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Preface

This book provides a selection of papers developed from talks presented at the
Second Conference of the International Society for Nonparametric Statistics
(ISNPS), held in Cádiz (Spain) during June 12–16, 2014. The papers cover a wide
spectrum of subjects within nonparametric and semiparametric statistics, including
theory, methodology, applications and computational aspects. Some of the topics in
this volume include nonparametric curve estimation, regression smoothing,
dependent and time series data, varying coefficient models, symmetry testing,
robust estimation, additive models, statistical process control, reliability, general-
ized linear models and nonparametric filtering.

ISNPS was founded in 2010 “to foster the research and practice of nonparametric
statistics, and to promote the dissemination of new developments in the field via
conferences, books and journal publications.” ISNPS has a distinguished Advisory
Committee that includes R. Beran, P. Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson,
B. Lindsay, E. Parzen, P. Robinson, M. Rosenblatt, G. Roussas, T. SubbaRao, and
G.Wahba; an Executive Committee comprisingM.Akritas, A.Delaigle, S. Lahiri and
D. Politis and a Council that includes P. Bertail, G. Claeskens, R. Cao, M. Hallin,
H. Koul, J.-P. Kreiss, T. Lee, R. Liu, W. González Manteiga, G. Michailidis,
V. Panaretos, S. Paparoditis, J. Racine, J. Romo and Q. Yao.

The second conference included over 300 talks (keynote, special invited, invited
and contributed) with presenters coming from all over the world. After the success
of the first and second conferences, the third conference has recently taken place in
Avignon, France, during June 11–16, 2016, with more than 350 participants. More
information on the ISNPSand the conferences can be found at http://www.isnpstat.org/
.

Ricardo Cao
Wenceslao González-Manteiga

Juan Romo
Co-Editors of the book and

Co-Chairs of the Second ISNPS Conference
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A Numerical Study of the Power Function
of a New Symmetry Test

D. Bagkavos, P.N. Patil and A.T.A. Wood

Abstract A new nonparametric test for the null hypothesis of symmetry is pro-
posed. A necessary and sufficient condition for symmetry, which is based on the fact
that under symmetry the covariance between the probability density and cumulative
distribution functions of the underlying population is zero, is used to define the test
statistic. The main emphasis here is on the small sample power properties of the test.
Through simulations with samples generated from a wide range of distributions, it
is shown that the test has a reasonable power function which compares favorably
against many other existing tests of symmetry. It is also shown that the defining
feature of this test is “the higher the asymmetry higher is the power”.

Keywords Asymmetry · Skewness · Nonparametric estimation · Correlation

1 Introduction

The notion of symmetry or skewness of a probability density function (p.d.f.) is
frequently met in the literature and in applications of statistical methods either as an
assumption or as the main objective of study. Essentially the literature so far has been
focused on assessing symmetry and skewness through characteristic properties of
symmetric distributions (e.g., [5, 16]) or more recently through asymmetry functions
(e.g., [4, 6, 8, 15]). See [6, 10] for an overview of the various measures, hypothesis
tests, and methodological approaches developed so far. One aspect of asymmetry
which did not receive much attention in the literature is its quantification. In this
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2 D. Bagkavos et al.

direction, [18, 19], proposed a weak and strong asymmetry measure, respectively,
having as a purpose to measure the degree of asymmetry of a p.d.f. on a scale from
−1 to 1.

Taking this work a step further, a hypothesis test for the null hypothesis of sym-
metry based on the weak asymmetry measure of [19] is developed in [17]. A similar
test based on the strong asymmetry measure of [18] is under development in [3]
and here the focus is to study the power function of the same test. Specifically the
objective here is to discuss the practical implementation of the test, study its power
function for various distributions and compare its performance against the tests of
symmetry that have been proposed before.

The evidence arising from the simulation study of the present work is that the
test compares favorably against the existing tests. Except for the tests proposed
in [17], most of the tests of symmetry are designed mainly to detect departures
from symmetry and do not necessarily make use of the size of symmetry in their
construction. A consequence of this, as discussed in [17], is that their power does
not reflect the size of asymmetry. In contrast, besides having as good or better power
than existing tests, the main characteristic of the test considered here is that “the
higher the asymmetry higher is the power”.

The rest of the paper is organized as follows. Section2 discusses the development
of the test and provides the test statistic. Section3 contains details on the practical
implementation of the test. Numerical evidence on the power of the test and its
comparison with the powers of other tests is given in Sect. 4.

2 Motivation and Test Statistic

Let f and F denote the probability density and the cumulative distribution function,
respectively, associated with a random variable X .Wewish to test the null hypothesis
of symmetry,

H0 : f (θ − x) = f (θ + x) ∀ x ∈ R vs

H1 : f (θ − x) �= f (θ + x) for at least one x ∈ R.

(1)

To test the hypothesis in (1), a basis for constructing a test statistic is provided by
the fact that for a symmetric random variable X , Cov( f (X), F(X)) = 0. In [19] it
is noted that this is a necessary but not sufficient condition and in [18] this is then
modified to the following necessary and sufficient condition. A density function f
is symmetric if and only if

∫ ξp

−∞
f 2(x) dx =

∫ +∞

ξ1−p

f 2(x) dx
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for all p ∈ (1/2, 1) where ξp is such that F(ξp) = p. Which is equivalent to the
necessary and sufficient condition that f (x) is symmetric if and only if δp + δ∗

p = 0
for every 1/2 ≤ p < 1, where

δp = p−3

[∫ ξp

−∞
f 2(x)F(x)dx − p

2

∫ ξp

−∞
f 2(x)dx

]

δ∗
p = p−3

[
−

∫ ∞

ξ1−p

f 2(x)
(
1 − F(x)

)
dx + p

2

∫ ∞

ξ1−p

f 2(x)dx

]
.

Thus one can take the measure of asymmetry to be maximum of δp + δ∗
p over p.

However, note that the definitions of δp and δ∗
p result from the fact that they both

represent

δp = Cov f p

(
f p(X), Fp(X)

)
, δ∗

p = Cov f ∗
p

(
f ∗
p (X), F∗

p (X)
)
, (2)

where

f p(x) =
{

f (x)
p if x ≤ ξp,

0 otherwise
, f ∗

p (x) =
{

f (x)
p if x ≥ ξ1−p,

0 otherwise
(3)

and the distribution functions corresponding to f p and f ∗
p are defined by,

Fp(x) =
{

F(x)
p if x ≤ ξp,

1 if x ≥ ξp
, F∗

p (x) =
{
0 if x ≤ ξ1−p,

1 − 1−F(x)
p if x ≥ ξ1−p.

Since considering the correlation rather than the covariance has an advantage of
turning the resulting measure into a scale and location invariant, we define

ρp = 2
√
3

p

[ ∫ ξp
−∞ f 2(x)F(x)dx − p

2

∫ ξp
−∞ f 2(x)dx

]
[
p

∫ ξp
−∞ f 3(x)dx − (

∫ ξp
−∞ f 2(x)dx)2

]1/2 , (4)

ρ∗
p = 2

√
3

p

[ − ∫ ∞
ξ1−p

f 2(x)(1 − F(x))dx + p
2

∫ ∞
ξ1−p

f 2(x)dx
]

[
p

∫ ∞
ξ1−p

f 3(x)dx − (
∫ ∞
ξ1−p

f 2(x)dx)2
]1/2 . (5)

Therefore, in [18] the measure of asymmetry is defined as

η(X) = −1

2
sign(ρ1) max

1
2 ≤p≤1

|ρp + ρ∗
p|, (6)

which is zero if and only if f (x) is symmetric. Further, the values of η(X) range from
−1 (for most negatively asymmetric densities) to +1 (most positively asymmetric
densities). Therefore a sample analogue ofη(X) can be used to test the null hypothesis
of symmetry as η(X) = 0 implies H0 in (1). On the contrary, values of η(X) �= 0,
implies H1.
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Remark 1 Note that −1 × ρ1 is the asymmetry coefficient of [19] which we denote
by ηw(X). It corresponds to the necessary but not sufficient condition for symmetry
that Cov( f (x), F(x)) = 0. Also note that |ηw(X)| ≤ |η(X)|.
Remark 2 It may be noted that η does satisfy the properties that one is likely to ask
of a measure of symmetry, i.e.,

• For a symmetric random variable X , η(X) = 0.
• If Y = aX + b where a > 0 and b is any real number, then η(X) = η(Y ).

• If Y = −X , η(X) = −η(Y ).

3 Practical Implementation

Let X1, X2, · · · , Xn be a random sample from a continuous density function f (x).
First note that to estimate η, for various values of nonnegative integers k and l, one
needs to estimate

∫ b

a
f k+1(x)Fl(x) dx = E

[
f k(X)Fl(X)I [a < X < b]], (7)

where I is an indicator function and,−a and/or b could be∞. Therefore, an estimator
of η can be obtained by plugging in the sample counterparts of f and F , in a simple
unbiased estimator of the last quantity given by

1

n

n∑
i=1

f k(Xi )F
l(Xi )I [a < Xi < b].

For this, a simple approach is to estimate the density f (x) by the standard kernel
density estimate

f̂ (x) = (nh)−1
n∑

i=1

K

(
x − Xi

h

)
, (8)

where K is a second order kernel function and h denotes the bandwidth parameter.
Popular bandwidth selection rules include the solve-the-equation and direct plug-in
rules of [21] and Silverman’s rule of thumb ([22], (3.31)) which is already imple-
mented in R through the bw.nrd0 routine and is used throughout this work. The
distribution function F(x) is estimated by the standard kernel distribution function
estimate

F̂(x) =
∫ x

−∞
f̂ (u) du.

http://dx.doi.org/10.1007/978-3-319-41582-6_3
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Thus, (7) is estimated by

ψ̂kl(a, b) = 1

n

n∑
i=1

( f̂ (Xi ))
k(F̂(Xi ))

l I[a,b](Xi ).

Then the estimators of ρp and ρ∗
p based on f̂ (x) and F̂(x) are

ρ̂p = 2
√
3

p

ψ̂11(−∞, ξ̂p) − p
2 ψ̂10(−∞, ξ̂p)[

pψ̂20(−∞, ξ̂p) − ψ̂2
10(−∞, ξ̂p)

]1/2 , for 1/2 ≤ p < 1,

ρ̂∗
p = 2

√
3

p

−ψ̂10(ξ̂1−p,+∞) + ψ̂11(ξ̂1−p,+∞) + p
2 ψ̂10(ξ̂1−p,+∞)[

pψ̂20(ξ̂1−p,+∞) − ψ̂2
10(ξ̂1−p,+∞)

]1/2 ,

for 1/2 ≤ p < 1, and thus η is estimated by

η̂ = −1

2
sign(ρ̂1) max

1
2 ≤p<1

|ρ̂p + ρ̂∗
p|.

It may be helpful to note here that η̂ could be shown to be consistent by arguments
similar to that in [11].Also, throughout thiswork η̂ is implementedby simply ignoring
the denominators in both ρ̂p and ρ̂∗

p as the objective is only to test for symmetry and
not to provide a scaled measure of asymmetry.

4 Numerical Evaluation of the Test’s Power

In this section, finite sample distributional data is used to exhibit the performance of
the proposed test’s power properties for various sample sizes. Nine different classes
of probability models are used for this purpose. These are the standard Normal, the
Cauchy, the Lognormal, the Folded normal, the Exponential, mixtures of Normals,
the skew Normal (defined in [2]), the Sinh–arcsinh family (defined in [14]) and the
Fernadez and Steel (defined in [9]) families of distributions. The p.d.f. of the normal
mixture family is given by

fNM(x; s, μ1, μ2, σ
2
1 , σ 2

2 ) = s N (μ1, σ
2
1 ) + (1 − s) N (μ2, σ

2
2 )

where μ1 = 0, σ 2
1 = 1, μ2 = 2, σ 2

2 = 2. Here, four different versions of this family
are implemented, defined by s = 0.945, 0.872, 0.773, 0.606 respectively. The p.d.f.
of the skew Normal family is given by

fSN (x; λ) = 2φ(x)�(λx) − ∞ ≤ x ≤ +∞
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where φ and � denote the standard normal p.d.f. and c.d.f., respectively. Obviously,
λ = 0 reduces fSN (x; λ) to the symmetric standard normal distribution.Whenλ > 0,
fSN (x; λ) is skewed to the right and λ < 0 corresponds to left skewness. Eight
different versions are used here. These correspond to parameters

λ = 1.2135, 1.795, 2.429, 3.221, 4.310, 5.970, 8.890, 15.570.

The Sinh–arcsinh distributions are defined by the p.d.f.

fSAS(x; ε, δ) = 1√
2π

δCε,δ(x)√
1 + x2

exp

{
−1

2
S2ε,δ(x)

}
, ε ∈ R, δ > 0,

where

Cε,δ(x) = cosh
[
ε + δ sinh−1(x)

]
,

S2ε,δ(x) = sinh
[
ε + δ sinh−1(x)

]
.

Here ε controls skewness while δ controls the weight of the tails. The eight versions
of fSAS(x; ε, δ) are implemented with δ = 1 and

ε = 0.1, 0.203, 0.311, 0.430, 0.565, 0.727, 0.939, 1.263.

The Fernandez and Steel family has p.d.f.

fFAS(x; γ, ν) = 2

γ + 1
γ

{
ft

(
x

γ
; ν

)
I{x≥0} + ft (γ x; ν)I{x<0}

}
, (9)

where the parameter γ ∈ (0,+∞) controls the skewness of the distribution. From
[9], ft can be any symmetric unimodal distribution so for γ = 1, fFAS is symmetric.
Here, in contrast to [17], ft (x; ν) is the p.d.f. of the (symmetric, unimodal) t distrib-
ution with ν = 5 degrees of freedom. In the present implementation, eight different
versions of this family are realized with parameters

γ = 1.111, 1.238, 1.385, 1.564, 1.791, 2.098, 2.557, 3.388.

The critical region which determines acceptance or rejection of the null is based on
approximating the distribution of the test statistic under the null by calculating its
value on k = 10,000 i.i.d. samples from the standard normal distribution. Different
regions are calculated for samples of size n = 30, 50, 70. The standardized version
of the test statistic, Si = η̂i/sd(η̂) with sd(η̂) being the sample standard deviation
of η̂ as this results from its 10,000 values, is used for determining its distribution.
Then, definition 7 of [7], readily implemented in R via the quantile() function,
is applied to deduce data driven estimates of −qa/2 and qa/2, so as to construct
the critical region D = (−∞,−qa/2) ∪ (qa/2,+∞). This yields a critical region of
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the form D̂ = (−∞, α) ∪ (β,+∞) with α < 0, β > 0. Values of Si ∈ D̂ signify
rejection of the null.

The size function of the test is approximated as follows. For the three different sam-
ple sizes, 10,000 i.i.d. samples are generated from theCauchy, and the symmetric ver-
sions of the Sinh–arcsinh andFernandez andSteel p.d.f.’s. Note here that the symmet-
ric versions of the fNM and fSN p.d.f’s reduce to the standard normal distribution for
which D̂ is already calculated and for this reason does not make any sense to consider
those too. Then, Si , i = 1, . . . , k is computed and the value of {#Si ∈ D̂}/10,000 is
used as an approximation of the probability P(η̂/sd(η̂) ∈ D̂|H0), which defines the
size of the test.

On the other hand, computation of Si , i = 1, . . . , k and subsequently calculation
of {#Si ∈ D̂}/10,000 for all the other (nonsymmetric) distributions mentioned above
leads to a numerical approximation of P(η̂/sd(η̂) ∈ D̂|H1) i.e. the power function
of the test. It has to be noted here that the present formulation highlights the fact
that skewness and asymmetry are two different concepts under the alternative. At the
same time it corroborates with the fact that skewness and asymmetry are the same
concept and equal to zero under the null.

Implementation of η̂ in practice is discussed in detail in Sect. 3. For comparison
purposes, four symmetry tests are used to benchmark the performance of η̂/sd(η̂).
The tests are

S1 = √
n
x̄ − θ̃

s
,

where x̄, θ̃ and s are the sample mean, sample median and sample standard deviation
respectively. This test was proposed by [5] and large values of S1 signify departure
from symmetry. The second test is given by S2 = R(0) where

R(a) = 1√
n

n∑
i=1

Ga

(
R(|Xi − θ̃ |)
2(n + 1)

)
sign(Xi − θ̃ ),

Ga(x) = min

(
x,

1

2
− a

)

and R(Xi ) is the rank of Xi in the sample. This test was proposed by [1] and as in the
case of S1, here too large values of the test statistic signify departure from symmetry.
The third test is the ‘triples’ test of [20], given by

S3 = 1

3

(
N

3

)−1 ∑
i< j<k

{
sign(Xi + X j − 2Xk)

+ sign(Xi + Xk − 2X j ) + sign(X j + Xk − 2Xi )
}
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where a triple of observations (Xi , X j , Xk) is defined as the right triple if the middle
observation is closer to the smallest observation than it is to the largest observation
and vice versa for the left triple. Again, large values of S3 indicate departure from
symmetry. The fourth test is the test of [12] with test statistic

S4 =
1
n

∑n
i=1(Xi − X̄)3(

1
n−1

∑n
i=1(Xi − X̄)2

) 3
2

.

As with the previous three tests construction of S4 is based on detecting departure
from asymmetry through skewness. Thus significantly large values of |S4| indicate
departure from symmetry.

The empirical powers of S1 − S4 for the same sample sizes as used here (n =
30, 50, 70) can be found on [17]. It has to be noted that more tests are available for
comparison with η̂ in [17]. However, the focus here is put on S1 − S4; the reason
is that these four tests are designed to detect departure from symmetry and hence
comparison with them sheds light on the benefits yield by focusing on quantification
of asymmetry as suggested by η̂.

The results for η̂/sd(η̂) are displayed in Table1. The first outcome is that for the
normal mixtures, the skew normal, the sinh-arcsinh and the Fernandez and Steel
families, the test is very sensitive in capturing departure from symmetry. This insight
is derived by the figures of the power function for the first parameters of each dis-
tribution where the test is much more effective in detecting the asymmetry of the
p.d.f. compared to its competitors. Also, as expected the power of the test is rising
as sample size and the amount of asymmetry is increasing. Another outcome is that
the test compares favorably in terms of power to the other four tests, with S3 being
its closest competitor. More importantly, as mentioned in the Introduction, S1 − S4
are designed to detect the departure from symmetry and do not necessarily make
use of the size of symmetry in their construction. A consequence of this is that their
power does not reflect the size of asymmetry. A case in point are the Log-normal
and Folded normal distributions where the simulation results indicate that the test
detects asymmetry in Folded normal with less power than in the Log-normal case,
even though the latter is less asymmetric than the former. One reason for this is the
fact that the reflection method for boundary correction ([13]) works better for the
Lognormal than for the Folded normal distribution.

Now, the test based on η̂ not only has as good a power as other tests, but also its
power to detect the asymmetry in Folded normal is higher than its power to detect
asymmetry in Lognormal distribution. In general, from empirical powers in Table1
higher the asymmetry higher is the power of the test based on η̂.
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Table 1 Empirical powers (in %) for η̂/sd(η̂) for a = 5%

η Distribution Power η̂

n = 30 n = 50 n = 70

0 N(0, 1) 7 4.3 5.3

0 Cauchy 5.4 4.3 4.7

0.1 fNM (x; 0.945, 0, 2, 1, 2) 10.7 12.8 15.2

0.2 fNM (x; 0.872, 0, 2, 1, 2) 18.3 29.8 40.4

0.3 fNM (x; 0.773, 0, 2, 1, 2) 28.1 52.7 67.5

0.4 fNM (x; 0.606, 0, 2, 1, 2) 39.9 74.1 88.7

0.1 fSN (x; 1.2135) 15.7 14.4 15.7

0.2 fSN (x; 1.795) 24.8 26.6 36.3

0.3 fSN (x; 2.429) 39.8 44.3 51.1

0.4 fSN (x; 3.221) 54.9 65.2 81.8

0.5 fSN (x; 4.310) 71.8 84.2 94.8

0.6 fSN (x; 5.970) 88.5 95 99.1

0.7 fSN (x; 8.890) 93.9 98.8 99.8

0.8 fSN (x; 15.570) 97.4 99.7 100

0 fSAS(x; 0, 1) 6.6 6.2 5.9

0.1 fSAS(x; 0.1, 1) 24.7 39.6 48.8

0.2 fSAS(x; 0.203, 1) 38.4 56.3 62.4

0.3 fSAS(x; 0.311, 1) 51.7 72.3 74.5

0.4 fSAS(x; 0.430, 1) 64.2 82.5 87.2

0.5 fSAS(x; 0.565, 1) 78.6 96.3 98.6

0.6 fSAS(x; 0.727, 1) 89.1 97.2 99.1

0.7 fSAS(x; 0.939, 1) 90.6 98.2 100

0.8 fSAS(x; 1.263, 1) 93.4 98.3 100

0 fFAS(x; 1, 5) 6.4 5.9 5.8

0.1 fFAS(x; 1.111, 5) 24.2 34.1 39.6

0.2 fFAS(x; 1.238, 5) 31.6 49.4 53.9

0.3 fFAS(x; 1.385, 5) 45.6 59.6 64.5

0.4 fFAS(x; 1.564, 5) 69.1 82.6 90.4

0.5 fFAS(x; 1.791, 5) 70.3 88.3 90.7

0.6 fFAS(x; 2.098, 5) 80.6 89.4 94.7

0.7 fFAS(x; 2.557, 5) 80.5 93.6 95.4

0.8 fFAS(x; 3.388, 5) 91.2 98.2 100

0.91 LogNormal 87.6 94.3 96.2

0.95 Folded Normal 72.2 86.4 94.3

1 Exponential(1) 88.6 92.2 100
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Nonparametric Test on Process Capability

Stefano Bonnini

Abstract The study of process capability is very important in designing a new
product or service and in the definition of purchase agreements. In general we can
define capability as the ability of the process to produce conforming products or
deliver conforming services. In the classical approach to the analysis of process
capability, the assumption of normality is essential for the use of the indices and
the interpretation of their values make sense but also to make inference on them.
The present paper focuses on the two-sample testing problem where the capabilities
of two processes are compared. The proposed solution is based on a nonparametric
test. Hence the solution may be applied even if normality or other distributional
assumptions are not true or not plausible and in the presence of ordered categorical
variables. The good power behaviour and the main properties of the power function
of the test are studied through Monte Carlo simulations.

Keywords Process capability · Permutation test · Two-sample test

1 Introduction

To ensure a high quality of product or service, the production process or service
delivery process should be stable and a continuous quality improvement should be
pursued. Control charts are the basic instruments for a statistical process control
(SPC). One of the main goals of these and other statistical techniques consists in
studying and controlling the capability of the process. A crucial aspect which should
be studied and controlled is the process variability.

Every process, even if well-designed, presents a natural variability due to unavoid-
able random factors. In the presence of specific factors that cause systematic vari-
ability, the process is out of control and its performances are unacceptable. In these
situations the process variability is greater than the natural variability and high per-
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centage of outputs (products, services, etc) could be nonconforming, that is the
process would produce high percentages of waste. In other words, when the process
is in control, most of the values of the response variable under monitoring falls
between the specification limits. When the process is out of control, the probability
that the response variable takes values outside the specification limits is high. Hence
the main purpose of a SPC is to minimize the process variability.

The study of process capability is very important in designing a new product
or service and in the definition of purchase agreements. In general we can define
capability as the ability of the process to produce conforming products/services.
In other words the greater the probability of observing values of the response in the
interval [LSL,USL], the greater the process capability, where LSL andUSL are lower
specification limit and upper specification limit respectively.

In the statistical literature several works have been dedicated to process capability
indices. For a deep discussion see, among the others, [5, 6, 9–11, 14, 15].

By assuming normality for the response, a simple way of measuring the process
capability is based on the index

Cp = (USL − LSL)/(6σ), (1)

where σ is the standard deviation of the response. For a non centred process, that
is when the central tendency of the distribution of the response is not centred in the
specification interval, amore appropriatemeasure of process capability is providedby

Cpk = min[(USL − μ), (μ − LSL)]/(3σ), (2)

where μ is the process mean. Cp can be considered as potential capacity of the
process, while Cpk can be considered as actual capacity. When the process is centred
Cp = Cpk . If LSL ≤ μ ≤ LSL then Cpk ≥ 0 and when μ = LSL or μ = USL we
have Cpk = 0.

The assumption of normality is essential for the use of the indices and the inter-
pretation of their values make sense. Some approaches, proposed in the presence of
non normal data, are based on a suitable transformation of data. Alternative solutions
consist in defining general families of distributions like those of Pearson and Johnson
(see [14]).

When the capabilities of two or more processes are compared, we should consider
that a given value of Cpk could correspond to one process with centred mean and
high variability or to another process with less variability and non centred mean.
As a consequence, high values of Cpk may correspond to a non centred process
with low variability. To take into account the centering of the process we should
jointly consider Cp and Cpk . An alternative is represented by the following index of
capability

Cpkm = (USL − LSL)/(6
√

σ 2 + (μ − T )2), (3)
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where T is the target value for the response. It is worth noting that Cpkm = Cp/√
1 + θ2, where θ = (μ − T )/σ .
Under the assumption of normality, it is possible to compute confidence intervals

for the capability indices by means of point estimates of μ and σ . Common and
very useful testing problems consider the null hypothesis H0 : C = C0 against the
alternative H1 : C > C0, where C is a given index of capability and C0 is a specific
reference value for C (see for example [9]). We wish to focus on the two-sample
testing problemwhere the capabilities of two processes,C1 andC2 are compared. The
goal consists in testing the null hypothesis H0 : C1 = C2 against the alternative H1 :
C1 > C2. Typical situations are related to the comparison between sample data drawn
from a given process under study and sample data from an in-control process or to the
comparison between the capabilities of the processes associated to different industrial
plants, operators, factories, offices, corporate headquarters, etc. Some interesting
contributions about capability testing are provided by [7, 8, 12, 13].

The proposal of the present paper is based on a nonparametric solution. Hence
the test may be applied even if normality or other distributional assumptions are not
true or not plausible. The method is based on a permutation test and neither requires
distributional assumptions nor needs asymptotic properties for the null distribution
of the test statistic. Hence, it is a very robust procedure and can also be applied for
small sample sizes and for ordered categorical data.

The basic idea is to transform the continuous response variable into a categorical
variable through a suitable transformation of the support of the original response into
a set of disjoint regions and to perform a test for comparing the heterogeneities of two
categorical distributions. In Sect. 2 the procedure is described. Section3 presents the
results of a simulation study for proving the good power behaviour of the proposed
test. Final conclusions are given in Sect. 4.

2 Permutation Test on Capability

Let X be a continuous random variable representing the response under study in the
SPC. The probability that X takes values in the region R ∈ � is

πR = P[X ∈ R] =
∫
R
f (x)dx, (4)

where f (x) is the (unknown) density function of X . Let us define RT = [LSL ,USL]
the target region for X , RL = (−∞, LSL) and RU = (USL ,+∞). A reasonable
assumption, unless the process is severely out of control, is thatmost of the probability
mass is concentrated in RT , i.e., the probability that X falls in the target region is
greater than the probability than X takes values in the lower tail or in the upper tail.
Formally

πRT = max(πRL , πRT , πRU ), (5)
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withπRL + πRT + πRU = 1. The ideal situation, when the process is in control, is that
the probability of producing waste is null, that is πRL = πRU = 0 and πRT = 1. The
worst situation, when πRT takes its absolute minimum under the constrain defined in
Eq.5, consists in the uniform distribution, where πRL = πRT = πRU = 1/3. Hence a
suitable index of capability could be the one’s complement of a normalized measure
of heterogeneity for categorical variables. A solution could be based on the use of
the index of Gini

C (G) = 1 − (3/2)[1 − (π2
RL

+ π2
RT

+ π2
RU

)]. (6)

The famous entropy of Shannon may be also considered for computing a nor-
malized index of capability

C (S) = 1 + (πRL ln πRL + πRT ln πRT + πRU ln πRU )/ ln 3. (7)

Other alternatives can be provided by the family of indices proposed by Rényi

C (ω) = 1 − (1 − ω)−1 ln(πω
RL

+ πω
RT

+ πω
RU

)/ ln 3. (8)

Each normalized index of heterogeneity takes value 1 in case of maximum het-
erogeneity (uniform distribution), value 0 in case of minimum heterogeneity (degen-
erate distribution) and greater values when moving from the degenerate towards the
uniform distribution (see [4]). Hence the greater the value of the index of hetero-
geneity the lower the capability of the process because the capability is non decreas-
ing function of the probability concentration. For this reason, if the probabilities
were known, the comparison of two process capabilities could be done by compar-
ing the cumulative ordered probabilities Π1(s) = ∑s

t=1 π1(t) and Π2(s) = ∑s
t=1 π2(t)

with π j RT = π j (1) ≥ π j (2) ≥ π j (3), j = 1, 2, s = 1, 2, 3. Thus the hypotheses of the
problem are

H0 : [C1 = C2] ≡ [Π1(s) = Π2(s)∀s], (9)

and

H1 : [C1 > C2] ≡ [Π1(s) ≥ Π2(s)∀s and ∃s s.t. Π1(s) > Π2(s)]. (10)

Under the null hypothesis, when the cumulative ordered probabilities are equal,
exchangeability holds. But π j (t), j = 1, 2, t = 1, 2, 3 are unknown parameters of
the distribution and need to be estimated by using the observed ordered frequencies
π̂ j (t) = n j (t)/n j , where n j (t) is the t th ordered absolute frequency for the j-th sample
and n j is the size of the j-th sample. Hence the real ordering of the probabilities is
estimated and the exchangeability under H0 is approximated and not exact.

[1, 3] suggest that a test statistic for the similar problem of two-sample test on
heterogeneity may be based on the difference of the sampling estimates of the indices
of heterogeneity. By adapting this approach to our specific problem, we suggest to
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use, as test statistic, the difference of the sampling estimates of the process capabilities
under comparison: T = Ĉ1 − Ĉ2, where Ĉ j is computed like C j but by replacing
π j (t) with π̂ j (t), with j = 1, 2 and t = 1, 2, 3. Hence we have TG = Ĉ (G)

1 − Ĉ (G)
2 ,

TS = Ĉ (S)
1 − Ĉ (S)

2 and TRω
= Ĉ (ω)

1 − Ĉ (ω)
2 .

An alternative solution could be based on the combination of more than one
statistic, by considering the information provided by different indices. For example,
according to the additive combining rule, we have

TC = TG + TS + TR3 + TR∞ , (11)

where TR3 and TR∞ are the test statistics based on the indices of Rényi of order 3
and∞ respectively. Whatever the statistics used for the problem, the null hypotheses
must be rejected for large values of this statistic.

The first step of the testing procedure consists of the computation of the observed
ordered table, that is {n j (t); j = 1, 2; t = 1, 2, 3} and the observed value of the test
statistic T (0). By performing B independent permutations of the dataset, then obtain-
ing B permuted ordered tables {n∗

j (t); j = 1, 2; t = 1, 2, 3} and B corresponding
permutation values of the test statistic T ∗(1), . . . , T ∗(B), the p-value, according to
the permutation distribution, can be computed as

p =
B∑

b=1

I (T ∗(b) ≥ T (0))/B, (12)

where I (E) = 1 iff the event E is true, and I (E) = 0 otherwise. An alternative
resampling strategy may be based on a bootstrap approach but [2] proves that this
solution is usually not as powerful as the permutation one.

3 Monte Carlo Simulation Study

To analyze the power behaviour of the proposed tests, aMonteCarlo simulation study
was performed. Data for the j-th sample were randomly generated by the following
variable:

X j = 1 + int[3U γ j ], (13)

where U is a uniform random variable, and γ j ∈ (0, 1] is the heterogeneity para-
meter: the greater γ j the higher the heterogeneity of X j (thus the lower C j ), hence
C1 > C2 iff γ1 < γ2. For each specific setting, defined in terms of γ1, γ2, n1 and n2
values, CMC = 1000 datasets where generated and, for each dataset, B = 1000 per-
mutations were performed to estimate the p-values and compute the rejection rates
of the tests. The estimated power (rejection rates) of the tests on capability based
on the indices of Gini , Shannon, Rényi (order 3 and order ∞) and on the direct
(additive) combination of the four mentioned tests were computed.
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Table 1 Simulation results under H0 : C1 = C2, n1 = n2 = 50, α = 0.05, B = 1000, CMC =
1000

Rejection rates

γ1 γ2 γ1 − γ2 TG TS TR3 TR∞ TC

0.2 0.2 0.0 0.055 0.054 0.055 0.055 0.055

0.4 0.4 0.0 0.053 0.052 0.053 0.054 0.054

0.6 0.6 0.0 0.040 0.048 0.040 0.025 0.040

Table 2 Simulation results under H1 : C1 > C2, n1 = n2 = 50, α = 0.05, B = 1000, CMC =
1000

Rejection rates

γ1 γ2 γ1 − γ2 TG TS TR3 TR∞ TC

0.8 1.0 0.2 0.044 0.042 0.047 0.060 0.052

0.6 1.0 0.4 0.375 0.399 0.372 0.314 0.360

0.4 1.0 0.6 0.945 0.955 0.933 0.863 0.935

In Table1, the rejection rates under the null hypothesis of equality in capability
are reported with samples sizes equal to 50. Three different capability levels are
considered. The powers of all the tests seem to increase with the capability: as a
matter of fact capability is negatively related to heterogeneity, hence lower capability
implies greater heterogeneity and greater heterogeneity means greater uncertainty.
Table1 shows that all the tests are well approximated, because the rejection rates are
very similar to the nominal α level, even if, in the presence of high capabilities, the
tests tend to be slightly anticonservative. The test based on the Rényi index of order
∞ is less stable than the others because of its very low power in the presence of low
capabilities.

Table2 shows the estimated power of the tests under H1, when the capability of
the second process is at the minimum level and for three different capability levels
of the first process. As expected, the greater the difference in capability, the greater
the power of the tests. When the difference in capability is low, the most powerful
tests are those based on the direct combination and on the Rényi index of order ∞.
Instead, when the difference in capability is high, the latter test is the less powerful,
the power performance of the others is similar and the test based on the Shannon
index is slightly preferable.

In Table3 the behaviour of the rejection rates as function of the sample sizes,
when the parameter difference is equal to 0.4, can be appreciated. The consistency
of the tests is evident because larger sample sizes correspond to higher power. Again
the power behaviours of the tests are very similar and, for small sample sizes, the
test based on the Rényi index of order ∞ is the most powerful but for large sample
sizes this test is the less powerful.

Table4 focuses on the power comparison of the tests for different sample sizes
when the difference between the capabilities is small. Even in this case, the test
based on Rényi index of order ∞ is the best in the presence of small sample sizes
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Table 3 Simulation results under H1 : C1 > C2, γ1 = 0.6, γ2 = 1.0, α = 0.05, B = 1000,
CMC = 1000

Rejection rates

n1 n2 n1 − n2 TG TS TR3 TR∞ TC

20 20 0 0.109 0.109 0.108 0.114 0.108

60 60 0 0.440 0.455 0.424 0.365 0.426

100 100 0 0.759 0.769 0.742 0.640 0.740

Table 4 Simulation results under H1 : C1 > C2, γ1 = 0.8, γ2 = 1.0, α = 0.05, B = 1000,
CMC = 1000

Rejection rates

n1 n2 n1 − n2 TG TS TR3 TR∞ TC

20 20 0 0.019 0.019 0.020 0.028 0.019

40 40 0 0.046 0.050 0.045 0.048 0.054

60 60 0 0.052 0.052 0.048 0.058 0.058

100 100 0 0.109 0.113 0.104 0.109 0.109

and this is not true in the presence of large sample sizes. In the intermediate case of
sample sizes equal to 40, the most powerful test seems to be the one based on direct
combination.

4 Conclusions

The two-sample nonparametric test on process capability is a robust solution and
allows inferential comparative analysis of process capabilities even when distribu-
tional assumptions (e.g., normality) do not hold or cannot be tested. Under the null
hypothesis of equality in heterogeneity, data exchangeability is not exact but the
good approximation of the permutation test is proved by the Monte Carlo simulation
study.

According to this proposal, the test statistic is based on the comparison of the
two-sample heterogeneities, computed by using suitable indices of heterogeneity,
like the Gini index, the Shannon entropy, the Rényi family of indices, or a suitable
combination of test statistics based on different indices, for example on the sum of
these different test statistics.

The Monte Carlo simulation study proves that the power of all the tests seems
to increase with the capability: as a matter of fact capability is negatively related to
heterogeneity, hence lower capability implies greater heterogeneity and consequently
greater uncertainty.
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All the considered tests are well approximated, because under the null hypothesis
of equality in capability, the rejection rates are very similar to the nominal α level.

Under the alternative hypothesis, when the difference in capability is low, themost
powerful tests are those based on the direct combination and on the Rényi index of
order ∞. Instead, when the difference in capability is high, the latter test is the less
powerful and the test based on the Shannon index is slightly preferable.

The tests are consistent because if sample sizes increase then power increases.
For small sample sizes the test based on the Rényi index of order ∞ is the most
powerful but for large sample sizes it is the less powerful. In the presence of small
difference in the capabilities of the two compared processes, again the test based on
the Rényi index of order ∞ is the best in the presence of small sample sizes but not
in the presence of large sample sizes. In the case of intermediate sample sizes, the
test based on the direct combination seems to be the most powerful. Hence, if we
consider the instability of the Rényi index of order ∞, the test based on the direct
combination is the best solution under the alternative hypothesis, when it is difficult
to detect the difference in the capabilities of the two processes, i.e., near the null
hypothesis.
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Testing for Breaks in Regression Models
with Dependent Data

J. Hidalgo and V. Dalla

Abstract The paper examines a test for smoothness/breaks in a nonparametric
regression model with dependent data. The test is based on the supremum of the
difference between the one-sided kernel regression estimates. When the errors of the
model exhibit strong dependence, we have that the normalization constants to obtain
the asymptotic Gumbel distribution are data dependent and the critical values are
difficult to obtain, if possible. This motivates, together with the fact that the rate of
convergence to the Gumbel distribution is only logarithmic, the use of a bootstrap
analogue of the test. We describe a valid bootstrap algorithm and show its asymptotic
validity. It is interesting to remark that neither subsampling nor the sieve bootstrap
will lead to asymptotic valid inferences in our scenario. Finally, we indicate how to
perform a test for k breaks against the alternative of k + k0 breaks for some k0.

Keywords Nonparametric regression · Breaks/smoothness · Strong dependence ·
Extreme-values distribution · Frequency domain bootstrap algorithms

1 Introduction

The literature on breaks/continuity on parametric regressionmodels is both extensive
and exhaustive in both econometric and statistical literature, see [23] for a survey.
Because as in many other situations an incorrect specification of the model can lead
tomisleading conclusions, see for instance [14], it is of interest to develop tests which
do not rely on any functional specification of the regression model. Although some
work has been done in the nonparametric setup, the literature appears to focus mostly
on the estimation of the break point, see for instance [22], Chu and Wu (1992) and
[8], rather than on the testing of its existence.With this view, the purpose of this paper
is to fill this gap by looking at testing for the hypothesis of continuity against the
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alternative of the existence of (at least) one discontinuity point in a nonparametric
regression model, although we shall indicate how to perform a test for k breaks
against the alternative of k + k0 breaks for some k0.

More specifically, we consider the regression model

yt = r (xt ) + ut ; t = 1, . . . , n, (1.1)

wherewe assume that the homoscedastic errors {ut }t∈Z follow a covariance stationary
linear process exhibiting possibly strong dependence, to bemore precise inCondition
C1 below. We shall assume that xt is deterministic, say a time trend. A classical
example of interest in time series is a polynomial trend, that is xt = (

t, t2, . . . , t p
)
,

and/or when regressors are of the type “cos tλ0” and/or “sin tλ0”, where λ0 �= 0. The
latter type of regressors can be convenient when the practitioner suspects that the data
may exhibit some cyclical behavior. Hence, one possible hypothesis of interest is to
know if such a deterministic trend and/or cyclical behavior has breaks. Our results
are a natural extension to those obtained in [1] when the errors {ut }t∈Z are a sequence
of independent and identically (i id) distributed random variables. Of course, we can
allow for stochastic covariates x , however, this is beyond the scope of this paper as
the technical aspects are quite different than those with deterministic regressors.

Our main goal is to test the null hypothesis r (x) =: E (y | x) is continuous
being the alternative hypothesis that there exists a point in X such that r (x) is not
continuous, and where herewithX denotes the domain of the variable x . We are also
very much interested into the possible consequence of assuming that the errors ut
exhibit strong dependence, as opposed to weak dependence, and in particular, the
consequence on the asymptotic distribution of the test.

In this paper, the methodology that we shall follow is based on a direct com-
parison between two “alternative” estimates of r (x). More specifically, based on
a sample {yt , xt }nt=1, the test is based on global measures of discrepancy between
nonparametric estimates of E (y | x) when we take only observations at the right
and left of the point x ∈ X . For that purpose, we have chosen the supremum norm,
e.g., a Kolmogorov–Smirnov type of test. Alternatively, we could have employed the
L2 − norm, see among others [2].

One of our main findings of the paper is that the constant ζn used to normalize the
statistic (see Theorem 1 below) depends on the so-called strong dependent parameter
of the error term. However, due to the slow rate of convergence to the Gumbel
distribution and that the implementation of the test can be quite difficult for a given
data set, we propose and describe a bootstrap algorithm. So in our setup bootstrap
algorithms are not only necessary because they provide more reliable inferences,
but due to our previous comment regarding its implementation. The need to use
resampling/subsampling algorithm leads to a rather surprising result. In our context,
subsampling is not a validmethod to estimate the critical values of the test. The reason
being, as Theorem 1 below illustrates, see also the comments after Theorem 2 in
Sect. 4, the implementation of the test requires the estimation of some normalization
constants which subsampling is not able to compute consistently. Because the well-
known possible problems of the moving block bootstrap with strong dependence
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data, and that the sieve bootstrap is neither consistent when we allow for strong
dependence, wewill propose an algorithm in the frequency domainwhich overcomes
the problem.

The paper is organized as follows. In the next section, we describe the model and
test. Also, we present the regularity conditions and the one-sided kernel estimators
of the regression function. Section3 presents the main results of the paper. Due to the
nonstandard results obtained in Sects. 3 and 4 describes and examines a bootstrap
algorithm, showing the validity in our context. The bootstrap is performed in the
frequency domain and it extends results to the casewhen the errors are not necessarily
weakly dependent. AMonte Carlo experiment is presented in Sect. 5. Section6 gives
the proofs of the results which rely on a series of lemmas in Sect. 7.

2 The Model and Test. Regularity Conditions

As we mentioned in the introduction, our main concern is to test the null hypothesis
that r (x) is continuous being the alternative hypothesis that there exists a point in
X such that the function r (x) is not continuous. So, noting that continuity of r (x)
means that ∀x ∈ X , r+ (x) = r− (x), where r± (x) = limz→x± r (z), we can set our
null hypothesis H0 as

H0 : r+ (x) = r− (x) , ∀x ∈ X , (2.1)

being the alternative hypothesis the negation of the null.
The null hypothesis in (2.1) and the nonparametric nature of r (x) suggests that

we could base the test for the null hypothesis H0 in (2.1) on the difference between
the kernel regression estimates of r+ (x) and r− (x). To that end, we shall employ
one-sided kernels as proposed by [26] since in our context they appear necessary
since the implementation of the test requires the estimation of r+ (·) and r− (·), that
is estimates of r (z) at z+ and z−, respectively. Denoting by K+ (x) and K− (x)
one-sided kernels, that is, kernel functions taking values for x > 0 and x < 0,
respectively, we estimate r+ (x) and r− (x) at points xq = q/n, q ∈ Qn , where
Qn = {

q : ň < q ≤ n − ň
}
, by

r̂a,+ (q) := r̂a,+
(
xq

) = 1

ň

n∑
t=q

yt K+,t−q , r̂a,− (q) := r̂a,−
(
xq

) = 1

ň

q∑
t=1

yt K−,t−q ,

(2.2)

where henceforth we abbreviate K±
(
t
ň

)
by K±,t , ň = [na] and a = a (n) is a

bandwidth parameter such that a → 0 as n increases to infinity, and where for
notational simplicity we shall take xt = t/n henceforth. Thus, the test for H0 in (2.1)
becomes

Td = sup
q∈Qn

∣∣̂ra,+ (q) − r̂a,− (q)
∣∣ . (2.3)

Remark 1 It is worth mentioning that to take the supremum on [0, 1] or at point j/n,
for integer j , is the same as r̂a,+

(
xq

) = r̂a,+ (x) for all x ∈ (
xq−1, xq

]
.
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Next, let us introduce the following regularity conditions:

C1: {ut }t∈Z is a covariance stationary linear process defined as

ut =
∞∑
j=0

ϑ jεt− j ;
∞∑
j=0

ϑ2
j < ∞, with ϑ0 = 1,

where {εt }t∈Z is an iid sequence with E (εt ) = 0, E
(
ε2t

) = σ 2
ε , E

(|εt |�) =
μ� < ∞ for some � > 4. Also, the spectral density function of {ut }t∈Z, denoted
f (λ), can be factorized as

f (λ) = σ 2
ε

2π
g (λ) h (λ) , (2.4)

where g (λ) = ∣∣1 − ei jλ
∣∣−2d

, h (λ) = |B (λ)|2, B (λ) = ∑∞
j=0 b j e−i jλ; and∑∞

k=0 k
2 |bk | < ∞.

The case d = 0 refers to weak dependence, whereas the case 0 < d < 1
2

refers to strong dependence. One model satisfying (2.4) is the FARI MA (p, d, q)

process (1 − L)d 	p (L) ut = 
q (L) εt , where (1 − L)−d = ∑∞
k=0 ϑk Lk with

ϑk = � (k + d) / (� (d) � (k + 1)), where � (·) denotes the gamma function such
that � (c) = ∞ for c = 0 and � (0) /� (0) = 1, and 	p (L) and 
q (L) are the
autoregressive and moving average polynomials with no common roots and out-
side the unit circle. The latter implies that 	−1

p (L)
q (L) = ∑∞
j=0 b j L j with

b j = O
(
j−c

)
for any c > 0. The condition

∑∞
k=0 k

2 |bk | < ∞ implies that h (λ) is
twice continuously differentiable for all λ ∈ [0, π ]. We finish pointing out that the
sole motivation to assume homoscedastic errors is only for notational simplicity as
well as to shorten the arguments of the already technical proofs and eases some of
the arguments for the proof of the validity of the bootstrap described in Sect. 4 below.

C2: For all x ∈ [0, 1], r (x) satisfies

lim
y→x

∣∣∣∣r (y) − r (x) − R (x)

|x − y|τ
∣∣∣∣ = o (1) ,

where 0 < τ ≤ 2 and R (x) is a polynomial of degree [τ − 1] with [z] denoting
the integer part of z.

Condition C2 is only slightly stronger than functions r (x) which are Lipschitz con-
tinuous of order τ if 0 < τ ≤ 1, or r (x) is differentiable with derivative satisfying
a Lipschitz condition of degree τ − 1, if 1 < τ ≤ 2. For instance, when τ = 2, C2
means that r (x) is twice continuously differentiable.

C3: K+ : [0, 1] → R and K− : [−1, 0] → R, where K+ (x) = K− (−x),∫ 1
0 K+ (x) dx = 1 and

∫ 1
0 xK+ (x) dx = 0.
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Kernels K+ (x), and therefore K− (x), satisfying C3 can be obtained from any
function υ (x) with domain in [0, 1] as K+ (x) = υ (x) (c1 + c2x), where c1 and c2
are the solutions to

∫ 1
0 K+ (x) dx = 1 and

∫ 1
0 xK+ (x) dx = 0. As an example let

υ (x) = x (x + 1), then K+ (x) = 12x (1 − x) (3 − 5x), see [8].
Our next condition deals with the bandwidth parameter a.

C4: As n → ∞, (i) (na)−1 → 0 and (i i) (na)
1
2 −d aτ ≤ D < ∞, with τ as in C2.

Part (i) is standard in kernel regression estimation, whereas part (i i) needs more
explanation. The latter differs from the analogue assumed by [29]. Contrary to the
latter work, we do not need to assume that ň

1
2 −daτ → 0 as n → ∞. This allows

us to choose the optimal bandwidth parameter a, in the sense of being the value a
which minimizes the MSE of the nonparametric regression estimator. More pre-
cisely, suppose that d = 0 and τ = 2. Then, it is known that the optimal choice of
a satisfies a = Dn−1/5 for some finite positive constant D, which corresponds to
the choice of the bandwidth parameter by, say, cross-validation. Also, note that for a
given degree of smoothness on r (x), that is τ in C2, the bandwidth parameter con-
verges to zero slower as d increases. That is, given a particular bandwidth it requires
less smoothness in r (x).

We finish indicating how we can extend our testing procedure to the case where
we know that there exist k breaks and we want to test the existence of k0 additional
ones. That is, our null hypothesis is that

r (x) =

⎧⎪⎪⎨
⎪⎪⎩

r1 (x) x < x1

r2 (x) x1 ≤ x < x2

...

rk+1 (x) xk ≤ x ,

where the functions ri (x) are continuous being the alternative hypothesis that there
exist k0 points in X for which ri (x) are not continuous, for some i = 1, . . . , k + 1.
We now describe or envisage how we can modify our test in (2.3). To that end, let

r̂a,q =: ∣∣̂ra,+
(
xq

) − r̂a,−
(
xq

)∣∣ , q ∈ Q̃n ,

where
Q̃n = {

q : q ∈ Qn\ ∪k
p=1 Q̃

(p)
n

}

with Q̃(p)
n = {

q : x p − ň < q ≤ x p + ň
}
, p = 1, . . . , k. That is Q̃n is the set of

points q ∈ Qn which do not belong to the set ∪k
p=1 Q̃

(p)
n . Next, denote r̂(q) the qth-

order statistic of
{̂
ra,q

}Q̊n

q=1, so that r̂(1) = minq∈Q̃n
r̂a,q and r̂(

Q̊n

) = maxq∈Q̃n
r̂a,q ,

where Q̊n = #
{
Q̃n

}
. Then, if k0 is a known a priory positive integer, the test can be

based on
T k0
d =: r̂(

Q̊n−(k0−1)
).
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To examine the asymptotic behavior of the test is beyond the scope of this paper
and it will be discussed in a different manuscript.

3 Results

Before we examine the properties of Td in (2.3), we shall first examine the covariance
of r̃a (q) at two points q1 ≤ q2 ∈ Qn , where in what follows r̃a (q) =: r̂a,+ (q) −
r̂a,− (q). Also define b (q1, q2) =: (q2 − q1) /ň and ϑ (d) = 2� (1 − 2d) cos(
π

(
1
2 − d

))
.

Proposition 1 Assuming C1−C4, under H0, for any ň < q1≤ q2≤ n − Ln, as
n → ∞,

ň1−2dCov (̃ra (q1) ,̃ra (q2)) → ρ (b; d)=: ρ+ (b; d) +ρ− (b; d) −ρ± (b; d)−ρ∓ (b; d) ,

where b := limn→∞ b
(
q1, q2

)
is finite and

(a) if 0 < d < 1
2 ,

ρ+ (b; d) = h (0) ϑ (d)

∫ 1

0

∫ 1+b

b
|v − w|2d−1 K+ (v)K+ (w − b) dvdw ,

ρ− (b; d) = h (0) ϑ (d)

∫ 0

−1

∫ b

b−1
|v − w|2d−1 K− (v)K− (w − b) dvdw ,

ρ± (b; d) = h (0) ϑ (d)

∫ 1

0

∫ b

b−1
|v − w|2d−1 K+ (v)K− (w − b) dvdw ,

ρ∓ (b; d) = h (0) ϑ (d)

∫ 0

−1

∫ 1+b

b
|v − w|2d−1 K− (v)K+ (w − b) dvdw .

(b) if d = 0,

ρ+ (b; d) = ρ− (b; d) = 4−1σ 2
u

∫ 1

0
K+ (v)K+ (v − b) dv ρ± (b; d) = ρ∓ (b; d) = 0.

Proof The proof is omitted since it proceeds as that in [29]. �

Proposition 1 indicates that the covariance structure is independent of the points at
which r± (x) is estimated and only depends on the distance among the points where
we estimate r± (x).
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The next proposition deals with the correlation structure of r̃a (q) as b (q1, q2) →
0 and when b (q1, q2) → ∞ as n → ∞. In what follows, D will denote a positive
finite constant.

Proposition 2 Under C1−C4, for some α ∈ (0, 2], as n → ∞,

(a)
ρ (b (q1, q2) ; d)

ρ (b (q1, q1) ; d)
−1 = −D |b (q1, q2)|α +o (|b (q1, q2)|α) as b (q1, q2) → 0,

(b) ρ (b (q1, q2) ; d) log (b (q1, q2)) = o (1) as b (q1, q2) → ∞.

Proof The proof of this proposition or any other result is confined to Sect. 6
below. �

Proposition 3 Assuming C1−C4, for any finite collection qj, j = 1, . . . , p, such that
qj ∈ Qn and for any z such that

∣∣qj1−qj2
∣∣≥ nz > 0, as n → ∞,

ň
1
2−dρ− 1

2 (0; d)
(̃
ra

(
qj
))p

j=1

d→N (0, diag (1, . . . , 1)) .

First of all, we observe that the lack of asymptotic bias when the bandwidth
parameter a is chosen optimally. This is in clear contrast to standard kernel regression
estimation results, for which a bias term appears in the asymptotic distribution, when
a is chosen tominimize theMSE , e.g.,whena is chosen as inC4.Moreover, the latter
result together with Proposition 1 implies that r̃a (q) has asymptotically stationary
increments, which are key to obtain the asymptotic distribution of Td .

Before we present our main result, we shall give a proposition which may be of
independent interest.

Proposition 4 Let ut = ∑∞
j=0 ϑ jεt− j and {εt }t∈Z is a zero mean iid sequence of

standard normal random variables. Then under C1 and C3, we have that

sup
1≤s≤n

∣∣∣∣∣
s∑

t=1

K±,t (0) ut −
s∑

t=1

K±,t (0) ut

∣∣∣∣∣ = op
(
nd+1/4

)
. (3.1)

We now give the main result of this section. Let υn = (−2 log a)1/2.

Theorem 1 Assuming C1−C4, under H0,

Prob
{
υn

(
ň

1
2−dρ− 1

2 (0; d) Td−ζ n

)
≤ x

}
→
n↑∞ exp

(−2e−x
)
, for x > 0,

where (a) If 0 < d < 1/2, then

ζn= υn + υ−1
n

{(
1

2
− 1

α

)
log log a−1+ log

(
(2π)−

1
2 2

2−α
2α E

1
α Jα

)}
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for some 0 < E < ∞, where α is as given in Proposition2,

0 <Jα≡ lim
a→0

∫ ∞

0
es Pr

{
sup

0≤t≤[a]−1

Y (t)> s

}
ds < ∞

and Y (t) is a stationary mean zero Gaussian process with covariance structure

Cov (Y (t1) ,Y (t2)) = |t1|α + |t2|α − |t2−t1|α .

(b) If d = 0, then ζn= υn+υ−1
n log

(
(2π)−1

(∫ 1
0 (∂K+ (x) /∂x)2 dx

)1/2
)
.

The results of our Theorem 1 are a natural extension to those obtained in [1] when
the errors {ut }t∈Z are a sequence i id distributed random variables. Their result is
included in part (b) of our previous theorem together with Proposition 1 part (b),
where we consider d = 0. In fact their results are exactly the same as ours when
d = 0, as the scaling constant ρ (0; 0) is the same regardless the ut is an i id sequence
or not, i.e., it depends on the variance of the errors ut .

3.1 Power of the Test

A desirable and important characteristic of any test is its consistency, that is under
the alternative hypothesis the probability of rejection converges to 1 as n → ∞. In
addition to examine the limiting behavior under local alternatives enables to make
comparisons between different consistent tests. We begin with the latter. To that end,
we consider the following sequence of local alternatives

Ha : ∃x0 ∈ [0, 1] such that r+
(
x0

) = r−
(
x0

) + rn
(
x0

)
, (3.2)

where rn
(
x0

) = ňd−1/2 |2 log a|−1/2 r with r �= 0 and r (x) satisfies C2 for x �= x0.
Then, we have the following:

Corollary 1 Assuming C1−C4, under Ha in (3.2)

Prob
{
υn

(
ň

1
2−dρ− 1

2 (0; d) Td−ζ n

)
≤ x

}
→
n↑∞ exp

(
−2e

−
(
x− |r|�(K+)

ρ1/2(0;d)

))
, x > 0,

where ζn was given in Theorem 1 and � (K+) = max
�=1,...,Ln

∫ 1
�/ň K+ (v) dv.

Note that � (K+) is not necessarily equal to 1 as would be the case if K+ (·) were
nonnegative. This is because the condition

∫ 1
0 xK+ (x) dx = 0 implies that K+ (·)

takes negative values in some subset of [0, 1].



Testing for Breaks in Regression Models with Dependent Data 27

From Corollary 1, one would expect that for fixed alternatives

H1 : ∃x0 ∈ [0, 1] such that r+
(
x0

) = r−
(
x0

) + r ; |r | > 0,

and r (x) satisfies C2 for x �= x0, we should have

lim
n→∞Prob

{
υn

(
ň

1
2 −dρ− 1

2 (0; d) Td − ζn

)
≤ x

}
= 0

that is, the test is consistent. This is confirmed in the next corollary.

Corollary 2 Assuming C1−C4, Td is consistent.

Although Theorem 1 gives asymptotic justification for our test Td under H0,
we observe that the normalization constant ζn depends not only on d but more
importantly on Jα . The latter quantity is very difficult to compute except for the
special cases α = 1 or 2, see [24], where J2 = υn + υ−1

n log
(
π−1 (E/2)1/2

)
and

J1 = υn + υ−1
n log

{
(E/π)1/2 + 2−1 log log a−1

}
, where E is a constant which

depends on K+ although easy to obtain. More specifically, in our context, although d
can be estimated, we face one potential difficulty when implementing the test. As we
observe from (the proof of) Proposition 2, α depends on K+ and d, so that to obtain
Jα does not seem an easy task. Under these circumstances, a bootstrap algorithm
appears to be a sensible way to proceed.

4 The Bootstrap Approach

The comments made at the end of Sect. 3 and in the introduction suggest that to
perform the test we need the help of bootstrap algorithms. In a context of time series,
several approaches have been described in the literature. However, as we indicated in
the introduction and after Corollary 2, the subsampling is not an appropriate method,
neither the sieve bootstrap of [6] as the latter is not consistent for the sample mean
of the error term with strong dependent data. Recall that in our context the statistical
properties of the samplemean plays an important role into the asymptotic distribution
of the test.

Due to this, in this section we describe and examine a bootstrap algorithm in the
frequency domain similar to that proposed by [17], although they did not provide its
justification and our conditions are significantly weaker than theirs. Two differences
of our bootstrap procedure with moving block bootstrap (MBB) described in [20],
say, are that (a) it is not a subset of the original data, and (b) the bootstrap data,
say

{
u∗
t

}n
t=1, is covariance stationary as we have that Cov∗ (

u∗
t , u

∗
s

)
is a function

of |t − s|. Herewith, by Cov∗ (z1, z2) or, say E∗ (z), we mean the covariance or
expectation conditional on the data.

We now describe our main ingredients of the bootstrap and its justification. Sup-
pose that in C1, d = 0, that is ut = ∑∞

k=0 bkεt−k . Then, using the identity
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ut = 1

n1/2

n∑
j=1

eitλ j wu
(
λ j

)
, (4.1)

which can be considered as a “discrete” Cràmer representation of {ut }nt=1, and
Bartlett’s approximation of wu

(
λ j

)
, see [5] Theorem 10.3.2, we obtain that

ut ≈ 1

n1/2

n∑
j=1

eitλ j B
(−λ j

)
wε

(
λ j

)
,

where “≈” should be read as “approximately”. Because C1 allows for strong depen-
dence, the previous arguments suggests the approximation

wu
(
λ j

) ≈ (
1 − e−iλ j

)−d
B

(−λ j
)
wε

(
λ j

)
. (4.2)

However, the lack of smoothness of
(
1 − e−iλ j

)−d
aroundλ j = 0 and results given

in [27] Theorem 1 at frequencies λ j for fixed j indicate that for those frequencies
the approximation in (4.2) seems to be invalid. Observe that these frequencies are
precisely the more relevant ones when examining the asymptotic behavior of r̂a,± (q)

in (2.2). So we consider

ut ≈ ũt =: 1

n1/2

n∑
j=1

eitλ j g̃1/2
(−λ j ; d

)
B

(−λ j
)
wε

(
λ j

)
, (4.3)

where

g̃1/2
(−λ j ; d

) =
∣∣∣∣∣

n−1∑
�=−n+1

γ� (d) e−i�λ j

∣∣∣∣∣
1/2

, (4.4)

with γ� (d) = (−1)��(1−2d)

�(�−d+1)�(1−�−d)
. It is easy to show that the right side of (4.3) preserves

(asymptotically) the covariance structure of {ut }t∈Z.
We now describe the bootstrap in the following 6 STEPS.

STEP 1: Let t̂ = argmaxt∈Qn

∣∣̂ra,+ (t) − r̂a,− (t)
∣∣, and obtain the centered residuals

ût = ũt − n−1 ∑n
t=1 ũt , t = 1, . . . , n, where ũt = yt − r̂a (t) with

r̂a (t) =

⎧⎪⎪⎨
⎪⎪⎩

r̂a,+ (t) , t ≤ ň
r̂a,− (t) , ň < t < t̂
r̂a,+ (t) , t̂ ≤ t ≤ n − ň
r̂a,− (t) , t > n − ň,

(4.5)

and r̂a,+ (t) and r̂a,− (t) given in (2.2).

It is worth indicating that we could have computed the residuals using an estimate
of the regression model under the null hypothesis of continuity, i.e.,
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r̂a (t) =
⎧⎨
⎩
r̂a,+ (t) , t ≤ ň
1
2

(̂
ra,+ (t) + r̂a,− (t)

)
, ň < t ≤ n − ň

r̂a,− (t) , t > n − ň.
(4.6)

However, as it is well known, it is always preferable to obtain the residuals under the
alternative hypothesis, as in (4.5), than under the null hypothesis.

STEP 2: We estimate d by [28] GSE ,

d̂ = arg min
d∈[0,�]

R̃ (d) , (4.7)

where 0 < � < 1/2, and

R̃ (d) = log

⎛
⎝ 1

m

m∑
j=1

λ2d
j Iûû

(
λ j

)
⎞
⎠ − 2d

m∑
j=1

log λ j

for integerm∈ [
1, ñ), with ñ = [n/2], andwhere Iûû (λ) = |wû (λ)|2 / (2π)

is the periodogram of {̂ut }nt=1, with m
−1 + mn−1 → 0.

We define our estimator of 2πh (λ) = |B (λ)|2 by

ĥ (λ) = 1

2m + 1

m∑
j=−m

∣∣∣1 − e−i(λ+λ j)
∣∣∣2d̂ Iûû (

λ + λ j
)
.

Our third step describes how to obtain w∗
ε

(
λ j

)
, j = 1, . . . , ñ.

STEP 3: Let
{
ε∗
t

}n
t=1 be a random sample from standard normal and obtain its dis-

crete Fourier transform,

η∗
j := w∗

ε

(
λ j

) = 1

n1/2

n∑
t=1

ε∗
t e

−i tλ j , j = 1, . . . , ñ,

with η∗
n− j = η∗

j , j = 1, . . . , ñ, and z denoting the conjugate of z.
STEP 4: Compute

u∗
t = 1

n1/2

n∑
j=1

eitλ j g̃1/2
(
λ j ; d̂

)
Â

(
λ j

)
η∗
j , t = 1, . . . , n,

where g̃1/2
(
λ j ; d̂

)
is given in (4.4),

Â
(
λ j

) = exp

{
1

2
ĉ0 +

M∑
r=1

ĉr e
−irλ j

}
, j = 1, . . . , ñ (4.8)
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with Â
(
λn− j

) = Â
(
λ j

)
, and for r = 0, . . . , M = [n/4m],

ĉr = ñ−1 ∑ñ
�=1 log

(̂
h (λ�)

)
cos (rλ�) .

Remark 2 (i) It is worthmentioning that theway to obtain the bootstrap observations
u∗
t in STEP 4, together with the definition of ĥ (λ) in (2.4), has some similarities with

the autoregressive-aided bootstrap in [19].
(ii) There are doubts that STEP 3 can be modified to allow

{
ε∗
t

}n
t=1 to be a random

sample from the empirical distribution of {̂ut }nt=1, following arguments in Huskova
et al. (2008). However the latter will lengthen the arguments and the proof consider-
ably and it is then beyond the scope of this paper.

The modulus square of Â (λ) in (4.8) is an estimator of h (λ) in (2.4) and it comes
from the so-called canonical spectral decomposition of h (λ), see for instance [4,
p.78–79].

STEP 5: Compute r̂a (t) as in (4.6) and then

y∗
t = r̂a (t) + u∗

t ; t = 1, . . . , n.

STEP 5 employs the same bandwidth as that in STEP 1, so that the standard
requirement of an additional bandwidth e, such that a = o (e), in computing the
bootstrap analogue of (1.1), see for instance [13], is not needed. The reason comes
from the observation that the bias of the nonparametric estimator of r+ (·) − r− (·)
is o

(
a2

)
instead of the usual O

(
a2

)
. Our final step is:

STEP 6: Compute r̂∗
a,+ (q) and r̂∗

a,− (q), q ∈ Qn , as in (2.2) but with yt replaced
by y∗

t and the same bandwidth parameter a employed in STEP 1. Then we
compute the bootstrap version of Td as

T ∗
d = sup

q∈Qn

∣∣̂r∗
a,+ (q) − r̂∗

a,− (q)
∣∣ .

The next proposition examines the behavior of d̂ given in (4.7).

Proposition 5 Under C1 and C3,
∣∣̂d−d

∣∣= Op
(
(ma)−1 +a4n (m/n)2d

)
.

Proof The proof is omitted as it follows step by step that of [29] Theorem 3, after
noting that in our case we do not have his terms Iξξ and Iχχ . �

Let us introduce the following condition on the smoothing parameter m and the
bandwidth parameter a.

C5: As n → ∞, (i) D−1n−1/3 < a < Dn−1/4 and (i i) D−1n3/5 < m < Dn3/4.

The next proposition discusses the bias of the nonparametric estimator r̃∗
a (q) =

r̂∗
a,+ (q) − r̂∗

a,− (q).

Proposition 6 Assuming C1−C3, with τ = 2 there, and C5, under H0∪H1, as
n → ∞, E ∗̃r∗

a (q) = op
(
ňd−1/2

)
.
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Proposition 7 Denote E (u�u0)= δ|�|. Assuming C1−C3 with τ = 2 there, and C5,
we have that for q ∈ Qn,

1

ň2d

ň+q∑
t=q+1

∣∣E∗ (
u∗
t u

∗
t+�

)−δ|�|
∣∣= op (1) . (4.9)

Proof The proof proceeds as that of [15] Proposition4.2 and thus it is omitted. �

Theorem 2 Under the same conditions of Proposition7 and H0∪H1, as n → ∞

Pr
{

υn

(
ň

1
2−d̂ρ− 1

2
(
0;̂d) T ∗

d −ζ n

)
≤ x

∣∣∣Y
}

→ exp
(−2e−x

)
, for x > 0,

where υn and ζn were defined in Theorem 1.

We now comment on Theorem 2 and the important reason why subsampling is
not a valid procedure as we now argue. To obtain a critical value, say x (β), for which
exp

(−2e−x(β)
) = 1 − β, is the same as to find the value, say zn (β), which obeys

the equality
lim
n→∞Pr {Td ≤ zn (β)} = 1 − β.

However the value zn (β) depends on both ζn and υn and thus, indirectly, on the
choice of the bandwidth parameter a. In fact, since the constants ζn and υn are not
possible to be computed, in practice we would only hope to obtain the critical values
via zn (β). So, when employing the bootstrap sample, we are bound to obtain z∗

n (β),
for which

lim
n→∞Pr

{
T ∗
d ≤ z∗

n (β)
∣∣Y} = 1 − β.

As with the original data, the value z∗
n (β) depends on both ζn and υn and thus on

the choice of a. The latter has thus to be kept in mind when computing z∗
n (β). But

recall that one requirement for the bootstrap to be (asymptotically) valid is that z∗
n (β)

needs to satisfy
∣∣z∗

n (β) /zn (β) − 1
∣∣ p→ 0. It is obvious that, for the latter expression

to hold true, we need the constants ζn and υn to be the same for both Td and T ∗
d ,

or that their ratio converges to one in probability. This is obviously possible only if
the bandwidth parameter a is the same when estimating the regression function with
both the original {yt }nt=1 and bootstrap

{
y∗
t

}n
t=1 data.

5 Monte-Carlo

We perform a Monte Carlo experiment to assess the performance of the Td statistic
(2.3) and the validity of the bootstrap algorithm in Sect. 4. We take sample size
n = 256 and generate 999 simulations from the model yt = 1 + δ0 I (t > n/2) +
(1 + δ1 I (t > n/2)) t/n+ut ,where ut is generated as Gaussian FARI MA (0, d, 0)
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Table 1 Size and power of Td statistic

d = 0 d = 0.3

a = 0.5n−1/4 0.75n−1/4 0.5n−1/4 0.75n−1/4

δ0 = 0, δ1 = 0 5.11 3.70 7.01 6.81

δ0 = 0, δ1 = 1 30.03 40.24 17.02 21.32

δ0 = 1, δ1 = 0 88.09 97.10 69.77 78.88

process with d = 0, 0.3 and standard deviation of 0.25. To examine the size of our
test we set δ0 = δ1 = 0 and for the power we consider δ0 = 1, δ1 = 0 and
δ0 = 0, δ1 = 1. The kernel is set to K+ (x) = (1 − x) (6− 2x) and the bandwidth to
a = 0.5n−1/4, 0.75n−1/4. In the estimation of d by [28] GSE,we choose m = n/8.

Given that bootstrap methods are computationally demanding in Monte Carlo
studies, we employ the warp–speed method of [10] in order to calculate critical
values for the Td statistic. With this method, rather than computing critical values
based on 999 bootstrap replications for each Monte Carlo sample, we generate only
one bootstrap replication for each Monte Carlo sample and compute the bootstrap
test statistic T ∗

d for that sample. We perform 999 replications and collect the 999
bootstrap statistics T ∗

d . Then, the bootstrap critical value at α significance level is
the (1 − α) percentile of these bootstrap statistics.

Table1 reports the rejection frequencies in percentages at significance level
α = 5%. The statistic Td has satisfactory size and power. The power is stronger
when there is a break in the constant rather than a break in the slope. The presence
of long memory worsens the performance of the statistic.

6 Proofs of the Main Results

Proof of Proposition 2. We shall begin with the case d > 0. Abbreviating b (q1, q2)
by b, Proposition 1 implies that

ρ (b; d) = ρ+ (b; d) + ρ− (b; d) − ρ± (b; d) − ρ∓ (b; d) + o (1) . (6.1)

Noting that for � > 0 and d > 0, �2d−1 = 2
π
� (2d) cos (dπ)

∫ ∞
0 λ−2d cos (�λ) dλ,

proceeding as in [15], we have that the first term on the right of (6.1) is

ρ+ (b; d) =
∫ ∞

−∞
|λ|−2d cos (|λ| b)

∣∣∣∣
∫ 1

0
K+ (v) eiλvdv

∣∣∣∣
2

dλ (6.2)

for finite b. Likewise the last three terms on the right of (6.1) are, respectively,
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∫ ∞

−∞
|λ|−2d cos (|λ| b)

∣∣∣∣
∫ 1

0
K+ (v) e−ivλdv

∣∣∣∣
2

dλ

1

2

∫ ∞

−∞
|λ|−2d

∫ 1

0

∫ 1

0

((
e−i(v+w)λe−ibλ + ei(v+w)λeibλ

)
K+ (v) K+ (w) dvdw

)
dλ

1

2

∫ ∞

−∞
|λ|−2d

∫ 1

0

∫ 1

0

((
ei(v+w)λe−ibλ + e−i(v+w)λeibλ

)
K+ (v) K+ (w) dvdw

)
dλ,

after noticing that by C3, K+ (v) = K− (−v). Hence, gathering (6.2) and the last
displayed expressions, we conclude that

ρ (b; d) =
∫ ∞

−∞
|λ|−2d cos (|λ| b)

∣∣∣∣
∫ 1

0
K+ (v)

(
eiλv − e−iλv

)
dv

∣∣∣∣
2

dλ.

The proof now proceeds as that of [15] Proposition 3.2.
Next, when d = 0, the proof is omitted as it follows by standard arguments. See

for instance [2] Theorem B.1. �
Proof of Proposition 3. Proceeding as in [29] Theorem 1 and Lemma 1, it suffices
to show that

E (̃ra (q)) =
{

o (aτ ) if 0 < τ ≤ 1
o
(
aτ + n−1

)
if 1 < τ ≤ 2.

(6.3)

Observe that by uniform integrability of u2t and that Propositions 1 and 2 imply
that the covariance of r̃a (q) = r̂a,+ (q) − r̂a,− (q) at two points q1 and q2 converges
to zero when |q1 − q2| ≥ nz > 0, for any z > 0, we conclude that the covariance of
the asymptotic distribution of the estimators is zero by Theorem A of [30, p.14].

On the other hand, under H0 and standard kernel manipulations, we obtain that

E
(̂
ra,+ (q) − r (q/n)

) =
∫ 1

0
K+ (v) (r (av + q/n) − r (q/n)) dv

=
∫ 1

0
K+ (v) R (av + q/n) dv +

{
o
(
aτ

)
if 0 < τ ≤ 1

o
(
aτ + n−1

)
if 1 < τ ≤ 2

by C2. Similarly,

E
(̂
ra,− (q) − r (q/n)

) =
∫ 0

−1
K− (v) R (av + q/n) dv + o

(
aτ

)
if 0 < τ ≤ 1

o
(
aτ + n−1

)
if 1 < τ ≤ 2.

From here and after an obvious change of variables, (6.3) holds true because Q (x)
is twice continuously differentiable and

∫ 1
0 xK+ (x) dx = 0 by C3. �

Proof of Proposition 4. We shall consider the case that K+,t (0) = 1, ut,n =∑∞
j=0 ϑ jεt− j the general case follows after observing that by Abel summation by

parts
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∣∣∣∣∣
s∑

t=1

K+,t (0) (ut − ut )

∣∣∣∣∣ ≤
∣∣∣∣∣

s∑
t=1

(
K+,t (0) − K+,t+1 (0)

) t∑
l=1

(ul − ul )

∣∣∣∣∣ +
∣∣∣∣∣K+,s (0)

s∑
l=1

(ul − ul )

∣∣∣∣∣

and then that
∑s

t=1

∣∣K+,t (0) − K+,t+1 (0)
∣∣ < D by C3. First we observe that we

can write ut as follows

ut =
t−1∑
j=0

ϑ jεt− j +
∞∑
j=0

ϑ j+tε− j := u1,t + u2,t .

So, it suffices to show (3.1) when ut is replaced by u1,t and u2,t . That is,

sup
1≤s≤n

∣∣∣∣∣
s∑

t=1

u j,t −
s∑

t=1

u j,t

∣∣∣∣∣ = op
(
nd+1/4) , j = 1, 2 (6.4)

and u1,t = ∑t−1
j=0 ϑ jεt− j and u2,t = ∑∞

j=0 ϑ j+tε− j .

We shall prove (6.4) for j = 2 first. After standard algebra and inequalities, for
some χ ∈ (1, 2), we have that the left side is bounded by

sup
1≤s≤n

∣∣∣∣∣∣
s∑

t=1

∞∑
j=sχ +1

ϑ j+t
(
ε− j − ε− j

)
∣∣∣∣∣∣ + sup

1≤s≤n

∣∣∣∣∣∣
s∑

t=1

s2−χ∑
j=1

ϑ j+t
(
ε− j − ε− j

)
∣∣∣∣∣∣ (6.5)

+ sup
1≤s≤n

∣∣∣∣∣∣
s∑

t=1

sχ∑
j=s2−χ +1

ϑ j+t
(
ε− j − ε− j

)
∣∣∣∣∣∣ .

The expression inside the absolute value of first term of (6.5) is

∞∑
j=sχ +1

(
s∑

t=1

ϑ j+t

) (
ε− j − ε− j

) =
∞∑

j=sχ +1

{
s∑

t=1

(
ϑ j+t − ϑ j+t+1

)} j∑
p=sχ +1

(
ε−p − ε−p

)
.

But by well-known results due to Komlós, Major and Tusnady, sup
sχ +1≤p≤ j∣∣∣∑ j

p=sχ +1

(
ε−p − ε−p

)∣∣∣ = op
(
j1/4

)
, so that the right side of the last displayed

equality becomes

op (1)
∞∑

j=s1+χ +1

j1/4
s∑

t=1

( j + t)d−2 = op
(
sd+1/4

)
,

because
∣∣ϑ j − ϑ j+1

∣∣ ≤ Djd−2 byC1, and hence the first term of (6.5) is op
(
nd+1/4

)
.

Next, proceeding similarly, we have that by Abel summation by parts, the expres-
sion inside the absolute value of the second term of (6.5) is
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s2−χ∑
j=1

{
s∑

t=1

(
ϑ j+t − ϑ j+t+1

)} j∑
p=1

(
ε−p − ε−p

) +
s∑

t=1

ϑs2−χ +t

s2−χ∑
p=1

(
ε−p − ε−p

) = op
(
sd+1/4

)
,

because χ > 1 implies that

s2−χ∑
j=1

j1/4
s∑

t=1

( j + t)d−2 ≤ K
s2−χ∑
j=1

j−1+d+1/q
s∑

t=1

( j + t)−1 = o
(
sd+1/4

)

and
∑s

t=1 ϑs2−χ +t = O
(
sd

)
. So, it remains to examine the third term of (6.5). Pro-

ceeding as before we have, by Abel summation by parts, that it is

op (1) sup
1≤s≤n

sχ∑
j=s2−χ +1

j1/4
s∑

t=1

( j + t)d−2 = op (1)
n∑

t=1

(
s2−χ + t

)d−1+1/4 = op
(
nd+1/4

)

by standard manipulations. This completes the proof of (6.4) for j = 2.
We now show (6.4) for j = 1. First,

∑s
t=1 u1,t − ∑s

t=1 u1,t is

s∑
t=1

⎛
⎝ t−1∑

j=0

ϑ j
(
εt− j − εt− j

)
⎞
⎠ =

s∑
�=1

⎛
⎝s−�∑

j=0

ϑ j

⎞
⎠ (ε� − ε�) =

s∑
�=1

⎛
⎝s−�∑

j=0

ϑ j

⎞
⎠{

(S� − S�−1) − (
S� − S�−1

)}
,

where S� = ∑�
p=1 εp and S� = ∑�

p=1 ε p. From here the proof follows as in Lemma
5 of [21] since �s = ∑s

j=0 ϑ j satisfies their Assumption 1. �
Proof of Theorem 1. Because the asymptotic independence of the distributions of
maxq and minq and the asymptotic distributions of supi Xi and inf i −Xi are the
same, it suffices to show that, for x > 0,

Pr

{
υn

(
sup

ň<q≤n−ň
ň

1
2 −dρ− 1

2 (0; d) (̃ra (q)) − ζn

)
≤ x

}
→ exp

(
2e−x

)
. (6.6)

To that end, we will show that ň
1
2 −d r̃a (q) converges to a Gaussian process G (u)

in D [0,∞), whose correlation structure satisfies conditions (v) and (vi) of [2] The-
orem A1, for some α > 0. See also [24] equations (1.2) and (2.1). From here and
Proposition 4, the limiting distribution in (6.6) holds by [2] Theorem 1, for some
α > 0.

First by standard arguments, Propositions 3 and 4 implies that the finite-
dimensional distributions converge to those of a Gaussian process G (u), whereas, by
Proposition 2, the correlation structure of G (u) satisfies the conditions in [2] or [24].
So, to complete the proof it suffices to show the tightness condition for the process
ň

1
2 −d (̃ra (q)). To that end, we shall denote

X±,n (q̃) = 1

ň
1
2 +d

n∑
t=1

ut K±
(
t

ň
− q̃

)
, q̃ = 1

ň
,
2

ň
, . . . , [a]−1 .



36 J. Hidalgo and V. Dalla

So, we have that X+,n (q̃), say, is a process in D
[
0, [a]−1

]
equipped with Sko-

rohod’s metric, where we extend D
[
0, [a]−1

]
to D [0,∞) by writing X+,n (∞) =

X+,n
(
[a]−1

)
. Then Pollard (1981, Ch. V) implies that we need only to show tightness

in D [0, D] for any finite D > 0. To that end, let

ň
1
2 −d

{(̂
ra,+ (q) − Er̂a,+ (q)

) − (̂
ra,− (q) − Er̂a,− (q)

)} := X+,n (̃q) + X−,n (q̃) .

Next Proposition 2 implies that the process X+,n (̃q) has independent and station-
ary increments, that is for q̃ ∈ [c1, d1] and q̃ ∈ [c2, d2] and [c1, d1] ∩ [c2, d2] = ∅,
X+,n (q̃) are (asymptotically) independent with the same finite dimensional distrib-
utions.

Because G (•) has continuous paths, by [3] Theorem 15.6, it suffices to show the
Kolmogorov’s moment condition

E
(∣∣X+,n (q̃2) − X+,n (q̃)

∣∣β ∣∣X+,n (q̃) − X+,n (̃q1)
∣∣β) ≤ D |̃q2 − q̃| 1+δ

2 |̃q − q̃1| 1+δ
2

for some δ > 0, β > 0 and where 0 ≤ q̃1 < q̃ < q̃2 ≤ D. Observe that we can
consider only the situation for which ň−1 < q̃2 − q̃1, since otherwise the left side is
trivially zero. Because for any 0 ≤ a < b < c ≤ D, |c − b| |b − a| ≤ |c − a|2 by
Cauchy–Schwarz inequality, the last displayed inequality holds true if

E
∣∣X+,n (q̃2) − X+,n (q̃1)

∣∣2β ≤ D |̃q2 − q̃1|1+δ . (6.7)

It suffices to consider |̃q2 − q̃1| < 1, the case |̃q2 − q̃1| ≥ 1 is trivial since the left
side of (6.7) is bounded provided that β ≤ 1.

By definition, X+,n (̃q2) − X+,n (q̃1) is

1

ň
1
2+d

⎧⎨
⎩

ň∑
t=ň−(q2−q1)+1

ut+q2K+,t +
ň−(q2−q1)∑

t=1

ut+q2
(
K+,t − K+,t+q1−q2

) −
q2−q1∑
t=1

ut+q1K+,t

⎫⎬
⎭ .

(6.8)

Choose β = 1 in (6.7). Because ňq̃ = q, C3 implies that K+,t = D
(
t/ň

)
(1 + o (1)), and the second moment of the third term of (6.8) is bounded by

D

ň1+2d

q2−q1∑
t,s=1

|t − s|2d−1 t

ň

s

ň
≤ D |̃q2 − q̃1|3+2d ,

so that we have that the last term of (6.8) satisfies the inequality (6.7). Similarly,
because K+,t = D

(
1 − t/ň

)
(1 + o (1)) as t → ň by C3, we obtain that the second

term of (6.8) is bounded by D |̃q2 − q̃1|2 (1 − (1 − (q̃2 − q̃1)))
2d ≤ D |̃q2 − q̃1|2+2d

because 0 < q̃2 − q̃1 < 1. Finally, by continuous differentiability of K+ (u)

for u ∈ (0, 1), we obtain that the second moment of the middle term in (6.8)
is bounded by D (q̃2 − q̃1)

2 1
ň1+2d

∑ň−(q2−q1)
t,s=1 |t − s|2d−1 ≤ D |̃q2 − q̃1|2 because
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0 ≤ d < 1/2. So, (6.7) holds true choosing β = 1 and δ = 1 and hence X+,n (q̃) is
tight. By identical arguments, X−,n (q̃) is also tight, which implies that the process
ň

1
2 −d

(̂
ra,+ (q) − r̂a,− (q)

)
is tight. This concludes the proof of the theorem. �

Proof of Corollary 1. From the proof of Theorem1, we only need to show that

sup
ň<q<n−ň

ň
1
2 −dυn |E (̃ra (q))| → r� (K+) .

But this is the case because by standard kernel manipulations and that C3 implies
that K+ (x) = K− (−x), we obtain that under Ha given in (3.2),

ň
1
2 −d E (̃ra (q0)) = rn

(
x0

)
ň

1
2 −d

1

ň

ň∑
t=|q−q0|

K+,t = r

υn

∫ 1

|q−q0|/ň
K+ (x) dx (1 + o (1)) ,

by [4, p.15] as
∫ 1
0 |∂K+ (u) /∂u| du < ∞ and where q0/n is the closest point to

x0. The conclusion is standard because sup q∈Qn

∫ 1
|q−q0|/ň K+ (x) dx → � (K+). But

under Ha , υnň
1
2 −drn

(
x0

) = r , so following the arguments preceding (6.6), it suffices
to show that

Pr

{
υn

(
sup
q∈Qn

ň
1
2 −dρ− 1

2 (0; d) r̃a (q) − r� (K+)

υnρ1/2 (0; d)
− ζn

)
≤ x

}
→ exp

(−2e−x
)
,

which is the case as we now argue. Proceeding as with Theorem 1, the last expres-
sion holds true because: (a) the finite dimensional distributions of ň

1
2 −d r̃a (q) −

r� (K+) /υn converge to those of a Gaussian process with correlation structure
Corr (b); (b) the process ň

1
2 −d r̃a (q) is tight proceeding as in Theorem 1. �

Proof of Corollary 2. Since for any sequence of random variables, X1, . . . , Xn ,
Pr

{
maxi≤n Xi > x

} ≥ Pr
{
maxi=k,...,n−� Xi > x

}
, it suffices to show that there exists

q ∈ Qn , such that

Pr
{
υn

(
ň

1
2 −dρ− 1

2 (0; d) (̃ra (q)) − ζn

)
> x

}
→ 1

for all x > 0. Choose q = q0, with q0 as in Corollary 1. Proceeding as in the proof
of Proposition3, we have that ň

1
2 −d |̃ra (q0) − r | = Op (1), and hence |̃ra (q0)| =

Op

(
ňd− 1

2

)
+ |r | (1 + o (1)). So, we obtain that

υn

(
ň

1
2 −d |̃ra (q0)| − ζn

)
→ ∞

because C4 and that d < 1/2 imply that ň
1
2 −dζ−2

n = Dň
1
2 −d log−1 n → ∞. The

conclusion now follows by standard arguments. �
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Proof of Proposition 6. By definition and because E∗u∗
t = 0,

E ∗̃r∗
a (q) = 1

ň

n∑
t=1

r̂a (t)
(
K+,t−q − K−,t−q

)
.

So, we need to show that the right side is op
(
ňd−1/2

)
. Because K+

(
t/ň

)
= K−

(−t/ň
)
by C3, it suffices to show that

(a)
1

ň

n∑
t=1

(
E (̂ra (t)) − r

(q
n

)) (
K+,t−q − K−,t−q

) = o
(
ňd−1/2

)

(b)
1

ň

n∑
t=1

(̂ra (t) − E (̂ra (t)))
(
K+,t−q − K−,t−q

) = op
(
ňd−1/2

)
.

We begin with (a). By Proposition 3, we have that E (̂ra (t)) − r (t/n) = o
(
a2

)
= o

(
ňd−1/2

)
because byC5, (na)1/2−d a2 ≤ D. On the other hand, because d < 1/2,

and τ = 2, the proof of Proposition3 implies that

ň−1
n∑

t=1

(r (t/n) − r (q/n))
(
K+,t−q − K−,t−q

) = o
(
a2

) = o
(
ňd−1/2

)

by C5 and that d < 1/2. Next we show part (b). By definition, it equals

1

ň

n∑
t=1

{
1

ň

n∑
s=1

usKt−s

}{
K+,t−q − K−,t−q

}
.

where Kt−s = 1
2

(
K+,t−s + K−,t−s

)
. Let us examine the contribution due to K+,t−q ,

that from K−,t−q being similarly handled. The second moment is

σ 2
u

ň4

n∑
s1,s2=1

γu (|s1 − s2|)
n∑

t1,t2=1

Kt1−s1Kt2−s2K+,t1−q K+,t2−q = o
(
ň2d−1

)
.

From here we conclude that part (b) and the proof of the proposition. �
Proof of Theorem 2. As we argue with (6.6), we only need to show that

Pr

{
υn

(
sup

ň<q<n−ň
ň

1
2 −d̂ρ− 1

2
(
0; d̂) r̃∗

a (q) − ζn

)
≤ x |Y

}
→ exp

(
2e−x

)
, (6.9)

for x > 0. To that end, we will show that ň
1
2 −d̂ρ− 1

2
(
0; d̂) r̃∗

a (q) converges, in boot-
strap sense, to the Gaussian process G (q) in D [0,∞), whose correlation structure
is that given in Proposition 1. Proceeding as with the proof of Theorem1, it suffices
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to show the tightness condition. To that end, denote

X∗
+,n (q̃) = 1

ň
1
2 +d̂

n∑
t=1

u∗
t K+

(
t

ň
− q̃

)
, q̃ = 1

ň
,
2

ň
, . . . , [a]−1 .

Arguing as in the proof of Theorem1, it suffices to show the moment condition

E∗ ∣∣X∗
+,n (q̃2) − X∗

+,n (q̃1)
∣∣2β ≤ DHn (̃q2, q̃1) |̃q2 − q̃1|1+δ (6.10)

with ň−1 < q̃2 − q̃1 and Hn (q̃2, q̃1) = Op (1). It suffices to consider |̃q2 − q̃1| < 1,
the case |̃q2 − q̃1| ≥ 1 is trivial since the left side of (6.10) is bounded in probability.

By definition, X∗+,n (̃q2) − X∗+,n (q̃1) is

1

ň
1
2 +d̂

⎧⎨
⎩

ň∑
t=ň−(q2−q1)+1

u∗
t+q2K+,t +

ň−(q2−q1)∑
t=1

u∗
t+q2

(
K+,t − K+,t+q1−q2

) −
q2−q1∑
t=1

u∗
t+q1K+,t

⎫⎬
⎭ .

(6.11)

Choosing β = 1 and because ňq̃ = q, the contribution into the left of (6.10) due
to the third term of (6.11) is

∣∣∣∣∣
1

ň1+2d̂

q2−q1∑
t,s=1

E∗ (
u∗
t+q1u

∗
s+q1

)
K+,t K+,s

∣∣∣∣∣ ≤ DHn (q̃2, q̃1) |̃q2 − q̃1|3+2d ,

because by C3,
∣∣K+,t

∣∣ ≤ Dt/ň and Proposition 6 implies that

q∑
t,s=1

∣∣E∗ (
u∗
t+q1u

∗
s+q1

)∣∣ = D
q∑

t,s=1

|E (utus)|
(
1 + op (1)

) = Dq1+2d
(
1 + op (1)

)
.

Observe that Hn (q̃2, q̃1) = Dň2(d−d̂), which is Op (1) because by Proposition 5
and C5,

∣∣d̂ − d
∣∣ = op

(
log−1 n

)
. So, the last term of (6.11) satisfies the inequality

(6.10). Similarly, we obtain that

E∗

∣∣∣∣∣∣
1

ň
1
2 +d̂

ň∑
t=ň−(q2−q1)+1

u∗
t+q2K+,t

∣∣∣∣∣∣
2

≤ Dň2(d−d̂) |̃q2 − q̃1|2 (1 − (1 − (q̃2 − q̃1)))
2d

≤ DHn (q̃2, q̃1) |̃q2 − q̃1|2+2d ,

because 0 < q̃2 − q̃1 < 1 and choosing Hn (q̃2, q̃1) = Dň2(d−d̂). Finally, the
continuous differentiability of K+ (u) for u ∈ (0, 1) implies that the bootstrap second
moment of the middle term in (6.11) is bounded by



40 J. Hidalgo and V. Dalla

D (q̃2 − q̃1)
2 1

ň1+2d̂

ň−(q2−q1)∑
t,s=1

|t − s|2d−1 ≤ DHn (q̃2, q̃1) |̃q2 − q̃1|2 ,

because d < 1/2. So, (6.10) holds true choosing δ = 1 and hence X+,n (q̃) is tight.
On the other hand, proceeding similarly as with X∗+,n (q̃),

X∗
−,n (q̃) = 1

ň
1
2 +d

n∑
t=1

u∗
t K−

(
q̃ − t

ň

)
, q̃ = 1/ň, 2/ň, . . . , [a]−1 ,

is also tight. So, ň
1
2 −d̂

(̂
r∗+ (q) − r̂∗− (q)

)
is tight, which concludes the proof of the

theorem because by Lemma 6, we have that the correlation structure converges in
probability to that given in Proposition 2. �

7 Auxiliary Lemmas

In what follows ϕ
(
λ j

)
will be abbreviated as ϕ j for a generic ϕ (λ) function. Let

us introduce the following notation. Let ȟ� (d) = 1
2m+1

∑m
j=−m ψ2d

�+ j Iuu,�+ j , where
ψ j = ∣∣2 sin (

λ j/2
)∣∣. With this notation, we have that Taylor’s expansion up to the

βth term implies that

ȟ�

(
d̂
) − ȟ� (d) =

β−1∑
p=1

⎧⎨
⎩

1

2m + 1

m∑
j=−m

ψ2d
�+ jφ�+ j (p) Iuu,�+ j

⎫⎬
⎭ (7.1)

+ D
∣∣d − d̂

∣∣β logβ n

2m + 1

m∑
j=−m

ψ2d̃
�+ j Iuu,�+ j

ĥ� − ȟ�

(
d̂
) =

β−1∑
p=0

⎧⎨
⎩

1

2m + 1

m∑
j=−m

ψ2d
�+ jφ�+ j (p)

(
Iûû,�+ j − Iuu,�+ j

)
⎫⎬
⎭

+ D
∣∣d − d̂

∣∣β logβ n

2m + 1

m∑
j=−m

ψ2d̃
�+ j

(
Iûû,�+ j − Iuu,�+ j

)
, (7.2)

where d̃ is an intermediate point between d and d̂, and φ j (p) = 2p(d−d̂)
p

p! logp ψ j .

Denote q� (p) = (2m + 1)−1 ∑m
j=−m φ�+ j (p)

h�+ j

h�

(
Iεε,�+ j − σ 2

ε

2π

)
.
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Lemma 1 Assuming C1′, C2 and C5, uniformly in r ≤ M,

r

ñ

ñ∑
�=1

ȟ�

(
d̂
) − ȟ� (d)

h�

cos (rλ�) =
β−1∑
p=1

r

ñ

ñ∑
�=1

q� (p) cos (rλ�)+ Op
(∣∣d̂ − d

∣∣ log r) .
(7.3)

Proof The proof proceeds as that of [15] Lemma 7.1, and so it is omitted. �

Lemma 2 Let υn be a sequence of random variables such that E |υn| = O
(
M−1

)
.

Assuming C1′,C2,C3 and C5, for all r ≤ M and uniformly in � = 1, . . . , ñ,

(a)
1

ñ

ñ∑
�=1

(
ĥ� − ȟ�

(
d̂
))

cos (rλ�) = Op
(∣∣d̂ − d

∣∣)υn, (b) sup
�=1,...,ñ

∣∣∣̂h� − ȟ�

(
d̂
)∣∣∣ = Op

(∣∣d̂ − d
∣∣) .

Proof We begin with (a). Writing ϕ j (p) = ψ2d
j logp ψ j , the contribution of the first

term on the right of (7.2) into the left of (7.3) has as typical term

2p
(
d̂ − d

)p
p!

1

ñ

ñ∑
�=1

⎛
⎝ 1

2m + 1

m∑
j=−m

ϕ�+ j (p)
(
Iûû,�+ j − Iuu,�+ j

)
⎞
⎠ cos (rλ�) . (7.4)

Now, by definition of ût , we have that Iûû, j − Iuu, j is

1

2πn

n∑
t,s=1

{ut (r (s) − r̂a (s)) + us (r (t) − r̂a (t)) + (r (t) − r̂a (t)) (r (s) − r̂a (s))} ei(t−s)λ j .

On the other hand, because r (t)− r̂a (t) = ξt − θt , where ξt = ň−1 ∑n
q=1(r (t)−

r (q))K̃t−q; θt = ň−1 ∑n
q=1 uq K̃t−q , with an obvious notation for K̃t , we have that

(7.4) is governed by 2p
(
d̂ − d

)p
/p! times

1

ñ

ñ∑
�=1

⎛
⎝ 1

2m + 1

m∑
j=−m

ϕ�+ j
1

2πn

n∑
t,s=1

ξtξse
i(t−s)λ�+ j

⎞
⎠ cos (rλ�) (7.5)

+ 1

ñ

ñ∑
�=1

⎛
⎝ 1

2m + 1

m∑
j=−m

ϕ�+ j
1

2πn

n∑
t,s=1

θtθse
i(t−s)λ�+ j

⎞
⎠ cos (rλ�) (7.6)

+ 1

ñ

ñ∑
�=1

⎛
⎝ 1

2m + 1

m∑
j=−m

ϕ�+ j
1

2πn

n∑
t,s=1

ut (ξs − θs) e
i(t−s)λ�+ j

⎞
⎠ cos (rλ�) . (7.7)
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Because the expression inside the parenthesis in (7.5) is positive, |cos λ| ≤ 1 and
n = 4mM , the absolute value of (7.5) is bounded by

D

n2

n∑
t,s=1

ξtξs

ñ∑
j=1

ϕ j e
i(t−s)λ j = D

n

n∑
t,s=1

1

|t − s|1+2d
+

|ξtξs | + D

n2

n∑
t,s=1

|ξtξs |

which is O
(
a4

)
because the integrability of (∂/∂u) ϕ (u) and Brillinger ([4, p.15])

implies that
∣∣∣n−1 ∑n

j=1 ϕ j − ∫ 1
0 ϕ (u) du

∣∣∣ = O
(
n−1

)
, and using

∫ 1
0 ϕ (u) eitudu =

O
(
t−1−2d
+

)
and that |ξt | = O

(
a2

)
by Proposition 3. Next we handle (7.6), which

following step by step the proof in [29, pp. 2077–2078], the first absolute moment
of (7.6) is bounded by

D

nm

ñ∑
�=1

m∑
j=−m

{
min

(
1,

1

(� + j)2 a2

)
+ log n

� + j

}
= O

(
a−2m−1n−1 + log2 n

n

)
.

So (7.5) + (7.6) = O
(
M−1

)
Op

(∣∣d̂ − d
∣∣) because Proposition 1 implies that∣∣d̂ − d

∣∣ = Op
(
a−1m−1

)
and then C5 part (i i). On the other hand, (7.7) =

O
(
M−1

)
Op

(∣∣d̂ − d
∣∣) by an obvious use of the Cauchy–Schwarz inequality and

the previous arguments. Next, as in Lemma 7.1, the contribution of the second term
on the right of (7.2) into the left of (7.3) is Op

(
n−1

)
by choosing β large enough.

This concludes the proof of part (a).
The proof of part (b) is obvious by part (a) and using the usual chaining rule after

observing that sup
�=p,...,q

∣∣∣̂h� − ȟ�

(
d̂
)∣∣∣ ≤ ∑q

�=p

∣∣∣̂h� − ȟ�

(
d̂
)∣∣∣. �

Let h̃� = (2m + 1)−1 ∑m
j=−m h�+ j and define

cr,n = 1

ñ

ñ∑
�=1

log (h�) cos (rλ�) ; c̃r,n = 1

ñ

ñ∑
�=1

log
(̃
h�

)
cos (rλ�) .

Lemma 3 Let vn be as in Lemma 2. Assuming C1−C3 and C5, uniformly in r ≤ M

(a) ĉr − c̃r,n = 1

ñ

ñ∑
�=1

ȟ� (d) − h̃�

h�

cos (rλ�) + Op

(
1

m

)
+ Op

(∣∣d̂ − d
∣∣) vn. (7.8)

(b) c̃r,n − cr,n = O
(
M−2

) ; (c) cr,n − cr = O
(
n−1

)
.

Proof The proof proceeds as that of [15] Lemma7.3, and so it is omitted. �

Lemma 4 Assuming C1−C3 and C5, E
∣∣∣∑ñ

�=1
ȟ�(d)−h̃�

h�
cos (rλ�)

∣∣∣2 = O (1).
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Proof The proof is a standard extension of [16] Theorem 1, so it is omitted. �

Let us define

Ã�,n = exp

{
M−1∑
r=1

c̃r,ne
−irλ�

}
; A�,n = exp

{
M−1∑
r=1

cr,ne
−irλ�

}
; A∗

� = exp

{
M−1∑
r=1

cr e
−irλ�

}
.

Lemma 5 Let vn be such that E |vn| = O
(
M/n1/2

)
. Assuming C1−C3 and C5,

uniformly in �,

(a) Â� − Ã�,n = Op
(∣∣d̂ − d

∣∣)+vn, (b) Ã�,n − A�,n = O
(
M−2) ; A�,n − A∗

� = O
(
m−1) .

Proof The proof follows as that of Lemma 7.5 of [15] and thus it is omitted. �

Lemma 6 For any q1≤ q2∈ Qn, as n → ∞, assuming C1−C3 and C5,

ň1−2dCov∗ (̂
r∗
a,+ (q1) −̂r∗

a,− (q1) ,̂r∗
a,+ (q2) −̂r∗

a,− (q2)
) P→ρ (b; d) ,

where the right side is as defined in Proposition1.

Proof By definition, ň1−2dCov∗ (̂
r∗
a,+ (q1) − r̂∗

a,− (q1) , r̂∗
a,+ (q2) − r̂∗

a,− (q2)
)
is

ň1−2dCov∗ (̂
r∗
a,+ (q1) , r̂∗

a,+ (q2)
) + ň1−2dCov∗ (̂

r∗
a,− (q1) , r̂∗

a,− (q2)
)

(7.9)

− ň1−2dCov∗ (̂
r∗
a,+ (q1) , r̂∗

a,− (q2)
) − ň1−2dCov∗ (̂

r∗
a,− (q1) , r̂∗

a,+ (q2)
)
.

As was done in the proof of Proposition1, we will only examine the first term of
(7.9), the other three terms follow similarly. This term is

1

ň1+2d

⎧⎨
⎩

ň∑
t=1

ň+q2−q1∑
s=q2−q1+1

{
E∗ (

u∗
t+q1u

∗
s+q1

)
− δt−s

}
K+,t K+,s+q1−q2 +

ň∑
t=1

ň+q2−q1∑
s=q2−q1+1

δt−s K+,t K+,s+q1−q2

⎫⎬
⎭ .

However, it suffices to show that the first term on the right of the last displayed
expression converges to zero in probability because by Proposition 1, the second
term converges to ρ+ (b; d).

Because
∣∣K+,t

∣∣ ≤ D by C3, we have that the first term of the last displayed
expression is bounded in absolute value by

D

ň1+2d

ň∑
t=1

ň+q2−q1∑
s=q2−q1+1

∣∣E∗ (
u∗
t+q1u

∗
s+q1

) − δt−s

∣∣ = D

ň2d

ň+q2−q1∑
t=q2−q1+1

∣∣E∗ (
u∗
t+1u

∗
1

) − δt
∣∣

is op (1) by standard arguments and then by Proposition 7. �
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Lemma 7 Assuming C1−C3 and C5, we have that for all φ > 0,

n∑
j=1

E∗
(
n−1ň−1−2̂d

∣∣ς±,q
(
λj

)
η∗
j

∣∣2 I (
n−1ň−1−2̂d

∣∣ς±,q
(
λj

)
η∗
j

∣∣2 > φ
))

P→0,

where ς±q
(
λj

) = k̂±,q
(
λj

)
g̃1/2

(
λj ;̂d

)
B̂
(
λj

)
with k̂±,q

(
λj

) = ∑n
t=1 K±,t−qeitλj .

Proof The proof is identical to that of [15] Lemma 7.9 and thus it is omitted. �
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Change Detection in INARCH Time Series
of Counts

Šárka Hudecová, Marie Hušková and Simos Meintanis

Abstract In the present paper we develop an online procedure for detecting changes
in the parameters of integer ARCHmodels of order one. The test statistic utilizes the
notion of the empirical probability generating function. The asymptotic behavior of
the test under the null hypothesis is derived.

Keywords Sequential monitoring · Time series of counts · Empirical probability
generating function

1 Introduction

The detection of structural changes (or breaks) is an important problem in time
series in that a structural change indicates that the underlying system can no longer
be described by the current model and calls for remodeling of certain aspects of this
model. There exist two basic types of procedures, often depending on the way that
data become available: The so-called off-line (or retrospective) procedures whereby
we have a certain set of data at hand and wish to know if there is a structural break in
these data, and the online (or sequential) procedures which are performed with the
data becoming available during the course of the statistical analysis.
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The objective here is to construct detector statistics for possible structural breaks
in a given time series. While this problem has attracted much attention in time series
with continuous observations (see for instance the volume by [4] and the review
article by [18]), the same problem with time series of counts is relatively new in the
literature.

Here we shall focus on online procedures for integer autoregressive conditionally
heteroscedastic models (INARCH) models. Specifically we study sequential proce-
dures for detection of changes in the parameters of Poisson autoregressions of order
one, PAR(1). In the context of PAR models there exist relatively few works in the
literature on this subject. The most relevant references are [14, 22, 24, 25, 36]; see
also [11, 35]. In these works, the methods employed are based on score statistics or
CUSUM statistics. In what follows we deviate from these procedures by considering
detectors which utilize the probability generating function (PGF) and its empirical
counterpart as the main tool. The remainder of this paper runs as follows: In Sect. 2
we introduce the model and the hypotheses of interest. In Sect. 3 the test statistic is
introduced, while in Sect. 4 we study the asymptotic behavior of the proposed pro-
cedure under the null hypothesis. In Sect. 5 certain extensions of the new method are
suggested. Sections6 and 7 contain a short simulation study and a real data example.
The proofs are provided in Sect. 8.

2 Model and Hypotheses

The INARCH was first put forward by [12]. It has been further investigated by
[10, 28, 34].

Specifically observations {Yt }t are said to follow the INARCH model of order
one if

Ft = F(λt ); λt = f (θ; Yt−1), (1)

where Ft denotes the conditional distribution ofYt givenYt−1,Yt−2 . . . , F(λ) denotes
the Poisson distribution with mean λ, θ is a vector of unknown parameters, and
f (·; ·) is a fixed function satisfying certain mild conditions ensuring stationarity and
ergodicity of the process. Specifically if f (x, y) is Lipschitz-continuous in y for
all x with Lipschitz constant strictly smaller than 1, then there exists a stationary
ergodic solution which is β-mixing with exponential rate; confer [7, 13, 28], and the
monograph by [6].

The model in Eq. (1) is also referred to as Poisson autoregression of order one,
PAR(1) for short. An advantage of this model is that it mimics the dynamics of
an ARCH model in the discrete world in that it includes a feedback mechanism
yielding parsimony and thus has found applications in diverse areas of finance and
biometry; see for example [5, 9, 11, 16]. Furthermore, estimation may be carried
out by the standard methods such as LS andMLE, and the corresponding asymptotic
properties for model (1) have been well studied. Also (1) admits natural extensions
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and generalizations to higher order, multivariate and non-Poisson models, although
the corresponding theory does not readily generalize and requires further research.

We specify f in Eq. (1) to be a linear function of Yt−1. In particular let θ = (α,β)′
and

f (θ; Yt−1) = α + βYt−1, (2)

with α > 0 and 0 ≤ β < 1. In the context of structural breaks we shall consider
a slightly more general PAR(1) model under which the parameter θ might change
with time. Then we are interested in testing the null hypothesis that

H0 : Ft = F(λt ), λt = α0 + β0Yt−1, ∀t,

against the alternative

H1 : Ft = F(λt ), λt = α0 + β0Yt−1, t ≤ T + t0;
Ft = F(λt ), λt = α0 + β0Yt−1, t > T + t0,

where α0,β0, α0,β0, as well as the change point t0 are unknown, and where, as it
is typical in the sequential setup, T is a known integer such that the training data
Y1, ...,YT , involve no change.

The proposed sequential test procedure for detecting changes in PAR(1) processes
will be based on properties of the probability generating function (PGF) of the
observed variables. In this connection recall that the PGF of a discrete random vari-
able Y is defined as

gY (u) = E(uY ), u ∈ [0, 1],

and that under very mild conditions this PGF uniquely determines the underlying
distribution function of Y . The empirical counterpart of the PGF is defined by

ĝY,n(u) = 1

n

n∑
t=1

uYt , u ∈ [0, 1].

Ourmotivation for considering the empirical PGFas our tool rests on prior experience
about the performance of resultingmethods. For i.i.d. observations the empirical PGF
has been used for both estimation and testing; see for example [3, 8, 15, 27, 29, 30].
This idea was carried further to the context of time series of counts by [19, 26, 31,
32]. Moreover, in change point detection analogous methods utilizing the related
notion of the empirical characteristic function were employed by [17, 21, 33]. In all
the aforementioned works, methods based on the empirical PGF, apart from being
convenient from the computational point of view, are reported to compare favorably
andoften outperformmore standardmethods such asCramér-vonMises andCUSUM
methods. Note also that the empirical PGF can be further used for the construction
of detector statistics in count time series of a more general nature. Here, however, we
focus on procedures for detecting changes in the parameters of PAR(1) processes.
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3 Test Statistic

To motivate our procedure, we first notice that the marginal PGF G(u) of the sta-
tionary distribution of {Yt }t∈N under the PAR(1) model specified by Eqs. (1)–(2) is
given by

G(u) = E
[
uYt

] = E
[
E(uYt |Yt−1)

]
= E

[
e(α+βYt−1)(u−1)] .

In order to introduce our test statistic suppose that θ̂T = (α̂T , β̂T )′ is an estimator
of θ, based on the training data {Yt , t = 1, ..., T }. Then the previous equation
motivates us to introduce the test statistic:

ΔT,t =
∫ 1

0
δ2T,T+t (u; θ̂T )du, t = 1, . . . , (3)

with

δT,T+t (u; θ) = 1√
T

T+t∑
j=T+1

(
uYj − exp{(α + βY j−1)(u − 1)}

)

− t

T

1√
T

T∑
j=2

(
uYj − exp{(α + βY j−1)(u − 1)}

)
t = 1, . . . .

The advantage of ΔT,t is that its limit distribution under the null hypothesis is
the same as if the estimator θ̂T is replaced by the true value of the parameter and
consequently, we get functionals of partial sums of martingale differences for which
the limit distribution can be easily obtained.

We note that the method presented in this section is fairly general in that it can
be readily adapted to other related settings, such as higher order and non-Poisson
autoregression models; see Sect. 5.

As already mentioned we consider online procedures whereby the test is applied
sequentially on a dynamic data set which is steadily updated over time with the
arrival of new observations. In this context, the null hypothesis is rejected when
the value of a suitable detector statistic exceeds an appropriately chosen constant
for the first time. Otherwise we continue monitoring. These statistics are commonly
defined by a corresponding stopping rule. In order to define this stopping rule, and
based on asymptotic considerations, we need to introduce a weight function in order
to control the large-sample probability of type-I error. In particular we employ the
detector statistics

QT,t = 1

q2
γ

(
t
T

)ΔT,t , t = 1, . . . , (4)
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where ΔT,t is defined by Eq. (3) and

qγ(s) = (1 + s)

(
s

s + 1

)γ

, γ ∈ [0, 1/2). (5)

The parameter γ figuring in (5) gives some flexibility to the resulting procedure.
Specifically, if early changes are expected then the value of γ should be close to 1/2,
while values closer to zero are appropriate for detecting changes occurring at later
stages.

It is clear that since the training data {Y1, ...,YT } are assumed to involve no
change, the monitoring period begins with time t = T +1. Typically this monitoring
continues till time T (m + 1), where m denotes a fixed integer, and if m < ∞ we
call the corresponding procedure close end. Otherwise (i.e., if m = ∞), we have an
open end procedure. The corresponding stopping rule is specified as

τT (γ,m) = inf{1 ≤ t ≤ mT : QT,t ≥ c},
τT (γ,m) = ∞ i f QT,t < c for all 1 ≤ t ≤ Tm,

for some fixed integer m > 0, where c is a constant that guarantees that the test
has size equal to α, asymptotically. The corresponding delay in detecting the change
can also be estimated, and following this we can estimate the location of the change
point. In this regard one should proceed as in the regression setup, e.g., [1], but this
is a topic of another paper.

The main problem is to find an approximation for critical value c and to investi-
gate consistency of the test procedures. Particularly, we require that under H0 for a
prechosen α

lim
T→∞ PH0(τT < ∞) = α (6)

while under alternatives we want

lim
T→∞PH1(τT < ∞) = 1. (7)

4 Asymptotics

Here we study the limit behavior of the test procedure. Particularly, we have to study
the limit behavior of

MT (γ) := max
1≤t≤mT

QT,t ,

where QT,t is defined in (4), underH0. The limit is always for T → ∞ andm fixed.
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To this end assume that the estimator θ̂T = (α̂T , β̂T )′ of the parameter θ = (α,β)′
based on training data Y1, . . . ,YT , satisfies:

T ‖θ̂T − θ0‖2 = OP(1), (8)

where θ0 = (α0,β0)
′ denotes the true value of θ.

The main result under the null hypothesis reads as follows:

Theorem 4.1 Let {Yt } follow the model (1)–(2) for α > 0,β ∈ (0, 1) and let
qγ(·), γ ∈ [0, 1/2) be defined in Eq. (5). Assume further that (8) holds for the estima-
tors of the parameters α,β. Then, under the null hypothesisH0 the limit distribution
of MT (γ) as T → ∞, is the same as that of

sup
0<s<m/(m+1)

1

s2γ

∫ 1

0
V 2(s, u)du

where {V (s, u); s ∈ (0,m/(m + 1)), u ∈ (0, 1)} is a Gaussian process with zero
mean and covariance structure described as

cov(V (s1, u1), V (s2, u2)) = min(s1, s2)σ(u1, u2)

with

σ(u1, u2) = E
(
uY21 − E(uY21 |Y1)

)(
uY22 − E(uY22 |Y1)

)
.

Proof It is postponed to Sect. 8. Q.E.D.

The explicit form of the limit null distribution is highly complicated and depends
on unknown quantities. Nevertheless, one could try to approximate this distribu-
tion by replacing the unknown parameters and covariance structure by the respective
estimators based on historical data and simulate the resulting process. Another possi-
bility is to use parametric bootstrap by estimating (α,β) from the historical data and
then generate bootstrap observations along Eqs. (1)–(2) with (α,β) replaced by their
estimators. This possibility also leads to an asymptotically correct approximation of
the limit null distribution of the test statistic. Also, in case that T is not large enough
the estimators obtained from the training sample can have larger variance, and there-
fore it is advisable to modify the procedure by utilizing its sequential character along
the line of [20, 23].

Next, we shortly discuss the limit behavior of our test statistic under fixed alter-
natives. We consider the following type of alternatives:

H ∗
1 : there exists t0 = �T ν0 for some 0 ≤ ν0 < m such that Yt , t ≤ T + t0,

follows model (1)–(2) with θ = θ0, and {YT+t0+t } =d {Y 0
t }, where {Y 0

t } follows
model (1)–(2) with θ = θ0, θ0 �= θ0.

The test is consistent for a large group of fixed alternatives of this type, or of
a more general type. Specifically it may be shown that (7) holds provided that the
quantity
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∫ 1

0

(
E
(
uY

0
2 − exp{(α0 + β0Y

0
1 )(u − 1)}))2

w(u)du, (9)

is positive. Hence the test is consistent against alternatives with changes only in the
parameters, as well as against alternatives that involve a structural change in the
distribution of the observations. However, we will not pursue this issue any further
here.

5 Extensions

We briefly consider extensions of the method presented in the previous section to
related or more general settings. First consider the case of a nonlinear PAR(1). Fol-
lowing analogous reasoning as in Sect. 3, it becomes clear that our method readily
extends to nonlinearity by considering the test statistic in Eq. (3) with

δT,T+t (u; θ) = 1√
T

T+t∑
j=T+1

(
uYj − exp{ f (θ; Y j−1)(u − 1)}

)

− t

T

1√
T

T∑
j=2

(
uYj − exp{ f (θ; Y j−1)(u − 1)}

)
t = 1, . . . .

Wealso consider the case ofNegativeBinomial autoregression as themost popular
alternative to Poisson autoregression. Recall that the PGF of the negative binomial
distribution is given by

g(u) = 1

[1 + ρ(1 − u)]λ , ρ,λ > 0, (10)

and that under this parameterization themean is equal toλρ and variance isλρ(1+ρ).
Considering the model in Eqs. (1)–(2) with the Poisson distribution replaced by the
Negative Binomial distribution, we have

G(u) = E
[
uYt

]
= E

[
E(uYt |Yt−1)

]
= E

[
1

(1 + ρ(1 − u))λt

]
(11)

= E

[
1

(1 + ρ(1 − u))α+βYt−1

]
=

[
1

1 + ρ(1 − u)

]α

E

[
1

(1 + ρ(1 − u))βYt−1

]
.

Consequently for the case of Negative Binomial autoregression we consider the test
statistic in Eq. (3) with
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δT,T+t (u; θ) = 1√
T

T+t∑
j=T+1

(
uY j −

[
1

1 + ρ(1 − u)

]α 1

(1 + ρ(1 − u))βYt−1

)

− t

T

1√
T

T∑
j=2

(
uY j −

[
1

1 + ρ(1 − u)

]α 1

(1 + ρ(1 − u))βYt−1

)
t = 1, . . . .

Clearly and despite the fact that computations become somewhat cumbersome, the
asymptotics for this model should follow analogous steps. Also, the case of PAR(2)
and that of higher order models may be treated in an analogous manner. Finally,
note that a Negative Binomial autoregression model was suggested by [37] with the
parameter ρ being modeled using the autoregression. Here we suggest to model the
parameter λ which, however, for fixed ρ has an equivalent statistical interpretation.

Finally, we point out that the test procedure suggested in Sect. 3 may be readily
adapted to yield a test in the case of off-line break detection. Specifically the test
procedure would then be based on

MT = max
1<t≤T

∫ 1

0
Δ2

t (u) w(u)du,

with

Δt (u) = 1√
T

∣∣∣∣∣∣
t∑

j=2

(
uYj − exp{(α̂T + β̂T Y j−1)(u − 1)}

)∣∣∣∣∣∣ , 1 < t ≤ T,

where α̂T and β̂T are estimators based on all available observations.

6 Short Simulation Study

Ashort simulation study is presented as an illustration of the behavior of the proposed
method. The significance of the test statistic MT (γ) is evaluated using the parametric
bootstrap, mentioned at the end of Sect. 4. The behavior of the test is studied for a
linear PAR(1) model with the choice α0 = 6, β0 = 0.4, the training sample size
T = 50, the monitoring period is set as mT for m = 5, 8, and γ = 0. Under the
alternative, we take t0 = 25, 50 and α0 = 9, β0 = 0.5. The p-value of each test
is computed from B = 499 bootstrap samples and the percentage of rejection is
estimated from 500 repetitions. The estimator θ̂T is the conditional least squares
estimator.

The obtained results are presented in Table1. The prescribed significance level
α is slightly exceeded under the null hypothesis. The obtained power of the test is
reasonable (over 90% for α = 0.05) under the considered alternative. As expected,
the power is larger for the earlier change point appearance and the longer monitoring
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Table 1 Estimated percentage of rejections of the bootstrap test under H0 and H1

H0 H1: t0 = 25 H1: t0 = 50

α α α

m 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

5 0.012 0.058 0.112 0.808 0.962 0.984 0.746 0.916 0.964

8 0.024 0.072 0.104 0.882 0.980 0.996 0.832 0.956 0.980

Fig. 1 Estimated density of
τT for α = 0.05 under the
alternative
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period. The estimated density of the stopping time τT forα = 0.05 is plotted in Fig. 1.
The medians of the estimated change points are 79, 81, 110, and 123, respectively
(theoretical counterparts are 25, 25, 50, 50). This illustrates the delay in the detection.

7 Real Data Example

For an illustration of a practical usage of the presented methodology, the testing
procedure is applied to a series of the number of transactions per minute for stock
Ericsson B during July 3rd 2002. The series consists of 460 observations, see Fig. 2,
and has been previously analyzed in [24]. The authors used a simple linear PAR(1)
model for the series and tested for a presence of a change using an off-line procedure
based on least squares scores. Together with the binary segmentation they detected
three change points at observations 98, 148, and 305.

We analyze the series using the test statistic MT (γ) and the parametric bootstrap,
with γ = 0, B = 999 bootstrap samples, and α = 0.05 significance level. We
consider the first T = 50 observations as the training sample, and the rest of the
series is monitored sequentially. The null hypothesis H0 is rejected with p-value
< 0.001 and the change point is estimated as T + t0 = 137.

In order to compare our results with [24], we apply the whole procedure again on
the rest of the series. Since the second change point detected by [24] comes relatively
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Fig. 2 Number of
transactions per minute for
the Ericsson B stock during
July 3, 2002
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shortly after our first estimated change point, we skip this segment and analyze the
series starting from the 151st observation. Here the training sample size T = 120
seems to be reasonable. The null hypothesisH0 is again rejected with p-value 0.008
and the change point is estimated at the 349th observation of the original series.

Finally,we look at the last segment of the data, starting from the 350th observation.
We take a training sample T = 50 and monitor till the end. The null hypothesis of
no change is rejected with p-value 0.005 and the change point is estimated at the
420th observation of the original series. This indicates that the behavior of themarket
might change also at the end of the trading day.

Clearly our results differ from those in [24]. Specifically our estimated change
points are delayed compared to the off-line procedure of [24] and the delay is approx-
imately 40 observations (compare 98 in [24] with our 137, and 305 with 349). More-
over, our test detected an extra change point at the 420th observation of the series
not captured by [24].

8 Proofs

Proof of Theorem 4.1 Due to a certain similarity to the proof of Theorem4.1 in
[19] we present only main steps of the proof of our Theorem.

By the Taylor expansion of δT,T+t (u, θ̂T ) at θ0 and by convergence properties
of stationary sequences, we realize that under H0 the limit behavior of the statistic
max1≤t≤mT ΔT,T+t/q2

γ(t/T ) does not change if the estimator θ̂T is replaced by the
true value θ0.

Since
∑�+t

j=�+1

(
uYj − exp{(α + βY j−1)(u − 1)}

)
, t = 1, . . . , � = 0, 1 . . . , are

partial sums of bounded martingale differences, we can apply theorems on their limit
behavior. The proof can be finished combining the arguments in the last part of the
proof of Theorem4.1 in [19] and the proof of Theorem1 in [2].

Acknowledgments The research of Simos Meintanis was partially supported by grant Nr. 11699
of the Special Account for Research Grants (ELKE) of the National and Kapodistrian University of
Athens. The research ofMarie Hušková was partially supported by grant GAČR 15-09663S and AP
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Varying Coefficient Models Revisited:
An Econometric View

Giacomo Benini, Stefan Sperlich and Raoul Theler

Abstract Disaggregated data are characterized by a high degree of diversity. Non-
parametric models are often flexible enough to capture it but they are hardly inter-
pretable. A semiparametric specification that models heterogeneity directly creates
the preconditions to identify causal links. Certainly, the presence of endogenous vari-
ables can destroy the ability of the model to distinguish correlation from causality.
Triangular varying coefficient models that consider the returns as nonrandom func-
tions, and at the same time exogeneize the problematic regressors are able to add to
the flexibility of a semiparametric specification the causal interpretability. Moreover,
they make the necessary assumptions much more credible than they typically are in
the standard linear models.

Keywords Heterogeneity · Varying Coefficient · Endogeneity

1 The Causality Problem in the Presence
of Heterogeneous Returns

Disentangling causality from correlation is one of the fundamental problems of
data analysis.1Every time the experimental methodology—typical in some hard
sciences—is not applicable, it becomes almost impossible to separate causality from
observed correlations using non-simulated data. The only available alternative is to
find a set of non-testable assumptions that allow to express the causal links as parame-
ters or as functions, and to subsequently find consistent estimators for the conditional
moments or distributions that describe the parameters (or functions) of interest. In

1We thank an anonymous referee and the participants of the ISNPS 2014 meeting in Cadiz for
helpful comments and discussion.
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particular, consider a response Y to be regressed on an explanatory variable W . The
assumption that transforms a simple (cor)relation into a causal effect of W on Y , is
often called ‘exogeneity’.

Definition 1 A variable W is weakly exogenous for the parameter of interest ψ, if
and only if there exists a re-parametrization λ for the joint density with parameter
λ = (λ1,λ2) such that

1. f (y, w|λ1,λ2) = f (y|w;λ1) f (w|λ2).
2. ψ depends on λ1 only.
3. (λ1,λ2) are variation free, i.e.: (λ1,λ2) ∈ (�1 × �2) for two given sets �1, �2.

The factorization presented in Definition1 implies that the conditional density of
Y given W is fully characterized by λ1, while λ2 is a so-called nuisance parameter
[1]. In other words, if the causal impact ofW on Y is the objective of interest, then the
characterization of the distribution ofW is unimportant. This convenient factorization
allows to focus exclusively on the relationship between Y and W ignoring all the
other associations.

In econometrics, an outcome equation that describes the relationship between Y
and W often has a less restrictive moment specification than the one proposed by
this definition. Usually, a factorization in the form of

E[YW |λ1,λ2] = E[E(Y |W ;λ1)W |λ1,λ2] , (1)

is sufficient to detect the causal impact of W on Y . The problem is that, even for
simple economic situations, it is often hard to justify an assumption like (1).

Consider for example the case where an economist wants to study the demand
function of soft drinks using the individual consumption of Coca-Cola (X), the
individual consumption of Pepsi-Cola (Q), and their respective prices (p1, p2) (with
p1 > p2). A typical dataset looks like the one in Fig. 1.

From the observation of the data, an econometrician would conjecture that, while
the first two cross-section observations (i.e., individuals) may consider Coca-Cola
and Pepsi-Cola as perfect substitutes, and therefore, since p1 > p2, all the income
spent on soft drinks goes to Pepsi-Cola, the individuals 3 and 4 prefer to consume a
quantity of Coca-Cola X∗ different from zero, even though the price of Coca-Cola
is higher (see Fig. 2).

In other words, since Agent 1 and Agent 3 have different preferences, their opti-
mization process is different

Fig. 1 X∗ is the
consumption of Coca, while
Q∗ is the consumption of
Pepsi

Observations Coca-Cola Pepsi-Cola
1 0 Q∗

1

2 0 Q∗
2

3 X∗
3 Q∗

3

4 X∗
4 Q∗

4
...

...
...
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Pepsi

Coca

Q∗
3

X∗
3

= β2I
(β1+β2)p2

= β1I
(β1+β2)p1

U(coca, pepsi) = cocaβ1pepsiβ2

Pepsi

Coca

U(coca, pepsi) = β1coca + β2pepsi

Q∗
1 =

I
p2

X∗
1 = 0

Fig. 2 The (individual) demand functions for a given budget constraint p1X + p2Q = I varies
accordingly to individual preferences. Agent 3 and 4 do not consider Coca-Cola and Pepsi to be
equally good (left graph), while Agent 1 and 2 do (right graph)

Agent 1max process Agent 3max process{
max
X,Q

U (X, Q) = β1X + β2Q

s.t.I = p1X + p2Q ≤ Iub

{
max
X,Q

U (X, Q) = Xβ1Qβ2

s.t.I = p1X + p2Q ≤ Iub

with Iub being the budget constraint. In order to check whether the previous con-
jecture is true or not, a structural model that enables us to empirically validate the
hypothesized choice structure must be specified. If the utility functions are not car-
dinal, the results of the two maximization processes cannot be compared directly.
To the contrary, the study of the expenditure functions allows to monetize the oth-
erwise incommensurable trade-offs between the benefits of the consumptions and
their costs. In particular, an expenditure function indicates the minimum amount of
money that an individual would need to spend in order to achieve a certain level of
utility (given an utility function and a set of prices). If the conjectured choice models
are correct, then for those agents that consider Coca-Cola and Pepsi-Cola as perfect
substitutes (like Agent 1), the expenditure function should be

I (p1, p2, v̄(X, Q)) = min

(
p1

β1X + β2Q

β1
, p2

β1X + β2Q

β2

)
,

where v̄(X, Q) is the level of utility for the observed consumption levels (0, Q). For
individuals that do not consider the two soft drinks as perfect substitutes (like Agent
3), the amount of expenditures for the given level (X, Q) should be

I (p1, p2, v̄(X, Q)) =
[
p1

(
β1 p2
β2 p1

) β2
β1+β2 + p2

(
β2 p1
β1 p2

) β1
β1+β2

]
X

β1
β1+β2 Q

β2
β1+β2 .
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In this case both Definition1 and/or assumption (1) are useless, because the required
factorization for the vector W = [X, Q]T , given a set of parameters λ1 = [β1,β2],
can be true for the perfect substitute case or for the imperfect one, but not for both.

This simple introductory example shows that whenmicro-data exhibit holes (non-
participation in the activity of interest), kinks (switching behaviors), and corners
(nonconsumption or nonparticipation at specific points in time), then relations like (1)
becomemeaningless [2]. There are at least three solutions to deal with an assumption
like (1) in a context where heterogeneity among individuals is a major concern.

A first solution is to aggregate the data and study amuch smoother problem (being
smoother due to the compensations of the movements in opposite directions) typical
for macro-data. Consider, for example, a relation between two variables which at
a micro level may be piecewise linear with many nodes. After the aggregation is
done, the relationship can probably be approximated by a smooth function that can
satisfy Eq. (1) [3]. However, if an econometrician is interested in the analysis of
individual-level data, in order to describe the economic behavior of individuals or
firms, this option does not help.

A second possibility is to accept the heterogeneous nature of the parameters at
a micro-level, but to ignore it, and use a parametric (possibly linear) specification
with constant coefficients. Let us now abstract from the above example and denote
the response by Y and the two explanatory variables X and Q such that

Yi = t (Xi , Qi ) + ei = β0 + β1Xi + β2Qi + εi E[εi |Xi , Qi ] = 0 . (2)

In this case all the heterogeneity is absorbed by the regression disturbance ε. Even
if many applied economists recognize the limits of a standard parametric speci-
fication that most likely suffers from a functional form misspecification because
t (Xi , Qi ) �= β0 + β1Xi + β2Qi , which means that e �= ε, they still use it as an
approximation because their least squares estimates (like OLS) converge to the
value of β that tries to minimize (we say try because its success depends also
on other factors like the scedasticity function) the mean-squared prediction error
E[t (Xi , Qi ) − β0 − β1Xi − β2Qi ]2. It is well known that under homoscedasticity
OLS gives the best linear predictor of the nonlinear regression function (the mean-
squared error (MSE) being the loss function), and this even when there is a functional
form misspecification [4]. However, this property is not useful if the objective of the
researcher is to interpret the regression coefficients as a true micro-relationship in
the form of E[Yi |Xi , Qi ], because the standard OLS would typically be inconsistent
when estimating the marginal effect of the variables,

β̂1
OLS → β1 �= ∂t (Xi , Qi )

∂Xi
=: β1i β̂2

OLS → β2 �= ∂t (Xi , Qi )

∂Qi
=: β2i .

In particular, if the returns are heterogeneous in the data generating process (DGP),
a modeling strategy like (2) might not be able to derive consistent estimates. For
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example, if Yi = βT
i Wi + εi with W = [1, X, Q]T , for βi = [β0i ,β1i ,β2i ] is

modeled as

Yi = βTWi + ei with β = E[βi ] and ei = WT
i [βi − β] + εi ,

then the standard OLS estimators would give

β̂OLS =
[ n∑

i=1

WiW
T
i

]−1 n∑
i=1

WiYi =
[ n∑

i=1

WiW
T
i

]−1 n∑
i=1

Wi

[
WT

i E(βi ) + ei

]

p−−−→
n→∞ E(βi ) + E(WiWi )

−1E(WiW
T
i [βi − E(βi )]) + E(WiW

T
i )−1E(Wiεi )

= E(WiW
T
i )−1E(WiW

T
i βi ).

From the last equality it follows that β̂OLS
� E[βi |Wi ] unless E[βi |Wi ] = E[βi ].

A third solution is to conclude that the discreteness and nonlinearity typical for
micro-data requires to model heterogeneity directly. But how? A first option is to
transform the density requirement of Definition1 into an individual-level factoriza-
tion like

f (yi , wi |λ1i ,λ2i ) = f (yi |wi ;λ1i ) f (wi |λ2i ) , i = 1, ..., n (3)

(here wi needs not to include a 1 for the intercept), where every cross-sectional
observation is characterized by a set of individual parameters (λ1i ,λ2i ). This creates
the complication that the parameters (λ1,λ2) are no longer variation free, which
is not stricto sensu a problem because it is possible to transform λ1i into a ran-
dom coefficient to which it is possible to associate an invariant hyperparameter θ
that characterizes the prior density f (λ1i |wi , θ). In this specification, the invariance
assumption can be reproduced in the form f (yi |wi , g(wi , θ)), where θ is estimated
globally by a maximum likelihood or in a neighborhood, e.g., by a kernel-based
local likelihood. This Bayesian solution allows to have variation-free hyperparame-
ters and, at the same time, random coefficients that capture individual heterogeneity
due to the randomness of λ1i .

No matter how elegant the solution might look like, it presents many and inter-
dependent problems. The main one is the low degree of robustness of the estimates
θ̂. One may use shrinking priors to overcome this, but in order to make sure that the
prior decays quickly enough (to produce robust estimates), it is necessary to impose
stringent conditions both on the priors’ tails and on the decay rates of the tails. This
kind of assumptions are very hard to understand in practice and even harder to relate
to economic theory.

A less controversial way to directly model heterogeneity is to allow the value
of the coefficients to change when and observable variable F , called here ‘effect
modifier(s),’ allows to write Eq. (2) as

Yi = βT
i Wi + εi with βi = g(Fi ) + δi . (4)
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This is the well-known varying coefficient model (VCM), cf. Hastie and Tibshirani
[5]. In this specification, Yi is the dependent variable, Wi is a dW × 1 vector of
explanatory variables, and the coefficient βi is allowed to vary across i . In particular,
it is a function of a dF ×1 vector of observable variables Fi (whichmight include also
elements of W ), while g(.) is a vector of functions of the effect modifier, and δi is a
stochastic mean-zero disturbance with finite variance. The exogeneity assumption is
centered on the idea of correctly estimating the causal impact ofW , not the one of F ,
on Y , therefore it is possible to imagine ĝ as the best nonparametric predictor of βi

for a given Fi . This implicates that the expected value of δ given Q would be equal
to zero by construction: E[δi |Fi ] = 0. The new structure of the model produces a
very flexible and yet interpretable semiparametric specification.

The hybrid nature of the VCMs has several advantages. First, it reduces the level
of complexity of a pure nonparametric model allowing to interpret the coefficients
like in a parametric specification. Second, it enables to incorporate insights that
come from economic theory into the modeling process. Third, it produces a good
trade-off between the loss in fitting ability, which is (hopefully) small compared to
the nonparametric specification, and the increased facility of the estimation process,
which is almost as easy as in a parametric model.

The empirical potentials of the VCM modeling can be understood reconsider-
ing the soft drink example. In this case, depending on whether the agent considers
the goods as perfect substitutes or not, the coefficients resulting from the optimal
allocations are different. However, in both cases, they are functions of the level of
expenditure I , the prices (p1, p2) and the quantity consumed (X, Q) by individuals
with some characteristics also included in F .

Theprevious consideration suggests that aVCM, inwhich the returns are functions
of the prices and of the quantities of the goods, allows to keep a linear specification
for the expenditure function (or expenditure shares) in the form of

Yi = β0i + β1i Xi + β2i Qi + εi (5)

with β j = g j (Fi ) + δ j i , j = 0, 1, 2. In other words, a VCM allows us to transform
the structural specification of (2) into a model able to take into account heterogeneity
sive natura, making an assumption like (1) meaningful and often also plausible. Of
course, the presence of numerous effect modifiers makes an equation like (5) hard
to compute. To the contrary, a function with few effect modifiers is more easily
interpretable and, at the same time, reduces the course of dimensionality of the
nonparametric regression β j = g j (Fi ) + δ j i , j = 0, 1, 2. Therefore it makes sense
to reduce the number of effect modifiers for each j separately (e.g., by canceling
those that present a low level of nonlinearity with respect to the regressors).

The introduction of a second, more complex, economic example helps explaining
the potentials of a VCM, even when the conjectures about the individual decision-
making process behind the observed covariates is less easy to deduce than in a simple
demand analysis environment. Let us suppose that an applied economist wants to
study the impact of education and experiences on wages in a cross-sectional dataset.
The concerns about the disaggregated nature of the data might induce the researcher
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Fig. 3 A causal graph of (6)
highlighting the causal links
among the variables

β(exp)

educ wage ε

to do an a priori analysis that most likely reveals that marginal returns to education
vary for different levels of working experience, see e.g., Schultz [6]. Merging the
insights that come from the economic theory with the intuitions resulting from the
scrutiny of the data we end up with a VCM of the form

wagei = β0i + β1i educi + εi , (6)

where the intercept and the slope are functions of the level of experience, βi =
g(expi ) + δi , with g(·) and δ belonging to R

2. A structural specification like (6) is
very appealing because it corrects the (downward) bias that would emerge using a
linear modeling that ignores the interaction between experience and education and
therefore systematically underestimates the returns on schooling [7]. In this new
formulation, it is important to discuss the role of δ. As indicated above, the nature
of δ is not the one of an isotonic deviation from the mean but rather the one of a
stochastic disturbance in a nonparametric equation. Therefore the role that δ plays
in Eq. (4) is related to its disturbance nature.

Unlike in the soft drinks example, where the choices’ structure was easy to reverse
engineer,2 the relationships among the three variables (wage, educ, exp) are more
complex. The lack of knowledge about the objectives that individuals have, and the
ignorance about the means that they may use to achieve them, does not allow to have
an insight in the choice structure based uniquely on the observed covariates. In other
words, in the analysis of the wage-education-experience relationship, even assuming
that the only objective of (all) individuals is to obtain a high salary, there is no perfect
insight about which actions an individual would take in order to achieve this result.
For example, in order to have a higher wage, agent i could start working immediately
after high school and accumulate experience, which is valued in the labor market.
In this case the decision to go to university would be postponed. At the same time,
agent j could do the opposite having the same objective function. This means that
it is highly probable that the nonlinear nature of the discrete data that describe the
individual choices can be largely absorbed by g(expi )educi , but there could still be
a local deviation from the mean of the level of education, here denoted as δi educi ,
due to the uncertainty about the individual decision-making process. This is reflected
in the causal graph given in Fig. 3.

Since each coefficient is not an average given a particular sample realization (but
a function), the parameters are allowed to have different degrees of heterogeneity

2Reverse engineering, also called back engineering, is the process of extracting knowledge or design
information from anything man-made, and reproducing it. In economics, the reverse engineering
process consists of extracting the structure of individual preferences from observed outcomes and
then reproduce the outcomes using the conjectured informations.
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even for the same levels of the effect modifier, reflected in the presence of δ. So, here
heterogeneity can explicitly imply deviations from the slopes. In the semiparametric
framework, the quantity of local deviation δ is a function of the degree of smoothness
of g(expi ). At the same time, since the primary objective of the research is not to
estimate correctly the causal impact of F on Y but rather the one ofW , it is sufficient
to think of ĝ(·) as the best nonparametric predictor of βi such that E[δi |Fi ] = 0
becomes true by construction. As a result, the average returns to education are equal
for all the cross-section observations that have the same level of exp.

2 Triangular Varying Coefficient Models with Instruments

The previous section highlighted the necessity to model heterogeneity directly in
order to make the assumptions of Definition1 plausible. But still, exogeneity can be
violated by the nature of the observed variables irrespectively of the semiparametric
characteristics of the VCM. In particular, a regressors could be endogenous in the
sense that in the structural equation Yi = βT

i Wi + εi one has E[εi |Wi , Fi ] �= 0.
The three usual sources of endogeneity typically mentioned are: the omission of
explanatory variables correlated with the included covariates, a measurement error,
and reversed causality. All the three sources of endogeneity cannot be solved using
the varying coefficient approach alone.3 A popular solution is to introduce some
additional variables called instruments.

Definition 2 A variable Z is called an instrumental variable (IV) for W if

1. is partially correlated with the endogenous variableW once the other explanatory
variables have been netted out.

2. is mean independent with respect to the stochastic error ε.

This definition suggests that the addition of a second structural equation to the
VCM creates a triangular model able to exogenize W while modeling heterogeneity
directly. For simplification, let us set for a moment dim(W ) = dim(Z) = 1. Keep-
ing a specification like (4), it is sufficient to add a selection equation that relates the
endogenous W with the instrument(s) Z , namely

Wi = m(Zi ) + ηi E[ηi |Zi ] = 0 (7)

and assume a finite variance for ηi . In this formulation the vector of explanatory
variables is allowed to contain endogenous components, while Z is a vector of IVs,
which may have F as one of its arguments. Furthermore, m(·) is a smooth function,
or a vector of smooth functions if dim(W ) > 1, while ε and η are, respectively, the
endogenous error and a stochastic disturbance that has expected value equal to zero
and finite variance.

3However, the most typical, though in economics rarely mentioned, endogeneity problem, i.e., the
functional misspecification, can be largely diminished by the VCM.
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η δ
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Fig. 4 Themechanism of the endogeneity process changes depending on the assumptions about the
relationship between the error ε and the stochastic disturbances (η, δ). The left picture is the only
possibility in a world of homogeneous coefficients, while the right specification (with cov(η, δ) �=
0) is the situation resulting from introducing a varying coefficient structure. The direct connection
between δ and ε is not taken into account because the interest is about the causal link between Y
and W for a given level of F

The triangular nature of Eqs. (4) and (7) implies a simple endogeneitymechanism.
In order for the error term ε to be correlated with at least one of the explanatory
variablesW , it must be cov(η, ε) �= 0. To see how themechanism of themodel works
in practice, it is useful to consider the simplest possible specification, namely amodel
that would include only one heterogeneous intercept, one heterogeneous slope, and
one endogenous explanatory variable. The latter is instrumented by one exogenous
variable Z1, which is correlated with W even if the impact of the (exogenous) effect
modifier has been netted out, namely

Yi = β0i + β1iWi + εi E[εi |Fi ,Wi ] �= 0

Wi = m(Fi , Z1i ) + ηi E[ηi |Fi , Z1i ] = 0 .

In this specification, irrespectively of the relation between the error ε and the two
disturbances δ and η, endogeneity comes only through cov(ε, η), see causal graph
Fig. 4.

The considerations about the mechanisms of the endogeneity problem combined
with the observation that a VCM is a special case of a semiparametric linear specifi-
cation, suggest that the model can be identified and later estimated using the control
function approach [8]. The control function, say h(·), handles the relation between
η and ε (irrespectively of the behavior of δ) in the following form

εi = δiWi + εi = h(ηi ) + ϑi E[ϑi |ηi ] = 0 . (8)

This added to (4) eliminates the endogeneity problem giving unbiased estimates for
g(.)

E[Yi |Zi , ηi ] = g(Fi )Wi + h(ηi ) Zi = (Fi , Z1i ) . (9)

It is important to notice that the higher complexity of a VCM increases the chance to
successfully eliminate the endogeneity problem via the control function approach.



68 G. Benini et al.

Specifically, even if a set of valid instruments (Zi )
n
i=1 is available, a linear IVestimator

would generally be biased. For example, if the equation Yi = β01 +β1iWi + εi (with
εi ⊥⊥ Zi ) is modeled using homogeneous coefficients Yi = β0 +β1Wi +ei with ei =
[β0i − β0] + Wi [β1i − β1] + εi and β j = E(β j i ), j = 0, 1, then the instrumentation
using Zi does not produce consistent estimates. Consider for example the case where
dim(Z) = dim(W ) ≥ 1. In this setting the estimated returns are

β̂ I V =
[ n∑

i=1

ZiW
T
i

]−1 n∑
i=1

ZiYi =
[ n∑

i=1

ZiW
T
i

]−1 n∑
i=1

Zi

[
WT

i E(βi ) + ei

]

p−−−→
n→∞ E(βi ) + E(ZiW

T
i )−1E(ZiW

T
i [βi − E(βi )]) + E(ZiW

T
i )−1E(Ziεi )

= E(ZiW
T
i )−1E(ZiW

T
i βi ) .

The last equality cannot be simplified further unless a new assumption, namely
βi ⊥⊥ (Wi , Zi ), is made—which is clearly in contradiction with the spirit of the
model, cf. the causal graphs in Fig. 4. Basically, the heterogeneous nature of the
returns transforms Z1 into a ‘poor’ instrument if the simple linear structure is used.

In order to proceed and correctly estimate the unknown terms in Eq. (9), it is nec-
essary to impose additional identification conditions. Identification can be obtained
imposing a conditional mean independence in the form of

E[εi |Zi , ηi ] = E[εi |ηi ] CMI, (10)

or a conditional moment restriction

E[εi |Zi ] = 0 CMR. (11)

The CMI and the CMR are not equivalent (Kim and Petrin [9]). The CMI requires Z
and η to be additively separable in W , which often is not the case. To the contrary,
the CMR can be easily justified by the use of economic primitives that describe the
structural specification [10]. The use of the CMR, however, requires to include the
instrument(s) in the control function, such that the relation between ε and η becomes

εi = h(Zi , ηi ) + ϑi E[ϑi |Zi , ηi ] = 0 . (12)

In any case, if the amplitude of the control function increases, a less precise estimate
ĝ(.) might be produced (multi-functionality). This is the statistical counterpart of
the econometric problem called ‘weak’ instruments, i.e., instruments that are weakly
correlated with the endogenous regressors.

The estimation of VCM in its simplest specification has been proposed in differ-
ent forms. Hastie and Tibshirani [5] used a smoothing spline based on a penalized
least squares minimization, while Fan and Zhang [11] proposed a kernel weighted
polynomials. However, this last method and its surrogates are designed for a single
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effect modifier for all coefficients, which is a strong limitation in the context we
discussed so far.

Estimating an equation like (9) is a more complicated procedure than the one
required for a simple VCM. The presence of a control function, which depends upon
η, requires the use of specific tools that are designed for additive models. The two
most common alternatives are the marginal integration method [12] and the smooth
backfitting [13]. The latter method suffers less from the curse of dimensionality and
can be applied as part of a 2-step procedure. The first step consists in the estima-
tion of m(Z) in Eq. (7) using a standard nonparametric technique. The second step
consists in the substitution of the estimated residuals η̂ into (9), which creates an
equation characterized by a finite sample disturbance whose impact can be mitigated
asymptotically [14]. For an exhaustive survey on the VCM estimation techniques see
Park et al. [15]. For a comparison of implementations of these methods in R [16],
including the control function approach, see Sperlich and Theler [17].

All the previous considerations are particularly important in the treatment effect
literature. For a discrete W with finite support, Imbens and Angrist ([18], [19])
named the impact of a treatment (i.e., a change in W ) local average treatment effect
(LATE). By construction, the LATE can only compute the average of the βi for the
individuals that choose to switch their w because of an instrument’s change. In other
words, in the LATE environment, the parameter of interest can only be estimated
for people responding to the selection equation and is therefore an instrument (or
selection) specific parameter. They imposed a conditional independence assumption
in the form of Yi (w) ⊥⊥ Zi ∀w, as well as the request of independence of the (so
called) compliers sub-population to an instrument’s change. Reconsidering these
assumptions in the presence of heterogeneous returns shows that the LATE is not
defined if cov(β, Z) �= 0. In the case of a VCM this means that, unless the effect
modifier is indeed a constant, the standard independence assumption used to define
and identify the LATE is not fulfilled.

The model we outlined above suggests that, if some effect modifiers Fi are
observed, they should be used to construct a VCM that makes the LATE condi-
tions more credible. For example, in the case of a binary endogenous treatment W
which is instrumented by a binary instrument Z , the varying LATE becomes

L AT E(q) = E[Y |F = q, Z = 1] − E[Y |F = q, Z = 0]
E[W |F = q, Z = 1] − E[W |F = q, Z = 0] .

Integrating over q gives the value of the LATE. In this case, the more heterogeneity
of returns to W is captured by g(F) the less the LATE will vary over the IVs’
choice. In other words, a VCM reduces the typical LATE problem to a minimum
because it controls for the correlation between the effect modifier and the instrument.
Therefore, the VCMenables to identify a LATE-type parameter that can be estimated
nonparametrically regressing Y andW on F and Z . The interesting point here is that
the parameter of interest depends on both, the instruments’ choice and the values
takenby F .An interesting next stepwould be tofind ameaningfulmodel specification
that merges the effect modifier and the instrument.
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3 An Example

In order to see all the potentials of the triangular VCM specification in practice, it
is useful to reconsider the wages-experience-education relationship. Experience and
education are crucial variables in the determination of a worker’s wage. Yet, labor
economists have argued for many years that cognitive and noncognitive abilities
are also critical in order to determine labor market outcomes. A large empirical
literature has confirmed the positive connection between cognitive test scores and
high wages [20]. Unfortunately, many datasets do not provide ability’s measures.
The lack of information about the skills misleads the researcher to mistake the data
generating process (DGP). Even if a VCM modeling strategy is used, if the ability
of the individual is not included, such that

wagei = t (educi , expi , abili t yi ) + ζi is modeled as

wagei = g0(expi ) + g1(expi )educi + εi ,

then the exogeneity assumption E[εi |educi , expi ] = 0 does not hold, because of an
omitted variable bias. This problem can be solved using an instrument.

There exist at least two classical errors that arise when searching for an IV. The
first one is the selection of a variable that is clearly correlated with the endogenous
regressor but hardly independent from the error ε. For example, the level of education
(of one) of the parentswouldbehardly independent from theomitted variableabili t y.
A second wrong choice would be the selection of a variable that has the opposite
characteristics, namely a variable that is exogenous but that is hardly correlated with
the endogenous regressor. For example, the last digit of the person social security
number. The choice of good instruments must come from both, a deep knowledge
of the origin of the IV and the source of endogeneity.

Take instead the example proposed by [21]. In most American states education
legislation requires students to enter school in the calender year when they turn six.
Therefore the age at which students start school is a function of the date of birth of the
pupils. For example, if the 31st of December is the legal cutoff point, children born
in the fourth quarter enter school shortly before turning six, while those born in the
first quarter enter school when they are around six years and an half. Furthermore,
because compulsory schooling laws require students to remain in school only till they
turn 16, these groups of students will be in different grades, or through a given grade
to a different degree, when they reach the legal drop out age. The combination of
the school start-age policies and the school attendance laws creates a situation where
children attend school for different times depending upon their birthdays. Assuming
that the day of birth of a person is not correlated with his abilities seems to make the
quarter of birth (qob) a valid IV. The typical mistake made here is to conclude from
no-causality to no-correlation. But first, there is clearly the possibility that the IV is
correlated with the education of the parents, and second, being the youngest could
mean to be the smallest and physically weakest in the class resulting in maturity
disadvantages. All these facts could change the wage-path invalidating the IV.
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Nonetheless, let us consider a VC triangular model with the same instrument
proposed by Angrist and Krueger

wagei = g0(expi ) + g1(expi )educi + h(ηi ) + ϑi (13)

educi = m(expi , qobi ) + ηi . (14)

In this specification, they identify the LATE of education on wages for those who
do not drop out in spite of the ones that could have thanks to their birth date. Note
that, if this is not the parameter of interest, it might have been much better and
easier to use a proxy approach instead of an IV one. In order to reverse engineer the
preferences’ structure it is necessary to model a situation where a rational individual
has to decide, when turning 16, to stay for the rest of the academic year or leave
school. In this context, the agent’s wage is a function of the years of education
educ, but also of his unobserved ability, ε. The agent’s ability is not observed, but
the information set that the student can consult before the decision to stay or not
is made includes a signal of his individual ability η, for example his past grades.
The cost to stay until the end of the year is a function of an exogenous cost shifter,
namely the quoter of birth qob, if a student turns 16 in January the cost to stay
till the end of the year is higher than if he turns 16 in May, so it makes sense to
consider the quoter of birth an argument of the cost function. At the same time, the
agent’s utility has to be function of the education’s choice, the cost-shifters, and the
unobserved ability, U (educ, qob, ε) = p(educ, ε) − c(educ, qob), where p(.) is
the education production function and c(.) is the cost function. The optimal choice
problem becomes

educ = argmax
˜educ

{E[U ( ˜educ, qob, ε)|qob, η]} . (15)

The specification of the utility function is crucial. The functional form U (educ,
qob, ε) = p(educ, ε) − c(educ, qob) is not chosen for convenience. The quar-
ter of birth must be part of the cost function, otherwise qob would not be valid
instruments—but at the same time it cannot be part of the educational production
function because otherwise the causal effect of educ cannot be excluded from the
joint effect of (educ, qob). The costs can depend among the ability’s signal, η, if for
example a staying-based financial aid is available. This possibility, however, is not
taken into account. The decision problem just described is illustrated in Fig. 5.

β(exp)

educ wage εqob

Fig. 5 When endogeneity is an issue due to the presence of a model misspecification, the use of
VCM is not enough to guarantee causal analysis, and the introduction of IVs becomes necessary to
ensure the exogeneity
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In this context the exclusion restriction requires the choice variable educ to be sep-
arable in (ε, qob). This depends upon the assumptions that the researcher is willing
to make about the educational production function p(·) and the cost function c(·).

All the previous considerations show how a model like (13)–(14) is able to: 1.
make individual returns heterogeneous, 2. solve the endogeneity problems that are
due to the functional form misspecification using the VCM nature of the model, 3.
solve the endogeneity problems that are due to the nature of the regressors using IVs,
and 4. relate the structural specification to the economic theory providing a rigorous
microfoundation of the outcome equation.
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Kalman Filtering and Forecasting
Algorithms with Use of Nonparametric
Functional Estimators

Gennady Koshkin and Valery Smagin

Abstract The paper deals with the Kalman filtering and forecasting algorithms for
a class of time-varying systems with unknown additive inputs. Such classes include
objectmodelswith possible failures and alsowithmodels of controlledprocesseswith
unknown disturbances. The designed algorithms are based on combining the Kalman
filter and nonparametric estimator. Examples are given to illustrate the usefulness of
the proposed approach.

Keywords Kalman filtering and forecasting · Unknown disturbances · Nonpara-
metric estimator

1 Introduction

The Kalman filtering [1] provides the synthesis of algorithms for the class of systems
with unknown additive perturbations. Such systems are used as the models of real
physical systems, for example, as the models of objects with unknown errors, and
also, in control problems for stochastic systems with unknown disturbances.

The known methods to calculate estimates of a state vector are based on the esti-
mators of unknown perturbations [2–10]. In the survey [2], the extension algorithms
of the states space requiring complete information on the model of this input are con-
sidered. In [4–7] is considered the case when additional information for the models
with an unknown input is not required.

The problem with making use of compensation methods for linear stochastic
systems with an unknown constant input is solved in papers [11, 12].

In this paper, for a discrete object with an unknown input, we propose the mod-
ification of the Kalman filtering algorithm using nonparametric estimators of the
observed process according to [13]. The suggested approach allows improving the
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estimation accuracy of state vector and unknown input.Also, the problem, considered
in [13], is extended to the time-varying system.

An example illustrating the advantages of the proposed algorithm in comparison
with the known algorithms from [5, 6] is given.

2 Problem Formulation

Consider, the mathematical model of the linear discrete-time stochastic system with
unknown input in the form:

xk+1 = Akxk + Bkrk + qk, xk=0 = x0, (1)

yk = Hkxk + νk, (2)

where xk is a state of an object, rk is an unknown input, yk is an observation vector,
Ak, Bk, and Hk arematrices of the appropriate dimensions. It is assumed that random
perturbations qk and noise measurements νk are not correlated between themselves
and are subject to the Gaussian distribution with zero mean and the corresponding
covariance: E

[
qkqT

t

] = Qkδ(k, t), E
[
νkν

T
t

] = Vkδ(k, t), where δ(k, t) is the Kro-
necker symbol, i.e., δ(k, t) = 1 if k = t, and δ(k, t) = 0 if k �= t, E[·] denotes the
expectation of a random variable, T denotes matrix transposition. It is assumed also
that the vector of initial conditions is uncorrelated with values qk and νk . This vector
has the following characteristics:

E [x0] = x̄0, E
[
(x0 − x̄0)(x0 − x̄0)

T
] = P0.

In the simple case, when rk is a zero-mean white random vector with the known
variance, the optimal filtering problem for the model (1), (2) reduces to the Kalman
filtering algorithm [1]. If input rk is a deterministic component and its evolution in
time is described by the known linear system, the optimal estimates of rk and xk
can be obtained by making use of the extended state Kalman filter [2]. In this paper,
the case is considered when prior knowledge about the time evolution of rk is not
available. Vector rk is assumed to be completely unknown.

3 Filtering Algorithm for Systems with Unknown Input

The optimal filter considered in this paper is defined by the full-order Kalman filter.
Therefore, filter equations have the form:

x̂k+1 = Ak x̂k + Bkr̂k + Lk[yk+1 − Hk(Ak x̂k + Bkr̂k)], x̂k=0 = x̄0, (3)
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Lk = Pk+1/k H
T
k [Hk PkH

T
k + Vk]−1, (4)

Pk+1/k = Ak Pk A
T
k + Qk, (5)

Pk+1 = (I − LkHk)Pk+1/k, Pk=0 = P0, (6)

where x̂k and r̂k are estimators, Pk = E
[
(xk − x̂k)(xk − x̂k)T

]
.

However, formulas (3)–(6) cannot be applied immediately because r̂k is unknown.
Obtain estimator r̂k using the criteria

J (rk−1) = E

[
k∑

i=1

‖ui‖2Ck
+ ‖ri−1‖2Dk

]
, (7)

where ui = yi − Hi x̂i is an innovation process, ‖ · ‖2Ck
is the Euclidian norm, Ck and

Dk are symmetric positive definite weight matrices.
The optimal estimator of unknown input at the moment k = 1 is found by mini-

mization of the following criteria:

J (r0) = min
r0

E
[‖y1 − H1 x̂1‖2C0

+ ‖r0‖2D0

]
. (8)

Substituting x̂1 = A0 x̂0 + B0r0 into (8), we have

J (r0) = min
r0

E
[‖y1 − H0A0 x̂0 − H0B0r0‖2C0

+ ‖r0‖2D0

]
. (9)

Transform the norms in (9) and obtain

J (r0) = min
r0

E
[
α0 − 2rT0 B

T
0 H

T
0 C0(y1 − H0A0 x̂0) + ‖r0‖2BT

0 H
T
0 C0H0B0+D0

]
. (10)

Here, the parameter α0 is independent of r0. First, we differentiate (10) w.r.t. r0, and
then, find the optimal estimator of unknown input from the equation

d J (r0)

dr0
= 2(BT

0 H
T
0 C0H0B0 + D0)r0 − 2BT

0 H
T
0 C0E[y1 − H0A0 x̂0]. (11)

So, at the moment k = 1, we obtain the optimal estimator of unknown input:

r̂0 = (BT
0 H

T
0 C0H0B0 + D0)

−1BT
0 H

T
0 C0E[y1 − H0A0 x̂0]. (12)

Analogously, at the moment k = 2, the optimal estimator of unknown input is
found from the criteria:

J (r1) = min
r1

E
[‖y2 − H2 x̂2‖2C1

+ ‖r1‖2D1

] + J (r̂0). (13)



78 G. Koshkin and V. Smagin

Taking into account (13) and the expression x̂2 = A1 x̂1 + B1r1 at the moment
k = 2, we have

J (r1) = min
r1

E
[‖y2 − H1A1 x̂1 − H1B1r1‖2C1

+ ‖r1‖2D1

] + J (r̂0).

As in the case of (10), we obtain:

J (r1) = min
r1

E
[
α1 − 2rT1 B

T
1 H

T
1 C1(y2 − H1A1 x̂1) + ‖r1‖2BT

1 H
T
1 C1H1B1+D1

]
, (14)

where the value α1 is independent of r1. Differentiating (14) w.r.t. r1, as in the first
step, we obtain the optimal estimator

r̂1 = (BT
1 H

T
1 C1H1B1 + D1)

−1BT
1 H

T
1 C1E[y2 − H1A1 x̂1]. (15)

By the mathematical induction, the estimators for the next steps take the form

r̂k = (BT
k H

T
k CkHk Bk + Dk)

−1BT
k H

T
k CkE[wk], (16)

here wk = yk+1 − Hk Ak x̂k .
Now, let us calculate value E[wk] using nonparametric estimators [14]. Applying

the well-known kernel estimates, we have

r̂k = (BT
k H

T
k CkHk Bk + Dk)

−1ŵk = Skŵk, (17)

where Sk = (BT
k H

T
k CkHk Bk + Dk)

−1, and the j th component of the vector takes the
form:

ŵk, j =

k∑
i=1

wi, j K

(
k − i + 1

h j

)

k∑
i=1

K

(
k − i + 1

h j

) . (18)

In the ratio (18), K (·) is a kernel function, h j is a bandwidth parameter. We use the
Gaussian kernels, and the bandwidths are calculated by the cross-validation method
[15]. Note that ratio (18) is similar to the estimate of the simple conditional func-
tional, namely, the regression function (see [14]). The conditional central moments,
for example, the residual conditional variance [14, p. 27], the conditional coeffi-
cient of asymmetry and excess [16] are the conditional functionals also and give the
important information on properties of random variables. We can obtain nonpara-
metric estimators of such functionals by the methods from [14].

As an example, take the following analogue of the residual conditional variance
on the base of ratio (18):
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d̂2
k, j =

k∑
i=1

w2
i, j K

(
k − i + 1

h j

)

k∑
i=1

K

(
k − i + 1

h j

) − ŵ2
k, j . (19)

4 Prediction Algorithm for Systems with Unknown Input

The equations of the optimal prediction with estimate r̂k are of the form:

x̂k+1 = Ak x̂k + Bkr̂k + Kk[yk − Hk x̂k], x̂k=0 = x̄0, (20)

Kk = Ak PkH
T
k [Hk PkH

T
k + Vk]−1, (21)

Pk+1 = (Ak − KkHk)Pk(Ak − KkHk)
T + KkVkK

T
k + Qk, Pk=0 = P0, (22)

where Pk = E
[
(xk − x̂k)(xk − x̂k)T

] = P0, r̂k is the estimate of unknown input
defined by formulas (17) and (18).

5 An Illusrative Example

Apply the filtering algorithm (3)–(6), combined with nonparametric estimates (17)
and (18), to the model (1) and to the observations (2) with the following parameters:

A =
(

0 1
0.05 0.9 + 0.1 sin(0.05k)

)
, B =

(
1.0 0
0 1.0

)
, Q =

(
0.01 0
0 0.02

)
,

V =
(
1.8 0
0 2.2

)
, H =

(
1.0 0
0 1.0

)
, P0 =

(
1.0 0
0 1.0

)
, C =

(
1.0 0
0 1.0

)
,

D =
(
0 0
0 0

)
, x̄0 =

(
0
0

)
, r1,k =

⎧⎨
⎩

−1 + sin(0.1k), if 0 ≤ k < 50,
1 + sin(0.1k), if 50 ≤ k < 130,
sin(0.2k), if 130 ≤ k ≤ 200,

r2,k =
⎧⎨
⎩

sin(0.1k), if 0 ≤ k < 50,
−1 + sin(0.2k), if 50 ≤ k < 130,
0.5 + sin(0.1k), if 130 ≤ k ≤ 200.

As the kernel function,we take theGaussian density, i.e., K (u) = 1√
2π

exp(−u2/2).
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By simulations, the proposed filtering algorithms are compared with the algo-
rithms combined with the least mean square (LMS) estimates from [3, 4]. These
comparisons are given in Figs. 1, 2, 3 and 4.

The proposed extrapolation algorithms (18), (20)–(22) are compared with the
algorithms using the LMS estimates. These comparisons are given in Figs. 5, 6, 7
and 8.

Below, in Tables1, 2, 3 and 4 the errors of estimation

σx,i =
√∑N

k=1(xik − x̂ik)2

N − 1
, σr,i =

√∑N
k=1(rik − r̂ik)2

N − 1
, i = 1, 2,

are given for two filtering algorithms (N = 200) and by averaging 50 realizations. The
results of modeling prediction algorithms for the same data are presented in Tables3
and 4.

Fig. 1 The dependence of the components and their estimates combined with nonparametric algo-
rithm (3)–(6), (18)

Fig. 2 The estimation of unknown inputs by nonparametric algorithm (3)–(6), (18)
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Fig. 3 The dependence of the components x1, x2 and their filtering estimates using the LMS
estimates from [3, 4]

Fig. 4 The estimation of unknown inputs by the LMS estimates

Fig. 5 The dependence of the components and their extrapolation estimates combined with non-
parametric algorithm (18), (20)–(22)
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Fig. 6 The estimation of unknown inputs by nonparametric algorithm (18), (20)–(22)

Fig. 7 The dependence of the components and their extrapolation estimates with using the LMS
estimates

Fig. 8 The estimate extrapolation of unknown inputs by the LMS estimates
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Table 1 Errors for filtering
algorithm combined with
nonparametric estimates

σx,1 σx,2 σr,1 σr,2

1.198 1.269 1.112 0.535

Table 2 Errors for filtering
algorithm using the LMS
estimates

σx,1 σx,2 σr,1 σr,2

1.324 1.466 2.657 2.621

Table 3 Errors for prediction
algorithm combined with
nonparametric estimates

σx,1 σx,2 σr,1 σr,2

1.343 1.503 1.398 0.532

Table 4 Errors for prediction
algorithm using the LMS
estimates

σx,1 σx,2 σr,1 σr,2

5.139 4.892 6.936 6.921

6 Conclusion

The paper deals with the algorithms of the Kalman filtering and prediction for sys-
tems with unknown input. The proposed method has been verified by simulations.
Figures and Tables show that the procedures with nonparametric estimates have the
advantages in accuracy in comparisonwith the known algorithms using the LMS esti-
mates. It is seen that the presented nonparametric technique may be used in solving
the general filtering and prediction problems with unknown input.

Acknowledgments Work supported by Russian Foundation for Basic Research (projects 13-08-
00744, 13-08-01015), Program for Improving theCompetitiveness of TSU (TomskStateUniversity)
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Nonparametric Filtering in Multiplicative
Observation Model
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Abstract A solution to the problem of useful random signal extraction from a
mixture with a noise in the multiplicative observation model is proposed. Unlike
conventional filtering tasks, in the problem under consideration it is supposed that
the distribution (and the model) of the useful signal is unknown. Therefore, in
this case one cannot apply such well-known techniques like Kalman filter or pos-
terior Stratonovich-Kushner evolution equation. The new paper is a continuation
and development of the author’s article, reported at the First ISNPS Conference
(Halkidiki’2012), where the filtering problem of positive signal with the unknown
distribution had been solved using the generalized filtering equation and nonpara-
metric kernel techniques. In the present study, new findings are added concerning
the construction of stable procedures for filtering, the search for optimal smoothing
parameter in the multidimensional case and some of the convergence results of the
proposed techniques. Themain feature of the problem is the positive distribution sup-
port. In this case, the classical methods of nonparametric estimation with symmetric
kernels are not applicable because of large estimator bias at the support boundary.
To overcome this drawback, we use asymmetric gamma kernel functions. To have
stable estimators, we propose a regularization procedure with a data-driven optimal
regularization parameter. Similar filtering algorithms can be used, for instance, in
the problems of volatility estimation in statistical models of financial and actuarial
mathematics.
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1 Introduction

Consider a stationary two-component hidden Markov process (Xn, Sn)n�1 where
(Xn) is an observable component and (Sn) is an unobservable one. The problem of
filtering the random signal (Sn)n�1 or known one-to-one function ϑn = Q(Sn) from
the mixture (observation model)

Xn = ϕ(Sn, ηn), (1)

with the noise ηn, where ϕ(·) is a given function, is solved under a nonparametric
uncertainty about the distribution of the useful signal Sn. Note that the notion “unob-
servable signal” presupposes that signal realizations are never observed without a
noise and, therefore, it is impossible to collect statistics about it and to solve the prob-
lem of identification, i.e., construction of mathematical model of the useful signal.
Without knowledge of characteristics or the state equation of the unobserved useful
signal Sn one cannot take advantage of the rich baggage of optimal filtering tech-
niques such as, for instance, the Kalman’s filter or Stratonovich-Kushner evolution
equation. In many practically important problems of underwater acoustics, radar,
financial and actuarial mathematics accurate models of useful signals are unknown.
Therefore, the approach to solving the problems of signal processing with unknown
distributions is relevant.

In general, when the characteristics of the unobservable signal Sn are unknown,
it is impossible to build an optimal filtering procedure. Let a conditional density of
observations g(xn|sn) under fixed signal Sn = sn belong to the exponential family [1,
2] (univariate case)

g(xn|sn) = C̃(sn)h(xn) exp {T(xn)Q(sn)} , xn ∈ R, sn ∈ R, (2)

where h(xn), θn = Q(sn), T(xn) are given Borel functions and C̃(sn) is a normal-
izing factor. Then the mean-square Bayes estimator θ̂

opt
n = E(ϑn|xn1) = Ex(ϑn) =

E(Q(Sn)|xn1) satisfies the generalized optimal filtering equation [1]

T ′(xn)θ̂opt
n = ∂

∂xn

(
ln

fc(xn|xn−1
1 )

h(xn)

)
, (3)

where T ′ = dT/dxn, fc(·|·) is a conditional density of observation xn given fixed
observations xn−1

1 = (x1, . . . , xn−1). To our best knowledge, this equation was
firstly obtained in [3]. The main feature of the equation is that it depends explic-
itly on probabilistic characteristics of the observable process (Xn) only [1]. Such
property of the estimator equation is the embodiment of the well-known empirical
Bayesian approach of G. Robbins to the problems of signal processing. Empirical
Bayesian approachwas used in some papers [4, 5] to find aBayesian estimators of the
unknown constant parameters of probability densities from the exponential family in
the case of i.i.d. observations. For the time being, the author has not met any papers
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of other researches concerning the application of empirical Bayesian approach to
signal processing where observations have been statistically dependent.

If the compound process (Xn, Sn)n�1 is Gaussian, Q(Sn) = Sn and, consequently,
state and observation equations are linear then the Kalman filter follows from the
generalized Eq. (3) [6].

If the observation Eq. (1) is nonlinear multiplicative

Xn = Snηn, Sn,Xn, ηn � 0, (4)

where ηn is the noise distributed as χ2-similar density

pηn(y)=C(k, σ ) · yk/2−1exp

(
− ky

2σ 2

)
, C(k, σ )=

(
k

2σ 2

)k/2

	−1 (k/2),

with k degree of freedom and known parameter σ 2, then the conditional density
g(xn|sn), corresponding to the Eq. (4), has the form (2), where T(xn) = −kxn/(2σ 2),

h(xn) = xk/2−1
n and Q(sn) = 1/sn. Then theEq. (3) becomes an equationwith respect

to the optimal estimator θ̂
opt
n of the form [7]

θ̂opt
n = σ 2(k − 2)

kxn
− 2σ 2

k

∂

∂xn
ln fc(xn|xn−1

1 ). (5)

Here sn is a natural parameter of the exponent family (2) and θn is a canonical
parameter, linearly entering under exponent of (2). Generalized Eq. (3) is written
with respect to estimator θ̂n of canonical parameter θn. Since θn = Q(sn) and Q
is one-to-one function by condition, i.e., sn = Q−1(θn), then it is natural to set
ŝn = Q−1(θ̂n). This means that Ŝn is also optimal estimator but only with the risk
function E(Q(Sn)−Q(Ŝn))2. One can see that the Eq. (5) does not depend explicitly
on functionals of distribution of signal (Sn).

In the Eq. (5) the conditional density of observations fc(xn|xn−1
1 ) appears via

logarithmic density derivative

∂

∂xn
ln fc(xn|xn−1

1 ) = ∂/∂xnfc(xn|xn−1
1 )

fc(xn|xn−1
1 )

. (6)

We will estimate it using the nonparametric kernel techniques adapted to statistically
dependent sequences with the strong mixing property (α-mixing). This assumption
allows one to replace the expression (6) by closely related expression

∂

∂xn
ln f̄c(xn|xn−1

n−τ ) = ∂/∂xnf (xnn−τ )

f (xnn−τ )

.= ψ(xnn−τ ) (7)

with truncated marginal density f (·) where τ ∈ N is a dependence zone. One of the
ways to evaluate τ by observations Xn

1 is given in the book [1] (p. 402–416). Thus to
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solve the Eq. (5) our goal is to restore (τ +1)-dimensional density f (·) and its partial
derivative by weakly dependent vector observations xi = xn−i

n−τ−i, i = 1,N, N =
n − τ + 1, τ + 1 = d.

Since by condition, the functional form of the density f is unknown, then to
construct the density estimator f̂ the method of nonparametric kernel estimation is
chosen. In contrast to the classical method of Rosenblatt-Parzen with symmetric
kernel functions, in this paper we develop an approach for estimating densities and
their derivatives with nonnegative support [0,∞). Such supports appear in nonlinear
signal processing problems, an example of which is the multiplicative model (4).

From (7), it follows that for evaluation of the density logarithm it is necessary to
estimate the density and its derivative separately. Obtained estimator in the form of
the relationship is unstable in some points x when the denominator in (7) is close
to zero. Therefore we propose some regularized procedure with a regularization
parameter which has to be found by sample. The feature of the approach consists in
application of multidimensional asymmetric gamma kernel functions for evaluation
unknown densities and its derivatives by dependent observations and investigation
of its asymptotical properties.

Section2 discusses the asymptotic properties of multivariate density and its deriv-
ative estimators including bandwidth selection. Calculation of the data-based regu-
larization parameter is fulfilled in Sect. 3. Next Sect. 4 is devoted to numerical com-
parison of the nonparametric filter and the optimal nonlinear Stratonovich’s filter.

2 Multivariate Gamma Kernel Estimator

LetX1, . . . ,XN be a sample ofα-mixing random d-vectorswith unknownprobability
density function (pdf) f (x), x ∈ R

+d . To estimate f (x) we use a product density
estimator [8]

f̂ (x1, . . . , xd) = 1

N

N∑
i=1

d∏
s=1

Ks
ρb(xs),b

(Xis), (8)

where Ks is a gamma kernel for a variable xs, and Xis is a sth element of the vector
sample Xi at the moment i. Gamma kernel has the form [9]

Kρb(x),b(t) = tρb(x)−1 exp(−t/b)

bρb(x)	(ρb(x))
.

Here b is a smoothing parameter (bandwidth) with a property b → 0 as N → 0, 	(·)
is a standard gamma function and

ρb(x) =
{

ρ1(x) = x
b , if x ≥ 2b,

ρ2(x) = (
x
2b

)2 + 1, if x ∈ [0, 2b)
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is a shape parameter. Since the process (Xn) is strictly stationary, we assume that the
bandwidths bs for each component xs of the vector x coincide and are equal to b.

Since the logarithmic derivative (7) contains the partial derivative f ′
xn(x

n
n−τ ) =

∂f (xnn−τ )/∂xn at the point xn, then it is necessary to construct a nonparametric esti-
mator of the partial derivative of a density on the support R+d , d = τ + 1. By
differentiating (8) in xd, we have

f̂ ′xd (x) = f̂ ′xd (x
d
1 ) = N−1

N∑
i=1

˜̃K(x,Xi) = N−1
N∑
i=1

b−1
d L(xd ,Xid)

d∏
s=1

Ks
ρb(xs),b

(Xis), (9)

where f̂ ′
xd (x) = ∂

∂xd
f̂ (x), ˜̃K(x,Xi) = ∂

∂xd
K̃(x,Xi) = b−1

d L(xd,Xid)K̃(x,Xi) =

b−1
d L(xd,Xid)

d∏
s=1

Ks
ρb(xs),b

(Xis), L(xd,Xid) = ln(Xid) − ln bd − �(xd/bd) and �(·)
is a Digamma function (derivative from gamma function logarithm).

Here and after we will install all propositions and proofs for the case when x � 2b
because for the selected criterion in the form of mean integrated square error (MISE)

MISE(f̂ (r)(x)) =
∞∫

0

E(f̂ (r)(x) − f (r)(x))2dx =
2b∫

0

+
∞∫

2b

, r = 0, 1, (10)

f (0)(·) = f (·), f (1)(·) = f ′(·)

the integral over [0, 2b) converges to zero when b → 0 (see [8]).

2.1 Properties of the Gamma Kernel Density Estimator
by Dependent Data

Convergence and convergence rate at a point x of the multivariate pdf estimator (8)
are evaluated with the help ofMSE(f̂ (x)) = E(f (x) − f̂ (x))2. By definition,

MSE(f̂ (x)) = Bias(f̂ (x))2 + Var(f̂ (x)), (11)

where Bias(f̂ (x)) = E(f̂ (x)) − f (x) is the same for dependent and independent
random variables.

Lemma 2.1.1 (Bias of f̂ (x)) If the pdf f (x) is twice continuously differentiable then
for xj � 2b, j = 1, d and b → 0

Bias(f̂ (x)) = b

2

d∑
j=1

xj
∂2f (x)

∂x2j
+ do(b). (12)
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The proof can be found in [8].
For dependent random vectors the variance of the sum (8) consists of two terms

Var(f̂ (x)) = Var(N−1
N∑
i=1

d∏
j=1

K(Xi)) = N−1var(K(X1))

+2N−1
N−1∑
i=1

(
1 − 1

N

)
Cov (K(X1),K(X1+i)) = V + C, (13)

where V is a kernel variance and C is a kernel covariance.

Lemma 2.1.2 (Variance of f̂ (x)) If b → 0 and Nbd/2 → ∞ when N → ∞ then

V = O
(
N−1b−d/2

) → 0.

Conditions of convergence in mean-square sense of the density estimator (8) one can
find in [10].

Lemma 2.1.3 (Covariance of f̂ (x)) 1) If b → 0,Nbd(υ+1)/2 → ∞ as

N → ∞, f (x1, xk) < M < ∞ ∀k,
∞∫
1

α(τ)υdτ < ∞, 0 < υ < 1, where

α(τ) is a coefficient of strong mixing then

C = O
(
N−1b−d(υ+1)/2

)
.

2) If in addition b → 0, Nbd/2 → ∞,
∞∫
1

α(τ)υ/2dτ < ∞, then

C = o
(
N−1b−d/2

)
.

From Lemma 2.1.3 one can see that under the condition
∫ ∞
1 α(τ)υ/2dτ < ∞ the

convergence rate of the estimator covariance is higher than the similar rate for the
estimator variance. Therefore, in the calculation of the asymptotic behavior ofMSE
we can neglect the contribution of covariance compared with the contribution of
variance. Then MSE(f̂ (x)) for the weakly dependent and independent observations
will be the same as N → ∞.

Theorem 2.1.1 (MSE of f̂ (x)) If b → 0, Nbd/2 → ∞ as N → ∞, and
∞∫
1

α(τ)υ/2 dτ < ∞, 0 < υ < 1 then

MSE(f̂ (x)) = O
(
N−1b−d/2) . (14)

The results of Lemmas 2.1.1, 2.1.2 and Theorem 2.1.1 coincide with the corre-
sponding results of [8] in the case of independent observations. They are listed here
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in order to understand the conditions under which the properties of the estimators for
independent and weakly dependent observations coincide asymptotically. The proof
of Lemma 2.1.3 is given in Appendix.

2.2 Properties of the Gamma Kernel Density Derivative
Estimator by Dependent Data

For the bias of estimator (9) the following Lemma holds.

Lemma 2.2.1 (Bias of f̂ ′
xd (x)) Let partial derivative f̂

′
xd (x) of multivariate density

be twice continuously differentiable. Then for x � 2b, bj = b ∀j, j = 1, d, and
b → 0

Bias(f̂ ′
xd (x)) = bB1(x) + b2B2(x) + o(b),B1(x) = f (x)

12x2d
+ 1

4xd

d∑
j=1

xj
∂2f (x)

∂x2j
,

B2(x) = 1

24x2d

d∑
j=1

xj
∂2f (x)

∂x2j
.

For the density derivative estimator (9) the same formulae as (13) hold

MSE(f̂ ′
xd (x)) = Bias(f̂ ′

xd (x))
2 + Var(f̂ ′

xd (x)), (15)

where Var(f̂ ′
xd (x)) = N−1Var( ˜̃K(x,Xi)) + 2N−1

N−1∑
i=1

(
1 − 1

N

)
Cov

( ˜̃K(x,X1),

˜̃K(x,X1+i)
)

= V ′ + C′.

Lemma 2.2.2 (Variance of f̂ ′
xd (x))Under the conditions of Lemma 2.2.1 and b → 0

as Nb(d+2)/2 → ∞,

V ′ = O
(
N−1b−(d+2)/2

)
.

Lemma 2.2.3 (Covariance of f̂ ′
xd (x)) If b → 0,Nbd(υ+1)/2 → ∞, f ′(x1, xk) <<

M < ∞ ∀k, ∫ ∞
1 α(τ)υdτ < ∞, 0 < υ < 2/d, then

C′ = O
(
N−1b−d(υ+1)/2

)
.

From Lemma 2.2.3 it follows that provided the condition
∫ ∞
1 α(τ)υ/2 dτ <

∞, 0 < υ < 2/d, the rate of convergence of the estimator covariance is higher than
the rate of convergence of the estimator variance.

The last three Lemmas define the convergence rate of MSE of partial derivative
of multivariate density [10].
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Theorem 2.2.1 (MSE of f̂ ′(x)) If b → 0, Nb(d+2)/2 → ∞ when N → ∞, and
∞∫
1

α(τ)υ/2dτ < ∞, 0 � υ ≤ 2/d, then

MSE(f̂ ′(x)) = O
(
N−1b−(d+2)/2

) → 0. (16)

The proofs of these assertions one can find in [10, 11].

2.3 Optimal Bandwidths for Multivariate Density and Its
Partial Derivative

It is well-known that convergence rates of estimators (8) and (9) are strongly depen-
dent on a selection of bandwidths. Therefore, to apply nonparametric estimators in
practice one is trying to find the optimal bandwidth b which is usually determined
by minimizing the MISE (10) or its asymptotic equivalent as b → 0.

Theorem 2.3.1 (Optimal bandwidth for density estimator) Under the conditions
of Lemmas 2.1.1, 2.1.2 and 2.1.3, the optimal bandwidth minimizing asymptotic
MISE(f̂ (x)) equals

bopt =
(
d

∫
V (x)dx∫

U2(x)dx

)2/(d+4)

N−2/(d+4). (17)

Here

V (x) = f (x)(
2
√

π
)d

d∏
j=1

x−1/2
j , U(x) =

d∑
j=1

xj
∂2f (x)

∂x2j
. (18)

Substitution (17) in (10) leads to the optimal convergence rate of MISE(f̂ (x)) ∼
N−4/(d+4).

This result coincides with the result of [8], where a sequence of only independent
observations were considered.

Theorem 2.3.2 (Optimal bandwidth for density derivative estimator)Under the con-
ditions of Lemmas 2.2.1, 2.2.2, 2.2.3, the optimal bandwidth minimizing asymptotic
MISE(f̂ ′(x)) (16) equals

b′
opt =

⎛
⎜⎜⎜⎝

(d + 2)
∞∫
0
V1(x)dx

4
∞∫
0
U2

1 (x)dx

⎞
⎟⎟⎟⎠

2/(d+6)

N−2/(d+6), (19)
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where

V1(x) = f (x)

2xd
(
2
√

π
)d

d∏
j=1

x−1/2
j , U1(x) = f (x)

12x2d
+ 1

4x2d
U(x). (20)

Substitution of (19) in (10) leads to the optimal convergence rate of MISE(f̂ ′(x))
∼ N−4/(d+6).

Proofs of Theorem 2.3.2 are mostly borrowed from [10].
From formulas (17) and (19) one can see that the optimum bandwidths depend

on the unknown density and its derivatives. Therefore, it is impossible to calculate
their exact values. To obtain the numerical values of the parameters bopt and b′

opt

it is necessary to evaluate the integrals v = ∫
V (x)dx, u = ∫

U2(x)dx v1 =∫
V1(x)dx, u1 = ∫

U2
1 (x)dx in (17) and (19) by observations which are drawn from

the unknowndensity f (x).This can be done using themethod of cross-validation [12].
For this we have to substitute instead of the unknown density f (x) its nonparametric
estimator (8), which once again at the second stage will depend on other bandwidth
bg. This procedure can be continued, but, as is noted in [13], the effect of each
subsequent step onto the initial evaluation procedure is rapidly waning. Therefore,
we restrict ourselves to estimating the bandwidth parameter bg in the second stage.
This procedure is discussed in the next subsection.

Then, taking into account (18) and (19), for estimates v̂, û of integrals v, u we
have the following expressions:

v̂ = 1(
2
√

π
)d 1

N

N∑
k=1

d∏
j=1

X−1/2
kj , û = 1

N

N∑
k=1

(
Û(Xk)

)2 /
f̂ (Xk), (21)

Û(Xk) =
N∑
i=1
i �=k

d∑
j=1

Xkj

[
L2(Xkj,Xij) − �

(
1,

Xkj

b̂g

)]
d∏

s=1

Ks
ρb̂(Xks),b̂

(Xis), (22)

f̂ (Xk) = 1

N − 1

N∑
j �=k

K̃(Xk,Xj), (23)

where � (1, ·) is trigamma function. Using cross-validation (23), for the estimators
v̂1, û1 of integrals v1, u1 one can obtain the following expressions:

v̂1 = 1

2
(
2
√

π
)d 1

N

N∑
k=1

1

Xkd

d∏
j=1

X−1/2
kj , û = 1

N

N∑
k=1

(
Û1(Xk)

)2 /
f̂ (Xk), (24)

Û1(Xk) = 1

12X2
kd

+ 1

X2
kd

Û(Xk). (25)
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Thus, the formulae (21)–(25) allow us to calculate the bandwidth parameter at a finite
sample length N .

2.4 Gamma Rule of Thumb

In the case of gamma kernel estimator, the univariate bandwidth bg at the sec-
ond stage is again calculated by the formula (17), where instead of the unknown
f (x) is substituted the density of multivariate gamma distribution Gamma(x, b̃) =∏d

j=1 Gamma(xj, b̃)with the parameter x1 = x2 = · · · = x. This distribution is called
a reference distribution and has the same support and the first two moments with the
true distribution. Under these conditions, the expression for bg = bg(d) takes the
form

bg(d) = A(d)
(
H(d)/B(d)

)2/(d+4)
, (26)

A(d) = (0.25641)2d/(d+4)2561/(d+4), H(d) = πd/2b̃(d−4)/2

B(d) = (2x − b̃)
(
4x3 + 59x2b̃ + 92xb̃2 + 16b̃3(1 − d) + d(2x3 − 17x2b̃ + 40xb̃2)

)
.

Unknown parameters x, b̃ of univariate gamma distribution are replaced by sam-

pled value x = m̄,
¯̃b = D̄/m̄ according to the method of moments, where m̄ and D̄

are the sample mean and the sample variance of observations.

3 Asymptotically Optimal Regularization Parameter
and Its Estimation

3.1 The Equation for the Asymptotically Optimal
Regularization Parameter

Now we can write the nonparametric counterpart of the optimal Eq. (5) taking into
account the expression (7):

τθ̂n = σ 2(k − 2)

kxn
− 2σ 2

k
τψ̂(xnn−τ ), (27)

where τψ̂(xnn−τ ) = f̂ ′
xn(x

n
n−τ )/f̂ (x

n
n−τ ) is a nonparametric estimator of logarithmic

density derivative. This statistics is unstable when denominator is near zero. There-
fore, we introduce a regularization procedure for obtaining the stable estimator of
the form
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ψ̃(xnn−τ )
.= ψ̃n(x

n
n−τ ; δn) =

τψ̂n(xnn−τ )

1 + δτ
nψ̂n(xnn−τ )

2
, (28)

where the regularization parameter δn → 0 has to be evaluated for a finite n.
Estimator ψ̂(xnn−τ ) of logarithmic derivative (7) is a special case of the general

substitution estimator of complex functions G(tn(x)), where x ∈ R
d, tn : R

d →
R

m, G : Rm → R. In this case m = 2, tn = (tn1, tn2), tn1(x) = fn(x), tn2 = f ′
n(x)

and G(tn) = tn2/tn1. If the sequence (tn) converges to t with n → ∞, then under
certain regularity conditions, G(tn) tends to G(t) in some probabilistic sense. The
most important of these conditions are as follows:

(1) the existence and boundedness of a number of derivatives of G(t);
(2) the sequence (|G(tn)|) is dominated by a numerical sequence

(
C0d

γ
n
)
, where

C0 is a constant; a sequence of numbers dn → ∞, as n → ∞ and 0 � γ � ∞.

The meaning of the second condition is that the sequence (G(tn)) with n → ∞
can not grow faster than a power function of n. This condition, along with other
less important conditions (see. Corollary 1.8.1. in [1]) provides the mean-square
convergence G(tn) → G(t).

If E ‖ tn − t ‖→ 0 then by Theorem 1.9.1 in [1]

|E[G(tn) − G(t)]2 − E[∇tG(t)(tn − t)T]2| → 0, n → ∞, (29)

i.e. mean-square convergence of complex functions G(tn) to G(t) is replaced by the
mean-square convergence of simpler statistics tn to t.

There are a number of examples where the conditions (1) and (2) are not satisfied.
For the logarithmic derivative t = (t1, t2)T,G(t) = t2/t1, where t1 = f (x) and
t2 = f ′(x). For example, for a Gaussian density f (x), we haveG = −x. This function
is unbounded on R and it results that Eq. (28) is not applicable. So, instead of G(tn)
it is proposed to use regularization procedure (called in [1] as a piecewise-smooth
approximation)

G̃(tn, δn) = G(tn)

1 + δn|G(tn)|2 , (30)

where δn > 0 is a regularization parameter tending to zero as n → ∞. As shown
in [1], the function G̃(tn, δn) satisfies the conditions (1) and (2) and therefore it is
dominated by a power function of n. Due to this property, the result of (29) can be
used to obtain the mean-square convergence

lim
n→∞E(G̃(tn, δn) − G(t))2 = 0 (31)

when E ‖ tn − t ‖→ 0 and δn → 0.
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Since the statistics ψ̂n(x) in expression (7) for the logarithmic derivative is unstable
when the denominator is close to zero, we will use the regularization procedure to
obtain stable estimates of the form

ψ̃(x) .= ψ̃n(x; δn) = ψ̂n(x)

1 + δn(ψ̂n(x))2
, x = xd1 , (32)

where the regularization parameter δn have to be found. For a fixed sample size,N the
optimal value of this parameter may be found by minimizing the standard deviation
of ψ̃(x) from ψ(x) at each point x. However, such criterion is not very convenient
in practice because of a long enough numerical minimization procedure must be
repeated for each time step. The alternative to it serves an integral criterion,1

J =
∫ ∞

0
E(ψ̃ − ψ)2ω(x)dx =

∫ ∞

0
E

(
ψ̂

1 + δ(ψ̂)2
− ψ

)2

ω(x)dx, (33)

whereω(x) is someweighting function. For the existence of this criterion, theweight-
ing function can be selected, for example, in the form ofω(x) = f (x). Differentiation
of the (33) in δ leads to the equation

∫ ∞

0
E

ψ̂2(ψ̂)2

(1 + δ(ψ̂)2)3
ωdx =

∫ ∞

0
ψE

(ψ̂)2

(1 + δ(ψ̂)2)2
ωdx, (34)

which cannot be solved analytically with respect to δ. Then, taking into account that
δ is infinitesimal, we expand the ψ̃ in (28) in a series from δ up to the first order
including

ψ̃ = ψ̂

1 + δ(ψ̂)2
= ψ̂ − δψ̂(ψ̂)2 + o(δ). (35)

Thus, an approximate criterion will be represented as follows

J1 =
∫ ∞

0
E(ψ̂(1 − δ(ψ̂)2) − ψ)2 ω(x)dx. (36)

Minimizing it in δ leads to the equation for the asymptotically optimal regularization
parameter

δopt =
∫ ∞
0 E(ψ̂)4 ωdx − ∫ ∞

0 ψE(ψ̂)3 ωdx∫ ∞
0 E(ψ̂)6 ωdx

. (37)

1For brevity, in the future the arguments of some functions are omitted.
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Thereby, the problem reduces to finding Eψ̂k at k = 3, 4, 6. To calculate the
mathematical expectations in (37) the formula (29) is used twice: once for the function
G1 = tk and the second for the function G2(t) = t2/t1, where t1 = f , t2 = f ′. Thus,
for the first time

Eψ̂k ≈ ψk + kψk−1[Eψ̂ − ψ]. (38)

For the second time

Eψ̂ − ψ =
(∂G2

∂t1

∂G2

∂t2

)(
Et̂1 − t1
Et̂2 − t2

)
=

(
− t2
t21

1

t1

)(
Et̂1 − t1
Et̂2 − t2

)

= − t2
t21

(Et̂1 − t1) + 1

t1
(Et̂2 − t2) = − f ′

f 2
Bias(f̂ ) + 1

f
Bias(f̂ ′)

= (b/2)
υ(x)
f (x)

, υ(x) = f

6x2n
+

(
1

2xn
− ψ(x)

)
u(x), u(x) =

d∑
j=1

xj
∂2f (x)

∂x2j
.

Substituting (38) in (37), we get

Eψ̂k = ψk + 1

2
kψk−1 b

2f
υ(x) + o(b). (39)

3.2 Cross-Validation Estimate

Returning to the formula (37), calculate its numerator using (39):

∫ ∞

0
E(ψ̂)4 ωdx −

∫ ∞

0
ψE(ψ̂)3 ωdx ≈ b

4

∫ ∞

0
ψ3(x)

υ(x)
f (x)

ω(x)dx. (40)

Denominator of (37) is

∫ ∞

0
Eψ̂6 ωdx ≈

∫ ∞

0

(
ψ6 + 5b

4
ψ4 υ(x)

f (x)

)
ω(x)dx.

Under unknown density f , these integrals can be evaluated from a sample using
the method of cross-validation. For example, if ω(x) = f (x) the numerator of (40)
can be represented as

b

4

∫ ∞

0
ψ3(x)

υ(x)
f (x)

ω(x)dx ≈ b̂

4

N∑
k=1

ψ̂3(Xk)
υ̂(Xk)

f̂ (Xk)
,
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Fig. 1 Optimal and regularized nonparametric filtering

where

ψ̂(Xk) = f̂ ′(Xk)

f̂ (Xk)
, υ̂(Xk) = f̂ (Xk)

6x2n
+

(
1

2xn
− ψ̂(Xk)

)
Û(Xk),

f̂ (Xk) = 1

N − 1

N∑
j �=k

K̃(Xk,Xj), f̂ ′(Xk) = 1

N − 1

N∑
j �=k

˜̃K(Xk,Xj),

and Û(Xk) is determined by (22). Here, as at the second step in the evaluation of
density and its derivative, the bandwidth is calculated by the gamma rule of thumb,
cited above. Evaluation of the denominator (37) is performed similarly.

Now everything is ready to build the unsupervised algorithm of nonlinear non-
parametric filtering of the nonnegative desired signal.

The main steps of the algorithm

1. Selection of the conditional density from the exponent family, which is adequate
to observation model.

2. Derivation of the generalized equation of optimal filtering.
3. Generation of observations based on the observation model.
4. The data-based bandwidth calculation.
5. Calculation of the regularization parameter.
6. Nonparametric filtering of nonnegative random signal.
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4 Numerical Comparison of Filters

In Fig. 1, two filtering estimators of the desired signal Sn in the multiplicative model
(4) were represented: optimal mean-square estimator ŝ opt

n and adaptive nonpara-
metric estimator τŝn = 1/τθ̂n (5) obtained under unknown distribution of the signal
Sn.

It is easy to notice the closeness of filtering estimators with full (solid line) and
incomplete (dashed line) statistical information.

5 Conclusion

This paper presents a nonparametric unsupervised filter to extract the useful nonneg-
ative signal with unknown distribution from a mixture with a noise. The solution is
based on the generalized filtering equation and nonparametric estimators with asym-
metric kernel functions. The convergence properties ofmultivariate kernel estimators
onR+d-support are studied. Numerical simulation shows that quality of the unsuper-
vised filter is close to the Stratonovitch’s optimal nonlinear filter constructed from
complete statistical information. It is of interest to develop a proposed nonparametric
estimation methods for signals with limited support in the form of a bounded bar
B
d = {aj � xj � bj, j = 1, . . . , d}.

Appendix

Proof of Lemma2.1.3. We give here only outline of the proof. Provided the condition
(1), from formula (13) it follows that for a sequence of statistically dependent random
variables the variance of their sum is expressed through the covariance

C = 2N−1
N−1∑
i=1

(
1 − 1

N

)
Cov

(
K̃(x,X1), K̃(x,X1+i)

)
. (41)

This covariance is estimated from above by using the Davydov’s inequality [14]

|Cov
(
K̃(x,X1), K̃(x,X1+i)

)
| ≤ 2πα(i)1/r ‖ K̃(x,X1) ‖q‖ K̃(x,X1+i) ‖p,

where p−1 + q−1 + r−1 = 1, α(i) is a strong mixing coefficient of the process (Xn),
and ‖ · ‖q is a norm in the space Lq. This norm can be estimated by the following
expression
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‖ K̃(x,X1) ‖q =
⎛
⎝

∫ ⎛
⎝ d∏

j=1

Kρ1(xj),bj

(
tj
)
⎞
⎠

q

f (td1 )dt1 . . . dtd

⎞
⎠

1/q

=
⎛
⎝E

⎛
⎝ d∏

j=1

Kq−1
ρ1(xj),bj

(
ξj

)
f (ξ d

1 )

⎞
⎠

⎞
⎠

1/q

, (42)

where a kernel
∏d

j=1 Kρ1(xj),bj

(
ξj

)
is used as density function and random variables

ξj is distributed like Gamma(ρ1(xj), bj)-distribution with expectation μj = xj and
variance σ 2

ξ = xjbj. Expectation in parentheses of (42) is calculated by expanding
the function f (ξ d

1 ) in a Taylor series at the point μ = μd
1 . After some algebra we get

|C| = |C(f̂ (x)| � D(υ, x)
N

b−d 1+υ
2

∫ ∞

1
α(τ)υdτ, 0 < υ < 1, D(υ, x) < ∞.

Provided the condition (2), we use the technique of the proof from [15]. To do
this, we divide (41) into two terms |C| = (2/N)

∑N−1
i=1 (·) = (2/N)

( ∑c(N)
i=1 (·) +∑N−1

i=c(N)+1(·)
) = I1 + I2 and estimate each at N → ∞. As a result we get

I1 = O

(
c(N)bd/2

nbd/2

)
, I2 = O

(
1

nbd/2c(N)bdυ/2

)
.

It remains to find c(N) satisfying conditions c(N)bd/2 → 0 and c(N)bdυ/2 → ∞.

Let c(N) = b−ε. Then, these conditions are met simultaneously if d
2 > ε > d

2υ >

0, 0 < υ < 1, and |C| = o
(
Nbd/2

)−1
. �

Proof of Lemma2.2.3. Proof of this Lemma is carried out, in principle, in the same
way as Lemma 2.1.3, but it occupies a lot of space because of a complex estimator
expression containing a special functions (see [10]). �
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Nonparametric Estimation of Heavy-Tailed
Density by the Discrepancy Method

Natalia Markovich

Abstract The nonparametric estimation of the probability density function (pdf)
requires smoothing parameters like bandwidths of kernel estimates. We consider the
so-called discrepancy method proposed in [13, 14, 21] as a data-driven smoothing
tool and alternative to cross-validation. It is based on the vonMises-Smirnov’s (M-S)
and the Kolmogorov–Smirnov’s (K-S) nonparametric statistics as measures in the
space of distribution functions (cdfs). The unknown smoothing parameter is found
as a solution of the discrepancy equation. On its left-hand side stands the measure
between the empirical distribution function and the nonparametric estimate of the cdf.
The latter is obtained as a corresponding integral of the pdf estimator. The right-hand
side is equal to a quantile of the asymptotic distribution of the M-S or K-S statistic.
The discrepancy method considered earlier for light-tailed pdfs is investigated now
for heavy-tailed pdfs.

Keywords Heavy-tailed density · Kernel estimator · Bandwidth · Discrepancy
method

1 Introduction

Let Xn = {X1, X2, . . . , Xn} be a sample of independent identically distributed (iid)
random variables (r.v.s) with marginal cumulative distribution function (cdf) F(x)
and probability density function (pdf) f (x). Estimation of the pdf is one of the
basic concepts which appears in different contexts of applied statistics. Most of
the known estimators are oriented on light-tailed distributions. Those may include
distributions located on bounded and unbounded intervals. Among these estimators
are a histogram, projection, and kernel estimators.

We focus on nonparametric estimation of heavy-tailed pdfs. The estimation of
the latter requires special procedures due to their specific features. The latter are
characterized by slower decay to zero of heavy tails at infinity than that of an exponen-
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tial rate, the lack of some or all moments of the distribution, and sparse observations
at the tail domain of the distribution.

Nonparametric estimators require an appropriate selection of tuning (smoothing)
parameters, e.g., a bandwidth of the kernel estimators and the bin width of the his-
togram. The bandwidth selection impacts on the accuracy of the pdf estimates more
than the form of the kernel function [19]. The exception are gamma kernels which
are free from boundary bias for positively defined pdfs, [6]. A comprehensive survey
of methods to compute the smoothing parameter is given in [22]. A cross-validation
is the most popular method among data-driven tools [20]. However, for heavy-tailed
pdfs the estimates with the bandwidth h selected by cross-validation do not converge
in the space L1, since h → ∞ as n → ∞, [7]. Such methods like plug-in and rule
of thumb are based on the minimization of the mean integrated squared error of the
pdf estimate, where some pilot estimates of the pdf and its derivatives as well as a
specification of bandwidths for pilot estimates are required, [10, 20]. The popular
plug-inmethod is proposed in [18]. A direct formula for the plug-in bandwidth calcu-
lation that requires pilot second and third pdf derivatives can be found in [9]. Due to
the arbitrary specification of the pilot estimators the plug-in methods tend to larger
bandwidths than the cross-validation and to over-smoothing of the pdf estimates.
Particularly, the standard normal pdf is usually used as a pilot pdf that may not be
appropriate for the estimation of heavy-tailed pdfs with infinite second moments.
The rule of thumb with gamma reference function for positively defined pdfs and
for univariate iid and dependent data is proposed in [8, 11], respectively, and for
multivariate dependent data in [12].

In [5] a minimum distance (MD) approach for parametric pdf estimation based
on the minimizing of the distance between a pilot nonparametric density estimator
and the assumed parametric pdf model, namely, θ̂n = argmin D( f̂h, fθ ) is proposed.
Here, D canbe selected as ametric L1, L2 or L∞. The problemof suchMD-estimators
arises from the choice of h.

We consider the discrepancy method of the bandwidth selection that determines
an approach different from the mentioned methods. It is based on the solution of a
specific discrepancy equation. On its left-hand side stands a measure between the
empirical distribution function and the nonparametric estimate of the cdf. The latter is
obtained as a corresponding integral of the pdf estimator.Well-known nonparametric
statistics like the vonMises-Smirnov’s (M-S) and the Kolmogorov–Smirnov’s (K-S)
statistics are used as such measures in the space of cdfs. The right-hand side of the
discrepancy equation is equal to a quantile of the asymptotic distribution of the M-S
or K-S statistics.

It is remarkable that the asymptotic distributions of the M-S and the K-S statistics
are invariant regarding the cdf, i.e., they are the same for any cdf. However, if one
substitutes the unknown cdf by its estimate, such invariancy is violated. One may
use the asymptotic distributions of the M-S and K-S statistics due to an expected
consistency of the kernel estimates. The discrepancy method is general. It can be
applied to any pdf estimator, but not necessarily to kernel estimators.

The discrepancy method demonstrates better results for non-smooth distributions
at a compact support like a triangular and a uniform one than cross-validation. The
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discrepancy method is free from drawbacks of cross-validation like falling into local
extremes and of plug-in methods like the specification of pilot estimators of the pdf
derivatives. In [21] it was proved that a projection estimator with a regularization
parameter selected by a ω2-discrepancy method based on the M-S statistic has the
rate of convergence in L2 not worse than n−(k+1/2)/(2k+3), which is close to the best
rate n−(k+1/2)/(2k+2) for pdfs with a bounded variation of the kth derivative. In [14],
Sect. 4.8.1 it is derived that the mean-squared error of a variable bandwidth kernel
estimator [1] may attain the fastest achievable order n−8/9 if the bandwidth h is
selected by the discrepancy method D based on the K-S statistic and the pdf has four
continuous derivatives.

In this paper, we will not construct another refinement to existing bandwidth
selectors. We aim to extend the discrepancy method to heavy-tailed pdfs. As it was
shown in [14] the discrepancy method may have no solutions for the heavy-tailed
distributions. To overcome this problem we proposed in [15] a modified discrepancy
method based only on the k largest order statistics of the sample Xn . In this paper,
we investigate the impact of the selection of k on the heavy-tailed pdf estimation by
a simulation study.

The paper is organized as follows. In Sect. 2 the discrepancy method and its
modification for heavy-tailed distributions are described. In Sect. 3 the simulation
study of the kernel estimates with the bandwidth selected by the discrepancy method
is presented. The exposition is finalized by some conclusions.

2 Discrepancy Method and Heavy-Tailed Densities

The discrepancy ω2 and D methods were proposed and investigated in [13, 14, 21]
to estimate smoothing parameters (bandwidths h) of nonparametric pdf estimators
f̂h(x), e.g., kernel and projection estimators by samples. The discrepancy methods
are based on nonparametric statistics like Kolmogorov–Smirnov Dn and von Mises-
Smirnov ω2

n . The idea of the method is to solve the discrepancy equation

ρ(F̂h(x), Fn(x)) = δ (1)

regarding the bandwidth h, where δ is the unknown uncertainty, ρ(·, ·) is a metric
in the space of cdfs, F̂h(x) = ∫ x

−∞ f̂h(t)dt is the estimate of the df F(x), and
Fn(x) = 1/n

∑n
i=1 �(x−Xi ) is the empirical distribution function. Here,�(x) = 1

if x ≥ 0 and �(x) = 0 if x < 0. The statistics ω2
n and Dn are used as metric ρ(·, ·).

One may use other nonparametric statistics, e.g., Anderson–Darling or Rényi [2, 16]
as ρ(·, ·), since the Eq. (1) is general.

The ω2
n is determined by

ω2
n = n

∫ ∞

−∞
(Fn(x) − F(x))2 dF(x)
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or equivalently by

ω2
n = n

∫ 1

0
(Fn(t) − t)2 dt

for a transformed sample ti = F(Xi ), i = 1, . . . , n. The Dn is determined by

√
nDn = √

n sup
−∞<x<∞

|F(x) − Fn(x)|.

Limit distributions of both statistics are invariant regarding the cdf F(x), [2].
For practice one can use the simple expressions

ω̂2
n(h) =

n∑
i=1

(
F̂h(X(i)) − i − 0.5

n

)2

+ 1

12n
, (2)

and √
nD̂n(h) = √

nmax(D̂+
n , D̂−

n ),

D̂+
n = max

1≤i≤n

(
i

n
− F̂h(X(i))

)
, D̂−

n = max
1≤i≤n

(
F̂h(X(i)) − i − 1

n

)
,

calculated by the order statistics X(1) ≤ · · · ≤ X(n) corresponding to the sample
Xn . Using the tables of statistics ω2

n and Dn [2] it was found in [13] that quantiles
0.05 and 0.5 correspond to pdf modes of the statistics ω2

n and Dn , respectively. Since
such quantiles provide the most likely values of the corresponding statistics, it was
proposed to use them as the discrepancy values δ. Hence, onemay find the bandwidth
h as solutions of the equations

ω̂2
n(h) = 0.05 (3)

and √
nD̂n(h) = 0.5. (4)

In our discrepancy method, we have to substitute the unknown F(x) by its estimate
F̂h(x). Relying on consistent estimates of F̂h(x) one can use the quantiles of the
asymptotic distributions of statistics ω2

n and Dn as δ.
For heavy-tailed distributions (e.g., Cauchy, Pareto,Weibull with shape parameter

less than 1) it was noted in [14] that the discrepancy Eqs. (3) and (4), where F̂h(x)
and Fn(x) are calculated by the entire sample Xn , may have no solutions, i.e., the
statistics ω̂2

n(h),
√
nD̂n(h) may never reach values 0.05 and 0.5 for any h, or the

solution is provided by too small values of h. Such h may be not satisfactory to fit
the pdf at the tail, where over-smoothed kernels are required.

In [15] it was observed that this can be overcome by means of using the largest
order statistics X(n−k+1) ≤ · · · ≤ X(n) instead of the entire sample, namely,
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(a) (b)

Fig. 1 The ω̂2
n statistic based on the entire sample X(1), . . . , X(n) of the size n = 100 and on

the largest order statistics X(n−k), . . . , X(n), k = 20, simulated from the heavy- and light-tailed
Weibull distributions with shape parameter equal to 0.5 (a) and 1.5 (b), respectively, against h. For
the light-tailedWeibull distribution the quantile 0.05 is reached for larger h than for the heavy-tailed
case

(a) (b)

Fig. 2 The ω̂2
n statistic based on the entire sample X(1), . . . , X(n) of the size n = 100 and on the

largest order statistics X(n−k), . . . , X(n), k = 20, simulated from a Pareto distribution with γ = 0.8
(Fig. 2a) and a standard Cauchy distribution (Fig. 2b) against h

ω̂2
n(h) =

n∑
i=n−k+1

(
F̂h(X(i)) − i − 0.5

n

)2

+ 1

12n
, (5)

and

√
nD̂+

n = √
n max

n−k+1≤i≤n

(
i

n
− F̂h(X(i))

)
, (6)

√
nD̂−

n = √
n max

n−k+1≤i≤n

(
F̂h(X(i)) − i − 1

n

)

in (3) and (4). This approach is natural since for heavy-tailed distributions only largest
order statistics are significant.1 Traditional methods use the entire samples.

In Figs. 1 and 2 the effect of excluding the lowest order statistics in the discrepancy
equation is demonstrated, where the kernel estimator

1For example, the Hill’s estimator of the tail index is based on the k largest statistics.
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(a) (b)

(c)
(d)

Fig. 3 The ω2
n statistic based on the largest order statistics X(n−k), . . . , X(n) simulated from the

Pareto distribution with γ = 0.8 (Fig. 3a), from the standard lognormal distribution (Fig. 3b), from
the lognormal distribution (11) with parameters μ = 0, σ = 10 (Fig. 3c) and from a standard
Cauchy distribution (Fig. 3d) against b ∈ [0, 1] such that k = nb, where h1 = 0.398 and h2 ∈
{5.577, 1.006, 3.708 × 109, 2.604} in Fig. 3a–d, respectively

f̂h(x) = 1/(nh)

n∑
i=1

K

(
x − Xi

h

)
(7)

with the Gaussian kernel

K (x) = (1/
√
2π) exp(−x2/2) (8)

is used. The discrepancy equation has no solution for the standard Cauchy distribu-
tion.

One can get similar examples for the D-method.
In case, that only the k = [nb],2 0 ≤ b ≤ 1 largest order statistics are used, the

solution of the discrepancy equation may not exist for sufficiently large values of h,
see Fig. 3. The bandwidth h is calculated as h1 = n−1/5, h1/2 and

h2 = 1.06σ̂n−1/5, (9)

2[x] denotes the integer part of x .
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(a) (b)

Fig. 4 The bandwidths h obtained by theω2 method against the number of the largest order statistics
k for the Pareto distribution with γ = 0.8 (Fig. 4a) and the kernel estimate (7) with the Gaussian
kernel (8), where h ∈ {0.081, 0.354} are obtained using the ω2 method by the entire sample and by
only k = 5 largest order statistics, respectively (Fig. 4b)

where σ̂ is an empirical standard deviation.3 The case b = 1 implies that the ω̂2
n(h)-

statistic is calculated by the entire sample.
The heavier the tail, the smaller k is required to have a solution of the discrepancy

equation for the same h. One can see this both for standard lognormal and Pareto
distributions that have lighter and heavier tails, respectively, when the same band-
width h1/2 was taken for the kernel estimate, Fig. 3a, b. Remarkable is that the Eq.
(3) has no solution for any b and h both for the lognormal distribution (Fig. 3c) with a
heavier tail than the standard lognormal one and for the Cauchy distribution (Fig. 3d).
The latter distribution belongs to the class of super heavy-tailed distributions arising
rarely in practice. One can transform a super heavy-tailed distributed sample to ease
the heaviness of the tail and to get a heavy-tailed distribution that is easier to estimate.

In Fig. 4a it is shown that an increasing the k does not impact significantly on
value of h. The smaller k corresponds to the larger h providing the better estimation
of the pdf, Fig. 4b.

3 A Simulation Study of Heavy-Tailed Density Estimation

For our simulation study we select the kernel estimator (7) with the Gaussian kernel
(8). Let the underlying samples have sizes n ∈ {100, 500}. We generate B = 500
samples of each size n. We evaluate the accuracy of kernel estimate f̂h(x) at an
interval [a, Xmax ], a > 0, Xmax = max{X1, . . . , Xn} in order to separate the estimate
from zero where the underlying pdfs may have infinite values. The a is some constant
that may be larger than a location parameter. Our simulation is not affected by the
choice of a since the accuracy of all examined bandwidth selectors is calculated the
same way. The bandwidth h is selected by the ω2 and D methods.

3The rule-of-thumb selected h2 is recommended in ([20], p. 45) as an optimal value for the Gaussian
kernel. This method is however very sensitive to outliers due to possibly large σ .
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Table 1 The bandwidth selection for the standard lognormal distribution with parameters μ = 0,
σ = 1 at [1, Xmax ]

D-method ρ1 σ 2
1 ρ2 σ 2

2

n = 100

k ρ1 σ 2
1 ρ2 σ 2

2 KS method

n1 0.00259 5e − 06 0.0904 0.0011 0.00178 5e − 06 0.0745 0.0014

[n0.8] 0.00132 3e − 06 0.0552 0.0017 Rule of thumb (9)

[n0.6] 0.00249 3e − 06 0.109 0.0020 0.9351 0.2578 1.9903 0.3863

[n0.4] 0.00817 2e − 05 0.201 0.0022 LSCV method

[n0.2] 0.01650 5e − 05 0.268 0.0018 0.0026 3e − 6 0.0787 8e − 4

JS method

0.0013 2.1569e − 6 0.0544 5.6261e−4

n = 500

k ρ1 σ 2
1 ρ2 σ 2

2 KS method

n1 9e − 04 4.7e− 07 0.0612 4e − 04 6.35e − 04 3e − 07 0.0525 4e − 04

[n0.8] 4.2e− 04 2e − 07 0.0311 1.6e− 04 Rule of thumb (9)

[n0.6] 0.00297 2e − 06 0.138 9e − 04 0.9745 0.0881 2.3481 0.2394

[n0.4] 0.01290 1e − 05 0.254 6e − 04 LSCV method

[n0.2] 0.02320 2e − 05 0.314 3e − 04 6.4e − 4 2e − 7 0.0529 3e − 4

JS method

4.0160e − 4 1.1771e − 7 0.0376 1.9921e−4

To evaluate the accuracy of the pdf estimates, we calculate the following statistics
for each sample:

ν1 = 1

n − i∗ + 1

n∑
i=i∗

(
f̂h(X(i)) − f (X(i))

)2
, ν2 = sup

i=i∗,...,n
| f̂h(X(i)) − f (X(i))|.

Here, i∗ is selected as a maximal i such that X(i) is less or equal to a. Note that ν1

and ν2 are not sensitive to rare observations at the tails where the pdf values could
be relatively small. Furthermore, we compare the accuracy of the pdf estimates by
calculating the statistics

ρ j = 1

B

B∑
i=1

ν
j
i , σ 2

j = 1

B

B∑
i=1

(ν
j
i − ρ j )

2, j = 1, 2. (10)

We generate heavy-tailed distributions, namely, the lognormal, the Fréchet, the
Weibull and Pareto distributions with pdfs

f (x) = 1√
2πxσ

exp(− (ln x − μ)2

2σ 2
), x > 0, μ ∈ R, σ > 0, (11)

f (x) = αx−α−1 exp(−x−α)1(x > 0), α > 0,
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Table 2 The bandwidth selection for the Weibull distribution with parameters λ = 2, b = 0.2 at
[0.4, Xmax ]

D-method ρ1 σ 2
1 ρ2 σ 2

2

n = 100

k ρ1 σ 2
1 ρ2 σ 2

2 KS method

n1 4e + 03 9e + 05 63 10 0.220 0.328 0.428 0.137

[n0.8] 0.12100 0.0563 0.377 0.0873 Rule of thumb (9)

[n0.6] 0.01590 0.0002 0.256 0.0129 0.1418 0.1301 0.3163 0.1095

[n0.4] 0.00657 9e − 05 0.118 0.0047 LSCV method

[n0.2] 0.00232 6e − 06 0.100 0.0009 2e + 2 1e + 6 3.865 2e + 2

JS method

0.0115 1.3068e − 4 0.1911 0.0117

n = 500

k ρ1 σ 2
1 ρ2 σ 2

2 KS method

n1 2e + 02 2e + 02 14.237 12.5331 0.0615 0.00584 0.467 0.0683

[n0.8] 0.0008 3e − 07 0.0691 0.0006 Rule of thumb (9)

[n0.6] 0.00968 3e − 05 0.170 0.0028 0.0159 5.6536e − 04 0.1940 0.0163

[n0.4] 0.00145 2e − 07 0.111 0.0003 LSCV method

[n0.2] 0.00246 4e − 07 0.142 6e − 05 2.273 3e + 2 0.857 4

JS method

0.0118 5.8259e − 5 0.1989 0.0093

f (x) = (b/λ)(x/λ)b−1 exp(−(x/λ)b), x > 0, 0 < b < 1, λ > 0,

f (x) = (1 + γ x)−1/γ−11(x ≥ 0), γ > 0,

respectively.
In Tables1, 2, 3, 4 and 5 we compare the accuracy of the discrepancy method D

with different values of k = [nb], the least-squares cross-validation method (LSCV),
[3, 17], the method KS4 which is theoretically optimal for estimating pdfs for normal
distribution [4], the Sheather and Jones bandwidth selector (the SJ-method5) [18] and
the Silverman’s rule of thumb (9). The latter four methods are calculated by entire
samples. The LSCV selects such h that provides the minimum of the sum

LSCV (h) = n−1
n∑

i=1

∫
f̂−i (x; h)2dx − 2n−1

n∑
i=1

f̂−i (Xi ; h), (12)

where

4This is ksdensity-procedure in Matlab.
5It was calculated by Dynara Team Matlab code mh − optimal − bandwidth.
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Table 4 The bandwidth selection for the Fréchet distribution with parameter α = 1 at [1, Xmax ]
D-method ρ1 σ2

1 ρ2 σ2
2

n = 100

k ρ1 σ2
1 ρ2 σ2

2 KS method

n1 0.0187 2.6069e−5 0.3044 6.1792e−4 9.1117e−4 7.9479e−7 0.0626 8.8957e−4

[n0.8] 0.0015 3.3110e−6 0.0879 0.0017 Rule of thumb (9)

[n0.6] 0.0890 1.6817e−5 0.2313 0.0017 0.0392 0.0032 0.3438 0.0637

[n0.4] 0.0303 2.9317e−5 0.3579 9.6628e−5 LSCV method

[n0.2] 0.0250 2.9470e−5 0.3361 2.7394e−4 0.0192 1.3284e−5 0.3181 1.6205e−4

JS method

0.0095 5.8863e−5 0.2189 0.0062

n = 500

k ρ1 σ2
1 ρ2 σ2

2 KS method

n1 0.0237 5.9958e−6 0.3432 4.9610e−5 2.3846e−4 4.2647e−8 0.0360 1.3020e−4

[n0.8] 9.7296e−4 2.7294e−7 0.0970 9.4370e−4 Rule of thumb (9)

[n0.6] 0.0139 6.6393e−6 0.2881 2.5530e−4 0.0094 1.0738e−4 0.2484 0.0235

[n0.4] 0.0291 5.7607e−6 0.3658 3.8527e−6 LSCV method

[n0.2] 0.0275 5.7902e−6 0.3595 1.4676e−5 0.0195 2.9142e−6 0.3292 6.9918e−6

JS method

0.0087 5.3185e−5 0.2250 0.0058

f̂−i (x; h) = 1

(n − 1)h

n∑
j=1, j 	=i

K (
x − X j

h
), (13)

For the Gaussian kernel N (x, h2) = (1/(h
√
2π)) exp

(−x2/(2h2)
)
the integral in

(12) can be calculated analytically, that is

LSCV (h) = 1

n − 1
N (0, 2h2) + n − 2

n(n − 1)2
∑
i 	= j

N (Xi − X j , 2h
2)

− 2

n(n − 1)

∑
i 	= j

N (Xi − X j , h
2).

The main objective is to study how the selection of k impacts the accuracy of the
kernel estimate when h is selected by the D-method. Only heavy-tailed distributions
are considered. The Fréchet distribution considered in Table3 has a heavier tail than
the one in Table4 since the tail index α = 0.1 is smaller. The Pareto and the Fréchet
distributions in Tables3 and 5 provide special cases. γ = 10 corresponds to the tail
index α = 1/γ = 0.1 which implies that all moments are infinite beginning from
the first according to Breiman’s theorem, [14]. This complicates the pdf estimation.

From the tables one may conclude that using the largest order statistics may
improve the accuracy of the D-method significantly. Regarding k = [n0.8] the accu-
racy is the best. This also provides much better accuracy than other methods for
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lognormal and Weibull distributions. The D-method is better than the SJ-method
for all distributions. The LSCV method is better than the D-method for the Fréchet
distributionwith tail indexα = 0.1. For Pareto distribution theLSCVmethoddemon-
strates non-consistency. For the Fréchet distribution with α = 1 the KS method has
the best accuracy among all examinedmethods. The rule of thumb is generally worse
than other methods.

4 Conclusions

Nonparametric estimation of heavy-tailed pdfs is considered. In earlier papers of
the author [13, 21] the selection of the bandwidth h in nonparametric density esti-
mates by means of discrepancy methods based on the von Mises-Smirnov and the
Kolmogorov–Smirnov statistics has been proposed. It was investigated for light-
tailed pdfs. In this paper, we adapt the discrepancy methods to heavy-tailed pdfs.
The adaptation implies that the discrepancy statistics are calculated only by the k
largest order statistics belonging to the distribution tail. We investigated by a simu-
lation study for several heavy-tailed distributions how to improve the selection of k
better and found that k = n0.8 where n is the sample size could be an appropriate
value. The theoretical value of k providing an optimal accuracy of the kernel estimate
is the subject of our future work. For distributions with very heavy tails when no
finite moments exist, it may be recommended to transform the data to a distribution
with lighter tail.
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Robust Estimation in AFT Models and a
Covariate Adjusted Mann–Whitney Statistic
for Comparing Two Sojourn Times

Sutirtha Chakraborty and Somnath Datta

Abstract AMann–Whitney statistic may be used to compare two sets of state wait-
ing times; however, wrong conclusions may be reached if there are confounding
covariates. We develop a Mann–Whitney type test statistic based on the residuals
from an accelerated failure time model fitted to two groups of sojourn times with a
common set of covariates. This covariate adjusted test statistics handles right censor-
ing via the inverse probability of censoring weights. These weights were devised to
improve efficiency in the sense that certain pairs in which at least one state entry time
is uncensored could be compared. Extensive simulation studies were undertaken to
evaluate the performance of this test. A real data illustration of our methodology is
also provided.

Keywords Confounding · U-statistic · Two sample · Sojourn time · AFT model

1 Introduction

Comparison of sojourn time distributions corresponding to a given transient state
between two populations (groups) of individuals in amultistatemodel is an important
but relatively unexplored area of research. The presence of censoring (with respect
to both the entry and exit times) in the multistate network makes this problem of
extending standard statistical testing procedures particularly difficult.

A nonparametric approach to this problem in absence of subject-level covariates
was developed by Fan and Datta [7], where they used certain product weights based
on the principle of inverse probability of censoring weighting (IPCW) [4, 5, 13]
with an indicator kernel to generalize a Mann–Whitney type test. Although quite
effective as a testing procedure for comparing the overall waiting time distributions,
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this methodology may fail to perform an appropriate comparison between the two
distributions when confounding covariates are present. In this article, we seek to
develop a solution to this extended problem of comparing the sojourn time distribu-
tions for the two populations after necessary adjustment for the available covariate
information.

We develop an IPCWmodifiedU-statistic [10, 12] based on the residuals from the
fitting of two separate accelerated failure time (AFT)models [11] to the sojourn times
from the two populations. This U-statistic serves as a Mann–Whitney test statistic
[12] for comparing the covariate adjusted sojourn time distributions corresponding
to the two groups of individuals. The performance of this novel statistic has been
thoroughly studied using simulation. The methodology is illustrated using a data set
on motor activities of patients suffering a spinal cord injury [8, 9].

2 Methodology

2.1 Data Structure and Notations

Let us envisage a scenario where we have data on the right censored entry and exit
times of individuals from two independent populations (groups). Let X∗

i,j and V ∗
i,j

denote the original uncensored entry and exit times for the ith individual in the
jth group, Ci,j be a common censoring variable which affects both of them and is
assumed to be independent of the pair (X∗

i,j, V
∗
i,j); j = 1, 2. In addition we have

information on a p-dimensional covariate Z for all the individuals in the model.
To that end, let Zi,j denote the observed value of Z for the ith individual in the
jth group. Thus overall, our entire observed dataset is composed of the 5-tuples
(Xi,j, δi,j, Vi,j, ηi,j,Zi,j), (i = 1, 2, . . . , nj; j = 1, 2; n1 + n2 = n), where Xi,j =
min(X∗

i,j,Ci,j) and Vi,j = min(V ∗
i,j,Ci,j) are the observed right censored entry and

exit times for the ith individual in the jth group and ηi,j = I(Ci,j ≥ X∗
i,j) and δi,j =

I(Ci,j ≥ V ∗
i,j) are the corresponding censoring indicators.

Define W ∗
i,j = V ∗

i,j − X∗
i,j as the actual uncensored waiting time for the ith indi-

vidual in the jth group and Wi,j be its corresponding observed version in the right
censored data. Clearly,Wi,j is uncensored and equalsW ∗

i,j if and only if ηi,j = 1. For
methodological and theoretical developments, we assume that for each group j, the
data vectors (Xi,j, δi,j, Vi,j, ηi,j,Zi,j) are for 1 ≤ i ≤ nj and also the censoring Cij is
independent of (Xij, Vij,Zij).

2.2 A Covariate Adjusted Mann–Whitney U-Statistic

In the absence of censoring the Mann–Whitney U-statistic to be used for comparing
the marginal waiting time distributions between the two different groups is given by



Robust Estimation in AFT Models and a Covariate Adjusted Mann–Whitney … 119

U = 1

n1n2

n1∑
i1=1

n2∑
i2=1

I(W ∗
i1,1 ≤ W ∗

i2,2). (1)

However, in the presence of right censoring not all waiting times can be observed in
both the two groups and hence they need to be replaced by their corresponding right
censored values. Fan and Datta [7] proposed a modified Mann–Whitney U-statistic
that compensates for this selection bias using the IPCW reweighting principle [4, 5]:

ÛFD = 1

n1n2

n1∑
i1=1

n2∑
i2=1

I(Wi1,1 ≤ Wi2,2)δi1,1ηi2,2

K̂1(Vi1,1−)K̂2(Wi1,1 + Xi2,2−)
. (2)

The IPCW principle adjusts for the underlying censoring in the data by generating a
set of weights corresponding to the observed (uncensored) data values. Each of these
weights is a one over the estimated probability of an individual not being censored
up to a certain observed event. Estimation of a certain population parameter with
these weights compensates for the underlying selection bias in the data used in
constructing the estimator. As for example, the weight K̂1(Vi1,1−) is the estimated
conditional probability of the event {δi1,1 = 1} given the value of V *

i1,1 (which equals
Vi1,1 when δi1,1 = 1) under independent censoring and therefore it compensates for
the factor δi1,1 in the numerator.

Although, this statistic can eliminate the selection bias due to underlying right
censoring in the data using the IPCW principle, it only provides a marginal com-
parison of two sets of waiting times. In the presence of subject level covariates, one
may be interested in a comparison of the sojourn times after adjusting for such co-
variates. In the case of a discrete (or categorical) covariate, one option will be to
carry out subgroup analysis by restricting the Fan-Datta analysis to a subgroup of
waiting times corresponding to a particular value of this covariate. However such an
approach will suffer from low power due to smaller sample size which will be even
more problematic when one has more than one covariates. In this work, we propose
a residual based extension of the Datta-Fan statistic to incorporate the effects of a
collection of baseline covariates, both discrete and continuous, in differentiating the
sojourn time patterns in the two groups of individuals that can be applied to the entire
data set.

As mention before, we propose an extension of the classical Mann–Whitney
U-statistic [12] that can be used to build a test for comparing the waiting time dis-
tributions between the two groups, after adjusting for subject level covariates Z .
For this purpose we pursue a regression approach to build a set of model residuals,
which can in turn be used to build such a modified U-statistic. Although other types
of regression models (both semi-parametric such as the Cox regression model [2],
as well as, nonparametric such as Beran’s estimator [1]) can be used for the purpose
of covariate adjustment, we choose a transformation model for the waiting times in
order to calculate the residuals due to its relative simplicity. To this end, we define
the following two accelerated failure time (AFT) models [17] corresponding to the
waiting times of the individuals from the two groups:
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log (W ∗
i1,1) = α1 + ZT

i1,1β1 + ε1, 1 ≤ i1 ≤ n1,

log (W ∗
i2,2) = α2 + ZT

i2,2β2 + ε2, 1 ≤ i2 ≤ n2,

where α1, α2 are the intercepts, β1, β2 are the vectors of regression coefficients in the
two groups; ε1, ε2 denote the zero mean random error terms for the two regression
models.

First consider the hypothetical setup, when the regression coefficients βj in the
two models are known and also suppose censoring is absent. In that case, the log-
transformed waiting times from the two groups after eliminating the covariate effects
would have been given by R

∗
ij,j

= log(W ∗
ij,j

) − ZT
ij,j

βj; j = 1, 2, and it would be pos-

sible to apply standard Mann–Whitney U-statistic to the R
∗
ij,j

to draw inference on

θ = P(R
∗
i1,1 ≤ R

∗
i2,2). Note that R

∗
ij,j

may have different mean (location) since the
intercepts are not being subtracted and hence θ is not always 1/2 even if the ε had
the same distribution in the two groups. Of course, a null hypothesis of equality of
the distribution of R∗ leads to a null hypothesis of θ = 1/2, which can be nonpara-
metrically tested by the Mann–Whitney test. Assuming ε has the same distribution
in the two groups, a parametric way of testing the equality of the distribution of R∗
is to test H0 : α1 = α2, using a standardized version of α̂1 − α̂2, using its asymptotic
normality. If potential non-normality of the error distribution is a concern, a robust
estimating equation should be in place for estimation of α in each group. It is fair to
say, however that the Mann–Whitney (or equivalently, theWilcoxon) test is the more
common procedure than this later approach, if non-normal errors are suspected.

Coming back to the setup of the present paper, the β coefficients are unknown;
furthermore, the W ∗

ij,j
are not always observed due to censoring. Thus we proceed

in two steps to achieve of goal of inferring θ . First, we develop a robust estimating
equation for the parameters in theAFT regressionmodels that can be used in presence
of right censoring. Second, using the resulting estimators of the β coefficients, we
compute a modified version of the Mann–Whitney U-statistic that can be computed
with the available data. As we will see, the common technique used in dealing
with right censoring in both setups is “inverse probability of censoring weighting”
(IPCW). However, the weighting principle for the U-statistic is subtle and attempts
to take advantage of the form of the kernel so that maximum available information in
the data are used including some pairs where the exit time of one may be unobserved
due to censoring.

2.3 Robust Estimation in the AFT Model of Waiting Times
in Presence of censoring

As the waiting times of the subjects in the two groups are right censored, the standard
M-estimating equations for these twomodels need to bemodified following the IPCW
reweighting principle (see, e.g., [3, 4]). Thus the estimators (̂α1, β̂1) and (̂α2, β̂2) are
obtained from the estimating equations given below:
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�1 =
n1∑

i1=1

ψ
(
log (W ∗

i1,1) − α1 − ZT
i1,1β1

)
Z̃i1,1

δi1,1

K̂1(Vi1,1−)
,

�2 =
n2∑

i2=1

ψ
(
log (W ∗

i2,1) − α2 − ZT
i2,2β2

)
Z̃i2,2

δi2,2

K̂2(Vi2,2−)
.

Here, ψ is a score function satisfying E[ψ(εj)] = 0, E[{ψ ′(εj)}2] < ∞, Z̃ij,j =
(1,ZT

ij,j
)T ; for our simulation study and data analysis, we have used ψ(x) = tanh(x).

Also, K̂1, K̂2 are the estimated survival functions for the censoring distributions
in the two groups; they are calculated using the Kaplan–Meier formulas applied
to the data from two groups separately where censoring events are taken as cor-
responding to the censoring indicators δi1,1, δi2,2 for the two groups. Note that
E(δij,j|V ∗

ij,j
) = P(Cij,j ≥ V ∗

ij,j
|V ∗

ij,j
) = Kj(V ∗

ij,j
−), since the censoring is indepen-

dent, which in turns equals Kj(Vij,j−), if δij,j = 1. Thus, large sample consistency
of the regression parameter estimators obtained from (2) follows from approximate
unbiasedness of the corresponding estimating functions which in turn follows from
the mean preserving property of IPCW averages [3].

2.4 IPCW Mann–Whitney

We denote the corresponding censored versions of the covariate adjusted log-waiting
times by Rij,j =log(Wij,j) − ZT

ij,j
β̂j; j = 1, 2. Let C(z;β) = C(z1, z2;β1, β2) =

e−(zT1 β1−zT2 β2). We define the following U-statistic based on Ri1,1 and Ri2,2 obtained
after fitting the reweighted accelerated failure time (AFT) models on the waiting
times of the individuals in the two groups:

Û = 1

n1n2

n1∑
i1=1

n2∑
i2=1

I(Ri1,1 ≤ Ri2,2)δi1,1ηi2,2

K̂1(Vi1,1−)K̂2(Xi2,2 + C(Zi; β̂)Wi1,1−)

= 1

n1n2

n1∑
i1=1

n2∑
i2=1

I(C(Zi; β̂)Wi1,1 ≤ Wi2,2)δi1,1ηi2,2

K̂1(Vi1,1−)K̂2(Xi2,2 + C(Zi; β̂)Wi1,1−)
(3)

where C(Zi; β̂) = C(Zi1,1,Zi2,2; β̂1, β̂2), δi1,1 = I(Ci1,1 ≥ V ∗
i1,1) and ηi2,2 =

I(Ci2,2 ≥ X∗
i2,2) are the two censoring indicators corresponding to the two groups as

defined earlier.
This particular U-statistic enables us to compare all observed waiting time pairs,

plus some additional pairs when the exit time of the larger waiting time may not
be observed. The two weights in the denominator of the summands compensate for
the presence of the two censoring indicators δi1,1 and ηi2,2. With some condition-
ing arguments and algebra, one can see that these weights estimate the conditional
expectations of these indicators given the true event times on the set {δi1,1ηi2,2 = 1}.
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Next, we describe the asymptotic distribution of Û. For this purpose we provide
a brief description of the different technical quantities used in its formulation. Let
Nc
i,j(t) = I(Vi,j ≤ t, δi,j = 0) be the counting process of censoring in group j and

Mc
i,j(t) = Nc

i,j(t) − ∫ t
0 Yi,j(u)d
c

j (u) be the associated martingale ; j = 1, 2, where

Yi,j(t) = I(Vi,j ≥ t) is the corresponding at-risk process. Let Yj(t) = ∑nj
i=1 Yi,j(t).

Now, define the following set of functions which will be used in describing the
asymptotic distribution of Û:

G1(v,w, z) = P{V1 ≤ v,W1 ≤ w,Z1 ≤ z, δ1 = 1}
G2(x, w, z) = P{X2 ≤ x,W2 ≤ w, Z2 ≤ z, η2 = 1}

S2(u) = E{I(e−ZT
2 β2W2 ≤ u)}

F1(w, z) = P{W1 ≤ w,Z1 ≤ z}

Define the following additional functions over the domain [0,∞):

ω1(s) = 1

y1(s)

∫
I(v > s)

S2(e−zTβ1w)

K1(v−)
dG1(v,w, z),

ω2(s) =
1

y2(s)

∫∫
I(x2 + C(z;β)w1 > s) I(C(z;β)w1 < w2)

K2(x2 + C(z;β)w1−)
dF1(w1, z1) G2(x2, w2, z2)

with yj(s) = P(Vj ≥ s); j = 1, 2.

For the theory, we assume that the covariables Zi,j are i.i.d. for 1 ≤ i ≤ nj, for
each j = 1, 2.

Theorem 1 Under suitable regularity conditions (see the Appendix A.1) as nj tends
to ∞, such that nj/n → cj, with n = n1 + n2, we have

√
n(Û − θ) → N(0, σ 2),

where

σ 2 = c−1
1 Var

[δ1,1{S2(e−ZT
1,1β1W1,1) + AC−1

Z1
ψ(ε1,1)Z1,1}

K1(V1,1−)
+

∫ ∞

0
ω1(s)dM

c
1,1(s)

]

+ c−1
2 Var

[
η1,2

∫
I(C(z, Z1,2;β1, β2)w < W1,2)

K2(X1,2 + C(z, Z1,2;β1, β2)w−)
dF1(w, z)

+ δ1,2BC
−1
Z2

ψ(ε1,2)Z1,2
K2(V1,2−)

+
∫ ∞

0
ω2(s)dM

c
1,2(s)

]
,

where the vectors A,B, and the matrices CZ1 , CZ2 , are defined in the appendix.

From the structure of the asymptotic variance of Û we can derive its estimator
using the corresponding sample counterparts of the expressions in the above for-
mula (see Appendix A.2). However, the corresponding formulas are computationally
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tedious. Hence we recommend using bootstrap to estimate the variance. Note that
a nonparametric bootstrap can be easily implemented by resampling the 5-tuples
(Xi,j, δi,j, Vi,j, ηi,j,Zi,j) within each group and recomputing the U-statistic for each
bootstrap resample.

3 Simulation Studies

We conduct a thorough simulation study to investigate the sampling properties of
our regression parameter estimators and that of the covariate adjusted U-statistic Û.
We also investigate the power of detecting differences in the waiting times in the two
groups after adjusting for other group specific covariates using a test statistic that is
a symmetrized version of our adjusted U-statistic.

3.1 Bias and Variance Study

Group specific covariatesZij are generated fromN(1.5, 1) for group1 individuals, and
fromN(2.5, 1) for group 2 individuals. Next, we generate the entry andwaiting times
from a bivariate normal distribution as follows: Xij = exp(∼Xij), Wij = exp(αj +
βjZij + εij), where ∼Xij, εij) are generated from a bivariate normal with zero mean

vector and dispersion matrix

(
1 ρ

ρ 1

)
. We also add contamination by changing a

certain percentage of the εij to random generations of a discrete uniform on the set of
four values {−6,−4, 4, 6}. The regression parameters were α1 = α2 = 0.5; β1 =
0.3, β2 = 0.5.

We have used three choices of the sample size per group nj = 25, 50 and 200.
Two values of ρ (= −0.5 and 0.5), two choices of the score function φ(x) = x, and
φ(x) = tanh(x), and two values of the contamination percentage (γ = 0 and 10%)
were used. The censoring times in the two groups are generated from two lognormal
distributions with unit log-scale, but with varying log-mean parameters depending
on the desired censoring rates in the two groups. We report the performance results
for light (25%) and heavy (50%) censoring, respectively.

Results for ρ = 0.5 are provided in Table1a and b. The conclusions for ρ = −0.5
were similar and are not shown. Overall, the variance terms decrease with the sample
size. The bias terms, though small, do not always show a monotonic pattern in the
range we have attempted. The intercept terms are difficult to estimate when data have
contamination. Use of a robust score function helps the situation greatly.
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3.2 Power Study

We perform a size and power analysis using a test statistic based on Û in order
to examine whether the waiting time distributions in the two groups exhibit any
significant difference after adjusting for the individual specific covariates. For this
purpose we consider the same data generation scheme as before except we let α2 =
α1 + �. We only consider the choice φ(x) = tanh(x) and set the censoring rate to
25%. The test statistic we consider is a symmetrized version of Û:

T = 0.5[Û(1, 2) + 1 − Û(2, 1)],

where Û(1, 2) is the value of Û computed with the observations on the 5-tuples, from
the two groups 1 and 2: (Xi,j, δi,j, Vi,j, ηi,j,Zi,j), (i = 1, 2 . . . nj; j = 1, 2; n1 + n2 =
n), being in their natural order. Û(2, 1) is the version of Û with this order being
reversed.

Large sample theory of T can be carried out by linearizing each of Û(1, 2) and
Û(2, 1). It will be asymptotically normally distributed under H0 , with mean 0.5 and
variance σ 2

T , say. We estimate the asymptotic variance of T by implementing the
bootstrap resampling technique. For this purpose we generate a resample of size 500
(with replacement) from the observations on the 5-tuple (Xi,j, δi,j, Vi,j, ηi,j,Zi,j); i =
1, 2, . . . , nj; j = 1, 2, simulated in each of 1000 Monte Carlo replications. We
compute the values of T for each of the bootstrap samples and take their sample
variance as the estimated asymptotic variance of T (̂σ 2

T ). With these estimates we
construct the 95% bias corrected confidence interval for the actual population mean
of T(μT ): [μ̂T − 1.96σ̂T , μ̂T + 1.96σ̂T ]. We calculate the proportion of times the
mean of T(μT ) under the null distribution (0.5) is not covered by this interval, in
order to get the size and power values for the correspondingmodel settings controlled
by the parameters α1 and α2. These values are reported in Table2 for two choices of
per group sample sizes (ni = 50 and 200).

Table 2 Empirically estimated size and power of test of equality of adjusted waiting times

� Size/Power

n1/n2 = 50 n1/n2 = 200

−2.3 0.890 0.998

−1.8 0.734 0.990

−1.3 0.526 0.942

−0.8 0.250 0.642

0.0 0.080 0.070

0.8 0.338 0.704

1.3 0.616 0.962

1.8 0.782 1.000

2.3 0.894 1.000

Each value is based on 1000 Monte Carlo iterations
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For the case of ni = 50, size of the test is slighted inflated compared to the the
nominal size (5%) and the power increases gradually as thewaiting time distributions
in the two groups differ more and more owing to the extent of variation in the
intercept parameters α1 (= 0.5) and α2 corresponding to groups 1 and 2, respectively.
Moreover, the size gets closer to the nominal size and the test exhibits great power
as the number of subjects in the two groups increases to 200.

4 Application to Spinal Cord Injury Data

In this section, we illustrate an application of our covariate adjusted Mann–Whitney
test on a data set of NeuroRecovery Network (NRN) [8, 9] patients. The sample
consists of 269 patients who are enrolled in a locomotor training program after
suffering a spinal cord injury (a grade of C or D on the International Standards for
Neurological Classification of Spinal Cord Injury scale). Out of these, 148 were in
Phase 1 and 121 were in Phase 2 at enrolment; the concept of initial phase is given
in Datta et al. [6].

Continued evaluation of the walking speed constitutes a fundamental part of the
entire monitoring process of the patients following their time of enrollment in the
program. On the basis of the performances in a walking test these individuals are
subsequently classified into different speed categories by virtue of their maximum
walking speed. Following clinical benchmarks these categories are represented as
specific speed limits which can be jointly visualized as a three-state progressive
model (Fig. 1). Overall, 16 individuals made a transition from state 1 to 2, 33 indi-
viduals moved from state 2 to 3 and 8 individuals moved directly from state 1 to
3. We consider three individual specific covariates that may potentially control the
movement of the individuals along the different states in the model. These covariates
are: (1) time from the spinal cord injury to enrollment in the program, (2) lower
motor score from the international standards for neurological classification of spinal
cord injury (ISNCSCI) exam and (3) treatment intensity given by the ratio of the cu-
mulative number of training sessions received by the individual and his/her duration
of enrollment in the program.

Now, we create two different groups of injured patients depending on their initial
phase at the time of enrollment (1 or 2). Our objective is to use the modified IPCW-
based U-statistic to compare the sojourn time distributions at stage 2 between these
two categories of patients after adjusting for their information on the three covariates
described above.

Application of the Mann–Whitney test based on our U-statistic (as discussed in
Sect. 3.2) gives the absolute value of the test statistic T as 0.639 (< 1.96). But, using
the Fan-Datta U-statistic [7] we get |T | = 4.950 (> 1.96). This demonstrates that
there is indeed a substantial difference between the overall sojourn time distributions
for the injured patients enrolled in the initial Phases 1 and 2. However, this effect
can either be due to the difference between the covariate distributions in the two
groups of patients or a variation in its impact over the two groups (characterized

http://dx.doi.org/10.1007/978-3-319-41582-6_3
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Fig. 1 Network showing the
different states and their
transition paths for the spinal
cord injury data 1 2 3 

0 m/s 
> 0 m/s and 
< 0.44 m/s >= 0.44 m/s 

by the regression coefficients) or a combined effect from both of them. There is no
significant difference in the covariate adjusted log-waiting times in the two groups.

5 Discussion

U-statistics are fundamental objects in theoretical statistics and provide a broad gen-
eralization of different types of commonly used measures in the statistical analyses
(sample mean, variance, etc.) [10, 15, 16]. Different types of statistics with com-
plicated expressions (that are not readily amenable to algebraic treatments) can be
expressed as U-statistics, or approximate U-statistics [16], thereby facilitating their
asymptotic treatments (consistency, asymptotic normality, etc.) in an unified fashion.

Mann–Whitney U-statistics [12] are well known in this context and can be used
to test the equality of two probability distributions by formulating an indicator ker-
nel function in terms of the observed sample values on their corresponding random
variables. Fan and Datta [7] initiated the development of a modified Mann–Whitney
U-statistic from a right censored data on the sojourn times of individuals classified
into two groups. Specifically, their work was focused on the use of this modified
statistic to compare the stage waiting time distributions between two groups of sub-
jects/individuals progressing through the different branches of a multistate network
affected by right censoring. In the present context we have pursued an extension of
this work to build a covariate adjusted version of the Mann–Whitney U-statistic to
ensure a more detailed inference on the comparison of the waiting time distributions
between the two groups of individuals.

We have demonstrated the performance of our modified U-statistic in terms of its
empirical bias and standard deviation through extensive simulation studies involving
different censoring patterns. We have illustrated the usefulness of the test based on
our modified Mann–Whitney U-statistic by a power analysis. Moreover, application
of our modified Mann–Whitney U-test on the spinal cord injury data shows that the
apparent difference between the sojourn time distributions of the two categories of
patients is actually explained by the three observed covariates.

Another byproduct of the current paper is the methodology of robust estimation of
the regression parameters in an accelerated failure time model for the state waiting
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times under right censoring. Large sample theory of the proposed estimators can
be developed following classical techniques of M-estimators combined with the
martingale approaches of [14]. Bootstrap remains a viable alternative for inference
on the regression parameters as well.

It will be interesting to extend this methodology to other form of censored data
problems such as current status or interval censored entry/exit times. It is not imme-
diately obvious how to do this. We hope to explore this direction in future research
work.

In this development, we have made the implicit assumption that every individual
in the uncensored experiment eventually enter and exit the stage whose sojourn times
are being compared. However, in a general multistate system, this may not always
be the case. In such situations, one may compare the sojourn times conditional on
stage entry using our statistic.
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Appendix

A.1 Proof of Theorem 1

Define the following auxiliary “U-statistics”:

Up = 1

n1n2

n1∑
i1=1

n2∑
i2=1

I(e−ZT
i1 ,1β1Wi1,1 ≤ e−ZT

i2 ,2β2Wi2,2)δi1,1ηi2,2

K1(Vi1,1−)K2(Xi2,2 + C(Zi;β)Wi1,1−)
,

Uh = 1

n1n2

n1∑
i1=1

n2∑
i2=1

I(e−ZT
i1 ,1β̂1Wi1,1 ≤ e−ZT

i2 ,2β̂2Wi2,2)δi1,1ηi2,2

K1(Vi1,1−)K2(Xi2,2 + C(Zi; β̂)Wi1,1−)
.

Then our primary U-statistic Û can be written as

√
n(Û − θ) = √

n(Up − θ) + √
n(Uh − Up) + √

n(Û − Uh). (4)
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As in Fan and Datta [7], we will derive the large sample linear approximations
of the three expressions on the right hand side of (4) and combine them to obtain
the asymptotic distribution of Û. By the projection theorem of U-statistics ([16],
page 188) and the definitions of various functions and weights, we get after some
expectation calculations

√
n(Up − θ) = 1

n

[
1

c1

n1∑
i1=1

{
δi1,1S2(e

−ZT
i1,1 β1Wi1,1)

K1(Vi1,1−)
− θ

}

+ 1

c2

n2∑
i2=1

{
ηi2,2

∫
I(C(z, Zi2,2; β1, β2)w < Wi2,2)

K1(v−)K2(Xi2,2 + C(z, Zi2,2; β1, β2)w−)
dG1(v, w, z) − θ

}]
+ op(1).

For the second part, we apply the delta method type approximation onUh along with
laws of large numbers for U-statistics to get

√
n(Uh − Up) =

[
1

n1n2

n1∑
i1=1

n2∑
i2=1

Ai1,i2

]√
n(β̂1 − β1)

+
[

1

n1n2

n1∑
i1=1

n2∑
i2=1

Bi1,i2

]√
n(β̂2 − β2) + op(1),

where

Ai1,i2 = K
′
2(Xi2,2 + C(β;Zi)Wi1,1−)C(β;Zi)Wi1,1I(C(β;Zi)Wi1,1 < Wi2,2)Z

T
i1,1

K1(Vi1,1−)K2
2 (Xi2,2 + C(β;Zi)Wi1,1−)

and

Bi1,i2 = −K
′
2(Xi2,2 + C(β;Zi)Wi1,1−)C(β;Zi)Wi1,1I(C(β;Zi)Wi1,1 < Wi2,2)Z

T
i2,2

K1(Vi1,1−)K2
2 (Xi2,2 + C(β;Zi)Wi1,1−)

.

By theWeak Law of LargeNumbers and the theory of estimating equations the above
is asymptotically equivalent (i.e., up to op(1) terms) to

1

n

[
1

c1
AC−1

Z1

n1∑
i1=1

ψ(εi1)
δi1,1

K1(Vi1,1−)
Zi1,1 + 1

c2
BC−1

Z2

n2∑
i2=1

ψ(εi2)
δi2,2

K2(Vi2,2−)
Zi2,2

]
,

where A = E(Ai1,i2), B = E(Bi1,i2), and CZh = E(ψ ′(εih)ZhZ̃T
h ), h = 1, 2.

Now for the third and final part, we may replace treat β by β̂ leading to an error
that is op(1), since the quantities are centered and the analysis will hold uniformly
in a small neighborhood of the true β. Thus, we get
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√
n(Û − Uh) = −

√
n

n1n2

n1∑
i1=1

n2∑
i2=1

[
I(C(β; Zi)Wi1,1 < Wi2,2)δi1,1ηi2,2

K̂1(Vi1,1−)

×
{
K̂2(Xi2,2 + C(β; Zi)Wi1,1−) − K2(Xi2,2 + C(β; Zi)Wi1,1−)

K̂2(Xi2,2 + C(β; Zi)Wi1,1−)K2(Xi2,2 + C(β; Zi)Wi1,1−)

}

+
{
I(e−Zi1 ,1β1Wi1,1 < e−Zi2 ,2β2Wi2,2)δi1,1ηi2,2

K2(Xi2,2 + C(β; Z)Wi1,1−)

} {
K̂1(Vi1,1−) − K1(Vi1,1−)

K̂1(Vi1,1−)K1(Vi1,1−)

}]
.

(5)

Now by an L1 analysis of the difference (as in Fan and Datta [7]) we can replace
K̂j by Kj, j = 1, 2 in the last two expressions on the R.H.S. of (5). Again, by delta
method we have

√
nj(K̂j − Kj) = −√

njKj(
̂
c
j − 
c

j ) + op(1),

where 
c
j is the cumulative censoring hazard and 
̂c

j is the corresponding Nelson–
Aalen estimator.

Thus

√
n(Û − Uh) =

√
n

n1n2

n1∑
i1=1

n2∑
i1=1

I(C(β; Zi)Wi1,1 < Wi2,2)δi1,1ηi2,2

K1(Vi1,1−)K2(Xi2,2 + C(Z; β)Wi1,1−)

×
[ {


̂c
1(Vi1,1−) − 
c

1(Vi1,1−)
}

+
{

̂c

2(Xi2,2 + C(Zi; β)Wi1,1−) − 
c
2(Xi2,2 + C(Zi; β)Wi1,1−)

}]
+ op(1).

Now using projection calculations, the above expression boils down to

1√
n

[
1

c1

n1∑
i1=1

S2(e
−ZT

i1,1β1Wi1,1)δi1,1

K1(Vi1,1−)

{

̂c

1(Vi1,1−) − 
c
1(Vi1,1−)

}

+ 1

c2

n2∑
i2=1

ηi2,2

∫
I(C(z,Zi2 ; β1, β2)w < Wi2,2)

K2(Xi2,2 + C(z,Zi2 ; β1, β2)w−)
×

{

̂c

2(Xi2,2 + C(z,Zi2 ; β1, β2)w−)

− 
c
2(Xi2,2 + C(z,Zi2 ; β1, β2)w−)

}
dG1(v,w, z)

]

which further equals bymartingale representations of 
̂c
j −
c

j (Andersen et al. 1993),

1√
n

[
1

c1
√
n1

n1∑
i1=1

δi1,1S2(e
−ZT

i1 ,1β1Wi1,1)

K1(Vi1,1−)

{∫ Vi1 ,1−

0

dM
c
1 (s)

y1(s)

}

+ 1

c2
√
n2

n2∑
i2=1

ηi2 ,2

{∫
I(C(z,Zi2;β1, β2)w < Wi2,2)

K2(Xi2,2 + C(z,Zi2;β1, β2)w−)
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×
(∫ Xi2 ,2+C(z,Zi2 ;β1,β2)w−

0

dM
c
2 (s)

y2(s)

)}
dG1(v,w, z)

]
+ op(1), (6)

where M
c
j = n−1/2

j

∑nj
ij=1 M

c
ij,j

; j = 1, 2.
Now, by the asymptotically linear representation of an U-statistic, the first part of

the above expression inside the square brackets equals:

√
n1
c1

∫
S2(e−zTβ1w)

K1(v−)

{∫ v−

0

dM
c
1(s)

y1(s)

}
dG1(v,w, z) + op(

√
n1)

which by Fubini’s theorem is equal to

1

c1

n1∑
i1=1

∫ ∞

0

{
1

y1(s)

∫
I(v > s)

S2(e−zTβ1w)

K1(v−)
dG1(v,w, z)

}
dMc

i1,1(s) + op(
√
n1)

= 1

c1

n1∑
i1=1

∫ ∞

0
ω1(s)dM

c
i1,1(s) + op(

√
n1).

By a similar treatment as above the second part of the square brackets in RHS of (6)
equals (up to op(

√
n2))

1

c2

∫∫
I(C(z;β)w1 < w2)

K2(x2 + C(z;β)w1−)

{∫ x2+C(z;β)w1−
0

dM
c
2(s)

y2(s)

}
dG1(v1, w1, z1)dG2(x2, w2, z2)

which again by Fubini’s theorem equals

√
n2
c2

∫ ∞

0

{
1

y2(s)

∫∫
I(s < x2 + C(z;β)w1)I(C(z;β)w1 < w2)

K2(x2 + C(z;β)w1−)
dG1(v1, w1, z1)

× dG2(x2, w2, z2)

}
dM

c
2(s) + op(

√
n2)

= 1

c2

n2∑
i2=1

∫ ∞

0
ω2(s)dM

c
i2,2(s) + op(

√
n2).

Now, combining the asymptotic expressions for all the three parts we finally get:

√
n(Û − θ) = 1√

n

[
1

c1

n1∑
i1=1

{
δi1,1{S2(e−ZT

i1 ,1β1Wi1,1) + AC−1
Z1

ψ(εi1)Zi1,1}
K1(Vi1,1−)

− θ

+
∫ ∞

0
ω1(s) dM

c
i1,1(s)

}
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+ 1

c2

n2∑
i2=1

{
ηi2,2

∫
I(C(z, Zi2,2;β1, β2)w < Wi2,2)

K1(v−)K2(Xi2,2 + C(z, Zi2,2;β1, β2)w−)
dG1(v,w, z) − θ

+ δi2,2BC
−1
Z2

ψ(εi2)Zi2,2
K2(Vi2,2−)

+
∫ ∞

0
ω2(s)dM

c
i2,2(s)

}]
+ op(1), (7)

which by the Central Limit Theorem converges asymptotically to a normal distribu-
tion with mean 0 and variance σ 2, with the expression for σ 2 being provided in the
statement of Theorem 1.

A.2 Variance Estimation

We estimate each summand in the linear approximation of the U-statistic by their
empirical versions and then use the sample variances of the estimated summands to
compute the overall variance estimator. Thus we have

σ̂ 2 = n

n1(n1 − 1)

n1∑
i1=1

(Li1,1 − L̄1)
2 + n

n2(n2 − 1)

n2∑
i2=1

(Li2,2 − L̄2)
2

where

Li1,1 = δi1,1

K̂1(Vi1,1−)

{
Ŝ2(e

−ZT
i1 ,1β̂1Wi1,1) +

⎛
⎝ 1

n1n2

∑
i′1,i′2

Ai′1,i′2

⎞
⎠

×
⎛
⎝∑

i′1

δi′1,1

K̂1(Vi′1,1−)
ψ ′(Ri′1,1 − α̂1)Zi′1,1Z̃

T
i′1,1

⎞
⎠

−1

ψ(Ri1,1 − α̂1)Zi1,1

}

+ ω̂1(Vi1,1)δ̄i1,1 −
n1∑

i′1=1

ω̂1(Vi′1,1) I(Vi1,1 ≥ Vi′1,1)δ̄i′1,1

Y1(Vi′1,1−)
,

and

Li2,2 = ηi2,2
1

n1

n1∑
i1=1

I(Ri1,1 ≤ Ri,2)δi1,1

K̂1(Vi1,1−)K̂2(Xi2,2 + C(Zi; β̂)Wi1,1−)
+ δi2,2

K̂2(Vi2,2−)

⎛
⎝ 1

n1n2

∑
i′1,i′2

Bi′1,i′2

⎞
⎠

⎛
⎝∑

i′2

δi′2,2

K̂2(Vi′2,2−)
ψ ′(Ri′2,2 − α̂2)Zi′2,2Z̃

T
i′2,2

⎞
⎠

−1

ψ(Ri2,1 − α̂2)Zi2,2

+ ω̂2(Vi2,2)δ̄i,2 −
n2∑

i′2=1

ω̂2(Vi′2,2)I(Vi2,2 ≥ Vi′2,2)δ̄i′2,2
Y2(Vi′2,2−)

,
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with

ω̂1(s) = 1

Y1(s)

n1∑
i1=1

I(Vi1,1 > s)
Ŝh2(e

−ZT
i1 ,1β̂1Wi1,1)δi1,1

K̂1(Vi1,1−)

ω̂2(s) = 1

n1Y2(s)

n1∑
i1=1

n2∑
i2=1

δi1,1ηi2,2 I(Xi2,2 + C(Zi; β̂)Wi1,1 > s) I(Ri1,1 < Ri2,2)

K̂1(Vi1,1−)K̂2(Xi2,2 + C(Zi; β̂)Wi1,1)
,

Ŝh2(e
−ZT

i1 ,1β̂1Wi1,1) = 1

n2

n2∑
i2=1

I(C(Zi; β̂)Wi2,2 > Wi1,1)δi2,2

K̂2(Vi2,2−)
.
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Claim Reserving Using Distance-Based
Generalized Linear Models

Eva Boj and Teresa Costa

Abstract Generalized linear models (GLM) can be considered a stochastic version
of the classical Chain-Ladder (CL)method of claim reserving in nonlife insurance. In
particular, the deterministic CL model is reproduced when a GLM is fitted assuming
over-dispersed Poisson error distribution and logarithmic link. Our aim is to propose
the use of distance-based generalized linearmodels (DB-GLM) in the claim reserving
problem. DB-GLM can be considered a generalization of the classical GLM to the
distance-based analysis, because DB-GLM contains as a particular instance ordinary
GLM when the Euclidean, l2, metric is applied. Then, DB-GLM can be considered
too a stochastic version of the CL claim reserving method. In DB-GLM, the only
information required is a predictor distance matrix. DB-GLM can be fitted using
the dbstats package for R. To estimate reserve distributions and standard errors,
we propose a nonparametric bootstrap technique adequate to the distance-based
regression models. We illustrate the method with a well-known actuarial dataset.

Keywords Reserving ·Chain-Ladder ·Generalized linear models ·Distance-based
prediction · dbstats.

1 Introduction

The objective of this work is to propose the DB-GLM [7] as an alternative method-
ology to solve the claim reserving problem. To complete the tool, we propose using
the nonparametric technique of bootstrapping pairs [9] to estimate the predictive
distribution of reserves. Bootstrapping pairs is an adequate bootstrap technique for
DB-GLM as is proposed in [8].
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To contextualize the claim reserving problem we list some of the pioneers deter-
ministic methods in the literature (see [1, 20]): Grossing-up, Link ratio, CL, variants
of CL, de Vylder least squares, and arithmetic and geometric separation methods
of Taylor. Later some stochastic methods were proposed, both probabilistic and
Bayesian. A list of some of those methods is: the Mack model, the Bornhuetter-
Ferguson model and the Munich Chain-Ladder method. The three methods have
the common characteristic of generalizing (from a stochastic point of view) the CL
deterministic method, because the estimation of the reserves coincides in all of them.

The same occurs when using GLM (see [15]) as a stochastic method of claim
reserving, with the assumptions of over-dispersed Poisson distribution and logarith-
mic link. In this case, the estimation of the reserves coincides with that of the CL
deterministic method (see [14, 18, 21, 22] for a detailed proof). Additionally, the
GLM has as particular cases other deterministic methods as are: the least squares of
de Vylder and the arithmetic and geometric separation methods of Taylor. Therefore,
in the last decade, GLM has been studied in the actuarial literature in application to
the claim reserving problem. We refer to [2, 10–12] or [5] for a detailed descrip-
tion of the calculus of prediction errors when using GLM and when the problem is
estimating reserves.

When using the l2 metric (the named Euclidean), DB-GLM reproduces ordinary
GLM, and then we can consider that DB-GLM is a generalization of GLM in the
context of distance-based analysis. If using the Euclidean metric and assuming the
over-dispersed Poisson distribution and the logarithmic link with DB-GLM, the clas-
sical CLmethod is reproduced. In this study, we apply DB-GLM to the claim reserv-
ing problem assuming these hypothesis as an alternative method which generalizes
the classical CL deterministic method to the stochastic framework. With DB-GLM
we have the same particular cases than with GLM when using the Euclidean metric.
But with DB-GLM we have more treatments for the analysis because we could use
other metrics besides the Euclidean one.

The work is structured as follows: In Sect. 2 we describe the problem of claim
reserving and the CL deterministic method. In Sect. 2.1 we show how GLM is as a
stochastic generalization of the classical CL. In Sect. 3we list themain characteristics
of DB-GLM, we propose a nonparametric bootstrap technique for the DB-GLM and
we describe function dbglm of the dbstats package for R. In Sect. 4 we make a
numerical example to illustrate the proposed method of claim reserving. Finally, in
Sect. 5 we summarize the main results of the study.

2 Claim Reserving: The Chain-Ladder Method

Consider a portfolio of risks and assume that each claim is settled either in the accident
year or in the following k development years. Consider a family of random variables{
ci j

}
i, j∈{0,1,...,k}, where ci j is the amount of claim losses of accident year i which is

paid with a delay of j years and hence in development year j and in calendar year
i + j . We refer to ci j as the incremental loss of accident year i and development year



Claim Reserving Using Distance-Based Generalized Linear Models 137

Table 1 Run-off triangle with incremental losses

0 1 · · · j · · · k − i · · · k − 1 k

0 c0,0 c0,1 · · · c0, j · · · c0,k−i · · · c0,k−1 c0,k
1 c1,0 c1,1 · · · c1, j · · · c1,k−i · · · c1,k−1

· · · · · · · · · · · · · · · · · · · · · · · ·
i ci,0 ci,1 · · · ci, j · · · ci,k−i

· · · · · · · · · · · · · · · · · ·
k − j ck− j,0 ck− j,1 · · · ck− j, j

· · · · · · · · · · · ·
k − 1 ck−1,0 ck−1,1

k ck,0

j . Assume that the incremental losses ci j are observable for calendar years i + j ≤ k
and that they are collected in a run-off triangle as in Table1.

In the run-off triangle, the numbers are grouped by year of origin i , by rows,
and by development year j , by columns. The numbers on the against-diagonals with
i+ j = t denote the payments that were made in the calendar year t . The incremental
losses are unobservable for calendar years i+ j ≥ k+1 and the problem is to predict
those nonobservable incremental losses.

There are various kinds of incurred but not reported (IBNR) claim reserves which
are of interest. The reserves for the different accident years i = 1, . . . , k which are
obtained by adding the future incremental losses in the corresponding row of the
square, the total reserve which is calculated by adding all the future incremental
losses predicted in the bottom-right part of the run-off triangle, and the reserves for
the different calendar years t = k + 1, . . . , 2k which are obtained by adding the
incremental losses that were made in the future calendar years, i.e., the values of the
same against-diagonal t . We refer to [2, 5] for a detailed description.

As explained in Sect. 1, one of the first methods proposed in the literature to
estimate reserves was the CL method. The method works with cumulative losses

Ci j =
j∑

r=0

ci r .

The idea behind the CL method is that, in any development year, about the same
percentage of the claims from each year of origin will be settled. It is assumed that
the development of the losses of every accident year follows a development pattern
which is common to all accident years. A vector m = (m1, . . . ,mk) of parameters
is said to be a development pattern for factors if the identity

m j = E
[
Ci j

]
E

[
Ci j−1

] ,
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holds for all j ∈ {1, . . . , k} and for all i ∈ {0, 1, . . . , k}. Thus, a development
pattern for factors exists if, and only if, for every development year j ∈ {1, . . . , k}
the individual factors mi j = E[Ci j]

E[Ci j−1] are identical for all accident years. Then, for

every development year j ∈ {1, . . . , k}, each of the empirical individual factors
m̂i j = Ci j

Ci j−1
with i ∈ {0, 1, . . . , k − j} is a reasonable estimator of m j and this

is also true for every weighted mean m̂ j =
k− j∑
h=0

whj m̂hj with random variables (or

constants) satisfying
k− j∑
h=0

whj = 1. The estimator of the CL factor is obtained by:

m̂ j =

k− j∑
h=0

Chj

k− j∑
h=0

Chj−1

.

Then, CL predictors of the cumulative losses Ci j with i + j ≥ k + 1 are defined
as

Ĉ i j = Ci k−i

j∏
h=k−i+1

m̂h .

Finally, the incremental losses can be calculated by differences.

2.1 Generalized Linear Model: A Stochastic
Chain-Ladder Method

Now, we describe howGLM is applied in the estimation of reserves. Assume a GLM
to model the incremental losses of the run-off triangle. Assume an over-dispersed
Poisson distribution

μi j = E
[
ci j

]
andVar

[
ci j

] = (
ϕ
/
wi j

)
V

(
μi j

) = (
ϕ
/
wi j

)
μi j

where ϕ is the dispersion parameter and wi j are a priori weights of the data, assumed
equal to one, wi j = 1, for the incremental claim losses of a run-off triangle. Assume
for the GLM the logarithmic link function logμi j = ηi j .

Then, we can define log
(
μi j

) = c0 + αi + β j , a GLM in which the responses
ci j are modeled as random variables with linear predictor ηi j = c0 + αi + β j ,
where αi is the factor corresponding to the accident year i = 1, . . . , k and β j is the
factor corresponding to the development year j = 1, . . . , k. The c0 value is the term
corresponding to the accident year 0 and development year 0. In the Poisson case,
where ϕ = 1 is assumed, over-dispersion is taken into account by estimating the
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unknown scale parameter ϕ as a part of the fitting procedure. Then predicted values

ĉi j of the IBNR reserves are estimated from ĉi j = exp
(
ĉ0 + α̂i + β̂ j

)
.

The estimates of the cumulative losses Ĉik with i = 1, 2, . . . , k in this GLMmay
be obtained from the sums

Ĉik = Ci k−i +
k∑

j=k−i+1

eĉ0+α̂i+β̂ j

where ĉ0, α̂i and β̂ j are the maximum likelihood estimates of the parameters. In [18],
maximizing a conditional likelihood that gives the same estimates than the Poisson
model, authors obtained the following estimates of the cumulative losses Ĉik :

Ĉik = Ci k−i

1 −
k∑

j=k−i+1
p̂ j

i = 1, 2, . . . , k,

where p̂ j is the estimate of the (unconditional) probability that a claim is reported in

development year j and
k∑

h=0
ph = 1. The estimate of the ultimate cumulative losses

for accident year k − j is:

Ĉk− j k = Ck− j j

1 −
k∑

h= j+1
p̂h

.

In the CL, the estimates are

Ĉk− j k = Ck− j j

k∏
h= j+1

m̂h .

Finally, it is shown in [18] that 1

1−
k∑

h= j+1
p̂h

=
k∏

h= j+1
m̂h and thus, the estimates in the

CL method are equal that in the GLM model described above.
In this section, we have described the classical CL method and its generalization

via GLM. In the next section, we propose the DB-GLM as a generalization of the CL
method and as a generalization of the GLM for the solution of the claim reserving
problem.
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3 Distance-Based Generalized Linear Models

DB-GLM has been defined in [7] where we refer for a detailed description. In this
section, we recall its main characteristics. DB-GLM could be fitted using the dbglm
function of the dbstats package for R (see [6]).We refer to the help of the package
for a detailed description of the function and its usage.

Let Ω = (Ω1, . . . ,Ωn) a population of n individuals; let F = (
F1, . . . , Fp

)
the

n × p matrix with a set of p mixed predictors; let w a priori weight of individuals of
size n × 1 with wi ∈ (0, 1); let y the response variable of size n × 1; and let Δ the
n× n matrix, whose entries are the squared distances δ2

(
Ωi ,Ω j

)
. In the problem of

claim reserving responses are the incremental losses and predictors are the origin and
development years as is explained in Sect. 2 for ordinary GLM. The distances matrix
contains predictor’s information and it is the only object entered in the model for the
predictor’s space. In claim reserving, with the aim to reproduce the CL method we
can use the Euclidean metric, but one of the advantages of this model is that we can
choose a distance function more ‘appropriate’ than the Euclidean for a given set of
predictors (e.g., [13]).

In the distance-based linear model (DB-LM)we calculate the n×n inner products
matrix Gw = − 1

2 Jw · Δ · Jw where Jw = I − 1 · w′ is the w-centering matrix. Let
gw the n × 1 row vector containing the diagonal entries of Gw. Then the n × k latent
Euclidean configuration matrix Xw w-centered is such that Gw = Xw · X ′

w. The
DB-LM of response y with weights w and predictor matrix Δ is defined as the WLS
regression of y on a w-centered Euclidean configuration Xw.

The hat matrix in a DB-LM is defined as Hw = Gw ·
(
D1/2

w · F+
w · D1/2

w

)
, where

Dw = diag(w), Fw = D1/2
w ·Gw · D1/2

w and F+
w is the Moore-Penrose pseudo-inverse

of Fw. Then the predicted response is:

ŷ = ȳw1 + Hw · (y − ȳw1) ,

where ȳw = wT · y is the wmean of y. The prediction of a new case Ωn+1 given δn+1

the squared distances to the n previously known individuals is:

ŷn+1 = ȳw + 1

2
(gw − δn+1) ·

(
D1/2

w · F+
w · D1/2

w

)
· (y − ȳw1) .

DB-LM does not depend on a specific Xw, since the final quantities are obtained
directly from distances. DB-LM contains WLS as a particular instance: if we start
from a n × r w-centered matrix Xw of r continuous predictors corresponding to n
individuals and we define Δ as the matrix of squared Euclidean distances between
rows of Xw, then Xw is trivially a Euclidean configuration of Δ, hence the DB-LM
hatmatrix, response and predictions coincidewith the correspondingWLS quantities
of ordinary linear model.

Now, in DB-GLM we have the same elements as in DB-LM. Just as GLM with
respect to LM, DB-GLM differs from DB-LM in two aspects: first, we assume the
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responses distribution is in an exponential dispersion family, as in any GLM; second,
the relation between the linear predictorη = Xw·β obtained from the latent Euclidean
configuration Xw, and the response y is given by a link function g (·): y = g−1 (η).

To fit DB-GLM we use a standard IWLS algorithm, where DB-LM substitutes
LM. This IWLS estimation process for DB-GLM does not depend on a specific Xw

since the final quantities are obtained directly from distances.
DB-GLM contains GLM as a particular case: if we start from a n × r w-centered

matrix Xw of r continuous predictors corresponding to n individuals and we define
Δ as the matrix of squared Euclidean distances between rows of Xw, then Xw is
trivially a Euclidean configuration of Δ, hence the DB-GLM hat matrix, response
and predictions coincide with the corresponding IWLS quantities of ordinary GLM.

As a consequence,we can consider theDB-GLMas a generalization of theGLMto
the distance-based analysis. In this line, we can consider the DB-GLM as a stochastic
version of the CL deterministic method.We have shown in the last section, that when
we assume in a GLM, an over-dispersed Poisson distribution and the logarithmic link
we obtain the same estimations of reserves as those of the CL. Then, if we assume
in a DB-GLM an over-dispersed Poisson distribution, the logarithmic link and the
Euclidean metric, we will obtain the same estimations of reserves as those of the CL
method.

To complete the methodology to estimate the predictive distribution of reserves,
we propose to employ the resampling technique of bootstrapping pairs or resampling
cases in which each bootstrap sample consists of n response-predictor pairs from the
original data (see, e.g., [9]). This technique is adequate for the distance-basedmodels
as is shown in [4, 8]).

The mean squared error for the origin year reserves and for the total reserve,
can be calculated in the Poisson case with logarithmic link with the following
approximations (see, e.g., [2, 5]), which consist on the sum of two components:
the process variance and the estimation variance. For the origin year reserves we
have, for i = 1, . . . , k:

E

[(
Ri − R̂i

)2
]

≈
∑

j=1,..,k
i+ j>k

ϕμi j+μT
i V ar [ηi ]μi , (1)

and for the total reserve we have:

E

[(
R − R̂

)2
]

≈
∑

i, j=1,...,k
i+ j>k

ϕμi j + μT Var [η]μ. (2)

Then, the prediction error (PE) can be calculated by the square root of the mean
squared errors (1) and (2). In the case in which we estimate by bootstrapping, the
predictive distributionof thefittedvalues,we can approximate the estimationvariance
by the standard error (SE) of the bootstrapped predictive distribution. Then, PE for
the origin year reserves for i = 1, . . . , k and for the total reserve can be calculated
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as follows:

PEboot (Ri ) ≈
√√√√√

∑
j=1,..,k
i+ j>k

ϕ̂P ĉi j + SE
(
R̂boot
i

)2
, (3)

PEboot (R) ≈
√√√√√

∑
i, j=1,...,k
i+ j>k

ϕ̂P ĉi j + SE
(
R̂boot

)2
. (4)

4 Numerical Example

To illustrate the proposed methodology we use the triangle of [19] of Table2 with
incremental losses.

This dataset is used in many texts on IBNR problems as are [10, 11, 16, 17] to
illustrate the use of the GLM and other claim reserving techniques. In Table3 we
show the estimation of reserveswith theCLmethod. These estimations are equal for a
GLM inwhich we assume an over-dispersed Poisson distribution and the logarithmic
link, and are equal for a DB-GLMwith the same assumptions of the GLM, and using
the metric l2 between factors. The instructions of the dbstats package to fit DB-
GLM are in the Appendix.

In Table4, we show the results for the GLM and for the DB-GLM when using
analytic formulas of the Poisson distribution in the estimation variance. First, in the
second columnwe show the estimation of the IBNR reserves (origin and total), in the
third column we show the PE calculated using formulas (1) and (2), and in the fourth
column, we show the named ‘coefficient of variation’, which is defined as the PE
over the estimated IBNR (in per centage). In Table5 we show the results for the GLM

Table 2 Run-off triangle of [19] with 55 incremental losses

0 1 2 3 4 5 6 7 8 9

0 357848 766940 610542 482940 527326 574398 146342 139950 227229 67948

1 352118 884021 933894 1183289 445745 320996 527804 266172 425046

2 290507 1001799 926219 1016654 750816 146923 495992 280405

3 310608 1108250 776189 1562400 272482 352053 206286

4 443160 693190 991983 769488 504851 470639

5 396132 937085 847498 805037 705960

6 440832 847361 1131398 1063269

7 359480 1061648 1443370

8 376686 986608

9 344014
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Table 4 Origin year reserves and total reserve, prediction errors and coefficients of variation for
the GLM and DB-GLM assuming an over-dispersed Poisson, the logarithmic link and the l2 metric,
using analytic formula

Origin year Reserve Prediction error Coefficient of variation (%)

1 94634 110100 116.34

2 469511 216043 46.01

3 709638 260871 36.76

4 984889 303549 30.82

5 1419459 375013 26.42

6 2177641 495377 22.75

7 3920301 789960 20.15

8 4278972 1046512 24.46

9 4625811 1980101 42.81

Total 18680856 2945659 15.77

Table 5 Origin year mean reserves and total mean reserve, prediction errors and coefficients of
variation for the GLM assuming an over-dispersed Poisson and the logarithmic link, using bootstrap
with size 1000

Origin year Mean reserve Prediction error Coefficient of variation (%)

1 100416 108422 114.57

2 477357 213629 45.50

3 727898 257700 36.31

4 978122 301693 30.63

5 1438384 369128 26.00

6 2194055 491174 22.55

7 3934897 787571 20.08

8 4236251 1032951 24.14

9 4711136 2081503 44.99

Total 18757856 2882413 15.43

using bootstrapping residuals (based on Pearson residuals) for the approximation of
the estimation variance, and in Table6 we show the results for the DB-GLM using
bootstrapping pairs and calculating PE with formulas (3) and (4). In Tables5 and 6
we include the mean reserves, the PE and the corresponding coefficients of variation,
calculated over the IBNR estimated in Table4.

If we compare the results shown in Tables5 and 6 we observe differences. This
is due to the different bootstrap methodologies. In both tables the fitted responses
are the same as those of the CL classical method. But to estimate PE, in Table5 we
use bootstrapping residuals and in Table6 bootstrapping pairs. The coefficients of
variation of Table5 are smaller for the initial origin years and greater for the latest
origin years and for the total reserve than those coefficients of Table6.
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Table 6 Origin year mean reserves and total mean reserve, prediction errors and coefficients of
variation for the DB-GLM assuming an over-dispersed Poisson, the logarithmic link and the l2

metric, using bootstrap with size 1000

Origin year Mean reserve Prediction error Coefficient of variation (%)

1 197097 155180 163.97

2 567832 229654 48.91

3 802434 292340 41.19

4 1096055 317125 32.19

5 1545744 391938 27.61

6 2310988 489300 22.46

7 3936212 835374 21.30

8 4316678 660744 15.44

9 4784830 677216 14.63

Total 19608104 2231054 11.94

Fig. 1 Predictive
distribution of the total
provision

One deficiency of the bootstrapping pairs is that, compared with the bootstrapping
residuals (when it is valid), generally it does not yield very accurate results. But
bootstrapping pairs is less sensible to the hypotheses of the model, and the estimated
standard error offers reasonable results when some hypotheses of the model are not
satisfied. In the problem of claim reserving we always have a small dataset that
probably does not follow the hypotheses of the GLM, then bootstrapping pairs is a
reasonably methodology to estimate PE.

We show in Fig. 1 the histogram of the predictive distribution of the total reserve
estimated with the DB-GLM and bootstrapping pairs. We include in the Appendix
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some descriptive statistics of this predictive distribution. We point out that the quan-
tiles give the value at risk (VaR) of the losses of the portfolio. For example, the VaR
with a confidence level of the 75% is equal to 21093146.

5 Conclusions

We propose the use of the DB-GLM as an alternative methodology of claim reserv-
ing. Jointly with a bootstrapping pairs methodology we can estimate the predictive
distribution of reserves and calculate prediction errors. The method is a tool for the
actuary to take decisions about the best estimate of reserves and the solvency mar-
gins, and, therefore, about the financial inversions of the solvency capital required
for the Company in the current context of Solvency II.

The method has the CL classical method as a particular case, when the over-
dispersed Poisson distribution, the logarithmic link and the Euclidean distance
between factors is assumed. The method has other particular cases (as has the GLM):
the least squares method of de Vylder and the Taylor’s separation (geometric and
arithmetic) methods.

Additionally, our methodology generalizes the GLM to the distance-based analy-
sis. Moreover, with the aim to obtain a best estimation of the reserves, it is possible to
use another distance function instead of the Euclidean between factors (origin years
and development years) of the run-of-triangle.

We illustrate the analysiswith the triangle of [19].We estimate origin year reserves
and total reserve and its corresponding prediction errors (see Tables4, 5 and 6). We
show the histogram of the predictive distribution of the total reserve (see Fig. 1) and
some statistics which describe the estimated distribution of the future losses of the
Company. In particular it is of interest the study of the quantiles of the distribution,
that provide to the actuary an estimationof theVaRof the portfolio, given a confidence
level.

Acknowledgments Work supported by the Spanish Ministerio de Educación y Ciencia, grant
MTM2014-56535-R.

Appendix

# Fitting DB-GLM
R> n<-length(cij)
R> k<-trunc(sqrt(2*n))
R> i<-rep(1:k,k:1);i<-as.factor(i)
R> j<-sequence(k:1);j<-as.factor(j)
R> orig.CL <- dbglm( cij ˜ i + j, family = quasipoisson,
metric = "euclidean", method = "rel.gvar", rel.gvar = 1)

# Descriptive statistics of the predictive distribution
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# of the total reserve
R> quantile(payments, c(0.5,0.75,0.90,0.95,0.99))

50% 75% 90% 95% 99%
19541406 21093146 22518643 23512809 25248654

R> mean(payments) # mean
[1] 19608104
R> sd(payments) # standard deviation
[1] 2233737
R> cv<-(sd(payments)/mean(payments))*100 # cv in %
[1] 11.39191
R> pp<-(payments-mean(payments))/sd(payments)
R> sum(ppˆ3)/(nBoot-1) # skewness
[1] 0.2290295
R> sum(ppˆ4)/(nBoot-1) -3 # kurtosis
[1] -0.1569525
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Discrimination, Binomials and Glass Ceiling
Effects

María Paz Espinosa, Eva Ferreira and Winfried Stute

Abstract We discuss dynamic models designed to describe the evolution of gender
gaps deriving from the nature of the social decision processes. In particular, we
study the committee choice function that maps a present committee composition to
its future composition. The properties of this function and the decision mechanisms
will determine the characteristics of the stochastic process that drives the dynamics
over time and the long run equilibrium.Wealso discuss how to estimate the committee
choice function parametrically and nonparametrically using conditional maximum
likelihood.

Keywords Conditional nonparametric estimation · Gender gap dynamics

1 Introduction

The presence of gender gaps in the labour market has been well documented in the
empirical literature. Female workers get lower wages and the differences seem to
widen at upper levels (e.g., Arulampalam et al. [1]; De la Rica et al. [5]; Morgan
[11]). Other authors have also identified a lower probability of females rising to the
top positions on the corporate ladder (e.g., Bain and Cummings [2]). This paper seeks
to shed some light on the dynamics of these gender gaps. First, we formalize decision
processes that involve a gender bias and look at the implied dynamic models. The
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properties of the selection decision mechanisms will determine the characteristics of
the stochastic process that drives the dynamics over time for the long run equilibrium.
On the other hand, we also discuss the implied gender gaps in a hierarchical structure
regarding the long run equilibrium, by formalizing statistical definitions of the glass
ceiling effects.1

The model starts from a perception bias and analyzes how it affects the dynamics
of promotion and the evolution of the gender gap. An important element of our
model is that the decisions regarding the selection of candidates, for example for a
promotion, are made by aggregating the preferences of the individual members of
the committee. Thus, the composition of the committee is crucial for the decision
made. Furthermore, the composition of the committee is endogenous since it comes
from previous selection decisions; this feature of our model reflects the idea that
when there is discrimination against a gender or an ethnic origin or a social group,
this gender, ethnic origin or social group will be less present in the places where
decisions are made.

The committee choice function maps the committee composition regarding a
given decision and this decision will, in turn, determine the composition of future
committees. Thus, we obtain a function that links the committee composition in one
period with the committee composition in the previous one. We discuss the conse-
quences of the characteristics of these functions in the long run. When abilities are
not perfectly observable, meaning that candidates cannot be ranked, the selection
process is conceived as a random draw from the population of participating individ-
uals. This leads to a special autoregressive process that does not fit into the usual
processes studied in time series analysis. We use Markov and martingale theory to
derive the long run properties.

The paper is organized as follows. Section2 sets up the framework and defines
the committee choice function. Section3 analyzes the time dynamics and the long
run properties. Section4 discusses estimation procedures and Sect. 5 concludes.

2 Decision Processes and Choice Function

This section formalizes the decision process that aggregates the preferences of the
decision makers to yield a collective decision on the candidates to be selected. The
properties of the preference aggregation procedure will determine the properties of
the stochastic process characterizing the dynamics. The objective is to see how a
group bias evolves over time depending on the selection process.

At each level n, there is a set of candidates {1, 2, 3, ...,Fn + Mn} competing to
become members of a committee of size zn. There are two types of candidates, f and
m; Fn candidates of type f and Mn of type m.

1A glass ceiling is described as a gender difference that increases along the corporate hierarchy and
is not explained by other job-relevant characteristics of the employee [4].
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At level n there is also a set of decision makers {1, 2, 3, ..., zn−1} in charge of
the selection of candidates for the n-level committee. The set of decision makers
has zn−1 members (the members of the committee at the previous level n − 1) with
defined preferences for the set of candidates. This modelling approach could corre-
spond to a particular committee that renews over time and its members elect the new
members, but, more generally, we try to represent how relevant social positions (in
politics, business,...) are renewed over time. Obviously, the set of individuals with
high decision-making power at a given periodmake selection decisions that influence
who will be in power in the next period.

Definition 1 A decision maker preference relation (reflexive, complete and transi-
tive) Pi is defined on the set of candidates {1, 2, 3, ...,Fn + Mn}.

Note that this formulation excludes the possibility of candidates being comple-
mentary. Candidates are independent in this model.We could also model preferences
defined for the set of all possible teams of z candidates so that synergies among can-
didates could be considered, but this is beyond the scope of this paper.

Definition 2 Pzn−1

(Fn+Mn)
is the set of all zn−1 decision makers’ preference profiles

defined for the (Fn + Mn) candidates.

Definition 3 A Committee Choice Function (CCF) is a function

f : Pzn−1

(Fn+Mn)
→ [{zn}] (1)

mapping the zn−1 members’ preferences regarding a set of zn individuals selected
from the set of candidates; [{zn}] represents all possible sets of zn candidates.

The committee preference profile, denoted
(
P1,P2,P3, ....,Pzn−1

)
, is a vector

containing the preference profiles of the members of the committee.

Assumption 1 (Anonymity) If we permute the indexes of the members of the com-
mittee, the CCF assigns the same outcome, that is, f treats all decision makers iden-
tically, and no member has more power than another.

Assumption 2 (Gender specific bias) There are two types of members, f andm. All
members of type f have the same preference profile Pf ∈ P(Fn+Mn), and all members
of type m have the preference profile Pm ∈ P(Fn+Mn).

Under Assumption 2, there are only two types of preferences Pf and Pm, where
Pf (Pm) denotes the preference profile of a female (male) member of the committee.
Thus, taking into account Assumption 1, wemay represent the committee preference
profile as (zfn−1Pf , zmn−1Pm), that is, z

f
n−1 members with preferences Pf and zmn−1

members with preferences Pm.
We ignore any difference in abilities among the candidates. This allows us to

isolate some consequences of gender bias.
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Assumption 3 (Unobservable abilities) Decision makers cannot distinguish be-
tween any two candidates of the same type.

Given Assumption 3, the outcome can be represented as (zfn, zmn ), that is, the
number of females and males selected. The committee choice function f assigns an
outcome (zfn, zmn ) to each preference profile (zfn−1Pf , zmn−1Pm)

f(zfn−1Pf , z
m
n−1Pm) = (zfn, z

m
n )

Assumption 4 (Responsiveness) The CCF is responsive to the number of men
and women among the decision makers: Given two committee preference profiles
(zfn−1Pf , zmn−1Pm) and (zf

′
n−1Pf , zm

′
n−1Pm) such that zf

′
n−1 > zfn−1 and zfn−1 + zmn−1 =

zf
′
n−1 + zm

′
n−1 = z, then the outcomes (zfn, zmn ) = f(zfn−1Pf , zmn−1Pm) and (zf

′
n , zm

′
n ) =

f(zf
′
n−1Pf , zm

′
n−1Pm) are such that zfn ≤ zf

′
n .

Assumption 5 (Linearity) f(zfn−1Pf , zmn−1Pm) = 1
β
f(βzfn−1Pf ,βzmn−1Pm) for any

β > 0.

WhenAssumption 5 holds, only the proportion ofmen andwomen in the decision-
making process matter regarding the outcome. From Assumption 5, f(zfn−1Pf , zmn−1

Pm) = zf(
zfn−1

z Pf ,
zmn−1

z Pm) = z( z
f
n
z ,

zmn
z ). Denoting

zfn−1

zn−1
= ξn−1 and

zmn−1

zn−1
= 1 − ξn−1,

and assuming zn = z for all n,

f(ξn−1Pf , (1 − ξn−1)Pm) = (ξn, 1 − ξn)

Thus, the committee choice function selects for level n a proportion of members
of type f which is a function of the proportion of members of type f at level n − 1,
ξn−1, and the preferences of each type (Pf ,Pm). The previous properties are similar to
those required of social choice functions that aggregate the preferences of the voters
or citizens (see May [8, 9]). We have adapted them to this context as the decision of
a committee also aggregates the individual preferences of its members.

The rest of the paper considers that preferences can be summarized in a parameter
vector θ and define f(ξn−1Pf , (1 − ξn−1)Pm) = f (ξn−1, θ) = ξn.

Using this notation, we summarize how the female proportion is affected by the
preferences and the selection procedure through the parameter vector θ and the choice
function f . If no parametric form is assumed, the notation will drop the parameter
vector θ.

From Assumption 4 (Responsiveness) we know that the function f (ξn−1, θ) in-
creases in ξn−1. We will now study which properties of this function would yield
convergence.
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2.1 Some Examples of Committee Choice Functions

(1) Majority rule and extreme preferences. Assume n is odd and decision makers of
type m (f ) strictly prefer candidates of type m (f ). Then if ξn−1 >

1
2 , ξn = 1; if

ξn−1 <
1
2 , ξn = 0.

With these extremepreferences, anddependingon the initial gender composition,
we will have only men or only women on the committee.

(2) When preferences are not extreme, decisions are made by consensus and each
group influences the final decision according to its weight: f (ξn−1, θ) = ξn =
μf ξn−1 + μm (1 − ξn−1), with θ = (

μf ,μm
)
, where μf is the preferred female

proportion chosen by females and μm is the preferred female proportion chosen
by males.

(3) Each decision maker picks up a candidate and decision makers of type m(f )
strictly prefer candidates of type m (f ). Then, f (ξn−1, θ) = ξn = ξn−1.

(4) Quota rules and majority. Assume ξn is restricted to ξn ∈ [0.3, 0.7]. Assume n
is odd and decision makers of type m (f ) strictly prefer candidates of type m (f ).
Then if ξn−1 >

1
2 , ξn = 0.7; if ξn−1 <

1
2 , ξn = 0.3.

(5) Borda rule. Assume there are 3 decision makers, 2 female and 1 male. 10 candi-
dates (1–5 are female and 6–10 male) compete for 5 positions. Each member has
to assign points (1 or 2) to candidates. Points are added up and the 5 candidates
with the largest number of points get elected. Members 1 and 2 assign 1 point
to all males and 2 points to all females; member 3 assigns 1 point to all females
and 2 points to all males. Candidates 1–5 get 5 points; candidates 6–10 get 4
points. Candidates 1–5 get elected.

3 Gender Gap Dynamics and Conditional Binomials

According to the previous description, the choice function corresponds to a deter-
ministic outcome. However, decision processes cannot be considered deterministic
and are best described as being stochastic. Consider that, for a committee of a fixed
size z, the number of females zn at period n, follows a binomial distribution with
probability of success equal to f (ξn−1), where f may be parametrically specified or
not. In the parametric case, it can be written as f (ξn−1, θ) where θ is a parameter
vector that accounts for the characteristics of the decision makers’ preferences and
other features such as the participation rate. That is, zn ∼ B (z, f (ξn−1, θ)). There-
fore, we will model the outcome of the decision process, the share of females, as an
autoregressive process:

ξn = f (ξn−1, θ) + εn (2)

where E (εn|ξn−1) = 0. Since 0 ≤ ξn ≤ 1, model (2) is a restricted model.
In a time series context, we need to make some assumptions related to ergodicity

or some type of stationarity of the process in order to undertake further statistical
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analysis. There is a vast literature on ergodicity of (2), according to the shape of f
(linear and nonlinear) and the relationship between the main part and the error term.
Recent papers such as Meitz and Salkonen [10] (and the references therein) discuss
the geometric ergodicity for nonlinear AR-ARCH models. However, in this case
εn crucially depends on the main part and the process described in (2) does not fit
any of the nonlinear autoregressive models with conditionally heteroskedastic errors
considered in those papers. That is, εn cannot be written in any GARCH form like
σ (ξn−1, εn−1, ...) un, with an independent innovation un. Alternatively, to provide
the limit structure we use the Markov structure of the process.

Since zn ∼ B (z, f (ξn−1, θ)), {z1, z2, . . .} is a Markov sequence with initial value
Z0 = z0 in S = {0, 1, . . . , z} and transition probabilities

pij = P(Zn = j|Zn−1 = i)

=
(
z

j

)
f j

(
i

z

)(
1 − f

(
i

z

))z−j

,

i, j ∈ S. Hence, conditionally on Zn−1 = i, Zn is Binomial with parameters z and
f (i/z). Provided that

0 < f

(
i

z

)
< 1 for all i ∈ S, (3)

the chain is positive recurrent and aperiodic and admits a unique stationary distrib-
ution π = (π0,π1, . . . ,πz), i.e. there exists a unique probability vector π such that

π = πP, (4)

where P = (pij) is the associated transition matrix from above. The vector π consti-
tutes the unconditional distribution of Zn in the long run.

Even though in theory π may be determined by solving Eq. (4), this is impossible
in practice since a flexible modelling of f and hence P includes some unknown para-
meters. Therefore, a purely algebraic argument as to solving (4) is inappropriate to
provide us with some insight into the equilibrium distribution of the Z-chain. Ferreira
and Stute [6] provide some general results for the short and long run. Moreover, they
provide a normal approximation that performs well even for small to moderate sizes.

For the normal approximation, we have that

√
z (ξn − pn) → N (0, p∞ (1 − p∞))

as n, z → ∞, or,

√
zξn ≈ N

(√
zp∞, p∞ (1 − p∞)

)
zn ≈ N (z p∞, z p∞ (1 − p∞))
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where p∞ is the fixed point of the choice function f . Note that the only quantity
that needs to be computed for the asymptotic distribution is the fixed point of f .
Therefore, we do not require a parametric function to obtain the limit distribution,
and nonparametric techniques can be applied to estimate that point. Once this is
done, we can use the normal approximation to compute confidence intervals of the
long run proportion of females on the committee. Note that this approach provides
us with the unconditional distribution of ξn in the long run.

Using the long run distribution, we can then construct consistent estimators of the
choice function f , also using nonparametric estimation.

However, estimating f consistently either parametrically or nonparametrically,
for a finite sample where the stationarity of ξn cannot be assumed, becomes a very
challenging problem.

4 Consistent Estimation

4.1 Parametric Case

In this section, we discuss how to estimate parameters using maximum likelihood.
Denote by zk the observed realization at step k, for k = 0, 1, ..., n. In general, denoting
densities by gk(·, θ), we can write

gk (z1, z2, ..., zk, θ) = gk−1 (z1, z2, ..., zk−1, θ) gk (zk|z1, z2, ..., zk−1, θ) ,

and the log-likelihood can be written as

Ln (θ) =
n∑

k=1

ln gk (zk, θ|z1, z2, ..., zk−1) .

The maximum likelihood equation then becomes

n∑
k=1

∂

∂θ
ln gk (zk, θ|z1, z2, ..., zk−1) = 0. (5)

In our case, the conditional density is:

gk (zk, θ|zk−1) ≡ g (zk, θ|zk−1) =
(
z

zk

)
f

(
zk−1

z
, θ

)zk (
1 − f

(
zk−1

z
, θ

))z−zk

,

where θ is an r-dimensional parameter.



156 M.P. Espinosa et al.

Therefore, Eq. (5) leads in this case to:

For u = 1, ..., r
n∑

k=0

∂

∂θu
ln g (zk, θ|zk−1) = 0 ⇔

n∑
k=0

[
zk
fu

( zk−1

z , θ
)

f
( zk−1

z , θ
) − (z − zk)

fu
( zk−1

z , θ
)

1 − f
( zk−1

z , θ
)
]

= 0 ⇔
n∑

k=0

[
zk

(
fu

( zk−1

z , θ
)

f
( zk−1

z , θ
) + fu

( zk−1

z , θ
)

1 − f
( zk−1

z , θ
)
)

− z
fu

( zk−1

z , θ
)

1 − f
( zk−1

z , θ
)
]

= 0 ⇔
n∑

k=0

[
zk − zf

(
zk−1

z
, θ

)]
fu

( zk−1

z , θ
)

(
1 − f

( zk−1

z , θ
))
f
( zk−1

z , θ
) = 0 (6)

where fu denotes the partial derivative ∂f /∂θu. Since 0 < f < 1, (6) can also be
written as

n∑
k=0

[
ξk − f (ξk−1, θ)

]
fu (ξk−1, θ) = 0

and the estimator becomes the usual OLS estimator in model (2).
Note that for any θ, the above sum is a martingale in differences, since

Eθ

[
zk − zf

( zk−1

z , θ
) |Fk−1

] = 0 and the weights

wu,θ (zk−1) = fu
( zk−1

z , θ
)

(
1 − f

( zk−1

z , θ
))
f
( zk−1

z , θ
)

are Fk−1-measurable. The consistency results use the SLLN for Markov chains
(Billingsley [3]). Let {Xn}n=1,0,... be a finite Markov chain with stationary proba-
bility π and transition matrix P. Let f (·) be any function in L1

π , then, given any initial
probability measure π0 we have that

lim
n→∞

1

n

n∑
k=1

f (Xk) = Eπ (X1)

This result is very important since it means that it can begin under any initial
probability measure, which is very useful for inference in our context.

Now, consider the following assumptions

(A1) For each θ, the stationary distribution π exists and it is unique,
(A2) For each m, P(·|zk−1 = m) is absolutely continuous with respect to π and

P(·|zk−1) << π(·),
(A3) Eθ

[∣∣[z2 − zf
( z1
z , θ

)]
wu,θ (z1)

∣∣2+ε
]
< ∞ for each θ and u = 1, ..., r.
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Applying the results in Theorems 1.1, 1.2, 2.1 and 2.2 from Billingsley [3], the
following results are straightforward:

Theorem 1 Under assumptions (A1) and (A2),
for any θ,

1

n

n∑
k=1

[
zk − zf

(
zk−1

z
, θ

)]
wu,θ (zk−1) → Eθ

[[
z2 − zf

(
z1
z
, θ

)]
wu,θ (z1)

]
= 0

with probability one.

Theorem 2 Under assumptions (A1)–(A3),

1√
n

n∑
k=1

[
zk − zf

(
zk−1

z
, θ

)]
wu,θ (zk−1) →d N (0,σ (θ))

where σuv (θ) = Eθ

[[
z2 − zf

( z1
z , θ

)]2
wu,θ (z1) wv,θ (z1)

]
< ∞.

Theorem 3 There exists a consistent maximum likelihood estimator of the true pa-
rameter θ0, θn, which is a local maximum of the likelihood equation with probability
going to one as n → ∞.

Theorem 4 Let yn and l be the vectors with components
yn,u = n−1 ∑n

k=1

[
zk − zf

( zk−1

z , θ0
)]
wu,θ0 (zk−1) and lu = n1/2

(
θn,u − θ0,u

)
. Un-

der (A1) to (A3),

yn ∼ σ (θ0) ln
yn → dN (0,σ (θ0))

ln → dN
(
0,σ−1 (θ0)

)

2

[
max

θ
Ln − L0

n

]
∼ 〈σ (θ0) ln, ln〉 ∼ 〈

yn,σ
−1 (θ0) yn

〉

2

[
max

θ
Ln − L0

n

]
→ dχ2

r

That is, the ML estimator for this model is the OLS estimator. Moreover, we have
shown that this unusual autoregressive structure fulfils the conditions for consistency
and asymptotic normality.

4.2 Nonparametric Case

To obtain a nonparametric estimation of f , we can use a nonparametric log-likelihood
function as
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Ln (f ) =
n∑

k=1

ln

[(
z

zk

)
f (ξ)zk (1 − f (ξ))z−zk

]
K

(
ξ − zk−1/z

nh

)
(7)

To maximize (7) is equivalent to maximizing

n∑
k=1

[
zk ln f (ξ) + (z − zk) ln (1 − f (ξ))

]
K

(
ξ − zk−1/z

nh

)

for each value f (ξ) = a. First note that h(a) = zk ln a + (z − zk) ln (1 − a) is a con-
cave function, since

h′(a) = zk
1

a
− (z − zk)

1

1 − a

h′′(a) = −zk
1

a2
− (z − zk)

1

(1 − a)2

= − zk (1 − a)2 + (z − zk) a2

a2 (1 − a)2
< 0

By differentiating we obtain the maximum as

n∑
k=1

[
zk
1

a
− (z − zk)

1

1 − a

]
K

(
ξ − zk−1/z

nh

)
= 0

Solving the equation for a we obtain

n∑
k=1

[
zk (1 − a) − (z − zk) a

a (1 − a)

]
K

(
ξ − zk−1/z

nh

)
= 0

n∑
k=1

[zk − za]K

(
ξ − zk−1/z

nh

)
= 0

and the nonparametric estimator of f becomes

f̂ (ξ) =
∑n

k=1 K
(

ξ−zk−1/z
nh

)
zk
z∑n

k=1 K
(

ξ−zk−1/z
nh

)

Observe that the nonparametric estimator becomes a usual regression kernel, as
expected from the parametric result. However, we have no guarantee of the sufficient
conditions, such as a stationary density for the variables zk/z or mixing conditions
for the error term, to derive the usual asymptotic properties as in Härdle [7] or Wand
and Jones [12]. Therefore, further study is required to obtain the consistency of the
nonparametric estimator, a challenging topic for future research.
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5 Concluding Remarks

This paper builds dynamic models designed to describe the evolution of gender gaps
deriving from the nature of social decision processes. These processes may involve
bias or discrimination against certain social groups in job promotion or other selection
mechanisms. We study how the properties of the decision mechanisms and the pref-
erences of the decision makers determine the characteristics of the stochastic process
that drives the dynamics over time and the long run equilibrium. Since the autore-
gressive process that drives the dynamics does not have conditionally heterocedastic
errors, the consistency and asymptotic normality must be specifically derived. We
provide these results for the parametric estimation of the committee choice function
using maximum likelihood, along with some insights on how to estimate it nonpara-
metrically. The fact that there is no need to assume that the process starts from the
stationary distribution, as in this model of gender dynamics, is remarkable.

For practitioners, given data on the observed percentage of females in a given
position, or as members of a given committee, in n periods, the procedure to estimate
the committee function becomes very simple. For the parametric case it is the OLS
estimation, and it becomes the Nadaraya-Watson estimation for the nonparametric
case, when kernels are considered.
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Extrinsic Means and Antimeans

Vic Patrangenaru, K. David Yao and Ruite Guo

Abstract Often times object spaces are compact, thus allowing to introduce new
location parameters, maximizers of the Fréchet function associated with a random
object X on a compact object space. In this paper we focus on such location pa-
rameters, when the object space is embedded in a numeric space. In this case the
maximizer, whenever the maximizer of this Fréchet function is unique, is called the
extrinsic mean of X.

Keywords Random object · Fréchet mean set · Extrinsic mean ·Hypothesis testing
for VW antimeans

1 Introduction

Fréchet [10] noticed that for data analysis purposes, in case a list of numberswouldnot
give a meaningful representation of the individual observation under investigation, it
is helpful to measure not just vectors, but more complicated features, he used to call
“elements”, and are nowadays called objects. As examples he mentioned “the shape
of an egg taken at random from a basket of eggs.” A natural way of addressing this
problem consists of regarding a random object X as a random point on a complete
metric space (M, ρ) that often times has a manifold structure (see Patrangenaru and
Ellingson [18]). Important examples of objects that arise from electronic image data
are shapes of configurations extracted from digital images, or from medical imaging
outputs. For such data, the associated object considered are points on Kendall shape
spaces (see Kendall [14]), Dryden and Mardia [7]), or on affine shape spaces (see
Patrangenaru and Mardia [22], Sughatadasa [23]), on projective shape spaces (see
Mardia and Patrangenaru [17], Patrangenaru et al. [21]). Other examples of object
spaces are spaces of axes (see Fisher et al. [9], Beran and Fisher [1]), spaces of
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directions (see Watson [25]), and spaces of trees (see Billera et al. [5], Wang and
Marron [24], Hotz et al. [13]). The aforementioned object spaces have a structure of
compact symmetric spaces (see Helgasson [12]); however, the use of a Riemannian
distance on a symmetric space for the goal of mean data analysis, including for
regression with a response on a symmetric space, is a statistician choice, as opposed
to being imposed by the nature of the data.

Therefore for practical purposes, in this paper we consider object spaces provided
with a “chord” distance associated with the embedding of an object space into a
numerical space, and the statistical analysis performed relative to a chord distance is
termed extrinsic data analysis. The expected square distance from the random object
X to an arbitrary point p defines what we call the Fréchet function associated with X:

F(p) = E(ρ2(p, X)), (1.1)

and its minimizers form the Fréchet mean set. When ρ is the “chord” distance on
M induced by the Euclidean distance in R

N via an embedding j : M → R
N , the

Fréchet function becomes

F(p) =
∫
M

‖j(x) − j(p)‖20Q(dx), (1.2)

where Q = PX is the probability measure onM, associated with X. In this case, the
Fréchet mean set is called the extrinsic mean set (see Bhattacharya and Patrangenaru
[4]), and if we have a unique point in the extrinsic mean set of X, this point is the
extrinsic mean of X, and is labeled μE(X) or simply μE . Also, given X1, . . . , Xn i.i.d
random objects from Q, their extrinsic sample mean (set) is the extrinsic mean (set)
of the empirical distribution Q̂n = 1

n

∑n
i=1 δXi .

In this paper, we will assume that (M, ρ) is a compact metric space; therefore,
the Fréchet function is bounded, and its extreme values are attained at points onM.

We are now introducing a new location parameter for X.

Definition 1.1 The set of maximizers of the Fréchet function, is called the extrinsic
antimean set. In case the extrinsic antimean set has one point only, that point is called
extrinsic antimean of X, and is labeled αμj,E(Q), or simply αμE, when j is known.

The remainder of the paper is concerned with geometric descriptions, explicit formu-
las, and computations of extrinsic means and antimeans. Simple inference problems
for extrinsic means and antimeans are also investigated. The paper ends with a dis-
cussion on future directions in extrinsic antimean analysis.

2 Geometric Description of the Extrinsic Antimean

Let (M, ρ0) be a compact metric space, where ρ0 is the chord distance via the
embedding j : M → R

N , that is
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ρ0(p1, p2) = ‖j(p1) − j(p2)‖ = d0(j(p1), j(p2)),∀(p1, p2) ∈ M2,

where d0 is the Euclidean distance in RN .

Remark 2.1 Recall that a point y ∈ R
N for which there is a unique point p ∈ M

satisfying the equality,

d0(y, j(M)) = inf
x∈M

‖y − j(x)‖0 = d0(y, j(p))

is called j-nonfocal. A point which is not j-nonfocal is said to be j-focal. And if y is
a j-nonfocal point, its projection on j(M) is the unique point j(p) = Pj(y) ∈ j(M)

with d0(y, j(M)) = d0(y, j(p)).

With this in mind we now have the following definition.

Definition 2.1 (a) A point y ∈ R
N for which there is a unique point p ∈ M satis-

fying the equality,
sup
x∈M

‖y − j(x)‖0 = d0(y, j(p)) (2.1)

is called αj-nonfocal. A point which is not αj-nonfocal is said to be αj-focal.
(b) If y is an αj-nonfocal point, its projection on j(M) is the unique point z =

PF,j(y) ∈ j(M) with sup
x∈M

‖y − j(x)‖0 = d0(y, j(p)).

For example, if we consider the unit sphere Sm in R
m+1, with the embedding given

by the inclusion map j : Sm → R
m+1, then the only αj-focal point is 0m+1, the center

of this sphere; this point also happens to be the only j-focal point of Sm.

Definition 2.2 A probability distribution Q on M is said to be αj-nonfocal if the
mean μ of j(Q) is αj-nonfocal.

The figures below illustrate the extrinsic mean and antimean of distributions on a
completemetric spaceMwhere the distributions are j-nonfocal and alsoαj-nonfocal
(Fig. 1).

Theorem 2.1 Let μ be the mean vector of j(Q) in R
N . Then the following hold true:

(i) The extrinsic antimean set is the set of all points x ∈ M such that supp∈M ‖μ −
j(p)‖0 = d0(μ, j(x)).

(ii) If αμj,E(Q) exists, then μ is αj-nonfocal and αμj,E(Q) = j−1(PF,j(μ)).

Proof For part (i), we first rewrite the following expression:

‖j(p) − j(x)‖20 = ‖j(p) − μ‖20 − 2 〈j(p) − μ,μ − j(x)〉 + ‖μ − j(x)‖20 (2.2)

Since the manifold is compact, μ exists, and from the definition of the mean vector
we have ∫

M
j(x) Q(dx) =

∫
RN

yj(Q)(dy) = μ. (2.3)
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Fig. 1 Extrinsic mean and extrinsic antimean on a 1-dimensional topological manifold (upper left
regular mean and antimean, upper right regular mean and sticky antimean, lower left sticky mean
and regular antimean, lower right sticky mean and antimean

From Eqs. (2.2) and (2.3) it follows that

F(p) = ‖j(p) − μ‖20 +
∫
RN

‖μ − y‖20j(Q)(dy) (2.4)

Then, from (2.4),

sup
p∈M

F(p) = sup
p∈M

‖j(p) − μ‖20 +
∫
RN

‖μ − y‖20 j(Q)(dy) (2.5)

This then implies that the antimean set is the set of points x ∈ M with the following
property;

sup
p∈M

‖j(p) − μ‖0 = ‖j(x) − μ‖0. (2.6)

For Part (ii) if αμj,E(Q) exists, then αμj,E(Q) is the unique point x ∈ M, for which
Eq. (2.6) holds true, which implies that μ is αj-nonfocal and j(αμj,E(Q)) = PF,j(μ).

Definition 2.3 Let x1, ...., xn be random observations from a distribution Q on a
compact metric space (M, ρ), then their extrinsic sample antimean set, is the set
of maximizers of the Fréchet function F̂n associated with the empirical distribution
Q̂n = 1

n

∑n
i=1 δxi , which is given by
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F̂n(p) = 1

n

n∑
i=1

‖j(xi) − j(p)‖20 (2.7)

If Q̂n has an extrinsic antimean, its extrinsic antimean is called extrinsic sample
antimean, and it is denoted aX̄j,E .

Theorem 2.2 Assume Q is an αj-nonfocal probability measure on the manifold M
and X = {X1, ...., Xn} are i.i.d random objects from Q. Then,

(a) If j(X) is αj-nonfocal, then the extrinsic sample antimean is given by aX̄j,E =
j−1(PF,j(j(X))).

(b) The set (αF)c of αj-nonfocal points is a generic subset of RN , and if αμj,E(Q)

exists, then the extrinsic sample antimean aX̄j,E is a consistent estimator of
αμj,E(Q).

Proof (Sketch). (a) Since j(X) is αj-nonfocal the result follows from Theorem 2.1,
applied to the empirical Q̂n, therefore j(aX̄j,E) = PF,j(j(X)).

(b) All the assumptions of the SLLN are satisfied, since j(M) is also compact, there-
fore the sample mean estimator j(X) is a strong consistent estimator of μ, which
implies that for any ε > 0, and for any δ > 0, there is sample size n(δ, ε),
such that P(‖j(X) − μ‖ > δ) ≤ ε,∀n > n(δ, ε). By taking a small enough
δ > 0, and using a continuity argument for PF,j, the result follows.

Remark 2.2 For asymptotic distributions of the extrinsic sample antimeans see Pa-
trangenaru et al. [19].

3 VW Antimeans on RPm

In this section, we consider the case of a probability measure Q on the real projective
spaceM = RPm,which is the set of axes (1-dimensional linear subspaces) ofRm+1.

Here the points in Rm+1 are regarded as (m + 1) × 1 vectors. RPm can be identified
with the quotient space Sm/{x,−x}; it is a compact homogeneous space, with the
group SO(m + 1) acting transitively on (RPm, ρ0), where the distance ρ0 on RPm is
induced by the chord distance on the sphereSm.There are infinitelymany embeddings
of RPm in a Euclidean space; however, for the purpose of two-sample mean or two-
sample antimean testing, it is preferred to use an embedding j that is compatible with
two transitive group actions of SO(m + 1) on RPm, respectively on j(RPm), that is

j(T · [x]) = T ⊗ j([x]), ∀ T ∈ SO(m + 1),∀ [x] ∈ RPm, where T · [x] = [Tx].
(3.1)

Such an embedding is said to be equivariant (see Kent [15]). For computational
purposes, the equivariant embedding of RPm that was used so far in the axial data
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analysis literature is the Veronese–Whitney (VW) embedding j : RPm → S+(m +
1,R), that associates to an axis the matrix of the orthogonal projection on this axis
(see Patrangenaru and Ellingson [18] and references therein):

j([x]) = xxT , ‖x‖ = 1, (3.2)

Here S+(m + 1,R) is the set of nonnegative definite symmetric (m + 1) × (m + 1)
matrices, and in this case

T ⊗ A = TATT , ∀ T ∈ SO(m + 1),∀ A ∈ S+(m + 1,R) (3.3)

Remark 3.1 Let N = 1
2 (m + 1)(m + 2). The space E = (S(m + 1,R), 〈 , 〉0) is

an N-dimensional Euclidean space with the scalar product given by 〈A, B〉0 =
Tr(AB), where A, B ∈ S(m + 1,R). The associated norm ‖ · ‖0 and Euclid-
ean distance d0 are given by respectively by ‖C‖20 = 〈C, C〉0 and d0(A, B) =
‖A − B‖0,∀C, A, B ∈ S(m + 1,R).

With the notation in Remark 3.1, we have

F([p]) = ‖j([p]) − μ‖20 +
∫
M

‖μ − j([x])‖20 Q(d[x]), (3.4)

and F([p]) is maximized (minimized) if and only if ‖j([p]) − μ‖20 is maximized
(minimized) as a function of [p] ∈ RPm.

From Patrangenaru and Ellingson ([18], Chap. 4) and definitions therein, recall
that the extrinsic mean μj,E(Q) of a j- nonfocal probability measure Q onMw.r.t. an
embedding j, when it exists, is given by μj,E(Q) = j−1(Pj(μ)) where μ is the mean
of j(Q). In the particular case, when M = RPm, and j is the VW embedding, Pj is
the projection on j(RPm) and Pj : S+(m + 1,R)\F → j(RPm), where F is the set
of j-focal points of j(RPm) in S+(m + 1,R). For the VW embedding, F is the set
of matrices in S+(m + 1,R) whose largest eigenvalues are of multiplicity at least
2. The projection Pj assigns to each nonnegative definite symmetric matrix A with
highest eigenvalue of multiplicity 1, the matrix vvT , where v is a unit eigenvector of
A corresponding to its largest eigenvalue.

Furthermore, the VW mean of a random object [X] ∈ RPm, [XT X] = 1 is given
byμj,E(Q) = [γ(m + 1)] and (λ(a), γ(a)), a = 1, .., m + 1 are eigenvalues and unit
eigenvectors pairs (in increasingorder of eigenvalues) of themeanμ = E(XXT ).Sim-
ilarly, the VW sample mean is given by x̄j,E = [g(m + 1)] where (d(a), g(a)), a =
1, . . . , m + 1 are eigenvalues and unit eigenvectors pairs (in increasing order of
eigenvalues) of the sample mean J = 1

n

∑n
i=1 xixT

i associated with the sample
([xi])i=1,n, on RPm, where xT

i xi = 1,∀i = 1, n.

Based on (3.4), we get similar results in the case of an αj-nonfocal probability
measure Q:

Proposition 1 (i) The set of αV W -nonfocal points in S+(m + 1,R), is the set of
matrices in S+(m + 1,R) whose smallest eigenvalue has multiplicity 1.
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(ii) The projection PF,j : (αF)c → j(RPm) assigns to each nonnegative definite sym-
metric matrix A, of rank 1, with a smallest eigenvalue of multiplicity 1, the matrix
j([ν]), where ‖ν‖ = 1 and ν is an eigenvector of A corresponding to that eigen-
value.

We now have the following:

Proposition 2 Let Q be a distribution on RPm.

(a) The VW-antimean set of a random object [X], XT X = 1 on RPm, is the set of
points p = [v] ∈ V1, where V1 is the eigenspace corresponding to the smallest
eigenvalue λ(1) of E(XXT ).

(b) If in addition Q = P[X] is αV W -nonfocal, then

αμj,E(Q) = j−1(PF,j(μ)) = [γ(1)]

where (λ(a), γ(a)), a = 1, .., m + 1 are eigenvalues in increasing order and the
corresponding unit eigenvectors of μ = E(XXT ).

(c) Let [x1], . . . , [xn] be observations from a distribution Q on RPm, such that j(X)

is αVW-nonfocal. Then the VW sample antimean of [x1], . . . , [xn] is given by

axj,E = j−1(PF,j(j(x))) = [g(1)]

where (d(a), g(a)) are the eigenvalues in increasing order and the corresponding

unit eigenvectors of J = 1

n

n∑
i=1

xix
T
i , where xT

i xi = 1,∀i = 1, n.

4 Two-Sample Test for VWMeans and Antimeans
Projective Shapes in 3D

Recall that the space P�k
3 of projective shapes of 3D k-ads in RP3, ([u1], ..., [uk]),

with k > 5, for which π = ([u1], . . . , [u5]) is a projective frame in RP3, is home-
omorphic to the manifold (RP3)q with q = k − 5 (see Patrangenaru et al. [21]).
Also recall that a Lie group, is a manifold G, that has an additional group struc-
ture 
 : G × G → G with the inverse map ι : G → G, ι(g) = g−1, such that both
operations 
 and ι are differentiable functions between manifolds.

Note that S3 regarded as set of quaternions of unit norm has a Lie group structure
inherited from the quaternion multiplication, which yields a Lie group structure
on RP3. This multiplicative structure turns the (RP3)q into a product Lie group
(G,
q) where G = (RP3)q (see Crane and Patrangenaru [6], Patrangenaru et al.
[20]). For the rest of this sectionG refers to theLie group (RP3)q. TheVWembedding
jq : (RP3)q → (S+(4,R))q (see Patrangenaru et al. [20]), is given by

jq([x1], . . . , [xq]) = (j([x1]), . . . , j([xq])), (4.1)
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with j : RP3 → S+(4,R) the VW embedding given in (3.2), for m = 3 and jq is also
an equivariant embedding w.r.t. the group (S+(4,R))q.

Given the product structure, it turns out that the VWmean μjq of a random object
Y = (Y 1, . . . , Yq) on (RP3)q is given by

μjq = (μ1,j, · · · ,μq,j), (4.2)

where, for s = 1, q, μs,j is the VW mean of the marginal Ys.

Assume Ya, a = 1, 2 are random objects with the associated distributions Qa =
PYa , a = 1, 2 on G = (RP3)q. We now consider the two-sample problem for VW
means and separately for VW-antimeans for these random objects.

4.1 Hypothesis Testing for VW Means

Assume the distributionsQa, a = 1, 2 are in additionVW-nonfocal.We are interested
in the hypothesis testing problem:

H0 : μ1,jq = μ2,jq versus Ha : μ1,jq �= μ2,jq , (4.3)

which is equivalent to testing the following

H0 : μ−1
2,jq 
q μ1,jq = 1(RP3)q versus Ha : μ−1

2,jq 
q μ1,jq �= 1(RP3)q (4.4)

1. Let n+ = n1 + n2 be the total sample size, and assume limn+→∞ n1
n+ → λ ∈ (0, 1).

Let ϕ be the log chart defined in a neighborhood of 1(RP3)q (see Helgason [12]),
with ϕ(1(RP3)q) = 0. Then, under H0

n1/2
+ ϕ(Ȳ−1

jq,n2

q Ȳjq,n1) →d N3q(03q, �jq) (4.5)

where �jq depends linearly on the extrinsic covariance matrices �a,jq of Qa.

2. Assume in addition that for a = 1, 2 the support of the distribution of Ya,1 and
the VW mean μa,jq are included in the domain of the chart ϕ and ϕ(Ya,1) has an
absolutely continuous component and finite moment of sufficiently high order.
Then the joint distribution

V = n+
1
2 ϕ(Ȳ−1

jq,n2

q Ȳjq,n1) (4.6)

can be approximated by the bootstrap joint distribution of

V ∗ = n+1/2 ϕ(Ȳ∗−1
jq,n2 
q Ȳ∗

jq,n1)
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From Patrangenaru et al. [21], recall that given a random sample from a distribu-
tion Q on RPm, if Js, s = 1, . . . , q are the matrices Js = n−1 ∑n

r=1 Xs
r (X

s
r )

T , and if
for a = 1, . . . , m + 1, ds(a) and gs(a) are the eigenvalues in increasing order and
corresponding unit eigenvectors of Js, then the VW sample mean Ȳjq,n is given by

Ȳjq,n = ([g1(m + 1)], . . . , [gq(m + 1)]). (4.7)

Remark 4.1 Given the high dimensionality, the VW sample covariance matrix is
often singular. Therefore, for nonparametric hypothesis testing, Efron’s nonpivotal
bootstrap is preferred. For nonparametric bootstrap methods see e.g. Efron [8]. For
details, on testing the existence of a mean change 3D projective shape, when sample
sizes are not equal, using nonpivotal bootstrap, see Patrangenaru et al. [20].

4.2 Hypothesis Testing for VW Antimeans

Unlike in the previous subsection, we now assume that for a = 1, 2, Qa are αVW-
nonfocal. We are now interested in the hypothesis testing problem:

H0 : αμ1,jq = αμ2,jq vs. Ha : αμ1,jq �= αμ2,jq , (4.8)

which is equivalent to testing the following

H0 : αμ−1
2,jq 
q αμ1,jq = 1(RP3)q vs. Ha : αμ−1

2,jq 
q αμ1,jq �= 1(RP3)q (4.9)

1. Let n+ = n1 + n2 be the total sample size, and assume limn+→∞ n1
n+ → λ ∈ (0, 1).

Let ϕ be the log chart defined in a neighborhood of 1(RP3)q (see Helgason [12]),
with ϕ(1(RP3)q) = 03q. Then, from Patrangenaru et al. [19], it follows that under
H0

n1/2
+ ϕ(aȲ−1

jq,n2

q aȲjq,n1) →d N3q(03q, �̃jq), (4.10)

for some covariance matrix �̃jq .

2. Assume in addition that for a = 1, 2 the support of the distribution of Ya,1 and
the VW antimean αμa,jq are included in the domain of the chart ϕ and ϕ(Ya,1)

has an absolutely continuous component and finite moment of sufficiently high
order. Then the joint distribution

aV = n+
1
2 ϕ(aȲ−1

jq,n2

q aȲjq,n1) (4.11)

can be approximated by the bootstrap joint distribution of

aV ∗ = n+1/2 ϕ(aȲ∗−1
jq,n2 
q aȲ∗

jq,n1)
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Now, from Proposition 2, we get the following result that is used for the computation
of the VW sample antimeans.

Proposition 3 Given a random sample from a distribution Q on RPm, if Js, s =
1, . . . , q are the matrices Js = n−1 ∑n

r=1 Xs
r (X

s
r )

T , and if for a = 1, . . . , m + 1, ds(a)

and gs(a) are the eigenvalues in increasing order and corresponding unit eigenvec-
tors of Js, then the VW sample antimean aȲjq,n is given by

aȲjq,n = ([g1(1)], . . . , [gq(1)]). (4.12)

5 Two-Sample Test for Lily Flowers Data

In this section, we will test for the existence of 3D mean projective shape change to
differentiate between two lily flowers. We will use pairs of pictures of two flowers
for our study.

Our data sets consist of two samples of digital images. The first one consist of 11
pairs of pictures of a single lily flower. The second has 8 pairs of digital images of
another lily flower (Figs. 2 and 3).

We will recover the 3D projective shape of a spatial k-ad (in our case k = 13)
from the pairs of images, which will allow us to test for mean 3D projective shape
change detection.

Flowers belonging to the genus Lilum have three petals and three petal-like sepals.
Itmay be difficult to distinguish the lily petals from the sepals.Here all six are referred
to as tepals. For our analysis, we selected 13 anatomic landmarks, 5 of which will
be used to construct a projective frame. In order to conduct a proper analysis, we
recorded the same labeling of landmarks and kept a constant configuration for both
flowers.

Fig. 2 Flower sample 1

Fig. 3 Flower sample 2
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Fig. 4 Landmarks for flower 1 and flower 2

The tepals where labeled 1 through 6 for both flowers. Also the six stamens (male
part of the flower),were labeled 7 through 12 starting with the stamen that is closely
related to tepal 1 and continuing in the same fashion. The landmarks were placed at
the tip of the anther of each of the six stamens and in the center of the stigma for the
carpel (the female part) (Fig. 4).

For 3D reconstructions of k-ads, we used the reconstruction algorithm in Ma
et al. [16]. The first 5 of our 13 landmarks were selected to construct our projective
frameπ. To each projective point, we associated its projective coordinatewith respect
to π. The projective shape of the 3D k-ad, is then determined by the 8 projective
coordinates of the remaining landmarks of the reconstructed configuration.

We tested for the VWmean change, since (RP3)8 has a Lie group structure (Crane
and Patrangenaru [6]). Two types of VW mean changes were considered: one for
cross-validation, and the other for comparing theVWmean shapes of the twoflowers.

Suppose Q1 and Q2 are independent r.o.’s, the hypothesis for their mean change
is

H0 : μ−1
1,j8 
8 μ2,j8 = 1(RP3)8

Given ϕ, the affine chart on this Lie group, ϕ(1(RP3)8) = 024, we compute the boot-
strap distribution

D∗ = ϕ((Ȳ∗
1,j8,11)

−1 
8 Ȳ∗
2,j8,8)

We fail to reject H0, if all simultaneous confidence intervals contain 0, and reject
it otherwise. We construct 95% simultaneous nonparametric bootstrap confidence
intervals. We will then expect to fail to reject the null, if we have 0 in all of our
simultaneous confidence intervals.

5.1 Results for Comparing the Two Flowers

We would fail to reject our null hypothesis

H0 : μ−1
1,j8 
8 μ2,j8 = 1(RP3)8

if all of our 24 confidence intervals would contain the value 0.
We notice that 0 is does not belong to 13 simultaneous confidence intervals in the

table below.We then can conclude that there is significant meanVWprojective shape
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Fig. 5 Bootstrap projective shape marginals for lily data

Simultaneous Confidence Intervals for lily’s landmarks 10 to 13
LM10 LM11 LM12 LM13

x (0.060118, 0.822957) (0.495050, 0.843121) (0.419625, 0.648722) (0.471093, 0.874260)
y (−0.346121, 0.160780) (−0.047271, 0.253993) (−0.079662, 0.193945) (−0.075751, 0.453817)
z (0.198351, 0.795122) (0.058659, 0.619450) (0.075902, 0.569353) (−0.146431, 0.497202)

Simultaneous Confidence Intervals for lily’s landmarks 6 to 9
LM6 LM7 LM8 LM9

x (0.609514, 1.638759) (0.320515, 0.561915) (−0.427979, 0.821540) (0.055007, 0.876664)
y (−0.916254, 0.995679) (−0.200514, 0.344619) (−0.252281, 0.580393) (−0.358060, 0.461555)
z (−1.589983, 1.224176) (0.177687, 0.640489) (0.291530, 0.831977) (0.213021, 0.883361)

change between the two flowers. This difference is also visible within the figure of
the boxes of the bootstrap projective shape marginals found in Fig. 5. The bootstrap
projective shape marginals for landmarks 11 and 12, visually reinforce the rejection
of the null hypothesis.

5.2 Results for Cross-Validation of the Mean Projective
Shape of the Lily Flower in Second Sample of Images

One can show that, as expected, there is no mean VW projective shape change, based
on the two samples with sample sizes respectively n1 = 5 and n2 = 6. In the tables
below, 0 is contained in all of the simultaneous intervals. Hence, we fail to reject the
null hypothesis at level α = 0.05 (Fig. 6).
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Fig. 6 Bootstrap projective shape marginals for cross-validation of lily flower

Simultaneous confidence intervals for lily’s landmarks 6 to 9
LM6 LM7 LM8 LM9

x (−1.150441, 0.940686) (−1.014147, 1.019635) (−0.960972, 1.142165) (−1.104360, 1.162658)
y (−1.245585, 2.965492) (−1.418121, 1.145503) (−1.250429, 1.300157) (−1.078833, 1.282883)
z (−0.971271, 1.232609) (−1.654594, 1.400703) (−1.464506, 1.318222) (−1.649496, 1.396918)

Simultaneous confidence intervals for lily’s landmarks 10 to 13
LM10 LM11 LM12 LM13

x (−1.078765, 1.039589) (−0.995622, 1.381674) (−0.739663, 1.269416) (−1.015220, 1.132021)
y (−1.126703, 1.140513) (−1.210271, 1.184141) (−1.324111, 1.026571) (−1.650026, 1.593305)
z (−1.092425, 1.795890) (−1.222856, 1.963960) (−1.128044, 1.762559) (−1.035796, 2.227439)

5.3 Comparing the Sample Antimean for the Two Lily
Flowers

The Veronese–Whitney (VW) antimean is the extrinsic antimean associated with
the VW embedding (see Patrangenaru et al. [20, 21] for details). The VW antimean
changes were considered for comparing the VW antimean shapes of the two flowers.
Suppose Q1 and Q2 are independent r.o.’s, the hypothesis for their mean change are

H0 : αμ−1
1,j8 
8 αμ2,j8 = 1(RP3)8

Letϕ be the affine chart on this product of projective spaces,ϕ(18) = 08, we compute
the bootstrap distribution,

αD∗ = ϕ(aY
∗−1
1,j8,11 
8 aY

∗
2,j8,8)
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Fig. 7 Eight bootstrap projective shape marginals for antimean of lily data

and construct the 95% simultaneous nonparametric bootstrap confidence intervals.
We will then expect to fail to reject the null, if we have 0 in all of our simultaneous
confidence intervals (Fig. 7).

Highlighted in blue are the intervals not containg 0 ∈ R.

simultaneous confidence intervals for lily’s landmarks 6 to 9
LM6 LM7 LM8 LM9

x (−1.02,−0.51) (−1.41, 0.69) (−1.14, 0.40) (−0.87, 0.35)
y (0.82, 2.18) (0.00, 0.96) (−0.15, 0.92) (−0.09, 0.69)
z (−0.75, 0.36) (−6.93, 2.83) (−3.07, 3.23) (−2.45, 2.38)

Simultaneous confidence intervals for lily’s landmarks 10 to 13
LM10 LM11 LM12 LM13

x (−0.61, 0.32) (−0.87, 0.08) (−0.99, 0.02) (−0.84,−0.04)
y (−0.07, 0.51) (−0.04, 0.59) (0.06, 0.75) (0.18, 0.78)
z (−3.03, 1.91) (−5.42, 1.98) (−7.22, 2.41) (−4.91, 2.62)

In conclusion, there is significant antimean VW projective shape change between
the two flowers, showing that the extrinsic antimean is a sensitive parameter for
extrinsic analysis.

6 Computational Example of VW Sample Mean and VW
Sample Antimean on a Planar Kendall Shape Space

We use the VW embedding of the complex projective space (Kendall shape space) to
compare VWmeans and VW antimeans for a configuration of landmarks on midface
in a population of normal children, based on a study on growthmeasured fromX-rays
at 8 and 14years of age (for data sets, see Patrangenaru and Ellingson [18], Chap. 1).
The Fig. 8 is from lateral X-ray of a clinically normal skull (top, with landmarks).
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Fig. 8 The coordinates of
first child’s skull image

Fig. 9 Icon of extrinsic
sample mean coordinates
based on children midface
skull data

In Fig. 9 one displays the coordinates of a representative of the extrinsic sample
mean. You may find that with only a rotation, Figs. 8 and 9 looks very similar, as
the extrinsic mean, is close to the sample observations. Here close is in the sense of
small distance relative to the diameter of the object space.

On the other hand, we also have a sample VW-antimean, the representative of
which is shown in Fig. 10. The VW-antimean statistic is far from the average, since
according to the general results presented in this paper, the chord distance between
the sample VW antimean and sample mean in the ambient spaces is maximized. The
relative location of the landmarks is also different in antimean. The following result
gives the coordinate of representatives (icons) of the VW mean and VW antimean
Kendall shapes. Each coordinate of an icon is a complex number.
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Fig. 10 Icon of extrinsic
sample antimean coordinates
based on children midface
skull data

VW—sample mean X̄E = (−0.0766 + 0.3066i,−0.4368 − 0.0593i, 0.2254 +
0.2786i, 0.3401 + 0.0298i, 0.2685 − 0.4409i,−0.2110 + 0.1791i,−0.1676 −
0.2939i, 0.0580 + 0.0000i).

VW—sample antimean aX̄E = (0.0752 − 0.4103i, 0.0066 − 0.4731i,−0.1244
+ 0.0031i, 0.1213 + 0.1102i,−0.1015 − 0.0422i,−0.0400 + 0.5639i,−0.2553 +
0.2485i, 0.3182 + 0.0000i).

7 Discussion and Thanks

In this paper, we introduce a new statistic, the sample extrinsic antimean. Just as with
the extrinsicmean, the extrinsic antimean captures important features of a distribution
on a compact object space. Certainly, the definitions and results extend to the general
case of arbitrary Fréchet antimeans; however, based on the comparison between
intrinsic and extrinsic sample means (see Bhattacharya et al. [2]), for the purpose of
object data analysis (see Patrangenaru and Ellingson [18]), it is expected that intrinsic
sample antimeans take way more time to compute than extrinsic sample means.
Therefore, future researchwill parallel research on inference for extrinsicmeans. This
includes results for stickiness of extrinsic means (see Hotz et al. [13]). The authors
would like to thank Harry Hendricks and Mingfei Qiu for useful conversations on
the subject of the stickiness phenomenon and antimeans and to the referee for useful
comments that helped us improve the paper.
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Partial Distance Correlation

Gábor J. Székely and Maria L. Rizzo

Abstract Partial distance correlation measures association between two random
vectors with respect to a third random vector, analogous to, but more general than
(linear) partial correlation. Distance correlation characterizes independence of ran-
dom vectors in arbitrary dimension. Motivation for the definition is discussed. We
introduce a Hilbert space of U-centered distance matrices in which squared distance
covariance is the inner product. Simple computation of the sample partial distance
correlation and definitions of the population coefficients are presented. Power of
the test for zero partial distance correlation is compared with power of the partial
correlation test and the partial Mantel test.

Keywords Independence · Multivariate · Partial distance correlation · Dissimilar-
ity · Energy statistics

1 Introduction

Distance correlation is amultivariatemeasure of dependencebetween randomvectors
in arbitrary, not necessarily equal dimension. Distance covariance (dCov) and the
standardized coefficient, distance correlation (dCor), are nonnegative coefficients that
characterize independence of random vectors; both are zero if and only if the random
vectors are independent. The problem of defining a partial distance correlation
coefficient analogous to the linear partial distance correlation coefficient had been
an open problem since the distance correlation was introduced in 2007 [11]. For the
definition of partial distance correlation, we introduce a new Hilbert space where
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the squared distance covariance is the inner product [15]. Our intermediate results
include methods for applying distance correlation to dissimilarity matrices.

For background, we first review the definitions of population and sample dCov
and dCor coefficients. In what follows, we suppose that X and Y take values in R

p

and R
q , respectively.

The distance covariance, V(X, Y ), of two random vectors X and Y is a scalar
coefficient defined by a weighted L2 norm measuring the distance between the joint
characteristic function φX,Y of X and Y , and the product φX φY of the marginal char-
acteristic functions of X and Y . V(X, Y ) is defined as the nonnegative square root of

V2(X, Y ) = ‖φX,Y (t, s) − φX (t)φY (s)‖2w (1)

:=
∫
Rp+q

|φX,Y (t, s) − φX (t)φY (s)|2w(t, s) dt ds,

wherew(t, s) := (|t |1+p
p |s|1+q

q )−1. The above integral exists if |X | and |Y | have finite
first moments. The choice of weight function is not unique, but when we consider
certain invariance properties that one would require for a measure of dependence
it can be shown to be unique [13]. This particular weight function may have first
appeared in this context in 1993 where Feuerverger [3] proposed a bivariate test of
independence based on an L2 norm (1).

The distance covariance coefficient can also be expressed in terms of expected
distances, based on the following identity established in Székely and Rizzo [12, The-
orem8, p. 1250]. The notation X ′ indicates that X ′ is an independent and identically
distributed (iid) copy of X . If (X, Y ), (X ′, Y ′), and (X ′′, Y ′′) are iid, each with joint
distribution (X, Y ), then

V2(X, Y ) = E |X − X ′||Y − Y ′| + E |X − X ′| · E |Y − Y ′| (2)

− E |X − X ′||Y − Y ′′| − E |X − X ′′||Y − Y ′|,

provided that X and Y have finite first moments. Definition (2) can be extended to
X and Y taking values in a separable Hilbert space. With that extension and our
intermediate results, we can define and apply partial distance covariance (pdcov)
and partial distance correlation (pdcor).

Distance correlation (dCor) R(X, Y ) is a standardized coefficient,

R(X, Y ) =
{ V(X,Y )√V(X,X)V(Y,Y )

, V(X, X)V(Y, Y ) > 0;
0, V(X, X)V(Y, Y ) = 0.

(See [11] and [12])
The distance covariance and distance correlation statistics are functions of the

double-centered distance matrices of the samples. For an observed random sample
{(xi , yi ) : i = 1, . . . , n} from the joint distribution of random vectors X and Y , Let
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(ai j ) = (|xi − x j |p) and (bi j ) = (|yi − y j |q) denote the Euclidean distance matrices
of the X and Y samples, respectively

Define the double-centered distance matrix of the X sample by

Âi j = ai j − āi. − ā. j + ā.. , i, j = 1, . . . , n, (3)

where

āi. = 1

n

n∑
j=1

ai j , ā. j ,= 1

n

n∑
i=1

ai j , ā.. = 1

n2

n∑
i, j=1

ai j .

Similarly, define the double-centered distance matrix of the Y sample by B̂i j =
bi j − b̄i. − b̄. j + b̄.., for i, j = 1, . . . , n.

A double-centered distance matrix Âi j has the property that all rows and columns
sum to zero. Below we will introduce a modified definition U-centering (“U” for
unbiased) such that a U-centered distance matrix Ãi j has zero expected values of its
elements E[ Ãi j ] = 0 for all i, j .

Sample distance covariance Vn(X, Y) is the square root of

V2
n (X, Y) = 1

n2

n∑
i, j=1

Âi j B̂i j (4)

and sample distance correlation is the standardized sample coefficient

R2
n(X, Y) =

{ V2
n (X,Y)√

V2
n (X)V2

n (Y)
, V2

n (X)V2
n (Y) > 0;

0, V2
n (X)V2

n (Y) = 0.
(5)

The distance covariance test of multivariate independence is consistent against all
dependent alternatives. Large values of the statistic nV2

n (X, Y) support the alternative
hypothesis that X and Y are dependent (see [11, 12]). The test is implemented in the
energy package [9] for R [8].

2 Partial Distance Correlation

To generalize distance correlation to partial distance correlation we require that
essential properties of distance correlation are preserved, that pdcor has a mean-
ingful interpretation as a population coefficient and as a sample coefficient, that
inference is possible, and the methods are practical to apply. This generalization is
not straightforward.

For example, one could try to follow the definition of partial correlation based on
orthogonal projections in a Euclidean space, but this approach does not succeed. For
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partial distance covariance orthogonality means independence, but the orthogonal
projection of a random variable onto the condition variable has a remainder that is
typically not independent of the condition.

Alternately, because the product moment type of computing formula for the sam-
ple distance covariance (4) may suggest an inner product, one may consider defining
the Hilbert space of double-centered distance matrices (3), where the inner product
is (4). However, this approach also presents a problem, because in general it is not
clear what the projection objects in this space actually represent. The difference of
double-centered distance matrices is not a double-centered distance matrix of any
sample except in some special cases. Although one could make the formal defin-
itions, inference is not possible unless the sample coefficients have a meaningful
interpretation as objects that arise from centering distance matrices of samples.

The sample coefficientV2
n (X, Y) is a biased estimator ofV2(X, Y ), so in a sensewe

could consider double centering to be a biased operation.Wemodify the inner product
approach by first replacing double centering with U-centering (1). The Hilbert space
is the linear span of n × n “U-centered” matrices. The inner product in this space
is unbiased dCov; it is an unbiased estimator of V2(X, Y ). An important property
of this space is that all linear combinations, and in particular all projections, are
U-centered matrices. (The corresponding property does not hold when we work with
double-centered matrices.)

A representation theorem ([15]) connects the orthogonal projections to random
samples in Euclidean space. With this representation result, methods for inference
based on the inner product are defined and implemented. To obtain this represen-
tation we needed results for dissimilarity matrices. In many applications, such as
community ecology or psychology, one has dissimilarity matrices rather than the
sample points available, and the dissimilarities are often not Euclidean distances.
Our intermediate results on dissimilarity matrices also extend the definitions, com-
puting formulas, and inference to data represented by any symmetric, zero diagonal
dissimilarity matrices.

2.1 The Hilbert Space of Centered Distance Matrices

Let A = (ai j ) be an n × n zero diagonal, symmetric matrix, n > 2 (a dissimilarity
matrix). The U-centered matrix Ãi, j is defined by

Ãi, j =
⎧⎨
⎩
ai, j − 1

n−2

n∑
�=1

ai,� − 1
n−2

n∑
k=1

ak, j + 1
(n−1)(n−2)

n∑
k,�=1

ak,�, i �= j;
0, i = j .

(1)
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Then

( Ã · B̃) := 1

n(n − 3)

∑
i �= j

Ãi, j B̃i, j (2)

is an unbiased estimator of squared population distance covariance V2(X, Y ).
The Hilbert space of U-centered matrices is defined as follows. LetHn denote the

linear span of U-centered n × n distance matrices, and for each pair (C, D) in Hn ,
define their inner product by

(C · D) = 1

n(n − 3)

∑
i �= j

Ci j Di j . (3)

It can be shown that every matrix C ∈ Hn is the U-centered distance matrix of
some n points in R

p, where p ≤ n − 2.
The linear span of all n × n U-centered matrices is a Hilbert spaceHn with inner

product defined by (3) [15].

2.2 Sample PdCov and PdCor

The projection operator (4) can now be defined in the Hilbert spaceHn , n ≥ 4. Then
partial distance covariance can be defined using projections in Hn . Suppose that
x, y, and z are samples of size n and Ã, B̃, C̃ are their U-centered distance matrices,
respectively. Define the orthogonal projection

Pz⊥(x) = Ã − ( Ã · C̃)

(C̃ · C̃)
C̃ (4)

of Ã(x) onto (C̃(z))⊥, and

Pz⊥(y) = B̃ − (B̃ · C̃)

(C̃ · C̃)
C̃, (5)

the orthogonal projection of B̃(y) onto (C̃(z))⊥. If (C̃ · C̃) = 0, PZ⊥(x) := Ã and
PZ⊥(y) := B̃. Then Pz⊥(x) and Pz⊥(y) are elements of Hn . Their inner product is
as defined in (3).

Definition 1 (Partial distance covariance)

pdCov(x, y; z) = (Pz⊥(x) · Pz⊥(y)), (6)
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where Pz⊥(x), and Pz⊥(y) are defined by (4) and (5), and

(Pz⊥(x) · Pz⊥(y)) = 1

n(n − 3)

∑
i �= j

(Pz⊥(x))i, j (Pz⊥(y))i, j . (7)

Definition 2 (Partial distance correlation). Sample partial distance correlation is
defined as the cosine of the angle θ between the ‘vectors’ Pz⊥(x) and Pz⊥(y) in the
Hilbert space Hn:

R∗(x, y; z) := cos θ = (Pz⊥(x) · Pz⊥(y))

|Pz⊥(x)||Pz⊥(y)| , |Pz⊥(x)||Pz⊥(y)| �= 0, (8)

and otherwise R∗(x, y; z) := 0.

2.3 Representation in Euclidean Space

If it is true that the projection matrices Pz⊥(x) and Pz⊥(y) are the U-centered
Euclidean distance matrices of samples of points in Euclidean spaces, then the sam-
ple partial distance covariance (7) is in fact the distance covariance (2) of those
samples.

Our representation theorem [15] holds that given an arbitrary element H of Hn ,
there exists a configuration of points U = [u1, . . . , un] in some Euclidean space Rq ,
for some q ≥ 1, such that the U-centered Euclidean distance matrix of sample U is
exactly equal to the matrix H . In general, every element inHn , and in particular any
orthogonal projection matrix, is the U-centered distance matrix of some sample of n
points in a Euclidean space.

The proof uses properties of U-centered distance matrices and results from clas-
sical multidimensional scaling.

Lemma 1 Let Ã be a U-centered distance matrix. Then

(i) Rows and columns of Ã sum to zero.
(ii) (̃ Ã) = Ã. That is, if B is thematrix obtainedbyU-centering an element Ã ∈ Hn,

B = Ã.
(iii) Ã is invariant to double centering. That is, if B is the matrix obtained by double

centering the matrix Ã, then B = Ã.
(iv) If c is a constant and B denotes the matrix obtained by adding c to the off-

diagonal elements of Ã, then B̃ = Ã.

In the proof, Lemma1(iv) is essential for our results, which shows that we cannot
apply double centering as in the original (biased) definition of distance covariance.
Invariance with respect to the additive constant c in (iv) does not hold for double-
centered matrices.
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Our representation theorem applies certain results from classical MDS and Cail-
liez [1, Theorem 1].

Theorem 1 Let H be an arbitrary element of the Hilbert space Hn of U-centered
distance matrices. Then there exists a sample v1, . . . , vn in a Euclidean space of
dimension at most n − 2, such that the U-centered distance matrix of v1, . . . , vn is
exactly equal to H.

For details of the proof and an illustration see [15]. The details of the proof reveal
why the simpler idea of a Hilbert space of double-centered matrices is not applicable
here. The diagonals of Â are not zero, so we cannot get an exact solution by MDS.
The inner product would depend on the additive constant c. Another problem is that
V2
n ≥ 0, but the inner product of projections in that space can be negative.
An application of our representation theorem also provides methods for zero

diagonal symmetric non-Euclidean dissimilarities. There exist samples in Euclidean
space such that their U-centered Euclidean distance matrices are equal to the dissim-
ilarity matrices. There are existing software implementations of classical MDS that
can obtain these sample points. The R function cmdscale, for example, includes
options to apply the additive constant of Cailliez [1] and to specify the dimension.

Using the inner product (3), we can define a bias corrected distance correlation
statistic

R∗
x,y :=

{
( Ã·B̃)

| Ã||B̃| , | Ã||B̃| �= 0;
0, | Ã||B̃| = 0,

(9)

where Ã = Ã(x), B̃ = B̃(y) are the U-centered distance matrices of the samples x
and y, and | Ã| = ( Ã · Ã)1/2.

Here we should note R∗ is a bias corrected statistic for the squared distance
correlation (5) rather than the distance correlation.

An equivalent computing formula for pdCor(x, y, z) is

R∗
x,y;z = R∗

x,y − R∗
x,z R

∗
y,z√

1 − (R∗
x,z)

2
√
1 − (R∗

y,z)
2
, (10)

(1 − (R∗
x,z)

2)(1 − (R∗
y,z)

2) �= 0.

2.4 Algorithm to Compute Partial Distance Correlation
R∗
x, y;z from Euclidean Distance Matrices

Equation (10) provides a simple and familiar form of computing formula for the
partial distance correlation. The following algorithm summarizes the calculations
for distance matrices A = (|xi − x j |), B = (|yi − y j |), and C = (|zi − z j |).



186 G.J. Székely and M.L. Rizzo

(i) Compute U-centered distance matrices Ã, B̃, and C̃ using

Ãi, j = ai, j − ai.
n − 2

− a. j

n − 2
+ a..

(n − 1)(n − 2)
, i �= j,

and Ãi,i = 0.
(ii) Compute inner products and norms using

( Ã · B̃) = 1

n(n − 3)

∑
i �= j

Ãi, j B̃i, j , | Ã| = ( Ã · Ã)1/2

and R∗
x,y , R

∗
x,z , and R∗

y,z using R∗
x,y = ( Ã·B̃)

| Ã||B̃| .
(iii) If R2

x,z �= 1 and R2
y,z �= 1

R∗
x,y;z = R∗

x,y − Rx,z R∗
y,z√

1 − (R∗
x,z)

2
√
1 − (R∗

y,z)
2
,

otherwise apply the definition (8).
In the above algorithm, it is typically not necessary to explicitly compute the

projections, when (10) is applied. This algorithm has a straightforward translation
into code. An implementation is provided in the pdcor package [10] (available upon
request) or in the energy package for R.

3 Population Coefficients

Definition 3 (Population partial distance covariance) Introduce the scalar coeffi-
cients

α := V2(X, Z)

V2(Z , Z)
, β := V2(Y, Z)

V2(Z , Z)
.

If V2(Z , Z) = 0 define α = β = 0. The double-centered projections of AX and
BY onto the orthogonal complement of CZ in Hilbert space H are defined

PZ⊥(X) := AX (X, X ′) − αCZ (Z , Z ′), PZ⊥(Y ) := BY (Y, Y ′) − βCZ (Z , Z ′),

or in short PZ⊥(X) = AX − αCZ and PZ⊥(Y ) = BY − βCZ , where CZ denotes
double centered with respect to the random variable Z .
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The population partial distance covariance is defined by the inner product

(PZ⊥(X) · PZ⊥(Y )) := E[(AX − αCZ ) · (BY − βCZ )].

Definition 4 (Population pdCor) Population partial distance correlation is defined

R∗(X, Y ; Z) := (PZ⊥(X) · PZ⊥(Y ))

|PZ⊥(X)||PZ⊥(Y )| ,

where |PZ⊥(X)| = (PZ⊥(X) · PZ⊥(X))1/2. If |PZ⊥(X)||PZ⊥(Y )| = 0 we define
R∗(X, Y ; Z) = 0.

Theorem 2 (Population pdCor) The following definition of population partial dis-
tance correlation is equivalent to Definition4.

R∗(X, Y ; Z) = (1){ R2(X,Y )−R2(X,Z)R2(Y,Z)√
1−R4(X,Z)

√
1−R4(Y,Z)

, R(X, Z) �= 1 andR(Y, Z) �= 1;
0, R(X, Z) = 1 orR(Y, Z) = 1.

where R(X, Y ) denotes the population distance correlation.

We have proved that projections can be represented as a U-centered distance
matrix of some configuration of n points U in a Euclidean space R

p, p ≤ n − 2.
Hence a test for pdCov(X, Y ; Z) = 0 (or similarly a test for pdCor(X, Y ; Z) = 0)
can be defined by applying the distance covariance test statistic V2

n (U, V), where U
and V are a representation which exist by Theorem1. This test can be applied to
U, V using the dcov.test function of the energy package [9] or one can apply a
test based on the inner product (6), which is implemented in the pdcor package [10].

4 Power Comparison

The tests for zero partial distance correlation are implemented as permutation (ran-
domization) tests of the hypothesis of zero partial distance covariance. In these
examples we used the dcov.test method described above, although in exten-
sive simulations the two methods of testing this hypothesis are equivalent in their
average power over 10,000 tests. The simulation design for the following exam-
ples used R = 999 replicates for the permutation tests and the estimated p-value is
computed as

p̂ = 1 + ∑R
k=1 I (T

(k) ≥ T0)

1 + R
,
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Fig. 1 Power comparisons
for partial distance
covariance, partial Mantel
test, and partial correlation
test at significance level
α = 0.10 (correlated
standard normal data)
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where I (·) is the indicator function, T0 is the observed value of the test statistic, and
T (k) is the statistic for the k-th sample. In each example 10,000 tests are summarized
at each point in the plot, and the significance level is 10%.

Example 1 In this example, power of tests is compared for correlated trivariate
normal data with standard normal marginal distributions. The variables X , Y , and
Z are each correlated standard normal. The pairwise correlations are ρ(X, Y ) =
ρ(X, Z) = ρ(Y, Z) = 0.5. The power comparison summarized in Fig. 1 shows that
pdcov has higher power than pcor or partial Mantel tests.

Example 2 This example presents a power comparison for correlated non-normal
data. The variables X , Y , and Z are each correlated, X is standard lognormal, while
Y and Z are each standard normal. The pairwise correlations are ρ(log X, Y ) =
ρ(log X, Z) = ρ(Y, Z) = 0.5. The power comparison summarized in Fig. 2 shows
that pdcov has higher power than pcor or partial Mantel tests.
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Fig. 2 Power comparisons
for partial distance
covariance, partial Mantel
test, and partial correlation
test at significance level
α = 0.10 (correlated
non-normal data)
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Automatic Component Selection in Additive
Modeling of French National Electricity
Load Forecasting

Anestis Antoniadis, Xavier Brossat, Yannig Goude, Jean-Michel Poggi and
Vincent Thouvenot

Abstract We consider estimation and model selection in sparse high-dimensional
linear additive models when multiple covariates need to be modeled nonparametri-
cally, and propose some multi-step estimators based on B-splines approximations of
the additive components. In such models, the overall number of regressors d can be
large, possibly much larger than the sample size n. However, we assume that there is
a smaller than n number of regressors that capture most of the impact of all covariates
on the response variable. Our estimation and model selection results are valid with-
out assuming the conventional “separation condition”—namely, without assuming
that the norm of each of the true nonzero components is bounded away from zero.
Instead, we relax this assumption by allowing the norms of nonzero components to
converge to zero at a certain rate. The approaches investigated in this paper consist
of two steps. The first step implements the variable selection, typically by the Group
Lasso, and the second step applies a penalized P-splines estimation to the selected
additive components. Regarding the model selection task we discuss, the application
of several criteria such as Akaike information criterion (AIC), Bayesian information
criterion (BIC), and generalized cross validation (GCV) and study the consistency
of BIC, i.e. its ability to select the true model with probability converging to 1. We
then study post-model estimation consistency of the selected components. We end
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the paper by applying the proposed procedure on some real data related to electricity
load consumption forecasting: the EDF (Électricité de France) portfolio.

Keywords B-splines approximation · BIC · Consistency · Group LASSO ·Multi-
step estimator · Load forecasting · P-splines · Sparse additive model · Variable
selection

1 Introduction

For electricity providers, forecasting electricity demand is a key activity as it is
a crucial input of the production planning and energy trading. The literature on
load forecasting is huge and a lot of statistical models have been applied to this
problem. We focus here on additive models based on a spline basis decomposition
of their additive components (see [15, 32]). These models combine the flexibility of
fully nonparametric models and the simplicity of multiple regression models. They
demonstrate their strong ability to cope with electricity data in previous work: Pierrot
and Goude [24] applied it to national french consumption and Fan and Hyndman
[13] show their interest for regional Australia’s load forecasting. Additive models
were used by three teams among the 10 bests (see [6, 23]) in the GEFCom2012
(see [16]). At least two of the first teams of the recent GEFCom2014 use these
models too. One of the issue is the nonzero additive component selection, which is
often realized by combining expert knowledge and stepwise selection procedures.
This method is time consuming and hardly extendable. To avoid that, we establish
automatic variable selection and estimation approach for sparse high-dimensional
nonparametric additive models.

High-dimensional sparse additive model have been studied by many authors (see
e.g., [7, 11, 19–21, 25, 26, 28]). The main issues are to select the nonzero compo-
nents and to estimate well the identified additive model. The problem of selection is
obviously more complex in this nonparametric context than in the parametric con-
text. In particular, an approximation error needs to be controlled since one usually
choses to approach the additive components by a B-splines basis decomposition. For
selection, Fan and Jiang [12] use some testing methods. The probability distribution
of the test statistic is estimated with some bootstrap methods which is computa-
tionally intensive and the significance of the covariates is tested one after one in a
stepwise fashion which could converge to a suboptimal solution, particularly when
high correlation exists among covariates. Penalized regression methods (see e.g.,
[1, 30]) are well known to have low computational cost and suffer less from cor-
related design. This is the approach we would like to use hereafter. Under suitable
smoothness assumption, each covariate effect is modeled using a B-splines approx-
imation (see [27]), and therefore each nonparametric component is represented by
a linear combination of spline basis functions. Consequently, the problem of com-
ponent selection becomes that of selecting the groups of coefficients in the linear
combinations. A natural regularization method to deal with such a situation is the
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Group LASSO estimator introduced by Yuan and Lin [33]. Group LASSO achieves
group selection which is consistent under some conditions as explained in [4] but
as for LASSO, Group LASSO introduces a bias. This fact motivates us to combine
Group LASSO with another penalized regression method, namely the penalized
splines (P-splines), introduced by Eilers and Marx in [10], or estimators like OLS
(ordinary least squares). Although P-splines fitting is consistent in estimation (see
[17]), it can not achieve covariate selection. In [22], the authors propose a small
change in the penalty to achieve selection but we noticed on simulations that if the
zero effects are estimated by values close to zero, the resulting penalisation does not
shrink these effects to 0. What is desirable is to select the right model and then fit
appropriately the resulting model. Despite its intuitive nature, the theoretical prop-
erties of such two-step procedures have to be carefully analyzed since the effect of
the first step variable selection is random, and generally contains redundant additive
components or misses significant additive components. Attempts implementing such
two-step estimators have already been proposed in the recent literature (see, e.g., the
NonNegativeGarrote [2, 9]). Huang et al. [18] have used the adaptiveGroupLASSO.
In the linear model context, Belloni et al. [5] combine LASSO and OLS and show
the improvement of the correction, thanks to OLS, of the bias introduced by LASSO
selection. Our two-step procedure developed in this paper is inspired by their work.
One of the issue when penalized regression is used is selecting the regularization
parameter. In the linear context, Wang et al. [31] demonstrate the consistency of
BIC. We follow similar type of proofs than them.

Our paper is organized as follows. In Sect. 2, we present the statistical framework
and a two-step estimator. In Sect. 3, we study some asymptotic properties of the
resulting estimators. Their proofs are sketched in an appendix. Detailed theoretical
results concerning the methodology can be found in detail in [3]. In Sect. 4, we apply
the procedure on electricity load forecasting data. The interested reader is referred
to [29] for some more detailed applications.

2 Additive Model and Two-Step Estimators

2.1 Additive Model

We consider additive models of the following form:

Yi = β∗
0 +

d∑
j=1

f ∗
j (Xi, j ) + εi , i = 1, . . . , n, (1)

where E(εi |Xi ) = 0, with Xi := (Xi,1, . . . , Xi,d)
T , εi i.i.d of variance σ 2. The non-

linear additive components { f ∗
1 , . . . , f ∗

d } are assumed to be smooth. More precisely,
we assume that each function f ∗

j lies in a Sobolev space:
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H 2
2 ([0, 1]) = { f : [0, 1] → R| f (1)abs. continuous and

∫ 1

0

(
f (2)(x)

)2
dx < +∞}.

Moreover, for identifiability issues, we assume E( f ∗
j (X j )) = 0 for each j . We

note S∗ = { j ∈ {1, . . . , d}|E( f ∗
j (X j )

2) �= 0} the index set of nonzero components
and s∗ = card(S∗) the cardinal of S∗. We assume s∗ � n and s∗ ≤ D < d = d(n).

We use B-splines to approximate the additive components. Using such spline
truncated expansions for the additive components, the additive model (1) can be
approached by the following model:

E (Y |(X1, . . . , Xd) = (x1, . . . , xd)) = β0 +
d∑

j=1

m j∑
k=1

β j,k B
q j

j,k(x j ), (2)

where B j (·) = {B
q j

j,k(·)|k = 1, . . . , K j + q j = m j } is the basis of B-splines of
degree q j and fixed sequences of K j knots, spanning the vector space onto which the
j th additive component f ∗

j (·) is projected. We assume m j = m j (n) → +∞ such
as m j = o(n). We note Bj = (B j (x1 j )

T , . . . , B j (xnj )
T )T ∈ R

n×m j , where xi, j is
the i th observation of X j . The model parameters are β0 and β = (β1,1, . . . , βd,md )

T .
The covariates are (Xi )i∈[[1,d]].

The main issues are to select the nonzero functions f ∗
j and to estimate well

the resulting model (1). We may use a penalized regression method, which tries to
minimize a criterion like:

QO L S(β) +
d∑

j=1

pλ j (β j ),

where

QO L S(β) =
n∑

i=1

⎛
⎝Yi − β0 −

d∑
j=1

Ci j (β j )

⎞
⎠

2

,

with Ci j (β j ) = ∑m j

k=1 β j,k B
q j

j,k(Xi, j ) and pλ some appropriate penalty function on
the coefficients.

2.2 Variable Selection Algorithm: The Post1 Procedure

As LASSO, the Group LASSO is a powerful selection procedure similar to soft
thresholding in the orthogonal design case but incurs poor performance in predic-
tion because of the bias induced by such soft thresholding. In contrast, under good
conditions, OLS estimators are known for being unbiased estimators that minimize
the variance. In the high-dimensional linear model case, Belloni et al. [5] combine
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the LASSO with OLS estimator and obtain good performances on synthetic data.
Inspired from their work, we propose in [3] several two-step procedures. Here, we
will restrict our study to one of them, namely the one named Post1 in [3] and apply it
on synthetic data. We give below a detailed description of this algorithm. We denote
�GrpL a uniform grid of λ values between λmin = 0 and λmax which is the value of
λ for which all the effects are shrank to 0. The set S = {1, . . . , d} denotes the index
set made of the labels of the covariates.

Algorithm

1. First step: subset selection (Group LASSO)
For each λi ∈ �Gr pL

• Solve

β̂
λi = argmin{QO L S(β) + λi

d∑
j=1

√
m j ||β j ||2}

• Denote Sλi = { j |β̂λi

j �= 0}
2. Second step: Estimation of the additive model (by OLS)

For each support set Sλs ∈ {Sλmin , . . . , Sλmax }
• Compute

QO L S
Sλs

(β) =
n∑

i=1

⎛
⎝Yi − β0 −

∑
j∈Sλs

Ci j (β j )

⎞
⎠

2

• Solve
β̃

Sλs = argmin{QO L S
Sλs

(β)},

• Compute the BIC (see Eq. (5)) for each β̃
Sλs

3. Third step: Selection of the final model Select β̃
Sλb which minimizes the BIC

3 Asymptotic Study

3.1 Notation

We first fix the notation. For simplification, we assume, without loss of generality,
that, for any j = 1, . . . , d, m j = m = mn and B j (·) are identical. We note, for any
1 ≤ j ≤ d and i = 1, . . . , n:

x̃i,Bj
= BT

j (xi j ) − 1

n

n∑
i=1

BT
j (xi j ) ∈ Rmn ,
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and

X̃i = [x̃T
i,B1

, . . . , x̃T
i,Bd

]T ∈ Rd×mn ,

and for any 1 ≤ j ≤ d:

�̂ j = 1

n

n∑
i=1

x̃i,Bj
x̃T
i,Bj

,

which is anmn×mn realmatrix.Wenote the empirical variance covariancematrix, as:

�̂ = 1

n

n∑
i=1

X̃iX̃T
i ,

which is anmnd×mnd matrix. Finally, the unknown coefficients vector is denoted by:

β = (β1
T , . . . ,βd

T )T ∈ R
dmn ,

and

β
B j

= β
j
= (β j1, . . . , β jmn )

T .

The standardized Group LASSO solution is:

β̂0 = 1

n

n∑
i=1

Yi and f̂ j (X j ) =
mn∑

k=1

β̂ jk(B
q j

j,k(X j ) − B̄
q j

j,k),

where B̄
q j

j,k = 1/n
∑mn

k=1 B
q j

j,k(Xi, j ) and

β̂ = arg min
β∈Rdmn

+1

2

n∑
i=1

(Yi − X̃ T
i β)2 + √

mnλ

d∑
j=1

||�̂1/2β
j
||2, (3)

where || · ||2 is the Euclidean norm of R
mn .

We note

||f∗(x)|| = ||f∗(x)||2 =

√√√√√ n∑
i=1

⎛
⎝ d∑

j=1

f ∗
j (xi, j )

⎞
⎠
2

and ||f∗||∞ = max
xi,i∈1,...n

|f∗(xi)|

= max
xi,i∈1,...n

|
d∑

j=1

f ∗
j (xi, j )|.

Here || · || and || · ||2 stand for the Euclidean norm.
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Let, for j = 1, . . . , d,

Uj =
⎛
⎜⎝

B j1(x1 j ) − B̄ j1 . . . B jmn (x1 j ) − B̄ jmn

...
...

B j1(xnj ) − B̄ j1 . . . B jmn (xnj ) − B̄ jmn

⎞
⎟⎠ ,

which can be rewritten:

Uj = (
x̃1,Bj . . . x̃n,Bj

)T
.

Finally, we note Y = (Y1, . . . Yn)
T and U = [U1 . . .Ud]n×dmn . For each design

S ⊆ {1, . . . , d},US is the matrix extracted fromU obtained by retaining the columns
indexed by S, that is

US =[Uj| j ∈ S].

We define β S = (β j ) j∈S , β̂ S = (β̂ j ) j∈S (estimated on S), and more generally,
ψ S = (ψ j ) j∈S .

The vector 1n is the column vector of size n whose components are 1. To simplify
the notation, we add 1n/

√
mn as first column of U and of US.

We note b = (√
mnβ0,β

T )T
and bS = (√

mnβ0,βS
T )T

.
With the above notation, for the design S, the OLS objective function can now be

rewritten as:

QO L S
S (bS) = ||Y − USbS||2. (4)

Let b̃S be the vector which minimizes (4), that is b̂S = argminbS QO L S
S (bS). We can

now define the BIC criterion (see Wang et al. [31]) by:

B I C(S) = log(||Y − USb̂S||2) + card(S) mn
log(nd)

n
. (5)

The submodel Ŝ that achieves the minimum value of the above (over all submodels
with card(S) ≤ D) is chosen as the final model.

3.2 Assumptions

In this section, we introduce basic conditions commonly used in the analysis of the
first and second step estimators. They do not need to hold simultaneously for getting
a desired result, but it is clearer to collect all the assumptions here.

1. Assumption on the random vector (Yi ,Xi)i=1,...,n: (Yi ,Xi)i=1,...,n are i.i.d. ran-
dom vectors where (Y1,X1) satisfies the additive model stated in (1).
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2. Assumption on the distribution of errors: the conditional distribution of ε1
given X1 is a N (0, σ 2(X1)) and σ 2

1 ≤ σ 2(X1) ≤ σ 2 a.s. with σ 2 and σ 2
1 fixed

positive constants.

3. Assumption on the distribution of X1: the support of X1 is compact. For the
sake of simplicity, we assume the support is bounded in [0, 1]d . Moreover, the
marginal density X1 is bounded away from 0 and from infinity by two positives
constants. The density ofX1 is absolutely continuouswith respect to the Lebesgue
measure.

4. Assumption on smoothness of the additive components: for all j ∈ S∗ , f ∗
j ∈

H ν
2 [0, 1] for some positive integer ν ≥ 2. This in particular implies that f ∗

j is
κ-Holder continuous with κ > 1/2.

5. Assumptions on d, mn, and s∗:

(a) mn = An
1

2ν+1 , with A constant.
(b) log(d)

n
2ν

2ν+1
→ 0

(c) s∗ ≤ D ≤ min(d, n
mn

)

(d) mn log(nd)

n min j∈S∗ || f ∗
j ||2 → 0, that means mn log(nd)

n = o(min j∈S∗ || f ∗
j ||2).

The first three assumptions are standard. Assumption 4 is a classical hypothesis
on the smoothness of the additive components. Assumption (5.a) is a consequence
of Stone’s choice about the B-splines approximation of the additive components.
Assumption (5.b) lets the number of candidate covariates to increase not too quickly
with the sample size. Assumption (5.c) ensures the uniqueness of the OLS estimator.
Assumption (5.d) is sufficient to obtain the consistency results. Note that we do
not assume that min j∈S∗ || f ∗

j ||2 is bounded away from zero as in assumption (A1)
of Huang et al. [18]. Instead, (5.d) makes it clear that this quantity is allowed to
converge to zero at a certain rate.

3.3 BIC Consistency with OLS Estimator

We are now in position to state the main results of this paper. Let S a subset of
{1, . . . , d} leading to the submodel of the additive model (1) obtained by retaining
only the covariates whose index pertains to S. The proof is split into two parts,
considering the underfitted models (some true nonzero components are not in S
(false negative)) and overfitted models (some true zero components, as well as all
true nonzero components, are included in S (false positive)), respectively.

3.3.1 S∗
� S Case (False Negative)

Assume S∗
� S. Let b̃S and b̂S∗ be the OLS estimators when using for fitting the

submodels S and S∗ respectively. This means that we have:
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b̂S = argmin
b

||Y − USb||2 and b̂S∗ = argmin
b

||Y − US∗b||2.

Remember that card(S) ≤ D. Assumption (5.c) implies that mn D < n. Denote
S̄ = S∗ ∪ S, and let b̃S be the vector of size card(S̄)mn + 1 coinciding with b̂S
for the coefficients in S and equal to zero otherwise. We can write this vector as

b̃S =
(⋃

j∈S̄ b̃
T
S,j

)
with b̃S,j = b̂S,j if j ∈ S , 0 otherwise. Likewise, let b̃S∗ =(⋃

j∈S̄ b̃
T
S∗,j

)
with b̃S∗,j = b̃S∗,j if j ∈ S∗, 0 otherwise and let bS̄∗ =

(⋃
j∈S̄ b

∗,T
S̄,j

)
with b∗

S̄,j = bS∗,j
∗ if j ∈ S∗, 0 otherwise. That is, zero values are filled in the various

sub-vectors to match the dimension whenever it is necessary to allow correct matrix
products. The gap between the B I C(S) and B I C(S∗) is then given by:

B I C(S) − B I C(S∗) = log

(
1 + ||Y − US̄b̃S||2/n − ||Y − US̄b̃S∗ ||2/n

||Y − US̄b̃S∗ ||2/n

)

+ (
card(S) − card(S∗)

)
mn

log(nd)

n
. (6)

Using some elementary properties of the Euclidean norm, it is easy to see that:

||Y − US̄b̃S||2 − ||Y − US̄b̃S∗ ||2

= −2εTUS̄(b̃S − b̃S∗) + 2
(
US̄b̃S∗ − f∗(X)

)T
US̄(b̃S − b̃S∗)

+ ||US̄(b̃S − b̃S∗)||2. (7)

Concerning the three terms of right hand side of Eq. (7) we have (see Lemmas 1, 2
and 3 of [3]):

• ||US̄(b̃S−b̃S∗)||2≥ A2
n

mn
v2

n , and vn = A3

(√
mn min j∈S∗ || f ∗

j || − mn√
n

− m−ν+1/2
n

)
,

where A2 and A3 are generic constants;

• |2
(
US̄b̃S∗ − f∗(X)

)T
US̄(b̃S−b̃S∗)| ≤ C4

√
nm−2ν

n

√
n

mn
|vn|,withC4 > 0 constant.

This term is negligible compared to the previous term.

• −2εTUS̄(b̃S− b̃S∗)+||US̄(b̃S− b̃S∗)||2 ≥ 3
4 ||US̄(b̃S− b̃S∗)||2+oP(mn log(nd)) ≥

R1
n

mn
v2

n , with R1 constant.

Finally, we obtain

||Y − US̄b̃S||2 − ||Y − US̄b̃S∗ ||2 ≥ N1
n

mn
v2

n + op(
n

mn
v2

n), (8)

with N1 constant.
It follows (see Lemma 4 of [3]) that the sequences ||Y − US∗bS∗ ||2/n and

inf S∗⊆S|card(S)≤D ||Y − USb̂S||2/n are lower bounded by a strictly positive constant
with a probability converging to one.
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We therefore have, with a probability converging to one,

||Y − US̄b̃S||2/n − ||Y − US̄b̃S∗ ||2/n

||Y − US̄b̃S∗ ||2/n
≥ N2

v2
n

mn
> min || f ∗

j ||2+o(min || f ∗
j ||2) > 0.

It follows that

B I C(S) − B I C(S∗) ≥ min(
L1

mn
v2

n, log(2)) + (card(S) − card(S∗))
mn log(nd)

n
,

where L1 > 0 is a generic constant. Thus |card(S)−card(S∗)|mn log(nd)

n

−→
n → +∞ 0,

since by assumption card(S) and card(S∗) are both bounded by a constant, and,
thanks to assumptions (5), we have |card(S)−card(S∗)|mn log(nd)

n = o(min || f ∗
j ||2).

Thence, Theorem 1, stated below, follows.

Theorem 1 Let S such as S∗
� S. Then,

P( min
S∗�S|card(S)≤M

B I C(S) − B I C(S∗) > 0)
−→

n → +∞ 1,

when M constant.

In particular, Theorem 1 implies that there are not false negatives with probability
converging to one when the true design is candidate.

3.3.2 S∗ ⊆ S case (False Positive)

Here, we assume that S∗ ⊆ S. As before, we note b∗
S the vector b∗

S∗ extended by
some zeros for each j such as j ∈ S and j /∈ S∗. We study the expression:

B I C(S∗) − B I C(S) = log

(
||Y − US∗ b̂S∗ ||2
||Y − USb̂S||2

)
+ (

card(S∗) − card(S)
)

mn
log(nd)

n
.

According to the definition of theOLS estimator, ||Y − US∗ b̂S∗ ||2 ≤ ||Y − US∗b∗
S∗ ||2.

It follows that

B I C(S∗) − B I C(S) ≤ log

(
1 + ||Y − US∗b∗

S∗ ||2 − ||Y − USb̂S||2
||Y − USb̂S||2

)

+ (
card(S∗) − card(S)

)
mn

log(nd)

n
.
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We can state (see Lemma 5 of [3]) the following result:

||Y − US∗b∗
S∗ ||2/n − ||Y − USb̂S||2/n = ||Y − USb∗

S||2/n − ||Y − USb̂S||2/n

= OP(m−2ν
n ) + oP(

mn

n
log(nd))

P→ 0.

The result is derived by controlling the projection of the squared bias due to the
approximation of the components of (1) by a truncated B-splines series decomposi-
tion and by bounding the variance in the space spanned by the columns of UT

S̄
.

As inf S∗⊆S|card(S)≤D ||Y−USb̂S||2/n is lower bounded by a strictly positive con-
stant with a probability converging to one, we obtain that:

||Y − US∗b∗
S∗ ||2 − ||Y − USb̂S||2

||Y − USb̂S||2
∈ [0, 1], (9)

with a probability converging to 1. It follows that

B I C(S∗) − B I C(S) ≤ OP (m−2ν
n ) + oP (

mn

n
log(nd)) + (

card(S∗) − card(S)
)

mn
log(nd)

n
.

As (card(S∗) − card(S)) < 0 and OP(m−2ν
n ) = oP(mn

log(nd)

n ), we obtain
Theorem 2.

Theorem 2

P( min
S∗⊂S|card(S)≤M

B I C(S∗) − B I C(S) < 0)
−→

n → +∞ 1.

This result, combined with the statement of Theorem 1, allows us to see that there is
no false positive.

Consistency for the BIC Theorems 1 and 2 guarantee that there is no false pos-
itive neither false negative. We can therefore derive Theorem 3 which states the
consistency of the BIC procedure.

Theorem 3 Under Assumptions 1–5, the BIC defined by (5) is variable selection
consistent, i.e.,

P(Ŝ = S∗)
−→

n → ∞ 1.

The BIC defined by (5) is therefore variable selection consistent. However, it is
not sufficient for proving the consistency of the two-step estimator. We have just
shown, without using any penalization, that when we estimate an additive model
whose components are approximated in B-splines bases with OLS estimators, then
the true model is selected with a probability converging to one if it is a candidate.
It now remains to prove that the BIC criterion is consistent for our Group LASSO
penalized criterion.
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3.4 Penalized BIC Consistency

Under our assumptions, we can rewrite (3) as (see Kato [19]):

b̃λ = arg min
b∈Rdmn+1

||Y − UTb||2 + √
mnλ

d∑
j=1

||bj||2. (10)

The parameter λ is chosen along a given grid by minimizing the BIC criterion. Let
Sλ = { j; ||b̃λ, j || �= 0}. We have

b̂λ = (USλ

TUSλ
)−1(USλ

TY + r) = b̂Sλ
+ (USλ

TUSλ
)−1r,

where r = −λ
√

mn
∂
∂b

∑
j∈Sλ

||bj|||b=b̂λ
= −λ

√
mn

(
0 . . . (

b̃
T
λ, j

||b̂λ, j ||
) j∈Sλ

)T

.

Variables selection consistency We consider B I C(λ) = log(||Y − Ub̃λ||2) +
card(Sλ)mn

log(nd)

n . Moreover, we note that b̂λ = (b̃λ, j ) j∈Sλ
.

It is therefore equivalent to solve the optimization problem with U or USλ
. Thus

we have

B I C(λ) = log(||Y − USλ
b̂λ||2) + card(Sλ)mn

log(nd)

n

= log(||Y − USb̃λ||2) + card(Sλ)mn
log(nd)

n
.

We will show first that if λn ∼ √
n log(m2

nd)/mn , then P(Sλn = S∗) → 1. Note (see
[18] for example) that Sλn = S∗ if

{ ||b∗
j || − ||b̃λn , j || < ||b∗

j || si j ∈ S∗

||Uj
T (Y − US∗ b̃λn ,S∗)|| ≤ λn

√
mn si j /∈ Sλn

Hence, the conclusion that P(Sλn = S∗) → 1 will follow by proving that λn ∼√
n log(m2

nd)/mn implies the next two assertions which are proved in the Appendix,
namely:

• P(∃ j ∈ S∗, ||b∗
j − b̃λn , j || ≥ ||b∗

j ||) → 0.

• P(∃ j /∈ S∗, ||Uj
T (Y − US∗ b̃λn ,S∗)|| > λn

√
mn) → 0.

The first assertion states there is no false negativewith a probability converging to one
for Group LASSO using λn . We use Stone’s results to prove it. To prove the second
assertion, which deals with false positives, we need to add the assumption that if
j �= j ′, then ||Uj

TUj′ || = oP( n
mn

). This type of assumption is classical in variable
selection (see for example [8]). It means that the design obeys a kind of “restricted
isometry hypothesis.” It essentially means that each couple Uj

TUj′ behaves like an
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orthonormal system. In what follows we sketch the various steps that allow us to
derive the proof of the second assertion.

A first step is to control the gap between the quadratic errors associated to the
Group LASSO and the OLS estimators. In fact, we have

||Y − Ub̂λn
||2 − ||Y − USλn

b̂Sλn
||2 = oP(mn

√
log(m2

nd) log(nd)),

which follows by expressing the Group LASSO estimator as a function of the OLS
estimator.

As card(Sλn ) = card(S∗), we have B I C(λn)− B I C(S∗) = log(||Y−Ub̂λn
||2)−

log(||Y − USλn
b̂Sλn

||2).
Following similar lines as in the previous subsection allows us to obtain:

B I C(λn) − B I C(S∗) = oP (mn

√
log(m2

nd) log(nd)

n
) + o(oP (mn

√
log(m2

nd) log(nd)

n
)).

Note that mn

√
log(m2

nd) log(nd)

n is negligible compared to min(log(2), v2
n/mn).

By the OLS definition, we necessary have B I C(λ) ≥ B I C(Sλ). Therefore,

B I C(λ) − B I C(λn) ≥ B I C(Sλ) − B I C(Sλn ) + oP(mn

√
log(m2

nd) log(nd)

n
).

Now,oP(mn

√
log(m2

nd) log(nd)

n ) is negligible compared tomin(1, v2n
mn

) and to mn log(nd)

n .
It follows that, if S∗

� Sλ, thanks to Theorem 1,

P( min
λ|card(Sλ)≤M et S∗�Sλ

B I C(λ) − B I C(λn) > 0)
−→

n → +∞ 1,

and if S∗ ⊆ Sλ, thanks to Theorem 2,

P( min
λ|S∗⊂Sλ et card(Sλ)≤M

B I C(λn) − B I C(λ) < 0)
−→

n → +∞ 1.

The above facts allow now to state the main Theorem of this section.

Theorem 4 Under our assumptions, take λn ∼ √
n log(m2

nd)/mn, then

P(Sλn = S∗) → 1,

and for all λ such as Sλ �= S∗ and card(Sλ) ≤ M

P(B I C(λ) − B I C(λn) > 0) → 1.
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Estimation consistency We adopt here the conditions of Theorem 4.2 of Kato
[19]. Let A f be a constant. The mentioned Theorem 4.2 shows that the penalized
B-splines post-model allows a consistent estimation of the regression function with
an empirical mean square error of the order bounded above by:

s∗mn

n2
A f n(1 + √

log(d)/mn)
2 = O(1)

mn

n
(1 + √

log(d)/mn)
2

= O(1)
(1 + √

log(d)/mn)
2

n2ν/(2ν+1)

→ 0 (thanks to assumption 5.b)

The estimation consistency of our two-step estimator thus follows from Theorem 4.2
of Kato [19].

4 Numerical Experiment

We shortly present here a numerical experiment on EDF data. For conciseness, since
this paper is mostly devoted to theoretical material, we summarize below the main
results of this application that is further detailed in the forthcoming publication [29].
We apply here the Post1 procedure. We use BIC, AIC, and GCV for the model selec-
tion criterion and we name Post1Bic, Post1Aic and Post1Gcv the resulting models.
We focus on middle term (from one day to one year ahead) load forecasting on EDF
portfolio data (the overall sum of EDF costumers’ consumption). Forecasting load at
this horizon is a fundamental task for maintenance planning and more generally risk
management of electricity providers. At this horizon, forecasting models are based
on deterministic information (calendar events) and meteorological data that could
be simulated to derive a probabilistic view of load consumption. We consider in this
study real meteorological data to overcome weather forecast errors when comparing
our models. As consumption habits depend strongly on the hour of the day we fit
one model per instant (see [24]). The data are measured each 30min so we fit 48
models corresponding to the 48 instants per day. The training set stands from 2007 to
August 2012 and the testing set from September 2012 to July 2013. We compare our
procedures with a benchmark additive model, called EDF model, which is inspired
by a model obtained by an EDF expert who use business expertise to select among
a lot of possible combinations of models. Of course, this model performs very well
and our main goal is to automatically obtain some models with similar performances
to avoid this costly and time consuming expert selection. The study is motivated
by the fact that the French load consumption changes and will change because of
new habits (for example electrical car) and because of opening of market, which
will change EDF portfolio. Here, we focus on meteorological covariates selection
because of their large influence on electricity demand and build a dictionary of 30
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covariates from the temperature, the cloud cover and the wind speed. We also work
on detrended load to lower the large nonstationnarity level and use the EDF model
to correct the trend.

Covariates selection There is a physical explanation for the selected covariates.
For example, Post1Bic selects cloud cover during the day and not during the night,
which can be easily explained because cloud cover influences mainly the lighting.
As the cloud cover, the wind is selected almost for all instants of the day, which
can be explained by its impact on the air feels. Daily maximum are selected around
mid-day and the evening, which is consistent with known properties of temperature.
Use smoothed temperature is very classical in load modeling and allows to have
more regularized effects. The question is what smoothing coefficient to use. Many
smoothed temperatures are candidates. Post1Bic selects two smoothed temperatures:
one with a small smoothing coefficients and an other with smoothing coefficient
near the one used in EDF model for almost all the instants. Real temperature is not
selected for each instant because many variables explain the effect of temperature.
Post1Aic and Post1Gcv are close in terms of selection which is coherent with the
known properties of GCV and AIC, which are asymptotically similar under good
conditions. On the contrary, BIC is known to be more severe than AIC and GCV and
this is the case here for Post1Bic compared to Post1Aic and Post1Gcv.

Middle term performance To quantify the forecasting efficiency, we use theMAPE
(MeanAbsolute Percentage Error) and the RMSE (RootMean Square Error). Table1
summarizes the forecasting performances. As expected, the EDF model performs
very well and it is a hard task to perform better. With the automatic selection, which
can be different between two instants, Post1Bic procedure achieves a little better
forecasting performance than the EDF model. We explain worst performance of
Post1Aic and Post1Gcv by the fact their effects in models are not well estimated, as
there are more variables. To avoid this issue, other estimators such as OLS estimators
can be used. In [29], we apply the procedure we named Post2, which substitutes the
OLS estimator by P-splines for the second step of Algorithm given in Sect. 2.2, to
avoid the risk of overfitting and to regularize the effect. To forecast load demand with
additive models, it is very common to use some regularized methods like P-Splines
(see e.g., [13, 14, 24]) and seems necessary to have good forecasting performance.

Table 1 Forecasting MAPE
and RMSE

Criterion MAPE RMSE

Post1Bic 1.43 830

EDF model 1.50 888

Post1Gcv 1.63 966

Post1Aic 1.75 1119
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5 Conclusion

In this paper, we propose a two-step estimator for additive models and prove some
variable selection properties of our procedures. The assumption, the most notable is
that we assume that the Euclidean norm of nonzero components is bounded away
from a sequence which can converge to zero when the number of observations grows.
First, we show that the BIC defined by (5) is variable selection consistent, and then
show that the penalized BIC is variable consistent. Finally, we show the estimation
consistency of the resulting two-step estimator. The reader can find detailed proofs in
[3]. Note that these theoretical results are valid only for the i.i.d. case. An extension to
the dependent case is not an easy task. However, a paper by Zhou [34] could provide
the appropriate tools to get an analogous of Propositions 1, 2, and 3 of [3], to the
case of correlated observations using Gaussian comparison inequalities and some
concentration results for the case of Gaussian distributed data. This is an interesting
topic for future research.

We end the paper by providing a numerical experiment on French load con-
sumption forecasting. We show that a two-step estimator using Group LASSO and
OLS estimators allows to get automatically as good forecasting performances as a
model selected by an EDF expert. We also notice some selection and forecasting
performances differences when using BIC, AIC, or GCV, and point out the physical
coherence in the resulting selected variables. The interested reader can find in [29]
some more detailed applications.

Acknowledgments The authors thank the Editor and a reviewer for their comments on the original
manuscript.

Appendix: Sketch of Proofs

Here, we sketch for the reader some elements of proof of Theorem 4. Detailed proofs
are given in [3].

We first state the following lemma:

Lemma 1 If λn = √
n log(m2

nd)/mn, then

• P(∃ j ∈ S∗, ||b∗
j − b̃λn,j || ≥ ||b∗

j ||) → 0.

• P(∃ j /∈ S∗, ||Uj
T (Y − US∗ b̃λn,S∗)|| > λn

√
mn) → 0.

Proof of Lemma 1 Webegin with the term P(∃ j ∈ S∗, ||b∗
j −b̃λn,j || ≥ ||b∗

j ||). Take
j ∈ S∗. Note Tj = (0mn×mn , . . . , 0mn×mn , Imn×mn , 0mn×mn , . . . , 0mn×mn), where
0mn×mn is the null matrix of size mn × mn and Imn×mn the identity matrix of size
mn × mn . The j th block of Tj is Imn×mn .

We have b̃λn,j = Tj b̃λn = Tj (b̂S∗ − (UT
S∗US∗)−1r). Noting CS∗ = 1

nU
T
S∗US∗ , we

have ||b̃λn,j − b∗
S∗,j|| = ||Tj (b̂S∗ − 1

n C−1
S∗ r− b∗

S)|| ≤ ||Tj (b̂S∗ − b∗
S)|| + 1

n ||Tj C
−1
S∗ r||.
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As ||b̂S∗ − b∗
S|| = O( mn√

n
), (see [27]), we obtain max j ||Tj (b̂S∗ − b∗

S)|| ≤ mn√
n
.

Moreover, thanks to Lemma 3 of [18], we have 1
n ||Tj C

−1
S∗ r|| ≤ 1

n ||Tj ||||C−1
S∗ ||||r||

≤ o(
√

mn min || f ∗
j ||). and therefore

||b̃λn,j − b∗
S∗,j|| ≤ mn√

n
+ o(

√
mn min || f ∗

j ||).

We have min j∈S∗ ||b∗
j || ≥ O(1)

(√
mn min j∈S∗ || f ∗

j || − O(1) mn√
n

)
≥ O(1)(

√
mn√

mn
n log(nd) + O( mn√

n
)) ≥ O(1)

(
mn√

n

√
log(nd) + O( mn√

n
)
)
. Given the assumptions

it is clear that mn√
n

= o( mn√
n

√
log(nd)), which allows us to conclude.

We now examine the other assertion: P(∃ j /∈ S∗, ||Uj
T (Y − US∗ b̃λn,S∗)|| >

λn
√

mn).
Take j /∈ S∗. We have

||Uj
T (Y − US∗ b̃λn)|| ≤ ||Uj

T (f∗(X) − US∗b∗
S∗)|| + ||Uj

T � jε||
+ ||Uj

T (US∗b∗
S∗ − US∗ b̂Sλn

)|| + ||Uj
TUS∗(UT

S∗US∗)−1r||,

where � j = Uj(Uj
TUj)

−1Uj
T .

We then examine the four terms of the right hand side of the above inequality (see
Lemma 7 of [3] for details and justifications).

• ||Uj
T (f∗(X) − US∗b∗

S∗)|| ≤ max j /∈S∗ ||Uj
TUj||1/2||(f∗(X) − US∗b∗

S∗)|| ≤ O(1)√
n

mn
m−ν

n ≤ o(λn
√

mn)

• ||Uj
T � jε|| ≤ max j /∈S∗ ||Uj

TUj||1/2||||� jε|| ≤
√

n
mn

oP(
√

mn log(nd)) ≤ oP(λn√
mn)

• ||Uj
T (US∗b∗

S∗ − US∗ b̂Sλn
)|| ≤ max j /∈S∗ ||Uj

TUj||1/2||UT
S∗US∗ ||1/2||b∗

S∗ − b̂Sλn
|| ≤

o(λn
√

mn)

• ||Uj
TUS∗(UT

S∗US∗)−1r|| = ||Uj
TUS∗

∑s∗
i=1 T T

i Ti (UT
S∗US∗)−1r|| ≤ ∑s∗

i=1 ||Uj
TUS∗

T T
i Ti (UT

S∗US∗)−1r|| ≤ ∑
i∈S∗ ||Uj

TUi||||(UT
S∗US∗)−1||||r|| ≤ oP(n/mn)

mn
n λn√

mn ≤ oP(λn
√

mn)

These inequalities allow us to conclude. �

The next result we develop here allows us to control of the gap between the
quadratic errors of Group LASSO and OLS estimators.

Lemma 2 ||Y − Ub̂λn
||2 − ||Y − USλn

b̂Sλn
||2 = oP(mn

√
log(m2

nd) log(nd))
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Proof of Lemma 2 We have

||Y−Ub̂λn
||2 − ||Y−USλn

b̂Sλn
||2 = ||US∗ (UT

S∗US∗ )−1r||2 − 2(Y− �S∗Y)T (US∗ (UT
S∗US∗ )−1r),

where �S∗ = US∗(UT
S∗US∗)−1UT

S∗ .
ByusingLemma3of [18],we can show ||US∗(UT

S∗US∗)−1r||= O(
√

mn log(m2
nd)).

We have (Y−�S∗Y)T (US∗(UT
S∗US∗)−1r) = (f∗(X)−US∗ b̂S∗)T (US∗(UT

S∗US∗)−1r)+
εT (�S∗US∗(UT

S∗US∗)−1r).
Using the Cauchy–Schwartz we obtain:

• (f∗(X) − US∗ b̂S∗)T (US∗(UT
S∗US∗)−1r) ≤ OP(mn

√
log(m2

nd))

• |εT �S∗(US∗(UT
S∗US∗)−1r)| ≤ oP(mn

√
log(nd) log(m2

nd))

Hence, the conclusion. �
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Abstract The aim of this work is to develop and assess a new method to estimate
lifetime distribution in materials subjected to mechanical fatigue efforts. This prob-
lem is addressed from a statistical semiparametric and nonparametric perspective.
Taking into account that fatigue failures in materials are due to crack formation and
the subsequently induced crack growth, linear mixed effects regression models with
smoothing splines (based on the linearized Paris-Erdogan model) are applied to esti-
mate crack length as a function of the number of fatigue cycles. This model allows to
simultaneously estimate the dependence between crack length and number of cycles
in a sample of specimens. Knowing the crack length that induces material failure, the
lifetime of each specimen is the crossing point of the crack length limit and themodel
crack length estimate. The authors propose to estimate the lifetime distribution func-
tion by applying nonparametric kernel techniques. In order to assess the influence of
factors such as material type, material heterogeneity, and also that of the parameters
of the estimation procedure, a simulation study consisting of different scenarios is
performed. The results are compared with those of a procedure proposed by Meeker
and Escobar (Statistical Methods for Reliability Data, Wiley, 1998, [16]) based on
nonlinear mixed effects regression. Functional data analysis techniques are applied
to perform this task. The proposed methodology estimates lifetime distribution of
materials under fatigue more accurately in a wide range of scenarios.

Keywords Fatigue crack growth ·Paris-Erdoganmodel ·Nonparametric kernel dis-
tribution function estimation · Linear mixed effects · Statistical learning ·Nonlinear
mixed effects

A. Meneses
Universidad Nacional de Chimborazo, Riobamba, Ecuador

Ignacio López-de-Ullibarri
Universidade da Coruña. Escola Universitaria Politécnica, Ferrol, Spain

Javier Tarrío-Saavedra · S. Naya (B)
Universidade da Coruña. Escola Politécnica Superior, Ferrol, Spain
e-mail: salva@udc.es; salvanaya@gmail.com

© Springer International Publishing Switzerland 2016
R. Cao et al. (eds.), Nonparametric Statistics, Springer Proceedings
in Mathematics & Statistics 175, DOI 10.1007/978-3-319-41582-6_15

211



212 A. Meneses et al.

1 Introduction

Accurate estimation of the failure time of structural elements ormechanisms is essen-
tial to ensure their proper performance, in accordancewith each piece’s requirements.
Of course, estimates will depend on the definition of failure, which differs depend-
ing on the piece and application. Generally, failure is defined as failing to meet the
design requirements. Therefore, the lifetime of a piece made from a specific mate-
rial is defined as the interval of time between the material commissioning and the
time when failure occurs. Fatigue efforts largely condition the design of parts and
structural elements.

Material degradation and failure due to fatigue are characterized by crack initiation
and its posterior propagation under alternating stress. Crack length variation due to
fatigue versus time defines a convex degradation curve [16] that characterizes the
degree of degradation of a material under fatigue. The final failure is defined by the
fatigue limit: the largest value of fluctuating stress that will not cause failure for an
infinite number of cycles. The evolution of material degradation due to fatigue is
characterized by three main patterns (Fig. 1). Region 1 accounts for crack initiation
without propagation. Region 2 is defined by crack propagation and by the lineal
dependence between logarithm of the derivative of crack length with respect to
number of cycles, da/dN , and the logarithm of stress concentration factor variation
(�K). In Region 3 crack propagation is faster, representing a very small contribution
to the life of the material. It reflects the proximity of the unstable propagation of
the crack when the value of the maximum stress intensity factor, Kmax, reaches
the fracture toughness [15]. Cracks occur due to repeated stress applications that
can generate localized plastic deformation at the material surface and then they
evolve into sharp discontinuities [4]. Region 3 is characterized by a greater nonlinear
increment of crack propagation rate; thus, its contribution to the life of the material
is small [15].

To estimate fatigue failure it is necessary to knowhowcracks growwith alternating
fatigue loads. In order to estimate this relationship, some simplifications are custom-
arily assumed: the fatigue lifetime of a specific material depends on the evolution of

Fig. 1 Patterns of crack
growth due to mechanical
fatigue
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the largest crack, the crack growth rate with respect to the number of cycles, da/dN ,
depends on the stress intensity factor range, �K , and the stress ratio R = σm/σM

(where σm and σM are the minimum and the maximum stress, respectively).
Most models or formulas used to define the crack growth in materials are based

on the law of Paris or Paris-Erdogan model [19, 26]. The equation of Paris is the
most used in the study of propagation of fatigue cracks because of its mathematical
simplicity and the good results obtained with it [8]. The Paris law has been used to
fit the crack growth corresponding to the crack propagation step, Region 2 [4, 8].
Since the main contribution to material damage occurs in Region 2, the Paris model
is a widely applied and useful way to make lifetime predictions of fatigue lifetime.
The Paris model is:

da (t)

dN
= C [K (a)]m , (1)

where C and m are model parameters related to the type of material (m is between 1
and 6, m > 4 indicating very nonductile materials). Furthermore, it is assumed that
the factor of stress concentration K is dependent on crack size, a [9, 18].

As mentioned before, Paris’ law gives good approximations of the crack growth
rates in Region 2, but tends to overestimate da/dN in Region 1 and to underestimates
it in Region 3. Modifications of the Paris model have been proposed to improve its
adequacy for those regions. For example, we mention the models by [13] for Region
3 (Eq.2), and by [7] for Region 1 (Eq. 3).

da

dN
= C

[�K]m

(1 − R)KIc − �K
, (2)

da

dN
= C (�K − �Kth)

m . (3)

Among others, FKM-Guideline [12] summarizes additional models to fit this
dependence. There are other models where crack closure or elastic-plastic fracture
parameters are considered (Elber 1970; Nishioka and Atluri 1982). The relation-
ship between da/dN and �K can also be estimated by numerical analysis, without
assuming potential laws depending on fracture mechanics parameters. That is the
case of the Moving Least Squares method used by [1] and [8]. Advanced statistical
methodologies have been less frequently used than numerical analysis procedures
in fatigue problems. The application of statistical modeling is particularly relevant
due to the inherent variability of the problem: different a-N curves are obtained for
the same material at the same experimental conditions. Thus, the implementation of
mixed effects regression models, instead of fixed effects regression modeling, is jus-
tified. These models [20] are frequently used to account for the variability between
replicates and its effect on model parameters. Pinheiro and Bates [20–22] proposed
an approximated maximum likelihood estimate of the parameters of the degradation
model and a numeric method implemented in the nlme function of the R package
nlme. Furthermore,Meeker andEscobar [16] used the numericalmethod of Pinheiro
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and Bates [21] and Monte Carlo simulation to estimate the failure time distribution
in the problem of fatigue crack growth. This method is based on the simultaneous
fitting of a-N curves corresponding to different specimens of the samematerial at the
same conditions, using nonlinear regression mixed models with the Paris equation.
This simultaneous fitting allows to estimate the joint distribution of C and m, which
is assumed to be Gaussian, and thus the lifetime distribution function by maximum
likelihood methods. The goal of the Meeker and Escobar method is to estimate the
complete fatigue lifetime distribution under certain experimental conditions from a
parametric point of view, assuming a Gaussian distribution for the parameters.

As in the procedure of Dong et al. [8], the errors caused by numerical differenti-
ation of the noisy discrete crack length data could be attenuated by using semipara-
metric statistical regression techniques, such as B-splines regression [25, 30]. This
method has not been sufficiently studied in the context of fatigue. Also, the lifetime
distribution function is not usually studied in engineering works. The use of kernel
estimates of the distribution function [24, 28] is advisable in order to obtain more
information (position, variability, probability of fail) about the fatigue lifetime at
operational conditions. Thus, we propose a methodology consisting of the following
steps: (a) estimating with B-splines the da/dN or da/dt corresponding to a group
of experimental tests that provides a number of experimental curves, (b) fitting the
da/dN or da/dt data versus �K by applying mixed effects linear regression tech-
niques through the linearized Paris equation, (c) obtaining the fatigue lifetimes as
the crossing point of the crack length limit and the model estimates, and (d) esti-
mating the fatigue lifetime distribution function by nonparametric kernel methods.
The combination of Paris model (and also other parametric alternatives), B-splines
fitting, mixed effects regression modeling, and nonparametric kernel estimation of
the distribution function could improve the knowledge and estimation of damage
tolerance and lifetime of many mechanism elements subjected to fatigue efforts in
aircraft, automotive industry, and civil engineering. To sum up, the aim of our work is
to develop an alternative nonparametric methodology to estimate the fatigue lifetime
distribution functionmore accurately. In Sect. 2 themethodology and simulation sce-
narios used in our study are described in detail. Simulation results are presented in
Sect. 3. We conclude in Sect. 4.

2 Simulation Study and Methodology Description

In this section, the procedure to generate simulated data is described. Crack growth
has been simulated under different scenarios in order to evaluate the proposed
methodology. Our procedure for estimating the lifetime distribution is also described
from a computational point of view.
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2.1 Simulation of Fatigue Crack Growth Data

Two assumptions related to Fracture Mechanics Theory have been made. Firstly the
crack plastic deformation area is assumed to be small with respect to the crack area.
Therefore, we meet the assumptions of linear fracture mechanics by defining�K (a)
with the following expression [18]:

�K = F�S
√

πa, (4)

where a is the crack length, �S = �σ is the stress amplitude σmax − σmin, and F is a
parameter depending on the crack and specimen geometry. For the simulation study,
we have fixed �S = 1, and F has been defined as:

F =
√

2

μα
tan

πα

2

[
0.923 + 0.199

(
1 − sin πα

2

)4
cos πα

2

]
, (5)

where α = a/B and B is the specimen width, and μ = 1, assuming the opening
mode of fatigue testing, plotted in Fig. 2 [9]. Secondly, we consider the study of
cracks inside a big piece or sheet of material subjected to remote cyclic stresses
(Fig. 2).

The simulated curves of crack length growth, a, versus time (they could be also
obtained depending on N) have been obtained using the solution of Paris equa-
tion [16]:
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Fig. 2 Opening mode fatigue testing
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a (t) =
[
a(

1− m
2 )

0 +
(
1 − m

2

)
C

(
FS

√
π

)m
t
] 2

2−m

, for m �= 2. (6)

To evaluate the proposed methodology 32 different scenarios defined by differ-
ent mean values of C, m, which we denote by μC and μm, respectively, and their
covariance matrix, �Cm, were considered. The means of C and m are chosen in a
representative range of real fatigue data. C and m are assumed to be jointly nor-
mally distributed. It is important to note that the values of C and m are related to
the material type. Thus, we can test the methodology by simulating different types
of materials and different levels of heterogeneity and dependence of the parameters.
The simulation scenarios are defined by the following values:

μC =
{
6

5
, μm =

{
4

3
, �Cm =

(
σ 2
C σCm

σCm σ 2
m

)
,

σ 2
C =

{
0.5

0.1
, σ 2

m =
{
0.5

0.1
, σCm =

{
−0.02

−0.09
.

We have obtained 1000 curves of a versus t in each of the 25 = 32 different sce-
narios defined by combining the values of the parameters. These curves are evaluated
in a range of time between 0 and 1, measured in arbitrary units (a.u.). Crack length is
also measured in a.u.. The failure is defined at a specific crack length (critical crack
length, ac), and then the lifetime of each simulated specimen can be obtained. Thus,
the empirical distribution function of lifetime is also obtained from those 1000 values
for lifetime (Fig. 3), without time censoring. This distribution can be compared with
the estimates obtained by the proposed methodology.

It can be observed that each factor has 2 levels, so the 32 combinations correspond
to a factorial design. In this case, a 1/4 fractional design with III resolution, 25−2

III ,
has been performed [17]. This design is useful when the experimental time is a
critical parameter or there are no observations corresponding to all the levels. The
25−2
III design is used in this work to evaluate methodology performance and to check
the influence of parameters on lifetime estimation through the L2 distance between
empirical and estimated distributions.

Additionally, several initial conditions were set for the simulations: an initial
crack growth equal to 0.1, a censoring time equal to 0.15 and a critical crack length
ac = 0.5.

2.2 Methodology Description

In this section, the method proposed by Meeker and Escobar [16] and our procedure
for estimating the distribution function are described. Nonparametric kernel distribu-
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tion function estimation and bootstrap procedures of functional data analysis (FDA)
are also presented.

2.2.1 Nonlinear Mixed Effects Regression to Estimate the Fatigue
Lifetime Distribution

The distributional parameters related to C and m, which define the degradation path
due to fatigue, can be estimated by the parametric method introduced by Meeker
and Escobar [16]. This method is based on Pinheiro and Bates [21, 22] procedure
to obtain an approximated maximum likelihood estimate of the parameters of a
nonlinear mixed effects regression model. The required computations are performed
using the R package nlme [22]. The procedure (denoted by PB-nlme) consists of
the following steps:

1. Several a-t curves are randomly chosen from the set of 1000 curves simulated in
each scenario. In this work, 15 curves were taken, a number of samples plausible
for real experimental studies.

2. Mixed effects nonlinear regression modeling is applied using the Paris solution
function (6), and μC , μm and �Cm are estimated by the likelihood method [16,
21], assuming that C and m are normally distributed.

3. Assuming that C and m have a bivariate Gaussian distribution, 1000 pairs (C, m)
are drawn, substituting the population parameters by their sample estimates:

μ̂ =
(

μ̂C

μ̂m

)
, �̂ =

(
σ̂ 2
C σ̂Cm

σ̂Cm σ̂ 2
m

)

The fatigue lifetimes are obtained by Monte Carlo simulation as the crossing
points of the simulated cracks with ac. The previous steps are repeated 100 times to
estimate the mean distribution function.

2.2.2 Proposed Methodology to Estimate the Fatigue Lifetime
Distribution

The proposed methodology includes the application of semiparametric models (B-
splines), parametric models (linear mixed effects models using the lme function
[22, 27]), and nonparametric models (kernel distribution function estimation using
the kde function of the R package kerdiest [24]. Broadly, this procedure estimates
the C and m parameters from the linearized Paris equation 7. The values of da/dt
were estimated by fitting a basis of B-splines to the a-t curves with the R package
smooth.Pspline [25].

log

(
da

dt

)
= log (C) + m log (�K (a)) (7)



218 A. Meneses et al.

The proposed method (denoted by NP) consists of the following steps:

1. Several a-t curves are randomly chosen from the set of 1000 curves simulated in
each scenario. In this work, 15 curves were taken a number of samples plausible
for real experimental studies.

2. The 15 curves are translated to the coordinate origin and fitted using B-splines
[22, 25].

3. The da/dt values are obtained from the B-spline estimation and then logarithms
are applied to linearize the curves.

4. The lme model [21, 27] based on Eq.7 is applied and the pairs (C, m) for each
curve are estimated.

5. The (C,m) pairs are plugged in Eq.7 and the estimated 15 a-t curves are obtained.
They are used to predict the lifetime corresponding to the critical crack length,
irrespective of censoring time.

6. Fifteen lifetimes are obtained from which the distribution function is esti-
mated. The kernel estimation method is used as implemented in the kerdiest

R package [24]. The expression F̂h (x) = n−1�n
j=1H

(
x−xj
h

)
, where H (x) =∫ x

−∞ K (t) dt, K is the kernel and h the bandwidth, represents the estimated dis-
tribution function. An Epanechnikov kernel with plug-in bandwidth is used [23,
24].

7. The previous steps are repeated 100 times, thus obtaining 100 different distribu-
tion functions from which the mean is estimated.

2.3 Estimation Accuracy: FDA Bootstrap Confidence Bands
and L2 Distance

The L2 distance is used to measure the precision of distribution estimates compared
with the empirical distribution. The NP and PB-nlme methods are compared using
the L2 distance. In addition, the smooth bootstrap for functional data is used to obtain
confidence bands for themean distribution function [6]. TheRpackage fda.usc [11] is
used to construct confidence bands and to calculate L2 distances between distribution
functions.

3 Results and Discussion

In this section, the fatigue lifetime distribution for each simulated scenario is esti-
mated by the NP method, and then it is compared to the empirical distribution of the
simulated data. The results of the new procedure are also compared with the distri-
bution estimates obtained by the PB-nlme method. The simulation scenarios were
defined using a fractional factorial design of experiments, 25−2

III (Sect. 2.1). Thus, for
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simplicity, and also for reducing computing time and preventing the appearance of
missing data, 8 different scenarios were analyzed. The performance of the NP and
PB-nlme method is studied and the dependence of estimates with respect to mater-
ial type and material heterogeneity is checked. The different scenarios replicate the
fatigue performance of different type of materials.

Figure3 shows the results of 4 scenarios. Each row shows the data and estimates
corresponding to each scenario. The left panels plot the simulated crack growth data
versus time with the empirical distribution. The censoring time (0.15) and critical
crack length (ac = 0.5) for which the fatigue failure occurs have been also high-
lighted on the right column. Crossing points of crack length and critical crack length
are shown in red on the left plot. They indicate the lifetime of each simulated spec-
imen. In the right panels, the empirical distribution of fatigue lifetime F̂, and the
mean distribution estimates F̂NP and F̂PB−nlme are plotted. For simplicity, both time
and crack lengths are measured in arbitrary units (a.u.). The right panels of Fig. 3
show that the estimations corresponding to NP methodology tend to be closer to
the empirical distribution F̂ of the simulated data. Table1 shows the L2 distances
between F̂ and F̂PB−nlme and F̂ between F̂NP. The results of Table1 support the
conclusion that the NP method generally provides better estimates of empirical dis-
tribution of fatigue lifetime. Although the PB-nlme method provides good estimates
of the empirical distribution in many scenarios, the proposed methodology fits better
the actual empirical lifetime distribution, possibly because of the greater flexibility
inherent to its nonparametric component. It is important to note that very accurate
estimates of the distribution function were obtained.

AnANOVA studywas implemented using the 25−2
III design of experiments. Taking

into account the NP estimations, the effects of the means of the parameters C, m,
and their structure of variance and covariance over the L2 distance to the lifetime
empirical distribution are checked. The parameters μC , μm and σ 2

C are influential
over the quality of distribution estimation. Results are shown in Fig. 4. The left panel
shows the half normal probability plot of the effects [2]. It is applied to compare
the magnitude and to test the statistical significance of the main effects of the 2-
level factorial design. The fitted line shows the position of points if the effects on the
responsewere not significant (significant effects are labeled). The right panel of Fig. 4
shows that higher values of μm and σ 2

C produce higher L2 distances to the empirical
distribution. On the other hand, higher values of μC involve lower L2 distances and
better distribution estimates. Since C andm depend on the material, the performance
of the NP method depends on the properties of the material subjected to fatigue. For
example, m = 4 means that the corresponding material is not very ductile.

In addition, preliminary studies were also performed to evaluate the influence of
factors like kernel type and values such as censoring time and critical crack length.

One of the advantages of the NP method is its flexibility due to the use of non-
parametric techniques. In fact, the distribution estimates can be improved in some
scenarios by changing factors such as the type of kernel used to fit the distribution
function. Figure5 shows the results of using aGaussian kernel instead of theEpanech-
nikov kernel in the scenario defined by μC = 5, μm = 3, μ2

C = 0.1, σ 2
m = 0.5 and



220 A. Meneses et al.

Fig. 3 Left column: Simulated crack growth data for 4 scenarios. Right column: The empirical
distribution, PB-nlme and NP distribution estimates, F̂PB−nlme and F̂NP , are shown. Censoring time
(right column) and critical crack length (left column) are also shown
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Table 1 L2 distances between the empirical distribution F̂ of simulated data and PB-nlme and NP
distribution estimates, F̂PB−nlme and F̂NP , respectively

L2 distance L2 distance

Scenario between F̂ between F̂

and F̂PB−nlme and F̂NP

μC = 5, μm = 4, σ 2
C =

0.1, σ 2
m = 0.5, σCm = −0.02

0.005323 0.003299

μC = 5, μm = 4, σ 2
C =

0.5, σ 2
m = 0.1, σCm = −0.09

0.006763 0.005091

μC = 5, μm = 3, σ 2
C =

0.5, σ 2
m = 0.1, σCm = −0.02

0.004887 0.003773

μC = 5, μm = 3, σ 2
C =

0.1, σ 2
m = 0.5, σCm = −0.09

0.005569 0.001609

μC = 6, μm = 4, σ 2
C =

0.5, σ 2
m = 0.5, σCm = −0.02

0.002559 0.003696

μC = 6, μm = 4, σ 2
C =

0.1, σ 2
m = 0.1, σCm = −0.09

0.000945 0.001721

μC = 6, μm = 3, σ 2
C =

0.5, σ 2
m = 0.5, σCm = −0.09

0.003578 0.003284

μC = 6, μm = 3, σ 2
C =

0.1, σ 2
m = 0.1, σCm = −0.02

0.001537 0.000349

Fig. 4 Graphs related to factorial design of experiments. Left panel: significant effects at 95%
confidence level. Right panel: evaluation of the significance of principal effects

σCm = −0.09. The estimates with the Gaussian kernel are closer to the empirical
distribution than those obtained with the Epanechnikov kernel (cf. Fig. 3).
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Fig. 5 Simulated data for μC = 5, μm = 3, μ2
C = 0.1, σ 2

m = 0.5 and σCm = −0.09 scenario,

empirical distribution and PB-nlme and NP distribution estimates. The mean F̂NP estimates were
obtained using a Gaussian kernel

Fig. 6 FDA bootstrap confidence bands for the mean of the fatigue lifetime distribution estimated
by the NP method with different censoring times, at 95% confidence level



Nonparametric Method for Estimating the Distribution of Time to Failure … 223

Regarding the influence of initial conditions, such as censoring time and critical
crack length, confidence bands for the F̂NP functional mean were obtained by smooth
bootstrap. These bands contain the empirical distribution even in extreme conditions,
with high censoring level (see Fig. 6). Thus, the performance of the NPmethod could
be to some extent independent of censoring time.

4 Conclusions

Anewmethodology based onB-splines fitting, the application of linearmixed effects
regression models (based on the linearized Paris Erdogan equation) to crack growth
data, and nonparametric kernel distribution function estimation has been successfully
introduced to estimate the fatigue lifetime distribution accurately.

The distribution function estimates obtained by our proposal are compared with
the lifetime distribution estimated by the methodology proposed by Meeker and
Escobar, based on nonlinear mixed effects regression. The proposed procedure esti-
mates more accurately the material lifetime distribution under mechanical fatigue
in a wide range of scenarios. Thus, the use of our methodology seems justified and
deserves further study.

A complete simulation study was performed in order to know how parameter
values affect the quality of the distribution estimates. The ANOVA study of the
factorial experimental design shows that the variance of C, and the means of C and
m are influential parameters over the quality of the estimates of lifetime distribution.
Thus, performance depends on the properties of the material subjected to mechanical
fatigue. The higher the value of σ 2

C , (i.e., the higher the material heterogeneity), the
worse are the distribution estimates. Also, the higher the mean of m (i.e., the less
ductile the material), the worse are the distribution estimates.

According to the bootstrap confidence bands for the mean of lifetime distribution
estimates, the performance of the proposed methodology could be independent of
censoring time.
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