of Exercise 5.7. Are there any
points at which it is undefined? Also sketch the
graphs of the distribution function and the probability
density.
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5.10
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Let the phase error in a tracking device have probabil-
ity density

COosx

f) = {0

O<x<m/2
elsewhere

Find the probability that the phase error is

(a) between 0 and 7 /4; (b) greater than 7 /3.

The length of satisfactory service (years) provided by a
certain model of laptop computer is a random variable
having the probability density

1 s
4.5
0 forx <0

forx >0

f) =

probability density

4
) ﬁ(x +2)~(+2)/9 forx > 0
X) =
0 forx <0

If the supplier’s daily supply capacity is 25 metric tons,
what is the probability that this capacity will be inad-
equate on any given day?

Prove that the identity ol = ;/,’2 - ;/,2 holds for any
probability density for which these moments exist.

Find 1 and o2 for the probability density of Exer-
cise 5.2.

Find 1 and o2 for the probability density of Exer-
cise 5.4.

. . . 5.15 Find p and o for the probability density obtained in
F}nd the’ probabilities Fhat one of these laptops will pro- Exercise 5.8.
vide satisfactory service for
) 5.16 Find p and o for the distribution of the phase error of
(a) at most 2.5 years; Exercise 5.9
(b) anywhere from 4 to 6 years; 5.17 Find p for the distribution of the satisfactory service
(c) atleast 6.75 years. of Exercise 5.10.
5.11 At a certain construction site, the daily requirement of 5.18 Show that ;/2 and, hence, o2 do not exist for the prob-
gneiss (in metric tons) is a random variable having the ability density of Exercise 5.6.
5.2 The Normal Distribution
Among the special probability densities we study in this chapter, the normal prob-
ability density, usually referred to simply as the normal distribution, is by far the
most important.' It was studied first in the eighteenth century when scientists ob-
served an astonishing degree of regularity in errors of measurement. They found that
the patterns (distributions) they observed were closely approximated by a continu-
ous distribution, which they referred to as the “normal curve of errors” and attributed
to the laws of chance. The equation of the normal probability density, whose graph
(shaped like the cross section of a bell) is shown in Figure 5.3, is
(e V2 /002
Normal distribution f(x; w, 02) = e~ (X—1)7 20 — 00 <X <00
o
In Exercises 5.42 and 5.43, the reader will be asked to verify that its parameters p
and o are indeed its mean and its standard deviation.
l
|
| o
]
l
Figure 5.3 |
Graph of normal probability I I I I I x
density wn— 20 n—o " mto pt2o

'The words density and distribution are often used interchangeably in the literature of applied statistics.



Figure 5.4
The standard normal
probabilities F(z) = P(Z < z)

F(b) — F(a)

a b

Figure 5.5

The standard normal
probability F (b)) — F(a) =
Pla<Z<b)

EXAMPLE 5

Solution

Figure 5.6
P(0.87 <Z < 1.28)
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F(z)

I
0

Since the normal probability density cannot be integrated in closed form be-
tween every pair of limits a and b, probabilities relating to normal distributions are
usually obtained from special tables, such as Table 3 at the back endpapers of this
book. This table pertains to the standard normal distribution, namely, the normal
distribution with 4 = 0 and o = 1, and its entries are the values of

F(2) = 24 = P(Z < z)

1 Z
— e
2w /—oo
for positive or negative z = 0.00, 0.01, 0.02, . .., 3.49, and also z = 3.50, z = 4.00,
and z = 5.00. The cumulative probabilities F'(z) correspond to the area under the
standard normal density to the left of z, as shown by the shaded area in Figure 5.4.

To find the probability that a random variable having the standard normal dis-
tribution will take on a value between a and b, we use the equation

Pla<Z<b)=F(b)—F(a)

as shown by the shaded area in Figure 5.5. We also sometimes make use of the
identity F(—z) = 1 — F(z), which holds for all symmetric distributions centered
around 0. The reader is asked to verify this in Exercise 5.41.

Given access to statistical software or a statistical calculator, that approach is
preferable to looking in tables. The solution to Example 5 includes the R commands
(see Appendix C on R and Exercise 5.44 for MINITAB).

Calculating some standard normal probabilities

Find the probabilities that a random variable having the standard normal distribution
will take on a value

(a) between 0.87 and 1.28;

(b) between —0.34 and 0.62;

(c) greater than 0.85;

(d) greater than —0.65.

It is helpful to first indicate the area of interest in a graph as in Figure 5.6.

0.0919

| 1 z
0 087 128
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Figure 5.7
P(—0.34 <Z <0.62)

Figure 5.8
P(Z > 0.85)

Figure 5.9
P(Z > —0.65)

Looking up the necessary values in Table 3, for part (a) we get

F(1.28) — F(0.87) = 0.8997 — 0.8078
= 0.0919

As indicated in Figure 5.7 for part (b),
F(0.62) — F(—0.34) = 0.7324 — 0.3669

= 0.3655
’\).3655

T z
—0.340 0.62

As indicated in Figure 5.8 for part (c),

1—-F(0.85)=1—-0.8023
= 0.1977

0.1977

T z
0 0.85
As indicated in Figure 5.9 for part (d)
1 — F(—0.65) =1—0.2578 = 0.7422
or, alternatively,
1 —F(—0.65)=1—[1—F(0.65)]

= F(0.65)
= (0.7422

0.7422

T z
—-0.65 0 |
[ Using R: (a) pnorm(1.28) - pnorm(.87) (b) 1 - pnorm(.85) ]

There are also problems in which we are given probabilities relating to standard
normal distributions and asked to find the corresponding values of z.



Figure 5.10
The z, notation for a standard
normal distribution

EXAMPLE 6

Solution

Normal probabilities
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e

I 2o
0

Let z, be such that the probability is « that it will be exceeded by a random vari-
able having the standard normal distribution. That is, « = P(Z > z ) as illustrated
in Figure 5.10.

The results of the next example are used extensively in subsequent chapters.

Two important values for z,
Find () z0.01; (b) 20.05-

(a) Since F(zg 1) = 0.99, we look for the entry in Table 3 which is closest to
0.99 and get 0.9901 corresponding to z = 2.33. Thus z( o1 = 2.33.

(b) Since F(zq o5) = 0.95, we look for the entry in Table 3 which is closest to
0.95 and get 0.9495 and 0.9505 corresponding to z = 1.64 and z = 1.65. Thus,
by interpolation, zg g5 = 1.645. |

[ Using R: (a) gnorm(.99) (b) gqnorm(.95) ]

To use Table 3 in connection with a random variable X which has a normal
distribution with the mean y and the variance o2, we refer to the corresponding
standardized random variable,

X—n
o

7 =

which can be shown to have the standard normal distribution. Thus, to find the prob-
ability that the original random variable will take on a value less than or equal to a,

in Table 3 we look up
F (a — /L)
o

Also, to find the probability that a random variable having the normal distri-
bution with the mean p and the variance o2 will take on a value between a and b,
we have only to calculate the probability that a random variable having the standard
normal distribution will take on a value between

a— K and b=u
o o

That is, to find probabilities concerning X, we convert its values to z scores using

_X-n
a o

Z

When X has the normal distribution with mean u and standard deviation o.

P(a<X§b)=F<b_'u> —F<a_“)
o o
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EXAMPLE 7

Solution

Figure 5.11
P(85 <X <13.0)=
P(—-0.59 <Z < 1.07)

According to Figure 2.9 on page 30, the observations on the strength of an alu-
minum alloy appear to be normally distributed. The normal distribution is often used
to model variation when the distribution is symmetric and has a single mode.

Calculation of probabilities using a normal distribution

With an eye toward improving performance, industrial engineers study the ability of
scanners to read the bar codes of various food and household products. The maxi-
mum reduction in power, occurring just before the scanner cannot read the bar code
at a fixed distance, is called the maximum attenuation. This quantity, measured in
decibels, varies from product to product. After collecting considerable data, the en-
gineers decided to model the variation in maximum attenuation as a normal distri-
bution with mean 10.1 dB and standard deviation 2.7 dB.

(a) For the next food or product, what is the probability that its maximum
attenuation is between 8.5 dB and 13.0 dB?

(b) According to the normal model, what proportion of the products have
maximum attenuation between 8.5 dB and 13.0 dB?

(¢) What proportion of the products have maximum attenuation greater than
15.1 dB?

(a) We treat the maximum attenuation of the next product, X, as a random
selection for the normal distribution with & = 10.1 and o = 2.7.
Consequently, Z = (X — 10.1)/2.7 and, from Table 3, we get

13.0 — 10.1 8.5 —-10.1
F (—) —F (—) = F(1.07) — F(—0.59)

2.7 2.7
= 0.8577 — 0.2776
= 0.5801

as illustrated in Figure 5.11.

10

0.5801




Figure 5.12
P(X >15.1)

EXAMPLE 8
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(b) The variation in maximum attenuation for the vast, but finite, collection of all
different products is modeled by a normal distribution. The proportion of
products having maximum attenuation between 8.5 and 13.0 dB corresponds
to the probability in part (a). When we consider the even larger infinite
population of all existing products and those that could have been made, we
still refer to 0.5801 as the proportion having maximum attenuation between
8.5 and 13.0 dB.

(¢) Looking up the necessary value in Table 3,

15.1 —10.1
| —F|———=——])=1-F(.85)
2.7
=1-0.9678
= 0.0322

corresponding to the shaded area in Figure 5.12.

0.0322

1 17 T T 1T 1°
-3 -2 -1 0 1 2 3

[ Using R: (a) pnorm(13.0,10.1,2.7) — pnorm(8.5,10.1,2.7)
(¢) 1 — pnorm(15.1,10.1,2.7) ] [ |

Normal Distribution as a Population Distribution

A major manufacturer of processed meats monitors the amount of each ingredient.
The weight(Ib) of cheese per run is measured on n = 80 occasions. (courtesy of David
Brauch))

72.2 67.8 78.0 64.4 76.3 72.3 73.1 71.7 66.2 63.3 85.4 67.4
66.3 76.3 57.7 50.3 77.4 63.1 73.9 67.4 74.7 68.2 87.4 86.4
69.4 58.0 63.3 72.7 73.6 68.8 63.3 63.3 73.0 64.8 73.1 70.9
85.9 74.4 75.9 72.3 84.3 61.8 79.2 64.3 65.4 66.7 77.2 50.0
70.3 90.4 63.9 62.1 68.2 55.1 52.6 68.5 55.2 73.5 53.7 61.7
47.9 72.3 61.1 71.8 83.1 71.2 58.8 61.8 86.8 64.5 52.3 58.3
65.9 80.2 75.1 59.9 62.3 48.8 64.3 75.4

Figure 5.13 suggests that the histogram, and therefore the population distribu-
tion, is well approximated by a normal distribution with mean 1 = 68.4 and stan-
dard deviation o = 9.6 pounds. You are asked to examine the assumption of a
normal distribution more closely in Exercise 5.102.

Using the normal population distribution,

(a) Find the probability of using 80 or more pounds of cheese.

(b) Set a limit so that only 10 % of production runs have less than L pounds of
cheese.

(¢) Determine a new mean for the distribution so that only 5 % of the runs have
less than L pounds.
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Figure 5.13
A normal distribution models
weight of cheese.

Solution

EXAMPLE 9

Solution

Density

.05 —

/"\

025 ’/ \\
/ <

0=r |/ | | | | —

40 50 60 70 80 90 100
Weigh (Ib)

(@) Z = (X — 68.4)/9.6 and, from Table 3, we get
80 — 68.4
1 —F (T) =1—-F(1208) =1 — .8865 = .1135

About 1 out of 9 production runs will result in more than 80 pounds of cheese.

(b) From Table 3, the entry with probability closest to .1000 is zg 1o = 1.28. The
limit L is given by

L=pn—o0zy10 =684 — 9.6 x 1.28 = 56.1 pounds

(¢) The new value of the mean p must satisfy

L—pn

where zg g5 = 1.645 so
w =1L+ 96 x z905 = 56.1 + 9.6 x 1.645 = 71.9 pounds

The mean must be increased by 3.5 pounds to decrease the percentage of units
below the limit L from 10% to 5%. [

[ Using R:  (a) 1-pnorm(80,68.4,9.6) (b) L = 68.4+9.6*qnorm(.10)
(¢) L+9.6*gqnorm(.95) |

Calculating probabilities when In X has a normal distribution

After collecting a large number of assays of the gold content in rocks from an open
pit mine, a mining engineer postulates that the natural log of the gold content (0z/st
gold) follows a normal distribution with mean —4.6 and variance 1.21. Under this
distribution, would it be unusual to get 0.0015 oz/st gold or less in an assay?

Because it is In X that has a normal distribution, the question concerns the standard-
ized value
In (0.0015) — (—4.6) B

Jio0 =—-1.729
The standard normal probability of obtaining this value or smaller (see Figure 5.14) is
P ( In(0.0015) — (—4.6)
V121

) — F(—1.73) = 0.0419



Figure 5.14
P(Z<-1.73)=
P(X <0.0015)

EXAMPLE 10

Solution

Figure 5.15
Diagram for example dealing
with power outages
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This probability is small, so we suspect that the postulated normal distribution with
mean —4.6 does not apply. An assay with this small amount of gold content could
suggest that the specimen was collected outside of the vein. [

Although the normal distribution applies to continuous random variables, it is
often used to approximate distributions of discrete random variables. Quite often,
this yields satisfactory results, provided that we make the continuity correction
illustrated in the following example.

A continuity correction to improve the normal approximation to a
count variable

In a certain city, the number of power outages per month is a random variable, having
a distribution with u© = 11.6 and ¢ = 3.3. If this distribution can be approximated
closely with a normal distribution, what is the probability that there will be at least
8 outages in any one month?

The answer is given by the area of the shaded region of Figure 5.15—the area to
the right of 7.5, not 8. The reason for this is that the number of outages is a dis-
crete random variable, and if we want to approximate its distribution with a normal
distribution, we must “spread” its values over a continuous scale. We do this by
representing each integer k by the interval from k — % to k + % For instance, 3 is
represented by the interval from 2.5 to 3.5, 10 is represented by the interval from
9.5 to 10.5, and “at least 8” is represented by the interval to the right of 7.5. Thus
the desired probability is approximated by

1—F<M) =1—F(—1.24)

3.3
= F(1.24)
= 0.8925 -
0.8925
Number
[ I outages

75 11.6
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Normal approximation to
binomial distribution

A good rule of thumb for
the normal approximation

EXAMPLE 11

5.3 The Normal Approximation to the Binomial
Distribution

Unlike the Poisson approximation that applies when p is small, the normal distribu-
tion approximates the binomial distribution when # is large and p, the probability of
a success, is not close to 0 or 1. We state, without proof, the following theorem:

Theorem 5.1 If X is a random variable having the binomial distribution with
the parameters n and p, the limiting form of the distribution function of the stan-
dardized random variable

_ X-—np
/np(l —p)
as n — 00, is given by the standard normal distribution

< 1
F(z):/ —e_tz/zdt —0<Zz< 00
—00 \/271'

Note that although X takes on only the values 0, 1, 2, ..., n, in the limit as n — oo,
the distribution of the corresponding standardized random variable is continuous,
and the corresponding probability density is the standard normal density.

Use the normal approximation to the binomial distribution only when np and
n(1 — p) are both greater than 15.

Note that in Example 11, which is an application of Theorem 5.1, we use again
the continuity correction given on page 147.

The current consensus is that there are three types of neutrinos and each is accom-
panied by an antimatter version. Further, any single neutrino can change (oscillate)
from one type to another. When one type of antimatter neutron, called an electron
antineutrino, travels two kilometers from a reactor to the detector it will disappear
if it interacts with an electron neutrino and changes into another type. At one site,
physicists have performed a path breaking experiment® that measured an important
constant for this change. At a specific detector, with electron antineutrinos of average
energy, this constant translates into probability .056 of disappearing.

Consider the outcomes of the next 300 electron antineutrinos leaving the reactor
and heading toward the detector. Assuming that the conditions for Bernoulli trials
hold,

(a) find the mean and standard deviation of the number which will disappear.
(b) Approximate the probability that 12 or more will disappear.

(¢) Approximate the probability of exactly 12.

(d) Comment on a possible violation of independence.

2F. P. An et. al (2013) An improved measurement of Electron Antineutrino disappearances at Day Bay,
Chin.Phys. C37
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0.9172
0.0475
Figure 5.16
Normal approximation to
©P(X = 12). -3 -2 -1 0 1 2 3 -3 -2 -1 o0 1 2 3
Solution We take the probability p = 0.056 which is the value estimated from the physics
experiment.
(a) Using the formulas for mean and standard deviation, we find
Mean = np = 300 x 0.056 = 16.80
Standard deviation = /np(1 — p) = /300 x 0.056 x 0.944 = 3.982
(b) Since np > 15, the normal distribution provides a good approximation to the
probability
11.5 — 16.80
1 —F———— ) = 0.9084
< 3.982 >
as illustrated in Figure 5.16. Over ninety percent of the time there will be 12 or
more disappearances among the 300.
The exact value .9142 is obtained using 1 - pbinom(11,300,.056) in R.
12.5 — 16.80 11.5 — 16.80
© p (=2 27) - F(—2—2"") = 0.1401 — 0.0916 = 0.0485
3.982 3.982
(d) If two or more electron antineutrinos are so close that they interfere with each
other, or even collide, independence is violated.
The exact calculation is always preferrable when p is given but the approxima-
tion is important for inference when it is not. [
Exercises
5.19 If a random variable has the standard normal distribu- distribution with mean 128 and standard deviation
tion, find the probability that it will take on a value 16 PdM.
(a) less than 1.75; (a) If engineering specifications require the sample
(b) less than —1.25; to have a vibration frequency of 100 PdM, what
’ is the probability that a sample will fail to meet
(c) greater than 2.06; specifications?
(d) greater than —1.82. (b) In the long run, what proportion of samples will
5.20 If a random variable has the standard normal distribu- fail? Explain your answer.
tion, find the probability that it will take on a value (c) The mean vibration frequency can be increased by
(a) between 0 and 2.3; using different materials. What new mean is re-

quired, when the standard deviation is 16, to re-
(b) between 1.22 and 2.43; duce the probability of not meeting specifications
(c) between —1.45 and —0.45; to 0.05?

(d) between —1.70 and 1.35. 5.22 If a random variable has a normal distribution, what

o ) ) ) are the probabilities that it will take on a value within
5.21 The nozzle of a mixing vibrator is tested for its

number of vibrations. The vibration frequency, for
each nozzle sample, can be modeled by a normal (b) 2 standard deviations of the mean;

(a) 1 standard deviation of the mean;
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5.23

5.25

5.27
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(c) 3 standard deviations of the mean;

(d) 4 standard deviations of the mean?

Verify that

(@) z0.00s = 2.575;

(b) zo.025 = 1.96.

Given a random variable having the normal distribu-

tion with © = 16.2 and o2 = 1.5625, find the proba-
bilities that it will take on a value

(a) greater than 16.8;

(b) less than 14.9;

(c) between 13.6 and 18.8;
(d) between 16.5 and 16.7.

The time for oil to percolate to all parts of an engine
can be treated as a random variable having a normal
distribution with mean 20 seconds. Find its standard
deviation if the probability is 0.25 that it will take a
value greater than 31.5 seconds.

Butterfly-style valves used in heating and ventilat-
ing industries have a high flow coefficient. Flow co-
efficient can be modeled by a normal distribution
with mean 496 C, and standard deviation 25 C,.
Find the probability that a valve will have a flow
coeflicient of

(a) atleast 450 Cy;
(b) between 445.5 and 522 C,,.

Refer to Exercise 5.26 but suppose that a large po-
tential contract contains the specification that at most
7.5% can have a flow coeficient less than 420 C,. If
the manufacturing process is improved to meet this
specification, determine

(a) the new mean p if the standard deviation is
25 Cy;
(b) the new standard deviation if the mean is 496 C,.

Find the guartiles

—20.25 2050 20.25

of the standard normal distribution.

The daily high temperature in a computer server room
at the university can be modeled by a normal distribu-
tion with mean 68.7°F and standard deviation 1.2°F.
Find the probability that, on a given day, the high tem-
perature will be

(a) between 68.3 and 70.3°F
(b) greater than 71.5°F.

With reference to the preceding exercise, for which
temperature is the probability 0.05 that it will be ex-
ceeded during one day?

A machine produces soap bars with a weight of 80 £+
0.10 g. If the weight of the soap bars manufactured by

5.33

5.34

5.35

wn
™
|

the machine may be looked upon as a random vari-
able having normal distribution with . = 80.05 g and
o = 0.05 g, what percentage of these bars will meet
specifications?

The number of teeth of a 12% tooth gear produced by
a machine follows a normal distribution. Verify that if
o = 1.5 and the mean number of teeth is 13, 74% of
the gears contain at least 12 teeth.

The quantity of aerated water that a machine puts in a
bottle of a carbonated beverage follows a normal dis-
tribution with a standard deviation of 0.25 g. At what
“normal” (mean) weight should the machine be set so
that no more than 8% of the bottles have more than
20 g of aerated water?

An automatic machine fills distilled water in 500-ml
bottles. Actual volumes are normally distributed about
a mean of 500 ml and their standard deviation is
20 ml.

(a) What proportion of the bottles are filled with
water outside the tolerance limit of 475 ml to
525 ml?

(b) To what value does the standard deviation need to
be increased if 99% of the bottles must be within
tolerance limits?

If a random variable has the binomial distribution
with n = 25 and p = 0.65, use the normal ap-
proximation to determine the probabilities that it will
take on

(a) the value 15;
(b) a value less than 10.

From past experience, a company knows that, on aver-
age, 5% of their concrete does not meet standards. Use
the normal approximation of the binomial distribution
to determine the probability that among 2000 bags of
concrete, 75 bags contain concrete that does not meet
standards.

The probability that an electronic component will fail
in less than 1,000 hours of continuous use is 0.25. Use
the normal approximation to find the probability that
among 200 such components fewer than 45 will fail in
less than 1,000 hours of continuous use.

Workers in silicon factories are prone to a lung dis-
ease called silicosis. In a recent survey in a factory,
about 11% of the workers have been infected by it.
Assume the same rate of infection holds everywhere.
Use the normal distribution to approximate the prob-
ability that, out of a random sample of 425 workers,
the numbers that are prone to infection at present
will be

(a) 30 or more;
(b) 28 or less.
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541

5.42

5.44

Refer to Example 11 concerning the experiment that
confirms electron antineutrinos change type. Suppose
instead that there are 400 electron antineutrinos leav-
ing the reactor. Repeat parts (a)—(c) of the example.

To illustrate the law of large numbers mentioned on
Page 116, find the probabilities that the proportion of
drawing a club from a fair deck of cards will be any-
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11.3 and standard deviation 5.7. The following steps
yield the cumulative probability of 9.31 or smaller, or
P(X <9.31).

Dialog box:
Calc > Probability Distribution > Normal

where from 0.24 to 0.26 when a card is drawn

(a) 100 times;
(b) 10,000 times.

Verify the identity F(—z)

page 141.

Verify that the parameter p in the expression for the
normal density on page 140, is, in fact, its mean.

3 Verify that the parameter o2 in the expression for the
normal density on page 140 is, in fact, its variance.

Normal probabilities

Uniform distribution

can be calculated using
MINITAB. Let X have a normal distribution with mean

Choose Cumulative Distribution. Choose Input
constant and enter 9.31.

Type 11.3 in Mean and 5.7 in standard deviation.
Click OK.

= 1 — F(z) given on
Output: Normal with mean = 11.3000 and standard
deviation = 5.70000
X P(X <=x)
9.3100 0.3635
For this same normal distribution, find the probability
(a) of 8.493 or smaller;

(b) of 16.074 or smaller.

5.4 Other Probability Densities

In the application of statistics to problems in engineering and physical science, we
encounter many probability densities other than the normal distribution. These in-
clude the 7, F, and chi square distributions; the fundamental sampling distributions
that we introduce in Chapter 6. We also treat the exponential and Weibull distribu-
tions, which we apply to problems of reliability and life testing in Chapter 16.

In the remainder of this chapter we shall discuss five continuous distributions,
the uniform distribution, the log-normal distribution, the gamma distribution, the
beta distribution, and the Weibull distribution, for the twofold purpose of widening
your familiarity with well known probability densities and to lay the foundation for
future applications.

5.5 The Uniform Distribution

The uniform distribution, with the parameters « and §, has probability density
function

1
B—a

0 elsewhere

fora <x<p

f&x) =

whose graph is shown in Figure 5.17. Note that all values of x from « to B are
“equally likely” in the sense that the probability that x lies in an interval of width Ax
entirely contained in the interval from « to B is equal to Ax/(8 — «), regardless of
the exact location of the interval.

To illustrate how a physical situation might give rise to a uniform distribution,
suppose that a wheel of a locomotive has the radius r and that x is the location of a
point on its circumference measured along the circumference from some reference
point 0. When the brakes are applied, some point will make sliding contact with the
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Figure 5.17
Graph of uniform probability
density

Mean of uniform
distribution

Variance of uniform
distribution

Log-normal distribution

fx)
1 — [r—
B—a : 1
1 ! M
0 B a

rail, and heavy wear will occur at that point. For repeated application of the brakes,
it would seem reasonable to assume that x is a value of a random variable having the
uniform distribution with ¢ = 0 and § = 27z r. If this assumption were incorrect,
that is, if some set of points on the wheel made contact more often than others, the
wheel would eventually exhibit “flat spots” or wear out of round.

To determine the mean and the variance of the uniform distribution, we first
evaluate the two integrals

B
MZ/ X ! dx=a+IB
o

B—« 2
and
B 1 2 2
,U«/ZZ/ X2 dx:a rab+p
o B —« 3
Thus,
_a+p
=

and, making use of the formula ol = '“/2 — ,uz, we find that

>
o —12(,3 a)

5.6 The Log-Normal Distribution

The log-normal distribution occurs in practice whenever we encounter a random
variable which is such that its logarithm has a normal distribution. Its probability
density is given by

1
x~ 1 (nx—)?/2p? forx>0, B>0

f) =1 V2B

0 elsewhere

where In x is the natural logarithm of x. A graph of the log-normal distribution with
a = 0 and f = 1 is shown in Figure 5.18. It can be seen from the figure that this
distribution is positively skewed, that is, it has a long right-hand tail.



Figure 5.18

Graph of log-normal
probability density, o« = 0,

B =1.

EXAMPLE 12

Solution

EXAMPLE 13

Solution

EXAMPLE 14
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f)
6

T T T X
0 2 4 6

To find the probability that a random variable having the log-normal distribution
will take on a value between a and b (0 < a < b), we must evaluate the integral

/ b1 1 o (nx—a?/26 5
a N 27 /3

Changing variable by letting y = Inx and identifying the integrand as the normal
density with © = « and o = $, we find that the desired probability is given by

Inb 2982 Inb—« Ina—«a
—(—a)*/28 _
e dy=F —F
/l‘na V2B Y < B ) ( B )

where F is the distribution function of the standard normal distribution.

Calculating a log-normal probability

The current gain of certain transistors is measured in units which make it equal to
the logarithm of I,/1;, the ratio of the output to the input current. If this logarithm

is normally distributed with 4 = 2 and o = 0.1, find the probability that 1,,/1; will
take on a value between 6.1 and 8.2.

Since « = 2 and B = 0.1, we get

In8.2 -2 In6.1 —2
F (—) - F <—> =F(.0) - F(—1.92)

0.1 0.1
= 0.8139 [

Graphing a probability density function on top of a density
histogram to help assess fit

Make a density histogram of the interrequest times on page 29 and relate it to a
log-normal distribution.

Figure 5.19 gives the density histogram. To accurately portray the pattern, shorter
intervals are used for the smaller times. We have also plotted the log-normal density
with o = 8.85 and § = 1.03. The log-normal fit is explored further in Section 5.12.
(See also Exercise 5.103.) [ |

A log-normal probability calculation for a risk analysis

As part of a risk analysis concerning a nuclear power plant, engineers must model
the strength of steam generator supports in terms of their ability to withstand the
peak acceleration caused by earthquakes. Expert opinion suggests that In (strength)
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Figure 5.19
Density histogram of
interrequest time

Solution

Mean of log-normal
distribution

Variance of log-normal
distribution

EXAMPLE 15

12X 1074 4

9.6 X 1075 — {\

72 X 107> — ]

Density

4.8 X 1075 —

2.4 %107 — \
~
0~ | ‘ T e
0 20,000 40,000 60,000 80,000
Time (microseconds)

is normally distributed with © = 4.0 and o2 = 0.09. Find the probability that the
supports will survive a peak acceleration of 33.

Since ¢ = 4.0 and 8 = 0.30, we find

In(33) — 4.0
- F (2222 ) =1 — F(—1.68) = 0.9535
( 0.30 ) ( ) =09 -

To find a formula for the mean of the log-normal distribution, we write

2n B Jo

and let y = Inx, so

! / X267
= e e
o V2B J—o0 Y

This integral is evaluated by completing the square on the exponent y —
&y — a)? / 2,62, to produce an integrand in the form of a normal density. The final
result, which the reader will be asked to verify in Exercise 5.48, is

= tH2

Similar, but more lengthy, calculations yield

0_2 — eZOH-ﬁZ (eﬂz -1)

Calculating the mean and variance for a log-normal distribution

With reference to Example 12, find the mean and the variance of the distribution of
the ratio of the output to the input current.



Gamma distribution

Figure 5.20

Solution

Graph of some gamma
probability density functions
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Substituting « = 2 and B = 0.1 into the above formulas, we get

= 20122 _ 5 4a

and

02=e4+(0.1)2(e(0.1)2_1)20'55 -

5.7 The Gamma Distribution

Several important probability densities whose applications will be discussed later
are special cases of the gamma distribution. This distribution has probability
density

1 L
AT ¢ W

0 elsewhere

for x>0, a >0, >0
fx) =

where I'(«) is a value of the gamma function, defined by

o0
MNa) = / e gy
0
Integration by parts shows that
Na)=(—DHI'(e—1)

for any @ > 1 and, hence, that I'(«) = (o — 1)! when « is a positive integer. Graphs
of several gamma distributions are shown in Figure 5.20 and they exhibit the fact
that these distributions are positively skewed. In fact, the skewness decreases as «
increases for any fixed value of §.

fx)

1_

The mean and the variance of the gamma distribution are obtained by making
use of the gamma function and its special properties mentioned above. The mean

1 (0.9]
n= / x-x2 e /B gy
BeT () Jo

and, after letting y = x/8, we get

') Jo ()

Then, using the identity I'(o + 1) = « - ['(«), we arrive at the result.
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Mean of gamma
distribution

Variance of gamma
distribution

Exponential distribution

EXAMPLE 16

Solution

Figure 5.21
Density histogram of decay

times

nw=op

Using similar methods, it can also be shown that the variance of the gamma distri-
bution is given by

In the special case where o = 1, we get the exponential distribution, whose
probability density is thus

le_x/ﬂ forx>0, 8>0
fo=18
0

elsewhere

and whose mean and variance are © = 8 and o2 = ,82. Note that the distribution
of Example 1 is an exponential distribution with § = %

An exponential density function on top of a density histogram

An engineer observing a nuclear reaction measures the time intervals between the
emissions of beta particles. (Courtesy of consulting client)

0.894 0.991 0.261 0.186 0.311 0.817 2.267 0.091 0.139 0.083
0.235 0424 0.216 0.579 0429 0.612 0.143 0.055 0.752 0.188
0.071 0.159 0.082 1.653 2.010 0.158 0.527 1.033 2.863 0.365
0.459 0431 0.092 0.830 1.718 0.099 0.162 0.076 0.107 0.278
0.100 0.919 0.900 0.093 0.041 0.712 0.994 0.149 0.866 0.054

Make a density histogram and plot an exponential density as an approximation.

These decay times (in milliseconds) are presented as a density histogram in Fig-
ure 5.21. The smooth curve is the exponential density with 8 = 0.55. Fit to an ex-
ponential density is further explored in Section 16.3. The exponential density has

mean B8 = 0.55 and standard deviation 0.55. [
2.0
1.6 —
= 127
g 0s—
A 0.8 \
0.4 — AN
0.0 = | T | | i T T
-0.5 0.0 0.5 1.0 15 2.0 2.5 3.0

Decay time (milliseconds)



EXAMPLE 17

Solution

Beta distribution

Mean and variance of beta
distribution

EXAMPLE 18
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The exponential distribution has many important applications. For instance, it
can be shown that in connection with Poisson processes (see Section 4.7) the waiting
time between successive arrivals (successes) has an exponential distribution. More
specifically, it can be shown that if in a Poisson process the mean arrival rate (average
number of arrivals per unit time) is «, the time until the first arrival, or the waiting

time between successive arrivals, has an exponential distribution with 8 = — (see
. o
Exercise 5.62).

Probability calculations using the exponential distribution

With reference to the example on page 124, where on the average three trucks arrived
per hour to be unloaded at a warehouse, what are the probabilities that the time
between the arrival of successive trucks will be

(a) less than 5 minutes? (b) at least 45 minutes?

Assuming the arrivals follow a Poisson process with « = 3, then = % and we get
1/12
@ / 3o ¥ax=1-—e¢1/4=0221
0
(0.¢]
(b) / 3¢ ¥ dx = e /% = 0.105 E
3/4

5.8 The Beta Distribution

‘When a random variable takes on values on the interval from O to 1, one choice of a
probability density is the beta distribution whose probability density is

(e + B)
fx)={ I -T'B)

0 elsewhere

XL —x)f-1 for0O<x<1l,a>0,>0

The mean and the variance of this distribution are given by

2 of

and o° =
a+p (a+p)P(a+p+1)

l,(,:

Note that for « = 1 and 8 = 1 we obtain as a special case the uniform distribution
of Section 5.5 defined on the interval from O to 1. The following example, pertaining
to a proportion, illustrates a typical application of the beta distribution.

Probability calculations using a beta distribution

In a certain county, the proportion of highway sections requiring repairs in any given
year is a random variable having the beta distribution with @ = 3 and 8 = 2 (shown
in Figure 5.22).
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Figure 5.22
Graph of the beta density with
a=3and B =2

Solution

Weibull distribution

fx)

2_

0 0.2 0.4 0.6 0.8 1.0

(a) On the average, what percentage of the highway sections require repairs in any
given year?

(b) Find the probability that at most half of the highway sections will require
repairs in any given year.

3
=— =0.60,
(@ u 312

which means that on the average 60% of the highway sections require repairs
in any given year.

(b) Substituting « = 3 and B = 2 into the formula for the beta distribution and
making use of the fact that I'(5) = 4! =24, I'(3) = 2! =2, and
'e)=1!=1, we get

Cf12x2(1—-x)  for0O<x<1
S = {O elsewhere

Thus, the desired probability is given by

1/2
// 12x2(1—x)dx=i n
0 16

In most realistically complex situations, probabilities relating to gamma and beta
distributions are obtained from computer programs.

5.9 The Weibull Distribution

Closely related to the exponential distribution is the Weibull distribution, whose
probability density is given by

aﬁxﬁ_le_axﬁ forx >0, a>0,8>0

elsewhere
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The Weibull distribution has cumulative distribution function
F(x):l—e_axﬂ x>0
which is obtained from

X 1 B
F(x):/ oz,Bwﬂ_ e M dw
0

by making the change of variable y = wP . Then
B
X

F(x)=/
0

If X has the Weibull distribution and ¥ = X7 , then
—a(yl/P )P

ae”YVdy =1 — e—ozxﬂ'

PXP<y)y=pPXx <yfy=1-0¢ =1-e%
which is the cumulative distribution of the exponential distribution. That is, when
X has the Weibull distribution then ¥ = X? has an exponential distribution. The
graphs of several Weibull distributions with« = 1 and 8 = % 1, and 2 are shown
in Figure 5.23.

fx)

Figure 5.23
Graphs of Weibull densities

1
witha = 1and 8 = X 1,
and 2

The mean of the Weibull distribution having the parameters « and 8 may be
obtained by evaluating the integral

& B
W= / x-aBP e gy
0

Making the change of variable u = axP, we get

0
= a_l/ﬂ/ Wl /B e qy
0

()

where the gamma function is defined on page 155, we obtain the mean of the Weibull
distribution.

Recognizing the integral as
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Mean of Weibull
distribution

1
_,—1/B
=« r{r+-
a ( ﬂ)

Using a similar method to determine first //2 the reader will be asked to show in
Exercise 5.70 that the variance of this distribution is given by

Variance of Weibull
distribution

2 2 {r (1 + %) - [F <1 " %>T}

Probability calculations using a Weibull distribution

Suppose that the lifetime of a certain kind of an emergency backup battery (in hours)
is a random variable X having the Weibull distribution with @« = 0.1 and g = 0.5.

(a) the mean lifetime of these batteries;
(b) the probability that such a battery will last more than 300 hours.

(a) Substitution into the formula for the mean yields

w = (0.1)"2T(3) = 200 hours

(b) Performing the necessary integration, we get

300

(0.05)x 0 o012 4 —0.1300)%3

=0.177 [ ]

EXAMPLE 19
Find
Solution
Exercises

5.45 Find the distribution function of a random variable
having a uniform distribution on (0, 1).

5.46 In a manufacturing process, the error made in deter-
mining the composition of an alloy is a random vari-
able having the uniform density with o« = —0.075 and
B = 0.010. What are the probabilities that such an
error will be
(a) between 0.050 and 0.001?

(b) between 0.001 and 0.008?
5.47 From experience Mr. Harris has found that the low bid

on a construction job can be regarded as a random vari-
able having the uniform density

3
feoy =4 4€
0 elsewhere

2C
for? <x<?2C

where C is his own estimate of the cost of the job. What
percentage should Mr. Harris add to his cost estimate
when submitting bids to maximize his expected profit?

5.48

5.49

5.50

5.51

5.52

5.53

5.54

Verify the expression given on page 154 for the mean
of the log-normal distribution.

With reference to the Example 12, find the probability
that 7,,/1; will take on a value between 7.0 and 7.5.

If a random variable has the log-normal distribution
with @ = —3 and 8 = 3, find its mean and its stan-
dard deviation.

With reference to the preceding exercise, find the prob-
abilities that the random variable will take on a value
(a) less than 8.0;

(b) between 4.5 and 6.5.

If a random variable has the gamma distribution with
o =2 and B = 3, find the mean and the standard de-
viation of this distribution.

With reference to Exercise 5.52, find the probabil-
ity that the random variable will take on a value less
than 5.

At a construction site, the daily requirement of gneiss
(in metric tons) is a random variable having a gamma



5.55

5.56

5.57

5.59

5.60

5.61

5.62

distribution with « = 2 and g = 5. If their supplier’s
daily supply capacity is 25 metric tons, what is the
probability that this capacity will be inadequate on
any given day?

With reference to the Example 14, suppose the expert
opinion is in error. Calculate the probability that the
supports will survive if

(@) n=23.0ando? =0.09;
(b) w=4.0and o2 =0.25.

Verify the expression for the variance of the gamma
distribution given on page 156.

Show that when @ > 1, the graph of the gamma den-
sity has a relative maximum at x = (o — 1). What
happens when 0 < « < 1 and when o = 1?

The server of a multinational corporate network can
run for an amount of time without having to be re-
booted and this amount of time is a random variable
having the exponential distribution 8 = 30 days. Find
the probabilities that such a server will

(a) have to be rebooted in less than 10 days;
(b) not have to be rebooted in at least 45 days.

With reference to Exercise 4.95, find the percent of
the time that the interval between breakdowns of the
computer will be

(a) less than 1 week;
(b) atleast 5 weeks.

With reference to Exercise 4.58, find the probabilities
that the time between successive requests for consult-
ing will be

(a) less than 0.5 week;
(b) more than 3 weeks.

Given a Poisson process with on the average « arrivals
per unit time, find the probability that there will be no
arrivals during a time interval of length ¢, namely, the
probability that the waiting times between successive
arrivals will be at least of length 7.

Use the result of Exercise 5.61 to find an expression
for the probability density of the waiting time between
successive arrivals.

Sec 5.10

5.63

5.64

5.66

5.70

161

Joint Distributions—Discrete and Continuous

Verify for « = 3 and B = 3 that the integral of the
beta density, from O to 1, is equal to 1.

If the ratio of defective switches produced during com-
plete production cycles in the previous month can be
looked upon as a random variable having a beta distri-
bution with « = 3 and B = 6, what is the probability
that in any given year, there will be fewer than 5%
defective switches produced?

Suppose the proportion of error in code developed by a
programmer, which varies from software to software,
may be looked upon as a random variable having the
beta distribution withe =2 and g = 7.

(a) Find the mean of this beta distribution, namely,
the average proportion of errors in a code from
this engineer.

(b) Find the probability that a software developed by
this engineer will contain 30% or more errors.

Show that when @ > 1 and 8 > 1, the beta density
has a relative maximum at

oa—1
X=——+
a+p -2

With reference to the Example 19, find the probability
that such a battery will not last 100 hours.

Suppose that the time to failure (in minutes) of certain
electronic components subjected to continuous vibra-
tions may be looked upon as a random variable having
. L . 1 1
the Weibull distribution with o« = 3 and g = 3
(a) How long can such a component be expected to
last?

(b) Whatis the probability that such a component will
fail in less than 5 hours?

Suppose that the processing speed (in milliseconds)
of a supercomputer is a random variable having the
Weibull distribution with @ = 0.005 and g = 0.125.
What is the probability that such a supercomputer
will have similar processing speeds after running for
50,000 ms?

Verify the formula for the variance of the Weibull dis-
tribution given on page 160.

5.10 Joint Distributions—Discrete and Continuous

Discrete Variables

Often, experiments are conducted where two random variables are observed simul-
taneously in order to determine not only their individual behavior but also the degree
of relationship between them.

For two discrete random variables X| and X;, we write the probability that X;
will take the value x| and X, will take the value x as P(X; = x1, Xp = xp ). Con-
sequently, P(X; = x1, Xp = xp ) is the probability of the intersection of the events
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EXAMPLE 20

Solution

X1 = x1 and X, = x,. The distribution of probability is specified by listing the prob-
abilities associated with all possible pairs of values x| and x,, either by formula or in
a table. We refer to the function f(xy,x, ) = P(X| = x1, X = xp ) and the corre-
sponding possible values (x}, xp ) as the joint probability distribution of X; and X,.

Calculating probabilities from a discrete joint probability
distribution

Let X; and X, have the joint probability distribution in the table below.

Joint Probability Distribution
f(X| 5 Xz) OfX| and X2

0 0.1 0.4 0.1
| 0.2 0.2 0

X2

(a) Find P(X; + X, > 1).

(b) Find the probability distribution fj(x;) = P(X; = x1 ) of the individual
random variable X;.

(a) The event X| 4+ X, > 1 is composed of the pairs of values (1, 1), (2, 0), and
(2,1). Adding their corresponding probabilities

PX{+X > 1) =f1, 1)+ 2,00+ f2,1)=02+01+0=0.3

(b) Since the event X; = 0 is composed of the two pairs of values (0, 0) and (0, 1),
we add their corresponding probabilities to obtain

P(X; =0) = f(0,0)+ £(0,1)=0.1+0.2=0.3

Continuing, we obtain P(X; = 1) = 0.6 and P(X; = 2) = 0.1. In summary,
f1(0) =0.3, f1(1) = 0.6, and f](2) = 0.1 is the probability distribution of Xj.

Rewriting the frequency table but including the row and column totals,

Joint Probability Distribution f(x;, x2) of X, and X;

with Marginal Distributions

X| Total
0 | 2 fa(x2)
0 0.1 0.4 0.1 0.6
x2
| 0.2 0.2 0 0.4
Total f(xp) 0.3 0.6 0.1 1.0

Note that the probability distribution f] (x{) of X| appears in the lower margin of this
enlarged table. The probability distribution f5(x,) of X, appears in the right-hand
margin of the table. Consequently, the individual distributions are called marginal
probability distributions. ]
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Solution
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From the example, we see that for each fixed value x; of X|, the marginal prob-
ability distribution is obtained as

PXy=x))=fik) = Y fx1.x)

values x;

where the sum is over all possible values of the second variable with x fixed.

Consistent with the definition of conditional probability of events when A is the
event X| = x| and B is the event X, = x», the conditional probability distribution
of X given X, = x5 is defined as

S(x1,x2)
fa(xp)

If f1(xq]|xp) = f1(x1) for all x; and x5, so the conditional probability distribution
is free of xy, or, equivalently, if

Jfilxglx) = for all x; provided f> (xp) # 0

S(x1,x0) = f1(x1)f2(x2) for all xy, xp

the two random variables are independent.

A conditional probability distribution

With reference to the previous example, find the conditional probability distribution
of X given X, = 1. Are X and X, independent?

_fO, 1) 02 CFa 02
AOID =" = 5 =05 Al =2 = 72 = 0.5, and
fe,1n 0
2 1 = = — =
121D ) 04

Since f1(0]1) = 0.5 # 0.3 = f(0), the conditional probability distribution is not
free of the value x,. Equivalently, (0, 1) = 0.2 # (0.3)(0.4) = f1(0)f>(1) so X;
and X, are dependent. [

Suppose that instead we are concerned with k random variables X,
Xy, ..., Xg. Let x1 be a possible value for the first random variable X;, x, be a
possible value for the second random variable X5, and so on with x;, a possible value
for the kth random variable. Then the probabilities

P(Xl =x1,X2=x2,...,Xk :xk):f(xl’XZa'--vxk)

need to be specified. We refer to the function f and the corresponding k-tuples of
possible values (xq, xp, ..., x;) as the joint probability distribution of these dis-
crete random variables.

The probability distribution fj(x;) of the individual variable X; is called the
marginal probability distribution of the ith random variable

fi(x;) = Z Z Z Z Sf(x1, %0, ..., x%)
X Xi—1 Xi+1 X

where the summation is over all possible k-tuples where the ith component is held
fixed at the specified value x;.
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EXAMPLE 22

Solution

Continuous Variables

There are many situations in which we describe an outcome by giving the values
of several continuous random variables. For instance, we may measure the weight
and the hardness of a rock; the volume, pressure, and temperature of a gas; or
the thickness, compressive strength, and potassium content of a piece of glass. If
X1, Xy, ..., Xy are k continuous random variables, we shall referto f(xy, xp, ..., x;)
as the joint probability density of these random variables, if the probability that
ap < X| <bj,ap <Xp <by,...,and g < X} < by is given by the multiple
integral

by by by
/ / J(x1,x0, ..., x)dxy dxy ... dxy,
Ay a Jap

Thus, not every function f(xy, xp, ..., X;) can serve as a joint probability density,
but if

f(xl,xz,...,xk) 20

for all values of x1, xp, ..., x;, and

00 00 00
/ [ / f(xl,xz,...,xk)dxldxz...dxkz1
—00 J—O0 —00

it can be shown that the axioms of probability (with the modification of the definition
of “event” discussed in Section 5.1) are satisfied.

To extend the concept of a cumulative distribution function to the k-variable
case, we write as F(x, xp, ..., x;) the probability that the first random variable
will take on a value less than or equal to x;, the second random variable will take
on a value less than or equal to xp, ..., and the kth random variable will take on a
value less than or equal to x;, and we refer to the corresponding function F as the
joint cumulative distribution function of the k& random variables.

Calculating probabilities from a joint probability density function
If the joint probability density of two random variables is given by

6e 21730 forx; >0, x >0

X1, Xp) =
S x2) 0 elsewhere
find the probabilities that

(a) the first random variable will take on a value between 1 and 2 and the second
random variable will take on a value between 2 and 3;

(b) the first random variable will take on a value less than 2 and the second
random variable will take on a value greater than 2.

Performing the necessary integrations, we get

@) S -3 2 4\, —6_ 9
/2 /; 6e N T2 dx dxy = (e —e T)(e P —e )

= 0.0003

oo 2
/2 /0 6e 21730 dxydxy = (1 — e 4 )6_6

= 0.0024 L

(b)
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Solution

Marginal density

EXAMPLE 24

Solution
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Determining a joint cumulative distribution function

Find the joint cumulative distribution function of the two random variables of the
preceding exercise, and use it to find the probability that both random variables will
take on values less than 1.

By definition,
X2 X1
/ / 6e 2 Vdudv  forx; >0, xp >0
F(xi,x) = 0 JO
0 elsewhere
so that
(1—e 2)y1—e32)  forx; >0, x>0
F(x1,xp) =
0 elsewhere
and, hence,

F(l,)=(1—e2)(1—e3)
—=0.8216 ®

Given the joint probability density of k random variables, the probability density
of the ith random variable can be obtained by integrating out the other variables;
symbolically,

oo oo
fi(xi)=/ / SO xg, oo x)dxy odxj_ydxgyy . dxg
—00 —00

and, in this context, the function f; is called the marginal density of the ith random
variable. Integrating out only some of the k random variables, we can similarly define
joint marginal densities of any two, three, or more of the k random variables.

Determining a marginal density from a joint density
With reference to Example 22. find the marginal density of the first random variable.

Integrating out x,, we get

o0
/ 6 21732 gy, forx; >0
0

fitx) =
0 elsewhere
or
2e™ 2N forx; > 0
(x1) =
Sl { 0 elsewhere u

To explain what we mean by the independence of continuous random vari-
ables, we could proceed as with discrete random variables and define conditional
probability densities first; however, it will be easier to say that
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Independent random
variables

EXAMPLE 25

Solution

EXAMPLE 26

Solution

k random variables X1, ..., X} are independent if and only if
F(xp,x, .00 x) = Fr(xp) - Fplx) - - - Fr(xg)

for all values xq, xp, ..., x; of these random variables.

In this notation F(xy, xp, ..., X; ) is, as before, the joint distribution function of the
k random variables, while F;(x;) fori = 1, 2, ..., k are the corresponding individual
distribution function of the respective random variables. The same condition applies
for discrete random variables.

Checking independence via the joint cumulative distribution

With reference to Example 23, check whether the two random variables are inde-
pendent.

As we already saw in Example 23, the joint distribution function of the two random
variables is given by

(1— e 2X1)(1 — e 302) forx; > 0andxy >0

F(xy,x) =
b2 0 elsewhere

Now, since Fj(x1) = F(xy, 00) and F>(xp) = F(00, xp), it follows that

1—e 20 forx; >0
Fl (xl) =
0 elsewhere
and
(o) 1 —e 3% forxy, > 0
XH) =
22 0 elsewhere

Thus, F(x1,x9) = F1(x1) - F5(xp) for all (x1, xp) and the two random variables are
independent. u

When k random variables have a joint probability density, the kK random vari-
ables are independent if and only if their joint probability density equals the prod-
uct of the corresponding values of the marginal densities of the k random variables;
symbolically,

fCxrx0, o x,) = filxy) - falxp) - filxg ) forall (xp, ..., x;).

Establishing independence by factoring the joint probability density
With reference to Example 22, verify that

Sx1,x) = fi(xy) - falx2)

Example 24 shows that

2e 2N forx; >0

0 elsewhere

fl(xl):{



Conditional probability
density

EXAMPLE 27

Solution

Sec 5.10 Joint Distributions—Discrete and Continuous 167

and in the same way,

o) 3e7302 forx, >0
X =
22 0 elsewhere
Thus,
6e 2130 forx; > 0andxy >0
JiG) - falxg) =
0 elsewhere
and it can be seen that f](x1) - fo(x2) = f(x1, xp) for all (x1, xp). [

Given two continuous random variables X| and X5, we define the conditional
probability density of the first given that the second takes on the value x; as

f(x1,x)

Silxplx) = ()

provided f>(xp ) # 0

where f(x1,xp) and f,(xp) are, as before, the joint density of the two random vari-
ables and the marginal density of the second. Note that this definition parallels that
of the conditional probability distribution on page 163. Also, the joint probability
density is the product

f(x1,x0) = f1(xplx2) f2(x2).

Determining a conditional probability density
If two random variables have the joint probability density

2
—(x14+2x7) forO0<x; <1,0<x <1
P xy) = 3 1 2 1 2

0 elsewhere

find the conditional density of the first given that the second takes on the value x;.

First we find the marginal density of the second random variable by integrating out
x1, and we get

Solxp) = /
0

and f>(xp) = 0 elsewhere. Hence, by definition, the conditional density of the first
random variable given that the second takes on the value x, is given by

) 1
g(x1+2x2)dx1=§(1+4x2) forO <xp <1

2
3FENR) oy 4

S1(xp [x2) = T +dx

forO0 <x; <1,0<x <1
3(1+4X2)

and fj(x; |xp) =0forx; <0Oorx; >1and0 < xy < 1. [
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Expected value of g( X))

EXAMPLE 28

Solution

Properties of Expectation

Consider a function g(X) of a single random variable X. For instance, if X is an oven
temperature in degrees centigrade, then

9
gX) = §X+32

is the same temperature in degrees Fahrenheit.
The expectation of the function g( X ) is again the sum of the products value x
probability.

In the discrete case, where X has probability distribution f(x)
E[gX)] =) gbx)f(x)
X
In the continuous case, where X has probability density function f(x)

)

8(x) f(x)dx
o0

E[g(X)]=/

If X has mean u = E(X), then taking g(x) = (x — )2, we have E [ g(X)] =

E(X—n )2, which is just the variance o2 of X.

For any random variable Y, let E(Y) denote its expectation, which is also its
mean py. Its variance is Var (Y') which is also written as o%.

When g(x) = ax + b, for given constants a and b, then random variable g( X)
has expectation

00 00 00
E(aX—}—b):/ (ax—l—b)f(x)dx:a/ xf(x)dx—l—b/ f(x)dx
o0 —00 —00

=aE(X)+b
and variance

Var(aX +b) =/

o0

(ax+b—apy —b)zf(x)dx
o0

(0, ¢]
:azf (x—uX)zf(x)dxzanar(X)

—00
To summarize,

For given constants a and b

E(aX +b)=aE(X)+b and Var(aX +b)=a?Var(X)

The mean and standard deviation of a standardized random variable

Let X have mean p and standard deviation o. Use the properties of expectation to
show that the standardized random variable
X—n

o

7 =

has mean 0 and standard deviation 1.

Since Z is of the form




EXAMPLE 29

Solution

Expected value of
g( X| s Xz, .o

-9Xk)
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wherea = 1/o and b= —pu /o,

1
EQ)=-Ex)-L=-E_E_,
o o o O
and the variance of Z is
1\2 o2
— Var (X) = — = 1
o o
because E(X) = u and Var (X) = o2 [ |

Determining the mean and variance of 20 X

Suppose the daily amount of electricity X required for a plating process has mean
10 and standard deviation 3 kilowatt-hours. If the cost of electricity is 20 dollars per
kilowatt hour, find the mean, variance, and standard deviation of the daily cost of
electricity.

The daily cost of electricity, g(X) = 20X, has mean 20 E(X) = 20 x 10 = 200
dollars and variance (20)2 Var (X) = (20)232 = 3,600. Its standard deviation is

/3,600 = 60 dollars. [
Given any collection of k random variables, the functionY = g(X1, Xp, ..., X})

is also a random variable. Examples include Y = X| — X, when g(x, xp) = x; —xp
and ¥ = 2X| + 3X, when g(x,xp) = 2x{ + 3x. The random variable g(X{,
X5, ..., X;) has expected value, or mean, which is the sum of the products
value x probability.

In the discrete case,

E[8(X1. X, X )1 =D > o> gy g, oo ) (X1, X0, )
X1 X2 Xk

In the continuous case,

Elg(Xy, Xp, ..., Xp) ]

o o o0
=/ / / g(xy,xp, o xp)f(x1, %0, oo X)) dxypdxy - -+ dxy
—00 J—X —0o0

Several important properties of expectation can be deduced from this definition.
Taking g(x1,xp) = (x; — 1) (xp — o), we see that the product (x; — )
(x9 — up ) will be positive if both values x| and x, are above their respective means
or both are below their respective means. Otherwise it will be negative. The expected
value E [ (X] — 1) (Xo — pp ) ] will tend to be positive when large X; and X, tend
to occur together and small X; and X, tend to occur together, with high probability.
This measure E [ (X] — w1 ) (Xo — o )] of joint variation is called the population
covariance of X; and Xj.

If X and X, are independent so f(x1, xp) = fj(x1)f2(x2),

0 X0
/ / (31— 1) (52 — 2 ) (31352 Yoy dey
—0Q0 J —0O0

o0 o0
2/ (x1 —M1)f1(x1)dx1'f (x2 — u2)f2(xp)dxy =0

—00 —
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This result concerning zero covariance can be stated as

L When X; and X, are independent, their covariance
Independence implies that

the covariance is zero E[(X] —pu1)(Xp—pup)]=0

Further, the expectation of a linear combination of two independent random
variables Y = a1 X| + ap X5 is

py = EY) = E(a;X| +aXp )

(0,@) o0
=/ / (ayx1 + arxp) f1(x) f2(x2) dxy dxy
—00 J—00

00 o0
=a / _X'lfl(Xl)d)Cl / fZ(xz)dxz
00 —0

o0 o0
+a2/ f1(X1)dX1/ X2 f2(x2) dxp

—o0
= a1E(X1) + aE(X3)
This result holds even if the two random variables are not independent. Also,
Var(Y) = E (Y — py)* = E[(a|X] + aXp — ayuy — app)* ]
= E[(ay(X] — 1) +ax(Xy — 112))* ]
=Ela} (X; — 1) + a3 (Xo — o) +2ayap (X) — g )Xo — 112)]
= a{E[(X) — n1)* 1+ GGE[(Xo — 1) 1+ 2a1@E [(X] — 1) (Xa — )]
= a3 Var (X;) + a5 Var (Xa)

since the third term is zero because we assumed X| and X, are independent.
These properties hold for any number of random variables whether they are
continuous or discrete.

Let X; have mean p; and variance oiz fori =1, 2, ..., k. The linear combination
Y = alxl + a2X2 =+ .- +aka has

E(a1 Xy +ayXo+ -+ Xy ) = a1 E(Xy) + apE(Xp) + -+ - + apE(Xy)

or

k
The mean and variance of = ; “itti
linear combinations When the random variables are independent,
Var (a1 X1 +arxXo + -+ -+ ap Xy ) = a% Var (X1)
+ a% Var(Xp)+--- + a,% Var (X;,)

or
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Solution

EXAMPLE 32

Solution
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Variances of X; — X; and X, + X; when X, and X; are independent

Let X; have mean p; and variance 012 and let X, have mean 1ty and variance o2

Find the mean and variance of
(a) X1 — X5 and (b) X; + X,
if X; and X, are independent.
(a) Note that X — X, is of the form a;X| + a)Xp witha; = —ap = 1 soiit

has mean

Lopy+(=Dupy =npny — po
and variance
(1?02 + (=1)?03 =0l + 0}

(b) Since X| + X, corresponds to the case with a; = ap = 1, it has mean

Lopy+1-pp=py+po
and variance

2 2 2 2 _ 2 2

Finding the mean and variance of 2X; + X; — 5

If X; has mean 4 and variance 9 while X, has mean —2 and variance 6, and the two
are independent, find

@E(2X;+X, —5)
(b) Var (2X; + X, — 5)

According to the properties of expectation, the constant —5 is added to the expecta-
tion of 2X; 4 X, but the variance is unchanged.

@ pOX, +X —5) = E(Q2X| +X)—5
— 2E(X|)+E(Xy)—5=2(4)+(=2)—5=1

®) v 2x, + X, —5) = Var(2X; + Xo)
= 22Var(X; )+ Var(X,)=229)+6=42 =

The mean and variance of total time to coat and rinse

The time to complete a coating process, X|, has mean 35 minutes and variance 11,
while the time to rinse, X5, has mean 8 minutes and variance 5. Find the mean and
standard deviation of the total time to coat and rinse.

According to properties of expectation, the total time X; 4+ X, has mean 35 4 8 =
43 minutes. Treating the coating and rinsing times as independent, the variance is
11 + 5 = 16, so that the standard deviation is 4. [ ]
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CNINEE) The mean and variance of the sample mean X

Let the n random variables X1, X», ..., Xj; be independent and each have the same
distribution with mean u and variance o2, Use the properties of expectation to show
that the sample mean X has

(a) mean: Uy = EX)=p
2
(b) variance: 02 = Var(X) = 7
X n

Solution (a) The sample mean

— Xi+X+---+X 1 1 1
X = 1 2 n:—X1+—X2+"'+_Xn
n n n n
is a linear combination with constants ¢; = 1/nfori=1,2,...,n.

Consequently,

1 1 1 S B
E(X)= EX)+ EXo)+--+ -EXn) =) ~p=—nu=p

i=1
so the expected value or mean of X is the same as the mean of each
observation.

(b) The variance of X is

_ 1\2 1\? 1\?
Var(X):(Z) Var(Xl)—f—(;) Var(Xz)—{—---—i—(;) Var (Xp)

n 2 2 2
1 1 o
n n n
i=1
so the variance of X equals the variance of a single observation divided by 7. m

D N |JNKEY The expected value of the sample variance

Let the n random variables X1, X5, ..., X;; be independent and each have the same
distribution with mean p and variance o2. Use the properties of expectation to show
that o2 is the mean, or expectation, of the sample variance

n
Y (X=X /-1
i=1
Solution We write (X; —X)?> = (X; —pu+pn—X)? = (Xi —n)? + (p —X)? +
2(X; — 0 )(; — X)) so the numerator of the sample variance is

n n

Y -XP =) (- Y (n=X)PP+2) (- p)(pn-X)
i=1 i=1 i=1 i=1

— n —
and the last term equals =2 (X —p) Y (X;j—p) = —2n(X—pn )2. Consequently,
i=1

Y =XP =) (Xi—u)—n(X—pu)
i=1

i=1



Sec 5.10

173

Joint Distributions—Discrete and Continuous

Now E(X; — u)? = Var (X;) = o2 and, by Example 34, E(X ) = p and E(X —
"w )2 =Var(X) = o2 /n. Taking expectation term by term and summing,

n n 2
12 2 o 2
E § X;—X =§ —n—=(n—-1
'1(1 ) _10 nn (n )o
= =

Dividing both sides by n— 1, we conclude that o2 isthe expected value of the sample

variance.

Exercises

5.71

5.72

5.73

5.74

5.75

5.76

Two transistors are needed for an integrated circuit. Of
the eight available, three have broken insulation layers,
two have poor diodes, and three are in good condition.
Two transistors are selected at random.

(a) Find the joint probability distribution of X| = the
number of transistors with broken insulation lay-
ers and X, = the number having poor diodes.

(b) Find the probability of 1 or 2 total defects among
the two selected.

(c) Find the marginal probability distribution of Xj.
(d) Find the conditional probability distribution of X,
given X; = 0.

Two random variables are independent and each has a
binomial distribution with success probability 0.7 and
4 trials.

(a) Find the joint probability distribution.
(b) Find the probability that the first random variable
is greater than the second.

If two random variables have the joint density

xixp for0<x; <2, 0<x <1

f(xl,xz):{

0 elsewhere

find the probabilities that

(a) both random variables will take on values less
than 1;

(b) the sum of the values taken on by the two random
variables will be less than 1.

With reference to the preceding exercise, find the
marginal densities of the two random variables.

With reference to Exercise 5.73, find the joint cumula-
tive distribution function of the two random variables,
the cumulative distribution functions of the individual
random variables, and check whether the two random
variables are independent.

If two random variables have the joint density

6
Fxy) g(x+y2) for0<x<1,0<y<1
x,y) =

0 elsewhere

5.77

5.78

5.79

5.80

5.82

find the probability that 0.2 < X < 0.5and 0.4 <Y <
0.6.

With reference to the preceding exercise, find the
joint cumulative distribution function of the two ran-
dom variables and use it to verify the value obtained
for the probability.

With reference to Exercise 5.76, find both marginal
densities and use them to find the probabilities that

(a) X > 0.8;

(b) Y <0.5.

With reference to Exercise 5.76, find

(a) an expression for fi(x|y) for0 <y < 1;
(b) an expression for fj(x|0.5);

(c) the mean of the conditional density of the first ran-
dom variable when the second takes on the value
0.5.

With reference to Example 27, find expressions for

(a) the conditional density of the first random variable
when the second takes on the value x, = 0.25;

(b) the conditional density of the second random vari-
able when the first takes on the value xj.

If three random variables have the joint density

k(x+y)e % for 0 <x <2,

f,y,2) = O0<y<l1,z>0

0 elsewhere

find
(a) the value of k;
(b) the probability that X > Y and Z > 1.

With reference to the preceding exercise, check
whether

(a) the three random variables are independent;

(b) any two of the three random variables are pairwise
independent.
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5.83

5.84

5.85

5.87
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A pair of random variables has the circular normal
distribution if their joint density is given by

S, x2)

_ b L= P+ (o= u2)? /207
2o

for —oo < x; < o0 and —00 < Xy < 00.

(a) If 4y =2 and pur = —2, and 0 = 10, use Table 3
to find the probability that —8 < X; < 14 and
-9 <X, <3.

(b) If w1 = up = 0 and o = 3, find the probability
that (X1, Xp) is contained in the region between
the two circles x% + x% = 9and x% + x% = 36.

A precision drill positioned over a target point will
make an acceptable hole if it is within 5 microns of
the target. Using the target as the origin of a rectan-
gular system of coordinates, assume that the coordi-
nates (x, y) of the point of contact are values of a pair
of random variables having the circular normal distri-
bution (see Exercise 5.83) with u; = pu, = 0 and
o = 2. What is the probability that the hole will be
acceptable?

With reference to Exercise 5.73, find the expected
value of the random variable whose values are given
by g(x1, x2) = x1 + x2.

With reference to Exercise 5.76, find the expected
value of the random variable whose values are given
by g(x, y) = x%y.

If measurements of the length and the width of a rect-
angle have the joint density

1 a a
— forL— - <x<L+ —,
ab 2 2

b b

0 elsewhere

5.11

5.90

5.91

5.93

find the mean and the variance of the corresponding
distribution of the area of the rectangle.

Establish a relationship between
Ja(xa | x1), fi(x1), and f5(x2).

If X has mean 1 and variance 5 while X, has mean —1
and variance 5, and the two are independent, find

(@) E(X1+X2);

(b) Var (X; +Xz).

If X| has mean 8 and variance 2 while X, has mean
—12.5 and variance 2.25, and the two are independent,
find

(@) E(X; —X3);

(b) Var(X; — Xp).

If X; has mean 1 and variance 3 while X, has mean —2
and variance 5, and the two are independent, find

() E(X1+2X; -3);
(b) Var (X; +2X, — 3).

The time taken by a traditional nuclear reactor to gen-
erate one nuclear chain reaction with fast neutrons,
X1, has mean 10 nanoseconds and variance 4, while
the time taken by an improved design of the reac-
tor, Xp, has mean 8 nanoseconds and variance 2.5.
Find the expected time savings using the improved
design when

S1(xq [ x2),

(a) generating a single chain reaction;
(b) generating 5000 chain reactions.

(c) Find the standard deviation in part (a) and (b),
assuming all of the generating times are independent.

Let X1, X», ..., Xy be independent and let each have
the same marginal distribution with mean 10 and vari-
ance 3. Find

(@) E(X; +Xy+---+X0);
(b) Var (X; +Xp 4 ---+Xp0).

Moment Generating Functions®

An alternative to a probability distribution can sometimes greatly simplify the cal-
culation of moments. The moment generating function (mgf) of a random variable
X, or its probability distribution, is the function defined by

M(t) = E(%)

which is the expectation of the exponential function X In the discrete case,

and

M(t):E(efX)=/oo

M) =E(X) =" e™if(x;)

all x;

e f(x) dx

—00

*This section may be skipped on first reading.
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in the continuous case. For each fixed ¢, the integrand is a positive function of x so
M(t) is either finite or infinite. Note that M(0) = E (eOX ) = E(1) = 1 always exists,
but we require M(¢) to exist for an interval of values of 7.

The probability distribution, or random variable X, is said to possess a moment
generating function M (¢) if this function is finite for ¢ in some interval containing
zero, say |t| < T for some T > 0.

Under the condition that M(¢) is finite for |¢| < T, for some T > 0, we can
obtain successive derivatives by differentiating under the integral or summation sign.
In the continuous case, we obtain

(o.¢]

(1) = i — i tx _ o 1x
M (t) = dtM(t)_/_oo dte f(x)dx—/;OO xe” f(x)dx

1 d2 © d tx o 2 tx
M (t):d?M(t):/ 7 f(x)dx:f x7e f(x)dx

—00 —00

For either the continuous or discrete case,

dk
M®B @y = d—kM(t) —E(x*Xy  fork=1,2,...
t

Setting + = 0, we obtain the moments about the origin

M 0)=E(X)
M"(0) = E(X?)

Differentiating k times, the kth derivative is related to the kth moment

M©©0)=EX*)  fork=1,2,...

Theorem 5.2  If the moment generating function is finite for || < T, for some
T > 0, it uniquely determines the probability distribution.
Then, all moments exist and can be obtained from the relation

M) = E(x*)

From the definition of expectation, the moments of any random variable must
be obtained by integration or summation of a series. When the moment generating
function is available, this process can be replaced by a straightforward differentia-
tion. We find the moment generating functions and illustrate the calculation of mean
and variance for several common distributions in the next examples.

Moment generating function for binomial distribution
Let X have the binomial distribution with probability distribution

b(x|n,l7)=(z>px(l—p)"_x forx=0,1,...,n

Show that

(@) M(t)=(1—p + pe' )" forall t
(b) E(X)=npand Var(X) =np(1 —p)
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Solution (a) By definition of the moment generating function

n

M@= * (Z) P(=p)™

x=0

n
n _
=> (x> (py(1—py—*
x=0
=(pd +1—-p) for all ¢
where we have used the binomial formula
n
v =3 () av
x=0
(b) Differentiating M(t), we find
M @) =npe (pe' +1—py~!
M'(t)=(n—1np*e®(pe +1—p)Y" 2 +npe(pe +1-p)"
Evaluating these derivatives at = 0, we obtain the moments
E(X) =np
E(X%) = (n—1)np? +np
Also, the variance is

Var(X)=E(X>)—[E(X)> =np(1—p)

S G\ ]JEK]Y) Moment generating function for Poisson distribution
Let X have the Poisson distribution with probability distribution

)Lx
fx) = —'e_)“ forx=0,1,...,00
X
Show that

(@) M(t) = e*(¢'=1) for all ¢
(b) E(X)=xand Var (X )= A

The mean and variance of the Poisson distribution are equal.

Solution (a) By definition of the moment generating function

00 00
pR (ket )x
_ tx M —h —A
M(t) = E e x!e = E 0 e
x=0 x=0
_ t r_
=t = e 1) for —oco <t < o0

k
where we have used the series ¢ = Y 2 %
(b) Differentiating M(¢), we find

M (1) —releh(e=1)
M//(t) — )\‘ele)\.(et—l ) +)L26,2tek(e’—1)
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Evaluating these derivatives at ¢ = 0, we obtain the moments

EX)=x
E(X%)=x+22

Also, the variance is

Var (X ) = E(X?) — [E(X)]* = A B

Moment generating function for gamma distribution
The gamma distribution has probability density function

¢ Le—x/B forx >0

Show that its moment generating function is

M) = 1
(=)
and verify the mean and variance.

o0 1
M) = / Xyl =X/ gy
0 B T()

1 o0
- / =1, —x(1=p0/B 4
@) Jo

This last integral is finite for all # < 1/ and can be evaluated by multiplying and
dividing by (1 — B1)“ to obtain a gamma density with parameters « and /(1 — Bt).
We conclude that

1 B¢ 1
I'a) =
BT () (I—=po)*  (1—pr)

To obtain the moments, we differentiate and find

M(t) =

1
1(4) —
M=o ey P

M) = (a+1)a;ﬁ2
(1 —ﬁt)“+2

Setting t = 0,
EX)=M@©)=apf and EX*)=M'0)=a(a+1)p>
soVar(X):a,Bz. [ |

Moment generating function for chi square distribution

The gamma distribution having &« = v/2 and B = 2 is called the chi square distri-
bution with v degrees of freedom. Show that the moment generating function is

M) = (1—21)v/2

and that £(X) = v and Var (X) = 2v.
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Solution

EXAMPLE 39

Solution

Moment generating
function of a + bX

EXAMPLE 40

These results follow from the previous example because this is a gamma distribution
withae =v/2and g = 2. [

Moment generating function for normal distribution
Show that the normal distribution, whose probability density function

1

2no

fx) = (=P /20% e My = i 3

which exists for all 7. Also, verify the first two moments.

To obtain the moment generating function, we use the identity

Lx—p)?*  1x—(o?+ )] 155
X 2 2 5 2 +tu+ > fog
obtained by completing the square. Then
M(t) = E(e) / T L w20y
= e = e e X
—00  A27mo
— /oo 1 e~ % [x—(toz-i-u )]2/02dx ~ elu+% 22 _ et,u—l—% 202
—oco V2o

To obtain the moments of the normal, we differentiate once to obtain
1.2 2
M@ =* T 2077 (4 10?)
and a second time to get
1.2 2
M'@6y= M T2 (u + 107 ) + 07,
Setting t = 0,
EX]=M@©0)=ux and EX>=M'0)=02+u>?
so Var(X) = o2 as the notation suggests. [

A basic property relates the moment generating function of a + bX to that of X.

Theorem 5.3  Let X have moment generating function M(¢) and let @ and b be
constants. Then

My px () = E( 90Xy = eal . p(pr)

For instance, the moment generating function of X — u, corresponding to b = 1
anda = —u, is

My_, (1) =e ' Mx()

Converting to the standard normal distribution

Let X be distributed as normal with mean . and variance o 2. Use moment generating
functions to show that

has a standard normal distribution.



Solution

Moment generating
function of sum under
independence

EXAMPLE 41

Solution
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By the previous example, X has moment generating function
1.2 .2
M(t) — el/uL—F jl‘ o
Further

X—n —K

Z = =a+bX with a=— and b=

1
o o
Therefore, the moment generating function of Z is

1

My(t) = & - M(b1) = e~ (WOt Jt/0) it 5(1/0 )P0 _ 32

t

This last expression is the moment generating function of a normal distribution hav-
ing mean 0 and variance 1. It exists for all # so the moment generating function
uniquely determines the distribution. [

One of most useful properties of moment generating functions is a multiplica-
tion property for independent random variables.

Theorem 5.4 LetX andY be independent random variables with moment gen-
erating functions My and My. The sum Z = X + Y has moment generating
function

Mz(t) = Mx (1) My (t)

on the interval of  where My (¢) and My (¢) exist.

Proof
MZ([) — E( el’Z) — E( €t(X+Y) ) — E(elX elY)

Then, from the assumption of independence,
=E(* M) = E(X)E(T) = M) My (1)

Sum of two independent normal random variables is normal

Let X and Y be independent normal random variables. Let X have mean px and vari-
ance a}% while Y has mean @y and variance UI%. Use moment generating functions
to show that

(a) X + Y has a normal distribution with mean py + pny and variance a)% + 0%.

(b) X — Y has a normal distribution with mean uy — py and variance a)% + o%.

(a) From a previous example, the two moment generating functions are

1.2 2
My (1) = /X F 20 0x

1.2 2
My(t) = ey +ottoy
Their product is
1,22 1.2 2
MX(t)MY(t) — etl'LX+jt ox et/'LY—’_jt oy
— J(ux +uy)+ 5% (og +07)

which we identify as the moment generating function of a normal random
variable having mean py + py and variance a)% + G)g.

(b) Since X and —Y are independent and —Y has moment generating function
My (—t), the result follows (see Exercise 5.98). [
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Exercises

5.94

5.95

5.96

5.97

Let f(x) =02forx=0,1,2,3,4.
(a) Find the moment generating function.

(b) Obtain E(X)and E(X?) by differentiating the mo-
ment generating function.

Let
flx) = 0.40(1)

(a) Find the moment generating function.

(b) Obtain E(X) and E(X 2) by differentiating the mo-
ment generating function.

Let Z have a normal distribution with mean 0 and vari-

ance 1.

(a) Find the moment generating function of 72,

5.98 Establish the result in Example 41 concerning the dif-
ference of two independent normal random variables,
XandY.

5.99 Let X and Y be independent normal random variables

with

EX) =4
EY)=3

2
forx=20,1,2,3,4 and oy =25

and o)% =16

(a) Use moment generating functions to show that
5X — 4Y + 7 has a normal distribution.

(b) Find the mean and variance of the random variable
in part (a).

5.100 Let X have the geometric distribution

(b) Identify the distribution of 72 by recognizing the

form of the moment generating function.

fex)=p(1—=py! forx=1,2,...

Let X be a continuous random variable having proba-

bility density function

fe = {56

(a) Find the moment generating function.

(b) Obtain E(X) and E(X?) by differentiating the mo-
ment generating function.

—2x

(a) Obtain the moment generating function for

forx > 0
elsewhere

t<—In(1-p)

[ Hint: Recall that Y22, r* = - for [r| < 1]
—-r

(b) Obtain E(X) and E(X?) by differentiating the mo-
ment generating function.

5.12 Checking If the Data Are Normal

In many instances, an experimenter needs to check whether a data set appears to be
generated by a normally distributed random variable. As indicated in Figure 2.8, the
normal distribution can serve to model variation in some quantities. Further, many
commonly used statistical procedures, which we describe in later chapters, require
that the probability distribution be nearly normal. Consequently, in a great number
of applications it is prudent to check the assumption that the data are normal.

Although they involve an element of subjective judgment, graphical procedures
are the most helpful for detecting serious departures from normality. Histograms
can be checked for lack of symmetry. A single long tail certainly contradicts the as-
sumption of a normal distribution. However, another special graph, called a normal
scores plot or normal quantile plot, is even more effective in detecting departures
from normality. To introduce such a plot, we consider a sample of size 4. In practice,
we need a minimum of 15-20 observations in order to evaluate the agreement with
normality.

The term normal scores refers to an idealized sample from the standard normal
distribution. It consists of the values of z that divide the axes into equal probability
intervals. For sample size n = 4, the normal scores are

my = —zg20 = —0.84
my = —z0.40 = —0.25
m3 = zpg40= 025
my = 2zgoo= 0.84

as illustrated in Figure 5.24.



Figure 5.24

The standard normal
distribution and the normal
scores forn =4

EXAMPLE 42

Solution

Figure 5.25
The normal scores plot
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my my ms my

To construct a normal scores plot,

1. Order the data from smallest to largest;
2. Obtain the normal scores;

3. Plot the ith largest observation, versus the ith normal score m;, for all i.

A simple normal scores plot
Suppose the four observations are 67, 48, 76, 81. Construct a normal scores plot.

The ordered observations are 48, 67, 76, 81. Above, we found that m| = —zg o9 =
—0.84, so we plot the pair (—0.84, 48). Continuing, we obtain Figure 5.25.

90 —
80 — °
70 —

60 —

Ordered observations

50 —

40 -
| | | | |

-1.0 -0.5 0.0 0.5 1.0
Normal score |

If the data were from a standard normal distribution, we would expect the ith
largest observation to approximate the ith normal score so that the normal scores
plot would resemble a 45° line through the origin. When the distribution is normal
with an unspecified ¢ and o,

xX— [
o

=

so the idealized z values can be converted to idealized x values through the relation
Xx = i + oz. Because the idealized values have this linear relation, it is sufficient to
plot the ordered observations versus the normal scores obtained from the standard
normal distribution. If the normal distribution prevails, the pattern should still be a
straight line. But the line need not pass through the origin or have slope 1.

The construction of normal scores plots by hand is a difficult task at best. Fortu-
nately, they can be treated easily with most statistical programs. (See Exercise 5.102.)
Many slight variants are used in the calculation of the normal scores but the plots
are very similar if more than 20 observations are plotted. Whichever computer pro-
gram you use, if a normal distribution is plausible, the plot will have a straight-line
appearance.
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Figure 5.26
The normal scores plot of the
interrequest times

Figure 5.27
Normal scores plot of
nanopillar heights

80,000 — °
60,000 —
Q
E
b7 )
2 40,000 —
g °
s
= 20,000 — ©
° .J

0 —J
[ I I I I I |
-3 -2 -1 0 1 2 3

Normal score

400 —

= [ d
£ 350 J
5 ./
&b

2 300 —

=

5 .

g 250 — )

pa o’

200 T

-3 -2 -1 0 1 2 3
Normal score

Figure 5.26 shows the normal scores plot for the interrequest times given on
page 29. The bending shows that the largest values are larger than would be ex-
pected under a normal distribution. On the other hand, Figure 5.27 exhibits a normal
scores plot of the nanopillar height data (see the example on page 25), and a normal
distribution appears to be plausible.

5.13 Transforming Observations to Near Normality

When the histogram or normal scores plot indicate that the assumption of a normal
distribution is invalid, transformations of the data can often improve the agreement
with normality. Scientists regularly express their observations in natural logs. We
consider a few other transformations, as indicated in Table 5.1.

Table 5.1 Some useful transformations

Make Large Values Smaller : Make Large Values Larger :
1
—— Inx X174 Jx 2 x
X

If the observations are positive and the distribution has a long tail or a few strag-
glers on the right, then the In x or 4/x transformations will pull the large values down
farther than they pull the central or small values. If the transformed observations
have a nearly straight line normal scores plot, it is usually advantageous to use the
normality of this new scale to perform any statistical analysis. Further, the validity
of many of the powerful statistical methods described in later chapters rests on the
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Solution

Figure 5.28

(a) The normal scores plot of
interrequest time (b) The
normal scores plot of

In (interrequest time)

(c) Histogram of interrequest
time (d) Histogram of

In (interrequest time)
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assumption that the probability distribution is nearly normal. By choosing a trans-
formation that leads to nearly normal data, the investigator can greatly extend the
range of validity of these techniques.

A transformation to better approximate a normal distribution

Transform the interrequest times in the example on page 29 to better approximate a
normal distribution.

On a computer, we calculate /x, take the square root again to obtain x!/4 and
take the natural logarithm Inx of all 50 values. The transformation In x appears to
work best. The histogram and normal scores plot are shown in Figure 5.28 for both
the original and transformed data. The quality of the fit further confirms the log-
normal model. [ |

80,000 —

1
60,000 — o

10 r

40,000 —
°

e

20,000 —| ©

[ I I I I [ T T I I |
-3 -2 -1 0 1 2 -2 -1 0 1 2 3
Normal score Normal score

(a) (b)

Interrequest time

°
In (interrequest time)
©
|

w —
I
w

35
30
25
20 —
15
10 —
|-
0= | | | |

0 20,000 40,000 60,000 80,000 100,000

Time (microseconds)

(©)

Class frequency

20 —

15 —

10 —

15

Class frequency

6 7 8 9 10 11 12 13

In (time)

(d)
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Exercises

5.101 For any 11 observations,

—1.38

5.102

(a) Use software or Table 3 to verify the normal scores

5.103 (Transformations) The MINITAB commands

—0.97 —0.67 —0.43 —0.21 0 0.210.430.670.97 1.38 Dialog box:
. Calc > Calculator Type C2 in Store. Type
(b) (_lonstruct a nf)rmal scores plot using tt_le obser\_/a— LOGE(C1) in Expression.
tions on the times between neutrinos in Exercise Click OK.
2.7.
Calc > Calculator Type C3 in Store. Type
(Normal scores plots) The MINITAB commands SORT(C1) Expression.
Click OK.
Dialog box: Calc > Calculator Type C4 in Store. Type
Calc > Calculator Type C2 in Store. Type SORT(C3) Expression.
NSCOR(C1) in Expression. Click OK.
Click OK.
Graph > Scatteplot > Simple. Click OK. Type will place Inx in C2, /x in C3, and x'/# in C4 for
C1 under Y and C2 under X. Click OK. observations that are set in C1. Normal scores plots

will create a normal scores plot from observations that
were set in C1. (MINITAB uses a variant of the normal

can then be constructed as in Exercise 5.102. Try these
three transformations and construct the corresponding
normal scores plots for

scores, m;, that we defined.) Construct a normal scores (a) the decay time data on page 156;

plot of

(b) the interrequest time data on page 29.

(a) the cheese data of Example 8,

(b) the decay time data on page 156.

5.14 Simulation

Simulation techniques have grown up with computers. They are ideally suited for
doing the repetitious calculations required. To simulate the observation of contin-
uous random variables, we usually start with uniform random numbers and relate
these to the distribution function of interest. We could use two- or three-digit ran-
dom integers, perhaps selected from Table 7W, but most software programs have a
continuous uniform random number generator. That is, they produce approximations
to random numbers from the uniform distribution

o=

1 0<x<1

0 elsewhere

Suppose we wish to simulate an observation from the exponential distribution
F)=1—-¢9% 0<x<o0

The computer would first produce the value u from the uniform distribution. Then
we solve (see Exercise 5.104)

u=F@x)=1—¢ 03

so x = [—In(l — u)]/0.3 is the corresponding value of an exponential random
variable. For instance, if u = 0.45, then x = [— In(1 — 0.45)]/0.3 = 1.993. This is
illustrated graphically in Figure 5.29, where u is located on the vertical scale and the
corresponding x value is read from the horizontal scale. (The theory on which this
method is based involves the so-called probability integral transformation, which is



Figure 5.29
Exponential cumulative
10

distribution with mean 5

EXAMPLE 44

Solution
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1.0 —

0.8 —

0.6 —

F (x)

0.4 —

0.2 —

0.0 —

I

I

I

I

I

I

I

i

I

| | | | |
2 4 6 8 10

presented in Example 15, Chapter 6.) If we wish to simulate a sample from F, the
preceding process is repeated with a different u for each new observation x.

A similar procedure applies to the simulation of observations from a Weibull
distribution. Starting with the value of a uniform variable u, we now solve (see
Exercise 5.105)

u=Fx) =1 e

1 1/p
X = |:——ln(1—u)i|
o

which is the corresponding value of a Weibull random variable.

for

Simulating five values from a Weibull distribution

Simulate five observations of a random variable having the Weibull distribution with
a = 0.05 and g = 2.0.

A computer generates the five values 0.57, 0.74, 0.26, 0.77, 0.12. (Alternatively, we
could read two digits at a time from a random number table.) We calculate

x =[=20.0In(1 — 0.57)]"/2 = 4.108
x = [=20.0In(1 — 0.74)]'/2 = 5.191

The reader can show that the last three uniform numbers yield x = 2.454, 5.422,
1.599. [

Suppose we need to simulate values from the normal distribution with a speci-
fied n and o2, By the relation
X— N
o

=

it follows that x = @ + oz, so a value x can be calculated from the value of a
standard normal variable z. Although z can be obtained from the value for a uni-
form variable u by numerically solving u = F(z), another approach called the
Box-Muller-Marsaglia method is almost universally preferred. It starts with a pair of
independent uniform variables (u1, uy) and produces two standard normal variables

71 = \/m cos(2muy)
p = \/m sin(2muy)
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where the angle is expressed in radians. Then x| = pu + oz and xp, = pu +
07y are treated as two independent observations of normal random variables (see
Exercise 5.106). Most statistical packages include a normal random number gener-
ator (see Exercise 5.108).

DN [JHFLY) Simulating two values from a normal distribution
Simulate two observations of a random variable having the normal distribution with
uw=>50and o = 5.
Solution A computer generates the two values 0.253 and 0.531 from a uniform distribution.
(Alternatively, they could have been obtained by reading three digits at a time from
a random number table.) We first calculate the standard normal values
71 =+/—2In(0.531) cos(2 7 - 0.253) = —0.021
23 =+/—2In(0.531) sin(27 - 0.253) = 1.125
and then the normal values
x; = 5045z =50+ 5(-0.021) = 49.895
xp =504 5z =50+ 5(1.125) = 55.625 [
Exercises
5.104  Verify that (b) uy =6/2randuy =1—e™" */2 have independent

5.105

5.106

(a) the exponential density 0.3 e
responds to the distribution function F(x) =

1—e 03 x>0,

(b) the solution of u =
[-In(1—u)]/0.3.

Verify that

(a) the Weibull density o Bxf~1e=a x > 0,
corresponds to the distribution function F(x) =

—axP

l1—e , x> 0;

(b) the solution of u =

1 1/
|:—f ln(l—u)]
o

Consider two independent standard normal variables

03 x > 0 cor uniform distributions;

(c) the relations between (u;,up) and (zy,z2) on

page 185 hold [note that 1 — u; also has a uni-
F(x) is given by x = form distribution, so In (u; ) can be used in place
ofIn(1 —uy)].

5.107 The statistical package MINITAB has a random num-
ber generator. To simulate 5 values from an exponen-
tial distribution having mean 8 = 0.05, choose

F(x) is given by x = Dialog Box:

Calc > Random Data > Exponential
Type 5 after Generate, C1 in Column and 0.05 in

- i o Mean.
whose joint probability density is Then click OK.
1 e—(z% +z%)/2
2w
Under a change to polar coordinates, z; = Output:
rcos(6),z, = rsin(6), we have r? = 77 + 23 and One call produced the output
dzy dzp = rdrd6, so the joint density of r and 0 is
s 0.031949 0.004643 0.030029 0.112834 0.064642
re "2 . 0<0 <27, r>0
Generate 8 values from the exponential distribution
Show that with 8 = 0.2.

(a) rand 0 are independent and that 6 has a uniform 5.108 The statistical package MINITAB has a normal random
distribution on the interval from O to 27; number generator. To simulate 5 values from a normal



distribution having mean 7 and standard deviation 4,
and place them in C1, use the commands

Dialog Box:

Calc > Random Sample > Normal

Type 5 after Generate, C1 in Column, 7 in Mean
and 4 in standard deviation

Click OK.
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Output:
One call produced the output

5.42137 6.98061 9.41352 7.05932 5.87297

Generate 8 values for a normal variable with u = 123
and 02 = 23.5.

Do’s and Don’ts

|. Describe the behavior of a continuous random variable X by specifying its
probability density function which satisfies

f(x)>0 forallx and /oo fx)dx =1
—o0

Do’s

2. Remember that it is only meaningful to talk about the probability that a

continuous random variable X lies in an interval. It is always the case that
P(X = x) = 0 for every possible value x.

. Obtain the probability that the value of X will lie in an interval by finding
the area under the curve f over the interval.

b
P(X < b):/ fx)dx
—00
= area under the density function to the left of x = b
b
Pla<X <b)= f f(x)dx
a

= area under the density function between
x=a and x=0>

. Summarize a probability density of the continuous random variable X by its

o0 o
mean: U = / xf(x)dx variance: 02 = / (x—u )zf(x) dx
0 o0

o0
standard deviation: o = \/ / (x— ,u)2 f(x)dx
— 00
. When X has a normal distribution with mean p and variance 02, obtain
the probability of an interval P(X < b) by converting the limit b to the
standardized value (b — p )/o = z and obtaining the probability
b—
P<Z < —“) —P(X < b)
o

from the standard normal table.
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. Use the properties of expectation and variance

. Never apply the normal approximation to the binomial

. Don’t add variances according to

. Don’t just assume that data come from a normal distribution. When there

E(aX+b)=aEX)+b and Var(aX+b)= a® Var (X)
More generally,
E(aiXj+axXy+b)=a1EX))+aE(Xy)+b
and, if X; and X, are independent,
Var (a1 X1 +axXo +b) = a% Var (X1 ) + a% Var (X;)

Don’ts

X —np

~ Jap(l=p)

when the expected number of successes (or failures) is too small. That is,
when either

np or n(l—p)isl15orless

Var (X1 +Xo) = Var (X1 )+ Var(Xp)

unless the two random variables are independent or have zero covariance.

are at least 20 to 25 observations, it is good practice to construct a normal
scores plot to check this assumption.

Review Exercises

5.109

5.110

If the probability density of a random variable is
given by
k(1=x%) forO0<x<1
S =

0 elsewhere

find the value of k and the probabilities that a random
variable having this probability density will take on a
value

(a) between 0.1 and 0.2;

(b) greater than 0.5.

(¢) Find p and o2,

With reference to the preceding exercise, find the cor-
responding distribution function and use it to deter-

mine the probabilities that a random variable having
this distribution function will take on a value

(a) less than 0.3;
(b) between 0.4 and 0.6.

5.111

5.112

In certain experiments, the error made in determining
the density of a silicon compound is a random variable
having the probability density

25 for —0.02 <x < 0.02

0 elsewhere

Jfx) =

Find the probabilities that such an error will be
(a) between —0.03 and 0.04;
(b) between —0.005 and 0.005.

A coil is rotated in a magnetic field to generate current.
The voltage generated can be modeled by a normal dis-
tribution having mean p and standard deviation 0.5 V
where pu is the true voltage. Find the probability that
voltage generated will differ from the true voltage by

(a) less than 0.06 V;
(b) more than 0.085 V.



5.113

5.114

5.115

5.116

5.117

5.118

5.119

5.120

Referring to Exercise 5.112, suppose the rotation
speed of the coil can be increased and standard devia-
tion decreased. Determine the new value for the stan-
dard deviation that would restrict the probability of an
error greater than 0.085 V to be less than 0.02.

The burning time of an experimental rocket is a
random variable having the normal distribution with
= 4.76 seconds and o = 0.04 second. What is the
probability that this kind of rocket will burn

(a) less than 4.66 seconds;

(b) more than 4.80 seconds;

(c) anywhere from 4.70 to 4.82 seconds?
Verify that

(@) zo.10 = 1.28;

(b) zo.001 = 3.09.

Referring to Exercise 5.28, find the quartiles of the
normal distribution with © = 102 and o = 27.

The probability density shown in Figure 5.19 is the
log-normal distribution with « = 8.85 and § = 1.03.
Find the probability that

(a) the interrequest time is more than 200 micro-
seconds;

(b) the interrequest time is less than 300 micro-
seconds.

The probability density shown in Figure 5.21 is the ex-
ponential distribution

0.55 ¢ 0-55x
f) = 0

0<x

elsewhere

Find the probability that

(a) the time to observe a particle is more than
200 microseconds;

(b) the time to observe a particle is less than
10 microseconds.

Referring to the normal scores in Exercise 5.101, con-
struct a normal scores plot of the current flow data in
Exercise 2.68.

A change is made to one product page on the re-
tail companies’ web site. To determine if the change
does improve the efficiency of that product page, data
must be collected on the proportion of visitors to the
new page that ultimately purchase the product. It is
known that 3.2% of visitors, to the original page,
make purchases. Assume that this proportion holds for
the next 500 visitors to the new page. Use the nor-
mal distribution to approximate the probability that,
among these 500 visitors, the number who purchase
will be

(a) 11 or fewer.

(b) 21 or more.

5.121

5.122

5.123

5.124

5.126

5.127

5.128
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Review Exercises

If n salespeople are employed in a door-to-door selling
campaign, the gross sales volume in thousands of dol-
lars may be regarded as a random variable having the

1
gamma distribution with « = 1004/n and 8 = 5 If

the sales costs are $5,000 per salesperson, how many
salespeople should be employed to maximize the ex-
pected profit?

A software engineer models the crashes encountered
when executing a new software as a random variable
having the Weibull distribution with « = 0.06 and
B = 6.0. What is the probability that the software
crashes after 6 minutes?

Let the times to breakdown for the processors of a par-
allel processing machine have joint density

0.04¢ 0202 for x > 0, y>0

Sl y) =

0 elsewhere
where x is the time for the first processor and y is the
time for the second. Find
(a) the marginal distributions and their means;

(b) the expected value of the random variable whose
values are given by g(x, y) = x + y.

(c) Verify in this example that the mean of a sum is
the sum of the means.

Two random variables are independent and each has a
binomial distribution with success probability 0.6 and
2 trials.

(a) Find the joint probability distribution.

(b) Find the probability that the second random vari-
able is greater than the first.

If X| has mean —5 and variance 3 while X, has mean
1 and variance 4, and the two are independent, find

(@) E(3X;+5X,+2);
(b) Var(3X; +5X, +2).

Let X1, X>, ..., X50 be independent and let each have
the same marginal distribution with mean —5 and vari-
ance 8. Find

@ EX1+X+-+Xs50);
) Var(X;+Xo +---+ Xs0) -

Refer to Example 7 concerning scanners. The maxi-
mum attenuation has a normal distribution with mean
10.1 dB and standard deviation 2.7 dB.

(a) What proportion of the products has maximum
attenuation less than 6 dB?

(b) What proportion of the products has maximum
attenuation between 6 dB and 14 dB?

Refer to the heights of pillars in the example on
page 25. The variation in the population of heights of
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pillars can be modeled as a normal distribution with
mean 306.6 nm and standard deviation 37.0 nm.

(a) For a pillar selected at random, what is the proba-
bility that its height is greater than 350 nm?

(b) According to the normal model, what propor-
tion of all existing pillars has heights greater than
350 nm? Explain your answer.

(c) What proportion of the pillars has heights between

270 nm and 350 nm?

Summary of Distributions

The formulas for the discrete and continuous distributions, together with their means,
variances, and moment generating functions, are given in Table 5.2(a) and (b).
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Table 5.2(a) Discrete distributions
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SAMPLING DISTRIBUTIONS

we are dealing with a particular kind of sample called a random sample. This attention

to random samples, which we discuss in Section 6.1, is due to their permitting valid, or
logical, generalizations from sample data. Then, in Sections 6.2 through 6.4, we see how
certain statistics (that is, certain quantities determined from samples) can be expected
to vary from sample to sample. Section 6.5 connects the sampling distributions arising
from normal distributions. Techniques for deriving sampling distributions are described
in Sections 6.6 and 6.7. The concept of a sampling distribution—the distribution of a
statistic calculated on the basis of a random sample—is basic to all of statistical inference.

| n most of the inference methods we shall study in this book, it will be assumed that

6.1

Usage of the term population in statistics is a carryover from the days when statistics
was applied mainly to sociological and economic phenomena. Recall from Chapter 1
that today the term population of units applies to sets or collections of objects, actual
or conceptual. In contrast, statistical population, or just population, refers to sets of
numbers, measurements, or observations under investigation. For example, if we are
interested in determining the average number of television sets per household in the
United States, the totality of these numbers of sets, one for each household, consti-
tutes the population for this study. Similarly, the population from which inspectors
draw a sample to determine some quality characteristic of a manufactured product
may be the corresponding measurements for all units in a given lot; depending on the
objectives of the inspection, it may also consist of the corresponding measurements
for all units that may conceivably be manufactured.

In some cases, such as the one above concerning the number of television sets
per household, the population is finite. In other cases, such as the determination
of some characteristic of all units past, present, and future that might conceivably
be manufactured by a given process, it is convenient to think of the population as
infinite. Similarly, we look upon the results obtained in an unending series of flips
of a coin as a sample from the hypothetically infinite population consisting of all
conceivably possible flips of the coin.

Populations are often described by the distribution of their values. It is common
practice to refer to a population in terms of its corresponding probability distribution
or density function. For example, we may refer to a fixed number of flips of a coin
as a sample from a “binomial population” or to certain measurements as a sample
from a “normal population.” Hereafter, when referring to a “population f(x)” we
shall mean a population described by a probability distribution or a density f(x).

If a population is infinite, it is impossible to observe all its values, and even
if it is finite it may be impractical or uneconomical to observe it in its entirety.
Thus, it is usually necessary to use a sample, a part of a population, and infer
from it results pertaining to the entire population. Clearly, such results can be useful
only if the sample is in some way ‘“representative” of the population. It would be
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Random sample (finite
population)

Random sample (infinite
population)

unreasonable, for instance, to expect useful generalizations about the population of
family incomes in the United States in the year 2015 on the basis of data pertaining
to home owners only. Similarly, we can hardly expect reasonable generalizations
about the performance of a tire if it is tested only on smooth roads.

To assure that a sample is representative of the population from which it is
obtained, and to provide a framework for the application of probability theory to
problems of sampling, we shall limit our discussion to random samples. Before a
random sample of size n is selected, the observations are modeled as the random
variables X1, Xp, . .., Xy. For sampling from finite populations, random samples are
defined as follows:

A set of observations Xi, X, . . ., X; constitutes a random sample of size n from
a finite population of size N, if its values are chosen so that each subset of n of
the N elements of the population has the same probability of being selected.

Note that this definition of randomness pertains essentially to the manner in
which the sample values are selected. This holds also for the following definition of
a random sample from an infinite population:

A set of observations Xi, X, . . ., X;; constitutes a random sample of size n from
the infinite population f(x) if

1. Each X; is a random variable whose distribution is given by f(x).
2. These n random variables are independent.

We also apply the term random sample to the set of observed values xj, xp, ..., x,
of the random variables. The lower case distinguishes the realization of a random
sample from the upper case, which represents the random variables before they are
observed.

There are several ways of assuring the selection of a sample that is at least
approximately random. When dealing with a finite population, we can serially num-
ber the elements of the population and then select a sample with the aid of a random
number generator or a table of random digits (see discussion on page 18). For in-
stance, if a population has N = 500 elements and we wish to select a random sample
of size n = 10, we can use three arbitrarily selected columns of Table 7W to obtain
10 different three-digit numbers less than or equal to 500, which will then serve as
the serial numbers of the elements to be included in the sample.

When the population size is large, the use of random numbers can become very
laborious and at times practically impossible. For instance, if a sample of five cartons
of canned peaches is to be chosen for inspection from among the many thousands
stored in a warehouse, one can hardly expect to number all the cartons, make a selec-
tion with the use of random numbers, and then pull out the ones that were chosen.
In a situation like this, one really has very little choice but to make the selection
relatively haphazard, hoping that this will not seriously violate the assumption of
randomness which is basic to most statistical theory.

When dealing with infinite populations, the situation is somewhat different since
we cannot physically number the elements of the population; but efforts should be
made to approach conditions of randomness by the use of artificial devices. For
example, in selecting a sample from a production line we may be able to approximate
conditions of randomness by choosing one unit each half hour; when tossing a coin
we can try to flip it in such a way that neither side is intentionally favored; and
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so forth. The proper use of artificial or mechanical devices for selecting random
samples is always preferable to human judgment, as it is extremely difficult to avoid
unconscious biases when making almost any kind of selection.

Even with the careful choice of artificial devices, it is all too easy to commit
gross errors in the selection of a random sample. To illustrate some of these pitfalls,
suppose we have the task of selecting logs being fed into a sawmill by a constant-
speed conveyor belt, for the purpose of obtaining a random sample of their lengths.
One sampling device, which at first sight would seem to assure randomness, consists
of measuring the logs which pass a given point at the end of a certain number of
10-minute intervals. However, further thought reveals that this method of selection
favors the longer logs, since they require more time to pass the given point. Thus, the
sample is not random since the longer logs have a better chance of being included.

Another common mistake in selecting a sample is that of sampling from the
wrong population or from a poorly specified population. As we have pointed out
earlier, we would hardly get a sample from which we could generalize about family
incomes in the United States if we limited our sample to home owners. Similarly, if
we wanted to determine the effect of vibrations on a structural member, we should
be careful to delineate the frequency band of vibrations that is of relevance, and to
vibrate test specimens only at frequencies selected randomly from this band.

Selecting where to sample in an area that may be contaminated

In many environmental cleanup studies, engineers are faced with the problem of
evaluating the status of land areas or bodies of water. It is not always easy to collect
a representative sample where the observations can be treated as independent and
from the same distribution. To illustrate some of the key issues, consider sampling
from a contaminated area in City C that covers a city block. Locations must be se-
lected for taking the soil samples that will then be analyzed for the presence of heavy
metals.

One recommended approach for homogeneous land areas is to sample according
to a rectangular grid as shown in Figure 6.1(a). This grid could even be randomly
placed over the area.

However, more was known about this area. At the time the pollution occurred, a
smelter was located in the position indicted by the shaded area in Figure 6.1(b). The
soil contamination by heavy metals is definitely not homogeneous! Materials from
the smelter flowed toward the north side of the smelter. This area is definitely a “hot
spot.” The average amount of heavy metals, obtained by averaging the measurements
from all locations, is not representative of the contamination problem. Using the
average from the whole area as a summary description downplays the seriousness
of the contamination around the smelter.

The smelter runoff area should be treated as a separate population. Soil should
be collected from at least two locations within the area of this suspected hot spot.

(a) (b)



196

Chapter 6  Sampling Distributions

EXAMPLE 47
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EXAMPLE 48

Solution

We suggest three sites indicated by solid circles. The corresponding measurements
of heavy metals should be used to describe only that area.

While sampling the “hot spot” separately might seem like the obvious approach,
the owners of the site in the situation on which the example is based wanted to col-
lect data from more locations throughout the whole block. This, they hoped, would
lower the average amount of heavy metals enough so that only simple cleanup tac-
tics would be required rather than resorting to the expensive solution of trucking
out the soil. [

Always replicate at least one key measurement

Refer to the environmental cleanup study in the previous example. Explain why soil
samples should be taken in at least two locations within the hot spot, rather than just
doing two chemical analyses on essentially a single soil sample.

One major aspect of understanding the contamination problem is to evaluate the con-
dition of the known hot spot. Even within the hot spot, the amount of contamination
could vary considerably because of, for instance, any particular location’s position
relative to the old stream of runoff from the smelter. We strongly recommend that soil
be collected from at least two soil samples—not just that two chemical analyses be
performed on soil from a single location. This approach will provide measurements
that can also be used to estimate the total amount of variability in the measurements
from the “hot spot.”

By repeating the chemical analysis on soil from a single location, we could
estimate the variability in the chemical analysis and possibly identify an outlier that
might suggest a faulty chemical analysis. However, no matter how many times we
repeated the chemical analysis, we would not know how much variation to expect
if we sampled soil from the same hot spot but several feet from the first sample.
That is, nearby locations are likely to be very much alike but those farther apart are
less alike. We need to sample from at least two different locations to determine the
degree of homogeneity within the hot spot. [

The purpose of most statistical investigations is to generalize from information
contained in random samples about the population from which the samples were
obtained. In particular, we are usually concerned with the problem of making in-
ferences about the parameters of populations, such as the mean p or the standard
deviation o. In making such inferences, we use statistics such as x and s, namely
quantities calculated on the basis of sample observations. In practice, the term statis-
tic is also applied to the corresponding random variables.

Sample-to-sample variation must be understood to accurately
assess total water quality

The quality of water leaving a plant must be maintained. It is monitored by tak-
ing a tiny volume of water called a test specimen. If the quality of the water in the
specimen is bad, action may be taken. The action could range from taking more
specimens, making a phone call to alert the plant operators, preparing a written re-
port, changing how the plant is run, to shutting down the plant. If the water in the
specimen is of good quality, we often infer that the total volume of discharge is
satisfactory. Discuss sampling.

Besides sound laboratory practice, judgments depend crucially on getting test spec-
imens which are representative of the total volume of effluent discharged. Because
the quality of water will vary over the total effluent at any one time, the actual test
specimens selected may or may not correctly convey the water quality.
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The key idea in this discussion is that of sampling variability. Not all choices of
actual test specimens will produce the same values for water quality or even a correct
appraisal of quality. This variability can be overcome, to a greater or lesser extent, by
taking a large enough number of test specimens. The results from examining enough
test specimens should then quite accurately reflect water quality most of the time. m

Since the selection of a random sample is controlled largely by chance, so are
the values we obtain for statistics. The remainder of this chapter will be devoted to
sampling distributions, namely, to distributions which describe the chance fluctua-
tions of statistics calculated on the basis of random samples.

6.2 The Sampling Distribution of the Mean
(0 known)

Suppose that a random sample of n observations, from some population, leads to
the observed value X as an estimate of the population mean. It should be clear that
if we took a second random sample of size n from the population, it would be quite
unreasonable to expect the identical value for X, and if we took several more sam-
ples, probably no two of the x’s would be alike. The differences among such x’s
are generally attributed to chance. This raises important questions concerning their
distribution, specifically concerning the extent of their chance fluctuations.

To approach this question experimentally, suppose that 50 random samples of

size n = 10 are to be taken from a population having the discrete uniform
distribution
1
— forx=0,1,2,...,9
fay=110
0 elsewhere

Sampling is with replacement, so to speak, so that we are sampling from an infinite
population. A convenient way of obtaining these samples is to use a table of random
digits letting each sample consist of 10 consecutive digits in arbitrarily chosen rows
or columns. Actually proceeding in this way, we get 50 samples whose means are

44 32 50 35 41 44 36 65 53 44
31 53 38 43 33 50 49 48 31 53
30 30 46 58 46 40 37 52 37 38
53 55 48 64 49 65 35 45 49 53
36 27 40 50 26 42 44 56 47 43

Grouping these means into a distribution with the classes [2.0, 3.0), [3.0, 4.0),
[4.0, 5.0), [5.0, 6.0), and [6.0, 7.0), where the left endpoint is included, we get

X Frequency
[2.0,3.0) 2
[3.0,4.0) 14
[4.0,5.0) 19
[5.0,6.0) 12
[6.0,7.0) 3

50
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Figure 6.2
Experimental sampling
distribution of the mean

Formulas for iz and o2

20 —

15—

10 —

Class frequency

and it is apparent from this distribution as well as its histogram shown in Figure 6.2
that the distribution of the means is fairly bell-shaped, even though the population
itself has a uniform distribution. This raises the question whether our result is typical
of what we might expect; that is, whether we would get similar distributions if we
repeated the experiment again and again.

To answer this kind of question, we shall have to investigate the theoretical
sampling distribution of the mean which, for the given example, provides us with
the probabilities of getting means in the interval [2.0, 3.0) or in [3.0, 4.0),...,
[6.0, 7.0) and perhaps values less than 2.0 or greater than or equal to 7.0. Although
we could evaluate these probabilities for this particular example, it is usually prefer-
able to refer to some general theorems concerning sampling distributions. The first
of these gives expressions for the mean py and the variance a% of sampling distri-

butions of the mean X.

Theorem 6.1  If a random sample of size n is taken from a population having
the mean p and the variance o2, then X is a random variable whose distribution

has the mean L. )

For samples from infinite populations the variance of this distribution is —.
n

2
o N—n
For samples from a finite population of size N the variance is — - N_T
n —_—

The result for infinite populations was established in Example 33 on page 172
using the properties of expectation. Alternatively, we now prove that i = u for
the continuous case directly starting from the definition on page 169.

I oo N X;
MX:/ / / Z;f(xl,xz,...,xn)dxldxz...dxn

1 00 00 00
=_Z / / / xi f(x1, %0, ..., xp)dxypdxy ... dxy
Mo S0 —%

where f(x,xp, ..., xp) s the joint density of the random variables which constitute
the random sample. Using the assumption of a random sample, we can write

JOpxg, o xm) = fO)f(x2) . f ()
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and we now have

1 & [
pe=2> [ sy [
i=1 ¥

o0

0.¢]
X; f(x;)dx;. . / Sxn) dxy

Since each integral except the one with the integrand x; f(x;) equals 1, and the one
with the integrand x; f(x;) equals u, we finally obtain

ln
MY:;Z n=HK
i=1

and this completes the proof. (For the discrete case the proof follows the same steps,
with integral signs replaced by ) ’s.)
To prove that o2 = o2 /n for the continuous case, we shall make the simpli-

fying assumption that u = 0, which does not involve any loss of generality as the
reader will be asked to show in Exercise 6.18. Using the definition on page 169, we
thus have

0 o0 o
a)%:/ / / Xzf(xl,xz,...,xn)dxldxz...dxn
—00 J—00 —0oQ

and making use of the fact that
2
n

n
32:% > i :iz ZX%+ZZXI‘X]'
L " \i= i#]
we obtain

5 1 n 00 00 00 )
UX:_ZZ/ f / X; f(xy, X0, ..., xp)dxydxy ... dxp
n =1 Vo0 /=00 —00

1 o0 o0 (o.¢]
+_ZZZ/ / / XiXj f(x1, %2, ..., xp)dxpdxy ... dxp
—00 J—00 —00

iy
where Z Z extends over all i and j from 1 to n, not including the terms where
i=j. Aé.’irjl using the fact that
SO x, oo xn) = flxy) f(x) ... f(xn)

we can write each of the preceding multiple integrals as a product of simple integrals,
where each integral with integrand f(x) equals 1. We thus obtain

SRR o Gl OV | /oo
2= ;/_o@x, fod+ 5 200 [ wfeds

i#j Y-
o0
X / xjf(Xj)de
—00

and since each integral in the first sum equals o2 while each integral in the second
sum equals 0, we finally have

1 & o2

2 _ 2_°9

% = nzZ“ =7
i=1

This completes the proof of the second part of the theorem. We shall not prove the
corresponding result for random samples from finite populations. But it should be
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EXAMPLE 49

Solution

Law of large numbers

EXAMPLE 50

noted that in the resulting formula for a% the factor

N—n
N-—1
often called the finite population correction factor, is close to 1 (and can be omit-

ted for most practical purposes) unless the sample constitutes a substantial portion
of the population.

Calculating a finite population correction factor
Find the value of the finite population correction factor for n = 10 and N = 1,000.

1,000 — 10
1,000 — 1
Although it should not come as a surprise that i = w, the fact that 02 =2 /n
for random samples from infinite populations is interesting and important. To point
out its implications, let us apply Chebyshev’s theorem to the sampling distribution

of the mean, substituting X for X and o //n for o in the formula for the alternate
form of the theorem (see page 114). We thus obtain

P<|X— | —k >>1——1
<
% NG

=0.991 |

k2
and, letting ko /4/n = ¢, we get

— o2
P(IX—pl<e)z1-—
ne
Thus, for any given ¢ > 0, the probability that X differs from g by less than &
can be made arbitrarily close to 1 by choosing n sufficiently large. In less rigorous
language, the larger the sample size, the closer we can expect X to be to the mean
of the population. In this sense we can say that the mean becomes more and more
reliable as an estimate of 1 as the sample size is increased. This result—that X
becomes arbitrarily close to u with arbitrarily high probability—is called the law of
large numbers.

Theorem 6.2 Let X{, Xp, ..., X, be independent random variables each hav-
ing the same mean p and variance o2. Then, for any positive &,

P(|X—pu|l>e)—0 asn— oo

As the sample size increases, unboundedly, the probability that the sample mean
differs from the population mean w, by more than an arbitrary amount &, con-
verges to zero.

Law of large numbers and long-run relative frequency

Consider an experiment where a specified event A has probability p of occurring.
Suppose that, when the experiment is repeated n times, outcomes from different
trials are independent. Show that

number of times A occurs in 7 trials

relative frequency of A =
n

becomes arbitrarily close to p, with arbitrarily high probability, as the number of
times the experiment is repeated grows unboundedly.
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We can define n random variables X1, Xp, . . ., X where X; = 1if A occurs on the ith
trial and X; = O otherwise. The X; are independent and identically distributed with
mean p = p and variance o= p(1—p)since E (X12 ) = 12-p + 02(1 —p)=p. Then
X| + - -+ + Xj, is the number of times that A occurs in n trials of the experiment and
X is the relative frequency of A.

We apply the law of large numbers and conclude that, for an arbitrary positive
amount ¢,

P (| relative frequency of A — p| > e)=P(|X —p|>¢e) - 0 asn— oo

Beginning with the axioms of probability, we are led to a theorem that deter-
mines the long-run relative frequency of an event. [

The reliability of the mean as an estimate of u is often measured by o = o'/ Jn,
also called the standard error of the mean. Note that this measure of the reliability
of the mean decreases in proportion to the square root of n; for instance, it is nec-
essary to quadruple the size of the sample in order to halve the standard deviation
of the sampling distribution of the mean. This also indicates what might be called
a “law of diminishing returns” so far as increasing the sample size is concerned.
Usually it does not pay to take excessively large samples since the extra labor and
expense is not accompanied by a proportional gain in reliability. For instance, if we
increase the size of a sample from 25 to 2,500, the errors to which we are exposed
are reduced only by a factor of 10.

Let us now return to the experimental sampling distribution on page 197, and
let us check how closely its mean and variance correspond to the values we should
expect in accordance with Theorem 6.1. Since the population from which the 50
samples of size n = 10 were obtained has the mean

9

1
= -— =45
m=2
x=0

and the variance
2 1
2 2
o xE . (x ) T

Theorem 6.1 leads us to expect a mean of uy = 4.5 and a variance of ol =
8.25/10 = 0.825. Calculating the mean and the variance from the 50 sample means
on page 197, we get x; = 4.43 and s% = 0.930, which are reasonably close to the
theoretical values.

Theorem 6.1 provides only partial information about the theoretical sampling
distribution of the mean. In general, it is impossible to determine such a distribution
exactly without knowledge of the actual form of the population. Even then, it can
be quite difficult. But it is possible to find the limiting distribution as n — oo of
a random variable whose values are closely related to X, assuming only that the
population has a finite variance o2. The random variable we are referring to here is
the standardized sample mean

_X-w
ST

whose values are given by the difference between x and p divided by the standard
error of the mean. With reference to this random variable, we can now state the
following theorem, called the central limit theorem:
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Central limit theorem

Figure 6.3

An illustration of the approach
toward normality for the
sampling distribution of X as
sample size increases

Theorem 6.3 If X is the mean of a random sample of size n taken from a
population having the mean p and the finite variance o2, then
X—pu
Y Jn
is a random variable whose distribution function approaches that of the standard
normal distributions as n — 0.

The central limit theorem provides a normal distribution that allows us to assign
probabilities to intervals of values for X. Regardless of the form of the population
distribution, the distribution of X is approximately normal with mean p and variance
o2 /n whenever n is large. This tendency toward normality is illustrated in Figure 6.3
for a uniform population distribution and an exponential population distribution.

\llll X T T T T T 1 X
Population distribution Population distribution
| n=2 n=2
/\lll f T T T T T 1 -f
n==6 B n==6
- X - X
] n=25 n =25
T j\\ — X o —t— X o
Sampling distribution of X Sampling distribution of X
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Sample mean

Normal score

Although proving the central limit theorem is beyond the scope of this text,
we can obtain experimental verification by constructing a normal scores plot of the
50 sample means on page 197, which were obtained by sampling with replacement
from a discrete uniform population. In Figure 6.4, the points fall close to a straight
line. It seems that, even for n = 10, the sampling distribution of the mean for this
example exhibits a pattern that generally resembles that of a normal distribution.

In practice, the normal distribution provides an excellent approximation
to the sampling distribution of the mean X for n as small as 25 or 30, with
hardly any restrictions on the shape of the population. As we see in our example,
the sampling distribution of the mean has the general shape of a normal distribution
even for samples of size n = 10 from a discrete uniform distribution.

A stronger result holds for normal populations.

When the random samples come from a normal population, the sampling dis-
tribution of the mean is normal regardless of the size of the random sample.

A probability calculation based on the central limit theorem
concerns operator time

Car mufflers are constructed by nearly automatic machines. One manufacturer finds
that, for any type of car muffler, the time for a person to set up and complete a pro-
duction run has a normal distribution with mean 1.82 hours and standard deviation
1.20. What is the probability that the sample mean of the next 40 runs will be from
1.65 to 2.04 hours.

Theorem 6.3, the central limit theorem, applies whatever the form of the population
distribution. We need only find the normal curve area between

1.65 —1.82 0.896 d 2.04 —1.82 L16
1= —————————= —U. an 1=——=
1.20/4/40 1.20/+/40

From Table 3, we obtain the probability 0.6917.
If it turns out that x is 2.33 hours, serious doubt will be cast on whether the
sample came from a population having u = 1.82and o = 1.20. The probability of
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exceeding 2.33, with z-value 2.688, is only 0.0036. These large values would occur
less than 4 times in 1000. If one occurs, it is prudent to look for a cause. Maybe a
run of a rare and complicated speciality muffler was required. [

[ Using R: pnorm(2.04,1.82, 1.2/sqrt(40)) - pnorm(1.65, 1.82, 1.2/sqrt(40)) ]

Exercises

6.1

6.2

6.4

6.6

6.7

An inspector examines every twentieth piece coming
off an assembly line. List some of the conditions un-
der which this method of sampling might not yield a
random sample.

Large maps are printed on a plotter and rolled up.
The supervisor randomly selects 12 printed maps
and unfolds a part of each map to verify the qual-
ity of the printing. List one condition under which
this method of sampling might not yield a random
sample.

Explain why the following will not lead to random
samples from the desired populations.

(a) To determine what the average person spends on
a vacation, a market researcher interviews passen-
gers on a luxury cruise.

(b) To determine the average income of its graduates
10 years after graduation, the alumni office of a
university sent questionnaires in 2016 to all the
members of the class of 2006 and based its esti-
mate on the questionnaires returned.

(c) To determine public sentiment about certain im-
port restrictions, an interviewer asks voters: “Do
you feel that this unfair practice should be
stopped?”

A market research organization wants to try a new
product in 8 of 50 states. Use Table 7W or software
to make this selection.

How many different samples of size n = 4 can be cho-
sen from a finite population of size

(@) N=15?
(b) N = 35?

With reference to Exercise 6.5, what is the probability
of each sample in part (a) and the probability of each
sample in part (b) if the samples are to be random?

Take 30 slips of paper and label five each —4 and 4,
four each —3 and 3, three each —2 and 2, and two each
—1,0and 1.

(a) If each slip of paper has the same probability
of being drawn, find the probability of getting
—4,-3,-2,—-1,0,1,2,3,4 and find the mean
and the variance of this distribution.

(b) Draw 50 samples of size 10 from this population,

each sample being drawn without replacement,
and calculate their means.

6.8

6.9

6.10

6.11

6.12

(c) Calculate the mean and the variance of the
50 means obtained in part (b).

(d) Compare the results obtained in part (c) with
the corresponding values expected according to
Theorem 6.1. [Note that y and o2 were obtained
in part (a).]

Repeat Exercise 6.7, but select each sample with re-
placement; that is, replace each slip of paper and
reshuffle before the next one is drawn.

Given an infinite population whose distribution is
given by

x f(x)
1 0.20
2 0.20
3 0.20
4 0.20
5 0.20

list the 25 possible samples of size 2 and use this list to
construct the distribution of X for random samples of
size 2 from the given population. Verify that the mean
and the variance of this sampling distribution are iden-
tical with the corresponding values expected according
to Theorem 6.1.

Suppose that we convert the 50 samples referred to on
page 197 into 25 samples of size n = 20 by combining
the first two, the next two, and so on. Find the means of
these samples and calculate their mean and their stan-
dard deviation. Compare this mean and this standard
deviation with the corresponding values expected in
accordance with Theorem 6.1.

When we sample from an infinite population, what
happens to the standard error of the mean if the sample
size is

(a) increased from 40 to 1,000?

(b) decreased from 256 to 65?

(¢) increased from 225 to 1,225?

(d) decreased from 450 to 18?

What is the value of the finite population correction
factor in the formula for o% when

(a) n=38and N = 640?
(b) n =100 and N = 8,000?
(¢) n =250 and N = 20,000?
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6.13 For large sample size n, verify that there is a 50-50 The sample mean of insufficient lubrication will be ob-
chance that the mean of a random sample from an infi- tained from a random sample of 60 bearings. What is
nite population with the standard deviation o will dif- the probability that X will be between 0.600 ml and
fer from p by less than 0.6745 - o /\/n. It has been the 0.640 ml?
custom to refer to this quantity as the probable error 6.16 A wire-bonding process is said to be in control if the
of the mean. mean pull strength is 10 pounds. It is known that the
6.14 The mean of a random sample of size n = 25 is used pqll-strength measqrements are normally d‘istr.ibuted
to estimate the mean of an infinite population that has with a standard de;v1at10n of 1.5 pounds.. Periodic ran-
standard deviation o = 2.4. What can we assert about dom samp le§ of s1ze 4 are“taken from thl,s, process and
the probability that the error will be less than 1.2, if the prgcess is said to be “out of control” if a sample
we use mean is less than 7.75 pounds. Comment.
, 6.17 If the distribution of scores of all students in an
(a) Chebyshev’s theorem; examination has a mean of 296 and a standard deviation of
(b) the central limit theorem? 14, what is the probability that the combined gross score
of 49 randomly selected students is less than 14,2507
15 i i i . . .
0 Engine bf:armgs depend on a film of O?l to keep shaft 6.18 If X is a continuous random variable and ¥ = X — u,
and bearing surfaces separated. Insufficient lubrication how that 02 — o2
causes bearings to be overloaded. The insufficient lu- show that oy = 0.
brication can be modeled as a random variable hav- 6.19 Prove that ug = p for random samples from discrete

ing mean 0.6520 ml and standard deviation 0.0125 ml.

(finite or countably infinite) populations.

A random variable having
the t distribution

6.3 The Sampling Distribution of the Mean
(0 unknown)

Application of the theory of the preceding section requires knowledge of the popu-
lation standard deviation o . If n is large, this does not pose any problems even when
o is unknown, as it is reasonable in that case to substitute for it the sample stan-
dard deviation s. However, when it comes to the random variable whose values are
given by

X—
s/a/n
very little is known about its exact sampling distribution for small values of n unless

we make the assumption that the sample comes from a normal population. Under
this assumption, one can prove the following:

Theorem 6.4 If X is the mean of a random sample of size n taken from a nor-
(X —X)?
mal population having the mean u and the variance o2, and §% = Z l—l
n—
i=1

k]

then ¥_ M

NG

is a random variable having the ¢ distribution with the parameter v =n — 1.

The lowercase ¢ notation helps differentiate this important statistic from others. This
theorem is more general than Theorem 6.3 in the sense that it does not require knowl-
edge of o; on the other hand, it is less general than Theorem 6.3 in the sense that it
requires the assumption of a normal population.
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Figure 6.5
t distribution and standard
normal distribution

Figure 6.6
Tabulated value of 7,

EXAMPLE 52

Normal
tlv=4)

As can be seen from Figure 6.5, the overall shape of a ¢ distribution is similar
to that of a normal distribution—both are bell-shaped and symmetrical about the
mean. Like the standard normal distribution, the ¢ distribution has the mean 0, but its
variance depends on the parameter v (nu), called the number of degrees of freedom.
The variance of the ¢ distribution exceeds 1, but it approaches 1 as n — oo. In fact,
it can be shown that the ¢ distribution with v degrees of freedom approaches the
standard normal distribution as v — oo.

Table 4 in Appendix B contains selected values of ¢, for various values of v,
where 7y is such that the area under the ¢ distribution to its right is equal to «. In
this table the left-hand column contains values of v, the column headings are areas
« in the right-hand tail of the 7 distribution, and the entries are values of 7. (See also
Figure 6.6.) It is not necessary to tabulate values of #, for @ > 0.50, as it follows
from the symmetry of the ¢ distribution that #{ _, = —fy. Thus, the value of ¢ that
corresponds to a left-hand tail area of « is —1y.

t distribution with v degrees of freedom

f@

Note that in the bottom row of Table 4 the entries correspond to the values of
z that cut off right-hand tails of area o under the standard normal curve. Using the
notation z, for such a value of z, it can be seen, for example, that zg o5 = 1.96 =
t0.025 for v = oco. In fact, observing that the values of 7, for 29 or more degrees of
freedom are close to the corresponding values of z,, we conclude that the standard
normal distribution provides a good approximation to the ¢ distribution for
samples of size 30 or more.

Using a probability calculation from the t distribution
to refute a claim

A treatment plant that sends effluent into the river claims the mean suspended solids
is never above 40 mg/l. Measurements of the suspended solids in river water on
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A random variable having
the chi square distribution
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n = 14 Monday mornings yield x = 46 and s = 9.4 mg/l. Based on data col-
lected over a period of many years, it is reasonable to assume that the individual
measurements follow a normal distribution.

Do the data support or refute the treatment plant’s claim?

We calculate
_)_(—40 B 46 — 40 B
S/ 947420

which is a value of a random variable having a ¢ distribution withv = 20 —1 = 19
degrees of freedom provided the mean is 40. Since the probability that ¢ will exceed
2.531= ty o1 is 0.01, the probability of observing a value as large or larger than
2.855 is even smaller. We conclude that the data strongly refute the treament plant’s
claim. In all likelihood the mean suspended solids is more than 40 mg/I. [

2.855

[ Using R: For the upper tail, use .99 in qt(.99,19) and 1 - pt(2.855,19) ]

The assumption that the sample must come from a normal population is not
so severe a restriction as it may seem. Studies have shown that the distribution of
random variable

X—n
S/\/n

is fairly close to a t distribution even for samples from certain nonnormal popu-
lations. In practice, it is necessary to make sure primarily that the population from
which we are sampling is approximately bell-shaped and not too skewed. A practical
way of checking this assumption is to construct a normal scores plot, as described
on page 180. (If such a plot shows a distinct curve rather than a straight line, it
may be possible to “straighten it out” by transforming the data—say, by taking their
logarithms or their square roots, as discussed in Chapter 5, Section 5.13.)

6.4 The Sampling Distribution of the Variance

So far we have discussed only the sampling distribution of the mean. If we take the
medians or the standard deviations of the 50 samples on page 197, we would sim-
ilarly obtain experimental sampling distributions of these statistics. In this section
we shall be concerned with the theoretical sampling distribution of the sample vari-
ance for random samples from normal populations. Since 52 cannot be negative, we
should suspect that this sampling distribution is not a normal curve; in fact, it is re-
lated to the gamma distribution (see page 165) with « = v/2 and = 2, called the
chi square distribution. Specifically, using the square of the Greek letter x (chi),
we have the following theorem.

Theorem 6.5 If 2 is the variance of a random sample of size n taken from a
normal population having the variance o2, then

; X; — X )?
) (n=Ds* El( )

o2 o2

is a random variable having the chi square distribution with the parameter
v=n-—1
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Figure 6.7
Tabulated values of chi square

EXAMPLE 53

Solution

X2 distribution with v degrees of freedom

(6]

Table 5W on the book website contains selected values of X(% for various values
of v, again called the number of degrees of freedom, where X(% is such that the area
under the chi square distribution to its right is equal to «. In this table the left-hand
column contains values of v, the column headings are areas « in the right-hand tail
of the chi square distribution, and the entries are values of X(%. (See also Figure 6.7.)
Unlike the ¢ distribution, it is necessary to tabulate values of onl for ¢ > 0.50,
because the chi square distribution is not symmetrical.

A probability calculation based on the x? helps monitor variability

Plastic sheeting produced by a machine must be periodically monitored for possible
fluctuations in thickness. Uncontrollable variation in the viscosity of the liquid mold
produces some variation in thickness. Based on experience with a great many sam-
ples, when the machine is working well, an observation on thickness has a normal
distribution with standard deviation ¢ = 1.35 mm.

Samples of 20 thickness measurements are collected regularly. A value of the
sample standard deviation exceeding 1.4 mm signals concern about the product. Find
the probability that, when o = 1.35, the next sample will signal concern about the
product.

The chi square statistic

2 2
»  (m—1)s>  19-142
= o2 .22 = 306

From Table 5W, for 19 degrees of freedom, X(%.OS = 30.1. The probability of a false
signal of concern is less than 0.05. In the long run, a false signal will occur less than
5 times in 100 samples. [

[ Using R:  For the upper tail, use 1 — .05 = .95 in qchisq(39.6,19) and 1 -
pchisq(30.6,19) |

A problem closely related to that of finding the distribution of the sample vari-
ance is that a finding the distribution of the ratio of the variances of two independent
random samples. This problem is important because it arises in tests in which we
want to determine whether two samples come from populations having equal vari-
ances. If they do, the two sample variances should be nearly the same; that is, their
ratio should be close to 1. To determine whether the ratio of two sample variances
is too small or too large, we use the F distribution.
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Figure 6.8
Tabulated values of F

EXAMPLE 54

Solution

EXAMPLE 55

Solution
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Theorem 6.6 If S% and S% are the variances of independent random samples
of size ny and ny, respectively, taken from two normal populations having the
same variance, then
Si
F= @
2
is a random variable having the F distribution with the parameters v = n; — 1
and V) =np — 1.

The F distribution is related to the beta distribution (page 167), and its two
parameters, v and vy, are called the numerator and denominator degrees of free-
dom. As it would require too large a table to give values of F corresponding to
many different right-hand tail probabilities «, and since = 0.05 and o = 0.01 are
most commonly used in practice, Table 6W contains only values Fp o5 and Fq o for
various combinations of values of v| and v;. (See also Figure 6.8.)

F distribution with v, and v, degrees of freedom

fF)

0.05
0.01

0 F,

0.05 K

0.01

Using the F distribution, Table 6W, to evaluate a probability

If two independent random samples of size ny = 7 and ny = 13 are taken from a
normal population, what is the probability that the variance of the first sample will
be at least three times as large as that of the second sample?

From Table 6W we find that F(j o5 = 3.00forvi =7—1=6andvy, = 13—1 = 12;
thus, the desired probability is 0.05. [

[ Using R: For the upper tail, use 1 — .05 = .95in  qf(.95,6,12) ]

It is possible to use Table 6W also to find values of F' corresponding to left-hand
tail probabilities of 0.05 or 0.01. Writing Fy (v, vp) for Fy with v; and v, degrees
of freedom, we simply use the identity

1

Flg(v,v) =
“ FO{(VZ’ Vl)

Using the F distribution, Table 6W, to find a left-hand tail probability
Find the value of Fjy g5 (corresponding to a left-hand tail probability of 0.05) for
v; = 10 and vy = 20 degrees of freedom.

Making use of the identity and Table 6W, we get

1 1
2 10, 20) = =
0.05(10-20)= " 30.10) = 277
[ Using R: For the lower tail, use 1 — .95 = .05in qf(.05,10,20) ]

=0.36 u




210

Chapter 6  Sampling Distributions

Note that Theorems 6.4 and 6.5 require the assumption that we are sampling
from normal populations. Unlike the situation with the 7 distribution, deviations from
an underlying normal distribution, such as a long tail, may have a serious effect on
these sampling distributions. Consequently, it is best to transform to near normality
using the approach in Section 5.13 before invoking the sampling distributions in this

section.

Exercises

6.20 The tensile strength (1,000 psi) of a new composite can 6.25 If independent random samples of size nj=n, =38
be modeled as a normal distribution. A random sample come from normal populations having the same vari-
of size 25 specimens has mean x = 45.3 and standard ance, what is the probability that either sample vari-
deviation s = 7.9. Does this information tend to sup- ance will be at least 7 times as large as the other?
port or refute the claim that the mean of the population 6.26 Find the values of
is 40.5? )

o . . (a) Fp.os for 15 and 12 degrees of freedom;

6.21 The following is the time taken (in hours) for the
delivery of 8 parcels within a city: 28, 32, 20, 26, (b) Fo.g9 for 5 and 20 degrees of freedom.
42, 40, 28, and 30. Use these figures to judge the 6.27 The chi square distribution with 4 degrees of freedom
reasonableness of delivery services when they say it is given by
takes 30 hours on average to deliver a parcel within |
the city. i cxee M2 x>0

6.22 The process of making concrete in a mixer is under fo) =
control if the rotations per minute of the mixer has a 0 x=0
mean of 22 rpm. What can we say about this process Find the probability that the variance of a random sam-
if a sample of 20 of these mixers has a mean rpm of ple of size 5 from a normal population with o = 15
22.75 rpm and a standard deviation of 3 rpm? will exceed 180.

6.23 Engine bearings depend on a film of oil to keep shaft 6.28 The ¢ distribution with 1 degree of freedom is given by
and bearing surfaces separated. Samples are regularly
taken from production lines and each bearing in a sam- 1 2\—1

t)=—(1+t —00 <t <00

ple is tested to measure the thickness of the oil film. F 71( +17) ==
After many samples, it is concluded that the popula- . . .

Verify the val for 79 5 f = 1 in Table 4.
tion is normal. The variance is 2 = 0.012 when the etily the vitie given 10t fo.05 ot v tHable
process is in control. A sample of size 25 is collected 6.29 The F distribution with 4 and 4 degrees of freedom is
each week. The process will be declared out of con- given by
trol if the sample variance exceeds 0.020. What is the 4
probability that it will be declared out of control even f(F) = 6F(1+F) F=0
though o = 0.012? 0 F=<0

6.24 A random sample of 15 observations is taken from a If random samples of size 5 are taken from two normal

normal population having variance o> =90.25. Find
the approximate probability of obtaining a sample
standard deviation between 7.25 and 10.75.

populations having the same variance, find the proba-
bility that the ratio of the larger to the smaller sample
variance will exceed 3.

6.5 Representations of the Normal Theory

Distributions

The basic distributions of normal theory can all be defined in terms of independent
standard normal random variables. The defining of a new random variable in terms
of others is called a representation.

LetZ, Zy, Zy, ..

., be independent standard normal random variables with mean

0 and variance 1. First, we define a chi square variable.
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LetZy, 7, ..., Z, be independent standard normal random variables.
Representation of chi XZ = sum of squares of v independent standard normal variables
. v
square random variable = Z . Zi2 has a chi square distribution with v degrees of freedom.
1=

Consider two chi square random variables which have the representations X12 =

Z:ll Zl-2 and X22 = Zl‘l—; Uil Zl.z. Since they depend on different sets of Z;’s, they
are independent. Adding these two representations we conclude, as in Exercise 6.33,
that the sum of two independent chi square variables, x% + X%, has a chi square
distribution with degrees of freedom vy + vj.

Next, since X2 = Z}’Zl Zi2 depends only on Z;, Z», ..., Z, and they are inde-
pendent of Z this X2 and Z are independent. We define a # random variable in terms
of two independent random variables Z and XZ.

Let the standard normal Z and chi square ( Xz), having v degrees of freedom, be
independent.

Representation of t standard normal

Z
t —_ = =
random variable chi square )(2 ]-}_1 2
degrees of freedom 5 %

has a ¢ distribution with v degrees of freedom.

We define an F' random variable in terms of two independent chi square variables
X12 and X22 with v| and v, degrees of freedom, respectively.

Let the chi square variables X12, with v; degrees of freedom, and X22, with vy
degrees of freedom, be independent.

2
) chi square X_l Z;ll Zi2
Representatlon- of F degrees of freedom v, ——
random variable Fo v, = hi sauare i M e
d X Xitwn 4
degrees of freedom vy Ty

has an F distribution with (v{, vy) degrees of freedom.

The basic case arises starting with n independent normal random variables X1,
X5, ..., Xy all having the same mean p and standard deviation o. Then

Xi —
has a standard normal distribution for each i. It then holds that

ﬁzwﬁ%;zi:ﬁ(x‘“)

o

has a standard normal distribution.
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Next,

n n n

N2 =N Z-Z+ZP =) (Z—-Z) +nZ

i=1 i=1 i=1

The left-hand side has a chi square distribution with n degrees of freedom. The last
term on the right is the square of the standard normal variable /7 Z and so has a chi
square distribution with 1 degree of freedom. It can be shown that the two terms on
the right-hand side of the equation are independent and that

Y (zi-Z)
i=1

has a chi square distribution with n — 1 degrees of freedom. Since

n—DS? &K XG-X)P L —
2 =L =LED
i=1 i=1

we conclude that (n — I)S2 / o2 has a chi square distribution with n — 1 degrees of
freedom.

EINRTY t2 has an F distribution
Let ¢ be distributed as a ¢ distribution with v degrees of freedom.

(a) Use the representation of ¢ to show that t2 has an F distribution with (I,v)
degrees of freedom.

(b) Use part (a) to show that 7, /2 = Fy (1, v).

Solution (a) Using the representation of a t random variable,

2
2
2_ |2 _Z
= =3
x* X

V

v
Since, by the first representation above, 72 has a chi square distribution with 1

degree of freedom and it is independent of the denominator, we confirm the
representation of the F distribution with (1, v ) degrees of freedom.

(b) Il —a=P(—ig2 Stita/2)=P(f2§f§/2)

By part (a), 2 = F so we have
1 —a = P(thg/z)

Because tg /2 satisfies the definition of Fy (1, v), the two must be equal. g

Exercises
6.30 Let Zy,...,Zs be independent and let each have a (b) Specify the distribution of
standard normal distribution. Zy

(a) Specify the distribution of Z3 + Z3 + Z3 + Z2. \/ BB+ +2
4



Sec 6.6 The Moment Generating Function Method to Obtain Distributions 213

6.31 Let Zy,...,Zg be independent and let each have a (a) Specify the distribution of Z% 4 Z% 4 Z% 4 Zf-

standard normal distribution. Specify the distribution

(b) Specify the distribution of Z5 + Z¢ + Z7.

of
71 — 2 (c) Specify the distribution of the sum of variables in
) ) ) ) part (a) and part (b).
Z3 + Zy + Z5s + Z . . ).
6.33 Let the chi square variables x, with v degrees of free-
8 dom, and x22 , with vy degrees of freedom, be indepen-
6.32 Let Zj, ..., Z; be independent and let each have a dent. Establish the result on page 211, that their sum is

standard normal distribution.

Moment generating
function for sum of n
independent random

variables

EXAMPLE 57

a chi square variable with v + v, degrees of freedom.

6.6 The Moment Generating Function Method

to Obtain Distributions™®
The mgf method is a very convenient tool for obtaining the distribution function
of the sum of independent random variables. Let X| have mgf M (¢), X, have mgf
M5 (t), X3 have mgf M3(t), and so on. Then, by independence, the mgf of the sum
Xl —+ X2 —+ X3 is

MX] FXo+Xs ([) — E(et(X] +X2+X3)) — E(elX] el‘Xzel‘X3 )

=E(e™) - E(e™) - E(®)
or
My, 1x,+x5(1) = M (t) - Mp(1) - M3(2)

For any number of independent random variables, we have the following result.

Theorem 6.7 LetXj, ..., X, beindependent random variables and let X; have
moment generating function My, (¢) fori = 1, ..., n, where all moment gener-
ating functions exist for all |#| < 7 some 7" > 0. Then the moment generating
function of the sum exists forallt < T and

My, 4 x5+ ...+ x,(t) = Mx, (1) - Mx, (¢) - - - M, (1)

The mgf of the sum of random variables is the product of the component mgf,
under independence. When the product can be identified, we know the distribution
of the sum. This argument is called the moment generating function method.
Sum of n independent normal random variables is normal

Let X| be N(u1, 012), X5 be N(up, 022), and X3 be N(u3, 032), where the three ran-
dom variables are independent.

(a) Find the distribution of X1 + X, + X3.

(b) LetX; be N(u;, al.z), fori =1,2,...,nand let the X; be independent. Show
that the distribution of their sum, )", X;, is normal with

n
mean = Z“i
i=1

n
variance = E al-z
i=1

*This section may be skipped on first reading. Some key sampling distributions are verified.
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Solution

EXAMPLE 58

Solution

EXAMPLE 59

Solution

(a) We know that X| has mgf
Ml(t) — el/Ll‘F%lelz
SO
1.2 2 1,2 2 1,22
My, 4 x4 x5 (1) = P00 1t al70y L flHatalT0s
_ et(m+u2+,u3)—|—%t2(c712+<722+032)

This last form we identify as being an N(u + o + 13, 012 + 022 + 032). That
is, the sum has a normal distribution where the mean is the sum Of the

component means and the variance is the sum of the variances.

b n
®) MZn X.(l‘) = l_[ et'u"+%t20i2 = et(zlr';l ”’i)+%12( i Uiz)
=1 :

i=1

so the sum has a normal distribution with mean equal the sum of the
component means and variance equal to the sum of variances. u

Sum of independent Poisson random variables is Poisson

Let X; have a Poisson distribution with parameter A;, fori = 1,2, ..., n and let the
X; be independent. Show that the distribution of the their sum, Z?:l X, is Poisson

with parameter
n
A=Y
i=1

We know that X; has mgf

. ol
Mi(t) = e~ ithie

Consequently,
; (S ()
_ —Xi+Ariet _ i)+ " Ai)e
MZ?:IXi(t)_l_[e = el =l =
i=1
This is the mgf of a Poisson distribution with parameter 7' 1;. ]

Sum of chi square random variables is chi square

Let X; have a chi square distribution with v; degrees of freedom, fori =1,2,...,n
and let the X; be independent. Use the moment generating function method to show
that the distribution of their sum, Z?:l X; is chi square with degrees of freedom

Z?:] Vi

(a) We know from Example 38, Chapter 5, that X; has mgf (1 — 2¢)™ Vi/2 g0 that
Y"1 X; has mgf

M (z)—ﬁ L~ 1
Yim Xt/ = (1=20)%/2 (1 Z2p)Ximi vi/2

i=1

which we identify as the mgf of a chi square distribution with Z?:l v; degrees
of freedom. [
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6.34

6.35

6.38

LetX;, X», ..., Xg be 8 independent random variables.
Find the moment generating function

My x, (1) = E( S XXt X))

of the sum when X; has a Poisson distribution with
mean

(@ 2 =05
(b) 1; =0.04
Let X, X, ..., X5 be 5 independent random variables.

Find the moment generating function
of the sum when X; has a gamma distribution with
o = 2iandﬂ,- =2.

Let X, X», and X3 be independent normal variables
with
2

EX))= 5 and oy =9
E(X))=-2 and o5 =225
E(X3)= 5 and of=4

(a) Show that2X; + 2 X, + 5X3 has a normal distri-
bution.

(b) Find the mean and the variance of the random vari-
able in part (a).
Refer to Exercise 6.36.

(a) Show that 2X; — X, — 4X3 — 12 has a normal
distribution.

(b) Find the mean and variance of the random variable
in part (a).

Let X, X», and X3 be independent normal variables
with

EX))=—4 and of=1
EX))= 0 and o5 =4
EX3)= 3 and of=1

6.39

6.40

6.41

(a) Show that 2X;
distribution.

— Xo + 5X3 has a normal

(b) Find the mean and variance of the random variable
in part (a).
Refer to Exercise 6.38.

(a) Show that 7X| 4+ X, —2X3 + 7 has a normal dis-
tribution.

(b) Find the mean and variance of the random variable
in part (a).

Let Xi, X5, ..., X, be r independent random variables

each having the same geometric distribution.

(a) Show that the moment generating function

My~ x. (1) = E( ! X1+t X++X) ) of the sum is
[pe' /(1 — (1 —p)eD)]”

(b) Relate the sum to the total number of trials to ob-
tain r successes. This distribution, is given by

x—1 rox—r . __

(r— 1>p(f Xx=rr+1,. -
(see page 135)

(c) Obtain the first two moments of this negative bi-
nomial by differentiating the mgf.

Refer to Exercise 6.40. Let X, X5, ..., X; be n inde-

pendent random variables each having a negative bino-

mial distribution with success probability p but where

X; has parameter r;.

(a) Show that the mgf M-y, (1) = E( /X1 Xt X))
of the sum )_ X; is

[pe' /(1 — (1 — p)e)Xi=o i

(b) Identify the form of this mgf and specify the dis-
tribution of ) _ X;.

6.7 Transformation Methods to Obtain
Distributions®

We brieﬂy1 introduce two further techniques for obtaining the probability distribu-
tion, or density, of a random variable that is a function of a random variable whose
distribution is known. These are the distribution function method and the trans-

formation method.

*This section may be skipped on first reading since the techniques are not used later in the book.

! An extended Section 6.7 is available at the book’s companion Web site.
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EXAMPLE 60

Solution

EXAMPLE 61

Solution

Distribution Function Method

The approach of the distribution function method is to first obtain the distribution
function G(y) of Y = h(X), where X has known distribution function F'(x). The
density, if needed, can be obtained by differentiation.

G(y) = P(Y <y) = P[h(X) < y]

Two examples will illustrate this method.

The probability integral transformation

Let X have distribution function F'(x) and density function f(x) which is positive
on an open interval and 0 elsewhere. Consider the probability integral transfor-
mation Y = F(X) where the cumulative distribution distribution is evaluated at the
random variable X. Show that F'(X) has a uniform distribution on (0, 1).

Choose any value y between 0 and 1. Since F'(x) has a positive derivative, there is a
unique value x such that F'(x) = y. This correspondence can be written as a function
x=w(y)and F(w(y))=yforall0 <y < 1. Then,

G(y) =P(Y =y) =P(F(X) =y)

=P(X = w(y))

=F(w(y)) =y
for any 0 < y < 1. The cumulative distribution function G(y) = y is that of the
uniform distribution. [ |

Distribution function method applied to X?
Let X have distribution function F'(x) and density function f(x).

(a) Show that its square, Y = X 2, has distribution function
G(y) =PY <y)=F({y) — F(=y)

(b) If X has a standard normal distribution, show that its square has

L —12 —y2
(y) = —— /2 o=/
N
which is a chi square distribution with 1 degree of freedom

(a) We have
G(y) = P(Y <y)=P(X?> <y)
=P(-/V =X = /)
=F(y) — F(—yy)

(b) Upon differentiating,

d 5 d — 5 2 y 2
g(y)=f(\/§)—f—f(—ﬁ)—f=f(ﬁ) + f(=y)
dy dy 2 2
The reader is asked, in Exercise 6.42, to verify the stated density. L

For any differentiable strictly increasing function h(x), with inverse function
w(y),wehave G(y) = F(w(y)). By taking the derivative of both sides with respect
to y, we obtain the expression for the density function of 4( X ) presented next when
discussing the transformation method.



Density function of h(X)

EXAMPLE 62

Solution

Convolution formula
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Transformation Method

The transformation method expresses the probability density for a function of a
random variable in terms of the density of the original variable. Consider Y = h(X)
where X has density f(x). Initially, we assume that /(x) is differentiable and either
strictly increasing or strictly decreasing. Then, y = h(x) can be solved for x. That
is, h(x) has an inverse w(y) = x.

Theorem 6.8 Let Y =h(X) where X has density f(x), and let 4(x) be differ-
entiable and either strictly increasing or strictly decreasing on the range where
f(x) # 0. The inverse function w(y) exists and the density of Y is given by

Fw(y) W' (y)| where w'(y) # 0

g(y) =
0 elsewhere

Transformation method: square root of chi square/degrees of
freedom

Let X have a chi square distribution with v degrees of freedom. Apply the transfor-
mation to show that the density of Y = /X/v is

/2

yv—l —vy22
F(%)Q(V—z)/z

e ,y>20

The density of the chi square distribution with v degrees of freedom is given by

_ 1 Yol —x/2
f) = 1_‘(%)21)/2162 e

and y = +/x/v = h(x) has inverse x = vy2 = w(y). Since w'(y) = 2vyis

continuous and greater than 0 fory > 0,
! 2051 —vy?
— yo/2
g(y)_F(%)ZV/Z(Uy )27 e 2vy
/2

yv—l —vy22
r(%)z(V—Z)/Z

€ ]

We state two important transformations to obtain the sum or the ratio of two
independent random variables.

Theorem 6.9 Let X and Y be independent and let X have density fx(x)andY
have density fy(y ). Then the density of Z = X 4 Y is given by the convolution
formula

o0
Sx4y (@) = / fx @) fy(z —x)dx forall z
—0Q

The ratio of random variables Z = Y/X has density

fyyx (@) = /

o0

| x| fx(x)fy(xz)dx forall z
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EXAMPLE 63

Solution

Student’s t distribution

Let Y have a standard normal distribution and be independent of X which has a chi
square distribution with v degrees of freedom. Apply the transformation technique
to show that the density of

standard normal

Y
\/ chi square X
degrees of freedom v

is given by

F(”gl) 2 —u4d
|1 + — for —o0 <t < ©
«/nvl"(%) < v)

This distribution is called the student’s ¢ distribution, or the ¢ distribution.

Since Y has a standard normal distribution, using the conclusion from Example 17
but with Y replaced by X, the density of the ratio T = Y/X is
o0
/ [x | fx (o) fy(xt)dx
—0o0
2
0 V2m r(s)2v=2)/2
o0 vv/2
= X
/0 JET(5)20v=D/2

2
v—le—vx /2dx

1 24,2
ve—j(v—H )x dx

Making the change of variable u = x2 (v + 12)/2, we obtain

v—1

2 00
N E S / —u
t 2 — 2 d
(v +17) =10 b uz e “du

and the result follows from the definition of I" ( VT‘H ). [

Convolution Formula for Discrete Random Variables

There is also a convolution formula for the sum, Z = X + Y, of two independent
discrete random variables X and Y. Let fy (x) denote the probability distribution of
X and fy (y) denote the probability distribution of Y. We restrict attention to cases
where X and Y take on nonnegative integer values.

To find fz(z) = P(Z = z), for each z, we recognize that the event [Z = Z]
is the union of the disjoint events [X = x and ¥ = z —x] forx = 0,1,...,z
Consequently,

Z
P(Z=2)=fz(z) =) PX=xand¥Y=z—1x)
x=0

Z
=Y fx@frz—x)
x=0

where the last step follows by independence. This last result is called the convolu-
tion formula for discrete random variables.



Discrete convolution
formula

EXAMPLE 64

Solution
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Theorem 6.10 Let X and Y be non-negative and integer valued. The random
variable Z = X + Y has probability distribution f7(z) given by

Z
7@ = fxoy@D=P(Z =z)= Z @) fy(z—x)forz=0,1,...
x=0

Sum of two independent Poisson random variables

Let X and Y be independent Poisson random variables where X has parameter A
and Y has parameter 1. Show that the sum

X +Y has a Poisson distribution with parameter A + Ay

By the discrete convolution formula, Z = X + Y has probability distribution

Z
f2) =Y fx@fy(z—x)
x=0
SO

Z )\‘Z—x

)\’x
_ 1 —X 2 —A2
= —e —e
ZOEDY FTRaESY
x=0
Z X 7—X
A i e Il
= x! (z —x)!

Using the binomial formula

(a+by" = Z (’)’:) P

withm = z,a = A, and b = A,, then multiplying and dividing by z!, we conclude
that

Bl NN TR 21
x! (z —x)! z!
x=0

and the result is established.
Remark: Note that the rate parameters A; add. [

Exercises
6.42 Referring to Example 16, verify that 6.45 Use the distribution function method to obtain the den-
sity of In (X) when X has the exponential distribution
g(y) = ——y V22 with B = 1.
V2m . .
6.46 Use the transformation method to obtain the den-
6.43 Use the distribution function method to obtain the den- sity of X3 when X has density f(x) = 1.5X for
sity of Z3 when Z has a standard normal distribution. 0 <x < 4.
6.44 Use the distribution function method to obtain the 6.47 Use the transformation method to obtain the distribu-

density of 1 — ¢~* when X has the exponential dis-
tribution with 8 = 1.

tion of —In (X ) when X has the uniform distribution
on (0, 1).
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6.48 Use the convolution formula, Theorem 6.9, to obtain Y are independent and each has the same gamma dis-
the density of X + Y when X and Y are indepen- tribution.
dent and each has the exponential distribution with 6.50 Use the discrete convolution formula, Theorem 6.10,
B =1 to obtain the probability distribution of X + Y when
6.49 Use the transformation method, Theorem 6.9, to ob- X and Y are independent and each has the uniform dis-
tain the distribution of the ratio Y/X when when X and tribution on {0, 1, 2}.

Do’s and Don’ts

Do’s
|. Understand the concept of a sampling distribution. Each observation is the
value of a random variable so a sample of n observations varies from one
possible sample to another. Consequently, a statistic such as a sample mean
varies from one possible sample to another. The probability distribution or
density function which describes the chance behavior of the sample mean

is called its sampling distribution.

2

2. When the underlying distribution has mean p and variance o “, remember

that the sampling distribution of X has

mean of X = y = population mean

o2 population variance

variance of X =
n n
3. When the underlying distribution is normal with mean x and variance o2,
calculate exact probabilities for X using the normal distribution with mean
2
) o
u and variance —
n

P()_(<b)=P(Z< b_“)
B T o/Jn

4. Apply the central limit theorem, when the sample size is large, to approxi-
mate the sampling distribution of X by a normal distribution with mean u

o —
and variance —. The probability P( X < b) is approximately equal to the

b—p
tandard 1 probability P [ Z < .
standard normal probability ( _a/ﬁ>

Don’ts

|. Don’t confuse the population distribution, which describes the variation for
a single random variable, with the sampling distribution of a statistic.

2. When sampling from a finite population of size N, don’t use o/ J/n as
the standard deviation of X unless the finite population correction factor
is nearly 1.

3. When the population distribution is noticeably nonnormal, don’t try to con-
clude that the sampling distribution of X is normal unless the sample size
is at least moderately large, 30 or more.
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Review Exercises

6.51

6.52

6.53

6.54

6.55

6.56

6.57

The panel for a national science fair wishes to select
10 states from which a student representative will be
chosen at random from the students participating in the
state science fair.

(a) Use Table 7W or software to select the 10 states.

(b) Does the total selection process give each stu-
dent who participates in some state science fair an
equal chance of being selected to be a representa-
tive at the national science fair?

How many different samples of size n =2 can be cho-
sen from a finite population of size

(a) N=12;
(b) N =207

With reference to Exercise 6.52, what is the probability
of choosing each sample in part (a) and the probability
of choosing each sample in part (b), if the samples are
to be random?

Referring to Exercise 6.52, find the value of the finite
population correction factor in the formula for o% for
part (a) and part (b).

The time to check out and process payment informa-
tion at an office supplies Web site can be modeled as a
random variable with mean . = 63 seconds and vari-
ance o2 = 81. If the sample mean X will be based on
arandom sample of n = 36 times, what can we assert
about the probability of getting a sample mean greater
than 66.75, if we use

(a) Chebyshev’s theorem;
(b) the central limit theorem?

The number of pieces of mail that a department re-
ceives each day can be modeled by a distribution hav-
ing mean 44 and standard deviation 8. For a random
sample of 35 days, what can be said about the prob-
ability that the sample mean will be less than 40 or
greater than 48 using

(a) Chebyshev’s theorem;
(b) the central limit theorem?

If measurements of the elasticity of a fabric yarn can
be looked upon as a sample from a normal population
having a standard deviation of 1.8, what is the proba-
bility that the mean of a random sample of size 26 will
be less elastic by 0.63?

Adding graphite to iron can improve its ductile qual-
ities. If measurements of the diameter of graphite
spheres within an iron matrix can be modeled as a nor-
mal distribution having standard deviation 0.16, what
is the probability that the mean of a sample of size
36 will differ from the population mean by more than
0.06?

6.59

6.60

6.61

6.62

6.64

If 2 independent random samples of size n; = 31 and
np = 11 are taken from a normal population, what is
the probability that the variance of the first sample will
be at least 2.7 times as large as the variance of the sec-
ond sample?

If 2 independent samples of sizes n; =26 and ny =8
are taken from a normal population, what is the prob-
ability that the variance of the second sample will be
at least 2.4 times the variance of the first sample?

When we sample from an infinite population, what
happens to the standard error of the mean if the sample
size is

(a) increased from 100 to 200;

(b) increased from 200 to 300;

(c) decreased from 360 to 90?

A traffic engineer collects data on traffic flow at a
busy intersection during the rush hour by recording the
number of westbound cars that are waiting for a green
light. The observations are made for each light change.
Explain why this sampling technique will not lead to a
random sample.

Explain why the following may not lead to random
samples from the desired population:

(a) To determine the mix of animals in a forest, a for-
est officer records the animals observed after each
interval of 2 minutes.

(b) To determine the quality of print, an observer ob-
serves the quality of the first printout each day on
ascale of 0 to 5.

Several pickers are each asked to gather 30 ripe apples
and put them in a bag.

(a) Would you expect all of the bags to weigh the
same? For one bag, let X| be the weight of the first
apple, X, the weight of the second apple, and so
on. Relate the weight of this bag,

30
2%
i=1

to the approximate sampling distribution of X.

(b) Explain how your answer to part (a) leads to
the sampling distribution for the variation in bag
weights.

(c) If the weight of an individual apple has mean
n = 0.2 pound and standard deviation o =
0.03 pound, find the probability that the total
weight of the bag will exceed 6.2 pounds.
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INFERENCES CONCERNING
A MEAN

ecall from Chapter 6 that the purpose of most statistical investigations is to gen-
R eralize from information contained in random samples about the populations from

which the samples were obtained. In the classical approach the methods of sta-
tistical inference are divided into two major areas—estimation and tests of hypotheses.
In Sections 7.2 and 7.3 we shall present some theory and some methods which pertain
to the estimation of means. A general estimation procedure is introduced in Section 7.4.
Sections 7.5, and 7.6 deal with the basic concepts of hypothesis testing, and Sections 7.7
and 7.8 deal with tests of hypotheses concerning a mean. Test performance, including

power, is the subject of Section 7.9.

7.1 Statistical Approaches to Making

Generalizations

To obtain new knowledge about a process or phenomena, relevant data must be col-
lected. Usually, it is not possible to obtain a complete set of data but only a sample.
Statistical inference arises whenever we need to make generalizations about a pop-
ulation on the basis of a sample. The main features of the sample can be described
by the methods presented in Chapter 2. However, the central issue is not just the
particular observed data but what can be said about the population that produced the
sample. We call any generalization a statistical inference or just an inference.
The first step in making a statistical inference is to model the population by a
probability distribution or density function that has a numerical feature of interest
called a parameter. Earlier, we encountered parameters including x and o for nor-
mal distributions and p for binomial distributions. Next, a statistic, whose value can
be calculated for every sample, serves as the source of information about a parame-
ter. Any statistic, such as X, S2, or the sample median, is just a function of the sample.
Three points must be kept in mind when making inferences.

1. Because a sample is only part of the population, the numerical value of the
statistic will not be the exact value of the parameter.

2. The observed value of the statistic depends on the particular sample selected.
3. Variability in the values of a statistic, over different samples, is unavoidable.

Statistical inferences are founded on an understanding of the manner is which vari-
ation in the population is transmitted, via sampling, to variation in a statistic.

How do we extract relevant information about the population by analyzing the
sample? The two main classes of statistical inference are estimation of parameters
and testing hypotheses. Estimation can be either a point estimator that gives a single
number estimate of the value of the parameter or an interval estimate that specifies
an interval of plausible values for the parameter. A test of hypotheses provides the

7.1

7.2
7.3

74

7.5

7.6

1.7

7.8

7.9
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EXAMPLE |

Solution

answer to whether the data support or contradict an investigator’s claim about the
value of the parameter. Example 1 illustrates these three approaches to statistical
inference.

Types of Inference: point estimation, interval estimation, and testing
hypotheses

Refer to Example 14, Chapter 2, and the data on recycled concrete pavement. Green
engineering practices require that their strength be accessed before using them in
the base of roadways. Measurements of the resiliency modulus(MPa) on n = 18
specimens of recycled concrete aggregate produce the ordered values (Courtesy of
Tuncer Edil).

136 143 147 151 158 160
161 163 165 167 173 174
181 181 185 188 190 205

The descriptive summary for the sample is

sample mean x = 168.2 sample standard deviation s = 18.10
sample median 166 first quartile 158 third quartile 181

However, our goal here is not just the particular measurements recorded here but
rather, it concerns the vast population of values for all possible recycled concrete
pavements.

Discuss approaches for generalizing from this sample to the population.

We model the collection of values of the modulus, from all possible specimens of re-
cycled concrete pavement, by a density function. The purpose of taking the sample is
to learn about a feature of this unknown density function. The feature, or parameter,
could be its mean i or o.

Concerning the parameter p, we may wish to make one, two, or all three of
following types of inference.

1. Point estimation: Estimate, by a single value, the unknown p.
2. Interval estimation: Determine an interval of plausible values for u.

3. Testing hypotheses: Determine whether or not the mean p is 170 MPa, which
is the mean value of an alternative material. ]

Logical deductions from the general to specific case are always correct. In con-
trast, when making statistical inferences, variability is unavoidable even when obser-
vations are made under the same, or nearly the same, conditions. Necessarily then,
statistical inferences are based on a sample so they will sometimes be in error. An
interval may not contain the value of parameter or the test of hypotheses may reach
the wrong conclusion concerning the correctness of the hypothesis.

The realization that many highly variable observations can provide the basis for
strong scientific evidence must be considered one the great intellectual advances of
the twentieth century.

7.2 Point Estimation

Basically, point estimation concerns the choosing of a statistic, that is, a single num-
ber calculated from sample data. We should have some expectation, or assurance,
that it is reasonably close to the parameter it is supposed to estimate. To explain what
we mean here by reasonably close is not an easy task. First, the value of the parameter
is unknown, and second, the value of the statistic is unknown until after the sample



Point estimation of a mean

EXAMPLE 2

Solution
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has been obtained. Thus, we can only ask whether, upon repeated sampling, the
distribution of the statistic has certain desirable properties akin to closeness.

We know from Theorem 6.1 that the sampling distribution of the mean has the
same mean as the population. This property suggests considering the sample mean
X as a point estimator of the population mean 1. Closeness can then be expressed
in terms of its standard deviation o //n. In the context of point estimation, we call
this quantity the standard error and the value of its estimator S/+/n the estimated
standard error.

Parameter: Population mean p
Data: A random sample Xy, ..., Xp

Estimator: X

S
Estimate of standard error: —

Jn

Point Estimation of the Stiffness of Recycled Road Material

Refer to Example 1 and the data on recycled concrete pavement. Obtain a point
estimate of u, the mean resiliency modulus for recycled concrete. Also give the
estimated standard error.

Our point estimator is X and its value for this sample
x = 168.2 is the point estimate of .

The estimated standard error is

s 1810 47
NN/ T R
where s = 18.10 MPa is given in Example 1. [

Maximum Error of Estimate with High Probability

When we use a sample mean to estimate the mean of a population, we know that
although we are using a method of estimation which has certain desirable proper-
ties, the chances are slim, virtually nonexistent, that the estimate will actually equal
. Hence, it would seem desirable to accompany such a point estimate of p with
some statement as to how close we might reasonably expect the estimate to be. The
error, X — i, is the difference between the estimator and the quantity it is supposed
to estimate.
To examine this error, let us make use of the fact that for large n

X—pu
o/Jn

is a random variable having approximately the standard normal distribution.
As illustrated in Figure 7.1, for any specified value of «

X—pn

P<_Z"‘/2 aING EZ‘W) =l

or, equivalently,

p I)_(—MI<Z 2>=1_a
o/ =
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Figure 7.1
The sampling distribution
X—n

o//n

Maximum error of
estimate

EXAMPLE 3

Solution

al2 al2

“Za2 —1 0 1 Za/2

where z, /5 is such that the normal curve area to its right equals o /2.
We now let E, Ealled the maximum error of estimate stand for the maximum
of these values of |X — w|. Then, the error | X — u|, will be less than

o
E=sen

with probability 1 — «. In other words, if we intend to estimate p with the mean of
alarge (n > 30) random sample, we can assert with probability 1 — « that the error,

|X — |, will be at most z,, /2 7 The most widely used values for 1 —« are 0.95 and
n

0.99, and the corresponding values of z, /5 are zg gp5 = 1.96 and z g5 = 2.575.

(See Exercise 5.23 on page 150.)

Specifying a high probability for the maximum error (¢ known)

An industrial engineer intends to use the mean of a random sample of size n = 150 to
estimate the average mechanical aptitude (as measured by a certain test) of assembly
line workers in a large industry. If, on the basis of experience, the engineer can
assume that o = 6.2 for such data, what can he assert with probability 0.99 about
the maximum size of his error?

Substituting n = 150, 0 = 6.2, and z g5 = 2.575 into the preceding formula for
E, we get

6.2
E=2575-—— =1.30.
V150
Thus, the engineer can assert with probability 0.99 that his error will be at
most 1.30. [

Suppose now that the engineer of this example collects his data and gets X =
69.5. Can he still assert with probability 0.99 that the error is at most 1.30? First of
all, x = 69.5 either differs from the true average by at most 1.30 or it does not, and he
does not know which. Consequently, it must be understood that the 0.99 probability
applies to the method he used to determine the maximum error (getting the sample
data and using the formula for E) and not directly to the parameter he is trying to
estimate. To make this distinction, it has become the custom to use the word con-
fidence here instead of probability. In general, we make probability statements
about future values of random variables (say, the potential error of an estimate)
and confidence statements once the data have been obtained. Accordingly, we
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would say in our example that the engineer can be 99% confident that the error of
his estimate, X = 69.5, is at most 1.30.

The methods discussed so far in this section require that o be known or that
it can be approximated with the sample standard deviation s, thus requiring that n
be large. However, if it is reasonable to assume that we are sampling from a nor-
mal population, we can base our argument on Theorem 6.4 instead of Theorem 6.3,
namely on the fact that

f= X1
NG

is a random variable having the ¢ distribution with n — 1 degrees of freedom. Dupli-
cating the steps on page 215, we thus arrive at the result that with probability 1 — «
the error we make in using X to estimate ;1 will be at most z,, 28/ /n. Here 1, /2 has
probability /2 of being exceeded by a t random variable having n — 1 degrees of
freedom. (See page 206.)

When X and S become available, we assert with (1 — «)100% confidence that
the error made in using X to estimate p is at most

N
E=a/2'ﬁ

A 98% confidence bound on the maximum error

In six determinations of the melting point of an aluminum alloy, a chemist obtained a
mean of 532.26 degrees Celsius with a standard deviation of 1.14 degree. If he uses
this mean to estimate the actual melting point of the alloy, what can the chemist
assert with 98% confidence about the maximum error?

Substituting n = 6, s = 1.14, and #( o1 = 3.365 (for n — 1 = 5 degrees of freedom)
into the formula for £, we get

1.14
E =3365-— =424

NG
Thus the chemist can assert with 98% confidence that his figure for the melting point
of the aluminum alloy is off by at most 4.24 degrees. [

Determination of Sample Size

The formula for £ on page 226 can also be used to determine the sample size that is
needed to attain a desired degree of precision. Suppose that we want to use the mean
of a large random sample to estimate the mean of a population, and we want to be
able to assert with probability 1 — « that the error will be at most some prescribed
quantity E [or assert later with (1 — «)100% confidence that the error is at most E].
As before, we write

o
E=wn

and upon solving this equation for n we get

n— [Za/z‘ffr
E
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To be able to use this formula we must know 1 — «, E, and o, and for the latter we
often substitute an estimate based on prior data of a similar kind (or, if necessary, a
good guess).

Selecting the sample size

A research worker wants to determine the average time it takes a mechanic to rotate
the tires of a car, and she wants to be able to assert with 95% confidence that the
mean of her sample is off by at most 0.50 minute. If she can presume from past
experience that o = 1.6 minutes, how large a sample will she have to take?

Substituting £ = 0.50, 0 = 1.6, and zg gp5 = 1.96 into the formula for n, we get

1.96-1.67%
n:[ﬂ] —393

0.50
or 40 rounded up to the nearest integer. Thus, the research worker will have to time
40 mechanics performing the task of rotating the tires of a car. [

We know from Theorem 6.1 that the sampling distribution of the mean has the
same m