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Preface

Why robust statistics are needed

All statistical methods rely explicitly or implicitly on a number of assumptions. These
assumptions generally aim at formalizing what the statistician knows or conjectures
about the data analysis or statistical modeling problem he or she is faced with, and
at the same time aim at making the resulting model manageable from the theoreti-
cal and computational points of view. However, it is generally understood that the
resulting formal models are simplifications of reality and that their validity is at
best approximate. The most widely used model formalization is the assumption that
the observed data have a normal (Gaussian) distribution. This assumption has been
present in statistics for two centuries, and has been the framework for all the classi-
cal methods in regression, analysis of variance and multivariate analysis. There have
been attempts to justify the assumption of normality with theoretical arguments, such
as the central limit theorem. These attempts, however, are easily proven wrong. The
main justification for assuming a normal distribution is that it gives an approximate
representation to many real data sets, and at the same time is theoretically quite
convenient because it allows one to derive explicit formulas for optimal statistical
methods such as maximum likelihood and likelihood ratio tests, as well as the sam-
pling distribution of inference quantities such as t-statistics. We refer to such methods
as classical statistical methods, and note that they rely on the assumption that nor-
mality holds exactly.The classical statistics are by modern computing standards quite
easy to compute. Unfortunately theoretical and computational convenience does not
always deliver an adequate tool for the practice of statistics and data analysis, as we
shall see throughout this book.

It often happens in practice that an assumed normal distribution model (e.g., a
location model or a linear regression model with normal errors) holds approximately
in that it describes the majority of observations, but some observations follow a
different pattern or no pattern at all. In the case when the randomness in the model is
assigned to observational errors—as in astronomy, which was the first instance of the

xv
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use of the least-squares method—the reality is that while the behavior of many sets of
data appeared rather normal, this held only approximately, with the main discrepancy
being that a small proportion of observations were quite atypical by virtue of being far
from the bulk of the data. Behavior of this type is common across the entire spectrum
of data analysis and statistical modeling applications. Such atypical data are called
outliers, and even a single outlier can have a large distorting influence on a classical
statistical method that is optimal under the assumption of normality or linearity. The
kind of “approximately” normal distribution that gives rise to outliers is one that has a
normal shape in the central region, but has tails that are heavier or “fatter” than those
of a normal distribution.

One might naively expect that if such approximate normality holds, then the
results of using a normal distribution theory would also hold approximately. This
is unfortunately not the case. If the data are assumed to be normally distributed
but their actual distribution has heavy tails, then estimates based on the maximum
likelihood principle not only cease to be “best” but may have unacceptably low
statistical efficiency (unnecessarily large variance) if the tails are symmetric and may
have very large bias if the tails are asymmetric. Furthermore, for the classical tests
their level may be quite unreliable and their power quite low, and for the classical
confidence intervals their confidence level may be quite unreliable and their expected
confidence interval length may be quite large.

The robust approach to statistical modeling and data analysis aims at deriving
methods that produce reliable parameter estimates and associated tests and confidence
intervals, not only when the data follow a given distribution exactly, but also when
this happens only approximately in the sense just described. While the emphasis
of this book is on approximately normal distributions, the approach works as well
for other distributions that are close to a nominal model, e.g., approximate gamma
distributions for asymmetric data. A more informal data-oriented characterization of
robust methods is that they fit the bulk of the data well: if the data contain no outliers
the robust method gives approximately the same results as the classical method, while
if a small proportion of outliers are present the robust method gives approximately the
same results as the classical method applied to the “typical” data. As a consequence
of fitting the bulk of the data well, robust methods provide a very reliable method of
detecting outliers, even in high-dimensional multivariate situations.

We note that one approach to dealing with outliers is the diagnostic approach.
Diagnostics are statistics generally based on classical estimates that aim at giving
numerical or graphical clues for the detection of data departures from the assumed
model. There is a considerable literature on outlier diagnostics, and a good outlier
diagnostic is clearly better than doing nothing. However, these methods present two
drawbacks. One is that they are in general not as reliable for detecting outliers as
examining departures from a robust fit to the data. The other is that, once suspicious
observations have been flagged, the actions to be taken with them remain the analyst’s
personal decision, and thus there is no objective way to establish the properties of the
result of the overall procedure.
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Robust methods have a long history that can be traced back at least to the end of
the nineteenth century with Simon Newcomb (see Stigler, 1973). But the first great
steps forward occurred in the 1960s, and the early 1970s with the fundamental work of
John Tukey (1960, 1962), Peter Huber (1964, 1967) and Frank Hampel (1971, 1974).
The applicability of the new robust methods proposed by these researchers was made
possible by the increased speed and accessibility of computers. In the last four decades
the field of robust statistics has experienced substantial growth as a research area, as
evidenced by a large number of published articles. Influential books have been written
by Huber (1981), Hampel, Ronchetti, Rousseeuw and Stahel (1986), Rousseeuw and
Leroy (1987) and Staudte and Sheather (1990). The research efforts of the current
book’s authors, many of which are reflected in the various chapters, were stimulated
by the early foundation results, as well as work by many other contributors to the
field, and the emerging computational opportunities for delivering robust methods to
users.

The above body of work has begun to have some impact outside the domain of
robustness specialists, and there appears to be a generally increased awareness of
the dangers posed by atypical data values and of the unreliability of exact model as-
sumptions. Outlier detection methods are nowadays discussed in many textbooks on
classical statistical methods, and implemented in several software packages. Further-
more, several commercial statistical software packages currently offer some robust
methods, with that of the robust library in S-PLUS being the currently most complete
and user friendly. In spite of the increased awareness of the impact outliers can have
on classical statistical methods and the availability of some commercial software,
robust methods remain largely unused and even unknown by most communities of
applied statisticians, data analysts, and scientists that might benefit from their use. It
is our hope that this book will help to rectify this unfortunate situation.

Purpose of the book

This book was written to stimulate the routine use of robust methods as a powerful
tool to increase the reliability and accuracy of statistical modeling and data analysis.
To quote John Tukey (1975a), who used the terms robust and resistant somewhat
interchangeably:

It is perfectly proper to use both classical and robust/resistant methods routinely, and

only worry when they differ enough to matter. But when they differ, you should think

hard.

For each statistical model such as location, scale, linear regression, etc., there exist
several if not many robust methods, and each method has several variants which an
applied statistician, scientist or data analyst must choose from. To select the most
appropriate method for each model it is important to understand how the robust
methods work, and their pros and cons. The book aims at enabling the reader to select
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and use the most adequate robust method for each model, and at the same time to
understand the theory behind the method: that is, not only the “how” but also the
“why”. Thus for each of the models treated in this book we provide:� Conceptual and statistical theory explanations of the main issues� The leading methods proposed to date and their motivations� A comparison of the properties of the methods� Computational algorithms, and S-PLUS implementations of the different ap-

proaches� Recommendations of preferred robust methods, based on what we take to be reason-
able trade-offs between estimator theoretical justification and performance, trans-
parency to users and computational costs.

Intended audience

The intended audience of this book consists of the following groups of individu-
als among the broad spectrum of data analysts, applied statisticians and scientists:
(1) those who will be quite willing to apply robust methods to their problems once
they are aware of the methods, supporting theory and software implementations; (2)
instructors who want to teach a graduate-level course on robust statistics; (3) gradu-
ate students wishing to learn about robust statistics; (4) graduate students and faculty
who wish to pursue research on robust statistics and will use the book as background
study.

General prerequisites are basic courses in probability, calculus and linear alge-
bra, statistics and familiarity with linear regression at the level of Weisberg (1985),
Montgomery, Peck and Vining (2001) and Seber and Lee (2003). Previous knowl-
edge of multivariate analysis, generalized linear models and time series is required
for Chapters 6, 7 and 8, respectively.

Organization of the book

There are many different approaches for each model in robustness, resulting in a huge
volume of research and applications publications (though perhaps fewer of the latter
than we might like). Doing justice to all of them would require an encyclopedic work
that would not necessarily be very effective for our goal. Instead we concentrate on the
methods we consider most sound according to our knowledge and experience.

Chapter 1 is a data-oriented motivation chapter. Chapter 2 introduces the main
methods in the context of location and scale estimation; in particular we concentrate
on the so-called M-estimates that will play a major role throughout the book. Chapter
3 discusses methods for the evaluation of the robustness of model parameter esti-
mates, and derives “optimal” estimates based on robustness criteria. Chapter 4 deals
with linear regression for the case where the predictors contain no outliers, typically
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because they are fixed nonrandom values, including for example fixed balanced de-
signs. Chapter 5 treats linear regression with general random predictors which mainly
contain outliers in the form of so-called “leverage” points. Chapter 6 treats robust es-
timation of multivariate location and dispersion, and robust principal components.
Chapter 7 deals with logistic regression and generalized linear models. Chapter 8
deals with robust estimation of time series models, with a main focus on AR and
ARIMA. Chapter 9 contains a more detailed treatment of the iterative algorithms
for the numerical computation of M-estimates. Chapter 10 develops the asymptotic
theory of some robust estimates, and contains proofs of several results stated in the
text. Chapter 11 contains detailed instructions on the use of robust procedures written
in S-PLUS. Chapter 12 is an appendix containing descriptions of most data sets used
in the book.

All methods are introduced with the help of examples with real data. The problems
at the end of each chapter consist of both theoretical derivations and analysis of other
real data sets.

How to read this book

Each chapter can be read at two levels. The main part of the chapter explains the
models to be tackled and the robust methods to be used, comparing their advantages
and shortcomings through examples and avoiding technicalities as much as possible.
Readers whose main interest is in applications should read enough of each chapter
to understand what is the currently preferred method, and the reasons it is preferred.
The theoretically oriented reader can find proofs and other mathematical details in
appendices and in Chapter 9 and Chapter 10. Sections marked with an asterisk may
be skipped at first reading.

Computing

A great advantage of classical methods is that they require only computational proce-
dures based on well-established numerical linear algebra methods which are generally
quite fast algorithms. On the other hand, computing robust estimates requires solving
highly nonlinear optimization problems that typically involve a dramatic increase in
computational complexity and running time. Most current robust methods would be
unthinkable without the power of today’s standard personal computers. Fortunately
computers continue getting faster, have larger memory and are cheaper, which is good
for the future of robust statistics.

Since the behavior of a robust procedure may depend crucially on the algorithm
used, the book devotes considerable attention to algorithmic details for all the methods
proposed. At the same time, in order that robust statistics be widely accepted by a
wide range of users, the methods need to be readily available in commercial software.
Robust methods have been implemented in several available commercial statistical
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packages, including S-PLUS and SAS. In addition many robust procedures have been
implemented in the public-domain language R, which is similar to S. References for
free software for robust methods are given at the end of Chapter 11. We have focused
on S-PLUS because it offers the widest range of methods, and because the methods
are accessible from a user-friendly menu and dialog user interface as well as from the
command line.

For each method in the book, instructions are given in Chapter 11 on how to
compute it using S-PLUS. For each example, the book gives the reference to the re-
spective data set and the S-PLUS code that allow the reader to reproduce the example.
Datasets and codes are to be found on the book’s Web site

http://www.wiley.com/go/robust statistics.
This site will also contain corrections to any errata we subsequently discover, and

clarifying comments and suggestions as needed. We will appreciate any feedback
from readers that will result in posting additional helpful material on the web site.

S-PLUS software download

A time-limited version of S-PLUS for Windows software, which expires after 150
days, is being provided by Insightful for this book. To download and install the S-
PLUS software, follow the instructions at

http://www.insightful.com/support/splusbooks/robstats.

To access the web page, the reader must provide a password. The password is the
web registration key provided with this book as a sticker on the inside back cover. In
order to activate S-PLUS for Windows the reader must use the web registration key.
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Introduction

1.1 Classical and robust approaches to statistics

This introductory chapter is an informal overview of the main issues to be treated in
detail in the rest of the book. Its main aim is to present a collection of examples that
illustrate the following facts:� Data collected in a broad range of applications frequently contain one or more

atypical observations called outliers; that is, observations that are well separated
from the majority or “bulk” of the data, or in some way deviate from the general
pattern of the data.� Classical estimates such as the sample mean, the sample variance, sample covari-
ances and correlations, or the least-squares fit of a regression model, can be very
adversely influenced by outliers, even by a single one, and often fail to provide
good fits to the bulk of the data.� There exist robust parameter estimates that provide a good fit to the bulk of the
data when the data contain outliers, as well as when the data are free of them. A
direct benefit of a good fit to the bulk of data is the reliable detection of outliers,
particularly in the case of multivariate data.

In Chapter 3 we shall provide some formal probability-based concepts and def-
initions of robust statistics. Meanwhile it is important to be aware of the following
performance distinctions between classical and robust statistics at the outset. Classical
statistical inference quantities such as confidence intervals, t-statistics and p-values,
R2 values and model selection criteria in regression can be very adversely influenced
by the presence of even one outlier in the data. On the other hand, appropriately
constructed robust versions of those inference quantities are not much influenced by
outliers. Point estimate predictions and their confidence intervals based on classical

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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statistics can be spoiled by outliers, while predictive models fitted using robust statis-
tics do not suffer from this disadvantage.

It would, however, be misleading to always think of outliers as “bad” data.
They may well contain unexpected relevant information. According to Kandel (1991,
p. 110):

The discovery of the ozone hole was announced in 1985 by a British team working on the
ground with “conventional” instruments and examining its observations in detail. Only
later, after reexamining the data transmitted by the TOMS instrument on NASA’s Nimbus
7 satellite, was it found that the hole had been forming for several years. Why had nobody
noticed it? The reason was simple: the systems processing the TOMS data, designed in
accordance with predictions derived from models, which in turn were established on the
basis of what was thought to be “reasonable”, had rejected the very (“excessively” ) low
values observed above the Antarctic during the Southern spring. As far as the program
was concerned, there must have been an operating defect in the instrument.

In the next sections we present examples of classical and robust estimates to data
containing outliers for the estimation of mean and standard deviation, linear regression
and correlation, Except in Section 1.2, we do not describe the robust estimates in any
detail, and return to their definitions in later chapters.

1.2 Mean and standard deviation

Let x = (x1, x2, . . . , xn) be a set of observed values. The sample mean x and sample
standard deviation (SD) s are defined by

x = 1

n

n∑
i=1

xi , s2 = 1

n − 1

n∑
i=1

(xi − x)2. (1.1)

The sample mean is just the arithmetic average of the data, and as such one might
expect that it provides a good estimate of the center or location of the data. Likewise,
one might expect that the sample SD would provide a good estimate of the dispersion
of the data. Now we shall see how much influence a single outlier can have on these
classical estimates.

Example 1.1 Consider the following 24 determinations of the copper content in
wholemeal flour (in parts per million), sorted in ascending order (Analytical Methods
Committee, 1989):

2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90
3.03 3.03 3.10 3.37 3.40 3.40 3.40 3.50
3.60 3.70 3.70 3.70 3.70 3.77 5.28 28.95

The value 28.95 immediately stands out from the rest of the values and would be
considered an outlier by almost anyone. One might conjecture that this inordinately
large value was caused by a misplaced decimal point with respect to a “true” value
of 2.895. In any event, it is a highly influential outlier as we now demonstrate.

The values of the sample mean and SD for the above data set are x = 4.28 and
s = 5.30, respectively. Since x = 4.28 is larger than all but two of the data values,
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outlier

Outlier at 28.95

Figure 1.1 Copper content of flour data with sample mean and sample median
estimates

it is not among the bulk of the observations and as such does not represent a good
estimate of the center of the data. If one deletes the suspicious value 28.95, then the
values of the sample mean and sample SD are changed to x = 3.21 and s = 0.69.
Now the sample mean does provide a good estimate of the center of the data, as is
clearly revealed in Figure 1.1, and the SD is over seven times smaller than it was
with the outlier present. See the leftmost upward pointing arrow and the rightmost
downward-pointing arrow in Figure 1.1.

Let us consider how much influence a single outlier can have on the sample mean
and sample SD. For example, suppose that the value 28.95 is replaced by an arbitrary
value x for the 24-th observation x24. It is clear from the definition of the sample mean
that by varying x from −∞ to +∞ the value of the sample mean changes from −∞
to +∞. It is an easy exercise to verify that as x ranges from −∞ to +∞ sample SD
ranges from some positive value smaller than that based on the first 23 observations
to +∞. Thus we can say that a single outlier has an unbounded influence on these
two classical statistics.

An outlier may have a serious adverse influence on confidence intervals. For the
flour data the classical interval based on the t-distribution with confidence level 0.95 is
(2.05, 6.51), while after removing the outlier the interval is (2.91, 3.51). The impact of
the single outlier has been to considerably lengthen the interval in an asymmetric way.

The above example suggests that a simple way to handle outliers is to detect them
and remove them from the data set. There are many methods for detecting outliers
(see for example Barnett and Lewis, 1998). Deleting an outlier, although better than
doing nothing, still poses a number of problems:

� When is deletion justified? Deletion requires a subjective decision. When is an
observation “outlying enough” to be deleted?
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4 INTRODUCTION� The user or the author of the data may think that “an observation is an observation”
(i.e., observations should speak for themselves) and hence feel uneasy about deleting
them.� Since there is generally some uncertainty as to whether an observation is really
atypical, there is a risk of deleting “good” observations, which results in underes-
timating data variability.� Since the results depend on the user’s subjective decisions, it is difficult to determine
the statistical behavior of the complete procedure.

We are thus led to another approach: why use the sample mean and SD? Maybe there
are other better possibilities?

One very old method for estimating the “middle” of the data is to use the sample
median. Any number t such that the numbers of observations on both sides of it are
equal is called a median of the data set: t is a median of the data set x = (x1, . . . , xn),
and will be denoted by

t = Med(x), if #{xi > t} = #{xi < t},
where # {A} denotes the number of elements of the set A. It is convenient to define
the sample median in terms of the order statistics (x(1), x(2), . . . , x(n)), obtained by
sorting the observations x = (x1, . . . , xn) in increasing order so that

x(1) ≤ . . . ≤ x(n). (1.2)

If n is odd, then n = 2m − 1 for some integer m, and in that case Med(x) = x(m). If n
is even, then n = 2m for some integer m, and then any value between x(m) and x(m+1)

satisfies the definition of a sample median, and it is customary to take

Med(x) = x(m) + x(m+1)

2
.

However, in some cases (e.g., in Section 4.5.1) it may be more convenient to choose
x(m) or x(m+1) (“low” and “high” medians, respectively).

The mean and the median are approximately equal if the sample is symmetrically
distributed about its center, but not necessarily otherwise.

In our example the median of the whole sample is 3.38, while the median without
the largest value is 3.37, showing that the median is not much affected by the presence
of this value. See the locations of the sample median with and without the outlier
present in Figure 1.1 above. Notice that for this sample, the value of the sample
median with the outlier present is relatively close to the sample mean value of 3.21
with the outlier deleted.

Suppose again that the value 28.95 is replaced by an arbitrary value x for the
24-th observation x(24). It is clear from the definition of the sample median that when
x ranges from −∞ to +∞ the value of the sample median does not change from
−∞ to +∞ as was the case for the sample mean. Instead, when x goes to −∞ the
sample median undergoes the small change from 3.38 to 3.23 (the latter being the
average of x(11) = 3.10 and x(12) = 3.37 in the original data set), and when x goes to
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+∞ the sample median goes to the value 3.38 given above for the original data Since
the sample median fits the bulk of the data well with or without the outlier and is not
much influenced by the outlier, it is a good robust alternative to the sample mean.

Likewise, one robust alternative to the SD is the median absolute deviation about
the median (MAD), defined as

MAD(x) = MAD(x1, x2, . . . , xn) = Med{|x − Med (x)|} .

This estimator uses the sample median twice, first to get an estimate of the center
of the data in order to form the set of absolute residuals about the sample median,
{|x − Med (x)|}, and then to compute the sample median of these absolute residuals.
To make the MAD comparable to the SD, we define the normalized MAD (“MADN”)
as

MADN(x) =MAD(x)

0.6745
.

The reason for this definition is that 0.6745 is the MAD of a standard normal random
variable, and hence a N(μ, σ 2) variable has MADN = σ.

For the above data set one gets MADN = 0.53, as compared with s = 5.30. Delet-
ing the large outlier yields MADN = 0.50, as compared to the somewhat higher sam-
ple SD value of s = 0.69. The MAD is clearly not influenced very much by the pres-
ence of a large outlier, and as such provides a good robust alternative to the sample SD.

So why not always use the median and MAD? An informal explanation is that
if the data contain no outliers, these estimates have statistical performance which is
poorer than that of the classical estimates x and s. The ideal solution would be to
have “the best of both worlds”: estimates that behave like the classical ones when
the data contain no outliers, but are insensitive to outliers otherwise. This is the
data-oriented idea of robust estimation. A more formal notion of robust estimation
based on statistical models, which will be discussed in the following chapters, is that
the statistician always has a statistical model in mind (explicitly or implicitly) when
analyzing data, e.g., a model based on a normal distribution or some other idealized
parametric model such as an exponential distribution. The classical estimates are in
some sense “optimal” when the data are exactly distributed according to the assumed
model, but can be very suboptimal when the distribution of the data differs from the
assumed model by a “small” amount. Robust estimates on the other hand maintain
approximately optimal performance, not just under the assumed model, but under
“small” perturbations of it too.

1.3 The “three-sigma edit” rule

A traditional measure of the “outlyingness” of an observation xi with respect to a
sample is the ratio between its distance to the sample mean and the sample SD:

ti = xi − x

s
. (1.3)
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Observations with |ti | > 3 are traditionally deemed as suspicious (the “three-sigma
rule”), based on the fact that they would be “very unlikely” under normality, since
P(|x | ≥ 3) = 0.003 for a random variable x with a standard normal distribution. The
largest observation in the flour data has ti = 4.65, and so is suspicious. Traditional
“three-sigma edit” rules result in either discarding observations for which |ti | > 3, or
adjusting them to one of the values x ± 3s, whichever is nearer.

Despite its long tradition, this rule has some drawbacks that deserve to be taken
into account:� In a very large sample of “good” data, some observations will be declared suspicious

and altered. More precisely, in a large normal sample about three observations out
of 1000 will have |ti | > 3. For this reason, normal Q–Q plots are more reliable for
detecting outliers (see example below).� In very small samples the rule is ineffective: it can be shown that

|ti | <
n − 1√

n

for all possible data sample values, and hence if n ≤ 10 then |ti | < 3 always. The
proof is left to the reader (Problem 1.3).� When there are several outliers, their effects may interact in such a way that some or
all of them remain unnoticed (an effect called masking), as the following example
shows.

Example 1.2 The following data (Stigler, 1977) are 20 determinations of the time
(in microseconds) needed for light to travel a distance of 7442 m. The actual times
are the table values × 0.001 + 24.8.

28 26 33 24 34 -44 27 16 40 -2
29 22 24 21 25 30 23 29 31 19

The normal Q–Q plot in Figure 1.2 reveals the two lowest observations (−44 and
−2) as suspicious. Their respective ti ’s are −3.73 and −1.35 and so the value of |ti |
for the observation −2 does not indicate that it is an outlier. The reason that −2 has
such a small |ti | value is that both observations pull x to the left and inflate s; it is
said that the value −44 “masks” the value −2.

To avoid this drawback it is better to replace x and s in (1.3) by robust location
and dispersion measures. A robust version of (1.3) can be defined by replacing the
sample mean and SD by the median and MADN, respectively:

t ′
i = xi − Med(x)

MADN(x)
. (1.4)

The ti ’s for the two leftmost observations are now −11.73 and −4.64 and hence
the “robust three-sigma edit rule”, with t ′ instead of t, pinpoints both as suspicious.
This suggests that even if we only want to detect outliers—rather than to estimate
parameters—detection procedures based on robust estimates are more reliable.
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Figure 1.2 Velocity of light: Q–Q plot of observed times

A simple robust location estimate could be defined by deleting all observations
with

∣∣t ′
i

∣∣ larger than a given value, and taking the average of the rest. While this
procedure is better than the three-sigma edit rule based on t , it will be seen in Chapter 3
that the estimates proposed in this book handle the data more smoothly, and can be
tuned to possess certain desirable robustness properties that this procedure lacks.

1.4 Linear regression

1.4.1 Straight-line regression

First consider fitting a straight-line regression model to the data set {(xi , yi ) :
i = 1, . . . , n}

yi = α + xiβ + ui , i = 1, . . . , n

where xi and yi are the predictor and response variable values, respectively, and ui

are random errors. The time-honored classical way of fitting this model is to estimate
the parameters α and β with the least-squares (LS) estimates

β̂ =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

α̂ = y − x β̂.



JWBK076-01 JWBK076-Maronna February 16, 2006 18:7 Char Count= 0

8 INTRODUCTION

Figure 1.3 EPS data with robust and LS fits

As an example of how influential two outliers can be on these estimates, Figure 1.3
plots the earnings per share (EPS) versus time in years for the company with stock
exchange ticker symbol IVENSYS, along with the straight-line fits of the LS esti-
mate and of a robust regression estimate (called an MM-estimate) that has desirable
theoretical properties to be described in detail in Chapter 5.

The two unusually low EPS values in 1997 and 1998 have caused the LS line to fit
the data very poorly, and one would not expect the line to provide a good prediction
of EPS in 2001. By way of contrast, the robust line fits the bulk of the data well, and
is expected to provide a reasonable prediction of EPS in 2001.

The above EPS example was brought to one of the author’s attention by an analyst
in the corporate finance organization of a large well-known company. The analyst was
required to produce a prediction of next year’s EPS for several hundred companies,
and at first he used the LS line fit for this purpose. But then he noticed a number of
firms for which the data contained outliers that distorted the LS parameter estimates,
resulting in a very poor fit and a poor prediction of next year’s EPS. Once he discovered
the robust estimate, and found that it gave him essentially the same results as the LS
estimate when the data contained no outliers, while at the same time providing a better
fit and prediction than LS when outliers were present, he began routinely using the
robust estimate for his task.
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It is important to note that automatically flagging large differences between a
classical estimate (in this case LS) and a robust estimate provides a useful diagnostic
alert that outliers may be influencing the LS result.

1.4.2 Multiple linear regression

Now consider fitting a multiple linear regression model

yi =
p∑

j=1

xi jβ j + ui , i = 1, . . . , n

where the response variable values are yi , and there are p predictor variables xi j , j =
1, . . . , p, and p regression coefficients β j . Not surprisingly, outliers can also have an

adverse influence on the LS estimate β̂ for this general linear model, a fact which is
illustrated by the following example that appears in Hubert and Rousseeuw (1997).

Example 1.3 The response variable values yi are the rates of unemployment in
various geographical regions around Hanover, Germany, and the predictor variables
xi j , j = 1, . . . , p, are as follows:

PA: percentage engaged in production activities
GPA: growth in PA
HS: percentage engaged in higher services
GHS: growth in HS
Region: geographical region around Hanover (21 regions)
Period: time period (three periods: 1979–1982, 1983–1988, 1989–1992)

Note that the categorical variables Region and Period require 20 and 2 parameters
respectively, so that, including an intercept, the model has 27 parameters, and the
number of response observations is 63, one for each region and period. The following
set of displays shows the results of LS and robust fitting in a manner that facili-
tates easy comparison of the results. The robust fitting is done by a special type of
“M-estimate” that has desirable theoretical properties, and is described in detail in
Section 5.15.

For a set of estimated parameters
(
β̂1, . . . , β̂ p

)
, with fitted values ŷi =∑p

j=1 xi j β̂ j , residuals ûi = yi − ŷi and residuals dispersion estimate σ̂ , Figure 1.4
shows the standardized residuals ũi = ûi/σ̃ plotted versus the observations’ index
values i . Standardized residuals that fall outside the horizontal dashed lines at ±2.33,
which occurs with probability 0.02, are declared suspicious. The display for the LS
fit does not reveal any outliers while that for the robust fit clearly reveals 10 to 12 out-
liers among 63 observations. This is because the robust regression has found a linear
relationship that fits the majority of the data points well, and consequently is able to
reliably identify the outliers. The LS estimate instead attempts to fit all data points
and so is heavily influenced by the outliers. The fact that all of the LS standardized
residuals lie inside the horizontal dashed lines is because the outliers have inflated
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Figure 1.4 Standardized residuals for LS and robust fits

the value of σ̃ computed in the classical way based on the sum of squared residuals,
while a robust estimate σ̃ used for the robust regression is not much influenced by
the outliers.

Figure 1.5 shows normal Q–Q plots of the residuals for the LS and robust fits, with
light dotted lines showing the 95% simulated pointwise confidence regions to help one
judge whether or not there are significant outliers and potential nonnormality. These
plots may be interpreted as follows. If the data fall along the straight line (which itself
is fitted by a robust method) with no points outside the 95% confidence region then
one is moderately sure that the data are normally distributed.

Making only the LS fit, and therefore looking only at the normal Q–Q plot in the
left-hand plot above, would lead to the conclusion that the residuals are indeed quite
normally distributed with no outliers. The normal Q–Q plot of residuals for the robust
fit in the right-hand panel of Figure 1.5 clearly shows that such a conclusion is wrong.
This plot shows that the bulk of the residuals is indeed quite normally distributed, as
is evidenced by the compact linear behavior in the middle of the plot, and at the same
time clearly reveals the outliers that were evident in the plot of standardized residuals
(Figure 1.4).
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Figure 1.5 Normal Q–Q plots for LS and robust fits

1.5 Correlation coefficients

Let {(xi , yi )} , i = 1, . . . , n, be a bivariate sample. The most popular measure of
association between the x’s and the y’s is the sample correlation coefficient defined
as

ρ̂ =
∑n

i=1(xi − x)(yi − y)(∑n
i=1(xi − x)2

)1/2 (∑n
i=1(yi − y)2

)1/2

where x and y are the sample means of the xi ’s and yi ’s.
The sample correlation coefficient is highly sensitive to the presence of outliers.

Figure 1.6 shows a scatterplot of the gain (increase) in telephones versus the annual
difference in new housing starts for a period of 15 years in a geographical region
within New York City in the 1960s and 1970s, in coded units.

There are two outliers in this bivariate (two-dimensional) data set that are clearly
separated from the rest of the data. It is important to notice that these two outliers
are not one-dimensional outliers; they are not even the largest or smallest values in
any of the two coordinates. This observation illustrates an extremely important point:
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Figure 1.6 Gain in telephones versus difference in new housing starts

two-dimensional outliers cannot be reliably detected by examining the values of
bivariate data one-dimensionally, i.e., one variable at a time!

The value of the sample correlation coefficient for the main-gain data is ρ̂ = 0.44,
and deleting the two outliers yields ρ̂ = 0.91, which is quite a large difference and in
the range of what an experienced user might expect for the data set with the two outliers
removed. The data set with the two outliers deleted can be seen as roughly elliptical
with a major axis sloping up and to the right and the minor axis direction sloping up and
to the left With this picture in mind one can see that the two outliers lie in the minor axis
direction, though offset somewhat from the minor axis. The impact of the outliers
is to decrease the value of the sample correlation coefficient by the considerable
amount of 0.44 from its value of 0.91 with the two outliers deleted. This illustrates a
general biasing effect of outliers on the sample correlation coefficient: outliers that lie
along a minor axis direction of data that is otherwise positively correlated negatively
influence the sample correlation coefficient. Similarly, outliers that lie along a minor
axis direction of data that is otherwise negatively correlated will increase the sample
correlation coefficient. Outliers that lie along a major axis direction of the rest of the
data will increase the absolute value of the sample correlation coefficient, making it
more positive in the case where the bulk of the data is positively correlated.

If one uses a robust correlation coefficient estimate it will not make much differ-
ence whether the outliers in the main-gain data are present or deleted. Using a good
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robust method ρ̂Rob for estimating covariances and correlations on the main-gain
data yields ρ̂Rob = 0.85 for the entire data set and ρ̂Rob = 0.90 with the two outliers
deleted. For the robust correlation coefficient the change due to deleting the outlier
is only 0.05, compared to 0.47 for the classical estimate. A detailed description of
robust correlation and covariance estimates is provided in Chapter 6.

When there are more than two variables, examining all pairwise scatterplots for
outliers is hopeless unless the number of variables is relatively small. But even looking
at all scatterplots or applying a robust correlation estimate to all pairs does not suffice,
for in the same way that there are bivariate outliers which do not stand out in any
univariate representation, there may be multivariate outliers that heavily influence the
correlations and do not stand out in any bivariate scatterplot. Robust methods deal with
this problem by estimating all the correlations simultaneously, in such a manner that
points far away from the bulk of the data are automatically downweighted. Chapter 6
treats these methods in detail.

1.6 Other parametric models

We do not want to leave the reader with the impression that robust estimation is
only concerned with outliers in the context of an assumed normal distribution model.
Outliers can cause problems in fitting other simple parametric distributions such as
an exponential, Weibull or gamma distribution, where the classical approach is to use
a nonrobust maximum likelihood estimate (MLE) for the assumed model. In these
cases one needs robust alternatives to the MLE in order to obtain a good fit to the
bulk of the data.

For example, the exponential distribution with density

f (x ; λ) = 1

λ
e−x/λ, x ≥ 0

is widely used to model random inter-arrival times and failure times, and it also arises
in the context of times series spectral analysis (see Section 8.14). It is easily shown that
the parameter λ is the expected value of the random variable x , i.e., λ = E(x), and that
the sample mean is the MLE. We already know from the previous discussion that the
sample mean lacks robustness and can be greatly influenced by outliers. In this case the
data are nonnegative so one is only concerned about large positive outliers that cause
the value of the sample mean to be inflated in a positive direction. So we need a robust
alternative to the sample mean, and one naturally considers use of the sample median
Med (x). It turns out that the sample median is an inconsistent estimate of λ, i.e., it does
not approach λ when the sample size increases, and hence a correction is needed. It is
an easy calculation to check that the median of the exponential distribution has value
λ log 2, where log stands for natural logarithm, and so one can use Med (x) / log 2 as
a simple robust estimate of λ that is consistent with the assumed model. This estimate
turns out to have desirable robustness properties that are described in Problem 3.15.

The methods of robustly fitting Weibull and gamma distributions are much more
complicated than the above use of the adjusted median for the exponential distribution.
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We present one important application of robust fitting a gamma distribution due to
Marazzi, Paccaud, Ruffieux and Beguin (1998). The gamma distribution has density

f (x ; α, σ ) = 1

�(α)σα
xα−1e−x/σ , x ≥ 0

and the mean of this distribution is known to be E(x) = ασ . The problem has to do
with estimating the length of stay (LOS) of 315 patients in a hospital. The mean LOS
is a quantity of considerable economic importance, and some patients whose hospital
stays are much longer than those of the majority of the patients adversely influence
the MLE fit of the gamma distribution. The MLE values turn out to be α̂MLE = 0.93
and σ̂ MLE = 8.50, while the robust estimates are α̂Rob = 1.39 and σ̂ Rob = 3.64, and
the resulting mean LOS estimates are μ̂MLE = 7.87 and μ̂Rob = 4.97. Some patients
with unusually long LOS values contribute to an inflated estimate of the mean LOS for
the majority of the patients. A more complete picture is obtained with the following
graphical displays.

Figure 1.7 shows a histogram of the data along with the MLE and robust gamma
density fit to the LOS data. The MLE underestimates the density for small values
of LOS and overestimates the density for large values of LOS thereby resulting
in a larger MLE estimate of the mean LOS, while the robust estimate provides a
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Figure 1.7 MLE and robust fits of a gamma distribution to LOS data
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Figure 1.8 Fitted gamma Q–Q plot of LOS data

better overall fit and a mean LOS that better describes the majority of the patients.
Figure 1.8 shows a gamma Q–Q plot based on the robustly fitted gamma distribution.
This plot reveals that the bulk of the data is well fitted by the robust method, while
approximately 30 of the largest values of LOS appear to come from a sub-population
of the patients characterized by longer LOS values that is properly modeled separately
by another distribution, possibly another gamma distribution with different values of
the parameters α and σ .

1.7 Problems

1.1 Show that if a value x0 is added to a sample x = {x1, . . . , xn} , when x0 ranges
from −∞ to +∞ the standard deviation of the enlarged sample ranges between
a value smaller than SD (x) and infinity.

1.2 Consider the situation of the former problem.
(a) Show that if n is even, the maximum change in the sample median when

x0 ranges from −∞ to +∞ is the distance from Med (x) to the next order
statistic, the farthest from Med (x).

(b) What is the maximum change in the case when n is odd?
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1.3 Show for ti defined in (1.3) that |ti | < (n − 1)/
√

n for all possible data sets of
size n, and hence for all data sets |ti | < 3 if n ≤ 10.

1.4 The interquartile range (IQR) is defined as the difference between the third and
the first quartiles.
(a) Calculate the IQR of the N

(
μ, σ 2

)
distribution.

(b) Consider the sample interquartile range

IQR(x) = IQR(x1, x2, . . . , xn) = x(�3n/4	) − x(�n/4	)

as a measure of dispersion. It is known that sample quantiles tend to the
respective distribution quantiles if these are unique. Based on this fact deter-
mine the constant c such that the normalized interquartile range IQRN(x) =
IQR(x)/c is a consistent estimate of σ when the data have a N(μ, σ 2) distri-
bution.

(c) Can you think of a reason why you would prefer MADN(x) to IQRN(x) as a
robust estimate of dispersion?

1.5 Show that the median of the exponential distribution is λ log 2, and hence
Med (x) / log 2 is a consistent estimate of λ.
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Location and Scale

2.1 The location model

For a systematic treatment of the situations considered in the Introduction, we need to
represent them by probability-based statistical models. We assume that the outcome
xi of each observation depends on the “true value” μ of the unknown parameter (in
Example 1.1, the copper content of the whole flour lot) and also on some random
error process. The simplest assumption is that the error acts additively, i.e.,

xi = μ + ui (i = 1, . . . , n) (2.1)

where the errors u1, . . . , un are random variables. This is called the location model.
If the observations are independent replications of the same experiment under

equal conditions, it may be assumed that� u1, . . . , un have the same distribution function F0.� u1, . . . , un are independent.

It follows that x1, . . . , xn are independent with common distribution function

F(x) = F0(x − μ) (2.2)

and we say that the xi ’s are i.i.d.—independent and identically distributed—random
variables .

The assumption that there are no systematic errors can be formalized as� ui and −ui have the same distribution, and consequently F0(x) = 1 − F0(−x).

An estimate μ̂ is a function of the observations: μ̂ = μ̂(x1, . . . , xn) = μ̂(x). We
are looking for estimates such that in some sense μ̂ ≈ μ with high probability. One

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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way to measure the approximation is with mean squared error (MSE):

MSE(μ̂) = E(μ̂ − μ)2

(other measures will be developed later). The MSE can be decomposed as

MSE(μ̂) = Var(μ̂) + Bias(μ̂)2,

with

Bias(μ̂) = Eμ̂ − μ

where “E” stands for the expectation.
Note that if μ̂ is the sample mean and c is any constant, then

μ̂(x1 + c, . . . , xn + c) = μ̂(x1, . . . , xn) + c (2.3)

and

μ̂(cx1, . . . , cxn) = cμ̂(x1, . . . , xn). (2.4)

The same holds for the median. These properties are called respectively shift (or
location) and scale equivariance of μ̂. They imply that, for instance, if we express
our data in degrees Celsius instead of Fahrenheit, the estimate will automatically
adapt to the change of units.

A traditional way to represent “well-behaved” data, i.e. data without outliers, is
to assume F0 is normal with mean 0 and unknown variance σ 2, which implies

F = D(xi ) = N(μ, σ 2),

where D(x) denotes the distribution of the random variable x , and N(μ, v) is the
normal distribution with mean μ and variance v. Classical methods assume that
F belongs to an exactly known parametric family of distributions. If the data were
exactly normal, the mean would be an “optimal” estimate: it is the maximum likelihood
estimate (MLE) (see next section), and minimizes the MSE among unbiased estimates,
and also among equivariant ones (Bickel and Doksum, 2001; Lehmann and Casella,
1998). But data are seldom so well behaved.

Figure 2.1 shows the normal Q–Q plots of the observations in Example 1.1. We
see that the bulk of the data may be described by a normal distribution, but not the
whole of it. The same feature can be observed in the Q–Q plot of Figure 1.2. In this
sense, we may speak of F as being only approximately normal, with normality failing
at the tails. We may thus state our initial goal as: looking for estimates that are almost
as good as the mean when F is exactly normal, but that are also “good” in some sense
when F is only approximately normal.

At this point it may seem natural to think that an adequate procedure could be
to test the hypothesis that the data are normal; if it is not rejected, we use the mean,
otherwise, the median; or, better still, fit a distribution to the data, and then use the
MLE for the fitted one. But this has the drawback that very large sample sizes are
needed to distinguish the true distribution, especially since here the tails—precisely
the regions with fewer data—are most influential.

To formalize the idea of approximate normality, we may imagine that a proportion
1 − ε of the observations is generated by the normal model, while a proportion ε
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Figure 2.1 Q–Q plot of flour data

is generated by an unknown mechanism. For instance, repeated measurements are
made of some magnitude, which are 95% of the time correct, but 5% of the time
the apparatus fails or the experimenter makes a wrong transcription. This may be
described by supposing

F = (1 − ε)G + εH (2.5)

where G = N(μ, σ 2) and H may be any distribution; for instance, another normal with
a larger variance and a possibly different mean. This is called a contaminated normal
distribution. An early example of the use of these distributions to show the dramatic
lack of robustness of the SD was given by Tukey (1960). In general, F is called a
mixture of G and H, and is called a normal mixture when both G and H are normal.

To justify (2.5), let A be the event “the apparatus fails”, which has P(A) = ε,
and A′ its complement. We are assuming that our observation x has distribution G
conditional on A′ and H conditional on A. Then by the total probability rule

F(t) = P(x ≤ t) = P(x ≤ t |A′)P(A′) + P(x ≤ t |A)P(A)

= G(t)(1 − ε) + H (t)ε.

If G and H have densities g and h, respectively, then F has density

f = (1 − ε)g + εh. (2.6)
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It must be emphasized that—as in the ozone layer example of Section 1.1—
atypical values are not necessarily due to erroneous measurements: they simply reflect
an unknown change in the measurement conditions in the case of physical measure-
ments, or more generally the behavior of a sub-population of the data. An important
example of the latter is that normal mixture distributions have been found to often
provide quite useful models for the stock returns, i.e., the relative change in price from
one time period to the next, with the mixture components corresponding to different
volatility regimes of the returns.

Another model for outliers is the so-called heavy-tailed or fat-tailed distributions,
i.e., distributions whose density tails tend to zero more slowly than the normal density
tails. An example is the so-called Cauchy distribution , with density

f (x) = 1

π (1 + x2)
. (2.7)

It is bell shaped like the normal, but its mean does not exist. It is a particular case of
the family of Student (or t) densities with ν > 0 degrees of freedom, given by

fν(x) = cν

(
1 + x2

ν

)−(ν+1)/2

(2.8)

where cv is a constant:

cv = �((v + 1)/2)√
vπ �(v/2)

,

where � is the gamma function. This family contains all degrees of heavy-tailedness.
When ν → ∞, fν tends to the standard normal density; for ν = 1 we have the Cauchy
distribution.

Figure 2.2 shows the densities of N(0, 1), the Student distribution with 4 degrees
of freedom, and the contaminated distribution (2.6) with g = N(0, 1), h = N(0, 100)
and ε = 0.10, denoted by N, T4 and CN respectively. To make comparisons more
clear, the three distributions are normalized to have the same interquartile range.

If F0 = N(0, σ 2) in (2.2), then x is N(μ, σ 2/n). As we shall see later, the sample
median is approximately N(μ, 1.57σ 2/n), so the sample median has a 57% increase
in variance relative to the sample mean. We say that the median has a low efficiency
at the normal distribution.

On the other hand, assume that 95% of our observations are well behaved, rep-
resented by G = N(μ, 1), but that 5% of the times the measuring system gives an
erratic result, represented by a normal distribution with the same mean but a 10-fold
increase in the standard deviation. We thus have the model (2.5) with ε = 0.05 and
H = N(μ, 100). In general, under the model

F = (1 − ε)N(μ, 1) + εN(μ, τ 2) (2.9)

we have (see (2.85), (2.26) and Problem 2.3)

Var(x) = (1 − ε) + ετ 2

n
, Var(Med(x)) ≈ π

2n (1 − ε + ε/τ )2
. (2.10)
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Figure 2.2 Standard normal (N), Student (T4) and contaminated normal (CN) den-
sities, scaled to equal interquartile range

Note that Var(Med(x)) above means “the theoretical variance of the sample median of
x”. It follows that for ε = 0.05 and H = N(μ, 100), the variance of x increases to 5.95,
while that of the median is only 1.72. The gain in robustness due to using the median
is paid for by an increase in variance (“a loss in efficiency”) at the normal distribution.

Table 2.1 shows the approximations for large n of n times the variances of the
mean and median for different values of τ . It is seen that the former increases rapidly
with τ , while the latter stabilizes.

In the sequel we shall develop estimates which combine the low variance of
the mean at the normal with the robustness of the median under contamination. For

Table 2.1 Variances (×n) of mean and median for large n

ε 0.05 0.10

τ nVar(x) nVar(Med) nVar(x) nVar(Med)

3 1.40 1.68 1.80 1.80
4 1.75 1.70 2.50 1.84
5 2.20 1.70 3.40 1.86
6 2.75 1.71 4.50 1.87

10 5.95 1.72 10.90 1.90
20 20.9 1.73 40.90 1.92



JWBK076-02 JWBK076-Maronna February 16, 2006 18:7 Char Count= 0

22 LOCATION AND SCALE

introductory purposes we deal only with symmetric distributions. The distribution of
the variable x is symmetric about μ if x − μ and μ − x have the same distribution. If x
has a density f, symmetry about μ is equivalent to f (μ + x) = f (μ − x). Symmetry
implies that Med(x) = μ, and if the expectation exists, also that Ex = μ. Hence if
the data have a symmetric distribution, there is no bias and only the variability is at
issue. In Chapter 3 general contamination will be addressed.

Two primitive ideas to obtain robust estimates are based on deleting and truncat-
ing atypical data. Assume that we define an interval [a, b] (depending on the data)
containing supposedly “typical” observations, such as a = x − 2s, b = x + 2s. Then
deletion means using a modified sample, obtained by omitting all points outside [a, b].
Truncation means replacing all xi < a by a and all xi > b by b, and not altering the
other points, i.e., atypical values are shifted to the nearest typical ones. Naive uses
of these ideas are not necessarily good, but some of the methods we shall study are
elaborate versions of them.

2.2 M-estimates of location

We shall now develop a general family of estimates that contains the mean and the
median as special cases.

2.2.1 Generalizing maximum likelihood

Consider again the location model (2.1). Assume that F0, the distribution function of
ui , has a density f0 = F ′

0. Then the joint density of the observations (the likelihood
function) is

L(x1, . . . , xn; μ) =
n∏

i=1

f0(xi − μ)

The maximum likelihood estimate (MLE) of μ is the value μ̂—depending on
x1, . . . , xn— that maximizes L(x1, . . . , xn; μ):

μ̂ = μ̂(x1, . . . , xn) = arg max
μ

L(x1, . . . , xn; μ) (2.11)

where “arg max” stands for “the value maximizing”.
If we knew F0 exactly, the MLE would be “optimal” in the sense of attaining

the lowest possible asymptotic variance among a “reasonable” class of estimates (see
Section 10.8). But since we know F0 only approximately, our goal will be to find
estimates which are

(A) “nearly optimal” when F0 is exactly normal,
and also
(B) “nearly optimal” when F0 is approximately normal (e.g. contaminated
normal).
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If f0 is everywhere positive, since the logarithm is an increasing function, (2.11)
can be written as

μ̂ = arg min
μ

n∑
i=1

ρ (xi − μ) (2.12)

where

ρ = − log f0. (2.13)

If F0 = N(0, 1), then

f0(x) = 1√
2π

e−x2/2 (2.14)

and apart from a constant, ρ(x) = x2/2. Hence (2.12) is equivalent to

μ̂ = arg min
μ

n∑
i=1

(xi − μ)2. (2.15)

If F0 is the double exponential distribution

f0(x) = 1

2
e−|x | (2.16)

then ρ(x) = |x |, and (2.12) is equivalent to

μ̂ = arg min
μ

n∑
i=1

|xi − μ|. (2.17)

We shall see below that the solutions to (2.15) and (2.17) are the sample mean and
median, respectively.

If ρ is differentiable, differentiating (2.12) with respect to μ yields

n∑
i=1

ψ(xi − μ̂) = 0 (2.18)

with ψ = ρ ′. If ψ is discontinuous, solutions to (2.18) might not exist, and in this
case we shall interpret (2.18) to mean that the left-hand side changes sign at μ. Note
that if f0 is symmetric, then ρ is even and hence ψ is odd.

If ρ(x) = x2/2, then ψ(x) = x, and (2.18) becomes

n∑
i=1

(xi − μ̂) = 0

which has μ̂ = x as solution.
For ρ(x) = |x |, it will be shown that any median of x is a solution of (2.17).

In fact, the derivative of ρ(x) exists for x 	= 0, and is given by the sign function:
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ψ(x) = sgn(x), where

sgn(x) =
⎧⎨⎩−1 if x < 0

0 if x = 0
1 if x > 0.

(2.19)

Since the function to be minimized in (2.17) is continuous, it suffices to find the
values of μ where its derivative changes sign. Note that

sgn(x) = I(x > 0) − I(x < 0) (2.20)

where I(.) stands for the indicator function, i.e.,

I(x > 0) =
{

1 if x > 0
0 if x ≤ 0.

Applying (2.20) to (2.18) yields

n∑
i=1

sgn(xi − μ) =
n∑

i=1

(I(xi − μ > 0) − I(xi − μ < 0))

= #(xi > μ) − #(xi < μ) = 0

and hence #(xi > μ) = #(xi < μ), which implies that μ is any sample median.
From now on, the average of a data set z = {z1, . . . , zn} will be denoted by ave(z),

or by avei (zi ) when necessary, i.e.,

ave(z) = avei (zi ) = 1

n

n∑
i=1

zi ,

and its median by Med(z) or Medi (zi ). If c is a constant, z + c and cz will denote
the data sets (z1 + c, . . . , zn + c) and (cz1, . . . , czn). If x is a random variable with
distribution F, the mean and median of a function g(x) will be denoted by EF g(x)
and MedF g(x), dropping the subscript F when there is no ambiguity.

Given a function ρ, an M-estimate of location is a solution of (2.12). We shall
henceforth study estimates of this form, which need not be MLEs for any distribution.
The function ρ will be chosen in order to ensure the goals (A) and (B) above.

Assume ψ is monotone nondecreasing, with ψ(−∞) < 0 < ψ(∞). Then it is
proved in Theorem 10.1 that (2.18)—and hence (2.12)—always has a solution. If ψ

is continuous and increasing, the solution is unique, otherwise the set of solutions
is either a point or an interval (throughout this book, we shall call any function
g increasing (nondecreasing) if a < b implies g(a) < g(b) (g(a) ≤ g(b))). More
details on uniqueness are given in Section 10.1.

It is easy to show that M-estimates are shift equivariant as defined in (2.3) (Prob-
lem 2.5). The mean and median are scale equivariant, but this does not hold in general
for M-estimates in their present form. This drawback will be overcome in Section 2.6.
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2.2.2 The distribution of M-estimates

In order to evaluate the performance of M-estimates, it is necessary to calculate
their distributions. Except for the mean and the median (see (10.47)), there are no
explicit expressions for the distribution of M-estimates in finite sample sizes, but
approximations can be found and a heuristic derivation is given in Section 2.9.2
(a rigorous treatment is given in Section 10.3).

Assume ψ is increasing. For a given distribution F, define μ0 = μ0(F) as the
solution of

EFψ(x − μ0) = 0. (2.21)

For the sample mean, ψ(x) = x , and (2.21) implies μ0 = Ex, i.e., the population
mean. For the sample median, (2.20) and (2.21) yield

P(x > μ0) − P(x < μ0) = 2F(μ0) − 1 = 0

which implies F(μ0) = 1/2, which corresponds to μ0 = Med(x), i.e., a population
median. In general if F is symmetric then μ0 coincides with the center of symmetry
(Problem 2.6).

It can be shown (see Section 2.9.2) that when n → ∞,

μ̂ →p μ0 (2.22)

where “→p” stands for “tends in probability” and μ0 is defined in (2.21) (we say that
μ̂ is “consistent for μ0”), and the distribution of μ̂ is approximately

N
(
μ0,

v

n

)
with v = EF

(
ψ(x − μ0)2

)
(EFψ ′(x − μ0))2

. (2.23)

Note that under model (2.2) v does not depend on μ0, i.e.,

v = EF0

(
ψ(x)2

)(
EF0

ψ ′(x)
)2

. (2.24)

If the distribution of an estimate μ̂ is approximately N(μ0, v/n) for large n, we say
that μ̂ is asymptotically normal, with asymptotic value μ0 and asymptotic variance
v. The asymptotic efficiency of μ̂ is the ratio

Eff(μ̂) = v0

v
, (2.25)

where v0 is the asymptotic variance of the MLE, and measures how near μ̂ is to the
optimum. The expression for v in (2.23) is called the asymptotic variance of μ̂.

To understand the meaning of efficiency, consider two estimates with asymptotic
variances v1 and v2. Since their distributions are approximately normal with variances
v1/n and v2/n, if for example v1 = 3v2 then the first estimate requires three times as
many observations to attain the same variance as the second.
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For the sample mean, ψ ′ ≡ 1 and hence v = Var(x). For the sample median, the
numerator of v is one. Here ψ ′ does not exist, but if x has a density f , it is shown in
Section 10.3 that the denominator is 2 f (μ0), and hence

v = 1

4 f (μ0)2
. (2.26)

Thus for F = N(0, 1) we have

v = 2π

4
= 1.571.

It will be seen that a type of ρ- and ψ-functions with important properties is the
family of Huber functions, plotted in Figure 2.3:

ρk(x) =
{

x2 if |x | ≤ k
2k |x | − k2 if |x | > k

(2.27)

with derivative 2ψk(x),where

ψk(x) =
{

x if |x | ≤ k
sgn(x)k if |x | > k.

(2.28)

It is seen that ρk is quadratic in a central region, but increases only linearly to
infinity. The M-estimates corresponding to the limit cases k → ∞ and k → 0 are the
mean and the median, and we define ψ0(x) as sgn(x).

x

rh
o

–3 –2 –1 0 1 2 3

0
.0

1
.0

2
.0

3
.0

–k k

x

p
si

–3 –2 –1 0 1 2 3

–
1

.0
0
.0

0
.5

1
.0

–k k

Figure 2.3 Huber ρ- and ψ-functions
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Table 2.2 Asymptotic variances of Huber M-estimate

k ε=0 ε=0.05 ε=0.10

0 1.571 1.722 1.897
0.7 1.187 1.332 1.501
1.0 1.107 1.263 1.443
1.4 1.047 1.227 1.439
1.7 1.023 1.233 1.479
2.0 1.010 1.259 1.550
∞ 1.000 5.950 10.900

The value of k is chosen in order to ensure a given asymptotic variance—hence a
given asymptotic efficiency—at the normal distribution. Table 2.2 gives the asymp-
totic variances of the estimate at model (2.5) with G = N(0, 1) and H = N(0, 10),
for different values of k.

Here we see the trade-off between robustness and efficiency: when k = 1.4, the
variance of the M-estimator at the normal is only 4.7% larger than that of x (which
corresponds to k = ∞) and much smaller than that of the median (which corresponds
to k = 0), while for contaminated normals it is clearly smaller than both.

Huber’s ψ is one of the few cases where the asymptotic variance at the normal
distribution can be calculated analytically. Since ψ ′

k(x) = I(|x | ≤ k), the denominator
of (2.23) is (�(k) − �(−k))2. The reader can verify that the numerator is

E�ψk(x)2 = 2
[
k2 (1 − � (k)) + �(k) − 0.5 − kϕ(k)

]
(2.29)

where ϕ and � are the standard normal density and distribution function, respectively
(Problem 2.7). In Table 2.3 we give the values of k yielding prescribed asymptotic
variances v. The last row gives values of the quantity α = 1 − �(k) that will play a
role in Section 2.3.

2.2.3 An intuitive view of M-estimates

A location M-estimate can be seen as a weighted mean. In most cases of interest,
ψ(0) = 0 and ψ ′(0) exists, so that ψ is approximately linear at the origin. Let

W (x) =
{

ψ(x)/x if x 	= 0
ψ ′(0) if x = 0.

(2.30)

Table 2.3 Asymptotic variances for Huber’s ψ-function

k 0.66 1.03 1.37
v 1.20 1.10 1.05
α 0.25 0.15 0.085
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Then (2.18) can be written as

n∑
i=1

W (xi − μ̂)(xi − μ̂) = 0,

or equivalently

μ̂ =
∑n

i=1 wi xi∑n
i=1 wi

, with wi = W (xi − μ̂), (2.31)

which expresses the estimate as a weighted mean. Since in general W (x) is a non-
increasing function of |x |, outlying observations will receive smaller weights. Note
that although (2.31) looks like an explicit expression for μ̂, actually the weights on
the right-hand side depend also on μ̂. Besides its intuitive value, this representation
of the estimate will be useful for its numeric computation in Section 2.7. The weight
function corresponding to Huber’s ψ is

Wk(x) = min

{
1,

k

|x |
}

(2.32)

which is plotted in the upper panel of Figure 2.4.
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Figure 2.4 Huber and bisquare weight functions
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Another intuitive way to interpret an M-estimate is to rewrite (2.18 ) as

μ̂ = μ̂ + 1

n

n∑
i=1

ψ(xi − μ̂) = 1

n

n∑
i=1

ζ (xi , μ̂), (2.33)

where

ζ (x, μ) = μ + ψ(x − μ) (2.34)

which for the Huber function takes the form

ζ (x, μ) =
⎧⎨⎩μ − k if x < μ − k

x if μ − k ≤ x ≤ μ + k
μ + k if x > μ + k.

(2.35)

That is, μ̂ may be viewed as an average of the modified observations ζ (xi , μ̂) (called
“pseudo-observations”):observations in the bulk of the data remain unchanged, while
those too large or too small are truncated as described at the end of Section 2.1 (note
that here the truncation interval depends on the data).

2.2.4 Redescending M-estimates

It is easy to show (Problem 2.15) that the MLE for the Student family of densities
(2.8) has the ψ-function

ψ(x) = x

x2 + ν
, (2.36)

which tends to zero when x → ∞. This suggests that for symmetric heavy-tailed
distributions, it is better to use “redescending” ψ’s that tend to zero at infinity. This
implies that for large x , the respective ρ-function increases more slowly than Huber’s
ρ (2.27), which is linear for x > k.

Actually, we shall later discuss the advantages of using a bounded ρ. A popular
choice of ρ- and ψ-functions is the bisquare (also called biweight) family of functions:

ρ(x) =
{

1 − [
1 − (x/k)2

]3
if |x | ≤ k

1 if |x | > k
(2.37)

with derivative ρ ′(x) = 6ψ(x)/k2 where

ψ(x) = x

[
1 −

( x

k

)2
]2

I(|x | ≤ k). (2.38)

These functions are displayed in Figure 2.5. Note that ψ is everywhere differentiable
and vanishes outside [−k, k]. M-estimates with ψ vanishing outside an interval are
not MLEs for any distribution (Problem 2.12).
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Figure 2.5 ρ- and ψ-functions for bisquare estimate

The weight function (2.30) for this family is

W (x) =
[

1 −
( x

k

)2
]2

I(|x | ≤ k)

and is plotted in Figure 2.4.
If ρ is everywhere differentiable and ψ is monotonic, then the forms (2.12) and

(2.18) are equivalent. If ψ is redescending, some solutions of (2.18)—usually called
“bad solutions”—may not correspond to the absolute minimum of the criterion, which
defines the M-estimate.

Estimates defined as solutions of (2.18) with monotoneψ will be called “monotone
M-estimates” for short, while those defined by (2.12) when ψ is not monotone will be
called “redescending M-estimates”. Numerical computing of redescending location
estimates is essentially no more difficult than that of monotone estimates (Section
2.7.1). It will be seen later that redescending estimates offer an increase in robustness
toward large outliers.

The values of k for prescribed efficiencies (2.25) of the bisquare estimate are
given in the table below:

eff. 0.80 0.85 0.90 0.95
k 3.14 3.44 3.88 4.68

(2.39)
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If ρ has a nondecreasing derivative, it can be shown (Feller, 1971) that for all x, y

ρ (αx + (1 − α) y) ≤ αρ(x) + (1 − α) ρ(y) ∀ α ∈ [0, 1] . (2.40)

Functions verifying (2.40) are called convex.
We state the following definitions for later reference.

Definition 2.1 Unless stated otherwise, a ρ-function will denote a function ρ such
that

R1 ρ(x) is a nondecreasing function of |x |
R2 ρ(0) = 0
R3 ρ(x) is increasing for x > 0 such that ρ(x) < ρ(∞)
R4 If ρ is bounded, it is also assumed that ρ(∞) = 1.

Definition 2.2 A ψ-function will denote a function ψ which is the derivative of a
ρ-function, which implies in particular that

�1 ψ is odd and ψ(x) ≥ 0 for x ≥ 0.

2.3 Trimmed means

Another approach to robust estimation of location would be to discard a proportion of
the largest and smallest values. More precisely, let α ∈ [0, 1/2) and m = [(n − 1)α]
where [.] stands for the integer part, and define the α-trimmed mean as

xα = 1

n − 2m

n−m∑
i=m+1

x(i),

where x(i) denotes the order statistics (1.2).
The reader may think that we are again suppressing observations. Note, how-

ever, that no subjective choice has been made: the result is actually a function of all
observations (even of those that have not been included in the sum).

The limit cases α = 0 and α → 0.5 correspond to the sample mean and median,
respectively. For the data at the beginning of Section 2.1, the α-trimmed means with
α = 0.10 and 0.25 are respectively 3.20 and 3.27. Deleting the largest observation
changes them to 3.17 and 3.22, respectively.

The exact distribution of trimmed means is intractable. Its large-sample approxi-
mation is more complicated than that of M-estimates, and will be described in Section
10.7. It can be proved that for large n the distribution under model (2.1) is approx-
imately normal, and for symmetrically distributed ui D(μ̂) ≈ N(μ, v/n) where the
asymptotic variance v is that of an M-estimate with Huber’s function ψk, where k is
the (1 − α)-quantile of u:

v = E [ψk(u)]2

(1 − 2α)2
. (2.41)
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The values of α yielding prescribed asymptotic variances are given at the bottom of
Table 2.3. Note that the asymptotic efficiency of x0.25 is 0.83, even though we seem
to be “throwing away” 50% of the observations!

Note also that the asymptotic variance of a trimmed mean is not a trimmed vari-
ance! This would be so if the numerator of (2.41) were

E [(x − μ)I(|x − μ|) ≤ k]2 .

But it is instead a truncated variance in the sense explained at the end of Section 2.1.
A more general class of estimates, called L-estimates, is defined as linear combi-

nations of order statistics:

μ̂ =
n∑

i=1

ai x(i), (2.42)

where the ai ’s are given constants. For α-trimmed means,

ai = 1

n − 2m
I(m + 1 ≤ i ≤ n − m). (2.43)

It is easy to show (Problem 2.10) that if the coefficients of an L-estimate satisfy
the conditions

ai ≥ 0,

n∑
i=1

ai = 1, ai = an−i+1, (2.44)

then the estimate is shift and scale equivariant, and also fulfills the natural conditions

C1 If xi ≥ 0 for all i , then μ̂ ≥ 0
C2 If xi = c for all i , then μ̂ = c
C3 μ̂(−x) = −μ̂(x).

2.4 Dispersion estimates

The traditional way to measure the variability of a data set x is with the standard
deviation (SD)

SD(x) =
[

1

n − 1

n∑
i=1

(xi − x)2

]1/2

.

For any constant c the SD satisfies the shift invariance and scale equivariance con-
ditions

SD(x + c) = SD(x), SD(cx) = |c| SD(x). (2.45)

Any statistic satisfying (2.45) will be called a dispersion estimate.
In Example 1.1 we observed the lack of robustness of the standard deviation, and

we now look for robust alternatives to it. One alternative estimate proposed in the
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past is the mean absolute deviation (MD):

MD(x) = 1

n

n∑
i=1

|xi − x | (2.46)

which is also sensitive to outliers, although less so than the SD (Tukey, 1960). In the
flour example, the MD with and without the largest observation is respectively 2.14
and 0.52, still a large difference.

Both the SD and MD are defined by first centering the data by subtracting x
(which ensures shift invariance) and then taking a measure of “largeness” of the
absolute values. A robust alternative is to subtract the median instead of the mean,
and then take the median of the absolute values, which yields the MAD estimate
introduced in the previous chapter:

MAD(x) = Med(|x − Med(x)|) (2.47)

which clearly satisfies (2.45). For the flour data with and without the largest observa-
tion, the MAD is 0.35 and 0.34, respectively.

In the same way as (2.46) and (2.47), we define the mean and the median absolute
deviations of a random variable x as

MD(x) = E|x − Ex | (2.48)

and

MAD(x) = Med(|x − Med(x)|), (2.49)

respectively.
Two other well-known dispersion estimates are the range defined as max(x) −

min(x) = x(n) − x(1) and the sample interquartile range

IQR(x) = x(n−m+1) − x(m)

where m = [n/4]. Both are based on order statistics; the former is clearly very sen-
sitive to outliers, while the latter is not.

Note that if x ∼ N(μ, σ 2) (where “∼” stands for “is distributed as”) then SD(x) =
σ by definition, while MD(x), MAD(x) and IQR(x) are constant multiples of σ :

MD(x) = c1σ, MAD(x) = c2σ, IQR(x) = 2c2σ,

where

c1 = 2ϕ(0) and c2 = �−1(0.75)

(Problem 2.11). Hence if we want a dispersion estimate that “measures the same
thing” as the SD at the normal, we should normalize the MAD by dividing it by
c2 ≈ 0.675. The “normalized MAD” (MADN) is thus

MADN(x) = MAD(x)

0.675
. (2.50)
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Likewise, we should normalize the MD and the IQR by dividing them by c1 and by
2c2 respectively.

Observe that for the flour data (which was found to be approximately normal)
MADN = 0.53, which is not far from the standard deviation of the data without the
outlier: 0.69.

Note that the first step in computing the SD, MAD and MD is “centering” the
data: that is, subtracting a location estimate from the data values. The IQR does not
use centering. A dispersion estimate that does not require centering and is more robust
than the IQR (in a sense to be defined in the next chapter) was proposed by Croux
and Rousseeuw (1992) and Rousseeuw and Croux (1993). The estimate, which they
call Qn, is based only on the differences between data values. Let m = ( n

2
). Call

d(1) ≤ . . . ≤ d(m) the ordered values of the m differences di j = x(i) − x( j) with i > j .
Then the estimate is defined as

Qn = z(k), k =
(

[n/2] + 1

2

)
, (2.51)

where [.] denotes the integer part. Since k ≈ m/4, Qn is approximately the first
quartile of the di j ’s. It is easy to verify that, for any k, Qn is shift invariant and scale
equivariant. It can be shown that, at the normal, Qn has an efficiency of 0.82, and the
estimate 2.222Qn is consistent for the SD.

Martin and Zamar (1993b) studied another dispersion estimate that does not re-
quire centering and has interesting robustness properties (Problem 2.16b).

2.5 M-estimates of scale

In this section we discuss a situation that, while not especially important in itself, will
play an important auxiliary role in the development of estimates for location, regres-
sion and multivariate analysis. Consider observations xi satisfying the multiplicative
model

xi = σui (2.52)

where the ui ’s are i.i.d with density f0 and σ > 0 is the unknown parameter. The
distributions of the xi ’s constitute a scale family, with density

1

σ
f0

( x

σ

)
.

Examples are the exponential family with f0 (x) = exp(−x)I (x > 0) and the normal
scale family N(0, σ 2) with f0 given by (2.14).

The MLE of σ in (2.52) is

σ̂ = arg max
σ

1

σ n

n∏
i=1

f0

( xi

σ

)
.
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Taking logs and differentiating with respect to σ yields

1

n

n∑
i=1

ρ
( xi

σ̂

)
= 1 (2.53)

where ρ(t) = tψ(t), with ψ = − f ′
0/ f0. If f0 is N(0, 1) then ρ(t) = t2, which yields

σ̂ =
√

ave(x2) (the root mean square, RMS); if f is double-exponential defined in
(2.16), then ρ(t) = |t | which yields σ̂ = ave(|x|). Note that if f0 is even, so is ρ, and
this implies that σ̂ depends only on the absolute values of the x’s.

In general, any estimate satisfying an equation of the form

1

n

n∑
i=1

ρ
( xi

σ̂

)
= δ, (2.54)

where ρ is a ρ-function and δ is a positive constant, will be called an M-estimate of
scale. Note that in order for (2.54) to have a solution we must have 0 < δ < ρ(∞).
Hence if ρ is bounded it will be assumed without loss of generality that

ρ(∞) = 1, δ ∈ (0, 1) .

In the rarely occurring event that #(xi = 0) > n(1 − δ) should happen, then (2.54)
has no solution and in this case it is natural to define σ̂ (x) = 0. It is easy to verify that
scale M-estimates are equivariant in the sense that σ̂ (cx) = cσ̂ (x) for any c > 0, and
if ρ is even then

σ̂ (cx) = |c|σ̂ (x)

for any c. For large n, the sequence of estimates (2.54) converges to the solution of

Eρ
( x

σ

)
= δ (2.55)

if it is unique (Section 10.2); see Problem 10.6
The reader can verify that the scale MLE for the Student distribution is equivalent

to

ρ(t) = t2

t2 + v
and δ = 1

ν + 1
. (2.56)

A frequently used scale estimate is the bisquare scale, where ρ is given by (2.37)
with k = 1, i.e.,

ρ (x) = min
{
1 − (

1 − x2
)3

, 1
}

(2.57)

and δ = 0.5. It is easy to verify that (2.56) and (2.57) satisfy the conditions for a
ρ-function in Definition 2.1.

When ρ is the step function

ρ(t) = I(|t | > c), (2.58)

where c is a positive constant, and δ = 0.5, we have σ̂ = Med(|x|)/c. The argument
in Problem 2.12 shows that it is not the scale MLE for any distribution.
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Most often we shall use a ρ that is quadratic near the origin, i.e., ρ ′(0) = 0 and
ρ ′′(0) > 0, and in such cases an M-scale estimate can be represented as a weighted
RMS estimate. We define the weight function as

W (x) =
{
ρ(x)/x2 if x 	= 0
ρ ′′(0) if x = 0

(2.59)

and then (2.54) is equivalent to

σ̂ 2 = 1

nδ

n∑
i=1

W
( xi

σ̂

)
x2

i . (2.60)

It follows that σ̂ can be seen as a weighted RMS estimate. For the Student MLE

W (x) = 1

ν + x2
, (2.61)

and for the bisquare scale

W (x) = min
{
3 − 3x2 + x4, 1/x2

}
. (2.62)

It is seen that larger x’s receive smaller weights.
Note that using ρ(x/c) instead of ρ(x) in (2.54) yields σ̂ /c instead of σ̂ . This

can be used to normalize σ̂ to have a given asymptotic value, as was done at the
end of Section 2.4. If we want σ̂ to coincide asymptotically with SD(x) when x is
normal, then (recalling (2.55)) we have to take c as the solution of Eρ(x/c) = δ with
x ∼ N(0, 1), which can be obtained numerically. For the bisquare scale, the solution
is c = 1.56.

Although scale M-estimates play an auxiliary role here, their importance will be
seen in Chapters 5 and 6.

2.6 M-estimates of location with unknown dispersion

Estimates defined by (2.12) are not scale equivariant, which implies that our results
may depend heavily on our measurement units. To fix ideas, assume we want to
estimate μ in model (2.1) where F is given by the mixture (2.5) with G = N(μ, σ 2).
If σ were known, it would be natural to divide (2.1) by σ to reduce the problem to
the case σ = 1, which implies estimating μ by

μ̂ = arg min
μ

n∑
i=1

ρ

(
xi − μ

σ

)
.

It is easy to verify that as in (2.23) for large n the approximate distribution of μ̂ is
N(μ, v/n) where

v = σ 2 Eψ((x − μ)/σ )2

(Eψ ′((x − μ)/σ ))2
. (2.63)
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2.6.1 Previous estimation of dispersion

To obtain scale equivariant M-estimates of location, an intuitive approach is to use

μ̂ = arg min
μ

n∑
i=1

ρ

(
xi − μ

σ̂

)
, (2.64)

where σ̂ is a previously computed dispersion estimate. It is easy to verify that μ̂ is
indeed scale equivariant. Since σ̂ does not depend on μ, (2.64) implies that μ̂ is a
solution of

n∑
i=1

ψ

(
xi − μ̂

σ̂

)
= 0. (2.65)

It is intuitive that σ̂ must itself be robust. In Example 1.2, using (2.64) with
bisquare ψ with k = 4.68, and σ̂ = MADN(x), yields μ̂ = 25.56; using σ̂ = SD (x)
instead gives μ̂ = 25.12. Now add to the data set three copies of the lowest value
−44. The results change to 26.42 and 17.19. The reason for this change is that the
outliers “inflate” the SD, and hence the location estimate attributes to them too much
weight.

Note that since k is chosen in order to ensure a given efficiency at the unit normal,
if we want μ̂ to attain the same efficiency at any normal, σ̂ must “estimate the SD at
the normal”, in the sense that if the data are N(μ, σ 2), then when n → ∞, σ̂ tends
in probability to σ . This is why we use the normalized median absolute deviation
MADN described previously, rather than the un-normalized version MAD.

If a number m > n/2 of data values are concentrated at a single value x0, we
have MAD(x) = 0, and hence the estimate is not defined. In this case we define
μ̂ = x0 = Med(x). Besides being intuitively plausible, this definition can be justified
by a limit argument. Let the n data values be different, and let m of them tend to x0.
Then it is not difficult to show that in the limit the solution of (2.64) is x0.

It can be proved that if F is symmetric, then for n large μ̂ behaves as if σ̂ were
constant, in the following sense: if σ̂ tends in probability to σ , then the distribution
of μ̂ is approximately normal with variance (2.63) (for asymmetric F the asymptotic
variance is more complicated; see Section 10.6). Hence the efficiency of μ̂ does not
depend on that of σ̂ . In Chapter 3 it will be seen, however, that its robustness does
depend on that of σ̂ .

2.6.2 Simultaneous M-estimates of location and dispersion

An alternative approach is to consider a location–dispersion model with two unknown
parameters

xi = μ + σui (2.66)
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where ui has density f0, and hence xi has density

f (x) = 1

σ
f0

(
x − μ

σ

)
. (2.67)

In this case σ is the scale parameter of the random variables σui , but it is a dispersion
parameter for the xi .

We now derive the simultaneous MLE of μ and σ in model (2.67), i.e.,

(μ̂, σ̂ ) = arg max
μ,σ

1

σ n

n∏
i=1

f0

(
xi − μ

σ

)
which can be written as

(μ̂, σ̂ ) = arg min
μ,σ

{
1

n

n∑
i=1

ρ0

(
xi − μ

σ

)
+ log σ

}
(2.68)

with ρ0 = − log f0. The main interest here is on μ, while σ is a “nuisance parameter”.
Proceeding as in the derivations of (2.18) and (2.54) it follows that the MLEs

satisfy the system of equations

n∑
i=1

ψ

(
xi − μ̂

σ̂

)
= 0 (2.69)

1

n

n∑
i=1

ρscale

(
xi − μ̂

σ̂

)
= δ, (2.70)

where

ψ(x) = −ρ ′
0, ρscale(x) = xψ(x), δ = 1. (2.71)

The reason for notation “ρscale” is that in all instances considered in this book,
ρscale is a ρ-function in the sense of Definition 2.1, and this characteristic is exploited
later in Section 5.6.1. The notation will be used whenever it is necessary to distinguish
this ρscale used for scale from the ρ in (2.13) for location; otherwise, we shall write
just ρ.

We shall deal in general with simultaneous estimates (μ̂, σ̂ ) defined as solutions
of systems of equations of the form (2.69)–(2.70) which need not correspond to the
MLE for any distribution. It can be proved (see Section 10.5) that for large n the
distributions of μ̂ and σ̂ are approximately normal. If F is symmetric then D(μ̂) ≈
N(μ, v/n) with v given by (2.63), where μ and σ are the solutions of the system

E ψ

(
x − μ̂

σ

)
= 0 (2.72)

E ρscale

(
x − μ

σ̂

)
= δ. (2.73)
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We may choose Huber’s or the bisquare function for ψ . A very robust choice for
ρscale is (2.58) with c = 0.675 to make it consistent for the SD at the normal, which
yields

σ̂ = 1

0.675
Med(|x−μ̂|). (2.74)

Although this looks similar to using the previously computed MADN, it will be seen
in Chapter 6 that the latter yields more robust results.

In general, estimation with a previously computed dispersion is more robust than
simultaneous estimation. However, simultaneous estimation will be useful in more
general situations, as will be seen in Chapter 6.

2.7 Numerical computation of M-estimates

There are several methods available for computing M-estimates of location and/or
scale. In principle one could use any of the general methods for equation solving
such as the Newton–Raphson algorithm, but methods based on derivatives may be
unsafe with the types of ρ- and ψ-functions that yield good robustness properties
(see Chapter 9). Here we shall describe a computational method called iterative
reweighting that takes special advantage of the characteristics of the problem.

2.7.1 Location with previously computed dispersion estimation

For the solution of the robust location estimation optimization problem (2.64), the
weighted average expression (2.31) suggests an iterative procedure. Start with a robust
dispersion estimate σ̂ 0 (for instance, the MADN) and some initial estimate μ̂0 (for
instance, the sample median). Given μ̂k compute

wk,i = W

(
xi − μ̂k

σ̂

)
(i = 1, . . . , n) (2.75)

where W is the function in (2.30) and let

μ̂k+1 =
∑n

i=1 wk,i xi∑n
i=1 wk,i

. (2.76)

Results to be proved in Section 9.1 imply that if W (x) is bounded and nonincreas-
ing for x > 0, then the sequence μ̂k converges to a solution of (2.64).

The algorithm, which requires a stopping rule based on a tolerance parameter ε,
is thus

1. Compute σ̂ = MADN(x) and μ0 = Med(x).
2. For k = 0, 1, 2, . . . , compute the weights (2.75) and then μ̂k+1 in (2.76).
3. Stop when

∣∣μ̂k+1 − μ̂k

∣∣ < εσ̂ .
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Figure 2.6 Averages of ψ(x − μ) and ρ(x − μ) as a function of μ

If ψ is increasing the solution is unique, and the starting point μ̂0 influences only
the number of iterations. If ψ is redescending then μ̂0 must be robust in order to insure
convergence to a “good” solution. Choosing μ̂0 = Med(x) suffices for this purpose.

Figure 2.6 shows the averages of ψ ((x − μ) /σ̂ ) and of ρ ((x − μ) /σ̂ ) as a func-
tion of μ, where ψ and ρ correspond to the bisquare estimate with efficiency 0.95,
and σ̂ = MADN, for the data of Example1.2, to which three extra values of the out-
lier −44 were added. Three roots of the estimating equation (2.65) are apparent, one
of which corresponds to the absolute minimum of (2.64) while the other two corre-
spond to a relative minimum and a relative maximum. This effect occurs also with
the original data, but is less visible.

2.7.2 Scale estimates

For solving (2.54), the expression (2.60) suggests an iterative procedure. Start with
some σ̂ 0, for instance, the normalized MAD (MADN). Given σ̂ k compute

wk,i = W

(
xi

σ̂ k

)
(i = 1, . . . , n) (2.77)
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where W is the weight function in (2.59) and let

σ̂ k+1 =
√√√√ 1

nδ

n∑
i=1

wk,i x2
i . (2.78)

Then if W (x) is bounded, even, continuous and nonincreasing for x > 0, the sequence
σN converges to a solution of (2.60) and hence of (2.54) (for a proof see Section 9.4).
The algorithm is thus

1. For k = 0, 1, 2, . . . , compute the weights (2.77) and then σ̂ k+1 in (2.78).
2. Stop when |σ̂ k+1/σ̂ k − 1| < ε.

2.7.3 Simultaneous estimation of location and dispersion

The procedure for (2.69)–(2.70) is a combination of the two former ones. Compute
starting values μ̂0, σ̂ 0, and given μ̂k, σ̂ k compute for i = 1, . . . , n

rk,i = xi − μ̂k

σ̂ k

and

w1k,i = W1

(
rk,i

)
, w2k,i = W2(rk,i )

where W1 is the weight functions W in (2.30) and W2 is the W in (2.59) corresponding
to ρscale. Then at the k-th iteration

μ̂k+1 =
∑n

i=1 w1k,i xi∑n
i=1 w1k,i

, σ̂ 2
k+1 = σ̂ 2

k

nδ

n∑
i=1

w2k,i r2
i .

2.8 Robust confidence intervals and tests

2.8.1 Confidence intervals

Since outliers affect both the sample mean x and the sample standard deviation s,
confidence intervals for μ = E(x) based on normal theory may be unreliable. Outliers
may displace x and/or “inflate” s, resulting in one or both of the following degradations
in performance: (1) the true coverage probability may be much lower than the nominal
one; (2) the coverage probability may be either close to or higher than the nominal
one, but at the cost of a loss of precision in the form of an inflated expected confidence
interval length. We briefly elaborate on these points.

Recall that the usual Student confidence interval, justified by the assumption of a
normal distribution for i.i.d. observations, is based on the “t-statistic”

T = x − μ

s/
√

n
. (2.79)
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From this one gets the usual two-sided confidence intervals for μ with level 1 − α

x ± tn−1,1−α/2

s√
n
,

where tm,β is the β-quantile of the t-distribution with m degrees of freedom.
The simplest situation is when the distribution of the data is symmetric about

μ = Ex . Then Ex = μ and the confidence interval is centered. However, heavy tails
in the distribution will cause the value of s to be inflated, and hence the interval
length will be inflated, possibly by a large amount. Thus in the case of symmetric
heavy-tailed distributions the price paid for maintaining the target confidence interval
error rate α will often be unacceptably long confidence interval lengths. If the data
have a mixture distribution (1 − ε)N(μ, σ 2) + εH , where H is not symmetric about
μ, then the distribution of the data is not symmetric about μ and Ex 	= μ. Then the
t confidence interval with purported confidence level 1 − α will not be centered and
will not have the error rate α, and will lack robustness of both level and length. If the
data distribution is both heavy tailed and asymmetric, then the t confidence interval
can fail to have the target error rate and at the same time have unacceptably large
interval lengths. Thus the classic t confidence interval lacks robustness of both error
rate (confidence level) and length, and we need confidence intervals with both types
of robustness.

Approximate confidence intervals for a parameter of interest can be obtained from
the asymptotic distribution of a parameter estimate. Robust confidence intervals that
are not much influenced by outliers can be obtained by imitating the form of the
classical Student t confidence interval, but replacing the average and SD by robust
location and dispersion estimates. Consider the M-estimates μ̂ in Section 2.6, and
recall that if D(x) is symmetric then for large n the distribution of μ̂ is approximately
N(μ, v/n) with v given by (2.63). Since v is unknown, an estimate v̂ may be obtained
by replacing the expectations in (2.63) by sample averages, and the parameters by
their estimates:

v̂ = σ̂ 2 ave[ψ((x − μ̂)/σ̂ )]2

(ave[ψ ′((x − μ̂)/σ̂ )])2
. (2.80)

A robust approximate t-statistic (“Studentized M-estimate”) is then defined as

T = μ̂ − μ√
v̂/n

(2.81)

and its distribution is approximately normal N(0, 1) for large n . Thus a robust ap-
proximate interval can then be computed as

μ̂ ± z1−α/2

√
v̂

n

where zβ denotes the β-quantile of N(0, 1).
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Table 2.4 Confidence intervals for flour data

Estimate μ̂
√

v̂(μ̂) Interval

Mean 4.280 1.081 2.161 6.400
Bisquare M 3.144 0.130 2.885 3.404
x0.25 3.269 0.085 3.103 3.435

A similar procedure can be used for the trimmed mean. Recall that the asymptotic
variance of the α-trimmed mean for symmetric F is (2.41). We can estimate v with

v̂ = 1

n − 2m

(
n−m∑

i=m+1

(x(i) − μ̂)2 + m(x(m) − μ̂)2 + m(x(n−m+1) − μ̂)2

)
. (2.82)

An approximate t-statistic is then defined as (2.81). Note again that the variance of
the trimmed mean is not a trimmed variance: all values larger than x(n−m) or smaller
than x(m+1) are not omitted but replaced by x(n−m+1) or x(m), respectively.

Table 2.4 gives for the data of Example 1.1 the location estimates, their estimated
asymptotic SDs and the respective confidence intervals with level 0.95.

2.8.2 Tests

It appears that many applied statisticians have the impression that t-tests are suffi-
ciently “robust” that there is nothing to worry about when using such tests. Again,
this impression no doubt comes from the fact—which is a consequence of the central
limit theorem—that it suffices for the data to have finite variance for the classical
t-statistic (2.79) to be approximately N(0, 1) in large samples. See for example the
discussion to this effect in the introductory text by Box, Hunter and Hunter (1978).
This means that in large samples the Type 1 error rate of a level α is in fact α for
testing a null hypothesis about the value of μ. However, this fact is misleading, as we
now demonstrate.

Recall that the t-test with level α for the null hypothesis H0 = {μ = μ0} rejects
H0 when the t-interval with confidence level 1 − α does not contain μ0. According
to the former discussion on the behavior of the t-intervals under contamination, we
conclude that if the data are symmetric but heavy tailed, the intervals will be longer
than necessary, with the consequence that the actual Type 1 error rate may be much
smaller than α, but the Type 2 error rate may be too large, i.e., the test will have low
power. If the contaminated distribution is asymmetric and heavy tailed, both errors
may become unacceptably high.

Robust tests can be derived from a “robust t-statistic” (2.81) in the same way as
was done with confidence intervals. The tests of level α for the null hypothesis μ = μ0

against the two-sided alternative μ 	= μ0 and the one-sided alternative μ > μ0 have
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the rejection regions

|μ̂ − μ0| >
√

v̂z1−α/2 and μ̂ > μ0 +
√

v̂z1−α, (2.83)

respectively.
The robust t-like confidence intervals and test are easy to apply. They have,

however, some drawbacks when the contamination is asymmetric due to the bias
of the estimate. Procedures that ensure a given probability of coverage or Type 1
error probability for a contaminated parametric model were given by Huber (1965,
1968), Huber-Carol (1970), Rieder (1978, 1981) and Fraiman, Yohai and Zamar
(2001). Yohai and Zamar (2004) developed tests and confidence intervals for the
median which are “nonparametric” in the sense that their level is valid for arbitrary
distributions. Further references on robust tests will be given in Section 4.7.

2.9 Appendix: proofs and complements

2.9.1 Mixtures

Let the density f be given by

f = (1 − ε)g + εh. (2.84)

This is called a mixture of g and h. If the variable x has density f and q is any
function, then

Eq(x) =
∫ ∞

−∞
q(x) f (x)dx = (1 − ε)

∫ ∞

−∞
q(x)g(x)dx + ε

∫ ∞

−∞
q(x)h(x)dx .

With this expression we can calculate Ex ; the variance is obtained from

Var(x) = E(x2) − (Ex)2 .

If g = N(0, 1) and h = N(a, b2) then

Ex = εa and Ex2 = (1 − ε) + ε(a2 + b2),

and hence

Var(x) = (1 − ε)(1 + εa2) + εb2. (2.85)

Evaluating the performance of robust estimates requires simulating distributions
of the form (2.84). This is easily accomplished: generate u with uniform distribution
in (0, 1); if u ≥ ε, generate x with distribution g, else generate x with distribution h.
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2.9.2 Asymptotic normality of M-estimates

In this section we give a heuristic proof of (2.23). To this end we begin with an
intuitive proof of (2.22). Define the functions

λ(s) = Eψ(x − s), λ̂n(s) = 1

n

n∑
i=1

ψ(xi − s),

so that μ̂ and μ0 verify respectively

λ̂n(μ̂) = 0, λ(μ0) = 0.

For each s, the random variables ψ(xi − s) are i.i.d. with mean λ(s), and hence
the law of large numbers implies that when n → ∞

λ̂n(s) →p λ(s) ∀ s.

It is intuitive that also the solution of λ̂n(s) = 0 should tend to that of λ(s) = 0.
This can in fact be proved rigorously (see Theorem 10.5).

Now we prove (2.23). Taking the Taylor expansion of order 1 of (2.18) as a
function of μ̂ about μ0 yields

0 =
n∑

i=1

ψ(xi − μ0) − (μ̂ − μ0)
n∑

i=1

ψ ′(xi − μ0) + o(μ̂ − μ0) (2.86)

where the last (“second-order”) term is such that

lim
t→0

o(t)

t
= 0.

Dropping the last term in (2.86) yields

√
n (μ̂ − μ0) ≈ An

Bn
, (2.87)

with

An = √
n ave(ψ(x − μ0)), Bn = ave(ψ ′(x − μ0)).

The random variables ψ(xi − μ0) are i.i.d. with mean 0 because of (2.21). The
central limit theorem implies that the distribution of An tends to N(0, a) with a =
Eψ(x − μ0)2, and the law of large numbers implies that Bn tends in probability
to b = Eψ ′(x − μ0). Hence by Slutsky’s lemma (see Section 2.9.3) An/Bn can be
replaced for large n by An/b, which tends in distribution to N(0, a/b2), as stated. A
rigorous proof will be given in Theorem 10.7.

Note that we have shown that
√

n(μ̂ − μ0) converges in distribution; this is ex-
pressed by saying that “μ̂ has order n−1/2 consistency”.
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2.9.3 Slutsky’s lemma

Let un and vn be two sequences of random variables such that un tends in probability
to a constant u, and the distribution of vn tends to the distribution of a variable v

(abbreviated “vn →d v”). Then

un + vn →d u + v and unvn →d uv.

The proof can be found in Bickel and Doksum (2001, p. 467) or Shao (2003,
p. 60).

2.9.4 Quantiles

For α ∈ (0, 1) and F a continuous and increasing distribution function, the α-quantile
of F is the unique value q(α) such that F(q(α)) = α. If F is discontinuous, such a
value might not exist. For this reason we define q(α) in general as a value where
F(t) − α changes sign, i.e.,

sgn

{
lim

t↑q(α)
(F(t) − α)

}
	= sgn

{
lim

t↓q(α)
(F(t) − α)

}
,

where “↑” and “↓” denote the limits from the left and from the right, respectively. It is
easy to show that such a value always exists. It is unique if F is increasing. Otherwise,
it is not necessarily unique, and hence we may speak of an α-quantile.

If x is a random variable with distribution function F(t) = P (x ≤ t), q(α) will
also be considered as an α-quantile of the variable x, and in this case is denoted by
xα .

If g is a monotonic function, and y = g(x), then

g(xα) =
{

yα if g is increasing
y1−α if g is decreasing,

(2.88)

in the sense that, for example, if z is an α-quantile of x, then z3 is an α-quantile of
x3.

When the α-quantile is not unique, there exists an interval [a, b) such that F(t) =
α for t ∈ [a, b). We may obtain uniqueness by defining q(α) as a—the smallest
α-quantile—and then (2.88) remains valid. It seems more symmetric to define it as
the midpoint (a + b)/2, but then (2.88) ceases to hold.

2.9.5 Alternative algorithms for M-estimates

The Newton–Raphson procedure

The Newton–Raphson procedure is a widely used iterative method for the solution of
nonlinear equations. To solve the equation h(t) = 0, at each iteration h is “linearized”,
i.e., replaced by its Taylor expansion of order 1 about the current approximation.
Thus, if at iteration m we have the approximation tm, then the next value tm+1 is the
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solution of

h(tm) + h′(tm)(tm+1 − tm) = 0,

i.e.,

tm+1 = tm − h(tm)

h′(tm)
. (2.89)

If the procedure converges, the convergence is very fast; but it is not guaranteed
to converge. If h′ is not bounded away from zero, the denominator in (2.89) may
become very small, making the sequence tm unstable unless the initial value t0 is very
near to the solution.

This happens in the case of a location M-estimate, where we must solve the
equation h(μ) = 0 with h(μ) = ave {ψ(x − μ)}. Here the iterations are

μm+1 = μm +
∑n

i=1 ψ (xi − μm)∑n
i=1 ψ ′ (xi − μm)

. (2.90)

If ψ is bounded, its derivative ψ ′ tends to zero at infinity, and hence the denomi-
nator is not bounded away from zero, which makes the procedure unreliable.

For this reason we prefer the algorithms based on iterative reweighting, which are
guaranteed to converge.

However, although the result of iterating the Newton–Raphson process indefinitely
may be unreliable, the result of a single iteration may be a robust and efficient estimate,
if the initial value μ0 is robust but not necessarily efficient, like the median. See
Problem 3.16.

Iterative pseudo-observations

The expression (2.33) of an M-estimate as a function of the pseudo-observations (2.34)
can be used as the basis for an iterative procedure to compute a location estimate with
previous dispersion σ̂ . Starting with an initial μ̂0, define

μ̂m+1 = 1

n

n∑
i=1

ζ (xi , μ̂m, σ̂ ), (2.91)

where

ζ (x, μ, σ ) = μ + σψ

(
x − μ

σ

)
. (2.92)

It can be shown that μm converges under very general conditions to the solution of
(2.65) (Huber, 1981). However, the convergence is much slower than that correspond-
ing to the reweighting procedure.
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2.10 Problems

2.1. Show that in a sample of size n from a contaminated distribution (2.5), the
number of observations from H is random, with binomial distribution Bi (n, ε).

2.2. For the data of Example 1.2, compute the mean and median, the 25% trimmed
mean and the M-estimate with previous dispersion and Huber’s ψ with k =
1.37. Use the last to derive a 90% confidence interval for the true value.

2.3. Verify (2.10) using (2.26).
2.4. For which values of ν has the Student distribution moments of order k?
2.5. Show that if μ is a solution of (2.18), then μ + c is a solution of (2.18) with

xi + c instead of xi .
2.6. Show that if x = μ0 + u where the distribution of u is symmetric about zero,

then μ0 is a solution of (2.21).
2.7. Verify (2.29) [hint: use ϕ′(x) = −xϕ(x) and integration by parts]. From this,

find the values of k which yield variances 1/α with α = 0.90, 0.95 and 0.99
(by using an equation solver, or just trial and error).

2.8. Compute the α-trimmed means with α = 0.10 and 0.25 for the data of
Example 1.2.

2.9. Show that if ψ is odd, then the M-estimate μ̂ with fixed σ satisfies conditions
C1–C2–C3 at the end of Section 2.2.

2.10. Show using (2.44) that L-estimates are shift and scale equivariant [recall that
the order statistics of yi = −xi are y(i) = −x(n−i+1)!] and fulfill also C1–C2–C3
of Section 2.3.

2.11. If x ∼ N(μ, σ 2), calculate MD(x), MAD(x) and IQR(x).
2.12. Show that if ψ = ρ ′ vanishes identically outside an interval, there is no density

verifying (2.13).
2.13. Define the sample α-quantile of x1, . . . , xn—with α ∈ (1/n, 1 − 1/n)—as x(k),

where k is the smallest integer ≥ nα and x(i) are the order statistics (1.2). Let

ψ(x) = αI(x > 0) − (1 − α)I(x < 0).

Show that μ̂ = x(k) is a solution (not necessarily unique) of (2.18). Use this fact
to derive the asymptotic distribution of sample quantiles, assuming that D(xi )
has a unique α-quantile. Note that this ψ is not odd!.

2.14. Show that the M-scale (2.54) with ρ(t) = I (|t | > 1) is the h-th order statistic
of the |xi | with h = n − [nδ].

2.15. Verify (2.36), (2.56) and (2.61).
2.16. Let [a, b], where a and b depend on the data, be the shortest interval containing

at least half of the data.
(a) The Shorth (“shortest half ”) location estimate is defined as the midpoint

μ̂ = (a + b) /2. Show that μ̂ = arg minμ Med(|x − μ|).
(b) Show that the difference b − a is a dispersion estimate.
(c) For a distribution F, let [a, b] be the shortest interval with probability 0.5.

Find this interval for F = N
(
μ, σ 2

)
.
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2.17. Let μ̂ be a location M-estimator. Show that if the distribution of the xi ’s is
symmetric about μ, so is the distribution of μ̂, and that the same happens with
trimmed means.

2.18. Verify numerically that the constant c at the end of Section 2.5 that makes the
bisquare scale consistent at the normal is indeed equal to 1.56.

2.19. Show that
(a) if the sequence μm in (2.90) converges, then the limit is a solution of (2.18)
(b) if the sequence in (2.91) converges, then the limit is a solution of (2.65).
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Measuring Robustness

We have seen in Chapter 2 that while in the classical approach to statistics one
aims at estimates which have desirable properties at an exactly specified model,
the aim of robust methods is loosely speaking to develop estimates which have a
“good” behavior in a “neighborhood” of a model. This notion will now be made
precise.

To gain some insight before giving more formal definitions, we use an artificial
data set x by generating n = 20 random N(0,1) numbers. To measure the effect of
different locations of an outlier, we add an extra data point x0 which is allowed to range
on the whole line. The sensitivity curve of the estimate μ̂ for the sample x1, . . . , xn

is the difference

μ̂(x1, . . . , xn, x0) − μ̂(x1, . . . , xn)

as a function of the location x0 of the outlier.
Figure 3.1 plots the sensitivity curves of the median, the 25% trimmed mean x0.25,

the Huber M-estimate with k = 1.37 using both the SD and the MADN as previously
computed dispersion estimates, and the bisquare M-estimate with k = 4.68 using the
MADN as dispersion.

We see that all curves are bounded, except the one corresponding to the Huber
estimate with the SD as dispersion, which grows without bound with x0. The same
unbounded behavior (not shown in the figure) occurs with the bisquare estimate with
the SD as dispersion. This shows the importance of a robust previous dispersion. All
curves are nondecreasing for positive x0, except the one for the bisquare estimate.
Loosely speaking, we say that the bisquare M-estimate rejects extreme values, while
the others do not. The curve for the trimmed mean shows that it does not reject large
observations, but just limits their influence. The curve for the median is very steep at
the origin.

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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Figure 3.1 Sensitivity curves of location estimates

Figure 3.2 shows the sensitivity curves of the SD along with the normalized MD,
MAD and IQR. The SD and MD have unbounded sensitivity curves while those of
the normalized MAD and IQR are bounded.

Imagine now that instead of adding a single point at a variable location, we replace
m points by a fixed value x0 = 1000. Table 3.1 shows the resulting “biases”

μ̂(x0, x0, . . . , x0, xm+1, ., xn) − μ̂(x1, ., xn)

as a function of m for the following location estimates: the median; the Huber estimate
with k = 1.37 and three different dispersions, namely, previously estimated MAD
(denoted by MADp), simultaneous MAD (“MADs”) and previous SD; the trimmed
mean with α = 0.085; and the bisquare estimate. Also we provide the biases for the
normalized MAD and IQR dispersion estimates. The choice of k and α was made in
order that both the Huber estimates and the trimmed mean have the same asymptotic
variance at the normal distribution.

The mean deteriorates immediately when m = 1 as expected, and since [αn] =
[0.085 × 20] = 1 the trimmed mean xα deteriorates when m = 2, as could be ex-
pected. The H(MADs) deteriorates rapidly starting at m = 8, while H(SD) is already
quite bad at m = 1. By contrast the median, H(MADp) and M-Bisq do so only when
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Figure 3.2 Sensitivity curves of dispersion estimates

m = n/2, with M-Bisq having smaller bias than H(MADp) and the median (Med)
having small biases comparable to those of the M-Bisq (only slightly higher bias than
M-Bisq at m = 4, 5, 7, 9).

To formalize these notions, it will be easier to study the behavior of estimates
when the sample size tends to infinity (“asymptotic behavior”). Consider an estimate
θ̂n = θ̂n(x) depending on a sample x = {x1, . . . , xn} of size n of i.i.d. variables with
distribution F. In all cases of practical interest, there is a value depending on F,

Table 3.1 The effect of increasing contamination on a sample of size 20

m Mean Med H(MADp) H(MADs) H(SD) xα M-Bisq MAD IQR

1 50 0.00 0.03 0.04 16.06 0.04 −0.02 0.12 0.08
2 100 0.01 0.10 0.11 46.78 55.59 0.04 0.22 0.14
4 200 0.21 0.36 0.37 140.5 166.7 0.10 0.46 0.41
5 250 0.34 0.62 0.95 202.9 222.3 0.15 0.56 370.3
7 350 0.48 1.43 42.66 350.0 333.4 0.21 1.29 740.3
9 450 0.76 3.23 450.0 450.0 444.5 0.40 2.16 740.2

10 500 500.5 500.0 500.0 500.0 500.0 500.0 739.3 740.2
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θ̂∞ = θ̂∞(F), such that

θ̂n →p θ̂∞(F).

θ̂∞(F) is the asymptotic value of the estimate at F .
If θ̂n = x (the sample mean) then θ̂∞(F) = EF x (the distribution mean), and

if θ̂n(x) = Med(x) (the sample median) then θ̂∞(F) = F−1(0.5) (the distribution
median). If θ̂n is a location M-estimator given by (2.18) with ψ monotonic, it was
stated in Section 2.9.2 that θ̂∞(F) is the solution of

EFψ (x − θ ) = 0.

A proof is given in Theorem 10.5. The same reasoning shows that if θ̂n is a scale
M-estimator (2.54), then θ̂∞(F) is the solution of

EFρ
( x

θ

)
= δ.

It can also be shown that if θ̂n is a location M-estimator given by (2.12), then θ̂∞(F)
is the solution of

EFρ (x − θ ) = min.

See Section 6.2 of Huber (1981). Asymptotic values exist also for the trimmed mean
(Section 10.7).

The typical distribution of data depends on one or more unknown parameters. Thus
in the location model (2.2) the data have distribution function Fμ(x) = F0(x − μ),
and in the location–dispersion model (2.66) the distribution is Fθ (x) = F0((x − μ)/σ )
with θ = (μ, σ ). These are called parametric models. In the location model we have
seen in (2.22) that if the data are symmetric about μ and μ̂ is an M-estimate, then
μ̂ →p μ and so μ̂∞(Fμ) = μ. An estimator θ̂ of the parameter(s) of a parametric
family Fθ will be called consistent if

θ̂∞(Fθ ) = θ. (3.1)

Since we assume F to be only approximately known, we are interested in the behavior
of θ̂∞(F) when F ranges over a “neighborhood” of a distribution F0. There are sev-
eral ways to characterize neighborhoods. The easiest to deal with are contamination
neighborhoods:

F(F, ε) = {(1 − ε)F + εG : G ∈ G} (3.2)

where G is a suitable set of distributions, often the set of all distributions but in some
cases the set of point mass distributions, where the “point mass” δx0

is the distribution
such that P(x = x0) = 1.
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3.1 The influence function

The influence function (IF) of an estimator (Hampel, 1974) is an asymptotic version
of its sensitivity curve. It is an approximation to the behavior of θ̂∞ when the sample
contains a small fraction ε of identical outliers. It is defined as

IFθ̂ (x0, F) = lim
ε↓0

θ̂∞
(
(1 − ε) F + εδx0

) − θ̂∞(F)

ε
(3.3)

= ∂

∂ε
θ̂∞ ((1 − ε) F + εδ0)

∣∣
ε↓0

, (3.4)

where δx0
is the point-mass at x0 and “↓ ” stands for “limit from the right”. If there are

p unknown parameters, then θ̂∞ is a p-dimensional vector and so is its IF. Henceforth,
the argument of θ̂∞(F) will be dropped if there is no ambiguity.

The quantity θ̂∞
(
(1 − ε) F + εδx0

)
is the asymptotic value of the estimate when

the underlying distribution is F and a fraction ε of outliers is equal to x0. Thus if ε is
small this value can be approximated by

θ̂∞
(
(1 − ε) F + εδx0

) ≈ θ̂∞(F) + εIF θ̂ (x0, F)

and the bias θ̂∞
(
(1 − ε) F + εδx0

) − θ̂∞(F) is approximated by εIF θ̂ (x0, F).
The IF may be considered as a “limit version” of the sensitivity curve, in the

following sense. When we add the new observation x0 to the sample x1, . . . , xn the
fraction of contamination is 1/(n + 1), and so we define the standardized sensitivity
curve (SC) as

SCn(x0) = θ̂n+1(x1, . . . , xn, x0) − θ̂n(x1, . . . , xn)

1/(n + 1)
,

= (n + 1)
(̂
θn+1(x1, . . . , xn, x0) − θ̂n(x1, . . . , xn)

)
which is similar to (3.3) with ε = 1/(n + 1). One would expect that if the xi ’s are
i.i.d. with distribution F, then SCn(x0) ≈ IF(x0, F) for large n. This notion can be
made precise. Note that for each x0, SCn(x0) is a random variable. Croux (1998) has
shown that if θ̂ is a location M-estimate with a bounded and continuous ψ-function,
or is a trimmed mean, then for each x0

SCn(x0) →a.s. IFθ̂ (x0, F), (3.5)

where “a.s.” denotes convergence with probability 1 (“almost sure” convergence).
This result is extended to general M-estimates in Section 10.4. See, however, the
remarks in Section 3.1.1.

It will be shown in Section 3.8.1 that for a location M-estimate μ̂

IFμ̂(x0, F) = ψ(x0 − μ̂∞)

Eψ ′(x − μ̂∞)
(3.6)

and for a scale M-estimate σ̂ (Section 2.5)

IFσ̂ (x0, F) = σ̂∞
ρ (x0/σ̂∞) − δ

E (x/σ̂∞) ρ ′ (x/σ̂∞)
. (3.7)
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For the median estimate the denominator is to be interpreted as in (2.26). The similarity
between the IF and the SC of a given estimator can be seen by comparing Figure 3.1
to Figures 2.3 and 2.5. The same thing happens with Figure 3.2.

We see above that the IF of an M-estimate is proportional to its ψ-function (or an
offset ρ-function in the case of the scale estimate), and this behavior holds in general
for M-estimates. Given a parametric model Fθ , a general M-estimate θ̂ is defined as
a solution of

n∑
i=1


(xi , θ̂ ) = 0. (3.8)

For location 
(x, θ ) = ψ(x − θ ), and for scale 
(x, θ ) = ρ(x/θ ) − δ. It is shown
in Section 10.2 that the asymptotic value θ̂∞ of the estimate at F satisfies

EF
(x, θ̂∞) = 0. (3.9)

It is shown in Section 3.8.1 that the IF of a general M-estimate is

IFθ̂ (x0, F) = −
(x0, θ̂∞)

B (̂θ∞, 
)
(3.10)

where

B(θ, 
) = ∂

∂θ
E
(x, θ ) (3.11)

and thus the IF is proportional to the ψ-function 
(x0, θ̂∞).
If 
 is differentiable with respect to θ, and the conditions that allow the inter-

change of derivative and expectation hold, then

B(θ, 
) = E
̇(x, θ ) (3.12)

where


̇(x, θ ) = ∂
(x, θ )

∂θ
. (3.13)

The proof is given in Section 3.8.1. Then if θ̂ is consistent for the parametric family
Fθ , (3.10) becomes

IFθ̂ (x0, Fθ ) = − 
(x0, θ )

EF
̇(x, θ )
.

Consider now an M-estimate μ̂ of location with known dispersion σ , where the
asymptotic value μ̂∞ satisfies

EFψ

(
x − μ̂∞

σ

)
= 0.

It is easy to show, by applying (3.6) to the estimate defined by the function ψ*(x) =
ψ(x/σ ), that the IF of μ̂ is

IFμ̂(x0, F) = σ
ψ

((
x0 − μ̂∞

)
/σ

)
EFψ ′ ((x − μ̂∞

)
/σ

) . (3.14)
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Now consider location estimation with a previously computed dispersion estimate
σ̂ as in (2.64). In this case the IF is much more complicated than the one above, and
depends on the IF of σ̂ . But it can be proved that if F is symmetric, the IF simplifies
to (3.14):

IFμ̂(x0, F) = σ̂∞
ψ

((
x0 − μ̂∞

)
/σ̂∞

)
EFψ ′ ((x − μ̂∞

)
/σ̂∞

) . (3.15)

The IF for simultaneous estimation of μ and σ is more complicated, and can be
derived from (3.47) in Section 3.6.

It can be shown that the IF of an α-trimmed mean μ̂ at a symmetric F is propor-
tional to Huber’s ψ-function:

IFμ̂(x0, F) = ψk(x − μ̂∞)

1 − 2α
(3.16)

with k = F−1(1 − α). Hence the trimmed mean and the Huber estimate in the example
at the beginning of the chapter have not only the same asymptotic variances, but
also the same IF. However, Table 3.1 shows that they have very different degrees of
robustness.

Comparing (3.6) to (2.23) and (3.16) to (2.41), one sees that the asymptotic
variance v of these M-estimates satisfies

v = EF IF(x, F)2. (3.17)

It is shown in Section 3.7 that (3.17) holds for a general class of estimates called
Fréchet-differentiable estimates, which includes M-estimates with bounded 
. How-
ever, the relationship ( 3.17) does not hold in general. For instance, the Shorth location
estimate the midpoint of the shortest half of the data, see Problem 2.16(a) has a null IF
(Problem 12). At the same time, its rate of consistency is n−1/3 rather than the usual
rate n−1/2. Hence the left-hand side of (3.17) is infinite and the right-hand one is zero.

3.1.1 *The convergence of the SC to the IF

The plot in the upper left panel of Figure 3.1 for the Huber estimate using the SD
as the previously computed dispersion estimate seems to contradict the convergence
of SCn(x0) to IF(x0). Note, however, that (3.5) asserts only the convergence for each
x0. This means that SCn(x0) will be near IF(x0) for a given x0 when n is sufficiently
large, but the value of n will in general depend on x0, i.e., the convergence will
not be uniform. Rather than the convergence at an isolated point, what matters is
being able to compare the influence of outliers at different locations; that is, the
behavior of the whole curve corresponding to the SC. Both curves will be similar
along their whole range only if the convergence is uniform. This does not happen
with H(SD).

On the other hand Croux (1998) has shown that when θ̂ is the median, the distri-
bution of SCn(x0) does not converge in probability to any value, and hence (3.5) does
not hold. This would seem to contradict the upper right panel of Figure 3.1. However,
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the form of the curve converges to the right limit in the sense that for each x0

SCn(x0)

maxx |SCn(x)| →a.s.
IF(x0)

maxx |IF(x)| = sgn (x − Med (x)) . (3.18)

The proof is left to the reader (Problem 3.2).

3.2 The breakdown point

Table 3.1 has shown the effects of replacing several data values by outliers. Roughly
speaking, the breakdown point (BP) of an estimate θ̂ of the parameter θ is the largest
amount of contamination (proportion of atypical points) that the data may contain
such that θ̂ still gives some information about θ, i.e., about the distribution of the
“typical” points.

Let θ range over a set �. In order for the estimate θ̂ to give some information
about θ the contamination should not be able to drive θ̂ to infinity or to the boundary
of � when it is not empty. For example, for a scale or dispersion parameter we have
� = [0, ∞], and the estimate should remain bounded, and also bounded away from
0, in the sense that the distance between θ̂ and 0 should be larger than some positive
value.

Definition 3.1 The asymptotic contamination BP of the estimate θ̂ at F, denoted by
ε* (̂θ, F), is the largest ε* ∈ (0, 1) such that for ε < ε*, θ̂∞ ((1 − ε) F + εG) as a
function of G remains bounded, and also bounded away from the boundary of �.

The definition means that there exists a bounded and closed set K ⊂ � such that
K ∩ ∂� = ∅ (where ∂� denotes the boundary of �) such that

θ̂∞ ((1 − ε) F + εG) ∈ K∀ε < ε*and ∀G. (3.19)

It is helpful to extend the definition to the case when the estimate is not uniquely
defined, e.g., when it is the solution of an equation that may have multiple roots.
In this case, the boundedness of the estimate means that all solutions remain in a
bounded set.

The BP for each type of estimate has to be treated separately. Note that it is easy
to find estimates with high BP. For instance, the “estimate” identically equal to zero
has ε* = 1! However, for “reasonable” estimates it is intuitively clear that there must
be more “typical” than “atypical” points and so ε* ≤ 1/2. Actually, it can be proved
(Section 3.8.2) that all shift equivariant location estimates as defined in (2.3) have
ε* ≤ 1/2.

3.2.1 Location M-estimates

It will be convenient first to treat the case of a monotonic but not necessarily odd ψ.

Assume that

k1 = −ψ(−∞), k2 = ψ(∞)
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are finite. Then it is shown in Section 3.8.3 that

ε* = min(k1, k2)

k1 + k2

. (3.20)

It follows that if ψ is odd, then k1 = k2 and the bound ε* = 0.5 is attained. Define

ε*
j = k j

k1 + k2

( j = 1, 2). (3.21)

Then (3.20) is equivalent to

ε* = min
(
ε*

1 , ε*
2

)
.

The proof of (3.20) shows that ε*
1 and ε*

2 are respectively the BPs to +∞ and to −∞.
It can be shown that redescending estimates also attain the bound ε* = 0.5, but the
proof is more involved since one has to deal not with equation (2.18) but with the
minimization (2.12).

3.2.2 Scale and dispersion estimates

We deal first with scale estimates. Note that while a high proportion of atypical points
with large values (outliers) may cause the estimate σ̂ to overestimate the true scale,
a high proportion of data near zero (“inliers”) may result in underestimation of the
true scale. Thus it is desirable that the estimate remains bounded away from zero
(“implosion” ) as well as away from infinity (“explosion”). This is equivalent to
keeping the logarithm of σ̂ bounded.

Note that a scale M-estimate with ρ-function ρ may be written as a location
M-estimate “in the log scale”. Put

y = log |x | , μ = log σ, ψ(t) = ρ(et ) − δ.

Since ρ is even and ρ (0) = 0, then

ρ
( x

σ

)
− δ = ρ

( |x |
σ

)
− δ = ψ(y − μ),

and hence σ̂ = exp (μ̂) where μ̂verifies ave (ψ (y−μ̂)) = 0, and hence μ̂ is a location
M-estimate.

If ρ is bounded, we have ρ (∞) = 1 by Definition 2.1. Then the BP ε*of σ̂ is given
by (3.20) with

k1 = δ, k2 = 1 − δ,

and so

ε* = min(δ, 1 − δ). (3.22)
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Since μ → +∞ and μ → −∞ are equivalent to σ → ∞ and σ → 0 respectively,
it follows from (3.21) that δ and 1 − δ are respectively the BPs for explosion and for
implosion.

As for dispersion estimates, it is easy to show that the BPs of the SD, the MAD
and the IQR are 0, 1/2 and 1/4, respectively (Problem 3.3). In general, the BP of an
equivariant dispersion estimate is ≤ 0.5 (Problem 3.5).

3.2.3 Location with previously computed dispersion estimate

In Table 3.1 we have seen the bad consequences of using an M-estimate μ̂ with
the SD as the previously computed dispersion estimate σ̂ . The reason is that the
outliers inflate this dispersion estimate, and hence outliers do not appear as such in
the “standardized” residuals (xi − μ̂)/σ̂ . Hence the robustness of σ̂ is essential for
that of μ̂.

For monotone M-estimates with a bounded and odd ψ, it can be shown that
ε*(μ̂) = ε*(σ̂ ). Thus if σ̂ is the MAD then ε*(μ̂) = 0.5, but if σ̂ is the SD then
ε*(μ̂) = 0.

Note that (3.15) implies that the location estimates using the SD and the MAD as
previous dispersion have the same IF, while at the same time they have quite different
BPs. By the way, this is an example of an estimate with a bounded IF but a zero BP.

For redescending M-estimates (2.64) with a bounded ρ the situation is more
complex. Consider first the case of a fixed σ. Then it can be shown that ε*(μ̂) can be
made arbitrarily small by taking σ small enough. This suggests that for the case of an
estimated σ, it is not only the BP of σ̂ that matters but also the size of σ̂ . Let μ̂0 be
an initial estimate with BP = 0.5 (e.g., the median), and let σ̂ be an M-scale centered
at μ̂0 as defined by

1

n

n∑
i=1

ρ0

(
xi − μ̂0

σ̂

)
= 0.5

where ρ0 is another bounded ρ-function. If ρ ≤ ρ0, then ε*(μ̂) = 0.5 (a proof is
given in Section 3.8.3).

Since the MAD has ρ0 (x) = I (x ≥ 1), it does not fulfill ρ ≤ ρ0. In this case the
situation is more complicated and the BP will in general depend on the distribution
(or on the data in the case of the finite-sample BP introduced below). Huber (1984)
calculated the BP for this situation, and it follows from his results that for the bisquare
ρ with MAD scale, the BP is 1/2 for all practical purposes. Details are given in
Section 3.8.3.

3.2.4 Simultaneous estimation

The BP for the estimates in Section 2.6.2 is much more complicated, requiring the
solution of a nonlinear system of equations (Huber, 1981, p.141) . In general, the BP
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of μ̂ is less than 0.5. In particular, using Huber’s ψk with σ̂ given by (2.74) yields

ε* = min

(
0.5,

0.675

k + 0.675

)
,

so that with k = 1.37 we have ε* = 0.33. This is clearly lower than the BP = 0.5
which corresponds to using a previously computed dispersion estimate treated above.

3.2.5 Finite-sample breakdown point

Although the asymptotic BP is an important theoretical concept, it may be more useful
to define the notion of BP for a finite sample. Let θ̂n = θ̂n(x) be an estimate defined
for samples x = {x1, . . . , xn}. The replacement finite-sample breakdown point (FBP)

of θ̂n at x is the largest proportion ε*
n (̂θn, x) of data points that can be arbitrarily

replaced by outliers without θ̂n leaving a set which is bounded and also bounded
away from the boundary of � (Donoho and Huber, 1983). More formally, call Xm the
set of all data sets y of size n having n − m elements in common with x:

Xm = {y : #(y) = n, #(x ∩ y) = n − m}.
Then

ε*
n (̂θn, x) = m*

n
, (3.23)

where

m* = max
{
m ≥ 0 : θ̂n(y) bounded and also bounded away from ∂� ∀ y ∈ Xm

}
.

(3.24)

In most cases of interest, ε*
n does not depend on x, and tends to the asymptotic BP

when n → ∞. For equivariant location estimates, it is proved in Section 3.8.2 that

ε*
n ≤ 1

n

[
n − 1

2

]
(3.25)

and that this bound is attained by M-estimates with an odd and bounded ψ. For the

trimmed mean, it is easy to verify that m* = [nα] , so that ε*
n ≈ α for large n.

Another possibility is the addition FBP. Call Xm the set of all data sets of size
n + m containing x:

Xm = {y : #(y) = n + m, x ⊂ y} .

Then

ε**
n (̂θn, x) = m*

n + m
,

where

m* = max
{
m ≥ 0 : θ̂n+m(y) bounded and also bounded away from ∂ � ∀ y ∈ Xm

}
.
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Both ε* and ε** give similar values for large n, but we prefer the former. The
main reason for this is that the definition involves only the estimate for the given n,
which makes it easier to generalize this concept to more complex cases, as will be
seen in Section 4.6.

3.3 Maximum asymptotic bias

The IF and the BP consider extreme situations in the study of contamination. The first
deals with “infinitesimal” values of ε, while the second deals with the largest ε an
estimate can tolerate. Note that an estimate having a high BP means that θ̂∞(F) will
remain in a bounded set when F ranges in an ε-neighborhood ( 3.2) with ε ≤ ε*, but
this set may be very large. What we want to do now is, roughly speaking, to measure
the worst behavior of the estimate for each given ε < ε*.

We again consider F ranging in the ε-neighborhood

Fε,θ = {(1 − ε) Fθ + εG : G ∈ G}
of an assumed parametric distribution Fθ , whereG is a family of distribution functions.
Unless otherwise specified, G will be the family of all distribution functions, but in
some cases it will be more convenient to choose a more restricted family such as that
of point mass distributions. The asymptotic bias of θ̂ at any F ∈ Fε,θ is

bθ̂ (F, θ ) = θ̂∞(F) − θ

and the maximum bias (MB) is

MBθ̂ (ε, θ ) = max
{∣∣bθ̂ (F, θ )

∣∣ : F ∈ Fε,θ

}
.

In the case that the parameter space is the whole set of real numbers, the relation-
ship between MB and BP is

ε*(̂θ, Fθ ) = max
{
ε ≥ 0 : MBθ̂ (ε, θ ) < ∞}

.

Note that two estimates may have the same BP but different MBs (Problem 3.11).
The contamination sensitivity of θ̂ at θ is defined as

γc (̂θ, θ ) =
[

d

dε
MBθ̂ (ε, θ )

]
ε=0

. (3.26)

In the case that θ̂ is consistent we have θ̂∞(F0) = θ and then MBθ̂ (0, θ ) =
bθ̂ (Fθ , 0) = 0. Therefore γc gives an approximation to the MB for small ε:

MBθ̂ (ε, θ ) ≈ εγc (̂θ, θ ). (3.27)

Note, however, that since MBθ̂ (ε*, θ ) = ∞ while the right-hand side of (3.27) always
yields a finite result, this approximation will be quite unreliable for sufficiently large
values of ε. Figure 3.3 shows MBθ̂ (ε, θ ) at Fθ = N(θ, 1) and its approximation (3.27)
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Figure 3.3 MB of Huber estimate (—) and its linear approximation (. . . . .) as a
function of ε

for the Huber location estimate with k = 1.37 (note that the bias does not depend on
θ due to the estimate’s shift equivariance).

The gross-error sensitivity (GES) of θ̂ at θ is

γ *(̂θ, θ ) = max
x0

∣∣IFθ̂ (x0, Fθ )
∣∣ . (3.28)

Since (1 − ε) Fθ + εδx0
∈ Fε,θ , we have for all x0∣∣̂θ∞

(
(1 − ε) Fθ + εδx0

) − θ̂∞(Fθ )
∣∣ ≤ MBθ̂ (ε, θ ).

So dividing by ε and taking the limit we get

γ * ≤ γc. (3.29)

Equality above holds for M-estimates with bounded ψ-functions, but not in general.
For instance, we have seen in Section 3.2.3 that the IF of the Huber estimate with the
SD as previous dispersion is bounded, but since ε* = 0 we have MBθ̂ (ε, θ ) = ∞ for
all ε > 0 and so the right-hand side of (3.29) is infinite.

For location M-estimates μ̂ with odd ψ and k = ψ(∞), and assuming a location
model Fμ(x) = F0(x − μ), we have

γ *(μ̂, μ) = k

EFμ
ψ ′(x − μ̂∞)

= k

EF0
ψ ′(x)

(3.30)

so that γ *(μ̂, μ) does not depend on μ.
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In general for equivariant estimates MBθ̂ (ε, θ ) does not depend on θ. In particular,
the MB for a bounded location M-estimate is given in Section 3.8.4, where it is shown
that the median minimizes the MB for M-estimates at symmetric models.

3.4 Balancing robustness and efficiency

In this section we consider a parametric model Fθ and an estimate θ̂ which is con-
sistent for θ and such that the distribution of

√
n(̂θn − θ ) under Fθ tends to a normal

distribution with mean 0 and variance v = v(̂θ, θ ). This is the most frequent case and
contains most of the situations considered in this book.

Under the preceding assumptions θ̂ has no asymptotic bias and we care only about
its variability. Let vmin = vmin(θ ) be the smallest possible asymptotic variance within
a “reasonable” class of estimates (e.g., equivariant). Under reasonable regularity con-
ditions vmin is the asymptotic variance of the MLE for the model (Section 10.8). Then
the asymptotic efficiency of θ̂ at θ is defined as vmin(θ )/v(̂θ, θ ).

If instead F does not belong to the family Fθ but is in a neighborhood of Fθ , the
squared bias will dominate the variance component of MSE for all sufficiently large
n. To see this let b = θ̂∞(F) − θ and note that in general under F the distribution of√

n(̂θn − θ̂∞) tends to a normal with mean 0 and variance v . Then the distribution of
θ̂n − θ is approximately N(b, w/n), so that the variance tends to zero while the bias
does not. Thus we must balance the efficiency of θ̂ at the model Fθ with the bias in a
neighborhood of it.

We have seen that location M-estimates with a bounded ψ and previously com-
puted dispersion estimate with BP = 1/2 attain the maximum BP of 1/2. To choose
among them we must compare their biases for a given efficiency. We consider the
Huber and bisquare estimates with previously computed MAD dispersion and effi-
ciency 0.95. Their maximum biases for the model Fε,θ = {(1 − ε) Fθ + εG : G ∈ G}
with Fθ = N(0,1) and a few values of ε are as follows:

ε 0.05 0.10 0.20

Huber 0.087 0.184 0.419
Bisq. 0.093 0.197 0.450

Figure 3.4 shows the respective biases for point contamination at K with ε = 0.1,
as a function of the outlier location K . It is seen that although the maximum bias of
the bisquare is higher, the difference is very small and its bias remains below that
of the Huber estimate for the majority of the values. This shows that, although the
maximum bias contains much more information than the BP, it is not informative
enough to discriminate among estimates and that one should look at the whole bias
behavior when possible

To study the behavior of the estimates under symmetric heavy-tailed distributions,
we computed the asymptotic variances of the Huber and bisquare estimates, and of the
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Figure 3.4 Asymptotic biases of Huber and bisquare estimates for 10% contamina-
tion as functions of the outlier location K

Cauchy MLE (“CMLE”), with simultaneous dispersion (Section 2.6.2) at the normal
and Cauchy distributions, the latter of which can be considered an extreme case of
heavy-tailed behavior. The efficiencies are given below:

Huber Bisq. CMLE

Normal 0.95 0.95 0.60
Cauchy 0.57 0.72 1.00

It is seen that the bisquare estimate yields the best trade-off between the efficiencies
at the two distributions.

For all the above reasons we recommend for estimating location the bisquare
M-estimate with previously computed MAD.

3.5 *“Optimal” robustness

In this section we consider different way in which an “optimal” estimate may be
defined.
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3.5.1 Bias and variance optimality of location estimates

Minimax bias

If we pay attention only to bias, the quest for an “optimal” location estimate is simple:
Huber (1964) has shown that the median has the smallest maximum bias (“minimax
bias” ) among all shift equivariant estimates if the underlying distribution is symmetric
and unimodal. See Section 3.8.5 for a proof.

Minimax variance

Huber (1964) studied location M-estimates in neighborhoods (3.2 ) of a symmetric
F with symmetric contamination, so that there is no bias problem. The dispersion
is assumed known. Call v(̂θ, H ) the asymptotic variance of the estimate θ̂ at the
distribution H, and

vε (̂θ ) = sup
H∈F(F,ε)

v(̂θ, H ),

where F(F, ε) is the neighborhood (3.2) with G ranging over all symmetric distribu-
tions. Assume that F has a density f and that ψ0 = − f ′/ f is nondecreasing. Then
the M-estimate minimizing vε (̂θ ) has

ψ(x) =
{

ψ0(x) if |ψ0(x)| ≤ k
k sgn(x) otherwise

where k depends on F and ε. For normal F, this is the Huber ψk . Since ψ0 corresponds
to the MLE for f, the result may be described as a truncated MLE.

The same problem with unknown dispersion was treated by Li and Zamar (1991).

3.5.2 Bias optimality of scale and dispersion estimates

The problem of minimax bias scale estimation for positive random variables was
treated by Martin and Zamar (1989), who showed that for the case of a nominal ex-
ponential distribution the scaled median Med(x)/0.693, (as we will see in Problem
3.15, this estimate also minimizes the GES), was an excellent approximation to the
minimax bias optimal estimate for a wide range of ε < 0.5. Minimax bias dispersion
estimates were treated by Martin and Zamar (1993b) for the case of a nominal normal
distribution and two separate families of estimates: (a) for simultaneous estimation of
location and scale/dispersion with the monotone ψ-function, the minimax bias esti-
mate is well approximated by the MAD for all ε < 0.5, thereby providing a theoretical
rationale for an otherwise well-known high-BP estimate; (b) for M-estimates of scale
with a general location estimate that includes location M-estimates with redescending
ψ-functions, the minimax bias estimate is well approximated by the Shorth dispersion
estimate (the shortest half of the data, see Problem 2.16b) for a wide range of ε < 0.5.
This is an intuitively appealing estimate with BP = 1/2.
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3.5.3 The infinitesimal approach

Several criteria have been proposed to define an optimal balance between bias and
variance. The treatment can be simplified if ε is assumed to be “very small”. Then the
maximum bias can be approximated through the gross-error sensitivity (GES) (3.28).
We first treat the simpler problem of minimizing the GES. Let Fθ be a parametric
family with densities or frequency functions fθ (x). Call Eθ the expectation with
respect to Fθ : that is, if the random variable z ∼ Fθ and h is any function,

Eθ h(z) =
{∫

h(x) fθ (x)dx (z continuous)∑
x h(x) fθ (x) (z discrete).

We shall deal with general M-estimates θ̂n defined by ( 3.8), where 
 is usually
called the score function. An M-estimate is called Fisher-consistent for the family Fθ

if

Eθ
(x, θ ) = 0. (3.31)

In view of (3.9), a Fisher-consistent M-estimate is consistent in the sense of (3.1).
It is shown in Section 10.3 that if θ̂n is Fisher-consistent, then

n1/2(̂θn − θ ) →d N(0, v(
, θ )),

with

v(
, θ ) = A(θ, 
)

B(θ, 
)2
,

where B is defined in (3.11) and

A(θ, 
) = Eθ

(

(x, θ )2

)
. (3.32)

It follows from (3.10) that the GES of an M-estimate is

γ *(̂θ, θ ) = maxx |
(x, θ )|
|B(θ, 
)| .

The MLE is the M-estimate with score function


0(x, θ ) = − ḟθ (x)

fθ (x)
, with ḟθ (x) = ∂ fθ (x)

∂θ
. (3.33)

It is shown in Section 10.8 that this estimate is Fisher-consistent, i.e.,

Eθ
0(x, θ ) = 0, (3.34)

and has the minimum asymptotic variance among Fisher-consistent M-estimates.
We now consider the problem of minimizing γ * among M-estimates. To ensure

that the estimates considered “estimate the right parameter”, we consider only Fisher-
consistent estimates.
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Call Medθ the median under Fθ , i.e., if z ∼ Fθ and h is any function, then
Medθ (h(z)) is the value t where∫

I {h(x) ≤ t} fθ (x)dx − 0.5

changes sign.
Define

M(θ ) = Medθ
0(x, θ ).

It is shown in Section 3.8.6 that the M-estimate θ̃ with score function


̃(x, θ ) = sgn(
0(x, θ ) − M(θ )). (3.35)

is Fisher-consistent and is the M-estimate with smallest γ * in that class.
This estimate has a clear intuitive interpretation. Recall that the median is a

location M-estimate with ψ-function equal to the sign function. Likewise, θ̃ is the
solution θ of

Med {
0(x1, θ ), . . . , 
0(xn, θ )} = Medθ
0(x, θ ). (3.36)

Note that, in view of (3.34), the MLE may be written as the solution of

1

n

n∑
i=1


0(xi , θ ) = Eθ
0(x, θ ). (3.37)

Hence (3.36) can be seen as a version of (3.37), in which the average on the left-hand
side is replaced by the sample median, and the expectation on the right is replaced by
the distribution median.

3.5.4 The Hampel approach

Hampel (1974) stated the balance problem between bias and efficiency for general
estimates as minimizing the asymptotic variance under a bound on the GES. For a
symmetric location model, his result coincides with Huber’s. It is remarkable that
both approaches coincide at the location problem, and furthermore the result has a
high BP.

To simplify notation, we shall in this section write γ *(
, θ ) for the GES γ *(̂θ, θ )
of an M-estimate θ̂ with score function 
.

Hampel proposed to choose an M-estimate combining efficiency and robustness
by finding 
 such that subject to (3.31)

v(
, θ ) = min with γ *(
, θ ) ≤ G(θ ), (3.38)

where G(θ ) is a given bound expressing the desired degree of robustness. It is clear
that a higher robustness means a lower G(θ ), but that this implies a higher v(
, θ ).
We call this optimization problem Hampel’s direct problem.
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We can also consider a dual Hampel problem where we look for a function 


such that

γ *(
, θ ) = min with v(
, θ ) ≤ V (θ ), (3.39)

with given V . It is easy to see that both problems are equivalent in the following sense:
if 
* is optimal for the direct Hampel problem, then it is also optimal for the dual
problem with V (θ ) = v(
*, θ ). Similarly if 
* is optimal for the dual problem, it is
also optimal for the direct problem with G(θ ) = γ *(
*, θ ).

The solution to the direct and dual problems was given by Hampel (1974). The
optimal score functions for both problems are of the following form:


*(x, θ ) = ψk(θ )(
0(x, θ ) − r (θ )) (3.40)

where 
0 is given by (3.33), ψk is Huber’s ψ-function (2.28), and r (θ ) and k(θ ) are
chosen so that that 
* satisfies (3.31).

A proof is given in Section 3.8.7. It is seen that the optimal score function is
obtained from 
0 by first centering through r and then bounding its absolute value
by k.

Note that (3.35) is the limit case of (3.40) when k → 0. Note also that for a
solution to exist, G(θ ) must be larger than the minimum GES γ *(
̃, θ ), and V (θ )
must be larger than the asymptotic variance of the MLE: v(
0, θ ).

It is not clear which one may be a practical rule for the choice of G(θ ) for the
direct Hampel problem. But for the second problem a reasonable criterion is to choose
V (θ ) as

V (θ ) = v(
0, θ )

1 − α
, (3.41)

where 1 − α is the desired asymptotic efficiency of the estimate with respect to the
MLE.

Finding k for a given V or G may be complicated. The problem simplifies consid-
erably when Fθ is a location or a scale family, for in these cases the MLE is location
(or scale) equivariant. We shall henceforth deal with bounds (3.41). We shall see that
k may be chosen as a constant, which can then be found numerically.

For the location model we know from (2.18) that


0(x, ξ ) = ξ0(x − θ ) with ξ0(x) = − f ′
0(x)

f0(x)
, (3.42)

Hence v(
0, θ ) does not depend on θ, and


*(x, θ ) = ψk(ξ0(x − θ ) − r (θ )). (3.43)

If k(θ ) is constant, then the r (θ ) that fulfills (3.31) is constant too, which implies
that 
*(x, θ ) depends only on x − θ, and hence the estimate is location equivariant.
This implies that v(
*, θ ) does not depend on θ either, and depends only on k, which
can be found numerically to attain equality in (3.39).
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In particular, if f0 is symmetric, it is easy to show that r = 0. When f0 = N(0, 1)
we obtain the Huber score function.

For a scale model it follows from (2.53) that


0(x, ξ ) = x

θ
ξ0

( x

θ

)
− 1,

with ξ0 as in (3.42). It follows that v(
0, θ ) is proportional to θ, and that 
* has the
form


*(x, θ ) = ψk

( x

θ
ξ0

( x

θ

)
− r (θ )

)
. (3.44)

If k is constant, then the r (θ ) that fulfills (3.31) is proportional to θ , which implies
that 
*(x, θ ) depends only on x/θ, and hence the estimate is scale equivariant. This
implies that v(
*, θ ) is also proportional to θ2, and hence k which can be found
numerically to attain equality in (3.39).

The case of the exponential family is left for the reader in Problem 3.15.
Extensions of this approach when there is more than one parameter may be found

in Hampel, Ronchetti, Rousseeuw and Stahel (1986).

3.5.5 Balancing bias and variance: the general problem

More realistic results are obtained by working with a positive (not “infinitesimal”)
ε. Martin and Zamar (1993a) found the location estimate minimizing the asymptotic
variance under a given bound on the maximum asymptotic bias for a given ε > 0.
Fraiman, Yohai and Zamar (2001) derived the location estimates minimizing the
MSE of a given function of the parameters in an ε-contamination neighborhood. This
allowed them to derive “optimal” confidence intervals which retain the asymptotic
coverage probability in a neighborhood.

3.6 Multidimensional parameters

We now consider the estimation of p parameters θ1, . . . , θp (e.g., location and dis-

persion), represented by the vector θ = (
θ1, . . . , θp

)′
. Let θ̂n be an estimate with

asymptotic value θ̂∞. Then the asymptotic bias is defined as

b θ̂(F, θ ) = disc(̂θ∞(F), θ ),

where disc(a, b) is a measure of the discrepancy between the vectors a and b, which
depends on the particular situation. In many cases one may take the Euclidean distance
‖a − b‖, but in other cases it may be more complex (as in Section 6.6).

We now consider the efficiency. Assume θ̂n is asymptotically normal with covari-
ance matrix V. Let θ̃n be the MLE, with asymptotic covariance matrix V0. For c ∈ R p

the asymptotic variances of linear combinations c′θ̂n and c′θ̃n are respectively c′Vc
and c′V0c, and their ratio would yield an efficiency measure for each c. To express
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them though a single number, we take the worst situation, and define the asymptotic
efficiency of θ̂n as

eff(̂θn) = min
c�=0

c′V0c
c′Vc

.

It is easy to show that

eff(̂θn) = λ1(V−1V0), (3.45)

where λ1(M) denotes the largest eigenvalue of the matrix M.
In many situations (as in Section 4.4) V = aV0 where a is a constant, and then

the efficiency is simply 1/a.

Consider now simultaneous M-estimators of location and dispersion (Section
2.6.2). Here we have two parameters, μ and σ, which satisfy a system of two equations.
Put θ = (μ, σ ), and


1(x,θ) = ψ

(
x − μ

σ

)
and 
2(x,θ) = ρscale

(
x − μ

σ

)
− δ.

Then the estimates satisfy

n∑
i=1

Ψ(xi , θ̂) = 0, (3.46)

with Ψ = (
1, 
2). Given a parametric model Fθ where θ is a multidimensional
parameter of dimension p, a general M-estimate is defined by (3.46) where Ψ =
(
1, . . . , 
p).

Then (3.10) can be generalized by showing that the IF of θ̂ is

IF θ̂ (x0, F) = −B−1Ψ(x0, θ̂∞), (3.47)

were the matrix B has elements

B jk = E

{
∂
 j (x,θ)

∂θk

∣∣∣∣
θ = θ̂∞(F)

}
.

M-estimates of multidimensional parameters are further treated in Section 10.5. It
can be shown that they are asymptotically normal with asymptotic covariance matrix

V = B−1
(
EΨ(x,θ)Ψ(x,θ)′

)
B−1′, (3.48)

and hence they verify the analog of (3.17):

V = E
{
IF(x, F)IF(x, F)′

}
. (3.49)

The results in this section hold also when the observations x are multidimensional.

3.7 *Estimates as functionals

The mean value may be considered as a “function” that attributes to each distribution
F its expectation (when it exists); and the sample mean may be considered as a
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function attributing to each sample {x1, . . . , xn} its average x . The same can be said
of the median. This correspondence between distribution and sample values can be
made systematic in the following way. Define the empirical distribution function of
a sample x = {x1, . . . , xn} as

F̂n,x(t) = 1

n

n∑
i=1

I(xi ≤ t)

(the argument x will be dropped when there is no ambiguity). Then for any continuous
function g

EF̂n
g(x) = 1

n

n∑
i=1

g(xi ).

Define a “function” T whose argument is a distribution (a functional) as

T (F) = EF x =
∫

xd F(x).

It follows that T (F̂n) = x . If x is an i.i.d. sample from F, the law of large numbers
implies that T (F̂n) →p T (F) when n → ∞.

Likewise, define the functional T (F) as the 0.5 quantile of F ; if it is not unique,
define T (F) as the midpoint of 0.5 quantiles (see Section 2.9.4). Then T (F) = Med(x)
for x ∼ F, and T (F̂n) = Med(x1, . . . , xn). If x is a sample from F and T (F) is unique,
then T (F̂n) →p T (F).

More generally, M-estimates can be cast in this framework. For a given 
, define
the functional T (F) as the solution θ (assumed unique) of

EF
(x, θ ) = 0. (3.50)

Then T (F̂n) is a solution of

EF̂n

(x, θ ) = 1

n

n∑
i=1


(xi , θ ) = 0. (3.51)

We see that T (F̂n) and T (F) correspond to the M-estimate θ̂n and to its asymptotic
value θ̂∞(F), respectively.

A similar representation can be found for L-estimates. In particular, the α-trimmed
mean corresponds to the functional

T (F) = 1

1 − 2α
EF xI(α ≤ F(x) ≤ 1 − α).

Almost all of the estimates considered in this book can be represented as func-
tionals, i.e.,

θ̂n = T (F̂n) (3.52)

for some functional T . The intuitive idea of robustness is that “modifying a small pro-
portion of observations causes only a small change in the estimate”. Thus robustness
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is related to some form of continuity. Hampel (1971) gave this intuitive concept a
rigorous mathematical expression. The following is an informal exposition of these
ideas; mathematical details and further references can be found in Chapter 3 of Huber
(1981).

The concept of continuity requires the definition of a measure of distance d(F, G)
between distributions. Some particular distances (the Lévy, bounded Lipschitz, and
Prokhorov metrics) are adequate to express the intuitive idea of robustness, in the
sense that if the sample y is obtained from the sample x by� arbitrarily modifying a small proportion of observations, and/or� slightly modifying all observations,

then d
(
F̂n,x, F̂n,y

)
is “small”. Hampel (1971) defined the concept of qualitative ro-

bustness. A simplified version of his definition is that an estimate corresponding to
a functional T is said to be qualitatively robust at F if T is continuous at F accord-
ing to the metric d; that is, for all ε there exists δ such that d(F, G) < δ implies
|T (F) − T (G)| < ε.

It follows that robust estimates are consistent, in the sense that T (F̂n) converges
in probability to T (F). To see this, recall that if x is an i.i.d. sample from F, then the
law of large numbers implies that F̂n(t) →p F(t) for all t. A much stronger result
called the Glivenko–Cantelli theorem (Durrett, 1996) states that F̂n → F uniformly
with probability 1; that is,

P

(
sup

t

∣∣F̂n(t) − F(t)
∣∣ → 0

)
= 1.

It can be shown that this implies d(F̂n, F) →p 0 for the Lévy metric; and if T is
continuous then

θ̂∞ = T (F) = T
(
plimn→∞ F̂n

) = plimn→∞T (F̂n) = plimn→∞θ̂n,

where “plim” stands for “limit in probability”.
A general definition of BP can be given in this framework. For a given metric,

define an ε-neighborhood of F as

U(ε, F) = {G : d(F, G) < ε} ,

and the maximum bias of T at F as

bε = sup {|T (G) − T (F)| : G ∈ U(ε, F)} .

For all the metrics considered, we have d(F, G) < 1 for all F, G; hence U(1, F)
is the set of all distributions, and b1 = sup {|T (G) − T (F)| : all G} . Then the BP of
T at F is defined as

ε* = sup {ε : bε < b1} .

In this context, the IF may be viewed as a derivative. It will help to review some
concepts from calculus. Let h(z) be a function of m variables, with z = (z1, . . . , zm)
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∈ Rm . Then h is differentiable at z0 = (z01, . . . , z0m) if there exists a vector d =
(d1, . . . , dm) such that for all z

h(z)−h(z0) =
m∑

j=1

d j (z j − z0 j ) + o(‖z − z0‖), (3.53)

where “o” is a function such that limt→0 o(t)/t = 0. This means that in a neighborhood
of z0, h can be approximated by a linear function. In fact, if z is near z0 we have

h(z) ≈ h(z0) + L(z − z0),

where the linear function L is defined as L(z) = d′z. The vector d is called the
derivative of h at z0, which will be denoted by d = D(h, z0).

The directional derivative of h at z0 in the direction a is defined as

D(h, z0, a) = lim
t→0

h(z0+ta)−h(z0)

t
.

If h is differentiable, directional derivatives exist for all directions, and it can be shown
that

D(h, z0, a) = a′ D(h, z0).

The converse is not true: there are functions for which D(h, z0, a) exists for all a, but
D(h, z0) does not exist.

For an estimate θ̂ represented as (3.52), the IF may also be viewed as a directional
derivative of T as follows. Since

(1 − ε) F + εδx0
= F + ε

(
δx0

− F
)
,

we have

IFθ̂ (x0, F) = lim
ε→0

1

ε

{
T

[
F + ε

(
δx0

− F
)] − T (F)

}
,

which is the derivative of T in the direction δx0
− F.

In some cases, the IF may be viewed as a derivative in the stronger sense of (3.53).
This means that T (H ) − T (F) can be approximated by a linear function of H for all
H in a neighborhood of F, and not just along each single direction. For a given θ̂

represented by (3.52) and a given F, put for brevity

ξ (x) = IFθ̂ (x, F).

Then T is Fréchet-differentiable if for any distribution H

T (H ) − T (F) = EHξ (x) + o(d(F, H )). (3.54)

The class of Frêchet differentiable estimates contains M-estimates with a bounded
score function. Observe that the function

H −→ EHξ (x) =
∫

ξ (x)d H (x)
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is linear in H.

Putting H = F in (3.54) yields

EFξ (x) = 0. (3.55)

Some technical definitions are necessary at this point. A sequence zn of random
variables is said to be bounded in probability (abbreviated as zn = Op(1)) if for each
ε there exists K such that P(|zn| > K ) < ε for all n; in particular, if zn →d z then
zn = Op(1). We say that zn = Op(un) if zn/un = Op(1), and that zn = op(un) if
zn/un →p 0.

It is known that the distribution of supt {
√

n|F̂n(t) − F(t)|} (the so-called
Kolmogorov–Smirnov statistic) tends to a distribution (see Feller, 1971), so that
sup

∣∣F̂n(t) − F(t)
∣∣ = Op(n−1/2). For the Lévy metric mentioned above, this fact im-

plies that also d(F̂n, F) = Op(n−1/2). Then taking H = Fn in (3.54) yields

θ̂n − θ̂∞(F) = T (Fn) − T (F) = EFn ξ (x) + o
(
d

(
F̂n, F

))
= 1

n

n∑
i=1

ξ (xi ) + op
(
n−1/2

)
. (3.56)

Estimates satisfying (3.56) (called a linear expansion of θ̂∞) are asymptotically
normal and verify (3.17). In fact, the i.i.d. variables ξ (xi ) have mean 0 (by (3.55)) and
variance

v = EFξ (x)2.

Hence

√
n

(̂
θn − θ̂∞

) = 1√
n

n∑
i=1

ξ (xi ) + op(1),

which by the central limit theorem tends to N(0, v).
For further work in this area, see Fernholz (1983) and Clarke (1983).

3.8 Appendix: proofs of results

3.8.1 IF of general M-estimates

Assume for simplicity that 
̇ exists. For a given x0, put for brevity

Fε = (1 − ε)F + εδx0
and θε = θ̂∞(Fε).

Recall that by definition

EF
(x, θ0) = 0. (3.57)

Then θε verifies

0 = EFε

(x, θε) = (1 − ε)EF
(x, θε) + ε
(x0, θε).
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Differentiating with respect to ε yields

−EF
(x, θε) + (1 − ε)
∂θε

∂ε
EF
̇(x, θε) + 
(x0, θε) + ε
̇(x0, θε)

∂θε

∂ε
= 0. (3.58)

The first term vanishes at ε = 0 by (3.57). Taking ε ↓ 0 above yields the desired
result.

Note that this derivation is heuristic, since it is taken for granted that ∂θε/∂ε exists
and that θε → 0. A rigorous proof may be found in Huber (1981).

The same approach serves to prove (3.47) (Problem 3.9).

3.8.2 Maximum BP of location estimates

It suffices to show that ε < ε* implies 1 − ε > ε*. Let ε < ε*. For t ∈ R define
Ft (x) = F(x − t), and let

Ht = (1 − ε)F + εFt ∈ Fε, H*
t = εF + (1 − ε)F−t ∈ F1−ε,

with

Fε = {(1 − ε) F + εG : G ∈ G} ,

where G is the set of all distributions. Note that

Ht (x) = H*
t (x − t). (3.59)

The equivariance of μ̂ and (3.59) imply

μ̂∞(Ht ) = μ̂∞(H*
t ) + t ∀ t.

Since ε < ε*, μ̂∞(Ht ) remains bounded when t → ∞, and hence μ̂∞(H*
t ) is un-

bounded; since H*
t ∈ F1−ε, this implies 1 − ε > ε*.

A similar approach proves (3.25). The details are left to the reader.

3.8.3 BP of location M-estimates

Proof of (3.20)

Put for a given G

Fε = (1 − ε)F + εG and με = μ̂∞(Fε).

Then

(1 − ε) EFψ(x − με) + εEGψ(x − με) = 0. (3.60)

We shall prove first that ε* is not larger than the right-hand side of (3.20). Let
ε < ε*. Then for some C, |με| ≤ C for all G. Take G = δx0

, so that

(1 − ε) EFψ(x − με) + εψ(x0 − με) = 0. (3.61)
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Let x0 → ∞. Since με is bounded, we have ψ(x0 − με) → k2. Since ψ ≥ −k1,

(3.61) yields

0 ≥ −k1(1 − ε) + εk2, (3.62)

which implies ε ≤ k1/(k1 + k2). Letting x0 → −∞ yields likewise ε ≤ k2/(k1 + k2).
We shall now prove the opposite inequality. Let ε > ε*. Then there exists a

sequence Gn such that

με,n = μ̂∞ ((1 − ε) F + εGn)

is unbounded. Suppose it contains a subsequence tending to +∞. Then for this
subsequence, x − με,n → −∞ for each x, and since ψ ≤ k2, (3.60) implies

0 ≤ (1 − ε) lim
n→∞ EFψ(x − με,n) + εk2,

and since the bounded convergence theorem (Section 10.3) implies

lim
n→∞ EFψ(x − με,n) = EF

(
lim

n→∞ ψ(x − με,n)
)

we have

0 ≤ −k1(1 − ε) + εk2,

i.e., the opposite inequality to (3.62), from which it follows that ε ≥ ε*
1 in (3.21). If

instead the subsequence tends to −∞, we have ε ≥ ε*
2 . This concludes the proof.

Location with previously estimated dispersion

Consider first the case of monotone ψ. Since ε < ε*(σ̂ ) is equivalent to σ̂ being
bounded away from zero and infinity when the contamination rate is less than ε, the
proof is similar to that of the former section.

Now consider the case of a bounded ρ. Assume ρ ≤ ρ0. We shall show that
ε* = 0.5. Let ε < 0.5 and let yN = (yN1, . . . , yNn) be a sequence of data sets having
m elements in common with x, with m ≥ n (1 − ε) . Call μ̂0N the initial location
estimate, σ̂ N the previous scale and μ̂N the final location estimate for yN . Then it
follows from the definitions of μ̂0N , σ̂ N and μ̂N that

1

n

n∑
i=1

ρ

(
yNi − μ̂N

σ̂ N

)
≤ 1

n

n∑
i=1

ρ

(
yNi − μ̂0N

σ̂ N

)
≤ 1

n

n∑
i=1

ρ0

(
yNi − μ̂0N

σ̂ N

)
= 0.5.

(3.63)
Since μ̂0 and σ̂ 0 have BP = 0.5 > ε, μ̂0N —and hence σ̂ N —remains bounded for any
choice of yN .

Assume now that there is a sequence yN such that μ̂N → ∞. Let DN = {i : yNi =
xi }, hence

lim
N→∞

1

n

n∑
i=1

ρ

(
yNi − μ̂N

σ̂ N

)
≥ lim

N→∞
1

n

∑
i∈DN

ρ

(
xi − μ̂N

σ̂ N

)
≥ 1 − ε > 0.5,

which contradicts (3.63), and therefore μ̂N must be bounded, which implies ε* ≥ 0.5.
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We now deal with the case of bounded ρ when ρ ≤ ρ0 does not hold. Consider
first the case of fixed σ. Huber (1984) calculated the finite BP for this situation. For
the sake of simplicity we treat the asymptotic case with point mass contamination.

Put

γ = EFρ

(
x − μ0

σ

)
,

where F is the underlying distribution and μ0 = μ̂∞(F):

μ0 = arg min
μ

EFρ

(
x − μ

σ

)
.

It will be shown that

ε* = 1 − γ

2 − γ
. (3.64)

Consider a sequence xN tending to infinity, and let FN = (1 − ε)F + εδxN . Put
for μ ∈ R

AN (μ) = EFN ρ

(
x − μ

σ

)
= (1 − ε)EFρ

(
x − μ

σ

)
+ ερ

(
xN − μ

σ

)
.

Let ε < BP(μ̂) first. Then μN = μ̂∞(FN ) remains bounded when xN → ∞. By
the definition of μ0,

AN (μN ) ≥ (1 − ε)γ + ερ

(
xN − μN

σ

)
.

Since μ̂∞(FN ) minimizes AN , we have AN (μN ) ≤ AN (xN ), and the latter tends
to 1 − ε. The boundedness of μN implies that xN − μN → ∞, and hence we have
in the limit

(1 − ε)γ + ε ≤ 1 − ε,

which is equivalent to ε < ε*. The reverse inequality follows likewise.
When ρ is the bisquare with efficiency 0.95, F = N(0, 1) and σ = 1, we have

ε* = 0.47.

Note that ε* is an increasing function of σ.

In the more realistic case that σ is previously estimated, the situation is more
complicated; but intuitively it can be seen that the situation is actually more favorable,
since the contamination implies a larger σ . The procedure used above can be used
to derive numerical bounds for ε*. For the same ρ and MAD dispersion, it can be
shown that ε* > 0.49 at the normal distribution.

3.8.4 Maximum bias of location M-estimates

Let Fμ(x) = F0(x − μ) where F0 is symmetric about zero. Let ψ be a nondecreasing
and bounded ψ-function and call k = ψ(∞). The asymptotic value of the estimate is
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μ̂∞(Fμ) = μ, and the bias for an arbitrary distribution H is μ̂∞(H ) − μ. Define for
brevity the function

g(b) = EF0
ψ(x + b),

which is odd. It will be assumed that g is increasing. This holds either ifψ is increasing,
or if F0 has an everywhere positive density.

Let ε < 0.5. Then it will be shown that the maximum bias is the solution bε of
the equation

g(b) = kε

1 − ε
. (3.65)

Since the estimate is shift equivariant, it may be assumed without loss of generality
that μ = 0. Put for brevity μH = μ̂∞(H ). For a distribution H = (1 − ε) F0 + εG
(with G arbitrary), μH is the solution of

(1 − ε)g(−μH ) + εEGψ(x − μH ) = 0. (3.66)

Since |g (b)| ≤ k, we have for any G

(1 − ε)g(−μH ) − εk ≤ 0 ≤ (1 − ε)g(−μH ) + εk,

which implies

− kε

1 − ε
≤ g(−μH ) ≤ kε

1 − ε
,

and hence |μH | ≤ bε. By letting G = δx0
in (3.66) with x0 → ±∞, we see that the

bound is attained. This complete the proof.
For the median, ψ(x) = sgn(x) and k = 1, and a simple calculation shows (re-

calling the symmetry of F0) that g(b) = 2F0(b) − 1, and therefore

bε = F−1
0

(
1

2(1 − ε)

)
. (3.67)

To calculate the contamination sensitivity γc, put ḃε = dbε/dε, so that ḃ0 = γc.

Then differentiating (3.65) yields

g′(bε)ḃε = k

(1 − ε)2
,

and hence (recalling b0 = 0) γc = k/g′(0). Since g′(0) = EH0
ψ ′(x), we see that this

coincides with (3.30) and hence γc = γ *.

3.8.5 The minimax bias property of the median

Let F0 have a density f0(x) which is a nonincreasing function of |x | (a symmetric
unimodal distribution) . Call bε the maximum asymptotic bias of the median given in
(3.67). Let θ̂ be any location equivariant estimate. It will be shown that the maximum
bias of θ̂ in a neighborhood F(F0, ε), defined in (3.2), is not smaller than bε.
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Call F+ the distribution with density

f+(x) =
{

(1 − ε) f0(x) if x ≤ bε

(1 − ε) f0 (x − 2bε) otherwise.

Then f+ belongs to F(F0, ε). In fact, it can be written as

f+ = (1 − ε) f0 + εg,

with

g(x) = 1 − ε

ε
( f0 (x − 2bε) − f0(x)) I(x > bε).

We must show that g is a density. It is nonnegative, since x ∈ (bε, 2bε) implies
|x − 2bε| ≤ |x | , and the unimodality of f0 yields f0 (x − 2bε) ≥ f0(x); the same
thing happens if x > 2bε. And its integral equals one, since by (3.67),∫ ∞

bε

( f0 (x − 2bε) − f0(x)) dx = 2F0(bε) − 1 = ε

1 − ε
.

Define

F−(x) = F+(x + 2bε),

which also belongs to F(F0, ε) by the same argument. The equivariance of θ̂ implies
that

θ̂∞(F+) − θ̂∞(F−) = 2bε,

and hence
∣∣̂θ∞(F+)

∣∣ and
∣∣̂θ∞(F−)

∣∣ cannot both be less than bε.

3.8.6 Minimizing the GES

To avoid cumbersome technical details, we assume henceforth that 
0(x, θ ) has a
continuous distribution for all θ. We prove first that the M-estimate θ̃ is Fisher-
consistent. In fact, by the definition of the function M,

Eθ 
̃(x, θ ) = −Pθ (
0(x, θ ) ≤ M(θ )) + Pθ (
0(x, θ ) > M(θ ))

= −1

2
+ 1

2
= 0.

Since maxx |
̃(x, θ )| = 1, the estimate has GES

γ *(
̃, θ ) = 1∣∣B(θ, 
̃)
∣∣ .

It will be shown first that for any Fisher-consistent 
,

B(θ, 
) = Eθ
(x, θ )
0(x, θ ). (3.68)

We give the proof for the continuous case; the discrete case is similar. Condition
(3.31) may be written as

Eθ
(x, θ ) =
∫ ∞

−∞

(x, θ ) fθ (x)dx = 0.
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Differentiating the above expression with respect to θ yields

B(θ, 
) +
∫ ∞

−∞

(x, θ ) ḟθ (x)dx = 0,

and (3.32)–(3.33) yield

B(θ, 
) = −
∫ ∞

−∞

(x, θ ) ḟθ (x)dx

=
∫ ∞

−∞

(x, θ )
0(x, θ ) fθ (x) dx = Eθ
(x, θ )
0(x, θ ),

as stated. Note that ∂
̃/∂θ does not exist, and hence we must define B(θ, 
̃) through
(3.11) and not (3.12).

Now let C = {x : 
0(x, θ ) > M(θ )} , with complement C ′. It follows from
I(C ′) = 1 − I(C) that

Pθ

(

̃ = I(C) − I(C ′) = 2I(C) − 1

) = 1.

Using (3.34) and (3.35) we have

B(θ, 
̃) = Eθ 
̃(x, θ )
0(x, θ )

= 2Eθ
0(x, θ )I(C) − Eθ
0(x, θ ) = 2Eθ
0(x, θ )I(C).

Hence

γ *(
̃, θ ) = 1

2 |Eθ
0(x, θ )I(C)| . (3.69)

Consider a Fisher-consistent 
. Then

γ *(
, θ ) = maxx |
(x, θ )|
|B(θ, 
)| . (3.70)

Using (3.31) and (3.68) we have

B(θ, 
) = Eθ
(x, θ )
0(x, θ )

= Eθ
(x, θ )(
0(x, θ ) − M(θ ))

= Eθ
(x, θ )(
0(x, θ ) − M(θ ))I(C)

+ Eθ
(x, θ )(
0(x, θ ) − M(θ ))I(C ′). (3.71)

Besides

|Eθ
(x, θ )(
0(x, θ ) − M(θ ))I(C)|
≤ max

x
|
(x, θ )|Eθ (
0(x, θ ) − M(θ ))I(C)

= max
x

|
(x, θ )|
(

Eθ
0(x, θ )I(C) − M(θ )

2

)
. (3.72)
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Similarly ∣∣Eθ
(x, θ )(
0(x, θ ) − M(θ ))I(C ′)
∣∣

≤ − max
x

|
(x, θ )|Eθ (
0(x, θ ) − M(θ ))I(C ′)

= max
x

|
(x, θ )|
(

Eθ
0(x, θ )I(C) + M(θ )

2

)
. (3.73)

Therefore by (3.71), (3.72) and (3.73) we get

|B(θ, 
)| ≤ 2 max
x

|
(x, θ )|Eθ
0(x, θ )I(C).

Therefore, using (3.70) we have

γ *(
, θ ) ≥ 1

2 |Eθ
0(x, θ )I(C)| . (3.74)

And finally (3.69) and (3.74) yield

γ *(
̃, θ ) ≤ γ *(
, θ ).

The case of a discrete distribution is similar, but the details are much more in-
volved.

3.8.7 Hampel optimality

It will be shown first that estimates with score function (3.40) are optimal for Hampel
problems with certain bounds.

Theorem 3.2 Given k(θ ), the function 
* given by ( 3.40) and satisfying (3.31) is
optimal for the direct Hampel problem with bound

G(θ ) = γ *(
*, θ ) = k(θ )

B(θ, 
*)
,

and for the dual Hampel problem with bound

V (θ ) = v(
*, θ ).

Proof of Theorem 3.2: We shall show that 
* solves Hampel’s direct problem.
Observe that 
* satisfies the side condition in (3.38), since by definition γ *(
*, θ ) =
G(θ ). Let 
 now satisfy (3.31 ) and

γ *(
, θ ) ≤ G(θ ). (3.75)

We must show that

v(
, θ ) ≥ v(
*, θ ). (3.76)
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We prove (3.76) for a fixed θ. Since for any real number λ �= 0, λ
 defines the
same estimate as 
, we can assume without loss of generality that

B(θ, 
) = B(θ, 
*), (3.77)

and hence

γ *(
, θ ) = maxx (|
(x, θ )|)∣∣B(θ, 
*)
∣∣ .

Then, condition (3.75) becomes

max
x

(|
(x, θ )|) ≤ k(θ ) (3.78)

and (3.76) becomes A(θ, 
) ≥ A(θ, 
*), so that we have to prove

Eθ

2(x, θ ) ≥ Eθ
*2(x, θ ) (3.79)

for any 
 satisfying (3.78).
Call 
c

0 the ML score function centered by r :


c
0(x, θ ) = 
0(x, θ ) − r (θ ).

It follows from (3.68) and (3.31) that

Eθ
(x, θ )
c
0(x, θ ) = B(θ, 
).

We now calculate Eθ

2(x, θ ). Recalling (3.77) we have

Eθ

2(x, θ ) = Eθ {[
(x, θ ) − 
c

0(x, θ )] + 
c
0(x, θ )}2

= Eθ (
(x, θ ) − 
c
0(x, θ ))2 + Eθ


c
0(x, θ )2

+ 2Eθ
(x, θ )
c
0 − 2Eθ


c2
0 (x, θ )

= Eθ (
(x, θ ) − 
c
0(x, θ ))2 − Eθ


c
0(x, θ )2 + 2B(θ, 
*). (3.80)

Since E
0(x, θ )2 and B(θ, 
*) do not depend on 
, it suffices to prove that
putting 
 = 
* minimizes

Eθ (
(x, θ ) − 
c
0(x, θ ))2

subject to (3.78). Observe that for any function 
(x, θ )satisfying (3.78) we have

|
(x, θ ) − 
c
0(x, θ )| ≥ ||
c

0(x, θ )| − k(θ )|I {|
c
0(x, θ )| > k(θ )

}
,

and since

|
*(x, θ ) − 
c
0(x, θ )| = ||
c

0(x, θ )| − k(θ )|I {|
c
0(x, θ )| > k(θ )

}
,

we get

|
(x, θ ) − 
c
0(x, θ )| ≥ |
*(x, θ ) − 
c

0(x, θ )|.
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Then

Eθ (
(x, θ ) − 
c
0(x, θ ))2 ≥ Eθ (
*(x, θ ) − 
c

0(x, θ ))2,

which proves the statement for the direct problem. The dual problem is treated like-
wise.

The former theorem proves optimality for a certain class of bounds. The following
theorem shows that actually any feasible bounds can be considered.

Theorem 3.3 Let

G(θ ) ≥ γ *(
̃, θ ), V (θ ) ≥ v(
0, θ ) for all θ, (3.81)

where 
0 and 
̃ are defined in (3.33) and (3.35) respectively. Then the solutions to
both the direct and the dual Hampel problems have the form (3.40) for a suitable
function k(θ ).

Proof of Theorem 3.3: We treat the dual problem; the direct one is treated likewise.
We show first that given any k there exists r so that 
*(x, θ ) is Fisher-consistent.

Let

λ(r ) = Eθψk (
0(x, θ ) − r ) .

Then λ is continuous, and limr→±∞ λ(r ) = ∓k. Hence by the intermediate value
theorem, there exists some r such that λ(r ) = 0. Besides, it can be shown that
B(θ, 
*) �= 0. The proof is involved and can be found in Hampel et al. (1986).

In view of (3.68):

v(
*
(k(θ )), θ ) = Eθ


*
(k(θ ))(x, θ )2[

Eθ

*
(k(θ ))(x, θ )
0(x, θ )

]2
, (3.82)

where 
* in (3.40) is written as 
*
(k(θ )) to stress its dependence on k. Recall that the

limit cases k → 0 and k → ∞ yield v(
̃, θ ) (which may be infinite) and v(
0, θ ),
respectively. Let V (θ ) be given and such that V (θ ) ≥ v(
0, θ ). Consider a fixed θ.

If V (θ ) ≤ v(
̃, θ ), then there exists a value k(θ ) such that v(
*
(k(θ )), θ ) = V (θ ). If

V (θ ) > v(
̃, θ ), then putting k(θ ) = 0 (i.e., 
* = 
̃) minimizes γ *(
*
(k(θ )), θ ) and

satisfies v(
*
(k(θ )), θ ) ≤ V (θ ).

3.9 Problems

3.1. Verify (3.14).
3.2. Prove (3.18).
3.3. Verify that the breakdown points of the SD, the MAD and the IQR are 0, 1/2

and 1/4, respectively.
3.4. Show that the asymptotic BP of the α-trimmed mean is α.
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3.5. Show that the BP of equivariant dispersion estimates is ≤ 0.5.

3.6. Show that the asymptotic BP of sample β-quantiles is min(β, 1 − β) [recall
Problem 13].

3.7. Prove (3.25).
3.8. Verify (3.45).
3.9. Prove (3.47).

3.10. Prove (3.45).
3.11. Consider the location M-estimate with Huber function ψk and the MADN as

previously computed dispersion. Recall that it has BP = 1/2 for all k. Show,
however, that for each given ε < 0.5, its maximum bias MB(ε) at a given
distribution is an unbounded function of k.

3.12. Let the density f (x) be a decreasing function of |x |. Show that the shortest
interval covering a given probability is symmetric about zero. Use this result to
calculate the IF of the Shorth estimate (Problem 2.16a) for data with distribu-
tion f.

3.13. Show that the BP of the estimate Qn in (2.51) is 0.5. Calculate the BP for
the estimate defined as the median of the differences; that is, with k = m/2 in
(2.51).

3.14. Show the equivalence of the direct and dual Hampel problems (3.38)–(3.39).
3.15. For the exponential family fθ (x) = I(x ≥ 0) exp(−x/θ )/θ :

(a) Show that the estimate with smallest GES is Med(x) / log 2.

(b) Find the asymptotic distribution of this estimate and its efficiency with
respect to the MLE.

(c) Find the form of the Hampel-optimal estimate for this family.
(d) Write a program to compute the Hampel-optimal estimate with efficiency

0.95.
3.16. Consider the estimate μ̂1 defined by the one-step Newton–Raphson procedure

defined in Section 2.9.5. Assume that the underlying distribution is symmetric
about μ, that ψ is odd and differentiable, and that the initial estimate μ̂0 is
consistent for μ.

(a) Show that μ̂1 is consistent for μ.
(b) If ψ is twice differentiable, show that μ̂1 has the same influence function

as the M-estimate μ̂ defined by ave {ψ (x − μ)} = 0 (and hence, by (3.17),
μ̂1 has the same asymptotic variance as μ̂).

(c) If ψ is bounded and ψ ′(x) > 0 for all x, and the asymptotic BP of μ̂0 is
0.5, show that also μ̂1 has an asymptotic BP of 0.5.
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4.1 Introduction

In this chapter we begin the discussion on the estimation of the parameters of lin-
ear regression models, which will be pursued in the next chapter. M-estimates for
regression are developed in the same way as for location. In this chapter we deal
with fixed (nonrandom) predictors. Recall that our estimates of choice for location
were redescending M-estimates using the median as starting point and the MAD as
dispersion. Redescending estimates will also be our choice for regression. When the
predictors are fixed and fulfill certain conditions that are satisfied in particular for anal-
ysis of variance models, monotone M-estimates—which are easy to compute—are
robust, and can be used as starting points to compute a redescending estimate. When
the predictors are random, or when they are fixed but in some sense “unbalanced”,
monotone estimates cease to be reliable, and the starting points for redescending
estimates must be computed otherwise. This problem is treated in the next chapter.

We start with an example that shows the weakness of the least-squares estimate.

Example 4.1 The data in Table 4.1 (Bond, 1979) correspond to an experiment on the
speed of learning of rats. Times were recorded for a rat to go through a shuttlebox in
successive attempts. If the time exceeded 5 seconds, the rat received an electric shock
for the duration of the next attempt. The data are the number of shocks received and
the average time for all attempts between shocks.

Figure 4.1 shows the data and the straight line fitted by least squares (LS) to the
linear regression model

yi = β0 + β1xi + ui .

The relationship between the variables is seen to be roughly linear except for the three
upper left points. The LS line does not fit the bulk of the data, being a compromise

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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Table 4.1 Rats data

Shocks Time Shocks Time

0 11.4 8 5.7
1 11.9 9 4.4
2 7.1 10 4.0
3 14.2 11 2.8
4 5.9 12 2.6
5 6.1 13 2.4
6 5.4 14 5.2
7 3.1 15 2.0

between those three points and the rest. The figure also shows the LS fit computed
without using the three points. It gives a better representation of the majority of the
data, while pointing out the exceptional character of points 1, 2 and 4. Code shock
is used for this data set.

We aim at developing procedures that give a good fit to the bulk of the data without
being perturbed by a small proportion of outliers, and that do not require deciding

number of shocks
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Figure 4.1 Shock data: LS fit with all data and omitting points 1, 2 and 4
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Table 4.2 Regression estimates for rats data

Int. Slope

LS 10.48 −0.61
LS without 1,2,4 7.22 −0.32
L1 8.22 −0.42
Bisquare M-est. 7.83 −0.41

previously which observations are outliers. Table 4.2 gives the estimated parameters
for LS with the complete data and with the three atypical points deleted, and also for
two robust estimates (L1 and bisquare) to be defined later.

The LS fit of a straight line consists of finding β̂0, β̂1 such that the residuals

ri = yi − (β̂0 + β̂1xi )

satisfy

n∑
i=1

r2
i = min. (4.1)

Recall that in the location case obtained by setting β1 = 0 the solution of (2.15) is the
sample mean, i.e., the LS estimate of location is the average of the data values. Since
the median satisfies (2.17), the regression analog of the median, often called an L1
estimate (also called the least absolute deviation or LAD estimate), is defined by

n∑
i=1

|ri | = min. (4.2)

For our data the solution of (4.2) is given in Table 4.2, and one sees that its slope is
smaller than that of the LS estimate, i.e., it is less affected by the outliers.

Now, consider the more general case of a data set of n observations (xi1, . . . ,
xip, yi

)
where xi1, . . . xip are predictor variables (the predictors or independent vari-

ables) and yi is a response variable (the response or dependent variable). The data
are assumed to follow the linear model

yi =
p∑

j=1

xi jβ j + ui , i = 1, . . . , n (4.3)

where β1, . . . , βp are unknown parameters to be estimated, and the ui ’s are random
variables (the “errors”). In a designed experiment, the xi j ’s are nonrandom (or fixed),
i.e., determined before the experiment. When the data are observational the xi j are
random variables. We sometimes have mixed situations with both fixed and random
predictors.
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Calling xi andβ the p-dimensional column vectors with coordinates (xi1, . . . , xip)
and

(
β1, . . . , βp

)
respectively, the model can be more compactly written as

yi = x′
iβ + ui (4.4)

where x′ is the transpose of x. In the frequently occurring case where the model has
a constant term, the first coordinate of each xi is 1 and the model may be written as

yi = β0 + x′
iβ1 + ui (4.5)

where xi = (xi1, . . . , xi(p−1))
′ and β1 are in R p−1 and

xi =
[

1
xi

]
, β =

[
β0

β1

]
. (4.6)

Here β0 is called the intercept and the elements of β1 are the slopes. Call X the
n × p matrix with elements xi j and let y and u be the vectors with elements yi and
ui respectively (i = 1, . . . , n). Then the linear model (4.4) may be written

y = Xβ+ u. (4.7)

The fitted values ŷi and the residuals ri corresponding to a vector β are defined
respectively as

ŷi (β) = x′
iβ and ri (β) = yi − ŷi (β).

The dependence of the fitted values and residuals on β will be dropped when this
does not cause confusion. In order to combine robustness and efficiency following
the lines of Chapter 2, we shall discuss regression M-estimates β̂ defined as solutions
of equations of the form

n∑
i=1

ρ

(
ri (β̂)

σ̂

)
= min. (4.8)

Here ρ is a ρ-function (Definition 2.1 of Chapter 2), and σ̂ is an auxiliary scale
estimate that is required to make β̂ scale equivariant (see (2.4) and (4.16) below). The
LS estimate and the L1 estimate correspond respectively to ρ(t) = t2 and ρ(t) = |t |.
In these two cases σ̂ becomes a constant factor outside the summation sign and
minimizing (4.8) is equivalent to minimizing

∑n
i=1 r2

i or
∑n

i=1 |ri |, respectively. Thus
neither the LS nor the L1 estimates require a scale estimate.

In a designed experiment, the predictors xi j are fixed. An important special case
of fixed predictors is when they represent categorical predictors with values of either
0 or 1. The simplest situation is the comparison of several treatments, usually called
a one-way analysis of variance (or “one-way ANOVA”). Here we have p samples
yik (i = 1, . . . , nk, k = 1, . . . , p) and the model

yik = βk + uik (4.9)
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where the uik’s are i.i.d. Call 1m the column vector of m ones. Then the matrix X of
predictors is

X =

⎡⎢⎢⎢⎣
1n1

1n2

. . .

1n p

⎤⎥⎥⎥⎦
with the blank positions filled with zeros. The next level of model complexity is a
factorial design with two factors which are represented by two categorical variables,
usually called a two-way analysis of variance. In this case we have data yi jk , i =
1, . . . , I, j = 1, . . . , J, k = 1, . . . , Ki j , following an additive model usually written
in the form

yi jk = μ + αi + γ j + ui jk (4.10)

with “cells” i, j and Ki j observations per cell. Here p = I + J + 1 and β has co-
ordinates (μ, α1, . . . , αI , γ1, . . . , γJ ). The rank of X is p* = I + J − 1 < p and
constraints on the parameters need to be added to make the estimates unique,
typically

I∑
i=1

αi =
J∑

j=1

γ j = 0. (4.11)

4.2 Review of the LS method

The LS method was proposed in 1805 by Legendre (for a fascinating account, see
Stigler (1986)). The main reason for its immediate and lasting success was that it was
the only method of estimation that could be effectively computed before the advent
of electronic computers. We shall review the main properties of LS for multiple re-
gression. (See any standard text on regression analysis, e.g., Weisberg (1985), Draper
and Smith (2001), Montgomery et al. (2001) or Stapleton (1995).) The LS estimate
of β is the β̂ such that

n∑
i=1

r2
i (β̂) = min. (4.12)

Differentiating with respect to β yields

n∑
i=1

ri (β̂)xi = 0, (4.13)

which is equivalent to the linear equations

X′Xβ̂ = X′y
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The above equations are usually called the “normal equations”. If the model contains
a constant term, it follows from (4.13) that the residuals have zero average.

The matrix of predictors X is said to have full rank if its columns are linearly
independent. This is equivalent to

Xa �= 0 ∀ a �= 0

and also equivalent to the nonsingularity of X′X. If X has full rank then the solution
of (4.13) is unique and is given by

β̂L S = β̂L S(X, y) = (
X′X

)−1
X′y. (4.14)

If the model contains a constant term, then the first column of X is identically one,
and the full rank condition implies that no other column is constant. If X is not of
full rank, e.g., as in (4.10), then we have what is called collinearity. When there is
collinearity the parameters are not identifiable in the sense that there exist β1 �= β2

such that Xβ1 = Xβ2, which implies that (4.13) has infinite solutions, all yielding
the same fitted values and hence the same residuals.

The LS estimate satisfies

β̂L S(X, y + Xγ) = β̂L S(X, y) + γ for all γ ∈ R p (4.15)

β̂L S(X,λy) = λβ̂L S(X, y) for all λ ∈ R (4.16)

and for all nonsingular p × p matrices A

β̂L S(XA, y) = A−1β̂L S(X, y). (4.17)

The properties (4.15), (4.16) and (4.17) are called respectively regression, scale and
affine equivariance. These are desirable properties, since they allow us to know how
the estimate changes under these transformations of the data. A more precise justifi-
cation is given in Section 4.9.1.

Assume now that the ui ’s are i.i.d. with

Eui = 0 and Var(ui ) = σ 2

and that X is fixed, i.e., nonrandom, and of full rank. Under the linear model (4.4)
with X of full rank β̂L S is unbiased and its mean and covariance matrix are given by

Eβ̂L S = β, Var
(
β̂L S

) = σ 2
(
X′X

)−1
(4.18)

where henceforth Var(y) will denote the covariance matrix of the random
vector y.

Under model (4.5) we have the decomposition

(
X′X

)−1 =
[

x′C−1x − (
C−1x

)′

−C−1x C−1

]
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where

x = avei (xi ), C =
n∑

i=1

(xi − x)(xi − x)′ (4.19)

and hence

Var
(
β̂1,L S

) = σ 2C−1. (4.20)

If Eui �= 0, then β̂L S will be biased. However, if the model contains an intercept,
the bias will only affect the intercept and not the slopes. More precisely, under (4.5)

Eβ̂1,L S = β1 (4.21)

although Eβ̂0,L S �= β0 (see Section 4.9.2 for details).

Let p* be the rank of X and recall that if p* < p, i.e., if X is collinear, then β̂L S

is not uniquely defined but all solutions of (4.13) yield the same residuals. Then an
unbiased estimate of σ 2 is well defined by

s2 = 1

n − p*

n∑
i=1

r2
i , (4.22)

whether or not X is of full rank.
If the ui ’s are normal and X is of full rank, then β̂L S is multivariate normal

β̂L S ∼ Np

(
β, σ 2

(
X′X

)−1
)

, (4.23)

where Np(μ,Σ) denotes the p-variate normal distribution with mean vector μ and
covariance matrix Σ.

Let γ now be a linear combination of the parameters: γ = β′a with a a constant

vector. Then the natural estimate of γ is γ̂ = β̂
′
a, which according to (4.23) is

N(γ, σ 2
γ ) with

σ 2
γ = σ 2a′ (X′X

)−1
a.

An unbiased estimate of σ 2
γ is

σ̂ 2
γ = s2a′ (X′X

)−1
a. (4.24)

Confidence intervals and tests for γ may be obtained from the fact that under
normality the “t-statistic”

T = γ̂ − γ

σ̂ γ

(4.25)

has a t-distribution with n − p* degrees of freedom, where p* = rank(X). In partic-
ular, a confidence upper bound and a two-sided confidence interval for γ with level
1 − α are given by

γ̂ + σ̂ γ tn−p*,1−α
and

(
γ̂ − σ̂ γ tn−p*,1−α/2

, γ̂ + σ̂ γ tn−p*,1−α/2

)
(4.26)
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where tn.δ is the δ-quantile of a t-distribution with n degrees of freedom. Similarly, the
tests of level α for the null hypothesis H0 : γ = γ0 against the two-sided alternative
γ �= γ0 and the one-sided alternative γ > γ0 have the rejection regions

|γ̂ − γ0| > σ̂γ tn−p*,1−α/2
and γ̂ > γ0 + σ̂ γ tn−p*,1−α

, (4.27)

respectively.
If the ui ’s are not normal but have a finite variance, then for large n it can be shown

using the central limit theorem that β̂L S is approximately normal, with parameters
given by (4.18), provided that

none of the xi is “much larger” than the rest. (4.28)

This condition is formalized in (10.33) in Section 10.9.2. Recall that for large n
the quantiles tn,β of the t-distribution converge to the quantiles zβ of N(0, 1). For
the large-sample theory of the LS estimate see Stapleton (1995) and Huber (1981,
p. 157).

4.3 Classical methods for outlier detection

The most popular way to deal with regression outliers is to use LS and try to find the
influential observations. After they are identified, some decision must be taken such
as modifying or deleting them and applying LS to the modified data. Many numerical
and/or graphical procedures called regression diagnostics are available for detecting
influential observations based on an initial LS fit. They include the familiar Q–Q plots
of residuals and plots of residuals vs. fitted values. See Weisberg (1985), Belsley, Kuh
and Welsch (1980) or Chatterjee and Hadi (1988) for further details on these methods,
as well as for proofs of the statements in this section.

The influence of one observation zi = (xi , yi ) on the LS estimate depends both on
yi being too large or too small compared to y’s from similar x’s and on how “large”
xi is, i.e., how much leverage xi has. Most popular diagnostics for measuring the
influence of zi = (xi , yi ) are based on comparing the LS estimate based on the full
data with LS based on omitting zi . Call β̂ and β̂(i) the LS estimates based on the full
data and on the data without zi , and let

ŷ = Xβ̂, ŷ(i) = Xβ̂(i)

where ri = ri (β̂). Note that if p* < p, then β̂(i) is not unique, but ŷ(i) is unique. Then
the Cook distance of zi is

Di = 1

p*s2

∥∥̂y(i) − ŷ
∥∥2

where p* = rank (X) and σ̂ is the residual standard deviation estimate

s2 = 1

n − p*

n∑
i=1

r2
i .
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Call H the matrix of the orthogonal projection on the image of X; that is, on the
subspace {Xβ : β ∈ R p} . The matrix H is the so-called “hat matrix” and its diagonal
elements h1, . . . , hn are the leverages of x1, . . . , xn. If p* = p, then H fulfills

H = X
(
X′X

)−1
X′ and hi = x′

i

(
X′X

)−1
xi . (4.29)

The hi ’s satisfy

n∑
i=1

hi = p*, hi ∈ [0, 1] . (4.30)

It can be shown that the Cook distance is easily computed in terms of the hi :

Di = r2
i

s2

hi

p* (1 − hi )
2
. (4.31)

It follows from (4.31) that observations with high leverage are more influential than
observations with low leverage having the same residuals.

When the regression has an intercept,

hi = 1

n
+ (xi − x)′

(
X*′X*

)−1
(xi − x) (4.32)

where x is the average of the xi ’s and X* is the n × (p − 1) matrix whose i-th row is
(xi − x)′. In this case hi is a measure of how far xi is from the average value x.

Calculating hi does not always require the explicit computation of H. For example,
in the case of the two-way design (4.10) it follows from the symmetry of the design
that all the hi ’s are equal, and then (4.30) yields

hi = p*

n
= I + J − 1

IJ
.

While Di can detect outliers in simple situations, it fails for more complex con-
figurations and may even fail to recognize a single outlier. The reason is that ri, hi

and s may be largely influenced by the outlier. It is safer to use statistics based on the

“leave-one-out” approach , as follows. The leave-one-out residual r(i) = yi − β̂
′
(i)xi

is known to be expressible as

r(i) = ri

1 − hi
. (4.33)

and it is shown in the above references that

Var(r(i)) = σ 2

1 − hi
.

An estimate of σ 2 which is free of the influence of xi is the quantity s2
(i) that is defined

like s2, but deleting the i-th observation from the sample. It is also shown in the



JWBK076-04 JWBK076-Maronna February 16, 2006 18:8 Char Count= 0

96 LINEAR REGRESSION 1

above-mentioned references that

s2
(i) = 1

n − p* − 1

[
(n − p*)s2 − r2

i

1 − hi

]
, (4.34)

and a Studentized version of r(i) is given by

t(i) =
√

1 − hi
r(i)

s(i)
= 1√

1 − hi

ri

s(i)
. (4.35)

Under the normal distribution model, t(i) has a t-distribution with n − 1 degrees of
freedom. Then a test of outlyingness with significance level α is to decide that the
i-th observation is an outlier if |t(i)| > tn−1,(1−α)/2. A graphical analysis is provided
by the normal Q–Q plot of t(i).

While the above “complete” leave-one-out approach ensures the detection of an
isolated outlier, it can still be fooled by the combined action of several outliers, an
effect that is referred to as masking.

Example 4.2 The data set oats in Table 4.3 (Scheffé, 1959, p. 138) lists the yield of
grain for eight varieties of oats in five replications of a randomized-block experiment.

Fitting (4.10) by LS (code oats) yields residuals with no noticeable structure,
and the usual F-tests for row and column effects have highly significant p-values
of 0.00002 and 0.001, respectively. To show the effect of outliers on the classical
procedure, we have modified five data values. Table 4.4 shows the data with the five
altered values in boldface.

Figure 4.2 shows the normal Q–Q plot of t(i) for the altered data. Again, nothing
suspicious appears. But the p-values of the F-tests are now 0.13 and 0.04, the first of
which is quite insignificant and the second of which is barely significant at the liberal
0.05 level. The diagnostics have thus failed to point out a departure from the model,
with serious consequences.

Table 4.3 Oats data

Block

Variety I II III IV V

1 296 357 340 331 348
2 402 390 431 340 320
3 437 334 426 320 296
4 303 319 310 260 242
5 469 405 442 487 394
6 345 342 358 300 308
7 324 339 357 352 230
8 488 374 401 338 320
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Table 4.4 Modified oats data

Block

Variety I II III IV V

1 476 357 340 331 348
2 402 390 431 340 320
3 437 334 426 320 296
4 303 319 310 260 382
5 469 405 442 287 394
6 345 342 358 300 308
7 324 339 357 352 410
8 288 374 401 338 320

There is a vast literature on regression diagnostics. A more complex but more
reliable method of detecting influential groups of outliers may be found in Peña and
Yohai (1999).

All these procedures are fast, and are much better than naively fitting LS without
further care. But they are inferior to robust methods in several senses:� they may fail in the presence of masking� the distribution of the resulting estimate is unknown
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Figure 4.2 Altered oats data: Q–Q plot of LS residuals
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4.4 Regression M-estimates

As in Section 2.2 we shall now develop estimates combining robustness and efficiency.
Assume model (4.4) with fixed X where ui has a density

1

σ
f0

( u

σ

)
,

where σ is a scale parameter. For the linear model (4.4) the yi ’s are independent but
not identically distributed, yi has density

1

σ
f0

(
y − x′

iβ

σ

)
and the likelihood function for β assuming a fixed value of σ is

L(β) = 1

σ n

n∏
i=1

f0

(
yi − x′

iβ

σ

)
.

Calculating the MLE means maximizing L(β), which is equivalent to finding β̂ such
that

1

n

n∑
i=1

ρ0

(
ri (β̂)

σ

)
+ log σ = min, (4.36)

where ρ0 = − log f0 as in (2.13). We shall deal with estimates defined by (4.36).
Continuing to assume σ is known and differentiating with respect to β we have the
analog of the normal equations:

n∑
i=1

ψ0

(
ri (β̂)

σ

)
xi = 0, (4.37)

where ψ0 = ρ ′
0 = − f ′

0/ f0. If f0 is the standard normal density then β̂ is the LS

estimate (4.12), and if f0 is the double-exponential density then β̂ satisfies

n∑
i=1

∣∣ri (β̂)
∣∣ = min

and β̂ is called an L1 estimate, which is the regression equivalent of the median. It
is remarkable that this estimate was studied before LS (by Boscovich in 1757 and
Laplace in 1799). Differentiating the likelihood function in this case gives

n∑
i=1

sgn(ri (β̂))xi = 0 (4.38)
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where “sgn” denotes the sign function (2.19). If the model contains an intercept term
(4.38) implies that the residuals have zero median.

Unlike LS there are in general no explicit expressions for an L1 estimate. However,
there exist very fast algorithms to compute it (Barrodale and Roberts, 1973; Portnoy
and Koenker, 1997). We note also that an L1 estimate β̂ may not be unique, and it
has the property that at least p residuals are zero (Bloomfield and Staiger, 1983).

We define regression M-estimates as solutions β̂ to

n∑
i=1

ρ

(
ri (β̂)

σ̂

)
= min (4.39)

where σ̂ is an error scale estimate. Differentiating (4.39) yields the equation

n∑
i=1

ψ

(
ri (β̂)

σ̂

)
xi = 0 (4.40)

where ψ = ρ ′. The last equation need not be the estimating equation of a MLE. In
most situations considered in this chapter, σ̂ is computed previously, but it can also
be computed simultaneously through a scale M-estimating equation.

It will henceforth be assumed that ρ and ψ are respectively a ρ- and a ψ-function
in the sense of Definitions 2.1–2.2. The matrix X will be assumed to have full rank . In
the special case where σ is assumed known, the reader may verify that the estimates
are regression and affine equivariant (see Problem 4.1). The case of estimated σ is
treated in Section 4.4.2.

Solutions to (4.40) with monotone (resp. redescending) ψ are called monotone
(resp. redescending) regression M-estimates. The main advantage of monotone es-
timates is that all solutions of (4.40) are solutions of (4.39). Furthermore, if ψ is
increasing then the solution is unique (see Theorem 10.15). The example in Sec-
tion 2.7.1 showed that in the case of redescending location estimates, the estimating
equation may have “bad” roots. This cannot happen with monotone estimates. On
the other hand, we have seen in Section 3.4 that redescending M-estimates of loca-
tion yield a better trade-off between robustness and efficiency, and the same can be
shown to hold in the regression context. Computing redescending estimates requires
a starting point, and this will be the main role of monotone estimates. This matter is
pursued further in Section 4.4.2.

4.4.1 M-estimates with known scale

Assume model (4.4) with u such that

Eψ
( u

σ

)
= 0 (4.41)

which holds in particular if u is symmetric. Then if (4.28) holds, β̂ is consistent for
β in the sense that

β̂ →p β (4.42)
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when n → ∞, and furthermore for large n

D(β̂) ≈ Np(β, v(X′X)−1) (4.43)

where v is the same as in (2.63):

v = σ 2 Eψ (u/σ )2

(Eψ ′ (u/σ ))2
. (4.44)

A general proof is given by Yohai and Maronna (1979).
Thus the approximate covariance matrix of an M- estimate differs only by a

constant factor from that of the LS estimate. Hence its efficiency for normal u’s does
not depend on X, i.e.,

Eff
(
β̂

) = σ 2
0

v
(4.45)

where v is given by (4.44) with the expectations computed for u ∼ N
(
0, σ 2

0

)
. It is

easy to see that the efficiency does not depend on σ0.

It is important to note that if we have a model with intercept (4.5) and (4.41)
does not hold, then the intercept is asymptotically biased, but the slope estimates are
nonetheless consistent (see Section 4.9.2):

β̂1 →p β1. (4.46)

4.4.2 M-estimates with preliminary scale

For estimating location with an M-estimate in Section 2.6.1 we estimated σ using the
MAD. Here the equivalent procedure is first to compute the L1 fit and from it obtain
the analog of the normalized MAD by taking the median of the nonnull absolute
residuals:

σ̂ = 1

0.675
Medi ( |ri | | ri �= 0). (4.47)

The reason for using only nonnull residuals is that since at least p residuals are null,
including all residuals when p is large could lead to underestimating σ. Recall that
the L1 estimate does not require estimating a scale.

Write σ̂ in (4.47) as σ̂ (X, y). Then since the L1 estimate is regression, scale and
affine equivariant, it is easy to show that

σ̂ (X, y + Xγ) = σ̂ (X, y), σ̂ (XA, y) = σ̂ (X, y), σ̂ (X,λy) = |λ| σ̂ (X, y) (4.48)

for all γ ∈ R p, nonsingular A ∈ R p×p and λ ∈ R. We say that σ̂ is regression and
affine invariant and scale equivariant.

We then obtain a regression M-estimate by solving (4.39) or (4.40) with σ̂ in-
stead of σ. Then (4.48) implies that β̂ is regression, affine and scale equivariant
(Problem 4.2).
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Assume that σ̂ →p σ and that (4.41) holds. Under (4.4) we would expect that

for large n the distribution of β̂ is approximated by (4.43)–(4.44), i.e., that σ̂ can
be replaced by σ . Since ψ is odd, this holds in general if the distribution of ui is
symmetric. Thus the efficiency of the estimate does not depend on X.

If the model contains an intercept the approximate distribution result holds for
the slopes without any requirement on ui . More precisely, assume model (4.5). Then
β̂1 is approximately normal with mean β1 and covariance matrix vC−1 with v given
by (4.44) and C defined in (4.19) (see Section 10.9.2 for a heuristic proof).

We can estimate v in (4.44) as

v̂ = σ̂ 2
avei

{
ψ (ri/σ̂ )2

}
[avei {ψ ′ (ri/σ̂ )}]2

n

n − p
(4.49)

where the denominator n − p appears for the same reasons as in (4.22). Hence for
large n we may treat β̂ as approximately normal:

D(β̂) ≈ Np

(
β,̂v

(
X′X

)−1
)

. (4.50)

Thus we can proceed as in (4.24), (4.25), (4.26) and (4.27), but replacing s2 in (4.24)

by the estimate v̂ above so that σ̂ 2
γ = v̂a′ (X′X

)−1
a, to obtain approximate confidence

intervals and tests. In the case of intervals and tests for a single coefficient βi we have

σ̂ 2
βi

= v̂
(
X′X

)−1

i i

where the subscripts i i mean the i-th diagonal element of matrix
(
X′X

)−1
.

As we have seen in the location case, one important advantage of redescending
estimates is that they give null weight to large residuals, which implies the possibility
of a high efficiency for both normal and heavy-tailed data. This is valid also for
regression since the efficiency depends only on v which is the same as for location.
Therefore our recommended procedure is to use L1 as a basis for computing σ̂ and
as a starting point for the iterative computing of a bisquare M-estimate.

Example 4.1 (continued) The slope and intercept values for the bisquare M-
estimate with 0.85 efficiency are shown in Table 4.2, along with those of the LS
estimate using the full data, the LS estimate computed without the points labeled 1, 2
and 4, and the L1 estimate. The corresponding fitted lines are shown in Figure 4.3. The
results are very similar to the LS estimate computed without the three atypical points.

The estimated standard deviations of the slope are 0.122 for LS and 0.050 for
the bisquare M-estimate, and the respective confidence intervals with level 0.95
are (−0.849, −0.371) and (−0.580, −0.384). It is seen that the outliers inflate the
confidence interval based on the LS estimate relative to that based on the bisquare
M-estimate.

Example 4.2 (continued) Figure 4.4 shows the residual Q–Q plot based on the
bisquare M-estimate (code oats), and it is seen that the five modified values stand out
from the rest.
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Figure 4.3 Rats data: fits by least squares (LS), L1, bisquare M-estimate (M) and
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Figure 4.4 Altered oats data: normal Q–Q plot of residuals from M-estimate
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Table 4.5 Oats data: p-values of tests

Rows Columns

F Robust F Robust

Original 0.00002 3 × 10−6 0.001 0.00008
Altered 0.13 0.0004 0.04 0.0015

Table 4.5 gives the p-values of the robust likelihood ratio-type test to be described
in Section 4.7.2 for row and column effects based on the original and the altered data,
together with those of the classical F-test already given.

We see that the M-estimate results for the altered data are quite close to those for
the original data. Furthermore, for the altered data the robust test again gives strong
evidence of row and column effects.

4.4.3 Simultaneous estimation of regression and scale

Another approach to deal with the estimation of σ is to proceed as in Section 2.6.2:
that is, to add to the estimating equation (4.40) for β an M-estimating equation for
σ, resulting in the system

n∑
i=1

ψ

(
ri (β̂)

σ̂

)
xi = 0, (4.51)

1

n

n∑
i=1

ρscale

(
ri (β)

σ̂

)
= δ, (4.52)

where ρscale is a ρ-function. Note that differentiating (4.36) with respect to β and σ

yields a system of the form (4.51)–(4.52), with ρscale given in (2.71). Therefore this
class of estimates includes the MLE.

Simultaneous estimates with monotonic ψ are less robust than those of the for-
mer section (recall Section 3.2.4 for the location case), but they will be used with
redescending ψ in another context in Section 5.6.1.

4.5 Numerical computation of monotone M-estimates

4.5.1 The L1 estimate

As was mentioned above, computing the L1 estimate requires sophisticated algorithms
like the one due to Barrodale and Roberts (1973). There are, however, some cases
in which this estimate can be computed explicitly. For regression through the origin
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(yi = βxi + ui ), the reader can verify that β̂ is a “weighted median” (Problem 4.4).
For one-way ANOVA (4.9) we immediately have that β̂k = Medi (yik). And for two-
way ANOVA with one observation per cell (i.e., (4.10)–(4.11) with Ki j = 1), there
is a simple method that we now describe.

Let yi j = μ + αi + γ j + ui j . Then differentiating
∑

i

∑
j

∣∣yi j − μ − αi − γ j

∣∣
with respect to μ, αi and γ j , and recalling that the derivative of |x | is sgn (x), it
follows that (4.38) is equivalent to

Medi, j
(
ri j

) = Med j
(
ri j

) = Medi
(
ri j

) = 0 for all i, j (4.53)

where ri j = yi j − μ̂ − α̂i − γ̂ j . These equations suggest an iterative procedure due
to J.W. Tukey called “median polish” (Tukey, 1977), which goes as follows where
“a ←− b” stands for “replace a by b”:

1. Put α̂i = γ̂ j = 0 for i = 1, . . . , I and j = 1, . . . , J, and μ̂ = 0, and hence ri j =
yi j .

2. For i = 1, . . . , I : let δi = Med j
(
ri j

)
. Update α̂i ←− α̂i + δi and ri j ←− ri j − δi .

3. For j = 1, . . . , J : let δ j = Medi
(
ri j

)
. Update γ̂ j ←− γ̂ j + δ j and ri j ←−

ri j − δ j .
4. Repeat steps 2–3 until no more changes take place.
5. Put a = ∑

i α̂i and b = ∑
j γ̂ j , and α̂i ←− α̂i − a, γ̂ j ←− γ̂ j − b, μ̂ ←−

a + b.

If I or J is even, the median must be understood as the “high” or “low” median
(Section 1.2), otherwise the procedure may oscillate indefinitely.

It can be shown (Problem 4.5) that the sum of absolute residuals

I∑
i=1

J∑
j=1

∣∣yi j − μ̂ − α̂i − γ̂ j

∣∣
decreases at each step of the algorithm. The result frequently coincides with an L1
estimate, and is otherwise generally close to it. Sposito (1987) gives conditions under
which the median polish coincides with the L1 estimate.

4.5.2 M-estimates with smooth ψ-function

In the case of a smooth ψ-function one can solve (4.37) using an iterative reweighting
method similar to that of Section 2.7. Define W as in (2.30), and then with σ replaced
by σ̂ the M-estimate equation (4.37) for β̂ may be written as

n∑
i=1

wi ri xi =
n∑

i=1

wi xi
(
yi − x′

i β̂
) = 0 (4.54)

with wi = W (ri/σ̂ ). These are “weighted normal equations”, and if the wi ’s were
known, the equations could be solved by applying LS to

√
wi yi and

√
wi xi . But the
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wi ’s are not known and depend upon the data. So the procedure, which depends on a
tolerance parameter ε, is

1. Compute an initial L1 estimate β̂0 and compute σ̂ from (4.47).
2. For k = 0, 1, 2, . . . :

(a) Given β̂k, for i = 1, . . . , n compute ri,k = yi − x′
i β̂k and wi,k = W (ri,k/σ̂ ).

(b) Compute β̂k+1 by solving

n∑
i=1

wi,kxi
(
yi − x′

i β̂
) = 0.

3. Stop when maxi
(∣∣ri,k − ri,k+1

∣∣) /σ̂ < ε.

This algorithm converges if W (x) is nonincreasing for x > 0 (Section 9.1). If ψ is
monotone, since the solution is essentially unique, the choice of the starting point
influences the number of iterations but not the final result. This procedure is called
“iteratively reweighted least squares” (IRWLS).

For simultaneous estimation of β and σ the procedure is the same, except that at
each iteration σ̂ is also updated as in (2.78).

4.6 Breakdown point of monotone
regression estimates

In this section we discuss the breakdown point of monotone estimates for nonrandom
predictors. Assume X is of full rank so that the estimates are well defined. Since X is
fixed only y can be changed, and this requires a modification of the definition of the
breakdown point (BP). The FBP for regression with fixed predictors is defined as

ε* = m*

n
,

with

m* = max
{
m ≥ 0 : β̂(X, ym) bounded ∀ ym ∈ Ym

}
(4.55)

where Ym is the set of n-vectors with at least n − m elements in common with y. It
is clear that the LS estimate has ε* = 0.

Let k* = k*(X) be the maximum number of xi lying on the same subspace of
dimension < p:

k*(X) = max
{
#

(
θ′xi = 0

)
: θ ∈ R p, θ �= 0

}
(4.56)

where a subspace of dimension 0 is the set {0}. In the case of simple straight-line
regression k* is the maximum number of repeated xi ’s. We have k* ≥ p − 1 always.
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If k* = p − 1 then X is said to be in general position. In the case of a model with
intercept (4.6), X is in general position iff no more than p − 1 of the xi lie on a
hyperplane.

It is shown in Section 4.9.3 that for all regression equivariant estimates

ε* ≤ ε*
max := m*

max

n
(4.57)

where

m*
max =

[
n − k* − 1

2

]
≤

[
n − p

2

]
. (4.58)

In the location case, k* = 0 and m*
max/n becomes (3.25). The FBP of monotone

M-estimates is given in Section 4.9.4. For the one-way design (4.9) and the two-way
design (4.10) it can be shown that the FBP of monotone M-estimates attains the
maximum (4.57) (see Section 4.9.3). In the first case

m* = m*
max =

[
min j n j − 1

2

]
, (4.59)

and so if at least half of the elements of the smallest sample are outliers then one of
the β̂ j is unbounded. In the second case

m* = m*
max =

[
min(I, J ) − 1

2

]
, (4.60)

and so if at least half of the elements of a row or column are outliers then at least one
of the estimates μ̂, α̂i or γ̂ j breaks down. It is natural to conjecture that the FBP of
monotone M-estimates attains the maximum (4.57) for all X such that xi j is either 0
or 1, but no general proof is known.

For designs which are not zero–one designs, the FBP of M-estimates will in

general be lower than ε*
max. This may happen even when there are no leverage points.

For example, in the case of a uniform design xi = i, i = 1, . . . , n, for the fitting of

a straight line through the origin, we have k* = 1 and hence ε*
max ≈ 1/2, while for

large n it can be shown that ε* ≈ 0.3 (see Section 4.9.4). The situation is worse for
fitting a polynomial (Problem 4.7). It is even worse when there are leverage points.
Consider for instance the design

xi = i for i = 1, . . . , 10, x11 = 100. (4.61)

Then it can be shown that m* = 0 for a linear fit (Problem 4.8). The intuitive reason
for this fact is that here the estimate is determined almost solely by y11.

As a consequence, monotone M-estimates can be recommended as initial esti-
mates for zero–one designs, and perhaps also for uniform designs, but not for designs
where X has leverage points. The case of random X will be treated in the next chapter.
The techniques discussed there will also be applicable to fixed designs with leverage
points.
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4.7 Robust tests for linear hypothesis

Regression M-estimates can be used to obtain robust approximate confidence in-
tervals and tests for a single linear combination of the parameters. Define σ̂ 2

γ =
σ̂ 2a′ (X′X

)−1
a as in (4.24) but with s2 replaced by v̂ defined in (4.49). Then the tests

and intervals are of the form (4.26)–(4.27). We shall now extend the theory to infer-
ence for several linear combinations of the β j ’s represented by the vector γ = Aβ
where A is a q × p matrix of rank q.

4.7.1 Review of the classical theory

To simplify the exposition it will be assumed that X has full rank, i.e., p* = p, but
the results can be shown to hold for general p*. Assume normally distributed errors
and let γ̂ = Aβ̂, where β̂ is the LS estimate. Then γ̂ ∼ N(γ,Σγ) where

Σγ = σ 2A(X′X)−1A′.

An estimate of Σγ is given by

Σ̂γ = s2A(X′X)−1A′. (4.62)

It is proved in standard regression textbooks that (γ̂−γ)′Σ̂
−1

γ (γ̂−γ)′/q has an F-

distribution with q and n − p* degrees of freedom, and hence a confidence ellipsoid
for γ of level 1 − α is given by{

γ : (γ̂ − γ)′Σ̂
−1

γ (γ̂ − γ) ≤ q F
q,n−p*(1 − α)

}
,

where Fn1,n2
(δ) is the δ-quantile of an F-distribution with n1 and n2 degrees of

freedom.
We consider testing the linear hypothesis H0 : γ = γ0 for a given γ0, with level

α. The so-called Wald-type test rejects H0 when γ0 does not belong to the confidence
ellipsoid, and hence has rejection region

T > F
q,n−p*(1 − α) (4.63)

with

T = 1

q
(γ̂ − γ0)′�̂−1

γ (γ̂ − γ0). (4.64)

It is also shown in standard texts, e.g., Scheffé (1959), that the statistic T can be
written in the form

T = (SR − S)/q

S/(n − p*)
(4.65)
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where

S =
n∑

i=1

r2
i

(
β̂

)
, SR =

n∑
i=1

r2
i

(
β̂R

)
,

where β̂R is the LS estimate with the restriction γ = Aβ = γ0, and that the test based
on (4.65) coincides with the likelihood ratio test (LRT). We can also write the test
statistic T (4.65) as

T =
(
S*

R − S*
)

q
(4.66)

where

S* =
n∑

i=1

(
ri

(
β̂

)
s

)2

, S*
R =

n∑
i=1

(
ri

(
β̂R

)
s

)2

. (4.67)

The most common application of these tests is when H0 is the hypothesis that
some of the coefficients βi are zero. We may assume without loss of generality that
the hypothesis is

H0 = {
β1 = β2 = . . . = βq = 0

}
which can be written as H0 : λ = Aβ = 0 with A = (I, 0), where I is the q × q
identity matrix and 0 is a (p − q) × p matrix with all its elements zero.

When q = 1 we have γ = a′β with a ∈ R p and then the variance of γ̂ is estimated
by

σ̂ 2
γ = σ̂ 2a′(X′X)−1a.

In this special case the Wald test (4.64) simplifies to

T =
(

γ̂ − γ0

σ̂ γ

)2

and is equivalent to the two-sided test in (4.27).
When the errors ui are not normal, but the conditions for the asymptotic normality

of β̂ given at the end of Section 4.2 hold, the test and confidence regions given in this
section will still be approximately valid for large n. For this case, recall that if T has
an F(q, m) distribution, then when m → ∞, qT → d χ2

q .

4.7.2 Robust tests using M-estimates

Let β̂ now be an M-estimate, and let �̂β̂ = v̂
(
X′X

)−1
be the estimate of its covariance

matrix with v̂ defined in (4.49). Let

γ̂ = Aβ̂, �̂γ = A�̂β̂A
′ = v̂A(X′X)−1A′.
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Then a robust “Wald-type test” (WTT) is defined by the rejection region{
TW > F

q,n−p*(1 − α)
}

with TW equal to the right-hand side of (4.64), but the classical quantities there are
replaced by the above robust estimates γ̂ and �̂γ .

Let β̂R be the M-estimate computed with the restriction that γ = γ0:

β̂R = arg min
β

{
n∑

i=1

ρ

(
ri (β)

σ̂

)
: Aβ = γ0

}
.

A “likelihood ratio-type test” (LRTT) could be defined by the region{
T > F

q,n−p*(1 − α)
}

,

with T equal to the right-hand side of (4.66), but where the residuals in (4.67) cor-
respond to an M-estimate β̂. But this test would not be robust, since outliers in the
observations yi would result in corresponding residual outliers and hence an overdue
influence on the test statistic.

A robust LRTT can instead be defined by the statistic

TL =
n∑

i=1

ρ

(
ri (β̂R)

σ̂

)
−

n∑
i=1

ρ

(
ri (β̂)

σ̂

)
with a bounded ρ. Let

ξ = Eψ ′(u/σ )

Eψ(u/σ )2
.

Then it can be shown (see Hampel et al., 1986) that under adequate regularity con-
ditions, ξTL converges in distribution under H0 to a chi-squared distribution with q
degrees of freedom. Since ξ can be estimated by

ξ̂ = avei
{
ψ ′(ri (β̂)/σ̂ )

}
avei

{
ψ(ri (β̂)/σ̂ )2

} ,

an approximate LRTT for large n has rejection region

ξ̂TL > χ2
q (1 − α),

where χ2
n (δ) denotes the δ-quantile of the chi-squared distribution with n degrees of

freedom.
Wald-type tests have the drawback of being based on X′X, which may affect

the robustness of the test when there are high leverage points. This makes LRTTs
preferable. The influence of high leverage points on inference is discussed further in
Section 5.8.



JWBK076-04 JWBK076-Maronna February 16, 2006 18:8 Char Count= 0

110 LINEAR REGRESSION 1

4.8 *Regression quantiles

Let for α ∈ (0, 1)

ρα(x) =
{

αx if x ≥ 0
−(1 − α)x if x < 0.

Then it is easy to show (Problem 2.13) that the solution of

n∑
i=1

ρα(yi − μ) = min

is the sample α-quantile. In the same way, the solution of

Eρα(y − μ) = min

is an α-quantile of the random variable y.

Koenker and Bassett (1978) extended this concept to regression, defining the
regression α-quantile as the solution β̂ of

n∑
i=1

ρα

(
yi − x′

i β̂
) = min. (4.68)

The case α = 0.5 corresponds to the L1 estimate. Assume the model

yi = x′
iβα + ui ,

where the xi are fixed and the α-quantile of ui is zero; this is equivalent to assuming
that the α-quantile of yi is x′

iβα. Then β̂ is an estimate of βα.

Regression quantiles are especially useful with heteroskedastic data. Assume the
usual situation when the model contains a constant term. If the ui ’s are identically
distributed, then the βα for different α’s differ only in the intercept, and hence re-
gression quantiles do not give much useful information. But if the ui ’s have different
variability, then the βα will also have different slopes.

If the model is correct, one would like to have for α1 < α2 that x′
0βα1

< x′
0βα2

for
all x0 in the range of the data. But this cannot be mathematically insured. Although
this fact may be taken as an indication of model failure, it is better to insure it from the
start. Methods for avoiding the “crossing” of regression quantiles have been proposed
by He (1997) and Zhao (2000).

There is a very large literature on regression quantiles; see Koenker, Hammond
and Holly (2005) for references.

4.9 Appendix: proofs and complements

4.9.1 Why equivariance?

In this section we want to explain why equivariance is a desirable property for a
regression estimate. Let y verify the model (4.7). Here β is the vector of model
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parameters. If we put for some vector γ

y* = y + Xγ, (4.69)

then y* = X(β + γ) + u, so that y* verifies the model with parameter vector

β* = β + γ. (4.70)

If β̂ = β̂(X, y) is an estimate, it would be desirable that if the data were trans-
formed according to (4.69), the estimate would also transform according to (4.70),
i.e., β̂(X, y*) = β̂(X, y) + γ, which corresponds to regression equivariance (4.15).

Likewise, if X* = XA for some matrix A, then y verifies the model

y = (X*A−1)β + u = X*(A−1β) + u,

which is (4.7) with X replaced by X* and β by A−1β. Again, it is desirable that
estimates transform the same way, i.e., β̂(X*, y) = A−1β̂(X, y), which corresponds
to affine equivariance (4.17). Scale equivariance (4.16) is dealt with in the same
manner.

It must be noted that although equivariance is desirable, it must sometimes be
sacrificed for other properties such as a lower prediction error. In particular, the
estimates resulting from a procedure for variable selection treated in Section 5.12
are neither regression nor affine equivariant. The same thing happens in general with
procedures for dealing with a large number of variables like ridge regression or least-
angle regression (Hastie, Tibshirani and Friedman, 2001).

4.9.2 Consistency of estimated slopes under asymmetric errors

We shall first prove (4.21). Let α = Eui . Then (4.5) may be rewritten as

yi = β*
0 + x′

iβ1 + u*
i , (4.71)

where

u*
i = ui − α, β*

0 = β0 + α. (4.72)

Since Eu*
i = 0, the LS estimate is unbiased for the parameters, which means that

E(β̂1) = β1 and E(̂β0) = β*
0 , so that only the intercept will be biased.

We now prove (4.46) along the same lines as above. Let α be such that

Eψ

(
ui − α

σ

)
= 0.

Then reexpressing the model as (4.71)–(4.72), since Eψ(u*
i /σ ) = 0, we may apply

(4.42), and hence

β̂0 →p β*
0 , β̂1 →p β1,

which implies that the estimate of the slopes is consistent, although that of the intercept
may be inconsistent.
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4.9.3 Maximum FBP of equivariant estimates

The definition of the FBP in Section 4.6 can be modified to include the case of
rank(X) < p. Since in this case there exists θ �= 0 such that Xθ = 0, (4.56) is
modified as

k*(X) = max
{
#

(
θ′xi = 0

)
: θ ∈ R p, Xθ �= 0

}
. (4.73)

If rank(X) < p, there are infinite solutions to the equations, but all of them yield
the same fit Xβ̂. We thus modify (4.55) with the requirement that the fit remains
bounded:

m* = max
{
m ≥ 0 : Xβ̂(X, ym) bounded ∀ ym ∈ Ym

}
.

We now prove the bound (4.58).

Let m = m*
max + 1. We have to show that Xβ̂(X, y) is unbounded for y ∈ Ym . By

decomposing into the case of even and odd n − k*, it follows that

2m ≥ n − k*. (4.74)

In fact, if n − k* is even, n − k* = 2q, hence

m*
max =

[
n − k* − 1

2

]
= [q − 0.5] = q − 1,

which implies m = q and hence 2m = n − k*; the other case follows similarly.
By the definition of k*, there exists θ such that Xθ �= 0 and θ′xi = 0 for a set of

size k*. To simplify notation, we reorder the xi ’s so that

θ′xi = 0 for i = 1, . . . , k*. (4.75)

Let for some t ∈ R

y*
i = yi + tθ′xi for i = k* + 1, . . . , k* + m (4.76)

y*
i = yi otherwise. (4.77)

Then y* ∈ Ym . Now let y** = y* − tXθ. Then y**
i = yi for 1 ≤ i ≤ k* by (4.75),

and also for k* + 1 ≤ i ≤ k* + m by (4.76). Then y** ∈ Ym, since

#
(

i : y**
i = yi

)
≥ k* + m

and n − (k* + m) ≤ m by (4.74). Hence the equivariance (4.15) implies that

Xβ̂(X, y*) − Xβ̂(X, y**) = X
(
β̂(X, y*) − β̂(X, y* − tXθ)

) = tXθ,

which is unbounded for t ∈ R, and thus both Xβ̂(X, y*) and Xβ̂(X, y**) cannot be
bounded.



JWBK076-04 JWBK076-Maronna February 16, 2006 18:8 Char Count= 0

APPENDIX: PROOFS AND COMPLEMENTS 113

4.9.4 The FBP of monotone M-estimates

We now state the FBP of monotone M-estimates, which was derived by Ellis and
Morgenthaler (1992) for the L1 estimate and generalized by Maronna and Yohai
(2000).

Let ψ be nondecreasing and bounded. Call � the image of X : � = {Xθ : θ ∈
R p} . For each ξ = (ξ1, . . . , ξn)′ ∈ Rn let {i j : j = 1, . . . , n} = {i j (ξ)} be a permu-
tation that sorts the |ξi |’s in reverse order:

|ξi1
| ≥ . . . ≥ |ξin |; (4.78)

and let

m(ξ) = min

{
m :

m+1∑
j=1

|ξi j | ≥
n∑

j=m+2

|ξi j |
}

. (4.79)

Then it is proved in Maronna and Yohai (1999) that

m* = m*(X) = min{m(ξ) : ξ ∈ �, ξ �= 0}. (4.80)

Ellis and Morgenthaler (1992) give a version of this result for the L1 estimate, and
use the ratio of the sums on both sides of the inequality in (4.79) as a measure of
leverage.

In the location case we have xi ≡ 1, hence all ξi are equal, and the condition
in (4.79) is equivalent to m + 1 ≥ n − m + 1 which yields m(ξ) = [(n − 1)/2] as in
(3.25).

Consider now fitting a straight line through the origin with a uniform design xi = i
(i = 1, . . . , n). Then for all ξ �= 0, ξi is proportional to n − i + 1, and hence

m(ξ) = min

{
m :

m+1∑
j=1

(n − j + 1) ≥
n∑

j=m+2

(n − j + 1)

}
.

The condition between braces is equivalent to

n(n + 1) ≥ 2(n − m)(n − m − 1),

and for large n this is equivalent to (1 − m/n)2 ≤ 1/2, i.e.,

m

n
= 1 −

√
1/2 ≈ 0.29.

The case of a general straight line is dealt with similarly. The proof of (4.59) is
not difficult, but that of (4.60) is rather involved (see Maronna and Yohai, 1999).

If X is uniformly distributed on a p-dimensional spherical surface, it can be proved
that ε* ≈ √

0.5/p for large p (Maronna, Bustos and Yohai, 1979) showing that even
a fixed design without leverage points may yield a low BP if p is large.
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Table 4.6 Hearing data

Occupation

Freq. I II III IV V VI VII

500 2.1 6.8 8.4 1.4 14.6 7.9 4.8
1000 1.7 8.1 8.4 1.4 12.0 3.7 4.5
2000 14.4 14.8 27.0 30.9 36.5 36.4 31.4
3000 57.4 62.4 37.4 63.3 65.5 65.6 59.8
4000 66.2 81.7 53.3 80.7 79.7 80.8 82.4
6000 75.2 94.0 74.3 87.9 93.3 87.8 80.5
Normal 4.1 10.2 10.7 5.5 18.1 11.4 6.1

4.10 Problems

4.1. Let β̂ be a solution of (4.39) with fixed σ . Show that
(a) if yi is replaced by yi + x′

iγ, then β̂ + γ is a solution

(b) if xi is replaced by Axi , then A′−1β̂ is a solution.
4.2. Let β̂ be a solution of (4.39) where σ̂ verifies (4.48). Show that β̂ is regression,

affine and scale equivariant.

4.3. Show that the solution β̂ of (4.37) is the LS estimate of the regression of y*
i on xi ,

where y*
i = ξ

(
yi , x′

i β̂, σ̂
)

with ξ defined in (2.92) are “pseudo-observations”.
Use this fact to define an iterative procedure to compute a regression M-estimate.

4.4. Show that the L1 estimate for the model of regression through the origin yi =
βxi + ui is the median of zi = yi/xi where zi has probability proportional to
|xi |.

4.5. Verify (4.53) and show that at each step of the median polish algorithm the sum∑
i

∑
j

∣∣yi j − μ̂ − α̂i − γ̂ j

∣∣ does not increase.
4.6. Write computer code for the median polish algorithm and apply it to the original

and modified oats data of Example 4.2 and to the data of Problem 4.9.
4.7. Show that for large n the FBP given by (4.80) for fitting yi = βxk

i + ui with a
uniform design of n points is approximately 1 − 0.51/k .

4.8. Show that for the fit of yi = βxi + ui with the design (4.61), the FBP given by
(4.80) is zero.

4.9. Table 4.6 (Roberts and Cohrssen, 1968) gives prevalence rates in percent for
men aged 55–64 with hearing levels 16 decibels or more above the audiometric
zero, at different frequencies (hertz) and for normal speech. The columns classify
the data in seven occupational groups: professional–managerial, farm, clerical
sales, craftsmen, operatives, service, laborers. (data set hearing). Fit an additive
ANOVA model by LS and robustly. Compare the effect of the estimations. These
data have also been analyzed by Daniel (1978).
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5.1 Introduction

The previous chapter concentrated on robust regression estimates for situations where
the predictor matrix X contains no rows xi with high leverage, and only the responses
y may contain outliers. In that case a monotone M-estimate is a reliable starting point
for computing a robust scale estimate and a redescending M-estimate. But when X is
random, outliers in X operate as leverage points, and may completely distort the value
of a monotone M-estimate when some pairs (xi , yi ) are atypical. This chapter will
deal with the case of random predictors and one of its main issues is how to obtain
good initial values for redescending M-estimates.

The following example shows the failure of a monotone M-estimate when X is
random and there is a single atypical observation.

Example 5.1 Smith, Campbell and Lichfield (1984) measured the contents (in parts
per million) of 22 chemical elements in 53 samples of rocks in Western Australia. The
data are given in Table 5.1 (dataset miner95).

Figure 5.1 plots the zinc (Zn) vs. the copper (Cu) contents. Observation 15 stands
out as clearly atypical. The LS fit is seen to be influenced more by this observation than
by the rest. But the L1 fit shows the same drawback! Neither the LS nor the L1 fits (code
mineral) represent the bulk of the data, since they are “attracted” by observation 15,
which has a very large abscissa and too high an ordinate. By contrast, the LS fit
omitting observation 15 gives a good fit to the rest of the data . Figures 5.2 and 5.3
show the Q–Q plot and the plot of residuals vs. fitted values for the LS estimate.
Neither figure reveals the existence of an outlier as indicated by an exceptionally
large residual. However, the second figure shows an approximate linear relationship
between residuals and fitted values—excepting the point with largest fitted value—and
this indicates that the fit is not correct.

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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Table 5.1 Mineral data: copper (Cu) and zinc (Zn) contents

Obs. Cu Zn Obs. Cu Zn Obs. Cu Zn

1 102 4 2 96 56 3 265 2
4 185 8 5 229 26 6 20 1
7 49 9 8 28 9 9 128 28

10 83 16 11 126 8 12 79 22
13 116 12 14 34 14 15 633 140
16 258 46 17 264 32 18 189 19
19 70 19 20 71 19 21 121 22
22 60 19 23 37 11 24 60 17
25 23 40 26 19 17 27 35 19
28 45 27 29 52 24 30 44 35
31 24 24 32 48 24 33 42 27
34 46 11 35 99 10 36 17 15
37 33 33 38 78 12 39 201 6
40 89 14 41 4 4 42 18 10
43 43 13 44 29 18 45 26 12
46 33 10 47 24 10 48 12 3
49 14 10 50 179 25 51 68 17
52 66 22 53 102 19
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Figure 5.1 Mineral data: fits by LS, L1, and LS without observation 15



JWBK076-05 JWBK076-Maronna February 16, 2006 18:8 Char Count= 0

INTRODUCTION 117

Quantiles of Standard Normal

re
si

d
u
a
ls

–2 –1 0 1 2

–
3

–
2

–
1

0
1

2
3

2

15

Figure 5.2 Mineral data: Q–Q plot of LS residuals

fitted values

re
si

d
u
a
ls

20 40 60 80

–
3

–
2

–
1

0
1

2
3

3

15

Figure 5.3 Mineral data: LS residuals vs. fit
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Table 5.2 Regression coefficients for mineral data

LS L1 LS(−15) Robust

Int. 7.96 10.41 15.49 14.05
Slope 0.134 0.080 0.030 0.022

Table 5.2 gives the estimated parameters for the LS and L1 fits, as well as for the
LS fit computed without observation 15, and for a redescending regression M-estimate
to be described shortly.

The intuitive reason for the failure of the L1 estimate (and of monotone M-estimates
in general) in this situation is that the xi outlier dominates the solution to (4.40) in
the following sense. If for some i, xi is “much larger than the rest”, then in order to
make the sum zero the residual yi − x′

i β̂ must be near zero and hence β̂ is essentially
determined by (xi , yi ). This does not happen with the redescending M-estimate.

5.2 The linear model with random predictors

Situations like the one in the previous example occur primarily when xi are not
fixed as in designed experiments, but instead are random variables observed together
with yi . We now briefly discuss the properties of a linear model with random X.
Our observations are now the i.i.d. (p + 1)-dimensional random vectors (xi , yi )
(i = 1, . . . , n) satisfying the linear model relation

yi = x′
iβ+ ui . (5.1)

In the case of fixed X we assumed that the distribution of ui does not depend on xi .
The analogous assumption here is that

the ui ’s are i.i.d. and independent of the xi ’s. (5.2)

The analog of assuming X is of full rank is to assume that the distribution of x is
not concentrated on any subspace, i.e., P(a′x = 0) < 1 for all a �= 0. This condition
implies that the probability that X has full rank tends to one when n → ∞, and holds
in particular if the distribution of x has a density. Then the LS estimate is well defined,
and (4.18) holds conditionally on X:

E
(
β̂L S

∣∣ X
) = β, Var

(
β̂L S

∣∣ X
) = σ 2

(
X′X

)−1
,

where σ 2 = Var(u),
Also (4.23) holds conditionally: if the ui ’s are normal then the conditional dis-

tribution of β̂L S given X is multivariate normal. If the ui ’s are not normal, assume
that

Vx = Exx′ (5.3)
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exists. It can be shown that

D(β̂L S) ≈ Np

(
β,

Cβ̂

n

)
(5.4)

where

Cβ̂ = σ 2V−1
x (5.5)

is the asymptotic covariance matrix of β̂. See Section 10.9.3. The estimation of Cβ̂

is discussed in Section 5.8.
In the case (4.5) where the model has an intercept term, it follows from (5.5) that

the asymptotic covariance matrix of (β0,β1) is

σ 2

[
1 + μ′

xC−1
x μx μ′

x

μx C−1
x

]
(5.6)

where

μx = Ex, Cx = Var(x).

5.3 M-estimates with a bounded ρ-function

Our approach to robust regression estimates where both xi and the yi may contain
outliers is to use an M-estimate β̂ defined by

n∑
i=1

ρ

(
ri (β̂)

σ̂

)
= min (5.7)

with a bounded ρ and a high breakdown point preliminary scale σ̂ . The scale σ̂ will
be required to fulfill certain requirements discussed later in Section 5.5. If ρ has a
derivative ψ it follows that

n∑
i=1

ψ
(ri

σ̂

)
xi = 0 (5.8)

where ψ is redescending (it is easy to verify that a function ρ with a monotonic
derivative ψ cannot be bounded). Consequently the estimating equation (5.8) may
have multiple solutions corresponding to multiple local minima of the function on
the left-hand side of (5.7), and generally only one of them (the “good solution”)
corresponds to the global minimizer β̂ defined by (5.7). We shall see that ρ and σ̂

may be chosen in order to attain both a high breakdown point and a high efficiency.
In Section 5.5 we describe a particular computing method of approximating β̂

defined by (5.7). The method is called an “MM-estimate”, and as motivation for its
use we apply it to the data of Example 5.1. The results, displayed in Figure 5.4, show
that the MM-estimate almost coincides with the LS estimate computed with the data
point 15 deleted (code mineral). The MM-estimate intercept and slope parameters
are now 14.05 and 0.02, respectively, as compared to 7.96 and 0.13 for the LS estimate
(recall Table 5.2).
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Figure 5.4 Mineral data: fits by MM-estimate (“ROB”) and by LS without the outlier

Figure 5.5 shows the residuals vs. fitted values and Figure 5.6 the Q–Q plot of
residuals. The former now lacks the suspicious structure of Figure 5.3 and point 15 is
now revealed as a large outlier in the residuals as well as the fit, with a considerably
reduced value of fit (roughly 40 instead of more than 90). And compared to Figure 5.2
the Q–Q plot now clearly reveals point 15 as an outlier. Figure 5.7 compares the sorted
absolute values of residuals from the MM-estimate fit and the LS fit, with point 15
omitted for reasons of scale. It is seen that most points lie below the identity diagonal,
showing that except for the outlier the sorted absolute MM-residuals are smaller than
those from the LS estimate, and hence the MM-estimate fits the data better.

5.4 Properties of M-estimates with a
bounded ρ-function

If σ̂ verifies (4.48), then the estimate β̂ defined by (4.39) is regression, scale and affine
equivariant. We now discuss the breakdown point, influence function and asymptotic
normality of such an estimate.
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Figure 5.5 Mineral data: residuals vs. fitted values of MM-estimate
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Figure 5.6 Mineral data: Q–Q plot of robust residuals
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least squares residuals
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Figure 5.7 Mineral data: sorted absolute values of robust vs. LS residuals (point 15
omitted)

5.4.1 Breakdown point

We focus on the finite breakdown point (FBP) of β̂. Since the x’s are now random,
we are in the situation of Section 3.2.5. Put zi = (xi , yi ) and write the estimate as
β̂(Z) with Z = {z1, . . . , zn}. Then instead of (4.55) define ε* = m*/n where

m* = max
{
m ≥ 0 : β̂(Zm) bounded ∀ Zm ∈ Zm

}
, (5.9)

and Zm is the set of datasets with at least n − m elements in common with Z. Note
that since not only y but also X are variable here, the FBP given by (5.9) is less than
or equal to that given earlier by (4.55).

Then it is easy to show that the FBP of monotone M-estimates is zero (Section
5.16.1). Intuitively this is due to the fact that a term with a “large” xi “dominates” the
sum in (4.40). Then the scale used in Section 4.4.2, which is based on the residuals
from the L1 estimate, also has a zero BP.

On the other hand, it can be shown that the maximum FBP of any regression
equivariant estimate is again the one given in Section 4.6

ε* ≤ ε*
max =:

1

n

[
n − k* − 1

2

]
≤ 1

n

[
n − p

2

]
, (5.10)
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with k* as in (4.56):

k*(X) = max
{
#

(
θ′xi = 0

)
: θ ∈R p, θ �= 0

}
. (5.11)

The proof is similar to that of Section 4.9.3, and we shall see that this bound is
attained by several types of estimates to be defined in this chapter. It can be shown in
the same way that the maximum asymptotic BP for regression equivariant estimates
is (1 − α) /2, where

α = max
θ �=0

P(θ′x = 0). (5.12)

In the previous chapter our method for developing robust estimates was to gener-
alize the MLE, which leads to M-estimates with unbounded ρ. In the present setting,
calculating the MLE again yields (4.36); in particular, LS is the MLE for normal u,
for any x. Thus no new class of estimates emerges from the ML approach.

5.4.2 Influence function

If the joint distribution F of (x,y) is given by the model (5.1)–(5.2), then it follows
from (3.47) that the influence function (IF) of an M-estimate with known σ under the
model is

IF((x0, y0), F) = σ

b
ψ

(
y0 − x′

0β

σ

)
V−1

x x0 with b = Eψ ′
( u

σ

)
(5.13)

and with Vx defined by (5.3). The proof is similar to that of Section 3.8.1. It follows that
the IF is unbounded. However, the IFs for the cases of monotone and of redescending
ψ are rather different. If ψ is monotone, then the IF tends to infinity for any fixed
x0 if y0 tends to infinity. If ψ is redescending and is such that ψ (x) = 0 for |x | ≥ k,

then the IF will tend to infinity only when x0 tends to infinity and
∣∣y0 − x′

0β
∣∣ /σ ≤ k,

which means that large outliers have no influence on the estimate.
When σ is unknown and is estimated by σ̂ , it can be shown that if the distribution

of ui is symmetric, then (5.13) also holds, with σ replaced by the asymptotic value
of σ̂ .

The fact that the IF is unbounded does not necessarily imply that the bias is
unbounded for any positive contamination rate ε. In fact, while a monotone ψ implies
BP = 0, we shall see in Section 5.5 that with a bounded ρ it is possible to attain a
high BP, and hence that the bias is bounded for large values of ε. On the other hand,
in Section 5.11 we shall define a family of estimates with bounded IF but such that
their BP may be very low for large p. These facts indicate that the IF need not yield
a reliable approximation to the bias.

5.4.3 Asymptotic normality

Assume that the model (5.1)–(5.2) holds, that x has finite variances, and that σ̂ con-
verges in probability to some σ. Then it can be proved under rather general conditions
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(see Section 10.9.3 for details) that the estimate β̂ defined by (4.39) is consistent and
asymptotically normal. More precisely

√
n(β̂ − β) →d Np

(
0,vV−1

x

)
, (5.14)

where Vx = Exx′ and v is as in (4.44)

v = σ 2 Eψ (u/σ )2

(Eψ ′ (u/σ ))2
. (5.15)

This result implies that as long as the xi ’s have finite variance, the efficiency of β̂
does not depend on the distribution of x.

We have seen in the previous chapter that a leverage point forces the fit of a
monotone M-estimate to pass near the point, and this has a double-edged effect: if the
point is a “typical” observation, the fit improves (although the normal approximation to
the distribution of the estimate deteriorates); if it is “atypical”, the overall fit worsens.
The implications of these facts for the case of random x are as follows. Suppose that
x is heavy tailed so that its variances do not exist. If the model (5.1)–(5.2) holds, then
the normal ceases to be a good approximation to the distribution of β̂, but at the same
time β̂ is “closer” to β than in the case of “typical” x (see Section 5.16.2 for details).
But if the model does not hold, then β̂ may have a higher bias than in the case of
“typical” x.

5.5 MM-estimates

Computing an M-estimate requires finding the absolute minimum of

L(β) =
n∑

i=1

ρ

(
ri (β)

σ̂

)
. (5.16)

When ρ is bounded, this is an exceedingly difficult task except for p = 1 or 2 where
a grid search would work. However, we shall see that it suffices to find a “good” local
minimum to achieve both a high BP and high efficiency at the normal distribution.
This local minimum will be obtained by starting from a reliable starting point and
applying the IRWLS algorithm of Section 4.5.2. This starting point will also be used
to compute the robust residual scale σ̂ required to define the M-estimate, and hence
it is necessary that it can be computed without requiring a previous scale.

The L1 estimate does not require a scale, but we have already seen that it is not
a convenient estimate when X is random. Hence we need an initial estimate that is
robust toward any kind of outliers and that does not require a previously computed
scale. Such a class of estimates will be defined in Section 5.6

The steps of the proposed procedure are thus:

1. Compute an initial consistent estimate β̂0 with high BP but possibly low normal
efficiency.
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2. Compute a robust scale σ̂ of the residuals ri (β̂0).
3. Find a solution β̂ of (5.8) using an iterative procedure starting at β̂0.

We shall show that in this way we can obtain β̂ having both a high BP and a
prescribed high efficiency at the normal distribution.

Now we state the details of the above steps. The robust initial estimate β̂0 must
be regression, scale and affine equivariant, which ensures that β̂ inherits the same
properties. For the purposes of the discussion at hand we assume that we have a good
initial estimate β̂0 available, and return to discuss such an estimate in Section 5.6.
We shall use two different functions ρ and ρ0, and each of these must be a bounded
ρ-function in the sense of Definition 2.1 at the end of Section 2.2.4. The scale estimate
σ̂ must be an M-scale estimate (2.54)

1

n

n∑
i=1

ρ0

(ri

σ̂

)
= 0.5. (5.17)

By (3.22) the asymptotic BP of σ̂ is 0.5. As was seen at the end of Section 2.5, we
can always find c0 such that using ρ0(r/c0) ensures that the asymptotic value of σ

coincides with the standard deviation when the ui ’s are normal. For the bisquare scale
given by (2.57) this value is c0 = 1.56.

The key result is given by Yohai (1987), who called these estimates MM-estimates.
Recall that all local minima of L(β) satisfy (5.8). Let ρ satisfy

ρ0 ≥ ρ. (5.18)

Yohai (1987) shows that if β̂ is such that

L(β̂) ≤ L(β̂0), (5.19)

then β̂ is consistent. It can also be shown in the same way as the similar result for
location in Section 3.2.3 that its BP is not less than that of β̂0. If furthermore β̂ is
any solution of (5.8), then it has the same efficiency as the global minimum. Thus it
is not necessary to find the absolute minimum of (5.7) to ensure a high BP and high
efficiency.

The numerical computation of the estimate follows the approach in Section 4.5:
starting with β̂0 we use the IRWLS algorithm to attain a solution of (5.8). It is shown
in Section 9.1 that L(β) given in (5.16) decreases at each iteration, which insures
(5.19).

It remains to choose ρ in order to attain the desired normal efficiency, which is
1/v, where v is the expression (5.15) computed at the standard normal. Let ρ1 be the
bisquare ρ-function given by (2.37) with k = 1, namely

ρ1 (t) = min
{

1, 1 − (
1 − t2

)3
}

.

Let

ρ0(r ) = ρ1

(
r

c0

)
and ρ(r ) = ρ1

(
r

c1

)
,
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with c0 = 1.56 for consistency of the scale at the normal. In order that ρ ≤ ρ0 we
must have c1 ≥ c0: the larger c1, the higher the efficiency at the normal distribution.
The values of c1 for prescribed efficiencies are the values of k in the table (2.39).

In Section 5.9 we shall demonstrate the basic trade-off between normal efficiency
and bias under contamination: the larger the efficiency, the larger the bias. It is there-
fore important to choose the efficiency so as to maintain reasonable bias control. The
results in Section 5.9 show that an efficiency of 0.95 yields too high a bias, and hence
it is safer to choose an efficiency of 0.85 which gives a smaller bias while retaining a
sufficiently high efficiency.

Note that M-estimates, and MM-estimates in particular, have an unbounded IF
but a high BP. This seeming contradiction can be resolved by noting that an infinite
gross-error sensitivity means only that the maximum bias MB(ε) is not O(ε) for small
ε, but does not imply that it is infinite! Actually, Yohai and Zamar (1997) have shown
that MB(ε) = O(

√
ε) for the estimates considered in this section. This implies that the

bias induced by altering a single observation is bounded by c/
√

n for some constant
c, instead of the stronger bound c/n.

Example 5.2 Maguna, Núñez, Okulik and Castro (2003) measured the aquatic tox-
icity of 38 carboxylic acids, together with nine molecular descriptors, in order to find
a predicting equation for y = log(toxicity) (dataset toxicity).

Figures 5.8 and 5.9 respectively show the plot of the residuals vs. fit and the normal
Q–Q plot for the LS estimate. No outliers are apparent. Figures 5.10 and 5.11 are the
respective plots for the 85% normal efficiency MM-estimate (code toxicity), showing
about 10 outliers. Figure 5.12 plots the ordered absolute residuals from LS as the
abscissa and those from the MM-estimate as the ordinate, as compared to the identity
line; the observations with the 10 largest absolute residuals from the MM-estimate
were omitted for reasons of scale. The plot shows that the MM-residuals are in general
smaller than the LS residuals, and hence MM gives a better fit to the bulk of the data.

5.6 Estimates based on a robust residual scale

In this section we shall present a family of regression estimates that do not depend
on a preliminary scale and are thus useful as initial estimates for the MM-estimate. A
particular member of this family provides a good initial estimate β̂0 and corresponding
residuals to define the preliminary scale σ̂ in (5.7) in the MM-estimate method.

The LS and the L1 estimates minimize the averages of the squared and of the
absolute residuals respectively, and therefore they minimize measures of residual
largeness that can be seriously influenced by even a single residual outlier. A more
robust alternative is to minimize a scale measure of residuals that is insensitive to
large values, and one such possibility is the median of the absolute residuals. This
is the basis of the least median of squares (LMS) estimate, introduced as the first
estimate of this kind by Hampel (1975) and by Rousseeuw (1984) who also proposed
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Figure 5.9 Toxicity data: Q–Q plot of LS residuals
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Figure 5.10 Toxicity data: MM-residuals vs. fit
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Figure 5.11 Toxicity data: Q–Q plot of robust residuals
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Figure 5.12 Toxicity data: ordered absolute residuals from MM and from LS (largest
residuals omitted)

a computational algorithm. In the location case the LMS estimate is equivalent to
the Shorth estimate defined as the midpoint of the shortest half of the data (see
Problem 2.16a). For fitting a linear model the LMS estimate has the intuitive prop-
erty of generating a strip of minimum width that contains half of the observations
(Problem 5.9).

Let σ̂ = σ̂ (r) be a scale equivariant robust scale estimate based on a vector of
residuals

r(β) = (r1(β), . . . , rn(β)) . (5.20)

Then a regression estimate can be defined as

β̂ = arg min
β

σ̂ (r(β)). (5.21)

Such estimates are regression, scale and affine equivariant (Problem 5.1).

5.6.1 S-estimates

A very important case of (5.21) is when σ̂ (r) is a scale M-estimate defined for each
r by

1

n

n∑
i=1

ρ
(ri

σ̂

)
= δ, (5.22)
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where ρ is a bounded ρ-function. By (3.22) the asymptotic BP of σ̂ is min(δ, 1 − δ).
The resulting estimate (5.21) is called an S-estimate (Rousseeuw and Yohai, 1984).
When computing an initial estimate β̂0 for the MM-estimate, the bisquare ρ works
quite well and we recommend its use for this purpose.

We now consider the BP of S-estimates. Proofs of all results on the BP are given
in Section 5.16.4. The maximum FBP of an S-estimate with a bounded ρ-function is

ε*
max = m*

max

n
(5.23)

where m*
max is the same as in (4.58), namely

m*
max =

[
n − k* − 1

2

]
, (5.24)

where k* is defined in (5.11). Hence ε*
max coincides with the maximum BP for equiv-

ariant estimates given in (5.10). This BP is attained by taking any δ of the form

δ = m*
max + γ

n
with γ ∈ (0, 1) . (5.25)

Recall that k* ≥ p − 1 and if k* = p − 1 we say that X is in general position. When
X is in general position, the maximum FBP is

ε*
max = 1

n

[
n − p

2

]
which is approximately 0.5 for large n.

Similarly, the maximum asymptotic BP of a regression S-estimate with a bounded
ρ is

ε* = 1 − α

2
, (5.26)

with α defined in (5.12), and thus coincides with the maximum asymptotic BP for
equivariant estimates given in Section 5.4.1 This maximum is attained by taking
δ = (1 − α) /2. If x has a density then α = 0 and hence δ = 0.5 yields BP = 0.5.

Since the median of absolute values is a scale M-estimate, the LMS estimate
may be written as the estimate minimizing the scale σ̂ given by (5.22) with ρ(t) =
I (|t | < 1) and δ = 0.5. For a general δ, a solution σ̂ of (5.22) is the h-th order
statistics of |ri | , with h = n − [nδ] (Problem 2.14). The regression estimate defined
by minimizing σ̂ is called the least α-quantile estimate with α = h/n. Although it
has a discontinuous ρ-function, the proof of the preceding results (5.24)–(5.25) can
be shown to imply that the maximum BP is again (5.23) and that it can be attained by
choosing

h = n − m*
max =

[
n + k* + 2

2

]
, (5.27)

which is slightly larger than n/2. See the end of Section 5.16.4.
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We now deal with the efficiency of S-estimates. Since an S-estimate β̂ minimizes
σ̂ = σ̂ (r(β)) it follows that β̂ is also an M-estimate (4.39) in that

n∑
i=1

ρ

(
ri (β̂)

σ̂

)
≤

n∑
i=1

ρ

(
ri (β̃)

σ̂

)
for all β̃, (5.28)

where σ̂ = σ̂ (r(β̂)) is the same in the denominator on both sides of the equation. To
see that this is indeed the case, suppose that for some β̃ we had

n∑
i=1

ρ

(
ri (β̃)

σ̂

)
<

n∑
i=1

ρ

(
ri (β̂)

σ̂

)
.

Then since ρ is monotone, there would exist σ̃ < σ̂ such that

n∑
i=1

ρ

(
ri (β̃)

σ̃

)
= nδ

and hence σ̂ would not be the minimum scale.
If ρ has a derivative ψ it follows that β̂ is also an M-estimate in the sense of

(5.8), but with the condition that the scale σ̂ = σ̂ (r(β̂)) is estimated simultaneously
with β̂.

Because an S-estimate is an M-estimate, it follows that the asymptotic distribution
of an S-estimate with a smooth ρ under the model (5.1)–(5.2) is given by (4.43)–(4.44).
See Davies (1990) and Kim and Pollard (1990) for a rigorous proof. For the LMS
estimate, which has a discontinuous ρ, Davies (1990) shows that β̂ − β has the slow
convergence rate n−1/3, while estimates based on a smooth ρ-function have the usual
convergence rate n−1/2. Thus the LMS estimate is very inefficient for large n.

Unfortunately S-estimates with a smooth ρ cannot simultaneously have a high BP
and high efficiency. In particular it was shown by Hössjer (1992) that an S-estimate
with BP = 0.5 has an asymptotic efficiency under normally distributed errors that
is not larger than 0.33. Numerical computation yields that the normal distribution
efficiency of the S-estimate based on the bisquare scale is 0.29, which is adequately
close to the upper bound.

Since an S-estimate with a differentiable ρ-function satisfies (5.8), its IF is given
by (5.13) and hence is unbounded. See, however, the comments on page 126. Note
also that S-estimates are “redescending” in the sense that if some of the yi ’s are “too
large” the estimate is completely unaffected by these observations, and coincides with
an M-estimate computed after deleting such outliers. A precise statement is given in
Problem 5.10.

Numerical computation of S-estimates is discussed in Section 5.7.

5.6.2 L-estimates of scale and the LTS estimate

An alternative to using an M-scale is to use an L-estimate of scale. Call |r |(1) ≤ . . . ≤
|r |(n) the ordered absolute values of residuals. Then we can define scale estimates as
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linear combinations of |r |(i) in one of the two following forms:

σ̂ =
n∑

i=1

ai |r |(i) or σ̂ =
(

n∑
i=1

ai |r |2(i)
)1/2

where the ai ’s are nonnegative constants.
A particular version of the second form is the α-trimmed squares scale where

α ∈ (0, 1), and n − h = [nα] of the largest absolute residuals are trimmed:

σ̂ =
(

h∑
i=1

|r |2(i)
)1/2

. (5.29)

The corresponding regression estimate is called the least trimmed squares (LTS)
estimate (Rousseeuw, 1984). The FBP of the LTS estimate depends on h in the same
way as that of the LMS estimate, so that for the LTS estimate to attain the maximum
BP one must choose h in (5.29) as in (5.27). In particular, when X is in general
position one must choose

h = n −
[

n − p − 2

2

]
=

[
n + p + 1

2

]
,

which is approximately n/2 for large n. The asymptotic behavior of the LTS estimate
is more complicated than that of smooth S-estimates. However, it is known that they
have the standard convergence rate of n−1/2, and it can be shown that the asymptotic
efficiency of the LTS estimate at the normal distribution has the exceedingly low value
of about 7% (see page 180 of Rousseeuw and Leroy (1987)).

5.6.3 Improving efficiency with one-step reweighting

We have seen that estimates based on a robust scale cannot have both a high BP
and high normal efficiency. As we have already discussed, one can attain a desired
normal efficiency by using an S-estimate as the starting point for an iterative procedure
leading to an MM-estimate. In this section we consider a simpler alternative procedure
proposed by Rousseeuw and Leroy (1987) to increase the efficiency of an estimate
β̂0 without decreasing its BP.

Let σ̃ be a robust scale of r(β̂0), e.g., the normalized median of absolute values
(4.47). Then compute a new estimate β̂, defined as the weighted LS estimate of the
dataset with weights wi = W (ri (β̂0)/σ̃ ) where W (t) is a decreasing function of |t |.
Rousseeuw and Leroy proposed the “weight function” W to be chosen as the “hard
rejection” function W (t) = I(|t | ≤ k) with k equal to a γ -quantile of the distribution
of |x | where x has a standard normal distribution, e.g., γ = 0.975. Under normality
this amounts to discarding a proportion of about 1 − γ of the points with largest
absolute residuals.

He and Portnoy (1992) show that in general such reweighting methods pre-
serve the order of consistency of β̂0, so in the standard situation where β̂0 is
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√
n-consistent then so is β̂. Unfortunately this means that because the LMS

estimate is n1/3-consistent, so is the reweighted LMS estimate.
In general the reweighted estimate β̂ is more efficient than β̂0, but its asymptotic

distribution is complicated (more so when W is discontinuous) and this makes it
difficult to tune it for a given efficiency; in particular, it has to be noted than choosing
γ = 0.95 for hard rejection does not make the asymptotic efficiency of β̂ equal to 0.95:
it continues to be zero. A better approach for increasing the efficiency is described in
Section 5.6.4.

5.6.4 A fully efficient one-step procedure

None of the estimators discussed so far can achieve full efficiency at the normal
distribution and at the same time have a high BP and small maximum bias. We now
discuss an adaptive one-step estimation method due to Gervini and Yohai (2002) that
attains full asymptotic efficiency at the normal error distribution and at the same time
has a high BP and small maximum bias. It is a weighted LS estimate computed from
an initial estimate β̂0 with high BP, but rather than deleting the values larger than a
fixed k the procedure will keep a number N of observations (xi , yi ) corresponding to
the smallest values of ti = ∣∣ri (β̂0)

∣∣ /σ̂ , i = 1, . . . , n, where N depends on the data as
will be described below. This N has the property that in large samples under normality
it will have N/n → 1, so that a vanishing fraction of data values will be deleted and
full efficiency will be obtained.

Call G the distribution function of the absolute errors |ui | /σ under the normal
model; that is,

G(t) = 2
(t) − 1 = P (|x | ≤ t) ,

with x ∼ 
 which is the standard normal distribution function. Let t(1) ≤ . . . ≤ t(n)

denote the order statistics of the ti . Let η = G−1(γ ) where γ is a large value such as
γ = 0.95. Define

i0 = min
{
i : t(i) ≥ η

}
, q = min

i≥i0

(
i − 1

G
(
t(i)

))
, (5.30)

and

N = [q] (5.31)

where [.] denotes the integer part. The one-step estimate is the LS estimate of the
observations corresponding to t(i) for i ≤ N .

We now justify this procedure. The intuitive idea is to consider as potential outliers
only those observations whose t(i) are not only greater than a given value, but also
sufficiently larger than the corresponding order statistic of a sample from G. Note that
if the data contain one or more outliers, then in a normal Q–Q plot of the t(i) against
the respective quantiles of G, some large t(i) will appear well above the identity line,
and we would delete it and all larger ones. The idea of the proposed procedure is to
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delete observations with large t(i) until the Q–Q plot of the remaining ones remains
below the identity line at least for large values of

∣∣t(i)∣∣. Since we are interested only
in the tails of the distribution, we consider only values larger than some given η.

More precisely, for N ≤ n call G N the empirical distribution function of
t(1) ≤ . . . ≤ t(N ):

G N (t) = 1

N
#

{
t(i) ≤ t

}
.

It follows that

G N (t) = i − 1

N
for t(i−1) ≤ t < t(i)

and hence each t in the half-open interval [t(i−1), t(i)) is an αi -quantile of G N with

αi = i − 1

N
.

The αi -quantile of G is G−1(αi ). Then we look for N such that for i0 ≤ i ≤ N the
αi -quantile of G N is not larger than that of G: that is,

for i ∈ [i0, N ] : t(i−1) ≤ t < t(i) =⇒ t ≤ G−1

(
i − 1

N

)
⇐⇒ G(t) ≤ i − 1

N
.

(5.32)
Since G is continuous, (5.32) implies that

G
(
t(i)

) ≤ i − 1

N
for i0 ≤ i ≤ N . (5.33)

Also since

i > N =⇒ i − 1

N
≥ 1 > G(t) ∀t,

the restriction i ≤ N may be dropped in (5.33), which is seen to be equivalent to

N ≤ i − 1

G
(
t(i)

) for i ≥ i0 ⇐⇒ N ≤ q (5.34)

with q defined in (5.30). We want the largest N ≤ q and since N is an integer, we
finally have (5.31).

Gervini and Yohai show that under very general assumptions on β̂ and σ̂ and
regardless of the consistency rate of β̂, these estimates attain the maximum BP and
full asymptotic efficiency for normally distributed errors.

5.7 Numerical computation of estimates
based on robust scales

Minimizing the function σ̂ (r(β)) is difficult not only because of the existence of
several local minima, but also because for some proposed robust estimates it is very
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Figure 5.13 Loss functions for different regression estimates

nonsmooth. For example, consider fitting a straight line through the origin, i.e., the
model is yi = βxi + ui , for an artificial dataset with n = 50, xi and ui i.i.d. N (0, 1),
and three outliers at (10,20). Figure 5.13 shows the “loss” functions to be minimized
in computing the LMS estimate, the LTS estimate with α = 0.5, the S-estimate with
bisquare ρ, and the LS estimate.

It is seen that the LMS loss function is very nonsmooth, and that all estimates
except LS exhibit a local minimum at about 2 which is a “bad solution”. The global
minima of the loss functions for these four estimates are attained at the values of 0.06,
0.14, 0.07 and 1.72, respectively.

The loss functions for the LMS and LTS estimates are not differentiable, and
hence gradient methods cannot be applied to them. Stromberg (1993a, 1993b) gives
an exact algorithm for computing the LMS estimate, but the number of operations it
requires is of order

( n
p+1

)
which is only practical for very small values of n and p. For

other approaches see Agulló (1997, 2001) and Hawkins (1994). The loss function for
the bisquare S-estimate is differentiable, but since gradient methods ensure only the
attainment of a local minimum, a “good” starting point is needed.

In Section 5.7.1 we describe iterative procedures for computing S-estimates and
LTS estimates, such that the objective function decreases at each iteration and thus
leads to local minima. Since there are usually several such minima, attaining or at
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least approximating the global minimum depends on the starting point. Section 5.7.2
presents a general stochastic method for generating candidate solutions that can be
used to obtain a good initial estimate for the LTS or S-estimates, or as approximations
to the LMS estimate. Since this method is computer intensive, care is needed to reduce
the computing time and strategies for this goal are presented in Section 5.7.3.

5.7.1 Finding local minima

S-estimates

For an S-estimate the simplest procedure to find a local minimum that satisfies (5.8)
is the IRWLS algorithm described in Section 4.5, in which σ is updated at each step.
That is, if β̂k is the estimate at the k-th iteration, the scale estimate σ̂ k is obtained by
solving

n∑
i=1

ρ

(
ri

(
β̂k

)
σk

)
= δ (5.35)

with the method of Section 2.7.2. Then β̂k+1 is obtained by weighted least squares with
weights wi = W (ri/σ̂ k). It can be shown that if W is decreasing then σ̂ k decreases
at each step (Section 9.2). Since computing σ̂ consumes an important proportion of
the time, it is important to do it economically, and in this regard it is best to start the
iteration for σ̂ k from the previous value σ̂ k−1.

The LTS estimate

A local minimum of (5.29) can be attained iteratively using the “concentration step”
(C-step) of Rousseeuw and van Driessen (2000). Given a candidate β̂1, let β̂2 be the
LS estimate based on the data corresponding to the h smallest absolute residuals. It
is proved in Section 9.3 that the trimmed L-scale σ̂ given by (5.29) is not larger for
β̂2 than for β̂1. This procedure is exact in the sense that after a finite number of steps
it attains a value of β̂ such that further steps do not decrease the values of σ̂ . It can
be shown that this β̂ is a local minimum, but not necessarily a global one.

5.7.2 The subsampling algorithm

To find an approximate solution to (5.21) we shall compute a “large” finite set of can-
didate solutions, and replace the minimization over β ∈ R p in (5.21) by minimizing
σ̂ (r(β)) over that finite set. To compute the candidate solutions we take subsamples
of size p

{(xi , yi ) : i ∈ J } , J ⊂ {1, . . . , n} , # (J ) = p.

For each J find β J that satisfies the exact fit x′
iβ J = yi for i ∈ J. If a subsam-

ple is collinear, it is replaced by another. Then the problem of minimizing σ̂ (r(β))
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for β ∈ R p is replaced by the finite problem of minimizing σ̂ (r(β J )) over J. Since
choosing all

(n
p

)
subsamples would be prohibitive unless both n and p are rather

small, we choose N of them at random: {Jk : k = 1, . . . , N } and the estimate β̂ Jk*
is

defined by

k* = arg min
{
σ̂

(
r
(
β Jk

))
: k = 1, . . . , N

}
. (5.36)

Suppose the sample contains a proportion ε of outliers. The probability of an
outlier-free subsample is α = (1 − ε)p, and the probability of at least one “good”
subsample is 1 − (1 − α)N . If we want this probability to be larger than 1 − γ, we
must have

log γ ≥ N log (1 − α) ≈ −Nα

and hence

N ≥ |log γ |∣∣log
(
1 − (1 − ε)p

)∣∣ ≈ |log γ |
(1 − ε)p (5.37)

for p not too small. Therefore N must grow exponentially with p. Table 5.3 gives
the minimum N for γ = 0.01. Since the number of “good” (outlier-free) subsamples
is binomial, the expected number of good samples is Nα, and so for γ = 0.01 the
expected number of “good” subsamples is |log 0.01| = 4.6.

A shortcut saves much computing time. Suppose we have examined M − 1 sub-
samples and σ̂ M−1 is the current minimum. Now we draw the M-th subsample which
yields the candidate estimate β̂M . We may spare the effort of computing the new scale
estimate σ̂ M in those cases where it will turn out not to be smaller than σ̂ M−1. The
reason is as follows. If σ̂ M < σ̂ M−1, then since ρ is monotonic

nδ =
n∑

i=1

ρ

(
ri

(
β̂M

)
σ̂ M

)
≥

n∑
i=1

ρ

(
ri

(
β̂M

)
σ̂ M−1

)
.

Table 5.3 Minimum N for γ = 0.01

p ε = 0.10 0.15 0.20 0.25 0.50

5 6 8 12 17 146
10 11 22 41 80 4714
15 20 51 129 343 150900
20 36 117 398 1450 4.83×106

30 107 602 3718 25786 4.94×109

40 310 3064 34644 457924 5.06×1012

50 892 15569 322659 8.13×107 5.18×1015
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Thus if

nδ ≤
n∑

i=1

ρ

(
ri

(
β̂M

)
σ̂ M−1

)
(5.38)

we may discard β̂M since σ̂ M ≥ σ̂ M−1. Therefore σ̂ is computed only for those
subsamples that do not verify the condition (5.38).

Although the N given by (5.37) ensures that the approximate algorithm has the de-
sired BP in a probabilistic sense, it does not imply that it is a good approximation to the
exact estimate. Furthermore, because of the randomness of the subsampling procedure
the resulting estimate is stochastic, i.e., repeating the computation may lead to another
local minimum and hence to another β̂, with the unpleasant consequence that repeat-
ing the computation may yield different results. In our experience a carefully designed
algorithm usually gives good results, and the above infrequent but unpleasant effects
can be mitigated by increasing N as much as the available computing power will allow.

The subsampling procedure may be used to compute an approximate LMS esti-
mate. Since total lack of smoothness precludes any kind of iterative improvement,
the result is usually followed by one-step reweighting (Section 5.6.3), which, besides
improving the efficiency of the estimate, makes it more stable with respect to the
randomness of subsampling. It must be recalled, however, that the resulting estimate
is not asymptotically normal, and hence it is not possible to use it as a basis for ap-
proximate inference on the parameters. Since the resulting estimate is a weighted LS
estimate, it would be intuitively attractive to apply classical LS inference as if these
weights were constant, but this procedure is not valid.

5.7.3 A strategy for fast iterative estimates

For the LTS or S-estimates, which admit iterative improvement steps as described
in Section 5.7.1 for an S-estimate, it is possible to dramatically speed up the search
for a global minimum. In the discussion below “iteration” refers to one of the two
iterative procedures described in that section (though the method to be described
could be applied to any estimate that admits iterative improvement steps). Consider
the following two extreme strategies for combining the subsampling and the iterative
parts of the minimization:

A use the “best” result (5.36) of the subsampling as a starting point from which to
iterate until convergence to a local minimum, or

B iterate to convergence from each of the N candidates β̂ Jk
and keep the result with

smallest σ̂ .

Clearly strategy B would yield a better approximation of the absolute minimum than
A, but is also much more expensive. An intermediate strategy, which depends on two
parameters Kiter and Kkeep, consists of the following steps:

1. For k = 1, . . . , N , compute β̂ Jk
and perform Kiter iterations, which yields the

candidates β̃k with residual scale estimates σ̃ k .
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2. Only the Kkeep candidates with smallest Kkeep estimates σ̃ k are kept in storage,
which only needs to be updated when the current σ̃ k is lower than at least one of
the current best Kiter values. Call these estimates β̃(k), k = 1, . . . , Kkeep.

3. For k = 1, . . . , Kkeep, iterate to convergence starting from β̃(k), obtaining the

candidate β̂k with residual scale estimate σ̂ k .

4. The final result is the candidate β̂k with minimum σ̂ k .

Option A above corresponds to Kiter = 0 and Kkeep = 1, while B corresponds to
Kiter = ∞ and Kkeep = 1.

This strategy was first proposed by Rousseeuw and van Driessen (2000) for the
LTS estimate (the “Fast LTS”) with Kiter = 2 and Kkeep = 10, and as mentioned above
the general method can be used with any estimate that can be improved iteratively.

Salibian-Barrera and Yohai (2005) proposed a “Fast S-estimate”, based on this
strategy. A theoretical study of the properties of this procedure seems impossible, but
their simulations show that it is not worthwhile to increase Kiter and Kkeep beyond the
values 1 and 10, respectively. They also show that N = 500 gives reliable results at
least for p ≤ 40 and contamination fraction up to 10%. Their simulation also shows
that the “Fast S” is better than the “Fast LTS” with respect to both mean squared
errors and the probability of converging to a “wrong” solution. The simulation in
Salibian-Barrera and Yohai (2005) also indicates that the Fast LTS works better with
Kiter = 1 than with Kiter = 2.

A further saving in time is obtained by replacing σ̂ in step 1 of the procedure with
an approximation obtained by one step of the Newton–Raphson algorithm starting
from the normalized median of absolute residuals.

Ruppert (1992) proposes a more complex random search method. However, the
simulations by Salibian-Barrera and Yohai (2005) show that its behavior is worse
than that of both the Fast S- and the Fast LTS estimates.

5.8 Robust confidence intervals
and tests for M-estimates

In general, estimates that fulfill an M-estimating equation like (5.8) are asymptoti-
cally normal, and hence approximate confidence intervals and tests can be obtained
as in Sections 4.4.2 and 4.7.2. Recall that according to (5.14), β̂ has an approxi-
mately normal distribution with covariance matrix given vn−1V−1

x . For the purposes
of inference, Vx and v can be estimated by

V̂x = 1

n

n∑
i=1

xi x′
i = 1

n
X′X, v̂ = σ̂ 2

avei
{
ψ (ri/σ̂ )2

}
[avei {ψ ′ (ri/σ̂ )}]2

n

n − p
, (5.39)

and hence the resulting confidence intervals and tests are the same as those for
fixed X.
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Actually, this estimate of Vx has the drawback of not being robust. In fact just
one large xi corresponding to an outlying observation with a large residual may have
a large distorting influence on X′X with diagonal elements typically inflated. Since v̂

is stable with respect to outlier influence, the confidence intervals based on v̂(X′X)−1

may be too small and hence the coverage probabilities may be much smaller than the
nominal.

Yohai, Stahel and Zamar (1991) proposed a more robust estimate of the matrix
Vx, defined as

Ṽx = 1∑n

i=1
wi

n∑
i=1

wi xi x′
i ,

with wi = W (ri/σ̂ ), where W is the weight function (2.30). Under the model with
n large, the residual ri is close to the error ui , and since ui is independent of xi we
have as n → ∞

1

n

n∑
i=1

wi xi x′
i →p EW

( u

σ

) (
Exx′)

and

1

n

n∑
i=1

wi →p EW
( u

σ

)
,

and thus

Ṽx →p Exx′.

Assume that ψ (t) = 0 if |t | > k for some k, as happens with the bisquare. Then
if |ri | /σ̂ > k, the weight wi is zero. If observation i has high leverage (i.e., xi is
“large”) and is an outlier, then since the estimate is robust, |ri | /σ̂ is also “large”,
and this observation will have null weight and hence will not influence Ṽx. On the
other hand, if xi is “large” but ri is small or moderate, then wi will be nonnull, and
xi will still have a beneficial influence on Ṽx by virtue of reducing the variance of
β̂. Hence the advantage of Ṽx is that it downweights high-leverage observations only
when they are outlying. Therefore we recommend the routine use of Ṽx instead of
Vx for all instances of inference, in particular the Wald-type tests defined in Section
4.7.2 which also require estimating the covariance matrix of the estimates.

The following example shows how different the inference can be when using an
MM-estimate compared to using the LS estimate.

For the straight-line regression of the mineral data in Example 5.1, the slope given
by LS and its estimated SD are 0.135 and 0.020 respectively, while the corresponding
values for the MM-estimate are 0.044 and 0.021; hence the classical and robust two-
sided intervals with level 0.95 are (0.0958, 0.1742) and (0.00284, 0.08516), which
are disjoint, showing the influence of the outlier.
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5.8.1 Bootstrap robust confidence intervals and tests

Since the confidence intervals and tests for robust estimates are asymptotic, their
actual level may be a poor approximation to the desired one if n is small. This occurs
especially when the error distribution is very heavy tailed or asymmetric (see the end
of Section 10.3). Better results can be obtained by using the bootstrap method, which
estimates the distribution of an estimate by generating a large number of samples with
replacement (“bootstrap samples”) from the sample and recomputing the estimate for
each of them. See for example Efron and Tibshirani (1993) and Davison and Hinkley
(1997).

While the bootstrap approach has proved successful in many situations, its ap-
plication to robust estimates presents special problems. One is that in principle the
estimate should be recomputed for each bootstrap sample, which may require im-
practical computing times. Another is that the proportion of outliers in some of the
bootstrap samples might be much higher than in the original one, leading to quite
incorrect values of the recomputed estimate. Salibian-Barrera and Zamar (2002) pro-
posed a method which avoids both pitfalls, and consequently is faster and more robust
than the naive application of the bootstrap approach.

5.9 Balancing robustness and efficiency

Defining the asymptotic bias of regression estimates requires a measure of the “size”
of the difference between the value of an estimate, which for practical purposes we
take to be the asymptotic value β̂∞, and the true parameter value β. We shall use
an approach based on prediction. Consider an observation (x, y) from the model
(5.1)–(5.2):

y = x′β+ u, x and u independent.

The prediction error corresponding to β̂∞ is

e = y − x′β̂∞ = u − x′(β̂∞ − β).

Let Eu2 = σ 2 < ∞, Eu = 0 and Vx = Exx′. Then the mean squared prediction error
is

Ee2 = σ 2 + (β̂∞ − β)′Vx(β̂∞ − β).

The second term is measure of the increase in the prediction error due to the parameter
estimation bias, and so we define the bias as

b(β̂∞) =
√

(β̂∞ − β)′Vx(β̂∞ − β). (5.40)

Note that if β̂ is regression, scale and affine equivariant, this measure is invariant
under the respective transformations, i.e., b(β̂∞) does not change when any of those
transformations is applied to (x,y). If Vx is a multiple of the identity—such as when
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the elements of x are i.i.d. zero mean normal—then (5.40) is a multiple of
∥∥β̂∞ − β

∥∥ ,

so in this special case the Euclidean norm is an adequate bias measure.
Now consider a model with intercept, i.e.,

x =
[

1
x

]
, β =

[
β0

β1

]
and let μ = Ex and U = Exx′, so that

Vx =
[

1 μ′

μ U

]
.

For a regression and affine equivariant estimate there is no loss of generality in
assuming μ = 0 and β0 = 0, and in this case

b(β̂∞)2 = β̂
2

0,∞ + β̂
′
1,∞Uβ̂1,∞,

with the first term representing the contribution to bias of the intercept and the second
that of the slopes.

A frequently used benchmark for comparing estimates is to assume that the joint
distribution of (x, y) belongs to a contamination neighborhood of a multivariate nor-
mal. By the affine and regression equivariance of the estimates, there is no loss of
generality in assuming that this central normal distribution is Np+1 (0, I). In this case
it can be shown that the maximum biases of M-estimates do not depend on p. A proof
is outlined in Section 5.16.5. The same is true of the other estimates treated in this
chapter except GM-estimates in Section 5.11.

The maximum asymptotic bias of S-estimates can be derived from the results
of Martin, Yohai and Zamar (1989), and those of the LTS and LMS estimates from
Berrendero and Zamar (2001). Table 5.4 compares the maximum asymptotic biases
of LTS, LMS and the S-estimate with bisquare scale and three MM-estimates with
bisquare ρ, in all cases with asymptotic BP equal to 0.5, when the joint distribu-
tion of x and y is in an ε-neighborhood of the multivariate normal Np+1 (0, I). One
MM-estimate is given by the global minimum of (5.16) with normal distribution

Table 5.4 Maximum bias of regression estimates for contamination ε

ε

0.05 0.10 0.15 0.20 Eff.

LTS 0.63 1.02 1.46 2.02 0.07
S-E 0.56 0.88 1.23 1.65 0.29
LMS 0.53 0.83 1.13 1.52 0.0
MM (global) 0.78 1.24 1.77 2.42 0.95
MM (local) 0.56 0.88 1.23 1.65 0.95
MM (local) 0.56 0.88 1.23 1.65 0.85
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efficiency 0.95. The other two MM-estimates correspond to local minima of (5.16)
obtained using the IRWLS algorithm starting from the S-estimate, with efficiencies
0.85 and 0.95. The LMS estimate has the smallest bias for all the values of ε con-
sidered, but also has zero asymptotic efficiency. It is remarkable that the maximum
biases of both “local” MM-estimates are much lower than those of the “global” MM-
estimate, and close to the maximum biases of the LMS estimate. This shows the
importance of a good starting point. The fact that an estimate obtained as a local min-
imum starting from a very robust estimate may have a lower bias than one defined by
the absolute minimum was pointed out by Hennig (1995), who also gave bounds for
the bias of MM-estimates with general ρ-functions in contamination neighborhoods.

It is also curious that the two local MM-estimates with different efficiencies
have the same maximum biases. To understand this phenomenon, we show in Figure
5.14 the asymptotic biases of the S- and MM-estimates for contamination fraction
ε = 0.2 and point contamination located at (x0, K x0) with x0 = 2.5, as a function of
the contamination slope K . It is seen that the bias of each estimate is worse than that
of the LS estimate up to a certain value of K and then drops to zero. But the range
of values where the MM-estimate with efficiency 0.95 has a larger bias than the LS
estimate is greater than those for the 0.85 efficient MM-estimate and the S-estimate.
This is the price paid for a higher normal efficiency. The MM-estimate with efficiency
0.85 is closer in behavior to the S-estimate than the one with efficiency 0.95. If one

slope
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Figure 5.14 Biases of LS, S-estimate and MM-estimates with efficiencies 0.85 and
0.95, as a function of the contamination slope, for ε = 0.2, when x0 = 2.5
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makes similar plots for other values of x0, one finds that for x0 ≥ 5 the curves for the
S-estimate and the two MM-estimates are very similar.

For these reasons we recommend an MM-estimate with bisquare function and
efficiency 0.85, computed starting from a bisquare S-estimate. One could also compute
such MM-estimates with several different efficiencies, say between 0.7 and 0.95, and
compare the results. Yohai et al. (1991) give a test to compare the biases of estimates
with different efficiencies.

The former results on MM-estimates suggest a general approach for the choice of
robust estimates. Consider in general an estimate θ̂ with high efficiency, defined by the
absolute minimum of a target function. We have an algorithm that starting from any
initial value θ0 yields a local minimum of the target function, that we shall call A(θ0).
Assume also that we have an estimate θ* with lower bias, although possibly with low
efficiency. Define a new estimate θ̃ (call it the “approximate estimate”) by the local
minimum of the target function obtained by applying the algorithm starting from θ*,

i.e. θ̃ = A(θ*). Then in general θ̃ has the same efficiency as θ̂ under the model, while
it has a lower bias than θ̂ in contamination neighborhoods. If furthermore θ* is fast to
compute, then also θ̃ will be faster than θ̂. An instance of this approach in multivariate
analysis will be presented in Section 6.7.5.

5.9.1 “Optimal” redescending M-estimates

In Section 3.5.4 we gave the solution to the Hampel dual problems for a one-
dimensional parametric model, namely: (1) finding the M-estimate minimizing the
asymptotic variance subject to an upper bound on the gross-error sensitivity (GES),
and (2) minimizing the GES subject to an upper bound on the asymptotic variance.
This approach cannot be taken with regression M-estimates with random predictors
since (5.13) implies that the GES is infinite. However, it can be suitably modified,
as we now show.

Consider a regression estimate β̂= (
β̂0, β̂1

)
where β̂0 corresponds to the intercept

and β̂1 to the slopes. Yohai and Zamar (1997) showed that for an M-estimate β̂ with
bounded ρ, the maximum biases MB(ε, β̂0) and MB(ε, β̂1) in an ε-contamination
neighborhood are of order

√
ε. Therefore the biases of these estimates are continuous

at zero, which means that a small amount of contamination produces only a small
change in the estimate. Because of this the approach in Section 3.5.4 can then be
adapted to the present situation by replacing the GES with a different measure called
the contamination sensitivity (CS), which is defined as

CS(β̂ j ) = lim
ε→0

MB(ε, β̂ j )√
ε

( j = 0, 1).

Recall that the asymptotic covariance matrix of a regression M-estimate depends
on ρ only through

v(ψ, F) = EF
(
ψ(u)2

)
(EFψ ′(u))2
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Table 5.5 Constant for optimal estimate

Efficiency 0.80 0.85 0.90 0.95
c 0.060 0.044 0.028 0.013

where ψ = ρ ′ and F is the error distribution. We consider only the slopes β1 which
are usually more important than the intercept. The analogs of the direct and dual
Hampel problems can now be stated as finding the function ψ that� minimizes v(ψ, F) subject to the constraint CS(β̂1) ≤ k1

or� minimizes CS(β̂1) subject to v(ψ, F) ≤ k2

where k1 and k2 are given constants.
Yohai and Zamar (1997) found that the optimal ψ for both problems has the form

ψc(u) = sgn(u)

(
−ϕ′(|u|) + c

ϕ(|u|)
)+

(5.41)

where ϕ is the standard normal density, c is a constant and t+ = max(t, 0) denotes
the positive part of t. For c = 0 we have the LS estimate: ψ(u) = u.

Table 5.5 gives the values of c corresponding to different efficiencies, and Figure
5.15 shows the bisquare and optimal ψ-functions with efficiency 0.95. We observe
that the optimal ψ increases almost linearly and then redescends much faster than
the bisquare ψ . This optimal ψ-function is a smoothed, differentiable version of the
hard-rejection function ψ(u) = uI (|u| ≤ a) for some constant a. As such it not only
is good from the numerical optimization perspective, but also has the intuitive feature
of making a rather rapid transition from its maximum absolute values to zero in the
“flanks” of the nominal normal distribution. The latter is a region in which it is most
difficult to tell whether a data point is an outlier or not, while outside that transition
region outliers are clearly identified and rejected, and inside the region data values are
left essentially unaltered. As a minor point, the reader should note that (5.41) implies
that the optimal ψ has the curious feature of vanishing exactly in a small interval
around zero. For example, if c = 0.013 the interval is (−0.032, 0.032), which is so
small it is not visible in the figure.

Svarc, Yohai and Zamar (2002) considered the two optimization problems stated
above, but used the actual maximum bias MB(ε, β̂1) for a range of positive values
of ε instead of the approximation given by the contamination sensitivity CS(β̂1).
They calculated the optimal ψ and showed numerically that for ε ≤ 0.20 it is almost
identical to the one based on the contamination sensitivity. Therefore the optimal
solution corresponding to an infinitesimal contamination is a good approximation to
the one corresponding to ε > 0, at least for ε ≤ 0.20.
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Figure 5.15 Optimal (—) and bisquare (- - -) ψ-functions with efficiency 0.95

5.10 The exact fit property

The so-called exact fit property states essentially that if a proportion α of observations
lies exactly on a subspace, and 1 − α is less than the BP of a regression and scale
equivariant estimate, then the fit given by the estimate coincides with the subspace.
More precisely, let the FBP of β̂ be ε* = m*/n, and let the dataset contain q points
such that yi = x′

iγ for some γ. We prove in Section 5.16.3 that if q ≥ n − m* then

β̂ = γ. For example, in the location case if more than half the sample points are
concentrated at x0, then the median coincides with x0. In practice if a sufficiently
large number q of observations satisfy an approximate linear fit yi ≈ x′

iγ for some

γ, then the estimate coincides approximately with that fit: β̂ ≈ γ.

The exact fit property implies that if a dataset is composed of two linear substruc-
tures, an estimate with a high BP will choose to fit one of them, and this will allow
the other to be discovered through the analysis of the residuals. A nonrobust estimate
such as LS will instead try to make a compromise fit, with the undesirable result that
the existence of two structures passes unnoticed.

Example 5.3 Jalali-Heravi and Knouz (2002) measured for 32 chemical compounds
a physical property called the Krafft point, together with several molecular descrip-
tors, in order to find a predictive equation.
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Table 5.6 Krafft point data

Heat Krafft pt. Heat Krafft pt.

296.1 7.0 261 48.0
303.0 16.0 267 50.0
314.3 11.0 274 62.0
309.8 20.8 281 57.0
316.7 21.0 307 20.2
335.5 31.5 306 0.0
330.4 31.0 320 8.1
328.0 25.0 334 24.2
337.2 38.2 347 36.2
344.1 40.5 307 0.0
341.7 30.0 321 12.5
289.3 8.0 335 26.5
226.8 22.0 349 39.0
240.5 33.0 378 36.0
247.4 35.5 425 24.0
254.2 42.0 471 19.0

Table 5.6 gives the Krafft points and one of the descriptors, called heat of forma-
tion. Figure 5.16 shows the data with the LS and the MM fits. It is seen that there
are two linear structures, and that the LS estimate fits neither of them, while MM
fits the majority of the observation. The points in the smaller group correspond to
compounds called sulfonates (code krafft).

5.11 Generalized M-estimates

In this section we treat a family of estimates which is of historical importance. The
simplest way to robustify a monotone M-estimate is to downweight the influential
xi ’s to prevent them from dominating the estimating equations. Hence we may define
an estimate by

n∑
i=1

ψ

(
ri (β)

σ̂

)
xi W (d(xi )) = 0 (5.42)

where W is a weight function and d(x) is some measure of the “largeness” of x. Here
ψ is monotone and σ̂ is simultaneously estimated by an M-estimating equation of the
form (5.22). For instance, to fit a straight line yi = β0 + β1xi + εi , we may choose

d(xi ) =
∣∣xi − μ̂x

∣∣
σ̂ x

(5.43)
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Figure 5.16 Krafft point data: consequences of the exact fit property

where μ̂x and σ̂ x are respectively robust location and dispersion statistics of the xi ’s,
such as the median and MAD. In order to bound the effect of influential points W
must be such that W (t)t is bounded.

More generally, we may let the weights depend on the residuals as well as the
predictor variables and use a generalized M-estimate (a “GM-estimate”) β̂ defined
by

n∑
i=1

η

(
d(xi ),

ri
(
β̂

)
σ̂

)
xi = 0 (5.44)

where for each s, η(s, r ) is a nondecreasing and bounded ψ-function of r , and σ̂ is
obtained by a simultaneous M-scale estimate equation of the form

1

n

n∑
i=1

ρscale

(
ri (β)

σ̂

)
= δ.

Two particular forms of GM-estimate have been of primary interest in the literature.
The first is the estimate (5.42), which corresponds to the choice η(s, r ) = W (s)ψ(r )
and is called a “Mallows estimate” (Mallows, 1975). The second form is the choice

η(s, r ) = ψ(sr )

s
, (5.45)
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which was first proposed by Schweppe, Wildes and Rom (1970) in the context of
electric power systems.

The GM-estimate with the Schweppe function (5.45) is also called the “Hampel–
Krasker–Welsch” estimate (Krasker and Welsch, 1982). When ψ is Huber’s ψk, it is
a solution to Hampel’s problem (Section 3.5.4). See Section 5.16.6 for details.

Note that the function d(x) in (5.43) depends on the data, and for this reason
it will be better to denote it by dn(x). The most usual way to measure largeness is
as a generalization of (5.43). Let μ̂n and Σ̂n be a robust location vector and robust
dispersion matrix, to be further studied in Chapter 6. Then dn is defined as

dn (x) = (
x − μ̂n

)′
�̂−1

n

(
x − μ̂n

)
. (5.46)

In the case where μ̂n and Σ̂n are the sample mean and covariance matrix,
√

dn (x) is
known as the Mahalanobis distance.

Assume that μ̂n and Σ̂n converge in probability to μ and � respectively. With
this assumption it can be shown that if the errors are symmetric, then the IF of a
GM-estimate in the model (5.1)–(5.2) is

IF((x0, y0) , F) = σ η

(
d(x0),

y0 − x′
0β

σ

)
B−1x0 (5.47)

with

B = −Eη̇
(

d(x),
u

σ

)
xx′, η̇(s, r ) = ∂η(s, r )

∂r
(5.48)

and

d (x) = (x − μ)′ �−1 (x − μ) .

Hence the IF is the same as would be obtained from (3.47) using d instead of dn. It
can be shown that β̂ is asymptotically normal, and as a consequence of (5.47), the
asymptotic covariance matrix of β̂ is

σ 2 B−1′CB−1 (5.49)

with

C = Eη

(
d (x) ,

y − x′β
σ

)2

xx′.

It follows from (5.47) that GM-estimates have several attractive properties:� If η(s, r )s is bounded, then their IF is bounded.� The same condition ensures a positive BP (Maronna et al. 1979).� They are defined by estimating equations, and hence easy to compute like ordinary
monotone M-estimates.

However, GM-estimates also have several drawbacks:� Their efficiency depends on the distribution of x: if x is heavy tailed they cannot be
simultaneously very efficient and very robust.
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normal, the BP is O(p−1/2) (Maronna et al., 1979).� To obtain affine equivariance it is necessary that μ̂n and �̂n used in (5.46) are affine
equivariant (see Chapter 6). It will be seen in Chapter 6 that computing robust
affine equivariant multivariate estimates presents the same computational difficul-
ties we have seen for redescending M-estimates, and hence combining robustness
and equivariance entails losing computational simplicity, which is one important
feature of GM-estimates.� A further drawback is that the simultaneous estimation of σ reduces the BP, espe-
cially for large p (Maronna and Yohai, 1991).

For these reasons GM-estimates, although much treated in the literature, are not
a good choice except perhaps for small p. However, their computational simplicity is
attractive, and they are much used in power systems. See for example Mili, Cheniae,
Vichare and Rousseeuw (1996) and Pires, Simões Costa and Mili (1999).

5.12 Selection of variables

In many situations the main purpose of fitting a regression equation is to predict
the response variable. If the number of predictor variables is large and the number
of observations relatively small, fitting the model using all the predictors will yield
poorly estimated coefficients, especially when predictors are highly correlated. More
precisely, the variances of the estimated coefficients will be high and therefore the
forecasts made with the estimated model will have a large variance too. A common
practice to overcome this difficulty is to fit a model using only a subset of variables
selected according to some statistical criterion.

Consider evaluating a model using the mean squared error (MSE) of the forecast.
This MSE is composed of the variance plus the squared bias. Deleting some predictors
may cause an increase in the bias and a reduction of the variance. Hence the problem
of finding the best subset of predictors can be viewed as that of finding the best trade-
off between bias and variance. There is a very large literature on the subset selection
problem, when the LS estimate is used as an estimation procedure. See for example
Miller (1990), Seber (1984) and Hastie et al. (2001).

Let the sample be (xi , yi ), i = 1, . . . , n, where xi = (xi1, . . . , xip). The predictors
are assumed to be random but the case of fixed predictors is treated in a similar manner.
For each set C ⊂ {1, 2, . . . , p} let q = #(C) and xiC = (xi j ) j∈C ∈ Rq . Akaike’s
(1970) Final Prediction Error (FPE) criterion based on the LS estimate is defined as

FPE(C) = E
(
y0 − x′

0C β̂C

)2
(5.50)

where β̂C is the estimate based on the set C and (x0, y0) have the same joint distribution
as (xi , yi ) and are independent of the sample. The expectation on the right hand side of
(5.50) is with respect to both (x0, y0) and β̂C . Then it is shown that an approximately
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unbiased estimate of FPE is

FPE*(C) = 1

n

n∑
i=1

r2
iC

(
1 + 2

q

n

)
, (5.51)

where

riC = yi − x′
iC β̂C .

The first term of (5.51) evaluates the goodness of the fit when the estimate is β̂C and
the second term penalizes the use of a large number of explanatory variables. The
best subset C is chosen as the one minimizing FPE*(C).

It is clear, however, that a few outliers may distort the value of FPE*(C), so that
the choice of the predictors may be determined by a few atypical observations. To
robustify FPE we must note that not only must the regression estimate be robust, but
also the value of the criterion should not be sensitive to a few residuals.

We shall therefore robustify the FPE criterion by using for β̂ a robust M-estimate
(5.7) along with a robust error scale estimate σ̂ . In addition we shall bound the
influence of large residuals by replacing the square in (5.50) with a bounded ρ-
function, namely the same ρ as in (5.7). To make the procedure invariant under scale
changes the error must be divided by a scale σ , and to make consistent comparisons
among different subsets of the predictor variable σ must remain the same for all C.

Thus the proposed criterion, which will be called the robust final prediction error
(RFPE), is defined as

RFPE(C) = Eρ

(
y0 − x′

0C β̂C

σ

)
(5.52)

where σ is the asymptotic value of σ̂ .

To estimate RFPE for each subset C we first compute

β̂C = arg min
β∈Rq

n∑
i=1

ρ

(
yi − x′

iCβ

σ̂

)
where the scale estimate σ̂ is based on the full set of variables, and define the estimate
by

RFPE*(C) = 1

n

n∑
i=1

ρ
(riC

σ̂

)
+ q

n

Â

B̂
(5.53)

where

Â = 1

n

n∑
i=1

ψ
(riC

σ̂

)2

, B̂ = 1

n

n∑
i=1

ψ ′
(riC

σ̂

)
. (5.54)

Note that if ρ(r ) = r2 then ψ(r ) = 2r, and the result is equivalent to (5.51) since σ̂

cancels out. The criterion (5.53) is justified in Section 5.16.7.
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When p is large, finding the optimal subset may be very costly in terms of compu-
tation time and therefore strategies to find suboptimal sets can be used. Two problems
arise:

� Searching over all subsets may be impractical because of the extremely large number
of subsets.� Each computation of RFPE* requires recomputing a robust estimate β̂C for
each C, which can be very time consuming when performed a large number of
times.

In the case of the LS estimate there exist very efficient algorithms to compute the
classical FPE (5.51) for all subsets (see the references above) and so the first problem
above is tractable for the classical approach if p is not too large. But computing
a robust estimate β̂C for all subsets C would be infeasible unless p were small.
A simple but frequently effective suboptimal strategy is stepwise regression: add or
remove one variable at a time (“forward” or “backward” regression), choosing the one
whose inclusion or deletion yields the lowest value of the criterion. Various simulation
studies indicate that the backward procedure is better. Starting with C = {1, . . . , p}
we remove one variable at a time. At step k (= 1, . . . , p − 1) we have a subset C
with #(C) = p − k + 1, and the next predictor to be deleted is found by searching
over all subsets of C of size p − k to find the one with smallest RFPE*.

The second problem above arises because robust estimates are computationally
intensive, the more so when there are a large number of predictors. A simple way
to reduce the computational burden is to avoid repeating the subsampling for each
subset C by computing β̂C , starting from the approximation given by the weighted
LS estimate with weights wi obtained from the estimate corresponding to the full
model.

To demonstrate the advantages of using a robust model selection approach based
on RFPE*, we shall use a simulated dataset from a known model for which the
“correct solution” is clear. We generated n = 50 observations from the model yi =
β0 + x′

iβ1 + ui with β0 = 1 and β′
1 = (1, 1, 1, 0, 0, 0) , so that p = 7. The ui ’s and

xi j ’s are i.i.d. standard normal. Here a perfect model selection method will select the
variables {1, 2, 3}. To this dataset we added six outliers (x0, y0) with y0 = 20 and
x0 = 0 for three of them and x′

0 = (0, 0, 0, 1, 1, 1) for the other three, which should
have the effect of decreasing the estimates of the first three slopes and increasing those
of the last three. We then applied the backward stepwise procedure using both the
classical LS estimate with the C p criterion, and our proposed robust RFPE* criterion.
Table 5.7 shows the results (code modelselection). The minima of the criteria are
attained by the sets {1, 2, 3} for the robust criterion and by {4, 5, 6} for the classical
one.

Other approaches to robust model selection were given by Qian and Künsch
(1998), Ronchetti and Staudte (1994) and Ronchetti, Field and Blanchard (1997).
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Table 5.7 Variable selection for simulated data

LS Robust

Variable C p Variable RFPE*

1 2 4 5 6 269 1 2 3 5 6 15.37
2 4 5 6 261 1 2 3 6 15.14

4 5 6 260 1 2 3 15.11
5 6 263 2 3 18.19

5.13 Heteroskedastic errors

The asymptotic theory for M-estimates, which includes S- and MM-estimates, has
been derived under the assumption that the errors are i.i.d. and hence homoskedastic.

These assumptions do not always hold in practice. When the yi ’s are time series
or spatial variables the errors may be correlated. And in many cases the variability
of the error may depend on the explanatory variables, in particular the conditional
variance of y given x may depend on β′x = E (y|x) .

Actually the assumptions of independent and homoskesdastic errors are not nec-
essary for the consistency and asymptotic normality of M-estimates. In fact, it can
be shown that these properties hold under much weaker conditions. Nevertheless we
can mention two problems:� The estimates may have lower efficiency than others which take into account the

correlation or heteroskedasticity of the errors.� The asymptotic covariance matrix of M-estimates may be different from vV−1
x given

in (5.14), which was derived assuming i.i.d. errors. Therefore the estimate Ṽx

given in Section 5.8 would not converge to the true asymptotic covariance ma-
trix of β̂.

We deal with these problems in the next two subsections.

5.13.1 Improving the efficiency of M-estimates

To improve the efficiency of M-estimates under heteroskedasticity, the dependence
of the error scale on x should be included in the model. For instance, we can replace
model (5.1) by

yi = β′xi + h(λ,β′x)ui ,

where the ui ’s are i.i.d. and independent of xi , andλ is an additional vector parameter.
In this case the error scales are proportional to h2(λ,β′x).
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Observe that if we knew h(λ,β′x), then the transformed variables

y*
i = yi

h(λ,β′x)
, x*

i = xi

h(λ,β′x)

would follow the homoskedastic regression model

y*
i = β′x*

i + ui .

This suggests the following procedure to obtain robust estimates of β and λ:

1. Compute an initial robust estimate β̂0 for homoskedastic regression, e.g., β̂0 may
be an MM-estimate.

2. Compute the residuals ri (β̂0).
3. Use these residuals to obtain an estimate λ̂ of λ. For example, if

h(λ, t) = exp (λ1 + λ2|t |),

then λ can be estimated by a robust linear fit of log(|ri (β̂0)|) on |β̂′
0xi |.

4. Compute a robust estimate for homoskedastic regression based on the transformed
variables

y*
i = yi

h(λ̂, β̂
′
0x)

, x*
i = xi

h(λ̂, β̂
′
0x)

.

Steps 1–4 may be iterated.
Robust methods for heteroskedastic regression have been proposed by Carroll and

Ruppert (1982) who used monotone M-estimates; by Giltinan, Carroll and Ruppert
(1986) who employed GM-estimates, and by Bianco, Boente and Di Rienzo (2000)
and Bianco and Boente (2002) who defined estimates with high BP and bounded
influence starting with an initial MM-estimate followed by one Newton–Raphson
step of a GM-estimate.

5.13.2 Estimating the asymptotic covariance matrix under
heteroskedastic errors

Simpson, Carroll and Ruppert (1992) proposed an estimate for the asymptotic covari-
ance matrix of regression GM-estimates which does not require homoskedasticity but
requires symmetry of the error distribution. Croux, Dhaene and Hoorelbeke (2003)
proposed a method to estimate the asymptotic covariance matrix of a regression
M-estimate which requires neither homoskedasticity nor symmetry. This method can
also be applied to simultaneous M-estimates of regression of scale (which includes
S-estimates) and to MM-estimates.

We shall give some details of the method for the case of MM-estimates. Let γ̂ and
σ̂ be the initial S-estimate used to compute the MM-estimate and the corresponding
scale estimate, respectively. Since γ̂ and σ̂ are M-estimates of regression and of scale,
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they satisfy equations of the form

n∑
i=1

ψ1

(
ri (γ̂)

σ̂

)
xi = 0, (5.55)

1

n

n∑
i=1

[
ρ1

(
ri (γ̂)

σ̂

)
− δ

]
= 0, (5.56)

with ψ1 = ρ ′
1. The final MM-estimate β̂ is a solution of

n∑
i=1

ψ2

(
ri (β̂)

σ̂

)
xi = 0. (5.57)

To explain the proposed method we need to express the system (5.55)–(5.56)–
(5.57) as a unique set of M-estimating equations. To this end let the vector γ represent
the values taken on by γ̂. Let z = (x,y). For γ,β ∈ R p and σ ∈ R put α = (γ ′,σ ,

β′)′ ∈ R2p+1, and define the function

�(z,α) = (�1(z,α),�2(z,α), �3(z,α))

where

�1(z,α) = ψ1

(
y − γ ′x

σ

)
x

�2(z,α) = ρ1

(
y − γ ′x

σ

)
−δ

�3(z,α) = ψ2

(
y − β′x

σ

)
x.

Then α̂ = (γ̂, σ̂ , β̂) is an M-estimate satisfying

n∑
i=1

�(zi , α̂) = 0,

and therefore according to (3.48), its asymptotic covariance matrix is

V = A−1BA′−1

with

A = E
[
�(z, α)�(z, α)′

]
and

B = E

(
∂�(z, α)

∂α

)
,

where the expectation is calculated under the model y = x′β+ u and taking γ = β.
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Then V can be estimated by

V̂ = Â−1B̂Â′−1

where Â and B̂ are the empirical versions of A and B obtained by replacing α with
α̂.

Observe that the only requirement for V̂ to be a consistent estimate of V is that
the observations (x1, y1), . . . , (xn, yn) be i.i.d., but this does not require any condition
on the conditional distribution of y given x, e.g., homoskedasticity.

Croux et al. (2003) also consider estimates of V when the errors are not indepen-
dent.

5.14 *Other estimates

5.14.1 τ -estimates

These estimates were proposed by Yohai and Zamar (1988). They have a high BP
and a controllable normal distribution efficiency, but unlike MM-estimates they do
not require a preliminary scale estimate. Let σ̂ (r) be a robust M-scale based on
r = (r1, . . . , rn), namely the solution of

1

n

n∑
i=1

ρ0

(ri

σ̂

)
= δ, (5.58)

and define the scale τ as

τ (r)2 = σ̂ (r)2 1

n

n∑
i=1

ρ

(
ri

σ̂ (r)

)
(5.59)

where ρ0 and ρ are bounded ρ-functions. Put r(β) = (r1(β), . . . ,rn(β)) with
ri (β) = yi − x′

iβ (i = 1, . . . , n). Then a regression τ -estimate is defined by

β̂ = arg min
β

τ (r (β) ). (5.60)

A τ -estimate minimizes a robust scale of the residuals, but unlike the S-estimates
of Section 5.6.1 it has a controllable efficiency. The intuitive reason is that the LS
estimate is obtained as a special case of (5.60) whenρ(r ) = r2 so that τ (r)2 = ave

(
r2

)
,

and hence by an adequate choice of ρ the estimate can be made arbitrarily close to
the LS estimate, and so arbitrarily efficient at the normal distribution.

Yohai and Zamar (1988) showed that β̂ satisfies an M-estimating equation (5.8)
where ψ is a linear combination of ρ ′ and ρ ′

0 with coefficients depending on the

data. From this property it is shown that β̂ is asymptotically normal. Its asymptotic
efficiency at the normal distribution can be adjusted to be arbitrarily close to one, just
as in the case of MM-estimates. It is also shown that its BP is the same as that of an
S-estimate based on ρ0, and so by adequately choosing ρ0 the estimate can attain the
maximum BP for regression estimates.
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Numerical computation of these estimates follows the same lines as for S-
estimates. See Yohai and Zamar (1988).

5.14.2 Projection estimates

Note that the residuals of the LS estimate are uncorrelated with any linear combination
of the predictors. In fact the normal equations (4.13) imply that for any λ ∈ R p the LS
regression of the residuals ri on the projections λ′xi is zero, since

∑n
i=1 riλ

′xi = 0.

The LS estimate of regression through the origin is defined for z = (z1, . . . , zn)′ and
y = (y1, . . . , yn)′ as

b(z, y) =
∑n

i=1 zi yi∑n
i=1 z2

i

,

and it follows that the LS estimate β̂ of y on x satisfies

b(Xλ, r(β̂)) = 0 ∀ λ ∈ R p, λ �= 0. (5.61)

A robust regression estimate could be obtained by (5.61) using for b a robust
estimate of regression through the origin. But in general it is not possible to obtain
equality in (5.61). Hence we must content ourselves with making b “as small as pos-
sible”. Let σ̂ be a robust scale estimate, such as σ̂ (z) = Med(|z|). Then the projection
estimates for regression (“P-estimates”) proposed by Maronna and Yohai (1993) are
defined as

β̂ = arg min
β

(
max
λ�=0

∣∣b(Xλ, r(β̂))
∣∣ σ̂ (Xλ)

)
(5.62)

which means that the residuals are “as uncorrelated as possible” with all projections.
Note that the condition λ �= 0 can be replaced by ‖λ‖ = 1. The factor σ̂ (Xλ) is
needed to make the regression estimate scale equivariant.

The “median of slopes” estimate for regression through the origin is defined as
the conditional median

b(x, y) = Med

(
yi

xi

∣∣∣∣ xi �= 0

)
. (5.63)

Martin et al. (1989) extended Huber´s minimax result for the median (Section 3.8.5)
showing that (5.63) minimizes asymptotic bias among regression invariant estimates.
Maronna and Yohai (1993) studied P-estimates with b given by (5.63), which they
called MP estimates, and found that their maximum asymptotic bias is lower than that
of MM- and S-estimates. They have n−1/2 consistency rate, but are not asymptotically
normal, which makes their use difficult for inference.

Maronna and Yohai (1993) show that if the xi are multivariate normal, then the
maximum asymptotic bias of P-estimates does not depend on p, and is not larger than
twice the minimax asymptotic bias for all regression equivariant estimates.

Numerical computation of P-estimates is difficult because of the nested optimiza-
tion in (5.62). An approximate solution can be found by reducing the searches over
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β andλ to finite sets. A set of N candidate estimatesβk, k = 1, . . . , N , is obtained by
subsampling as in Section 5.7.2, and from them the candidate directions are computed
as

λ jk = β j − βk

‖β j − βk‖
, j �= k.

Then (5.62) is replaced by

β̂ = arg min
k

(
max
j �=k

∣∣b(Xλ j , r(β̂k))
∣∣ σ̂ (

Xλ j
))

.

The resulting approximate estimate is regression and affine equivariant. In principle
the procedure requires N (N − 1) evaluations, but this can be reduced to O(N log N )
by a suitable trick.

5.14.3 Constrained M-estimates

Mendes and Tyler (1996) define constrained M-estimates (CM-estimates for short)
as in (4.36)

(β̂, σ̂ ) = arg min
β,σ

{
1

n

n∑
i=1

ρ

(
ri (β)

σ

)
+ log σ

}
(5.64)

with the restriction

1

n

n∑
i=1

ρ

(
ri (β)

σ

)
≤ ε, (5.65)

where ρ is a bounded ρ-function and ε ∈ (0, 1). Note that if ρ is bounded (5.64)
cannot be handled without restrictions, for then σ → 0 would yield a trivial solution.

Mendes and Tyler show that CM-estimates are M-estimates with the same ρ. Thus
they are asymptotically normal with a normal distribution efficiency that depends only
on ρ (but not on ε), and hence the efficiency can be made arbitrarily high. Mendes and
Tyler also show that for a continuous distribution the solution asymptotically attains
the bound (5.65), so that σ̂ is an M-scale of the residuals. It follows that the estimate
has an asymptotic BP equal to min(ε, 1 − ε), and taking ε = 0.5 yields the maximum
BP.

5.14.4 Maximum depth estimates

Maximum regression depth estimates were introduced by Rousseeuw and Hubert
(1999). Define the regression depth of β ∈ R p with respect to a sample (xi , yi ) as

d(β) = 1

n
min
λ�=0

#

{
ri (β)

λ′xi
< 0,λ′xi �= 0

}
, (5.66)

where λ ∈ R p. Then the maximum depth regression estimate is defined as

β̂ = arg max
β

d(β). (5.67)
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The solution need not be unique. Since only the direction matters, the infimum in (5.66)
may be restricted to {‖λ‖ = 1}. Like the P-estimates of Section 5.14.2, maximum
depth estimates are based on the univariate projections λ′xi of the predictors. In the
case of regression through the origin, β̂ coincides with the median of slopes given
by (5.63). But when p > 1, the maximum asymptotic BP of these estimates at the
linear model (5.1) is 1/3, and for an arbitrary joint distribution of (x,y) it can only be
asserted to be ≥ 1/(p + 1).

Adrover, Maronna and Yohai (2002) discuss the relationships between maximum
depth and P-estimates. They derive the asymptotic bias of the former and compare
it to that of the MP-estimates defined in Section 5.14.2. Both biases turn out to be
similar for moderate contamination (in particular, the GESs are equal), while the
MP-estimate is better for large contamination. They define an approximate algorithm
for computing the maximum depth estimate, based on an analogous idea already
studied for the MP-estimate.

5.15 Models with numeric and categorical predictors

Consider a linear model of the form

yi = x′
1iβ1 + x′

2iβ2 + ui , i = 1, . . . n, (5.68)

where the x1i ∈ R p1 are fixed 0–1 vectors, such as a model with some categorical vari-
ables as in the case of the example in Section 1.4.2, and the x2i ∈ R p2 are continuous
random variables. In the model (5.68) the presence of the continuous variables means
that a monotone M-estimate would not be robust. On the other hand an S-estimate
will often be too expensive since a subsampling procedure would require at least
O(2p1+p2 ) evaluations; for models with categorical variables the number of param-
eters p1 is often beyond the reach of reasonable computing times. See the number
of subsamples required as a function of the number of parameters in Section 5.7.2,
and note for example that the model in Section 1.4.2 has p1 + p2 = 22 + 5 = 27
parameters. In any event the sub-sampling will be a waste if p2 � p1. Besides, in
an unbalanced structured design there is a high probability that a subsampling algo-
rithm yields collinear samples. For example, if there are five independent explanatory
dummy variables that take the value 1 with probability 0.1, then the probability of
selecting a noncollinear sample of size 5 is only 0.011!

Maronna and Yohai (2000) proposed an estimate based on the idea that if one
knewβ2 (respectivelyβ1) in (5.68), it would be natural to use a monotone M-estimate
(S-estimate) for the parameter β1 (the parameter β2). Let M(X, y) be a monotone
M-estimate such as L1. Then, for each β2 ∈ R p2 define

β*
1(β2) = M(X1, y − X2β2), (5.69)



JWBK076-05 JWBK076-Maronna February 16, 2006 18:8 Char Count= 0

160 LINEAR REGRESSION 2

where X1 and X2 are the matrices with the rows x′
i1 and x′

i2, respectively. Denote

the residuals of (5.68) by r(β̂1, β̂2) = y − X1β̂1 − X2β̂2, and let S(r) be an M-scale
estimate of the residuals r = (r1, . . . , rn). An MS-estimate (β̂1, β̂2) is defined by

β̂2 = arg min
β2

S(r(β*
1(β2),β2)) (5.70)

and β̂1 = β*
1(β̂2). This estimate is regression and affine equivariant. For example, if

(5.68) consists of p2 continuous predictors and an intercept, i.e., p1 = 1 and x1i ≡ 1
and M(X, y) is the L1 estimate, thenβ*

1(β2) = Med(y − X2β2). An MS-estimate was
used in the example of Section 1.4.2 and for the comparison of classical and robust
t-statistics and p-values in Section 5.8.

Rousseeuw and Wagner (1994), and Hubert and Rousseeuw (1996, 1997), have
proposed other approaches to this problem.

Example 5.4 Each row of the dataset algae (from Hettich and Bay, 1999) is a set of
90 measurements at a river in some place in Europe. There are 11 predictors. The
first three are categorical: the season of the year, river size (small, medium and large)
and fluid velocity (low, medium and high). The other eight are the concentrations of
several chemical substances. The response is the logarithm of the abundance of a
certain class of algae.

Figures 5.17 and 5.18 (code algae) are the normal Q–Q plots of the residuals
corresponding to the LS estimate and to the MS-estimate described above. The first
gives the impression of short-tailed residuals, while the residuals from the robust fit
indicate the existence of least two outliers.

Example 1.3 (continued) In the multiple linear regression Section 1.4.2 the response
variable was rate of unemployment and the predictor variables were PA, GPA, HS,
GHS, Region and Period. The last two are categorical variables with 22 and 2 param-
eters respectively, while the other predictors are continuous variables. The estimator
used for that example was the MS-estimate. Figures 1.4 and 1.5 revealed that for these
data the LS estimate found no outliers at all, while the MS-estimate found a number
of large outliers. In this example three of the LS and MS-estimate t-statistics and
p-values give opposite results using 0.05 as the level of the test:

Estimate Variable t-value p-value

MS Region 20 −1.0944 0.2811
LS Region 20 −3.0033 0.0048
MS HS 1.3855 0.1744
LS HS 2.4157 0.0209
MS Period2 2.1313 0.0400
LS Period2 0.9930 0.3273
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Figure 5.17 Algae data: normal Q–Q plot of LS residuals
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Figure 5.18 Algae data: normal Q–Q plot of robust residuals



JWBK076-05 JWBK076-Maronna February 16, 2006 18:8 Char Count= 0

162 LINEAR REGRESSION 2

For the “Region 20” level of the “Region” categorical variable and the HS variables
the LS fit declares these variables as significant while the robust fit declares them
insignificant. The opposite is the case for the Period2 level of the Period categorical
variable. This shows that outliers can have a large influence on the classical test
statistics of a LS fit.

5.16 *Appendix: proofs and complements

5.16.1 The BP of monotone M-estimates with random X

We assume σ is known and equal to one. The estimate verifies

ψ
(
y1 − x′

1β̂
)

x1 +
n∑

i=2

ψ
(
yi − x′

i β̂
)

xi = 0. (5.71)

Let y1 and x1 tend to infinity in such a way that y1/‖x1‖ → ∞. If β̂ remained
bounded, we would have

y1 − x′
1β̂ ≥ y1 − ‖x1‖

∥∥β̂∥∥ = ‖x1‖
(

y1

‖x1‖ − ∥∥β̂∥∥)
→ ∞.

Since ψ is nondecreasing, ψ
(
y1 − x′

1β̂
)

would tend to sup ψ > 0 and hence the first
term in (5.71) would tend to infinity, while the sum would remain bounded.

5.16.2 Heavy-tailed x

The behavior of the estimates under heavy-tailed x is most easily understood when
the estimate is the LS estimate and p = 1, i.e.,

yi = βxi + ui ,

where {xi } and {ui } are independent i.i.d. sequences. Then

β̂n =
∑n

i=1 xi yi

Tn
with Tn =

n∑
i=1

x2
i .

Assume Eui = 0 and Var(ui ) = 1. Then

Var
(
β̂n

∣∣ X
) = 1

Tn
and E

(
β̂n

∣∣ X
) = β,

and hence, by a well-known property of the variance (see, e.g., Feller, 1971),

Var(
√

nβ̂n) = n
{
E

[
Var

(
β̂n

∣∣ X
)] + Var

[
E

(
β̂n

∣∣ X
)]} = E

1

Tn/n
.
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If a = Ex2
i < ∞, the law of large numbers implies that Tn/n →p a, and under

suitable conditions on xi this implies that

E
1

Tn/n
→ 1

a
, (5.72)

hence

Var(
√

nβ̂n) → 1

a
;

that is, β̂ is n−1/2-consistent.
If instead Ex2

i = ∞, then Tn/n →p ∞, which implies that

Var(
√

nβ̂n) → 0,

and hence β̂ tends to β at a higher rate than n−1/2

A simple sufficient condition for (5.72) is that xi ≥ α for some α > 0, for then
n/Tn ≤ 1/α2 and (5.72) holds by the bounded convergence theorem (Theorem 10.6).
But the result can be shown to hold under more general assumptions.

5.16.3 Proof of the exact fit property

Define for t ∈ R

y* = y + t(y − Xγ).

Then the regression and scale equivariance of β̂ implies

β̂(X, y*) = β̂(X, y) + t
(
β̂(X, y) − γ

)
.

Since for all t, y* has at least q ≥ n − m* values in common with y, the above
expression must remain bounded, and this requires β̂(X, y) − γ = 0.

5.16.4 The BP of S-estimates

It will be shown that the finite BP of an S-estimate defined in Section 5.6.1 does not
depend on y, and that its maximum is given by (5.23)–(5.24).

This result has been proved by Rousseeuw and Leroy (1987) and Mili and Coakley
(1996) under slightly more restricted conditions. The main result of this section is the
following.

Theorem 5.1 Let m* be as in (5.9) and m*
max as in (5.24). Call m(δ) the largest

integer < nδ. Then:

(a) m* ≤ nδ,

(b) if [nδ] ≤ m*
max, then m* ≥ m(δ).
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It follows from this result that if nδ is not an integer and δ ≤ m*
max/n, then

m* = [nδ] , and hence the δ given by (5.25) yields m* = m*
max.

To prove the theorem we first need an auxiliary result.

Lemma 5.2 Consider any sequence rN = (
rN ,1, . . . , rN ,n

)
with σN = σ̂ (rN ). Then

(i) Let C = {
i : |rN ,i | → ∞}

. If #(C) > nδ, then σN → ∞.

(ii) Let D = {
i : |rN ,i | is bounded

}
. If #(D) > n − nδ, then σN is bounded.

Proof of lemma:

(i) Assume σN is bounded. Then the definition of σN implies

nδ ≥ lim
N→∞

∑
i∈C

ρ

(
rN ,i

σN

)
= #(C) > nδ,

which is a contradiction.
(ii) To show that σN remains bounded, assume that σN → ∞. Then rN ,i/σN → 0 for

i ∈ D, which implies

nδ = lim
N→∞

n∑
i=1

ρ

(
rN ,i

σN

)
= lim

N→∞

∑
i /∈D

ρ

(
rN ,i

σN

)
≤ n − #(D) < nδ,

which is a contradiction.

Proof of (a): It will be shown that m* ≤ nδ. Let m > nδ. Take C ⊂ {1, . . . , n}
with #(C) = m. Let x0 ∈ R p with ‖x0‖ = 1. Given a sequence (XN , yN ), define for
β ∈ R p

rN (β) = yN − XNβ.

Take (XN , yN ) such that

(xN ,i , yN ,i ) =
{

(Nx0, N 2) if i ∈ C
(xi , yi ) otherwise

(5.73)

It will be shown that the estimate β̂N based on (XN ,YN ) cannot be bounded.
Assume first that β̂N is bounded, which implies that |rN ,i | → ∞ for i ∈ C. Then

part (i) of the lemma implies that σ̂ (rN (β̂N )) → ∞. Since nδ/m < 1 = ρ(∞), con-
dition R3 of Definition 2.1 implies that there is a single value γ such that

ρ

(
1

γ

)
= nδ

m
. (5.74)

It will be shown that

1

N 2
σ̂ (rN (β̂N )) → γ. (5.75)
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In fact,

nδ =
∑
i /∈C

ρ

(
yi − x′

i β̂N

σ̂ N

)
+

∑
i∈C

ρ

(
N 2 − Nx′

0β̂N

σ̂ N

)
.

The first sum tends to zero. The second one is

mρ

(
1 − N−1x′

0β̂N

N−2σ̂ N

)
.

The numerator of the fraction tends to one. If a subsequence {N−2
j σ̂ N j } has a (possibly

infinite) limit t, then it must fulfill nδ = mρ (1/t) , which proves (5.75).
Now define β̃N = x0 N/2, so that rN (β̃N ) has elements

r̃N ,i = N 2

2
for i ∈ C, r̃N ,i = yi − x′

0xi
N

2
otherwise.

Since #
{
i :

∣∣̃rN ,i

∣∣ → ∞} = n, part (i) of the lemma implies that σ̂ (rN (β̃N )) → ∞,

and proceeding as in (5.75) yields

1

N 2
σ̂ (rN (β̃N )) → γ

2
,

and hence

σ̂ (rN (β̃N )) < σ̂ (rN (β̂N ))

for large N , so that β̂N cannot minimize σ.

Proof of (b): Let m ≤ m(δ) < nδ, and consider a contamination sequence in a set
C of size m. It will be shown that the corresponding estimate β̂N is bounded. Assume
first that β̂N → ∞. Then

i /∈ C, |rN ,i (β̂N )| → ∞ =⇒ β̂
′
N xN ,i �= 0,

and hence

#{i : |rN ,i (β̂N )| → ∞} ≥ #
{
β̂

′
N xN ,i �= 0, i /∈ C

}
= n − #

({
i : β̂

′
N xN ,i = 0

}
∪ C

)
.

The Bonferroni inequality implies that

#
({

i : β̂
′
N xN ,i = 0

}
∪ C

)
≤ #

{
i : β̂

′
N xN ,i = 0

}
+ #(C),

and #
{

i : β̂
′
N xN ,i = 0

}
≤ k*(X) by (4.56). Hence

#{i : |rN ,i (β̂N )| → ∞} ≥ n − k*(X) − m.

Now (4.58) implies that n − k*(X) ≥ 2m*
max + 1, and since

m ≤ m(δ) ≤ [nδ] ≤ m*
max,
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we have

#{i : |rN ,i (β̂N )| → ∞} ≥ 1 + m*
max ≥ 1 + [nδ] > nδ,

which by part (i) of the lemma implies σ̂ (rN (β̂N )) → ∞.

Assume now that β̂N is bounded. Then

#{i : |rN ,i (β̂N )| → ∞} ≤ m < nδ,

which by part (ii) of the lemma implies σ̂
(
rN (β̂N )

)
is bounded. Hence β̂N cannot be

unbounded. This completes the proof of the finite BP.
The least quantile estimate corresponds to the scale given by ρ(t) = I (|t | > 1) ,

and according to Problem 2.14 it has σ̂ = |r |(h) where |r |(i) are the ordered absolute
residuals, and h = n − [nδ] . The optimal choice of δ in (5.25) yields h = n − m*

max,

and formal application of the theorem would imply that this h yields the maximum
FBP. Actually the proof of the theorem does not hold because ρ is discontinuous and
hence does not fulfill (5.74), but the proof can be reworked for σ̂ = |r |(h) to show that
the result also holds in this case.

The asymptotic BP A proof similar to but much simpler than that of Theorem
5.1, with averages replaced by expectations, shows that in the asymptotic case ε* ≤ δ

and if δ ≤ (1 − α) /2 then ε* ≥ δ. It follows that ε* = δ for δ ≤ (1 − α) /2, and this
proves that the maximum asymptotic BP is (5.26).

5.16.5 Asymptotic bias of M-estimates

Let F = D(x,y) be Np+1(0, I). We shall first show that the asymptotic bias under
point mass contamination of M-estimates and of estimates which minimize a robust
scale does not depend on the dimension p.

To simplify the exposition we consider only the case of an M-estimate with known
scale σ = 1. Call (x0, y0) the contamination location. The asymptotic value of the
estimate is given by

β̂∞ = arg min
β

L (β) ,

where

L(β) = (1 − ε)EFρ(y − x′β) + ερ(y0 − x′
0β). (5.76)

Since D(y − x′β) = N(0, 1 + ‖β‖2) under F, we have

EFρ(y − x′β) = g (‖β‖) ,

where

g (t) = Eρ
(

z
√

1 + t2
)

, z ∼ N (0, 1) .

It is easy to show that g is an increasing function.
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By the affine equivariance of the estimate,
∥∥β̂∞

∥∥ does not change if we take x0

along the first coordinate axis, i.e., of the form x0 = (x0, 0, . . . , 0), and thus

L(β) = (1 − ε)g (‖β‖) + ερ(y0 − x0β1),

where β1 is the first coordinate of β.

Given β = (β1,β2, . . . ,βp), with β j �= 0 for some j ≥ 2, the vector β̃ =
(β1, 0, . . . , 0) has

∥∥β̃∥∥ < ‖β‖ , which implies g(
∥∥β̃∥∥) < g(‖β‖) and L(β̃) < L(β).

Then, we may restrict the search to the vectors of the form (β1, 0, . . . , 0), for which

L(β) = L1(β1) = (1 − ε)g(β1) + ερ(y0 − x0β1),

and therefore the value minimizing L1(β1) depends only on x0 and y0, and not on p,

which proves the initial assertion.
It follows that the maximum asymptotic bias for point mass contamination does

not depend on p. Actually, it can be shown that the maximum asymptotic bias for
unrestricted contamination coincides with the former, and hence does not depend on
p either.

The same results hold for M-estimates with the previous scale, and for S-estimates,
but the details are more involved.

5.16.6 Hampel optimality for GM-estimates

We now deal with general M-estimates for regression through the origin y = βx + u,

defined by

n∑
i=1

�(xi , yi ; β) = 0,

with � of the form

�(x, y; β) = η (x, y − xβ) x .

Assume σ is known and equal to one. It follows that the influence function is

IF((x0, y0) , F) = 1

b
η (x0, y0 − x0β) x0,

where

b = −Eη̇(x, y − βx)x2,

with η̇ defined in (5.48), and hence the GES is

γ * = sup
x0,y0

|IF((x0, y0) , F)| = 1

b
sup
s>0

K (s) , with K (s) = sup
r

|η(s, r )| .

The asymptotic variance is

v = 1

b2
Eη (x, y − xβ)2 x2.
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The direct and dual Hampel problems can now be stated as minimizing v subject
to a bound on γ *, and minimizing γ * subject to a bound on v, respectively.

Let F correspond to the model (5.1)–(5.2), with normal u. The MLE corresponds
to

�0(x, y; β) = (y − xβ) x .

Since the estimates are equivariant, it suffices to treat the case ofβ = 0.Proceeding
as in Section 3.8.7, it follows that the solutions to both problems,

�̃(x, y; β) = η̃ (x, y − xβ) x,

have the form �̃(x, y; β) = ψk (�0(x, y; β)) for some k > 0, where ψk is Huber’s
ψ, which implies that η̃ has the form (5.45).

The case p > 1 is more difficult to deal with, since β—and hence the IF—are
multidimensional. But the present reasoning gives some justification for the use of
(5.45).

5.16.7 Justification of RFPE*

We are going to give a heuristic justification of (5.53). Let (xi , yi ), i = 0, 1, . . . , n,
be i.i.d. and satisfy the model

yi = x′
iβ+ ui (i = 0, . . . , n), (5.77)

where ui and xi are independent, and

Eψ
(ui

σ

)
= 0. (5.78)

Call C0 = {
j : β j �= 0

}
the set of variables that actually have some predictive

power. Given C ⊆ {1, . . . , p} let

βC = (
β j , j ∈ C

)
, xiC = (

xi j : j ∈ C
)
, i = 0, . . . , n.

Put q = #(C) and call β̂C ∈ Rq the estimate based on {(xiC , yi ), i = 1, . . . , n}.
Then the residuals are ri = yi − β̂

′
C xiC for i = 1, . . . , n.

Assume that C ⊇ C0. Then x′
iβ = x′

iCβC and hence the model (5.77) can be
rewritten as

yi = x′
iCβC + ui , i = 0, . . . , n. (5.79)

Put Δ = β̂C − βC . A second-order Taylor expansion yields

ρ

(
y0 − β̂

′
C x0C

σ

)
= ρ

(
u0 − x′

0CΔ
σ

)

≈ ρ
(u0

σ

)
− ψ

(u0

σ

) x′
0CΔ
σ

+ 1

2
ψ ′

(u0

σ

) (
x′

0CΔ
σ

)2

. (5.80)



JWBK076-05 JWBK076-Maronna February 16, 2006 18:8 Char Count= 0

*APPENDIX: PROOFS AND COMPLEMENTS 169

The independence of u0 and β̂C , and (5.78), yield

Eψ
(u0

σ

)
x′

0CΔ = Eψ
(u0

σ

)
E(x′

0CΔ) = 0. (5.81)

According to (5.14), we have for large n

D
(√

nΔ
) ≈ N

(
0,

σ 2 A

B2
V−1

)
,

where

A = Eψ2
( u

σ

)
, B = Eψ ′

( u

σ

)
, V = E(x0C x′

0C ).

Since u0, � and x0 are independent we have

Eψ ′
(u0

σ

) (
�′x0C

σ

)2

= Eψ ′
(u0

σ

)
E

(
�′x0C

σ

)2

≈ B
A

nB2
Ex′

0C V−1x0C . (5.82)

Let U be any matrix such that V = UU′, and hence such that

E(U−1x0C )(U−1x0C )′ = Iq ,

where Iq is the q × q identity matrix. Then

Ex′
0C V−1x0C = E

∥∥U−1x0C

∥∥2 = trace(Iq ) = q, (5.83)

and hence (5.80), (5.81) and (5.82) yield

RFPE(C) ≈ Eρ
(u0

σ

)
+ q

2n

A

B
. (5.84)

To estimate RFPE(C) using (5.84) we need to estimate Eρ(u0/σ ). A second-order
Taylor expansion yields

1

n

n∑
i=1

ρ
(ri

σ̂

)
= 1

n

n∑
i=1

ρ

(
ui−x′

iC�

σ̂

)

≈ 1

n

n∑
i=1

ρ
(ui

σ̂

)
− 1

nσ̂

n∑
i=1

ψ
(ui

σ̂

)
x′

iC�

+ 1

2nσ̂ 2

n∑
i=1

ψ ′
(ui

σ̂

) (
x′

iC�
)2

. (5.85)

The estimate β̂C satisfies the equation

n∑
i

ψ
(riC

σ̂

)
xiC = 0, (5.86)
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and a first-order Taylor expansion of (5.86) yields

0 =
n∑
i

ψ
(riC

σ̂

)
xiC =

n∑
i

ψ

(
ui−x′

iC�

σ̂

)
xiC

≈
n∑
i

ψ
(ui

σ̂

)
xiC − 1

σ̂

n∑
i=1

ψ ′
(ui

σ̂

)
(x′

iC�)xiC ,

and hence

n∑
i

ψ
(ui

σ̂

)
xiC ≈ 1

σ̂

n∑
i=1

ψ ′
(ui

σ̂

)
(x′

iC�)xiC . (5.87)

Replacing (5.87) in (5.85) yields

1

n

n∑
i=1

ρ
(ri

σ̂

)
≈ 1

n

n∑
i=1

ρ
(ui

σ̂

)
− 1

2nσ̂ 2

n∑
i=1

ψ ′
(ui

σ̂

)
(x′

iC�)2.

Since

1

n

n∑
i=1

ψ ′
(ui

σ̂

)
xiC x′

iC →p Eψ ′
(u0

σ

)
E(x0C x′

0C ) = BV,

we obtain using (5.83)

1

n

n∑
i=1

ρ
(ri

σ̂

)
≈ 1

n

n∑
i=1

ρ
(ui

σ̂

)
− B

2σ̂ 2
�′V�

= 1

n

n∑
i=1

ρ
(ui

σ̂

)
− A

2Bn
q,

Hence by the law of large numbers and the consistency of σ̂

Eρ
(u0

σ

)
≈ 1

n

n∑
i=1

ρ
(ui

σ̂

)
≈ 1

n

n∑
i=1

ρ
(ri

σ̂

)
+ Aq

2Bn
(5.88)

and finally inserting (5.88) in (5.84) yields

RFPE(C) ≈ 1

n

n∑
i=1

ρ
(ri

σ̂

)
+ Aq

Bn
≈ 1

n

n∑
i=1

ρ
(ri

σ̂

)
+ Âq

B̂n
= RFPE*(C).

When C does not contain C0, it can be shown that the use of RFPE* continues to
be asymptotically valid.

5.16.8 A robust multiple correlation coefficient

In a multiple linear regression model, the R2 statistic measures the proportion of the
variation in the dependent variable accounted for by the explanatory variables. It is
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defined for a model with intercept (4.5) as

R2 = S2
0 − S2

S2
0

with

S2 =
n∑

i=1

r2
i , S2

0 =
n∑

i=1

(yi − y)2, (5.89)

where ri are the LS residuals.
Note that y is the LS estimate of the regression coefficients under model (4.5)

with the restriction β1 = 0.

Recall that S2/(n − p*) and S2
0/(n − 1) are unbiased estimates of the error vari-

ance for the complete model, and for the model with β1 = 0, respectively. To take
the degrees of freedom into account, an adjusted R2 is defined by

R2
a = S2

0/(n − 1) − S2/(n − p*)

S2
0/(n − p)

. (5.90)

If instead of the LS estimate we use an M-estimate with general scale defined as
in (5.7), a robust R2 statistic and adjusted robust R2 statistic can be defined by (5.89)
and (5.90) respectively but replacing S2 and S2

0 with

S2 = min
β∈R p

∑
ρ

(
ri (β)

σ̂

)
, S2

0 = min
β0∈R

p∑
i=1

ρ

(
yi − β0

σ̂

)
.

Croux and Dehon (2003) have considered alternative definitions of robust R2.

5.17 Problems

5.1. Show that S-estimates are regression, affine and scale equivariant.
5.2. The stack loss dataset (Brownlee, 1965, p.454) given in Table 5.8 contains

observations from 21 days’ operation of a plant for the oxidation of ammonia as a
stage in the production of nitric acid. The predictors X1, X2, X3 are respectively
the air flow, the cooling water inlet temperature, and the acid concentration, and
the response Y is the stack loss. Fit a linear model to these data using the LS
estimate, and the MM-estimates with efficiencies 0.95 and 0.85, and compare
the results. Fit the residuals vs. the day. Is there a pattern?.

5.3. The dataset alcohol (Romanelli, Martino and Castro, 2001) gives for 44
aliphatic alcohols the logarithm of their solubility together with six physic-
ochemical characteristics. The interest is in predicting the solubility. Compare
the results of using the LS and MM-estimates to fit the log-solubility as a
function of the characteristics.

5.4. The dataset waste (from Chatterjee and Hadi, 1988) contains for 40 regions the
solid waste and five variables on land use. Fit a linear model to these data using
the LS, L1 and MM-estimates. Draw the respective Q–Q plots of residuals,
and the plots of residuals vs. fitted values, and compare the estimates and the
plots.
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Table 5.8 Stack loss data

Day X1 X2 X3 Y

1 80 27 58.9 4.2
2 80 27 58.8 3.7
3 75 25 59.0 3.7
4 62 24 58.7 2.8
5 62 22 58.7 1.8
6 62 23 58.7 1.8
7 62 24 59.3 1.9
8 62 24 59.3 2.0
9 58 23 58.7 1.5

10 58 18 58.0 1.4
11 58 18 58.9 1.4
12 58 17 58.8 1.3
13 58 18 58.2 1.1
14 58 19 59.3 1.2
15 50 18 58.9 0.8
16 50 18 58.6 0.7
17 50 19 57.2 0.8
18 50 19 57.9 0.8
19 50 20 58.0 0.9
20 56 20 58.2 1.5
21 70 20 59.1 1.5

5.5. Show that the “median of slopes” estimate (5.63) is a GM-estimate (5.44).
5.6. For the “median of slopes” estimate and the model yi = βxi + ui , calculate the

following, assuming that P (x = 0) = 0:
(a) the asymptotic breakdown point
(b) the influence function and the gross-error sensitivity
(c) the maximum asymptotic bias [hint: use (3.67)].

5.7. Show that when using the shortcut (5.38), the number of times that the M-scale
is computed has expectation

∑N
i=1(1/ i) ≤ log N , where N is the number of

subsamples.
5.8. The minimum α-quantile regression estimate is defined for α ∈ (0, 1) as the

value of β minimizing the α-quantile of
∣∣y − x′β

∣∣ . Show that this estimate is
an S-estimate for the scale given by ρ(u) = I (|u| > 1) and δ = 1 − α. Find its
asymptotic breakdown point.

5.9. For each β let c(β) be the minimum c such that

#{i : β′xi − c ≤ yi ≤ β′xi + c} ≥ n/2.

Show that the LMS estimate minimizes c(β).
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5.10. Let {(x1, y1), . . . , (xn, yn)} be a regression data set, and β̂ an S-estimate with
finite BP equal to ε*. Let D ⊂ (1, . . . , n) with # (D) < nε*.

(a) Show that there exists K such that
(i) β̂ as a function of the yi ’s is constant if the yi ’s with i /∈ D remain

fixed and those with i ∈ D are changed in any way such that |yi | ≥ K .

(ii) There exists σ̂ depending only on D such that β̂ verifies∑
i /∈D

ρ

(
ri (β̂)

σ̂

)
= min.

(b) Discuss why the former property does not mean that the value of the estimate
is the same if we omit the points (xi , yi ) with i ∈ D.

(c) Show that property (a) holds also for MM-estimates.
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Multivariate Analysis

6.1 Introduction

Multivariate analysis deals with situations in which several variables are measured on
each experimental unit. In most cases of interest it is known or assumed that some form
of relationship exists among the variables, and hence that considering each of them
separately would entail a loss of information. Some possible goals of the analysis
are: reduction of dimensionality (principal components, factor analysis, canonical
correlation); identification (discriminant analysis); explanatory models (multivariate
linear model). The reader is referred to Seber (1984) and Johnson and Wichern (1998)
for further details.

A p-variate observation is now a vector x = (x1, . . . , x p)′ ∈ R p and a distribution
F now means a distribution on R p. In the classical approach, location of a p-variate
random variable x is described by the expectation μ = Ex = (Ex1, . . . , Exn)′ and
dispersion is described by the covariance matrix

Var(x) = E((x − μ)(x − μ)′).

It is well known that Var(x) is symmetric and positive semidefinite, and that for each
constant vector a and matrix A

E(Ax + a) = A Ex + a, Var(Ax + a) = AVar(x)A′. (6.1)

Classical multivariate methods of estimation are based on the assumption of an
i.i.d. sample of observations X = {x1, . . . , xn} with each xi having a p-variate normal
Np(μ,Σ) distribution with density

f (x) = 1

(2π )p/2
√|Σ| exp

(
−1

2
(x − μ)′�−1(x − μ)

)
, (6.2)

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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where Σ = Var(x) and |Σ| stands for the determinant of Σ. The contours of constant
density are the elliptical surfaces

{z : (z − μ)′Σ−1(z − μ) = c}.
Assuming x is multivariate normal implies that for any constant vector a, all linear
combinations a′x are normally distributed. It also implies that since the conditional
expectation of one coordinate with respect to any group of coordinates is a linear
function of the latter, the type of dependence among variables is linear. Thus methods
based on multivariate normality will yield information only about linear relationships
among coordinates. As in the univariate case, the main reason for assuming normality
is simplicity.

It is known that under the normal distribution (6.2), the MLEs of μ and Σ for a
sample x are respectively the sample mean and sample covariance matrix

x = ave(X ) = 1

n

n∑
i=1

xi , Var(X ) = ave{(X − x)(X − x)′}.

The sample mean and sample covariance matrix share the behavior of the dis-
tribution mean and covariance matrix under affine transformations, namely (6.1) for
each vector a and matrix A

ave(AX + a) = Aave(X ) + a, Var(AX + a) = AVar(X )A′,

where AX + a is the data set {Axi + a, i = 1, . . . , n} . This property is known as the
affine equivariance of the sample mean and covariances.

Just as in the univariate case, a few atypical observations may completely alter
the sample means and/or covariances. Worse still, a multivariate outlier need not be
an outlier in any of the coordinates considered separately.

Example 6.1 Table 6.1 (from Seber, 1984, Table 9.12) contains measurements of
phosphate and chloride in the urine of 12 men with similar weights. The data are
plotted in Figure 6.1.

We see in Figure 6.1 that observation 3, which has the lowest phosphate value, stands
out clearly from the rest. However, Figure 6.2, which shows the normal Q–Q plot of
phosphate, does not reveal any atypical value, and the same occurs in the Q–Q plot
of chloride (not shown). Thus the atypical character of observation 3 is visible only
when considering both variables simultaneously.

The table below shows that omitting this observation has no important effect on
means or variances, but the correlation almost doubles in magnitude, i.e., the influence
of the outlier has been to decrease the correlation by a factor of two relative to that
without the outlier:

Means Vars. Correl.
Complete data 1.79 6.01 0.26 3.66 −0.49
Without obs. 3 1.87 6.16 0.20 3.73 −0.80
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Table 6.1 Biochemical data

Phosphate Chloride

1.50 5.15
1.65 5.75
0.90 4.35
1.75 7.55
1.40 8.50
1.20 10.25
1.90 5.95
1.65 6.30
2.30 5.45
2.35 3.75
2.35 5.10
2.50 4.05

Phosphate
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Figure 6.1 Biochemical data
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Figure 6.2 Normal Q–Q plot of phosphate

Here we have an example of an observation which is not a one-dimensional outlier
in either coordinate but strongly affects the results of the analysis. This example shows
the need for robust substitutes of the mean vector and covariance matrix, which will
be the main theme of this chapter.

Some methods in multivariate analysis make no use of means or covariances, such
as Breiman, Friedman, Olshen and Stone’s (1984) nonparametric “CART” (Classifi-
cation And Regression Trees) methods. To some extent such (nonequivariant) methods
have a certain built-in robustness. But if we want to retain the simplicity of the normal
distribution as the “nominal” model, with corresponding linear relationships, ellip-
tical distributional shapes and affine equivariance for the bulk of the data, then the
appropriate approach is to consider slight or moderate departures from normality.

Let (μ̂(X ),Σ̂(X )) be location and dispersion estimates corresponding to a sample
X = {x1, . . . , xn} . Then the estimates are affine equivariant if

μ̂ (AX + b) = Aμ̂ (X ) + b, Σ̂ (AX + a) = AΣ̂A′. (6.3)

Affine equivariance is a desirable property of an estimate. The reasons are given
in Section 6.12.1. This is, however, not a mandatory property, and may in some cases
be sacrificed for other properties such as computational speed; an instance of this
trade-off is given in Section 6.9.1.

As in the univariate case, one may consider the approach of outlier detection. The
squared Mahalanobis distance between the vectors x and μ with respect to the matrix
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Σ is defined as

d(x,μ,Σ) = (x − μ)′Σ−1(x − μ). (6.4)

For simplicity d will be sometimes referred to as “distance”, although it should be kept
in mind that it is actually a squared distance. Then the multivariate analog of t2

i , where
ti = (xi − x) /s is the univariate outlyingness measure in (1.3), is Di = d(xi , x, C)
with C = Var(X ). When p = 1 we have Di = t2

i n/(n − 1). It is known (Seber, 1984)
that if x ∼ Np(μ,Σ) then d(x,μ,Σ) ∼ χ2

p. Thus, assuming the estimates x and C
are close to their true values, we may examine the Q–Q plot of Di vs. the quantiles of
a χ2

p distribution and delete observations for which Di is “too high”. This approach
may be effective when there is a single outlier, but as in the case of location it can
be useless when n is small (recall Section 1.3) and, as in regression, several outliers
may mask one another.

Example 6.2 The data set wine is a part of one given in Hettich and Bay (1999).
It contains, for each of 59 wines grown in the same region in Italy, the quantities of
13 constituents. The original purpose of the analysis (de Vel, Aeberhard and Coomans,
1993) was to classify wines from different cultivars by means of these measurements.
In this example we treat cultivar 1.

The upper row of Figure 6.3 shows the plots of the classical squared distances as a
function of observation number, and their Q–Q plots with respect to the χ2

p distribution
(code wine). No clear outliers stand out.
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Figure 6.3 Wine example: Mahalanobis distances vs. index number for classical and
SR-05 estimates (left column), and Q–Q plots of distances (right column)
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The lower row shows the results of using a robust estimate to be defined in Section
6.4.4 (called SR-05 there). At least seven points stand out clearly. The failure of the
classical analysis in the upper row of Figure 6.3 shows that several outliers may “mask”
one another. These seven outliers have a strong influence on the results of the analysis.

Simple robust estimates of multivariate location can be obtained by applying a
robust univariate location estimate to each coordinate, but this lacks affine equivari-
ance. For dispersion, there exist simple robust estimates of the covariance between two
variables (“pairwise covariances”) which could be used to construct a “robust covari-
ance” matrix (see Devlin, Gnanadesikan and Kettenring, 1981; Huber, 1981). Apart
from not being equivariant, the resulting matrix may not be positive semidefinite.
See, however, Section 6.9 for an approach that ensures positive definiteness and “ap-
proximate” equivariance. Nonequivariant procedures may also lack robustness when
the data are very collinear (Section 6.6). In subsequent sections we shall discuss a
number of equivariant estimates that are robust analogs of the mean and covariance
matrix. They will be generally called location vectors and dispersion matrices. The
latter are also called robust covariance matrices in the literature.

Note that if the matrix Σ̂ with elements σ jk, j, k = 1, . . . , p, is a “robust covari-
ance matrix”, then the matrix R with elements

r jk = σ jk√
σ j jσkk

(6.5)

is a robust analog of the correlation matrix.

6.2 Breakdown and efficiency of multivariate
estimates

The concepts of breakdown point and efficiency will be necessary to understand the
advantages and drawbacks of the different families of estimates discussed in this
chapter.

6.2.1 Breakdown point

To define the breakdown point of (μ̂, Σ̂) based on the ideas in Section 3.2 we must
establish the meaning of “bounded, and also bounded away from the boundary of the
parameter space”. For the location vector the parameter space is a finite-dimensional
Euclidean space, and so the statement means simply that μ̂ remains in a bounded set.
However, the dispersion matrix has a more complex parameter space consisting of
the set of symmetric nonnegative definite matrices. Each such matrix is characterized
by the matrix of its eigenvectors and associated nonnegative eigenvalues. Thus “Σ̂
bounded, and also bounded away from the boundary” is equivalent to the eigenvalues
being bounded away from zero and infinity.

From a more intuitive point of view, recall that if Σ = Var(x) and a is a constant
vector then Var(a′x) = a′Σa. Hence if Σ is any robust dispersion matrix then

√
a′Σa
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can be considered as a robust measure of dispersion of the linear combination a′x. Let
λ1(Σ) ≥ . . . ≥ λp(Σ) be the eigenvalues of Σ in descending order, and e1, . . . , ep the
corresponding eigenvectors. It is a fact of linear algebra that for any symmetric matrix
Σ, the minimum (resp. maximum) of a′Σa over ‖a‖ = 1 is equal to λp (λ1) and this
minimum is attained for a = ep (e1). If we are interested in linear relationships among
the variables, then it is dangerous not only that the largest eigenvalue becomes too
large (“explosion”) but also that the smallest one becomes too small (“implosion”).
The first case is caused by outliers (observations far away from the bulk of the data),
the second by “inliers” (observations concentrated at some point or in general on a
region of lower dimensionality).

For 0 ≤ m ≤ n call Zm the set of “samples” Z = {z1, . . . , zn} such that
# {zi = xi } = m, and call μ̂(Z ) and Σ̂(Z ) the mean and dispersion matrix estimates
based on the sample Z . The finite breakdown point of (μ̂, Σ̂) is defined as ε* = m*/n
where m* is the largest m such that there exist finite positive a, b, c such that

‖μ̂(Z )‖ ≤ a and b ≤ λp(Σ̂(Z )) ≤ λ1(Σ̂(Z )) ≤ c

for all Z ∈ Zm .

For theoretical purposes it may be simpler to work with the asymptotic BP. An
ε-contamination neighborhood F(F, ε) of a multivariate distribution F is defined as
in (3.2). Applying Definition 3.1 and (3.19) to the present context we have that the
asymptotic BP of (μ̂, Σ̂) is the largest ε* ∈ (0, 1) for which there exist finite positive
a, b, c such that the following holds for all G:

‖μ̂∞((1 − ε) F + εG)‖ ≤ a,

b ≤ λp(Σ̂((1 − ε) F + εG)) ≤ λ1(Σ̂((1 − ε) F + εG)) ≤ c.

In some cases we may restrict G to range over point mass distributions, and in that
case we use the terms “point mass contamination neighborhoods” and “point mass
breakdown point”.

6.2.2 The multivariate exact fit property

A result analogous to that of Section 5.10 holds for multivariate location and dispersion
estimation. Let the FBP of the affine equivariant estimate (μ̂, Σ̂) be ε* = m*/n. Let
the data set contain q points on a hyperplane H = {

x : β′x = γ
}

for some β ∈ R p

and γ ∈ R. If q ≥ n − m* then μ̂ ∈ H, and Σ̂β = 0. The proof is given in Section
6.12.8.

6.2.3 Efficiency

The asymptotic efficiency of (μ̂, Σ̂) is defined as in (3.45). Call (μ̂n, Σ̂n) the estimates
for a sample of size n, and let (μ̂∞, Σ̂∞) be their asymptotic values. All estimates
considered in this chapter are consistent at the normal distribution in the following
sense: if xi ∼ Np(μ, �) then μ̂∞ = μ and Σ̂∞ = cΣ where c is a constant (if c = 1
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we have the usual definition of consistency). This result will be seen to hold for the
larger family of elliptical distributions, to be defined later. Most estimates defined in
this chapter are also asymptotically normal:

√
n

(
μ̂n − μ̂∞

) →d Np(0, Vμ),
√

nvec
(
Σ̂n − Σ̂∞

) →d Nq (0, VΣ),

where q = p(p + 1)/2 and for a symmetric matrix Σ, vec(Σ) is the vector containing
the q elements of the upper triangle of Σ. The matrices Vμ and VΣ are the asymptotic
covariance matrices of μ̂ and Σ̂. In general the estimate can be defined in such a way
that c = 1 for a given model, e.g., the multivariate normal.

We consider the efficiency of μ̂ when the data have a Np(μ, �) distribution.
In Section 6.12.2 it is shown that an affine equivariant location estimate μ̂ has an
asymptotic covariance matrix of the form

Vμ = vΣ, (6.6)

where v is a constant depending on the estimate. In the case of the normal distribution
MLE x we have v = 1 and the matrix V0 in (3.45) is simply Σ, which results in
V−1

μ V0 = v−1I and eff(μ̂) = 1/v. Thus the normal distribution efficiency of an affine
equivariant location estimate is independent ofμ and Σ. With one exception treated in
Section 6.9.1, the location estimates considered in this chapter are affine equivariant.

The efficiency of Σ̂ is much more complicated and will not be discussed here.
It has been dealt with by Tyler (1983) in the case of the class of M-estimates to be
defined in the next section.

6.3 M-estimates

Multivariate M-estimates will now be defined as in Section 2.2 by generalizing MLEs.
Recall that in the univariate case it was possible to define separate robust equivariant
estimates of location and of dispersion. This is more complicated to do in the multi-
variate case, and if we want equivariant estimates it is better to estimate location and
dispersion simultaneously. We shall develop the multivariate analog of simultaneous
M-estimates (2.69)–(2.70). Recall that a multivariate normal density has the form

f (x,μ,Σ) = 1√|Σ|h(d(x,μ,Σ)) (6.7)

where h(s) = c exp(−s/2) with c = (2π )−p/2 and d(x,μ,Σ) = (x − μ)′Σ−1(x − μ).
We note that the level sets of f are ellipsoidal surfaces. In fact for any choice of positive
h such that f integrates to one, the level sets of f are ellipsoids, and so any density
of this form is called elliptically symmetric (henceforth “elliptical” for short). In the
special case where μ = 0 and Σ = cI a density of the form (6.7) is called spherically
symmetric or radial (henceforth “spherical” for short). It is easy to verify that the
distribution D(x) is elliptical if and only if for some constant vector a and matrix A,
D(A(x − a)) is spherical. An important example of a nonnormal elliptical distribution
is the p-variate Student distribution with ν degrees of freedom (0 < ν < ∞), which
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will be called Tp,ν , and is obtained by the choice

h(s) = c

(s + ν)(p+ν)/2
(6.8)

where c is a constant. The case ν = 1 is called the multivariate Cauchy density, and the
limiting case ν → ∞ yields the normal distribution. If the mean (resp. the dispersion
matrix) of an elliptical distribution exists, then it is equal to μ (to a multiple of Σ)
(Problem 6.1). More details on elliptical distributions are given in Section 6.12.9.

Let x1, . . . , xn be an i.i.d. sample from an f of the form (6.7) in which h is assumed
everywhere positive. To calculate the MLE of μ and Σ, note that the likelihood
function is

L(μ,Σ) = 1

|Σ|n/2

n∏
i=1

h(d(xi ,μ,Σ)),

and maximizing L(μ,Σ) is equivalent to

−2 log L(μ,Σ) = n log |Σ̂| +
n∑

i=1

ρ(di ) = min, (6.9)

where

ρ(s) = −2 log h(s) and di = d(xi , μ̂, Σ̂). (6.10)

Differentiating with respect to μ and Σ yields the system of estimating equations (see
Section 6.12.3 for details)

n∑
i=1

W (di )(xi − μ̂) = 0 (6.11)

1

n

n∑
i=1

W (di )(xi − μ̂)(xi − μ̂)′ = Σ̂ (6.12)

with W = ρ ′. For the normal distribution we have W ≡ 1 which yields the sam-
ple mean and sample covariance matrix for μ̂ and Σ̂. For the multivariate Student
distribution (6.8) we have

W (d) = p + ν

d + ν
. (6.13)

In general, we define M-estimates as solutions of

n∑
i=1

W1(di )(xi − μ̂) = 0 (6.14)

1

n

n∑
i=1

W2(di )(xi − μ̂)(xi − μ̂)′ = Σ̂ (6.15)
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where the functions W1 and W2 need not be equal. Note that by (6.15) we may interpret
Σ̂ as a weighted covariance matrix, and by (6.14) we can express μ̂ as the weighted
mean

μ̂ =
∑n

i=1 W1(di )xi∑n
i=1 W1(di )

(6.16)

with weights depending on an outlyingness measure di . This is similar to (2.31) in
that with wi = W1(di ) we can express μ̂ as a weighted mean with data-dependent
weights.

Existence and uniqueness of solutions were treated by Maronna (1976) and more
generally by Tatsuoka and Tyler (2000). Uniqueness of solutions of (6.14)–(6.15)
requires that dW2(d) be a nondecreasing function of d. To understand the reason for
this condition, note that an M-scale estimate of a univariate sample z may be written
as the solution of

δ = ave
(
ρ

( z
σ̂

))
= ave

(( z
σ̂

)
W

( z
σ̂

))
,

where W (t) = ρ(t)/t. Thus the condition on the monotonicity of dW2(d) is the mul-
tivariate version of the requirement that the ρ-function of a univariate M-scale be
monotone.

We shall call an M-estimate of location and dispersion monotone if dW2(d) is
nondecreasing, and redescending otherwise. Monotone M-estimates are defined as
solutions to the estimating equations (6.14)–(6.15), while redescending ones must be
defined by the minimization of some objective function, as happens with S-estimates
or CM-estimates to be defined in Sections 6.4 and 6.11.2 respectively. Huber (1981)
treats a slightly more general definition of monotone M-estimates. For practical pur-
poses monotone estimates are essentially unique, in the sense that all solutions to the
M-estimating equations are consistent estimates.

It is proved in Chapter 8 of Huber (1981) that if the xi are i.i.d. with distribution
F then under general assumptions when n → ∞, monotone M-estimates defined as
any solution μ̂ and Σ̂ of (6.14) and (6.15) converge in probability to the solution(
μ̂∞, Σ̂∞

)
of

EW1(d)(x − μ̂∞) = 0, (6.17)

EW2(d)(x − μ̂∞)(x − μ̂∞)′ = Σ̂∞ (6.18)

where d = d(x, μ̂∞, Σ̂∞). Huber also proves that
√

n
(
μ̂−μ̂∞,Σ̂−Σ̂∞

)
tends to

a multivariate normal distribution. It is easy to show that M-estimates are affine
equivariant (Problem 2) and so if x has an elliptical distribution (6.7) the asymptotic
covariance matrix of μ̂ has the form (6.6) (see Sections 6.12.1 and 6.12.7).

6.3.1 Collinearity

If the data are collinear, i.e., all points lie on a hyperplane H , the sample covariance
matrix is singular and x ∈ H. It follows from (6.16) that since μ̂ is a linear combination
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of elements of H, it lies in H . Furthermore (6.15) shows that Σ̂ must be singular. In
fact, if a sufficiently large proportion of the observations lie on a hyperplane, Σ̂ must

be singular (Section 6.2.2). But in this case Σ̂
−1

, and hence the di ’s, do not exist and
the M-estimate is not defined.

To make the estimate well defined in all cases, it suffices to extend the definition
(6.4) as follows. Let λ1 ≥ λ2 ≥ . . . ≥ λp and b j ( j = 1, . . . , p) be the eigenvalues
and eigenvectors of Σ̂. For a given x let z j = b′

j (x−μ̂). Since b1, . . . , bp are an
orthonormal basis, we have

x − μ̂ =
p∑

j=1

z j b j .

Then if Σ̂ is not singular, we have (Problem 6.12)

d(x,μ̂, Σ̂) =
p∑

j=1

z2
j

λ j
. (6.19)

On the other hand if Σ̂ is singular, its smallest q eigenvalues are zero and in this case
we define

d(x,μ̂, Σ̂) =
{∑p−q

j=1 z2
j/λ j if z p−q+1 = . . . = z p = 0

∞ otherwise
(6.20)

which may be seen as the limit case of (6.19) when λ j ↓ 0 for j > p − q.

Note that di enters (6.14)–(6.15) only through the functions W1 and W2, which
usually tend to zero at infinity, so this extended definition simply excludes those points
which do not belong to the hyperplane spanned by the eigenvectors corresponding to
the positive eigenvalues of Σ̂.

6.3.2 Size and shape

If one dispersion matrix is a scalar multiple of another, i.e.,Σ2 = kΣ1, we say that they
have the same shape, but different sizes. Several important features of the distribution,
such as correlations, principal components and linear discriminant functions, depend
only on shape.

Let μ̂∞ and Σ̂∞ be the asymptotic values of location and dispersion estimates at
an elliptical distribution F defined in (6.7). It is shown in Section 6.12.2 that in this
case μ̂∞ is equal to the center of symmetry μ, and Σ̂∞ is a constant multiple of Σ,
with the proportionality constant depending on F and on the estimator. This situation
is similar to the scaling problem in (2.50) and at the end of Section 2.5. Consider in
particular an M-estimate at the distribution F = Np (μ, �) . By the equivariance of
the estimate we may assume that μ = 0 and Σ = I. Then μ̂∞ = 0 and Σ̂∞ = cI,
and hence d

(
x,μ̂∞, Σ̂∞

) = ‖x‖2 /c. Taking the trace in (6.18) yields

EW2

(‖x‖2

c

)
‖x‖2 = pc.
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Since ‖x‖2 has a χ2
p distribution, we obtain a consistent estimate of the covariance

matrix Σ in the normal case by replacing Σ̂ by Σ̂/c, with c defined as the solution of∫ ∞

0

W2

( z

c

) z

c
g(z)dz = p, (6.21)

where g is the density of the χ2
p distribution.

Another approach to estimating the size of Σ is based on noting that if
x ∼ N(μ,Σ), then d(x,μ,Σ) ∼ χ2

p, and the fact that Σ = cΣ̂∞ implies

cd(x,μ,Σ) = d(x,μ, Σ̂∞).

Hence the empirical distribution of{
d(x1,μ̂,Σ̂), . . . , d(xn,μ̂,Σ̂)

}
will resemble that of d(x,μ̂∞, Σ̂∞) which is cχ2

p, and so we may estimate c robustly
with

ĉ = Med
{
d(x1,μ̂,Σ̂), . . . ,d(xn,μ̂,Σ̂)

}
χ2

p(0.5)
(6.22)

where χ2
p(α) denotes the α-quantile of the χ2

p distribution.

6.3.3 Breakdown point

It is intuitively clear that robustness of the estimates requires that no term dominates
the sums in (6.14)–(6.15), and to achieve this we assume

W1(d)
√

d and W2(d)d are bounded for d ≥ 0. (6.23)

Let

K = sup
d

W2(d)d. (6.24)

We first consider the asymptotic BP, which is easier to deal with. The “weak part”
of joint M-estimates of μ and Σ is the estimate Σ̂, for if we take Σ as known, then it
is not difficult to prove that the asymptotic BP of μ̂ is 1/2 (see Section 6.12.4). On the
other hand, in the case whereμ is known the following result was obtained by Maronna
(1976). If the underlying distribution F0 attributes zero mass to any hyperplane, then
the asymptotic BP of a monotone M-estimate of Σ with W2 satisfying (6.23) is

ε* = min

(
1

K
, 1 − p

K

)
. (6.25)

See Section 6.12.4 for a simplified proof. The above expression has a maximum value
of 1/(p + 1), attained at K = p + 1, and hence

ε* ≤ 1

p + 1
. (6.26)
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Tyler (1987) proposed a monotone M-estimate with W2(d) = p/d, which corre-
sponds to the multivariate t-distribution MLE weights (6.13) with degrees of freedom
ν ↓ 0. Tyler showed that the BP of this estimate is ε* = 1/p, which is slightly larger
than the bound (6.26). This result is not a contradiction with (6.26) since W2 is not
defined at zero and hence does not satisfy (6.23). Unfortunately this unboundedness
may make the estimate unstable.

It is useful to understand the form of the breakdown under the assumptions (6.23).
Take F = (1 − ε) F0 + εG where G is any contaminating distribution. First let G be
concentrated at x0. Then the term 1/K in (6.25) is obtained by letting x0 → ∞, and
the term 1 − p/K is obtained by letting x0 → μ. Now consider a general G. For the
joint estimation of μ and Σ, Tyler shows that if ε > ε* and one lets G tend to δx0

then μ → x0 and λp(Σ) → 0, i.e., inliers can make Σ nearly singular.
The FBP is similar but the details are more involved (Tyler, 1990). Define a sample

to be in general position if no hyperplane contains more than p points. Davies (1987)
showed that the maximum FBP of any equivariant estimate for a sample in general
position is m*

max/n with

m*
max =

[
n − p

2

]
. (6.27)

It is therefore natural to search for estimates whose BP is nearer to this maximum BP
than that of monotone M-estimates.

6.4 Estimates based on a robust scale

Just as with the regression estimates of Section 5.6 where we aimed at making the
residuals “small”, we shall define multivariate estimates of location and dispersion
that make the distances di “small”. To this end we look for μ̂ and Σ̂ minimizing some
measure of “largeness” of d(x,μ̂, Σ̂). If follows from (6.4) that this can be trivially
attained by letting the smallest eigenvalue of Σ̂ tend to zero. To prevent this we impose
the constraint

∣∣Σ̂∣∣ = 1. Call Sp the set of symmetric positive definite p × p matrices.
For a data set X call d

(
X, μ̂, Σ̂

)
the vector with elements d(xi , μ̂, Σ̂), i = 1, . . . , n,

and let σ̂ be a robust scale estimate. Then we define the estimates μ̂ and Σ̂ by

σ̂
(
d

(
X, μ̂, Σ̂

)) = min with μ̂ ∈ R p, Σ̂ ∈ Sp,
∣∣Σ̂∣∣ = 1. (6.28)

It is easy to show that the estimates defined by (6.28) are equivariant. An equivalent
formulation of the above goal is to minimize

∣∣Σ̂∣∣ subject to a bound on σ̂ (Problems
6.7, 6.8, 6.9).

6.4.1 The minimum volume ellipsoid estimate

The simplest case of (6.28) is to mimic the approach that results in the LMS in
Section 5.6, and let σ̂ be the sample median. The resulting location and dispersion
matrix estimate is called the minimum volume ellipsoid (MVE) estimate. The name
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stems from the fact that among all ellipsoids {x : d(x,μ,Σ) ≤ 1} containing at least
half of the data points, the one given by the MVE estimate has minimum volume,
i.e., the minimum |Σ| . The consistency rate of the MVE is the same slow rate as the
LMS, namely only n−1/3, and hence is very inefficient (Davies, 1992).

6.4.2 S-estimates

To overcome the inefficiency of the MVE we consider a more general class of estimates
called S-estimates (Davies, 1987), defined by (6.28) taking for σ̂ an M-scale estimate
that satisfies

1

n

n∑
i=1

ρ

(
di

σ̂

)
= δ (6.29)

where ρ is a smooth bounded ρ-function. The same reasoning as in (5.28) shows that
an S-estimate

(
μ̂,Σ̂

)
is an M-estimate in the sense that for any μ̃,Σ̃ with

∣∣Σ̃∣∣ = 1

and σ̂ = σ̂
(
d

(
X, μ̂, Σ̂

))
n∑

i=1

ρ

(
d

(
xi , μ̂,Σ̂

)
σ̂

)
≤

n∑
i=1

ρ

(
d

(
xi , μ̃,Σ̃

)
σ̂

)
. (6.30)

If ρ is differentiable, it can be shown (Section 6.12.5) that the solution to (6.28)
must satisfy estimating equations of the form (6.14)–(6.15), i.e.,

n∑
i=1

W

(
di

σ̂

)
(xi − μ̂) = 0, (6.31)

1

n

n∑
i=1

W

(
di

σ̂

)
(xi − μ̂)(xi − μ̂)′ = cΣ̂, (6.32)

where

W = ρ ′ and σ̂ = σ̂ (d1, . . . , dn), (6.33)

and c is a scalar such that
∣∣Σ̂∣∣ = 1. Note, however, that if ρ is bounded (as is the

usual case), dW (d) cannot be monotone (Problem 6.5); actually for the estimates
usually employed W (d) vanishes for large d. Hence the estimate is not a monotone
M-estimate, and therefore the estimating equations yield only local minima of σ̂ .

The choice ρ(d) = d yields the average of the di ’s as a scale estimate. In this case
W ≡ 1 and hence

μ̂ = x, Σ̂ = C

|C|1/p (6.34)
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where C is the sample covariance matrix. For this choice of scale estimate it follows
that

n∑
i=1

(xi − x)′ Σ−1 (xi − x) ≤
n∑

i=1

(xi − ν)′ V−1 (xi − ν) (6.35)

for all ν and V with |V| = 1.
It can be shown (Davies, 1987) that if ρ is differentiable, then for S-estimates the

distribution of
√

n
(
μ̂−μ̂∞,Σ̂−Σ̂∞

)
tends to a multivariate normal.

Similarly to Section 5.6, it can be shown that the maximum FBP (6.27) is attained
for S-estimates by taking in (6.29)

nδ = m*
max =

[
n − p

2

]
.

We define the bisquare multivariate S-estimate as the one with scale given by
(6.29) with

ρ(t) = min
{
1, 1 − (1 − t)3

}
, (6.36)

which has weight function

W (t) = 3 (1 − t)2 I (t ≤ 1) . (6.37)

The reason for this definition is that in the univariate case the bisquare scale estimate—
call it η̂ for notational convenience—based on centered data xi with location μ̂ is the
solution of

1

n

n∑
i=1

ρbisq

(
xi − μ̂

η̂

)
= δ (6.38)

where ρbisq (t) = min
{

1, 1 − (
1 − t2

)3
}

. Since ρbisq (t) = ρ
(
t2

)
for the ρ defined

in (6.36), it follows that (6.38) is equivalent to

1

n

n∑
i=1

ρ

(
(xi − μ̂)2

σ̂

)
= δ

with σ̂ = η̂2. Now d (x,μ,Σ) is the normalized squared distance between x and μ,

which explains the use of ρ.

6.4.3 The minimum covariance determinant estimate

Another possibility is to use a trimmed scale for σ̂ instead of an M-scale, as was done to
define the LTS estimate in Section 5.6.2. Let d(1) ≤ . . . ≤ d(n) be the ordered values of
the squared distances di = d (xi ,μ,Σ) , and for 1 ≤ h < n define the trimmed scale
of the squared distances as

σ̂ =
h∑

i=1

d(i). (6.39)
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An estimate (μ̂,Σ̂) defined by (6.28) with this trimmed scale is called a minimum
covariance determinant (MCD) estimate. The reason for the name is the following:
for each ellipsoid {x : d(x, t, V) ≤ 1} containing at least h data points, compute the
covariance matrix C of the data points in the ellipsoid. If (μ̂, Σ̂) is an MCD estimate,
then the ellipsoid with t = μ̂ and V equal to a scalar multiple of Σ̂ minimizes |C|.

As in the case of the LTS estimate in Section 5.6, the maximum BP of the MCD
estimate is attained by taking h = n − m*

max with m*
max defined in (6.27).

6.4.4 S-estimates for high dimension

Consider the multivariate S-estimate with a bisquare ρ-function. The following table
gives the asymptotic efficiencies of the location estimate vector under normality for
different dimensions p,

p 5 10 20 50 100
Eff. 0.845 0.932 0.969 0.989 0.994

It is seen that the efficiency approaches one for large p. The same thing happens with
the dispersion matrix estimate. It is shown in Section 6.12.6 that this behavior holds
for any S-estimate with a continuous weight function W = ρ ′. This may seem like
good news. However, the proof shows that for large p all observations, except those
that are extremely far away from the bulk of the data, have approximately the same
weight, and hence the estimate is approximately equal to the sample mean and sample
covariance matrix. Thus observations outlying enough to be dangerous may also have
nearly maximum weight, and as a result, the bias can be very large (bias is defined
in Section 6.6). It will be seen later that this increase in efficiency and decrease in
robustness with large p does not occur with the MVE.

Rocke (1996) pointed out the problem just described and proposed that the ρ-
function change with dimension to prevent both the efficiency from increasing to
values arbitrarily close to one, and correspondingly the bias becoming arbitrarily
large. He proposed a family of ρ-functions with the property that when p → ∞ the
function ρ approaches the step function ρ(d) = I(d > 1). The latter corresponds to
the scale estimate σ̂ = Med (d) and so the limiting form of the estimate for large
dimensions is the MVE estimate.

Put for brevity d = d(x, μ̂∞, Σ̂∞). It is shown in Section 6.12.6 that if x is normal,
then for large p

D
(

d

σ

)
≈ D

(
z

p

)
with z ∼ χ2

p

and hence that d/σ is increasingly concentrated around one. To have a high enough
(but not too high) efficiency, we should give a high weight to the values of d/σ near
one and downweight the extreme ones. A simple way to do this is to have W (t) = 0 for
t between the α- and the (1 − α)-quantiles of d/σ. Call χ2

p(α) the α-quantile of χ2
p.

For large p the χ2
p distribution is approximately symmetric, with χ2

p(0.5) ≈ Ez = p
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and χ2
p(1 − α) − p ≈ p − χ2

p(α). Let

γ = min

(
χ2

p(1 − α)

p
− 1, 1

)
. (6.40)

We now define a smooth ρ-function such that the resulting weight function W (t)
vanishes for t /∈ [1 − γ, 1 + γ ] . Let

ρ(t) =

⎧⎪⎪⎨⎪⎪⎩
0 for 0 ≤ t ≤ 1 − γ(

t−1
4γ

) [
3 −

(
t−1
γ

)2
]

+ 1
2

for 1 − γ < t < 1 + γ

1 for t ≥ 1 + γ

(6.41)

which has as derivative the weight function

W (t) = 3

4γ

[
1 −

(
t − 1

γ

)2
]

I(1 − γ ≤ t ≤ 1 + γ ). (6.42)

Figures 6.4 and 6.5 show the plots of ρ and of W for α = 0.05 and the values
p = 10 and 100. The corresponding functions for the bisquare (6.36) and (6.37) are
also plotted for comparison. The weight functions are scaled so that W (0) = 1 to
simplify viewing. Figure 6.6 shows the density of d/σ for p = 10 and 100. Note that
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Figure 6.4 ρ-functions for S estimates: bisquare and Rocke-type estimates with
α = 0.05 and p = 10 and 100
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Figure 6.5 Weight functions of the bisquare and of SR-05 for p = 10 and 100
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when p increases the density becomes more concentrated around one, the interval
on which W is positive shrinks, and ρ tends to the step function corresponding to
the MVE. One also sees that the bisquare weight function is quite inappropriate for
assigning high weights to the bulk of the data and rapidly downweighting data far
from the bulk of the data, except possibly for very small values of p.

Rocke’s “biflat” family of weight functions is the squared values of the W in
(6.42). It is smoother at the endpoints but gives less weights to inner points.

The asymptotic efficiency of the estimates based on the weight function (6.42)
at the normal model can be computed. The table below gives the efficiency of the
location estimate for a wide range of values of p at α = 0.05 and 0.10. It is seen that
the efficiency is almost constant for large p.

p 5 10 20 50 100
α = 0.05 0.69 0.82 0.84 0.84 0.84
α = 0.10 0.64 0.72 0.74 0.73 0.73

6.4.5 One-step reweighting

A one-step reweighting procedure that can be used with any pair of estimates μ̂
and Σ̂ is similar to the one defined in Section 5.6.3. Let W be a weight function.
Given the estimates μ̂ and Σ̂, define new estimates μ̃, Σ̃ as a weighted mean vector
and weighted covariance matrix with weights W (di ), where the di ’s are the squared
distances corresponding to μ̂ and Σ̂. The most popular function is hard rejection,
corresponding to W (t) = I(t ≤ k) where k is chosen with the same criterion as in
Section 5.6.3. For ĉ defined in (6.22) the distribution of di /̂c is approximately χ2

p
under normality, and hence choosing k = ĉχ2

p,β will reject approximately a fraction
1 − β of the “good” data if there are no outliers. It is customary to take β = 0.95 or
0.975. If the dispersion matrix estimate is singular we proceed as in Section 6.3.1.

Although no theoretical results are known, simulations have showed this proce-
dure improves the bias and efficiency of the MVE and MCD estimates. But it cannot
be asserted that such improvement happens with any estimate.

6.5 The Stahel–Donoho estimate

Recall that the simplest approach to the detection of outliers in a univariate sample is
the one given in Section 1.3: for each data point compute an “outlyingness measure”
(1.4) and identify those points having a “large” value of this measure. The key idea
for the extension of this approach to the multivariate case is that a multivariate outlier
should be an outlier in some univariate projection. More precisely, given a direction
a ∈ R p with ‖a‖ = 1, denote by a′ X={a′x1, . . . , a′xn} the projection of the data set
X along a. Let μ̂ and σ̂ be robust univariate location and dispersion statistics, e.g., the
median and MAD respectively. The outlyingness with respect to X of a point x ∈ R p
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along a is defined as in (1.4) by

t(x, a) =x′a − μ̂
(
a′ X

)
σ̂ (a′ X )

.

The outlyingness of x is then defined by

t(x) = max
a

t(x, a). (6.43)

In the above maximum a ranges over the set {‖a‖ = 1}, but in view of the equivariance
of μ̂ and σ̂ , it is equivalent to take the set {a �= 0}.

The Stahel–Donoho estimate, proposed by Stahel (1981) and Donoho (1982), is
a weighted mean and covariance matrix where the weight of xi is a nonincreasing
function of t(xi ). More precisely, let W1 and W2 be two weight functions, and define

μ̂ = 1∑n
i=1 wi1

n∑
i=1

wi1xi , (6.44)

Σ̂ = 1∑n
i=1 wi2

n∑
i=1

wi2 (xi − μ̂) (xi − μ̂)′ (6.45)

with

wi j = W j (t(xi )), j = 1, 2. (6.46)

If yi = Axi + b, then it is easy to show that t(yi ) = t(xi ) (t is invariant) and hence
the estimates are equivariant.

In order that no term dominates in (6.44)–(6.45) it is clear that the weight functions
must satisfy the conditions

tW1(t) and t2W2(t) are bounded for t ≥ 0. (6.47)

It can be shown (see Maronna and Yohai, 1995) that under (6.47) the asymptotic BP
is 1/2. For the FBP, Tyler (1994) and Gather and Hilker (1997) show that the estimate
attains the maximum BP given by (6.27) if μ̂ is the sample median and the scale is

σ̂ (z) = 1

2
(̃zk + z̃k+1)

where z̃i denotes the ordered values of |zi − Med(z)| and k = [(n + p)/2].
The asymptotic normality of the estimate was shown by Zuo, Cui and He (2004),

and its influence function and maximum asymptotic bias were derived by Zuo, Cui
and Young (2004).

The choice of the weight functions in (6.44)–(6.45) is important for combining
robustness and efficiency. A family of weight functions used in the literature is the
“Huber weights”

W H
c,k(t) = min

(
1,

(c

t

)k
)

(6.48)
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where k ≥ 2 in order to satisfy (6.47). Maronna and Yohai (1995) used

W1 = W2 = W H
c,2 with c =

√
χ2

p,β (6.49)

in (6.46) with β = 0.95. For large p, Maronna and Zamar (2002) preferred c =
min(4,

√
χ2

p,0.5). to avoid c becoming too large and hence the estimate losing robust-
ness.

Zuo et al. (2004a) proposed the family of weights

W Z
c,k(t) = min

{
1, 1 − 1

b
exp

[
−k

(
1 − 1

c(1 + t)

)2
]}

(6.50)

where c = Med(1/(1 + t(x))), k is a tuning parameter and b = 1 − e−k .

Simulations show that one-step reweighting does not improve the Stahel–Donoho
estimate.

6.6 Asymptotic bias

We now deal with data from a contaminated distribution F = (1 − ε)F0 + εG, where
F0 describes the “typical” data. In order to define bias, we have to define which are
the “true” parameters to estimate. To fix ideas assume F0 = Np(μ0,Σ0), but note that
the following discussion applies to any other elliptical distribution. Let μ̂∞ and Σ̂∞
be the asymptotic values of location and dispersion estimates.

Defining a single measure of bias for a multidimensional estimate is more compli-
cated than in Section 3.3. Assume first that Σ0 = I. In this case the symmetry of the
situation makes it natural to choose the Euclidean norm ‖μ̂∞−μ0‖ as a reasonable
bias measure for location. For the dispersion matrix size is relatively easy to adjust,
by means of (6.21) or (6.22), and it will be most useful to focus on shape. Thus we
want to measure the discrepancy between Σ̂∞ and scalar multiples of I. The simplest
way to do so is with the condition number, which is defined as the ratio of the largest
to the smallest eigenvalue,

cond(Σ̂∞) = λ1(Σ̂∞)

λp(Σ̂∞)
.

The condition number equals one if and only if Σ̂∞ = cI for some c ∈ R. Other
functions of the eigenvalues may be used for measuring shape discrepancies, such as
the likelihood ratio test statistic for testing sphericity (Seber, 1984), which is the ratio
of the arithmetic to the geometric mean of the eigenvalues:

trace(Σ̂∞)∣∣Σ̂∞
∣∣1/p .
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It is easy to show that in the special case of a spherical distribution the asymptotic
value of an equivariant Σ̂ is a scalar multiple of I (Problem 6.3), and so in this case
there is no shape discrepancy.

For the case of an equivariant estimate and a general Σ0 we want to define bias
so that it is invariant under affine transformations, i.e., the bias does not change if x is
replaced by Ax + b. To this end we “normalize” the data so that they have an identity
dispersion matrix. Let A be any matrix such that A′A = Σ−1

0 and define y = Ax.

Then y has mean Aμ0 and the identity dispersion matrix, and if the estimates μ̂
and Σ̂ are equivariant then their asymptotic values based on data yi are Aμ̂∞ and

AΣ̂∞A
′
respectively, where μ̂∞ and Σ̂∞ are their values based on data xi . Since their

respective discrepancies are given by

‖Aμ̂∞ − Aμ0‖2 = (
μ̂∞−μ0

)′ Σ−1
0

(
μ̂∞−μ0

)
and cond(AΣ̂∞A

′
),

and noting that AΣ̂∞A
′
has the same eigenvalues as Σ−1

0 Σ̂∞, it is natural to define

bias(μ̂) =
√(

μ̂∞−μ0

)′ Σ−1
0

(
μ̂∞−μ0

)
and bias(Σ̂) = cond(Σ−1

0 Σ̂∞). (6.51)

It is easy to show that if the estimates are equivariant then (6.51) does not depend
upon either μ0 or Σ0. Hence to evaluate equivariant estimates we may without loss
of generality take μ0 = 0 and Σ0 = I.

Table 6.2 gives the maximum asymptotic biases (6.51) of several multivariate
estimates at the multivariate normal distribution, for ε = 0.1 and p = 5, 10 and 20.
“S-D9” is the Stahel–Donoho estimate using weights (6.49) with β = 0.9; “Bisq.” is
the S-estimate with bisquare ρ and BP = 0.5; “SR05” is the SR-α estimate based on
(6.41) with α = 0.05. The results for MVE, S-D9 and MCD are from Adrover and
Yohai (2002). No results on the condition numbers of S-D9 and MCD are available.
The results show that SR05 and SR10 are the best competitors relative to the MVE,
with somewhat smaller maximum biases than the MVE estimate for p = 5, and
somewhat higher relative biases for p = 10 and 20 (overall SR10 is preferred).

Table 6.2 Maximum biases of multivariate estimates for contamination rate 0.10

p MVE Bisq. SR05 SR10 S-D9 MCD

Location 5 0.73 0.46 0.63 0.66 0.52 0.94
10 0.75 1.40 0.92 0.90 1.07 1.97
20 0.77 6.90 1.24 1.07 2.47 7.00

Dispersion 5 6.9 4.05 4.77 5.06
10 9.4 19.31 9.52 9.42
20 15.0 357.42 23.90 20.10
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6.7 Numerical computation of multivariate estimates

6.7.1 Monotone M-estimates

Equations (6.15) and (6.16) yield an iterative algorithm similar to the one for re-
gression in Section 4.5. Start with initial estimates μ̂0 and Σ̂0, e.g., the vector of
coordinate-wise medians and the diagonal matrix with the squared normalized MADs
of the variables in the diagonal. At iteration k let dki = d(xi , μ̂k, Σ̂k) and compute

μ̂k+1 =
∑n

i=1 W1(dki )xi∑n
i=1 W1(dki )

, Σ̂k+1 = 1

n

n∑
i=1

W2(dki )(xi − μ̂k+1)(xi − μ̂k+1)′. (6.52)

If at some iteration Σ̂k becomes singular, it suffices to compute the di ’s through (6.20).
The convergence of the procedure is established in Section 9.5. Since the solution is
unique for monotone M-estimates, the starting values influence only the number of
iterations but not the end result.

6.7.2 Local solutions for S-estimates

Since local minima of σ̂ are solutions of the M-estimating equations (6.31)–(6.32), a
natural procedure to minimize σ̂ is to use the iterative procedure (6.52) to solve the
equations, with W1 = W2 equal to W = ρ ′ as stated in (6.33). It must be recalled that
since tW (t) is redescending, this pair of equations yields only a local minimum of σ,

and hence the starting values are essential. Assume for the moment that we have the
initial μ̂0 and Σ̂0 (their computation is treated below in Section 6.7.5).

At iteration k, call μ̂k and Σ̂k the current values and compute

dki = d(xi , μ̂k, Σ̂k), σ̂ k = σ̂ (dk1, . . . , dkn), wki = W

(
dki

σ̂ k

)
. (6.53)

Then compute

μ̂k+1 =
∑n

i=1 wki xi∑n
i=1 wki

, Ĉk =
n∑

i=1

wki (xi − μ̂k+1)(xi − μ̂k+1)′, Σ̂k+1 = Ĉk∣∣Ĉk

∣∣1/p .

(6.54)

It is shown in Section 9.6 that if the weight function W is nonincreasing, then σ̂ k

decreases at each step. One can then stop the iteration when the relative change
(σ̂ k − σ̂ k+1) /σ̂ k is below a given tolerance. Experience shows that since the decrease
of σ̂ k is generally slow, it is not necessary to recompute it at each step, but at, say,
every 10th iteration.

If W is not monotonic, the iteration steps (6.53)–(6.54) are not guaranteed to
cause a decrease in σ̂ k at each step. However, the algorithm can be modified to
insure a decrease at each iteration. Since the details are involved, they are deferred to
Section 9.6.1.
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6.7.3 Subsampling for estimates based on a robust scale

The obvious procedure to generate an initial approximation to an estimate defined
by (6.28) is follow the general approach for regression described in Section 5.7.2,
in which the minimization problem is replaced by a finite one where the candidate
estimates are sample means and covariance matrices of subsamples. To obtain a finite
set of candidate solutions take a subsample of size p + 1, {xi : i ∈ J } where the set
J ⊂ {1, . . . , n} has p + 1 elements, and compute

μ̂J = avei∈J (xi ) and Σ̂J = ĈJ∣∣ĈJ

∣∣1/p , (6.55)

where ĈJ is the covariance matrix of the subsample; and let

dJ = {dJi : i = 1, . . . , n} , dJi = d
(
xi , μ̂J , Σ̂J

)
. (6.56)

Then the problem of minimizing σ̂ is replaced by the finite problem of minimizing
σ̂ (dJ ) over J. Since choosing all

( n
p+1

)
subsamples is prohibitive unless both n and

p are rather small, we choose N of them at random, {Jk : k = 1, . . . , N } , and the
estimates are μ̂Jk

, Σ̂Jk with

k* = arg min
k=1,...,N

σ̂ (dJk ). (6.57)

If the sample contains a proportion ε of outliers, the probability of at least one
“good” subsample is 1 − (1 − α)N where α = (1 − ε)p+1 . If we want this probability
to be larger than 1 − δ we must have

N ≥ |log δ|
|log(1 − α)| ≈ |log δ|

(1 − ε)p+1
. (6.58)

See Table 5.3 in Chapter 5 for the values of N required as a function of p and ε.
A seemingly trivial but important detail is in order. It would seem that the more

candidates, the better. Adding the “subsample” consisting of the whole data set,
resulting in the usual sample mean and covariance estimates, would decrease the
scale at practically no cost. But the simulations described in Section 6.8 show that
while this addition improves the efficiency at the normal model, it greatly increases
the bias due to outliers. The reason is that for contaminated data it may happen that
the chosen subsample is the whole data set, and hence the outcome may be the sample
mean and covariance matrix.

A simple but effective improvement of the subsampling procedure is as follows.
For subsample J with distances dJ defined in (6.56), let τ = Med(dJ ) and compute

μ*
J = ave {xi : dJi ≤ τ } , C*

J = Var {xi : dJi ≤ τ } , Σ*
J = C*

J∣∣∣C*
J

∣∣∣1/p . (6.59)

Then use μ*
J and C*

J instead of μ̂J and ĈJ . The motivation for this idea is that a
subsample of p + 1 points is too small to yield reliable means and covariances, and
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so it is desirable to enlarge the subsample in a suitable way. This is attained by se-
lecting the half-sample with smallest distances. Although no theoretical results are
known for this method, our simulations show that this extra effort yields a remarkable
improvement in the behavior of the estimates with only a small increase in computa-
tional time. In particular, for the MVE estimate the minimum scale obtained this way
is always much smaller than that obtained with the original subsamples. For example,
the ratio is about 0.3 for p = 40 and 500 subsamples.

6.7.4 The MVE

We have seen that the objective function of S-estimates can be decreased by iteration
steps, and the same thing happens with the MCD (Section 6.7.6). However, no such
improvements are known for the MVE, which makes the outcome of the subsampling
procedure the only available approximation to the estimate.

The simplest approach to this problem is to use directly the “best” subsample given
by (6.57). However, in view of the success of the improved subsampling method given
by (6.59) we make it our method of choice to compute the MVE.

An exact method for the MVE was proposed by Agulló (1996), but since it is not
feasible except for small n and p we do not describe it here.

6.7.5 Computation of S-estimates

Once we have initial values μ̂0 and Σ̂0, an S-estimate is computed by means of
the iterative procedures described in Section 6.7.2. We present two approaches to
compute μ̂0 and Σ̂0.

The simplest approach is to obtain initial values of μ0,Σ0 through subsampling
and then apply the iterative algorithm. Much better results are obtained by following
the same principles as the strategy described for regression in Section 5.7.3. This ap-
proach was first employed for multivariate estimation by Rousseeuw and van Driessen
(1999) (see Section 6.7.6).

Our preferred approach, however, proceeds as was done in Section 5.5 to compute
the MM-estimates of regression; that is, start the iterative algorithm from a bias-robust
but possibly inefficient estimate, which is computed through subsampling. Since Table
6.2 provides evidence that the MVE estimate has the smallest maximum bias, it is
natural to think of using it as an initial estimate.

It is important to note that although the MVE estimate has the unattractive fea-
ture of a slow n−1/3 rate of consistency, this feature does not affect the efficiency
of the local minimum which is the outcome of the iterative algorithm, since it sat-
isfies the M-estimating equations (6.31)–(6.32); if equations (6.17)–(6.18) for the
asymptotic values μ̂∞, Σ̂∞ have a unique solution, then all solutions of (6.31)–(6.32)
converge to

(
μ̂∞, Σ̂∞

)
with a rate of order n−1/2.

Therefore we recommend use of the MVE as an initial estimate based on a sub-
sampling approach, but using the improved method (6.59). Simulation results in
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Section 6.8 show that this greatly improves the behavior of the estimates as compared
to the simpler subsampling described at the beginning of the section.

Other numerical algorithms have been proposed by Ruppert (1992) and Woodruff
and Rocke (1994).

6.7.6 The MCD

Rousseeuw and van Driessen (1999) found an iterative algorithm for the MCD, based
on the following fact. Given any μ̂1 and Σ̂1, let di be the corresponding squared
distances. Then compute μ̂2 and Ĉ as the sample mean and covariance matrix of
the data with h smallest of the di ’s, and set Σ̂2 = Ĉ/

∣∣Ĉ∣∣1/p
. Then μ̂2 and Σ̂2 yield

a lower value of σ̂ in (6.39) than μ̂1 and Σ̂1. This is called the concentration step
(“C-step” in the above authors’ paper), and a proof of the above reduction in σ̂ is
given in Section 9.6.2. In this case the modification (6.59) is not necessary, since the
concentration steps are already of this sort. The overall strategy then is: for each of N
candidate solutions obtained by subsampling, perform, say, two of the above steps,
keep the 10 out of N that yield the smallest values of the criterion, and starting from
each of them iterate the C-steps to convergence.

6.7.7 The Stahel–Donoho estimate

No exact algorithm for the Stahel–Donoho estimate is known. To approximate the
estimate we need a large number of directions, and these can be obtained by subsam-
pling. For each subsample J = {

xi1
, . . . , xi p

}
of size p, let aJ be a vector of norm

1 orthogonal to the hyperplane spanned by the subsample. The unit length vector aJ

can be obtained by applying the QR orthogonalization procedure (see for example
Chambers (1977) to

{
xi1

− xJ , . . . , xi p−1
− xJ , b

}
, where xJ is the average of the

subsample and b is any vector not collinear with xJ . Then we generate N subsamples
J1, . . . , JN and replace (6.43) by

t̂(x) = max
k

t(x, aJk
).

It is easy to show that t̂ is invariant under affine transformations, and hence the
approximate estimate is equivariant.

6.8 Comparing estimates

Until now we have relied on asymptotic results, and we need some sense of the
behavior of the estimates defined in the previous sections in finite-sample sizes. Since
the behavior of robust estimates for finite n is in general analytically intractable we
must resort to simulation. Recall that the performance of an estimate is a combination
of its bias and variability. The relative performances of two estimates depend on the
underlying distribution and also on the sample size. Since the variability tends to zero
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when n → ∞ while the bias remains essentially constant, an estimate with low bias
but high variability may be very good for very large n but bad for moderate n. Hence
no estimate can be “best” under all circumstances. Computing time is also an element
to be taken into account.

The simulations presented in this section are all based on an underlying p-variate
normal distribution Np (0, I) with 10% point mass contamination located at a distance
k from the origin, with k ranging over a suitable interval. The criterion we use to
compare the estimates is the root mean square error (RMSE) of the location estimate.
The relative performances of the dispersion matrices are similar to those of the location
vectors, and are hence not shown here. Details of the simulation are given at the end
of this section.

We first compare the two versions of MVE mentioned in Section 6.7.4: simple
subsampling (labeled “MVE-1”), and subsampling with the improvement (6.59) (la-
beled “MVE-2”). Figure 6.7 displays the results for p = 10 with 500 subsamples; the
advantages of MVE-2 are clear. Hence in the remainder of the discussion only the
improved version MVE-2 will be employed.

Now we compare two ways of approximating the bisquare S-estimate as described
in Section 6.7.5: starting from the older “naive” subsampling-based estimate (labeled
“Bisq-1”), and starting from the improved MVE-2 estimate (labeled “Bisq-2”). Fig-
ure 6.8 shows for p = 10 the advantages of a good starting point. All S-estimates
considered henceforth are computed with the MVE-2 as starting point.

k
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E
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0
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0
.8

1
.0

1
.2

MVE-1

MVE-2

Figure 6.7 RMSE of location estimate from MVE with simple (MVE-1) and im-
proved (MVE-2), subsampling for p = 10
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Figure 6.8 RMSE of bisquare location estimate from pure subsampling (Bisq-1) and
starting from fast MVE (Bisq-2) for p = 10

To compare the behaviors of several estimates we performed a simulation exper-
iment, which included� the classical sample mean and covariance matrix� the MVE-2 and MCD estimates� the MVE-2 and MCD both with one-step reweighting (Section 6.4.5) with β =

0.975� the S-estimate with bisquare function� the Rocke-type S-estimate SR-α with α = 0.05 and 0.10.

The sampling situations were ε-contaminated p-variate normal distributions
Np(0, I), with ε = 0.10, p = 5, 10, 20, 30, and with n = 5p and 10p. We show only
a part of the results. In each plot “k = 0” corresponds to the case ε = 0 so that we can
compare normal distribution efficiencies. For the MVE and MCD we show only the
results corresponding to the reweighted versions. None of the two versions of SR-α
was systematically better than the other, but their relative performance depends on p.

We show the results for α = 0.05. Figure 6.9 shows the results for p = 5 and n = 50.

The bisquare estimate is clearly more robust and more efficient than the others.
Figure 6.10 shows the results for p = 20 and n = 200. Here SR-05 is clearly

better than its competitors. The values for the MCD eventually drop for large k (the
maximum asymptotic bias of the MCD for p = 20 is attained at k = 17).
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Figure 6.9 Simulation RMSEs of location estimates for p = 5 and n = 50
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Figure 6.10 Simulation RMSEs for multivariate location estimates with p = 20 and
n = 200
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As a consequence of these simulations and of the former asymptotic results we
propose the use of S-estimates, since they give an adequate balance between bias and
variability and can be computed in feasible times. As a simple rule, we recommend
the bisquare for p < 10 and SR-05 for p ≥ 10.

Remark: S-PLUS includes Rocke’s “translated bisquare” estimate, which has a
monotonic weight function. Although it is better than the bisquare, it is not as robust
for large p as the estimates described in Section 6.4.4. Besides, the MCD is used as the
starting estimate in the S-PLUS implementation, and hence inherits the bad behavior
of the MCD for large p. For these reasons, this version cannot be recommended for
high dimensional data.

Details of the simulation
The sampling situations used were a version of an ε-contaminated Np(0, I) with
point mass contamination. Let m = [nε]. Then for each replication, a sample
{xi : i = 1, . . . , n} is generated, with xi ∼ Np(0, I) for i = 1, . . . , n. Then for i ≤ m,

xi is replaced by δxi + kb1 where b1 = (1, 0, . . . , 0)′ and δ = 0.001 (rather than
δ = 0, which may cause collinear subsamples). Note that this is not exactly a con-
taminated sample: in a sample from a true ε-contaminated distribution, the number
of outliers would be binomial, Bi(n, ε), rather than the fixed number nε.

The number of replications was Nrep = 500. For replication j ( j = 1, . . . , Nrep)
we obtained the estimates

(
μ̂ j , Σ̂ j

)
, which were evaluated by

∥∥μ̂ j

∥∥ and cond(Σ̂ j ).
To summarize these Nrep numbers for each estimate, the “average errors” of μ̂ and

Σ̂ were used: namely,

√
ave j (

∥∥μ̂ j

∥∥2
) (the RMSE) and ave j

(
log cond(Σ̂ j )

)
. Using

the median instead of the mean yields similar results. Logs were taken because of the
large difference in orders of magnitude of condition numbers.

6.9 Faster robust dispersion matrix estimates

Estimates based on a subsampling approach will be too slow when p is large, e.g.,
when p is on the order of a few hundred. We now present two deterministic methods
for high-dimensional data based on projections, the first based on pairwise robust
covariances and the second based on the search of univariate projections with extreme
values of the kurtosis.

6.9.1 Using pairwise robust covariances

Much faster estimators can be obtained if equivariance is given up. The simplest
approaches for location and dispersion are respectively to apply a robust location es-
timate to each coordinate and a robust estimate of covariance to each pair of variables.
Such pairwise robust covariance estimates are easy to compute, but unfortunately the
resulting dispersion matrix lacks affine equivariance and positive definiteness. Be-
sides, such estimates for location and dispersion may lack both bias robustness and
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high normal efficiency if the data are very correlated. This is because the coordinate-
wise location estimates need to incorporate the correlation structure for full efficiency
at the normal distribution, and because the pairwise covariance estimates may fail to
downweight higher-dimensional outliers.

A simple way to define a robust covariance between two random variables x, y is
by truncation or rejection. Let ψ be a bounded monotone or redescendingψ-function,
and μ(.) and σ (.) robust location and dispersion statistics. Then robust correlations
and covariances can be defined as

RCov(x, y) = σ (x)σ (y)E

[
ψ

(
x − μ(x)

σ (x)

)
ψ

(
y − μ(y)

σ (y)

)]
, (6.60)

RCorr(x, y) = RCov(x, y)

[RCov(x, x)RCov(y, y)]1/2
. (6.61)

See Sections 8.2–8.3 of Huber (1981). This definition satisfies RCorr(x, x) = 1.When
ψ(x) = sgn(x) and μ is the median, (6.61) and (6.64) are called the quadrant correla-
tion and covariance estimates. The sample versions of (6.60) and (6.61) are obtained
by replacing the expectation by the average and μ and σ by their estimates μ̂ and σ̂ .

These estimates are not consistent under a given model. In particular, if D(x, y)
is bivariate normal with correlation ρ and ψ is monotone, then the value ρR of
RCorr(x, y) is an increasing function ρR = g(ρ) of ρ which can be computed (Prob-
lem 6.11). Then, the estimate ρ̂R of ρR can be corrected to ensure consistency at the
normal model by using the inverse transformation ρ̂ = g−1(̂ρR).

Another robust pairwise covariance initially proposed by Gnanadesikan and
Kettenring (1972) and studied by Devlin et al. (1981) is based on the identity

Cov(x, y) = 1

4

(
SD (x + y)2 − SD (x − y)2

)
. (6.62)

They proposed to define a robust correlation by replacing the standard deviation by a
robust dispersion σ (they chose a trimmed standard deviation):

RCorr(x, y) = 1

4

(
σ

(
x

σ (x)
+ y

σ (y)

)2

− σ

(
x

σ (x)
− y

σ (y)

)2
)

(6.63)

and a robust covariance defined by

RCov(x, y) = σ (x)σ (y)RCorr(x, y). (6.64)

The latter satisfies

RCov(t1x, t2 y) = t1t2RCov(x, y) for all t1, t2 ∈ R (6.65)

and

RCov(x, x) = σ (x)2 .

Note that dividing x and y by their σ ’s in (6.63) is required for (6.65) to hold.
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The above pairwise robust covariances can be used in the obvious way to define
a “robust correlation (or covariance) matrix” of a random vector x = (

x1, . . . , x p
)′

.
The resulting dispersion matrix is symmetric but not necessarily positive semidefinite,
and is not affine equivariant. Genton and Ma (1999) calculated the influence function
and asymptotic efficiency of the estimates of such matrices. It can be shown that the
above correlation matrix estimate is consistent if D(x) is an elliptical distribution, and
a proof is given in Section 6.12.10.

Maronna and Zamar (2002) show that a simple modification of Gnanadesikan and
Kettenring’s approach yields a positive definite matrix and “approximately equivari-
ant” estimates of location and dispersion. Recall that if Σ is the covariance matrix of
the p-dimensional random vector x and σ denotes the standard deviation, then

σ (a′x)2 = a′Σa (6.66)

for all a ∈R p. The lack of positive semidefiniteness of the Gnanadesikan–Kettenring
matrix is overcome by a modification that forces (6.66) for a robust σ and a set
of “principal directions”, and is based on the observation that the eigenvalues of
the covariance matrix are the variances along the directions given by the respective
eigenvectors.

Let X = [xi j ] be an n × p data matrix with rows x′
i , i = 1, . . . , n, and columns

x j , j = 1, . . . , p. Let σ̂ (.) and μ̂(.) be robust univariate location and dispersion
statistics. For a data matrix X we shall define a robust dispersion matrix estimate
Σ̂(X) and a robust location vector estimate μ̂ (X) by the following computational
steps;

1. First compute a normalized data matrix Y with columns y j = x j/σ̂ (x j ), and hence
with rows

yi = D−1xi (i = 1, . . . , n) where D = diag(σ̂ (x1), . . . , σ̂ (xp)). (6.67)

2. Compute a robust “correlation matrix” U = [U jk] of X as the “covariance matrix”
of Y by applying (6.63) to the columns of Y, i.e.,

U j j = 1, U jk = 1

4

[
σ̂

(
y j + yk

)2 − σ̂
(
y j − yk

)2
]

( j �= k).

3. Compute the eigenvalues λ j and eigenvectors e j of U ( j = 1, . . . , p), and let
E be the matrix whose columns are the e j ’s. It follows that U = E�E′ where
� = diag(λ1, . . . , λp). Here the λi ’s need not be nonnegative. This is the “principal
component decomposition” of Y.

4. Compute the matrix Z with

zi = E′yi = E′D−1xi (i = 1, . . . , n) (6.68)

so that
(
z1, . . . , zp

)
are the “principal components” of Y.

5. Compute σ̂ (z j ) and μ̂(z j ) for j = 1, . . . , p, and set

� = diag
(
σ̂ (z1)2, . . . , σ̂ (zp)2

)
, ν = (μ̂(z1), . . . , μ̂(zp))′.
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Here the elements of � are nonnegative. Being “principal components” of Y, the
z j ’s should be approximately uncorrelated with covariance matrix Γ.

6. Now transform back to X with

xi = Azi , with A = DE, (6.69)

and finally define

Σ̂(X) = A�A′, μ̂(X) = Aν. (6.70)

The justification for the last equation is that, if ν and � were the mean and covariance
matrix of Z, since xi= Azi the mean and covariance matrix of X would be given by
(6.70).

Note that (6.67) makes the estimate scale equivariant, and that (6.70) replaces the
λi ’s, which may be negative, by the “robust variances” σ (z j )2 of the corresponding
directions. The reason for defining μ̂ as in (6.70) is that it is better to apply a coordinate-
wise location estimate to the approximately uncorrelated z j and then transform back
to the X-coordinates, than to apply a coordinate-wise location estimate directly to the
x j ’s.

The procedure can be iterated in the following way. Put μ̂(0) = μ̂(X) and
Σ̂(0) = Σ̂(X). At iteration k we have μ̂(k) and Σ̂(k), whose computation has required
computing a matrix A as in (6.69). Call Z(k) the matrix with rows zi = A−1xi . Then
μ̂(k+1) and Σ̂(k+1) are obtained by computing Σ̂ and μ̂ for Z(k) and then expressing
them back in the original coordinate system. More precisely, we define

Σ̂(k+1)(X) = AΣ̂(Z(k))A′, μ̂(k+1)(X) = Aμ̂(Z(k)). (6.71)

The reason for iterating is that the first step works very well when the data have low
correlations; and the z j ’s are (hopefully) less correlated than the original variables.
The resulting estimate will be called the “orthogonalized Gnanadesikan–Kettenring
estimate” (OGK).

A final step is convenient both to increase the estimate’s efficiency and to make
it “more equivariant”. The simplest and fastest option is the reweighting procedure
in Section 6.4.5. But it is much better to use this estimate as the starting point for the
iterations of an S-estimate.

Since a large part of the computing effort is consumed by the univariate estimates μ̂

and σ̂ , they must be fast. The experiments by Maronna and Zamar (2002) showed that
it is desirable that μ̂ and σ̂ be both bias robust and efficient at the normal distribution
in order for Σ̂ and μ̂ to perform satisfactorily. To this end, the dispersion estimate σ̂ is
defined in a way similar to the “τ -scale” estimate (5.59), which is a truncated standard
deviation, and the location estimate μ̂ is a weighted mean. More precisely, let μ̂0 and
σ̂ 0 be the median and MAD. Let W be a weight function and ρ a ρ-function. Let
wi = W

((
xi − μ̂0

)
/σ̂ 0

)
and

μ̂ =
∑n

i=1 xiwi∑n
i=1 wi

, σ̂ 2 = σ 2
0

n

n∑
i=1

ρ

(
xi − μ̂

σ̂ 0

)
.
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An adequate balance of robustness and efficiency is obtained with W , the bisquare
weight function (2.62), with k = 4.5, and ρ as the bisquare ρ (2.37) with k = 3.

It is shown by Maronna and Zamar (2002) that if the BPs, of μ̂ and σ̂ are not less
than ε then so is the BP of (μ̂,Σ̂), as long as the data are not collinear. Simulations in
their paper show that two is an adequate number of iterations (6.71), and that further
iterations do not seem to converge and yield no improvement.

An implementation of the OGK estimator for applications to data mining was
discussed by Alqallaf, Konis, Martin and Zamar (2002), using the quadrant correlation
estimator. A reason for focusing on the quadrant correlation was the desire to operate
on huge data sets that are too large to fit in computer memory, and a fast bucketing
algorithm can be used to compute this estimate on “streaming” input data (data read
into the computer sequentially from a database). The median and MAD estimates
were used for robust location and dispersion because there are algorithms for the
approximate computation of order statistics from a single pass on large streaming
data sets (Manku, Rajagopalan and Lindsay, 1999).

6.9.2 Using kurtosis

The kurtosis of a random variable x is defined as

Kurt (x) = E (x − Ex)4

SD (x)4
.

Peña and Prieto (2001) propose an equivariant procedure based on the following
observation. A distribution is called unimodal if its density has a maximum at some
point x0, and is increasing for x < x0 and decreasing for x > x0. Then it can be shown
that the kurtosis is a measure of both heavy-tailedness and unimodality. It follows
that, roughly speaking, for univariate data a small proportion of outliers increases the
kurtosis, since it makes the data tails heavier, and a large proportion decreases the
kurtosis, since it makes the data more bimodal.

Hence Peña and Prieto look for projections which either maximize or minimize the
kurtosis, and use them in a way similar to the Stahel–Donoho estimate. The procedure
is complex, but it may be summarized as follows for the case of p-dimensional data:

1. Two sets of p directions a are found, one corresponding to local maxima and the
other to local minima of the kurtosis.

2. The outlyingness of each data point is measured through (6.43), with the vector a
ranging only over the 2p directions found in the previous step.

3. Points with outlyingness above a given threshold are transitorily deleted, and steps
1–2 are iterated on the remaining points until no more deletions take place.

4. The sample mean and covariance matrix of the remaining points are computed.
5. Deleted points whose Mahalanobis distances are below a threshold are again in-

cluded.
6. Steps 4–5 are repeated until no more inclusions take place.
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Step 1 is performed through an efficient iterative algorithm. The procedure is very
fast for high dimensions, and the simulations by Peña and Prieto (2001) suggest that
it has a promising performance.

6.10 Robust principal components

Principal components analysis (PCA) is a widely used method for dimensionality
reduction. Let x be a p-dimensional random vector with mean μ and covariance
matrix Σ. The first principal component is the univariate projection of maximum
variance; more precisely, it is the linear combination x′b1 where b1 (called the first
principal direction) is the vector b such that

Var(b′x) = max subject to ‖b‖ = 1. (6.72)

The second principal component is x′b2 where b2 (the second principal direction)
satisfies (6.72) with b′

2b1 = 0, and so on. Call λ1 ≥ λ2 ≥ . . . ≥ λp the eigenvalues of
Σ.Then b1, . . . , bp are the respective eigenvectors and Var(b′

j x) = λ j . The number q
of components can be chosen on the basis of the “proportion of unexplained variance”∑p

j=q+1 λ j∑p
j=1 λ j

. (6.73)

PCA can be viewed in an alternative geometric form in the spirit of regression
modeling. Consider finding a q-dimensional hyperplane H such the orthogonal dis-
tance of x to H is “smallest”, in the following sense. Call x̂H the point of H closest
in Euclidean distance to x, i.e., such that

x̂H = arg min
z∈H

||x − z|| .

Then we look for H* such that

E
∥∥x−̂x

H*
∥∥2 = min . (6.74)

It can be shown (Seber, 1984) that H* contains the mean μ and has the direc-
tions of the first q eigenvectors b1, . . . , bq , and so H* is the set of translated linear
combinations of b1, . . . , bq :

H* =
{
μ +

q∑
k=1

αkbk : α1, . . . , αq ∈ R

}
. (6.75)

Then

z j = (x − μ)′b j ( j = 1, . . . , q) (6.76)
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are the coordinates of the centered x in the coordinate system of the b j , and

dH =
p∑

j=p+1

z2
j = ‖x−̂xH‖2 , dC =

q∑
j=1

z2
j (6.77)

are the squared distances from x to H and from x̂H to μ, respectively.
Note that the results of PCA are not invariant under general affine transformations,

in particular under changes in the units of the variables. Doing PCA implies that we
consider the Euclidean norm to be a sensible measure of distance, and this may require
a previous rescaling of the variables. PCA is, however, invariant under orthogonal
transformations, i.e., transformations that do not change Euclidean distances.

Given a data set X= {x1, . . . , xn} , the sample principal components are computed
by replacingμ and Σ by the sample mean and covariance matrix. For each observation
xi we compute the scores zi j = (xi−x)′b j and the distances

dĤ ,i =
p∑

j=q+1

z2
i j = ∥∥xi −̂xĤ ,i

∥∥2
, dC.i =

q∑
j=1

z2
i j , (6.78)

where Ĥ is the estimated hyperplane. A simple data analytic tool similar to the plot
of residuals versus fitted values in regression is to plot dĤ ,i vs. dC,i .

As can be expected, outliers may have a distorting effect on the results. For
instance, in Example 6.1, the first principal component of the correlation matrix of
the data explains 75% of the variability, while after deleting the atypical point it
explains 90%. The simplest way to deal with this problem is to replace x and Var(X )
with robust estimates μ̂ and Σ̂ of multivariate location and dispersion. Campbell
(1980) uses M-estimates. Croux and Haesbroeck (2000) discuss several properties of
this approach. Note that the results depend only on the shape of Σ̂ (Section 6.3.2).

However, better results can be obtained by taking advantage of the particular
features of PCA. For affine equivariant estimation the “natural” metric is that given
by squared Mahalanobis distances di = (xi − μ̂)′Σ̂

−1
(xi − μ̂), which depends on the

data through Σ̂
−1

, while for PCA we have a fixed metric given by Euclidean distances.
This implies that the concept of outliers changes. In the first case an outlier which
should be downweighted is a point with a large squared Mahalanobis distance to the
center of the data, while in the second it is a point with a large Euclidian distance to the
hyperplane (“large” as compared to the majority of points). For instance, consider two
independent variables with zero means and standard deviations 10 and 1, and q = 1.

The first principal component corresponds to the first coordinate axis. Two data values,
one at (100,1) and one at (10,10), have identical large squared Mahalanobis distances
of 101, but their Euclidean distances to the first axis are 1 and 10 respectively. The
second one would be harmful to the estimation of the principal components, but the
first one is a “good” point for that purpose.

Boente (1983, 1987) studied M-estimates for PCA. An alternative approach to
robust PCA is to replace the variance in (6.72) by a robust scale. This approach was
first proposed by Li and Chen (1985), who found serious computational problems.
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Croux and Ruiz-Gazen (1996) proposed an approximation based on a finite number of
directions. The next sections describe two new preferred approaches to robust PCA.
One is based on robust fitting of a hyperplane H by minimization of a robust scale,
while the other is a simple and fast “spherical” principal components method that
works well for large data sets.

6.10.1 Robust PCA based on a robust scale

The proposed approach is based on replacing the expectation in (6.74) by a robust
M-scale (Maronna, 2005). For given q-dimensional hyperplane H call σ̂ (H ) an
M-scale estimate of the dH,i in (6.78); that is, σ̂ (H ) satisfies the M-scale equation

1

n

n∑
i=1

ρ

(∥∥xi −̂xH,i

∥∥2

σ̂ (H )

)
= δ. (6.79)

Then we search for Ĥ having the form of the right-hand-side of (6.75) such that σ̂ (Ĥ )
is minimum. For a given H let

μ̂ = 1∑n
i=1 wi

n∑
i=1

wi xi , V̂=
n∑

i=1

wi (xi − μ̂) (xi − μ̂)′ , (6.80)

with

wi = W

(∥∥xi −̂xH,i

∥∥2

σ̂

)
(6.81)

where W = ρ ′. It can be shown by differentiating (6.79) with respect to μ and b j that
the optimal Ĥ has the form (6.75) where μ = μ̂ and b1, . . . , bq are the eigenvectors
of V̂ corresponding to its q largest eigenvalues. That is, the hyperplane is defined by
a weighted mean of the data and the principal directions of a weighted covariance
matrix, where points distant from Ĥ receive small weights.

This result suggests an iterative procedure, in the spirit of the iterative reweighting
approach of Sections 6.7.1 and 6.7.2. Starting with some initial Ĥ0, compute the
weights with (6.81), then compute μ̂ and V̂ with (6.80) and the corresponding principal
components, which yield a new Ĥ . It follows from the results by Boente (1983) that
if W is nondecreasing, then σ decreases at each step of this procedure and the method
converges to a local minimum.

There remains the problem of starting values. Simulations in Maronna (2005)
show that rather than subsampling, it is better to directly choose the initial directions
b j at random on the unit sphere. The whole procedure is based on the strategy in
Section 5.7.3. For each random start, a small number of iterations are performed,
the best candidates are kept and are used as starting points for full iteration, and the
solution with minimum σ̂ is chosen. The resulting procedure is fast for large p, and
simulations show it to be very competitive with other proposals, in both robustness
and efficiency. See Maronna (2005) for further details.
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A similar estimate can be based on an L-scale. For h < n compute the L-scale
estimate

σ̂ (H ) =
h∑

i=1

dH,(i),

where the dH,(i)’s are the ordered values of
∥∥xi −̂xH,i

∥∥2
. Then the hyperplane Ĥ

minimizing σ̂ (H ) corresponds to the principal components of (6.80) with wi =
I
(
dĤ ,i ≤ dĤ ,(h)

)
. This amounts to “trimmed” principal components, in which the

xi ’s with the h smallest values of dĤ ,i are trimmed. The analogous iterative procedure
converges to a local minimum. The results obtained in the simulations in Maronna
(2005) for the L-scale are not as good as those corresponding to the M-scale.

6.10.2 Spherical principal components

In this section we describe a simple but effective approach proposed by Locantore,
Marron, Simpson, Tripoli, Zhang and Cohen (1999).

Let x have an elliptical distribution (6.7), in which case if Var(x) exists it is a
constant multiple of Σ. Let y = (x − μ)/ ‖x − μ‖, i.e., y is the normalization of x
to the surface of the unit sphere centered at μ. Boente and Fraiman (1999) showed
that the eigenvectors t1, . . . , tp (but not the eigenvalues!) of the covariance matrix of
y (i.e., its principal axes) coincide with those of Σ. They showed furthermore that

if σ (.) is any dispersion statistic then the values σ
(
x′t j

)2
are proportional to the

eigenvalues of Σ. Proofs are given in Section 6.12.11.
This result is the basis for a simple robust approach to PCA, called spherical

principal components (SPC). Let μ̂ be a robust multivariate location estimate, and
compute

yi =
{

(xi − μ̂) / ||xi − μ̂|| if xi �= μ̂
0 otherwise.

Let V̂ be the sample covariance matrix of the yi ’s with corresponding eigenvectors b j

( j = 1, . . . , p). Now compute λ̂ j = σ̂ (x′b j )
2 where σ̂ is a robust dispersion estimate

(such as the MAD). Call λ̂( j) the sorted λ’s, λ̂(1) ≥ . . . ≥ λ̂(p), and b( j) the corre-
sponding eigenvectors. Then the first q principal directions are given by the b( j)’s,
j = 1, . . . , q, and the respective “proportion of unexplained variance” is given by
(6.73), where λ j is replaced by λ( j).

In order for the resulting robust PCA to be invariant under orthogonal transforma-
tions of the data, it is not necessary that μ̂ be affine equivariant, but only orthogonal
equivariant, i.e., such that μ̂ (TX ) = Tμ̂ (X ) for all orthogonal T. The simplest choice
for μ̂ is the “space median”:

μ̂ = arg min
μ

n∑
i=1

||xi − μ|| .
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Table 6.3 Bus data: proportion of unexplained variability
for q components

q Classical Robust

1 0.188 0.549
2 0.083 0.271
3 0.044 0.182
4 0.026 0.135
5 0.018 0.100
6 0.012 0.069

Note that this is an M-estimate since it corresponds to (6.9) with ρ(t) = √
t and

Σ = I. Thus the estimate can be easily computed iteratively through the first equation
in (6.52) with W1(t) = 1/

√
t, starting with the coordinate-wise medians. It follows

from Section 6.12.4 that this estimate has BP = 0.5.
This procedure is deterministic and very fast, and it can be computed with collinear

data without any special adjustments. Despite its simplicity, simulations by Maronna
(2005) show that this SPC method performs very well.

Example 6.3 The data set bus (Hettich and Bay, 1999) corresponds to a study in
automatic vehicle recognition (Siebert, 1987). Each of the 218 rows corresponds to a
view of a bus silhouette, and contains 18 attributes of the image. The SDs are in general
much larger than the respective MADNs. The latter vary between 0 (for variable 9)
and 34. Hence it was decided to exclude variable 9 and divide the remaining variables
by their MADNs.

Table 6.3 (code bus) shows the proportions of unexplained variability (6.73) as a
function of the number q of components, for the classical PCA and for SPC.

It would seem that since the classical method has smaller unexplained variability
than the robust method, classical PCA gives a better representation. However, this is
not the case. Table 6.4 gives the quantiles of the distances dH,i in (6.78) for q = 3,
and Figure 6.11 compares the logs of the respective ordered values (the log scale was
used because of the extremely large outliers).

It is seen in the figure that the hyperplane from the robust fit has in general smaller
distances to the data points, except for some clearly outlying ones. On the other hand,
in Table 6.3 the classical estimate seems to perform better than the robust one. The

Table 6.4 Bus data: quantiles of distances to hyperplane

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Max

Classical 1.9 2.3 2.8 3.2 3.7 4.4 5.5 6.4 8.1 23
Robust 1.2 1.6 1.8 2.2 2.5 3.1 3.8 5.2 9.0 1039
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Figure 6.11 Bus image data: Q–Q plot of logs of distances to hyperplane (q = 3)
from classical and robust estimates. The line is the identity diagonal

reason is that the two estimates use different measures of variability. The classical
procedure uses variances which are influenced by the outliers, and so large outliers
in the direction of the first principal axes will inflate the corresponding variances and
hence increase their proportion of explained variability. On the other hand, the robust
SPC uses a robust dispersion measure which is free of this drawback, and gives a
more accurate measure of the unexplained variability for the bulk of the data.

6.11 *Other estimates of location and dispersion

6.11.1 Projection estimates

Note that, if Σ̂ is the sample covariance matrix of x and σ̂ (.) denotes the sample SD,
then

σ̂ (a′x)2 = a′Σ̂a ∀ a ∈R p. (6.82)

It would be desirable to have a robust Σ̂ fulfilling (6.82) when σ̂ is a robust
dispersion like the MAD. It can be shown that the SD is the only dispersion measure
satisfying (6.82), and hence this goal is unattainable. To overcome this difficulty,
dispersion P-estimates (Maronna, Stahel and Yohai, 1992) were proposed as “best”
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approximations to (6.82), in analogy to the approach in Section 5.14.2. Specifically,
a dispersion P-estimate is a matrix Σ̂ that satisfies

sup
a�=0

∣∣∣∣log

(
σ̂ (a′x)2

a′Σ̂a

)∣∣∣∣ = min . (6.83)

A similar idea for location was proposed by Tyler (1994). If μ̂(.) denotes the
sample mean, then the sample mean of x may be characterized as a vector ν satisfying

μ̂(a′(x − ν)) = 0 ∀ a ∈R p. (6.84)

Let μ̂ now be a robust univariate location statistic. It would be desirable to find
ν satisfying (6.84); this unfeasible goal is replaced by defining a location P-estimate
as a vector ν such that

max
‖a‖=1

∣∣μ̂(a′(x − ν))
∣∣

σ̂ (a′x)
= min, (6.85)

where σ̂ is a robust dispersion (the condition ‖a‖ = 1 is equivalent to a �= 0). Note
that ν is the point minimizing the outlyingness measure (6.43). The estimate with μ̂

and σ̂ equal to the median and MAD respectively is called “MP-estimate” by Adrover
and Yohai (2002).

It is easy to verify that both location and dispersion P-estimates are equivariant.
It can be shown that their maximum asymptotic biases at the normal model do not
depend on p. The maximum bias corresponding to the location MP-estimate is 0.32
(Adrover and Yohai, 2002), which is clearly smaller than the values in Table 6.2.

6.11.2 Constrained M-estimates

Kent and Tyler (1996) define robust efficient estimates, called constrained M-
estimates (CM-estimates, for short), as in Section 5.14.3

(μ̂,Σ̂) = arg min
μ,Σ

{
1

n

n∑
i=1

ρ(di ) + 1

2
log |Σ|

}
,

with the constraint

1

n

n∑
i=1

ρ(di ) ≤ ε,

where di = (xi − μ)′ Σ−1 (xi − μ) , ρ is a bounded ρ-function and Σ ranges over
the symmetric positive definite p × p matrices.

They show the FBP for data in general position to be

ε* = 1

n
min ([nε], [n(1 − ε) − p]) ,

and hence the bound (6.27) is attained when [nε] = (n − p)/2.
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These estimates satisfy M-estimating equations (6.11)–(6.12). By an adequate
choice of ρ, they can be tuned to attain a desired efficiency.

6.11.3 Multivariate MM- and τ -estimates

Lopuhaã (1991, 1992) defined multivariate estimates that attain both a given asymp-
totic efficiency and a given BP, extending to the multivariate case the approaches of τ -
and MM-estimates described for regression in Sections 5.5 and 5.14.1, respectively.
Details are given in the respective articles.

6.11.4 Multivariate depth

Another approach for location is based on extending the notion of order statistics to
multivariate data, and then defining μ as a “multivariate median” or, more generally,
a multivariate L-estimator. Among the large amount of literature on the subject, we
cite the work of Tukey (1975b), Liu (1990), Zuo and Serfling (2000) and Bai and He
(1999). The maximum BP of this type of estimate is 1/3, which is much lower than
the maximum BP for equivariant estimates given by (6.27); see Donoho and Gasko
(1992) and Chen and Tyler (2002).

6.12 Appendix: proofs and complements

6.12.1 Why affine equivariance?

Let x have an elliptical density f (x,μ,Σ) of the form (6.7). Here μ and Σ are the
distribution parameters. Then if A is nonsingular, the usual formula for the density of
transformed variables yields that y = Ax + b has density

f (A−1(y − b),μ,Σ) = f (y, Aμ + b, AΣA′), (6.86)

and hence the location and dispersion parameters of y are Aμ + b and AΣA′ respec-
tively.

Denote by
(
μ̂(X ), Σ̂(X )

)
the values of the estimates corresponding to a sample

X= {x1, . . . , xn} . Then it is desirable that the estimates
(
μ̂(Y ), Σ̂(Y )

)
corresponding

to Y= {y1, . . . , yn} with yi = Axi + b transform in the same manner as the parameters
do in (6.86): that is:

μ̂(Y ) = Aμ̂(X ) + b, Σ̂(Y ) = AΣ̂(X )A′, (6.87)

which corresponds to (6.3).
Affine equivariance is natural in those situations where it is desirable that the

result remains essentially unchanged under any nonsingular linear transformations,
like linear discriminant analysis, canonical correlations and factor analysis. This does
not happen in PCA, since it is based on a fixed metric which is invariant only under
orthogonal transformations.
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6.12.2 Consistency of equivariant estimates

We shall show that affine equivariant estimates are consistent for elliptical distribu-
tions, in the sense that if x ∼ f (x,μ,Σ) then the asymptotic values μ̂∞ and Σ̂∞
satisfy

μ̂∞ = μ, Σ̂∞ = cΣ, (6.88)

where c is a constant.
Denote again for simplicity

(
μ̂∞(x), Σ̂∞(x)

)
as the asymptotic values of the

estimates corresponding to the distribution of x. Note that the asymptotic values
share the affine equivariance of the estimates, i.e., (6.87) holds also for μ̂ and Σ̂
replaced with μ̂∞ and Σ̂∞.

We first prove (6.88) for the case μ = 0, Σ = I. Then the distribution is spherical,
and so D(Tx) = D(x) for any orthogonal matrix T. In particular for T = −I we have

μ̂∞(Tx) = μ̂∞(−x) = −μ̂∞(x) = μ̂∞(x),

which implies μ̂∞ = 0. At the same time we have

Σ̂∞(Tx) = TΣ̂∞(x)T′ = Σ̂∞(x) (6.89)

for all orthogonal T. Write Σ̂∞ = U�U′, where U is orthogonal and � =
diag

(
λ1, . . . , λp

)
. Putting T = U−1 in (6.89) yields � = Σ̂∞(x), so that Σ̂∞(x)

is diagonal. Now let T be the transformation that interchanges the first two coordinate
axes. Then TΣ̂∞(x)T′ = Σ̂∞(x) implies that λ1 = λ2, and the same procedure shows
that λ1 = . . . = λp. Thus Σ̂∞(x) is diagonal with all diagonal elements equal; that
is, Σ̂∞(x) = cI.

To complete the proof of (6.88), put y = μ + Ax where x is as before and AA′ =
Σ, so that y has distribution (6.7). Then the equivariance implies that

μ̂∞(y) = μ + Aμ̂∞(x) = μ, Σ̂∞(y) = AΣ̂∞(x)A′ = cΣ.

The same approach can be used to show that the asymptotic covariance matrix of
μ̂ verifies (6.6), noting that if μ̂ has asymptotic covariance matrix V, then Aμ̂ has
asymptotic covariance matrix AVA′ (see Section 6.12.7 for further details).

6.12.3 The estimating equations of the MLE

We shall prove (6.11)–(6.12). As a generic notation, if g(T) is a function of the p × q
matrix T = [ti j ], then ∂g/∂T will denote the p × q matrix with elements ∂g/∂ti j ; a
vector argument corresponds to q = 1. It is well known (see Seber, 1984) that

∂ |A|
∂A

= |A| A−1 (6.90)

and the reader can easily verify that

∂b′Ab
∂b

= (A + A′)b and
∂b′Ab

∂A
= bb′. (6.91)
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Put V = Σ−1. Then (6.9) becomes

avei (ρ(di )) − log |V| = min, (6.92)

with di = (xi−μ)′ V (xi−μ) . It follows from (6.91) that

∂di

∂μ
= 2V(xi−μ) and

∂di

∂V
= (xi−μ)(xi−μ)′. (6.93)

Differentiating (6.92) yields

2Vavei {W (di )(xi−μ)} = 0 and avei
{
W (di )(xi−μ)(xi−μ)′

} −V−1 = 0,

which are equivalent to (6.11)–(6.12).

6.12.4 Asymptotic BP of monotone M-estimates

Location with Σ known

It will be shown that the BP of the location estimate given by (6.17) with Σ known
is ε* = 0.5. It may be supposed without loss of generality that Σ = I (Problem 6.4)
so that d(x,μ,Σ) = ‖x − μ‖2. Let v(d) = √

dW1(d). It is assumed that for all d

v(d) ≤ K = lim
s→∞ v(s) < ∞. (6.94)

For a given ε and a contaminating sequence Gm, call μm the solution of (6.17)
corresponding to the mixture (1 − ε) F + εGm . Then the scalar product of (6.17)
with μm yields

(1 − ε)EFv(‖x −μm‖2)
(x − μm)′μm

‖x −μm‖‖μm‖ + εEGm v(‖x −μm‖2)
(x − μm)′μm

‖x − μm‖‖μm‖ = 0.

(6.95)

Assume that
∥∥μm

∥∥ → ∞. Then since for each x we have

lim
m→∞ ‖x − μm‖2 = ∞, lim

m→∞

(
x − μm

)′
μm

‖x − μm‖‖μm‖ = −1,

(6.95) yields

0 ≤ (1 − ε)K (−1) + εK

which implies ε ≥ 0.5.

The assumption (6.94) holds in particular if v is monotone. The case with v not
monotone has the complications already described for univariate location in Section
3.2.3.
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Dispersion

To prove (6.25), we deal only with Σ, and hence assume μ is known and equal to 0.

Thus Σ̂∞ is defined by an equation of the form

EW
(
x′Σ̂

−1

∞ x
)
xx

′ = Σ̂∞. (6.96)

Let α = P(x = 0). It will be shown first that in order for (6.96) to have a solution,
it is necessary that

K (1 − α) ≥ p. (6.97)

Let A be any matrix such that Σ̂∞= AA′. Multiplying (6.96) by A−1 on the left and
by A−1′ on the right yields

EW
(
y′y

)
yy′ = I, (6.98)

where y = A−1x. Taking the trace in (6.98) yields

p = EW
(‖y‖2

) ‖y‖2I (y �= 0) ≤ P (y �= 0) sup
d

(dW (d)) = K (1 − α), (6.99)

which proves (6.97).
Now let F attribute zero mass to the origin, and consider a proportion ε of con-

tamination with distribution G. Then (6.96) becomes

(1 − ε)EF W
(
x′Σ̂

−1

∞ x
)
xx

′ + εEG W
(
x′Σ̂

−1

∞ x
)
xx

′ = Σ̂∞. (6.100)

Assume ε < ε*. Take G concentrated at x0:

(1 − ε)EF W
(
x′Σ̂

−1

∞ x
)
xx

′ + εW
(
x′

0Σ̂
−1

∞ x0

)
x

0
x′

0 = Σ̂∞. (6.101)

Put x0= 0 first. Then the distribution (1 − ε)F + εG attributes mass ε to 0, and
hence in order for a solution to exist, we must have (6.97), i.e., K (1 − ε) ≥ p, and
hence ε* ≤ 1 − p/K .

Let x0 now be arbitrary and let A again be as above; then

(1 − ε)EF W (y′y)yy′ + εW (y′
0y0)y0y′

0 = I, (6.102)

where y = A−1x and y0 = A−1x0. Let a = y0/‖y0‖. Then multiplying in (6.102) by
a′ on the left and by a on the right yields

(1 − ε)EF W
(‖y‖2

) (
y′a

)2 + εW
(‖y0‖2

) ‖y0‖2 = 1 ≥ εW
(‖y0‖2

) ‖y0‖2. (6.103)

Call λp and λ1 the smallest and largest eigenvalues of Σ̂∞. Let x0 now tend to infinity.
Since ε < ε*, the eigenvalues of Σ̂∞ are bounded away from zero and infinity. Since

‖y0‖2 = x′
0Σ̂

−1

∞ x0 ≥ ‖x0‖2

λp

it follows that y0 tends to infinity. Hence the right-hand member of (6.103) tends to
εK , and this implies ε ≤ 1/K .
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Now let ε > ε*. Then either λp → 0 or λ1 → ∞. Call a1 and ap the unit eigen-
vectors corresponding to λ1 and λp. Multiplying (6.100) by a′

1 on the left and by a1

on the right yields

(1 − ε)EF W
(
x′Σ̂

−1

∞ x
) (

x′a1

)2 + εEG W
(
x′Σ̂

−1

∞ x
)
(x′a1)2 = λ1.

Suppose that λ1 → ∞. Divide the above expression by λ1; recall that the first expec-
tation is bounded and that

(x′a1)2

λ1

≤ x′Σ̂
−1

∞ x.

Then in the limit we have

1 = εEG W
(
x′Σ̂

−1

∞ x
) (x′a1)2

λ1

≤ εK ,

and hence ε ≥ 1/K .

On the other hand, taking the trace in (6.103) and proceeding as in the proof of
(6.99) yields

p = (1 − ε)EF W
(‖y‖2

) ‖y‖2 + εEG W
(‖y‖2

) ‖y‖2 ≥ (1 − ε)EF W
(‖y‖2

) ‖y‖2.

Note that

‖y‖2 ≥
(
x′ap

)2

λp
.

Hence λp → 0 implies ‖y‖2 → ∞ and thus the right-hand side of the equation above
tends to (1 − ε) K , which implies ε ≥ 1 − p/K .

6.12.5 The estimating equations for S-estimates

We are going to prove (6.31)–(6.32). Put for simplicity

V = Σ−1 and di = d(xi ,μ,Σ) = (xi−μ)′ V (xi−μ)

and call σ (μ, V) the solution of

avei

{
ρ

(
di

σ

)}
= δ. (6.104)

Then (6.28) amounts to minimizing σ (μ, V) with |V| = 1. Solving this problem by
the method of Lagrange’s multipliers becomes

g(μ, V,λ) = σ (μ, V)+λ (|V| − 1) = min .

Differentiating g with respect to λ,μ and V, and recalling (6.90), we have |V| = 1
and

∂σ

∂μ
= 0,

∂σ

∂V
+ λV−1= 0. (6.105)
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Differentiating (6.104) and recalling the first equations in (6.105) and in (6.93) yields

avei

{
W

(
di

σ

) (
σ

∂di

∂μ
− di

∂σ

∂μ

)}
= 2σavei

{
W

(
di

σ

)
(xi−μ)

}
= 0,

which implies (6.31). Proceeding similarly with respect to V we have

avei

{
W

(
di

σ

) (
σ

∂di

∂V
+ diλV−1

)}
= σavei

{
W

(
di

σ

)
(xi−μ) (xi−μ)′

}
+ bV−1= 0,

with

b = λ avei

{
W

(
di

σ

)
di

}
;

and this implies (6.32) with c = −b/σ.

6.12.6 Behavior of S-estimates for high p

It will be shown that an S-estimate with continuous ρ becomes increasingly similar
to the classical estimate when p → ∞. For simplicity, this property is proved here
only for normal data. However, it can be proved under more general conditions which
include finite fourth moments.

Because of the equivariance of S-estimates, we may assume that the true para-
meters are Σ = I and μ = 0. Then, since the estimate is consistent, its asymptotic
values are μ̂∞ = 0, Σ̂∞ = I.

For each p let d (p) = d(x,μ̂∞, Σ̂∞). Then d (p) = ||x||2∼ χ2
p and hence

E

(
d (p)

p

)
= 1, SD

(
d (p)

p

)
=

√
2

p
, (6.106)

which implies that the distribution of d (p)/p is increasingly concentrated around 1,
and d (p)/p → 1 in probability when p → ∞.

Since ρ is continuous, there exists a > 0 such that ρ(a) = 0.5. Call σp the scale
corresponding to d (p)

0.5 = Eρ

(
d (p)

σp

)
. (6.107)

We shall show that

d (p)

σp
→p a. (6.108)

Since d (p)/p →p 1, we have for any ε > 0

Eρ

(
d (p)

p/(a(1 + ε))

)
→ ρ (a(1 + ε)) > 0.5
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and

Eρ

(
d (p)

p/(a(1 − ε))

)
→ ρ (a(1 − ε)) < 0.5.

Then (6.107) implies that for large enough p

p

a(1 + ε)
≤ σp ≤ p

a(1 − ε)

and hence limp→∞
(
aσp/p

) = 1, which implies

d (p)

σp
= a

d (p)/p

aσp/p
→p a

as stated. This implies that for large n and p the weights of the observations W (di/σ̂ )
are

W

(
di

σ̂

)
= W

(
d(xi ,μ̂, Σ̂)

σ̂

)
� W

(
d(xi ,μ̂∞, Σ̂∞)

σp

)
≈ W (a);

that is, they are practically constant. Hence μ̂ and Σ̂, which are weighted means
and covariances, will be very similar to Ex and Var(x), and hence very efficient for
normal data.

6.12.7 Calculating the asymptotic covariance matrix
of location M-estimates

Recall that the covariance matrix of the classical location estimate is a constant
multiple of the covariance matrix of the observations, since Var(x) = n−1Var(x). We
shall show a similar result for M-estimates at elliptically distributed data. Let the
estimates be defined by (6.14)–(6.15). As explained at the end of Section 6.12.2, it
can be shown that if xi has an elliptical distribution (6.7), the asymptotic covariance
matrix of μ̂ has the form (6.6): V = vΣ, where v is a constant that we shall now
calculate.

It can be shown that in the elliptical case the asymptotic distribution of μ̂ is the
same as if Σ were assumed known. In view of the equivariance of the estimate, we
may consider only the case μ = 0, Σ = I. Then it follows from (6.88) that Σ̂∞ = cI,
and taking the trace in (6.15) we have that c is the solution of (6.21).

It will be shown that

v = pa

b2
,

where (writing z = ||x||2)

a = EW1

( z

c

)2

z, b = 2EW ′
1

( z

c

) z

c
+ pEW1

( z

c

)
. (6.109)
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We may write (6.14) as

n∑
i=1

�(xi ,μ) = 0,

with

�(x,μ) = W1

(‖x − μ‖2

c

)
(x − μ) .

It follows from (3.48) that V = B−1AB′−1, where

A = E�(x, 0)�(x, 0)′, B = E�̇(xi , 0),

where �̇ is the derivative of � with respect to μ, i.e., the matrix �̇ with elements
�̇ jk = ∂� j/∂μk .

We have

A = EW1

(‖x‖2

c

)2

xx′.

Since D(x) is spherical, A is a multiple of the identity: A = tI. Taking the trace and
recalling that tr(xx′) = x′x, we have

tr(A) = EW1

(‖x‖2

c

)2

‖x‖2 = a = tp,

and hence A = (a/p) I.
To calculate B, recall that

∂ ‖a‖2

∂a
= 2a,

∂a
∂a

= I,

and hence

�̇(xi ,μ) = −
{

2W ′
1

(‖x − μ‖2

c

)
(x − μ)

c
(x − μ)′ + W1

(‖x − μ‖2

c

)
I
}

.

Then the same reasoning yields B = −(b/p)I, which implies

V = pa

b2
I,

as stated.
To compute c for normal data, note that it depends only on the distribution of

‖x‖2 , which is χ2
p.

This approach can also be used to calculate the efficiency of location S-estimates.
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6.12.8 The exact fit property

Let the data set X contain q ≥ n − m* points on the hyperplane H = {
x : β′x = γ

}
.

It will be shown that μ̂ (X ) ∈ H and Σ̂ (X )β = 0.

Without loss of generality we can take ‖β‖ = 1 and γ = 0. In fact, the equation
defining H does not change if we divide both sides by ‖β‖ ; and since

μ̂ (X + a) = μ̂(X ) + a, Σ̂(X + a) = Σ̂(X ),

we may replace x by x + a where β′a =0.

Now H = {
x : β′x = 0

}
is a subspace. Call P the matrix corresponding to the

orthogonal projection on the subspace orthogonal to H, i.e., P = ββ′. Define for
t ∈ R

yi = xi + tββ′xi = (I+tP)xi .

Then Y= {y1, . . . , yn} has at least q elements in common with x, since Pz = 0 for
z ∈ H. Hence by the definition of BP, μ̂(Y ) remains bounded for all t. Since

μ̂(Y ) = μ̂(X ) + tββ′μ̂(X )

the left-hand side is a bounded function of t, while the right-hand side tends to infinity
with t unless β′μ̂(X ) = 0, i.e., μ̂(X ) ∈ H.

In the same way

Σ̂(Y ) = (I+tP)Σ̂(X )(I+tP) = Σ̂(X )+t2
(
β′Σ̂(X )β

)
ββ′ + t

(
PΣ̂(X )+Σ̂(X )P

)
is a bounded function of t, which implies that Σ̂(X )β = 0.

6.12.9 Elliptical distributions

A random vector r ∈R p is said to have a spherical distribution if its density f depends
only on ‖r‖; that is, it has the form

f (r) = h (‖r‖) (6.110)

for some nonnegative function h. It follows that for any orthogonal matrix T

D(Tr) = D(r), (6.111)

Actually, (6.111) may be taken as the general definition of a spherical distribution,
without requiring the existence of a density; but we prefer the present definition for
reasons of simplicity.

The random vector x will be said to have an elliptical distribution if

x = μ + Ar (6.112)

where μ ∈R p, A ∈R p×p is nonsingular and r has a spherical distribution. Let

Σ = AA′.
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We shall call μ and Σ the location vector and the dispersion matrix of x, respectively.
We now state the most relevant properties of elliptical distributions. If x is given by
(6.112), then:

1. The distribution of Bx + c is also elliptical, with location vector Bμ + c and
dispersion matrix BΣB′.

2. If the mean and variances of x exist, then

Ex = μ, Var (x) = cΣ,

where c is a constant.
3. The density of x is

|Σ|−p/2h((x − μ)′Σ−1(x − μ)).

4. The distributions of linear combinations of x belong to the same location-scale
family; more precisely, for any a ∈R p

D(a′x) = D(a′μ+
√

a′Σar1), (6.113)

where r1 is the first coordinate of r.
The proofs of (1) and (3) are immediate. The proof of (2) follows from the fact
that, if the mean and variances of r exist, then

Er = 0, Var (r) = cI

for some constant c.

Proof of (4): It will be shown that the distribution of a linear combination of r does
not depend on its direction; more precisely, for all a ∈R p

D(a′r) = D(‖a‖ r1). (6.114)

In fact, let T be an orthogonal matrix with columns t1, . . . , tp such that t1 =
a/ ‖a‖. Then Ta = (‖a‖ , 0, 0, . . . , 0)′ .

Then by (6.111)

D(a′r) = D(a′T′r) = D((Ta)′ r) = D(‖a‖ r1)

as stated; and (6.113) follows from (6.114) and (6.112).

6.12.10 Consistency of Gnanadesikan–Kettenring correlations

Let the random vector x = (x1, . . . , x p) have an elliptical distribution: that is, x = Az
where z = (z1, . . . , z p) has a spherical distribution. This implies that for any u ∈ R p,

D(u′x) = D(‖b‖ z1) with b = A′u,

and hence

σ (u′x) = σ0 ‖b‖ with σ0 = σ (z1). (6.115)
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Let U j = u′
j x ( j = 1, 2) be two linear combinations of x. It will be shown that

their robust correlation (6.63) coincides with the ordinary one.
Assume that z has finite second moments. We may assume that Var(z) = I. Then

Cov(U1, U2) = b′
1b2, Var(U j ) = ∥∥b j

∥∥2
,

where b j = A′u j ; and hence the ordinary correlation is

Corr(U1, U2) = b′
1b2

‖b1‖ ‖b2‖ .

Put σ j = σ (U j ) for brevity. It follows from (6.115) that

σ j = ∥∥b j

∥∥ σ0, σ

(
U1

σ1

± U2

σ2

)
=

∥∥∥∥ b1

‖b1‖ ± b2

‖b2‖
∥∥∥∥ ,

and hence (6.63) yields

RCorr(U1, U2) = b′
1b2

‖b1‖ ‖b2‖ = Corr(U1, U2).

6.12.11 Sperical principal components

We may assume without loss of generality that μ = 0. The covariance matrix of
x/ ‖x‖ is

U = E
xx′

‖x‖2
. (6.116)

It will be shown that U and Σ have the same eigenvectors.
It will be first assumed thatΣ is diagonal:Σ = diag{λ1, . . . , λp}whereλ1, . . . , λp

are its eigenvalues. Then the eigenvectors of Σ are the vectors of the canonical basis
b1, . . . , bp with b jk = δ jk . It will be shown that the b j s’ are also the eigenvectors of
U, i.e.,

Ub j = α j b j (6.117)

for some α j . For a given j put u = Ub j ; then we must show that k �= j implies
uk = 0. In fact, for k �= j,

uk = E
x j xk

‖x‖2
,

where x j ( j = 1, . . . , p) are the coordinates of x. The symmetry of the distribution
implies that D(x j , xk) = D(x j , −xk), which implies

uk = E
x j (−xk)

‖x‖2
= −uk

and hence uk = 0. This proves (6.117). It follows from (6.117) that U is diagonal.
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Now let Σ have arbitrary eigenvectors t1, . . . , tp. Call λ j ( j = 1, . . . , p) its eigen-
values, and let T be the orthogonal matrix with columns t1, . . . , tp, so that

Σ = TΛT′,

where Λ = diag{λ1, . . . , λp}. We must show that the eigenvectors of U in (6.116) are
the t j ’s.

Let z = T′x. Then z has an elliptical distribution with location vector 0 and dis-
persion matrix �. The orthogonality of T implies that ‖z‖ = ‖x‖. Let

V = E
zz′

‖z‖2
= T′UT. (6.118)

It follows from (6.117) that the b j ’s are the eigenvectors of V, and hence that V is
diagonal. Then (6.118) implies that U = TVT′, which implies that the eigenvectors
of U are the columns of T, which are the eigenvectors of Σ. This completes the proof
of the equality of the eigenvectors of U and Σ.

Now let σ (.) be a dispersion statistic. We shall show that the values of σ
(
x′t j

)2
are

proportional to the eigenvalues of Σ. In fact, it follows from (6.113) and t
′
jΣt j = λ j

that for all j,

D(t
′
j x) = D(t

′
jμ + √

λ j r1),

and hence

σ
(

t
′
j x

)
= σ

(√
λ j r1

)
= √

λ j d,

with d = σ (r1) .

6.13 Problems

6.1. Show that if x has distribution (6.7), then Ex = μ and var (x) = cΣ.
6.2. Prove that M-estimates (6.14)–(6.15) are affine equivariant.
6.3. Show that the asymptotic value of an equivariant Σ̂ at a spherical distribution

is a scalar multiple of I.
6.4. Show that the result of Section 6.12.4 is valid for any Σ.
6.5. Prove that if ρ(t) is a bounded nondecreasing function, then tρ ′ (t) cannot be

nondecreasing.
6.6. Let μ̂ and Σ̂ be S-estimates of location and dispersion based on the scale σ̂

and let σ̂ 0=σ̂ (d(X ,μ̂, Σ̂)). Given a constant σ0 define μ̂* and Σ̂* as the values
μ and Σ that minimize |Σ| subject to σ̂ (d(x,μ,Σ)) = σ0. Prove that μ̂* = μ̂

and Σ̂* = (σ̂ 0/σ0)Σ̂.
6.7. Show that x and Var (X ) are the values of μ̂ and Σ̂ minimizing |Σ| subject to

(1/n)
∑n

i=1 d(xi ,μ,Σ) = p.

6.8. Let μ̂ and Σ̂ be the MCD estimates of location and dispersion, which minimize
the scale σ̂ (d1, . . . , dn) = ∑h

i=1 d(i). For each subsample A = {xi1
, . . . , xih } of
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size h call xA and CA the sample mean and covariance matrix corresponding
to A. Let A* be a subsample of size h that minimizes |CA|. Show that A* is
the set of observations corresponding to the h smallest values d(xi ,μ̂, Σ̂), and
that μ̂ = xA* and Σ̂ = ∣∣CA*

∣∣−1/p
CA*.

6.9. Let μ̂ and Σ̂ be the MVE estimates of location and dispersion. Let μ̂*, Σ̂* be
the values of μ and Σ minimizing |Σ| under the constraint that the ellipsoid

{x ∈R p : (x − μ)′Σ−1(x − μ) ≤1}
of volume |Σ| contains at least n/2 sample points. Show that μ̂* = μ̂ and

Σ̂* = λΣ̂ where λ = Med{d(X, μ̂ ,Σ̂)}.
6.10. Prove (6.30).
6.11. Let (x, y) be bivariate normal with zero means, unit variances and correlation ρ,

and let ψ be a monotone ψ-function. Show that E (ψ (x) ψ (y)) is an increasing
function of ρ [hint: y = ρx +

√
1 − ρ2z with z ∼ (0, 1) independent of x].

6.12. Prove (6.19).
6.13. The data set glass from Hettich and Bay (1999) contains measurements of the

presence of seven chemical constituents in 76 pieces of glass from nonfloat
windows. Compute the classical estimate and the bisquare S-estimate of lo-
cation and dispersion and the respective Mahalanobis distances. For both, do
the Q–Q plots of distances and the plots of distances vs. index numbers, and
compare the results.

6.14. The first principal component is often used to represent multispectral images.
The data set image (Frery, 2005) contains the values corresponding to three
frequency bands for each of 1573 pixels of a radar image. Compute the classical
and spherical principal components and compare the directions of the respective
eigenvectors and the fits given by the first component.
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7

Generalized Linear Models

In Chapter 4 we considered regression models where the response variable y depends
linearly on several explanatory variables x1, . . . , x p. In this case y was a quantitative
variable, i.e., it could take on any real value, and the regressors—which could be
quantitative or qualitative—affected only its mean.

In this chapter we shall consider more general situations in which the regressors
affect the distribution function of y; but to retain parsimony, it is assumed that this
distribution depends on them only through a linear combination

∑
j β j x j where the

β j ’s are unknown.
The first situation that we shall treat is that when y is a 0–1 variable.

7.1 Logistic regression

Let y be a 0–1 variable representing the death or survival of a patient after heart
surgery. Here y = 1 and y = 0 represent death and survival, respectively. We want to
predict this outcome by means of different regressors such as x1 = age, x2 = diastolic
pressure, etc.

We observe (x,y) where x = (x1, . . . , x p)′ is the vector of explanatory variables.
Assume first that x is fixed (i.e., nonrandom). To model the dependency of y on x,

we assume that P(y = 1) depends on β′x for some unknown β ∈ R p. Since P(y =
1) ∈ [0, 1] and β′x may take on any real value, we make the further assumption that

P(y = 1) = F(β′x), (7.1)

where the link function F is any continuous distribution function. If instead x is
random, it will be assumed that the probabilities are conditional, i.e.,

P(y = 1|x) = F(β′x). (7.2)

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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In the frequent case of a model with an intercept, the first coordinate of each xi is
one, and the prediction may be written as

β′xi = β0 + xiβ1, (7.3)

with xi and β1 as in (4.6).
The most popular link functions are those corresponding to the logistic distribution

F(y) = ey

1 + ey
(7.4)

(“logistic model”) and to the standard normal distribution F(y) = �(y) (“probit
model”). For the logistic model we have

log
P(y = 1)

1 − P(y = 1)
= β′x.

The left-hand side is called the log odds ratio, and is seen to be a linear function of x.

Now let (x1, y1), . . . , (xn, yn) be a sample from model (7.1), where x1, . . . , xn are
fixed. From now on we shall write for simplicity

pi (β) = F(β′xi ).

Then y1, . . . , yn are response random variables which take on values 1 and 0 with
probabilities pi (β) and 1 − pi (β) respectively, and hence their frequency function is

p(yi,β) = pyi

i (β)(1 − pi (β))1−yi .

Hence the log-likelihood function of the sample L(β) is given by

log L(β) =
n∑

i=1

[
yi log pi (β) + (1 − yi ) log(1 − pi (β))

]
. (7.5)

Differentiating (7.5) yields the estimating equations for the maximum likelihood
estimate (MLE):

n∑
i=1

yi − pi (β)

pi (β) (1 − pi (β))
F ′(β′xi )xi = 0. (7.6)

In the case of random xi ’s, (7.2) yields

log L(β) =
n∑

i=1

[
yi log pi (β) + (1 − yi ) log(1 − pi (β))

] +
n∑

i=1

log g(xi ), (7.7)

where g is the density of the xi ’s. Differentiating this log likelihood again yields (7.6).
For predicting the values yi from the corresponding regressor vector xi , the ideal

situation would be that of “perfect separation”, i.e., when there exist γ ∈ R p and
α ∈ R such that

γ ′xi > α if yi = 1
γ ′xi < α if yi = 0,

(7.8)
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and therefore γ ′x = α is a “separating hyperplane”. It is intuitively clear that if one
such hyperplane exists, there must be infinite ones. However, this has the consequence
that the MLE becomes undetermined. More precisely, let β(k) = kγ. Then

lim
k→+∞

pi (β(k)) = lim
u→+∞ F(u) = 1 if y = 1

and

lim
k→+∞

pi (β(k)) = lim
u→−∞ F(u) = 1 if y = 0.

Therefore

lim
k→∞

n∑
i=1

[
yi log pi (β(k)) + (1 − yi ) log((1 − pi (β(k)))

] = 0.

Since for all finite β

n∑
i=1

yi log pi (β(k)) + (1 − yi ) log(1 − pi (β(k))) < 0,

then, according to (7.5)–(7.7), the MLE does not exist for either fixed or random xi ’s.
Albert and Anderson (1984) showed that the MLE is unique and finite if and only

if no γ ∈ R p and α ∈ R exist such that

γ ′xi ≥ α if yi = 1
γ ′xi ≤ α if yi = 0.

For γ ∈ R p call K (γ ) the number of points in the sample which do not satisfy
(7.8), and define

k0 = min
γ∈R p

K (γ), γ0 = arg min
γ∈R p

K (γ). (7.9)

Then replacing the k0 points which do not satisfy (7.8) forγ = γ0 (called “overlapping
points”) by other k0 points lying on the correct side of the hyperplane γ ′

0x = 0, the
MLE goes to infinity. Then we can say that the breakdown point of the MLE in this
case is k0/n. Observe that the points which replace the k0 misclassified points are not
“atypical”. They follow the pattern of the majority: those with γ ′

0xi > 0 have yi = 1
and those with γ ′

0xi < 0 have yi = 0. The fact that the points that produce breakdown
to infinity are not outliers was observed for the first time by Croux, Flandre and
Haesbroeck (2002). They also showed that the effect produced by outliers on the
MLE is quite different; it will be described later in this section.

It is easy to show that the function (7.4) verifies F ′(y) = F(y)(1 − F(y)). Hence
in the logistic case, (7.6) simplifies to

n∑
i=1

(yi − pi (β)) xi = 0. (7.10)

We shall henceforth treat only the logistic case, which is probably the most com-
monly used one, and which, as we shall now see, is easier to robustify.
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According to (3.47), the influence function of the MLE for the logistic model is

IF(y, x,β) = M−1(y − F(β′x))x,

where M = E(F ′(β′x)xx′). Since the factor (y − F(β′x)) is bounded, the only
outliers that make this influence large are those such that ||xi || → ∞, yi = 1 and
β′xi is bounded away from ∞, or those such that ||xi || → ∞, yi = 0 and β′xi is
bounded away from −∞. Croux et al. (2002) showed that if the model has an inter-
cept (see (7.3)), then unlike the case of ordinary linear regression, this kind of outliers
make the MLE of β1 tend to zero and not to infinity. More precisely, they show that
by conveniently choosing not more than 2(p − 1) outliers, the MLE β̂1 of β1 can
be made as close to zero as desired. This is a situation where, although the estimate
remains bounded, we may say that it breaks down since its values are determined by
the outliers rather than by the bulk of the data, and in this sense the breakdown point
to zero of the MLE is ≤ 2(p − 1)/n.

To exemplify this lack of robustness we consider a sample of size 100 from the
model

log
P(y = 1)

1 − P(y = 1)
= β0 + β1x,

where β0 = −2, β1 = 3 and x is uniform in the interval [0, 1]. Figure 7.1 (code
logregsim1) shows the sample, and we find as expected that for low values of x, a

x

y
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0
.0

0
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0
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0
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0
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Figure 7.1 Simulated data: plot of y vs. x
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Figure 7.2 Simulated data: effect of one outlier

majority of the y’s are zero and the opposite occurs for large values of x . The MLE
is β0 = −1.72, β1 = 2.76.

Now we add to this sample one outlier of the form x0 = i and y0 = 0 for i =
1, . . . , 10, and we plot in Figure 7.2 the values of β0 and β1. Observe that the value
of β1 tends to zero and β0 converges to log(α/(1 − α)), where α = 45/101 ≈ 0.45
is the frequency of ones in the contaminated sample.

7.2 Robust estimates for the logistic model

7.2.1 Weighted MLEs

Carroll and Pederson (1993) proposed a simple way to turn the MLE into an estimate
with bounded influence, by downweighting high-leverage observations. A measure
of the leverage of observation x similar to (5.46) is defined as

hn(x) = ((x − μ̂n)′�̂−1
n (x − μ̂n))1/2,

where μ̂n and �̂n are respectively a robust location vector and a robust dispersion
matrix estimate of x1, . . . , xn . Note that if μ̂n and Σ̂n are affine equivariant, this
measure is invariant under affine transformations.
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Then robust estimates can be obtained by minimizing
n∑

i=1

wi
[
yi log pi (β) + (1 − yi ) log(1 − pi (β))

]
,

with

wi = W (hn(xi )), (7.11)

where W is a nonincreasing function such that W (u)u is bounded. Carroll and
Pederson (1993) proposed choosing W in the following family which depends on
a parameter c > 0:

W (u) =
(

1 − u2

c2

)3

I(|u| ≤ c).

In S-PLUS the estimates are implemented using these weights or the Huber family of
weights defined in (2.32). This estimate will be called weighted maximum likelihood
estimate (WMLE). According to (3.47), its influence function is

IF(y, x,β) = M−1(y − F(β′x))xW (h(x)),

with

h(x) = ((x − μ)′�−1(x − μ))1/2,

where μ and � are the limit values of μ̂n and �̂n, and

M = E(W (h(x))F ′(βx)xx′).

These estimates are asymptotically normal and their asymptotic covariance matrix
can be found using (3.49).

7.2.2 Redescending M-estimates

The MLE for the logistic model can also be defined as minimizing the total deviance

D(β) =
n∑

i=1

d2(pi (β),yi ),

where d(u,y) is given by

d(u,y) = {−2
[
y log u + (1 − y) log(1 − u)

]}1/2
sgn(y − u) (7.12)

and is a signed measure of the discrepancy between a Bernoulli variable y and its
expected value u. Observe that

d(u, y) =
⎧⎨⎩ 0 if u = y

−∞ if u = 1, y = 0
∞ if u = 0, y = 1.
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In the logistic model, the values d(pi (β),yi ) are called deviance residuals, and
they measure the discrepancies between the probabilities fitted using the regression
coefficientsβ and the observed values. In Section 7.3 we define the deviance residuals
for a larger family of models.

Pregibon (1981) proposed robust M-estimates for the logistic model based on
minimizing

M(β) =
n∑

i=1

ρ(d2(pi (β),yi )),

where ρ(u) is a function which increases more slowly than the identity function.
Bianco and Yohai (1996) observed that for random xi these estimates are not Fisher-
consistent, i.e., the respective score function does not satisfy (3.31), and found that
this difficulty may be overcome by using a correction term. They proposed to estimate
β by minimizing

M(β) =
n∑

i=1

[
ρ(d2(pi (β),yi ))+q(pi (β))

]
, (7.13)

where ρ(u) is nondecreasing and bounded and

q(u) = v(u) + v(1 − u),

with

v(u) = 2
∫ u

0
ψ(−2 log t)dt

and ψ = ρ ′.
Croux and Haesbroeck (2003) described sufficient conditions on ρ to guarantee

a finite minimum of M(β) for all samples with overlapping observations (k0 > 0).
They proposed to choose ψ in the family

ψC H
c (u) = exp

(
−

√
max (u, c)

)
. (7.14)

Differentiating (7.13) with respect to β and using the facts that

q ′(u) = 2ψ(−2 log u) − 2ψ(−2 log(1 − u))

and that in the logistic model F ′ = F(1 − F), we get

2
n∑

i=1

ψ(d2
i (β))(yi − pi (β))xi

−2
n∑

i=1

pi (β)(1 − pi (β))[ψ(−2 log pi (β)) − ψ(−2 log(1 − pi (β)))]xi = 0,
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where di (β) = d(pi (β),yi ) are the deviance residuals given in (7.12). This equation
can also be written as

n∑
i=1

[ψ(d2
i (β))(yi − pi (β)) − Eβ(ψ(d2

i (β))(yi − pi (β))|xi )]xi = 0, (7.15)

where Eβ denotes the expectation when P(yi = 1|xi ) = pi (β). Putting

	(yi , xi ,β) = [ψ(d2
i (β))(yi − pi (β)) − Eβ(ψ(d2

i (β))(yi − pi (β))|xi )]xi , (7.16)

equation (7.15) can also be written as
n∑

i=1

	(yi , xi ,β) = 0.

From (7.16) it is clear that Eβ(	(yi , xi ,β)) = 0, and therefore these estimates
are Fisher-consistent. Their influence function can again be obtained from (3.47).
Bianco and Yohai (1996) proved that under general conditions these estimates are
asymptotically normal. The asymptotic covariance matrix can be obtained from (3.49).

In Figure 7.3 we repeat the same graph as in Figure 7.2 using both estimates: the
MLE and a redescending M-estimate with ψC H

0.5 (code logregsim2). We observe that
the changes in both the slope and intercept of the M-estimate are very small compared
to those of the MLE.
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Figure 7.3 Effect of an outlier on the M-estimate of slope and intercept



JWBK076-07 JWBK076-Maronna February 16, 2006 18:9 Char Count= 0

ROBUST ESTIMATES FOR THE LOGISTIC MODEL 237

Since the function 	(yi , xi ,β) is not bounded, the M-estimate does not have
bounded influence. To obtain bounded influence estimates, Croux and Haesbroeck
(2003) proposed to downweight high-leverage observations. They define a Mallows-
type GM-estimate by minimizing

M(β) =
n∑

i=1

wi
[
ρ(d2(pi (β),yi ))+q(pi (β))

]
, (7.17)

where the weights are given by (7.11).

Example 7.1 The data set leukemia has been considered by Cook and Weisberg
(1982, Chapter 5, p. 193) and Johnson (1985) to illustrate the identification of
influential observations. The data consist of 33 leukemia patients. The response
variable is one when the patient survives more than 52 weeks. Two covariates
are considered: white blood cell count (WBC) and presence or absence of certain
morphological characteristics in the white cells (AG). The model also includes an
intercept.

Cook and Weisberg detected an observation (#15) corresponding to a patient with
WBC = 100.000 who survived for a long period of time. This observation was
very influential on the MLE. They also noticed that after removing this observation
a much better overall fit was obtained, and that the fitted survival probabilities of
those observations corresponding to patients with small values of WBC increased
significantly.

In Table 7.1 (code leukemia) we give the estimated slopes and their asymptotic
standard deviations corresponding to

� the MLE with the complete sample (MLE)� the MLE after removing the influential observation (MLE−15)� the weighted MLE (WMLE)� the M-estimate (M) corresponding to the Croux and Haesbroeck family ψC H
c with

c = 0.5

Table 7.1 Estimates for leukemia data and their standard errors

Estimate Intercept WBC (×104) AG

MLE −1.31 (0.81) −0.32 (0.18) 2.26 (0.95)
MLE−15 0.21 (1.08) −2.35 (1.35) 2.56 (1.23)
WMLE 0.17 (1.08) −2.25 (1.32) 2.52 (1.22)
M 0.16 (1.66) −1.77 (2.33) 1.93 (1.16)
WM 0.20 (1.19) −2.21 (0.98) 2.40 (1.30)
CUBIF −0.68 (0.91) −0.91 (0.50) 2.25 (1.03)
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Figure 7.4 Leukemia data: Q–Q plots of deviances

� the weighted M-estimate (WM)� the optimal conditionally unbiased bounded influence estimate (CUBIF) that will
be described for a more general family of models in Section 7.3.

We can observe that coefficients fitted with MLE−15 are very similar to those of
the WMLE, M- and WM-estimates. The CUBIF gives results intermediate between
MLE and MLE−15.

Figure 7.4 shows the Q–Q plots of the observed deviances d(pi (β̂),yi ) when β̂ is
the MLE and the WM-estimate. Also plotted in the same figure is the identity line.
In ordinary linear regression, we can theoretically calculate the distribution of the
residuals assuming a distribution of the errors (say, normal); this is the basis for the
Q–Q plot. For logistic regression, Garcı́a Ben and Yohai (2004) proposed to calculate
the theoretical distribution (which depends on that of x) of d(F(β̂

′
x),y), assuming β̂

to be the true parameter vector and approximating the distribution of x by empirical
one. These Q–Q plots display the empirical quantiles of d(F(β̂

′
xi ),yi ) against the

theoretical ones. It is seen that the WM-estimate gives a better fit than the MLE, and
that its Q–Q plot pinpoints observation 15 as an outlier.
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Table 7.2 Estimates for skin data

Estimate Intercept Log VOL Log RATE

MLE −9.53 (3.21) 3.88 (1.42) 2.65 (0.91)
WMLE −9.36 (3.18) 3.83 (1.41) 2.59 (0.90)
M −14.21 (10.88) 5.82 (4.52) 3.72 (2.70)
WM −14.21 (10.88) 5.82 (4.53) 3.72 (2.70)
CUBIF −9.47 (3.22) 3.85 (1.42) 2.63 (0.91)

Example 7.2 The data set skin was introduced by Finney (1947) and later studied
by Pregibon (1982) and Croux and Haesbroeck (2003). The response is the presence
or absence of vasoconstriction of the skin of the digits after air inspiration, and the
explanatory variables are the logarithms of the volume of air inspired (log VOL) and
of the inspiration rate (log RATE).

Table 7.2 gives the estimated coefficients and standard errors for the MLE, WMLE,
M-, WM- and CUBIF estimates (code skin). Since there are no outliers in the re-
gressors, the weighted versions give similar results to the unweighted ones. This also
explains in part why the CUBIF estimate is very similar to the MLE.

Figure 7.5 shows the Q–Q plots of deviances of the MLE and the M-estimate.
The identity line is also plotted for reference. The latter lets us more neatly detect
the observations 4 and 18 as outliers. On deleting these observations, the remaining
data set has only one overlapping observation. This is the reason why the M- and
WM-estimates that downweight these observations have large standard errors.

7.3 Generalized linear models

The logistic model is included in a more general class called generalized linear models
(GLMs). If x is fixed, the distribution of y is given by a density f (y, λ) depending on
a parameter λ, and there is a known one-to-one function l, called the link function,
and an unknown vector β, such that l(λ) = β′x. If x is random, the conditional
distribution of y given x is given by f (y, λ) with l(λ) = β′x. In the previous section
we had λ ∈ (0, 1) and

f (y, λ) = λy(1 − λ)1−y, (7.18)

and l = F−1.

A convenient framework is the exponential family of distributions:

f (y, λ) = exp[m(λ)y − G(m(λ)) − t(y)], (7.19)

where m, G and t are given functions. When l = m, the link function is called
canonical.
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Figure 7.5 Skin data: Q–Q plots of deviances of the maximum likelihood and the
weighted M-estimates

It is easy to show that if y has distribution (7.19), then

Eλ(y) = g(m(λ)),

where g = G ′.
This family contains the Bernoulli distribution (7.18) which corresponds to

m(λ) = log
λ

1 − λ
, G(u) = log(1 + eu) and t(y) = 0.

In this case the canonical link corresponds to the logistic model and Eλ(y) = λ.
Another example is the Poisson family with

f (y, λ) = λye−λ

y!
.

This family corresponds to (7.19) with

m(λ) = log λ, G(u) = eu and t(y) = log y!.

This yields Ey = g(m(λ)) = λ. The canonical link in this case is l(λ) = log λ.
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Define λ̂(y) as the value of λ that maximizes f (y, λ) or equivalently that maxi-
mizes

log f (y, λ) = m(λ)y − G(m(λ)) − t(y).

Differentiating we obtain that λ = λ̂(y) should satisfy

m ′(λ)y − g(m(λ))m ′(λ) = 0

and therefore g(m (̂λ(y))) = y. Define the deviance residual function by

d(y, λ) = {
2 log

[
f (y, λ)/ f (y, λ̂(y))

]}1/2
sgn(y − g(m(λ))

= {
2

[
m(λ)y − G(m(λ)) − m (̂λ(y))y + G(m (̂λ(y)))

]}1/2
sgn(y − g(m(λ))).

It is easy to check that when y is a Bernoulli variable, this definition coincides
with (7.12).

Consider now a sample (x1, y1), . . . , (xn, yn) from a generalized linear model with
the canonical link function and fixed xi . Then the log likelihood is

log L(β) =
n∑

i=1

log f (yi , m−1(β′xi ))

=
n∑

i=1

(β′xi )yi −
n∑

i=1

G(β′xi ) −
n∑

i=1

t(yi ). (7.20)

The MLE maximizes log L(β) or equivalently

n∑
i=1

2
(
log f (yi , m−1(β′xi )) − log f (yi , λ̂(yi ))

)
=

n∑
i=1

d2(yi , m−1(β′xi )).

Differentiating (7.20) we get the equations for the MLE:

n∑
i=1

(yi − g(β′xi ))xi = 0. (7.21)

For example, for the Poisson family this equation is

n∑
i=1

(yi − eβ
′xi )xi = 0. (7.22)
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7.3.1 Conditionally unbiased bounded influence estimates

To robustify the MLE, Künsch, Stefanski and Carroll (1989) considered M-estimates
of the form

n∑
i=1

	(yi , xi ,β) = 0,

where 	 : R1+p+p → R p such that

E(	(y, x,β)|xi ) = 0. (7.23)

These estimates are called conditionally Fisher-consistent. Clearly these estimates
are also Fisher-consistent, i.e., E(	(yi , xi ,β)) = 0. Künsch et al. (1989) found the
estimate in this class which solves an optimization problem similar to Hampel’s one
studied in Section 3.5.4. This estimate minimizes a measure of efficiency—based on
the asymptotic covariance matrix under the model—subject to a bound on a measure
of infinitesimal sensitivity similar to the gross-error sensitivity. Since these measures
are quite complicated and may be controversial, we do not give more details about
their definition.

The optimal score function 	 has the following form:

	(y, x,β,b, B) = W (β, y, x,b, B)

{
y − g(β′x) − c

(
β′x,

b

h(x, B)

)}
x,

where b is the bound on the measure of infinitesimal sensitivity, B is a dispersion
matrix that will be defined below, and h(x, B) = (x′B−1x)1/2 is a leverage measure.
Observe the similarity with (7.21). The function W downweights atypical observations
and makes 	 bounded, and therefore the corresponding M-estimate has bounded
influence. The function c(β′x, b/h(x, B)) is a bias correction term chosen so that
(7.23) holds. Call r (y, x,β) the corrected residual

r (y, x,β,b, B) = yi − g(β′x) − c

(
β′x,

b

h(x, B)

)
. (7.24)

Then the weights are of the form

W (β, y, x,b, B) = Wb(r (y, x,β)h(x, B)),

where Wb is the Huber weight function (2.32) given by

Wb(x) = min

{
1,

b

|x |
}

.

Then, as in the Schweppe-type GM-estimates of Section 5.11, W downweights ob-
servations with a high product of corrected residuals and leverage.

Finally the matrix B should satisfy

E(	(y, x,β,b, B)	 ′(y, x,β,b, B)) = B.
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Table 7.3 Estimates for epilepsy data

Estimate Intercept Age10 Base4 Trt Base4*Trt

MLE 1.84 (0.13) 0.24 (0.04) 0.09 (0.002) −0.13 (0.04) 0.004 (0.002)
MLE−49 1.60 (0.15) 0.29 (0.04) 0.10 (0.004) −0.24 (0.05) 0.018 (0.004)
CUBIF 1.63 (0.27) 0.13 (0.08) 0.15 (0.022) −0.22 (0.12) 0.015 (0.022)

Details of how to implement these estimates, in particular of how to estimate B,

and a more precise description of their optimal properties can be found in Künsch
et al. (1989). We shall call these estimates optimal conditionally unbiased bounded
influence (“optimal CUBIF”) estimates

These estimates are implemented in S-PLUS for the logistic and Poisson models.

Example 7.3 Breslow (1996) used a Poisson GLM to study the effect of drugs in
epilepsy patients using a sample of size 59 (data set epilepsy). The response variable
is the number of attacks during four weeks (sumY) in a given time interval and the
explanatory variables are: patient age divided by 10 (Age10), the number of attacks
in the four weeks prior to the study (Base4), a dummy variable that takes values 1 or 0
if the patient received the drug or a placebo respectively (Trt) and Base4*Trt, to take
account of the interaction between these two variables. We fit a Poisson GLM with log
link using the MLE and the optimal CUBIF. Since, as we shall see below, observation
49 appears as a neat outlier, we also give the MLE without this observation (MLE−49).

The coefficient estimates and their standard errors are shown in Table 7.3 (code
epilepsy). Figure 7.6 shows the Q–Q plots of the deviances corresponding to the
optimal CUBIF estimate and to the MLE. The identity line is also plotted. This plot
shows that the CUBIF estimate gives a much better fit and that observation 49 is a
clear outlier.

7.3.2 Other estimates for GLMs

The redescending M-estimates of Section 7.2.2 can be extended to other GLMs.
Bianco, Garcı́a Ben and Yohai (2005) considered M-estimates for the case that the
distribution of y is gamma and the link function is the logarithm. They showed that
in this case no correction term is needed for Fisher-consistency.

Cantoni and Ronchetti (2001) robustified the quasi-likelihood approach to es-
timate GLMs. The quasi-likelihood estimates proposed by Wedderburn (1974) are
defined as solutions of the equation

n∑
i=1

yi − μ(β′xi )

V (β′xi )
μ′(β′xi )xi = 0,

where

μ(λ) = Eλ(y), V(λ) = Varλ(y).
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Figure 7.6 Epilepsy data: Q–Q plots of deviances

The robustification proposed by Cantoni and Ronchetti is performed by bounding
and centering the quasi-likelihood score function

ψ(y,β) = y − μ(β′x)

V (β′x)
μ′(β′x)x,

similarly to what was done with the maximum likelihood score function in Sec-
tion 7.3.1. The purpose of centering is to obtain conditional Fisher-consistent esti-
mates and that of bounding is to bound the IF.

7.4 Problems

7.1. The data set neuralgia (Piegorsch, 1992) contains the values of four predictors
for 18 patients, the outcome being whether the patient experienced pain relief
after a treatment. The data are described in Chapter 12. Compare the fits given
by the different logistic regression estimates discussed in this chapter.

7.2. The data set aptitude (Miles and Shevlin, 2000) contains the values of two
predictors for 27 subjects, the outcome being whether the subject passed an
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aptitude test. The data are described in Chapter 12. Compare the fits given by
the different logistic regression estimates discussed in this chapter.

7.3. Prove (7.10).
7.4. Consider the univariate logistic model without intercept for the sample

(x1, y1) . . . (xn, yn) with xi ∈ R, i.e., β′x = βx . Let

p(x, β) = eβx/
(
1 + eβx

) = P (y = 1) .

(a) Show that

An(β) =
n∑

i=1

(yi − p(xi , β))xi

is decreasing in β.

(b) Call β̂n the ML estimate. Assume β̂n > 0. Add one outlier (K , 0) where
K > 0; call β̂n+1(K ) the MLE computed with the enlarged sample. Show
that limK→∞ β̂n+1(K ) = 0. State a similar result when β̂n < 0.

7.5. Let Zn = {(x1, y1), . . . , (xn, yn)} be a sample for the logistic model, where the
first coordinate of each xi is one if the model contains an intercept. Consider a
new sample Z*

n = {(−x1, 1 − y1), . . . , (−xn, 1 − yn)}.
(a) Explain why it is desirable that an estimate β̂ satisfies the equivariance

property β̂(Z*
n ) = β̂(Zn).

(b) Show that M-, WM- and CUBIF estimates satisfy this property.
7.6. For the model in Problem 7.4 define an estimate by the equation

n∑
i=1

(yi − p(xi , β))sgn(xi ) = 0.

Since deleting all xi = 0 yields the same estimate, it will henceforth be assumed
that xi 
= 0 for all i.
(a) Show that this estimate is Fisher-consistent.
(b) Show that the estimate is a weighted ML-estimate.
(c) Given the sample Zn = {(xi , yi ), i = 1, . . . , n}, define the sample Z*

n =
{(x*

i , y*
i ), i = 1, . . . , n}, where (x*

i , y*
i ) = (xi , yi ) if xi > 0 and (x*

i , y*
i ) =

(−xi , 1 − yi ) if xi < 0. Show that β̂n(Zn) = β̂n(Z*
n ).

(d) Show that β̂n(Z*
n ) fulfills the equation

∑n
i=1 y*

i = ∑n
i=1 p(x*

i , β). Hence

β̂n(Z*
n ) is the value of β that matches the empirical frequency of ones with

the theoretical one.
(e) Prove that

∑
i p(x*

i , 0) = n/2.
(f) Show that if n is even, then the minimum number of observations that it is

necessary to change in order to make β̂n = 0 is |n/2 − ∑n
i=1 y*

i |.
(g) Discuss the analog property for odd n.

(h) Show that the influence function of this estimate is

IF(y, x, β) = (y − p(x, β))sgn(x)

A
where A = E(p(x, β)(1 − p(x, β))|x |), and hence GES = 1/A.
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7.7. Consider the CUBIF estimate defined in Section 7.3.
(a) Show that the correction term c(a, b) defined above (7.24) is a solution of

the equation

Em−1(a)(ψ
H
b (y − g(a) − c(a, b))) = 0.

(b) In the case of the logistic model for the Bernoulli family put g(a) =
ea/ (1 + ea) . Then prove that c(a, b) = c*(g(a), b), where

c*(p, b) =

⎧⎪⎨⎪⎩
(1 − p)(p − b)/p if p > max

(
1
2 , b

)
p(b − 1 + p)/ (1 − p) if p < min

(
1
2 , b

)
0 elsewhere.

(c) Show that the limit when b → 0 of the CUBIF estimate for the model in
Problem 7.4 satisfies the equation

n∑
i=1

(y − p(xi , β))

max(p(xi , β), 1 − p(xi , β))
sgn(xi ) = 0.

Compare this estimate with the one of Problem 7.6.
(d) Show that the influence function of this estimate is

IF(y, x, β) = 1

A

(y − p(x, β))sgn(xi )

max(p(x, β), 1 − p(x, β))

with A = E(min(p(x, β), (1 − p(x, β)))|x |); and that the gross-error sensi-
tivity is GES(β) = 1/A.

(e) Show that this GES is smaller than the GES of the estimate given in Prob-
lem 7.6. Explain why this may happen.
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8

Time Series

Throughout this chapter we shall focus on time series in discrete time whose time
index t is integer valued, i.e., t = 0, ±1, ±2, . . . . We shall typically label the observed
values of time series as xt or yt , etc.

We shall assume that our time series either is stationary in some sense or may be
reduced to stationarity by a combination of elementary differencing operations and
regression trend removal. Two types of stationarity are in common use, second-order
stationarity and strict stationarity. The sequence is said to be second-order (or wide-
sense) stationary if the first- and second-order moments Eyt and E(yt1 yt2 ) exist and
are finite, with Eyt = μ a constant independent of t , and the covariance of yt+l and
yt depends only on the lag l:

Cov(yt+l , yt ) = C(l) for all t, (8.1)

where C is called the covariance function.
The time series is said to be strictly stationary if for every integer k ≥ 1 and every

subset of times t1, t2, . . . , tk , the joint distribution of yt1 , yt2 , . . . , ytk is invariant with
respect to shifts in time, i.e., for every positive integer k and every integer l we have

D(yt1+l , yt2+l , . . . , ytk+l) = D(yt1 , yt2 , . . . , ytk ),

where D denotes the joint distribution. A strictly stationary time series with finite
second moments is obviously second-order stationary, and we shall assume unless
otherwise stated that our time series is at least second-order stationary.

8.1 Time series outliers and their impact

Outliers in time series are more complex than in the situations dealt with in the previous
chapters, where there is no temporal dependence in the data. This is because in the

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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time series setting we encounter several different types of outliers, as well as other
important behaviors that are characterized by their temporal structure. Specifically,
in fitting time series models we may have to deal with one or more of the following:� Isolated outliers� Patchy outliers� Level shifts in mean value.

While level shifts have a different character than outliers, they are a frequently
occurring phenomenon that must be dealt with in the context of robust model fitting,
and so we include them in our discussion of robust methods for time series. The
following figures display time series which exhibit each of these types of behavior.
Figure 8.1 shows a time series of stock returns for a company with stock ticker NHC
that contains an isolated outlier. Here we define stock returns rt as the relative change
in price rt = (pt − pt−1)/pt−1.

Figure 8.2 shows a time series of stock prices (for a company with stock ticker
WYE) which has a patch outlier of length 4 with roughly constant size. Patch
outliers can have different shapes or “configurations”. For example, the stock re-
turns for the company with ticker GHI in Figure 8.3 have a “doublet”patch outlier.
The doublet outlier in the GHI returns arises because of the differencing operation
in the two returns computations that involve the isolated outlier in the GHI price
series.
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Figure 8.1 Stock returns (NHC) with isolated outlier
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Figure 8.4 Stock prices with level shift

Figure 8.4 shows a price time series for Dow Jones (ticker DOW) that has a large
level shift at the begining of October. Note that this level shift will produce an isolated
outlier in the Dow Jones returns series.

Finally, Figure 8.5 shows a time series of tobacco sales in the UK (West and
Harrison, 1997) that contains both an isolated outlier and two or three level shifts.
The series also appears to contain trend segments at the beginning and end of the series.
It is important to note that since isolated outliers, patch outliers and level shifts can all
occur in a single time series, it will not suffice to discuss robustness toward outliers
without taking into consideration handling of patch outliers and level shifts. Note also
that when one first encounters an outlier, i.e., as the most recent observation in a time
series, then lacking side information we do not know whether it is an isolated outlier,
or a level shift or a short patch outlier. Consequently it will take some amount of future
data beyond the time of occurrence of the outlier in order to resolve this uncertainty.

8.1.1 Simple examples of outliers influence

Time series outliers can have an arbitrarily adverse influence on parameter estimates
for time series models, and the nature of this influence depends on the type of outlier.
We focus on the lag-k autocorrelation

ρ(k) = Cov(yt+k, yt )

Var(yt )
= C(k)

C(0)
. (8.2)
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Figure 8.5 Tobacco and related sales in the UK

Here we take a simple first look at the impact of time series outliers of different
types by focusing on the special case of the estimation of ρ(1). Let y1, y2, . . . , yT be
the observed values of the series. We initially assume for simplicity that μ = Ey = 0.
In that case a natural estimate ρ̂(1) of ρ(1) is given by the lag-1 sample autocorrelation
coefficient

ρ̂(1) =
∑T −1

t=1 yt yt+1∑T
t=1 y2

t

. (8.3)

It may be shown that |̂ρ(1)| ≤ 1, which is certainly a reasonable property for such
an estimate (see Problem 8.1).

Now suppose that for some t0, the true value yt0 is replaced by an arbitrary value
A, where 2 � t0 � T − 1. In this case the estimate becomes

ρ̂(1) =
∑T −1

t=1 yt yt+1I (t /∈ {t0 − 1, t0})∑T
t=1 y2

t I (t �= t0) + A2
+ yt0−1 A + A yt0+1∑T

t=1 y2
t I (t �= t0) + A2

.

Since A appears quadratically in the denominator and only linearly in the numer-
ator of the above estimate, ρ̂(1) goes to zero as A → ∞ with all other values of yt for
t �= t0 held fixed. So whatever the original value of ρ̂(1), the alteration of an original
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value yt0 to an outlying value yt0 = A results in a “bias”of ρ̂(1) toward zero, the more
so the larger the magnitude of the outlier.

Now consider the case of a patch outlier of constant value A and patch length
k, where the values yi for i = t0, . . . , t0 + k − 1 are replaced by A. In this case the
above estimate has the form

ρ̂(1) =
∑T −1

t=1 yt yt+1I {t /∈ [t0 − 1, t0 + k − 1]}∑T
t=1 y2

t I {t /∈ [t0, t0 + k − 1]} + k A2

+ yt0−1 A + (k − 1)A2 + A yt0+k∑T
t=1 y2

t I {t /∈ [t0, t0 + k − 1]} + k A2
,

and therefore

lim
A→∞

ρ̂(1) = k − 1

k
.

Hence, the limiting value of ρ̂(1) with the patch outlier can either increase or decrease
relative to the original value, depending on the value of k and the value of ρ̂(1) without
the patch outlier. For example, if k = 10 with ρ̂(1) = 0.5 without the patch outlier,
then ρ̂(1) increases to the value 0.9 as A → ∞.

In some applications one may find that outliers come in pairs of opposite signs. For
example, when computing first differences of a time series that has isolated outliers
we get a “doublet” outlier as shown in Figure 8.3. We leave it to the reader to show that
for a “doublet”outlier with adjacent values having equal magnitude but opposite signs,
i.e., values ±A, the limiting value of ρ̂(1) as A → ∞ is ρ̂(1) = −0.5 (Problem 8.2).

Of course one can seldom make the assumption that the time series has zero mean,
so one usually defines the lag-1 sample autocorrelation coefficient using the definition

ρ̂(1) =
∑T −1

t=1 (yt − ȳ)(yt+1 − ȳ)∑T
t=1(yt − ȳ)2

. (8.4)

Determining the influence of outliers in this more realistic case is often alge-
braically quite messy but doable. For example, in the case of an isolated outlier of
size A, it may be shown that the limiting value of ρ̂(1) as A → ∞ is approximately
−1/T for large T (Problem 8.3). However, it is usually easier to resort to some type
of influence function calculation as described in Section 8.11.1.

8.1.2 Probability models for time series outliers

In this section we describe several probability models for time series outliers, including
additive outliers (AOs), replacement outliers (ROs) and innovations outliers (IOs).
Let xt be a wide-sense stationary “core” process of interest, and let vt be a stationary
outlier process which is non-zero a fraction ε of the time, i.e., P(vt = 0) = 1 − ε. In
practice the fraction ε is often positive but small.
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Under an AO model, instead of xt one actually observes

yt = xt + vt (8.5)

where the processes xt and vt are assumed to be independent of one another. A
special case of the AO model was originally introduced by Fox (1972), who called
them Type I outliers. Fox attributed such outliers to a “gross-error of observation or a
recording error that affects a single observation”. The AO model will generate mostly
isolated outliers if vt is an independent and identically distributed (i.i.d.) process,
with standard deviation (or scale) much larger than that of xt . For example, suppose,
that xt is a zero-mean normally distributed process with Var(xt ) = σ 2

x , and vt has a
normal mixture distribution with degenerate central component

vt ∼ (1 − ε)δ0 + εN(μv, σ
2
v ). (8.6)

Here δ0 is a point mass distribution located at zero, and we assume that the normal
component N(μv, σ

2
v ) has variance σ 2

v 
 σ 2
x . In this case yt will contain an outlier at

any fixed time t with probability ε and the probability of getting two outliers in a row
is the much smaller ε2. It will be assumed that μv = 0 unless otherwise stated.

Additive patch outliers can be obtained by specifying that at any given t, vt = 0
with probability 1 − ε; and with probability ε, vt is the first observation of a patch
outlier having a particular structure that persists for k time periods. We leave it for
the reader (Problem 8.4) to construct a probability model to generate patch outliers.

RO models have the form

yt = (1 − zt )xt + ztwt (8.7)

where zt is a zero–one process with P(zt = 0) = 1 − ε, and wt is a “replace-
ment”process that is not necessarily independent of xt . Actually, RO models contain
AO models as a special case in which wt = xt + vt , and zt is a Bernoulli process,
i.e., zt and zu are independent for t �= u. Outliers that are mostly isolated are obtained
for example when zt is a Bernoulli process, and xt and wt are zero-mean normal
processes with Var(wt ) = σ 2

w 
 σ 2
x . For the reader familiar with Markov chains, we

can say that patch outliers may be obtained by letting zt be a Markov process that
remains in the “one”state for more than one time period (of fixed or random duration),
and wt has an appropriately specified probability model.

IOs are a highly specialized form of outlier that occur in linear processes such
as AR, ARMA and ARIMA models, which will be discussed in subsequent sections.
IO models were first introduced by Fox (1972), who termed them Type II outliers,
and noted that an IO “will affect not only the current observation but also subsequent
observations”. For the sake of simplicity we illustrate IOs here in the special case of
a first-order autoregression model, which is adequate to reveal the character of these
type of outliers. A stationary first-order AR model is given by

xt = φxt−1 + ut (8.8)

where the innovations process ut is i.i.d. with zero mean and finite variance, and
|φ| < 1. An IO is an outlier in the ut process. IOs are obtained for example when the
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Figure 8.6 Gaussian AR(1) series with φ = 0.5

innovations process has a zero-mean normal mixture distribution

(1 − ε)N
(
0, σ 2

0

) + εN
(
0, σ 2

1

)
(8.9)

where σ 2
1 
 σ 2

0 . More generally, we can say that the process has IOs when the
distribution of ut is heavy tailed (e.g., a Student t-distribution).

Example 8.1 AR(1) with an IO and AO.

To illustrate the impact of AO’s versus IO’s, we display in Figure 8.6 a Gaussian first-
order AR series of length 100 with parameter φ = 0.5. The same series with AO’s is
shown in Figure 8.7, and the same series with a single IO in Figure 8.8. The AOs in
Figure 8.7 are indicated by crosses over the circles. The IO in Figure 8.8 was created
by replacing (only) the normal innovation u20 with an atypical innovation having
value u20 = 10. The persistent effect of the IO at t = 20 on subsequent observa-
tions is quite clear. The effect of this outlier decays roughly like φt−20 for times t > 20.

One may think of an IO as an “impulse” input to a dynamic system driven by
a background of uncorrelated or i.i.d. white noise. Consequently the output of the
system behaves like a system impulse response, a concept widely used in linear
systems theory, at nearby times subsequent to the time of occurrence of the outlier.
It will be seen in Section 8.4.3 that IOs are “good” outliers in the sense that they can
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Figure 8.7 Gaussian AR(1) series with AOs
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Figure 8.8 AR(1) series with an IO
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improve the precision of the estimation of the parameters in AR and ARMA models,
e.g., the parameter φ in the AR(1) model.

8.1.3 Bias impact of AOs

In this section we provide a simple illustrative example of the bias impact of AOs on
the estimation of a first-order zero-mean AR model.

The reader may easily check that the lag-1 autocorrelation coefficient ρ(1) for
the AR(1) model (8.8) is equal to φ (see Problem 8.6). Furthermore, a natural least-
squares (LS) estimate φ̂ of φ in the case of perfect observations yt ≡ xt is obtained
by solving the minimization problem

min
φ

T∑
t=2

(yt − φyt−1)2. (8.10)

Differentiation with respect to φ gives the estimating equation

T∑
t=2

yt−1(yt − φ̂yt−1) = 0

and solving for φ̂ gives the LS estimate

φ̂ =
∑T

t=2 yt yt−1∑T −1
t=1 y2

t

. (8.11)

A slightly different estimate is

φ* =
∑T

t=2 yt yt−1∑T
t=1 y2

t

, (8.12)

which coincides with (8.3). The main difference between these two estimates is that∣∣φ*
∣∣ is bounded by one, while

∣∣̂φ∣∣ can take on values larger than one. Since the
true autocorrelation coefficient φ has |φ| ≤ 1, and actually |φ| < 1 except in case of
perfect linear dependence, the estimate φ* is usually preferred.

Let ρy(1) be the lag-1 autocorrelation coefficient for the AO observations yt =
xt + vt . It may be shown that when T → ∞, φ* converges to ρy(1) under mild
regularity conditions, and the same is true of φ̂ (Brockwell and Davis, 1991). If we
assume that vt is independent of xt , and that vt has lag-1 autocorrelation coefficient
ρv(1), then

ρy(1) = Cov(yt , yt−1)

Var(yt )
= Cov(xt , xt−1) + Cov(vt , vt−1)

σ 2
x + σ 2

v

= σ 2
x φ + σ 2

v ρv(1)

σ 2
x + σ 2

v

.
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The large-sample bias of φ* is

Bias(φ*) = ρy(1) − φ = σ 2
v

σ 2
x + σ 2

v

(ρv(1) − φ)

= R

1 + R
(ρv(1) − φ) (8.13)

where R = σ 2
v /σ 2

x is the “noise-to-signal”ratio. We see that the bias is zero when R
is zero, i.e., when the AOs have zero variance. The bias is bounded in magnitude by
|ρv(1) − φ| and approaches |ρv(1) − φ| as R approaches infinity. When the AOs have
lag-1 autocorrelation ρv(1) = 0 and R is very large, the bias is approximately −φ

and correspondingly the estimate φ* has a value close to zero. As an intermediate
example, suppose that ρv(1) = 0, φ = 0.5, σ 2

x = 1 and that vt has distribution (8.6)
with ε = 0.1, μv = 0 and σ 2

v = 0.9. Then the bias is negative and equal to −0.24. On
the other hand if the values of ρv(1) and φ are interchanged, with the other parameter
values remaining fixed, then the bias is positive and has value +0.24.

8.2 Classical estimates for AR models

In this section we describe the properties of classical estimates of the parameters of an
autoregression model. In particular we describe the form of these estimates, state the
form of their limiting multivariate normal distribution, and describe their efficiency
and robustness in the absence of outliers.

An autoregression model of order p, called an AR(p) model for short, generates
a time series according to the stochastic difference equation

yt = γ + φ1 yt−1 + φ2 yt−2 + . . . + φp yt−p + ut (8.14)

where the innovations ut are an i.i.d. sequence of random variables with mean 0 and
finite variance σ 2

u . The innovations are assumed to be independent of past values of the
yt ’s. It is known that the time series yt is stationary if all the roots of the characteristic
polynomial

φ(z) = 1 − φ1z − φ2z2 − . . . − φpz p (8.15)

lie outside the unit circle in the complex plane. When yt is stationary it has a mean
value μ = E(yt ) that is determined by taking the mean value of both sides of (8.14),
giving

μ = γ + φ1μ + φ2μ + . . . + φpμ + 0,

which implies

μ

(
1 −

p∑
i=1

φi

)
= γ, (8.16)
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and hence

μ = γ

1 − ∑p
i=1 φi

. (8.17)

In view of (8.16), the AR(p) model may also be written in the form

yt − μ = φ1(yt−1 − μ) + φ2(yt−2 − μ) + . . . + φp(yt−p − μ) + ut . (8.18)

There are several asymptotically equivalent forms of LS estimates of the AR(p)
model parameters that are asymptotically efficient when the distribution of ut is
normal. Given a sample of observations y1, y2, . . . , yT , it seems natural at first glance
to compute LS estimates of the parameters by choosing γ, φ1, φ2, . . . , φp to minimize
the sum of squares:

T∑
t=p+1

û2
t (φ,γ ) (8.19)

where ût are the prediction residuals defined by

ût = ût (φ,γ ) = yt − γ − φ1 yt−1 − φ2 yt−2 − . . . − φp yt−p. (8.20)

This is equivalent to applying ordinary LS to the linear regression model

y = Gβ + u (8.21)

where

y′ = (yp+1, yp+2, . . . , yT )

u′ = (u p+1, u p+2, . . . , uT ) (8.22)

β′ = (φ′, γ ) = (φ1, φ2, . . . , φp, γ )

and

G =

⎡⎢⎢⎢⎣
yp yp−1 . . . y1 1

yp+1 yp y2 1
...

...
...

...
...

yT −1 yT −2 · · · yT −p 1

⎤⎥⎥⎥⎦ . (8.23)

This form of LS estimate may also be written as

β̂ = (̂φ1, φ̂2, . . . , φ̂ p, γ̂ )′ = (
G′G

)−1
G′y (8.24)

and the mean value estimate can be computed as

μ̂ = γ̂

1 − ∑p
i=1 φ̂i

. (8.25)
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An alternative approach is to estimate μ by the sample mean y and compute the
LS estimate of φ̂ as

φ̂ =
(

G*′G*
)−1

G*′y*, (8.26)

where y* is now the vector of centered observations yt − y, and G* is defined as in

(8.23) but replacing the y′
t s by the y*

t and omitting the last column of ones.
Unfortunately the above forms of the LS estimate do not ensure that the estimates

φ̂ = (̂φ1, φ̂2, . . . , φ̂ p)′ correspond to a stationary autoregression, i.e., it can happen
that one or more of the roots of the estimated characteristic polynomial

φ̂(z) = 1 − φ̂1z − φ̂2z2 − . . . − φ̂ pz p

lie inside the unit circle. A common way around this is to use the so-called Yule–
Walker equations to estimate φ. Let C(l) be the autocovariance (8.1) at lag l. The
Yule–Walker equations relating the autocovariances and the parameters of an AR(p)
process are obtained from (8.18) as

C(k) =
p∑

i=1

φi C(k − i) (k ≥ 1). (8.27)

For 1 ≤ k ≤ p, (8.27) may be expressed in matrix equation form as

Cφ = g (8.28)

where g′ = (C(1), C(2), . . . , C(p)) and the p × p matrix C has elements Ci j =
C(i − j). It is left for the reader (Problem 8.5) to verify the above equations for
an AR(p) model.

The Yule–Walker equations can also be written in terms of the autocorrelations
as

ρ(k) =
p∑

i=1

φiρ(k − i) (k ≥ 1). (8.29)

The Yule–Walker estimate φ̂Y W of φ is obtained by replacing the unknown lag-l
covariances in C and g of (8.28) by the covariance estimates

Ĉ(l) = 1

T

T −|l|∑
t=1

(yt+l − y)(yt − y), (8.30)

and solving for φ̂Y W . It can be shown that the above lag-l covariance estimates are
biased and that unbiased estimates can be obtained under normality by replacing the
denominator T by T − |l| − 1. However, the covariance matrix estimate Ĉ based on
the above biased lag-l estimates is preferred since it is known to be positive definite
(with probability 1), and furthermore the resulting Yule–Walker parameter estimate
φ̂Y W corresponds to a stationary autoregression (see, e.g., Brockwell and Davis,
1991).
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The Durbin–Levinson algorithm, to be described in Section 8.2.1, is a convenient
recursive procedure to compute the sequence of Yule–Walker estimates for AR(1),
AR(2), etc.

8.2.1 The Durbin–Levinson algorithm

We shall describe the Durbin–Levinson algorithm, which is a recursive method to
derive the best memory-(m − 1) linear predictor from the memory-(m − 1) predictor.
Let yt be a second-order stationary process. It will be assumed that Eyt = 0. Other-
wise, we apply the procedure to the centered process yt − Eyt rather than yt .

Let

ŷt,m = φm,1 yt−1 + . . . + φm,m yt−m (8.31)

be the minimum means-square error (MMSE) memory-m linear predictor of yt based
on yt−1, . . . , yt−m . The “diagonal” coefficients φm,m are the so-called partial auto-
correlations, which are very useful for the identification of AR models, as will be
seen in Section 8.7.1.

The φm,m satisfy

|φm,m | < 1, (8.32)

except when the process is deterministic.
The MMSE forward prediction residuals are defined as

ût, m = yt − φm,1 yt−1 − . . . − φm,m yt−m . (8.33)

The memory-m backward linear predictor of yt , i.e., the MMSE predictor of yt as a
linear function of yt+1, . . . , yt+m , can be shown to be

ŷ*
t,m = φm,1 yt+1 + . . . + φm,m yt+m,

and the backward MMSE prediction residuals are

u*
t,m = yt − φm,1 yt+1 − . . . − φm,m yt+m . (8.34)

Note that ût ,m−1 and u*
t−m,m−1 are both orthogonal to the linear space spanned by

yt−1, . . . , yt−m+1, with respect to the expectation inner product, i.e.,

Eût ,m−1 yt−k = Eu*
t−m,m−1 yt=k = 0, k = 1, . . . , m − 1.

We shall first derive the form of the memory-m predictor assuming that the
true memory-(m − 1) predictor and the true values of the autocorrelations ρ(k),
k = 1, . . . , m; are known.

Let ζ*u*
t−m,m−1 be the MMSE linear predictor of ût,m−1 based on u*

t−m,m−1.

Then

E
(̂
ut,m−1 − ζ*u*

t−m,m−1

)2 = min
ζ

E
(̂
ut,m−1 − ζu*

t−m,m−1

)2
. (8.35)
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It can be proved that the MMSE memory-m predictor is given by

ŷt,m = ŷt,m−1 + ζ*u*
t−m,m−1

= (
φm−1,1 − ζ*φm−1,m−1

)
yt−1 + . . .

+ (
φm−1,i − ζ*φm−1,1

)
yt−m+1 + ζ*yt−m . (8.36)

To show (8.36) it suffices to prove that

E
[
(yt − ŷt,m − ζ*u*

t−m,m)yt−i

]
= 0, i = 1, . . . , m, (8.37)

which we leave as Problem 8.8. Then from (8.36) we have

φm,i =
{

ζ* if i = m
φm−1,i − ζ*φm−1,m−i if 1 ≤ i ≤ m − 1.

(8.38)

According to (8.38), if we already know φm−1,i , 1 ≤ i ≤ m − 1, then to compute all
the φm,i ’s, we only need ζ* = φm,m .

It is easy to show that

φm,m = Corr
(̂
ut,m−1, u*

t−m,m−1

)
= ρ(m) − ∑m−1

i=1 ρ(m − i)φm−1,i

1 − ∑m−1
i=1 ρ(i)φm−1,i

. (8.39)

The first equality above justifies the term “partial autocorrelation”: it is the correlation
between yt and yt−m after the linear contribution of yi (i = t − 1, . . . , t − m + 1) has
been subtracted out.

If yt is a stationary AR(p) process with parameters φ1, . . . , φp, it may be shown
(Problem 8.11) that

φp,i = φi , 1 ≤ i ≤ p, (8.40)

and

φm,m = 0, m > p. (8.41)

In the case that we have only a sample from a process, the unknown autocorrela-
tions ρ(k) can be estimated by their empirical counterparts, and the Durbin–Levinson
algorithm can be used to estimate the predictor coefficients φm, j in a recursive way.
In particular, if the process is assumed to be AR(p), then the AR coefficient estimates
are obtained by substituting estimates in (8.40).

It is easy to show that φ1,1 = ρ(1) or equivalently

φ1,1 = arg min
ζ

E(yt − ζ yt−1)2. (8.42)

We shall now describe the classical Durbin–Levinson algorithm in such a way as
to clarify the basis for its robust version to be given in Section 8.6.4.
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The first step is to set φ̂1,1 = ρ̂ (1), which is equivalent to

φ̂1,1 = arg min
ζ

T∑
t=2

(yt − ζ yt−1)2 . (8.43)

Assuming that estimates φ̂m−1,i of φm−1,i , for 1 ≤ i ≤ m − 1, have already been

computed, φ̂m,m can be computed from (8.39), where the ρ’s and φ’s are replaced by

their estimates. Alternatively, φ̂m,m is obtained as

φ̂m,m = arg min
ζ

T∑
t=m+1

û2
t,m(ζ ), (8.44)

with

ût,m(ζ ) = yt − ŷt,m−1 − ζu*
t−m,m−1

= yt − (
φ̂m−1,1 − ζ φ̂m−1,m−1

)
yt−1 − . . .

− (
φ̂m−1,m−1 − ζ φ̂m−1,1

)
yt−m+1 − ζ yt−m, (8.45)

and where the backward residuals u*
t − m, m − 1 are computed here by

u*
t−m,m−1 = yt−m − φ̂m−1,1 yt−m+1 − . . . − φ̂m−1,m−1 yt−1.

The remaining φ̂m,i ’s are computed using the recursion (8.38). It is easy to verify
that this sample Durbin–Levinson method is essentially equivalent to obtaining the
AR(m) estimate φ̂m by solving the Yule–Walker equations for m = 1, 2, . . . , p.

8.2.2 Asymptotic distribution of classical estimates

The LS and Yule–Walker estimates have the same asymptotic distribution, which will
be studied in this section. Call λ̂ = (̂φ1, φ̂2, . . . , φ̂ p, μ̂) the LS or Yule–Walker esti-
mate of λ = (φ1, φ2, . . . , φp, μ) based on a sample of size T . Here μ̂ can be either

the sample mean estimate or the estimate of (8.25) based on the LS estimate β̂ defined
in (8.19). It is known that λ̂ converges in distribution to a (p + 1)-dimensional mul-
tivariate normal distribution

√
T (λ̂ − λ) →d Np+1(0, VL S) (8.46)

where the asymptotic covariance matrix VL S is given by

VL S =
[

VL S,φ 0′

0 VL S,μ

]
(8.47)

with

VL S,μ = σ 2
u(

1 − ∑p
i=1 φi

)2
(8.48)
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and

VL S,φ = VL S(φ) = σ 2
u C−1, (8.49)

where C is the p × p covariance matrix of (yt−1, . . . , yt−p), which does not depend
on t (due to the stationarity of yt ), and σ 2

u C−1 depends only on the AR parameters
φ. See for example Anderson (1994) or Brockwell and Davis (1991). In Section 8.15
we give a heuristic derivation of this result and the expression for D = C/σu

2.

Remark: Note that if we apply formula (5.6) for the asymptotic covariance matrix of
the LS estimate under a linear model with random predictors to the regression model
(8.21), then the result coincides with (8.49).

The block-diagonal structure of V shows that μ̂ and φ̂ = (
φ̂1, φ̂2, . . . , φ̂ p

)′
are

asymptotically uncorrelated. The standard estimate of the innovations variance σ 2
u is

σ̂ 2
u = 1

T − p

T∑
t=p+1

(
yt − γ̂ − φ̂1 yt−1 − φ̂2 yt−2 − . . . − φ̂ p yt−p

)2
(8.50)

or alternatively

σ̂ 2
u = 1

T − p

T∑
t=p+1

(
ỹt − φ̂1 ỹt−1 − φ̂2 ỹt−2 − . . . − φ̂ p ỹt−p

)2
(8.51)

where ỹt−i = yt−i − μ̂, i = 0, 1, . . . , p. It is known that σ̂ 2
u is asymptotically uncor-

related with λ̂ and has asymptotic variance

AsVar
(
σ̂ 2

u

) = E(u4) − σ 4
u . (8.52)

In the case of normally distributed ut this expression reduces to AsVar
(
σ̂ 2

u

) = 2σ 4
u .

What is particularly striking about the asymptotic covariance matrix VL S is that
the p × p submatrix VL S,φ is a constant that depends only on φ, and not at all on
the distribution Fu of the innovations ut (assuming finite variance innovations!). This
distribution-free character of the estimate led Whittle (1962) to use the term robust
to describe the LS estimates of AR parameters. With hindsight, this was a rather
misleading use of this term because the constant character of VL S,φ holds only under
perfectly observed autoregressions, i.e., with no AOs or ROs. Furthermore it turns
out that the LS estimate will not be efficiency robust with respect to heavy-tailed
deviations of the IOs from normality, as we discuss in Section 8.4. It should also be
noted that the variance Vμ is not constant with respect to changes in the variance
of the innovations, and AsVar

(
σ̂ 2

u

)
depends upon the fourth moment as well as the

variance of the innovations.
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8.3 Classical estimates for ARMA models

A time series yt is called an autoregressive moving-average model of orders p and q,
or ARMA(p, q) for short, if it obeys the stochastic difference equation

(yt − μ) − φ1(yt−1 − μ) − . . . − φp(yt−p − μ) = −θ1ut−1 − . . . − θqut−q + ut ,

(8.53)

where the i.i.d. innovations ut have mean 0 and finite variance σ 2
u . This equation may

be written in more compact form as

φ(B)(yt − μ) = θ (B)ut (8.54)

where B is the back-shift operator, i.e., Byt = yt−1, and φ(B) and θ (B) are polynomial
back-shift operators given by

φ(B) = 1 − φ1 B − φ2 B2 − . . . − φp B p (8.55)

and

θ (B) = 1 − θ1 B − θ2 B2 − . . . − θq Bq . (8.56)

The process is called invertible if yt can be expressed as an infinite linear combi-
nation of the ys’s for s < t plus the innovations:

yt = ut +
∞∑

i=1

ηi yt−i + γ.

It will henceforth be assumed that the ARMA process is stationary and invertible.
The first assumption requires that all roots of the polynomial φ(B) lie outside the unit
circle and the second requires the same of the roots of θ (B).

Let λ = (φ,θ,μ) = (φ1, φ2, . . . , φp, θ1, θ2, . . . , θq , μ) and consider the sum of
squared residuals

T∑
t=p+1

û2
t (λ) (8.57)

where the residuals ût (λ) may be computed recursively as

ût (λ) = (yt − μ) − φ1(yt−1 − μ) − . . . − φp(yt−p − μ)

+ θ1ût−1(λ) + . . . + θq ût−q (λ) (8.58)

with the initial conditions

û p(λ) = û p−1(λ) = . . . = û p−q+1(λ) = 0. (8.59)

Minimizing the sum of squared residuals (8.57) with respect to λ produces a LS
estimate λ̂L S = (φ̂,̂θ,μ̂). When the innovations ut have a normal distribution with
mean 0 and finite variance σ 2

u , this LS estimate is a conditional maximum likelihood
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estimate, conditioned on y1,y2, . . . , yp and on

u p−q+1 = u p−q+2 = . . . = u p−1 = u p = 0.

See for example Harvey and Philips (1979), where it is also shown how to compute
the exact Gaussian maximum likelihood estimate of ARMA model parameters.

It is known that under the above assumptions for the ARMA(p, q) process, the
LS estimate, as well as the conditional and exact maximum likelihood estimates,
converge asymptotically to a multivariate normal distribution:

√
T (λ̂L S − λ) →d Np+q+1(0, VL S) (8.60)

where

VL S = VL S(φ,θ, σ 2
u ) =

[
D−1(φ,θ) 0′

0 VL S,μ

]
, (8.61)

with VL S,μ the asymptotic variance of the location estimate μ̂ and D(φ,θ) the (p +
q) × (p + q) asymptotic covariance matrix of (φ̂,̂θ). Expressions for the elements of
D(φ,θ) are given in Section 8.15. As the notation indicates, D(φ,θ) depends only
on φ and θ and so the LS estimate (φ̂, θ̂) has the same distribution-free property as
in the AR case, described at the end of Section 8.2.2. The expression for VL S,μ is

VL S,μ = σ 2
u

ξ 2
(8.62)

with

ξ = −1 − φ1 − . . . − φp

1 − θ1 − . . . − θq
, (8.63)

which depends upon the variance of the innovations σ 2
u as well as on φ and θ.

The conditional MLE of the innovations variance σ 2
u for an ARMA(p, q) model

is given by

σ̂ 2
u = 1

T − p

T∑
t=p+1

û2
t (λ̂). (8.64)

The estimate σ̂ 2
u is asymptotically uncorrelated with λ̂L S and has the same asymptotic

distribution as in the AR case, namely AsVar
(
σ̂ 2

u

) = E(u4
t ) − σ 4

u .

Note that the asymptotic distribution of λ̂ does not depend on the distribution of
the innovations, and hence the precision of the estimates does not depend on their
variance, as long as it is finite.

A natural estimate of the variance of the estimate μ̂ is obtained by plugging
parameter estimates into (8.62).
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8.4 M-estimates of ARMA models

8.4.1 M-estimates and their asymptotic distribution

An M-estimate λ̂M of the parameter vector λ for an ARMA(p, q) model is obtained
by minimizing

T∑
t=p+1

ρ

(
ût (λ)

σ̂

)
(8.65)

where ρ is a ρ-function already used for regression in (5.7). The residuals ût (λ) are
defined as in the case of the LS estimate, and σ̂ is a robust scale estimate that is obtained
either simultaneously with λ (e.g., as an M-scale of the ût ’s as in Section 2.6.2) or
previously as with MM-estimates in Section 5.5. We assume that when T → ∞ , σ̂

converges in probability to a value σ which is a scale parameter of the innovations.
It is also assumed that σ is standardized so that if the innovations are normal, σ

coincides with the standard deviation σu of ut , as explained for the location case at
the end of Section 2.5.

Let ψ = ρ ′ and assume that σ̂ has a limit in probability σ and

Eψ
(ut

σ

)
= 0, (8.66)

Note that this condition is analogous to (4.41) used in regression. Under the as-
sumptions concerning the ARMA process made in Section 8.3 and under reasonable
regularity conditions, which include that σ 2

u = Var (ut ) < ∞, the M-estimate λ̂M has
an asymptotic normal distribution given by

√
T (λ̂M − λ) →d Np+q+1(0, VM ), (8.67)

with

VM = VM (φ,θ, σ 2) = aVL S (8.68)

where a depends on the distribution F of the ut ’s:

a = a(ψ, F) = σ 2Eψ (ut/σ )2

σ 2
u (Eψ ′ (ut/σ ))2

. (8.69)

A heuristic proof is given in Section 8.15. In the normal case, σ = σu and a coincides
with the reciprocal of the efficiency of a location or regression M-estimate (see (4.45)).

In the case that ρ(t) = − log f (t) where f is the density of the innovations, the M-
estimate λ̂M is a conditional MLE, and in this case the M-estimate is asymptotically
efficient.
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8.4.2 The behavior of M-estimates in AR processes with AOs

We already know from the discussion of Sections 8.1.1 and 8.1.3 that LS estimates
of AR models are not robust in the presence of AOs or ROs. Such outliers cause both
bias and inflated variability of LS estimates.

The LS estimate (8.19) proceeds as an ordinary regression, where yt is regressed
on the “predictors”yt−1, . . . , yt−p. Similarly, any robust regression estimate based on
the minimization of a function of the residuals can be applied to the AR model, in
particular the S-, M- and MM-estimates defined in Chapter 5. In order to obtain some
degree of robustness it is necessary, just as in the treatment of ordinary regression in
that chapter, that ρ be bounded, and in addition an adequate algorithm must be used
to help insure a good local minimum.

This approach has the advantage that the existing software for regression can
be readily used. It has, however, the drawback that if the observations yt are ac-
tually an AR(p) process contaminated with an AO or RO, the robustness of the
estimates decreases with increasing p. The reason for this is that in the estimation
of AR(p) parameters, the observation yt is used in computing the p + 1 residuals
ût (γ,φ), ût+1(γ,φ), . . . , ût+p(γ,φ). Each time that an outlier appears in the series
it may spoil p + 1 residuals. In an informal way we can say that the breakdown point
of an M-estimate is not larger than 0.5/(p + 1). Correspondingly the bias due to an
AO can be quite high and one expects only a limited degree of robustness.

Example 8.2 Simulated AR(3) data with AOs.

To demonstrate the effect of contamination on these estimates, we generated T =
200 observations xt from a stationary normal AR(3) model with σu = 1, γ = 0 and
φ = (8/6, −5/6, 1/6)′ . We then modified k evenly spaced observations by adding
four to each, for k = 10 and 20. Table 8.1 shows the results for LS and for the MM
regression estimate with bisquare function and efficiency 0.85 (code AR3).

It is seen that the LS estimate is much affected by 10 outliers. The MM-estimate
is similar to the LS estimate when there are no outliers. It is less biased and so better

Table 8.1 LS and MM-estimates of the parameters of AR(3) simulated process

Estimate #(outliers) φ1 φ2 φ3 γ σu

LS 0 1.35 −0.83 0.11 0.11 0.99
10 0.78 −0.10 −0.25 0.30 1.66
20 0.69 0.40 0.04 0.69 2.63

MM 0 1.35 −0.79 0.10 0.11 0.99
10 1.10 −0.36 −0.13 0.19 1.18
20 0.84 −0.10 −0.12 0.31 1.58

True values 1.333 −0.833 0.166 0.00 1.00
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than LS when there are outliers, but is affected by them when there are 20 outliers.
The reason is that in this case the proportion of outliers is 20/200 = 0.1, which is near
the heuristic BP value of 0.125 = 0.5/(p + 1), which was discussed in Section 8.4.2.

8.4.3 The behavior of LS and M-estimates for ARMA processes
with infinite innovations variance

The asymptotic behavior of the LS and M-estimates for ARMA processes has been
discussed in the previous sections under the assumption that the innovations ut have
finite variance. When this is not true, it may be surprising to know that under certain
conditions the LS estimate not only is still consistent, but also converges to the
true value at a faster rate than it would under finite innovations variance, with the
consistency rate depending on the rate at which P (|ut | > k) tends to zero as k → ∞.

For the case of an M-estimate with bounded ψ , and assuming that a good robust
scale estimate σ̂ is used, a heavy-tailed f can lead to ultra-precise estimation of
the ARMA parameters (φ,θ) (but not of μ), in the sense that

√
T (φ̂−φ) →p 0 and√

T (̂θ−θ) →p 0. This fact can be understood by noting that if ut has a heavy-tailed
distribution like the Cauchy distribution, then the expectations in (8.69) and σ are
finite, while σu is infinite.

To fix ideas, consider fitting an AR(1) model. Estimating φ is equivalent to fitting
a straight line to the lag-1 scatterplot of yt vs. yt−1. Each IO appears twice in the
scatterplot: as yt−1 and as yt . In the first case it is a “good” leverage point, and in
the second it is an outlier. Both LS and M-estimates take advantage of the leverage
point. But the LS estimate is affected by the outlier, while the M-estimate is not.

The main LS results were derived by Kanter and Steiger (1974), Yohai and
Maronna (1977), Knight (1987, 1989) and Hannan and Kanter (1977) for AR pro-
cesses, and by Mikosch, Gadrich, Kluppelberg and Adler (1995), Davis (1996) and
Rachev and Mittnik (2000) in the ARMA case.

Results for monotone M-estimates were obtained by Davis, Knight and Liu (1992)
and Davis (1996).

The challenges of establishing results in time series with infinite variance inno-
vations has been of such considerable interest to academics that it has resulted in
many papers, particularly in the econometrics and finance literature. See for exam-
ple applications to unit root tests (Samarakoon and Knight, 2005), and references
therein, and applications to GARCH models (Rachev and Mittnik, 2000). One of the
most interesting of the latter is the application to option pricing by Menn and Rachev
(2005).

To help understand the intuitive reasons for the behavior of the LS estimate under
heavy-tailed innovations, we present a simple example with IOs. Figure 8.9 shows
a simulated Gaussian AR(1) process with φ = 0.8 and four IOs, and Figure 8.10
displays the respective lag-1 scatterplot. When appearing as yt , the four IOs stand out
as clear outliers. When appearing as yt−1, each IO and the subsequent values appear
as “good” leverage points that increase the precision of φ̂.
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Figure 8.10 Lag-1 scatterplot of AR(1) series with IO (Code 8.7)
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The LS estimate is 0.790 with estimated SD of 0.062, which is near the approxi-
mate finite sample value SD(̂φ) ≈

√
(1 − φ2)/T = 0.060. The MM-estimate is 0.798

with estimated SD of 0.016. This exemplifies the distribution-free character of the
LS estimate and the higher precision of the MM-estimate under IOs.

8.5 Generalized M-estimates

One approach to curb the effect of “bad leverage points” due to outliers is to modify
M-estimates in a way similar to ordinary regression. Note first that the estimating
equation of an M-estimate, obtained by differentiating the objective function with
respect to (γ̂ , φ̂), is

T∑
t=p+1

zt−1ψ

(
ût

σ̂ u

)
= 0 (8.70)

where ψ = ρ ′ is bounded and zt = (1, yt , yt−1, . . . , yt−p+1)′.
One attempt to improve the robustness of the estimates is to modify the above

equation (8.70) by bounding the influence of outliers in zt−1 as well as in the residuals
ût (γ̂ ,φ̂). This results in the class of generalized M-estimates (GM-estimates), similar
to those defined for regression in Section 5.11. A GM-estimate (γ̂ ,φ̂) is obtained by
solving

T∑
t=p+1

η

(
dT (yt−1),

ût (γ̂ , φ̂)

σ̂ u

)
zt−1 = 0 (8.71)

where the function η(., .) is bounded and continuous in both arguments (e.g., of Mal-
lows or Schweppe type defined in Section 5.11) and σ̂ is obtained by a simultaneous
M-equation of the form

1

n

n∑
i=1

ρ

(
ût (γ̂ , φ̂)

σ̂ u

)
= δ. (8.72)

Here

dT (yt−1) = 1

p
y′

t−1Ĉ−1yt−1 (8.73)

with Ĉ an estimate of the p × p covariance matrix C of yt−1 = (yt−1 ,
yt−2, . . . , yt−p

)′
.

In the remark above (8.50) it was pointed out that the asymptotic distribution of
LS estimates for AR models coincides with that of LS estimates for the regression
model (8.21). The same can be said of GM-estimates.

GM-estimates for AR models were introduced by Denby and Martin (1979) and
Martin (1980, 1981), who called them (BIFAR) bounded influence autoregressive esti-
mates. Bustos (1982) showed that GM-estimates for AR(p) models are asymptotically
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normal, with covariance matrix given by the analog of the regression case (5.49).
Künsch (1984) derived Hampel-optimal GM-estimates.

There are two main possibilities for Ĉ. The first is to use the representation
C = σ2

uD(φ) given by the matrix D in Section 8.15, where φ is the parameter vector
of the p-th order autoregression, and put Ĉ = σ 2

u D(φ̂) in (8.73). Then φ̂ appears
twice in (8.71): in dT and in ût . This is a natural approach when fitting a single
autoregression of given order p.

The second possibility is convenient in the commonly occurring situation where
one fits a sequence of autoregressions of increasing order, with a view toward deter-
mining a “best” order popt.

Let φk,1, . . . , φk,k be the coefficients of the “best-fitting” autoregression of order
k, given in Section 8.2.1. The autocorrelations ρ(1), . . . , ρ(p − 1) depend only on
φp−1,1, . . . , φp−1,p−1 and can be obtained from the Yule–Walker equations by solving
a linear system. Therefore the correlation matrix R of yt−1 also depends only on
φp−1,1, . . . , φp−1,p−1. We also have that

C = γ (0)R.

Then we can estimate φp,1, . . . , φp,p recursively as follows. Suppose that we have
already computed estimates φ̂ p−1,1, . . . , φ̂ p−1,p−1. Then, we estimate φp,1, . . . , φp,p

by solving (8.71) and (8.72) with Ĉ = γ̂ (0)R̂, where γ̂ (0) is a robust estimate of
the variance of the yt ’s (e.g., the square of the MADN) and R̂ is computed from the
Yule–Walker equations using φ̂ p−1,1, . . . , φ̂ p−1,p−1.

Table 8.2 shows the results of applying a Mallows-type GM-estimate to the data
of Example 8.2 (code AR3). It is seen that the performance of the GM-estimate is
not better than that of the MM-estimate shown in Table 8.1.

Table 8.2 GM-estimates of the parameters of AR(3) simulated process

#(outliers) φ1 φ2 φ3 γ σu

0 1.31 −0.79 0.10 0.11 0.97
10 1.15 −0.52 −0.03 0.17 1.06
20 0.74 −0.16 −0.09 0.27 1.46

True values 1.333 −0.833 0.166 0.00 1.00

8.6 Robust AR estimation using robust filters

In this section we assume that the observations process yt has the AO form yt = xt + vt

with xt an AR(p) process as given in (8.14) with parameters λ = (φ1, φ2, . . . , φp, γ )′

and vt independent of xt . An attractive approach is to define robust estimates by
minimizing a robust scale of the prediction residuals, as with regression S-estimates
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in Section 5.6.1. It turns out that this approach is not sufficiently robust. A more robust
method is obtained by minimizing a robust scale of prediction residuals obtained with
a robust filter that curbs the effect of outliers. We begin by explaining why the simple
approach of minimizing a robust scale of the prediction residuals is not adequate. Most
of the remainder of the section is devoted to describing the robust filtering method,
the scale minimization approach using prediction residuals from a robust filter, and
the computational details for the whole procedure. The section concludes with an
application example and an extension of the method to integrated AR(p) models.

8.6.1 Naive minimum robust scale AR estimates

In this section we deal with the robust estimation of the AR parameters by minimizing
a robust scale estimate σ̂ of prediction residuals. Let yt , 1 ≤ t ≤ T , be observations
corresponding to an AO model yt = xt + vt where xt is an AR(p) process. For any
λ= (φ1, φ2, . . . , φ p, μ)′ ∈ R p+1, define the residual vector as

û(λ) = (̂u p+1(λ), . . . , ûT (λ))′,

where

ût (λ) = (yt − μ) − φ1(yt−1 − μ) − . . . − φp(yt−p − μ). (8.74)

Given a scale estimate σ̂ , an estimate of λ can be defined by

λ̂ = arg minλσ̂ (̂u(λ)). (8.75)

If σ̂ is a high-BP M-estimate of scale we would have the AR analog of regression
S-estimates. Boente, Fraiman and Yohai (1987) generalized the notion of qualitative
robustness (Section 3.7) to time series, and proved that S-estimates for autoregression
are qualitatively robust and have the same efficiency as regression S-estimates. As
happens in the regression case (see (5.28)), estimates based on the minimization of
an M-scale are M-estimates, where the scale is the minimum scale, and therefore all
the asymptotic theory of M-estimates applies under suitable regularity conditions.

If σ̂ is a τ -estimate of scale (Section 5.14.1), it can be shown that, as in the
regression case, the resulting AR estimates have a higher normal efficiency than that
corresponding to an M-scale.

For the reasons given in Section 8.4.2, any estimate based on the prediction
residuals has a BP not larger than 0.5/(p + 1) for AR(p) models. Since invertible
MA and ARMA models have infinite AR representations, the BP of estimates based
on the prediction residuals will be zero for such models.

The next subsection shows how to obtain an improved S-estimate through the use
of robust filtering.

8.6.2 The robust filter algorithm

Let yt be an AO process (8.5), where xt is a stationary AR(p) process with mean 0
and {vt } are i.i.d. independent of {xt } with distribution (8.9). To avoid the propagation
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of outliers to many residuals, as described above, we shall replace the prediction
residuals ût (λ) in (8.74) by the robust prediction residuals

ũt (λ) = (yt − μ) − φ1(̂xt−1|t−1 − μ) − . . . − φp (̂xt−p|t−1 − μ) (8.76)

obtained by replacing the AO observations yt−i , i = 1, . . . , p, in (8.74) by the robust
filtered values x̂t−i |t−1 = x̂t−i |t−1(λ), i = 1, . . . , p, which are approximations to the
values E(xt−i |y1, . . . , yt ).

These approximated conditional expectations were derived by Masreliez (1975)
and are obtained by means of a robust filter. To describe this filter we need the so-
called state-space representation of the xt ’s (see, e.g., Brockwell and Davis, 1991),
which for an AR(p) model is

xt = μ + �(xt−1 − μ) + dut (8.77)

where xt = (xt , xt−1, . . . , xt−p+1)′ is called the state vector, d is defined by

d = (1, 0, . . . , 0)′, μ = (μ, . . . , μ)′ , (8.78)

and � is the state-transition matrix given by

� =
[

φ1 . . . φp−1 φp

Ip−1 0p−1

]
. (8.79)

Here Ik is the k × k identity matrix and 0k the zero vector in Rk .
The following recursions compute robust filtered vectors x̂t |t which are approx-

imations of E(xt | y1, y2, . . . , yt ) and robust one-step-ahead predictions x̂t |t−1 which
are approximations of E(xt |y1, y2, . . . , yt−1). At each time t − 1 the robust prediction
vectors x̂t |t−1 are computed from the robustly filtered vectors x̂t−1|t−1 as

x̂t |t−1 = μ + �(̂xt−1|t−1 − μ). (8.80)

Then the prediction vector x̂ t |t−1(λ) and the AO observation yt are used to com-
pute the residual ũt (λ) and x̂t |t using the recursions

ũt (λ) = (yt − μ) − φ′ (̂xt−1|t−1 − μ) (8.81)

and

x̂t |t = x̂t |t−1 + 1

st
mtψ

(
ũt (λ)

st

)
, (8.82)

where st is an estimate of the scale of the prediction residual ũt and mt is a vector.
Recursions for st and mt are provided in Section 8.16. Here ψ is a bounded ψ-function
that for some constants a < b satisfies

ψ(u) =
{

u if |u| ≤ a
0 if |u| > b.

(8.83)

It turns out that the first element of mt is s2
t , and hence the first coordi-

nate of the vector recursion (8.82) gives the scalar version of the filter. Hence if
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x̂t |t = (̂xt |t , . . . , x̂t−p+1|t )′ and x̂t |t−1 = (̂xt |t−1, . . . , x̂t−p+1|t−1)′, we have

x̂t |t = x̂t |t−1 + stψ

(
ũt (λ)

st

)
. (8.84)

It follows that

x̂t |t = x̂t |t−1 if |̃ut | > bst (8.85)

and

x̂t |t = yt if |̃ut | ≤ ast . (8.86)

Equation (8.85) shows that the robust filter rejects observations with scaled abso-
lute robust prediction residuals |̃ut/st | ≥ b, and replaces them with predicted values
based on previously filtered data. Equation (8.86) shows that observations with |̃ut/st |
≤ a remain unaltered. Observations for which |̃ut/st | ∈ (a, b) are modified depend-
ing on how close the values are to a or b. Consequently the action of the robust
filter is to “clean” the data of outliers by replacing them with predictions (one-sided
interpolates) while leaving most of the remaining data unaltered. As such the robust
filter might well be called an “outlier-cleaner”.

The above robust filter recursions have the same general form as the class of
approximate conditional mean robust filters introduced by Masreliez (1975). See
also Masreliez and Martin (1977), Kleiner, Martin and Thomson (1979), Martin and
Thomson (1982), Martin, Samarov and Vandaele (1983), Martin and Yohai (1985),
Brandt and Künsch (1988) and Meinhold and Singpurwalla (1989). In order that the
filter x̂t |t be robust in a well-defined sense, it is sufficient that the functions ψ and
ψ(u)/u be bounded and continuous (Martin and Su, 1985).

The robust filtering algorithm, which we have just described for the case of a true
AR(p) process xt , can also be used for data cleaning and prediction based on cleaned
data for a memory-l predictor, 1 ≤ l < p. Such use of the robust filter algorithm is
central to the robustified Durbin–Levinson algorithm that we describe shortly.

Remark 1: Note that the filter as described modifies all observations which are
far enough from their predicted values, including IOs. But this may damage the
output of the filter, since altering one IO spoils the prediction of the ensuing values.
The following modification of the above procedure deals with this problem. When
a sufficiently large number of consecutive observations have been corrected, i.e.,
x̂t |t �= yt for t = t0, . . . , t0 + h, the procedure goes back to t0 and redefines x̂t0|t0 = yt

and then goes on with the recursions.

Remark 2: Note that the robust filter algorithm replaces large outliers with predicted
values based on the past, and as such produces “one-sided” interpolated values. One
can improve the quality of the outlier treatment by using a two-sided interpolation
at outlier positions by means of a robust smoother algorithm. One such algorithm
is described by Martin (1979), who derives the robust smoother as an approximate
conditional mean smoother analog to Masreliez’s approximate conditional mean filter.
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8.6.3 Minimum robust scale estimates based on robust filtering

If σ̂ is a robust scale estimate, an estimate based on robust filtering may be defined
as

λ̂ = arg min
λ

σ̂ (̃u(λ)) (8.87)

where ũ(λ) = (̃u p+1(λ), . . . , ũT (λ))′ is the vector of robust prediction residuals ũt

given by (8.76). The use of these residuals in place of the raw prediction residuals
(8.74) prevents the smearing effect of isolated outliers, and therefore will result in an
estimate that is more robust than M-estimates or estimates based on a scale of the raw
residuals ût .

One problem with this approach is that the objective function σ̂ (̃u(λ)) in (8.87)
typically has multiple local minima, making it difficult to find a global minimum.
Fortunately there is a computational approach based on a different parameterization
in which the optimization is performed one parameter at a time. This procedure
amounts to a robustified Durbin–Levinson algorithm to be described in Section 8.6.4.

8.6.4 A robust Durbin–Levinson algorithm

There are two reasons why the Durbin–Levinson procedure is not robust:� The quadratic loss function in (8.35) is unbounded.� The residuals ût,m(φ) defined in (8.45) are subject to an outliers “smearing” effect:
if yt is an isolated outlier, it spoils the m + 1 residuals ût,m(φ), ût+1,m(φ), . . . ,
ût+m,m(φ).

We now describe a modification of the standard sample-based Durbin–Levinson
method that eliminates the preceding two sources of nonrobustness. The observations
yt are assumed to have been previously robustly centered by the subtraction of the
median or another robust location estimate.

A robust version of (8.31) will be obtained in a recursive way analogous to the
classical Durbin–Levinson algorithm, as follows.

Let φ̃m−1,1, . . . , φ̃m−1,m−1 be robust estimates of the coefficients φm−1,1, . . . ,

φm−1,m−1 of the memory-(m − 1) linear predictor. If we knew that φm,m = ζ, then
according to (8.38), we could estimate the memory-m predictor coefficients as

φ̃m,i (ζ ) = φ̃m−1,i − ζ φ̃ m−1,m−i , i = 1, . . . , m − 1. (8.88)

Therefore it would only remain to estimate ζ.

The robust memory-m prediction residuals ũt,m(ζ ) may be written in the form

ũt,m(ζ ) = yt − φ̃m,1(ζ ) x̂ (m)
t−1|t−1(ζ ) − . . . − φ̃m,m−1(ζ ) x̂ (m)

t−m+1|t−1(ζ ) (8.89)

− ζ x̂ (m)
t−m|t−1(ζ )



JWBK076-08 JWBK076-Maronna February 16, 2006 21:27 Char Count= 0

276 TIME SERIES

where x̂ (m)
t−i |t−1(ζ ), i = 1, . . . , m, are the components of the robust state vector es-

timate x̂(m)
t−1|t−1 obtained using the robust filter (8.82) corresponding to an order-m

autoregression with parameters

(̃φm,1(ζ ), φ̃m,2(ζ ), . . . , φ̃m,m−1(ζ ), ζ ). (8.90)

Observe that ũt,m(ζ ) is defined as ût,m(ζ ) in (8.45), except for the replacement of

yt−1, . . . , yt−m by the robustly filtered values x̂ (m)
t−1|t−1(ζ ), . . . , x̂ (m)

t−m|t−1(ζ ). Now an
outlier yt may spoil only a single residual ũt,m(ζ ), rather than p + 1 residuals as in
the case of the usual AR(p) residuals in (8.74).

The standard Durbin–Levinson algorithm computes φ̂m,m by minimizing the sum
of squares (8.44), which in the present context is equivalent to minimizing the sample
standard deviation of the ũt,m(ζ )’s defined by (8.89). Since the ũt,m(ζ )’s may have out-
liers in the yt term and the sample standard deviation is not robust, we replace it with
a highly robust scale estimate σ̂ = σ̂ (̃um+1,m(ζ ), . . . , ũT,m(ζ )). We have thus elimi-
nated the two sources of non-robustness of the standard Durbin–Levinson algorithm.
Finally, the robust partial autocorrelation coefficient estimates φ̂m,m, m = 1, 2, . . . , p,
are obtained sequentially by solving

φ̂m,m = arg minζ σ̂ (̃um+1,m(ζ ), . . . , ũT,m(ζ )), (8.91)

where for each m the values φ̂m,i , i = 1, . . . , m − 1, are obtained from (8.38). This
minimization can be performed by a grid search on (−1, 1).

The first step of the procedure is to compute a robust estimate φ̃1,1 of φ1,1 by
means of a robust version of (8.43), namely (8.91) with m = 1, where

ũt,1 (ζ ) = yt − ζ x̂t−1|t (ζ ) .

8.6.5 Choice of scale for the robust Durbin–Levinson
procedure

One possibility for the choice of a robust scale in (8.91) is to use an M-scale with
a BP of 0.5, in which case the resulting estimator is an S-estimate of autoregression
using robustly filtered values. However, it was pointed out earlier in Section 5.6.1 that
Hössjer (1992) proved that an S-estimate of regression with a BP of 0.5 cannot have a
large-sample efficiency greater than 0.33 when the errors have a normal distribution.
This fact provided the motivation for using τ -estimates of regression as defined in
equations (5.58), (5.59) and (5.60) of Section 5.14.1. These estimates can attain a high
efficiency, e.g., 95%, when the errors have a normal distribution, while at the same time
having a high BP of 0.5. The relative performance of a τ -estimate versus an S-estimate
with regard to BP and normal efficiency is expected to carry over to a large extent to
the present case of robust AR model fitting using robustly filtered observations. Thus
we recommend that the robust scale estimate σ̂ in (8.91) be a τ -scale defined as in
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Table 8.3 Fτ -estimates of the parameters of AR(3) simulated process

#(outliers) φ1 φ2 φ3 γ σu

0 1.40 −0.90 0.19 0.32 0.98
10 1.27 −0.76 0.07 0.15 1.14
20 1.40 −0.90 0.19 0.18 1.14

True values 1.333 −0.833 0.166 0.00 1.00

(5.58), (5.59) and (5.60), but with residuals given by (8.89) and (8.88). The examples
we show for robust fitting of AR, ARMA, ARIMA and REGARIMA models in the
remainder of this chapter are all computed with an algorithm that uses a τ -scale
applied to robustly filtered residuals. We shall call such estimates filtered τ - (or Fτ -)
estimates. These estimates were studied by Bianco, Garcı́a Ben, Martı́nez and Yohai
(1996).

Table 8.3 shows the results of applying an Fτ -estimate to the data of Example 8.2.
It is seen that the impact of outliers is slight, and comparison with Tables 8.1 and
8.2 shows the performance of the Fτ -estimate to be superior to that of the MM- and
GM-estimates.

8.6.6 Robust identification of AR order

The classical approach based on Akaike’s information criterion, AIC (Akaike, 1973,
1974b), when applied to the choice of the order of AR models, leads to the minimiza-
tion of

AICp = log

(
1

T − p

T∑
t=p+1

û2
t (λ̂p,LS)

)
+ 2p

T − p
,

where λ̂p,LS is the LS estimate corresponding to an AR(p) model, and ût are the re-
spective residuals. The robust implementation of this criterion in the S-PLUS program
arima.rob, described in Chapter 11, is based on the minimization of

RAICp = log
(
τ 2

(̃
u p+1

(
λ̂p,rob

)
, . . . , ũT

(
λ̂p,rob

))) + 2p

T − p
,

where ũi
(
λ̂p,rob

)
are the filtered residuals corresponding to the Fτ -estimate and τ is

the respective scale.
As with the RFPE criterion in (5.53), we consider that it would be better to multiply

the penalty term 2p/(T − p) by a factor depending on the choice of the scale and on
the distribution of the residuals. This area requires further research.
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8.7 Robust model identification

Time series autocorrelations are often computed for exploratory purposes without ref-
erence to a parametric model. In addition autocorrelations are often computed along
with partial autocorrelations for use in identification of ARMA and ARIMA models;
see for example Brockwell and Davis (1991). We know already from Sections 8.1.1
and 8.1.3 that additive outliers can have considerable influence and cause bias and
inflated variability in the case of a lag-one correlation estimate, and Section 8.2.1
indicates that additive outliers can have a similar adverse impact on partial autocor-
relation estimates. Thus one needs robust estimates of autocorrelations and partial
autocorrelations in the presence of AOs or ROs.

8.7.1 Robust autocorrelation estimates

Suppose we want to estimate an unknown lag-k autocorrelation (8.2) of the time series
xt based on AO observations yt = xt + vt . One may think of several ways of doing
this, the simplest being to use robust pairwise correlation estimates ρ̂(k), as in Section
6.9.1, based on the two-dimensional sets of observations (yt , yt−k) , t = k + 1, . . . , T .

As we saw in that section, this approach has the drawback that the resulting correlation
matrix need not be positive semidefinite.

While other methods for robust estimation of autocorrelations and partial auto-
correlations have been discussed in the literature (see e.g., Ma and Genton, 2000),
our recommendation is to use one of the following two approaches based on robust
fitting of a “long” AR model of order p* using the robustly filtered τ -scale estimate:

(a) compute classical autocorrelations and partial autocorrelations based on the ro-
bustly filtered values x̂t |t for the AR(p*) model, or

(b) compute the robust partial autocorrelation estimates φ̂k,k, k = 1, . . . , p*, from the
sequence of robust AR(k) fits, and use the robustly estimated AR(p*) coefficients
φ̂1, . . . , φ̂ p* to compute for a given K the robust autocorrelation estimates ρ̂(k)
(k = 1, . . . , K ) by solving the Yule–Walker equations (8.29)

ρ(k) =
p*∑
i=1

φiρ(k − i) (k ≥ 1) (8.92)

for the values of the unknown ρ(k), where the unknown φi ’s are replaced by the
estimates φ̂i . Note that the first p* − 1 equations of the above set suffice to determine
ρ(k), k = 1, . . . , p* − 1, and that ρ(k) for k ≥ p* are obtained recursively from
(8.92).

Method (a) is attractive in that, aside from the robust filtering that depends upon a
parametric model approximation, it is nonparametric in character. On the other hand
there may be some small biases introduced by the local linear dependency of the
robust filter predictions at outlier positions. Method (b) is quite natural, but it is a
parametric method and so relies on the goodness of the long AR approximation.
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Figure 8.11 Gaussian AR(2) series

Example 8.3 Simulated AR(2) AO model.

Consider an AO model yt = xt + vt where xt is a zero-mean Gaussian AR(2) model
with parameters φ = (φ1, φ2)′ = (−0.65, −0.3)′ and innovations variance σ 2

u = 1;
and vt = ztwt , where zt and wt are independent, P(zt = ±1) = 0.5, and wt has the
mixture distribution (8.6) with ε = 0.1, σv = 1 and μv = 4. The following results
are computed with code AR2plots. Figure 8.11 shows a series of xt of length 200,
and Figure 8.12 shows the same series with the AOs. There are 24 AOs, as compared
to an expected value of 20.

Table 8.4 displays the LS estimate (Yule–Walker version) applied to the AO data,
which is quite far from the true values, but quite consistent with the dominant white-
noise character of the AOs that result in a process with little correlation at any lag.
The Fτ -estimate is seen to be much closer to the true values. The Fτ -estimate applied
to the outlier-free series xt and the LS estimate based on the robustly filtered data x̂t |t
are also close to the true values.

Use of the Yule–Walker equations (8.92) as implemented in code AR2-YW
shows that the lag-k autocorrelations ρ(k) have values −0.50, 0.025, 0.13, −0.09
for k = 1, 2, 3, 4 respectively. Figure 8.13 shows the classical autocorrelation esti-
mate based on the lag-k sample autocorrelations, for the outlier-free series xt . The
results reveal significant autocorrelations at lags 1, 3 and marginally 4, with the lag 1
and 3 values being reasonably close to the true values of −0.5 and 0.13. The classical
autocorrelation estimate based on the AO series yt in Figure 8.14 does not detect any
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Figure 8.12 Gaussian AR(2) series with AOs

of the significant autocorrelations indicated for xt , while yielding smaller autocorre-
lation values at most other lags along with a spurious nonzero autocorrelation at lag 8.
The zero autocorrelation indications at lags 1, 3 and 4 and smaller autocorrelations at
most other lags are a consequence of the fact that the AOs are a white-noise process,
whose true autocorrelations are zero at all lags, and that dominates the xt series values.

Figure 8.15 shows the autocorrelation function estimate based on the robustly
filtered data x̂t |t which is seen to be similar to the estimate based on the outlier-free
series xt , shown in Figure 8.13.

Alternatively, we can use the Yule–Walker equations to compute the autocorre-
lation estimates based on the robust parameter estimates φ̂y,rob = (−0.69, −0.39)′

Table 8.4 Estimates for AR(2) with AOs

Estimate Data φ1 φ2

LS yt −0.12 −0.03
Fτ yt −0.69 −0.39
Fτ xt −0.74 −0.29
LS x̂t |t −0.76 −0.38
True −0.65 −0.30
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Figure 8.13 Correlation estimates for xt
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Figure 8.14 Correlation estimates for yt
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Figure 8.15 Correlation estimates for x̂t |t

obtained with the Fτ -estimates. Use of code AR2-YW with these parameter values
gives autocorrelation estimates −0.50, −0.05, 0.23, −0.14 for k = 1, 2, 3, 4 respec-
tively, which are quite consistent with the estimates of Figure 8.15.

Example 8.4 Robust autocorrelation estimates for MA(1) series.

Now consider an AO model yt = xt + vt where xt is a Gaussian MA(1) process
xt = ut − θut−1. It is easy to show that the lag-k autocorrelations ρ(k) of xt are zero
except for k = 1 where ρ(1) = −θ/(1 + θ2), and that ρ(1) = ρ(1, θ ) is bounded
in magnitude by 1/2 for −1 < θ < 1. Code MA1 generates the figures and other
results for this example. Figure 8.16 shows a series of length 200 of an invertible
Gaussian MA(1) process xt with θ = −0.9 and σ 2

u = 1, for which ρ(1) = 0.497, and
Figure 8.17 shows the series yt with AOs as in Example 8.3, except that now μv = 6
instead of 4.

Figure 8.18 shows the classical autocorrelations computed from the outlier-free
xt series and Figure 8.19 shows the classical autocorrelations computed from the
yt series. The horizontal dashed lines give the approximate 95% confidence interval
for an autocorrelation coefficient under the null hypothesis that the autocorrelation
coefficient is zero, i.e., the lines are located at ±1.96T −1/2. The former figure gives
a fairly accurate estimate of the true lag-1 autocorrelation value of 0.497 along with
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Figure 8.18 Correlations based on the Gaussian xt MA(1) series

marginal indication of positive autocorrelations at lags 2 and 3, while the latter figure
fails to estimate the significant autocorrelation at lag 1 and has no other significant
autocorrelations. Figure 8.20 shows the robust autocorrelations obtained as classical
autocorrelations for the robustly filtered data using an AR model of the MA(1) pro-
cess. The order of the autoregression was obtained with the robust selection method
described in Section 8.6.6. The method estimated an AR(5) model with parameters

(̂φ1, . . . , φ̂5) = (0.69, −0.53, 0.56, −0.29, 0.10)

and filtered 17 out of 18 outliers. The resulting robust autocorrelation estimates are
almost identical to those obtained in Figure 8.18 based on the Gaussian MA(1) se-
ries xt .

8.7.2 Robust partial autocorrelation estimates

We may consider two approaches to obtain robust partial autocorrelations:

(a) in a nonparametric way, by applying the usual Durbin–Levinson algorithm in
Section 8.2.1 to the robustly filtered data x̂t |t based on a long robust AR fit of order
p* as discussed previously for autocorrelations, or
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Figure 8.19 Correlations based on yt with AOs
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Figure 8.20 Robust correlations from filtered yt
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(b) in a parametric way by using the estimates φ̂k,k from a sequence of robust AR(k)

Fτ -estimates φ̂k = (̂φk,1, . . . , φ̂k,k) of orders k = 1, . . . , p*.

We illustrate both approaches for the same two examples we used above to illus-
trate robust autocorrelation estimation.

Example 8.5 Robust partial autocorrelation estimates for an AR(2) series.

Consider again the AR(2) process of Example 8.3. It follows from (8.39) that for an
AR(2) process the partial autocorrelation coefficients φk,k are given by

φ1,1 = ρ(1), φ2,2 = ρ(2) − ρ(1)2

1 − ρ(1)2
,

and φk,k = 0 for k ≥ 3. The true autocorrelations are ρ(1) = −0.500 and ρ(2) =
0.025, giving partial autocorrelations φ1,1 = −0.5 and φ2,2 = −0.3. Code AR2-
PACF-a uses the robustly filtered series x̂t |t from the Fτ -estimate, with robust auto-
matic order selection (which yielded p* = 2), to compute robust partial autocorrela-
tion estimates

(̂φ1,1, . . . , φ̂4,4) = (−0.55, − 0.38, 0.07, 0.06).

It is known that the large-sample standard deviations of the classical estimated partial
autocorrelations are 1/

√
T . Assuming this result to hold for the classical autocovari-

ances computed from the filtered data, we would have SD
(
φ̂k,k

) ≈ 0.07. Hence the
estimated values fall within about one SD of the true values.

On the other hand, code AR2-PACF-b yields for approach (b):

(̂φ1,1, . . . , φ̂4,4) = (−0.46, −0.39, 0.022, 0.07).

Example 8.6 Robust partial autocorrelation estimates for an MA(1) series.

Consider again Example 8.4 of an AO model yt = xt + vt , where xt is an MA(1)
process xt = ut − θut−1 with θ = −0.9 and σ 2

u = 1. It may be shown that the partial
autocorrelation coefficients for this process are

φk,k = −θ k(1 − θ2)

1 − θ2(k+1)
. (8.93)

See for example Brockwell and Davis (1991, p.100). For θ = −0.9 this gives

(φ1,1, . . . , φ5,5 ) = (0.50, −0.33, 0.24, −0.19, 0.16)

rounded to two decimal places.
For this example we use the same simulated series of length 200 as in Example 8.4.

Code MA1-PACF-a applies the classical Durbin–Levinson algorithm to the robustly
filtered series x̂t , resulting in the partial autocorrelation coefficient estimates

(̂φ1,1, . . . , φ̂5,5 ) = (0.54, −0.15, 0.24, −0.20, 0.11),

which are close to the true values except for k = 2. The same code applies the
standard Durbin–Levinson algorithm to the robustly filtered data, based on a robust
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autoregression order estimate of 5, resulting in the estimates

(0.44, −0.01, 0.19, −0.07, 0.03),

which is not very satisfactory except for k = 1 and k = 3 (at least the alternating
signs are preserved). Code MA1-PACF-b uses Fτ -estimates to fit robust AR models
of orders 1 through 5, resulting in the parametric robust estimates

(̂φ1,1, . . . , φ̂5,5 ) = (0.56, −0.12, 0.27, −0.24, 0.10).

These appear to be more accurate estimates of the true partial autocorrelations, sug-
gesting that the robust filtering operation may introduce some bias in the estimates
and that perhaps the robust parametric estimates are to be more trusted. This is a topic
in need of further study.

8.8 Robust ARMA model estimation
using robust filters

In this section we assume that we observe yt = xt + vt , where xt follows an ARMA
model given by (8.53). The parameters to be estimated are given by the vector λ =
(φ,θ,μ) = (φ1, φ2, . . . , φp, θ1, θ2, . . . , θq , μ).

8.8.1 τ -estimates of ARMA models

In order to motivate the use of Fτ -estimates for fitting ARMA models, we first describe
naive τ -estimates that do not involve the use of robust filters. Assume first there is no
contamination, i.e., yt = xt . For t ≥ 2 call ŷt |t−1 (λ) the optimal linear predictor of
yt based on y1, . . . , yt−1 when the true parameter is λ, as described in Section 8.2.1.
For t = 1 put ŷt |t−1 (λ) = μ = E(yt ). Then if ut are normal we also have

ŷt |t−1 (λ) = E(yt |y1, . . . , yt−1), t > 1. (8.94)

Define the prediction errors as

ût (λ) = yt − ŷt |t−1 (λ) . (8.95)

Note that these errors are not the same as ût (λ) defined by (8.58).
The variance of ût (λ), σ 2

t (λ) = E(yt − ŷt |t−1 (λ))2, has the form

σ 2
t (λ) = a2

t (λ)σ 2
u , (8.96)

with limt→∞ a2
t (λ) = 1 (see Brockwell and Davis, 1991). In the AR case we have

a = 1 for t ≥ p + 1.
Suppose that the innovations ut have a N(0, σ 2

u ) distribution. Let L(y1, . . . ,

yT , λ, σu) be the likelihood and define

Q(λ) = −2 max
σu

log L(y1, . . . , yT ,λ, σu). (8.97)
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Except for a constant, we have (see Brockwell and Davis, 1991)

Q(λ) =
T∑

t=1

log a2
t (λ) + T log

(
1

T

T∑
t=1

û2
t (λ)

a2
t (λ)

)
. (8.98)

Then the MLE of λ is given by

λ̂ = arg min
λ

Q(λ). (8.99)

Observe that

1

T

T∑
t=1

û2
t (λ)

a2
t (λ)

is the square of an estimate of σu based on the values ût (λ)/at (λ), t = 1, . . . , T .
Then it seems natural to define a τ -estimate λ̂ of λ by minimizing

Q*(λ) =
T∑

t=1

log a2
t (λ) + T log

(
τ 2

(
û1(λ)

a1(λ)
, . . . ,

ûT (λ)

aT (λ)

))
, (8.100)

where for any u = (u1, . . . , uT )′ a τ -scale estimate is defined by

τ 2(u) = s2(u)
T∑

t=1

ρ2

(
ut

s(u)

)
, (8.101)

with s(u) an M-scale estimate based on a bounded ρ-function ρ1. See Section 5.14.1
for further details in the context of regression τ -estimates.

While regression τ -estimates can simultaneously have a high BP value of 0.5 and
a high efficiency at the normal distribution, the τ -estimate λ̂ of λ has a BP of at most
0.5/(p + 1)) in the AR(p) case, and is zero in the MA and ARMA cases, for the
reasons given at the end of Section 8.6.1.

8.8.2 Robust filters for ARMA models

One way to achieve a positive (and hopefully reasonably high) BP for ARMA models
with AO is to extend the AR robust filter method of Section 8.6.2 to ARMA models
based on a state-space representation of these models.

The extension consists of modifying the state-space representation (8.77)–(8.79)
as follows. Let xt be an ARMA(p, q) process and k = max (p, q + 1). Then in Section
8.17 we show that it is possible to define a k-dimensional state-space vector αt =
(α1,t , . . . , αk,t )

′ with α1,t = xt − μ, so that the following representation holds:

αt = �αt−1 + dut , (8.102)

where

d = (1, −θ1, . . . , −θk−1)′, (8.103)
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with θi = 0 for i > q in case p > q. The state-transition matrix � is now given by

� =
[
φk−1 Ik−1

φk 0k−1

]
(8.104)

and where φk−1 = (φ1, . . . , φk−1) and φi = 0 for i > p.
Suppose now that the observations yt follow the AO process (8.5). The Masreliez

approximate robust filter can be derived in a way similar to the AR(p) case in Section
8.6.2. The filter yields approximations

α̂t |t = (̂αt,1|t , . . . , α̂t,k|t ) and α̂t |t−1 = (̂αt,1|t−1, . . . , α̂t,k|t−1)

of E(αt |y1, . . . , yt ) and E(αt |y1, . . . , yt−1) respectively. Observe that

x̂t |t = x̂t |t (λ) = α̂t,1|t (λ) + μ

and

x̂t |t−1 = x̂t |t−1(λ) = α̂t,1|t−1(λ) + μ

approximate E(xt |y1, . . . , yt ) and E(xt |y1, . . . , yt−1), respectively.
The recursions to obtain α̂t |t and α̂t |t−1 are as follows:

α̂t |t−1 = �α̂t−1|t−1,

ũt (λ) = yt − x̂t |t−1 = yt − α̂t,1|t−1(λ) − μ, (8.105)

and

α̂t |t = α̂t |t−1 + 1

st
mtψ

(
ũt (λ)

st

)
. (8.106)

Taking the first component in the above equation, adding μ to each side, and using
the fact that the first component of mt is s2

t yields

x̂t |t = x̂t |t−1 + stψ

(
ũt (λ)

st

)
,

and therefore (8.85) and (8.86) hold.
Further details on the recursions of st and mt are provided in Section 8.16. The

recursions for this filter are the same as (8.80), (8.82) and the associated filter covari-
ance recursions in Section 8.16, with x̂t |t replaced with α̂t |t and x̂t |t−1 replaced with
α̂t |t−1. Further details are provided in Section 8.17.

As we shall see in Section 8.17, in order to implement the filter, a value for the
ARMA innovations variance σ 2

u is needed as well as a value for λ. We deal with
this issue as in the case of an AR model by replacing this unknown variance with an
estimate σ̂ 2

u in a manner described subsequently.
IO’s are dealt with as described in Remark1 at the end of Section 8.6.2.
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8.8.3 Robustly filtered τ -estimates

A τ -estimate λ̂ based on the robustly filtered observations yt can be obtained now
by replacing the raw unfiltered residuals (8.95) in Q*(λ) of (8.100) with the new
robustly filtered residuals (8.105) and then minimizing Q*(λ). Then by defining

Q*(λ) =
T∑

t=1

log a2
t (λ)+T log

(
τ 2

(
ũ1(λ)

a1(λ)
, . . . ,

ũT (λ)

aT (λ)

))
,

the filtered τ -estimate (Fτ -estimate) is defined by

λ̂ = arg min
λ

Q*(λ). (8.107)

Since the above Q*(λ) may have several local minima, a good robust initial
estimate is required. Such an estimate is obtained by the following steps:

1. Fit an AR(p*) model using the robust filtered τ -estimate of Section 8.6.3, where p*

is selected by the robust order selection criterion RAIC described in Section 8.6.6.
The value of p* will almost always be larger than p, and sometimes considerably
larger. This fit gives the needed estimate σ̂ 2

u , as well as robust parameter estimates

(̂φ
o
1, . . . , φ̂

o
p*) and robustly filtered values x̂t |t .

2. Compute estimates of the first p autocorrelations of xt and of ηi , 1 ≤ i ≤ q, where

ηi = Cov(xt , ut−i )

σ 2
u

, (8.108)

using the estimates (̂φ
o
1, . . . , φ̂

o
p*) and σ̂ 2

u .
3. Finally compute the initial parameter estimates of the ARMA(p, q) model by

matching the first p autocorrelations and the q values ηi with those obtained in
step 2.

Example 8.7 A simulated MA(1) series with AO.

As an example, we generated an MA(1) series of 200 observations with 10 equally
spaced AOs as follows (code MA1-AO):

yt =
{

xt + 4 if t = 20i, i = 1, . . . , 10
xt otherwise

where xt = 0.8ut−1 + ut and the u’
t ’s are i.i.d. N(0,1) variables.

The model parameters were estimated using the Fτ - and the LS estimates, and
the results are shown in Table 8.5. We observe that the robust estimate is very close to
the true value, while the LS estimate is very much influenced by the outliers. Figure
8.21 shows the observed series yt and the filtered series x̂t |t . It is seen that the latter
is almost coincident with yt except for the 10 outliers, which are replaced by the
predicted values.
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Table 8.5 Estimates of the parameters of MA(1) simulated process

θ μ σ 2
u

Fτ −0.82 −0.05 1.16
LS −0.45 0.41 1.96
True values −0.80 0.00 1.00
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Figure 8.21 Simulated MA(1) series with 10 AOs: observed (- - -) and filtered (—)
data

8.9 ARIMA and SARIMA models

We define an autoregression integrated moving-average process yt of orders p, d, q
(ARIMA(p, d, q) for short) as one such that its order-d differences are a stationary
ARMA(p, q) process, and hence satisfies

φ(B)(1 − B)d yt = γ + θ (B)ut , (8.109)

where φ and θ are polynomials of order p and q , and ut are the innovations.
A seasonal ARIMA process yt of regular orders p, d, q, seasonal period s, and

seasonal orders P, D, Q (SARIMA(p, d, q) × (P, D, Q)s for short) fulfills the equa-
tion

φ(B)�(Bs)(1 − B)d
(
1 − Bs

)D
yt = γ + θ (B)�(Bs)ut , (8.110)
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where φ and θ are as above, and � and � are polynomials of order P and Q re-
spectively. It is assumed that the roots of φ, θ, � and � lie outside the unit circle
and then the differenced series (1 − B)d (1 − Bs)D yt is a stationary and invertible
ARMA process.

In the sequel we shall restrict ourselves to the case P = 0 and Q ≤ 1. Then
�(B) = 1 − �s B and (8.110) reduces to

(1 − B)d
(
1 − Bs

)D
φ(B)yt = γ + θ (B)(1 − �s Bs)ut . (8.111)

The reason for this limitation is that, although the Fτ -estimates already defined for
ARMA models can be extended to arbitrary SARIMA models, there is a computational
difficulty in finding a suitable robust initial estimate for the iterative optimization
process. At present this problem has been solved only for P = 0 and Q ≤ 1.

Assume now that we have observations yt = xt + vt where xt fulfills an ARIMA
model and vt is an outlier process. A naive way to estimate the parameters is to dif-
ference yt , thereby reducing the model to an ARMA(p, q) model, and then apply
the Fτ -estimate already described. The problem with this approach is that the dif-
ferencing operations will result in increasing the number of outliers. For example,
with an ARIMA(p, 1, q) model, the single regular difference operation will convert
isolated outliers into two consecutive outliers of opposite sign (a so called“doublet”).
However, one need not difference the data and may instead use the robust filter on the
observations yt as in the previous section, but based on the appropriate state-space
model for the process (8.111).

The state-space representation is of the same form as (8.102), except that it uses
a state-transition matrix �* based on the coefficients of the polynomial operator of
order p* = p + d + s D

φ*(B) = (1 − B)d
(
1 − Bs

)D
φ(B). (8.112)

For example, in the case of an ARIMA(1, 1, q) model with AR polynomial operator
φ(B) = 1 − φ1 B, we have

φ*(B) = 1 − φ*
1 B − φ*

2 B2

with coefficients φ*
1 = 1 + φ1 and φ*

2 = −φ1. And for model (8.111) with p = D =
1, d = q = Q = 0 and seasonal period s = 12, we have

φ*(B) = 1 − φ*
1 B − φ*

12 B12 − φ*
13 B13

with

φ*
1 = φ1, φ*

12 = 1, φ*
13 = −φ1.

Therefore, for each value of λ = (φ,θ,γ, �s) (where �s is the seasonal MA
parameter when Q = 1) the filtered residuals corresponding to the operators φ* and
θ* are computed, yielding the residuals ũt (λ). Then the Fτ -estimate is defined by
the λ minimizing Q* (λ) , with Q* defined as in (8.100) but with φ*(B) instead of
φ(B).

More details can be found in Bianco et al. (1996).
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Example 8.8 Residential telephone extensions (RESEX) series.

This example deals with a monthly series of inward movement of residential telephone
extensions in a fixed geographic area from January 1966 to May 1973 (RESEX).
The series was analyzed by Brubacher (1974), who identified a SARIMA(2,0,0) ×
(0,1,0)12 model, and by Martin et al. (1983).

Table 8.6 displays the LS, GM- and Fτ -estimates of the parameters (code
RESEX). We observe that they are quite different, and the estimation of the SD
of the innovation corresponding to the LS estimate is much larger than the ones
obtained with the GM- and the filtered τ -estimates.

Table 8.6 Estimates of the parameters of RESEX series

Estimates φ1 φ2 γ σu

Fτ 0.27 0.49 0.41 1.12
GM 0.41 0.33 0.39 1.75
LS 0.48 −0.17 1.86 6.45

Figure 8.22 shows the observed data yt and the filtered values x̂t |t , which are seen
to be almost coincident with yt except at outlier locations.

index
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Figure 8.22 RESEX series: observed (solid line) and filtered (circles) values
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Figure 8.23 Quantiles of absolute residuals of estimates for RESEX series

In Figure 8.23 we show the quantiles of the absolute values of the residuals of the
three estimates. The three largest residuals are huge and hence were not included to
improve graph visibility. It is seen that the Fτ -estimate yields the smallest quantiles,
and hence gives the best fit to the data.

8.10 Detecting time series outliers and level shifts

In many situations it is important to identify the type of perturbations that the se-
ries undergo. In this section we describe classical and robust diagnostic methods to
detect outliers and level shifts in ARIMA models. As for the diagnostic procedures
described in Chapter 4 for regression, the classical procedures are based on residuals
obtained using nonrobust estimates. In general, these procedures succeed only when
the proportion of outliers is very low and the outliers are not very large. Otherwise,
due to masking effects, the outliers may not be detected.

Let yt , 1 ≤ t ≤ T , be an observed time series. We consider perturbed models of
the form

yt = xt + ω ξ
(t0)
t , (8.113)

where the unobservable series xt is an ARIMA process satisfying

φ(B)(1 − B)d xt = θ (B)ut , (8.114)
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and the term ωξ
(t0)
t represents the effect on period t of the perturbation occurring at

time t0.
The value of ω in (8.113) measures the size of the or level shift at time t0 and the

form of ξ
(t0)
t depends on the type of the outlier. Let o(t0)

t be an indicator variable for
time t0 (o(t0)

t = 1 for t = t0 and 0 otherwise). Then an AO at time t0 can be modeled by

ξ
(t0)
t = o(t0)

t (8.115)

and a level shift at time t0 by

ξ
(t0)
t =

{
0 if t < t0
1 if t ≥ t0.

To model an IO at time t0, the observed series yt is given by

φ(B)(1 − B)d yt = θ (B)
(
ut + ω o(t0)

t

)
.

Then, for an IO we get

ξ
(t0)
t = φ(B)−1(1 − B)−dθ (B) o(t0)

t . (8.116)

We know that robust estimates are not very much influenced by a small fraction
of atypical observations in the cases of IO or AO. The case of level shifts is different.
A level shift at period t0 modifies all the observations yt with t ≥ t0. However, if the
model includes a difference, differencing (8.113) we get

(1 − B)yt = (1 − B)xt + ω(1 − B)ξ
(t0)
t ,

and since (1 − B)ξ
(t0)
t = o(t0)

t , the differenced series has an AO at time t0. Then a robust
estimate applied to the differenced series is not going to be very much influenced by
the level shift. Therefore, the only case in which a robust procedure may be influenced
by a level shift is when the model does not contain any difference.

8.10.1 Classical detection of time series outliers and level shifts

In this subsection, we shall describe the basic ideas of Chang, Tiao and Chen (1988)
for outlier detection in ARIMA models. Similar approaches were considered by Tsay
(1988) and Chen and Liu (1993). Procedures based on deletion diagnostics were
proposed by Peña (1987, 1990), Abraham and Chuang (1989), Bruce and Martin
(1989) and Ledolter (1991).

For the sake of simplicity, we start by assuming that the parameters of the ARIMA
model, λ and σ 2

u , are known.
Let π (B) be the filter defined by

π (B) = θ (B)−1φ(B)(1 − B)d = 1 − π1 B − π2 B2 − . . . − πk Bk − . . . . (8.117)

Then, from (8.114), π (B)xt = ut . Since π (B) is a linear operator, we can apply it to
both sides of (8.113), obtaining

π (B) yt = ut + ω π (B) ξ
(t0)
t , (8.118)
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which is a simple linear regression model with independent errors and regression
coefficient ω.

Therefore, the LS estimate of ω is given by

ω̂ =
∑T

t=t0
(π (B) yt )

(
π (B) ξ

(t0)
t

)
∑T

t=t0

(
π (B) ξ

(t0)
t

)2
, (8.119)

with variance

Var(ω̂) = σ 2
u∑T

t=t0
(π (B) ξ

(t0)
t )2

, (8.120)

where σ 2
u is the variance of ut .

In practice, since the parameters of the ARIMA model are unknown, (8.119) and
(8.120) are computed using LS or ML estimates of the ARIMA parameter. Let π̂

be defined as in (8.117) but using the estimates instead of the true parameters. Then
(8.119) and (8.120) are replaced by

ω̂ =
∑T

t=t0
ût

(
π̂ (B) ξ

(t0)
t

)
∑T

t=t0
(π̂ (B) ξ

(t0)
t )2

, (8.121)

and

V̂ar(ω̂) = σ̂ 2
u∑T

t=t0
(π̂ (B) ξ

(t0)
t )2

, (8.122)

where

ût = π̂ (B)yt

and

σ̂ 2
u = 1

T − t0

T∑
t=t0

(
ût − ω̂

(
π̂ (B) ξ

(t0)
t

))2

.

In the case of IO, the estimator of the outlier size given by (8.119) reduces to the
innovation residual at t0, i.e., ω̂ = ût0 .

A test to detect the presence of an outlier at a given t0 can be based on the t-like
statistic

U = |ω̂|
(V̂ar(ω̂))1/2

. (8.123)

Since, in general, neither t0 nor the type of outlier are known, in order to decide
if there is an outlier at any position, the statistic

U0 = max
t0

max{Ut0,AO, Ut0,LvS, Ut0,IO}
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is used, where Ut0,AO, Ut0,LvS and Ut0,IO are the statistics defined by (8.123) corre-
sponding to an AO, level shift (LvS) and IO at time t0, respectively. If U0>M, where
M is a conveniently chosen constant, one declares that there is an outlier or level shift.
The time t0 when the outlier or level shift occurs and and whether the additive effect
is an AO, IO or LvS is determined by where the double maximum is attained.

Since the values

ût =
∞∑

i=0

π̂ i yt−i

can only be computed from a series extending into the infinite past, in practice, with
data observed for t = 1, . . . , T , they are approximated by

ût =
t−1∑
i=0

π̂ i yt−i .

As we mentioned above, this type of procedure may fail due to the presence of
a large fraction of outliers and/or level shifts. This failure may be due to two facts.
On one hand, the outliers or level shift may have a large influence on the MLE, and
therefore the residuals may not reveal the outlying observations. This drawback may
be overcome by using robust estimates of the ARMA coefficients. On the other hand,
if yt0 is an outlier or level shift, as we noted before, not only is ût0 affected, but the
effect of the outlier or level shift is propagated to the subsequent innovation residuals.
Since the statistic U0 is designed to detect the presence of an outlier or level shift at
time t0, it is desirable that U0 be influenced by only an outlier at t0. Outliers or level
shift at previous locations, however, may have a misleading influence on U0. In the
next subsection we show how to overcome this problem by replacing the innovation
residuals ût by the filtered residuals studied in Section 8.8.3.

8.10.2 Robust detection of outliers and level shifts for
ARIMA models

In this section we describe an iterative procedure introduced by Bianco (2001) for the
detection of AO, level shifts and IO in an ARIMA model. The algorithm is similar
to the one described in the previous subsection. The main difference is that the new
method uses innovation residuals based on the filtered τ -estimates of the ARIMA
parameters instead of a Gaussion MLE, and uses a robust filter instead of the filter π

to obtain an equation analogous to (8.118).
A detailed description of the procedure follows:

1. Estimate the parameters λ and σu robustly using an Fτ -estimator. These estimates
will be denoted by λ̂ and σ̂ u respectively.

2. Apply the robust filter described in Section 8.8.3 to yt using the estimates computed
in step 1. This step yields the filtered residuals ũt and the scales st .

3. In order to make the procedure less costly in terms of computing time, a preliminary
set of outlier locations is determined in the following way: declare that time t0 is
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a candidate for an outlier or level shift location if

|̃ut0 | > M1st0 , (8.124)

where M1 is a conveniently chosen constant, and denote by C the set of t0’s where
(8.124) holds.

4. For each t0 ∈ C , let π̂* be a robust filter similar to the one applied in step 2,
but such that for t0 ≤ t ≤ t0 + h the function ψ is replaced by the identity for a

conveniently chosen value of h. Call ũ*
t = π̂*(B)yt the residuals obtained with

this filter. Since these residuals now have different variances, we estimate ω by
weighted LS, with weights proportional to 1/s2

t . Then (8.121), (8.122) and (8.123)
are now replaced by

ω̃ =
∑T

t=t0
ũ*

t π̂*(B) ξ
(t0)
t /s2

t∑T
t=t0

(
π̂*(B) ξ

(t0)
t

)2
/s2

t

, (8.125)

V̂ar(ω̃) = 1∑T
t=t0

(π̂*(B) ξ (t0))2/s2
t

(8.126)

and

U* = |ω̃|(
V̂ar(ω̃)

)1/2
. (8.127)

The purpose of replacing π̂ by π̂* is to eliminate the effects of outliers at positions
different from t0. For this reason the effect of those outliers before t0 and after t0 + h
is reduced by means of the robust filter. Since we want to detect a possible outlier
at time t0, and the effect of an outlier propagates to the subsequent observations,
we do not downweight the effect of possible outliers between t0 and t0 + h.

5. Compute

U*
0 = max

t0∈C
max{U*

t0,AO, U*
t0,LvS, U*

t0,IO
},

where U*
t0,AO, U*

t0,LvS and U*
t0,IO

are the statistics defined by (8.127) corresponding

to an AO, level shift and IO at time t0, respectively. If U*
0 ≤ M2, where M2 is

a conveniently chosen constant, no new outliers are detected and the iterative

procedure is stopped. Instead, if U*
0 > M2, a new AO, level shift or IO is detected,

depending on where the maximum is attained.
6. Clean the series of the detected AO, level shifts or IO by replacing yt with

yt − ω̃ξ
(t0)
t , where ξ

(t0)
t corresponds to the perturbation at t0 pointed out by the

test. Then, the procedure is iterated going back to step 2 until no new perturbations
are found.

The constant M1 should be chosen rather small (e.g., M1 = 2) to increase the
power of the procedure for the detection of outliers. Based on simulations we recom-
mend using M2 = 3.
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Table 8.7 Outliers detected with the robust
procedure in simulated MA(1) series

Index Type Size U*
0

20 AO 2.58 4.15
40 AO 3.05 4.48
60 AO 3.75 5.39
80 AO 3.97 5.70
100 AO 3.05 4.84
120 AO 4.37 6.58
140 AO 3.97 5.64
160 AO 4.66 6.62
180 AO 2.99 4.44
200 AO 3.85 3.62

As we have already mentioned, this procedure will be reliable to detect level shifts
only if the ARIMA model includes at least an ordinary difference (d > 0).

Example 8.9 Continuation of Example 8.7.

On applying the robust procedure just described to the data, all the outliers were
detected. Table 8.7 shows the outliers found with this procedure as well as their
corresponding type, size and value of the test statistic.

The classical procedure of Section 8.10.1 detects only two outliers: observations
120 and 160. The LS estimates of the parameters after removing the effect of these
two outliers are θ̂ = −0.48 and μ̂ = 0.36, which are also far from the true values.

Example 8.10 Continuation of Example 8.8.

Table 8.8 shows the outliers and level shifts found on applying the robust procedure
to the RESEX data.

Table 8.8 Detected outliers in the RESEX series

Index Date Type Size U*
0

29 5/68 AO 2.52 3.33
47 11/69 AO -1.80 3.16
65 5/71 LvS 1.95 3.43
77 5/72 AO 4.78 5.64
83 11/72 AO 52.27 55.79
84 12/72 AO 27.63 27.16
89 5/73 AO 4.95 3.12
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We observe two very large outliers corresponding to the last two months of 1972.
The explanation is that November 1972 was a “bargain” month, i.e., free installation
of resident extensions, with a spillover effect since not all November orders could be
fulfilled that month.

8.10.3 REGARIMA models: estimation and outlier detection

A REGARIMA model is a regression model where the errors are an ARIMA time
series. Suppose that we have T observations (x1, y1), . . . , (xT , yT ) with xi ∈ Rk,,
yi ∈ R satisfying

yt = β′xt + et

where e1, . . . , eT follow an ARIMA(p, d, q) model

φ(B)(1 − B)det = θ (B)ut .

As in the preceding cases, we consider the situation when the actual observations
are described by a REGARIMA model plus AO, IO and level shifts. That is, instead
of observing yt we observe

y*
t = yt + ω ξ

(t0)
t , (8.128)

where ξ
(t0)
t is as in the ARIMA model.

All the procedures for ARIMA models described in the preceding sections can be
extended to REGARIMA models.

Define for each value of β,

êt (β) = y*
t − β′xt , t = 1, . . . , T

and put

ŵt (β) = (1 − B)d êt (β), t = d + 1, . . . , T .

When β is the true parameter, ŵt (β) follows an ARMA(p, q) model with an AO,
IO or level shift. Then it is natural to define for any β and λ = (φ,θ) the residuals
ût (β,λ) as in (8.58), but replacing yt by ŵt (β), i.e.,

ût (β,λ) = ŵt (β)−φ1ŵt−1(β) − . . . − φpŵt−p(β) + θ1ût−1(β,λ) + . . .

+ θq ût−q (β,λ) (t = p + d + 1, . . . , T ) .

Then the LS estimate is defined as (β,λ) minimizing

T∑
t=p+d+1

û2
t (β,λ),
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and an M-estimate is defined as (β,λ) minimizing

T∑
t=p+d+1

ρ

(
ût (β,λ)

σ̂

)
,

where σ̂ is the scale estimate of the innovations ut . As in the case of regression with
independent errors, the LS estimate is very sensitive to outliers, and M-estimates
with a bounded ρ are robust when the ut ’s are heavy tailed, but not for other types of
outliers like AOs.

Let ũt (β,λ) be the filtered residuals corresponding to the series êt (β) using the
ARIMA(p, d, q) model with parameter λ. Then we can define Fτ -estimates as in
Section 8.8.3, i.e.,

(β̂, λ̂) = arg min
λ

Q*(β̂,λ),

where

Q*(β̂,λ) =
T∑

t=1

log a2
t (λ) + T log

(
τ 2

(
ũ1(β̂,λ)

a1(λ)
, . . . ,

ũT (β̂,λ)

aT (λ)

))
.

The robust procedure for detecting the outliers and level shifts of Section 8.10.2
can also easily be extended to REGARIMA models. For details on the Fτ -estimates
and outliers and level shift detection procedures for REGARIMA models, see Bianco
et al. (2001).

8.11 Robustness measures for time series

8.11.1 Influence function

In all situations considered so far we have a finite-dimensional vector λ of unknown
parameters (e.g.,λ =(φ1, . . . , φp, θ1, . . . , θq , μ)′ for ARMA models) and an estimate

λ̂T = λ̂T (y1, . . . , yT ) . When yt is a strictly stationary process, it holds under very
general conditions that λ̂T converges in probability to a vector λ̂∞ which depends on
the joint (infinite-dimensional) distribution F of {yt : t = 1, 2, . . .}.

Künsch (1984) extends Hampel’s definition (3.3) of the influence function to time
series in the case that λ̂T is defined by M-estimating equations which depend on a
fixed number k of observations:

n∑
t=k

�(yt , λ̂T ) = 0, (8.129)

where yt = (yt , . . . , yt−k+1)′ . Strict stationarity implies that the distribution Fk of yt

does not depend on t . Then for a general class of stationary processes, λ̂∞ exists and
depends only on Fk , and is the solution of the equation

EFk �(yt ,λ) = 0. (8.130)
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For this type of time series, the Hampel influence function could be defined as

IFH(y; λ̂, Fk) = lim
ε↓0

λ̂∞
[
(1 − ε) Fk + εδy

] − λ̂∞(Fk)

ε
, (8.131)

where y = (yk, . . . , y1)′, and the subscript “H” stands for the Hampel definition. Then
proceeding as in Section 5.11 it can be shown that for estimates of the form (8.129)
the analog of (3.47) holds. Then by analogy with (3.28) the gross-error sensitivity is
defined as supy

∥∥IFH(y; λ̂, Fk)
∥∥ , where ‖.‖ is a convenient norm.

If yt is an AR(p) process, it is natural to generalize LS through M-estimates of
the form (8.130) with k = p + 1. Künsch (1984) found the Hampel-optimal estimate
for this situation, which turns out to be a GM-estimate of Schweppe form (5.45).

However, this definition has several drawbacks:� This form of contamination is not a realistic one. The intuitive idea of a contam-
ination rate ε = 0.05 is that about 5% of the observations are altered. But in the
definition (8.131) ε is the proportion of outliers in each k-dimensional marginal.
In general, given ε and y, there exists no process such that all its k-dimensional
marginals are (1 − ε) Fk + εδy.� The definition cannot be applied to processes such as ARMA model in which the
natural estimating equations do not depend on finite-dimensional distributions.

An alternative approach was taken by Martin and Yohai (1986) who introduced a
new definition of influence functional for time series, which we now briefly discuss.
We assume that observations yt are generated by the general RO model

yε
t = (

1 − zε
t

)
xt + zε

t wt (8.132)

where xt is a stationary process (typically normally distributed) with joint distribution
Fx , wt is an outlier-generating process and zε

t is a 0–1 process with P
(
zε

t = 1
) = ε.

This model encompasses the AO model through the choice wt = xt + vt with vt

independent of xt , and provides a pure replacement model when wt is independent
of xt . The model can generate both isolated and patch outliers of various lengths
through appropriate choices of the process zε

t . Assume that λ̂∞
(
Fε

y

)
is well defined

for the distribution Fε
y of yε

t . Then the time series influence function IF{Fε
x,z,w; λ̂} is

the directional derivative at Fx :

IF({Fε
x,z,w}; λ̂) = lim

ε↓0

1

ε

(
λ̂∞

(
Fε

y

) − λ̂∞(Fx )
)
, (8.133)

where Fε
x,z,w is the joint distribution of the processes xt , zε

t and wt .

The first argument of IF is a distribution, and so in general the time series IF is
a functional on a distribution space, which is to be contrasted with IFH which is a
function on a finite-dimensional space. However, in practice we often choose special
forms of the outlier-generating process wt such as constant amplitude outliers, e.g.,
for AOs we may let wt ≡ xt + v and for pure ROs we let wt = v where v is a constant.
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Although the time series IF is similar in spirit to IFH, it coincides with the latter
only in the very restricted case that λ̂T is permutation invariant and (8.132) is restricted
to an i.i.d. pure RO model (see Corollary 4.1 in Martin and Yohai, 1986).

While IF is generally different from IFH, there is a close relationship between
both. That is, if λ̂ is defined by (8.129), then under regularity conditions:

IF({Fx,z,w}; λ̂) = lim
ε↓0

E
[
IFH(yk ; λ̂, Fx,k)

]
ε

(8.134)

where Fx,k is the k-dimensional marginal of Fx and the distribution of yk is the
k-dimensional marginal of Fε

y .

The above result is proved in Theorem 4.1 of Martin and Yohai (1986), where a
number of other results concerning the time series IF are presented. In particular:� conditions are established which aid in the computation of time series IFs� IFs are computed for LS and robust estimates of AR(1) and MA(1) models, and the

results reveal the differing behaviors of the estimators for both isolated and patchy
outliers� it is shown that for MA models, bounded ψ-functions do not yield bounded IFs,
whereas redescending ψ-functions do yield bounded IFs� optimality properties are established for the class of RA estimates described in
8.12.1.

8.11.2 Maximum bias

In Chapter 3 we defined the maximum asymptotic bias of an estimator θ̂ at a distri-
bution F in an ε-contamination neighborhood of a parametric model. This definition
made sense for i.i.d. observations, but cannot be extended in a straightforward manner
to time series. A basic difficulty is that the simple mixture model (1 − ε) Fθ + εG that
suffices for independent observations is not adequate for time series for the reasons
given in the previous section.

As a simple case consider estimation of φ in the AR(1) model xt = φxt−1 + ut ,
where ut has N(0, σ 2

u ) distribution. The asymptotic value of the LS estimate and
of the M- and GM-estimates depends only on the joint distribution F2,y of y1 and
y2. Specification of F2,y is more involved than the two-term mixture distribution
(1 − ε) Fθ + εG used in the definition of bias given in Section 3.3. For example,
suppose we have the AO model given by (8.5), where vt is an i.i.d. series independent
of xt with contaminated normal distribution (8.6). Denote by N2(μ1, μ2, σ

2
1 , σ 2

2 , γ )
the bivariate normal distribution with means μ1 and μ2, variances σ 2

1 and σ 2
2 and

covariance γ and call σ 2
x = Var (xt ) = σ 2

u /(1 − φ2). Then the joint distribution F2,y

is a normal mixture distribution with four components:

(1 − ε)2N2

(
0, 0, σ 2

x , σ 2
x , φσ 2

x

) + ε(1 − ε)N2

(
0, 0, σ 2

x + σ 2
v , σ 2

x , φσ 2
x

)
+ ε(1 − ε)N2

(
0, 0, σ 2

x , σ 2
x + σ 2

v , φσ 2
x

)
+ ε2N2

(
0, 0, σ 2

x + σ 2
v , σ 2

x + σ 2
v , φσ 2

x

)
. (8.135)
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The four terms correspond to the cases of no outliers, an outlier in y1, an outlier in
y2, and outliers in both y1 and y2, respectively.

This distribution is even more complicated when modeling patch outliers in vt ,
and things get much more challenging for estimators that depend on joint distributions
of order greater than two such as AR(p), MA(q) and ARMA(p, q) models, where
one must consider either p-dimensional joint distributions or joint distributions of all
orders.

Martin and Jong (1977) took the above joint distribution modeling approach in
computing maximum bias curves for a particular class of GM-estimates of an AR(1)
parameter under both isolated and patch AO models. But it seems difficult to extend
such calculations to higher-order models, and typically one has to resort to simulation
methods to estimate maximum bias and BP (see Section 8.11.4 for an example of
simulation computation of maximum bias curves).

A simple example of bias computation was given in Section 8.1.3. The asymptotic
value of the LS estimate is the correlation between y1 and y2, and as such can be com-
puted from the mixture expression (8.135), as the reader may verify (Problem 8.12).

Note that the maximum bias in (8.13) is |ρv(1) − φ|, which depends upon the
value of φ, and this feature holds in general for ARMA models.

8.11.3 Breakdown Point

Extending the notion of BP given in Section 3.2 to the time series setting presents
some difficulties.

The first is how “contamination” is defined. One could simply consider the finite
BP for observations y1, . . . , yT as defined in Section 3.2.5, and then define the asymp-
totic BP by letting T → ∞. The drawback of this approach is that it is intractable
except in very simple cases. We are thus led to consider contamination by a process
such as AO or RO, with the consequence that the results will depend on the type of
contaminating process considered.

The second is how “breakdown” is defined. This difficulty is due to the fact that
in time series models the parameter space is generally bounded, and moreover the
effect of outliers is more complicated than with location, regression or scale.

This feature can be seen more easily in the AR(1) case. It was seen in Section 8.1.3
that the effect on the LS estimate of contaminating a process xt with an AO process
vt is that the estimate may take on any value between the lag-one autocorrelations
of xt and vt . If vt is arbitrary, then the asymptotic value of the estimate may be
arbitrarily close to the boundary {−1, 1} of the parameter space, and thus there would
be breakdown according to the definitions of Section 3.2.

However, in some situations it is considered more reasonable to take only isolated
(i.e., i.i.d.) AOs into account. In this case the worst effect of the contamination is to
shrink the estimate toward zero, and this could be considered as “breakdown” if the
true parameter is not null. One could define breakdown as the estimate approaching
±1 or 0, but it would be unsatisfactory to tailor the definition in an ad-hoc manner to
each estimate and type of contamination.
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A completely general definition taking these problems into account was given by
Genton and Lucas (2003). The intuitive idea is that breakdown occurs for some con-
tamination rate ε0 if further increasing the contamination rate does not further enlarge
the range of values taken on by the estimate over the contamination neighborhood. In
particular, for the case of AR(1) with independent AOs, it follows from the definition
that breakdown occurs if the estimate can be taken to zero.

The details of the definition are very elaborate and are therefore omitted here.

8.11.4 Maximum bias curves for the AR(1) model

Here we present maximum bias curves from Martin and Yohai (1991) for three esti-
mates of φ for a centered AR(1) model with RO:

yt = xt (1 − zt ) + wt zt , xt = φxt−1 + ut

where zt are i.i.d. with

P(zt = 1) = γ, P(wt = c) = P(wt = −c) = 0.5.

The three considered estimates are� the estimate obtained by modeling the outliers found using the procedure described
in Section 8.10.1 (Chang et al., 1988),� the median of slopes estimate Med(yt/yt−1), which as mentioned in Section 5.14.2
has bias-optimality properties, and� a filtered M-scale robust estimate, which is the same as the Fτ -estimate except that
an M-scale was used by Martin and Yohai instead of the τ -scale which is the one
recommended in this book.

The curves were computed by a Monte Carlo procedure. Let φ̂T (ε, c) be the value
of any of the three estimates for sample size T . For sufficiently large T, the value of
φ̂T (ε, c) will be negligibly different from its asymptotic value φ̂∞(ε, c) and T = 2000
was used for the purpose of this approximation. Then the maximum asymptotic bias
was approximated as

B(ε) = sup
c

∣∣̂φT (ε, c) − φ
∣∣ (8.136)

by search on a grid of c values from 0 to 6 with a step size of 0.02. We plot the
signed value of B(ε) in Figure 8.24 for the case φ = 0.9. The results clearly show the
superiority of the robust filtered M-scale estimate, which has relatively small bias over
the entire range of ε from 0 to 0.4, with estimator breakdown (not shown) occurring
about ε = 0.45. Similar results would be expected for the Fτ -estimate. The estimate
obtained using the classical outlier detection procedure of Chang et al. (1988) has
quite poor global performance, i.e., while its maximum bias behaves similarly to
that of the robust filtered M-scale estimate for small ε, the estimator breaks down
in the presence of white-noise contamination, with a bias of essentially −0.9 for ε

a little less than 0.1. The GM-estimator has a maximum bias behavior in between
that of the other two estimates, with rapidly increasing maximum bias as ε increases
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Figure 8.24 Maximum bias curves (“BIF” indicates the GM-estimate). Reproduced
from IMA Volumes in Mathematics and its Applications, Vol. 33, Stahel and Weisberg,
eds., Directions in Robust Statistics and Diagnostics, Part I, Springer-Verlag, 1991,
page 244, “Bias robust estimation of autoregression parameters”, Martin, R. D. and
Yohai, V. J., Figure 3. With kind permission of Springer Science and Business Media.

beyond roughly 0.1, but is not quite broken down at ε = 0.35. However, one can
conjecture from the maximum bias curve that breakdown to zero occurs by ε = 0.35.
We note that other types of bounded influence GM-estimates that use redescending
functions can apparently achieve better maximum bias behavior than this particular
GM-estimate (see Martin and Jong, 1977).

8.12 Other approaches for ARMA models

8.12.1 Estimates based on robust autocovariances

The class of robust estimates based on robust autocovariances (RA estimates) was
proposed by Bustos and Yohai (1986). We are going to motivate these estimates by a
convenient robustification of the estimating LS equations.

Let λ = (φ,θ,γ ). As a particular case of the results to be proved in Section 8.15,
the equations for the LS estimate can be reexpressed as

T∑
t=p+i+1

ût (λ)

t−p−i−1∑
j=0

π j (φ )̂ut− j−i (λ) = 0, i = 1, . . . , p,

T∑
t=p+i+1

ût (λ)

t−p−i−1∑
j=0

ζ j (θ )̂ut− j−i (λ) = 0, i = 1, . . . , q
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and

T∑
t=p+1

ût (λ) = 0, (8.137)

where ût (λ) is defined in (8.58), and π j and ζ j are the coefficients of the inverses of
the AR and MA polynomials, i.e.,

φ−1(B) =
∞∑
j=0

π j (φ)B j

and

θ−1(B) =
∞∑

j=0

ζ j (θ)B j .

This system of equations can be written as

T −p−i−1∑
j=0

π j (φ)Mi+ j (λ) = 0, i = 1, . . . , p, (8.138)

T −p−i−1∑
j=0

ζ j (θ)Mi+ j (λ) = 0, i = 1, . . . , q (8.139)

and (8.137), where

M j (λ) =
T∑

t=p+ j+1

ût (λ) ût− j (λ) = 0. (8.140)

The RA estimates are obtained by replacing the term M j (λ) in (8.138) and (8.139)
with

M*
j (λ) =

T∑
t=p+ j+1

η(̂ut (λ), ût− j (λ)), (8.141)

and (8.137) with

T∑
t=p+1

ψ (̂ut (λ)) = 0,

where ψ is a bounded ψ-function.
The name of this family of estimates comes from the fact that M j/ (T − j − p)

is an estimate of the autocovariance of the residuals ût (λ), and M*
j / (T − j − p) is

a robust version thereof.
Two types of η-functions are considered by Bustos and Yohai (1986): Mallows-

type functions of the form η(u, v) = ψ*(u)ψ*(v) and Schweppe-type functions of
the form η(u, v) = ψ*(uv), where ψ* is a bounded ψ-function. The functions ψ

and ψ* can be taken for example in the Huber or bisquare families. These estimates
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have good robustness properties for AR(p) models with small p. However, the fact
that they use regular residuals makes them vulnerable to outliers when p is large or
q > 0. They are consistent and asymptotically normal. A heuristic proof is given in
Section 8.15. The asymptotic covariance matrix is of the form b(ψ, F)VL S, where
b(ψ, F) is a scalar term (Bustos and Yohai, 1986).

8.12.2 Estimates based on memory-m prediction residuals

Suppose that we want to fit an ARMA(p, q) model using the series yt , 1 ≤ t ≤
T . It is possible to define M-estimates, GM-estimates and estimates based on the
minimization of a residual scale using residuals based on a memory-m predictor, where
m ≥ p + q. This last condition is needed to ensure that the estimates are well defined.

Consider the memory-m best linear predictor when the true parameter is
λ = (φ,θ,μ):

ŷt,m(λ) = μ + ϕm,1(φ,θ)(yt−1 − μ) + . . . + ϕm,m(φ,θ)(yt−m − μ),

where ϕm,i are the coefficients of the predictor defined in (8.31) (here we call them
ϕm,i rather than φm,i to avoid confusion with the parameter vector φ). Masarotto
(1987) proposed to estimate the parameters using memory-m residuals defined by

ût,m(λ) = yt − ŷt,m(λ), t = m + 1, . . . , T .

Masarotto proposed this approach for GM-estimates, but actually it can be used
with any robust estimate, such as MM-estimates, or estimates based on the minimiza-
tion of a robust residual scale

σ̂ (̂u p+1,m(λ), . . . , ûT,m(λ)),

where σ̂ is an M- or τ -scale. Since one outlier spoils m + 1 memory-m residuals, the
robustness of these procedures depends on how large is m.

For AR(p) models, the memory-p residuals are the regular residuals ût (λ) given
in (8.20), and therefore no new estimates are defined here.

One shortcoming of the estimates based on memory-m residuals is that the con-
vergence to the true values holds only under the assumption that the process yt is
Gaussian.

8.13 High-efficiency robust location estimates

In Section 8.2 we wrote the AR(p) model in the two equivalent forms (8.14) and
(8.18). We have been somewhat cavalier about which of these two forms to use in
fitting the model, implicitly thinking that the location parameter μ is a nuisance
parameter that we don’t very much care about. In that event one is tempted to use a
simple robust location estimate μ̂ for the centering, e.g., one may use for μ̂ an ordinary
location M-estimate as described in Section 2.2. However, one may be interested in
the location parameter for its own sake, and in addition one may ask whether there
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are any disadvantages in using an ordinary location M-estimate for the centering
approach to fitting an AR model.

Use of the relationship (8.17) leads naturally to the location estimate

μ̂ = γ̂

1 − ∑p
i=0 φ̂i

. (8.142)

It is easy to check that the same form of location estimate is obtained for an
ARMA(p, q) model in intercept form. In the context of M-estimates or GM-estimates
of AR and ARMA models we call the estimate (8.142) a proper location M- (or
GM-)estimate.

It turns out that use of an ordinary location M-estimate has two problems when
applied to ARMA models. The first is that selection of the tuning constant to achieve
a desired high efficiency when the innovations are normally distributed depends upon
the model parameters, which are not known in advance. This problem is most severe
for ARMA(p, q) models with q > 0. The second problem is that the efficiency of
the ordinary M-estimate can be exceedingly low relative to the proper M-estimate.
Details are provided by Lee and Martin (1986), who show that� for an AR(1) model, the efficiency of the ordinary M-estimate relative to the proper

M-estimate is between 10% and 20% for φ = ±0.9 and approximately 60% for
φ = ±0.5, and� for an MA(1) model the relative efficiency is above approximately 80% for positive
θ but is around 50% for θ = −0.5 and is arbitrarily low as θ approaches −1. The
latter was shown by Grenander (1981) to be a point of super-efficiency.

The conclusion is that one should not use the ordinary location M-estimate for AR
and ARMA processes when one is interested in location for its own sake. Furthermore
the severe loss of efficiency of the ordinary location M-estimate that is obtained for
some parameter values gives pause to its use for centering purposes, even when one
is not interested in location for its own sake. It seems from the evidence at hand that it
is prudent to fit the intercept form of AR and ARMA models, and when the location
estimate is needed it can be computed from expression (8.142).

8.14 Robust spectral density estimation

8.14.1 Definition of the spectral density

Any second-order stationary process yt defined for integer t has a spectral represen-
tation

yt =
1/2∫

−1/2

exp(i2π t f )d Z ( f ) (8.143)
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where Z ( f ) is a complex orthogonal increments process on (−1/2, 1/2], i.e., for any
f1 < f2 ≤ f3 < f4

E
{
(Z ( f2) − Z ( f1))(Z ( f4) − Z ( f3))

} = 0,

where z denotes the conjugate of the complex number z. See for example Brockwell
and Davis (1991). This result says that any stationary time series can be interpreted
as the limit of a sum of sinusoids Ai cos(2π fi t + �i ) with random amplitudes Ai and
random phases�i . The process Z ( f ) defines an increasing function G( f ) =E |Z ( f )|2
with G(−1/2) = 0 and G(1/2) = σ 2 = Var(yt ). The function G( f ) is called the
spectral distribution function, and when its derivative S( f ) = G ′( f ) exists it is called
the spectral density function of yt . Other commonly used terms for S( f ) are power
spectral density, spectrum and power spectrum. We assume for purposes of this
discussion that S( f ) exists, which implies that yt has been “de-meaned”, i.e., yt has
been centered by subtracting its mean. The more general case of a discrete time
process on time intervals of length � is easily handled with slight modifications to
the above (see for example Bloomfield, 1976; Percival and Walden, 1993).

Using the orthogonal increments property of Z ( f ) one immediately finds that the
lag-k covariances of yt are given by

C(k) =
1/2∫

−1/2

exp(i2πk f )S( f )d f. (8.144)

Thus the C(k) are the Fourier coefficients of S( f ) and so we have the Fourier series
representation

S( f ) =
∞∑

k=−∞
C(k) exp(−i2π f k). (8.145)

8.14.2 AR spectral density

It is easy to show that for a zero-mean AR(p) process with parameters φ1, . . . , φp

and innovations variance σ 2
u the spectral density is given by

SAR,p( f ) = σ 2
u

|H ( f )|2 (8.146)

where

H ( f ) = 1 −
p∑

k=1

φk exp(i2π f k). (8.147)

The importance of this result is that any continuous and nonzero spectral density S( f )
can be approximated arbitrarily closely and uniformly in f by an AR(p) spectral
density SAR,p( f ) for sufficiently large p (Grenander and Rosenblatt, 1957).
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8.14.3 Classic spectral density estimation methods

The classic, most frequently used method for estimating a spectral density is a non-
parametric method based on smoothing the periodogram. The steps are as follows.
Let yt , t = 1, . . . , T , be the observed data, let dt , t = 1, . . . , T , be a data taper that
goes smoothly to zero at both ends, and form the modified data ỹt = dt yt . Then use
the fast Fourier transform (FFT) (Bloomfield, 1976) to compute the discrete Fourier
transform

X ( fk) =
T∑

t=1

ỹt exp(−i2π fk t) (8.148)

where fk = k/T for k = 0, 1, . . . , [T/2], and use the result to form the periodogram:

Ŝ( fk) = 1

T
|X ( fk)|2 . (8.149)

It is known that the periodogram is an approximately unbiased estimate of S( f ) for
large T , but it is not a consistent estimate. For this reason Ŝ( fk) is smoothed in the
frequency domain to obtain an improved estimate of reduced variability, namely

S( fk) =
M∑

m=−M

wm Ŝ( fm), (8.150)

where the smoothing weights wm are symmetric with

wm = w−m and
M∑

m=−M

wm = 1.

The purpose of the data taper is to reduce the so-called leakage effect of implicit
truncation of the data with a rectangular window, and originally data tapers such as
a cosine window or Parzen window were used. For details on this and other aspects
of spectral density estimation see Bloomfield (1976). A much preferred method is to
use a prolate spheroidal taper, whose application in spectral analysis was pioneered
by Thomson (1977). See also Percival and Walden (1993).

Given the result in Section 8.14.2 one can also use a parametric AR( p̂) approx-
imation approach to estimating the spectral density based on parameter estimates
φ̂1, . . . , φ̂ p̂ and σ̂ 2

u ; here p̂ is an estimate of the order p, obtained through a selec-
tion criterion such as AIC, BIC or FPE which are discussed in Brockwell and Davis
(1991). In this case we compute

ŜAR, p̂( f ) = σ̂ 2
u∣∣∣1 − ∑ p̂

k=1 φ̂k exp(i2π f k)
∣∣∣2

(8.151)

on a grid of frequency values f = fk .
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8.14.4 Prewhitening

Prewhitening is a filtering technique introduced by Blackman and Tukey (1958),
in order to transform a time series into one whose spectrum is nearly flat. One then
estimates the spectral density of the prewhitened series, with a greatly reduced impact
of leakage bias, and then transforms the prewhitened spectral density back, using the
frequency domain equivalent of inverse filtering in order to obtain an estimate of
the spectrum for the original series. Tukey (1967) says: “If low frequencies are 103,
104, or 105 times as active as high ones, a not infrequent phenomenon in physical
situations, even a fairly good window is too leaky for comfort. The cure is not to go
in for fancier windows, but rather to preprocess the data toward a flatter spectrum, to
analyze this prewhitened series, and then to adjust its estimated spectrum for the easily
computable effects of preprocessing.” The classic (nonrobust) way to accomplish the
overall estimation method is to use the following modified form of the AR spectrum
estimate (8.151):

S AR, p̂( f ) = Sû, p̂( f )∣∣∣1 − ∑ p̂
k=1 φ̂k exp(i2π fk)

∣∣∣2
(8.152)

where Sû, p̂( f ) is a smoothed periodogram estimate as described above, but applied
to the fitted AR residuals ût = yt − φ̂1 yt−1 − . . . − φ̂ p̂ yt− p̂. The estimate S AR, p̂( f )

provides substantial improvement on the simpler estimate ŜAR, p̂( f ) in (8.151) by
replacing the numerator estimate σ̂ 2

u that is fixed independent of frequency with the
frequency-varying estimate Sr, p̂( f ). The order estimate p̂ may be obtained with an
AIC or BIC order selection method (the latter is known to be preferable). Experience
indicates that use of moderately small fixed orders po in the range from two to six
will often suffice for effective prewhitening, suggesting that automatic order selection
will often result in values of p̂ in a similar range.

8.14.5 Influence of outliers on spectral density estimates

Suppose the AO model yt = xt + vt contains a single additive outlier vt0 of size A.
Then the periodogram Ŝy( fk) based on the observations yt will have the form

Ŝy( fk) = Ŝx ( fk) + A2

T
+ 2

A

T
Re

[
X ( fk) exp(i2π fk)

]
, (8.153)

where Ŝx ( fk) is the periodogram based on the outlier-free series xt and Re denotes
the real part. Thus the outlier causes the estimate to be raised by the constant amount
A2/T at all frequencies plus the amount of the oscillatory term

2A

T
Re

[
X ( fk) exp(i2π fk)

]
that varies with frequency. If the spectrum amplitude varies over a wide range with
frequency then the effect of the outlier can be to obscure small but important peaks
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(corresponding to small-amplitude oscillations in the xt series) in low-amplitude
regions of the spectrum. It can be shown that a pair of outliers can generate an
oscillation whose frequency is determined by the time separation of the outliers, and
whose impact can also obscure features in the low-amplitude region of the spectrum
(Problem 8.13).

To get an idea of the impact of AOs more generally we focus on the mean and
variance of the smoothed periodogram estimates S( fk) under the assumption that
xt and vt are independent, and that the conditions of consistency and asymptotic
normality of S( fk) hold. Then for moderately large sample sizes the mean and
variance of S( fk) are given approximately by

ES( fk) = Sy( fk) = Sx ( fk) + Sv( fk) (8.154)

and

Var(S( fk)) = Sy( fk)2 = Sx ( fk)2 + Sv( fk)2 + 2Sx ( fk)Sv( fk). (8.155)

Thus AOs cause both bias and inflated variability of the smoothed periodogram esti-
mate. If vt is i.i.d. with variance σ 2

v the bias is just σ 2
v and the variance is inflated by

the amount σ 2
v + 2Sx ( fk)σ 2

v .
Striking examples of the influence that outliers can have on spectral density esti-

mates were given by Kleiner et al. (1979) and Martin and Thomson (1982). The most
dramatic and compelling of these examples is the one in the former paper, where
the data consist of 1000 measurements of diameter distortions along a section of an
advanced wave-guide designed to carry over 200000 simultaneous telephone conver-
sations. In this case the data are a “space” series but it can be treated in the same
manner as a time series as far as spectrum analysis is concerned. Two relatively mi-
nor outliers due to a malfunctioning of the recording instrument, and not noticeable
in simple plots of the data, obscure important features of a spectrum having a very
wide dynamic range (in this case the ratio of the prediction variance to the process
variance of an AR(7) fit is approximately 10−6!). Figure 8.25 (from Kleiner et al.,
1979) shows the diameter distortion measurements as a function of distance along
the wave-guide, and points out that the two outliers are noticeable only in a consid-
erably amplified local section of the data. Figure 8.26 shows the differenced series
(a “poor man’s prewhitening”) which clearly reveals the location of the two outliers
as doublets; Figure 8.27 shows the classic periodogram-based estimate (dashed line)
with the oscillatory artifact caused by the outliers, along with a robust estimate (solid
line) that we describe next. Note in the latter figure that the classic estimate has an
eight-decade dynamic range while the robust estimate has a substantially increased
dynamic range of close to eleven decades, and reveals features that have known phys-
ical interpretations that are totally obscured in the classical estimate (see Kleiner et
al. (1979) for details).
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Figure 8.25 Wave-guide data: diameter distortion measurements vs. distance. Re-
produced from Jour. Royal Statistical Society, B, 41, No. 3, 1979, pp 313–351, Black-
well Publishing, “Robust estimation of power spectra”, Kleiner, B., Martin, R. D., and
Thomson, D. J., Figures 4A, 4B, 4C. With kind permission of Blackwell Publishing.

8.14.6 Robust spectral density estimation

Our recommendation is to compute robust spectral density estimates by robustifying
the prewhitened spectral density (8.152) as follows. The AR parameter estimates
φ̂1, φ̂2, . . . , φ̂ p̂ and σ̂ 2

u are computed using the Fτ -estimate, and p̂ is computed
using the robust order selection method of Section 8.6.6. Then to compute a robust
smoothed spectral density estimate S

ũ*, p̂( f ), the nonrobust residual estimates

ût = yt − φ̂1 yt−1 − . . . − φ̂ p̂ yt− p̂

0.0

0.2
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0.0

–0.1

–0.2
0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 8.26 Wave-guide data: differenced series. Reproduced from Jour. Royal Sta-
tistical Society, B, 41, No. 3, 1979, pp 313–351, Blackwell Publishing, “Robust
estimation of power spectra”, Kleiner, B., Martin, R. D., and Thomson, D. J., Figures
4A, 4B, 4C. With kind permission of Blackwell Publishing.
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Figure 8.27 Wave-guide data: classical (- - -) and robust (—) spectra. Reproduced
from Jour. Royal Statistical Society, B, 41, No. 3, 1979, pp 313–351, Blackwell
Publishing, “Robust estimation of power spectra”, Kleiner, B., Martin, R. D., and
Thomson, D. J., Figures 4A, 4B, 4C. With kind permission of Blackwell Publishing.

are replaced by the robust residual estimates defined as

ũ*
t = x̂t |t − φ̂1 x̂t−1|t−1 − φ̂2 x̂t−2|t−1 − . . . − φ̂ p̂ x̂t− p̂|t−1,

where x̂t−i |t−1, i = 0, 1, . . . , p̂, are obtained from the robust filter. Note that these
robust prediction residuals differ from the robust prediction residuals ũt (8.76) in Sec-
tion 8.6.2 in that the latter have yt − μ where we have x̂t |t . We make this replacement
because we do not want outliers to influence the smoothed periodogram estimate
based on the robust residuals. Also, we do not bother with an estimate of μ because
as mentioned at the beginning of the section one always works with de-meaned series
in spectral analysis.

Note that our approach in this chapter of using robust filtering results in replacing
outliers with one-sided predictions based on previous data. It is quite natural to think
about improving this approach by using a robust smoother, as mentioned at the end of
Section 8.6.2. See Martin and Thomson (1982) for the algorithm and its application
to spectral density estimation. The authors show, using the wave-guide data, that it
can be unsafe to use the robust filter algorithm if the AR order is not sufficiently large
or the tuning parameters are changed somewhat, while the robust smoother algorithm
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results in a more reliable outlier interpolation and associated spectral density estimate
(see Figures 24–27 of Martin and Thomson (1982).

Kleiner et al. (1979) also show good results for some examples using a pure
robust AR spectral density estimate, i.e., the robust smoothed spectral density estimate
S

ũ*, p̂
( f ) is replaced with a robust residuals variance estimate σ̂ 2

u and a sufficiently
high AR order is used. Our feeling is that this approach is only suitable for spectrum
analysis contexts where the user is confident that the dynamic range of the spectrum
is not very large, e.g., at most two or three decades.

The reader interested in robust spectral density estimation can find more details
and several examples in Kleiner et al. (1979) and Martin and Thomson (1982). Martin
and Thomson (1982, Section III) point out that small outliers may not only obscure
the lower part of the spectrum but also may inflate innovations variance estimates by
orders of magnitude.

8.14.7 Robust time-average spectral density estimate

The classic approach to spectral density estimation described in Section 8.14.3 reduces
the variability of the periodogram by averaging periodogram values in the frequency
domain, as indicated in (8.150). In some applications with large amounts of data
it may be advantageous to reduce the variability by averaging the periodogram in
the time domain, as originally described by Welch (1967). The idea is to break the
time series data up into M equal-length contiguous segments of length N , compute
the periodogram Ŝm( fk) = 1

T |Xm( fk)|2 at each frequency fk = k/N on the m-th
segment, and at each fk form the smoothed periodogram estimate

S( fk) = 1

M

M∑
m=1

Ŝm( fk). (8.156)

The problem with this estimate is that even a single outlier in the m-th segment can
spoil the estimate Ŝm( fk) as discussed previously. One way to robustify this estimate is
to replace the sample mean in (8.156) with an appropriate robust estimate. One should
not use a location M-estimate which assumes a symmetric nominal distribution for
the following reason. Under normality the periodogram may be represented by the
approximation

2Ŝm( fk) ≈ skY (8.157)

where Y is a chi-squared random variable with 2 degrees of freedom and sk =
EŜm( fk) ≈ S( fk) for large T . Thus estimation of S( fk) is equivalent to estimating
the scale of an exponential distribution.

Under AO- or RO-type outlier contamination a reasonable approximate model for
the distribution of the periodogram Ŝm( fk) is the contaminated exponential distribu-
tion

(1 − ε)Ex(sk) + εEx(sc,k), (8.158)
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where Ex (α) is the exponential distribution with mean α. Here outliers may result in
sc,k > sk , at least at some frequencies fk . Thus the problem is to find a good robust
estimate of sk in the contaminated exponential model (8.158). It must be kept in mind
that the overall data series can have a quite small fraction of contamination and still
influence many of the segment estimates Ŝm( fk), and hence a high BP estimate of
sk is desirable. Consider a more general model of the form (8.158), in which the
contaminating distribution Ex(sc,k) is replaced with the distribution of any positive
random variable. As mentioned in Section 5.2.2, the min–max bias estimate of scale
for this case is very well approximated by a scaled median (Martin and Zamar, 1989)
with scaling constant (0.693)−1 for Fisher consistency at the nominal exponential
distribution. Thus it is recommended to replace the nonrobust time-average estimate
(8.156) with the scaled median estimate

S( fk) = 1

0.693
Med

{
Ŝm( fk), m = 1, . . . , M

}
. (8.159)

This estimator can be expected to work well in situations where less than half of the
time segments of data contain influential outliers.

The idea of replacing the sample average in (8.156) with a robust estimate of the
scale of an exponential distribution was considered by Thomson (1977) and discussed
by Martin and Thomson (1982), with a focus on using an asymmetric truncated mean
as the robust estimate. See also Chave, Thomson and Ander (1987) for an application.

8.15 Appendix A: heuristic derivation of the
asymptotic distribution of M-estimates
for ARMA models

To simplify, we replace σ̂ in (8.65) by its asymptotic value σ. Generally σ̂ is calibrated
so that when ut is normal, then σ 2 = σ 2

u = Eu2
t . Differentiating (8.65) we obtain

T∑
t=p+1

ψ

(
ût (λ̂)

σ

)
∂ ût (λ̂)

∂λ
= 0. (8.160)

We leave it as an exercise (Problem 8.9) to show that

∂ ût (λ)

∂μ
= −1 − φ1 − . . . − φp

1 − θ1 − . . . − θq
, (8.161)

∂ ût (λ)

∂φi
= −φ−1(B )̂ut−i (λ) (8.162)

and

∂ ût (λ)

∂θ j
= θ−1(B )̂ut− j (λ). (8.163)
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Let

zt = ∂ ût (λ)

∂λ

∣∣∣∣
λ=λ0

, Wt = ∂2ût (λ)

∂λ2

∣∣∣∣
λ=λ0

,

where λ0 is the true value of the parameter. Observe that

zt = (ct , dt , ξ )′

with ξ defined in (8.63) and

ct = −(
φ−1(B)ut−1, . . . , φ

−1(B)ut−p
)′
,

dt = (
θ−1(B)ut−1, . . . , θ

−1(B)ut−q
)′
.

Since ût (λ0) = ut , a first-order Taylor expansion yields

T∑
t=p+1

ψ
(ut

σ

)
zt +

(
1

σ

T∑
t=p+1

ψ ′
(ut

σ

)
zt z′

t +
T∑

t=p+1

ψ
(ut

σ

)
Wt

)
(λ̂ − λ0) � 0

and then

T 1/2(λ̂ − λ0) � B−1

(
1

T 1/2

T∑
t=p+1

ψ
(ut

σ

)
zt

)
(8.164)

with

B = 1

σ T

T∑
t=p+1

ψ ′
(ut

σ

)
zt z′

t + 1

T

T∑
t=p+1

ψ
(ut

σ

)
Wt .

We shall show that

p lim
T →∞

β = 1

σ
Eψ ′

(ut

σ

)
Ezt z′

t , (8.165)

and that

1

T 1/2

T∑
t=p+1

ψ
(ut

σ

)
zt →d Np+q+1

(
0, Eψ

(ut

σ

)2

Ezt z′
t

)
. (8.166)

From (8.164), (8.165) and (8.166) we get

T 1/2(λ̂ − λ0) →d Np+q+1(0, VM ) (8.167)

where

VM = σ 2Eψ (ut/σ )2

(Eψ ′ (ut/σ ))2

(
Ezt z′

t

)−1
. (8.168)

It is not difficult to show that the terms on the left-hand side of (8.165) are
uncorrelated and have the same mean and variance. Hence it follows from the weak
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law of large numbers that

p lim
T →∞

1

σ T

T∑
t=p+1

(
ψ ′

(ut

σ

)
zt z′

t + ψ
(ut

σ

)
Wt

)
=

[
1

σ
E

(
ψ ′

(ut

σ

)
zt z′

t

)
+ E

(
ψ

(ut

σ

)
Wt

)]
.

Then, (8.165) follows from the fact that ut is independent of zt and Wt , and (8.66).
Recall that a sequence of random vectors qn ∈ Rk converges in distribution to

Nk (0, A) if and only if each linear combination a′qn converges in distribution to
N(0, a′Aa) (Feller, 1971). Then to prove (8.166) it is enough to show that for any
a ∈ R p+q+1

1√
T

T∑
t=p+1

Ht →d N(0, v0), (8.169)

where

Ht = ψ (ut/σ ) a′zt

and

v0 = E (Ht )
2 = a′

(
Eψ

(ut

σ

)2

E(zt z′
t )

)
a.

Since the variables are not independent, the standard central limit theorem cannot
be applied; but it can be shown that the stationary process Ht satisfies

E (Ht |Ht−1, . . . , H1) = 0 a.s.

and is hence a so-called martingale difference sequence. Therefore by the central
limit theorem for martingales (see Theorem 23.1 of Billingsley, 1968) (8.169) holds,
and hence (8.166) is proved.

We shall now find the form of the covariance matrix VM . Let

φ−1(B)ut =
∞∑

i=0

πi ut−i

and

θ−1(B)ut =
∞∑

i=0

ζi ut−i ,

where π0 = ζ0 = 1. We leave it as an exercise (Problem 8.10) to show that E(zt z′
t )

has the following form:

E(zt z′
t ) =

[
σ 2

u D 0
0 ξ 2

]
(8.170)



JWBK076-08 JWBK076-Maronna February 16, 2006 21:27 Char Count= 0

320 TIME SERIES

where D = D(φ, θ ) is a symmetric (p + q) matrix with elements

Di, j =
∞∑

k=0

πkπk+ j−i if i ≤ j ≤ p

Di,p+ j =
∞∑

k=0

ζkπk+ j−i if i ≤ p, j ≤ q, i ≤ j

Di,p+ j =
∞∑

k=0

πkζk+i− j if i ≤ p, j ≤ q, j ≤ i

Dp+i,p+ j =
∞∑

k=0

ζkζk+ j−i if i ≤ j ≤ q.

Therefore the asymptotic covariance matrix of λ̂ is

VM = σ 2Eψ (ut/σ )2

(Eψ ′ (ut/σ ))2

[
σ−2

u D−1 0
0 ξ−2

]
.

In the case of the LS estimate, since ψ(u) = 2u and ψ ′(u) = 2 we have

σ 2Eψ (ut/σ )2

(Eψ ′ (ut/σ ))2
= Eu2

t = σ 2
u ,

and hence the asymptotic covariance matrix is

VL S =
[

D−1 0
0 σ 2

u /ξ 2

]
.

In consequence we have

VM = σ 2Eψ (ut/σ )2

σ 2
u (Eψ ′ (ut/σ ))2

VL S.

In the AR(p) case, the matrix σ 2
u D coincides with the covariance matrix C of

(yt , yt−1, . . . , yt−p+1) used in (8.49).

8.16 Appendix B: robust filter covariance recursions

The vector mt appearing in (8.82) is the first column of the covariance matrix of the
state prediction error x̂t |t−1 − xt :

Mt = E(̂xt |t−1 − xt )(̂xt |t−1 − xt )
′ (8.171)

and

st = √
Mt,11 = √

mt,1 (8.172)
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is the standard deviation of the observation prediction error yt− ŷt |t−1 = yt − x̂t |t−1.
The recursion for Mt is

Mt = �Pt−1� + σ 2
u dd′, (8.173)

where Pt is the covariance matrix of the state filtering error x̂t |t − xt :

Pt = E(̂xt |t − xt )(̂xt |t − xt )
′. (8.174)

The recursion equation for Pt is

Pt = Mt − 1

s2
t

W

(
ũt

st

)
mt m′

t

where W (u) = ψ(u)/u.

Reasonable initial conditions for the robust filter are x̂0|0 = (0, 0, . . . , 0)′, and

P0 = P̂x where P̂x is a p × p robust estimate of the covariance matrix for
(yt−1, yt−2, . . . , yt−p).

When applying the robust Durbin–Levinson algorithm to estimate an AR(p)
model, the above recursions need to be computed for each of a sequence of AR orders
m = 1, . . . , p. Accordingly, we shall take σ 2

u = σ 2
u,m, where σ 2

u,m is the variance of
the memory-m prediction error of xt , i.e.,

σ 2
u,m = E(xt − φ̃m,1xt−1− . . . − φ̃m,m xt−m)2.

Then we need an estimate σ̂ 2
u,m of σ 2

u,m for each m. This can be accomplished by
using the following relationships:

σ 2
u,1 = (1 − φ̃

2

1,1)σ 2
x , (8.175)

where σ 2
x is the variance of xt , and

σ 2
u,m = (1 − φ̃

2

m,m)σ 2
u,m−1. (8.176)

In computing (8.91) for m = 1, we use the estimate σ̂ 2
u,1 of σ 2

u,1 parameterized as

a function of φ̃ = φ̃1,1 using (8.175)

σ̂ 2
u,1(̃φ) = (1 − φ̃

2
)σ̂ 2

x (8.177)

where σ̂ 2
x is a robust estimate of σ 2

x based on the observations yt . For example, we
might use an M- or τ -scale, or the simple estimate σ̂ x = MADN(yt )/0.6745. Then
when computing (8.91) for m > 1, we use the estimate σ̂ 2

u,m of σ 2
u,m parameterized

as a function of φ̃ = φ̃m,m using (8.176)

σ̂ 2
u,m(φ) = (1 − φ̃

2
)σ̂ 2

u,m−1 (8.178)

where σ̂ u,m−1 is the minimized robust scale σ̂ in (8.91) for the order-(m − 1) fit.
Since the function in (8.91) may have more than one local extrema, the minimiza-

tion is performed by means of a grid search on (-1,1).
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8.17 Appendix C: ARMA model state-space
representation

Here we describe the state-space representation (8.102) and (8.104) for an
ARMA(p, q) model, and show how to extend it to ARIMA and SARIMA models.
We note that a state-space representation of ARMA models is not unique, and the par-
ticular representation we chose was that by Ledolter (1979) and Harvey and Phillips
(1979). For other representations see Akaike (1974b), Jones (1980) and Chapter 12
of Brockwell and Davis (1991).

Let

φ (B) (xt − μ) = θ (B) ut .

Define αt = (α1,t , . . . , αp,t ), where

α1,t = xt − μ,

α j,t = φ j (xt−1 − μ) + . . . + φp(xt−p+ j−1 − μ) − θ j−1ut − . . . − θqut−q+ j−1,

j = 2, . . . , q + 1

and

α j,t = φ j (xt−1 − μ) + . . . + φp(xt−p+ j−1 − μ), j = q + 2, . . . , p.

Then it is left as an exercise to show that the state-space representation (8.102) holds
where d and � are given by (8.103) and (8.104) respectively. In the definition of d
we take θi = 0 for i > q.

The case q ≥ p is reduced to the above procedure on observing that yt can be
represented as an ARMA(q + 1, q) model where φi = 0 for i ≥ p. Thus, in general
the dimension of α is k = max(p, q + 1).

The above state-space representation is easily extended to represent an
ARIMA(p, d, q) model (8.109) by writing it as

φ*(B) (yt − μ) = θ (B)ut (8.179)

where φ*(B) = φ(B)(1 − B)d has order p* = p + d. Now we just proceed as above

with the φi replaced by the φ*
i coefficients in the polynomial φ*(B), resulting in the

state-transition matrix �*. For example, in the case of an ARIMA(1, 1, q) model we

have φ*
1 = 1 + φ1 and φ*

2 = −φ1. The order of �* is k* = max(p*, q + 1).
The above approach also easily handles the case of a SARIMA model (8.110).

One just defines

φ*(B) = φ(B)�(Bs)(1 − B)d (1 − Bs)D, (8.180)

θ*(B) = θ (B)�(Bs) (8.181)
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and specifies the state-transition matrix �* and vector d* based on the coefficients
of polynomials φ*(B) and θ*(B) of order p* and q* respectively. The order of �*

is now k = max(p*, q* + 1).

8.18 Problems

8.1. Show that |̂ρ(1)| ≤ 1 for ρ̂(1) in (8.3). Also show that if the summation in the
denominator in (8.3) ranges only from 1 to T − 1, then |̂ρ(1)| can be larger
than one.

8.2. Show that for a “doublet” outlier at t0 (i.e., yt0 = A = −yt0+1) with t0 ∈ (1, T ) ,

the limiting value as A → ∞ of ρ̂(1) in (8.3) is −0.5.
8.3. Show that the limiting value as A → ∞ of ρ̂(1) defined in (8.4), when there is

an isolated outlier of size A, is −1/T + O
(
1/T 2

)
.

8.4. Construct a probability model for additive outliers vt that has non-overlapping
patches of length k > 0, such that vt = A within each patch and vt = 0 other-
wise, and with P(vt �= 0) = ε.

8.5. Verify the expression for the Yule–Walker equations given by (8.28).
8.6. Verify that for an AR(1) model with parameter φ we have ρ(1) = φ.
8.7. Show that the LS estimate of the AR(p) parameters given by (8.26) is equivalent

to solving the Yule–Walker equation(s) (8.28) with the true covariances replaced
by the sample ones (8.30).

8.8. Prove the orthogonality condition (8.37).
8.9. Verify (8.161)–(8.162)–(8.163).

8.10. Prove (8.170).
8.11. Prove (8.40).
8.12. Verify (8.13) using (8.135).
8.13. Calculate the spectral density for the case that xt0 and xt0+k are replaced by A

and −A respectively.
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Numerical Algorithms

Computing M-estimates involves function minimization and/or solving nonlinear
equations. General methods based on derivatives—like the Newton–Raphson proce-
dure for solving equations—are widely available, but they are inadequate for this type
of specific problem, for the reasons given in Section 2.9.5.

In this chapter we treat some details of the iterative algorithms described in the
previous chapters to compute M-estimates.

9.1 Regression M-estimates

We shall justify the algorithm in Section 4.5 for solving (4.39); this includes location
as a special case. Consider the problem

h(β) = min,

where

h(β) =
n∑

i=1

ρ

(
ri (β)

σ

)
,

where ri (β) = yi − x′
iβ and σ is any positive constant.

It is assumed that the xi’s are not collinear, otherwise there would be multiple
solutions. It is assumed that ρ(r ) is a ρ-function, that the function W (x) defined in
(2.30) is nonincreasing in |x |, and that ψ is continuous. These conditions are easily
verified for the Huber and the bisquare functions.

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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It will be proved that h does not increase at each iteration, and that if there is a
single stationary point β0 of h, i.e., a point satisfying

n∑
i=1

ψ

(
ri

(
β0

)
σ

)
xi = 0, (9.1)

then the algorithm converges to it.
For r ≥ 0 let g(r ) = ρ

(√
r
)
. It follows from ρ(r ) = g

(
r2

)
that

W (r ) = 2g′(r2) (9.2)

and hence W (r ) is nonincreasing for r ≥ 0 if and only if g′ is nonincreasing.
We claim that

g(y) ≤ g(x) + g′(x)(y − x), (9.3)

i.e., the graph of g lies below the tangent line. To show this, assume first that y > x
and note that by the intermediate value theorem,

g(y) − g(x) = (y − x)g′(ξ ),

where ξ ∈ [x, y]. Since g′ is nonincreating, g′(ξ ) ≤ g′(x). The case y < x is dealt
with likewise.

A function g with a nonincreasing derivative satisfies for all x, y and all α ∈ [0, 1]

g(αx + (1 − α)y) ≥ αg(x) + (1 − α)g(y), (9.4)

i.e., the graph of g lies above the secant line. Such functions are called concave.
Conversely, a differentiable function is concave if and only if its derivative is non-
increasing. For twice differentiable functions, concavity is equivalent to having a
nonpositive second derivative.

Define the matrix

U(β) =
n∑

i=1

W

(
ri (β)

σ

)
xi x′

i ,

which is nonnegative definite for all β, and the function

f (β) = arg min
γ

n∑
i=1

W

(
ri (β)

σ

)
(yi − x′

iγ)2.

The algorithm can then be written as

βk+1 = f (βk). (9.5)

A fixed point β0, i.e., one satisfying f (β0) = β0, is also a stationary point (9.1).
Given βk, put for simplicity wi = W (ri (βk)/σ ). Note that βk+1 satisfies

n∑
i=1

wi xi yi =
n∑

i=1

wi xi x′
iβk+1 = U(βk)βk+1. (9.6)
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We shall show that

h(βk+1) ≤ h(βk). (9.7)

We have using (9.3) and (9.2)

h(βk+1) − h(βk) ≤ 1

σ 2

n∑
i=1

g′
(

ri (βk)2

σ 2

) (
ri (βk+1)2 − ri (βk)2

)
= 1

2σ 2

n∑
i=1

wi
(
ri (βk+1) − ri (βk)

) (
ri (βk+1) + ri (βk)

)
.

But since

ri (βk+1) − ri (βk) = (βk − βk+1)′xi and ri (βk+1) + ri (βk) = 2yi − x′
i

(
βk + βk+1

)
we have using (9.6)

h(βk+1) − h(βk) ≤ 1

2σ 2
(βk − βk+1)′

n∑
i=1

wi xi x′
i

(
2βk+1 − βk − βk+1

)
= 1

2σ 2
(βk − βk+1)′U(βk)

(
βk+1 − βk

) ≤ 0

since U(βk) is nonnegative definite. This proves (9.7).
We shall now prove the convergence of βk to β0 in (9.1). To simplify the proof

we make the stronger assumption that ρ is increasing and hence W (r ) > 0 for all r.
Since the sequence h(βk) is nonincreasing and is bounded from below, it has a limit
h0. Hence the sequence βk is bounded, otherwise there would be a subsequence βk j

converging to infinity, and since ρ is increasing, so would h(βk j
).

Since βk is bounded, it has a subsequence which has a limit β0, which by con-
tinuity satisfies (9.5) and is hence a stationary point. If it is unique, then βk → β0;
otherwise, there would exist a subsequence bounded away from β0, which in turn
would have a convergent subsequence, which would have a limit different from β0,

which would also be a stationary point. This concludes the proof of (9.1).
Another algorithm is based on “pseudo-observations”. Put

ỹi (β) = x′
iβ + σ̂ψ

(
ri (β)

σ̂

)
.

Then (4.40) is clearly equivalent to

n∑
i=1

xi
(
ỹi (β̂) − x′

i β̂
) = 0.

Given βk, the next step of this algorithm is finding βk+1 such that

n∑
i=1

xi
(
ỹi (βk) − x′

iβk+1

) = 0,
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which is an ordinary LS problem. The procedure can be shown to converge (Huber,
1981, Section 7.8) but it is much slower than the reweighting algorithm.

9.2 Regression S-estimates

We deal with the descent algorithm described in Section 5.7.1. As explained there,
the algorithm coincides with the one for M-estimates. The most important result is
that, if W is nonincreasing, then at each step σ̂ does not increase.

To see this, consider at step k the vector βk and the respective residual scale σk

which satisfies

1

n

n∑
i=1

ρ

(
ri

(
βk

)
σk

)
= δ.

The next vector βk+1 is obtained from (9.5) (with σ replaced by σk), and hence
satisfies (9.7). Therefore

1

n

n∑
i=1

ρ

(
ri

(
βk+1

)
σk

)
≤ 1

n

n∑
i=1

ρ

(
ri

(
βk

)
σk

)
= δ. (9.8)

Since σk+1 satisfies

1

n

n∑
i=1

ρ

(
ri

(
βk+1

)
σk+1

)
= δ, (9.9)

and ρ is nondecreasing, it follows from (9.9) and (9.8) that

σk+1 ≤ σk . (9.10)

9.3 The LTS-estimate

We shall justify the procedure in Section 5.7.1. Call σ̂ 1 and σ̂ 2 the scales correspond-
ing to β̂1 and β̂2, respectively. For k = 1, 2 let rik = yi − x′

i β̂k be the respective
residuals, and call r2

(i)k the ordered squared residuals. Let I ⊂ {1, . . . , n} be the set of

indices corresponding to the h smallest r2
i1. Then

σ̂ 2
2 =

h∑
i=1

r2
(i)2 ≤

∑
i∈I

r2
i2 ≤

∑
i∈I

r2
i1 =

h∑
i=1

r2
(i)1 = σ̂ 2

1.

9.4 Scale M-estimates

9.4.1 Convergence of the fixed point algorithm

We shall show that the algorithm (2.78) given for solving (2.54) converges.
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Define W as in (2.59). It is assumed again that ρ(r ) is a ρ-function of |r | . For
r ≥ 0 define

g(r ) = ρ
(√

r
)
. (9.11)

It will be assumed that g is concave (see below (9.4)). To make things simpler, we
assume that g is twice differentiable, and that g′′ < 0.

The concavity of g implies that W is nonincreasing. In fact, it follows from
W (r ) = g(r2)/r2 that

W ′(r ) = 2

r3

(
r2g′(r2) − g(r2)

) ≤ 0,

since (9.3) implies for all t

0 = g(0) ≤ g(t) + g′(t)(0 − t) = g(t) − tg′(t). (9.12)

Put for simplicity θ = σ 2 and yi = x2
i . Then (2.54) can be rewritten as

1

n

n∑
i=1

g
( yi

θ

)
= δ

and (2.78) can be rewritten as

θk+1 = h(θk), (9.13)

with

h(θ ) = 1

nδ

n∑
i=1

g
( yi

θ

)
θ. (9.14)

It will be shown that h is nondecreasing and concave. It suffices to prove these
properties for each term of (9.14). In fact, for all y,

d

dθ

(
θg

( y

θ

))
= g

( y

θ

)
− y

θ
g′

( y

θ

)
≥ 0 (9.15)

because of (9.12); and

d2

dθ2

(
θg

( y

θ

))
= g′′

( y

θ

) y2

θ3
≤ 0 (9.16)

because g′′ < 0.

We shall now deal with the resolution of the equation

h(θ ) = θ.

Assume it has a unique solution θ0. We shall show that

θk → θ0.

Note first that h′(θ0) < 1. For

h(θ0) =
∫ θ0

0

h′(t)dt,
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and if h′(θ0) ≥ 1, then h′(t) > 1 for t > 1, and hence h(θ0) > θ0. Assume first that
θ1 > θ0. Since h is nondecreasing, θ2 = h(θ1) ≥ h(θ0) = θ0. We shall prove that θ2 <

θ1. In fact,

θ2 = h(θ1) ≤ h(θ0) + h′(θ0)(θ1 − θ0) < θ0 + (θ1 − θ0) = θ1.

In the same way, it follows that θ0 < θk+1 < θk . Hence the sequence θk decreases,
and since it is bounded from below, it has a limit. The case θ1 < θ0 is treated likewise.

Actually, the procedure can be accelerated. Given three consecutive values θk,

θk+1 and θk+2, the straight line determined by the points (θk, θk+1) and (θk+1, θk+2)
intersects the identity diagonal at the point (θ*,θ*) with

θ* = θ2
k+1 − θkθk+2

2θk+1 − θk+2 − θk
.

Then set θk+3 = θ*. The accelerated procedure also converges under the given
assumptions.

9.4.2 Algorithms for the nonconcave case

If the function g in (9.11) is not concave, the algorithm is not guaranteed to converge
to the solution. In this case (2.54) has to be solved by using a general equation-solving
procedure. For given x1, . . . , xn let

h(σ ) = 1

n

n∑
i=1

ρ
( xi

σ

)
− δ. (9.17)

Then we have to solve h(σ ) = 0. Procedures using derivatives, like Newton–Raphson,
cannot be used, since the boundedness of ρ implies that h′ is not bounded away from
zero. Safe procedures without derivatives require locating the solution in an interval

[σ1, σ2] such that sgn(h(σ1)) 
= sgn(h(σ2)). The simplest is the bisection method, but
faster ones exist and can be found, for example, in Brent (1973).

To find σ1 and σ2, recall that h is nonincreasing. Let σ0 = Med (|x|) and set
σ1 = σ0. If h(σ1) > 0, we are done; else set σ1 = σ1/2 and continue halving σ1 until
h(σ1) > 0. The same method yields σ2.

9.5 Multivariate M-estimates

Location and covariance will be treated separately for the sake of simplicity. A very
detailed treatment of the convergence of the iterative reweighting algorithm for si-
multaneous estimation was given by Arslan (2004).

Location involves solving

h(μ) = min,
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with

h(μ) =
n∑

i=1

ρ(di (μ)),

where

di (μ) = (xi − μ)′	−1(xi − μ),

which implies (6.11). The procedure is as follows. Given μk, let

μk+1 = 1∑n
i=1 wi

n∑
i=1

wi xi ,

with wi = W (di (μk)) and W = ρ ′. Hence

n∑
i=1

wi xi = μk+1

n∑
i=1

wi . (9.18)

Assume that W is nonincreasing, which is equivalent to ρ being concave. It will
be shown that h(μk+1) ≤ h(μk). The proof is similar to that of Section 9.1. It is easy
to show that the problem can be reduced to 	 = I, so that di (μ) = ‖xi − μ‖2. Using
the concavity of ρ and then (9.18)

h(μk+1) − h(μk) ≤
n∑

i=1

wi

[∥∥xi − μk+1

∥∥2 − ∥∥xi − μk

∥∥2
]

= (
μk − μk+1

)′ n∑
i=1

wi
(
2xi − μk − μk+1

)
= (

μk − μk+1

)′ (
μk+1 − μk

) n∑
i=1

wi ≤ 0.

The treatment of the covariance matrix is more difficult (Maronna, 1976).

9.6 Multivariate S-estimates

9.6.1 S-estimates with monotone weights

For the justification of the algorithm in Section 6.7.2 we shall show that if the weight
function is nonincreasing, and hence ρ is concave, then

σ̂ k+1 ≤ σ̂ k . (9.19)

Given μk and 	k , define σ̂k+1, μk+1 and 	k+1 as in (6.53)–(6.54). It will be
shown that

n∑
i=1

ρ

(
d(xi ,μk+1, 	k+1)

σ̂ k

)
≤

n∑
i=1

ρ

(
d(xi ,μk, 	k)

σ̂ k

)
. (9.20)
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In fact, the concavity of ρ yields (putting wi for the wki of (6.53)):

n∑
i=1

ρ

(
d(xi ,μk+1, 	k+1)

σ̂ k

)
−

n∑
i=1

ρ

(
d(xi ,μk, 	k)

σ̂ k

)

≤ 1

σ̂ k

n∑
i=1

wi
[
d(xi ,μk+1, 	k+1) − d(xi ,μk, 	k)

]
. (9.21)

Note that μk+1 is the weighted mean of the xi ’s with weights wi , and hence it
minimizes

∑n
i=1 wi (xi − μ)′ A (xi − μ) for any positive definite matrix A. Therefore

n∑
i=1

wi d(xi ,μk+1, 	k+1) ≤
n∑

i=1

wi d(xi ,μk, 	k+1)

and hence the sum on the right-hand side of (9.21) is not larger than

n∑
i=1

wi d(xi ,μk, 	k+1) −
n∑

i=1

wi d(xi ,μk, 	k)

=
n∑

i=1

yi	
−1
k+1y′

i −
n∑

i=1

yi	
−1
k y′

i , (9.22)

with yi = √
wi

(
xi − μk

)
. Since

	k+1 = C

|C|1/p with C = 1

n

n∑
i=1

yi y′
i ,

we have that 	k+1 is the sample covariance matrix of the yi ’s normalized to unit
determinant, and by (6.35) it minimizes the sum of squared Mahalanobis distances
among matrices with unit determinant. Since |	k | = |	k+1| = 1, it follows that (9.22)
is ≤ 0, which proves (9.20).

Since

1

n

n∑
i=1

ρ

(
d(xi ,μk+1, 	k+1)

σ̂ k+1

)
= 1

n

n∑
i=1

ρ

(
d(xi ,μk, 	k)

σ̂ k

)
,

the proof of (9.19) follows like that of (9.10).

9.6.2 The MCD

The justification of the “concentration step” in Section 6.7.6 proceeds as in Section 9.3.
Put for k = 1, 2: dik = d(xi ,μk, 	k) and call d(i)k the respective ordered values and
σ̂ 1, σ̂ 2 the respective scales. Let I ⊂ {1, . . . , n} be the set of indices corresponding to
the smallest h values of di1. Then μ2 and 	2 are the mean and the normalized sample
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covariance matrix of the set {xi : i ∈ I }. Hence (6.35) applied to that set implies that

∑
i∈I

di2 ≤
∑
i∈I

di1 =
h∑

i=1

d(i)1,

and hence

σ 2
2 =

h∑
i=1

d(i)2 ≤
∑
i∈I

di2 ≤ σ 2
1 .

9.6.3 S-estimates with nonmonotone weights

Note first that if ρ is not concave, the algorithm (2.78) is not guaranteed to yield the
scale σ , and hence the approach in Section 9.4.2 must be used to compute σ.

Now we describe the modification of the iterative algorithm for the S-estimate.
Call

(
μ̂N , 	̂N

)
the estimates at iteration N , and σ

(
μ̂N , 	̂N

)
the respective scale. Call(

μ̃N+1, 	̃N+1

)
the values given by a step of the reweighting algorithm.

If σ
(
μ̃N+1, 	̃N+1

)
< σ

(
μ̂N , 	̂N

)
, then we proceed as usual, setting(

μ̂N+1, 	̂N+1

) = (
μ̃N+1, 	̃N+1

)
.

If instead

σ
(
μ̃N+1, 	̃N+1

) ≥ σ
(
μ̂N , 	̂N

)
, (9.23)

then for a given ξ ∈ R put(
μ̂N+1, 	̂N+1

) = (1 − ξ )
(
μ̂N , 	̂N

) + ξ
(
μ̃N+1, 	̃N+1

)
. (9.24)

Then it can be shown that there exists ξ ∈ (0, 1) such that

σ
(
μ̂N+1, 	̂N+1

)
< σ

(
μ̂N , 	̂N

)
. (9.25)

The details are given below in Section 9.6.4.
If the situation (9.23) occurs, then the algorithm proceeds as follows. Let ξ0 ∈

(0, 1). Set ξ = ξ0 and compute (9.24). If (9.25) occurs, we are done. Else set ξ = ξξ0

and repeat the former steps, and so on. At some point we must have (9.25). In our
programs we use ξ = 0.7.

A more refined method would be a line search; that is, to compute (9.24) for
different values of ξ and choose the one yielding minimum σ. Our experiments do
not show that this extra effort yields better results.

It must be noted that when the computation is near a local minimum, it may
happen that because of rounding errors, no value of ξ = ξ k

0 yields a decrease in σ.

Hence it is advisable to stop the search when ξ is less than a small prescribed constant
and retain

(
μ̂N , 	̂N

)
as the final result.
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9.6.4 *Proof of (9.25)

Let h(z) : Rm → R be a differentiable function, and call g its gradient at the point z.
Then for any b ∈ Rm, h(z + ξb) = h(z) + ξg′b + o (ξ ). Hence if g′b < 0, we have
h(z + ξb) < h(z) for sufficiently small ξ .

We must show that we are indeed in this situation. To simplify the exposition, we
deal only with μ; we assume Σ fixed, and without loss of generality we may take
Σ = I. Then d(x,μ,Σ) = ‖x − μ‖2. Call σ (μ) the solution of

1

n

n∑
i=1

ρ

(‖xi − μ‖2

σ

)
= δ. (9.26)

Call g the gradient of σ (μ) at a given μ1. Then differentiating (9.26) with respect to
μ yields

n∑
i=1

wi

[
2σ

(
x − μ1

) + ∥∥x − μ1

∥∥2
g
]

= 0,

with

wi = W

(‖xi − μ1‖2

σ

)
,

and hence

g = − 2σ∑n
i=1 wi

∥∥x − μ1

∥∥2

n∑
i=1

wi
(
xi − μ1

)
. (9.27)

Call μ2 the result of an iteration of the reweighting algorithm, i.e.,

μ2 = 1∑n
i=1 wi

n∑
i=1

wi xi .

Then

μ2 − μ1 = 1∑n
i=1 wi

n∑
i=1

wi (xi − μ1), (9.28)

and it follows from (9.28) and (9.27) that
(
μ2 − μ1

)′
g < 0.
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Asymptotic Theory of
M-estimates

In order to compare the performances of different estimates, and also to obtain con-
fidence intervals for the parameters, we need their distributions. Explicit expressions
exist in some simple cases, such as sample quantiles, which include the median, but
even these are in general intractable. It will be necessary to resort to approximating
their distributions for large n, the so-called asymptotic distribution.

We shall begin with the case of a single real parameter, and we shall consider
general M-estimates of a parameter θ defined by equations of the form

n∑
i=1

�(xi , θ ) = 0. (10.1)

For location, � has the form �(x, θ ) = ψ(x − θ ) with θ ∈ R; for scale, �(x, θ ) =
ρ(|x | /θ ) − δ with θ > 0. If ψ (or ρ) is nondecreasing then � is nonincreasing in θ .

This family contains maximum likelihood estimates (MLEs). Let fθ (x) be a family
of densities. The likelihood function for an i.i.d. sample x1, . . . , xn with density fθ is

L =
n∏

i=1

fθ (xi ).

If fθ is everywhere positive, and is differentiable with respect to θ with derivative
ḟθ = ∂ fθ /∂θ, taking logs it is seen that the MLE is the solution of

n∑
i=1

�0(xi , θ ) = 0,

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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with

�0(x, θ ) = −∂ log fθ (x)

∂θ
= − ḟθ (x)

fθ (x)
. (10.2)

10.1 Existence and uniqueness of solutions

We shall first consider the existence and uniqueness of solutions of (10.1). It is assumed
that θ ranges in a finite or infinite interval (θ1, θ2) . For location, θ2 = −θ1 = ∞; for
scale, θ2 = ∞ and θ1 = 0. Henceforth the symbol � means “this is the end of the
proof ”.

Theorem 10.1 Assume that for each x, �(x, θ ) is nonincreasing in θ and

lim
θ→θ1

�(x, θ ) > 0 > lim
θ→θ2

�(x, θ ) (10.3)

(both limits may be infinite). Let

g(θ ) =
n∑

i=1

�(xi , θ ).

Then:
(a) There is at least one point θ̂ = θ̂ (x1, . . . , xn) at which g changes sign, i.e.,

g(θ ) ≥ 0 f or θ < θ̂ and g(θ ) ≤ 0 f or θ > θ̂.

(b) The set of such points is an interval.
(c) If � is continuous in θ , then g(̂θ ) = 0.
(d) If � is decreasing, then θ̂ is unique.

Proof: It follows from (10.3) that

lim
θ→θ1

g(θ ) > 0 > lim
θ→θ2

g(θ ); (10.4)

and the existence of θ̂ follows from the monotonicity of g. If two values satisfy
g(θ ) = 0, then the monotonicity of g implies that any value between them also does,
which yields point (b). Statement (c) follows from the intermediate value theorem;
and point (d) is immediate.

Example 10.1 If �(x, θ ) = sgn(x − θ ), which is neither continuous nor increasing,
then

g(θ ) = #(xi > θ ) − #(xi < θ ).

The reader can verify that for n odd, n = 2m − 1, g vanishes only at θ̂ = x(m), and
for n even, n = 2m, it vanishes on the interval (x(m), x(m+1)).
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Example 10.2 The equation for scale M-estimation (2.54) does not satisfy (10.3)
since ρ(0) = 0 implies �(0, θ ) = −δ < 0 for all θ. But the same reasoning shows
that (10.4) holds if

#(xi = 0)

n
< 1 − δ

ρ(∞)
.

Uniqueness may hold without requiring the strict monotonicity of �. For instance,
Huber’s ψ is not increasing, but the respective location estimate is unique unless there
is a large gap in the middle of the data (Problem 10.7). A sufficient condition for the
uniqueness of scale estimates is thatρ(x) be increasing for all x such thatρ(x) < ρ(∞)
(Problem 10.6).

Redescending location estimates The above results do not cover the case of lo-
cation estimates with a redescending ψ. In this case uniqueness requires stronger as-
sumptions than the case of monotone ψ . Uniqueness of the asymptotic value of the es-
timate requires that the distribution of x, besides being symmetric, is unimodal, i.e., it
has a density f (x) which for someμ is increasing for x < μ and decreasing for x > μ.

Theorem 10.2 Let x have a density f (x) which is a decreasing function of |x |, and
let ρ be any ρ-function. Then λ (μ) = Eρ (x − μ) has a unique minimum at μ = 0.

Proof: Recall that ρ is even and hence its derivative ψ is odd. Hence the derivative
of λ is

λ′(μ) = −
∫ ∞

−∞
f (x)ψ(x − μ)dx

=
∫ ∞

0

ψ (x) [ f (x − μ) − f (x + μ)] dx .

Since λ is even it is enough to show that λ′(μ) > 0 if μ > 0. It follows from the
definition of the ρ-function that ψ (x) ≥ 0 for x ≥ 0 and ψ (x) > 0 if x ∈ (0, x0) for
some x0. If x and μ are positive, then |x − μ| < |x + μ| and hence f (x − μ) >

f (x + μ), which implies that the last integral above is positive.

If ψ is redescending and f is not unimodal, the minimum need not be unique. Let
for instance f be a mixture: f = 0.5 f1 + 0.5 f2, where f1 and f2 are the densities of
N(k, 1) and N(−k, 1), respectively. Then if k is large enough, λ (μ) has two minima,
located near k and −k. The reason can be seen intuitively by noting that if k is
large, then for μ > 0, λ (μ) is approximately 0.5

∫
ρ (x − μ) f1(x) dx, which has

a minimum at k. Note that instead the asymptotic value of a monotone estimate is
uniquely defined for this distribution.

10.2 Consistency

Let x1, . . . , xn now be i.i.d. with distribution F . We shall consider the behavior of
the solution θ̂n of (10.1) as a random variable. Recall that a sequence yn of random
variables tends in probability to y if P (|yn − y| > ε) → 0 for all ε > 0; this will be
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denoted by yn →p y or p lim yn = y. The sequence yn tends almost surely (a.s.) or
with probability one to y if P(limn→∞ yn = y) = 1. The expectation with respect to
a distribution F will be denoted by EF .

We shall need a general result.

Theorem 10.3 (Monotone convergence theorem) Let yn be a nondecreasing se-
quence of random variables such that E |yn| < ∞, and yn → y with probability 1.
Then

Eyn → Ey.

The proof can be found in Feller (1971).
Assume that EF |�(x, θ )| < ∞ for each θ , and define

λF (θ ) = EF�(x, θ ). (10.5)

Theorem 10.4 Assume that EF |�(x, θ )| < ∞ for all θ . Under the assumptions of
Theorem 10.1, there exists θF such that λF changes sign at θF .

Proof: Proceeds along the same lines as the proof of Theorem 10.1. The interchange
of limits and expectations is justified by the monotone convergence theorem.

Note that if λF is continuous, then

EF�(x, θF ) = 0. (10.6)

Theorem 10.5 If θF is unique, then θ̂n tends in probability to θF .

Proof: To simplify the proof, we shall assume θ̂n is unique. Then it will be shown
that for any ε > 0,

lim
n→∞ P(̂θn < θF − ε) = 0.

Let

λ̂n(θ ) = 1

n

n∑
i=1

�(xi , θ ).

Since λ̂n is nonincreasing in θ and θ̂n is unique, θ̂n < θF − ε implies λ̂n(θF − ε) < 0.

Since λ̂n(θF − ε) is the average of the i.i.d. variables �(xi , θF − ε), and has expec-
tation λ(θF − ε) by (10.5), the law of large numbers implies that

λ̂n(θF − ε) →p λ(θF − ε) > 0.

Hence

lim
n→∞ P(̂θn < θF − ε) ≤ lim

n→∞ P(̂λn(θF − ε) < 0) = 0.

The same method proves that P(̂θn > θF + ε) → 0.

Example 10.3 For location �(x, θ ) = ψ(x − θ ). If ψ(x) = x, then � is continu-
ous and decreasing, the solution is θ̂n = x and λ(θ ) = Ex − θ , so that θF = Ex;
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convergence occurs only if Ex exists. If ψ(x) = sgn(x), we have

λ(θ ) = P(x > θ ) − P(x < θ );

hence θF is a median of F, which is unique iff

F(θF + ε) > F(θF − ε) ∀ ε > 0. (10.7)

In this case, for n = 2m the interval (x(m), x(m+1)) shrinks to a single point when
m → ∞. If (10.7) does not hold, the distribution of θ̂n does not converge to a point-
mass (Problem 10.2).

Note that for model (2.1), if ψ is odd and D(u) is symmetric about zero, then
λ(θ ) = 0 so that θF = θ .

For scale, Theorem 10.5 implies that estimates of the form (2.54) tend to the
solution of (2.55) if it is unique.

10.3 Asymptotic normality

In Section 2.9.2, the asymptotic normality of M-estimates was proved heuristically,
by replacing ψ with its first-order Taylor expansion. This procedure will now be made
rigorous.

If the distribution of zn tends to the distribution H of z, we shall say that zn tends
in distribution to z (or to H ), and shall denote this by zn →d z (or zn →d H ). We
shall need an auxiliary result.

Theorem 10.6 (Bounded convergence theorem) Let yn be a sequence of random
variables such that |yn| ≤ z where Ez < ∞ and yn → y a.s. Then Eyn → Ey.

The proof can be found in Feller (1971).

Theorem 10.7 Assume that A = E�(x, θF )2 < ∞ and that B = λ′(θF ) exists and
is nonnull. Let θ̂n be a solution of (10.1) such that θ̂n→p θF . Then the distribution of√

n (̂θn − θF ) tends to N(0, v) with

v = A

B2
.

If �̇(x, θ ) = ∂�/∂θ exists and verifies for all x, θ∣∣�̇ (x, θ )
∣∣ ≤ K (x) wi th EK (x) < ∞, (10.8)

then B = E�̇(x, θF ).

Proof: To make things simpler, we shall make the extra (and unnecessary) assump-
tions that �̈(x, θ ) = ∂2�/∂θ2 exists and is bounded, and that �̇ verifies (10.8). A
completely general proof may be found in Huber (1981, Section 3.2). Note first that
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the bounded convergence theorem implies B = E�̇(x, θF ). In fact,

B = lim
δ→0

E
�(x, θF + δ) − �(x, θF )

δ
.

The term in the expectation is ≤ K (x) by the mean value theorem, and for each x
tends to �̇(x, θF ).

A second-order Taylor expansion of � at θF yields

�(xi , θ̂n) = �(xi , θF ) + (̂θn − θF )�̇(xi , θF ) + 1

2
(̂θn − θF )2�̈(xi , θi )

where θi is some value (depending on xi ) between θ̂n and θF , and where �̈ =
∂2�(x, θ )/∂θ2. Averaging over i yields

0 = An + (̂θn − θF )Bn + (̂θn − θF )2Cn,

where

An = 1

n

n∑
i=1

�(xi , θF ), Bn = 1

n

n∑
i=1

�̇(xi , θF ), Cn = 1

2n

n∑
i=1

�̈(xi , θi )

and hence

√
n(̂θn − θF ) = −

√
n An

Bn + (̂θn − θF )Cn
.

Since the i.i.d. variables �(xi , θF ) have mean 0 (by (10.6)) and variance A, the central
limit theorem implies that the numerator tends in distribution to N(0, A). The law of
large numbers implies that Bn →p B; and since Cn is bounded and (̂θn − θF ) →p 0,
Slutsky’s lemma (Section 2.9.3) yields the desired result.

Example 10.4 (location) For the mean, the existence of A requires that of Ex2. In
general, if ψ is bounded, A always exists. If ψ ′ exists, then λ′(t) = −E ψ ′(x − t). For
the median, ψ is discontinuous, but if F has a density f , explicit calculation yields

λ(θ ) = P(x > θ ) − P(x < θ ) = 1 − 2F(θ ),

and hence λ′(θF ) = −2 f (θF ).

If λ′(θF ) does not exist, θ̂n tends to θF faster than n−1/2, and there is no
asymptotic normality. Consider for instance the median with F discontinuous. Let
ψ(x) = sgn (x), and assume that F is continuous except at zero, where it has its
median and a point mass with P (x = 0) = 2δ, i.e.,

lim
x↑0

F(x) = 0.5 − δ, lim
x↓0

F(x) = 0.5 + δ.

Then λ(θ ) = 1 − 2F(θ ) has a jump at θF = 0. We shall see that this entails P(̂θn =
0) → 1, and a fortiori

√
n θ̂n →p 0.
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Let Nn = #(xi < 0), which is binomial Bi(n, p) with p = 0.5 − δ. Then θ̂n < 0
implies Nn > n/2, and therefore

P(̂θn < 0) ≤ P(Nn/n > 0.5) → 0

since the law of large numbers implies Nn/n →p p < 0.5. The same method yields
P(̂θn > 0) → 0.

The fact that the distribution of θ̂n tends to a normal N(θF , v) does not imply
that the mean and variance of θ̂n tend to θF and v (Problem 10.3). In fact, if F is
heavy tailed, the distribution of θ̂n will also be heavy tailed, with the consequence
that its moments may not exist, or, if they do, they will give misleading information
about D(̂θn). In extreme cases, they may even not exist for any n. This shows that, as
an evaluation criterion, the asymptotic variance may be better than the variance. Let
Tn = (̂θn − θ̂∞)

√
n/v where θ̂n is the median and v its asymptotic variance under

F , so that Tn should be approximately N(0, 1). Figure 10.1 shows for the Cauchy
distribution the normal Q–Q plot of Tn, i.e., the comparison between the exact and
the approximate quantiles of its distribution, for n = 5 and 11. It is seen that although
the approximation improves in the middle when n increases, the tails remain heavy.

normal quantiles

ex
ac

t q
ua

nt
ile

s

-2 -1 0 1 2

-4
-2

0
2

4

n=11

n=5

Figure 10.1 Q–Q plot of the sample median for Cauchy data. The dashed line is the
identity diagonal
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10.4 Convergence of the SC to the IF

In this section we prove (3.5) for general M-estimates (10.1). Call θ̂n the solution of
(10.1), and for a given x0, call θ̂n+1(x0) the solution of

n∑
i=0

�(xi , θ ) = 0. (10.9)

The sensitivity curve is

SCn(x0) = (n + 1)
(̂
θn+1(x0) − θ̂n

)
,

and

IFθ̂ (x0) = −�(x0, θF )

B
,

with B and θF defined in Theorem 10.7 and in (10.6) respectively.

Theorem 10.8 Assume the same conditions as in Theorem 10.7. Then for each x0

SCn(x0) →p IF θ̂ (x0).

Proof: Theorem 10.5 states that θ̂n →p θF . The same proof shows that also
θ̂n+1(x0) →p θF , since the effect of the term �(x0, θ ) becomes negligible for large
n. Hence

�n =: θ̂n+1(x0) − θ̂n →p 0.

Using (10.1) and (10.9) and a Taylor expansion yields

0 = �(x0, θ̂n+1(x0)) +
n∑

i=1

[
�(xi , θ̂n+1(x0)) − �(xi , θ̂n)

]
= �(x0, θ̂n+1(x0)) + �n

n∑
i=1

�̇(xi , θ̂n) + �2
n

2

n∑
i=1

�̈(xi , θi ), (10.10)

where θi is some value between θ̂n+1(x0) and θ̂n. Put

Bn = 1

n

n∑
i=1

�̇(xi , θ̂n), Cn = 1

n

n∑
i=1

�̈(xi , θi ).

Then Cn is bounded, and the consistency of θ̂n, plus a Taylor expansion, show that
Bn →p B. It follows from (10.10) that

SCn(x0) = −�(x0, θ̂n+1(x0))

Bn + Cn�n/2

n + 1

n
.

And since �(x0, θ̂n+1(x0)) →p �(x0, θF ), the proof follows.
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10.5 M-estimates of several parameters

We shall need the asymptotic distribution of M-estimates when there are several
parameters. This happens in particular with the joint estimation of location and scale in
Section 2.6.2, where we have two parameters, which satisfy a system of two equations.
This situation also appears in regression (Chapter 4) and multivariate analysis (Chapter
6). Put θ = (μ, σ ), and

�1(x,θ) = ψ

(
x − μ

σ

)
and �2(x,θ) = ρscale

(
x − μ

σ

)
− δ.

Then the simultaneous location–scale estimates satisfy

n∑
i=1

Ψ(xi ,θ) = 0, (10.11)

with Ψ = (�1, �2). Here the observations xi are univariate, but in general they
may belong to any set X ⊂ Rq , and we consider a vector θ = (θ1, . . . , θp)′ of un-
known parameters, which ranges in a subset 
 ⊂ R p, which satisfies (10.11) where
� = (�1, . . . , �p) is function of X × 
 → R p. Existence of solutions must be dealt
with in each situation. Uniqueness may be proved under conditions which generalize
the monotonicity of � in the case of a univariate parameter (as in (d) of Theorem
10.1).

Theorem 10.9 Assume that for all x and θ, �(x,θ) is differentiable and the matrix
D = D(x, θ) with elements ∂�i/∂θ j is negative definite (i.e., a′Da < 0 for all a �= 0).
Put for given x1, . . . , xn

g(θ) =
n∑

i=1

Ψ(xi ,θ).

If there exists a solution of g(θ) = 0, then this solution is unique.

Proof: We shall prove that

g(θ1) �= g(θ2) if θ1 �= θ2.

Let a = θ2 − θ1, and define for t ∈ R the function h(t) = a′g(θ1 + ta), so that
h(0) = a′g(θ1) and h(1) = a′g(θ2). Its derivative is

h′(t) =
n∑

i=1

a′D(x,θ1 + ta)a < 0 ∀ t,

and hence h(0) > h(1), which implies g(θ1) �= g(θ2).

To treat consistency, assume the xi ’s are i.i.d. with distribution F, and put

λ̂n(θ) = 1

n

n∑
i=1

Ψ(xi ,θ) (10.12)
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and

λ(θ) = EFΨ(x,θ). (10.13)

Let θ̂n be any solution of (10.11); it is natural to conjecture that, if there is a unique
solution θF of λ(θ) = 0, then as n → ∞, θ̂n tends in probability to θF . General
criteria are given in Huber (1981, Section 6.2). However, their application to each
situation must be dealt with separately.

For asymptotic normality we can generalize Theorem 10.7. Assume that θ̂n →p

θF and thatλ is differentiable at θF , and call B the matrix of derivatives with elements

B jk = ∂λ j

∂θk

∣∣∣∣
θ=θF

. (10.14)

Assume B is nonsingular. Then under general assumptions (Huber, 1981, Section 6.3)

√
n

(
θ̂n − θF

) →d Np
(
0, B−1AB−1′) (10.15)

where

A = EΨ(x, θF )Ψ(x, θF )′, (10.16)

and Np(t, V) denotes the p-variate normal distribution with mean t and covariance
matrix V.

If �̇ jk = ∂� j/∂θk exists and verifies for all x,θ∣∣�̇ jk(x,θ)
∣∣ ≤ K (x) with EK (x) < ∞, (10.17)

then B = E�̇(x, θF ), where �̇ is the matrix with elements �̇ jk .

The intuitive idea behind the result is like that of (2.86)–(2.87): we take a first-order
Taylor expansion of � around θF and drop the higher-order terms. Before dealing
with the proof of (10.15), let us see how it applies to simultaneous M-estimates of
location–scale. Conditions for existence and uniqueness of solutions are given in
Huber (1981, Section 6.4) and Maronna and Yohai (1981). They may hold without
requiring monotonicity of ψ . This holds in particular for the Student MLE. As can be
expected, under suitable conditions they tend in probability to the solution (μ0, σ0) of
the system of equations (2.72)–(2.73). The joint distribution of

√
n(μ̂ − μ0, σ̂ − σ0)

tends to the bivariate normal with mean 0 and covariance matrix

V = B−1A(B−1)′, (10.18)

where

A =
[

a11 a12

a21 a22

]
, B = 1

σ

[
b11 b12

b21 b22

]
,

with

a11 = Eψ(r )2, a12 = a21 = E(ρscale(r ) − δ)ψ(r ), a22 = E (ρscale(r ) − δ)2 ,
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where

r = x − μ0

σ0

,

and

b11 = Eψ ′(r ), b12 = Erψ ′(r ),

b21 = Eρ ′
scale(r ), b22 = Erρ ′

scale(r ).

If ψ is odd, ρscale is even, and F is symmetric, the reader can verify (Problem
10.5) that V is diagonal,

V =
[

v11 0
0 v22

]
,

so that μ̂ and σ̂ are asymptotically independent, and their variances take on a simple
form:

v11 = σ 2
0

a11

a2
22

, v22 = σ 2
0

b11

b2
22

;

that is, the asymptotic variance of each estimate is calculated as if the other parameter
were constant.

We shall now prove (10.15) under much more restricted assumptions. We shall
need an auxiliary result.

Theorem 10.10 (“Multivariate Slutsky’s lemma”) Let un and vn be two sequences
of random vectors and Wn a sequence of random matrices such that for some constant
vector u, random vector v and random matrix W

un →p u, vn →d V, Wn →p W.

Then

un + vn →d u + v and Wnvn →d Wv.

Now we proceed with the proof of asymptotic normality under more restricted
assumptions. Let θ̂n be any solution of (10.11).

Theorem 10.11 Assume that θ̂n →p θF where θF is the unique solution of
λF (θ) = 0. Let Ψ be twice differentiable with respect to θ with bounded deriva-
tives, and satisfying also (10.17). Then (10.15) holds.

Proof: The proof follows that of Theorem 10.7. For each j, call Ψ̈ j the matrix
with elements ∂� j/∂θk∂θl , and Cn(x,θ) the matrix with its j-th row equal to(
θ̂n − θF

)′
�̈ j (x,θ). By a Taylor expansion

0 = λ̂n (̂θn) =
n∑

i=1

{
Ψ(xi ,θF )+�̇(xi ,θF )

(
θ̂n − θF

) + 1

2
Cn(xi ,θi )

(
θ̂n − θF

)}
.
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That is,

0 = An + (
Bn + Cn

) (
θ̂n − θF

)
,

with

An = 1

n

n∑
i=1

Ψ(xi ,θF ), Bn = 1

n

n∑
i=1

�̇(xi ,θF ), Cn = 1

2n

n∑
i=1

Cn(xi ,θi ),

i.e., Cn is the matrix with its j-th row equal to
(
θ̂n − θF

)′
�̈−

j , where

�̈−
j = 1

n

n∑
i=1

�̈ j (xi ,θi ),

which is bounded; since θ̂n − θF →p 0, this implies that also Cn →p 0. We have
√

n
(
θ̂n − θF

) = −(Bn + Cn)−1
√

nAn.

Note that for i = 1, 2, . . . , the vectors Ψ(xi ,θF ) are i.i.d. with mean 0 (since
λ(θF ) = 0) and covariance matrix A, and the matrices �̇(xi ,θF ) are i.i.d. with mean
B. Hence when n → ∞, the law of large numbers implies Bn →p B, which implies

Bn + Cn →p B, which is nonsingular; and the multivariate central limit theorem
implies

√
nAn →d Np(0, A); hence (10.15) follows by the multivariate version of

Slutsky’s lemma.

10.6 Location M-estimates with preliminary scale

We shall consider the asymptotic behavior of solutions of (2.65). For each n let σ̂ n

be a dispersion estimate, and call μ̂n the solution (assumed unique) of

n∑
i=1

ψ

(
xi − μ

σ̂ n

)
= 0. (10.19)

For consistency, it will be assumed that

A1 ψ is monotone and bounded with a bounded derivative
A2 σ = p lim σ̂ n exists
A3 the equation Eψ ((x − μ) /σ ) = 0 has a unique solution μ0.

Theorem 10.12 If A1–A2–A3 hold, then μ̂n →p μ0.

The proof follows along the lines of Theorem 10.5, but the details require much
more care, and are hence omitted.

Now define ui = xi − μ0 and

a = Eψ
( u

σ

)2

, b = Eψ ′
( u

σ

)
, c = E

( u

σ

)
ψ ′

( u

σ

)
. (10.20)
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For asymptotic normality, assume

A4 the quantities defined in (10.20) exist and b �= 0
A5

√
n (σ̂ n − σ ) converges to some distribution

A6 c = 0.

Theorem 10.13 Under A4–A5–A6, we have
√

n(μ̂n − μ0) →d N(0, v) with v = σ 2 a

b2
. (10.21)

Note that if x has a symmetric distribution, then μ0 coincides with its center of
symmetry, and hence the distribution of u is symmetric about zero, which implies
(since ψ is odd) that c = 0.

Adding the assumption that ψ has a bounded second derivative, the theorem
may be proved along the lines of Theorem 10.5, but the details are somewhat more
involved. We shall content ourselves with a heuristic proof of (10.21) to exhibit the
main ideas.

Put for brevity

�̂1n = μ̂n − μ0, �̂2n = σ̂ n − σ.

Then expanding ψ as in (2.86) yields

ψ

(
xi − μ̂n

σ̂ n

)
= ψ

(
ui − �̂1n

σ + �̂2n

)

≈ ψ
(ui

σ

)
− ψ ′

(ui

σ

) �̂1n + �̂2nui/σ

σ
.

Inserting the right-hand side of this expression in (2.65) and dividing by n yields

0 = An − 1

σ

(
�̂1n Bn + �̂2nCn

)
,

where

An = 1

n

n∑
i=1

ψ
(ui

σ

)
, Bn = 1

n

n∑
i=1

ψ ′
(ui

σ

)
, Cn = 1

n

n∑
i=1

(ui

σ

)
ψ ′

(ui

σ

)
,

and hence

√
n�̂1n = σ

√
n An − �̂2n

√
nCn

Bn
. (10.22)

Now An is the average of i.i.d. variables with mean 0 (by (10.19)) and variance a,

and hence the central limit theorem implies that
√

n An →d N(0, a); the law of large
numbers implies that Bn →p b. If c = 0, then

√
nCn tends to a normal by the central

limit theorem, and since �̂2n →p 0 by hypothesis, Slutsky’s lemma yields (10.21).
If c �= 0, the term �̂2n

√
nCn does not tend to zero, and the asymptotic variance

of �̂1n will depend on that of σ̂ n and also on the correlation between σ̂ n and μ̂n.
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10.7 Trimmed means

Although the numerical computing of trimmed means—and in general of
L-estimates—is very simple, their asymptotic theory is much more complicated than
that of M-estimates; even heuristic derivations are involved.

It is shown (see Huber, 1981, Section 3.3) that under suitable regularity conditions,
θ̂n converges in probability to

θF = 1

1 − 2α
EF xI(k1 ≤ x ≤ k2), (10.23)

where

k1 = F−1(α), k2 = F−1(1 − α). (10.24)

Let F(x) = F0(x − μ) with F0 symmetric about zero; then θF = μ (Problem
10.4).

If F is as above, then
√

n(̂θ − μ) →d N(0, v) with

v = 1

(1 − 2α)2
EF ψk(x − μ)2, (10.25)

where ψk is Huber’s function with k = F−1
0 (1 − α), so that the asymptotic variance

coincides with that of an M-estimate.

10.8 Optimality of the MLE

It can be shown that the MLE is “optimal” in the sense of minimizing the asymptotic
variance, in a general class of asymptotically normal estimates (Shao, 2003). Here its
optimality will be shown within the class of M-estimates of the form (10.1).

The MLE is an M-estimate, which under the conditions of Theorem 10.5 is Fisher-
consistent, i.e., verifies (3.31). In fact, assume ḟθ = ∂ f/∂θ is bounded. Then differ-
entiating ∫ ∞

−∞
fθ (x)dx = 1

with respect to θ yields

0 =
∫ ∞

−∞
ḟθ (x)dx = −

∫ ∞

−∞
�0(x, θ ) fθ (x)dx ∀ θ, (10.26)

so that (10.6) holds (the interchange of integral and derivative is justified by the
bounded convergence theorem).

Under the conditions of Theorem 10.7, the MLE has asymptotic variance

v0 = A0

B2
0

,
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with

A0 =
∫ ∞

−∞
�2

0 (x, θ ) fθ (x)dx, B0 =
∫ ∞

−∞
�̇0(x, θ ) fθ (x)dx,

with �̇0 = ∂�0/∂θ. The quantity A0 is called Fisher information.
Now consider another M-estimate of the form (10.1) which is Fisher-consistent

for θ, i.e., such that ∫ ∞

−∞
�(x, θ ) fθ (x)dx = 0 ∀ θ, (10.27)

and has asymptotic variance

v = A

B2
,

with

A =
∫ ∞

−∞
�2(x, θ ) fθ (x)dx, B =

∫ ∞

−∞
�̇(x, θ ) fθ (x)dx .

It will be shown that

v0 ≤ v. (10.28)

We shall show first that B0 = A0, which implies

v0 = 1

A0

. (10.29)

In fact, differentiating the last member of (10.26) with respect to θ yields

0 = B0 +
∫ ∞

−∞
�0(x, θ )

ḟθ (x)

fθ (x)
fθ (x)dx = B0 − A0.

By (10.29), (10.28) is equivalent to

B2 ≤ A0 A. (10.30)

Differentiating (10.27) with respect to θ yields

B −
∫ ∞

−∞
�(x, θ )�0(x, θ ) fθ (x)dx = 0.

The Cauchy–Schwarz inequality yields(∫ ∞

−∞
�(x, θ )�0(x, θ ) fθ (x)dx

)2

≤
(∫ ∞

−∞
�(x, θ )2 fθ (x)dx

)
×

(∫ ∞

−∞
�2

0 (x, θ ) fθ (x)dx

)
,

which proves (10.30).
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10.9 Regression M-estimates

10.9.1 Existence and uniqueness

From now on it will be assumed that X has full rank, and that σ̂ is fixed or estimated
previously (i.e., it does not depend on β̂). We first establish the existence of solutions
of (4.39) for monotone estimates.

Theorem 10.14 Let ρ(r ) be a continuous nondecreasing unbounded function of |r |.
Then there exists a solution of (4.39).

Proof: Here σ̂ plays no role, so that we may put σ̂ = 1. Since ρ is bounded from
below, so is the function

R(β) =
n∑

i=1

ρ
(
yi − x′

iβ
)
. (10.31)

Call L its infimum, i.e., the larger of its lower bounds. We must show the existence
of β0 such that R(β0) = L . It will be shown first that R(β) is bounded away from L
if ‖β‖ is large enough. Let

a = min
‖β‖=1

max
i=1,...,n

∣∣x′
iβ

∣∣ .
Then a > 0, since otherwise there would exist β �= 0 such that x′

iβ = 0 for all i,
which contradicts the full rank property. Let b0 > 0 be such that ρ(b0) > 2L , and
b such that ba − maxi |yi | ≥ b0. Then ‖β‖ > b implies maxi

∣∣yi − x′
iβ

∣∣ ≥ b0, and
hence R(β) >2L . Thus minimizing R for β ∈ R p is equivalent to minimizing it on
the closed ball {‖β‖ ≤ b}. A well-known result of analysis states that a function
which is continuous on a closed bounded set attains its minimum in it. Since R is
continuous, the proof is complete.

Now we deal with the uniqueness of monotone M-estimates. Again we may take
σ̂ = 1.

Theorem 10.15 Assume ψ is nondecreasing. Put for given (xi , yi )

L(β) =
n∑

i=1

ψ

(
yi − x′

iβ

σ̂

)
xi .

Then (a) all solutions of L (β) = 0 minimize R (β) defined in (10.31) and (b) if
furthermore ψ has a positive derivative, then L (β) = 0 has a unique solution.

Proof: (a) The equivariance of the estimate implies that without loss of generality
we may assume that L (0) = 0. For a given β let H (t) = R(tβ) with R defined in
(10.31). We must show that H (1) ≥ H (0). Since d H (t)/dt = β′L (tβ), we have

H (1) − H (0) = R (β) − R (0) =
n∑

i=1

∫ 1

0

ψ(tx′
iβ − yi )(x′

iβ)dt.
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If x′
iβ > 0 (resp. < 0), then for t > 0 ψ(tx′

iβ − yi ) is greater (smaller) than ψ(−yi ).
Hence

ψ(tx′
iβ − yi )(x′

iβ) ≥ ψ(−yi )(x′
iβ)

which implies that

R (β) − R (0) ≥
n∑

i=1

ψ(−yi )(x′
iβ) = β′L(0).

(b) The matrix of derivatives of L with respect to β is

D = − 1

σ̂

n∑
i=1

ψ ′
(

yi − x′
iβ

σ̂

)
xi x′

i ,

which is negative definite; and the proof proceeds as that of Theorem 10.9.

The above results do not cover MM- or S-estimates, since they are not monotonic.
As was shown for location in Theorem 10.2, uniqueness holds for the asymptotic value
of the estimate under the model yi = x′

iβ + ui if the ui ’s have a symmetric unimodal
distribution.

10.9.2 Asymptotic normality: fixed X

Now, to treat the asymptotic behavior of the estimate, we consider an infinite sequence
(xi , yi ) described by model (4.4). Call β̂n the estimate (4.40) and σ̂ n the scale estimate.
Call Xn the matrix with rows x′

i (i = 1, . . . , n), which is assumed to have full rank.
Then

X′
nXn =

n∑
i=1

xi x′
i

is positive definite, and hence it has a “square root”, i.e., a (nonunique) p × p matrix
Rn such that

R′
nRn = X′

nXn. (10.32)

Call λn the smallest eigenvalue of X′
nXn, and define

hin = x′
i

(
XnX′

n

)−1
xi (10.33)

and

Mn = max {hin : i = 1, . . . , n} .

Define v as in (4.44) and Rn as in (10.32). Assume

B1 limn→∞ λn = ∞
B2 limn→∞ Mn = 0.

Then we have



JWBK076-10 JWBK076-Maronna February 16, 2006 18:11 Char Count= 0

352 ASYMPTOTIC THEORY OF M-ESTIMATES

Theorem 10.16 Assume conditions A1–A2–A3 of Section 10.6. If B1 holds, then
β̂n →p β. If also B2 and A4–A5–A6 hold, then

Rn
(
β̂n − β

) →d Np(0,vI), (10.34)

with v given by (10.21).

The proof in a more general setting can be found in Yohai and Maronna (1979).
For large n, the left-hand side of (10.34) has an approximate Np(0,vI) distribution,

and from this, (4.43) follows since R−1
n R−1′

n = (
X′

nXn
)−1

.

When p = 1 (fitting a straight line through the origin), condition B1 means that∑n
i=1 x2

i → ∞, which prevents the xi ’s from clustering around the origin; and con-
dition B2 becomes

lim
n→∞

max
{

x2
i : i = 1, . . . , n

}∑n
i=1 x2

i

= 0,

which means that none of the x2
i ’s dominates the sum in the denominator, i.e., there

are no leverage points.
Now we consider a model with an intercept, namely (4.4). Let

xn = avei (xi ) and Cn =
n∑

i=1

(
xi − xn

) (
xi − xn

)′
.

Let Tn be any square root of Cn, i.e.,

T′
nTn = Cn.

Theorem 10.17 Assume conditions A1, A2, A4, A5, B1 and B2, and Eψ(ui/σ ) = 0.
Then

Tn
(
β̂n1 − β1

) →d Np−1(0,vI). (10.35)

We shall give a heuristic proof for the case of a straight line, i.e.,

yi = β0 + β1xi + ui , (10.36)

so that xi = (1, xi ). Put

xn = avei (xi ), x*
in = xi − xn, Cn =

n∑
i=1

x*2

in .

Then condition B1 is equivalent to

Cn → ∞ and
x2

n

Cn
→ 0. (10.37)

The first condition prevents the xi ’s from clustering around a point.
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An auxiliary result will be needed. Let vi , i = 1, 2, . . . , be i.i.d. variables with a
finite variance, and for each n let a1n, . . . , ann be a set of constants. Let

Vn =
n∑

i=1

ainvi , γn = EVn, τ 2
n = Var(Vn).

Then Wn = (Vn − γn)/τn has zero mean and unit variance, and the central limit the-
orem asserts that if for each n we have a11 = . . . = ann , then Wn →d N(0, 1). It can
be shown that this is still valid if the ain’s are such that no term in Vn “dominates the
sum”, in the following sense:

Lemma 10.18 If the ain’s are such that

lim
n→∞

max
{
a2

in : i = 1, . . . , n
}∑n

i=1 a2
in

= 0 (10.38)

then Wn →d N(0, 1).

This result is a consequence of the so-called Lindeberg theorem (Feller, 1971). To
see the need for condition (10.38), consider the vi ’s having a non-normal distribution
G with unit variance. Take for each n: a1n = 1 and ain = 0 for i > 1. Then Vn/τn = v1

which has distribution G for all n, and hence does not tend to the normal.
To demonstrate Theorem 10.17 for the model (10.36), let

Tn =
√

Cn, zin = x*
in

Tn
,

so that
n∑

i=1

zin = 0,

n∑
i=1

z2
in = 1. (10.39)

Then (10.33) becomes

hin = 1

n
+ z2

in,

so that condition B2 is equivalent to

max
{
z2

in : i = 1, . . . , n
} → 0. (10.40)

We have to show that for large n, β̂1n is approximately normal with variance
v/Cn, i.e., that Tn (̂β1n − β1) →p N(0, v).

The estimating equations are

n∑
i=1

ψ

(
ri

σ̂ n

)
= 0, (10.41)

n∑
i=1

ψ

(
ri

σ̂ n

)
xi = 0, (10.42)
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with ri = yi − (̂β0n + β̂1n xi ). Combining both equations yields

n∑
i=1

ψ

(
ri

σ̂ n

)
x*

in = 0. (10.43)

Put

�̂1n = β̂1n − β1, �̂0n = β̂0n − β0, �̂2n = σ̂ n − σ.

The Taylor expansion of ψ at t is

ψ(t + ε) = ψ(t) + εψ ′(t) + o(ε), (10.44)

where the last term is a higher-order infinitesimal. Writing

ri = ui −
(
�̂0n + �̂1n

(
x*

in + xn

))
,

expanding ψ at ui/σ and dropping the last term in (10.44) yields

ψ

(
ri

σ̂ n

)
= ψ

⎛⎝ui −
(
�̂0n + �̂1n

(
x*

in + xn

))
σ + �̂2n

⎞⎠

≈ ψ
(ui

σ

)
− ψ ′

(ui

σ

) �̂0n + �̂1n

(
x*

in + xn

)
+ �̂2nui/σ

σ
. (10.45)

Inserting (10.45) in (10.43), multiplying by σ and dividing by Tn, and recalling
(10.39), yields

σ An = (
Tn�̂1n

) (
Bn + Cn

xn

Tn

)
+ �̂0nCn + �̂2n Dn, (10.46)

where

An =
n∑

i=1

ψ
(ui

σ

)
zin, Bn =

n∑
i=1

ψ ′
(ui

σ

)
z2

in,

Cn =
n∑

i=1

ψ ′
(ui

σ

)
zin, Dn =

n∑
i=1

ψ ′
(ui

σ

) ui

σ
zin.

Put

a = Eψ
( u

σ

)2

, b = Eψ ′
( u

σ

)
, e = Var

(
ψ ′

( u

σ

))
.

Applying Lemma 10.18 to An (with vi = ψ(ui/σ )) and recalling (10.39) and (10.40)
yields An →d N(0, a). The same procedure shows that Cn and Dn have normal limit
distributions. Applying (10.39) to Bn yields

EBn = b, Var(Bn) = e
n∑

i=1

z4
in.
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Now by (10.39) and (10.40)
n∑

i=1

z4
in ≤ max

1≤i≤n
z2

in → 0,

and then Tchebychev’s inequality implies that Bn →p b. Recall that �̂2n →p 0 by hy-
pothesis, and �̂0n →p 0 by Theorem 10.16. Since xn/Tn → 0 by (10.37), application
of Slutsky’s lemma to (10.46) yields the desired result.

The asymptotic variance of β̂0 may be derived by inserting (10.45) in (10.41).
The situation is similar to that of Section 10.6: if c = 0 (with c defined in (10.20)) the
proof can proceed, otherwise the asymptotic variance of β̂0n depends on that of σ̂ n.

10.9.3 Asymptotic normality: random X

Since the observations zi = (xi , yi ) are i.i.d., this situation can be treated with the
methods of Section 10.5. A regression M-estimate is a solution of

n∑
i=1

�(zi ,β) = 0

with

�(z,β) = xψ
(
y − x′β

)
.

We shall prove (5.14) for the case of σ known and equal to one. It follows from
(10.15) that the asymptotic covariance matrix of β̂ is νV−1

x with ν given by (5.15)
with σ = 1, and Vx = Exx′. In fact, the matrices A and B in (10.16)-(10.14) are

A = Eψ(y − x′β)2xx′, B = −Eψ ′(y − x′β)xx′,

and their existence is ensured by assuming that ψ and ψ ′ are bounded, and that
E ||x||2 < ∞. Under the model (5.1)-(5.2) we have

A = Eψ(u)2Vx, B = −Eψ ′(u)Vx,

and the result follows immediately

10.10 Nonexistence of moments of the sample median

We shall show that there are extremely heavy-tailed distributions for which the sample
median has no finite moments of any order.

Let the sample {x1, . . . , xn} have a continuous distribution function F and an odd
sample size n = 2m + 1. Then its median θ̂n has distribution function G such that

P
(
θ̂n > t

) = 1 − G(t) =
m∑

j=0

(
n

j

)
F(t) j (1 − F(t))n− j . (10.47)

In fact, let N = #(xi < t) which is binomial Bi(n, F(t)). Then θ̂n > t iff N ≤ m,

which yields (10.47).
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It is easy to show using integration by parts that if T is a nonnegative variable
with distribution function G, then

E
(
T k

) = k
∫ ∞

0

t k−1 (1 − G(t)) dt. (10.48)

Now let

F(x) =
(

1 − 1

log x

)
I(x ≥ e).

Since for all positive r and s

lim
t→∞

tr

log t s
= ∞,

it follows from (10.48) that Êθ
k
n = ∞ for all positive k.

10.11 Problems

10.1. Let x1, . . . , xn be i.i.d. with continuous distribution function F. Show that the
distribution function of the order statistic x(m) is

G(t) =
n∑

k=m

(
n

k

)
F(t)k (1 − F (t))n−k

[hint: for each t , the variable Nt = # {xi ≤ t} is binomial and verifies x(m) ≤
t ⇔ Nt ≥ m].

10.2. Let F be such that F(a) = F(b) = 0.5 for some a < b. If x1, . . . , x2m−1 are
i.i.d. with distribution F , show that the distribution of x(m) tends to the average
of the point masses at a and b.

10.3. Let Fn = (1 − n−1)N(0, 1) + n−1δn2 where δx is the point mass at x . Verify
that Fn → N(0, 1), but its mean and variance tend to infinity.

10.4. Verify that if x is symmetric about μ, then (10.23) is equal to μ.
10.5. Verify that if ψ is odd, ρ is even, and F is symmetric, then V in (10.18) is

diagonal; and compute the asymptotic variances of μ̂ and σ̂ .

10.6. Show that scale M-estimates are uniquely defined if ρ(x) is increasing for all
x such that ρ(x) < ρ(∞) [to make things easier, assume ρ is differentiable].

10.7. Show that the location estimate with Huber’s ψk and previous dispersion σ̂ is
uniquely defined unless there exists a solution μ̂ of

∑n
i=1 ψk ((xi − μ̂) /σ̂ ) = 0

such that |xi − μ̂| > kσ̂ for all i.
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Robust Methods in S-PLUS

In this chapter we describe the implementation in S-PLUS of the robust methods
considered in this book, and the steps needed for the reader to reproduce the examples
therein. Further material on this subject can be found in Marazzi (1993) and in the
user’s guide of the S-PLUS robust library.

11.1 Location M-estimates: function Mestimate

Location M-estimates can be computed with the function Mlocation supplied by the
authors.

The location M-estimate uses the MAD as scale. It is computed using the iterative
weighted means algorithm described in Section 2.7.

The call to this function is

location = Mestimate(x,fun = 2, cons = "NULL", err0 = .0001)

where

x is the name of the variable.
fun selects the ψ-function: fun = 1 or fun = 2 selects the Huber or bisquare functions,

respectively.
cons Tuning constant for the ψ-function. The default values are cons = 1.345 if

fun = 1 and cons = 4.685 if fun = 2. These values correspond to an asymptotic
efficiency of 0.95 for normal samples.

err0 The algorithm stops when the relative difference between two consecutive
weighted means is smaller than err0.

The components of the output are

location value of the location estimate

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
C© 2006 John Wiley & Sons, Ltd  ISBN: 0-470-01092-4
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scale value of the scale estimate
sdevloc standard error of the location estimate.

11.2 Robust regression

11.2.1 A general function for robust regression: lmRob

The main S-PLUS function to compute a robust regression is lmRob, in library robust.
We shall describe only the main features of this function but shall not explore all of
its possibilities and options. For a more complete description the reader can use the
HELP feature of the robust library or the manual that can be found in the directory
of the robust library.

The function lmRob computes an initial and a final estimate. There are two op-
tions for the final estimate: an MM-estimate described in Section 5.5 or the adaptive
Gervini–Yohai estimate mentioned in Section 5.6.3. In the first case the final esti-
mate is a redescending M-estimate that uses an M-scale of the residuals of the initial
estimate. This M-estimate is computed using the reweighted least-squares algorithm
starting with the initial estimate. In case that the final estimate is the adaptive one,
the initial estimate is used to compute estimates of the error scale and of the error
distribution.

The initial estimate depends on the number and type of explanatory variables used
in the regression. There are four cases:

1. If all explanatory variables are quantitative and their number does not exceed 15,
then the initial estimate is an S-estimate.

2. If all explanatory variables are qualitative, then the initial estimate is an M-estimate
with Huber’s ψ .

3. If there are both quantitative and qualitative variables and their total number does
not exceed 15, then the initial estimate is the alternating SM procedure described
in Section 5.15.

4. If the total number of explanatory variables exceeds 15 and at least one is quanti-
tative, then the initial estimate is obtained using Peña and Yohai’s fast procedure
mentioned in Section 4.3.

We now describe the use of the function lmRob. Before using this function it is
necessary to load the robust library using the command

library(robust, first = T)

Then lmRob can be called as

robust.reg = lmRob(formula, data, weights, subset, na.action,
robust.control)

where

robust.reg is the name of the object with the regression output (we can use any name
for this object).
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formula is an object that indicates the variables used in the regression. A formula ob-
ject has the form V1 ∼ V2 + V3 + . . . + VP, where V1 is the name of the dependent
variable, and V2, . . . ,VP are the names of the explanatory variables.

data This argument is used only if the variables belong to a dataframe, in which case
data is the name of the dataframe.

weights The vector of observation weights; if supplied, the algorithm minimizes the
sum of a function of the square root of the weights multiplied into the residuals.
For example, in the case of heteroskedastic errors, the weights should be inversely
proportional to the variances of the residuals. The default value of weights is a
vector of ones.

subset is an expression indicating the observations that we want to use in the re-
gression. For example, subset = {V1 > 0) means that only those observations with
V1 > 0 are used in the regression. The default value is the set of all observa-
tions.

na.action indicates which action should be taken when the data have missing obser-
vations. The default value is na.action = na.fail, which gives an error message if
any missing values are found. The other possible value is na.action = na.exclude,
which deletes all observations with at least one missing variable.

robust.control specifies some optional parameters of the regression. Only four of
these options will be considered here. The options not specified in this parameter
take the default values. If we omit robust.control in the call, all options are taken
equal to the default variables.

The options in robust.control considered here are: estim, weight, efficiency and
final.alg, where

� estim determines the type of estimate to be computed. If estim ="Initial", only the
initial estimate is computed; if estim = "Final", then the final estimate is returned.
The default is"Final".� weight indicates the family of ρ-functions used for the initial S-estimate and the
final M-estimate when computing an MM-estimate. There are two possibilities:
"Bisquare" and "Optimal". The default option is that both ρ-functions belong to the
optimal family described in Section 5.9.1. To indicate that we want both families
to be the bisquare we have to make weight = c("Bisquare", "Bisquare"). It is recom-
mended to use the same family for both estimates. Observe that this option weight
is not related to the input weights described above.� efficiency indicates the relative efficiency of the final estimate under normal errors
and no outliers. The default value is efficiency = 0.90. As we explained in Section
5.9, there is a trade-off between efficiency and robustness: when we increase the
efficiency, the robustness of the estimate decreases. We recommend efficiency =
0.85.� final.alg defines the final estimate. It can take two values: “MM” and “Adaptive”,
and the default is “MM”. When final.alg = “Adaptive” the final estimate is the
Gervini–Yohai one mentioned in Section 5.6.3.
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The optional parameters are defined using the function lmRob.robust.control.
Suppose that we want to save the options in a variable called control. Then, to compute
as final estimate an MM-estimate with efficiency 0.85 and initial and final estimates
computed using the bisquare function, the command is

control = lmRob.robust.control(weight = c("Bisquare", "Bisquare"),
efficiency = 0.85)

Then when calling lmRob we make robust.control = control.
Observe that when defining control the parameters estimate and final.alg are

omitted because we are using the default values.
The main components of the output are

coefficients is the vector of coefficients for the robust regression, which are final or
initial estimates according to estim = "final" or estim = "initial".

scale is the scale estimate computed using the initial estimates.
residuals The residual vector corresponding to the estimates returned in coefficients.
fitted.values The vector of fitted values corresponding to the estimates returned in

coefficients.
cov Estimated covariance matrix of the estimates as in Section 5.8.
r.squared Fraction of variation in y explained by the robust regression on x cor-

responding to the final MM-estimates in coefficients, if applicable (see Sec-
tion 5.16.8).

test for bias Test for the null hypothesis that the sample does not contain out-
liers. There are two tests: the first, proposed by Yohai et al. (1991), rejects the
null hypothesis when the differences between the initial S-estimate and the final
M-estimate are significant. When the result of this test is significant it is advisable
to recompute the MM-estimate using a lower efficiency. The second test compares
the LS estimate with the MM-estimate. Since its power is very low we recommend
ignoring this test.

The results saved on robust.reg are displayed with the command

summary (robust.reg)

Example

Consider the data in Example 4.1. The model is fitted with the commands

Cont = lmRob.robust.control(weight = c("Bisquare","Bisquare"),
efficiency = 0.85)
ratsrob = lmRob(formula = V2˜V1, data = rats, robust.control = Cont)

The first command defines the object Cont, where the optional parameters
are saved. Only the parameters weight and efficiency take values different from
default.

The results are displayed with the command

summary (ratsrob)
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and the resulting output is

Call: lmRob(formula = V2 ∼V1, data = rats, robust.control = Cont)

Residuals:
Min 1Q Median 3Q Max
-1.874 -0.1678 0.2469 1.622 7.593

Coefficients:
Value Std Error t value Pr(>|t|)

(Intercept) 7.6312 0.4683 16.7225 0.0000
V1 -0.4082 0.0498 -8.1911 0.0000
Residual standard error: 0.9408 on 14 degrees of freedom

Multiple R-Squared: 0.4338

Correlation of Coefficients:
(Intercept) V1

(Intercept) 1.0000
V1 -0.9123 1.0000

Test for Bias:
Statistics P-value
M-estimate 0.121 0.941
LS-estimate 0.912 0.634

11.2.2 Categorical variables: functions as.factor and contrasts

lmRob recognizes that a variable is categorical if it is defined as a factor. To define a
variable as a factor, the function as.factor is used. For example, to define the variable
X as a factor, we use the command

X = as.factor(X)

If initially X is numeric, after the command as.factor is applied, each of the
numeric values is transformed to a label. To use as an explanatory variable a variable
X which is a factor with k different levels a1, . . . ., ak , is equivalent to using the
k numeric explanatory variables Z1, . . . , Zk , where Zi is one or zero according to
Zi = ai or Zi �= ai respectively. Since

∑k
i=1 Zi = 1, the corresponding coefficients

β1, . . . , βk are not identifiable. To make them identifiable it is necessary to add a
restriction of the form

∑k
i=1 ciβi = 0. S-PLUS has several ways of choosing these

coefficients. The simplest is the one that takes c1 = 1, and ci = 0 for i > 1, i.e., the
one that makes β1 = 0. This is achieved with the command

contrasts(X) = contr.treatment(k)

Example

Consider the dataframe scheffem used in Example 4.2, which contains three variables:
yield, variety and block. The first one is qualitative and the two others are quantitative.
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Since there are eight varieties and five blocks, the variable variety takes on the values
1 to 8 and the variable block takes 1 to 5. To interpret these values as levels we need
the commands

scheffem$variety = as.factor(scheffem$variety)
scheffem$block = as.factor(scheffem$block)

The required contrasts are declared with

contrasts(scheffem$variety) = contr.treatment(8)
contrasts(scheffem$block) = contr.treatment(5)

To fit an analysis of variance model using an MM-estimate with bisquare
ρ-function and efficiency 0.85, we use

scheffemrob = lmRob(yield˜variety + block, data = scheffem,
robust.control = Cont)

(The object Cont was defined above.)
The results are displayed with the command

summary(scheffemrob)

and the resulting output is

Coefficients:
Value Std Error t value Pr(>|t|)

(Intercept) 394.5172 27.9493 14.1155 0.0000
variety2 12.9688 30.3800 0.4269 0.6727
variety3 -2.5049 27.6948 -0.0904 0.9286
variety4 -73.6916 28.7255 2.5654 0.0160
variety5 50.3809 32.4551 1.5523 0.1318
variety6 -32.8943 29.1655 -1.1278 0.2690
variety7 -24.1806 29.8412 -0.8103 0.4246
variety8 -1.4947 31.4475 -0.0475 0.9624
block2 -27.9634 24.7026 -1.1320 0.2672
block3 -1.3075 24.3514 -0.0537 0.9576
block4 -61.3369 29.6143 -2.0712 0.0477
block5 -64.1934 26.1610 -2.4538 0.0206
Residual standard error: 38.89 on 28 degrees of freedom

Multiple R-Squared: 0.4031

Remark 1: The function lmRob has some bugs. To overcome this problem it is
necessary to change the function lmrob.fit.compute called by lmRob. To make this
change, the first time that S-PLUS is run in a working directory, use the command
source("\\path1\\.path2\\. . .\\lmrob.fit.compute), where \path1\path2\. . . is the
path where lmrob.fit.compute is saved. The fixed function lmrob.fit.compute is pro-
vided on the book’s web site.
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11.2.3 Testing linear assumptions: function rob.linear.test

To test robustly a linear assumption H0 : γ = Aβ = γ0 as explained in Section 4.7,
we have to fit two models with lmRob using the option final.alg = "MM". The first
fit should be done without the constraint γ = γ0; let the result be saved in object
lmrob1. The second fit should be computed with the constraint γ = γ0; let the result
be saved in lmrob2. The two fits should have the same options in robust.control. The
robust likelihood ratio-type test of H0 described in Section 4.7 is performed by the
function rob.linear.test supplied by the authors. The S-PLUS robust library contain
two functions to test linear hypothesis anova.lmRob y aovrob, but the results are not
reliable. The call to rob.linear.test is

robtest = rob.linear.test (lmrob1,lmrob2)

The components of the output are

test the chi-squared statistic
chisq.pvalue the p-value of the chi-squared approximation
f.pvalue p-value of the F-approximation
df degrees of freedom of numerator and denominator.

Example

Consider Example 4.2 again. Recall that we have already fit the complete model and
the output is saved in the object scheffemrob. Suppose that we want to test the null
hypothesis of no variety effect. Then, we fit a second model with the function lmRob,
deleting the variable variety by means of

scheffemrob.variety = lmRob(yield˜block, data = scheffem,
robust.control = Cont)

Then we use the function rob.linear.test by entering the command

test.variety = rob.linear.test(scheffemrob,scheffemrob.variety)

The output is displayed with the command

test.variety

and the displayed output is

$test:
[1] 38.88791
$chisq.pvalue:
[1] 2.053092e-006
$f.pvalue:
[1] 0.0004361073
$df:
[1] 7 28

A similar test can be performed for the hypothesis of no block effects.
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11.2.4 Stepwise variable selection: function step

To perform a backward stepwise variable selection procedure using the RFPE criterion
as described in Section 5.12 we proceed as follows. First, using lmRob, a linear model
is fit with all the variables and with the option final.alg = “MM”.

Suppose that the output is saved in the object regrob. Then we use the command

stepresults = step(regrob)

The output is the same as the one of lmRob applied to the selected regression.

Example

For the example in Section 5.12 we first fit the full model with the command

simrob = lmRob(formula = simdata.1 ˜simdata.2 + simdata.3
+ simdata.4 + simdata.5 + simdata.6 + simdata.7, robust.control = Cont,
data = simdata)

Then the stepwise selection procedure is performed with

simrob.step = step(simrob)

The output is displayed with

summary(simrob.step)

with the following results:

Call: lmRob(formula = simdata.1 ∼simdata.2 + simdata.3 +
simdata.4, data = simdata, robust.control = Cont)

Residuals:
Min 1Q Median 3Q Max
-28.68 -0.6878 0.001164 0.5552 19.91

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 0.0938 0.1473 0.6370 0.5269
simdata.2 1.2340 0.1350 9.1416 0.0000
simdata.3 0.7906 0.1468 5.3874 0.0000
simdata.4 0.8339 0.1650 5.0529 0.0000

Residual standard error: 1.016 on 52 degrees of freedom

Multiple R-Squared: 0.4094

Warning: Before running the function step do not forget to change the function
lmrob.fit.compute as explained at the end of Remark 1, otherwise the results will be
wrong.
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11.3 Robust multivariate location and dispersion

To compute a robust estimate of multivariate location and dispersion we can use
the function covRob in the robust library of S-PLUS and two functions supplied by
the authors to compute S-estimates: cov.Sbic for the S-estimate with bisquare ρ and
cov.SRocke for the SR estimate defined in Section 6.4.4. These two functions start
from the improved MVE estimate described in Section 6.7.3.

11.3.1 A general function for computing robust
location–dispersion estimates: covRob

The call to this function is

cov = covRob(data, corr = F, center = T, distance = T, na.action =
na.fail, estim = "auto", control = covRob.control(estim, . . .), . . .)

where

data is the data set for computing the dispersion matrix, which may be a matrix or a
dataframe. Columns represent variables, and rows represent observations.

corr A logical flag: if corr = T the estimated correlation matrix is returned.
center A logical flag or numeric vector containing the location about which the

dispersion is to be taken. If center = T then a robust estimate of the center is
computed; if center = F then no centering takes place and the center is set equal
to the zero vector. This argument is used only by the Stahel–Donoho estimate
(which is not the default estimate)

distance A logical flag: if distance = T, the Mahalanobis distances are computed.
na.action A function to filter missing data. The default (na.fail) is to create an error

if any missing values are found. A possible alternative is na.omit, which deletes
observations that contain one or more missing values.

estim The robust estimator used by covRob. The choices are: "mcd" for the fast
MCD algorithm in Section 6.7.6; "donostah" for the Stahel–Donoho estimate in
Section 6.7.7; "M" for the S-estimate with Rocke’s “translated bisquare”ρ-function;
"pairwiseQC" and "pairwiseGK" correspond to Maronna and Zamar’s nonequiv-
ariant estimate in Section 6.9.1, where the pairwise covariances are respec-
tively the quadrant and the Gnanadesikan–Kettenring covariances defined in that
section. The default "auto" selects from "donostah", "mcd" and "pairwiseQC"

according to the numbers of observations and of variables. For the reasons
given in the remark in Section 6.8, for high-dimensional data we recommend
use of the function cov.Rocke described below, and not Rocke’s translated
bisquare.

control is a list of control parameters to be used in the numerical algorithms.
See the help on covRob.control for the possible parameters and their default
settings.
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The main components of the output are

cov robust estimate of the covariance/correlation matrix
center robust estimate (or the specification, depending on center) of the location

vector
dist Mahalanobis distances computed with the chosen estimate; returned only if

distance = T
evals eigenvalues of the covariance or the correlation matrix, according to corr = F

or corr = T respectively.

11.3.2 The SR-α estimate: function cov.SRocke

The call to this function is

cov = cov.SRocke (x,nsub = 500,maxit = 5,alpha = 0.05)

where

x is the data set for computing the dispersion matrix, which may be a matrix or a
dataframe. Columns represent variables, and rows represent observations.

nsub is the number of subsamples.
maxit is the maximum number of iterations.
alpha the parameter α in (6.40).

The components of the output are

center is the MVE location estimate.
cov is the MVE dispersion matrix.
dist is the vector of Mahalanobis distances using the MVE estimates.

11.3.3 The bisquare S-estimate: function cov.Sbic

The call to this function is

cov = cov.Sbic (x,nsub = 500)

where

x is the data set for computing the dispersion matrix, which may be a matrix or a
dataframe. Columns represent variables, and rows represent observations.

nsub is the number of subsamples.
maxit is the maximum number of iterations.

The components of the output are the same as in cov.SRocke

11.4 Principal components

To estimate the principal components the authors supply two programs: namely,
prin.comp.rob, which uses the method of Locantore et al. (1999) described in



JWBK076-11 JWBK076-Maronna February 16, 2006 18:11 Char Count= 0

PRINCIPAL COMPONENTS 367

Section 6.10.2, and princomp.cov, which uses the SR-α or the bisquare S-dispersion
matrix computed with the programs cov.SRocke and cov.Sbic, respectively.

11.4.1 Spherical principal components: function prin.comp.rob

The call to this function is

princ = princ.comp.rob (x, corr = F, delta = 0.001)

where

x is the data set for computing the principal components, which may be a matrix or
a dataframe. Columns represent variables, and rows represent observations.

cor A logical flag: if corr = T the estimated robust correlation matrix is returned
and if corr = F the robust covariance matrix is computed.

delta An accuracy parameter.

The main components of the output are

loadings Orthogonal matrix containing the loadings. The first column is the linear
combination of columns of x defining the first principal component etc.

eigenvalues The vector with the squares of the component scales
scores The matrix with scores of the principal components
plot Object of class princomp to use as input with the S-PLUS function biplot. The

use of this function produce a biplot graph. It has the same structure as the output
of the S-PLUS function princomp.

11.4.2 Principal components based on a robust dispersion
matrix: function princomp.cov

The call to this function is

princ = princomp.cov (x, estim = "SRocke", alpha = 0.05, nsub = 500,
corr = F)

where

x is the data set for computing the principal components, which may be a matrix or
a dataframe. Columns represent variables, and rows represent observations.

estim The dispersion matrix used. The S-estimate with SR-α or bisquare ρ is used
according to estim = "SRocke" or "Sbic".

alpha Same as in function cov.SRocke. Required only if estim = "SRocke".
nsub Same as in function cov.SRocke.
corr A logical flag: if corr = T the estimated robust correlation matrix is returned

and if corr = F the robust covariance matrix is computed.

The components of the output are the same as in prin.comp.rob.
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11.5 Generalized linear models

We describe three S-PLUS functions that can be used for generalized linear mod-
els: BYlogreg, WBYlogreg and glmRob. The first two, developed by Christophe
Croux, give robust estimates of the logistic model; and the third, which belongs
to the S-PLUS robust library, can be used to fit logistic and Poisson regression
models.

11.5.1 M-estimate for logistic models: function BYlogreg

BYlogreg computes an M-estimate for the logistic model using the procedure de-
scribed in Section 7.2.2 with the ψ-function given in (7.14). It is called with the
command

logireg = BYlogreg(x0,y,initwml = T,const = 0.5,kmax = 1000,
maxhalf = 10)

The input arguments are

x0 The matrix of explanatory variables, where each column is a variable. A column
of ones is automatically added for the intercept.

y The vector of binomial responses (0 or 1).
initwml Logical value for selecting one of the two possible methods for computing the

initial value of the optimization process. If initwml = T (default), a weighted MLE
defined in Section 7.2.1 is computed; the dispersion matrix used for the weights is
the fast MCD estimate. If initwml = F, a classical ML fit is performed.

const Tuning constant used in the computation of the estimate (default = 0.5).
kmax Maximum number of iterations before convergence (default = 1000).
maxhalf Maximum number of “step-halving”, a parameter related with the stopping

rule of the iterative optimization algorithm (default = 10).

The components of the output are

convergence T or F according to the convergence of the algorithm being achieved or
not

objective the value of the objective function at the minimum
coef the vector of parameter estimates
sterror standard errors of the parameters (if convergence = T).

Example

Consider Example 7.1. To fit a logistic model with BYlogreg we use the command

leukBY = BYlogreg(Xleuk, yleuk)

Here Xleuk is a 33 × 2 matrix whose two columns are the regressors wbc and ag,
and yleuk is a vector with the response binary variable.
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The output is displayed with

leukBY

and the results are

leukBY
$convergence:
[1] T
$objective:
[1] 0.5436513
$coef:
(Intercept) x0wbc x0ag
0.1594679 -0.0001773792 1.927563
$sterror:
1.6571165099 0.0002334576 1.1632861341

11.5.2 Weighted M-estimate: function WBYlogreg

This function computes a weighted M-estimate defined by (7.17). The ψ-function
used is the one given in (7.14) and the dispersion matrix used to compute the weights
is the MCD. The input and output of WBYlogreg are similar to those of BYlogreg, the
only difference being that this function does not require the parameter initwml, since
it always uses the MCD to compute the weights.

The call to this function is

logireg = WBYlogreg(x0,y,const = 0.5,kmax = 1000,maxhalf = 10)

Consider Example 7.1 again. A logistic model is fitted with WBYlogreg by the
command

leukWBY = WBYlogreg(Xleuk, yleuk)

The output is displayed with

leukWBY

and the results are

$convergence:
[1] T
$objective:
[1] 0.5159552
$coef:
(Intercept) x0wbc x0ag
0.19837 -0.0002206507 2.397789
$sterror:
[1] 1.19403021700 0.00009822409 1.29831401203
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11.5.3 A general function for generalized
linear models: glmRob

This function computes conditionally unbiased bounded influence (CUBIF) estimates
for the logistic and Poisson regression models, described in Section 7.3. For the logistic
model, it also computes the weighted MLE as described in Section 7.2.1. We do not
give a complete description of this function. For a complete description of all optional
parameters consult the S-PLUS help.

The call to this function is

glmRob(formula, family = binomial, data, subset, na.action,
fit.method = "cubif", estim = "mcd")

The parameters formula, data, subset and na.action are similar to those in lmrob.
The other parameters are

family can take two values: "binomial" and “poisson”. In the case of the binomial
family it fits a logistic model.

fit.method The two options that are documented here are "cubif" and "mallows". The
option "mallows" computes a weighted MLE in Section 7.2.1; it is available only
when family = “binomial”.

estim indicates the robust dispersion matrix used to compute the weights when using
fit.method = "mallows". The options for estim are the same as for the function
covRob described below and the default is the MCD estimate.

The main components of the output are

coefficients Parameter estimates
linear.predictors Linear fit, given by the product of the model matrix and the coeffi-

cients.
fitted.values Fitted mean values, obtained by transforming linear.predictors using

the inverse link function.
residuals Residuals from the final fit, also known as “working residuals”. They are

typically not interpretable.
deviance Up to a constant, minus twice the log likelihood evaluated at the final

coefficients. Similar to the residual sum of squares.
null.deviance Deviance corresponding to the model with no predictors.
weights Weights from the final fit.

Example

Consider the epilepsy data in Example 7.3. To fit a Poisson regression model to this
data we enter

breslowrob = glmRob(formula = sumY ˜Age10 + Base4* Trt,
family = poisson, data = breslow.dat)
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The output is displayed with

summary(breslowrob)

and the results are

Call: glmRob(formula = sumY ∼Age10 + Base4 * Trt,
family = poisson, data = breslow.dat)

Deviance Residuals:
Min 1Q Median 3Q Max
Min 1Q Median 3Q Max
-55.94 -1.458 -0.03073 1.063 9.476

Coefficients:
Value Std. Error t value

(Intercept) 1.62935 0.27091 6.0145
Age10 0.12862 0.07888 1.6305
Base4 0.14723 0.02238 6.5774
Trt -0.22113 0.11691 -1.8914
Base4:Trt 0.01529 0.02212 0.6913
(Dispersion Parameter for Poisson family taken to be 1)

Null Deviance: 2872.921 on 58 degrees of freedom

Residual Deviance: 3962.335 on 54 degrees of freedom

Number of Iterations: 5

11.6 Time series

We shall describe the function ar.gm in S-PLUS for computing GM-estimates for
AR models and the function arima.rob of the FinMetric module of S-PLUS, which
compute filtered τ -estimates for ARIMA and REGARIMA models and detect outliers
and level shifts.

11.6.1 GM-estimates for AR models: function ar.gm

This function computes a Mallows-type GM-estimate for an AR model as described
in Section 5.11. The function w1 may be based on a Huber or bisquare ψ-function.
The first iterations use w2 based on a Huber function and the last ones on a bisquare
function. We shall describe only the main features of this function, but shall not
explore all of its possibilities and options. For a more complete description the reader
can use the HELP feature of S-PLUS or the S-PLUS manual for Windows, Guide to
Statistics, Volume 2.
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The call to this function is

armodel = ar.gm(x,order,effgm,effloc,b,iterh,iterb)

where

x Univariate time series or a real vector. Missing values are not allowed.
order Integer giving the order of the autoregression.
effgm Desired asymptotic efficiency of GM-estimates of AR coefficients for Gaussian

data (based on first-order AR theory). The default is 0.87.
effloc Desired asymptotic efficiency of the M-estimate of location used for centering.

This efficiency is also a component in effgm. The default is 0.96.
b Logical parameter determining whether a bisquare or Huber ψ-function is to be

used to form w2 weights. If b = T , a bisquare is used; otherwise b = F and a
Huber function is used.

iterh The number of iterations with w2 based on a Huber ψ-function. Use iterh = 0
for least squares.

iterb The number of iterations with w2 based on a bisquare ψ-function. Use iterb =
0 for least squares.

VALUE:
The main components of the output are

ar A vector of length order containing the GM-estimates of the AR coefficients.
sinnov A vector of innovations scale estimates for the AR models of orders 1 through

order.
rmu Robust location estimate for x, the sample mean if iterh = iterb = 0.
sd Robust scale estimate for x; gives the standard deviation if iterh = iterb = 0.
effgm The value of effgm used for the estimate.
effloc The value of effloc.

11.6.2 Fτ -estimates and outlier detection for ARIMA and
REGARIMA models: function arima.rob

We only consider here the main options for this program. For a complete description
see the help and manual of the FinMetrics module.

The call to this function is

arirob = arima.rob(formula, data, start = NULL, end = NULL, p = 0,
q = 0, d = 0, sd = 0, freq = 1, sfreq = NULL, sma = F, max.p
= NULL, auto.ar = F, n.predict = 20, tol = 10ˆ(−6), max.fcal = 2000,
innov.outlier = F, critv = NULL, iter = F)

where

formula For a REGARIMA model, the same as in lmRob. For an ARIMA model,
formula should be x ˜1, where x is the observed series.
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start A character string which can be passed to the timeDate function to specify the
starting date for the estimation. This can only be used if the data argument is a
"timeSeries" dataframe. The default is NULL.

end A character string which can be passed to the timeDate function to specify the
ending date for the estimation. This can only be used if the data argument is a
"timeSeries" dataframe. The default is NULL.

p Autoregressive order of the errors model. The default is 0.
q Moving-average order of the errors model. The default is 0.
d The number of regular differences in the ARIMA model. It must be 0, 1 or 2. The

default is 0.
sd The number of seasonal differences. It must be 0, 1 or 2. The default is 0.
freq Frequency of data. The default is 1.
sfreq Seasonality frequency of data. If NULL, it is set to be equal to freq. The default

is NULL.
sma A logical flag: if TRUE, the errors model includes a seasonal moving-average

parameter. The default is FALSE.
auto.ar A logical flag: if TRUE, an AR(p) model is selected automatically using a

robust AIC. The default is FALSE.
max.p Maximum order of the autoregressive stationary model that approximates the

ARMA stationary model. If NULL, then max.p = max(p + q, 5). If q = 0, then
max.p is not necessary. The default is NULL.

n.predict Maximum number of future periods for which we wish to compute the
predictions. The default is 20.

innov.outlier A logical flag: if TRUE, the function arima.rob looks for innovation
outliers in addition to additive outliers and level shifts; otherwise, arima.rob only
looks for additive outliers and level shifts. The default is FALSE.

critv Critical value for detecting outliers. If NULL, it assumes the following default
values: critv = 3 if the length of the time series is less than 200; critv = 3.5 if it
is between 200 and 500; and critv = 4 if it is greater than 500.

iter A logical flag or the number of iterations to reestimate the model after the
outliers and level shifts are detected and their effects are eliminated. If iter = F
the procedure is not iterated, if iter = T one iteration is performed and if iter =
n, where n is a positive integer, n iterations are performed. It is recommended to
perform at most one iteration.

The main components of the output are

regcoef Estimates of regression coefficients. When we fit a pure ARIMA model, this
variable contains only the intercept which is the mean of the differenced series.

regcoef.cov Estimated covariance matrix of the regression coefficients.
innov The vector of the estimated innovations.
innov.acf A series whose autocorrelations or partial autocorrelations are the robust

estimates of the innovation or the partial autocorrelations.
regresid Estimated regression residuals cleaned of additive outliers by the robust

filter.
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regresid.acf A series whose autocorrelations or partial autocorrelations are the ro-
bust estimates of the autocorrelations or partial autocorrelations of the differenced
regression residuals.

sigma.innov A robust estimate of the innovation scale.
sigma.regresid An estimate of the scale of the differenced regression residuals.
sigma.first An initial estimate of the innovation scale based only on the scale of the

differenced model and the ARMA parameters.
tuning.c Bandwidth of the robust filter.
y.robust Response series cleaned of outliers by the robust filter.
y.cleaned Response series cleaned of additive outliers and level shifts after the outlier

detection procedure.
predict.error Fitted and predicted regression errors.
predict.scales Standard deviations of the fitted and predicted regression errors.
n.predict The number of predicted observations, which is equal to the n.predict

argument passed to the arima.rob function that produced the "arima.rob" object.
tauef The inverse of the estimated efficiency factor of the τ -estimate with respect to

the LS estimate.
inf Information about the outcome of the last optimization procedure: inf = 1 and

inf = 0 indicate that the procedure did or did not converge, respectively.
model Includes the number of regular and seasonal differences, the seasonal fre-

quency, the AR and MA coefficients and the MA seasonal parameter.
innov.outlier A logical flag, the same as the innov.outlier argument passed to the

arima.rob function that produced the "arima.rob" object.
outliers An object of class "outliers", which contains all the detected outliers (and

level shifts).
outliers.iter Optionally, a list of objects of class "outliers", if the iter argument passed

to the arima.rob function that produced the "arima.rob" object is nonzero.
n0 The number of missing innovations at the beginning.
call An image of the call that produced the object, but with all arguments named, and

with the actual formula included as the formula argument.

To show the main components of the outcome including the standard deviations
of the regression and ARMA coefficients use the command

summary(arirob)

where arirob is the name of the output object.
Warning: When either d or sd is greater than zero, the interpretation of the

intercept in the formula is different from its usual one: it represents the coefficient of
the lowest-order power of the time trend that can be identified. For example, if d = 2
and sd = 0, the intercept represents the coefficient of the term t2, where t is the period.

11.7 Public-domain software for robust methods

In this section we give some references for freely available implementations of robust
procedures.
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Some robust methods are available in the standard versions on R. Claudio
Agostinelli’s site

http://www.dst.unive.it/˜claudio/robusta/links.html

which contains links to several sites containing software for robustness, such as the
Matlab implementation of robust procedures by Verboven and Hubert (2005).

The site

http://hajek.stat.ubc.ca/˜matias/soft.html

contains Matias Salibian-Barrera’s implementation in R of regression M-estimates
and of the fast S-estimate described in Section 5.7.3.

The site www.iumsp.ch (Plan du site–Software for robust statistics) contains a
large number of robust methods in S-PLUS developed by Alfio Marazzi, in particular
the library ROBETH.
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We describe below the data sets used in the book.

Alcohol

The solubility of alcohols in water is important in understanding alcohol transport in
living organisms. This data set from Romanelli et al. (2001) contains physicochemical
characteristics of 44 aliphatic alcohols. The aim of the experiment was the prediction
of the solubility on the basis of molecular descriptors. The columns are:

1. SAG = solvent accessible surface-bounded molecular volume
2. V = volume
3. log PC (PC = octanol–water partitions coefficient)
4. P = polarizability
5. RM = molar refractivity
6. Mass
7. log(Solubility) (response)

Algae

This data set is part of a larger one (http://kdd.ics.uci.edu/databases/coil/coil.html)
which comes from a water quality study where samples were taken from sites on
different European rivers over a period of approximately one year. These samples were
analyzed for various chemical substances. In parallel, algae samples were collected
to determine the algae population distributions. The columns are:

1. season (1,2,3,4 for winter, spring, summer and autumn)
2. river size (1,2,3 for small, medium and large)

Robust Statistics:  Theory and Methods Ricardo A. Maronna, R. Douglas Martin and Vı́ctor J. Yohai
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3. fluid velocity (1,2,3 for low, medium and high)
4.–11. content of nitrogen in the form of nitrates, nitrites and ammonia, and other

chemical compounds

The response is the abundance of a type of algae (type 6 in the complete file). For
simplicity we deleted the rows with missing values, or with null response values, and
took the logarithm of the response.

Aptitude

There are three variables observed on 27 subjects:

Score: numeric, represents scores on an aptitude test for a course
Exp: numeric, represents months of relevant previous experience
Pass: binary response, 1 if the subject passed the exam at the end of the course and 0

otherwise.

The data may be downloaded as data set 6.2 from the site: http://www.jeremymiles
.co.uk/regressionbook/data/

Bus

This data set from the Turing Institute, Glasgow, Scotland, contains measures of shape
features extracted from vehicle silhouettes. The images were acquired by a camera
looking downward at the model vehicle from a fixed angle of elevation

The following features were extracted from the silhouettes:

1. compactness
2. circularity
3. distance circularity
4. radius ratio
5. principal axis aspect ratio
6. maximum length aspect ratio
7. scatter ratio
8. elongatedness
9. principal axis rectangularity

10. maximum length rectangularity
11. scaled variance along major axis
12. scaled variance along minor axis
13. scaled radius of gyration
14. skewness about major axis
15. skewness about minor axis
16. kurtosis about minor axis
17. kurtosis about major axis
18. hollows ratio
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Glass

This is part of a file donated by Vina Speihler, describing the composition of glass
pieces from cars.

The columns are:

1. RI refractive index
2. Na2O sodium oxide (unit measurement: weight percent in corresponding oxide,

as are the rest of attributes)
3. MgO magnesium oxide
4. Al2O3 aluminum oxide
5. SiO2 silcon oxide
6. K2O potassium oxide
7. CaO calcium oxide

Hearing

Prevalence rates in percent for men aged 55–64 with hearing levels 16 decibels or
more above the audiometric zero,

The rows correspond to different frequencies and to normal speech.

1. 500 hertz
2. 1000 hertz
3. 2000 hertz
4. 3000 hertz
5. 4000 hertz
6. 6000 hertz
7. Normal speech

The columns classify the data in seven occupational groups:

1. professional–managerial
2. farm
3. clerical sales
4. craftsmen
5. operatives
6. service
7. laborers

Image

The data were supplied by A. Frery. They are part of a synthetic aperture satellite
radar image corresponding to a suburb of Munich.
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Krafft

The Krafft point is an important physical characteristic of the compounds called
surfactants, establishing the minimum temperature at which a surfactant can be used.
The purpose of the experiment was to estimate the Krafft point of compounds as a
function of their molecular structure.

The columns are:

1. Randiç index
2. Volume of tail of molecule
3. Dipole moment of molecule
4. Heat of formation
5. Krafft point (response)

Neuralgia

The data come from a study on the effect of iontophoretic treatment of elderly patients
complaining of post-herpetic neuralgia. There were 18 patients in the study, who were
interviewed six weeks after the initial treatment and were asked if the pain had been
reduced.

There are 18 observations on five variables:

Pain: binary response: 1 if the pain eased, 0 otherwise.
Treatment: binary variable: 1 if the patient underwent treatment, 0 otherwise.
Age: the age of the patient in completed years.
Gender: M (male) or F (female).
Duration: pretreatment duration of symptoms (in months).

The data may be downloaded from the site: http://www.sci.usq.edu.au/staff/dunn/
Datasets/Books/Hand/Hand-R/neural-R.html

Oats

Yield of grain in grams per 16-foot row for each of eight varieties of oats in five
replications in a randomized-block experiment.

Solid waste

The original data are the result of a study on production waste and land use by Golueke
and McGauhey (1970), and contain nine variables. Here we consider the following six:

1. industrial land (acres)
2. fabricated metals (acres)
3. trucking and wholesale trade (acres)
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4. retail trade (acres)
5. restaurants and hotels (acres)
6. solid waste (millions of tons), response

Stack loss

The columns are:

1. air flow
2. cooling water inlet temperature (◦C)
3. acid concentration (%)
4. Stack loss, defined as the percentage of ingoing ammonia that escapes unabsorbed

(response)

Toxicity

The aim of the experiment was to predict the toxicity of carboxylic acids on the basis
of several molecular descriptors. The attributes for each acid are:

1. log(IGC−1
50 ): Aquatic toxicity (response)

2. log Kow: Partition coefficient
3. pKa: Dissociation constant
4. ELUMO: Energy of the lowest unoccupied molecular orbital
5. Ecarb: Electrotopological state of the carboxylic group
6. Emet: Electrotopological state of the methyl group
7. RM: Molar refractivity
8. IR: Refraction index
9. Ts: Surface tension

10. P: Polarizability

Wine

This data set, which is part of a larger one donated by Riccardo Leardi, gives the
composition of several wines. The attributes are:

1. Alcohol
2. Malic acid
3. Ash
4. Alkalinity of ash
5. Magnesium
6. Total phenols
7. Flavanoids
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8. Nonflavanoid phenols
9. Proanthocyanins

10. Color intensity
11. Hue
12. OD280/OD315 of diluted wines
13. Proline
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Hochschule, Zurich.

Dutter, R. (1977), Algorithms for the Huber estimator in multiple regression, Computing, 18,

167–176.

Efron, B. and Tibshirani, R.J. (1993), An Introduction to the Bootstrap, New York: Chapman

and Hall.

Ellis, S.P. and Morgenthaler, S. (1992), Leverage and breakdown in L1 regression, Journal of
the American Statistical Association, 87, 143–148.

Feller, W. (1971), An Introduction to Probability Theory and its Applications, Vol. II, 2nd

Edition, New York: John Wiley & Sons, Inc.

Fernholz, L.T. (1983), Von Mises Calculus for Statistical Functionals, Lecture Notes in Statis-

tics No. 19, New York: Springer.

Finney, D.J. (1947), The estimation from individual records of the relationship between dose

and quantal response, Biometrika, 34, 320–334.

Fox, A.J. (1972), Outliers in time series, Journal of the Royal Statistical Society (B), 34,

350–363.

Fraiman, R., Yohai, V.J. and Zamar, R.H. (2001), Optimal M-estimates of location, The Annals
of Statistics, 29, 194–223.

Frery, A. (2005), Personal communication.



JWBK076-BIB JWBK076-Maronna February 16, 2006 18:11 Char Count= 0

388 BIBLIOGRAPHY

Garcı́a Ben, M. and Yohai, V.J. (2004), Quantile-quantile plot for deviance residuals in the

Generalized Linear Model, Journal of Computational and Graphical Statistics, 13, 36–47.

Gather, U. and Hilker, T. (1997), A note on Tyler’s modification of the MAD for the Stahel-

Donoho estimator, The Annals of Statistics, 25, 2024–2026.

Genton, M.G. and Lucas, A. (2003), Comprehensive definitions of breakdown-points for in-

dependent and dependent observations, Journal of the Royal Statistical Society (B), 65,

81–94.

Genton, M.G. and Ma, Y. (1999), Robustness properties of dispersion estimators, Statistics and
Probability Letters, 44, 343–350.

Gervini, D. and Yohai, V.J. (2002), A class of robust and fully efficient regression estimators,

The Annals of Statistics, 30, 583–616.

Giltinan, D.M., Carroll, R.J. and Ruppert, D. (1986), Some new estimation methods for

weighted regression when there are possible outliers, Technometrics, 28, 219–230.

Gnanadesikan, R. and Kettenring, J.R. (1972), Robust estimates, residuals, and outlier detection

with multiresponse data, Biometrics, 28, 81–124.

Golueke, C.G. and McGauhey, P.H. (1970), Comprehensive Studies of Solid Waste Manage-
ment, US Department of Health, Education and Welfare, Public Health Services Publication

No. 2039.

Grenander, U. (1981), Abstract Inference, New York: John Wiley & Sons, Inc.

Grenander, U. and Rosenblatt, M. (1957), Statistical Analysis of Stationary Time Series, New

York: John Wiley & Sons, Inc.

Hampel, F.R. (1971), A general definition of qualitative robustness, The Annals of Mathematical
Statistics, 42, 1887–1896.

Hampel, F.R. (1974), The influence curve and its role in robust estimation, The Annals of
Statistics, 69, 383–393.

Hampel, F.R. (1975), Beyond location parameters: Robust concepts and methods, Bulletin of
the International Statistical Institute, 46, 375–382.

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986), Robust Statistics:
The Approach Based on Influence Functions. New York: John Wiley & Sons, Inc.

Hannan, E.J. and Kanter, M. (1977), Autoregressive processes with infinite variance, Journal
of Applied Probability, 14, 411–415.

Harvey, A.C. and Phillips, G.D.A. (1979), Maximum likelihood estimation of regression models

with autoregressive moving average disturbances, Biometrika, 66, 49–58.

Hastie, T., Tibshirani, R. and Friedman, J. (2001), The Elements of Statistical Learning, New

York: Springer.

Hawkins, D.M. (1993), A feasible solution algorithm for the minimum volume ellipsoid esti-

mator, Computational Statistics, 9, 95–107.

Hawkins, D.M. (1994), The feasible solution algorithm for least trimmed squares regression,

Computational Statistics and Data Analysis, 17, 185–196.

He, X. (1997), Quantile curves without crossing, The American Statistician, 51, 186–192.

He, X. and Portnoy, S. (1992), Reweighted LS estimators converge at the same rate as the initial

estimator, The Annals of Statistics, 20, 2161–2167.

Hennig, C. (1995), Efficient high-breakdown-point estimators in robust regression: Which

function to choose?, Statistics and Decisions, 13, 221–241.

Hettich, S. and Bay, S.D. (1999), The UCI KDD Archive [http://kdd.ics.uci.edu], Irvine, CA:

University of California, Department of Information and Computer Science.
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Künsch, H. (1984), Infinitesimal robustness for autoregressive processes, The Annals of Statis-
tics, 12, 843–863.
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Lopuhaã, H.P. and Rousseeuw, P.J. (1991), Breakdown properties of affine-equivariant estima-

tors of multivariate location and covariance matrices, The Annals of Statistics, 19, 229–248.

Ma, Y. and Genton, M.G. (2000), Highly robust estimation of the autocovariance function,

Journal of Time Series Analysis, 21, 663–684.
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and Nonlinear Time Series, J. Franke, W. Härdle and R.D. Martin (eds.), Lectures Notes in

Statistics 26, 256–272, New York: Springer.

Ruppert, D. (1992), Computing S-estimators for regression and multivariate location/

dispersion, Journal of Computational and Graphical Statistics, 1, 253–270.

Salibian-Barrera, M. and Yohai, V.J. (2005), A fast algorithm for S-regression estimates, Jour-
nal of Computational and Graphical Statistics (to appear).

Salibian-Barrera, M. and Zamar, R.H. (2002), Bootstrapping robust estimates of regression,

The Annals of Statistics, 30, 556–582.

Samarakoon, D.M. and Knight, K. (2005), A note on unit root tests with infinite variance noise,

Unpublished manuscript.
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