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PREFACE

This book is meant to be a survey of the state of physical cosmology.,
including the network of observational and theoretical elements that establish the
subject as a mature physical science. and the more notable attempts to improve
and extend the picture,

Much of the excitement in cosmology centers on recent observational advances
and on the remarkable variety of 1deas for how we might interpret the observa-
tions, new and old. The ideas that prove to be of lasting interest are likely 10 build
on the framework of the now standard world picture, the hot big bang model of
the expanding universe. The full extent and richness of this picture 1s not as well
understood as I think it ought to be, even among those making some of the most
stimulating contributions to the flow of ideas. In pant this is because the frame-
work has grown so slowly, over the course of some seven decades, and sometimes
in quite erratic ways. Compare the rate of development of cosmology to that of
particle physics—six decades ago we already had the modern concept of the ex-
panding universe but only the beginning elements of a quantum field theery. In a
subject that develops in such a slow way, things tend to be forgotien, sometimes 10
be rediscovered. Now that cosmology has become popular there is the additional
hazard tha it can be difficult to pick out the pattern of well-esiablished results
against the exciting distraction of all the new but possibly transient ideas. Thus |
think there is a need for a survey of the results that seem 10 be of lasting use for
cosmology, including a conservative assessment of notable recent developments
as well as a compilation of the equally important older elements we may tend to
overlook. This book contains my choices for the list.

My guideline has been to concentrate on results that seem likely still to be of
general interest a decade from now. In many cases the choices are easy. Hubble's
law for the cosmological redshift as a function of distance has been a central ele-
ment in cosmology since the late 1920s. 11 continues to agree with the improving
observational tests, and I see no reason to doubt thar this will continue to be the
case in the next ten years. The situation is very different for the inflation scenario
of what happened in the very early universe. Here we have no useful observa-
tional evidence for or against the picture. but there is a strong case for including it.
The idea has been with us for ten years, and its popularity has made the problems
it is meant to address quile visible, yet no credible aliernative has emerged. The
problems are very real, so unless or unti} a reasonable alternative is found. or the
concept somehow is shown to be wrong, we must expect that inflation will con-
tinue to guide theoretical explorations of the physics of the very early universe.
On the other hand, the varieties of models for how inflation might have been im-
plemented seem much less worth recording, for we know that at best one of the
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variants now under discussion can be on the right track, and the record suggests
there will be more to consider.

My previous attempt at a summary of the memorable results in this field ap-
peared some two decades ago, in Phyvsical Cosmology, Since then [ have become
persuaded that a survey of cosmology really ought to include general relativity
theory. Many aspects of the standard cosmological model can be derived by sym-
metry arguments along with a few basic results from general relativity. However,
the prospects for meaningful tests of the evolving spacetime geometry, including
the classical cosmological tests and an increasingly interesting range of variants,
look considerably better now that galaxies actually are observed at redshifts well
above unmity, where the observational effects of the cosmological model are pro-
nounced. Of course. the effects of evolution are pronounced too, and untangling
the astronomy and cosmology is likely to be a major occupation in the coming
decade. Assuming the needed astronomy does start 1o make sense, attention will
turn toward the meaning of the cosmological tests in the real universe with its
clumpy mass distribution, and this will involve increasingly detailed applications
of the theory of our spacetime geometry. Accordingly, this book departs from
Physical Cosmology in giving considerably greater emphasis to general relativity
theory.

The first part of the book presents the basic elements in the style of Physical
Cosmology, finessing most of general relativity theory. I still like this approach,
because I see no reason to burden the physics and astronomy with an unneeded
theoretical superstructure. | feel reasonably confident that | am satisfying the ten-
year guideline throughout this part. because most of the theoretical concepts are
a good deal older than that and show little evidence of evolution, and the newer
observations used in this part seem secure enough.

The subject of the second part is relativistic cosmology. [ hope the presentation
is complete in the sense that one can understand the resulis of general relativity
theory relevant to cosmology from what is presented here. without recourse to
the standard treatises (except of course for second opinions). However. this is not
meant 1o be a textbook on relativity, for it includes only the basic elements rele-
vant to physical cosmology, and it omiis advanced topics, such as the relativistic
singularity theorems and the physics of black holes, which centainly are relevant
but beyond the intended level of this book.

The third part deals with the nature and evolution of the intergalactic medium,
the measures of the large-scale patterns in the distribution and motion of galaxies
and mass, and the theories for the origin of this structure. There have been great
advances in the structure problem in the last two decades. We have a rich and
rapidly growing fund of evidence from observations, at high redshifts and low,
and from the measurements of the radiation backgrounds, and we have a remark-
able variety of ideas from inflation and cosmic fields on what it ali might mean.
| have been struck by the low level of interaction betwcen the observational and

theoretical branches of the effort. This does follow an old and honorable tradition
in cosmology. but [ am betting that the approach is now inefficient and will not
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last. My thoughts on how a closer interaction of theory and observation might be
developing are based on arguments that in some cases are not much better than
guesses, and in the best of cases far from unambiguous, so [ have to expect that
many will prove to have violated the ten-year rule.

I expect the violations will be most pronounced in the last two sections, where
I present my impression of where the subject seems to be headed. The reader
should be aware that my arguments are based on readings of observational ev-
idence that in many cases is enigmatic and may not even be right. [ have been
struck by the differences in the weights and even signs attached to these clues
by people whose judgments 1 respect, but this has to be so in an active and still
very open subject. 1 apologize to colleagues whose models and ideas have been
slighted. Perhaps the best compensation is the sure knowledge that many of my
choices will fall by the wayside. and some of theirs will be seen to be on the path
to a truer understanding.

The reader should also take note of other features of this book. In an attempt
to make it useful for a broad class of readers I have arranged the presentation in
sections, most of which begin with basic concepts and move toward subsections
on more technical details. [ imagine people will tend to read through each section
or subsection until the going gets tough, then move on to the next, and return if it
becomes apparent that some later parts really might be relevant for the purpose at
hand, because that is the way I read books such as this one. The 1ex1 does sprawl,
but then so does the subject.

Part of the sprawl is a tendency for the discussion of a topic 10 spread over
several sections, according 1o what seems to me to be the long-term logical or-
ganization. For example. the geometry of spacetime around a stationary cosmic
string is discussed in section 11, the physics of a cosmic string is dealt with in
section 16, and sections 25 and 26 detail some of the lessons one leamns from
the attempis to use cosmic strings in a theory of galaxy formation. [ have tried
to indicate where related discussions are to be found when the connection seems
particularly useful. I hope the index and table of contents will be an adequate
guide to where a wanted topic is to be found among all the others,

I have placed heavy emphasis on order-of-magnitude estimates based on con-
venient simplifications, rather than the details of computations. Computers are
important but can be a trap; they have made it easy to put a gloss on a numerical
result, as it always has been for analytic work. The art of estimates is not dying
and need not be hidden. 1 learned as a youth, and still believe, that you shouldn’t
trust a numernical result you can’t undersiand from sensible estimates. There are
counterexamples, but I think they are not common.

It should be no surprise, given the prejudices I have expressed, that 1 have cho-
sen not 1o devote much space 10 details of specific models where there is little
immediate prospect for observational applications. Such models can be very use-
ful as illustrations of concepts, and may even be pointing in the right direction.
[ think I can identify some that surely are headed the wrong way, but have less
strong feelings about the many cases where | can’t find anything wrong. In gen-
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eral, however, the interesting thing really is 1he underlying physics. for when one
understands that it usually is easy to work out the models as they roll in. My
goal has been to trace derivations back to undergraduate physics. avoiding wher-
ever | can the dread words, "it can be shown that.” Where a derivation parallels
something already worked through. or otherwise seems reasonably easy and edu-
cational, | have left the completion as the traditional “exercise for the student.” |
have been informed that more formal problem sets would be useful. 1 agree, but
feel they would have lowered the tone. We are joined in a search for understand-
ing, not grades.

My treatment of references follows a similar philosophy. I refer to the original
or first exploratory papers, where I think I know them, and to reviews that seem
likely to be of lasting interest. but not to the most recent paper in a rapidly de-
veloping topic where a better. more authoritative one surely will appear shortly
after this book. For popular topics. the place to start reading about recent devel-
opments is in the published proceedings of conferences. We all complain about
the preparation of contributions to proceedings when not much has changed since
the last meeting, but the results are a valuable guide to what people are thinking.

Finally, my friends have wamed me that I have not done justice to the rich
details of the astronomy or the particle physics relevant 10 modermn cosmology.
Maybe this is evidence thai | have achieved a rough balance, but the truer expla-
nation is that I am not competent to offer reasoned assessments of the state of
either subject. | have tried to survey the fundamental elements of the physics of
cosmology at about the level of the physics we encounter in a good undergraduate
education (and mostly forget. but we can recover it). For the most part this limit
does not much matter; we are dealing with deep mysteries of Nature, not meth-
ods of physics. Perhaps the largest gap is in the treatment of the particle-physics
candidates for dark-matter. If it should happen that a specific dark matter particle
1s experimentally identified, you would not be able to understand uts provenance
from this book. However, the search for these particles is a young subject that 1s
to be found in many recent conference proceedings, review articles, and books,
In particular. if a detection were announced in the media 1 would tum first for
references 1o The Early Universe by Kolb and Tumer. The detatils of the quantum
field theories that would be the foundation for a fully successful and complete in-
flationary theory of the early universe are not to be found here. but again | do not
consider this a sertous omission because there are several books on inflation, all
recent because the subject is new. An entertaining introduction is Linde’s Particle
Physics and Inflationary Cosmology. The physics of cosmological phase transi-
tions and the resulting remnants is descnbed by Vilenkin and Shellard in Cosmic
Strings and Other Topological Defects.

Several conventions should be explained here. Astronomers like base ten for
logarithms, so | write

log,ptx) =log(x).
log,.(x)=In(x).
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The curious base for the logarithmic system of measures of optical energy fluxes,
102/3, is described in section 3.

As discussed in section 5, the linear relation between the distance to a galaxy
and the redshift of its spectrum is much better established than the constant of
proportionality, Hubble's constant, so il is written as

H,=100Akm s~ Mpc™!.

This useful practice allows us to express how a result depends on the uncertain
dimensionless number 2. Human nature being what it is. the convention often is
“improved” by using other values for the factor with dimensions that multiplies
h. Sometimes this is indicated; thus it is a reasonable presumption that hsg is the
value of H, in units of 50km s~! Mpc~!. The confusion is reduced by quoting
distances in terms of the cosmological recession velocity, but still we need h to
express timescales or predicted mass densities.

The parameter H,, really has units of reciprocal time, but in many topics that is
not the familiar way to express it. My choices of units and symbols follow what
I observe 1o be standard practices, in the hope that the advantages of familiarity
outweigh the confusion of usages. Thus Stefan’s constant for blackbody radiation
is written as a, or as ag (for Boltzmann) where it might be confused with the cos-
mological expansion parameter, a(¢). [ rely on context to distinguish Boltzmann's
constant & from the wave number, and the Hubble parameter 4 from Planck’s con-
stant. In discussions of relativity I follow standard practice in setting the velocity
of light ¢ to unity but keeping Newton’s gravitational constant G as a quantity
with dimensions, while in the physics of the very early universe I often follow
the practice of setting /i and ¢ to unity and replacing G with the Planck mass
My = G~ [/2.

When getting numerical results 1 am inclined to put all the units back in. but
again I use standard conventions, which leads to a remarkable variety of units.
Thus in this book you can find lengths measured in units of the Planck length
(1p1=(Gﬁ)”2c‘3/2= 1.6 x 10732 ¢cm), Fermis, Angstroms, microns, millimeters,
centimeters, kilometers (but only in the velocity unit, km s~!), parsecs (1 pc=
3.086 x 10'® cm, the distance at which one second of arc subtends the mean
separation between the Earth and Sun), kiloparsecs, megaparsecs, and for really
large distances gigaparsecs and the Hubble length = 34! Gpc = 3000h~! Mpc.

The optimisfic reading is that the abundance of conventions for symbols and
units reminds us of our rich heritage. Undoubtedly it also leads to confusion and
inefficiency. (What is the integrated amount of time people have spent program-
ming computers to deal with a negative angle such as é = —0° 30’?) Practices do
evolve. Thus it 1s becoming unusual to encounter light years as a unit of distance
(though of course in many parts of relativity and particle physics distances are
expressed in terms of light travel time), femtometers conveniently replace Fermis
(1 fm=10~'3 cm), micromelers replace microns (lum=1u= 1079 cm), and it is
increasingly common to encounter wavelengths measured in nanometers instead
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of Angstroms (1 nm =10 A). Perhaps science will evolve more coherent practices,
but those who would speed the process have to deal with the fact we are captives
of habit; we choose the units we think our audience is expecting, and these soon
are the units that seem right and proper to us. My guess is that notation in physi-
cal science never will be fully rationalized, nor will the world evelve via advances
in communications to a global village, for I don’t see that people tend to operate
that way.

There is ambiguity about what is meant by the “standard model™ in cosmol-
ogy: in everyday use it can refer to the well-established elements of the theory,
or to plausible but speculative attempts to fill in details. In this book, the stan-
dard model is the nearly homogeneous and isotropic expansion of the universe,
according to general relativity theory, that traces back to a state hot and dense
enough 10 have produced the light elements (by the process discussed in section
6). Weinberg brought the phrase, “the standard model,” to cosmology from parti-
cle physics, where it signifies a theory that is considered well established because
it has survived nontrivial tests. The use of the word “model” 1s appropriate, be-
cause the picture in known to be an incomplete approximation to what is really
happening, and there certainly is the chance that there is something very wrong
with the picture. The word “standard™ is meant to signify that it has survived an
impressive variety of nontrivial tests that have left no known credible alternatives,
as will be argued at length in the first part of this book. It is a long tradition in
cosmology to use the word “model” to refer to a specific theory and choice of pa-
rameters. Thus the Einstein-de Sitter model is a solution to Einstein’s field equa-
tion, which assumes that the significant dynamical actors are the mass density and
the expansion raie (with negligibly small cosmological constant and space curva-
ture). This world model gives definite testable relations among the present rate of
expansion of the universe, the maximum ages of the galaxies, and the mean mass
density. As will be discussed beginning in section 15, there are nontrivial theo-
retical reasons to suspect that this model may be a useful approximation to our
universe. However, there 1s not yet a strong empirical case for it, and in section
26 I will list the observational problems that may or may not prove to be only
apparent. Unless or until this is clarified 1 will not count the Einstein-de Sitter
solution as part of the standard model.

I shall mean by a model a theoretical scheme that offers testable predictions,
as does the Einstein-de Sitter model. That leaves the many less well specified
ideas for how we might improve the standard model by tightening the options or
enlarging the boundaries. In regular usage a scenario is an outline for a proposed
sequence of events. | follow my book Physical Cosmology by classifying as
a scenario a promising or otherwise sensible set of ideas, perhaps even with
some observational basis, but one that is not yet definite enough to yield testable
predictions by which the scheme might be falsified. An example is the inflation
scenario reviewed in section 17. It offers an elegant resolution to a deep puzzle,
the origin of the remarkable large-scale isotropy of the observable universe. and
the physics has a distinguished pedigree from particle theory. But it is difficult to
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see how to test the idea. The one definite prediction of inflation as now understood
is that space sections at constant world time have negligibly small curvature,
but since that condition was one of the elements that went into the invention of
inflation it is a little dangerous to count it as a prediction. Thus, inflation has to be
considered an elegant and influential scenario, but not pan of the standard model.

The simplest model of inflation, and the cold dark matier model that naturally
follows from it, are often called parts of the new paradigm in cosmology. That
is appropriate in the sense that these are the pattens for research which many
peopie followed in the last decade. But others rightly point to the fact that there
is not much empirical evidence for these concepts, and there are other ideas to
consider, as discussed at length in sections 25 and 26. My impression is that it is
too soon to declare any paradigms in cosmology beyond the standard model.

Another somewhat confusing usage is the name “the big bang” for the standard
model. It is not appropriate. because it connotes a spatially isolated event, an
explosion, that marked the si1art of everything. As we will discuss in the following
sections, none of this is part of the standard cosmological model. But the name
has a very evident appeal. and I expect people will continue to use it.

I have used a few special abbreviations. The isotropic 3K thermal microwave-
submillimeter cosmic background radiation plays such a central role and is men-
tioned so often that we need a shorthand notation. There is no preferred choice; [
use CBR. My book Large-Scale Structure of the Universe comains a lot of details
about the measurement and theory of evolution of density fluctuations, much of
which need not be repeated here. The reference is to LSS. For a few oldies but
goodies I refer to Physical Cosmology as PC. 1 use the expression “rms” for the
root mean square value.

Finally, there has to be a convention for approximate equalities. There are
cases in cosmology where 1t is meaningful to quote numerical values to several
significant figures, and cases where we would be proud to be within a few orders
of magnitude of the right value. With a few special exceptions I use just two
symbols. The expression @ =h means the statement is true to better than a factor
of two, by definition or construction or a reasonably convincing measurement.
The expression @ ~ b means the relation is uncertain at least to a factor of two,
either because I have not bothered to work the computation in greater detail or
because it is not known how to do it better.

The big bang cosmology 1s six decades old, and 1 am starled 1o realize 1
have been studying this world model for nearly half that time. 1t never was my
plan; in fact, my first reaction to cosmology was one of surprise that grown
people could seriously care about such a schematic physical theory. 1 think |
stuck with it because I enjoyed working in such uncrowded and fertile ground.
Now the subject is crowded, at least by the siandards of just a decade ago, but
too exciling to leave. 1 have presented histories of pioneering contributions 10
cosmalogy. as best 1 understand them, but my memory is not aiways reliable and
my knowledge is limited. I am sure also that 1 have on occasion lapsed into the
habit of describing discoveries as they ought to have happened. | know best the
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parts | was involved in, and on occasion indulge in personal recollections. 1 think
such stories play an important role in illustrating the way the physical sciences
operate. but bear in mind that this certainly 1s not a formal history of cosmology,
and that the subsections are meant to facilitate selective reading.

First approximations to this book evolved out of the cosmology course |
have on occasion taught at Princeton University. |1 know of nothing better than the
prospect of facing students to focus the mind on the essential elements of a sub-
ject. [ am grateful to the Aspen Center for Physics, where the June conferences
on astrophysics added to my education, and the special atmosphere stimulated re-
flection and the frank and thorough exchange of ideas. I am particularly indebted
to John Bahcall and the Princeton Instituie for Advanced Study for their hospi-
tality during the 1990-91 academic year that gave me the opportunity and the
stimulation to write the first draft.

The opinions expressed at such length in this volume have grown out of several
decades in the community of cosmology, in exchanges ranging from loud debates
to the slightest of hints. This is not meant to shift the blame for the wrong and un-
interesting opinions away from its rightful place. but rather to emphasize that sci-
ence moves in a complex flow through enormous varieties of perturbations large
and small. First on the list of those whose influence on me is most evident are my
professor of continuing education, Bob Dicke, my other most influential advisers
to things practical and physical, Ed Groth and Dave Wilkinson, and my coun-
selors on things astronomical, John Bahcall and Jerry Ostriker. A large number of
people helped in the preparation of this book; I must select for special mention the
heroic contributions of Bharat Ratra and Michael Strauss in reading and improv-
ing vast sections of the text. For generous help in creating and straightening the
figures and text and concepts, often at the expense of considerable time and ef-
fort. I am grateful to Richard Ellis and Tom Shanks at the University of Durham:;
Jim Condon and Juan Uson at NRAO; Arnt Wolfe at UCSD; Jeremy Mould at
CIT, George Efstathiou, Steve Maddox, and Will Saunders at Oxford; Renzo
Sancisi at Groningen: Bill Oegerle at STScl; John Hoessel at the University of
Wisconsin; Masataka Fukugita at Kyoto University; John Scalo at the University
of Texas; Harry van der Laan a1 ESO; Adrian Melott a1 the University of Kansas:
Tod Lauer at KPNO; Craig Hogan at the University of Washingion: Marc Davis
at UC Berkeley: Ray Soneira at Sonera Technologies; Josh Frieman at Fermilab:
Dave Schramm at the University of Chicago: Margaret Geller and John Huchra
at Harvard; Keith Jahoda. John Mather. and Rick Shafer at NASA Goddard SFC:
Steve Boughn at Haverford College: Avery Meiksin at CITA; and in the Princeton
community Neta Bahcall, Ruth Daly, Russell Kulsrud. Avi Loeb, Alison Peebles,
David Spergel, Martin Terman, Ed Tumer. Neil Turok. and David Weinberg. To
the many other colleagues who influenced this work. even when we agreed to dis-
agree. | extend my thanks and best wishes in the ongoing research that will make
this version of cosmology obsolete.
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|. The Development of Physical
Cosmology

|. The Standard Cosmological Model

Physical cosmology is the attempt to make sense of the large-scale na-
ture of the material world around us, by the methods of the natural sciences. It is
to be hoped that those who love physical science will take pleasure in cosmology
as an example of the art. It operates under the special restrictions of astronomy
that allow one to look but not touch, but according to the rules and procedures
that have proved to be so wonderfully successful in sister fields from stellar as-
tronomy (o particle physics. I will argue throughout this first part of the book
that cosmology as an enterprise in physical science really has made substantial
progress, though the advances certainly have moved around considerable gaps in
our understanding, as will be discussed in part 3.

Behind physics is the more ancient and honorable tradition of attempts to un-
derstand where the world came from, where it is going, and why. Cosmology
inherits this tradition, in part by design, in larger part because that is where the as-
tronomy and physics have led us. We have believable evidence that the universe
is expanding, the space between the galaxies opening up, and that this expan-
sion traces back to a hot dense phase, the big bang. The expansion may reverse
in the future, and the world as we know it end in a collapse to a hot dense big
crunch. An alternative is a universe that continues to expand indefinitely, to ar-
bitrarily low mean density, but with most of the matter trapped in galaxies and
Clusters of galaxies that eventually contract (through loss of energy by evapora-
tion of stars and gravitational radiation) and end up as black holes, in a series of
little crunches. This is exciting stuff, and it has served a useful purpose in physical
cosmology in keeping us all occupied with speculations on how the world ought
to begin and end, as we sort through the evidence of what really is happening.

It is remarkable that physical science can be used for this purpose, that ele-
ments of Nature can be analyzed and seen to operate in a predictable way within
the rules of a rigid mathematical physical theory, but we have abundant success
stories. as in quantum physics and general relativity theory. There is a specific
reason why one might have been particularly doubtful about the enterprise in cos-
mology. One usually deals with the physical world as a hierarchy of structures,
including quarks in atomic nuclei of atoms and molecules on the small-scale end,
while on the large-scale end we see that the Solar System is in the Milky Way
galaxy of stars, which is part of the Local Group of galaxies, which in wrn is
on the outer edge of the Local Supercluster. (These large-scale struciures are dis-
cussed in section 3.) A discipline in physical science generally isolates a thin slice
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of this hierarchy. The analysis must take account of the interactions from other
levels, but one attempts to find approximations that reflect the essential features
of the interactions while keeping the problem simple enough that a quantitative
analysis is feasible. Thus in the study of turbulent flow of water in a stream one
takes account of the fact that water consists of molecules of atoms by assigning
coefficients of viscosity and thermal conductivity that are so small the values are
not even very imporiant, and the fact that the stream is flowing on a planet in a
galaxy is well modeled by assigming a uniform local gravitational acceleration.
Newtonian fluid dynamics is the challenging part of this problem.

Retumning to cosmology, one might ask how the scheme of isolating essential
and simple parts of a problem that has proved so successful in science might be
applied to the physics of the universe itself rather than a specific one of its com-
ponents. The answer lies in the idea that the universe is remarkably simple in
the large-scale average, close to homogeneous and isotropic. There certainly are
prominent fluctuations from the mean, but the evidence to be reviewed in sec-
tions 3 and 7 is that they are confined to scales less than a few hundred million
light years (where | megaparsec ~ 3 million light years), and that the average
over these fluctuations reveals a universe that looks much the same in any di-
rection, and would appear much the same when viewed from any other position,
as if there were no preferred center and no edges (within the part causality al-
lows us to check). Modern cosmology is based on this simple characterization of
the universe. That is, as in any physical science, we are dealing with a slice of
the hierarchy of the material world, in this case the behavior of the nearly ho-
mogeneous large-scale distribution of matter and the evolution of the departures
from homogeneity that we recognize as galaxies and clusters and superclusters of
galaxies.

Since a homogeneous mass distribution is easy to characterize, and it is not
so difficult to deal with departures from a mean distribution, it may not be sur-
prising that some progress is feasible within this picture. It is reasonable to ask
whether the progress might be circular, whether cosmologists have only invented
a problem that is easy to solve. The evidence that there is more to it than that
has to be indirect, for there is no way we can consult intelligent life in distant
galaxies, to discover whether their observations of the large-scale structure of the
universe agree with ours and whether they would agree with our interpretations
of the observations. But the tactic of validation by indirect inference is famil-
iar and demonstrated to be wonderfully successful in other fields of science. and
we should not hesitate to try it here. No one has seen a quark, yet the weight of
evidence from high-energy physics compels belief in these peculiar objects as a
useful working approximation to reality. The weight of evidence in cosmology
is not nearly as great, but, as will be argued in the following sections, far from
negligible. Precision measurements of the angular distribution of the X-ray back-
ground from distant sources, of the centimeter through submillimeter electromag-
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netic radiation backgrounds, and deep galaxy counts, all directly show that in the
large-scale average the universe is quite close to isotropic around our position.
These observations, which are discussed in section 3, tell us either that we are
at a very special place at the center of a spherically symmetric universe, or that
the observable universe is close to homogeneous. The former seems unlikely; the
billions of galaxies outside the Milky Way look like equally good homes for ob-
servers, and it would be surprising if we were in one of the privileged few from
which the universe appears isotropic. The latter interpretation, that the universe
is homogeneous. leads to the prediction of Hubble’s law—that the apparent re-
cession velocity of a galaxy is proportional to its distance—for that is the only
expansion law allowed by homogeneity (section 5). The expanding world model
in turn predicts the thermal spectrum of the centimeter-submillimeter wavelength
background radiation (section 6). If we add general relativity theory, we arrive at
a reasonable picture for the mass and age of the universe, and for the abundances
of the light elements as remnants of the universe when it was young. That is, we
are seeing in cosmology a developing network of interconnected results, This net-
work is what suggests that we really are on the path to a believable approximation
to reality.
The main elements of the standard world picture are summarized as follows.

1. The mass distribution is close to homogeneous in the large-scale av-
erage. The constraint from the Sachs-Wolfe effect to be discussed in
section 21 is that fluctuations in the mass distribution averaged over vol-
umes comparable in size to the Hubble length ~ 4000 Mpc in equation
(1.2) below are bounded by éM /M < 1074, The mass fluctuations be-
come large, 6M /M ~ 1, when the smoothing radius is reduced to about
one percent of the Hubble length (sections 3, 19, and 21).

2. The universe is expanding, in the sense that the mean distance / be-
tween conserved particles is increasing with time at the rate

dl
—=H,I. 1.1
= e (1.1)
This effect is discussed in section 5. The constant of proportionality
is time-dependent; the present value is Hubble's constant 4,. At the
Hubble length,

Ly =c¢/H,~ 4000 Mpc, (1.2)

this expression for the recession velocity extrapolates to the velocity of
light, and we need a more detailed treatment. The relativistic theory of
cosmology and its possible tests are discussed in part 2,
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3. The dynamics of the expanding universe are described by Einstein's
general relativity theory. One might well ask what the universe is ex-
panding into, or where the space opening up between the particles came
from. As will be discussed in sections 5 and 12, general relativity theory
gives us a mathematically consistent, and, as far as i1s known, experimen-
tally and observationally successful description of the expanding uni-
verse without admitting such questions. With general relativity theory,
we are assuming local physics is the same everywhere and at all times.
As will be discussed here and in later sections, that has to be wrong at
early enough epochs, because the standard world picture extrapolates
back to a singular state in which conventional physics becomes unde-
fined. Deciding how and when the physics departed from the standard
expanding world model is one of the puzzles to be discussed in part 3.

4. The universe expanded from a hot dense state where its mass was
dominated by thermal blackbody radiation. The set of clues that led to
this concept are chronicled in section 6.

The familiar name for this picture, the “big bang" cosmological model, is
unfortunate because it suggests we are identifying an event that triggered the
expansion of the universe, and it may also suggest the event was an explosion
localized in space. Both are wrong. The universe we observe is inferred to be
close to homogeneous, with no evidence for a preferred center that might have
been the site of an explosion. The standard cosmological picture deals with the
universe as it is now and as we can trace its evolution back in time through
an interlocking network of observation and theory. We have evidence from the
theory of the origin of the light elements that the standard model successfully
describes the evolution back to a time when the mean distance between conserved
particles was some ten orders of magnitude smaller than it is now. If it is found
that still earlier epochs left evidence that can be analysed and used to test our
ideas, then that may be incorporated in the standard model or some extension of
it. If there were an instant, at a “"big bang,” when our universe started expanding.
it is not in the cosmology as now accepted, because no one has thought of a way
1o adduce objective physical evidence that such an event really happened.

A less vivid but maybe less misleading name for the expanding world picture
is the “standard model.” Weinberg (1972) brought the phrase to cosmology from
particle physics. The use of the term “model” has a long history in cosmology,
as in the books by Tolman (1934) and Milne (1935). It is meant to express the
fact that the theory cannot be the final answer, if there is one, because it has un-
resolved puzzles. The open questions are more numerous in cosmology than in a
typical mature physical science, and it is only prudent to bear in mind that one
of these problems, or maybe something yet to be discovered, may point to some-
thing fundamentally wrong with the world picture. As the observational checks
have accumulated, this has come to seem less likely: if there is a serious flaw in
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the standard world picture it has been subtly hidden. Thus the word “standard” is
meant to express the fact that there is a very significant body of evidence indicat-
ing that the hot big bang model is a useful approximation to the real world.

Under active discussion are many ideas on how the parameters of the standard
expanding world picture might be made more definite. or the boundaries of the
picture expanded. An example is the Einstein-de Sitter cosmological model, in
which there are negligibly small values for the parameters in equation (5.18) for
the curvature of space sections at constani time and for a cosmological constant.
This model is the simplest and most natural homogeneous and isotropic solu-
tion to Einstein’s field equations. It predicts definite testable relations among the
present values of the mean mass density, the age of the expanding universe, and
the present rate of expansion. It is not yet part of the standard model, because
there is not much evidence that the predictions are consistent with the still quite
uncertain observations. A second example is the inflation scenario discussed in
section 17. This is an elegant and influential idea for how we might resolve the
puzzle of what happened before the universe started expanding, whatever that
means. But inflation is not tested, and it is not even easy to see how it could be
falsified, so it is not part of the standard model.

Central to the standard model is the underlying physics. As we have indicated,
the standard model assumes general relativity theory, with the condition that local
physics is everywhere the same, based on laboratory results and what can be
inferred from what is observed elsewhere under more extreme conditions. That
is, we are going to extrapolate the physics that is known 10 be successful until
it is seen to fail. We noted that the extrapolation does fail if applied far enough
back in time, for the standard model traces back 1o a singular state, and the failure
certainly could show up well before that. The point was given particular emphasis
in a remarkable survey of physics by Dicke (1970), who was motivated in part
by the Mach's principle discussed in the next section, and by Bondi (1960), in
connection with the steady-state cosmology presented in section 7. The failure of
conventional physics must be kept in mind, but it should be noted also that the
extrapolation out in space and back in time is by no means without empirical
support. For example, we will see in section 20 that the gravitational lensing
of background galaxies by the mass concentrations in clusters of galaxies, as
analyzed in general relativity theory, is consistent with the masses derived from
the motions of the galaxies and from the plasma pressure within the clusters. The
relevant length scale here—the impact parameter at the cluster—is ten orders
of magnitude larger than that of the precision tests of general relativity in the
Solar System and in binary pulsar systems, a remarkable extrapolation. There is
a problem: the net mass seen in the stars in the galaxies in a cluster is an order
of magnitude less than the masses derived from gravitational lensing or from the
dynamics of the cluster plasma and galaxy motions. Perhaps this is a sign that the
gravity physics is starting to fail on the scale of clusters of galaxies. But since the
extrapolation seems to give consistent results for dynamics and lensing, the first
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possibility to consider, and the one emphasized in section 18, is that the gravity
physics is reliable and the bulk of the mass in a cluster is in a form not readily
detected, apart from its gravitational effect. The edge of the observable universe
is another four orders of magnitude beyond the size of the central part of a cluster,
and the analysis of what is happening there sull 1s a considerable extrapolation of
the physics. The way to decide whether the analysis 18 successful is through the
cosmological tests discussed in sections 13 and 14,

The spectra of distant objects indicate local physics is much the same every-
where: the radio, optical, and X-ray lines, and the continuum between them, have
the nght arrangement and sensible-looking shapes, consistent with the standard
physics of gas and stars. Some elements of these observations are reviewed in sec-
tions 5, 23, and 24. Again, we know physics must have been different far enough
back in time because the standard variety leads back to a singularity, and it is a
sensible bet that the physics of the very early universe left observable effects yet
to be discovered, perhaps exotic forms of matter that might account for the clus-
ter masses (section 18), or cosmic field topological defects that might have caused
the clusters 10 form (section 16), or the magnetic fields seen in young galaxies, or
even the process of formation of the young galaxies. These, however, are topics
for research outside the standard model at the time this is written.

Since the evidence is that atoms and gas clouds and stars are much the same
on the other side of the observable universe, it seems reasonable to expect that
there are planets. If there were a civilization on one of these planets and this
organization took an interest in such matters, would it be led to decide with us
that the universe is expanding and cooling from a denser and hotter state? It does
not seem overly presumptuous to imagine that a civilization operating in a fluid
atmosphere, and maybe even using the atmosphere for heat engines or flight,
would have our concepts of thermodynamic temperature and physical time, for
they are fundamental to the rules by which a gas or fluid is known to behave in
our laboratories and in stars near and far. And it seems to be a reasonable bet that
if the optical and radio bands were clear, and the civilization cared to use them,
they would notice with us that there are galaxies of stars, and between them there
is a sea of thermal radiation. The evidence 1s that they also could deduce with us
that the matenal content of the universe is expanding and cooling on a timescale
of about 10'” years. The reader is invited to review this conclusion after reading
the first part of this book. And of course we would all welcome the chance to ask
the question.

Two aspects of the methods of physical science applied in cosmology have
tended to lead to confusion. First, how can we hope to understand the character
of the universe in all its variety from the exceedingly limited observations we
can bring to the problem? Second, how can we conclude that we really have
succeeded in characterizing the universe when there are in cosmology so many
elementary questions yet 10 be answered?
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Ellis (1980, 1985) has given particular emphasis to the ideal of an empirical
cosmology constructed as far as possible from the observations. In the limit one
might even imagine deriving boundary conditions for the structure of the 3 + 1 di-
mension spacetime of our world from the data that in principle are available on
the 2 + 1 dimension null light cone of our observations in the optical, radio, and
other radiation bands, along with whatever fossils are left in the thin timelike tube
occupied by the material near our world line in the galaxy. The studies of how one
might approach this program certainly are of great interest and importance, but as
a practical matter we must live with the fact that observations at great distance
always will be schematic; there is no way we could hope to get initial value data
on our past light cone precise enough for an empirical construction of a world
model whose evolution we could trust even a modest way back into the past, or
whose structure we could believe at the depths of the most distant observed ob-
jects. The consolation, if there is one, is that the ideal of a world picture pieced
together from data alone is not a realistic mode! for any branch of physical sci-
ence. The time is long past when people claimed with Newton that they framed
no hypotheses, that they worked from the empirical to the theoretical. That never
was the whole truth, and it is very far from the way science works now. Quan-
tum physics could never have been derived as an empirical picture, because the
basic elements, operators and their state vectors, are in principle not observable.
Fortunately we are not required to decide here whether the operators and state
vectors have some sort of physical reality or are only aids to computation. We do
learn from this extraordinarily successful physical science the tactic of validation
by indirect tests. That is the way science is done and the way cosmology oper-
ates. My purpose in this part of the book is to argue that the results so far are
encouraging, and there is the promise of considerably more 10 come.

The conventional attitude to the open puzzles of cosmology also follows the
examples from sister physical sciences. Perhaps classical thermodynamics ranks
as a complete closed physical science, but the list of problem-free theories cer-
tainly is short. By definition, in active sciences there are open questions whose
significance is at best dimly grasped. They may be pointing to flaws in the frame-
work, or perhaps only to a lack of suitable perception in the application of es-
tablished principles. Principles can be overthrown, as in the spectacular replace-
ments of the classical world picture with the quantam and relativity principles,
but in a mature science this is, by definition, rare; it would be silly if we were
allowed 10 invent a new law of physics for each new phenomenon. In cosmology
the density of puzzles is high, and with it the chance that we have overlooked
something fundamental. For example, we have no convincing theory for the ori-
gin of galaxies. It would be exciting news if it could be shown that the existence
of these objects 1s incompatible with the standard cosmological picture as out-
lined above. So far that has not happened, and the candidate theories discussed
in part 3, while far from convincing, do serve as “existence proofs” that seem to
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yport the proposition that galaxies could exist in our world picture. A related
zzle, and a capital discovery waiting to be made. is the identification of the na-
e of the dark mass in the outskirts of galaxies, or a demonstration of how we
ve misapplied the dynamics from which its presence is inferred (section 18).
n example on a grander scale is the expansion of the universe. In the standard
cture the expansion traces back at a finite time 1, in the past to a singular state of
bitrarily high density, where the theory fails in the sense that there is no way it
n predict what happened before that, what the universe was like one day prior to
ie time ,. Does the fact that our world picture is so manifestly incompleie mean
1at it 1s wrong? As the evidence has accumulated for the success of the picture
t times not so close 1o f,, it has come to seem likely that we do have a useful
pproximation. But we certainly have to remember that a better theory, perhaps
afiation, is needed to understand what really happened “before 1,,”" whatever that
neans.
In sum, the hopeful interpretation of the abundance of puzzles in cosmology
s that this is an active observationally driven field with many well-specified
sroblems 1o consider, and a great many chances to learn something new.

2. Mach’s Principle and the Cosmological Principle

Physical sciences develop in seemingly chaotic ways, by paths that are
at best dimly seen at the time, and leave traditions that may seem mysterious
and even irrational, That is why the history of ideas is an important part of any
science, and particularly worth examining in cosmology. where the subject has
evolved over several generations. The choice of where to begin has to be some-
what arbitrary, since any step in science builds on earlier ones. We start with the
puzzle of inertia because it is fairly easy 1o trace the connection to Einstein’s
bold idea that the universe is homogeneous in the large-scale average, what Milne
(1935) called Einstein’s “cosmological prninciple.”

In Newtonian mechanics one defines a set of preferred motions in space, the in-
ertial reference frames, by the condition that a freely moving body has a constant
velocity. In this theory, accelerations and rotations have an absolute character. For
example, if a pail of water is rotating about its vertical axis on the Earth, we ob-
serve that the water is forced toward the outside of the pail: the more nearly level
the surface of the water, the smaller the rate of rotation. The question naturally
arises: What determines the motion of the reference frame that is not rotating?
Is inertial motion an absolute property of the world, or could it be that inertia 1s
determined by some field such as the aether that at the tum of this century was
invoked for a mechanical interpretation of electromagnetism?

Emst Mach argued that it is absurd to think that the inertial reference frames
reflect an absolute property of nature, and perhaps equaily bad to invoke an oth-
erwise unobservable aether. Instead, he found it preferable to think that inertial
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frames are determined relative to the motion of the rest of the matter in the uni-
verse. Thus Mach (1893) wrote: “Newton’s experiment with the rotating vessel of
water simply informs us, that the relative motion of the water with respect to the
sides of the vessel produces no noticeable centrifugal forces, but that such forces
are produced by its relative rotation with respect to the mass of the Earth and the
other celestial bodies. No one is competent to say how the experiment would tum
out if the sides of the vessel increased in thickness and mass until they were ulti-
mately several leagues thick.” Einstein adopted, as Mach’s principle, the idea that
inertial frames of reference are determined by the distribution and motion of the
matter in the universe.

The following summarizes some of the ideas needed to understand Einstein’s
implementation of Mach’s principle. They are discussed in more detail in part 2.

An event in spacetime is an idealized instant of time at a definite position in
space. The event is labeled by time and position coordinates !, x, y, and z, written
collectively as x’ with i =0, 1, 2, and 3. Consistent with Mach’s principle, in gen-
eral relativity theory the coordinates x' for an event have no absolute significance:
they are just arbitrary (but continuous and single-valued} labels. The difference
dx’ between the coordinate labels of neighboring events in spacetime is given an
invariant meaning by the expression for the line element connecting the events,

ds? =" gydv'dy’
i 2.1
= gij d\"drj .

In the second line. and throughout this book. we follow Einstein’s summation
convention — that repeated upper and lower indices are summed over their range,
here G to 3. The metric tensor field g,(x) in this expression is a four-by-four set
of functions of position ¥ =¥ in spacetime. The metric tensor is symmeic,

giilxy=g,lx), (2.2)

so there are ten independent functions.

The interval ds® is assumed to have a definite coordinate-independent value for
a given pair of events. Since the coordinate differences dx depend on the arbitrary
assignment of coordinate labels, the metric tensor field g;;(x) also must depend
on the coordinates. In locally Minkowski coordinates the coordinate labels are

arranged so that at a chosen event in spacetime the metric tensor is equal to the
Minkowski form,

. 229 0. (2.3)
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As the second equation indicates, in locally Minkowski coordinates all first
derivatives of g;; vanish at the chosen event. In this coordinate system the line
element (2.1) in the neighborhood of the event has the form,

ds® =di* —dv* - dy?’ —d:*, 2.4)

familiar from special relativity. (Here, and in all the discussions of relativity, units
are chosen so the velocity of light is unity. When we tum to measurements we
usually put back the velocity of light as an explicit factor.)

Recall that in special relativity ds” in the line element (2.4) is unchanged by a
rotation in space or by a Lorentz velocity transformation. The invariance of ds*
in equation (2.1) generalizes this to a general coordinate labeling of a spacetime
that need not be flat. The interpretation of ds* also follows special relativity. If
the Minkowski line element ds* in equation (2.4) is positive, then ds is the proper
time interval between the two events as measured by an observer who moves from
one event 1o the other. If ds° is negative, then |ds| is the proper spatial distance
between the events as measured by an observer who is moving so the events
appear to happen simultaneously. In either case, it is assumed that the result of
the measurement is independent of the choice of measuring device. The same
interpretation is applied to the interval ds in equation (2.1) in a general coordinate
labeling of a curved spacetime: it is the proper time or distance between the
events as measured by any idealized physical clock or measuring rod.

Because the locally Minkowski coordinate system defined by equation (2.3} 15
chosen to agree with the proper lengths and times a freely moving observer would
set up in the neighborhood of an event in spacetime, it may not be surprising (and
will be shown in section 9) that this coordinate system is equivalent to the lo-
cal inertial coordinates of Newtonian mechanics for the neighborhood. Einstein’s
field equation in general relativity theory is a set of differential equations relating
the metric tensor field g;;(x) and the matter distribution. That is. the matter distri-
bution acts as a source for the metric tensor, the metric tensor descnibes the ge-
ometry of spacetime through the prescription for proper length and sime intervals
in equation (2.1), and the metric tensor determines the locally Minkowski coordi-
nate systems that are locally inertial reference frames. There are cases where the
results are consistent with Einstein’s interpretation of Mach's principle. For ex-
ample, in Mach's massive water bucket experiment the thick walls of the vessel
would contribute to g;; a term that makes the inertial frame for the water precess
relative to the distant stars, perhaps just as Mach would have expected. However,
it is easy to find other solutions to Einstein’s field equations that violate Mach’s
ideas. Let us consider an “anti-Machian™ solution and then what to do about 1t.

The metric tensor for a flat spacetime, with g;, everywhere equal to the
Minkowski form 7, in equation (2.3), is the unique nonsingular spherically sym-
metric solution to Einstein’s field equations in the absence of any matter. It is
reasonable that g, = 7, should be a solution to Einstein's field equations. because
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we know that in our neighborhood of galaxies the mass density is small and the
flat spacetime approximation with g;;(x) closely equal to 7;; gives a good descrip-
tion of the geometry of our nearby spacetime. However, this solution also allows
us to postulate that a particle can move arbitrarily far from all 1he rest of the mat-
ter in the universe, to regions where the matter density makes a quite negligible
contribution to Einstein’s field equations. In this limiting case, the static solu-
tion to the field equations is arbitrarily close 1o g;;(x) =n;;. But this metric tensor
defines definite inertial frames for the particle. That is, we have a solution 10 the
field equation that defines inertial frames arbitrarily far from the rest of the matter
in the universe. That centainly is contrary to Mach's ideas.

The way around the dilemma within general relativity theory is to add bound-
ary conditions to eliminate the unwanted anti-Machian solution. A fascinating
view of the evolution of Einstein's thinking on this point is to be found in the
series of three papers by the Dutch astronomer Willem de Sitter, who was among
the first to recognize the importance of Einstein’s general relativity theory. In the
second paper in the series, de Sitter (1916) mentions Einstein’s idea that at great
distances from material bodies the components of the metric tensor might degen-
erate to the ““natural” values,

8ij = (2.5)
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Any transformation to new spatial coordinates that are accelerated relative to
the original ones (with the time coordinate x° left unchanged) leaves this form
unchanged. That is, this singular metric tensor does not define inertial motion.
In Einstein’s hypothesis, the presence of the matter in our neighborhood would
cause the metric tensor 10 assume a nonsingular form that with a suitable choice
of coordinates can be brought to the locally Minkowski form 7;; (eq. [2.3)). defin-
ing inertial motion.

De Sitter argued that the matter responsible for the transition of the metric ten-
sor from the degenerate form (2.5), to the Minkowski form could not be any of
the observed fixed stars or spiral nebulae, for if these bodies were near the regions
where the metric tensor makes the transition from g ~ 7;; to the form (2.5), one
would expect the strong space curvature to cause a pronounced gravitational fre-
qQuency shaft in the spectra of these objects, contrary to the observations. Thus the
transition in form of the metric tensor would have to be due to the space curva-
ture produced by “hypothetical™ unobserved masses. This is not dissimilar to the
hypothetical “*dark matter” invoked in present-day cosmology to close the uni-
verse, but de Sitter objected, writing that, ““to my mind, at least, the hypothetical
masses are quite as objectionable as absolute space, if not more so. If we believe
in these supernatural masses, which control the whole physical universe without
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ever having been observed.” then, de Sitter argued, the theory appears 1o be no
more appealing than the aether picture for the origin of ineria, Fascinating exam-
ples of the exchanges between de Sitter and Einstein on these issues are given by
Kerszberg (1990), and Kahn and Kahn (1975).

Einstein soon abandoned the hypothetical masses in favor of another scheme
that has proved to be of considerably more lasting interest. He proposed that
the mass distribution in the universe is homogeneous 1n the large-scale average,
and that the mass causes space to curve so as to close in on itself, in a three-
dimensional analog of the closed two-dimensional surface of the balloon illus-
trated in figure 5.2. This would make the spatial volume of the universe finite, but
there would be no hypothetical matter at the boundaries of the universe, and in-
deed no boundaries. And it would be impossible for a particle to move arbitrarily
far from the rest of the universe, for wherever it moved it would encounter matter
and a nonsingular metric tensor that defines local inertial reference frames that
move with the mean motion of the matter in the universe.

Having discussed his ideas with de Sitter, Einstein surely was aware that he
was making a bold assumption, because to astronomers at that time the universe
usually meant the system of stars in our Milky Way galaxy. An example is Ed-
dington’s (1914) book, Srellar Motions and ihe Structure of the Universe. As
Eddington describes, counts of stars as a function of brightness and position in
the sky had shown that the Milky Way is bounded, shaped like a flattened disk.
The radius of the disk was considerably underestimated, and we were put much
closer to the center than we really are, because it was not fully appreciated that in-
terstellar dust obscures the distant parts of our galaxy. However, the basic picture
remains that we are in an island universe of stars. Because Einstein wrote of the
distribution of stars, it is not clear whether he considered the idea that the diffuse
objects called spiral nebulae might be other island universes, what are now called
galaxies, comparable in size to the Milky Way. In the now standard cosmological
model it is the mean distribution of the galaxies, averaged over the fluctuations
in their clustering, that traces the nearly homogeneous large-scale distribution
of mass.

Einstein’s idea won rapid acceptance. This was in part because Hubble's counts
of galaxies to fainter limits did continue to reveal increasingly large numbers of
galaxies, as one would expect for an unbounded distribution, and probably also in
part because of Einstein’s prestige, and perhaps also because homogeneity greatly
simplifies the mathematical problem of solving the field equations of general rel-
ativity. There were cautionary remarks, as from de Sitter (1931), who wrote: “It
should not be forgotten that all this talk about the universe involves a tremendous
extrapolation, which is a very dangerous operation.” But more typical was Ein-
stein’s (1933) comment: “‘Hubble's research has, furthermore, shown that these
objects [the galaxies] are distributed in space in a statistically uniform fashion, by
which the schematic assumption of the theory of a uniform mean density receives
experimental confirmation.” From an empirical viewpoint de Sitter’s would have
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been the more sensible position. It was known that galaxies tend to appear in
groups and clusters, and, as Charlier (1908, 1922) noted, it would not be unrea-
sonable to imagine that the hierarchy of clustering continues 1o indefinitely large
scales. As will be discussed further in the next section and in section 7, this model
predicts that Hubble would continue to find galaxies as his surveys probed to in-
creasing distances, but the mean number density would decrease as the limits of
the surveys expanded through the levels of the hierarchy. Einstein (1922) granted
that this picture is consistent with general relativity theory, but he rejected it as
inconsistent with Mach'’s principle, for it would mean that in most of space the
mass density is arbitrarily small yet inertia is defined by a nearly Minkowski line
element.

The idea of a homogeneous world model offers the new possibility that the
universe is spatially homogeneous but anisotropic, in the sense that the matter ve-
locity field defined by the mean streaming motion of the galaxies has shear, and
perhaps also rotation relative to locally inertial reference frames, as in Godel's
(1949) remarkable rotating world model. Rotation of inertial frames relative 1o
the mean motion of the matter surely goes against Einstein’s interpretation of
Mach’s principle, and the same is true of shear, for there is nothing in the mass
distribution to tell the shear in which direction to point. In any case, Einstein’s
concept as it came 10 be embodied in the cosmological principle is that in the
large-scale average the visible parts of our universe are isotropic and homoge-
neous.

Milne's (1935) term, “Einstein’s cosmological principle,” is appropriate in the
sense that the conditions of homogeneity and isotropy do greatly restrict the range
of possible cosmologies, as Milne was among the first to appreciate. However,
the cosmological principle is not to be compared to the uncertainty principle in
quantum mechanics, which is demanded by the basic elements of the theory,
because general relativity theory as it usually is understood does not demand that
the universe be homogeneous and isotropic in the large-scale average, and it is
hard to see how our existence would be threatened by a universe considerably
more lumpy than what we observe. An example of an apparently viable world
picture that violates the cosmological principle in the sense Einstein seems to
have intended it is the inflation s¢enario (section 17). In this picture we happen
to live not too close to the edge of a bounded, nearly uniform part of a universe
that is quite chaotic on very large scales.

In the now standard cosmological model, the cosmological principle reduces
10 a consistency condition, that the large-scale departures from a homogeneous
and isotropic mass distribution and motion have to be consistent with observable
consequences: the anisotropy of radiation backgrounds, the counts of objects as a
function of direction and distance, and the peculiar motions derived from Doppler
shifts. For example, galaxy counts averaged within spherical regions of radius
30h~! Mpc fluctuate around the large-scale mean by about 30%. If the rms devi-
ations from homogeneity in the mass distribution were similar, ép/p~ 0.3, and
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if the mass fluctuations were uncorrelated at larger separations, the gravitational
acceleration caused by the irregular mass distribution would be predicted to cause
deviations from a homogeneous velocity field that are comparable 1o what is ob-
served (section 21). If the fluctuations in the mass distribution were much larger
than this, it would be a crisis for the standard model. (If the mass fluctuations
were appreciably smaller, it could be less serious, because one might hope to find
a nongravitational source for the observed motions, as in explosions.) On larger
scales, the Sachs-Wolfe effect on the anisotropy of the thermal background ra-
diation (sections 6 and 21) requires that the fluctuations in the mass distribution
averaged within regions of radius comparabie to the Hubble length in equation
(1.2) are no greater than about §p/p~ | x 10~%, There are no near-term prospects
for comparing this prediction to the actual fluctuations in the galaxy distribution
on such large scales; we can only conclude that if the standard model is valid, the
observable universe has to have been constructed to be remarkably close 1o ho-
mogeneous and isotropic on scales comparable to the Hubble length, and that no
believable contradiction to this condition has been found.

Might the cosmological principle be elevated to a physical principle that has to
be true? We should bear in mind that although some may have been glad to accept
the cosmological principle because it simplifies the mathematics, and others be-
cause it agrees with the observations, Einstein was motivated by something quite
different: the 1dea that a universe that is not homogeneous and isotropic in the
large-scale average is absurd. Since the argument has proved successful, perhaps
it 1s telling us something deep about the nature of the universe.

3. The Realm of the Nebulae

With the discovery that the spiral nebulae are galaxies of stars, coequals
of the Milky Way, people were led 10 the exploration of a new level in the hierar-
chy of structure in the physical universe, what Sanford (1917) and Hubble (1936)
called the realm of the spiral nebulae. Since then cosmology has grown to include
the study of other systems, such as the radiation backgrounds and the gas clouds
seen as absorption features in the lines of sight to distant quasars, bul common
luminous galaxies comparable to the Milky Way remain the centerpiece. An ap-
preciable fraction of the mass of the universe at the present epoch is in and around
these galaxies. They are abundant enough to give a useful indication of the struc-
ture of the mass distribution, bright enough to be visible at great distances, where
one might hope 10 see the general relativistic departures from the static flat space-
time of special relativity, and possibly stable enough to act as permanent markers
of how mass concentrations were placed in the remote past.

The purpose of this section is to present some highlights of the ways people
came to see that the spiral nebulae are island universes of stars, and to discuss
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some elements of the systematics of the structures and spatial distribution of the
galaxies.

Discovery

Figure 3.1 shows the distribution across the sky of the brighter of the
diffuse nebulae as they were known at about the time Einstein introduced the
cosmological principle (Charlier 1922). Some of these objects are gas clouds
in our galaxy, but most are spiral nebulae, that is, spiral galaxies similar to the
Milky Way. A few are elliptical galaxies, whose images tend to be dominated by
a smooth concentration of older stars rather than by the prominent disk of gas and
dust and younger stars seen in most spiral galaxies.

We are close to the central plane of the disk of the Milky Way galaxy, so the
plane of the Milky Way appears in the sky as a great circle, and it appears in this
map as the central horizontal line. The sphere of the sky is represented in this flat
map with equal areas in the sky appearing as equal areas in the map. The polar
axis of the galactic coordinate system is normal to the disk of the galaxy, so the
plane of the disk is at polar angle (colatitude) 6 =90°. The galactic latitude b is
measured from the equator, with #=90° — 6. The horizontal lines in the figure

Figure 3.1. Map of the nebulae, from Charlier (1922). Most of the objects
plotted in this map are extragalactic nebulae, that is, galaxies of stars. The
absence of galaxies in the zone of avoidance along the horizontal centerline of
the map is caused by the obscuration by dust near the plane of our Mitky Way
galaxy. The strong concentration near the north pole, at the top of the map, is
the Virgo cluster, the nearest of the rich clusters of galaxies.
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are lines of constant latitude at 10° spacing. Some further details of this galactic
coordinate system are given at the end of this section,

Quite evident in the figure is the zone of avoidance along the equator, where
very few nebulae are seen (and many of these are gas clouds in our galaxy,
not extragalactic nebulae). If the spiral nebulae were independent galaxies, they
would not be expected to prefer the poles of the Milky Way. However, even when
this map was made it was known that there are regions in the plane of the Milky
Way where few stars are seen, and it was suggested, we now know correctly,
that these dark patches in the Milky Way are caused by interstellar dust clouds.
This same dust of course would obscure the extragalactic nebulae in the zone of
avoidance (e.g., Sanford 1917). It was noted that there ar¢ many more nebulae
of small angular size than large, as one would expect if the nebulae were more
or less uniformly distributed around us. For example, Curtis (1918) wrote: “It is
my belief that all the many thousands of nebulae not definitely 1o be classified
as diffuse or planetary are true spirals, and that the very minute spiral nebulae
appear as featureless discs or ovals because of their small size. Were the Great
Nebula in Andromeda situated five hundred times as far away as at present, it
would appear as a structureless oval about (.2 long, with a very bright center, and
not to be distinguished from the thousands of very small, round or oval nebulae
found wherever the spirals are found.”

The Andromeda Nebula (also known as M31, for its place in the Messier list
of bright nebulae) is the nearest large spiral galaxy outside the Milky Way. Opik
(1922) obtained the first useful estimate of the distance to this galaxy by the
following argument.

By 1920 the luminosity of our Milky Way galaxy had been estimated from star
counts and statistical estimates of star distances, and the mass had been estimated
from star velocities. Opik (1922) put the ratio of the mass to the luminosity at

M Mg
T~ 3.1

The units are solar masses and solar luminosities; these and some other units in
common use in cosmology are summarized at the end of this section. The mass-
to-light ratio is close to unity when expressed in solar units because the bright
parts of the Milky Way are dominated by stars with masses and luminosities
roughly similar to that of the Sun. (The contributions to the mass and light densi-
ties in our stellar neighborhood, as a function of star mass, are shown in table 18.1
in part 3.)

Opik noted that if the spiral nebulae were other galaxies of stars they might
be expected to have similar mass-to-light ratios, and that this could be used to
infer the distances to the nebulae. The velocity of rotation of the disk in the
Andromeda Nebula is measured from the Doppler shifts in the wavelengths of
emission lines from the disk gas. Because the Doppler shifts across the disk are
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close to symmetric relative to the center of the galaxy, it is reasonable to assume
that the disk material is moving in circular orbits, at linear speed v, at the edge
of the disk, at radius r. Then the gravitational acceleration g at the edge of the
disk is

GM _GM V.2 _ vl ,

E TR 4
The first equation assumes the mass M of the galaxy is spherically distributed,
but the gravitational acceleration is not much different for a flattened mass dis-
tribution. The radius has been written as r = 6D, where 8 is the observed angular
radius of the disk and D is the unknown distance to the galaxy. If the luminosity
of the galaxy is L, the observed energy flux £ of the light from the galaxy is

L
f= D 3.3)
The result of combining these two equations is
2
veol L
~ —. 4
anGf M (3.4)

Using the observed values of v., # and f, and the assumed value of the mass-to-
light ratio in equation (3.1), Opik found'

Dsy =450kpc. (3.5)

The modern value, based on observations of variable stars with known intrinsic
luminosities, is D =770 & 30kpc. Opik’s number is close because, as he had
expected, the mass-to-light ratio in the brighter parts of a giant galaxy is close
1o a universal value, not far from equation (3.1). Some typical numbers are given
in section 18,

Opik pointed out that his result puts M31 well outside our galaxy. (We are near
the edge of the Milky Way, at about 8 kpc from the center.) With the distance
in equation (3.5), the mass of M31 from equation (3.2) is comparable to that of
our galaxy. Thus Opik concluded that M31 is another island universe of stars, as
others had speculated before him.

Opik’s result was confirmed by Hubble’s (1925, 1926a) identification of
Cepheid variable stars in the Andromeda Nebula and its companion galaxy, the

! One parsec is the distance al which one second of arc subtends one astronomical unit, which is the
mean distance between the Earth and Sun. This is convenient because as the Earth moves around the
Sun, a star al one parsec distance from us is seen 1o move relative to the distant stars in an ellipse
with semimajor axis equal 10 one second of arc. As usual, one kiloparsec =1kpc=10'pe and one
megaparsec = | Mpc = 10°¢ pc. A handy working number is 1 pc ~ 3 light years.
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Triangulum Nebula M33. (These galaxies are named after the constellations in
which they appear in the sky; Cepheid variables are named after their prototype,
& Cephei, in the constellation Cepheus.} Cepheid variable stars had already been
identified in the Magellanic Clouds. These are dwarf satellites of the Milky Way,
near enough that they were seen to be systems of stars, and with reasonably se-
cure distance estimates from the comparison of stars in the Magellanic Clouds
with those in our galaxy. it was known through the work of Leavitt (1912 and
earlier references therein) that in this class of variable stars the mean intrinsic
luminosity is correlated with the period of the variation in luminosity, so Hubble
could use the inverse square law 1o find the ratio of distances to M31 or M33 and
the Magellanic Clouds by companng the observed bnghtnesses of Cepheids with
the same period and hence the same luminosity. Using Shapley’s (1925) estimate
of the distance to the Magellanic Clouds, Hubble found

Dybbie = 300 kpC (3.6)

for M31 and M33, comparable to Opik’s result in equation (3.5). This is smaller
than the modern value, because Shapley underestimated the distance to the Mag-
ellanic Clouds by a factor close to two, and Hubble's value for the ratio of the
distances of M31 and M33 to the distance to the Magellanic Clouds was small by
another 30% . But that is a detail. The main point is that the astronomers had hit
on believable evidence that the spiral nebulae are island universes comparable to
the Milky Way.

Hubble’s Test for the Space Distribution

It was natural that people should ask whether the galaxies are uniformly
distributed, because that is what Einstein had postulated for the world matter.
Perhaps more convincing to astronomers is that, as we have noted, 1t was known
that there are many more spiral nebulae of small angular size than large, as one
would expect if the nebulae were homogeneously spread through space. Hubble
(1926b) translated this observation into a quantitative test by adapting a method
previously used to study the space distribution of stars.

Suppose for simplicity that space is static and the geometry Euclidean, and
that all galaxies have the same intrinsic luminosity, L. The last assumption will
be removed 1n a moment; the relativisuic corrections for the expansion and space
curvature of the standard cosmological model are dealt with in part 2.

In static Euclidean space a galaxy of luminosity L at distance r appears at
apparent bnighiness (observed energy flux)

L
f=

T 4nr?”

(3.7)

If all galaxies had the same luminosity, all galaxies brighter than f would be
closer than r. The volume of space in a steradian of the sky out 10 distance 7 is
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V =r3/3, so if galaxies were distributed uniformly on average, with mean number
density n, the mean number of galaxies per steradian brighter than f would be

s n L 32
N>fy=nV = 3 =3 (Mf) : (3.8)
The last step follows from the inverse square law in equation (3.7). In reality,
galaxies have a broad spread of luminosities. We can take that into account by
letting n; be the mean number density of galaxies in luminosity class L;. Then
equation (3.8) applies to each class of galaxies, and the sum over luminosity
classes gives the total count of galaxies as a function of observed energy flux £,

B L\ i
N(>f)—§2n,-(m) o f 32, (3.9)

It is a standard convention in astronomy to express L and f in logarithmic
measures of absolute and apparent magnitudes. The apparent magnitude m of an
abject with received energy flux f (with units of ergs per second and per square
centimeter in some chosen band of frequencies) is defined to be

m=-2.5logf +constant . (3.10)

Here and throughout, the base for log x is ten; natural logarithms are written In x.
The normalizing constant is defined at the end of this section. The curious choice
of basis for the logarithm, and the convention that the magnitude decreases with
increasing energy flux, comes from the historical use of magnitudes as a way to
rank the visual brightnesses of the stars. A way to remember it is t0 note that
a change of five magnitudes represents a factor of 100 difference in flux. The
absolute magnitude, M, of an object is related to its intrinsic luminosity, L, by the
amalogous relation,

M =-2.5log L +constant. (3.11)

This constant is defined so that an object at 10 pc distance has apparent magnitude
equal to its absolute magnitude (when there is no obscuration, for example by
absorption and scattering by interstellar dust). Thus we have from the inverse
Square law (3.7) that the difference between the apparent and absolute magnitudes
of an object at distance r is

m—M=5log rmpe +25. (3.12)
The distance is measured in units of megaparsecs, so that at r = 10 pc this equa-

tion says m — M =0, which is the definition of the absolute magnitude M. The
magnitude difference m — M is called the distance modulus.
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From equation (3.10) the energy flux is
foc10704m (3.13)

so Hubble’s count law (3.9) for a spatially homogeneous mean distribution of
objects is

N(< m) x 10057 (3.14)

The differential counts have the same form,

dN(m)
dm

oc 10967 (3.15)

In the 1920s it was known that star counts vary less rapidly than 10%%” indi-
cating the Milky Way is inhomogenecus and the star counts probe the edges of
the system. The test is readily applied to galaxy counts. Already in 1926 Hubble
could report that the galaxy counts available in the literature agree with the f ~3/2
power law, consistent with the idea that the galaxy distribution is close to homo-
geneous In the large-scale average (Hubble 1926b). The deepest counts Hubble
used amount to five galaxies per square degree in a half-magnitude interval in
apparent magnitude. The direct estimates of the limiting magnitude in these old
data are not reliable, but we can scale from the modern count-distance relations in
figures 3.2 and 5.6. They indicate the counts reached blue magnitude m ~ 17, cor-
responding to a distance about two hundred times that of the Andromeda Nebula
and about ten times that of the Virgo cluster (which is seen at the top of figure 3.1
and in figures 3.4 and 3.7 below). In the next decade, Hubble (1934) pushed the
count test deeper, to limiting magnitude m ~ 21 in the magnitude system in fig-
ure 3.2. In the notation in equation (1.1) and in (3.18) below (and developed in
section 5), Hubble's limiting depth is about 6002~ Mpc, or 20% of the Hubble
length in equation (1.2). The fact that Hubble encountered no pronounced evi-
dence of an edge to the galaxy distnbution was an impressive first extensive and
quantitative test of Einstein’s homogeneity postulate.

Hubble’s test is powerful because the detection and measurement of the flux
f is relatively easy even for very distant galaxies. The method is unlikely ever
to yield a precision measure of modest fluctuations away from homogeneity on
large scales, however, because the light from galaxies at great distance is shifted
toward the red part of the spectrum, as will be discussed in section 5, and unless
the redshift is known for each galaxy it is difficult to correct for the effect on
the received energy flux measured in a fixed band of frequencies, Also, even
at the depth of Hubble's 1934 survey the galaxies are distant enough so that in
the standard model they are seen when they and the universe were significantly
younger (due to the light travel time), so the time evolution of the galaxies and
spacetime can cause an appreciable departure from Hubble’s relation (3.15).
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Figure 3.2. Galaxy counts (Shanks [991). The horizontal axis is the apparent
magnitude. The solid line is the Hubble law (3.15).

An example of the galaxy counts at what now are considered intermediate
depths is shown in figure 3.2, The graph was made by Shanks (1991); the meth-
ods and observational surveys are reviewed in Shanks (1990). The solid line is
the 109" Hybble law. The counts at magnitudes m < 13 are high because of the
local concentration of galaxies in and around the Virgo cluster. In the relativis-
tic Einstein-de Sitter model defined in equations (5.18) to (5.21), assuming the
luminosities of the galaxies are not changing with time, the predicted counts cor-
rected for the redshift and normalized at m ~ 15 are a factor of two below the
abservations at m ~ 20. From there to m ~ 25 the counts are well fitted by a shal-
lower power law, N ~ 10457 This is presumed 10 be the combined effect of
evolution of the galaxies and spacetime. There have been dramalic recent ad-
vances in the ability to measure galaxy redshifts at apparent magnitudes fainter
than m ~ 20. The untangling of the effects of galaxy evolution and the departures
from Minkowski spacetime on galaxy counts as a function of redshift and appar-
ent magnitude are likely to be major topics in cosmology in the 1990s.

The apparent magnitudes on the horizontal axis of figure 3.2 are measured in
a blue band at A~ 4000 to 5500 A, in the Durham m=b; system (Shanks et
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al. 1984).% In section 5 we will need the normalization of Hubble's galaxy count
law to estimate the mean space number density of galaxies. The solid line in fig-
ure 3.2 is

dN 1O~ 5-70£0.1040.6m 1

mag~', for 145 m <18, (3.16)
dm

ster

Mapping the Galaxy Distribution

Figure 3.1 shows that the nearby galaxies are distributed in a decidedly
inhomogeneous way. An understanding of the clustering of the galaxies is impor-
tant as a measure of how closely the large-scale mean distribution can approach
the homogeneity postulated in the cosmological principle. Equally important, the
tendency for galaxies to appear in groups and clusters and superclusters is just a
scaled-up version of the tendency of stars to appear in the concentrations we call
galaxies. The phenomena surely are related, and an interpretation ought to teach
us something important about the physics of the universe. Some of the attempts
to rise to the challenge are chronicled in section 25.

We will be considening the nature of the galaxy distribution around us in a
sequence of increasing distance. Since direct distance estimates are available for
relatively few galaxies, we will use the result to be discussed in section 3, that the
redshift of the spectrum of a galaxy is the sum of a cosmological part proportional
to the galaxy distance r and a Doppler shift due to the line of sight component of
the motion of the galaxy relative to the mean flow,

AofAe—1)=Scz=THr+v. (3.17)

Here A,/ . is the ratio of observed wavelengths, A, of features in the spectrum to
the corresponding laboratory wavelengths, A, that are presumed to be the wave-
lengths at emission as measured by an observer at rest in the observed galaxy.
The second expression is the redshift, z, defined so z =0 if there is no shift in the
spectrum. The line-of-sight component of the motion of the galaxy relative to the
mean, which is callied the peculiar velocity, is v. The peculiar velocity produces
an ordinary first-order Doppler shift, §\/A =v/c. The constant of proportionality
in the cosmological redshift term H,r is Hubble’s constant. This linear relation

* It is striking that there still is not a standard set of magnitudes based on fixed passbands and zero
points (the constant in the relation between energy flux f and apparent magnitude m n eq. [3.10]),
because each advance in delcctors suggesis new conventions. For the order-of-magnitude estimates
presented in this book, the specific optical magnitude sysiem does not much matier, and the choice
will be based on convenience. In more detailed calculations one must of course use due caution in
mixing magnitude sysiems.
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between redshift and distance applies when H,r and v are small compared 1o the
velocity of light; the relativistic corrections are dealt with in part 2. The value of
Hubble's constant still is subject to debate, so the standard practice, going back at
jeast to Kiang (1961), is to write it as

H,=100hkm s~ Mpc™!, 0.55h5085. (3.18)

As indicated, the dimensionless parameter 4 is believed to be between 0.5 and
0.85. In this section we attempt to reduce confusion by quoting distances in units
of velocity. Thus, if the peculiar velocity in equation (3.17) is negligible, the
distance in velocity units is

Hor=cz=cbA/X, (3.19)

which of course is independent of the value of H,.
As we have noted, the nearest large neighboring galaxy is the Andromeda
Nebula, M31, at distance

D31 =770+ 30kpe . (3.20)

This is about 20% of the mean distance between large galaxies (eq. [5.145] be-
low). The spectrum of the Andromeda nebula is blueshifted, corresponding to a
rate of approach of the centers of the Milky Way and M31 of about 100 km s™1,
This is a rare exception 10 the rule that galaxy spectra are redshifted. The blueshift
and the relatively small separation both suggest the two galaxies are orbiting in a
gravitationally bound system, called the Local Group. The other members of this
group are the satellites of the Milky Way and of M3I, such as the Magellanic
Clouds and the Triangulum Nebula M33, along with a few outlying dwarf galax-
ies at distances r < 1Mpc. A helpful guide 1o the Local Group is given by van
den Bergh (1968). A model for its dynamics is presented in section 20.

Figure 3.3 shows the distribution of the known galaxies in our immediate
neighborhood. The data for this figure come from a recent version of Huchra's
(1991) compilation of measured redshifts, ZCAT.

The maps show two projections of the galaxy distribution, in a box of width
H,r=800kms~' centered on us. The width of the box is 0.3% of the Hubble
length ¢/H, at which the cosmological redshift in equation (3.17) extrapolates
to the velocity of light. In distance units, the box width is 84~ Mpc, an order
of magnitude larger than the distance to the Andromeda Nebula. The coordinate
axes are the de Vaucouleurs (1953) supergalactic coordinates. The Y axis points
roughly in the direction of the Virgo cluster of galaxies, which is at distance
€z~ 1200kms~!, and the XY plane is oriented to include the plane of the local
concentration of galaxies. The zone of avoidance caused by the obscuration by
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Figure 3.3. Map of the nearby galaxies. The Milky VVay is at the center. The distance scale
is the redshift, cz. The galaxies with luminosities greater than about 30% of the Milky
Wiy are shown as filled diamonds, the fainter dwarf galaxies as the open symbols. The
positions are plotted in the de Vaucouleurs supergalactic coordinates defined at the end
of this section. The symbol size increases with increasing value of the coordinate along
the projected direction. Panels (a) and (b) are orthogonal projections of the distribution.
Panel (c) labels the more luminous galaxies.

dust in our galaxy is roughly in the XZ plane. This makes the map incomplete at
Y| < 100kms~L.

There are two cautionary remarks to make about this figure. First, it seems
likely that all the bright galaxies within the volume of the box have been identi-
fied, but at the faintest absolute magnitudes and lowest surface brightnesses the
fraction of the galaxies within this volume that have been detected and repre-
sented in the map has to vary across the sky, a function of the degree of interfer-
ence by interstellar matter in the Milky Way and of the detail with which different
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parts of the sky have been searched. Also, there still is some confusion about mea-
sured values of the redshifts for a few of the faintest galaxies, and even about the
identifications of some of them. This is not likely to have much effect on the gen-
eral appearance of the map, unless there is an important class of galaxies that has
been almost entirely missed.

Second, the radial distance coordinate, with origin centered on the Milky Way,
is the redshift, cz. Galaxy motions v relative to the ideal Hubble flow in equation
(3.17) (the peculiar motions relative to the peculiar velocity of the Local Group)
tend to spread the apparent distribution of distances along the line of sight. The
evidence is that the effect usually is relatively small, even at the small cosmolog-
ical redshifts in this map, as is illustrated in figure 5.5 below, but there are impor-
tant exceptions. Most prominent is the nearby Virgo cluster of galaxies (which
appears at the top of figure 3.1). The recession velocity of this cluster is not much
larger than the random velocities of the galaxies in the cluster, so the spectra of
some of the galaxies in the cluster are shifted to the blue.® This effect has been
suppressed by discarding all galaxies at angular positions in a circle of 6° radius
centered on the Virgo cluster. We will note below some other examples of galax-
ies that are known to be in more distant groups and are in this map because they
have peculiar motions toward us. Within the Local Group, the Andromeda Neb-
ula and its more prominent satellites have been placed at about the right positions
relative to the Milky Way, but the outlying group members are plotted at their
redshift distances, which are considerably distorted by motions within the group.
The map thus must be treated with caution, but it does give a useful first impres-
sion of where things are.

Panel (c) shows common names for the brighter galaxies. The galaxies M81,
MB82 and N2403 (where N, or more commonly NGC, stands for the New General
Catalog of galaxies) are thought to be at a nearly common distance, members of
the M81 group. The motions within the group would produce the dispersion in
redshift distances. The giant spiral galaxy M101 is the dominant member of a
group just outside the box, this galaxy having a small redshift distance because
its peculiar motion is toward us. The Maffei group of galaxies, which is close
to the X axis at X ~400kms™!, is named after its discoverer (Maffei 1968); it
was 1dentified only fairly recently because it is in the zone of obscuration. The
spiral N6946 appears close to the Maffei group in projection in panel (c), but one
sees in panel (a) that it is quite isolated. The concentration of galaxies around
N253 is called the Sculptor Group. The unusual galaxy N5128, or Centaurus
A, looks like an elliptical crossed by a broad band of dust. Beautiful images of

} The only known galaxies with blueshifts are members of the Local Group and a few galaxies in the
direction of the Virgo cluster thai are presumed 10 be cluster members with velocitics far enough tnio
the tail of the distribution so that the peculiar velocity within the cluster is larger than the cosmological
redshift and they have a net motion of approach 1oward us.
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this galaxy and many of the others named in panel (c) are in The Hubbie Atlas
of Galaxies (Sandage 1961). Elegant maps of the galaxy distribution are in the
Nearby Galaxies Atlas (Tully and Fisher 1987).

There are several notable features of the distribution in figure 3.3. First, one
sees regions well away from the zone of avoidance at ¥ ~ ¢ where the galaxy den-
sity is markedly low. Kirshner et al. (1981) named these regions voids., Second,
there are many more dwarf galaxies than giants such as the Milky Way. Third,
the distributions of giants and dwarfs are quite similar: the voids defined by the
giants are avoided by the dwarfs. And fourth, the galaxies tend to lie on a plane,
as evidenced by the strong concentration at small |Z| in panel (a) compared to
the spread in X and Y in panel (b). De Vaucouleurs identified this plane as part
of the Local Supercluster, along with the concentration of galaxies around the
Virgo cluster.

The local plane of galaxies defines a structure that extends to remarkable dis-
tances. It can be seen as a linear concentration in the sky map of the galaxies at
distances cz < 3000kms~! (Lahav 1987). As illustrated in figure 3.7 below, this
plane contains several of the nearest clusters of galaxies. Particularly striking is
the observation that most of the radio galaxies at distances ¢z < 5000km s~ are
concentrated in the same plane, though at this distance the mean angular distribu-
tion of the galaxies is close to isotropic (Shaver 1991). Section 26 contains a few
thoughts on what this might be telling us.

Figure 3.4 shows the angular distribution of the galaxies brighter than appar-
ent magnitude m ~ 14.5 and at redshifis ¢z < 3000km s~!, four times the width
of the box in figure 3.3. The galaxies in this map were catalogued by Zwicky et
al. (1961-68). The redshifis are from the first of the large-scale systematic red-
shift surveys, by Davis et al. (1982). The two panels show separately the high
luminosity and low luminosity halves of the sample. The maps are centered on
the north galactic pole, perpendicular to the plane of the Milky Way. The circles
are at galactic latitudes b=70°, 50°, and 30° (that is, polar angles 20°, 40°, and
60°). The survey boundary is b=40° at lower latitudes few galaxies are visible
because they are obscured by the dust in the plane of the Milky Way, in the zone
of avoidance. The dashed lines show the right ascension o and declination & in
the polar coordinate system centered on the Earth (and defined in a little more
detail at the end of this section). The empty region to the lower left is the catalog
boundary at § =0.

The concentration of galaxies at declination é ~ 13° and right ascension
a~ 127257 is the Virgo cluster. The cluster is about equally prominent in the
distributions of the high and low luminosity galaxies shown in the two panels.
That is, we see again that to quite a good approximation the less luminous dwarf
galaxies cluster with the more luminous giants.

Another way to classify galaxies distinguishes the gas-rich late types, including
spiral galaxies such as the Milky Way and irregulars such as the Magellanic
Clouds, and relatively gas- and dust-free early types. High surface brightness
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0 <v <3000
514 GALAXIES
M>-18.5

Figure 3.4. Angular distribution of galaxies at redshift distances ¢z < 3000kms~! (Davis
et al. 1982). The more luminous galaxies, with absolute magnitude M < —18.5, are shown
in panel (a), the less luminous ones in panel (b). The pentagons represent galaxies at
V< 1000kms~!, diamonds 1000 < v < 2000 kms~', and plus signs v > 2000kms~'.
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early-type galaxies are classified as elliptical and SO, according to their shapes.’
Most of the brighter of the galaxies in our neighborhood shown in figure 3.3 are
late types. Within 6° from the center of the Virgo cluster there are more nearly
equal numbers of early- and late-type galaxies, and the early types are more
strongly concentrated toward the cluster center. Following Baade and Spitzer
(1951) and Gunn and Gott (1972), it is thought that collisions between young
galaxies in the dense central parts of a developing cluster. or the ram pressure due
to the motion of the young galaxies through the intracluster gas, have tended to
inhibit the accumulation of the interstellar gas and dust characteristic of late-type
galaxies, producing a higher concentration of early types in clusters.

The strong concentrations of galaxies in such clusters, and the usually premi-
nent excess of early types toward the cluster centers, indicate that the clusters
are localized concentrations in space, that is, that the cluster members have a
common cosmological redshift. Thus the spread of values of the redshifts of
the cluster members is interpreted as a distribution of the line-of-sight pecu-
liar velocities in equation (3.17). In the Virgo cluster, the line-of-sight veloc-
ity dispersion (rms deviation from the mean) for the early-type galaxies is g, ~
500kms~!. The later types have a distinctly broader velocity distribution, o, ~
800kms~! (de Vaucouleurs and de Vaucouleurs 1973; Huchra 1985; Binggeli,
Tammann, and Sandage 1987). The cosmological redshift of the cluster is 1200 +
100kms~!, the main uncertainty being the correction for our motion toward the
cluster caused by its gravitational attraction (as discussed in section 20).

Figure 3.5 shows the distribution of galaxies in the neighborhood of the Coma
cluster, at distance cz=7000kms~!. Plotted are all galaxies in the field with
measured redshifts in the range 4000 km s~! to 10000 km s~!, from Huchra’s
(1991) zcar redshift catalog. The coordinate axes, in degrees of declination and
hours of right ascension, are scaled to give an undistorted image. The symbol size
decreases with increasing distance. The galaxies in the central parts of this cluster
are predominantly early types: spirals are found only on the outskirts.

Abell (1958, 1965) catalogued the several thousand nearest and richest clusters
in the northern hemisphere, to a limiting depth of about 60,000 km s~!. Thus the
Coma cluster also is known as A1656, after its place in the Abell catalog. The
mean space number density of Abell clusters is ny ~ 1 x 107343 Mpc™? (Bahcall
1988). and the mean distance between Abell clusters is Hon;l/3=5000kms‘1.
This is comparable to our distance from the Coma cluster. The ratio of distances
of the Coma and Virgo clusters is

* The origins of such curious names are undersiood only by astronomers; Kormendy (1982), Kor-
mendy and Djorgovski (1989), and van den Bergh (1990a) give helpful guides. Al one time it was
thought that early-type ellipticals might evolve into late-type spirals. In sections 25 and 26 we will
take note of the arguments for and againsi the idea that the evolution might go the other way.
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Figure 3.5. The Coma cluster of galaxies. This map is by Groth (1992), out of
Muchra's ZCAT, after an earlier version by Huchra,

R
Coma _5540.5 (3.21)
RV'ugO

(Aaronson et al. 1986; Dressler et al. 1987; Sandage and Tammann 1990). As
discussed in section 5, this number is useful for establishing the distance scale.

- Along with a greater concentration of galaxies than in the Virgo cluster, the
Coma cluster has a larger line-of-sight velocity dispersion. The central value is
0=1200kms~!, and the dispersion drops to ¢ ~ 700km s~ at projected distance
H,r ~ 1 Mpc from the cluster center (Kent and Gunn 1982). This decrease of @
with increasing projected radius is a common feature of rich clusters.

Clusters also tend to contain X-ray emitting plasma with space distribution
similar to that of the galaxies. In the Coma cluster the plasma temperature derived
from the X-ray spectrum is kT =8.5 + 0.3 keV (Hughes 1989). The mean particle
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mass in the plasma, allowing for the helium, is m =0.6 times the proton mass, so
the one-dimensional thermal velocity dispersion is

0p = (kT /m)1/?=1200km s™". (3.22)

This 1s close to the central galaxy velocity dispersion, consistent with the similar
space distributions of plasma and galaxies. A measure of the core radius of the
plasma distribution is that the surface brightness of the X-ray emission drops
to half its central value at about 7 arc minutes from the cluster center, which
translates to a projected radius r = | S0~} kpe. Measures of the mass distribution
in rich clusters are discussed in section 20.

Figure 3.5 shows a prominent cluster core, which contains the bulk of the X-ray
emitting plasma, and around that an irregular concentration that blends into the
generally clumpy distribution of galaxies in the field. There is no clearly defined
edge to the cluster. Zwicky (1957) noted that the concentration of galaxies around
a nich cluster extends well beyond the central core, and the effect was clearly
demonstrated in the first redshift survey around the Coma cluster (Chincarini and
Rood 1975). The mean run of the space number density of galaxies with distance
r from the cluster center, averaged over a sample of clusters to eliminate the
fluctuations in the individual systems, is

("(r)) Feg 2 -1
- "’”(T) . reg~ 15871 Mpe (3.:23)

(Seldner and Peebles 1977, Lilje and Efstathiou 1988), where n; is the back-
ground mean galaxy number density. This is discussed further in section 19,
Figure 3.6 shows maps of the galaxy distribution in three adjacent strips of
the sky, each 6° deep and about 100° wide, at the declination ranges indicated
in the figure, and extending to a redshift slightly greater than that of the Coma
cluster. The galaxies are from the catalog of Zwicky et al. (1961-68), at a limiting
depth about one magnitude fainter than in figure 3.4. The radial coordinate is
the redshift. The Coma cluster is the dense patch in panel (a) at right ascension
« ~ 13", The dispersion of peculiar velocities of the galaxies in the cluster causes
it to appear in this redshift map as an elongated stripe pointing to us, an effect
familiarly called the “Finger of God.” It is presumed that outside the rich clusters
the peculiar velocities of the galaxies do not greatly distort this redshift map from
the true space distribution, because one sees neither the elongations along the line
of sight to be expected from random motions nor the effect of collapse, which
would make galaxy concentrations tend to appear flattened along the line of sight.
A striking feature of these maps is the tendency of the galaxies to trace linear
sheetlike distributions in a larger-scale version of what is seen in figure 3.3. On
the basis of the first of the maps in figure 3.6, in panel (a), de Lapparent, Geller,
and Huchra (1986) argued that the linear structures are cuts through sheets of
galaxies, rather than filaments, because one of these thin slices would not be
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likely to contain many long segments of filaments. They predicted therefore that
the linear structures in the first map would continue to the neighboring slices,
in agreement with what is seen in the second and third panels in figure 3.6.
Other pioneering discussions of the tendency of galaxies to trace linear structures
were given by Joeveer, Einasto, and Tago (1978), Oort (1983), and Haynes and
Giovanelli (1986).

In judging the physical significance of patterns, one has to take account of the
tendency of the eye to se¢ patterns even in noise. (It must be evolutionarily ad-
vantageous that the eye is very good at picking out the pattern of a leopard among
the trees, and, if mistakes are made, that the eye should occasionally see phantom
leopards that are not really there in preference to missing the occasional real one.)
The linearity of the structures seen in figures 3.3 and 3.6 is manifest. The Great
Wall is the high-density feature in figure 3.6 that runs from ¢z ~ 10,000 kms™!
ata=17" 1o ¢z ~7000kms~! at «=8". Is this a single physical entity more than
1004~! Mpc long, or the accidental juxtaposition of several smaller sheets? The
test will come from what is found in still larger surveys.

One way to survey the character of the galaxy distribution on larger scales
is to select a sparse sample for redshift measurements. The sparse sample of
galaxies detected in the NASA IRAS (Infrared Astronomical Satellite) survey at
60 and 100 microns wavelength (discussed by Soifer, Houck, and Neugebauer
1987) are bright in the far infrared because they tend to contain unusually large
amounts of dust heated by unusually large numbers of bright young stars. The
production of both, which seems to be triggered by the disturbance of a close
neighbor, also produces strong optical emission lines from the gas that make
the measurement of the redshift relatively easy. Even more important, the IRAS
galaxies are selected by their flux densities in the far infrared, which are not
greatly affected by absorption by dust in our galaxy. That means the survey can
cover a much larger area of the sky than an optically selected catalog.

Figure 3.7 shows the angular distributions of the 2700 nearest and brightest
IRAS galaxies (with selection criteria discussed by Strauss et al. 1990), and fig-
ure 3.8 shows a sparser sample of some 2200 rAS galaxies at redshifts 6000 <
€z <20,000km s~ !, Galactic coordinates are used in these whole sky maps, as
in figure 3.1, but in a slightly different projection and with the zero of longitude
closer to what is now known to be the center of the Milky Way. The horizontal
centerline is the plane of the Milky Way. The 1rRAs samples do not include galax-
ies in directions near the plane, because of interference by sources in the Milky
Way, which causes the empty band running through the center of figure 3.8. Other
narrow unsampled stripes are indicated in the map of a still deeper RAS redshift
sample of Saunders et al. (1991).

The galaxy concentrations in rich clusters of galaxies, such as the one illus-
trated in figure 3.5, are underrepresented in these [RAS maps because gas fuels the
high infrared luminosities of most IRAs galaxies, and cluster members tend to be
gas-poor. However, as we see in figure 3.5, most of the galaxies associated with
a rich cluster are on the outskirts, where most of the brighter galaxies are spi-
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Figure 3.6. The galaxy distribution at redshift distance ¢z < 12,000kms~' and
limiting apparent magnitude m < 15.5 (de Lapparent, Geller, and Huchra 1986;
Geller and Huchra 1988, 1989%). The radial coordinate is the redshift. The
angular coordinate is the angular position of the galaxy along a strip of the sky,
6° deep in declination and ~ 100° wide along the direction of right ascension.
The three panels represent three adjacent strips, as indicated by the declination
ranges.

rals, so the bias is not thought to be large outside the dense central parts of the
Clusters (Strauss et al. 1992b). The positions of the two most prominent clusters
in figure 3.7a, Virgo and Ursa Major (which are named after the constellations
in which they appear), are indicated by the dashed circles in figure 3.7c. and the
solid circles show the positions of four clusters at 3000 < ¢z < 6000 km s~ ! in fig-
ure 3.7b. The inner curve in figure 3.7c is the plane of the Local Supercluster, at
Z=0in figure 3.3a. The local concentration of galaxies in the sheet in figure 3.3 is
visible in figure 3.7a as the stripe running down to the right from the Virgo clus-
ter. The general distribution of galaxies in the more distant slice in figure 3.7b
shows no strong preference for the plane of the Local Supercluster, but it is strik-
ing that the clusters in this distance range are at low supergalactic latitude (|Z)
Small compared to | X| or |Y}). The Great Attractor discussed in section 5, where
the peculiar velocity field seems to be unusually large, perhaps because of a par-
ticularly large mass concentration, is in the direction of the Centaurus cluster.



Centaunss

Perseus
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Figure 3.7. Distribution of 1Ras (infrared bright) galaxies, in two bands of redshift, cz <
3000 km s~' and 3000 < ¢z < 6000 km s ™' (Strauss 1992; Strauss et al. 1992a). The symbol
size decreases with increasing redshift within each band. The two clusters of galaxies in
the nearer band in panel (2) are indicated by the dashed circles in panel (c). The clusters
in the more distant sample in panel (b) are indicated by the solid circles. The inner curve
in panel (c) Is the plane of the de Yaucouieurs Local Supercluster.
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Figure 3.8. Distribution of more distant IRAS (infrared bright) galaxies (Strauss
1992; Strauss et al. 1992a). The symbol size decreases with increasing redshift
in the range 6000 km s~' to 20,000 km s™".

In the region of space covered by the map in figure 3.8 there are many galaxy
concentrations similar to the Virgo cluster that is so prominent in figure 3.4. Such
concentrations are difficult to see here because the depth is five times that of
figure 3.4, so clusters are seen overlapping in projection, and each is very sparsely
sampled. This means figure 3.8 is not useful for finding clusters, but it does give
us a good picture of the fluctuations in the galaxy distribution on the scale of
the depth of the map, ¢z ~ 10,000kms~!. The fact that there is no noticeable
gradient in the density of galaxies across the sky means that this deeper sample
has not revealed a new larger level in the hierarchy of clustering of galaxies.
That is, in this figure we at last see an approach to the spatial homogeneity of
the cosmological principle. We consider shortly some still deeper samples where
the large-scale isotropy is even more evident. The following statistical test of the
departure from homogeneity is discussed in more detail in sections 7 and 19.

As a measure of the departures from homogeneity, consider the counts of
galaxies that are found within a cube of given width, /. The mean value of the
count of galaxies found in the box placed at random within the region of the
sample is (N}. The count at a chosen position within the sample deviates from
the mean by the amount N — {N). The mean square value of the fluctuation
(the second central moment, or variance, or square of the standard deviation) is
8NZ= (N — (N))?) = (N?) — (N)2. For the IRAS galaxy space distribution, the rms
fractional fluctuation is found to be

SN 05401,  atbox width /=304"" Mpc (3.24)

(N)
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(Saunders et al. 1991; Efstathiou 1991). The methods of obtaining this mea-
sure are discussed in sections 7 and 19. The result means that the length / ~
30n~! Mpc, or H,i~3000kms™', marks a characteristic scale at which the
galaxy distribution makes the transition from the large fluctuations seen on small
scales to a nearly smooth large-scale distribution. This measure is discussed fur-
ther in sections 7 and 19.

It might be noted that equation (3.24) does not conflict with the existence of
systems considerably longer than 304! Mpc; it only requires that they not have
a large effect on the rms fluctuations in galaxy counts. An example is the Great
Wall running across the three panels in figure 3.6. If this is a single entity, it is at
least 1004~ ! Mpc long, and a fascinating puzzle for theories of galaxy formation.
However, the existence of this structure would conflict with the standard cosmo-
logical model only if the predicted gravitational effects of the mass concentra-
tions in this system and others like it violated observed galaxy peculiar velocities
or the isotropy of the cosmic background radiation. This is discussed in section
21, where it will be argued that the large-scale fluctuations in the mass distribu-
tion in systems such as the Great Wall, if fairly traced by the galaxies, produce
large-scale peculiar velocity fields that are at least roughly in line with what is
observed.

Figure 3.9 shows the angular distribution of optically selected galaxies at a
limiting depth about twice that of the IRAS sample in figure 3.8. The field ra-
dius is 50° centered on the north pole of our galaxy, where optical counts are
least affected by obscuration. These are counts to a limiting apparent magnitude,
m ~ 18.5, rather than a limiting redshift, as in previous maps. Because the galaxy
luminosity function (the frequency distribution dr/dL of galaxy luminosities) has
a fairly abrupt upper cutoff, the map is similar to what one would see if the cut-
off were at a limiting distance. The galaxy counts are shown in cells of size 10
by 10 arc minutes. The mean count 1s 1.5 galaxies per cell, for a total of about
4 x 10° galaxies in this map. The data were taken by Shane and Wirtanen (1967)
at the Lick Observatory from a visual survey of photographic plates, as part of a
larger sky survey that counted about one million galaxies. This was done before
the days of high-speed computers; it is a tribute to the dedication and skill of these
astronomers that their procedures gave ample control for the later statistical anal-
yses that yielded, among other things, the first believable result for the statistic
8N /N in equation (3.24). Quite similar values for this number are inferred from
the fluctuations in the counts in angular catalogs such as Lick (by the methods
discussed in sections 7 and 19) and space maps such as IRAS.

Because the Lick map counts all oprically bright galaxies, it is a considerably
denser sample than the IRAS maps, so the “fine structure” on scales of a few tens
of megaparsecs is much more visible. The prominent bright spot near the center
is the Coma cluster shown in figure 3.5, here seen hanging in the foreground.
In retrospect one might imagine that the linear features one sees in this map are
edge-on sheets of galaxies, but we should bear in mind the tendency of the eye to



Figure 3.9. The Lick galaxy counts in a circle of radius 50° centered on the north
galactic pole (Seldner et al. 1977).
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see patterns in noise. The linear structures only became manifest with the redshift
surveys.

In a modern and considerably improved version of the Lick survey, Maddox
et al. (1990) used an automatic plate measuring system (APM} to catalog angular
positions and apparent magnitudes of the two million galaxies at m < 20.5 in a
field of the sky covening 1.3 steradians near the south galactic pole. The depth set
by the limiting apparent magnitude is about three times that of the Lick catalog,
and about 20% of the Hubble length ¢/H,. It is essential that this machine-
selected catalog does have much tighter control on accidental and systematic
variations in limiting magnitude across the field than in the manually selected
Lick catalog, for at the greater depth of the aPm catalog fluctuations in the galaxy
distribution across the sky due to structures such as those illustrated in figures 3.3
1o 3.6 are quite small. At the depth of this survey a great many structures are seen
overlapping in projection, leaving an exceedingly smooth mean distribution.

For our purpose, the central result from the APM survey is that the statistic
8N /N in equation (3.24), again inferred from the angular fluctuations in the
counts, is within the errors of the measurements consistent with what is estimated
in the shallower Lick catalog (Clutton-Brock and Peebles 1981) and the still
shallower IRAS samples (Saunders et al. 1991, Strauss et al. 1992a), This gives
two essential checks of the test of the cosmological principle and the measures of
deviations from it. First, the three samples were obtained, and the statistic 6N /N
estimated, in quite different ways, which one expects would tend to introduce
different systematic errors. Hence, the consistency makes it seem quite unlikely
that the results are seriously biased. Second, if there were appreciable gradients
in the galaxy space number density on the scales of the distances sampled in RAS
and Lick, one would have expected o have seen the effect in progressively larger
values of 6N /N at fixed cell size with increasing sample depth. As discussed in
section 7, this is contrary to what is observed, that 6N /N at fixed cell size is
independent of the depth of the sample.

Figure 3.10 shows Condon’s (1991) map of the 30, 821 brightest radio sources
in the 6 cm catalog of Gregory and Condon (1991). The right ascension increases
in a clockwise direction, from =0 at the top. The map radius is r = (1 — sin §)!/2,
where § is the declination, so equal areas of the sky are mapped into equal map
areas. The circular hole at the center is a catalog boundary set by the range of
the radio telescope. The outer boundary of the catalog is at declination é=0.
Interference by the Sun caused the ragged boundary at the lower left-hand edge.
The small holes just above the central one are the result of interference by bright
sources in the plane of the Milky Way. Other sources in the Milky Way produce
the concentration of sources in the arc at the left side of the map. Apart from these
regions, we have a good view of the extragalactic radio sky.

This is a flux-limited sample, as in the Lick map in figure 3.9. Identifications
with optically detected objects indicate the bulk of these sources are galaxies and
quasars at distances comparable to the Hubble length c/H,, (at which the redshift
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Figure 3.10. Angular distribution of the ~ 31,000 brightest 6 cm radio sources
{Gregory and Condon 1991.)

Z in eq. [3.19] extrapolates to unity). At this very sparse sampling and great depth
the “fine structure” in the distribution of extragalactic objects is quite lost. The
central message from this map is that the distribution of objects smoothed over
the scale of the Hubble distance fails to reveal subsiantial density gradients.
Finally, figure 3.11 shows the X-ray sky brightness at ~ 2 to 20 keV. As in
figures 3.7 and 3.8, the map covers the whole sky, in galactic coordinates, but
here galactic longitude increases to the left, and the map is centered at /=0, on
the center of the Milky Way. The contrast has been adjusted to emphasize the
fluctuations, as indicated in the linear scale at the top of the map. Most of the
objects visible in this map are compact sources whose sizes are set by the angular
resolution of the detector. Local sources are concentrated along the plane of the



44 3 THE REALM OF THE NEBULAE

B peut 6o {N

L SRREgl

Figure 3.11. This map of the X-ray sky was made by Jahoda et al. {1992) from
data obtained with the A2 instrument on the HEAO-! satellite and provided by
the NASA/Goddard Space Flight Center X-ray Branch.

Milky Way and toward /=0, at the center of the map. The Large Magellanic
Cloud is the dark patch toward the lower right, at longitude / =280° and latitude

= —33°, and the Small Magellanic Cloud is further down and 1o the left. The
source near the top of the map at { =283° and »=+75° is the plasma cloud around
the galaxy MB7 in the Virgo cluster. A few other nearby galaxies appear as dark
patches. Between the patches there is a diffuse background (the sum of many
distant sources) that is smooth to 3% within 3° by 3° fields, and smooth to one
part in 10? in the average over 90°.

At the X-ray energies in this map the Milky Way is nearly transparent, and
a typical path through the universe to the Hubble length c¢/H, almost certainly
is unaffected by absorption of X-rays. This means the X-ray flux density in any
direction is proportional to the integrated column density of sources along the line
of sight to the Hubble distance. (The integral is given in eq. [5.162] below.) Thus,
the isotropy of the X-ray background tells us that the integrated column density
of matter within 3° by 3° fields fluctuates by no more than 3% , and the density of
sources averaged over one steradian of the sky and integrated to the Hubble depth
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fluctuates by no more than the large-scale anisotropy of the X-ray background, no
more than about one part in 10°.

As discussed in sections 6 and 21, the departure from isotropy of the radiation
background at wavelengths on the order of one centimeter is about one part in 10°
on angular scales greater than about 10°. This adds to the evidence in figures 3.8
to 3.11, all of which show that, in the average over scales comparable to the
Hubble length, our universe is quite close to isotropic, in striking agreement with
what Einstein imagined. These measures do allow a universe that is spherically
symmetric, with a radial density gradiem, if the gradient is shallow enough to
have avoided detection in the galaxy counts as a function of redshift, but then we
would have to be very close to the center of symmetry. This seems unreasonable,
for there are many distant galaxies that would appear to be equally good homes
for observers, with the one difference that in this picture almost all would present
observers with an anisotropic universe. The best direct constraint on a radial
density gradient is the stability of the statistic 6N /N in equation (3.24) under
changes in the depth of the sample. This test is discussed further in section 7.

Galaxies

The properties of galaxies are known in considerably greater detail than
for groups and clusters of galaxies. Presented here are some results that seem
memorable and simple enough that they might be expected to figure in the de-
velopment of physical cosmology. Much more complete surveys are given in Ko-
rmendy (1982) and Kormendy and Djorgovski (1989).

Hubble (1926b) defined the two standard classes of giant galaxies, late-type
spirals and early-type ellipticals, later adding the transitional SO galaxies (as
described by Sandage 1961). The three main components of a spiral galaxy are
a thin disk, a spheroid, and a dark halo. The thin disk contains gas with young
stars as well as old. The generally older stars in the spheroid are named for their
Space distribution, with surfaces of constant luminosity density approximated by
ellipsoids, of the form

%]
(%)

2

+5 4

=1, (3.25)

a~| =
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The ellipsoid component in a spiral galaxy approximates an oblate spheroid of
revolution, with semiaxes @ =5 > c. Hubble classified spiral galaxies as Sa, Sb,
Sc, and Sd, in a sequence of increasingly open spiral arms in the disk. The
Spheroid tends to be decreasingly prominent relative to the disk in the sequence
from Sa 1o Sd. The Milky Way is usually classified as Sb.

Elliptical galaxies have at most inconspicuous disks, and spheroidal compo-
hents that can have triaxial shapes, with the ratio of the lengths of the small-
st to largest axis in the range 0.3 $c¢/a < 1. Ellipticals contain relatively little
8as, though they can have halos of hot X-ray emitting plasma. (The giant ellip-
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tical galaxy M87 in the Virgo cluster is the source at the top of the X-ray
map in figure 3.11.) The spheroidal components in spirals and ellipticals follow
quite similar relations between the luminosity and star velocity dispersion (egs.
[3.34] and [3.35] below). This could be read to mean that in the beginning there
were spheroids, some of which later became adomned with disks (sections 22 and
25).

In luminous SO galaxies the spheroidal component has a lenticular shape that
may come close 1o the appearance of a spiral galaxy with a smooth disk rather
than one having spiral arms. It has not escaped notice that if the gas were swept
from a spiral galaxy and the young stars that outline the spiral arms were allowed
to fade away, the result would resemble the more flattened SO galaxies. There is
no consensus on whether this really is what happened, however.

The following deals with some of the systematic properties of the regular giant
spiral and elliptical galaxies. This oversimplifies the situation, for we see in fig-
ure 3.3 that dwarfs are much more common, but a more careful treatment would
require a book on astronomy.

Figure 3.12 shows examples of the evidence for dark massive halos around
spiral galaxies. The top panels show the optical surface bnghtness as a function
of radius. The vertical axis is logarithmic, so the nearly straight curves mean the
surface brightness in the disk approximates an exponential function of radius r,

i(r)=i,e ™" (3.26)

The disk scale lengths for these two galaxies are a~! ~ 2k~ ! kpc; in giant spirals
such as the Milky Way, the scale length may be twice that (Freeman 1970). In
the lower panels the symbols with error flags are the measured circular speed
of rotation as a function of distance from the center of the galaxy. This is the
rotation curve v.(r). In these examples the rotation curve is derived from the
Doppler shift, relative to the mean, in the 21 cm line of the atomic hydrogen in
a disk that extends well beyond the optically bright part. The solid lines in the
lower panels are the rotation curves predicted under the assumption that the mass
has the same distribution as the light (with the addition of the observed mass of
atomic hydrogen). This leaves one parameter, the mass-to-light ratio, which has
been adjusted to fit the inner part of the rotation curve. The fit gives

M Mo, Mg
250772 and 5382
L= 1o

(3.27)
for NGC 2403 and NGC 3198. As in equation (3.1), these numbers are similar
to what is observed for the matter in our neighborhood, and comparable to what
might be expected for the mix of star masses that reproduces the spectra of the
galaxies. The result is a reasonably close fit to the rotation curves in the central
parts of the galaxies, meaning it is plausible to assume that the mass in the inner
parts is dominated by ordinary stars. However, in the outskirts the luminosity
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Figure 3.12. Luminosity profiles and rotation curves for spiral galaxies {(van
Albada and Sancisi 1986). The numerical value of the radius is based on the
Hubble parameter h=0.75.

in the exponential disk of the galaxy has converged, so if starlight traced mass
we would have expected to see the rotation curves approach the Kepler form
veocr—'/2, as in the solid curves in the figure. This is quite different from what is
observed.

The discrepancy means either that Newtonian gravitational physics fails or that
the mass in the outer parts of the galaxies is dominated by low-luminosity ma-
terial, a dark halo. Newtonian mechanics does give a reasonable description of
the central parts, for the rotation curve is what would be expected if the mass
were dominated by stars with astrophysically sensible mass-to-light ratios. As
discussed in section 20, general relativity theory provides a good description of
the gravitational lensing of background galaxy images by the mass concentrations
in great clusters of galaxies, on scales ~ 100 kpc. Thus the reasonable interpre-
tation to consider first is that the low velocity limit of general relativity theory,
Newtonian mechanics, is a useful approximation to dynamics on the scale of
galaxies, and that the material in the outer parts of the galaxies in figure 3.12
happens not to be readily visible. That certainly is easy to imagine: perhaps the
mix of star masses changes with increasing radius, to favor lower mass stars with
Much higher mass-to-light ratios. Another popular idea is that the dark mass is
8ome new exotic form of matter; some ideas are discussed in section 18. But since
this subject is still being explored, it is well to bear in mind the alternative that we
&r¢ not using the right physics.
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Under Newtonian mechanics, figure 3.12 indicates that the nearly flat part of
the rotation curve is dominated by the seen stellar mass at small radii, and by the
dark halo in the outer parts, with the distributions of light and dark components
just such as to keep the rotation curve close 1o flat. This “conspiracy” seems to be
a common feature of spiral galaxies (van Albada and Sancisi 1986).

We can translate the rotation curve into a reasonable first approximation to
the mass distribution by recalling that in Newtonian mechanics the gravitational
acceleration g of a centrally concentrated mass distribution is well approximated
by the expression for a spherically symmetric distribution,

GM X
=0 (3.28)

where M(r) is the mass within radius r, and v.(r) is the circular rotation velocity
as a function of radius. This gives

2 2
M(r) = E 4 p(r)= 47rGr2 ’ (3'29)

where p(r) is the mean mass density at radius r. Since the rotation curve is close
to flat, the density varies as p o< 1/r2.,

Another way to arrive at this mass model is to approximate the dark halo as a
spherically symmetric isothermal ideal gas sphere. The “atoms” might be stars or
exotic dark-matter particles. We will assume the velocity distribution is isotropic
and the velocity dispersion is independent of radius, that is, it is isothermal. (A
more general model is given in eq. [22.39]). Then the gas pressure 1s

p=pria?, (3.30)

where the velocity dispersion (rms deviation from the mean) in one direction is
o. The equation of hydrostatic equilibrium balances the pressure force per unit
volume, —dp/dr, and the gravitational force gp per unit volume,

_B MOy, Mi=ax f plryrtdr. (3.31)
dr r 0

The solution to these equations (with the boundary condition that the mass distri-
bution is smooth at the origin, dp/dr =0 at r =0), is tabulated by Emden (1907;
the differential equation is in eq. [18.70]). Outside the core the density run ap-
proaches the power law form pox 1/r2. This limiting form in equation (3.31)
gives

20°r _ ol
T = Te

M(r)= 3.32)



DEVELOPMENT OF PHYSICAL COSMOLOGY 49

in agreement with equation (3.29) with
vc=2lf20'. (3_33)

This is the relation between the circular velocity and the one-dimensional line-of-
sight velocity dispersion when the rotation curve is close to flat. A model with an
anisotropic velocity distribution is discussed in section 22 (eq. [22.39]).

An isolated spiral galaxy usually has a nearly flat rotation curve outside a
central core, and v, in the flat part is correlated with the galaxy luminosity, L. This
is called the Tully-Fisher (or Fisher-Tully) relation after its discoverers, Tully and
Fisher (1977). In the infrared 2.2 micron K band the relation is

ve =220(L /L)% 2 km s~ ! (3.34)

(Aaronson et al. 1986), where L, is a characteristic galaxy luminosity (eq. [5.141]
below). The scatter in v, at given L is about 5% . Since the mass within a fixed
radius varies as M(r) x v/, at given luminosity the mass within a fixed radius is
predicted to about 10% relative accuracy, a remarkable regularity.

The character of the mass distribution within elliptical galaxies is less well
explored because these galaxies usually do not have material moving in circular
orbits from which one easily gets the gravitational acceleration v2 /r. One can use
the line-of-sight star velocity dispersion o (derived from the Doppler spread of
features in the integrated stellar spectrum). If the star motions are isotropically
distributed, and the dispersion does not vary rapidly with radius, the mass within
a fixed radius is well approximated by equation (3.32).

Faber and Jackson (1976) showed that the velocity dispersion in the central
part of an elliptical galaxy is correlated with its luminosity, as is illustrated in
figure 3.13. The Faber-Jackson relation is

ve =226 =220(L/L.)* P kms~!, (3.35)

This has been expressed in terms of the velocity of a particle that is in a circular
?fbit (eq. [3.33]); the mean streaming motion of rotation of the stars generally
18 well below v.. The power law indices here and in equation (3.34) depend
Somewhat on the wavelength at which the luminosities are measured. Also, one
should bear in mind that the Tully-Fisher velocities in equation (3.34) refer to the
dark halo, while the Faber-Jackson relation refers to the velocity dispersion of
the stars in the central parts of the galaxy. A close comparison thus must be taken
“.fil.h caution, but the general similarity of the relations does suggest we are seeing
Similar physical relations.

As in the case of the Tully-Fisher relation, there is not much scatter in o at
fixed L. The scatter is remarkably small in the “fundamental plane” for ellipticals,
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Figure 3.13. The correlation of elliptical galaxy velocity dispersion with luminos-
ity (Oegerle and Hoessel 1991). The stars are galaxies in the Virgo and Coma
clusters, the filled circles the brightest members of rich clusters.

where the galaxy is characterized by its velocity dispersion ¢; a characteristic
radius, such as the radius r, of the circle that contains half the light; and the
mean surface brighmess i, within r.. Within the measurement errors, elliptical
galaxies occupy a two-dimensional sheet in the three-dimensional space of these
parameters. Important steps in the discovery of this effect were taken by Dressler
et al. (1987) and Djorgovski and Davis (1987); the history of the discovery is
detailed by Kormendy and Djorgovski (1989). In the example in figure 3.14, from
Oegerle and Hoessel (1991), the equation for the fundamental plane is

re Cxal33ie—083 . (3.36)

The surface brightness i, is the received energy flux per steradian averaged over
the solid angle subtended by the galaxy. The standard way to express it is in units
of apparent magnitude per square ar¢ second,

() =m+2.5log[27(6.")?]

5 (337
=-2.5 log{L/r.”] +constant .

The factor of two in the logarithm in the first line converts the galaxy apparent
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Figure 3.14. The fundamental plane for elliptical galaxies (eq. [3.36]) is viewed
here in an edge-on projection (Oegerle and Hoessel 1991). The symbols are
the same as in figure 3.13.

magnitude, m, to the half of the galaxy luminosity L that is within r,. The fac-
tor 78,2, with the angle expressed in arc seconds. converts this to the apparent
magnitude belonging to the mean energy flux per square arc second. As indicated
in the second line, the argument of the logarithm is proportional to the luminos-
ity per linear area of the galaxy (ergs cm~2s~!), which is proportional to the the
energy flux per steradian, which is the surface brightness.

The combination of velocity dispersion and surface brightness in the vertical
axis in figure 3.14 is arranged to display the edge of the fundamental plane in
equation (3.36). The startlingly small scatter surely betokens a tight regularity in
the way these galaxies are made, but there is no agreement yet on the specific
lesson.

Since the surface brightness i, is proportional to L/r.2, we can replace i, in
equation (3.36) with the galaxy luminosity L, to get

o o 1.062y, 050 (3.38)
The mass within the half-light radius scales as M x o?r, (eq. [3.32]). From equa-

tion (3.38) this is M o L'?%, almost independent of r,. Thus the mass-to-light
ratio scales as
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% ox L9 oc p02 (3.39)

In the space of o, r. and i, there is a second family of early-type galaxies that
occupies a second plane at lower surface brightness. Galaxies in this family com-
monly are called dwarfs, though the range of luminosities overlaps the luminosi-
ties of the galaxies in the fundamental plane of the giant ellipticals (Kormendy
1987).

The most luminous ellipticals are classified as D, and the extreme cases cD,
meaning the run of surface brightness with radius extends to an unusually broad
low surface brightness envelope. In Morgan’s (1958) original classification the
optical image of a D galaxy is close to circularly symmetric. The notation cD
came into common use with the discovery that galaxies with high radio luminosi-
ties tend to be giant ellipticals that are not very eccentric in their inner parts and
very luminous (Matthews, Morgan, and Schmidt 1964; Morgan and Lesh 1965).

The broad envelopes of ¢cD galaxies are at Ieast in part a result of the fact
that the brightest member of a cluster tends to occupy a central position, so it
smoothly joins the diffuse light spread through the cluster. Hausman and Ostriker
(1978) show that the broad envelope could have grown by gravitational capture
of stars from passing galaxies by the giant elliptical that happens to stay closest
to the cluster center. As discussed in section 24, the plasma in a rich cluster is
losing energy by radiation, and in the central regions the plasma must either be
receiving heat or contracting to something that is nearly dissipationless, such as
stars. This cooling flow could produce part or all of a centrally placed cD galaxy
(Fabian, Nulsen, and Canizares 1991). A pronounced example of the broad run
of surface brightness with radius in a ¢D galaxy is given by Uson, Boughn, and
Kuhn (1990). The central parts of a cD galaxy are not readily distinguished from
a giant elliptical galaxy.

Galaxies have many sizes, with observed luminosities that span some five or-
ders of magnitude, depending on what one chooses to call a galaxy. There is a
rather distinct upper bound, however. Hubble and Humason (1931) found that
the brightest members of rich clusters of galaxies tend to have a nearly standard
luminosity (defined as the energy flux measured within a fixed surface bright-
ness or radius chosen to eliminate the diffuse intracluster light around the cC
galaxies). The effect is illustrated in figure 3.13, where one sees that the bright:
est cluster members represented in the figure by the filled circles cluster at the
end of the plot, with little scatter in luminosity or velocity dispersion. The rm:
scatter in absolute magnitudes of brightest cluster members is about 0.3 mag, o
30% in luminosity (Sandage 1972a). Because the distribution of light within these
galaxies has a nearly standard form, the small scatter in luminosity translates tc
a small scatter in the radius at which the surface brightness in a first-ranked clus-
ter member drops to half the central value (Sandage 1972b). An indication of the
strikingly hard upper cutoff in the distribution of velocity dispersions in elliptica
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galaxies is that in the Faber et al. (1989) sample, the central velocity dispersion
exceeds o=300kms~! in just 18 of 468 galaxies, and the largest value in the
sample is 380 km s~1. A similar effect is seen in large spirals. A typical circu-
lar velocity is 220 km s™!, that of the Milky Way. While there are many dwarfs
with considerably lower velocities, not many spirals have substantially larger v,.
The current record is v =500 km s~ !, in the galaxy UGC 12591 (Giovanelli et al.
1986), about equivalent to the largest values of o observed in ellipticals.

Since the mass concentrated within a fixed radius in a galaxy is proportional to
the square of the circular velocity or velocity dispersion, the cutoff in the circular
velocity in spirals translates into a bound on the mass concentration. At the fixed
radius r = 104~ kpc, about our distance from the center of the Milky Way, and
for the circular velocity v.=220kms~! of the Milky Way, which is typical for
large galaxies, the mass contained 1is

M <10 Y kped=vir/G=11x 10" A M. (3.40)

The largest known value for a spiral galaxy translates to a mass just four times
this value.

Much larger mass concentrations are known in some giant elliptical and ¢D
galaxies, but even here the central concentration is not much greater than the
bound for known spirals. The giant elliptical galaxy M87 in the Virgo cluster is
surrounded by a cloud of plasma at temperature kT =4 keV (detected by the X-ray
emission, and unambiguously identified as thermal bremsstrahlung by the detec-
tion of X-ray lines from iron ions in the plasma). The symmetry of the cloud in-
dicates it is gravitationally bound to the galaxy. The estimate of the pressure gra-
dient from the plasma temperature and density yields a gravitational acceleration
at 200 kpc radius that implies the mass within this radius is about 3 x 103 M,
(Fabricant and Gorenstein 1983), three hundred times the mass in equation (3.40).
However, the mass of M87 within the radius in equation (3.40) is more mod-
€st, about ten times the mass in equation (3.40) (Sargent et al. 1978; Huchra and
Brodie 1987).

The conclusion is that Nature is adept at bringing together mass concentrations
of the amount in equation (3.40), to make common bright galaxies, but proves
10 be quite reluctant to gather just four times this amount in the same volume.
At lower mass concentrations we see the striking regularities in figures 3.13 and
3.14, and in equations (3.34) and (3.35), that show that the process which col-
lected the material that produces the luminosity of a galaxy collected mass with a
tight control on the relation between the final concentrations of light and mass.
The lesson is that galaxies are built on a closely regulated plan, either in the
Process that collects the matter or in some feedback mechanism that limits the
amount that can be assembled. The prospects for identifying the process are sur-
veyed in sections 25 and 26.
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Coordingte and Magnitude Systems

The galaxy maps shown in this section use three different coordinate
systems. The relations among these coordinates are defined here, and this is a
convenient place to record the normalization of the magnitude system used in
some of the maps.

The equatorial or celestial coordinates used in figures 3.5 and 3.6 have polar
axis along the Earth’s north axis of rotation. The declination is

5=90° -0, (3.41)

where @ is the polar angle measured from the north pole. Thus, the Earth’s equator
is at declination 6 =0, the north pole is at $=90° and the south pole is at § =
—90°. The azimuthal angle in this coordinate system is the right ascension. o,
usually measured in units of hours, minutes, and seconds of time, with one hour
equal to 15°. The right ascension a increases going to the east in the sky. The
analogs for positions on the Earth are latitude and longitude, with the difference
that the longitude increases going to the west (perhaps because one system is
useful for looking down, the other for up). Since the axis of rotation of the Earth is
precessing, the celestial coordinates are referred to the orientation of the Earth’s
axis at a given epoch, usually the year 1950, though it is increasingly common
and timely to use the year 2000. The difference is irrelevant for our purposes.

The galactic spherical coordinates used in figures 3.4 and 3.7 are oriented
so the pole is normal to the plane of the Milky Way and in the north celestial
hemisphere. The galactic longitude (azimuthal angle) is /, with the origin /=0
pointing to the center of the galaxy. The galactic latitude is b=90° — 6, where
@ is the polar angle in these coordinates, so the plane of the Milky Way is the
line b=0. This is the center line in figures 3.7 and 3.8. A similar pole is used
in figure 3.1, but the zero of longitude is different (because obscuration by dust
made it difficult to see where the center of the galaxy is).

Figure 3.4 illustrates the relation between galactic and equatorial coordinates.
The conversion uses the spherical triangie in figure 3.15. Recall that a side of the
spherical triangle is the great circle defined by the intersection of the sphere with
a plane passing through the center of the sphere. The length a of a side is the
angle subtended by the arc at the center, so « is the length of the arc on the unit
sphere. The angle A at the vertex facing the side « is the angle between the two
planes that define the great circles 3 and < on the other two sides of the triangle.
The angle opposite the side 3 similarly is B, and the angle opposite v is C. The
law of sines for spherical triangles is

sina  sin /3 .
SnA - SnB’ 3.42)
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0o

Figure 3.15. Spherical triangle for the conver-
sion between equatorial and galactic coordi-
nates.

and the law of cosines is
cosy=cosacos 3 +sinasinFcosC. (3.43)

One way to derive these relations is shown in section 12.

In the triangle in figure 3.15 the north celestial pole is in the direction NCP,
the north pole of the galaxy is in the direction NGP, and O is the direction
of an object with equatorial coordinates o, & and galactic coordinates [, b.
Since the declination is measured from Earth’s equator, the angular distance
from NCP to the object is a =90° — 4. The distance from NGP to the object is
B=90° — b. The declination of the north pole of the galaxy is 8,=27.4°, so the
angular distance between NCP and NGP is ¥ =90° — 8, =62.6°. The right ascen-
:'iion of the north galactic pole is ap = 192.25°. The right ascension of the object O
15 a, s0 the angle facing side 3 is B=a — 192.25°. The zero of galactic longitude
is conveniently defined so the angle facing side a is A= 123° — / for an object at
galactic longitude /. The law of sines gives

cos bsin(123° — ) =cos é sin(a — 192.25°%). (3.44)
The law of cosines gives

sin b =5in é cos 62.6° +cos & sin 62.6° cos(a — 192.25°), (3.45)

and

sin § = sin b cos 62.6° +cos b sin 62.6° c0s(123° - 1) . (3.46)
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The result of substituting equation (3.45) into equation (3.46) and rearranging is

cos b cos(123° — /) =sin d sin 62.6°

g (3.47)
—cos b cos 62.6° cos(a — 192,25°),

Equation (3.45) gives b and equations (3.44) and (3.47) give { (and both are
needed to fix the sign of /).

Supergalaclic coordinates SGL and SGB are used in figure 3.3 to show the
plane of the local distribution of galaxies, and one sees in figure 3.5 that the
nearby clusters of galaxies lie on the same plane. Following the definition by
de Vaucouleurs, de Vaucouleurs, and Corwin (1976), let us put the pole of the
galaxy at the vertex with angle B in figure 3.15, the supergalactic pole at vertex
A, and the object O at C. The supergalactic pole is at galactic latitude b, =6.32°,
so its distance from the galactic pole is v =90° — b, =83.68°. The longitude of the
supergalactic pole is {;=47.37°, so the angle between the supergalactic pole and
an object at longitude / is B =1 — 47.37°. The origin of supergalactic longitude,
at SGL=SGB =0, is at /,=137.29°, b,=0. That means the triangle with base
running from the galactic pole to the supergalactic pole and apex at b=SGB =0
has two sides with length 90°, base with length 83.68°, and angles at the base
equal to {, — I;=89.92°. Thus, the angle at the supergalactic pole between the
line to the galactic pole along the base v and the line to an object at supergalactic
longitude SGL is A=89.92° — SGL. That fixes the spherical triangle, and the
above operations give

cos(SGB)sin(89.92° — SGL) =cos Asin({ —47.37°),
cos(SGB) c0s(89.92° — SGL)=sin b sin 83.68°

— cos b cos 83.68° cos(/ — 47.37°),
sin(SGB) =sin b cos 83.68° +cos b sin 83.68° cos(/ — 47.37°),

(3.48)

with SGL and SGB the supergalactic longitude and latitude. The inner curve in
figure 3.7c is the line SGB =0. The coordinates in figure 3.3 for a galaxy at dis-
tance R are X =Rcos(SGB)cos(SGL), Y =Rcos(SGB)sin(SGL), and
Z =R sin(SGB).

Finally, this is a convenient place to list the zero points for the magnitude
system defined in equations (3.10) to (3.12). The source for these and many
other numbers is Allen's {1973) Astrophysical Quantities. Standard magnitude
systems are V and B, the latter being roughly equivalent to the A; system used
in figure 3.2. Since the magnitude pass bands have nonzero width, the central
wavelength depends on the spectrum. For spectra similar to that of the Sun, the
central pass bands are

Ay =55004A, Ap=4450A . (3.49)
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The absolute magnitude of the Sun is
M(V)o=483, M(B)o=548. (3.50)

The luminosity of the Sun in the wavelength range A to A+ 68X is L)X (erg s~ 1),
and ALy is the energy radiated per unit time and logarithmic interval of wave-
length (as in eq. {5.160]). The solar luminosity is

Ay =286x10¥ergs™! arV,

(3.51)
=236 x 10%ergs™' atB.
The energy flux received from a star at apparent magnitude m is
A= 4—77(%’;;? 1oOHM=—m) (3.52)
where AL, is given by equation (3.51), and
1 parsec = 3.086 x 10" cm . (3.53)

The origin of this length unit is described in the footnote for equation (3.5).
Recall that the apparent magnitude of a star at 10 parsecs distance is its absolute
magnitude, m=M. Thus, the first factor in the right-hand side of equation (3.52)
is the energy flux received from a star with apparent magnitude m=Mg, and
the second factor says that five magnitudes increase in the apparent magnitude

represents a factor of 100 decrease in the received energy flux. The numerical
values work out to

Afy=2.04 x 107310~ 04m erg em~s”! atv,

(3.54)
=3.07x 1077107 ergcm~2s~!  atB.
The total (bolometric) solar luminosity is
Lo= [ Lydr=3.83x 103 ergs™!, (3.55)

close to the numbers in equation (3.51) because the B and V pass bands are close
tthe peak of the spectrum. The mass of the Sun is

Mc=1989 x 10* g, (3.56)

80 the ratio of the luminosity and mass is

—= =1.92ergs 'g7". (3.57)
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4. Einstein's World Model

When Einstein introduced his relativistic world model, almost nothing
was known of the lore presented in the last section, so it hardly seems surprising
that the model no longer is considered viable. It is remarkable that Einstein’s
model does predict the Hubble count law, dN /dm o< 1097, and the isotropy of
the deep maps shown in figures 3.8 to 3.11, on the basis of the cosmological
principle. What is more, it is an easy step from Einstein’s static model to the
standard expanding cosmology. It is a measure of how revolutionary this last step
is, at least within physical science, that Einstein did not even mention that his
condition that spacetime is static on average is an assumption. It is now seen that
a static world picture has conceptual problems (quite apart from the evidence that
the universe is expanding), for if energy and entropy are conserved it cannot agree
with the limited lifetimes of stars and stellar systems, and if general relativity
theory is valid Einstein’s static mass distribution is gravitationally unstable, so
that even the present large-scale approximation to homogeneity could not persist
very much longer than the lifetime of a solar mass star. These problems are
resolved, or at least greatly adjusted, by going to the expanding world model to
be discussed in the next section.

Einstein’s solution still 1s well worth considering as a guide to conditions on an
acceptable world model, and to the physics of the expanding version. To begin,
let us consider the form for the line element ds? in equation (2.1) implied by the
cosmological principle.

Geometry

Recall that the expression ds = |g,; dx’dx/|!/? has an invariant meaning in
terms of a proper (in principle measurable) length or time interval between the
neighboring events with coordinate separation dx’ in the spacetime with metric
tensor g;;(x). Given three neighboring events with coordinate intervals dx‘ and
dy’ connecting one event and the other two, another invariant expression is the
four-dimensional scalar product,

dx-dy=g;;d'dy’ . (4.1)

In the locally Minkowski coordinate system of equation (2.3), this quantity van-
ishes if dv' and dy’ are directed along orthogonal coordinate axes (because the
Minkowski tensor g, = 7);; is diagonal). Since the quantity dx - dv is independent of
the choice of coordinates, the invariant condition that dx and dy/ are orthogonal
is dx - dy =0. We will use this as a guide to interpreting a convenient coordinate
labeling of a spatially homogeneous and isotropic universe.

Imagine space is filled with a dense set of observers, each at rest relative
to the mean motion of the nearby matter. Since the gravitational attraction of
the mass concentrations in groups and clusters causes matter [0 move, we must



DMLOPHENT OF PHYSICAL COSMOLOGY 59

jmagine that each of these comoving observers moves with the mean flow of the
matter averaged over scales large enough to remove the local fluctuations from
homogeneity. Each observer 1s equipped with a clock, and each is assigned three
pumbers, x%, a=1, 2, and 3, with neighboring observers assigned neighboring
aumbers. Then we can take the four coordinate labels x' of an event in spacetime
to be the three numbers x* assigned to the observer who passes through the event
and the observer’s clock reading r at the time of event, =1

Neighboring events along the world line of one of the comoving observers
are separated by dx® =0, because the observer has fixed spatial coordinates, and
by dx®=dr equal to the proper time interval read from the clock. The invariant
interval connecting the events is then d!? =ds? = g; dx'dx/ = ggo dr?, the first step
following because ds is the proper time interval. We then have

goo=1. (4.2)
It has to be possible to synchronize the clocks to satisfy the three conditions,
£0a=0, fora=1,23, 4.3)

because in a homogeneous and isotropic universe there is no preferred direction
for goo to point. To see what this means, consider two intervals, dx’ = (0, dx®)
and dy’ = (dr, 0) running from an event in spacetime. The first connects comoving
observers at the same world time, 7, and the second connects two events along the
path of one of the comoving observers. Equation (4.3) says

dx -dy=goo didx®=0. 4.4)

Since dx - dy is an invariant, it vanishes in a locally Minkowski coordinate system.
This means each observer sees that the clocks of all the neighboring observers are
synchronized with the observer’s own clock. The cosmological principle says this
construction is always possible, for isotropy allows synchronization of neighbor-
ing clocks, and homogeneity carries the synchronization through all space.

The conclusion is that the cosmological principle allows us to write the line
element in the form
ds’ =di? + gog dx®dx® @5
=dr? —di’.

In the second line d/? is the proper spatial separation between events at the same
world time, r.

* In section 9 we will see that it is always possible to choose coordinales so that in a region of
$pacetime the line element has the time-orthogonal form (or synchronous gauge) of equation (4.5).
The coordinates also can be comoving if the motion of the matter is force-free and irrotational.
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We arrive at the form of the spatial part di? in equation (4.5) as follows. Picture
the spatial part of this model as a three-sphere, the three-dimensional analog of
the two-dimensional surface of a balloon. We can imagine this three-sphere is
embedded in a flat four-dimensional space with Cartesian (orthogonal) position
coordinates x, y, z and w, and with the usual expression for the distance di
between neighboring points in the space,

di* =d® +dy* +dz* +dw? . (4.6)

The three-sphere of Einstein’s space is the set of points (x, y, 2z, w) at fixed dis-
tance R from the origin:

RP=x*+y? +22 + w2, 4.7)

This condition leaves the wanted three independent space variables x, y, z. The
fourth variable, w, is given by the equation

wl=R?_r? , 4.8)

where

rP=xty y2 +22. 4.9)

The differential of equation (4.8) gives

_rdr_ rdr

dw W SRR (4.10)
so the spatial line element di? in equation (4.6) is
24p2
dit =d v dy? +dzt 4 — 2 (4.11)

R2mr2'

With the change of coordinates from x, y, z to polar coordinates r, 8, ¢, with the
usual relations

Zz=rcosé,
x=rsin#f cos ¢, 4.12)
y=rsinf sin¢g,
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equation (4.11) becomes

rldr?

di*=dr’ +r(d8” +5in’0 dg”) + Zr—s

. (4.13)
y

- 20302 ¢ i 2p 502
—rz/m-i-r (d0 + sIn 9d¢ ).

This is the space part of the line element of the Einstein world model. On
adding the orthogonal time part in equation (4.5), we get the wanted four-
dimensional line element,

dr?

2og2 9
ds‘=dt 1= /2R

r2(d6® +sin%0 d¢?) . (4.14)
The coordinate change

r=Rsin y (4.15)

gives another useful form for the line element,
ds? = dr? — RY[dx* +sin®x (d8” +sin20 d¢?)] . (4.16)

This generalizes the familiar two-dimensional line element in polar coordinates to
three dimensions. The length R in these expressions is a constant for the model,
because spacetime is assumed to be static.

At r € R, the Einstein line element (4.14) approaches the Minkowski form in
equation (2.4). When r is comparable to R, the departure from Euclidean spatial
geometry follows the familiar behavior of the surface of a sphere. The proper
length of the arc subtended by the angle df at fixed ¢, xy and ¢ (that is, the
interval (0,0, d6, 0) in the coordinates of eq. [4.16]) is d = |ds| =R sin x d8. Thus
the angular size § =d# of a spiral galaxy of proper physical diameter D =d! at
coordinate position x relative to an observer at x =0 is

_ D
" Rsiny’

6 (4.17)

This reaches the minimum value §=D/R at x =7 /2, when the galaxy is at the
©quator of the sphere with the observer at the pole. The angular size diverges to
fill the sky as the distance to the galaxy approaches the antipodal point x ==.
The parallax of a distant object is the shift ¢ in its angular position when the
observer is shifted by a distance A normal to the direction to the object.® It is an

® Recall that in the standard astronomical convention the parallax € is onc second of arc when the
Perpendicular shift A is one astronomical unit, the mean radius of the Earth's orbit around the Sun,
and the object is at a distance of one parsec, as in equation (3.5).
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interesting exercise to show that the parallax of an object at coordinate distance
x 18

e=(A/R)cot x. (4.18)

The easy way is to put the object at the origin of the coordinate system in equa-
tion (4.16), and consider the paths of two light rays each running along lines of
constant ¢ and constant polar angles, one pointing at § = ¢ =0, the other at 8 = 60,
¢=0. If x =n/2 the parallax vanishes, as one can visualize by imagining the ob-
server is at the equator and the object is at the pole. And at x¥ > n/2 the sign of
the parallax 1s opposite to what we are used to.

Already in 1900 K. Schwarzschild had considered the possibility that the ge-
ometry of space is that of a closed three-sphere, with the the length R in the line
element just large enough to contain the Milky Way galaxy. In the last of his
three papers on general relativity theory, de Sitter (1917) was led to reconsider
the idea in terms of Einstein’s relativistic world model. In general relativity the-
ory, a spatially homogeneous geometry requires a spatially homogeneous mass
distribution. Since the stars in the Milky Way are known to be decidedly concen-
trated in space, Schwarzschild’s picture would have required that the mass of the
universe be dominated by spatially homogeneous “world matter,” or what would
now be called “dark matter.” De Sitter preferred to assume rather that R is much
larger than the Milky Way, and that the mass distribution is homogeneous on av-
erage because the spiral nebulae are other systems of stars, like the Milky Way,
on average uniformly distributed through space. He used equation (4.17) to find
a minimum value for R from the minimum angular sizes of known spiral nebulae
and the assumption that the typical diameter D of one of these objects is com-
parable to the size of the Milky Way. He compared that to an upper bound on R
derived from an estimate of the mean mass density in galaxies, as discussed next.

Dynamics

The dynamical properties of Einstein’s model use some elements of gen-
eral relativity theory that will be obtained in part 2 and are quoted here, as fol-
lows.

1. The differential equation that relates the metric tensor g;;(x) and the
matter distribution is Einstein’s field equation,

1
R,‘j — Eg,‘_,'R = 871'GT,:,' - (419)
Here R,-j-(x) and R(x) are functions of g;;(x) and its first two derivatives
(and not to be confused with the length R in eq. {4.16]), Newton's grav-
itational constant is G, and T is the stress-energy tensor that measures
the relevant properties of the matter in the universe.
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2. An ideal fluid is characterized by the mass per unit volume, p(x),
and the pressure, p(x), both measured by an observer in the rest frame
of the fluid, and by the fluid velocity. The stress-energy tensor of the
fluid in the locally Minkowski coordinate system in which the fluid is
instantaneously at rest is

T= (4.20)

OSOoOW O
oW OO
T OO0 QO

SO O®

3. If coordinates can be chosen in a region of spacetime so matter veloc-
ities are small, then Einstein’s field equation applied to a small enough
region of spacetime predicts motions equivalent to the Newtonian grav-
ity theory. This is a reasonable condition for any acceptable gravity the-
ory, because Newtonian physics is known to be an excellent approxima-
tion at relatively small distances and velocities. A generalization of this
result is that if the pressure is high the source for gravity changes from
the mass density p to p + 3p, where p is the pressure. Thus Poisson’s
equation for the Newtonian gravitational acceleration g in a small region
generalizes to

V.-g=—4nG(p+3p). 4.2D)

This equation says the active gravitational mass density, which acts as
the source for the gravitational acceleration, is p,=p + 3.

4. Birkhoff's (1923) theorem says that for a spherically symmetric distri-
bution of matter, Einstein’s field equations have a unique solution (apart
from the usual freedom of coordinate transformations). If space is empty
(T;; =0) in some region that includes the point of symmetry, the solution
in this empty hole is the flat spacetime of special relativity, with line
element that can be written as (eq. [2.4])

ds* =dr* — dx® — dy* — d-?

, (4.22)
=dr® — dr? — r¥(d#? +sin*9 do?) .

TIf the pressure results from parlicle motions in a gas, then when p is comparable to p the particle
velocities are comparable to the velocity of light, 5o the conditions for the validity of Newtonian
mechanics fail. However, Newtonian mechanics still describes the gravitational response of slowly
moving particles, and the mean motion of the gas. as given by the gravitational acceleration from
equation (4.21).
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Newton's iron sphere theorem says the Newtonian gravitational accel-
eration inside a hollow spherical mass vanishes. The relativistic gener-
alization is that spacetime is flat in a hole centered inside a spherically
symmetric distribution of matter.

5. Now we are in a position to find the relation between the mass density,
p. and the local rate of expansion or contraction of the material. We
are considering a spatially homogeneous and isotropic mass distribution.
Suppose the matter in the space within a sphere of radius / is removed
and set to one side. Then result (4) says spacetime is flat within the
sphere. Now replace the matter. If / is small enough, we have placed a
small amount of material into flat space-time. Therefore resuli (3) says
we can use Newtonian mechanics with equation (4.21) to describe the
gravitational acceleration of the material. The active gravitational mass
within the sphere of radius / is

4
Mg=peV =mlp+ . (4.23)

Using the familiar inverse square law solution to Poisson’s equation
(4.21), we see that the gravitational acceleration at the surface of the
sphere is

1——1—2 ——E'ITG(p'FBp)I . (4.24)

As usual, / means the first time derivative of /(¢), and '!'=a‘2!/dt2. This
is the equation in general relativity theory for the evolution of a homo-
geneous isotropic mass distribution. It was first denved by the Newto-
nian limit by McCrea and Milne (1934). We can get a first integral of
equation (4.24) by using energy conservation. Since p is the mass per
unit volume, and mass is equivalent to energy, the net energy within the
sphere is U = pV.# When material moves so as to change the sphere ra-
dius / that contains it, the energy U contained by the sphere changes
because of the pressure work on the surface:

dU=—pdv

(4.25)
=pdV +Vdp.

The second line follows by differentiating out the product U =pV. On
rearranging the second line, we get the energy equation for an ideal fluid,

® This neglects the gravitational energy of the mass within [. As can be readily checked, the gravita-
tional energy is negligibly small compared to U/ when ! is small encugh.
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1 I
ﬁ=—(p+p)§=—3(p+p)E, (4.26)

where the volume of the sphere is V o I°. The result of eliminating the
pressure p from equations (4.24) and (4.26) is

2

8 4 {
= —3'1erl+ ETI'GPT . (4-27)

This expression multiplied by / is a perfect differential, with the integral
8
= 5wc;plz +K, (4.28)

where the constant of integration is K.

6. The last result needed for this discussion is that the constant of in-
tegration in equation (4.28) for a static solution, where ! is constant,
is K =—1*/R?, where R is the radius of curvature in the line element
of equation (4.16). This is derived in section 11 (eq. [11.56]). It means
equations (4.24) and (4.28) in a static universe are

4 8 1

3‘”6(!’0 + 3Pe) =0, gﬂ’Gpe - R—z' =0, (4.29)
The subscript e indicates these are the mean mass density and pressure,
averaged over local fluctuations, and chosen so as to satisfy the condi-

tion that the universe is in static equilibrium with / constant.

The first part of equation (4.29) shows that if the mean mass density p, is
positive, the pressure of the world matter has to be negative, p, = —p./3, which is
impossible for a collection of gas or stars or galaxies. To deal with this, Einstein
proposed changing the field equation (4.19) to

1
R — Eg,'jR — Agi; =8nGTy;, (4.30)

where A is called the cosmological constant (with units of reciprocal time
squared). Einstein viewed this step as a modification of the field equations. The
recent tendency is to move the cosmological constant term to the right-hand
side of the equation, so it appears as a contribution to the stress-energy tensor
{(Zel'dovich 1968; Zel'dovich and Novikov 1983). On comparing equations (2.3)
for the metric tensor gi; and (4.20) for the stress-energy tensor T;; for an ideal
fluid in locally Minkowski cuordinates, we see that the cosmological constant
acts like a fluid with effective mass density and pressure

A
PA= g PA=—PA. (4.31)
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These expressions for the effective pressure and energy density in the local en-
ergy conservation equation (4.26) say pa =0, which is consistent. Other curious
properties of the cosmological constant modeled as a fluid are discussed in sec-
tion 18.

The quantities g5 and p, are to be added to the density and pressure of ordinary
matter in equation (4.29). To simplify the discussion, let us suppose the pressure
of ordinary matter is negligible, p, < pp, as would be the case if the mass were
dominated by ordinary stars moving at nonrelativistic speeds. Then equations
(4.29) and (4.31) become

4xGpp=A=1/R?, (4.32)

These are the relativistic relations between the mean background mass density,
pp, in ordinary matter like gas and stars, the cosmological constant, A, and the
radius of curvature, R, of space sections in Einstein’s static world model with the
line element of equation (4.16).

This result was obtained by a computation within general relativity theory that
exploits a convenient symmetry of the system, and not in a “quasi-Newtonian”
model. In Newtonian mechanics the treatment of a homogeneous universe is
problematic, because the gravitational potential energy of an infinite homoge-
neous mass distribution diverges.® This was recognized by Newton and others;
for example, Seeliger (1895) noted that the potential energy per unit mass in a
homogeneous universe would be finite if the potential at distance » from a mass
element M were changed from the Newtonian form GM /r to what would now be
called the Yukawa form, (GM/r)e"/’“, with r, a constant, Einstein (1917) also
noted this possibility. However, Einstein’s cosmological constant A acts not as
a long-range cutoff of the gravitational interaction between particles, but as an
effective negative active gravitational mass density that counters the mean gravi-
tational attraction of ordinary matter.

De Sitter (1917) was the first to discuss the observational significance of Ein-
stein’'s world model. He considered the possibility that the appropriate cosmolog-
ical mass density p,, is the average from the spiral nebulae assumed to be star
systems comparable to the Milky Way, and he used a rough estimate of py, in the
Einstein cosmological relations (4.32) to check that the radius of curvature R does
not violate the lower bound from equation (4.17) and the minimum angular sizes
of the spiral nebulae. De Sitter’s value for the mass density is some four orders of
magnitude larger than recent estimates, not unreasonably far off considering that
this was the first very preliminary exploration. A decade later, Hubble (1926b)

% In fiat space the volume at distance 7 to r + &r from an observer is 8V =4rnr*6r. With a homogeneous
mean mass density p the mass within this volume clement is 6M =4xpriér, and the gravitational
potential energy of the observer due 10 this mass is §{/ = G6M /r = 4xGpr ér. The integral U of SU
diverges as r? al r — co.
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used the considerably improved measures of galaxy distances discussed in the
Jast section to arrive at a mean mass density

pp~10"1gem ™3, (4.33)

due to the galaxies, not far from the present estimates discussed in sections 5 and
20.

Gravitational Instability

De Sitter did not comment on a curious feature of Einstein’s relations
(4.32)—that a variable, the mean mass density p,, is set equal to a physical
constant, A/4rG. What would happen if a perturbation raised or lowered the
mean mass density? The answer is seen in equation (4.24): the Einstein universe
is at a point of unstable equilibrium. If the mean mass density in ordinary matter
were slightly larger than the equilibrium value p;,, then / would be negative, the
matter would contract, the contraction would further increase the mass density,
and that would increase the rate of contraction. If the mass density were lower
than the critical value, the universe would expand.

The same gravitational instablity applies to local fluctuations in the mass dis-
tribution, as one sees by considering a roughly spherical fluctuation large enough
8o that pressure gradient forces can be neglected. This is because Birkhoff’s the-
orem says the acceleration equation (4.24) (with the source terms p, and py in
¢q. [4.31] for the cosmological constant added to the density of ordinary matter)
gives the gravitational acceleration within the density fluctuation no matter what
is outside the perturbed region. To get an expression for the rate of change of the
mass density within a perturbed region, let us keep the assumption that the pres-
sure of ordinary matter is negligibly small, and write the mean density in ordinary
matter within the patch as

3
p(t)=p ('7) , (434)
Where ! =[() is the patch radius. Since we are assuming the matter pressure is
negligible, the energy conservation equation (4.26) says the mass density within
the patch varies inversely as the volume oc /~3. The normalization in equation
(4.34) says the patch was sli ghuly perturbed from the mean density when its radius
was close 10 /.. Equation (4.24) for / with equations (4.31), (4.32), and (4.34) for

the mass density is
i 4 L\’
5= —37Gps l(’) —1] . (4.35)
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Jn writing
()=l —¢), (4.36)

~e see that for small fractional perturbations ¢ from homogeneity equation
4.35) is

E=4nGppe, 4.37)
~ith the solutions
e o eEVATGat (4.38)

That is, the mass distribution is exponentially unstable, with characteristic growth
‘ime

T.=(4nGpp) 2~ 10y, (4.39)

The numerical value follows from Hubble’s mass density (4.33). At some multi-
ple of this timescale, depending on how homogeneous the universe was to begin
with, the mass distribution in this model has to become strongly clumpy, under-
dense regions expanding into ever larger voids, overdense patches collapsing. The
collapse of a region of moderate size would be stopped by the growth of the non-
radial motions that are ignored in equation (4.35), but density fluctuations on the
scale of the length R, which have to be present at some level because our uni-
verse is not exactly homogeneous, are large enough to collapse to black holes,
eventually leaving a decidedly inhomogeneous world.

Weyl (1922) and Eddington (1924) were among the first to have asked what
would happen if the mass density were not identically equal to pp in Einstein's
cosmological equation (4.32). Eddington (1930) posed the problem to his re-
search student, G. C. McVittie. News of Lemaitre’s (1927) study of the expanding
world model presented in the next section led Eddington to the answer that the
Einstein universe is at a point of unstable equilibrium.

Ages of Stars and Stellar Systems

In retrospect, now that we have reasonably convincing evidence that
the universe really is expanding, it is easy to find reasons why a static uni-
verse is problematic. The one just discussed is that a relativistic universe would
not remain close to homogeneous very much longer than the characteristic time
~ (pr)‘lf 2_ A second is the finite ages of stars and of stellar systems such as the
Milky Way.

Suppose the Milky Way were an isolated system of stars, with total mass
M and radius ~ R, in asymptotically empty space. The Newtonian gravitational
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binding energy per unit mass in the galaxy is B ~GM/R. Gravitational inter-
actions among the stars would tend to populate the high energy tail of the Boltz-
mann distribution of energies, promoting some to escape velocity at energy € > 8.
By this process, the Milky Way would slowly evaporate stars, leaving the remain-
der increasingly tightly bound (to conserve the net energy of bound stars plus
escapees). Schwarzschild (1900) suggested this evaporation problem might be
avoided if the universe were closed, with the line element of equation (4.16), and
with the radius R comparable to the size of the Milky Way. Einstein (1917) sug-
gested that evaporation might be avoided by adopting a homogeneous universe.
However, in either picture conventional physics says a massive localized bound
system such as the Milky Way would evolve to a state in which an increasing
part of the mass has positive energy, in the escaped stars. and the rest contracts
to increasingly high binding energy (and in general relativity theory eventually
produces a black hole). That is, conventional physics says the Milky Way as it is
now cannot be a permanent object with an arbitrarily great age.

If energy is conserved locally, the stars in the Milky Way cannot be permanent
either, for they must eventually exhaust their fuel supply. Nuclear buming con-
verts a mass fraction € ~0.007 of hydrogen to radiation energy. The ratio of the
luminosity of the Sun to its mass is (eq. [3.57))

Lg 5
=@ 2emfsia2x 1072257 (4.40)
Mg

Thus, the lifetime of the sun is [imited to

~3x 10¥s~ 10y, (4.41)

It is an interesting and perhaps suggestive coincidence that this is comparable to
the instability time in equation (4.39).

If energy conservation as usually understood were violated within stars, so they
could shine forever, what would become of the starlight? If the material universe
were a finite island in asymptotically flat space, the starlight could stream away.
In a homogeneous static universe, however, the mean energy per unit volume
in starlight, 4, would have to grow with time as du/dt=j, where j is the mean
net rate of production of starlight energy per unit volume. The energy density
in starlight presumably would continue to grow until the radiation temperature
reached the internal temperature of the material within the stars, making it im-
possible for the material to release any more energy unless the stars got still hot-
ter, and of course making space quite uninhabitable for us. This effect, which is
known as Olbers’ paradox, is discussed further in section 5. As described by Jaki
(1967) and Harrison (1987, 1990), the effect has been more or less understood
since at least the seventeenth century, though people have not always been eager
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to face up to it, as we se¢ from the fact that Einstein did not take note of this prob-
lem with his world model. One way out postulates that the energy spontaneously
created in the stars spontaneously decays away when in the form of starlight, but
this seems ridiculously ad hoc. In the steady-state model (section 7) hydrogen is
spontaneously created at a steady mean rate to replace what is being burned in
stars, and the dead stars and the starlight are swept away because space is ex-
panding at a steady rate.

In standard physics, stars have a limited supply of energy, and in astronomi-
cally reasonable models for galaxy evolution most of the supply of hydrogen for
new stars has by now been consumed. It is not surprising that in the standard ex-
panding world model to be discussed next the expansion timescale is on the order
of the instability timescale in equation (4.39), ~ (Gpp)~'/2, because this is the
only available expression with the right units. Also, it is not unreasonable that
the evolutionary age (4.41) for a star like the Sun is comparable to the expansion
timescale, for if star formation commenced when the universe was young most of
the more massive short-lived stars would already have died. One can imagine that
these considerations could have led people to the idea of an expanding universe.
The connection was made by a different path, however, as discussed next.

5. The Expanding Universe

The discovery of the expansion of the universe was a deep surprise,
though as so often happens in physical science one can see the connection with
what came before. We noted that if one accepts the law of increase of entropy one
must conclude that a static universe in the state we observe cannot exist forever.
We will see that general relativity theory offers a way out. The theory says that a
universe with the observed large mass and low relative velocity dispersion cannot
be static: it has to expand or contract. The classical steady-state model offers
another way to resolve the problem with entropy, but it is ruled out by the well-
established evidence that the material content of the universe is evolving on a
timescale comparable to the expansion time (as will be discussed in section 7).
The picture that fits traces the expansion of the universe back to a dense stale.
We know this must offer another surprise, the way out of the formal singularty
at a — (. Perhaps we will be able to demonstrate that the resolution already is
available, in the inflation scenario to be presented in section 17, or we may find
we are led in other directions. But we need not await the resolution to this puzzle.
The remainder of 1his book reviews the broad variety of lines of research in
progress or awaiting attention within the part of the framework for cosmology
that does seem to work.

In this section we consider the meaning of the expansion, how the concept was
discovered, and some of the consequences and observational tests,
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Expansion Law

The expansion of the universe means that the proper physical distance
pbetween a pair of well-separated galaxies is increasing with time, that is, the
galaxies are receding from each other. A gravitationally bound system such as
the Local Group is not expanding, and we will see that gravitational instability
tends to collect galaxies into increasingly more massive systems that break away
from the general expansion to form a hierarchy of clusters. The homogeneous
expansion law refers to galaxies far enough apart for these local irregularities to
be ignored.

Neglecting the peculiar motions caused by local irregularities, the expansion
follows the scaling law illustrated in figure 5.1. (This argument seems to have
been first given by Lemaitre 1931a.) The three galaxies define a triangle. At a
Jater time they define a larger triangle, as indicated by the dashed lines, because
these galaxies are moving apart. The cosmological principle says the motion must
be homogeneous and isotropic, so the new and old triangles have to be similar,
with the same angles and the length of each side scaled up by the same factor.
That is, the proper physical distance /(r) between a pair of well-separated galaxies
scales with time as

KHy=la(), (5.1)

where /, is constant for the pair and a(¢) is a universal expansion factor. The time
derivative of this expression is the rate of recession of one galaxy as measured by
an observer on the other,

v=)=10a=!§—:—Hl. (5.2)

The recession causes a redshift in the spectrum of the light from one galaxy
received by an observer on the other. For small recession speed v this is the
ordinary first-order Doppler shifi, where the observed wavelength ), differs from
the wavelength ). at emission (as measured by an observer at rest at the source)
by the fractional amount

+ HI
_|=‘:=_. (5.3)
c c

r
il
)&

This is Hubble's law in equation (3.17): the redshift z of a galaxy is proportional
10 its distance. We see from equation (5.2) that the coefficient in the velocity-
distance relation, Hubble's parameter H, is fixed by the rate of change of the
€Xxpansion parameter,

H=2. (5.4)
a
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Figure 5.1. The cosmological expansion law.

In general H is a function of time. The standard convention is to write the present
value as H,,.

As will be discussed below, equations (5.1) and (5.2} can be given an opera-
tional meaning (though not one that could be applied in practice) even when v is
large. The definition of the redshift = in equation (5.3) also applies when the ratio
Ao/ Ae is quite different from unity. The application of the Doppler shift relation
in the last parts of equation (5.3) assumes v is small, so z < 1. The meaning of
the redshift when z is large is discussed below (eq. [5.45)).

Equation (5.2) says that if the recession velocity v for a given pair of galaxies
were independent of time the expansion would trace back to a singular state, with
zero distance between the galaxies, at the Hubble time,

Tu=lfv=H". (5.5

Consistent with homogeneity, this characteristic timescale is independent of /.
that is, it 1s a universal number. A more accurate calculation of the time from
the start of expansion (as in eqs. [5.21], [5.63], and [13.9]) would take account of
the fact that v in general is a function of time, but the Hubble time still sets the
timescale, as one would expect from dimensional analysis. It is equivalent to the
characteristic Hubble length,

Ly=c/H, (5.6)
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the distance at which the linear recession law in equation (5.2) extrapolates to the
velocity of light. An object at a distance comparable to the Hubble length is seen
as it was at a time in the past on the order of the expansion timescale, the Hubble
time.

In terms of the galaxy distance modulus in equations (3.10) and (3.12), the
linear redshift-distance relation (5.3) is

logz=0.2(m —M)—5—logcH", (5.7
where the Hubble length in the last term is measured in megaparsecs,

Line Efement

It is natural to ask what the universe is expanding into. One can imagine
the space we experience is expanding into a space with more dimensions, but that
is not necessarily meaningful or even helpful. Instead it is best to note that the
question does not arise in a metric description of spacetime, where physical dis-
tances and times are represented by the line element (2.1). In the homogeneous
and isotropic world model of the cosmological principle, the convenient coordi-
nate labeling for the line element is the comoving time-orthogonal construction
used in the last section (eq. [4.5]). In this construction one imagines a set of
observers, each equipped with a clock synchronized relative to the neighboring
observers, and each comoving with the mean motion of the material averaged
over a neighborhood large enough to remove the local fluctuations away from
homogeneity. An event in spacetime is labeled by the three spatial coordinates x*
attached to the observer who passes through the event and the observer's clock
reading ¢ =x? at the time of the event. Homogeneity and isotropy require that the
mean mass density and pressure are functions only of this world time ¢. Apart
from the effects of local deviations from homogeneity, the galaxies have to be at
rest relative to the comoving observers, at fixed spatial coordinate positions x°.

The line element in these coordinates is the form given in equation (4.5),

ds® =dr* — di?

= di? — a0 gly dx®dx® (5.8)
The construction has eliminated the off-diagonal terms gg,, that connect space and
time coordinates (eq. [4.3]). Homogeneity and isotropy require that the spatial
part of the metric tensor in this form can evolve only through a universal function
of time, written here as a(f)?. Each galaxy has fixed spatial coordinates x®, apart
from the usual local irregularities not represented by this line element. Thus
equation {5.8) says the proper physical distance d! between a pair of comoving
galaxies scales with time as /(#) o< a(t). This is equation (5.1).

Since the spatial geometry at a fixed instant of world time ¢ is assumed to
be homogeneous, we know the spatial part of the line element at fixed 7 can be
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written in the form of equation (4.13). The full line element thus generalizes from
equations (4.14) and (4.16) to the time-dependent forms

dst=di* — a@t)? +r¥(d6* +sin’6 d¢?)

1-r2/R? (5.9
=dr® — a(t)* R [dx? +sin’x dY) .

The factor R is a constant, as before, but the proper value belonging to this length
(the proper radius of the three-sphere in eq. [4.7]) is a(¢)R, where a(?) is the
expansion parameter in equations (5.1} and (5.8). In the second line of equation
(5.9) the radial coordinate is r =R sin ¥, as in equation (4.15). Here and below the
expression for the line element has been shortened by writing the angular part as

d)=dé? +sin%0 dg? . (5.10)

As usual, the velocity of light is set to unity.

As an exercise, let us compute the volume of space at a fixed world time ¢ in the
spacetime described by the line element (5.9) . The second line of equation (5.9)
says the proper area of the two-dimensional spherical shell of fixed coordinate
radius y at fixed world time ¢ is A = 4xa()2R? sin®x. (The integral over angles ¢
and ¢ gives the usual 4n steradians.) The proper distance between the shells at
radii y and x + dx at fixed ¢, @ and ¢ is dl = a(t)Rdx. The volume is then

T
V= / Adl =4n(aRy / dx sin’y =2m2(aR)’. (5.11)
0

The limits of integration cover the allowed range of w in equation (4.8). That is,
this is the total volume of space at fixed world time  in the model.

The model in equation (5.9) is said to be spatially closed, because the volume
of space at fixed time is finite. An open solution to Einstein’s field equations, for
a spatially homogeneous universe in which the volume of space can be arbitrarly
large, 15 obtained by continuing equation (5.9) to x —ix and R — —iR. This
brings the line element to

ds® =dt? — a(1)*R%[dx* + sinh®x d9].. (5.12)

Here the variable y can range to arbitrarily large values, so the volume of the uni-
verse can be unbounded. Even if this open solution were a good approximation to
the part of the universe we can observe, however, the universe need not necessar-
ily be infinite: the homogeneity assumption could fail at some large value of x,
as is suggested by the inflation scenario in section 17, or one could even imagine
the universe is periodic.

Equations (5.9) and (5.12) are called the Robertson-Walker line element, af-
ter the demonstration by Robertson (1935) and Walker (1936) that they are the
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most general form for the line element in a spaually homogeneous and isotropic
spacetime, independent of general relativity theory.

The cosmological equations for the time evolution of the expansion parameter
a(t) follow from the dynamical arguments in the last section. Consider a comov-
ing sphere, that is, a sphere expanding with the mean flow of matter so that there
is no net flux of material through any part of its surface (apart from the small-
scale fluctuations from homogeneity). A fixed point on the surface has fixed co-
moving spatial coordinates ¥, 8, and ¢ in the line elements (5.9) or (5.12), so the
proper physical radius of the sphere varies as

(ry=1la(t), (5.13)

with /, a constant, as in equation (5.1). The acceleration of the radius of the sphere
is given by the Newtonian equation (4.24), because Birkhoft’s theorem says the
material outside the sphere cannot have any gravitational effect on the behavior
of what is inside. Since equation (4.24) is linear in /, the constant factor /, divides
out, leaving

§=—§7rG(p+3p). (5.14)

This differential equation for a(r) had 10 be independent of /,, because the choice
of sphere radius is arbitrary (as long as it is small enough that the weak-field limit
in eq. [4.21] applies).

When the density and pressure are written as the sums of the mean values
Pu(#) and py(r) in ordinary material (such as stars, gas and radiation) and the
cosmological constant (eq. [4.31]), equation (5.14) becomes

a q A
—=——1G =. 1
Z=~37 (pp+3pp) + 3 (5.15)

This is the standard relativistic form for the acceleration of the cosmological
expansion.

In the energy conservation equation (4.26) the constant /, in equation (5.13)
again drops out, leaving

on = =(pn+pp)= . (5.16)

As in equation (5.15), this relation had to be independent of the arbitrary choice
of the radius of the sphere.

. Following the derivation in equations (4.27) and (4.28), one arrives at a first
Integral of equation (5.15) by using (5.16) to eliminate the pressure. This yields
the second of the cosmological equations,
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.y 2
a 8 K A
) == —+—, 5.17
(a) 3Ot G17)
where X is the constant of integration.

It will be shown in section 11 (eqs. [11.51] to [11.56]) that the constant R in
the line elements (5.9) and (5.12) is related to the constant of integration K. The
cosmological equation (5.17) in the standard form is

a\? 8 1 A
H2=(5) =‘3-1prb:i:aTR3+§. (5.18)
The sign in front of the curvature term is negative in the closed line element (5.9),
positive in the open line element (5.12). As indicated in the first expression, this
is an equation for Hubble’s parameter H (eq. [5.4]).

Solutions to equations (5.16) and (5.18) are discussed in section 13; here we
will need only the special Einstein-de Sitter limiting case, where the matter pres-
sure is small, pp < pp, and the space curvature and cosmological constant A in
equation (5.18) both are negligibly small compared to the mass density term. At
zero pressure the energy conservation equation is g, = —3pp/a, with the solution

1
pp(t) a_(tji . (5.19)

Since the proper volume of the comoving sphere in equation (5.13) varies with
time as a(r)’ (eq. [5.11]), this just says the mass per unit volume, pp, varies
inversely as the volume, as it must since mass is conserved here. When the mass
density is the dominant term, the expansion rate equation (5.18) is

.y 2
(E) - 3nGon. (5.20)

a
1t is easy to check that the expanding solution to equations (5.19) and (5.20) is

2 1

2/3 — _
ot =— =,
aot 3H ~ (671G )1/

(5.21)

The zero of world time has been set to the formal singularity at a — 0, where
p — oc.

When the curvature term (o< a~2 in eq. [5.18]) dominates and is positive (the
geometry is open), the solution is a= (¢ — k)/R, with k a constant. If the cosmo-
logical constant A dominates, the solutions are hyperbolic sines or cosines, as in
the de Sitter solution to be discussed next.

The mean mass density in matter, py(s), varies as a higher power of the ex-
pansion parameter a(#) than the curvature and A terms in the right-hand side of
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equation (5.18). This means that if the expansion traces back to small enough val-
ues of a(f) it must reach epochs where the mass term dominates and the limiting
Einstein-de Sitter solution in equation (5.21) applies. That 1s, the solution traces
back at a finite time in the past to the formal singularity at @ — 0. 1t is generally
pelieved that this singularity is not real, but rather an indication of new physics
that comes into play at small a(r) and large energy density, and might modify the
expansion rate equation or the classical picture for the geometry of spacetime.

To summarize, equations (5.2) to (5.4) express the law of general recession of
the nebulae in the standard expanding cosmological model; equation (5.18) is the
cosmological relation between the expansion rate H(r), the mean mass density
pp(t), the radius of curvature of space, a(#)R, and the cosmological constant, A;
and equations (5.9) and (5.12) describe the spacetime geometry, Observational
tests of the redshift-distance relation, and a more careful treatment of the redshift
at large distances, where z approaches or exceeds unity, are discussed below, after
we consider how this expanding world model was discovered.

Steps in the Discovery

The discovery of the expansion of the universe came from an interplay
between the observations, which indicate the galaxies are moving away from us,
and the theory, which suggests this behavior might make sense. An important step
in the theory appeared in the same paper in which de Sitter (1917) first explored
the possible astronomical implications of Einstein’s static world model. De Siiter
pointed out that one can find another solution to Einstein’s field equations for
a universe that is homogeneous, isotropic, and static. De Sitter’s solution has
negligibly small values for the mass density and pressure in ordinary matter.
Since isotropic solutions are unique, de Sitter’s solution has to satisfy equation

(5.15) with p, =0=p,,. In this limit the solution is a hyperbolic sine or cosine. A
simple case is

a(t) =€, (5.22)

where
Ha=(A/3'/2. (5.23)
Here Hubble's parameter is f =H, (eq. [5.4]), independent of time. Equation

(5.18) with equation (5.22) and pp =0 says R~2=0 for this solution, so the line
element (5.9) is

ds? =drt — eV dr? + 246 . (5.24)

This is a standard form for the de Sitter solution {(which should not be confused
with the Einstein-de Sitter solution in eq. {5.21]). The form will reappear as the
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line element for the steady-state cosmology, and as a close approximalion to the
line element in some versions of the inflation scenario. 1t is discussed in more
detail in section 12.

De Sitter’s original form for the line element is obtained from equation (5.24)
by changing the time and radial space variables from ¢ and r to 7 and #, with

e = cos 7 N

Hyi (5.25)

Hyr=tanfe™

It is left as an exercise to check that the result of using these equations to express
dr and dr in equation (5.24) in terms of df and d7 is de Sitter's form for the line
element,

ds® = cos*? di* — Hy  [d7? +sin® df]. (5.26)

This describes the same spacetime as equation (5.24), with a different coordinate
label.

It is apparent from the form of the line element in equation (5.26) that de
Sitter’s solution represents a time-independent geometry, as one might have ex-
pected from the fact that the spacetime is determined by one fixed parameter,
A. The source term in the Einstein gravitational field equation (4.30) is the ef-
fective stress-energy tensor associated with the cosmological constant, T;;(A)=
Agi;/(87G). This is proportional to the metric tensor, which is invariant under a
Lorentz velocity transformation, so it may not be surprising that the de Sitter so-
lution is invariant under a velocity transformation (which is given in section 12).
That is, in this spacetime there is nothing to define a preferred velocity (though
inertial locally Minkowski frames are of course defined by the metric tensor, as
discussed in section 2).

The construction of the time-orthogonal coordinates in equation (5.8) tells us
that a test particle with fixed spatial coordinates r, # and ¢ in equation (5.24} is
moving freely, that is, it is not accelerated in a locally inertial reference frame.
(In a homogeneous matter-filled universe the matter has to be moving freely
because there can be no nongravitational force—which way could it point?—and
the comoving observers at fixed x® therefore move freely. This remains true in
the limit p — 0.) The second line in equation (5.25) thus indicates that a freely
moving particle with constant coordinate position r is accelerated in the direction
of increasing 7 in the static coordinate system of equation (5.26), and that the
acceleration increases with increasing distance. That is, freely moving particles
“scatter,” or accelerate away from one another. We can interpret this as a result of
the negative active gravitational mass density pe (eqs. [4.21] and [4.31]) from the
cosmological constant.

At the time of de Sitter’s 1917 paper it was known from the work of Slipher
and others that the spectra of the light from some of the nearer spiral nebulae are
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ghifted toward the red, as if the light were Doppler shifted by motion of the galax-
jes away from us. (Prominent exceptions that at first confused the issue are the
Andromeda Nebula M31 and its companion M33, both of which are approach-
ing the Milky Way at ~ 100km s~!. As we noted in section 3, and will discuss
in more detail in section 20, this is interpreted as the result of the gravitational
attraction of these close neighbors in the Local Group.) During the 1920s Slipher
considerably enlarged the list of measured spectra of galaxies and found that,
with the exception of Local Group members, all are redshifted. This could be in-
terpreted as the de Sitter scattering effect. There is the problem, however, that the
de Sitter solution does not define a preferred velocity, so a prediction of the cos-
mological redshift depends on how one assigns initial conditions for the galaxy
positions and velocities. Variety of possibilities were discussed (e.g., Silberstein
1924 and earlier references therein). Weyl (1923), Lemaitre (1925), and Robert-
son (1928) all hit on the prescription consistent with the cosmological principle:
if initial conditions are assigned such that galaxies move on geodesics with fixed
spatial positions 7, ¢, ¢ in the coordinates of equation (5.24), then the pattern
of relative velocities of the galaxies is independent of the galaxy to which the
distances and velocities are referred (as we see from the fact that eq. [5.24] is
a special case of the homogeneous Robertson-Walker line element). In this pre-
scription the redshift of a galaxy is proportional to its distance, as we saw from
the general argument in equation (5.2). Robertson (1928) remarked that this lin-
ear relation is not inconsistent with Slipher’s redshifts and the galaxy distances
Hubble was obtaining, and Robertson’s estimate of the constant of proportional-
ity was close to what Hubble gave the following year in his announcement of the
linear relation. However, this prediction does depend on the prescription; there
is nothing in the geometry of the de Sitter solution to give preferred velocities
to the galaxies. The situation is different in the matter-filled evolving solution,
where the prescription is replaced by the condition that the streaming motion of
the matter has to yield a stress-energy tensor consistent with the assumption that
the spacetime geometry is spatially homogeneous and isotropic.

Wirtz (1924) seems to have been the first to take note of astronomical evidence
that galaxy redshifts tend to increase with increasing distance, and he remarked
on the possible connection with the scattering effect in de Sitter’s solution. Lund-
mark (1925) found a similar trend in galaxy redshifts and relative distances es-
timated from relative angular sizes. As we have noted, Robertson’s (1928) con-
sideration of homogeneous motion in the de Sitter solution led him 10 suggest
Hubble's distance estimates may indicate a linear relation with redshift. Hubble's
first paper on the observational evidence for a linear redshift-distance relation.

on his new measures of galaxy distances, appeared in 1929,

Kuhn (1962) writes of crises in which a scientific community is ready for a
change of the paradigm or accepted framework within which questions are posed
and answers sought. This describes the state of cosmology in the early part of
1930. The evidence that the spiral nebulae are galaxies of stars broadly spread
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through space made it clear that the universe is far from empty. That would argue
for Einstein’s matter-filled static solution, rather than de Sitter’s empty static
solution. The galaxy redshifts, on the other hand, do not fit with a static mass
distribution, but could be neatly interpreted within de Sitter’s solution. Eddington
and de Sitter were aware of the conundrum, and in 1930 Lemaitre informed them
of the now accepted resolution, the expanding matter-filled solution. The solution
was discovered by Friedmann (1922) and rediscovered by Lemaitre (1927), who
saw the possible connection to the galaxy redshifts. In a note to de Sitter (kindly
provided by H. van der Laan) Eddington wrote that “it was the report of your
remarks and mine at the [Royal Astronomical Society] which caused Lemaitre
to write to me about it. . .. A research student [G. C.] McVittie and [ had been
worrying at the problem and made considerable progress; so it was a blow to us
to find it done much more completely by Lemaitre (a blow softened, as far as
I am concemed, by the fact that Lemaitre was a student of mine).” Eddington
(1930, 1931a) and de Sitter (1930) soon published papers that drew attention
to Lemaitre’s work, and Eddington arranged for a shortened translation to be
published in England (Lemaitre 1931a). With these endorsements the expanding
universe became the new paradigm.

The commentary in figure 5.2 on the discovery of the new world picture was
drawn by an unidentified hand following an interview of de Sitter published in
a Dutch newspaper. The sketch was found in the archives at Leiden Observa-
tory, and kindly provided by H. van der Laan. De Sitter’s comment referred to
the special initial conditions in Lemaitre’s (1927) solution, in which the universe
expands away from the unstable Einstein model. In this case, the universe is ex-
panding because of the repulsion of a positive cosmological constant, as de Sitter
said.

Lemaitre turnmed to the idea that the universe expanded from a dense state,
the primeval atom, but he kept a positive cosmological constant, at least in part
because it increases the age of the universe over the relatively short value ~ H, ™!
to be expected if the universe expanded from a dense initial state with A=0 (eq.
[5.63]). The advantage was at least in part only apparent, however, for the value
of H, had been overestimated by a factor of about five. As for the singular start
of the expansion, Eddington (1931b) felt that “philosophically, the notion of a
beginning to the present order of Nature is repugnant,” while Lemaitre (1931c¢)
welcomed the idea for the new physics it surely will teach us.'°

If the expansion does trace back to a dense state, the expansion rate at high
redshift and high density is quite unaffected by the cosmological constant, and

10 Gince Lemaitre was ordained a Roman Catholic priest in 1923, 1wo years before the first of his great
papers on cosmology, one can wonder how his physical cosmology interacled with his religion. There
is no casy way (o tell. apart from some comments in the earliest papers about the elegance of the
physical universe as it seemed 10 be revealed by general relativity theory, Lemaitre rigidly separated
his public lives in rehigion and physical science.
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Figure 5.2. This sketch appeared following an interview of de Sitter published
in a Dutch newspaper. The quote is translated by van der Laan as: “What,
however, blows up the ball? What makes the universe expand or swell up? That
is done by the Lambda. Another answer cannot be given.”

we need some other resolution to the mystery of what caused the universe 1o
expand from whatever it was like before it was expanding, whatever that means.
It is notable that in the most popular of the proposed solutions to the mystery,
the inflation scenario discussed in section 17. the expansion of the very early
universe was driven by a large effective cosmological constant, just as pictured in
figure 5.2. The balloon analogy remains a standard device for explaining what the
expansion of the universe means, and, in the inflation picture, even a reasonable
approximation to what might have caused it.

The abrupt change in the accepted picture for the physical universe, from static
to expanding, was a quiet revolution, for once the concept of expansion was
generally recognized it was accepted with little organized resistance. Who dis-
covered the expansion of the universe? We have a wide choice. Einstein gave us
the cosmological principle and the gravity theory that together require expansion
Or contraction, with a linear redshift-distance relation. Weyl was the first 10 take
advantage of the cosmological principle, in the special case of the de Sitter solu-
tion, to obtain the linear relation between redshift and distance. Friedmann gave
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us the general expanding matter-filled solution. His first paper (Friedmann 1922)
dealt with the closed geometry of Einstein’s model; a second (Friedmann 1924)
presented the open case (in a coordinate labeling that is quite different from eq.
[5.12]; it is discussed in section 12). Einstein at first resisted Friedmann’s gen-
eralization of his static solution, but in a subsequent note admitted that Fried-
mann’s solutions are mathematically correct (Einstein 1923). The resolution of
the conundrum thus was in the literature and even advertised as a result of Ein-
stein’s comments, but if became widely recognized only after Lemaitre’s discus-
sion caught the general attention of the community. Lemaitre (1927) showed how
the redshift phenomenon could be related to the expansion of a matter-filled rel-
ativistic universe. This was the connection between theory and phenomena that
set cosmology on the road to a mature physical science, It is not clear how much
Lemaitre knew about the astronomical evidence for a linear relation between red-
shift and distance. In his 1927 paper he indicated that available distance estimates
seemed to him to be inadequate for an actual test. He instead assumed linear-
ity and estimated the constant of proportionality by using Hubble’s value for the
typical luminosity of a galaxy along with measured redshifts and apparent mag-
nitudes. Like Robertson’s (1928) estimate, his result, #,=630km s~ ' Mpc~!, is
quite close to Hubble's 1929 value.!! Winz was the first to note the evidence for
a linear redshift-distance relation, and Hubble put the relation on a quantitative
footing. It seems doubtful that Hubble was influenced by the theoretical argu-
ments for a linear relation, for although he indicated that the redshifts may be
related to the scattering effect in the de Sitter solution, he correctly noted that
in this solution the redshift relation is model dependent. He cautioned also that
“the linear relation found in the present discussion is a first approximation repre-
senting a restricted range in distance’ (Hubble 1929). As will now be discussed,
Hubble’s relation has proved to be remarkably successful.

Observational Basis for Hubble's Low

Hubble’s (1929) paper announcing the discovery of the linear relation
between distance and redshift, what is now called Hubble’s law, was based on
individual distance estimates for some twenty-four relatively bright galaxies at
redshifts v < 1000km s~ !, Figures 3.3 and 3.6 show that at this depth the galaxy
distribution is far from homogeneous, so the argument from the cosmological
principle certainly does not require that the linear redshift-distance relation be
a good approximation. Hubble's relation nevertheless was rapidly accepted as
a usefu] working relation, in part surely because it agrees with the expanding
universe picture, which in turn won quick approval, but certainly also because

"" It is curious thal the English translation of this paper, in Lemaitre (193 1a), omits the crucial para-
graph explaining Lemaitre's assessmenl of the lest of the redshift-distance relation, and his method of
estimating H,,.
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it soon became apparent that, as predicted, the redshifts of much fainter and
pl-esumably more distant galaxies are much higher.

Precision tests of Hubble's law use estimates of distances from the inverse
square law for galaxy apparent magnitudes (received energy flux densities). There
are three ways to deal with the considerable spread in absolute magnitudes (in-
wrinsic luminosities) of galaxies. First, one can identify a class whose luminosities
have a nearly standard value. Second, one can use a predictor of absolute magni-
tude based on distance-independent features in the spectrum or surface brightness
or appearance of the galaxy. And third, one can deal with the scatter of luminosi-
ties in a statistical way. In any of these approaches it proves considerably easier
to compare ratios of distances than it is to find an absolute distance measure, so
the linearity of the redshifi-distance relation has been established to much better
precision than the value of the constant of proportionality, Hubble’s constant.

In the decade after Hubble’s discovery he and Humason followed the first of
the above approaches, establishing that the apparent magnitudes of the brighter
galaxies in rich clusters correlate quite closely with redshift, indicating that these
galaxies have nearly standard Juminosities (Hubble and Humason 1931). This is
an aspect of the galaxy systematics discussed in section 3, that there is a hard
upper cutoff in the internal velocity dispersion ¢ and the correlated galaxy lu-
minosity. The brightest galaxies in clusters tend to have luminosities (measured
within a fixed surface brightness contour) close to the cutoff. The effect is illus-
trated by the distribution of filled circles in figure 3.13.

By 1936 Hubble could show that the relation between log z and apparent mag-
nitude for brighter cluster members follows the predicted slope 0.2 in equa-
tion (5.7) out to redshift z~0.1. In a modern version of this approach, using
the brightest member of each cluster rather than Hubble's (1936) fifth-ranked
galaxy, Sandage (1972a, b) extended the test to a sample of eighty-two rich clus-
ters that reaches redshift z ~0.5. The redshift-magnitude Hubble diagram for
these galaxies follows the trend predicted by Hubble’s law, with an rms scat-
ter om ~ 0.3 magnitudes. If the galaxies had identical absolute magnitudes, this
would mean the redshifts scatter by ~ 15% around the Hubble law prediction, but
it is thought to be much more likely that most of the scatter is in the intrinsic
galaxy luminosities. Sandages's test reaches one hundred times the depth of Hub-
ble’s (1929) discovery sample. The success of Hubble's linear relation is striking.

Galaxies with high intrinsic radio luminosities (such as those plotted in fig-
ure 3.10) have been observed to considerably greater distances than for cluster
members, because the radio emission makes them relatively easy to find in the
sky. Lilly and Longair (1982) took the important step of measuring the Hubble
fliagl'am of apparent magnitude as a function of redshift for radio galaxies in the
\nfrared (mainly the K band centered on 2.2 wavelength). Though the scatter
18 larger than for first-ranked cluster members, Lilly and Longair found that radio
galaxies do exhibit a close correlation between redshift and magnitude, indicating
that at a given redshift a galaxy with high radio luminosity has a close 1o standard
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Figure 5.3. Redshift-magnitude relation for radio galaxies {McCarthy 1992).

optical luminosity (though it is thought that evolution makes the standard mean
luminosity vary with redshift). Spinrad and Djorgovski (1987) extended the radio
galaxy infrared Hubble diagram to still higher redshifts.

Figure 5.3 shows McCarthy’s (1992) survey of the state of the measurements
of the infrared X-band Hubble diagram for radio galaxies. The slope at z < 1 is
again consistent with the Hubble law in equation (5.7). The hint of curvature
at z 2 1 is presumed to be the result of two effects. As discussed in section 13,
one expects to see relativistic corrections to the redshift-distance relation. If the
relativistic effect could be isolated and measured, it would be a valuable test of
the cosmology. That will be difficult, however, because the galaxies observed at
high redshifts are seen as they were when they were younger and so very likely
more luminous than the brightest cluster members observed at low redshifts.

The scatter in the Hubble diagram is smaller in the infrared than in optical
bands of observation. This is presumed to be because optical radiation received
from galaxies at z ~ 1 is emitted in the ultraviolet, where the light is dominated by
short-lived massive stars whose total luminosity is sensitive to recent episodes of
star formation. and possibly also radiation from the active nuclei of these galax-
ies. The K -band light tends to come from stars evolving off the hydrogen-burning
main sequence and from less massive longer-lived stars whose net luminosities
might be expected to be more stable. It is nonetheless startling to see how little
scatter there is in the Hubble diagram for these radio-bright galaxies. The les-
son for galaxy formation theories is yet to be interpreted. For our present purpose
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the main point is that the redshift is observed 10 increase with distance, at least
roughly in accordance with Hubble's law, to redshifts in excess of unity.

The second way to test Hubble's law depends on the identification of a
distance-independent predictor of the absolute magnitude of a galaxy (just as
the period of a Cepheid variable star is a good predictor of its mean luminosity).
The most successful so far use variants of the Faber-Jackson (1976) and Tully-
Fisher (1977) relations between the intrinsic luminosity and internal velogity of a
galaxy (egs. [3.34] and {3.35]). For spiral galaxies, the preferred measure is the
rotation velocity derived from the width §v»; of the 21-cm radio line emitted by
atomic hydrogen in the disk of the galaxy. Aaronson, Huchra, and Mould (1979)
proposed that the Tully-Fisher relation might be tighter at longer wavelengths,
where there is less absorption by dust between us and the observed galaxy. The
relation between the intrinsic luminosity and év; is established up to a mul-
tiplicative factor by the relation between line widths and apparent magnitudes
observed in the galaxies in a cluster, since all are at the same (not well known)
distance. The uncertainty in the magnitude calibration leads directly to an un-
certainty in the value of Hubble's constant, but this does not affect the test of
linearity of the redshift-distance relation.

Figure 5.4 shows near infrared Tully-Fisher distances to clusters. The error
flags are the standard deviations in the means based on the internal scatter of
distance estimates for the cluster members with useful Tully-Fisher distances.
The uncertainties in the cluster redshifts are much smaller. The redshifts have
been corrected for our motion relative to the thermal cosmic background radia-
tion (CBR). As will be discussed in the next section, this radiation has a dipole
(occos @) anisotropy across the sky, at §T /T ~ 0.1% of the mean value, which
is interpreted to be the result of our peculiar motion. (The Doppler shift makes
the radiation hotter in the direction toward which we are moving, and cooler in
the opposite direction.) The motion of the Local Group relative to the preferred
frame defined by the cBR is ~600kms™!. The correction to the redshifts that
would be measured by an observer moving so the background radiation has no
dipole anisotropy lowers the scatter in the redshift-distance relation. consistent
Wwith this interpretation of the dipole anisotropy.

The filled symbols represent clusters in the neighborhood of the Great Attrac-
'-QT. a region in the direction of the Centaurus cluster in figure 3.7, and some
distance behind it. Lynden-Bell et al. (1988) discovered that galaxy peculiar ve-
locities in this region are unusually large, perhaps because of the presence there
of an unusually large mass concentration, and perhaps consistent with the fact
that the peculiar streaming motion in our neighborhood is toward this Great At-
tractor. (The effect is discussed further in Faber and Burstein 1988, Qur peculiar
motion relative to the reference frame defined by the cosmic background radia-
t?on is discussed in the next section; the interpretation as the result of the gravita-
onal acceleration of large-scale fluctuations in the mass distribution is discussed
In sections 20 and 21.) We see that something is happening in the neighborhood
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Figure 5.4. Test of Hubble’s law using Tully-Fisher distances. Each symbol repre-
sents the mean of the distance estimates for the galaxies in a cluster (Mould et
al. 1991).

of the Centaurus cluster, because the Tully-Fisher distances for the clusters in this
region are distinctly off the general trend of redshift with distance.

The distances in figure 5.4 are expressed in megaparsecs, but this is based on a
still somewhat controversial calibration of the absolute magnitude-§v;; relation.
The straight line through the origin in this linear plot is Hubble’s law. We see that,
even with the anomaly in the direction of Centaurus, Hubble’s law is quite a good
description of the redshift-distance relation,

Figure 5.5 shows the redshift-distance relation for individual nearby galax-
ies, at distances comparable 1o the map of nearby galaxies in figure 3.3. The
infrared H-band magnitudes and linewidths come from the catalog of Aaron-
son et al. (1982). They are converted to predicted Tully-Fisher galaxy distances.
normalized to an earlier version of the redshift—Tully-Fisher distance relation in
figure 5.4 (Aaronson et al. 1986). The distances are expressed in units of the
predicted recession velocily. under the assumption of Hubble's law. Since the
predicted redshifts in figure 5.5 are scaled from the observed redshifts of more
distant clusters, they are independent of the parameter H,. The observed red-
shifts plotted on the vertical axis have been corrected for our motion relative to
the mean for the Local Group. (This motion is discussed in section 20 and illus-
trated in fig. 20.2.) If the redshifts had been corrected instead to what would be
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measured by an observer in the rest frame defined by the CBR, as was done in fig-
ure 5.4, it would have introduced a considerable scatter. The galaxies plotted as
boxes are at distances |H,Z| <250kms™! from the sheet of galaxies shown in
figure 3.3; galaxies at H,Z >250km s~ ! are plotted as filled circles, and galax-
ies at H,Z < —250kms~! as open circles. Further details are given in Peebles
{1988a).

The standard interpretation of these results is that the mean motion of the
galaxies on scales ~ 1004~! Mpc, as defined by the clusters in figure 5.4, is
close to the frame defined by the CBR, to the uncertainty of several hundred
kilometers per second in the measurements. The Local Group has a peculiar
velocity ~ 600kms™! relative 10 this frame, and figure 5.5 shows that the nearby
galaxies share this motion. This indicates that the galaxy peculiar velocity field
has a coherence length considerably broader than the depth of the sample in
figure 5.5. This is discussed further in section 6 (table 6.1) and section 21. The
details of the large-scale galaxy flow and what it teaches us about the character
of the mass distribution that is thought to drive it by gravitational acceleration are
still under discussion.

Apart from the decision to use velocities relative to the Local Group rather than
the CBR, there are no adjustable parameters in the comparison of predicted and
observed redshifts in figure 5.5, for the predicted distances have been calibrated
to the observed redshifts in the deeper sample in figure 5.4. The close correlation
of observed and predicted redshifts means the local expansion rate is remarkably
close to that observed on the larger scales in figures 5.3 and 5.4.

The peculiar velocity of the Local Group is comparable to the recession veloc-
ities of the galaxies in Hubble's (1929) original sample. On the above interpreta-
tion, he found a linear relation because the peculiar velocity coherence length is
so large.

Let us consider finally a statistical test. Figure 5.6 shows a scatter plot of galaxy
redshifts and apparent magnitudes, compiled by Shanks (1991) from a sequence
of redshift surveys. There are abrupt changes in numbers of data points as a func-
tion of apparent magnitude, because quite different sohd angles of the sky are
sampled at different magnitudes. The broad spread in the observed redshifts at
a given apparent magnitude results from the spread in intrinsic luminosities of
galaxies. Since the sample size is large, one can average the data to see whether
the mean trend of redshift with apparent magnitude agrees with Hubble’s law. but
of course one must take care to avoid a biased average. The distribution of abso-
lute magnitudes of the galaxies seen at a given apparent magnitude is biased 1n
favor of galaxies with higher intrinsic luminosities, because they can be seen to
greater distances. In a catalog of galaxies complete to a limiting apparent magni-
tude, the bias increases with increasing redshift, because at greater distances only
the brighter galaxies can be within the magnitude limit of the catalog. The result
is that the mean apparent magnitude {m) increases with increasing z more slowly
than the Hubble law (5.7), and at high z asymptotically approaches the magni-
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Figure 5.6. Hubble’s law for field galaxies (Shanks 1991).

tude limit of the catalog. This is called the Malmquist or Scott (1957) bias.!? If
the space distribution of galaxies is homogeneous and one can neglect the effect
on the apparent magnitude caused by the shift of the light toward the red, one
avoids the bias by considering the distribution of redshifts in fixed bands of ap-
parent magnitude. This was pointed out by Gunn and Oke (1975). Soneira (1979),
who was commenting on the Malmquist bias in the analysis described by Segal
(1976), showed how the approach can be used to find a test of Hubble’s law, as
follows.

Following Segal (1976), suppose the redshift varies as a power of the distance
7 to the galaxy,

=Ar’, (8.27)

" The effec is familiar in the analysis of star counts. A calalog of stars selected by apparent magni-
tude contains a higher fraction of highly luminous stars than is found among the stars in a fixed vol-
ume of space, because more luminous stars are visible to greater distances, and therefore are counted
) Within larger volumes of space.
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with A and p > 0 constants. Let ¢(M) be the galaxy luminosity function, that is,
the mean number of galaxies per unit volume and unit increment of absolute
magnitude M. It will be assumed that the galaxy distribution is homogeneous
on average, so ¢(M) 1s independent of distance. Also, this simplified analysis
will assume the redshifts are small enough for us to ignore space curvature and
deviations from the inverse square law for the apparent magnitude. Then the joint
probability distribution in the redshifts and apparent magnitudes of the galaxies
observed in a field of the sky with solid angle  is

d*N
dz dm

=er2dr¢(M)dM6(m—M—5logr—C)6(z—Ar”). (5.28)

The first delta function is the relation between apparent and absolute magnitudes
in equation (3.12), with C a constant, and the second delta function is the as-
sumed redshift relation (5.27). The result of evaluating the integrals over distance
and absolute magnitude is

d*N
dz dm

=Q2PVF (2 /z(m)) (5.29)

where £ depends on the redshift only through the ratio z/z,(m), and z, is a
function of the apparent magnitude, m,

ze(m) o< 10%2P™ (5.30)

That is, in this model the frequency distribution of redshifts at a given apparent
magnitude = is a fixed functional form with characteristic width that varies with
m by the scaling law in equation (5.30). In particular, the mean value of the
redshift scales as

(z) ox 1002Pm (5.31)

(Soneira 1979). This assumes a homogeneous space distribution of galaxies, and
it assumes r << 1, so the relativistic corrections to the inverse square law and
spatial geometry can be neglected.

The large symbols in figure 5.6 show the average values of the redshift in bins
of apparent magnitude. The solid line is Hubble’s law, which is equations (5.27)
and (5.31) with p=1. The redshifts in the faint galaxy sample are a factor of
about two below the Hubble law prediction. This is in the expected direction,
because the redshift brings the frequency band of the observations to the shorter
wavelength pan of the spectrum at emission, where galaxies typically are fainter.

Since galaxy spectra are reasonably well characterized, one can correct for the
effect of the redshift of the spectrum on the apparent magnitude. (This is the K
correction in eq. {13.59].) The curve in figure 5.7 shows Shanks’ (1991) predicted
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Figure 5.7. Hubble's law for field galaxies (Shanks 1991). The boxes are mean
values of the redshifts in apparent magnitude bins, from figure 5.6. The curve is
Hubble's law, corrected for the effect of the redshift on the apparent magnitude.

mean redshift as a function of apparent magnitude, taking account of the effect of
the redshift and assuming Hubble's law (p=1 in eq. [5.27]). The prediction is in
good agreement with the observed mean redshifts taken from figure 5.6.

Atm X 17, where the redshift correction is small, the mean value of the redshift
a8 a function of the apparent magnitude is well approximated as

(Z) — l00.2m—4.53ﬂ:0.05 . (5.32)

This will be used in the normalization of the galaxy luminosity function.

The next subsection shows that the standard interpretation of the redshift as
an effect of the expansion of the universe predicts that the same redshift factor
applies to the observed rates of occurrence of distant events. Thus, if a supernova
observed at redshift z were understood well enough so that the luminosity as a
function of time ¢ at the supernova could be predicted to be the function L{z), then
the received energy flux f would be predicted to vary with time as f oc L{r /(1 +2)}
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That is, the timescale is predicted to be dilated by the redshift, which may be a
testable effect.

The same time dilation effect contributes to the predicted dimming of the sur-
face brightnesses of objects at high redshift (egs. (6.43] and (9.53]). In the sim-
plest case, one considers the surface brightness i integrated over frequenctes (the
energy flux per steradian) of resolved objects. If the redshift is the result of ex-
pansion, the observed surface brightness for objects with fixed intrinsic surface
brightness is predicted to vary with the redshift as i o (1 +2)~%, two powers of
1 + z coming from aberration, that opens the beam solid angle, one from the time
dilation in the rate of reception of photons, and one from the loss of energy per
photon. In a tired light cosmology, where spacetime 1s static and the redshift is a
result of the loss of energy of each photon, only the last effect operates (Geller
and Peebles 1972). The use of the i oc (1 +2)~* relation as a test for the expansion
of the universe was proposed by Tolman (1930) and Hubble and Tolman (1935),
revived by Geller and Peebles (1972) and Petrosian (1976), and most recently
applied by Sandage and Perelmuter (1991). The most precise demonstration of
the effect is the preservation of the thermal spectrum of the cosmic background
radiation, as discussed in the next two sections.

Hubble’s law carries with it the proposition that the redshift is independent of
the wavelength of the spectral feature used to measure the ratio in equation (5.3).
The best test is the comparison of redshifts of optical lines and the hyperfine 21-
c¢m radio line from the coupling of the electron and proton spins in atomic hy-
drogen. An elegant presentation of the consistency of optical and 21-cm redshifts
al cz £ 4000kms™ ! is given by Roberts (1972), and precision tests at higher red-
shifts are analyzed by Tubbs and Wolfe (1980) and Wolfe et al. (1985).

Wolfe et al. (1985) discuss the quasar PKS 0458-02. (These are round values
for the position, with the right ascension in hours and minutes and the declination
in degrees.) The quasar emission line redshift is zq=2.29. Its optical spectrum
has a prominent feature identified as absorption by the Lyman « resonance line
of atomic hydrogen, at rest wavelength A=1216 A, in a gas cloud along the line
of sight between us and the quasar. This is confirmed by the identification at
the same redshift of absorption lines of the heavy elements commonly seen in
interstellar gas. (These clouds are discussed in section 23.) The redshift of the
cloud, fitted to the La and heavy element lines, is

20 =2.0385. (5.33)

In the radio spectrum of the quasar, Wolfe et al. find two closely spaced absorp-
tion lines. If these are the 21-cm line, the redshifts are

25,=2.03937, and 2.03953. (5.34)

These two radio redshifts presumably come from absorption in two subconden-
sations of hydrogen within the cloud. The redshift difference in equation (5.34)
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ponds 10 a relative line of sight velocity of 15km s~! for the two subcon-
densations (eq. [5.49)).

The redshifts of the ultraviolet L« line and the radio 21 cm lines agree within
reasonable values for motions within the cloud. The radio line has a wavelength
108 times that of the Lo line. The close agreement is an impressive check on the

icted independence of the redshift on the wavelength at which it is measured.

This test does assume the ratios of wavelengths at the source are the same
as the values measured in our laboratories. Since it would be absurd to imagine
that variations of the ratios cancel a frequency-dependent cosmological redshift,
we can conclude that we have a tight constraint on the variation of the physical
constants with position and time (e.g., Savedoff 1956; Bahcall and Schmidt 1967;
Wolfe, Brown, and Roberts 1976).

Estimates of the constant of proportionality, H,, in the redshift-distance rela-
tion are discussed below in the subsection on the scales for distance and time.

Theoretical Significance of the Expansion

The cosmological expansion law is illustrated in figure 5.1. Here we
discuss some aspects of the effect that may be confusing, and give a more careful
discussion of what the expansion law means when the separations of the galaxies
are large.

We have assumed the universe is homogeneous, but the Hubble law v=H,/
would seem to mean that the universe is expanding away from us, at a special
point at the center of the expansion. To see why this is not so, note that in a
homogeneous isotropic universe the recession law is a vector equation,

v=H,, (5.35)

where 1 and v are the vector position and velocity of the observed galaxy relative
to our position. Consider the velocity of this galaxy measured by another observer
who is in the galaxy at position I'. The new observer has velocity v/ = H,|’ relative
to us. Since we are assuming the velocities are small, the usual nonrelativistic
velocity addition law says the velocity ¥ measured by this new observer is

Y=v—v =H,(-1"=H., (5.36)

where | is the position of the galaxy relative to the new observer. This is Hubbie’s
law. That is, the linear relation has the special property that it is measured by all
Comoving observers (that move with the mean galaxy flow). This agrees with the
Cosmological principle, which says there is no preferred site for measuring the
€xpansion. The effect is illustrated in figures 5.1 and 5.2.

Milne (1935) emphasized that Hubble's relation follows from the condition
that all comoving observers see the same recession law (together with the us+al
Iaw of composition of nonrelativistic velocities), independent of the gravity law.
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Another way to put it is that in a metric theory, in which length and time measure-
ments are defined by a metric tensor g,;(x), the line element for a homogeneous
and isotropic universe has to be the Robertson-Walker form, from which the lin-
ear relation follows by the scaling behavior of the line element in equation (5.8).

Since Einstein was led to the cosmological principle from the idea that the
material content of the universe determines the preferred inertial motion, one
might be inclined to think that the recession of the enormous amount of matter
al great distances causes the matter in the Milky Way to tend to expand, the outer
parts drifting away from us. That is not 50 in general relativity theory because, as
Lemaitre (1931b) pointed out, Birkhoff’s (1923) theorem says the gravitational
effect of the distant matter on local motions is limited to the tidal field, which
is almost entirely eliminated by the spherical symmetry of the large-scale mass
distribution. This is the basis for equation (4.2 1) for the local relative gravitational
acceleration.

We have been assuming that the recession velocities are small, z<( 1. As a
first step in the discussion of large redshifts, let us state more carefully what is
meant by the proper distance between a pair of galaxies in a metric theory, As
discussed in section 2, when the line element ds* connecting neighboring events
in spacetime is negative, the magnitude |ds| is the proper distance between the
events measured by an observer who moves so they are seen to be simultane-
ous. In the Robertson-Walker line element (egs. (5.9] and [5.12)}), a comoving
observer halfway between the particles at fixed coordinate positions x and x +dx
along a radial line (d@ =d¢ =0) finds that the proper distance between the parti-
cles at world time ¢ is

dl=a(®)Rdx . (5.37)

We can imagine, in principle, placing a sequence of comoving observers along
the radial line from a galaxy at x =0 to one at comoving coordinate position
x. The sum of the distances between neighboring observers, all measured at the
same world time ¢, is the proper physical distance between the galaxies,

I=a(hHRx ., (5.38)

as in equation (5.1).

The effect of the expansion of the universe is seen in the redshift of the radia-
tion from distant objects. To understand the cosmological redshift effect, consider
a packet of radiation with definite wavelength that is moving in a definite direc-
tion. At time ¢ the packet passes a comoving observer who samples the radiation
and measures the wavelength to be A(r). At world time r + 6r the packet passes
a second comoving observer a proper distance ! = 6t away from the first. (Recall
that we are using units with the velocity of light equal to unity.) According to
the expansion law in equation (5.2), the second observer is moving away from
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the first at speed v=11l={(a/a)ét. Therefore the frequency measured by the sec-
ond observer is lowered by the first-order Doppler shift, and the wavelength is

increased, to
A +60)= A1 +v)=M0)[1 +(a/a)éi). (5.39)

On expanding the left side to first order in 61, we get the differential equation
A

S= S , (5.40)
with the solution
A(tyoca(t). (5.41)

This is the evolution of the wavelength of the radiation as measured by the co-
moving observers it passes,

We can use the same method to get the time evolution of the momentum of a
freely moving particle. Suppose observer () sees a particle with energy E, mo-
mentum p, and velocity p/E. A second observer (¥ who is moving with speed v
along the direction of the momentum of the particle sees that the particle momen-
tom is

, (p—VE)
P = m . (5.42)
This flat spacetime Lorentz transformation equation applies because the ob-
servers are supposed to be close together relative to the curvature of spacetime.
Itis left as an interesting exercise to use these relations with the above argument
10 show that for a freely moving particle the momentum p(f) measured by the
comoving observer the particle passes at time t satisfies

piryoc 1/ale) . (5.43)

If the particle proper peculiar velocity (the velocity relative to and measured by
the comoving observers the particle is passing) is small, the momentum is p = mv,
where m is the particle rest mass, and equation (5.43) says the proper peculiar
velocity varies as

v Va(r). (5.44)

This slowing of the peculiar motion of a freely moving particle shouid not be
thought of as a dissipative drag; it simply results from the fact that the particle
keeps overtaking observers who are moving away from it.
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The momentum per photon in a packet of radiation is inversely proportional to
the wavelength. Here equation (5.43) is equivalent to the redshift equation (5.41).
More generally, the particle de Broglie wavelength A is inversely proportional to
the momentum p, so equation (5.43) says the de Broglie wavelength scales as
a(t). For yet another way to understand this result, suppose the Schrodinger wave
equation for the particle is decomposed into normal spatial modes of oscillation.
In a closed universe the mode satisfies the boundary condition that the wave com-
pletes an integral number of oscillations in going around the universe, as in the
one-dimensional analog sketched in figure 5.8. In an open universe one gets dis-
crete modes by imposing comoving boundary conditions at some unobservably
large scale, In either case, the wavelength of a mode stretches as A & a(r). At
wavelengths of interest the frequency of oscillation of the mode is much larger
than the expansion rate H =a/a, so adiabaticity says the occupation number in
the mode is conserved in the absence of interactions with other fields. That is, the
expansion of the universe stretches the de Broglie wavelength of a freely moving
particle as A ox a(t), which is equation (5.43).

The cosmological redshift z is defined in equation (5.3) by the ratio of observed
to emitted wavelengths in the spectrum of the radiation from the galaxy. Since
the wavelength scales as the expansion parameter, the cosmological redshift also
satisfies

Ao _ Qo

l4+z=—=—, 5.45
+ N (5.45)

where 4, is the value of the expansion parameter at the time of emission of the
radiation and 4, is the value at the time of observation. In terms of emitted and
observed frequencies v, and v, the relation is

Vo, d

2 1 (5.46)
ve 4, 1+:Z

This also applies to proper rates of events, as one sees by the same application of
a sequence of Lorentz time-dilation factors.

It is standard practice 10 label an epoch of the universe by the expansion factor,
defined by the redshift = in equation (5.45), even when the epoch is so early the
redshift cannot be observed in detectable radiation.

So far we have ignored the proper peculiar motions of source and observer
relative to the comoving frame defined by the mean motion of the matter. Suppose
the observer is moving at peculiar velocity v, at observed angle 8, from the line
of sight to the source. It is left as an exercise in Lorentz transformations to check
that the relation between the observed photon momentum p, and the momentum
p. measured by a local comoving observer is

Pe=poll — v,c088,)/(1 —v2)1/2, (5.47)
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Figure 5.8. One-dimensional model for a3 mode of oscillation of a wave. The
closed spatial part of the universe is modeled as the circle with radius a(?).
The oscillating line is the spatial part of a wave. The wavelength of this mode is
proportional to the expansion parameter, A x a(!).

?0 that the observed redshift z, is related to the redshift z. measured by a comov-
Ing observer by the equation

14z,=(1+2.)1 —v,c088,)/(1 -vg e, (5.48)

Peculiar velocities of galaxies are small, so the expansion to first order in the
velocity is adequate for practical purposes. To this order, the relation between the
observed redshift of the spectrum, 1 +z,=X,/A,, and the cosmological redshift,
l+z =a,/a., when source and observer are moving at speeds v; and v, at angles
B, and 8, to the line to the source, is
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ﬁi’ _:z- =v,¢08 B, —v,Cc088,. (5.49)

The left-hand side 1s just the fractional wavelength shift, A,/ A,, caused by the
peculiar motions of the source and observer.

Horizons

The application of the redshift-distance relation at large distances or
large differences between @, and a, raises problems, some only apparent, some
very real. Let us begin with an apparent problem.

Since equation (5.38) for the proper distance ! between two objects is valid
whatever the coordinate separation, we can apply it to a pair of galaxies with sep-
aration greater than the Hubble length (eq. [5.6]). Here the rate of change of the
proper separation, ! = H!, is greater than the velocity of light. This is not a vio-
lation of special relativity: the superrelativistic velocity is just the sum of smalil
relative velocities of closely spaced observers placed along the line connecting
the galaxies, each of whom sees that special relativity describes what is happen-
ing in the neighborhood.

Suppose a packet of light is emitted from a galaxy and aimed toward another
that is further than the Hubble length at the time of emission. Because the proper
distance between the galaxies is increasing faster than the velocity of light, the
proper distance between the packet and the galaxy toward which it is aimed
actually 1s increasing. Depending on the parameters of the cosmological model,
the packet may eventually start to move closer and eventually overtake the second
galaxy.

To analyze this, choose coordinates so the galaxy that emitted the light packet
is at x =0 and the second galaxy toward which the packet is directed is at radial
position x in the coordinate system of equation (5.9). The symmetry of the model
says the packet moves along a line of constant polar angles # and ¢. In the world
time interval d! the packet moves a proper distance d! = dr = a(r)Rd . (This makes
ds=0, as is appropriate for the null path of a light ray.) This says the rate of
change of coordinate position of the light packet is

dxy 1

R—=-=—. (5.50)
dr  a(t)

Thus the coordinate position at time f, of a light packet that left the origin x =0
at time ¢, 1S

a

o
Ry = / ar (5.51)
I,

Let us evaluate the integral for the Einstein-de Sitter solution in equation
(5.21), where the expansion rate is dominated by pressureless matter. (Here
r=Rsin y — Ry in eq. [5.9], because the curvature term in the expansion rate
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equation is supposed to be small, so R is large and x is small.) Since the expan-
gion parameter varies as t>/ in this solution, equation (5.51) is

aor = 311 = (1/15)' )= 31,1 — (1 +2,)"}/2). (5.52)

Here a, is the present value of the expansion factor, at time t,, and | +z.=a,/a,
is the expansion factor from the time of emission to detection. In this model
the maximum net coordinate displacement r at ¢, of a light packet that starts
at an arbitrarily high redshift is a,r =31,=2/H,. Galaxies at greater coordinate
separation are not causally connected at time 7, subsequent to the singularity
at 1 —0, and are said to be outside each other’s particle horizons. That is, in
this model there are galaxies we cannot observe even in principle, though these
galaxies will be visible to future observers in the Milky Way.

It might be noted that this result requires a little care with the limit 4 — 0, for
in the limit all comoving observers are arbitrarily close to each other, the physical
separations a(f)r approaching zero. Different observers cannot communicate in
the limit because they are moving apart arbitrarily rapidly.

This particle horizon exists if the expansion parameter approaches zero in the
past less rapidly than a ¢, so the integral in equation (5.51) converges at a — 0.
This is equivalent to the condition that the acceleration 4 is negative, which means
p+3p is positive (eq. [5.14)). In the inflation scenario in section 17 one imagines
that in the very early universe the stress-energy tensor is dominated by a term
that behaves like a positive cosmological constant, making the effective value of
p+3p negative. An example of the resulting line element is the de Sitter form
(5.24). In this spacetime the integral for the coordinate displacement in equation
(5.51) does not converge going back in time to 7, — —00, 50 in the distant past
there is causal connection between the parts of the universe we observe, and one
can at least in principle imagine that there is a causal explanation for the striking
large-scale homogeneity displayed in figures 3.8 to 3.11.

It is left as an exercise to check that in the de Sitter line element (5.24) applied
into the indefinite future there is an event horizon, that is, there are events in
Spaceime that never become visible (even in principle) to an observer in the
Milky Way, The inflation scenario finesses both particle and event horizons by
arranging that the expansion parameter varies more rapidly than a o ¢ during the
inflation epoch. less rapidly after inflation.

Parameters

The Friedmann-Lemaitre model is characterized by dimensional param-
€ters such as Hubble's constant H,, and dimensionless parameters such as the
Product H,t, of Hubble's constant and the age 7, of the universe computed from
very high redshift. The main standard and useful parameters are listed here. The
relations to the classical cosmological tests are discussed in section 13,

Since the expansion rate, H =a/a, in general is a function of time (egs. [5.2]
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and [5.4}), the present value is written as Hubble's constant, /,, with H(r) the
expansion rate at time ¢. The universe at redshifts z < 1000 is thought to be dom-
inated by matter such as stars and gas with pressure small compared to the mass
density. In this case the mean mass density varies as pp a(t)? (eq. [5.19]), and
we can write the cosmological equation (5.18) for the expansion rate / as

H2=('

a 2
a

2 2
) =(1—+;) =HAQU+2} + Qr(1 422+ 4], (5.53)

and we can write the cosmological acceleration equation (5.15) as
§=H§[m ~QQ +2/2), (5.54)

where , (g, and Q4 are constants. The density parameter is

= 87Gp, ,
3H?

(5.55)

where p, is the present value of the mean mass density in material such as galax-
ies and intergalactic gas and stars. The redshift factor multiplying €2 in equation
(5.53) says the mean mass density varies as pp < a~> (1 +z)>. The curvature
parameter is

1
T {@H R
This is positive (R is real) for the open solution (eq. [5.12]), and negative (R 15

imaginary) if space is closed. The contribution of space curvature to H? varies as
a % (1+2)%. The parameter associated with the cosmological constant is

97 (5.56)

_ A
“3H

Qa (5.57)

The expressions for the variation with redshift of the expansion rate (eq. [5.53])
and acceleration (eq. [5.54]) assume the material pressure 1s negligible. The defi-
nitions of the three parameters in equations (5.55) to (5.57) still apply if pressure
is important, and they give the relative contributions to the present expansion rate
H,, with

Q+Qr+Qx=1. (5.58)
Opinions on sensible values for these parameters have evolved. In Lemaitre's

(1927) first expanding matter-filled world model, the parameters {2 and 2z are ar-
ranged so the expansion traces back to a finite redshift at which the expansion rate
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and acceleration in equations (5.53) and (5.54) approach zero, al the static Ein-
stein model. Lemaitre (1931d) soon moved to the idea that the universe expanded
from a dense state at g — 0, which he called the Primeval Atom, but he kept the
two independent parameters. Einstein’s position was that he had introduced the
cosmological constant A for the purpose of making the universe static, and hav-
ing learned that the universe is expanding he saw no logical need for A (Einstein
1945). Einstein and de Sitter (1932) argued that, pending the development of the
astronomical techniques that would be needed to measure the two independent
dimensionless parameters, it would be best to concentrate on the simplest reason-
able case. The only source term in the expansion rate equation that we know is
not negligibly small is the mass density, so in the simplest possibly realistic case
=1, and space curvature and the cosmological constant are unimportant. In this
Einstein-de Sitter model the time evolution of the expansion parameter is given
by equation (5.21), with a o 1*/? and H,1,=2/3, and the line element (5.9) is

ds? =di? — a(t)*{dr? + r2dQ). (5.59)

The part in brackets represents ordinary flat space, and this spacetime accordingly
is said to be cosmologically flat (despite the fact that the spacetime in general
is curved; it is only the form multiplying a(1)? that is Euclidean). During the
1980s it was rather commonly believed that the Einstein-de Sitter case is the only
sensible possibility. As discussed in sections 15 and 18, this was partly a result of
the growing influence of Dicke’s (1970) argument that it would be a remarkable
coincidence if more than one of the parameters 2, Q, and 24 were appreciable
at the present epoch (section 15), partly because inflation predicts the universe is
cosmologically flat (section 17) and particle physicists could see no merit in an
astronomically interesting value for the cosmological constant, and certainly also
because the Einstein-de Sitter model is particularly simple. The current revival of
interest in the possibility that £24 might be appreciable is driven by problems in
fitting the Einstein-de Sitter model (0 the observations of the mass density and
the expansion timescale (as will be discussed in the summary comments in sec-
tion 26).

The expansion of the universe reverses to contraction in the pasi or future if the
right-hand side of equation (5.53) has a zero (except for the Einstein case, where
a and & both approach zero). For example, if A =0 and the universe is closed, sO
Qlz <0, then & has a zero in the fulure, after which the universe collapses back to
a“big crunch.” The character of the solutions a(r) and the conditions for zeros of
a are discussed in section 13 and by Felten and Isaacman (1986). In the standard
hot big bang cosmological model, the parameters are such that the expansion of

universe traces back to very high redshift (where new physics is presumed to
save us from the singularity at @ — 0). That allows the material contents of the
universe to reach a density high enough to relax to the thermal equilibrium that
Produces the cosmic background radiation discussed in sections 6 and 24.
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When the redshift is large the dominant term in the expansion rate equation
(5.53) is the mass densily, because it appears with the highest power of 1+ z, and
the expansion rate approaches the Einstein-de Sitter limit,

-
4

H=

=H, QY21 +2)Y?, (5.60)

ISE R~

1+

[ ]

with the solution

1
H,QV2(1+2)3/2

t= 2 (5.61)
=3 .
independent of space curvature or the cosmological constant. This Einstein-de

Sitter limit applies when the first term in the brackets in equation (5.53) domi-
nates, at redshift

1+z3 Q7' -1}, when|Qal<t,
1 (5.62)
1+z2 Q7' ~ 1|3, when ||« 1.

The first limit assumes that the cosmological constant is negligible, the second
that space curvature is negligible. In the latter case the cube root makes the
transition to the Einstein-de Sitter limit with increasing redshift particularly rapid.

The present age, t,, of the model universe computed from high redshift follows
from equation (3.53),

4 da oo dy
Hofo =H - = ’ 5.63
"/o a /1 ¥ + Qry? + Q)12 (5.69)

with y=1+z=a,/a. This expression is plotted in figure 13.1. In the standard
model the expansion traces back to high redshift (that is, @ does not have a
zero in the past). Since the universe is not empty ({2 is greater than zero), the
integral converges at y — oc. The age of the expanding universe thus is set by the
Hubble time 4, ! with the dimensionless parameters £2 and {2z. The convergence
of the integral does not have to mean that the physical universe came into being
at a finite time in the past; the standard hope is that something new happened
in the very early universe. The correction to the standard model would have
1o set in at exceedingly high densities, however, when objects like stars could
not have existed, so it is appropriate to compare 7, in equation (5.63) to stellar
evolution ages and the ages of the heavy elements determined from the decay of
the unstable long-lived isotopes. This is discussed in the next subsection.
As in section 3, our standard practice is to write Hubble’s constant as

H,=100Akm s~ Mpc~!. (5.64)

In some analyses, such as the dynamical estimates of the density parameter (2, the
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value of the dimensionless parameter # cancels (section 20}, while in other cases
we can at least indicate how the results depend on the still somewhat uncertain
distance scale. The reciprocal of Hubble’s constant is the Hubble time,
H7'=098 x 10"y, (5.65)
and the Hubble length,
¢/H,=3000n"" Mpc. (5.66)

Equation (5.55) relates the mean mass density to Hubble's constant and the
density parameter {}. Numerical values are

0o =30H? [(87G) = Qperiy =2.78 x 101 Qh? Mg Mpc™

(5.67)
=1.88 % 1072%0h%gem 3.
The equivalent number of hydrogen atoms per unit volume is
Requiv = Pofmy=1.124 x 107°04° protons cm™?, (5.68)

or on the order of one proton per cubic meter,

One of the lessons from the search for the nature of the dark matter illustrated
in figure 3.12 and discussed in section 18 is that the bulk of the mass of the
universe need not be in readily observable forms of protons and other baryons,
or even in baryonic matter. As will be discussed in the last parts of this section,
the mean mass density contributed by the baryonic material in the bright parts
of galaxies is well below =1, and we will see in the next section that the
successful theory of light element production in the early universe requires that
the net baryon density is well below this critical value. Opinion is divided on
Whether there has 1o be enough nonbaryonic matter 10 make 2= 1; the discussion
of this situation begins in section 15. Section 20 details the dynamical estimates
of the density parameter, and section 21 deals with the relation between the mean
mass density and the large-scale fluctuations in the mass distribution. Section 26
Presents an assessment of the current state of the constraints on the value of §2.

Time and Length Scales

Equation (5.63) says that in the Einstein-de Sitter model, where Qg =
=0, the product of Hubble’s constant and the age of the universe reckoned
from high redshift is H,1,=2/3 (eq. [5.21)). If the magnitude of the pressure is
$mall compared to the energy density (including the effective contributions from
a component that acts like a comological constant), then ¢ <0 (eq. [5.54)) so
4> a4, att <1, and it follows from the second expression in equation (5.63) tha:
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H,t, < 1. If it were shown that H,r,, exceeds unity, it would mean the expansion
rate g has been accelerating rather than decreasing, and within the standard mode]
that would mean the active gravitational mass density is negative, as would hap-
pen if there were an appreciable positive cosmological constant. The measure-
ment of this producl thus is of considerable interest. Some elements of the state
of the art are reviewed here.

Radioactive decay ages give a reliable measure of the age of the Solar System,
and very useful constraints on the age of the galaxy. The methods are illustrated
by the decay of the uranium isotopes 23°U and 22*U. By 1930 it was known that
2331 is the progenitor of the radium series of activities ending in the lead isotope
206py, and that the thorium isotope 232Th decays to 2°®Pb. It was inferred that
there must be a uranium isotope 233U that decays through the actinium series 1o
207ph, Rutherford (1929) showed how 1o use these decay series to find the age of
the elements, as follows.

Most of the decays from natural uranium go through the radium series, so
the net decay rate gives a reasonable approximation to the decay rate for 23¥U.
Using this number Rutherford could estimate the ages of uranium ores from the
accumulated decay product “®0Pb. Knowing the accumulated amounts of 2%7Pb in
different ores, Rutherford could estimate the decay rate of 2**U and its present
abundance relative 10 23*U, It seems reasonable to expect that whatever made the
elements produced the two isotopes of uranium in about equal amounts, so the
difference between the decay rates fixes the time at which the abundance ratio
drops 1o the present value. Rutherford found 1, ~ 3 % 10%y =3 Gy.

Patterson (1956) used an adaptation of Rutherford’s method in the first preci-
sion measurement of the age of the Solar System. Suppose the Earth and each
of the meteorites formed as separate isolated and closed systems all at the same
time, and the Earth and meteorites condensed from well-mixed material with
uniform lead and uranium isotope ratios. Chemical fractionation gave different
meteorites different abundances of uranium and lead, and uranium decay after
isolation changed the lead isotope ratios in each meteorite. The isotope 2*4Pb has
no long-lived parents, so its abundance is whatever was present at the formation
of the Solar System. The present isotope ratios by number in a meteorite thus
satisfy the equations,

W07py  207ppy 235
R(235)=5 L - P, —U [eA(ZSS)r, _ 1] ‘
04pp  204php  2Pb (5.69)
06py  206pb(i)  2BU 14, .
= = ("38) [4
R(238)= 204pp - 204p} + 204 py [ fe — 1] .

Here ¢, is the time since the chemical isolation of the meteorite, and the argument
i means the isotope ratio at the time of isolation. The measured mean lives are

A235)7 ! =1.015Gy, A(238)"' =6.45Gy. (5.70)
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the ratios R(235) and R(238) are measured in two meteorites, @ and b.
The difference between the ratios for the two meteorites eliminates the initial
abundance ratios, which are assumed to have a common value. The ratio of the

differences is
R(235), — R(235), 235y £33N —

R(238), — R(238), 238U @B — | (5.71)
The present abundance ratio is
235U
Ty = 0-00725. (5.72)

The remaining unknown in equation (5.71) is the age ¢,. Patterson showed that
a single value of f, gives a close fit to the isotope ratios in the meteorites and
in oceanic sediments, consistent with the assumption that the meteorites and the
Barth were isolated at the same time with common isotope ratios. A standard
. value for the age is

t,=4.6+0.1Gy (5.73)

(Wasserberg et al. 1977), quite close to Patterson’s number. Consistent results
:_t’se obtained from the other long-lived isotopes, including *°K —*%A and 8’Rb —
r.
. To find the radioactive decay age of the galaxy, we need a model for the
time history of the production of the elements. As discussed in section 25, the
evidence is that the disk was assembled in a relatively short time interval out of
material already enriched in heavy elements. A useful model introduced by Dicke
(1962) assumes that a fraction F of the lead and uranium in the Solar System was
Produced in a short burst at time 7, measured back from the present, the remaining
'fmction 1 - F produced at a steady rate in the time interval 7, — 1, between the
initial burst and the isolation of the Solar System. It is an casy exercise to check
that the numbers of each of the uranium isotopes satisfy

1-F
ary— (o —lAa —_— Aally—l) _
U=(Uye [F+ o (¢ 1)} R

The index a means 235 or 238. The subscript p means the amount produced.
fm estimate of the production ratio, based on the relative number of progenitor
1s0topes in an exploding star that can decay to 23U or 222U without being lost by
fission, is

235 U

g = 1:4£02 (5.75)
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{(Cowan, Thielemann, and Truran 1991). The above numbers give

8.0+£06Gy forP=0.5 (5.76)

63+02Gy forP=1
o
12+ 2 Gy forP=0

A more complete analysis constrains the model for the time history of element
production by seeking a concordant fit 1o the abundances of two or more long-
lived isotopes. An example based on the above method is given by Fowler (1989);
more detailed models for the production history are described in Meyer and
Schramm (1986) and Cowan, Thielemann, and Truran (1991). The arguments re-
viewed in section 25 suggest the time interval from high redshift to the peak of
formation of the elements in the initial burst might amount to 1 Gy. The conclu-
sion is that in the standard model the age of the universe is not less than 1, =7 Gy,
and the age of the matenal in the disk of our galaxy is not likely to be greater than
about 13 Gy.

The measurement of stellar evolution ages is an art 100 subtle to be summarized
here; let us simply note that the practitioners report that a reasonable working
number for the oldest globular star clusters in the halo of our galaxy is

h=16x2Gy (5.7

(Demarque, Deliyannis, and Sarajedini 1991), and that it is considered difficult to
reconcile theory and observation with an age less than about 14 Gy. The evidence
is that the oldest star clusters in the disk are younger than the oldest globular
clusters. The cooling ages of the white dwarf in the disk are about 10 Gy (section
18), at least roughly in line with the radioactive decay ages.

As we noted, one would like to compare these numbers to the Hubble time.
This depends on the extragalactic distance scale, through the relation H,=cz/R
for an object at cosmological redshift z and physical distance R. The observa-
tional tests of the linearity of the relation, as illustrated in figures 5.3 to 5.6, are
considerably easier than the measurement of the distance scale. The difficulty
with the latter is that galaxies that are close enough for a convincing measurement
of the distance by the identification of objects with reasonably well known intrin-
sic luminosities have such small cosmological redshifts that there is no reliable
way 1o separate the cosmological part from the peculiar motion.

Hubble’s original analysis of the extragalactic distance scale indicated &~
S, making the Hubble time, H, ! ~2 x 10° y, uncomfortably close to the then
current estimates of the radioactive decay age of the Earth (and well below the
present numbers). Baade (1956) gives a beautiful description of the first of the
two major steps to the present scale, the calibration of the classical Cepheid
variable stars.

Baade had shown that in our neighborhood there are two broad classes of stars,
the old metal-poor halo population 11 stars, and the metal-rich disk population [
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gtars that have 2 broader range of ages. There are variable stars in each popula-
gion; for our purpose we can focus on the population I RR Lyrae or cluster-type
variables, so called because they are found in globular star clusters, and the clas-
sical population I Cepheid variables. Shapley found a calibration of the period-
Juminosity relation, from which he could estimate the distances to the globular
clusters from their RR Lyrae variables and the distance to the Magellanic Clouds
from their Cepheid variables. He used the assumption one would try first—that
the variables follow a common continuous period-luminosity relation; later work
showed that the population 1 Cepheids are about four times brighter. The dis-
tances to the RR Lyrae stars were the more reliable ones, because they are found
at higher galactic latitudes where there is less obscuration by dust, and they have
higher velocities from which one can estimate distances by the comparison of
angular and radial velocities. This meant that the luminosities of the classical
Cepheids were underestimated by a factor of about four, and the distances 1o the
Magellanic Clouds and M31 based on the apparent magnitudes of the Cepheids
were underestimated by a factor of two. A symptom of the error was known in the
1930s: at the accepted distance the globular clusters in M31 are fainter than those
in the galaxy. The inconsistency became manifest when Baade used the newly
commissioned 200-inch telescope at Palomar Observatory to “study the two kinds
of variables side by side, so o speak,” in M31. He observed the difference be-
tween the luminosities of the population I Cepheids and the RR Lyrae stars, and
concluded that the distances to M31 and the Magellanic Clouds are about twice
the old numbers. Since distances outside the Local Group are scaled from these
galaxies, this reduced H,, by a factor of 1wo,

The second large step was Sandage's (1958) discovery that the objects Hub-
ble had identified as stars in more distant galaxies are actually star clusters, or
tight knots of hot stars surrounded by plasma ionized by the stars. This was es-
tablished by the use of red-sensitive plates on which Sandage could identify the
hydrogen Ha recombination line from the plasma. The individual resolved bright
Stars are a factor of about five fainter than these star clusters, meaning Hubble’s
distance estimates relative to Local Group members must be reduced by a factor
of about two. Sandage concluded that the Hubble parameter is between H, =50
and 100 km s~! Mpc~!,

Itis interesting to read Bondi’s (1960) reaction in the second edition of his
book, Cosmology: *The dominating feature of recent observational work has un-
doubtedly been the revision of the distance scale, and with it of Hubble’s con-
8tant, by Baade and Sandage. It is not easy to appreciale now the extent to which
for more than fifieen years all work in cosmology was affected and indeed op-
Pressed by the short value of T (1.8 x 10° years) so confidently claimed to have
been established observationally.”

Most of the current estimates of the distance scale follow Hubble in using a
distance ladder, in which the luminosities of nearby galaxies are determined by
the apparent magnitudes of stars or star systems whose absolute magnitudes one
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hopes one knows, and the distances to galaxies at higher redshifts are found by
comparing their apparent magnitudes 1o the absolute magnitudes of the nearby
calibrator galaxies. This difficult art is surveyed by Rowan-Robinson (1985,
Here we consider some elements of a case that is simple and useful.

As indicated in equation (3.21), the ratio of distances to the Virgo and Coma
clusters of galaxies is known, to perhaps 10% accuracy, from the comparison
of the luminosity functions of the elliptical galaxies, the predictors of relative
absolute magnitude based on the galaxy internal velocity and surface brightness,
as indicated in equations (3.34) and (3.36), and the other measures reviewed
by Huchra (1992) and Jacoby et al. (1992). The redshift of the Coma cluster js
cz=7000km s~ !, This is large enough so that one can expect the correction for
peculiar motion to be small (according to the estimates discussed in section 21),
and one can hope the remaining error is reduced in the average over the several
clusters at similar redshifts for which there are useful estimates of the distance
ratio. The distance to the Virgo cluster is estimated by comparing the cluster
members to nearby calibrator galaxies, or by the identification of bright stars and
star clusters in this relatively nearby cluster. At the time this is written, the flow
of preprints is favoring a value of about 16 £ 2 Mpc. With equation (3.21) for the
distance ratio, this would say the distance to the Coma cluster is 90 Mpc, and
Hubble’s constant is

H,=80%15km s~ ! Mpc™!. (5.78)

The uncertainty might rank as two standard deviations, in the sense that. at the
time this is written, many of the practitioners of this art would be mildly surprised
if the true value were outside the indicated range.

The ratio of the stellar evolution age (5.77) to the Hubble time is

Hoto~(1.310.3). (5.79)

The Einstein-de Sitter model, which predicts H,1,=2/3, is well into the surpris-
ing range, but the history of the measurement of this number teaches us to treat it
with caution. Section 26 continues this discussion.

Gravitational Instability

As we see in figures 3.3 10 3.11, the universe is only approximately ho-
mogeneous on the average over large enough scales. The topic here is the gravi-
tational instability of the mass distribution in the expanding Friedmann-Lemaitre
model. This instability does not cause the same problem as for the static Einstein
model, because the expanding universe has a limited lifetime anyway, but it does
tell us that the early universe had to have been remarkably close to homogeneous
to have ended up as close to uniform as it is now. The instability also is a first step
to an understanding of where the structure in the galaxy distribution came from: it
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by gravity out of smaller structures that existed earlier. Attempts to turn this
eational instability picture into a theory for the origin of observed structures
is discussed in part 3. Here we consider some general features of the instability.
It is convenient to write the mass density in the form

(X, 1) = pp()H1 +6(x, 1)]. (5.80)

Here pp(2) is the mean background mass density; it is a function only of the world
gme ¢. The density contrast, or fractional departure of the local mass density
from the mean, is 6(x, f). This contrast is a function of world time and the spatial
position X. _ _ '

The spatial coordinates X are comoving or expanding with an ideal homo-
geneous background model. When the coherence length (the length scale over
which the density contrast changes appreciably) is larger than the Hubble length,
this definition, and the density contrast, require a convention, for what does it
mean to say that parts of the universe at separations greater than the particle hori-
zon are overdense by the same or different amounts? The prescription used here
- follows the construction of the time-orthogonal coordinates in equations (4.5) and

(5.8). One imagines space is filled with freely moving observers, each of whom
~ keeps a record of the local mass density as a function of the observer’s proper
time. The records eventually can be collected (assuming there is no event hori-
zon) and compared. The spatial coordinate x in equation (5.80) is the label of one
of these observers, ! is the time kept by the observer, and p(x, ¢) is the record of
densities kept by the observer with label x.

The following discussion of the evolution of the density contrast assumes the
material pressure is small compared to the mass density, so the mean density
varies as pj, ox a(r) > (eq. {5.19]). We begin with a linear perturbation calculation
that assumes the density fluctuations are small, |8] « 1, and that nongravitational
forces on the material can be neglected.

As discussed in section 4, Birkhoff’s theorem says we can imagine that differ-
€nt parts of the universe evolve as independent homogeneous universes, the local
eXpansion parameter measured by the observer at x being

a=ap{1 - €(x,1)]. (5.81)
Since pressure is negligible, we can take pa3 to be constant, so the fractional

Petturbations to the mass density and expansion parameter are related by the
€quation

é=13e¢. (5.82)

Suppose we have a family of solutions to equation (5.18) for the cosmological
£Xpansion rate. The solutions are of the form a(f, @), where a is a parameter
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labeling the solution. Then equation ($.82) says a solution for the time evolution
of the density contrast in linear perturbation theory is

§d=-3——, (5.83)

because this is the fractional difference in expansion parameters in neighboring
solutions whose parameters differ by the constant amount éa.

Equation (5.18) for the expansion parameter as a function of time ¢ can be
written as

¢ da
! =/ W + 61‘(- , (5.84)
where dt, is a constant of integration, and

8 1
X =(zz=§7erbaz+R_2+ §Aa2 ; (5.85)
Here a(r) and pp(r) refer to the homogeneous background model. The constant
R~2 can be negative as well as positive. The results of differentiating equation
(5.84) with respect to the two parameters R~2 and &7 at fixed ¢ are

1 Oa 1 /% da 1 OQa
o-vrzes 3] v O qEmeg ) %9

Then, with equation (5.83), the two solutions are

&i(t)=— > 8()=3 (5.87)

3XV2§R2 19 dg X128,
[Xm’ a

Other approaches to this result are given in sections 10 (eq. [10.123]), 11 (eq.
[11.68]), and 13 (fig. 13.13).

Consider first the Einstein-de Sitter model, where A and R 2 in equation (5.85)
both are negligibly small compared 10 the mass density term, so the mean expan-
sion rate is

v\ 2
H2=(f) =§-7erb. (5.88)

Here X oca(s)~!, and the first part of equation (5.87) is the growing perturbation,

(5.89)

This result assumes that pressure can be neglected.
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It is an interesting exercise to check that if X at high redshift is dominated by
radiation with the equation of state p = p/3, and the coherence length is large
compared to the Hubble length so the pressure gradient force can be neglected,
then the energy conservation equation (5.16) says poca™*, this in equation (5.88)
gives a 1172 and equation (5.89) changes 1o

6y ox atxt. (5.90)

The second part of equation (5.87) in the Einstein-de Sitter model is the decay-
ing solution,

by ~ (Gpp)' /261 ~ b1/t . (5.91)

This has the simple interpretation that the different patches of the universe are
expanding out of synchronization by the time &z.. The effect of the time shift
decays as t./1.

At low redshifts the curvature term in equation (5.85) may dominate, making
X nearly constant. In this case the solutions (5.87) are

8, ~ constant, brox 1facx 1/t. (5.92)

If the cosmological constant term dominates, both é; and é; approach constant
values at large times.

The solution in equation (5.89) for the growing density perturbation in an
Einstein-de Sitter model had to vary as a power of the world time, because the
model has no fixed characteristic time to enter a function that is not a power
law, such as the exponential in equation (4.38). In the open model in equation
(5.92), the density fluctuations in effect are frozen when the characteristic time
for the growth of density fluctuations, N(pr)_‘/ 2. becomes much longer than
the expansion time, when the latter becomes dominated by space curvature.

It is worth pausing to consider another method of analysis, based on Newtonian
mechanics, that is better suited to the study of the development of structures such
as galaxies and clusters of galaxies. This computation requires that we be able
to isolate a region small enough for the Newtonian gravitational potential energy
and the relative particle velocities within the region to be small (nonrelativistic).
We will establish orders of magnitude by considering first a homogeneous mass
distribution, where the gravitational potential energy belonging to the mass M
contained within a sphere of proper radius R is

M
O ~ %— ~GppR® ~ (HR)?. (5.93)

The last step assumes €2~ 1, so the expansion rate is dominated by the mass
density term, which is true within an order of magnitude at the present epoch
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If the sizes R of the structures to be studied are small compared to the Hubble
length H~!, the Hubble velocities are nonrelativistic. If the density contrast is
small, this also guarantees that the gravitational potential is nonrelativistic. Where
the contrast § is large, it increases the gravitational potential; but for objects such
as galaxies we know R can be chosen so the potential is small, because galaxies
are nonrelativistic objects (apart from what is happening in the nucleus). That is,
we can satisfy the conditions for the Newtonian limit that led to equation (5.14)
for the acceleration of the expansion rate. The same limiting case applies to the
dynamics of the observed clustering of matter.

We will treat the matter as an ideal pressureless fluid. Recall that in Newtonian
mechanics the velocity field u is referred to an inertial coordinate system with
proper position vector r measured in physical length units. The velocity field and
the mass density p considered as functions of the proper coordinates r and time ¢
satisfy the mass conservation equation

op B
(E)r+vr-(pu)-—0. (5.94)

Since we are ignoring the pressure gradient force, the Euler equation of motion is

(%) +-Vu=—V,8, (5.95)

where Poisson’s equation for the gravitational potential ¢ is
Ve ld= 4rGp. (5.96)

The subscripts indicate that the independent variables are z and r.

These equations apply equally well in the expanding Friedmann-Lemaitre cos-
mological model, on scales small compared to the Hubble length and well away
from black holes. In the standard cosmological model the convenient position
variables are the coordinates x comoving with the mean rate of expansion,!?

x=r/a(t), (5.97)

where a(t) is the expansion parameter. In these expanding coordinates the veloc-
ity field can be written as

u=ax+v(x, ). (5.98)

'* The comoving coordinates x we are using here. which move with the general expansion of the
universe, have the same name as the coordinates in equation (5.80) that are attached to freely moving
observers, but they are equivalent only in the limil of a nearly homogeneous universe.
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The Hubble flow is Hr=ax, and the peculiar velocity relative to the general
expansion is v(x,¢) =ax. Thus a particle at fixed comoving position x is moving
away from the origin with the general expansion of the universe, with velocity
w=dax, so the particle has zero peculiar velocity. We will write the mass density

as before as
p=pp(D[1+8(X,1)]. (5.99)

The pressure is assumed to be small, so the mass is in the rest mass of particles,
and the mean density therefore varies with time as

pp o< 1/a(ty . (5.100)

With the change of position vaniables to the comoving coordinates in equation
(5.97), the time derivative at fixed r of a function f =f(r,x=r/a) is

(g),:(%),_gx-vf’ (5.101)

where the gradient with respect to x at fixed time is
V=aV,. (5.102)

The mass conservation equation (5.94) in comoving coordinates is then

(ﬁ — fx 3 V) [pp(D(1 +8)] + @V [(A+&ax+w))=0. (5.103)
o a a

On expanding out the derivatives, and recalling that p, = ~3ppa/a (eq. [5.100)),
we get

96—+-1-V-[(1+6)v]=0. (5.104)
ot a

Here and below it will be understood that the derivatives are with respect to the
Comoving position coordinates x and z.
Poisson’s equation (5.96) is

1 I,
~~V.g= V@ =4nGpy(l +8) - A. (5.105)

Where the last term is the cosmological constant, as in equations (4.21) and (4.31).
We can remove the unperturbed part of this equation by writing

1
O=p(x.1)+ %Wprazxz - gAach2 . (5.106)
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This brings Poisson’s equation to

Vip=arGpya®s . (5.107)

The final step is to use these expressions in the Euler equation of motion
(5.95), with equation (5.98) for the fluid velocity, equation (5.101) for the time
derivative, and equation (5.106) for the gravitational potential. This gives

(2 — éx-V) (ax+v)+ l(ax+v)-V((zx+v)
ot a a

1 4 1
=—~V¢ - =mGprax + - Aax.
a 3 3

The terms in this expression that do not contain v or ¢ cancel (with eq. [5.15]
with p =0 for @). That just says the equations allow an unperturbed universe with
v =0=¢. The remainder works out to

ov a 1 1
5;+;V+E(V'V)V——;V¢. (5.109)

The term va/a reflects the fact that the expansion of the universe tends to make
the peculiar velocity decay as v & 1/a(?), as in equation (5.44).

Equations (5.104), (5.107), and (5.109) describe the evolution of mass fluc-
tuations in an expanding universe in the approximation of a pressureless ideal
fluid. The treatment of the gravitational response 1o the departures from homo-
geneity assumes that the peculiar velocities and the gravitational potential ¢ are
small compared to unity, which is the Newtonian limit, but the motions and den-
sity fluctuations can be nonlinear, as in a galaxy. It is easy to add a pressure term
to the equations of motion (eq. [5.121] below). One can add models for heating
and cooling of the material, the effects of star formation and explosions, and other
elements of astrophysics, though it is not easy to do this in a realistic and useful
approximation.

We arrive at a simple problem by averaging over the nonlinear concentrations
of material on small scales, leaving small amplitude fluctuations in the mass
density and small streaming motions.'* Then & and v can be computed in linear
perturbation theory, where terms of order vé or v? are dropped. In this limit,
equations (5.104) and (5.109) are

14 This linear approximation for the large-scale fluctuations in the mass distribution works because
the heavily nontinear interactions within small-scale mass concentrations do not affect the motions
of centers of mass of bound systems. They respond to the large-scale gradients in the gravitational
potential. This is discussed further in section 22 (eq. [22.3]).
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o6 1
E"'EV‘V—O.
ov a

1
—+ - -Vo¢=0.
3!+av+a d)

(5.110)

The peculiar velocity is eliminated by subtracting the time derivative of the first
ion from the divergence of the second. With Poisson’s equation (5.107) for
V3¢, the result is

a7 * 225 =ATGPb. (5.111)
a

This is the time evolution equation for the mass density contrast § =8p/p in the
mass distribution, modeled as a pressureless fluid, in linear perturbation theory.

In the Einstein-de Sitter model, where space curvature and the cosmological
constant are negligibly small, the expansion parameter varies as a o123 (eq.
[5.21)), and equation (5.111) becomes

% 408 2
YL L I 12
6t2+3r ot 3277 (5.112)
with the solution
§=AttP 4+ B!, (5.113)

where A and B are constants. This agrees with equations (5.89) and (5.91). Solu-
tions for more general cases are given in LSS, §§ 11 to 13; numerical solutions
are shown in figure 13.13.

The velocity field in linear perturbation theory is obtained as follows. The
solution to equation (5.111) is of the form & = A(x)D1(t) + B(x)D(t), where D,
and D, are linearly independent. Suppose one solution dominates, as the growing

mode, so we can write § =A(x)D(t). Then the linear mass conservation equation
(3.110) is

V-v=—a—=—ab—. (5.114)

.We can write the velocity field as the sum of a part with no divergence and an
lf'l'Otational part. The former does not contribute to the density contrast in the first
line of equation (5.110), and we see from the second line that this component
of the velocity decays as a(r)~'. Equation (5.114) is a Poisson equation for the
irrotational part. The solution familiar from electrostatics is

[ Y TX s
v(")"“47rf|y—x|36(y)d ¥s (5.115)



{16 5 THE EXPANDING UNIVERsg

where the dimensioniess velocity factor is

_aD_lD .
“eD HD (S.116)

Companing equation (5.114) to Poisson’s equation (5. 107) for the peculiar gravi.
tational acceleration g = —V ¢/a, we see 1he peculiar velocity also can be writtep
as

JH

V= g _j_
471'pr

QH

2
T0R (5.117)

where the density parameter is {2 (eq. [5.55]). In the Einstein-de Sitter model.
where 0= 1=f and H =2/(3¢). the peculiar velocity has the simple form

v=gr, (5.118)

For a spherical mass fluctuation, equation (5.115} is
\ 1 _
v(x)= —ag f yidvée(yy=— gﬂ-la_ré . (5.119)
AT J0

where d(x) is the mass density conirast averaged within radius x.

Numerical values for the factor f are shown in figure 13.14. If the cosmolog-
ical constant is negligibly small or space curvature is negligible. the Friedmann-
Lemaitre model leaves us with one parameter, (), and a useful approximation to
the velocity factor is

[~ (5.120)

Let us consider next how fluid pressure atfects the solution. The pressure force
per unit volume is

F=--Vp=e-——=—Cpp—. (5.121)
a

The second step assumes the pressure p is a function of the density alone. The
last step defines the velocity of sound. ¢, = (dp/dp)'/?, and uses equation (5.99)
for the density conirast. The equation of motion (5.109) becomes

8" él l l X (.'52
— 4 v+ (v V)v==--V¢p - —Vé. (5.122)
ot a a a a

This brings the density perturbation equation (5.111) to

d‘j‘é aod - Csz 2
éﬁ+235=4ﬂcpbb+?v b. (5.123)
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To interpret the pressure term in this equation, write the density contrast as a
er series, =2 b exp ik - x. Then the amplitude 8y(¢) belonging to wave
pumber k satisfies

; kZng
— +2-—= | 47Gpp, - 3 Ok . (5.124)
{ a

The source term on the right-hand side vanishes at wavelength

1/2

2ma 7rc,2)

A= —— = ; (5.125)
a (pr

At this critical Jeans length the competing pressure and gravitational forces can-
cel (Jeans 1928). Another way to put it is that the characteristic gravitational
growth time, on the order of (pr)"/ 2 s comparable to the time ~ J;/c¢; for
a pressure wave lo move across the Jeans length. At wavelengths long compared
to the Jeans length, & < &,, the pressure term in equation (5.123) is unimportant
because the response time for the pressure wave is long compared to the growth
time for the density contrast, and the zero pressure solutions apply. Al wave-
lengths shorter than A, the contrast oscillates as a sound wave. These effects are
illustrated in figure 6.9 below.

Finally, let us return to equation (5.89) for the relation between the growing
density perturbation in an Einstein-de Sitter universe and the local value of the
space curvature. In this model the unperturbed background has negligible space
curvature, so the radius of curvature of the space within a perturbed patch with
parameter 6R 2 is aR; =a|6R 2|~ /2. If the coordinate radius of the perturbed
paich is x, the distortion to the geometry within the patch is characterized by
the dimensionless and constant ratio of the comoving patch size to the comoving
radius of curvature of the space within the patch,

2
(&) =B@ricnisl= et -5IM. sne
The second step uses the Einstein-de Sitter equation (5.21) for the expansion rate.
The proper radius of the patch at time ¢ is I =a{r)x, and H! is the cosmological
eXpansion velocity of the patch. In the last step, M ~ p6,1° is the mass in excess
of homogeneity within the perturbed region. This says the distortion (x/lh)2 to

geometry is on the order of the Newtonian gravitational potential belonging
to the density fluctuation.

When the size of the perturbed patch is comparable to the radius of curvature of
the space within it, x ~ R, the perturbation to the geometry can be compared to a
l’1{10b, in which the ratio of the circumference of a circle to its radius can be quite
fllfferent from 2. This is the condition for relaiivistic collapse to a black hole, as
15 the condition GéM ~ 1 in equation (5.126), and it means we really should not
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have been treating the problem in perturbation theory. When x < R) the distortion
to the geometry is small, to be compared 1o a Jow-amplitude ripple. In this case
we see from equation (5.126) that the fluctuation in the mass distribution develops
into a strong mass concentration, with é; ~ 1, that can break away from the
general expansion to form a bound system, only when the perturbed patch is wel]
within the Hubble length, /! < 1. This is the appropriate case for observed mass
concentrations in galaxies and clusters of galaxies. That is, in the search for
theory of the origin of large-scale structure, we are looking for something thap
caused ripples in the geometry of the universe.

The density contrast at the epoch when the size of a perturbed region is on
the order of the Hubble length!'> is of particular interest because that marks the
epoch at which free-streaming radiation can leave the region, perhaps carrying
information to us about the amplitude of the perturbation in the anisotropy of the
thermal cosmic background radiation to be discussed in the next section. When
Hi ~ | the density contrast in equation (5.126) is

By ~ (xp/R))* . (5.127)

As we have remarked, structures like galaxies and clusters of galaxies must have
formed as bound systems when they were much smaller than the Hubble length.
This means that at the redshift when the region of a protogalaxy or protocluster
was comparable in size to the Hubble length the density fluctuation in it satisfied
bp< 1.

The linear perturbation solutions for the density contrast and peculiar velocity
in general relativity theory. with the result 8 & 1>/ in the pressureless Einstein-de
Sitter model, were first obtained by Lifshitz (1946). The spherically symmetric
case is easier and captures the essential elements of the instability. This was first
analyzed by Lemaitre (1931b, 1933), Tolman (1934), and Bonnor (1957). who
found the Jeans criterion (5.125). From the fact that the density contrast grows
only as a power of time (eq. [5.113)) rather than by the familiar exponential
growth for an unstable system, as for equation (4.38) in the Einstein universe
or for the growth of velocity fluctuations at the onset of turbulent flow of fluid
in a pipe, Lifshitz. Bonnor and others were led to conclude that the expanding
universe could not produce galaxies by gravitational instability. The more recent
fashion has been 1o argue that, since there is no known reason why the power-
law evolution of 8p/p should not trace back to exceedingly high redshifts, that
is, very small values of the world time ¢, density fluctuations nevertheless can

' It often is said that the patch is “coming into the horizon™ when its physical size / is on the order
of the Hubble length ~ H-}, Thal is true if the expansion traces back, with positive pressure, o @
singularity, for then the particle horizon is on the order of H ', as in equation (5.52). Of course, the
particle horizon is much larger if the expansion traces back to an inflation epoch. Everyone knows
what is meant by “the horizon.” even if the patch is not really entering il, but we will attempt 10
minimize confusion by saying that the patch size has become comparable to the Hubble tength.
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by a large factor. We see from equation (5.127) that density fluctuations

that can grow by gravity into interesting objects such as galaxies and clusters

of galaxies are charactenrized in the very early universe by values of the space

parameter (x,/R 1)? that are constant and small but nonzero (Novikov

1964; Peebles 1967). As will be discussed in part 3, an interesting value for this
eter is (xa/R;)* ~ 1077

Part 3 also deals with what has become one of the central themes in the study

of the physics of the very early universe: the search for a believable theory for

the origin of the ripples in the geometry that grew into the large-scale structures

we observe. Debate over this important issue should not obscure a simpler fun-

" damental point, however. There are growing and decaying modes of perturbation

from homogeneity. The decaying mode means a chaotic universe can grow homo-

geneous, but that would require precisely balanced initial conditions. The more

reasonable presumption is that a growing mode also is present and, in time, dom-

. inates. That is, the standard model is gravitationally unstable. and the fluctuations

away from homogeneity thus surely are growing with time, the matter becoming

more strongly clustered. The present roughly homogeneous state of the universe

cannot have grown out of primeval chaos. Rather, the very early universe must

have been exceedingly close to homogeneous to have produced what is seen in

figures 3.8 to 3.11.

The Galaxy Luminosity Function and Luminosity Density

Since observational cosmology is based on galaxies as fundamental
building blocks, their characteristic properties are of particular interest. This sub-
section explores some orders of magnitude for galaxy luminosities and number
densities and their contributions to the mean luminosity density and mass density.
The simplified analysis presented here allows us to see how the characteris-
tic numbers follow from the observations. More complete discussions of more
efficient methods of estimating the luminosity function are given by Binggeli,
Sandage, and Tammann (1988) and Efstathiou, Ellis, and Peterson (1988).

The galaxy luminosity function, ¢, is defined by the mean number of galaxies
Per unit volume with luminosity in the range L 10 L + dL.

dn=g(L/L)dL]L,, (5.128)

where L, is a characteristic galaxy luminosity. The problem of finding the lumi-
nosity function at the present epoch conveniently separates into three parts: find
the shape of the function ¢(v), find its normalization, and find the luminosity scale
setby L..

For the shape, we know that in our neighborhood in figure 3.3 there are many
galaxies much less luminous than the Milky Way, few much more luminous.
Zwicky (1942) and Abell (1962) noted this effect in clusters. Abell’s model for
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the luminosity function is a broken power law, ¢ ~L '3 at L < L., bending to
¢ ~ L™ at the bright end. Schechter (1976) introduced a nearly equivalent more
elegant form,

PO = .y e, (5.129)
where ¢. and o are constant parameters. The power law index for the faint end
slope 1s

a=-1.074+00S (5.130)

(Efstathiou, Ellis, and Peterson 1988). The formal divergence in the number den-
sity integral at L < L, is harmless because the more interesting integrals are dom-
inated by the luminosity function at L ~ L,. One can do better by a direct estimate
of the luminosity function rather than a fit to parameters in a functional form,
and by fitting separate luminosity functions to separate morphological types. as
described by Binggeli, Sandage, and Tammann (1988). For the purpose of under-
standing the orders of magnitude, however, the Schechter function has proved to
be useful.

Having fixed the shape of the luminosity function, we are left with two un-
knowns, L, and ¢., which we can get from the two measured coefficients in the
mean redshift and mean galaxy count as functions of apparent magnitude (egs.
[3.16] and [5.32]). From L. and ¢. we have the mean luminosity per unit volume,

20 (s @]
j= / Lo(L/LOdL/L, =L, / Vo) dy
Y ° (5.131)
=L.¢»/ Ve dy=(l+a) é. L.
0

The second line uses Schechter’s form, and the gamma function is ! =T(n + 1).
The joint distribution in galaxy redshifts - and energy flux densities f observed
in a region of the sky with unit solid angle is

d*N
d: df
This ignores the effects of space curvature and redshift on f and the space volume

element. As in equation (5.28), the delta functions fix the wanted differential
counts. The result of working the integrals is

AN 4 f c\° 4 4 anfcl
= — ) Pewz?). =—2, 133
ddf ~ L. (H) Plrz) “=Hi, (5.133)

= d)(L/L.)(dL/L.)rzdré(:—H,,r/c)é(f—L/47rr2). (5.132)

The redshift distribution at a fixed apparent magnitude (fixed f) is dN /d: x
2*@(xz2). The effect of the prefactor z* is to suppress the number of low red-
shift galaxies. This just says there is less volume at low z from which to draw
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the ga]axies. The result is that the distribution of luminosities of galaxies selected
by apparent magnitude approximates a bell-shaped curve, despite the fact that
there are many more dwarfs than giant galaxies per unit volume. This is a form
of Malmquist bias, applied to galaxies rather than stars. that equation (5.31) is
designed to avoid. The dimensionless factor & sets the scale of the redshift distri-
pution: it varies with the flux density as = x x~'/2 xf~'/2. as in equation (5.31)
withp=1.

The mean value of the redshifts of galaxies with given flux density f is found
by multiplying equation (5.133) by =, integrating over redshift, and dividing by
the normalizing integral. The resultis

(-) = ( H2L, )1/2 J dv ¥

ancif ) [dvydi2ey)

_(H,EL, Y24 a)
T\ dref (3/2+a)

(5.134)

The second line uses the Schechter function (5.129). The result of integrating
equation (5.133) over redshifts is the mean galaxy count per steradian as a tunc-

tion of f,
dN 1LY e
af =3 o dvy V)

3/2

4
. { L.\~

=—( ) (3/2+ o).
2 T

This is equation (3.9) expressed as an integral.

To convert these expressions to magnitudes, let M, be the absolute magnitude
belonging to the characteristic galaxy luminosity L,. Then the flux f belonging to
apparent magnitude m is

(5.135)

~ L. 0.4M, —m)
= HML - 5.13
1= amo5er 0 (5.136)

(Recal] that the distance modulus is normalized 10 m — M =0 at a distance of

10 parsecs, as in eqs. [3.10] and [3.12].) This expression in equation (5.134) for
the mean redshift is

h (2+a) | 0am-M.)

&) = 10 3727 o

(5.137)

The numericai factor is the ratio of the normalizing length, 10 parsecs, to the
I:hlbble length. Equation (5.135) for the galaxy count per steradian, with eana-
tion (5.136) to change 10 magnitudes and equation (5.134) to eliminate L,, is
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1 aN _ ¢\ G3/2+a)
(z)s%—o.Qh‘llO(ﬁ. (}Ta) W (5.138)

The expression for the mean redshift in equation (5.137), with a=—1.07 +
0.05, and equation (5.32) for the observed mean redshift as a function of magni-
tude, gives

M,=—19.53+0.25+5logh. (5.139)

This is based on the b; magnitude system in figures 3.2 and 5.6. The absolute
magnitude of the Sun at this band of wavelengths is (eq. (3.50])

M5=548, (5.140)
so the characteristic luminosity belonging to M, is

L' = 1004(M0 —M-)L@

(5.141)
=1.0 x 101%083p=27

Equation (5.138) with equations (3.16) and (5.32) for dN /dm and (z) gives
¢, =0.010e04h> Mpc 2 . (5.142)

The uncertainties in L, and ¢, might be counted as two standard deviations, for
it would be only mildly surprising if the true results within this method were
somewhat outside the indicated error range. The errors are best entered as mul-
tiplicative factors, because that is the way the power laws for {z) and dN/dm
are calibrated, and in the products the arguments of the error exponentials add in
quadrature. More detailed estimates of these parameters are given by Efstathiou,
Ellis, and Peterson (1988), and Loveday et al. (1992).
Equation (5.131) for the mean luminosity per unit volume is

J=1.0x10%*%20h 1. Mpc~?. (5.143)

(The error is smaller than in eq. [5.142] for ¢,, because j is proportional to
{(z)~1dN /dm.) This luminosity density counts only the light within the relatively
high surface brightness parts of the galaxies luminous enough to be detected in
the galaxy counts. In the next subsection the light of the night sky is used to bound
the possible contribution from diffuse light or very small galaxies.

The ratio of j to L. is a characteristic mean number of galaxies per unit volume,

ne=j/Le=(1+0)!¢, =0.010e*"4R> Mpc =2 . (5.144)
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A ch,meristic distance between galaxies is the width of a cube that on average
ins one galaxy at number density z,,

do=n7" =473~ 1 Mpc . (5.145)

The luminosities of the Milky Way and our nearest large neighbor, M31, both are
comparable to L,. The distance to M31, 770 kpc, is well below d,. This is one of
the reasons for assigning these galaxies to the same group (fig. 3.3).

How many galaxies does the universe contain? A characteristic number within

the Hubble length is
n.{c /H0)3 ~3x 108 galaxies . (5.146)
If the universe is closed, the total characteristic number is (egs. [5.11] and [5.56]))
N. =272 3% c/Ho )1, ~ 5 x 10°|Q2p| /% galaxies.  (5.147)

What is the mean mass density contributed by the bright parts of galaxies? As
indicated in equation (3.39), the mass-to-light ratio is only weakly sensitive to
the galaxy luminosity, and since most of the luminosity density comes from the
galaxies near L, we can use a typical value at this luminosity. The survey of Faber
and Gallagher (1979) indicates

M/L=1202p, (5.148)

in solar units, for the mass and luminosity within the Holmberg radius (where
the surface brightness drops to 26.5 magnitudes per square arc second) in field
spirals. The product of M /L and the mean luminosity density in equation (5.143)
is the mean mass density contributed by the mass in the central parts of galaxies,

pe=1.2 x 10%*%3 52 Mo Mpc 2
=8 x 10732x%gcm ™3 (5.149)

=5 x 10782 protons em™?.

The ratio to the critical mass density (eq. [5.67]) is the density parameter,
Q. =0.004¢*%> . (5.150)

The value of Hubble’s constant scales out of this number.
The critical mass-to-light ratio in the Einstein-de Sitter model is the ratio of

?le critical mass density in equation (5.67) to the luminosity density in equation
(5.143),
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(M /L) = 3000e=" R ML) (5.151)

o

The mass density p. in equation (5.149) counts what is in the central parts of
the galaxies. To get the total we have to add the contribution from the dark hy.
los illustrated in figure 3.12, and the contribution from whatever is in less readily
detected matter between the galaxies. We consider next the bound on the contr.
bution to the light of the night sky by galaxies or star clusters that might huve
been missed because they have low surface brightness or low luminosity or are
unusually compact. Dynamical measures for this “missing mass” are discussed
starting in section 18.

Olbers’ Paradox and the Light of the Night Sky

As we saw in Einstein’s world model, the assumption of a homogeneous
unchanging universe leads to a double bind: we have to postulate an eternal
source of material for new stars and galaxies, and we need some provision for the
disposal of the debris. In the absence of the latter the energy density of starlight
would build up until it became intense enough to suppress energy production
within stars. This is Olbers’ paradox; its interpretation was a good deal more
subtle before people became convinced of the conservation of energy and of the
entropy consérvation law that forbids the conversion of the excess starlight back
into matter for the next generation of stars. The history of these ideas is described
by Jaki (1967) and Harrison (1987, 1990).

One could imagine that the universe as we know it is etemal and the accumu-
lation of starlight is avoided because matter occupies a vanishingly small fracton
of space. as in the fractal model to be discussed in section 7. Another possibility
is the steady-state cosmology, in which the universe 1s homogeneous. continuous
spontaneous creation of matter provides a steady source of malerial for new gen-
erations of galaxies, and the expansion of the universe sweeps away the debris. It
will be shown in section 7 that both ideas lead to observational problems.

In the standard cosmological model the material for stars and galaxies was
present at very high redshift (and originated by a process not yet convincingly
identified). As discussed in the next section. the universe at redshifts z 2 101" was
hot enough to assure that photodissociation eliminated any complex nucler and
the radiation relaxed to a thermal blackbody spectrum. At much lower redshifts
some of the matter was cycled through massive stars that burmed the hydrogen
and helium to carbon. nitrogen, oxygen. and the other heavy elements, and stel-
lar winds and supernovae spread the elements into the interstellar material out of
which terrestrial-type planets and we were made. Much of the primeval material
now is locked up in slowly evolving low mass stars and other now unobtrusive
objects. and much is in stellar remnants such as white dwarfs, neutron stars, and
perhaps black holes. Measurements of the integrated background of starlight pro-
duced by all this activity are of fundamental interest for two purposes. First, this
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is a probe of the history of the universe, for galaxies had to have been more lu-
minous in the past to have produced the heavy elements present in them now.
second, the background light tests the possibility that equation (5.143) for the
density of luminous matter might have missed a good deal of light from unobtru-
sive systems. Studies of the interpretation of the background light as a probe of
galaxy evolution trace back at least to Whitrow and Yallop (1964) and Partridge
and Peebles (1967b), and as a constraint on the luminosity density to PC. An ex-
cellent survey of the present situation is given in Bowyer and Leinert (1990).

If the galaxies radiate at mean luminosity density j for an expansion time
~H,"!, they produce a net energy density u~jH,~!. The equivalent surface
brightness i is the energy flux per unit area and solid angle,

=L (5.152)

A more detailed estimate integrates the rate of production of the energy density
u by sources and the rate of loss caused by the expansion of the universe and
perhaps also by absorption. Let the mean number of photons per unit volume with
frequency In the range ¥ to v + dv at time ¢ be

dn=n(v, Dév . (5.153)

as measured by comoving observers. At time r + dr each of these photons has been
redshifted by the amount

v—va(t)/a(t+dty=v(l — dta/a), (5.154)

to order dr. If photons are not created or destroyed, the distribution function at
time ¢ +dt is

bn=n((1 —draja).t+d)(1 — dta/a)év

5.155
=(1 — 3dta/a)ntv, Hév . ( ‘

In the first line the argument of the photon distribution function is the new fre-
t!uency in equation (5.154), with the new bandwidth. The first factor in the second
line says the number density is lower because the volume of the universe has ex-
Panded by the factor {a(t +dt)/a())’ =1+ 3dtaja. This gives

on  aodn a

—=v—-———2-n. .1

o Vadw a" (5.156)
We get the energy per unit volume and frequency interval by multiplying the
Number density by the energy per photon: u(v, £)=Avn(v, t). The extra factor of v
Changes the factor 2 in equation (5.156) to 3 in the differential equation for «. If
m addition there is an energy source with mean luminosity j(v, f) per unit volume
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and frequency interval, the differential equation for the radiation energy density
becomes

ou adu a |
E—V;E —3Ell+j(l/,l). (5.157)
On changing to the surface brightness defined in equation (3.152) and writing a

time-dependent frequency as v(f) x a(r)", we have from equation (5.157)

d . _ O adi  _a. c
Ez(u(:),t) =3 u(f); " —3;;(v(r),r) + ZEI(UU)' ). (5.158)

The integral of this expression gives the surface brightness at the present time, ¢,,
with expansion parameter a, =al(,), and at observed frequency v,

1, 3
i(Vo, t,) = ZC— / dt [a(!)] Hveap/alt), 1). (5.159)
™ Jo a,
This is the surface brightness computed as an integral of the luminosity density
along the line of sight. It differs from the usual expression for radiative trans-
fer because the redshift makes the frequency in the argument of the luminosity
density a function of time, and the factor (0/00)3 converts the integrand to the lu-
minosity per unit comoving volume. A more general treatment takes account of
absorption; an example is given in section 7.

1t simplifies the units to consider the energy per increment of the natural loga-
rithm of the frequency or wavelength,

di  di
diny dln)

=vi, = Ay, (5.160)

where /, and /, are the energies per unit increment of frequency and wavelength.
Then we can write the surface brightness integrated over a band of frequencies or
wavelengths as

izft/i,,dln:/:/)\i)\dln,k. (5.161)

where i, =i(v,1) is the surface brightness per frequency interval and iy is the
surface brightness per increment of wavelength. That is, the integrated surface
brightness is the area under the curve in a graph of vi, as a function of log v or
log A. In this convention, equation (5.159) is

¢ o alt) 4
Voi(Vn-fa)zl;ﬂ[) dr [ G‘ ] v()j(v(), 1), (5.162)

o

where v(t)=v,a,/a(t). The integrated energy density in the absence of sources
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and absorption thus scales as uc a(t)”%. This figures in the discussion of the
cosmic background radiation in the next section.

In normal present-day L. galaxies, the luminosity L, is close to constant from
A~4500 A to well into the infrared. In the approximation that L, is fiat, and
peglecting the evolution of the luminosities of the galaxies, the luminosity density

scales as
jw.nxay v, (5.163)

and equation (5.159) is

] 0-’0 fo 2
,'(uo,:o>=cf(: - ) / (ai) dr . (5.164)
[4) 2]

At observed wavelengths ~ 5000 A it may be a reasonable approximation to
neglect the evolution of the galaxies (unless hght from a luminous blue phase in
young galaxies is redshifted into this band) because when L) is flat or decreasing
1o the blue the integral in equation (5.164) converges before the redshift is very
large. For the same reason, the integral is insensitive to the density parameter. For
example, in the Einstein-de Sitter model, where a o 12/3, the integral is H,~' /3.5,
while in a very low density open model with negligible cosmological constant,
where a o ¢, the integral is H,~' /3.

The luminosity density in equation (5.143) is expressed in units of the solar
luminosity at the blue B band centered at about 4400 A, where the luminosity of
the Sun is (eq. [3.51])

Voly, =24 x 10¥erg s! . (5.165)

With this conversion factor, equation (5.143) for ; in equation (5.164) for the
surface brightness is

8p%03 ergcm

Voly, =2 % 107 25 Vster !, (5.166)
A more detailed analysis showing the sensitivity to the galaxy spectra is given by
Code and Welch (1982).
As Felten (1966) pointed out, it is no surprise that equation (5,166) is indepen-
of Hubble’s constant, because it represents the sum of observed galaxy flux
densities, with an extrapolation to higher redshifts. The direct approach sums the
contribution to Voiy, from the observed counts of galaxies as a function of appar-
€t magnitude. In Tyson's (1990) sum over observed galaxy counts, the dominant
Contribution to the sum is at m ~ 24, the counts extend to m ~ 27, and the sum is

Voiy, =3.07%% x 10 %erg cm 2 s ! ster™!, (5.167)
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at A=4500 A. Within the uncertainties this is consistent with equation (5.166),
but one might expect that Tyson's sum is higher than what follows from the
method in equation (5.166), which ignores the galaxy evolution that is expecteq
to have made galaxies brighter and bluer in the past.

As in equation (5.166), the surface brightness from galaxy counts in equation
(5.167) represent the luminous matter in objects compact and bright enough (o
be detected as galaxies. The test for light between the palaxies is to compare
these results to the difference between the mean net sky brightness and what cap
be accounted for in local sources (in the atmosphere. the Solar System, and the
Milky Way). The upper bounds on the extragalactic part are surveyed by Manila
(1990): the bound at A ~ 5000 A is

. _5 -1 _ _
Vody, S2x 10 ergem ™" s Lster™!

(5.168)
Comparing with equations (5.166) and (5.167). we conclude that the net mean
luminosity density could be as much as ten times the value in equation (5.143)
for the hight from the bright parts of normal galaxies. If this material between
the galaxies had the same mass-to-light ratio as for galaxies, it would increase
the density parameter in equation (5.150) to §2, ~0.04, still well below unity.
That is. the Einstein-de Sitter model requires that the mass-to-light ratio of the
matter outside the bright parts of galaxies is M /L Z 100k for consistency with
the bound from the light of the night sky.

It is thought that galaxies were more luminous in the past, when they were
younger, because the present rate of production of heavy elements in normal
galaxies such as the Milky Way is not large enough to yield the observed element
abundances in the Hubble time. We get a measure of the integrated luminosity
needed to make the heavy elements by noting that the mass fraction released as
radiation (subtracting the part lost in neutrinos) in burning hydrogen to helium is

e=0.007. (5.169)
The extra energy released in burning to heavier elements is not large. The net

energy released in a galaxy with baryonic mass A1 to convert a fraction Z of the
hydrogen to heavy elements is

H(,_‘(L) ~ fL(1t=fMC'3Z. (5.170)

If AM/{L) is the observed characteristic mass-to-light ratio in equation (5.148).
then equation (5.170) (with L= /M:=19ergs™! g7, asineq. [3.57)) is

Z=0.007Th"2. (5.171)
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The actual production a1 the present rate is considerably less than this, because
much of the luminosity in present-day L, galaxies comes from stars with masses
close to that of the sun, which sequester most of their ashes in white dwarfs
and neutron stars. Since the present heavy element abundance is Z ~ (.03, the
conclusion is that galaxies had to have passed through a significantly brighter
hase when more massive stars were producing the heavy elements.

If this phase of element production is centered on redshift z., the contribution

to the radiation background is

R
¢ p.lec

Am | +z, (5.172)

=8 x 107 QA1 427! erg em™ s ster™!

Vply, ~

This assumes the mass fraction Z =0.03 of baryonic matter with mean mass den-
sity ps =2 pcrit has bumned from hydrogen to heavier elements. releasing a frac-
tion e =0.007 as radiation energy. The present energy density in this radiation is
reduced by the factor 1 + -, because the redshift reduces the energy hv of each
photon by this factor. (This energy loss effect is discussed in the next section.)
The spectrum of this background radiation depends on the types of stars produc-
ing the elements, the effect of dust that may absorb the starlight and reradiate it at
longer wavelengths, and the range of cosmological redshifts. Unless such effects
spread the energy over many decades in wavelength, we get close to the right
value for /, at the peak of the spectrum by considering the energy per logarithmic
frequency interval.

A production phase at z, ~ 10 would shift the radiation of the massive stars
that are efficient producers of heavy elements from emitted wavelengths ~ 1000
10 2000 A to the infrared at A, ~ 1 10 2 microns. The zodiacal light (a combina-
tion of scattered sunlight and sunlight that has been absorbed and reradiated by
inlerplanelary dust grains) has a mimimum near 3 microns, with

Vol ~ 3 % 1077 erg em s ster ' (5.173)

Matsumoto (1990) shows that measurements of the extragalactic background at
this level are feasible. With | + 2, ~ 10 this would bound the mass density of
the heavy element producing material at §2. < 0.034 2, larger than the density
of luminous matter (eq. [5.150]), but close to the baryon density in the model for
helium production to be discussed in the next section.

There is evidence that a significant fraction of the heavy elements was pro-
duced at redshifts well below == 10. Songaila. Cowie. and Lilly (1990) note
that many of the galaxies seen at redshifts on the order of unity have spectra
L, (luminosity per frequency interval) that are close to flat, the form that might
be expected from the light from a young star population. This flat spectrum
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would be expected to be suppressed at frequencies larger than the Lyman limit
at A\p =¢/vp =912 A, because at shorter wavelengths photoionization in the stel-
lar atmosphere strongly absorbs the radiation. Thus a reasonable model for the
spectrum of one of these galaxies is

L,=Llv, v<y,

(5.174)
=0, v>uy.
The mass density scales as n o a(r)~>, so equation (5.159) is
. ¢
Iy, = der. (5.175)
4Ty

The integrand is the mean luminosity per unit volume, £, in these objects, scaled
to the present epoch. It is integrated over the luminosity history, if the observa-
tions are at long enough wavelengths so that the integral is not affected by the
frequency cutoff in equation (5.174). This integral is

f Ldi=pZect, (5.176)

if the fraction Z of the present mean mass density p; is converted to heavy el-
ements. From the counts of these objects, Songaila, Cowie, and Lilly (1990)
estimate that their contribution to the mean surface brightness of the sky at one
micron wavelength 1s

Voly, =4 X 19-? erg cem~2s  ster ). (5.177)

Collecting, we see that the mean mass density of the heavy elements produced by
these objects is

mZ=3x10"¥gem™3. (5.178)

By comparison, the mass density in heavy elements in the bright parts of galaxies.
with equation ¢5.149) and Z = 0.03, amounts to

p.Z=3x10"%gem™3. (5.179)

The observed flat-spectrum galaxies approximated by equation (5.174) cannot
have redshifts greater than about z ~ 3, because the Lyman limit is not seen red-
shifted into the visible (Guhathakurta, Tyson, and Majewski 1990). And we see
that these relatively low redshift galaxies make an appreciable contribution to the
observed amount of heavy elements. It is not clear whether the heavy elements
from these low redshift sources end up in the luminous galaxies that are counted



D!vEI.OPMENT OF PHYSICAL COSMOLOGY 13

in pe, O in dwarf galaxies, or perhaps even in dark halos. Resolving the issue, and
establishing the timetable for production of the heavy elements in £, galaxies, is
a matter of current debate, some parts of which are reviewed in part 3.

6. The Thermal Cosmic Background Radiation

The 2.7K Background Radiation

At wavelengths in the range of millimeters to cenlimeters, the extrater-
restrial electromagnetic radiation background is dominated by an isotropic com-
ponent, the cosmic background radiation, or CBR. The isotropy suggests the CBR
is a sea of radiation that uniformly fills space. This would mean an observer in
any other galaxy would see the same intensity of radiation, equally bright in all
directions, consistent with the cosmological principle. The spectrum is very close
to a thermal Planck form al a temperature near 3 K, suggesting the radiation has
almost completely relaxed to thermodynamic equilibrium. This could not have
happened in the universe as it is now, because the universe is optically thin to ra-
dio radiation, as evidenced by the observation of radio sources at redshifts well
above unity (as in fig. 5.3). That is, the CBR moves across the Hubble length of
the present universe with little change apart from that caused by the expansion.
Therefore, the standard interpretation is that the CBR is left over from early epochs
when the expanding universe was dense and hot enough to have relaxed to ther-
mal equilibrium, filling space with a sea of blackbody radiation. We will see that
when the interaction with matter is negligible a homogeneous expansion of the
universe causes the radiation to cool, as in an adiabatic expansion process, pre-
serving a thermal spectrum. That is, a thermal radiation spectrum remains thermal
even in the absence of the speck of dust one usually invokes to make the expan-
sion reversible. The spectrum tends to remain close to blackbody when matter
and radiation interact, because the heat capacity of the radiation is very much
larger than that of the matter. Thus the expected signature of this blackbody radi-
ation left over from the early hot and dense phase of the expanding universe s its
vearly thermal spectrum.

Figure 6.1 shows the background radiation spectrum at wavelengths of 500 mi-
€rons to 5 mm, from the CoBE satellite measurement (Mather et al. 1990). The line
fhl'Ollgh the points is a thermal Planck blackbody spectrum. A Planck function has
Just one free parameter, the temperature 7,. The best fit 1o this parameter from
the COBE measurements and from a rocket measurement made at very nearly the

same time (Gush, Halpern, and Wishnow 1990) is the quoted temperature from
rocket experiment,

7,=2736 £0.017K. (6.1)

Measurements at longer wavelengths, from a summary by Wilkinson (1992), are
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Figure 6.1. Spectrum of the cosmic background radiation (courtesy of the COBE
Science Working Group). The frequency is expressed in terms of the recipro-
cal wavelength. The midpoints of the vertical bars show a spectrum measured
by the Far Infrared Spectrometer (FIRAS) on the NasA Cosmic Background Ex-
plorer (COBE) satellite. The data are from observations of a region of partic-
ularly low emission from galactic dust (“Baade’s Hole"), for a total exposure
of 100 minutes. Only data from one particular channel (“Left/Low”) and mir-
ror mechanism scan mode (“Short/Slow™) were used. The sizes of the bars are
£20 standard deviations, as 1o error flags would be invisible. The solid curve
shows the expected flux from a pure blackbody spectrum, with temperature
2.730 K. The precision of the absolute temperature measurement, 0.06 K, is
limited by the current understanding of possible systematic errors in the FIRAS
thermometry.,

shown in figure 6.2. As in the last figure, the thin line is the blackbody spectrum
at the temperature in equation (6.1). Within the uncertainties, all these measure-
ments agree with a pure thermal blackbody spectrum. This beautiful result comes
out of some three decades of development of methods of measurement. A guide
to the methods is given by Uson and Wilkinson (1988).

The CBR is remarkably close to isotropic. The main feature is a dipole (cx cos &)
variation in the thermodynamic temperature as a function of position across the
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Figure 6.2. Spectrum of the cosmic background radiation (Wilkinson 1992).
The scale is chosen to emphasize the measurements in the long wavelength
Rayleigh-Jeans part of the spectrum. The COBE measurement from figure 6.1 is
shown as the solid curve near the peak of the spectrum, the more precise of
the Dicke radiometer measurements are plotted as the squares, and the exci-
tation temperatures of the first two excited levels of the interstellar molecule
cyanogen as circles, The thin line is the Planck biackbody spectrum, Where er-
ror flags are not shown they are comparable to or smaller than the sizes of
the line or symbol. The measurements at long and short wavelengths are lim-
ited by emission from the galaxy, which is larger than the extragalactic part at
wavelengths longer than 30 ¢cm and shorter than 400 u. Some elements of these
measurements are discussed below.

fky, at an amplitude ~0.1% of the mean. The evidence is that this anisotropy
18 dominated by the effect of our motion relative to the rest frame defined by
the radiation and by the mean redshifts of distant galaxies (table 6.1 later in this
section). The quadrupole anisotropy, also measured by COBE, is about one part in
10%. As discussed in sections 21 and 25, this is in the range expected from the
8ravitational perturbation to the CBR by the large-scale fluctuations in the mass
f'ism'bution. At smaller angular scales down to about 20 seconds of arc, the CBrR
‘18 isotropic to better than one part in 104,
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The discovery of the cosmic background radiation twenty-five years ago had
a profound effect on the directions and pace of research in physical cosmol-
ogy. Its presence makes the evolving Friedmann-Lemaitre picture considerably
more credible, because it is difficult to see how the distinctive thermal spectrum
could have been produced in the universe as it is at the present epoch. That is,
the CBr is considered almost tangible evidence that the universe really did ex-
pand from a dense state. This is what led most people to abandon the steady-
state cosmology (as will be discussed in section 7). The knowledge of the present
radiation temperature of the universe makes the exploration of scenarios for its
evolution a good deal more definite. In particular, the straightforward computa-
tion of the thermal history of matter as it expands and cools through temperatures
kT ~ 1 MeV indicates that about three quarters of the baryons end up as hydro-
gen, with most of the rest becoming helium and small but significant traces of
other light isotopes. This agrees with the observed light element abundances as
they now are understood, accounting for the otherwise puzzling observation that
the helium abundance has a nearly universal value, quite unlike the large varia-
tions observed in the heavy elements that are thought to have come from stars.

The cBR also gives us an exceedingly important probe of the history of struc-
ture formation 1n the evolving universe, through the effects of structure on the
spectrum and isotropy of the radiation. The perturbation to the CBR by the plasma
in a cluster of galaxies has been observed, and will be discussed in section 24,
The closely thermal and isotropic nature of the CBR is not inconsistent with the
existence of galaxies and the large-scale structure in their distribution, as far as
is known, but it certainly constrains the possibilities, and the observed departures
from isotropy are an invaluable if still enigmatic clue to how structures formed.
A survey of the state of understanding of the lessons commences in section 21.

Blackbody Radiation in an Expanding Universe

The easiest way to see why the expansion of the universe preserves a
thermal spectrum is to consider the decomposition of the electromagnetic field
into normal modes of oscillation, as illustrated in figure 5.8. At temperature T the
occupation number, or mean number (N} = of photons per mode, is given by
the Planck function,

1
= (,hw,’kT -1

1
TARCATA [

N
(6.2)

Here, Boltzmann's constant is k. Planck’s constant is 4 =27k, the angular fre-
quency is w =2mv, and the wavelength of the mode is A=c/v. At the observed
range of wavelengths the frequency of the CBR is very much larger than the ex-
pansion rate / of the universe, so we know from adiabaticity that in the absence



DEVELOPMENT OF PHYSICAL COSMOLOGY 135

of interactions with other fields the quantum number for the mode is conserved,
¢hat is, N is independent of time. As illustrated in figure 5.8, the expansion of
the universe stretches the wavelength of the mode as A oc a(t), where a(r) is the
expansion parameter. Thus, when A is constant the temperature associated with
the mode has to scale as

T x 1/a(r). (6.3)

Since this is independent of the wavelength, we see that if the radiation initially is
in thermal equilibrium, so that the temperature is the same for all modes, then the
mode temperature remains independent of wavelength and the spectrum remains
thermal.

The conclusion is that the expansion of the universe makes the CBR temperature
scale with redshift as

T(1)=Totofa(t) =To(1 +2). (6.4)

The redshiftis z, where 1 +z=a,/a is the expansion factor (eq. [5.45)). This tem-
perature scaling applies, with minor corrections for the energy taken up in making
thermal particle pairs as the temperature gets high enough, back to whatever pro-
duced the radiation.

For a gas of nonrelativistic pointlike particles, such as hydrogen atoms, the
occupation number is given by the Boltzmann expression,

N oc e~ P /2T (6.5)

Here the matter temperature is T, and the particle mass is m. If the gas is nonin-
teracting, or free, the same mode-stretching argument says the particle momenta

© vary as p o l/a(t) (eq. [5.43)), so the kinetic temperature of a free gas varies with
cosmic time as

T o a(t) ™2, (6.6)

Preserving the thermal Boltzmann form. More generally, the expression for the
occupation number of an ideal gas of fermions or bosons is

1

= ple—mikT 417 (6.7)

At thermal equilibrium, the temperature T and chemical potential u are the same
in all modes. In the relativistic limit the particle energy € is proportional to the
momentum, Since the expansion of the universe stretches the de Broglie wave-
length as p~' x a(r), we see that when A/ is conserved the temperature and chem-
_ical Ppotentia in a relativistic gas both scale as o< T o 1/a(¢). In the nonrelativis-
Bic limit we can subtract the particle rest mass from € and u. The remaining energy
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scales as p2 o a(t) "2, so when AV is conserved the temperature and the remaining
part of the chemical potential scale as @~ 2.

Central to the interpretation of the CBR is the result that the expansion of the
universe keeps a thermal blackbody spectrum thermal. This is a consequence of
the fact that the energy is propontional to a power of the momentum. In a gas of
diatomic molecules with negligible collisions, the temperature belonging to trans-
lational kinetic energy scales as 7 « l/a(t)z, while the spin temperature remains
constant. A second more relevant example is a gas of massive neutrinos, with
energy €=(pc? + m*c*)!/2, If this gas were thermalized at a temperature well
above the neutrino rest mass, that is at T > mc?, and then freely expanded 1o
nonrelativistic velocities, the momentum distribution would remain that of a rel-
ativistic gas, and the energy distribution therefore would be markedly different
from Maxwell-Boltzmann. This is discussed further in section 18, in connection
with dark matter candidates. The expansion of the universe tends to break thermal
equilibrium between blackbody radiation and a gas of nonrelanvistic particles,
because the cooling laws in equations (6.4) and (6.6) are different. The CBR dom-
inates because the heat capacity in the radiation is so much higher (eq. [6.16)
below).

Let us recall how the expression for the photon occupation number in equation
(6.2) translates into the blackbody radiation spectrum. A convenient way is to use
periodic boundary conditions in a box of volume V = L3, with the side L taken to
be large compared to wavelengths of interest and small compared to the radius
of curvature of space. The electromagnetic field in a single mode of oscillation in
the box is proportional to the real part of the plane wave exp ik - r. The periodic
boundary condition implies that the propagation vector is of the form k=27n/L,
where n = (ny, 1y, n;} is a triplet of positive or negative integers n,. The number
of plane waves with propagation vector in the range d>k is then

L} Vv ,
4k = K dkd$) = rdwdSY. (6.8)

3
N = (213 (27)3 2nc)?

The second step expresses the element d3 in polar coordinates, where & is the
magnitude of the propagation vector and df2 =sin 8dfd¢ is the element of solid
angle for the direction 8, ¢ of k. The last step uses the dispersion relation w = k¢
for radiation, with ¢ the speed of light. (And we will rely on context to distinguish
the identical symbols for the propagation vector and Boltzmann's constant.)

The number of photons in the quantization volume V with wave number K in
the range d’k is the product of the occupation number per mode (eq. [6.2]) and
the number of modes, 2 d>N, where the factor of two takes account of the two
polarization staies. The number of photons per unit volume with frequency w in
the range dw and moving in any direction (the solid angle 42 integrated to 41) is
then
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o
] wdw

n(w)dw = 2203 RfkT _ |

(6.9)

It is worth pausing to note that this expression offers yet another way to see that
the expansion of the universe preserves the thermal spectrum of noninteracting
radiation. Suppose at the epoch labeled by expansion parameter @ the universe
contains a uniform sea of blackbody radiation at temperature 7. The number
of photons per unit volume with frequency « in the range dw is dN = n(w)dw.
At the later epoch labeled by &', each of these photons has been redshifted to
frequency w’'=wa/a’. We are assuming the radiation is free, and hence photons
are conserved, so the number of photons per unit volume varies inversely as the
volume, o a(t)~>. Thus, at epoch &’ the number #’(w’) of photons per unit volume
and frequency interval satisfies

dN =n'(Whdu' = r;!(c.u)dc..)(a'/a"):5 , W=wafa . (6.10)

If n(w) is given by the blackbody function (6.9). this equation says n'(w") also is
a blackbody function, with the redshifted temperature 7’ =Ta/a’.

The blackbody radiation energy u(w) per unit volume and unit frequency in-
terval is the product of the photon number density (6.9) and the energy Aw per
photon,

: k widw
u{widw = vy 6.11)

This is the Planck blackbody radiation spectrum. Another way to express it is as
the spectral surface brightness, i(v), which is the energy flux per unit area, solid
angle, and frequency interval v. This follows by dividing equation (6.11) by 4,
10 get the energy per steradian, and multiplying by ¢ 10 get the energy flux (as in
€q. [5.152]). On changing to the circular frequency v =w/(27) we get

, 2h vdv
I(I/)d!-/ = -(‘—2 ;IIIITT_—] . (6.12)
The limit Av < kT is the Rayleigh-Jeans law
() =2kT12 [c” {6.13)

The integral of equation (6.11) over frequencies is the blackbody radiation
energy per unit volume,

7[2 (“ )4 4
U= - — :
l—j(; u(w)Hdw is (ho] =agl (6.19)

ag=7.56 x 10" ergem K4
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The second step follows from the change of vanables x = iw /KT, with the dimen,.
sionless integral

< Gy B 7t
L= o775 (6.15)

Equation (6.14) is the Stefan-Boltzmann law. We will use the standard symbol. g,
for Stefan’s constant when 1t is easily distinguished from the expansion parame-
ter.

The heat capacity of the CBR at fixed volume is 427 If the matter consists of
atomic hydrogen. the ratio of its heat capacity to that of the CBR is

1.5ngk 2
LT =4 x 1070 (6.16)

where np is the mean number density of hydrogen atoms (eq. {5.68]). This ratio is
independent of redshift. 1ts small value explains why the CBR might be expected
to have a closely thermal spectrum: at high redshifts, where the interaction be-
tween matter and radiation is appreciable, the matter relaxes to the radiation tem-
perature. because the radiation has by far the higher heat capacity. and at thermal
equilibrium the radiation spectrum remains thermal no matter how strong the in-
teraction.

The ratio of the mean mass density in matter (eq. [5.67]) to the mass density in
the CBR at the temperature in equalion (6.1) is

2
=407 10° Qn21+ )7 (6.17)
ar?
The redshift dependence follows because the energy density in the CBR varies as
(1 +2)! (because T x 1/a() in eq. [6.4]). one power faster than for the nonrela-
tivistic matter. With the lower bound on the mass density parameter {2 in equation
(5.150), we see that at the present epoch the energy density in the radiation is a
small fraction of the total. It follows that when the redshift is not too large the
energy available from annihilation of mass by nuclear burning (or perhaps by
the more efficient process of accretion by black holes) is sufficient to produce an
appreciable perturbation to the radiation temperature. Whether this can have hap-
pend depends on whether there is a way to transter the energy to the ¢8R while
keeping the spectrum close to thermal. Some details on how this might happen
are discussed in the next section and in section 24.

Two features in the standard interpretation of 1he CBR tend 10 be confusing. We
have already noted in section 1 that the name for the standard model. the hot big
bang, is misleading. for a bang suggests a localized explosion. In the standard
picture the source of the CBR is not localized; the radiation is uniformly and
isotropically distributed throughout the space we can observe. This agrees with
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he fact that the radiation is equally bright in all directions. The number density
§ photons is decreasing with time as a(7)~%, not because photons are leaving
?he leiv erse—there is nowhere else to go—but because the volume of space is
increasmg as a(f)3. . . . '
The second confusing point is the nature of energy balance in the CBRr. Since
the energy density in blackbody radiation varies as the fourth power of the tem-
perature, the expansion of the universe causes the radiation energy density to
evolve as py X T*x a()™*. As indicated in equation (6.17), this is faster by one
power of the expansion parameter than for the mass density in a gas of nonrel-
ativistic particles such as baryons (eq. [5.19]). The number density of photons
varies as a(¢)3, as for baryons, but there is an extra factor of 1/at¢) for the red-
shift of the mean energy per photon. Another way 1o get the cooling law is to
recall that the pressure of the radiation is p, = p, /3. With this equation of state,
the local energy conservation equation (5.16) is

d

% =—3(py +py)=
. (6.18)
a

=—4p,-.
a
The solution is
pyxa()™?, (6.19)

consistent with the Stefan-Boltzmann law (6.14) and the redshift law (6.4) for
the radiation temperature. We see that the faster decrease of p~ compared to the
mass density of a nonrelativistic gas is the result of the pressure work done by the
expanding radiation. However, since the volume of the universe varies as a(r)>.
the net radiation energy in a closed universe decreases as 1/a(1) as the universe
expands. Where does the lost energy go? Since there is no pressure gradient in
the homogeneously distributed radiation, the pressure does not act to accelerate
the expansion of the universe. (The active gravitational mass due to the pressure
has the opposite effect, slowing the rate of expansion, as indicated in eq. [5.15]).

resolution of this apparent paradox is that while energy conservation is a
g0od local concept, as in equation (6.18), and can be defined more generally in
the special case of an isolated system in asymptotically flat space, there is not a
general global energy conservation law in general relativity theory.

Discovery

. The history of the discovery and interpretation of the cBR is worth con-

Sidering as an example of the curious paths progress in science can take.
Lemaitre was the first to speculate on the physics and possible observable

Y™mnants of the very early stages of expansion of the universe. He imagined
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a hot beginning: “The evolution of the world can be compared to a display of
fireworks that has just ended: some few red wisps, ashes and smoke. Standing oy
a well-chilled cinder, we see the slow fading of the suns, and we try to recall the
vanished brilliance of the origin of the worlds™ (Lemaitre 1931e). This is readily
interpreted as a description of the standard hot big bang model, but Lemaitre s
candidate for the remnant radiation from high redshifts was cosmic rays rather
than a millimeter-wavelength thermal background.

Tolman introduced the idea of the thermodynamic history of an expanding
universe. He showed that the expansion of the universe cools blackbody radiation
while keeping the spectrum thermal (Tolman 1934, § 171).

The search for the origin of the chemical elements led people to consider the
possibility that matter passed through a phase dense and hot enough to have pro-
moted nuclear reactions that could have built up the elements. It was considered
that this might have happened in stars, but there also were discussions of the pos-
sibility that the nuclear reactions occurred during the early dense epochs of an
expanding universe. Chandrasekhar and Henrich (1942) concluded that if mat-
ter had relaxed to thermal equilibrium at a density ~ 107 gcm~? and temperature
~10'°K, and if the abundances had been frozen in at that point because of the
rapid expansion and cooling of the universe, then the relative abundances of the
lighter elements would agree reasonably well with cosmic abundances. Chan-
drasekhar and Henrich noted that their solution does considerably underestimate
the abundances of the heavier elements and that, for that matter, the theory is not
very satisfactory because it seems unrealistic to suppose the material in an ex-
panding universe makes a discontinuous break from thermal equilibrium at one
epoch to a frozen set of abundances immediately thereafter.

Gamow (1942, 1946) emphasized that the thermal equilibrium model is ques-
tionable because the high mass density in the early universe causes a rapid rate of
expansion (eq. [5.18]). He argued that an analysis of the element abundances that
would be left over from the early universe really involves a dynamic rather than
equilibrium calculation, taking account of reaction rates in rapidly expanding and
cooling material. The first step in this direction was the “a3%" paper (Alpher,
Bethe, and Gamow 1948).1® The events leading up to and following this paper
are described in PG and by Alpher and Herman (1988). In the a3y paper Alpher
and Gamow suggested that the elements were built up by rapid capture of neu-
trons (with relaxation by beta decay). In this process, the final abundance of an
element would depend on the competition between loss by absorption of neu-
trons and production by neutron capture by the next lighter nucleus. The analysis
used the neutron capture cross sections at energies ~ 1 Mev that had been made
public at the end of the Second World War. They found that the general trend of
cross section with atomic mass would lead to a reasonable-looking pattern of rel-

'* Bethe's name was added to complete the symmetry.
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ative abundances in their building-up process. That still js the case, but the site
has been moved from the early universe to exploding stars. It is now thought that
element formation in the early universe did not go far beyond helium.

The a8~ paper ignored the mass density associated with blackbody radiation.
Alpher (1948) and Gamow (1948a.b) noted that at the temperatures of interest
for element formation, where thermal energies 4T are on the order of 1 MeV, the
universe would be filled with blackbody radiation (the CBR) with mass density
considerably larger than the baryon mass density. Since the density determines
the expansion rate (eg. [5.18]), this means thar at the nucleosynthesis epoch the
radiation temperature could determine the rate of expansion and cooling of the
universe. Gamow (1948a,b) gave the now standard order-of-magnitude consid-
erations by which we understand that the present radiation temperature of our
universe ought to be a few degrees Kelvin, to allow consistency with the cosmic
abundances of the lightest chemical elements. The argument, with the added re-
finement of the processes that fix the neutron-to-proton abundance ratio. goes as
follows. (Some further details are given in the last part of this section.)

Let us extrapolate the expansion of the universe back to redshift z ~ 10!Y, when
the temperature was T ~ 3 x 10'CK, and the characteristic photon energy was
~ kT ~ 3 MeV. At this epoch, the CBR photons are hard enough to photodissociate
complex nuclei, leaving free neutrons and protons. Hayashi (1950) pointed out
that the CBR also is hot enough to produce a sea of electron-positron pairs, and
neutrino pairs, and that these pairs interact with the neutrons and protons, through
neutrino reactions such as

e +p—vrv+n, (6.20)

which are fast enough at temperatures T ~ 10! K to produce a thermal abundance
ratio, n/p=exp —Q/kT, where Q is the neutron-proton mass difference. The neu-
trons and protons have a rapid rate for radiative capture,

n+p-+d+-y. (6.21)

At high temperatures the reverse reaction breaks up the deuterons as fast as they
form. When the temperature has fallen to T ~ 10? K, there are too few photons
hard enough to photodissociate the deuterons, and deuterium can accumulate.
Once there is an appreciable deuterium abundance, particle exchange reactions
Can rapidly burn the deuterium to helium.

Gamow (1948a.b) recognized that a key to the element buildup process is the
feaction in equation (6.21). The probability per neutron for completion of the
Peaction as the universe passes through the epoch T ~ 10° K should be apprecia-

le, so isotopes heavier than deuterium form in significant amounts, but not very
I8e, so there are significant remnants of deuterium and other light isotopes, con-
Sistent with the observations. Thus the Gamow condition is



142 6 THE THERMAL cgy

{ovint~1, (6.22)

at the epoch of deuterium formation, T ~ 10° K. Here ¢ is the cross section for the
reaction (6.21) at relative velocity v, and the brackets indicate a thermal average
(which is easy because the product ov is close to constant). The baryon numbe,
density is », and the expansion timescale for the universe is ¢.

There are three contributions to the expansion rate equation (5.18), represeny.
ing mass density, space curvature, and A. If the parameters are such that the
expansion does trace back to a dense state, then the sitvation at high redshift sim-
plifies because the mass density grows with redshift faster than the other terms,
and the mass density in radiation grows faster than the density in nonrelativistic
matter (eq. (6.17]). Thus, at z >» 10* the expansion rate is well approximated bya
radiation-dominated universe with negligible space curvature and A,

a\®_8rGagl" ;
al 32 (6.23)

Since T x 1/a(¢), the solution is

3¢t 12
~(s6a) .

This says the age of the universe at T = 10 K is 1 ~ 200,

With this expression for the time as a function of temperature, and a theo-
retical estimate of the neutron radiative capture rate coefficient {ov), Gamow
found that at T = 10° K the baryon number density ought to be n ~ 10 cm~3.
He did not estimate the present temperature, but that is an easy exercise. The
temperature and baryon number density scale with the expansion of the universe
as T ox I /a(t) n'/3 so Gamow's estimate gives T, ~ 4K at the present epoch,
n~10"7cm™3 (eq. [5.149]). This is as close as could be expected to the observed
value in equation {6.1).

Alpher and Herman (1948) corrected some numerical errors in Gamow’s cal-
culation and used the result to compute the present temperature predicted by this
theory. Their value, T, ~ 5K, is the first numerical estimate of the present CBR
temperature, and again quite close to what is observed.

It is now believed that the element production reactions essentially stop at he-
lium, with trace amoums beyond that, and that the bulk of the heavier elements
are produced in stars. This is consistent both with the theory of element pro-
duction in the early universe and the observation that the oldest stars have low
heavy element abundances. There is no known source in stars for the observed
abundances of the isotopes of helium or the heavier isotopes of hydrogen: they
are thought to have been produced in the hot big bang. The Gamow condition in
equation (6.22) still is considered to be one of the keys to the formation of these
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light elements. Further details of the physics are given in the last part of this sec-
gion (and summarized in table 6.2). .

In the 1950s and early 1960s the Gamow-Alpher hot universe picture certainly

was not forgoteen. An example is Gamow's 1956 article on the “Importance of

qmal Radiation in Cosmology.” However, it was not widely discussed. and
atention shifted 1o element formation in stars. This was in part because, as Alpher
(1948) had foreseen, the a3+ neutron capture process gets hung up at *He by the
instability of 3He, and certainly also because in the steady-state cosmology there
pever was a ime when the universe was hot and dense, so one had to show that
the elements formed in the only other hot place one can think of, the stars.

There were some notable early clues to the validity of the Gamow-Alpher
picture. One was the growing recognition that helium abundances in stars and

us nebulae are surprisingly uniform, suggesting the bulk of the helium was
present before the stars formed, and perhaps originated in the hot big bang (Os-
terbrock and Rogerson 1961; O'Dell. Peimbert, and Kinman 1964). Another was
the observed excitation temperature of interstellar cyanogen.

Adams (1941) detected absorption lines of the diatomic molecule cyanogen,
CN, in interstellar clouds along the lines of sight to stars, and found that there
are lines from the rotationally excited state of CN as well as the ground state.
McKellar (1941) remarked that the relative abundance in the ground state and
each first rotationally excited state defines an effective excitation temperature T
by the Boltzmann equation

Bl _ p=ENT (6.25)
niy

The energy difference between the states is £. If the rotational excitation of the
CN molecules were in statistical equilibrium with the background radiation field
at the resonance for the transition between ground and first rotationally excited
States, A=hc/E =2.6mm. the parameter T would be the effective background
radiation temperature. One expects that the excitation temperature in equation
(6.25) in diffuse molecular clouds is fixed by energy exchange with the radia-
tion background, rather than by particle collisions. because the CN molecule has
arelatively high dipole moment for emission and absorption of radiation. McKel-
lar found a temperature 7 = 2.3 K. in the range tor the Gamow-Alpher hot uni-
verse. However, the connection was recognized independently by N. J. Woolf and
George B. Field only after the proposed interpretation of the centimeter wave-
length background as the CBR. The results of recent applications of this measure
of the cBR spectrum are shown as the circles in figure 6.2.

O’Dell, Peimbert, and Kinman (1964) measured element abundances in a plan-
€tary nebula in the globular star cluster M15. This cluster is a representative of the
oldest known star population. The oxygen abundance in the nebula is markedly
lower than the present cosmic mean found in relatively young objects like the
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Sun, consistent with the idea that the material in old systems like M15 has poy
been as much enriched by heavy element production in earlier generations of
stars. But the helium abundance in MI15 is close to the present cosmic mean
O’Dell et al. noted that the material in a planetary nebula is ejected from a giar
that is nearing the endpoint of its evolution, and it is conceivable that the helium
was produced within the evolving star. However. it would be a surprising coincj.
dence if the star produced just the present cosmic helium abundance. Hoyle and
Tayler (1964) reviewed the evidence for a nearly universal helium abundance ip
young stars and old. They noted that this universal abundance is not what one
would expect if helium were formed in the stars that made the heavy elements.
Hoyle and Tayler considered two possibilities: the helium was produced in the
Gamow-Alpher hot big bang, or in an early generation of supermassive stars.
The latter “little bang” picture could produce element abundances similar to those
coming out of a hot big bang, because a supermassive star is unstable and tends 1o
expand so rapidly that element formation need not proceed much beyond helium.

The direct evidence of a hot big bang would be a detection of the blackbody
radiation. This was recognized independently and at about the same time by
Robert Dicke in Princeton and by the group around Yakov Zel’dovich in Moscow.
The latter work was summarized in a review paper by Zel’dovich (1965). Smimov
(1964) had rediscussed the Gamow condition; he arrived at T,~ 1 K to 10 K at
baryon density pg = 1 x 10730 gcm~3, about the present value. Doroshkevich and
Novikov (1964) pointed out that one could find a very useful bound on the present
radiation temperature from published reports of a Bell Telephone Laboratones
radio telescope in Holmdel, New Jersey (Ohm 1961).

The Holmdel telescope was used in the Echo satellite experiment as part of the
first trials of communication by means of satellites. Detailed studies of the noise
properties of the telescope plus receiver yielded a noise excess that was taken
to be ground radiation picked up by the back lobes of the antenna. Ohm’s re-
port indicated that an excess system temperature “not otherwise accounted for” is
“somewhat larger than the calculated temperature expected from back lobes mea-
sured on a similar antenna.” D. T, Wilkinson’s judgment is that a radio astronomer
locking for evidence for an isotropic radiation background such as the CBR might
have considered this an encouraging sign, because it is hard to distinguish ra-
diation entering the antenna by the back lobes from an isotropic background.
Doroshkevich and Novikov interpreted the description of the noise properties
of the telescope to mean that the cosmic background temperature could be no
greater than about ~ 1 K. At this value for the present CBR temperature, the com-
puted helium abundance seemed unreasonably high. That led Zel'dovich (1963)
to turn briefly to a cold big bang cosmological model. It is now recognized that
the excess noise in the Holmdel telescope is extraterrestrial—the thermal cosmic
background radiation.

The Bell Telephone Laboratories instrument is a radiometer, a device Dicke
invented as part of research during the Second World War at the MIT Radiation
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Laboratory. Dicke (1946) used this device to measure centimeter wavelength ra-
diation from atmospheric water vapor and fr'om the. Sun apd IN‘O(.)H. and he 'placed
an upper limit ~ 20 K on the temperature of isotropic "radmtnoq tron} cosmic mat-
ter” (Dicke et al. 1946). In 1964 Dicke proposed the construction of a radiometer
that might be capable of detecting the blackbody radiation in a hot big bang um-
verse. By this time he had forgotten about his 1946 measurement. And he was
unaware of the problem with excess noise in a Dicke radiometer in Holmdel.
some 30 miles away.

Dicke was motivated not by element production in the Gamow-Alpher theory
(about which he had also forgotten). but by element destruction 1n an oscillating
universe. 1n a closed model with negligible cosmological consiant. the expansion
of the universe eventually is stopped (by the gravitational deceleration of the mat-
ter), and the universe collapses back to a dense state. Many have speculated that
physics outside the standard model causes a bounce producing a new expand-
ing phase; Lemaitre (1933) considered this an attractive picture that recalled to
him the legendary phoenix. Dicke noted that if our universe is expanding from a
bounce from a collapsing phase in which much of the hydrogen had been burned
to heavier elements in stars, then there must be some provision for the conversion
of the heavy elements back to hydrogen for a fresh generation, When hydrogen
in a star is burned to heavier elements. the energy released 1s radiated as starlight.
with photon energies on the order of one electron volt. The heavy elements from
the last cycle would be produced when the universe was at a low density, per-
haps on the order of the present value. As we have seen. the expansion of the
universe lowers the energies of these photons. The same process during a sub-
sequent collapse of the universe increases the photon energies, so that when the
collapse brings the mean density back to the present value there is again a sea of
pPhotons with energies comparable to starlight, € ~ 1 eV. Further collapse eventu-
ally brings the typical photon energy to e ~ | MeV. At this point, the photons are
hard enough to evaporate stars and photodissociate heavy elements, producing
fresh hydrogen for the next cycle. This uses only a small fraction of the radiation.
for the burning of each proton to heavier ¢lements releases a few MeV of bind-
Ing energy as some 10° starlight ~ 1 eV photons. In the photodissociation phase
only a few of these photons. now blueshifted by the contraction of the universe to
gamma ray energies. are needed to release the proton again. The net gain is some
~ 10° gamma ray photons per proton.'” In other words. the burning and photodis-
sociation of the hydrogen by irreversible processes has created entropy. 1t is this
€ntropy, in thermalized radiation and cooled by the expansion of the universe af-
ter the bounce, that Dicke proposed looking for.

At Dicke's suggestion Peter Roll and David Wilkinson at Princeton University

” _ ‘ ‘ .

. There are 10* 10 10° photons per baryon in our universe, as shown in equation (6.5%). W see that
if the bounce conserved baryons and photons. this number of photons could accumulate in a few
bundred oscillations of 1he universe.
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built a radiometer capable of detecting this radiation, and he assigned to me the
task of thinking of the possible significance of a detection or nondetection. Thj
led to a rediscovery of the Gamow condition for light element production, and 1o
the physics of galaxy formation. [ was given leave to present a colioquium on thig
work at The Johns Hopkins Applied Physics Laboratory in Baltimore, it being
reckoned that there was no chance for the development of competition with the
Roll-Wilkinson experiment already under construction.

A few points from this talk are of some historical interest. Figure 6.3, which
was prepared for the talk, shows bounds on the extragalactic radiation back-
ground. The vertical axis is the surface brightness per logarithmic frequency in-
terval, vi(v) (eq. [5.160]). Thus if the graph were repliotted with a linear vertical
scale, keeping the logarithmic frequency axis, the area under the curve would
be proportional to the net energy density. The large rectangle is placed in the
range from millimeter to micron wavelengths, which was the largest gap in the
measured surface brightness of the sky. The area under the rectangle is the crit-
ical Einstein-de Sitter mass density {(eq. [5.67]). A Planck spectrum at 7 =40K
would have the same mass density, but a thermal spectrum this hot is ruled out
by the Dicke measurement from 1946 at 6-cm wavelength, which is plotted as a
circle with down-pointing arrow. Even the tighter spectrum indicated by the rect-
angle could be excluded, because it was known that the cosmic ray background
extends to events at energies greater than 10'% eV that are thought to be protons.
As will be discussed in more detail below, a proton at this energy is not apprecia-
bly deflected by the magnetic field in the Milky Way. Since these particles move
in nearly straight lines through the galaxy, and their arrival directions show no
preference for the plane of the Milky Way, they are thought to be extragalactic. In
the rest frame of a 10'® eV proton, the background photons in the right-hand side
of the rectangle are energetic enough for photopion production,

p+y—p+7Y, nant, (6.26)

and at the background level indicated by the rectangle, the mean free path of a
10!'? eV cosmic ray proton for this reactjon is less than the size of the galaxy. Thus
it seemed clear that there is no reasonable chance that the cosmic background
radiation makes a cosmologically interesting contribution to the present mean
mass density. (Mean free paths for energetic particles in the observed thermal
cosmic background radiation are discussed later in this section.)

If the expanding universe started out cold, with vanishing lepton number, the
matter would start out as neutrons, because in the dense early universe the degen-
eracy energy of the electrons would force them onto the protons. As the neutrons
decayed, the protons would capture other neutrons, leaving a hydrogen-poor uni-
verse, which is unacceptable. This could be avoided by postulating a degenerate
neutrino sea, or else a hot universe, I argued that in the latter case the background
temperature could be as high as T, ~ 10K, which would be well within reach of
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Figure 6.3. Spectrum of the cosmic background radiation. February |1965.

the Roll-Wilkinson experiment. Word of the experiment spread from Ken Tumer,
who was at the Baltimore colloquium, to Bernie Burke, who with Turner was at
the Camegie Institution of Washington (then a center for radio astronomy). and
from there to Amo Penzias and Bob Wilson at the Bell Telephone Laboratories in
Holmdel. They were planning to use the Holmdel telescope for radio astronomy
but were unable to understand the excess noise known for some time to be present
In this instrument. A meeting of the Holmdel and Princeton groups led to the con-
Clusion that the noise excess very likely is extraterrestrial. Since the noise excess
was known to be close to isotropic, it at least meets the first condition for the
thermal background in a hot big bang cosmology. Thus the “excess antenna tem-
perature,” T, = 3.5 + 1.0 K at 7-cm wavelength, was reported (Penzias and Wilson
1965). and interpreted as the “cosmic blackbody radiation” (Dicke et al. 1965},
The antenna temperature is a conventional way to express the background radi-
ation surface brightness i(v/) through the Rayleigh-Jeans law (eq. [6.13]). The key
Signature of the hot big bang radiation is that i(») is close to a thermal blackbody
Spectrum. Figure 6.4 shows the situation shortly after the discovery. in an illus-
tration 1 prepared for a talk at the American Physical Society. The straight line on
the left is the extrapolated contribution of known radio sources, with slope similar
to the diffuse synchrotron radiation from our galaxy. The discovery point of Pen-
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Figure 6.4. Spectrum of the cosmic background radiation, March | 965.

zias and Wilson at 7.35-cm wavelength is above this extrapolation and well above
the expected integrated contribution from starlight from galaxies. That is, itis a
distinctly new component of the background. Since a thermal spectrum is fixed
by a single parameter, the temperature, the Penzias and Wilson measurement pre-
dicts the background surface brightness as a function of wavelength, within the
limits set by the accuracy of the measurement, if the CBR interpretation is correct.
The Roll-Wilkinson radiometer detects radiation at 3.2-cm wavelength. Their re-
sult, obtained a few months later, was T, = 3.0 = 0.5 K. The consistency with the
Penzias-Wilson measurement, at roughly twice the wavelength, was a dramatic
positive test of the hot big bang interpretation (Roll and Wilkinson 1966). The
present state of the tests shown in figures 6.1 and 6.2 is the product of a long
history of difficult innovative measurements.

When it was proposed that the radio background at centimeter wavelengths
is blackbody radiation left over from the dense early stages of expansion of the
universe, and the spectrum was not well known, it was natural to consider other
possible interpretations. The CBR energy density can be compared 10 that of other
local fields. The luminosity of the Milky Way is L = 10'°L, so at our position
near the outskirts, at distance r ~ 8 kpc from the center, the energy density is
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u.~L/(47rr2c)EuT,4. This defines an effective temperature for the starlight;
the result 18 T, =2 K. The interstellar magnetic field is B-w 10'7'(’ Gauss. lf we
agdin define an effecFlve tenjpgrature by the energy density, B-./87r =alp”, we
get Tg=2K. The curious coincidences of thes.e .twc? numbers with the (‘Bg tt?n]-
perature might have suggqsled a ve!'y local ongin for thfz background racation.
However, we know the Milky Way 1s transparent at centimeter wavejengths, be-
cause extragalactic objects are visible in all parts of the sky. Since we are located
roward the edge of the Milky Way it is hard to imagine how radiation originat-
ing within it could be even remotely close to isotropic, while the CBR i1s strikingly
smooth.

When the measurements of the CBR were mainly at long wavelengths. where
the thermal spectrum is the Rayleigh-Jeans form i(v) x 7, it was natural to ask
whether the extragalactic radio sources might add up to this power law behavior
(Narlikar and Wickramasinghe 1968). However, it seems quite unreasonable to
imagine that the integrated background from radio sources could conspire to
produce the remarkably close approximation to a thermal spectrum shown In
figures 6.1 and 6.2.

At low redshifts there is enough energy from nuclear burning of matter in stars
to produce the CBR (eq. [6.17]). However. to convert starlight to a thermal spec-
trum by statistical relaxation, the universe would have to be optically thick at
the Hubble distance, which is inconsistent with the observations of high redshift
galaxies shown in the redshift-magnitude diagram in figure 5.3. A numerical ex-
ample of this point is worked out in the next section for the steady-state cosmol-
ogy. It is considerably easier to imagine that the CBR was made out of starlight
if one goes to an evolving initially cold universe. where the radiation is pro-
duced and thermalized at moderately high redshifts (Layzer and Hively 1973:
Rees 1978). This eliminates the problem with the transparency of the universe
at z~ 1, and the higher density and shorter CBR wuvelengths ease the problem of
finding candidate dust grains that could make the universe opaque. The epoch at
which the CBr could have been produced out of starlight is bounded by the en-
ergy available in the matter (eq. [6.17]): a favored redshift is - ~ 100. The most
recent computations prior to the precision satellite and rocket measurements illus-
trated in figure 6.1 predicted that in this picture there would be departures from a
thermal spectrum at a level that now is ruled out (Hawkins and Wright 1988). It
Would be useful to see whether there is any related way the cold big bang picture
an be arranged to fit the new spectrum measurements.

As we have discussed, another path to the idea that the early universe was hot
comes from the problem of accounting for the abundances of the light elements.
The first detailed computations of element production in the hot big bang. fol-
lowing the discovery of the CBR, are in Peebles (1966) and Wagoner. Fowler, and
Hoyle (1967). The present state of the standard model for light element produc-
on is illustrated in figure 6.5. The computation, which is described in the last
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Figure 6.5. Production of light elements in the hot big bang (Schramm 1991).

part of this section, assumes that the distributions of baryons and radiation are
close to homogeneous at the epoch of light element production, and it assumes
there are negligibly small lepton numbers {(meaning the neutrinos are not degen-
erate). Since the present CBR temperature is accurately known, the free parameters
are the present mean baryon number density and the net mass density in rela-
tivistic components such as neutrinos, gravitational radiation, and the csr. This
relativistic part dominates the mass density and hence the expansion rate during
light element production. The abundances in the figure are computed under the
assumption that the additional relativistic energy density is that of the three fami-
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.« of neutrinos associated with the known three charged leptons, e, y, and 7. The
lles_O ntal axis is proportional to the present mean number density of baryons.
menical dashed lines indicate the range ot baryon densities for which the
icted abundances agrec with the observations (in some cases with mild cor-

rections for additional production in siars). The range 1s

ng=14=+03x 10" nucleons cm ™,

. (6.27)
Q5=0.013+0.0034"

(Walker et al. 1991). The wanted baryon density is greater than what is observed
in the bright stellar matter in galaxies (eq. {5.150]), but it is easy to imagine the
rest is in low mass stars in dark halos. or in gas. For example. there is a high
density of plasma in rich clusters, Thus the fact that the wanted value of (4 is in
a reasonable range is a nontrivial success. The present evidence is that this picture
gives an observationally successful account of the otherwise puzzling systematics
of the light element abundances. This important result. from the group at Chicago
that produced figure 6.5 and from other observational and theoretical groups. is a
central step in the establishment of the hot expanding relativistic cosmology as
the standard model.

One might draw many lessons from the history of these discoveries. Perhaps
the most significant is that the physical world presented us with a considerable
variety of hints to a hot evolving universe that eventually were recognized. The
abundance of hints is one of the things that encourages belief that the hot universe
really is a useful approximation to reality.

Aether Drift: Observation

Blackbody radiation can appear isotropic only in one frame of motion.
An observer moving relative to this frame finds that the Doppler shift makes the
ra.diation hotter than average in the direction of motion, cooler in the backward
direction. That means the CBR acts as an aether, giving a local definition for
preferred motion. This does not violate relativity; it always is possible to define
motion relative to something, in this case the homogeneous sea of radiation. The
Pattern of galaxy redshifts similarly can only be seen to be isotropic relative to a
preferred frame of motion.

Tl-le analysis in the next subsection shows that an observer moving at speed v
relative 1o the preferred frame in which blackbody radiation is isotropic sees that
the thermodynamic temperature of the radiation is a function of direction relative
10 the motion. To first order in v/c the anisotropy is dipole.,

T(0y=Tx1 +vcost). (6.28)

Here 6 is the angle between the line of sight and the direction of motion. The
CBR has a dipole anisotropy with this property. The effect was first convincingly
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seen by Conklin {(1969) and Henry (1971). The present result, in table 6.1, is an
average over many elegant experiments, as summarized by Smoot et al. (1991 and
1992).

The standard interpretation is that the CBR dipole anisotropy is the result of our
peculiar motion caused by the gravitational field of the irregularities in the mass
distribution. There is the possibility that the anisotropy instead is the effect of
a large-scale inhomogeneity in the distribution of the radiation. Fluctuations in
the mass density on scales large compared to the Hubble length would produce
a quadrupole anisotropy, rather than dipole, because a constant gradient in the
hypersurface of constant density is eliminated by a velocity transformation that
tilts the surfaces of constant time, eliminating the dipole and leaving the second
derivatives that produce a quadrupole (Grishchuk and Zel'dovich 1978). If the
total mass density were homogeneous, a large-scale gradient in the entropy per
baryon (or whatever dominates the mass of the universe now) would produce
an amsotropy dominated by the linear term in the power series expansion of the
temperature as a function of position, producing a dipole anisotropy, which could
fit the observations (Paczynski and Piran 1990; Turmer 1991).

In the standard interpretation, the same preferred comoving rest frame is de-
fined by the CBR, the redshift-distance relation for galaxies, and the X-ray back-
ground. (For X rays, the dipole anisotropy is called the Compton-Getting effect,
after the effect of motion on the distribution of cosmic rays; Compton and Get-
ting 1935.) If, as is usually assumed, our motion relative to this preferred frame is
caused by gravity, our motion ought to agree with the gravitational field produced
by the fluctuations in the mass distribution. If the cBR and X-ray dipoles were
caused by large-scale inhomogeneities in the radiation distribution and sources,
one would look for quite different effects in these differently defined frames. The
evidence is that the frames are consistent to perhaps 300 km s~ ! (Aaronson et al.
1986; Shafer and Fabian 1983; Rubin and Coyne 1988). Still tighter tests will be
of considerable interest.

The motion of the Solar System relative 1o the frame in which the cosmic
background radiation is isotropic 1§

v —Yepr =370+ 10kms™' 10
a=112", §=-7°; (6.29)
1=264.7+08°, h=48.2+0.5°.

The conventional correction for the solar motion relative to the Local Group
is 300 km s~! to 1=90°, =0. (This is close to the mean motion defined by the
Local Group members, as discussed by Yahil, Tammann, and Sandage 1977, and
to the velocity that minimizes the scatter in the local redshift-distance relation in
figure 5.5.) With this correction, the velocity of the Local Group relative to the
CBR is 600 km s~ toward a=10.5", § = —26° (I =268, b=27°). This velocity
is considerably larger than the scatter in the local redshift-distance relation in



DEVELOPMENT OF PHYSICAL COSMOLOGY 153

Table 6.1
VYelocity of the Local Group

V, Vi V.
CBR -16x8 —-540+£ 15 275+ 15
Rubin et al. —-4204£ 120 420+ 120 ~80+ 120
Aaronson et al. —190 4 220 =720+ 190 240 £ 180
Great Attractor 340 -450 90
[RAS gravity v/f({2) -100 < 100 —300+ 100 400 + 100

figure 5.5. That means the pecuhar velocity field has to have a broad coherence
length, such that the galaxies in our neighborhood are moving with us at nearly
the same peculiar velocity.

The properties of the galaxy peculiar velocity field still are under discussion.
An indication of the evolution of the state of understanding is given in table 6.1.
which lists some estimnates of the the velocity of the Local Group relative to
several standards. The v component is the velocity toward the center of the Milky
Way (=0, b=0), with v the component in the disk in the direction of rotatien
(/=90°,b=0), and : the component normal to the disk (b =90°).

The top line in the 1able is the velocity of the Local Group relative to the CBR.
in kilometers per second. The first comparisons of our motion relative 1o the CBR
and relative to the mean defined by the galaxies were by Sciama (1967). who used
de Vaucouleurs earlier analysis of our motion within the Local Supercluster. and
by de Vaucouleurs and Peters (1968). Rubin et al. (1976) obtained the first all-
sky galaxy sample designed to probe the large-scale velocity field. Their result
is based on 96 Sc galaxies at distances 3500 < ¢z < 6500 km s~ '. The velocity
of the Local Group relative to this sample is listed in the second line of the
table. The third line is the velocity of the Local Group relative to the clusters
with Tully-Fisher distances that are represented in figure 5.4 (Aaronson et al.
1986). Lynden-Bell et al. (1988) found a peculiar velocity field that seems to
converge toward a Great Attractor in the direction of Centaurus, { = 307°, b =9°,
atdistance cz 2 5000 km s~ !, the flow having peculiar velocity 570+ 60 km s~
al the Local Group. The unusually large peculiar velocity field in the region of
the Centaurus cluster is seen in the fluctuation in the redshift-distance relation in
figure 5.4. The Great Auractor effect was found in a sample of elliptical galaxies
and, in an important check, was then seen to be indicated also in an independent
sample of spiral galaxies (as well as the clusters in figure 5.4). An estimate of
the Great Attractor flow at the Local Group is entered in the fourth line of the
table. Finally, if large-scale fluctuations in the galaxy distribution trace the mass
density fluctuations & = 8p/p. one can use the linear perturbation equation (5.115)
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to predict the peculiar velocity of the Local Group, up to the factor f(£2) tha;
depends on the parameters of the cosmological model. The result in the table ig
from an analysis of the IRAS galaxy distribution at distances ¢z < 8000 km s—!
by Strauss and Davis (1988). Other examples of analyses of the peculiar velocity
field are in Rubin and Coyne (1988).

The numbers in table 6.1 are meant to represent a process rather than an es-
tablished result for a very difficult measurement. The velocity found by Rubin
et al. was at first resisted because it does not point in the same direction as the
CBR dipole, and because it was possible to imagine systematic errors in the sample
(though none has been convincingly demonstrated, and indeed the latter objection
is true of every sample in the table). One might have thought that the velocities in
the table are unreasonably large, because they are based on samples at distances
at which the fluctuations in galaxy counts are starting to average out, according to
the measure in equation (3.24). One must bear in mind, however, that the coher-
ence length of the gravitational field is broader than that of the mass fluctuations
that produce it, because gravity is a long-range force. We will see in section 21
that the large-scale fluctuations in the galaxy distribution, if reflected in the mass
distribution, produce velocities comparable to those shown in the table (Clutton-
Brock and Peebles 1981).

We stand to learn several things from a resolution of the very difficult issue
of the nature and origin of the large-scale peculiar velocity field. If the velocity
interpretation of the CBR dipole anisotropy really is correct, the velocity frames
defined by galaxy redshifts and by the X-ray background ought to converge to
the cBR frame. If the peculiar velocity field is produced by the gravity of mass
fluctuations that are usefully traced by the galaxy distribution, we ought to find
that as the depths of gataxy samples increase the motion defined by their gravity
converges and stays at the CBR frame. If that happens, it fixes the velocity function
£(€), which is a very useful constraint on the parameters of the cosmological
model (as indicated in fig. 13.14). And finally, the gravitational field measures the
large-scale fluctuations in the mass distribution, a critical datum for the theories
discussed in pan 3 for the origin of the mass fluctuations.

Aether Drift: Theory

This subsection gives a derivation of the Lorentz transformation law
for radiation surface brightness. The “one line” derivation in section 9 uses the
brightness theorem (along with the many lines leading up to it). The method
presented here is a lengthy but strengthening exercise in Lorentz transformations
(Peebles and Wilkinson 1968).

Suppose two observers, O and (%', are in a homogeneous sea of radiation, with
observer ' moving relative to O at velocity v to the right along the x axis. O’ has
a detector, at rest relative to ¢ , that collects photons with energy p’ in the range



DEVELOI’HENT OF PHYSICAL COSMOLOGY 155

dp’ and approaching within a cone of directions at angle @’ to the x’ axis, and in
the solid angle

dQV =dcos@do . 16.30)

we will suppose the face of the detector is perpendicular to the parallel x and X
axes. The face area of the detector is A,. Then in the frame of (' the collecting
area A’ seen by the incident radiation is

A'=A,cos8" . (6.31)
That is, ¢’ sees that the number of photons detected in the time dt’ is
dN'=f"(p', 0"y dp'dS¥dr'A, cos &, (6.32)

where f'(¢/, &) is the number of photons per unit volume, solid angle, and energy
interval.

The corresponding quantities measured by () are written without primes, Thus,
in the frame of O the number of photons per unit volume, solid angle. and energy
interval is f(p,8). As sketched in figure 6.6, O sees that in the time interval dt
the detector attached to O’ moves to the right along the v axis by distance vdt.
and the photons to which the detector is sensitive move to the left by the amount
dt cos 8 (for we are taking the velocity of light to be unity). The observers agree
that the face area of the detector, which is normal to the axis of the velocity

,,,,,,,, - 0
-
v
Ao >
L.-‘—_‘___._-/
< - >l >
vt &t cos 6

Figure 6.6. Lorentz transformation for radiation surface brightness. The pho-
tons within the dashed lines are detected in the time interval 41.
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transformation, is 4,, so O determines that the volume occupied by the photopg
swept up by the detector in time dr is

dV =A,(v+cos P dr. (6.33)
O therefore reckons that the number of photons detected is
dN =f(p, 8)dp d§2 dt Ay(v +cos6). (6.34)

Of course, @ and O’ agree on the number detected, dN =dN’,
The final step is to write down the Loreniz ransformations relating primed and
unprimed quantities. Recall that the Lorentz transformation relations are

x=y(x"+v' r=v(t" +vx"),
¥ ) Y +vx') (6.35)
x' =y(x - vt) ' =t —vx),

with v =(1 — v?)~1/2 and « the distance measured along the direction of motion
of (¥ relative to @ (and the sign fixed by the prescription that @' at fixed x’ is
moving in the direction of increasing x). The two events pictured in figure 6,6 are
separated by dx’ =0, so O measures the time between the events as

dr=~ydr'. (6.36)

The detected photons have momentum in the x direction p,’= —p’ cos &', so the
Lorentz transformations (6.35) applied to the photon energy-momentum four-
vector say () sees that the photon energy and momentum along the v axis are

p=yp'(1 —vcos#)  p,=—vp'(cos’ —v). (6.37)
Thus O sees that the detected photons approach at an angle to the x axis given by

cosf= P2 = cos—v (6.38)
p l—vcost

The solid angle of the cone of detected photon directions follows by differentiat-
ing this expression (eq. [6.30)), to get

daqY
= 9)
a4 ~2(1 —vcos82 ' (6-3
These relations in equations (6.32) and (6.34), with dN =dN’, give
0
£ 8y= L2 (6.40)

¥2(1 —vcos@)?’



This is the wanted Lorentz transformation law for the photon distribution de-
fined in equation (6.32). In terms of the momentum relation in equation (6.37).
the transformation law 1s

fiep . 0)=(p'/pyfip.o). (6.41)

The radiation surface brightness is the energy flux per unit area, solid angle,
and frequency interval,

i(p.8)=pf(p. ). (6.42)
Equation (6.41) says the surface brightness measured by O is
(. 9')=(p’/p)3£(p.f9):(l +:)_3i(p_9), (6.43)

The second step represents the frequency shift as the redshift factor, 1+z=p/p’.
The result of integrating this expression over frequency p’ is the net surface
brightness,

@y =(1+27%0). (6.44)

where i is the integrated surface brightness observed by O.
Suppose now the radiation observed by (3 has the thermal spectrum in equation
(6.9). Then the distribution function f defined in equation (6.32) is of the form

Fip)=p*F(p/kT), (6.45)

where F is a function of the single variable A /&T =p/kT. With equation (6.37)
for p', equation (6.41) says the spectrum measured by ' is

£ 0 v=(p'VFap [t — veos 0 /kT). (6.46)

This is the same form as the blackbody function in equation (6.45), with temper-
ature

T = —T
~(1 —vcos @) (6.47)
=Tl +vcos & +1vi(cos"d — 1/2)+--.].
The conclusion is that the moving observer sees in any direction a thermal black-
body spectrum, but with a temperature that is a function of the angle ¢ between
the direction of observation and the direction of motion relative to the preferred

f-rame in which the radiation is isotropic. The leading term is the dipole in equa-
lon (6.28); the term of order v* is a quadrupole anisotropy.
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The relation between redshift and surface brightness in equation (6.43) applieg
to the observations of the surface brightnesses of high redshift galaxies, becauga
the redshift and the surface brightness shift can be represented as the results of
a sequence of velocity transformations between neighboring observers along the
light path, as in equation (5.39). The same argument applies to the evolution of
the surface brightness of the cBR. Thus we have as a special case yet another
demonstration that in a homogeneous and isotropic universe an initially black-
body CBR spectrum remains blackbody. In an anisotropic or inhomogeneous unj-
verse the redshift can be different along different lines of sight, producing a corre-
sponding anisotropy in the CBR temperature. Since the redshift factor is the same
as the expansion factor along the line of sight when scattering can be neglected,
the fact that the CBR is isotropic to better than one part in 10* requires that the
expansion of the universe measured back to last scattering is isotropic to like ac-
curacy. This remarkably tight constraint is formalized in the Sachs-Wolfe relation
1o be discussed in section 21.

Characteristic Quantities for the CBR

The cosmic background radiation leads to a variety of characteristic
quantities for cosmology. We begin with some numbers for the CBR spectrum.
In blackbody radiation at temperature 7 the number of photons per unit vol-
ume, from the integral of equation (6.9) over frequencies, is

2¢3) (4T’
n,y= 7r2 (EZ) . (6.48)
The dimensionless integral is
oo .2
J_= / Y E c(B)y=2400, (6.49)
o e —1

where ( is the Riemann {-function.

To get the entropy in blackbody radiation, recall from classical thermodynam-
ics that the reversible addition of heat d{/ to a system at temperature 7 and fixed
volume increases the entropy by the amount d§ =dU /T . Thus, with the Stefan-
Boltzmann law u., =aT* (eq. {6.14]), the entropy per unit volume satisfies

ds,=du,/T =4aT*dT , (6.50)

and the integral is

2 3
Sy = iaT3 Ak (E) : (6.51)
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This is the entropy per unit volume in blackbody radiation at temperature 7. The
ratio of the entropy to the photon number (6.48) is
sy 2x°

- =36.
nk  45¢(3)

(6.52)

Since a reversible adiabatic expansion of the radiation conserves both entropy and
photons, it is no surprise that this ratio is independent of temperature.

The frequency wy, at the maximum of the blackbody function for the energy u,,
per frequency interval (eq. [6.11]) satisfies

Rwm _ hvm B hc
AT kT kTon

=2.82. (6.53)

The frequency wjy, at the half-energy point in the spectrum (such that half the
integrated energy is at lower frequency) is

Auwy hvy ke
kT kT ~ kT A,

=3.50. (6.54)

Up to numesical factors, the number density of photons is n7~)\;3 (eq.
[6.48]), the characteristic pholon energy is €, = hvy = hc /Ay ~ kT, and the energy
density (eq. [6.14]) is uy ~ €, n,.

With the present CBR temperature in equation (6.1), the wavelength at half
energy is

Ap=1.50(1+2)""'mm, (6.55)
The redshift dependence applies back to z ~ 10'° where the thermal electron
pairs annihilate (as discussed below). The characteristic energy belonging to this

wavelength is

en=hc/dy=35kT =1.32 x 107"%(1 +z)erg

(6.56)
=82 x 107 *1+:)eV.
The photon number density (eq. [6.48]) is
n. =420(1 +23em ™. (6.57)

The ratio to the number density of baryons (eq. [5.68)) is

n= gﬁ =2.7 % 1073Qgh? . (6.58)
R
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Apart from numerical factors, this is the same as the baryon number per dj.
mensionless unit of entropy (eq. [6.52]), and the ratio of the heat capacities in
baryons and radiation (eq. [6.16]). The small value of 7 means the universe hag
an enormous entropy compared to its matter content. One way to put it is that
adiabatic compression back to redshift z ~ 10'0, where the baryon number den.
sity is comparable to that in ordinary solid material, brings the CBR temperature
toT ~ 10'°K.
The energy density in the background radiation is

y=4.2x 1073 (1+2)! erg cm™?

. 3 (6.59)
=0.26(1+2)"eVcem™.

We noted above that this is comparable to the energy density in starlight near the
edge of the Milky Way. An observer placed at random, rather than near a galaxy,
would see on average the extragalactic starlight surface brightness vi,, in equation
(5.166), with energy density « = 4xwi,/c about three orders of magnitude below
the CBR energy density «., in equation (6.59). The upper bound in equation (5.168)
is two orders of magnitude below u.,. That means it would take 100 to 1000 cycles
of an oscillating universe that conserves baryons and entropy to produce the CBR
out of starlight.

The rms values of the electric and magnetic fields, B, in the CBR satisfy u- =
B? /4, giving

B,=2x 10781 + z)2 gauss, (6.60)

six orders of magnitude smaller than the magnetic field on the surface of the
Earth, and as we noted above comparable to the static magnetic field in the
interstellar medium in the Milky Way.

Relict Neutrinos

At high redshifis, the CBR photons are energetic enough to produce an
equilibrium abundance of neutrinos. This is of interest because the mass density
in thermal neutrinos at high redshift is appreciable, and if one of the families has
nonzero rest mass the relict neutrinos could make an important contribution to
the present mass density. In the standard model there are three neutrino families,
each with two states for a given momentum. Below we will check that the neu-
trinos decouple from thermal equilibrium with the CBR at redshift z ~ 10'7; here
we consider some properties of the relict neutrinos after decoupling under the as-
sumptions that they are not degenerate and that all three neutrino rest masses are
well below the typical photon energy &T at decoupling. (As discussed in section
18, this gives an acceptable present mass density in neutrinos.)

Since neutrinos are fermions, and behave in an excellent approximation to
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an ideal gas, the equilibrium occupation number at temperature T and chemical
potentia] 4 in a mode with energy ¢ is

1
Nz—mr— (6.61)

ekl
The negative sign in the denominator of equation (6.2) for bosons is replaced by
the positive sign that makes N <1 for fermions. Recall from classical thermo-
dynamics that the Gibbs function for a mixture of particles, with the N, of type .
having chemical potential g, 1s G = 3" Niu,. If the particle species are in thermal
equilibrium through the reactions

a+bec. (6.62)

then G relaxes to an extremum such that §G =0 if the reaction shifts the abun-
dances by 8N, = 6N, = —6N.. That means the particle chemical potentials in the
reaction (6.62) satisfy

Ba+pip— p =0, (6.63)

Photons can be absorbed, a + v — a. so g =0 for photons at thermodynamic equi-
librium. A neutrino and its partner (antiparticle or opposite spin state} can annihi-
late, so we know that at thermal equilibrium

)= —p(oy. (6.64)

The parameter w(v) thus fixes the difference between the number densities of
neutrinos and their partners.

We are assuming the neutrino rest masses and chemical potentials are small
compared to &7. The latter means the fractional difference between the number
densities of particles and antiparticies is small, that is. the thermal neutrino sea is
far from degenerate. Under these assumptions we can drop the chemical potential
# from the occupation number A in equation (6.61). and we can set the momen-
tum equal to p=¢/c. Then the energy density in a single family of neutrinos is

2 /’C drp? dp pe
0

Hy=—/——=3 —_—— .
Y Q2wh)3 ePc/AT 4

(6.65)

The first factors are the sum over phase space in equation (6.8), with two spin

States (for neutrino and antineutrino). On changing variables of integration,
we get

_ L T
T 12 (he)

iy

(6.66)
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where the dimensionless integral is

S w3y
1+=/0 ot (6.67)

We can evaluate it by using the identity

1 12
=1 e+l ex—1° (6.68)

The result of multiplying this expression by x*, integrating, and changing vari-
ables on the right-hand side to y =2x, is

7

fi==1_, 6.
3 (6.69)

where /_ is given by equation (6.15). The energy density in a single family is then

7
w:gﬂﬁ. (6.70)

That is, the energy density is 7/8 times the energy density in electromagnetic
radiation at the same temperature. A similar calculation shows that the number
density of neutrinos plus their partners in one family is

3¢3) (kT \°
=20 (H) , (6.71)

which is 3/4 of the number density of photons at the same temperature
{eq. [6.48]).
AUKT 2 mec? the reactions

Y+ye—e +e” (6.72)

produce a sea of electron-positron pairs. Since the pairs are far more abundant
than the extra electrons belonging to the protons, we can neglect the electron
chemical potential, so the number density of pairs is given by an expression
similar to equation (6.71) for neutrinos. We will see at the end of this subsection
that the neutrinos decouple from thermal equilibrium with the radiation before
the sea of electron pairs annihilates and dumps its entropy into the radiation.
The result is that the CBR temperature T, is larger than the present value of the
parameter T, in the above equations.
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To find Ty, note that at k7 large compared o the electron rest mass the energy
density in electromagnetic radiation plus the sea of relativistic electron pairs is

IR 11
u=al? [1+2}_} =—4—aT4. (6.73)

The first term in the brackets represents the electromagnetic radiation energy
density. The second term for the electron pairs is twice equation (6.70). because
there are four states for given momentum (two spin states for the electron and
positron). Since u varies as T, the entropy density is s =4u/3T (eq. [6.51]). and
the entropy in a volume V' expanding with the general expansion of the universe
is

S= l—;a(T’y‘v’ = %ar-‘v : (6.74)
The primed variables apply to the relativistic sea of radiation and electron pairs
in equation (6.73), the unpnmed variables to the radiation after the pairs have an-
nihilated. The annihilation is reversible, so the entropy in the volume expanding
with the universe is unchanged. The temperature parameter T, for the neutrinos
scales with the expansion parameter in the usual way for free particies,

(THW'=1v. (6.75)

Well before the electron pairs are annihilated, the neutrinos are in thermal equi-
librium with the radiation, T/ =7", so equations (6.74) and (6.75) say that well
after annihilation the neutrino temperature parameter is

4N\
T":(_l—l) T. (6.76)

With equation (6.1) for T, the present value is
7.=195K. (6.77)

Itis best to call 7, a parameter rather than a temperature, for as we noted at the
b‘38innjng of this section the expansion preserves a thermal neutrino distribution
only when kT, is large compared 1o the neutrino rest mass. Independent of the
Neutrino mass, the neutrino number density varies as T,°, so equations (6.57),
_(6-71) and (6.77) give the present number density of neutrinos plus antineutrinos
In a single family,

3 _
n,=—ny=113cm 3.

=11 (6.78)
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After electron pair annihilation, the net energy density in electromagnetic rad;.
ation plus the relict relativistic neutrinos is (eq. [6.70] and [6.76])

7 (T.\*
l+=- [ =] N
5 (7) »
The numerical value assumes that N, =3 relativistic neutrino families are left over
from high redshift, and it assumes that the neutrino masses are small compareq
to the CBR temperature. Following the definition of the density parameter (eq,

[5.55]), we can write the fractional contribution (2, to the present expansion rate
by radiation and the neutrinos as

u,=aT? =1.68aT". (6.79)

81 Gu, 5,7
Qr:?@ =422 x 107k . (6-80)

The fractional contribution to the present expansion rate by nonrelativistic matter
is estimated to be £2 2, 0.05 (table 20.1). Because «, varies with redshift as (1 + z)?,
the mass densities in relativistic and nonrelativistic matter are equal at redshift

1426 =/, =2.37 x 10°Q?. (6.81)

This number is of interest because the gravitational growth of clustering of free
nonrelativistic material is suppressed when the expansion rate is dominated by
relativistic matter. As we will discuss, zeq is comparable to the redshift at which
the plasma combines to neutral atomic hydrogen and the matter is released from
the radiation drag (eq. [6.96]).

At the epoch of formation of light elements represented in figure 6.5, 10192
22 10%, the expansion rate is dominated by the energy density in relativistic
matter. It would be easy to imagine that there is an appreciable contribution 10
the energy density from gravitational radiation, and perhaps from other very low
mass fields yet to be discovered, but if these contributions were appreciable they
would increase the expansion rate and spoil the concordance shown in figure 6.5.
Either this concordance is an unlucky accident or we have a reasonably complete
catalog of the mass density when our universe was a few seconds old, which is 2
remarkable concept.

Let us consider finally the thermal decoupling of the neutrinos from the matter
and radiation. Near decoupling the main thermalizing reaction is

v+ e te (6.82)
with cross section

0 ~GrlE,t ~4 x 107%T 0% cm? (6.83)
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(Weinberg 1975). The cross section varies as the square of the energy, because

fixes the volume in phase space for the final state, as in equation (6.178)
below. At thermal equilibrium the energy is £ ~ k7T . In equation (6.83) the tem-
is expressed in units of 10'? K. The neutrino number density (eq. [6.78])

for three families is

n,=16x 10T g°em™3. (6.84)

At the redshifts of interest here the expansion rate is dominated by the relativistic
mass density 4, and the solution to equation (5.18) for the age of the universe is

3C2 1/2
r= (377”3“ ) =2T10_2 S. (6.85)

The mean number of times a neutrino suffers the reaction (6.82) in an expansion
time is

onyct ~0.04 T . (6.86)

When this number is large the neutrinos are in close thermal contact with the radi-
ation, when it 1s small the neutrinos are free, and thermal contact is broken when
omcr~1.Thisisat T~ 3, or kT /m,,c2 ~ 5. Equation (6.76) for T,, assumes this

number is large. The approximation thus is reasonable but not abundantly satis-
fied.

Thermal lonization

At high redshifts the CBR keeps the matter fully ionized, and the radia-
tion drag on the free electrons prevents the formation of a gravitationally bound
System such as a protogalaxy. At redshift c4e. ~ 1400 the primeval plasma com-
bines to neutral atomic hydrogen, leaving a small but possibly interesting ionized
fraction. This is called the decoupling epoch, for, as we will see, the nearly neu-
tral matter is able to move through the CBR to form gas clouds that can produce the
Stars and active galactic nuclei that later reionize much of the remaining diffuse
Matter (as will be discussed in section 23).

We consider here the thermal equilibrium ionization, and in the next subsection
We will deal with the recombination rate. The calculation is simplified without
eliminating any of the interesting physics by taking the matter to be pure hydro-
gen, ignoring the helium.

The photoionization reaction is

e+p—H+~. (6.87)
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The photons have no chemical potential, so the equilibrium condition (6.63) is

ple) + u(p)=p(H). (6.88)

We can get the chemical potentials from the expression for the occupation nyum.-
ber, AV. Since these particles behave as classical gases with A < 1, equation
(6.61) for A becomes

N = B ot (6.89)

The number of particles per unit volume, #, is the sum over phase space in
equation (6.8),

-_£ 3, Jp—e)/kT
n (21rh)3fd pe , (6.90)

where g is the number of spin states. The energy is the sum of the annihilation
L. . 2 2 .
and kinetic energies, € =mc” +p“/2m. The integral works out to

(27rka)3f’2 e(;.:,—m(‘2 yET .

2Ry (6.91)

On using this expression for the chemical potential in the equilibrium equation
(6.88) and recalling that the masses of the electron and proton exceed the hydro-
gen atom mass by the binding energy,

(me +mp —mp)c? =B =13.60eV, (6.92)
we get the Saha thermal ionization equilibrium equation

Reltp _ x? =(2'rrm¢.kT)3'/2 —B/AT
mn 1—x n(2wh)3

(6.93)

The factor g.g,/gs 1s unity, because the electron and proton each have g =2 spin
states and the hydrogen atom has four spin states in the ground energy levels
within the hyperfine structure. The difference between the mass of the proton and
hydrogen atom has been ignored. The total number density of protons, free and
in atoms, is n, + 1, = . The fractional ionization is

He=Np=2xn. (6.94)

Let us write 7=2.736(1 + 2)K and n=1.12 x 1075034 (1 + z)*cm™?
(eq. [5.68)), ignoring the helium. This gives

log{x?/(1 — x)]=20.99 — log[Qeh*(1 +2)%} — 25050 /(1 +2).  (6.95)
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This equilibrium ionization is shown as the steeply falling curves in figure 6.8
pelow. At the baryon density that is wanted for light element nucleosynthesis (eq.
[6.27]), the equilibrium fractional ionization is v =0.5 at

Zgec = 1360, Tuec =T.Zaec = 3700K,  for Qgh’=0013.  (6.96)

A liberal upper bound on the baryon density 1s (04* = 1. This increases the redshift
very slightly, 10 Zgec = 1520.

This equilibrium ionization calculation assumes homogeneous distributions of
matter and radiation. The radiation has to be close to homogeneous, because dif-
fusion through the matter is quite effective at dissipating small-scale irregularities
(as discussed in section 25), and the isotropy of the CBR strongly bounds large-
scale fluctuations. The matter might be iregularly distributed in a smooth sea
of radiation. In this case. the mean residual ionization ar x < 1 is {r.) x (n'’?)
< {n)!/2, so an irregular matter distribution lowers the mean density of ions.

The conclusion is that the primeval plasma is free to combine to atomic hydro-
gen at redshift zgec ~ 1400. when the matter density is

Ngec =3 x 10*Qph° cm™ (6.97)
and the cosmic time is (eq. [5.61])

tiec =4 x 10127 /2~ 1 g

i (6.98)
=12 x 10807V 2p 1y,

Under these conditions, the rate of capture of the electrons by protons is much
faster than the rate of expansion and cooling of the universe, but the resulting
recombination rate depends on some subtle effects, to be considered next.

Recombination Rate

When an electron is captured direct to the ground state in atomic hydro-
gen, it produces a photon that with high probability ionizes another atom, leaving
no net change. When an electron is captured to an excited state, the allowed decay
1o the ground state produces a resonant Lyman series photon. These photons have
large cross sections for capture by a hydrogen atom, putting the atom in a high
e€nergy state that is easily photoionized again. That leaves two main routes to the
Production of atomic hydrogen. One is two-photon decay from the metastable 2s
level 1o the ground state, at the rate

A=823s"1. (6.99)

The second is the loss of the La resonance photons by the cosmological red-
shift. The resulting recombination history is worked out in Peebles (1968) and
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Zel’dovich, Kurt, and Sunyaev (1969). Some of the subtleties are resolved by
Krolik (1990).

The approximation one uses to find the residual ionization is based on the shon
mean free time for the scattering of La resonance photons. The scattering crogg
section near resonance (egs. (23.43] and [23.97]) is

_ 3A02 ,YZ ;
T 81 (w—wa)+v2/4° (6.100)

The photon frequency is w, the resonance is wq =27¢/ Ao, With wavelength
Aa=1216A, (6.101)

and the decay rate from a 2p state is
4=6.25x 108571, (6.102)

The thermal motion of the atoms broadens the resonance seen by the radiation by
the amount

1/2
bw _v = (%) =3x107° (6.103)
D

at Tgec. Since 4 /wq ~ 10~7 is considerably smaller than 8w /wq, equation (6.100)
1s broadened to the thermal width, bringing the mean cross section at maxi-
mum to

2

3ha? 42 mye _
5 ~ =3x 10”7 cm?. 6.104
7™ 8r w2 3kT cm (6.104)

If the neutral fraction is large, the mean free time of a La photon at recombination
at density ngec (eq. (6.97]) is

(FngecC) ! ~ 30 Q,}[h_2 S. (6.105)

The conclusion is that the mean free time for the La resonance photons is very
much shorter than the expansion time (6.98). That means the abundance ratio of
atoms in the 1s and 2p states and the shape of the radiation spectrum within the
thermally broadened resonance relax to statistical equilibrium.

A recombination followed by the allowed transition to the ground state adds
a photon to the radiation within the Lo resonance. Scattering by moving atoms
rearranges the radiation within the resonance. On a much longer timescale, the
cosmological redshift pulls photons away from the red side of the resonance and
adds them on the blue side from the unperturbed background radiation spectrum.
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Figure 6.7. Radiation spectrum near the La resonance. Within the dashed re-
gion the mean free path is much shorter than the expansion time, so the spec-
trum in this region is in statistical equilibrium with the atoms. The production

of resonance photons by formation of hydrogen atoms produces the step in the
spectrum.

The result is a step at the short wavelength side of the resonance, as illustrated
in figure 6.7. The spectrum of the photons across the relatively narrow resonance
has to be very close to flat, because the photon energy distribution is in statistical
equilibrium with the atoms. (A more formal demonstration is given by Krolik
1990.) This is a moving step in the spectrum, which leaves a slight excess in
the short wavelength side of the cBR spectrum from the smeared-out distnbution
of recombination photons. The effect is small, however, and not likely to be
observable.

In terms of the photon occupation number A as a function of photon momen-
tum p, the step in the spectrum satisfies the relation

_ 2.4mp? pa

R
B a

(Na - e—’"'c-/”) . (6.106)

!n the parentheses, A, is the occupation number across the resonance, and join-
Ing smoothly to the spectrum on the red side. The unperturbed occupation number
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on the blue side is the Planck function; it can be approximated as the exponepjy|
because A is much less than unity. The first prefactor converts the occuparion
number to the number of photons per unit volume and momentum interval. Thg,
multiplied by the mean energy drift from the cosmological redshift gives the rze
at which photons are leaving the resonance at the red side. With

Aoa
K= 8—; E ’ (6.107)
this equation is
KR =N, — e alkT (6.108)

This gives the net rate R of production of hydrogen atoms per unit volume by
recombination followed by allowed La emission and with the elimination of one
La pholon on average by the cosmological redshift.

Now let us write out the expression for the net rate of production of hydrogen
atoms. The rate per unit volume is

aenz — Benys =R+ A (ngs - n“e_}"’“/‘rr) . (6.109)

The first term on the left-hand side is the rate of recombinations to excited states
of the atom, ignoring recombination direct to the ground state. The recombination
coefficient is a, = {ov}, and n, is the number density of free electrons and of free
protons, The second term on the left is the rate of ionization from excited states
of the atom. This ionization rate depends on the numbers of atoms in each ex-
cited state. The relative distribution of the excited states is close to what is given
by the thermal Boltzmann factors, because absorption and emission of radiation
at the relatively low energy differences among excited states rapidly rearranges
the population, relaxing the distribution to equilibrium with the background ra-
diation. The ionization rate thus is proportional to the number density of atoms
in the 2s state. The constant of proportionality, 3., follows from the condition
that the rates of ionization and recombination are such as to tend to bring 12/ ne
to thermal equilibrium. The Saha equation for the thermal value of this ratio is
given by equation (6.93) with the binding energy changed to the binding energy
B>=3.4 eV in the n=2 energy level,

@rmAkT2 g,y

110
(27h)3 (6.110)

5e=at

The difference of recombination and ionization rates on the left side of equa-
tion (6.109) is the net rate of production of hydrogen atoms. As indicated in the
right-hand side of the equation, this net rate is the sum of the rate R for the al-
lowed Lo transition and the rate for two-photon emission from the 2s state. The
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[atter is the difference between the decay rate, with A given by equation (6.99),
and the reverse rate for absorption of two photons from the CBR. Since these pho-
tons are softer than La they are present in great abundance and very close to ther-
mal equilibrium, s0 the rate of excitation is just such as to tend to bring r»,/n|, 10
the thermal equilibrium value exp —hu, /AT .

Next, let us consider the ratio of the numbers of atoms in the ground and ex-
cited states. The tight statistical equilibrium between the atoms and the radiation
within the Lo resonance pictured in figure 6.7 fixes the ratio of number densi-
ies Map/m1s in terms of the intensity of the radiation. The ratio 2,/ n2; is fixed by
the relaxation of the population of the excited states to the background radiation
temperature. Thus we know that the ratio of numbers of atoms in the zero orbital
angular momentum ground and first excited levels is

12

= =N, (6.111)

my

because at thermal equilibrium both would be equal to the Boltzmann factor
exp —hva /KT .

The final steps are to use equation (6.111) to eliminate ny; from equation
(6.109), use equation (6.108) to eliminate R from equation (6.109), solve the re-
sulting equation for the occupation number A,, and finally use the expression
for NV, to eliminate it from the net recombination rate in the left side of equation
(6.109). This algebra gives

2
_dne_ (9__ _ fgﬂy—hu.w-) c. (6.112)
dt n n n .
where
1 +KAn,

(6.113)

1 +K(A+ 080

!n the left side of equation (6.112), n, is the free electron number density and n
18 the total baryon number density, free and in hydrogen atoms. The ratio n,/#n is
unaffected by the expansion of the universe. The exponential factor in the second
term on the right-hand side brings 3. 1o the Saha form (6.93) for the ground
State. The expression in parentheses in equation (6.112) thus is the recombination
Tale one would use if one could ignore the La resonance photons. These photons
reduce the rate by the factor C.

The ratio of the rates of formation of hydrogen atoms by the allowed and
forbidden transitions to the ground state is, from equations (6.108) and (6.109),

Larate R 1 0.01 Q'/2
two-photon rate =~ A (n2y — nysevalkT) CKAny, 1 —xQph

.(6.114)
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The last entry is evaluated at z4... In this expression, the expansion rate aja (eq.
[5.60]) allows for the possibility that the net density parameter, 2, is larger than
the density {2z in baryons. Unless the latter is considerably smaller, the ratio i,
equation (6.114) is smaller than unity, indicating that most of the hydrogen g
produced by two-photon decay. In this case, the coefficient in equation (6.113) i

A

C~E (6.115)

As one would expect, the suppression factor is the ratio of the rates of decay and
ionization from the excited states.

The recombination rate is discussed in section 23 (eq. [23.26]). The rate coef-
ficient o, = (ov) for recombinations to excited states is reasonably well approxi-
mated by the fitting formula

=26 x 107837, 08 cmis!, (6.116)

with 7 = 10°T, K. The ratio of the ionization and decay rates (egs. [6.99] and
6.110]) is

Be/A=8x 107T07¢~395/Ts (6.117)

This ratio is large at T4, but drops rapidly, reaching unity at T, =2300K, redshift
z. ~ 850. That is, not long after the plasma is altowed to combine, the ionization
rate 3, from the excited state drops below the decay rate A, and the inhibition
factor C approaches unity.

Figure 6.8 shows the result of numerical integration of the recombination equa-
tion. For comparison, the steeply falling lines show the equilibrium ionization in
equation (6.95). The calculation assumes that there are no sources of ionizing ra-
diation (as from the early stars in the isocurvature scenarios discussed in section
25), that the baryons are nearly homogeneously distributed, and that the density
parameter is large enough for the expansion rate to be dominated by nonrelativis-
tic matter rather than radiation (eq. (6.81]). Then the relevant parameters are Ohn?
and 2gh? for the densities in nonrelativistic matter and in the baryons (because
(1h? fixes the expansion rate in the Einstein-de Sitter limit in eq. [5.61], and Qph’
fixes the baryon number density in eq. (5.68]). The solid and dashed curves in
the figure use the same value for the baryon density, Q2gh? =0.1, so the equilib-
rium ionization is the same. The solid curves assume that the baryons dominate
the mass, Q=5 =0.1, and the dashed curve assumes that the total mass den-
sity is ten times larger, 242 = 1. The more rapid expansion rate in the latter case
increases the residual ionization. In the dot-dash curves $th? =1 and the baryon
density is Jowered to Q4% =0.01. That slightly increases the equilibrium ioniza-
tion, and considerably increases the residual ionized fraction.
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Redshift

Figure 6.8. Evolution of the ionization. The steeply falling curves are the equilib-
rium ionization in equation (6.95). The flatter curves show x =n,/n computed
from equations (6.112) and (6.1 13). For the solid curves the density parameters
are Q1 =€1gh’ = 0.1, for the dashed curve §24° =1 and §23h% = 0.1, and for the
dot-dashed curves 0k =1 and Qxh* =0.01.

The effect of the factor C in equation (6.112) is to keep the ionization at
z 2 800 considerably larger than it would have been if C were unity. At lower red-

shifts 3, /A is small. C ~ 1, and the capture probability per electron per expansion
time is

L aexnt ~ 400K /2

—— (l+2)%7x. (6.118)
€

The expansion time is 1 x Q7 1/2h~! (eq. [5.61]) and the baryon number density
}S nocQgh?. Thus. the residual ionization at low redshifts (in the absence of
Inhomogeneities or sources of ionizing radiation) scales as x x Q2 /(Qgh). The
fit to the computed ionization is

=12 x 1073QY2 /() (6.119)

at z=100.
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As a first application, let us consider the optical depth of the universe for
Thomson scattering by free electrons. The cross section is

7,=6.65x 10" P ¢m?, (6.120)

The characteristic number for the scattering probability at redshift z is the optica)
depth

T =0n.ct =0.046x(1 +2)*2QQ~ 12 (6.121)
With the residual ionization in equation (6.119), the optical depth at z =800 is

Taee ~0.01. (6.122)

This calculation shows that if there are no sources of ionization at decoupling
(from very early stars, active protogalactic nuclei, or matter-antimatter annihila-
tion), the decrease in ionization leads to an abrupt transition from high optical
depth to near transparency to the CBR. As will be discussed in sections 24 and
25, the universe could become opaque again at z 2 30, depending on the epoch of
formation of the first sources of ionization.

The residual free electrons and ions serve as catalysts for the formation of
molecular hydrogen, through the reactions

H+e—=aH +7. 6.123)
H +H~H;+e,
and
H+pe— H:+7.
petay (6.124)
Hi+H—Hy+p

(Saslaw and Zipoy 1967; Peebles and Dicke 1968). The molecular hydrogen may
be the main source of cooling in the first generation of gravitationally bound gas
clouds.

The sequence in equation (6.124) produces molecular hydrogen at a higher
redshift than for (6.123), because the binding energy of the proton in the molecu-
lar hydrogen ion Hj in the intermediate state is B = 2.65 ¢V, considerably larger
than the binding energy B_- =0.75eV of the electron in the negative hydrogen ion
H~. The amount of molecular hydrogen that forms depends on the evolution of
the gas density. Lepp and Shull (1984) have analyzed in detail the case where
the hydrogen expands with the general expansion of the universe. We can under-
stand the order of magnitude of the molecular hydrogen production by the method
used to estimate the residual ionization in equation (6.118). The Saha equilibrium
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dance ratio (6.93) applied to the number density of molecular hydrogen ions
relative to free protons is

ny, _ n(zﬂ'h)} ./kr

np  (Q2emkT /2 (6.125)

=exp | —59.6 +In[Qsh (1 +2)¥ 31+ 11200/(1 + 2)] .

where n is the number density of hydrogen atoms. This equilibrium ratio rises
sharply through unity at redshift

2~ 200 (6.126)

Most of the H, forms at = ~ =7, because at higher redshift photodissociation by
the CBR suppresses the abundance of Hj. and at lower redshifts the lower density
suppresses molecule formation, if the gas is expanding with the universe. The rate
coefficient for the formation of Hj in equation (6.124) is

a={ov)=14x10"8cms™! (6.127)

(Lepp and Shull 1984). This coefficient is close to constant at low energy because
the distribution of final states in phase space is determined by the energy released
in the reaction, which is almost independent of the incident energy. The particle
exchange reaction in equation (6.124) is faster than radiative capture, so we can
take it that all the H} that is produced ends up as Hy. The final abundance of
molecular hydrogen relative to atoms is then

mjn~axnt~1x 1077, (6.128)

The ionization x is from equation (6.119), and the number density n of atoms and
the expansion time ¢ are evaluated at the redshift zy in equation (6.126).

_This calculation assumes the gas is expanding. In a gas cloud that forms at
high redshift, the production of molecular hydrogen is considerably increased
because the density stays higher, and when the background temperature is cool
€nough production of molecular hydrogen in a gas cloud may be dominated by

negative atomic hydrogen ions produced by the more mobile electrons. The
Tole of the molecules as an energy sink depends on the temperature history of the
cloud. The massive first-generation clouds in the adiabatic hot dark matter picture
(section 25) are hot enough to ionize the matter, and the plasma dissipates energy
by thermal bremsstrahlung. In the adiabatic cold dark matter and isocurvature
baryonic dark matter pictures, low mass gas clouds form at high redshifts and
Collapse as a result of radiation by collisionally excited Hy.
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Coupling of Matter ond the CBR

The thermal cosmic background radiation plays a key role in the earj
evolution of structure, setting the epoch at decoupling (eq. [6.98)) when Matter
becomes free to move through the radiation to form the first generation of boung
systems, and fixing the matter temperature that determines the Jeans length for
the minimum size of the first generation. It is prudent to pay careful attentign to
the possibility that remnants of these effects are to be found in the presen ob-
served structures, though it is of course also quite possible that the evidence has
been thoroughly erased by later generations of structure formation. This discus-
sion deals with the role of radiation drag on the free electrons in determining the
Matter temperature and motions. Further details are in sections 24 and 25,

Consider an electron moving at nonrelativistic speed v < ¢ through the cgg,
In the electron rest frame, the cBR temperature measured at angle & from the
direction of motion is (eq. [6.47))

T@)=T [1 N g cose] . (6.129)

The radiation energy per unit volume moving into the element of solid angle an
at angle & to the direction of motion is

du=aT(0y*d cos @ d¢/(4m). (6.130)

We get the energy flux by multiplying this by ¢, and the momentum fiux by
dividing the energy fiux by ¢. The momentum flux multiplied by the Thomson
scattering cross section (6.120) is the rate of transfer of momentum to the particle.
The component of the momentum transfer along the direction of motion, and
integrated over all directions of the radiation, is the net drag force on an electron
moving at speed v,

od '
F=/c,aT4cos0i£%S———¢) (l +4l‘cos 9)
4 ‘ (6.131)
4 agaT*
3 ¢

(Peebles 1965). We will use this result to find the rate of relaxation of the matter
temperature to that of the radiation, and the rate of slowing of moving matter.

Consider the heat transfer rate in a gas of protons, electrons, and hydrogen
atoms at rest at temperature T, in a sea of blackbody radiation at temperature T.
The mean energy per electron in the plasma is

3 1

u= kT, = 5me(vz) : (6.132)
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e rate at which the electron 1s doing work against the radiation drag force is Fv,
the plasma transfers energy to the radiation at the mean rate. per free electron,
$0

du _

=t ol
T

3 ¢

Fv) (). (6.133)
This i proportional to the plasma temperature, 7,. At thermal equilibrium, when
T,=T, this rate has to be balanced by the rate at which the fluctuating force of
the photons scattering off the electrons increases the matter energy. (This detailed
palance result is derived ineq. [24.45].) Thus the time rate of change of the matter
temperature T, due to the interaction with the CBR at temperature 7 is

dar. x RouT?

T-T.). 134
dr 1+x 3mec ( ) (6 )

Where x is the fractional ionization (eq. [6.94]). The factor x/(1 + x} takes ac-
count of the fact that when a hydrogen atom is ionized it produces two particles to
share the thermal energy. The electrons exchange energy with the CBR: collisions
among the particles keeps them all at the same temperature.

With equation (5.61) for the expansion timescale, the characteristic number for
the approach to temperature equilibrium in equation (6.134) works out to

t dT, 00028 (T 2x 5/
_— = | — =1 —11 :‘/", 6.135
T, dr Q2 (T(. ) Trv ) (615

If the gas is fully ionized, x =1, the coefficient of the fractional temperature
difference in equation (6.135) is unity at the thermalization redshift

142,=10.5Q47) (6.136)

With increasing redshift at : > 2, it becomes increasingly difficult to keep opli-
Cally thin plasma hotter than the cBR. It is interesting that the critical redshift z,
for fully ionized matter is comparable to the highest redshifts of observed objects.
Now ] +:z ~ 6.

Before the first energy sources perturb the matter, 1t has the residual 1onization
after decoupling gives in equation (6.119). With this ionization. the characteristic
Mumber for relaxation of the matter temperature is

H ffff 10~7 T ])(I 572 (6137
- . ™ - - +Z)y' . .
T, dt Qah? \ T, ) )

The coefficient of the fractional temperature difference reaches unity at redshift

1 4z, ~ 1000(Qgh*y 3. (6.138)
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At the baryon density favored for light element production, {lgh° ~ .01 5, thig
is z; ~ 100. That is, the residual ionization can be enough to keep the Matter
in temperature equilibrium with the radiation well after the universe becomeg
transparent, at z ~ 1400. Of course, all this neglects mass density fluctuationg and
the heat sources they might produce.

The formation of the first gravitationally bound systems is limited by radiatjon
drag. The drag force F per free electron is given by equation (6.131), where now
v 1s the mean streaming velocity relative to the CBR. The drag force per baryon jg
xF, where x is the fractional ionization (and we are ignoring the minor correction
for helium). The mean drag force divided by the mass mjp, of a hydrogen atom is
the deceleration of the streaming motion,

ldv 4 oaT%

S 3 oC (6.139)

The ratio of the expansion time 10 the dissipation time for the streaming mo-
tion is
rdv 1.5x%107°

_rav 1o x0T 2 )
@ @ T (6140

This number is unity at the velocity dissipation redshift
142, =210(QR%) Sx =35 (6.141)

The critical redshift z, for velocity dissipation is higher than the redshift z
in equation (6.136) for thermal coupling of the plasma to the CBR, because to
transfer heat the CBR only has to slow the electrons, while to transfer momentum
it has to slow the heavier baryons.

For the residual ionization in equation (6.119), equation (6,140) is

tdv 2% 10711 +:2Y/2 0.0003

vdr Qi ~ gz forz~800. (6.142)
. P -

With the usual estimate for the baryon density, {2gh? 2 0.015, this says the resiq-
ual ionization is too low to dissipate peculiar motions. Since the characteristic
timescale for the gravitational growth of mass density fluctuations in linear per-
turbation theory is on the order of the expansion timescale, this means mass
density fluctuations become free to grow at decoupling (unless some source of
ionizing radiation prevents recombination).

If in the primeval baryon distribution there are regions with density contrast
8p/p greater than unity, as in the isocurvature scenarios discussed in section 25,
gravitationally bound systems can form prior to decoupling (Hogan 1978). In
a region of comoving size w and mass density contrast § =8p/p, the peculiar
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vitational acceleration on the periphery is just balanced by the radiation drag,
yming fully ionized matter, when the peculiar velocity has relaxed to the ter-

minal velocity given by the equation
dv 4 o,aT

4
=—'|G avl ‘é:——:
$ 37' prallw dt 3 mpe

{6.143)

The fractional change in the radius of the concentration in an expansion timescale

\ Qph [10001°°
M B l-—] 5 (6.144)

— ~0.005 —
aw QU1 +:

This says that immediately before decoupling, radiation drag allows collapse
of an overdense region if the contrast is & 2 3000/ /(QgH). Since this critical
contrast increases rapidly with increasing redshift, z4.. marks the effective bound
for the formation of structures out of baryons.

It might be noted that gravity also can overcome the radiation drag force if the
density concentration is larger than the Jeans length (5.125) for the matter and
radiation treated as a single fluid. However, 4. is comparable 10 =y (eq. [6.81]).
so in this case the gravitational potential belonging to an upward mass fluctuation
would be large enough to tend to draw the region to relativistic collapse to a black
hole. This could not have been a common event, for the mass density at = > ¢
varies as px (1 +2)7%, while the mass density in radiation captured in black holes
varies as pox (1 +2)73, so a small mass fraction captured at high redshift could
seriously overproduce dark matter in black holes at the present epoch.

If the fluctuations in the baryon distribution at decoupling are linear, |#| £ 1.
the Jeans length sets a lower bound on the size and mass of the first generation of
gravitationally bound objects. At : 2 Z; in equation (6.138). radiation drag keeps
the matter temperature close to uniform at the CBR temperature. so the velocity of
sound is 2 =dp /dp ~ kT /m, and the critical Jeans length (5.125) is

] 172
A,:( ,,”” ) (6.143)
(Jphfnp

(Peebles 1965). At = 2 =, the matter temperature is T ~ a(¢) . and the mean mass
density varies as pj, x a(r) *. s0 the Jeans length scales as a(:). and it defines a
ime-independent Jeans mass.

M) ~ %pw\_ﬂ ~ 1058203 M L (6.146)

To understand the evolution of the baryon distribution &(x.7) through de-
~ Coupling, let us consider the representation of 6 as a sum of Fourier components
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Figure 6.9. Evolution of the amplitude of the baryon distribution at fixed co-
moving wave number (Peebles 1969b). The wave number is expressed in units
of 107°cm~! at the epoch 7 = 10,000 K.

o exp ik - x. In linear perturbation theory each Fourier amplitude & (¢) with fixed
comoving wave number K evolves independently, according to equation (5.124)
with the addition of the drag force (6.131). An example of the solutions is shown
in figure (6.9). At redshift z > z4., at the left side of the figure, radiation drag
holds the amplitudes constant. At small k, where the wavelength is much larger
than the Jeans length, the growth of the amplitude after decoupling is almost in-
dependent of £ . At large &, short wavelength, the matter pressure is important
and the amplitude tends to oscillate as a sound wave. The oscillation commences
when the wave is moving in a medium with dissipation time comparable to the
oscillation time, for that is what allows the amplitude to change, so the oscilla-
tion is close to critically damped. This heavily suppresses the final amplitudes at
wavelengths shorter than the Jeans length. The result is that the smallest mass for
the first generation is set by the Jeans mass in equation (6.146).
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[t may be a suggestive coincidence that the Jeans mass in the primeval matte
is comparable to the typical mass of a globular star cluster (Peebles and Dicke
1968). One can identify processes that would produce globular clusters in the in.
rerstellar medium in & young galaxy (Fall and Rees 1987). and consistent witt
that are the abservations of what look like young globular clusters in the Magel-
janic Clouds. Also, the space distribution of the globular clusters around a galaxy
;s more extended than that of the spheroid stars, but tighter than that of the dark
matter, which is most directly interpreted by assuming the clusters formed out of
the material in the protogalaxy. On the other hand, it 1s striking to see how similar
are the gross properties of the globular clusters found in environments as different
as giant elliptical galaxies and the extreme dwarf satellites of our galaxy. as might
be expected if the protoglobular gas clouds were assigned their masses before the
protogalaxies formed. Some other aspects of the baryon Jeans mass are discussed
in sections 23 and 25.

interaction with Relativistic Particles

The radiation drag force in equation (6.131) applies to particles with
nonrelativistic peculiar velocities. When the cosmic background radiation was
discovered it was recognized that the interaction of relativistic particles with the
CBR also would be of considerable interest. Felten (1965) discussed the slowing of
electrons from cosmic radio sources by scattering by the ¢Bk. and Hoyle (1965)
noted that the upscattered CBR photons can be an appreciable X-ray flux. This
is equivalent to the synchrotron radiation from electrons accelerated in magnetic
fields in cosmic radio sources, but here operating on the magnetic field of the
CBR (eq. [6.60]). The universe is predicted to be opaque 10 energetic gamma rays
through pair production with CBR photons,

Yty —et +e” (6.147)

(Gould and Schréder 1966). The photopion production reaction,

p+yy—p+n n+wt, (6.148)

slows energetic cosmic ray protons. This effect, which was discussed by Peebles
and Dicke (1965). Greisen (1966). and Zatsepin and Kuz'min (1966). is of par-
ticular interest because cosmic ray events are observed at the 1hreshold energy for
Pion production. so we have the possibility of a quantitative test of the process
from the shape of the cosmic ray energy spectrum. This has been analyzed by
Hill, Schramm, and Walker (1986).

Sciama (1990a) gives a thorough review of the eftects of interaciions of high
energy particles with the CBr. Here we consider some examples.
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The center of mass energy  in the reactions in equations (6.147) and (6, 48
follows from the square of the sum of the four-momenta p!, and p}; of the twg
initial particles,

Q% = €z + €5)° — (Pa + Pp)°

2

(6.14
=Mg +mb2 +2(€4€5 ~ Pa Pb) . 9

because in the center of mass frame the spatial part of the total momentum vap-
ishes. In the pair production reaction (6.147) the photons are massless, so if the
background photon has energy ¢, the threshold at § =2m, is at gamma ray energy

e=met/ep. (6.150)

At the characteristic CBR energy in equation (6.56), this is
e~3x10eV=300TeV. (6.151)

Near the threshold, the pair production cross section is close to the Thomson
cross section in equation (6.120), o, ~ 10~ cm?. The cBR photon number den-
sity 1s 12, ~ 400 cm ™ (eq. [6.57]), so the mean free path for pair production near
the threshold center of mass energy is

Iy =(04yny) "' ~ 10kpe, (6.152)

comparable to the distance to the center of the Milky Way. At somewhat lower
gamma ray energies the mean free path is longer because there are fewer back-
ground photons above the threshold.

The same pair production process operating on background radiation at shorter
wavelengths limits the mean free path at lower gamma ray energies. The sky
brightness normal to the plane of the Milky Way at wavelength A=100 x is
viy~1x107% erg s 'cm™2 ster~! (Hauser et al. 1991). This corresponds 0
photon number density

4 vi -
n~,=——h—umlph0t0ncm 3,
¢ hv

(6.153)

If an appreciable part of this flux is extragalactic, the mean free path for pair
production is

Iy~1Mpe at e~30TeV, (6.154)

comparable to the distance across the Local Group. At wavelength A =5000 A the
background energy density in starlight from the galaxies (eq. [5.166]) translates
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{0 a mean photon number density n,=10"*cm~*. That brings the mean free

puhto

l,~10°Mpc at e~ 100GeV. (6.155)

This is longer than the Hubble length, so at € ~ 100 Gev the universe may be
transparent back to redshifts in excess of unity. The optical depth for photon an-
pihilation is discussed in more detail, and at lower energies and higher redshifts,
by Babul, Paczynski, and Spergel (1987).

Ultrahigh-energy cosmic ray events are detected by the air shower that the pri-
mary produces in the atmosphere. At the highest observed energies, e ~ 107 eV,
the primaries are thought to be individual protons or neutrons, because starlight
can photodissociate complex nuclei. A proton with momentum p normal to a
magnetic field B moves in a circle at the Larmor radius R = pc/Be. At the inter-
stellar field B ~ 10 gauss and proton energy € = p¢ = 10?0 eV, the Larmor radius
is R~ 100kpc. Since this is an order of magnitude larger than the distance to
the center of the galaxy, locally produced cosmic ray events at this energy ought
to point back to their sources. Since the cosmic rays show no preference for the
plane of the Milky Way, the indication is that the ultrahigh-energy primaries are
mainly extragalactic. The distance they can travel is limited by the loss of energy
by e*e™ and pion production by the CBR photons that appear as gamma rays in
the rest frame of a 10°’eV proton. Let us estimate the mean free path for pion
production,

Since the center of mass energy Q at the threshold is small compared to the
proton rest mass, equation (6.149) is

Q=m,+ (1 —cosDepep/my (6.156)

where the proton and cBR photon have energies ¢p and €, at initial relative angle
6. Near the threshold for photoproduction of pions, the cross section peaks at
Oy =500 ub=5 x 10 % cm* at the A resonance at energy M =300 MeV. For
the characteristic c8r photon energy in equation (6.56), the nucleon energy at the
Tesonance is €, = |.5 x 10°%eV, and the mean free path is

lp=(0yrn-, y 1~ 2Mpc, (6.157)

again comparable 1o the distance across the Local Group of galaxies. Nucleons
Coming from greater distances should be slowed (for the pions and electron pairs
are emitied in the forward direction in the comoving frame) and accumulate at
€nergies just below threshold for the CBR photons near the peak of the distribu-
tion. The cosmic ray spectrum thus would be expected to be the sum from local
Sources and an extragalactic component with a peak and cutoff at energy slightly
below 1020 eV (Hill, Schramm, and Walker 1986). Unambiguous detection of this
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peak is of considerable interest as a check of this picture, and, it appears, withig
reach. Whether nearby extragalactic sources could be detected from the distripy.
tion of arrival directions depends on the intergalactic magnetic field, which agaip
is something we would like to know a good deal more about.

Helium Production

In the standard hot expanding cosmological model, helium and trace but
important amounts of other light elements are produced as the universe expands
and cools through temperatures AT on the order of 1 MeV. This process is ex-
ceedingly interesting as a test of the standard cosmological model applied when
the radius of the universe would have been ten orders of magnitude smaller than
at the present epoch. The main result is the comparison of the predicted and ob-
served abundances shown in figure 6.5. We begin the discussion with a survey of
the main relevant orders of magnitude, and then work through some details of the
computation.

At redshifts z > 10'°, where 4T 2 3 MeV, photodissociation assures the elim-
ination of any complex nuclei, and the free neutrons and protons are thermally
coupled to the sea of electron and neutrino pairs by the reactions

e +pen+v,
Prpernte’, (6.158)

hep+e +,

at rates fast enough to keep the relative abundance of neutrons and protons close
to the thermal equilibrium Boltzmann ratio,

njp=e @ 0= (my—mp)ct=1.2934MeV. (6.159)
There is a high rate for radiative capture of the neutrons to form deuterium,
n+ped+7y, (6.160)

but the reverse photodissociation reaction keeps the deuterium abundance quite
low until the temperature has fallen to &T ~ 100 keV and there no longer is a sig-
nificant abundance of thermal photons more energetic than the deuteron binding
energy B =2.2MeV. At this point the deuterium abundance grows large enough

for the deuterons to bum to helium, the fastest ways being the particle exchange
reactions
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Table 6.2
Helium Production

ag—

£ (sec) TP K} aTl Ar Y, Intnyn/n,ny  ome nf(n,+n,)
0.0020 225 1.0000 4700 5000 -252 8400 0.4383
0.0058 13.1 1.0000 500 1010 -26.0 4900 0471
0.0170 7.6 1.0001 170 208 -26.6 2800 0451
0.050 445 1.0004 310 43 -27.2 1700 0418
0.148 2.59 1.0012 54 @7 =216 970 0.363
0.4 1.51 1.0035 0.85 2.3 -271 570 0.292
1.29 0.887 1.0102 0.11 0.60 ~27.3 340 0.225
3.78 0.526 1.0282 0.010 0.181 -26.1 200 0.185
11.0 0.319 1.0720 — 0.071 =236 130 0.166
32 0.201 1.1579 — 0.056 -19.6 97 0.156
92 0.129 1.2805 —_ 0.111 -13.1 75 0.144
267 0.081 1.3790 —_ 0.302 ~1.94 53 0.118
780 0.048 1.4006 — OR7 193 32 0.066
2280 0.0279 14010 — 26 57 18 0.012
6730 0.0163 14010 — 7.6 122 11 0.000
d+de—t+p,

d+d—3He+n,
4 (6.161)
t+d —"He+n,

*He +d —*He +p.

Table 6.2 summarizes the characteristic numbers from the computations to be
described below. The first column is the expansion time computed from very high
temperature. The second column is the radiation temperature in units of 10'°K
(with &To = 0.86 MeV). The third column is the product of the expansion param-
eter a(r) and the radiation temperature. The annihilation of the thermal electron
Pairs increases a(/)T (t) by the factor (11/4)!/3 (eq. [6.76]). The neutrinos decou-
Ple from the radiation at 7)o ~ 3 (eq. [6.86]). before electron pair annihtlation has
appreciably increased a()T(t). so we can take it that the neutrino temperature
Scales as 7, ~x 1/a(ry from T, =T at the start of the table.

In the next two columns, A and A are the rates for the conversion between
Neutrons and protons in the reactions in equation (6.158),

dn,, .
o Ang — Ang (6.162)

When the products A7 and Az are large, the neutron abundance relaxes to the equi-
librium value in equation (6.159). We see that the neutron abundance becomes
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frozen at Ty~ I, and in the absence of the reactions that lock the neutrons ip
atomic nuclei the neutron abundance would again relax to the equilibrium valye
(with no neutrons) at g ~0.03.

The Saha expression in equation (6.187) below for the thermal abundance
ratio of deuterons relative to neutrons and protons under the reactions (6.160) ig
tabulated in the sixth column. There is a sharply defined switch from the high-
temperature limit, where the greater phase space strongly prefers free neutrons
and protons, to a strong preference for deuterium at low temperature. That means
there is essentially no accumulation of complex nuclei prior to the epoch at which
the ratio passes through unity, and thereafter photodissociation of deuterium can
be ignored.

The characteristic number onvt from the Gamow criterion in equation (6.22)
is listed in column 7 for Quh% =0.015. Since this number is greater than unity,
the radiative capture of neutrons by protons is fast enough to produce deuterium
when thermal equilibrium allows it. Almost all the deuterium ends up in “He by
the particle exchange reactions in equation (6.161), because the coulomb barriers
are more than offset by the advantage of not having to create a photon.

Helium forms well after it is thermodynamically favored over free nucleons,
because the reactions that are fast enough to produce it go through the less
strongly bound intermediate deuteron. The production of molecular hydrogen af-
ter zgec Similarly occurs after it 1s thermodynamically favored, through the less
tightly bound molecular hydrogen ion or negative hydrogen ion (egs. [6.123] and
[6.124]).

The production of an astronomically reasonable abundance of the light ele-
ments depends on several numerical coincidences. First, the neutron abundance
freezes at a temperature just below the neutron-proton mass difference {J, caus-
ing about 10% of the baryons to end up as neutrons. If the freezing temperature,
which is set by the weak interactions, had been much higher, there would have
been nearly equal numbers of neutrons and protons, and they would have com-
bined to place most of the baryons in *He. If the freezing temperature had been
below the temperature al which deuterium can accumulate, it would have elimi-
nated most of the neutrons, and with it any interesting amount of element produc-
tion. Second, the binding energy of the deuteron is such that it can accumulate
and bum to helium while the neutron abundance is frozen. If the binding energy
were significantly higher, helium production would have commenced when the
neutron-proton abundance ratio was close to unity, again eliminating most of the
hydrogen, while a much lower binding energy would have eliminated most of the
light element production because the neutrons would have decayed. Third, the
rate coefficient om't when deuterium production is allowed has to be greater than
about unity for appreciable light element production. We see that the condition is
satisfied. but not abundantly.

Dicke (1961) points out that some coincidences in cosmology really are con-
sistency conditions. For example, we could not be in a universe with a timescale
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from the start of expansion to the final collapse that is much shorter than (Ol
years, for it takes about that long to make us. In a universe in which most of the
baryons come out of the big bang as helium, 1he lifetimes of stars like the Sun
would be considerably shorter. with a possibly deleterious effcct on the prospects
for slowly evolving life forms such as us. Itis difficult to see the evolutionary dis-
advantage of a universe with negligible light element production at high redshift,
save for the loss of a very educational phenomenon.

There are no subtleties in this calculation, and only the one practical problem
that the reactions (6.161) and (6.162) are numencally unstable when the rates
are high, but one knows how to deal with that from the much more complex pro-
cesses in stellar evolution. The extrapolation to a staie of the universe when it
was only one second old ts daring, but easy for a theorist. The truly remarkable
thing is that the calculation yields a pattern of light element abundances that
agrees with the observations as now understood. If these processes did not occur
in the early universe, what produced the strikingly uniform and high abundance
of helium?

The computation goes through so simply in part because of some important
constraints from the physics, and in part with the help of some assumptions that
seem reasonable. The radiation drag force (eq. [6.131]) prevents matter from
moving through the radiation to produce complicated objects such as stars. A
mass density fluctuation with length scale larger than the radiation Jeans length
can bind radiation as well as matter, but we have noted that this is unaccept-
able because the fluctuations would tend to collapse to black holes. storing un
unacceptable amount of mass. Thus we are left with the simple case ot nearly
homogeneous expansion.

The baryons can be distributed in an inhomogeneous way if that is how they
were placed when they were created or last found themselves locked to the ra-
diation. In the inflation scenario discussed in section 17, the baryons have to be
Created at or after the end of the inflation epoch, and the simplest possibility 1s
that the process created a universal value for the baryon number per unit of en-
tropy. That gives the nearly homogeneous distribution assumed in the standard
calculation to be described here. There are alternatives: the phase transition as
quarks collect to form nucleons could leave small-scale irregularities in the matier
distribution (Applegate and Hogan 1985: Iso, Kodama, and Sato 1986), and one
¢an imagine there were large-scale fluctuations in the efficiency of conversion of
éntropy 1o baryons, or even that inflation never happened. We consider here only
the homogeneous case. because it is simple, but we should bear in mind that the
Primeval baryon distribution may have been inhomogeneous.

The rate of expansion of the universe during light element production is deter-
Mined by the mass density in the relativistic components. which includes the ra-
diation and neutrinos. and perhaps also gravitational radiation and other massless
fields. The net contribution is parametrized by the effective number N,, of neu-
trino families, in equation (6.174) below. This is one of the two free parameters
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in the standard homogeneous computation, the other being the number density of
baryons relative to photons. The best present fit to the observations is with N, ~. 3,
which allows for the known neutrino families and little else (Walker et al. 1991),

The standard calculation also assumes that the chemical potentials of the ney-
trino families can be neglected in comparison to the temperature, meaning the
numbers of particles and their paniners differ by a small fraction of the number of
thermal pairs. This has to be the case for the electrons, because charge neutral-
ity demands that the difference between the numbers of electrons and positrons
is equal to the relatively small proton number, and it may be natural to require
that the neutrino numbers be similarly small. The other possibly natural choice
makes the neutrino numbers comparable to the number of photons, which wouid
mean the chemical potentials are appreciable. This adds another free parameter,
p/kT for the neutrinos that exchange protons and neutrons, to the parameter for
the density of other neutrinos and other types of relativistic matter (Fowler 1970;
Yahil and Beaudet 1976).

There is the possibility that primeval magnetic fields affect the reactions in
equation (6.158) (Greenstein 1969; Matese and O’Connell 1970), and there is
some interest developing in the idea that magnetic fields might have been pro-
duced in the early universe (as discussed by Ratra 1992). To see what is involved
for light element production, note that an electron of mass m, and charge ¢ moves
at speed v in magnetic field B in a circle of radius a, with force Bev/czmgv2 /a.
We can get the Landau levels for the motion transverse to B by setting the angular
momentum m.va to a multiple of Planck’s constant. That gives the energy level
splitting relative to the CBR temperature,

€ eh B,
—(1 6.163
kT m.c kTo( +2). ( )

Here B, is the present value of the field, and the redshift dependence follows
because homogeneous expansion that preserves magnetic flux changes the field
as B o (1 +z)%. If the magnetic ficld were to play a significant role in fixing lhe
neutron abundance, ¢/kT would have to be greater than about unity at z ~ 10}
which gives

B, 2 107 gauss. (6.164)

If this field were isotropically compressed from the cosmic mean baryon density
to what is found within a galaxy it would be increased by some four orders of
magnitude to B ~ 1072 gauss, which is about four orders of magnitude larger than
the observed value. That is, primeval magnetic fields could affect light element
production only if the field strength at high redshifts were well above the usual
estimates,

There is considerable room for new physics. This includes processes within
the standard cosmological model, such as particles with decay or annihilation
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radiation that can photodissociate nuclei (Dicus et al. 1978; Miyama and Sato
1978), and adjustments to the physics that determine the expansion and reaction
rates (Dicke 1968). The results could be relatively minor adjustments to the pre-
dictions of the standard model. or an entire revision of the picture. The former
would become of intense interest 1if the observations revealed discrepancies with
the standard computation, though this has not happened so far. The latter is 1o
pe borne in mind, but it would mean the apparent success so far for the standard
computation is a remarkably misleading coincidence.

Let us consider now some elements of the computation. This discussion em-
phasizes the physics and uses simple numerical integrations to establish orders of
magnitudes. A more detailed guide 1o how these orders of magnitude come about
is given by Bemstein, Brown, and Feinberg (1989). We will concentrate on the
helium abundance, because it is the most robust prediction. Results of the com-
putations and observational tests for the other light elements are surveyed in Kolb
and Turner (1990).

The first step is to get the effect of the thermal electron pair annihilation on
the radiation temperature. Since this is a reversible process we can compute the
temperature from the condition that the entropy of radiation plus electron pairs 1s
conserved.

To see that we can approximate the electron pairs as an ideal gas, note that at
kT larger than the electron mass the mean distance between electrons is A ~T ~1,
in units where %, ¢, and k are unity (eq. [6.54]). Thus the typical electrostatic
energy is e*/X, and the ratio of electrostatic to thermal energy T is the fine
structure constant, e = 1 /137, which is a reasonably small perturbation to the free
gas picture.

To get the entropy in the electron pairs, recall that the free energy is F =
~kT InZ, where the partition function Z is the sum of exp —£ /kT over states.
For electrons the exclusion principle allows a single particle mode two energies,
E=0and E =¢, so the partition function for the mode is Z =1 + exp —e /kT. The
free energy summed over all niodes for the electron pairs is

AV "
F=4-Tf b ln(l+(’ ‘J’”):U—TS. (6.165)

(27h)?

The first factor in the integral 1s the usual sum over states in equation (6.8).
allowing two spin states each for electrons and positrons. The energy is

v
U:/ dp _« (6.166)

Qrh)t et 4

and the entropy is given by the difference of these equations. The next step is to
eliminate the logarithm in equation (6.165) by integrating by parts. Then a shorn
Calculation leads to the entropy per unit volume in the electron pairs,
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LS 1 4dp 16 +p/3
TV TS QaRY e ethT 4 6.167)

Here and below the velocity of light is set to unity, so the electron momentum
satisfies

E=p’+m?. (6.168)
The entropy in the radiation is given by equation (6.51). With equation (6.14) for
Stefan’s constant ag, we can write the entropy density of radiation plus electron
pairs as

4 45 0 PzdP €2+P2/’3
= — T3 . L]
T3 [l * 2wy /o € eMT+1 (6.169)

Since the annihilation is reversible, the entropy s(T(s))a(s)® is constant. The
result of differentiating this expression is

1 ds dT 3

-— = 6.170

sdrT da a ( )
This gives a differential equation for T as a function of the expansion parameter,
a. The result of differentiating equation (6.169) for the entropy with respectto 7,
and rearranging, is

dnaTl I
=7 6.171
dlna 3+ fd ’ ( )
with
45 % dp
! 2mkT)4 _/0 e /AT 41

and J, = ¢ — p*/e and J; = €3 + 3p*e for the numerator and denominator. Numeri-
cal integration of these equations gives the third column in table 6.2.

The expansion rate is given by the mass density, which is dominated by the
energy density u in radiation, particle pairs, and any other relativistic components.
We will wnite the energy density as

u=agT,E (6.173)

with

T\* 7 15 A3 4dy €
=(=] +iN+= 174)
£ (T,,) +8N"+7r2 (KT)* J Quh)} et/4T 417 6
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The neutrino temperature T,, varies inversely with the expansion parameter. with
T =T, at kT 2> ne. The first term in £ is the energy density in radiation. The sec-
ond term represents the contribution from relativistic weakly interacting matter
with energy density that varies as a()~*. It is written as the effective number N,
of neutrino families (eq. [6.70]), but it includes all the relativistic forms of en-
ergy that dominate the mass density at high redshift. The last term is the energy
density in electron pairs (eq. [6.166]). If the expansion of the universe does trace
back to the densities of interest here. the contributions of space curvature and the
cosmological constant 10 the expansion rate equation (5.18) are quite negligible,
so we have

. b
T.\° 8 s
(T_) =ieraBTV4E:O.O47(T,,_|U)4Es -, (6.175)

We see that the expansion timescale is on the order of one second at the thermal
energies for element production. The variation of the radiation temperature 7
with time in table 6.2 comes from numerical integration of equations (6.174) and
(6.175) to get T, with equations (6.171) and (6.172) for T /T,,.

Next, we need the rates for the weak reactions (6. 158) that convert the baryons
between neutrons and protons. The best normalization still comes from the neu-
tron half-life, as follows. Recall that in linear perturbation theory the transition
probability per unit time to a definite final state is proportional to the delta func-
tions of energy and momentum conservation. Thus we can write the probability
per unit time for decay of a neutron, # — p + ¢~ + 1. 10 a box with volume V' and
periodic boundary conditions, as

Vd'p, 2Vd
Ag= n/ (27:;:;/3 (zﬂf:r;;b(Q — €= Pu)
. (6.176)
K.“',- S
= 2aee S
Where the factor  represents the matrix element and the integral is
Q 7
/ Petod€ (O —€,)" :m‘,sf . f=1.636, (6.177)
m,

With the neutron-proton mass difference in equation (6.159). Here and below we
are ignoring the coulomb correction to the electron wave function.

Suppose the box contains a sea of electron pairs at temperature T and neutrino
Pairs at temperature T,.. Then the probability per unit time that a proton in the box
Converts to a neutron by the capture of an electron. p+e” —n+v,is

2Vd3pe 1 Vd}py b(€, —py — Q)
A=r 27h)} o /5T + 1 (2mh) | 4e P /AT, (6.178)
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The delta function with the integral over final neutrino momentum is the expres.
sion for the transition probability from a given incident electron momentum. The
first factor is the sum over the thermal distribution of incident electron moment,_
Since the decay can only leave the neutrino in a state that is not already filled,
we have to multiply the integrand by the probability that the final neutrino state js
empty,

1 1

| — g e (6.179)

This is the last factor in equation (6.178). On dividing this equation by equation
(6.176) for the free neutron decay rate, we get

2
pefepy dpy _
)‘d meif [ (e%/kT £ 1)(1 4 e=P/ATy " €e=pu+Q. (6.180)

The rate for the reverse process, n+v — p +e~, similarly is

2
Pe€epu dp, _
’\d mé"Sf / (er/"Tv +1)(1 +e—£./kT) ? E"_pl/+Q; (6.181)

therate forp+ v —n+e* is

ég = 1 = Pv pedpe
/\d mesf 0 (ep,,/kT,, + l)(l +E_"flikT) ]

po=e+0. (6.182)

and the rate for the reverse process n+e™ —p+ 0 is

Ay 1 /’ > p, pldp.
222 =, +Q. (6.183)
M omSf o @l (1 vendiy  PYEC Q.

All these rates represent sums over the final spin state of the nucleon and averages
or sums over the spins of the electron and neutrino, so we automatically have
taken account of the spin-dependence of the matrix element.

We can ignore the blocking of n — p + e~ + i by the pairs already present, and
the reverse of this process, because by the time free decay is important the pairs
are too cool to matter. The net rate coefficients for equation (6.162) are then

A= X+ Az, X=il+3ﬁ2+Ad. (6-184)

At thermal equilibrium, the rate equation has to have the stationary thermal so-
lution ny/n, =exp —Q /T, and consistent with this it is easy 1o check that when
T.=T, these coefficients satisfy A/ A =exp ~Q/T (apart from the term )4, which
we have not treated in full). The general argument for this equilibrium abundance
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ratio uses the condition 1, = p1,,. for 1, is small and we are assuming the chemical
tential for the neutrinos is small also.
The reaction rates are normalized to the free neutron decay rate. The value
recommended by Olive et al. (1990) is

Ag=(1.124 £0.006) x 107757 (6.185)

The numbers for Az and Xt in table 6.2 are from numerical evaluation of the
integrals in equations (6.180) to (6.183).

The only problem in integrating equation (6.162) for the neutron abundance is
the numerical instability, which is eliminated by rewriting the equation as

! f 1 .
n — [+ A - A+ ydr?
T =x(n)=x,e J. +/ ~de Joasha ) (6.186)
My + 1 LA+ A

Numerical integration of this equation with NV, =3 gives the last column in the
table.

The reactions n+ p — d + -y tend to relax the abundance of deuterium relative to
neutrons and protons to the thermal equilibrium value given by the Saha equation.
This is based on (6.91) for the chemical potentials with the condition y, + pin = pig,
as in equation (6.88) for atomic hydrogen. The neutron and proton have two spin
states each, and the deuteron has three states for spin one, so the equilibrium
abundance ratio is

npn, 4 (mpm,,)‘]'/: (27kT)M? _BJkT

= — ¢
ngn 3\ my (2nh)n (6.187)
=exp [25.82 —In Qgh’T1p*2 - 2.58/1’"10] :

The present baryon number density is n=1.124 x 1073Qgh* cm™3. and the den-
sity has been scaled as the cube of the radiation temperature. This is not quite
right because the radiation is receiving entropy from the electron pairs, but the
correction is small. The deuteron binding energy is

B=2225MeV . (6.188)
In column 6 in table 6.2 this equilibrium deuterium abundance is evaluated for
Qph?=0.015.
The rate coefficient for the reaction n+p — d +7 is

{ov) ~ 4.6 x 1079 cem’s™ !, (6.189)

As for equation (6.127), v is nearly independent of energy because the energy
Feleased in the reaction dominates the final state energy.
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Figure 6.10 shows the results of a numerical integration of equation (6.186) for
the evolution of the neutron abundance x = n, /(5 + n1,) as a function of the radia-
tion temperature, ignoring the sequestering of neutrons in deuterium and heavier
nuclei. The parameter is the effective number N, of neutrino families in equa-
tion (6.174). Increasing N, increases the expansion rate (6.175), which freezeg
the neutron abundance at a higher temperature and higher neutron abundance.
The short vertical lines mark the critical temperature at which the equilibrium
deuteron abundance ratio in equation (6.187) passes through unity. The line at the
higher temperature assumes 2gh° =1, and the line at the lower temperature as-
sumes the value Qgh2=0.013 in equation (6.27) that gives the best present fit to
the observations. One sees in the sixth column of table 6.2 that the equilibrium
swings quite sharply from free nucleons at high temperature to deuterons at late
times, so in effect deuterium production commences at this critical temperature.
Because omvt is larger than unity, as shown in the seventh column of the table,
most of the neutrons present at the critical temperature are promptly incorporated
in deuterons, most of which end up in helium.

Since “He contains equal numbers of protons and neutrons, the final helium
abundance by mass is Y =2x, where x=n,/(n, + n,) is the abundance of neu-
trons when the thermal equilibnum swings to favor deuterons. At N, =3 and
Qgh?=0.013, the curve in the figure cuts the critical vertical line at x=0.11, giv-
ing helium abundance Y =0.22. This is considered to be close to the maximum
allowed value for the primeval abundance consistent with observations of helium
in systems with low heavy element abundances (Pagel 1991; Olive, Steigman,
and Walker 1991). Increasing the baryon density parameter to $2gh° = | increases
Y to about 0.25, which seems to be observationally unacceptable, and increasing
the relativistic energy density parameter to N, = 4 is almost as bad.

A more complete computation follows the evolution of the abundances of deu-
terium and the other light nuclei. This has little effect on the computed *He abun-
dance, for the reasons we have discussed. The most important addition is the pre-
dicted residual deuterium abundance in figure 6.5. Lowering the baryon density
lowers the efficiency of buming the deuterium. along with the intermediate tri-
tium and *He, leaving higher residual abundances of these intermediate isotopes.
The interpretation of these and the other trace elements requires fine arguments
that can be contentious, because these nuclei are readily destroyed in stars and it
always is conceivable that Nature has found some clever way to produce them.

The “He abundance is of special interest because lowering the present value
from what came out of the early universe would require even more unusual cir-
cumstances than what would be needed to cause appreciable changes in the abun-
dances of the other light elements. What are likely responses to a believable ob-
servation of a helium abundance in another galaxy at a value significantly below
Y ~0.227? Current ideas include photodissociation of helium by radiation from
decaying or annihilating exotic particles; thermal destruction in early generations
of very massive stars; small-scale fluctuations in the primeval baryon-to-entropy
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Figure 6.10. Neutron abundance as a function of radiation temperature. The pa-
rameter is the effective number N, of neutrino families in equation (6.174). The
vertical lines mark the critical temperature where deuterium can accumulate
and burn to helium, for baryon density parameters £2;4° =1 and 0.013.

ratio, perhaps caused by fluctuations at the quark-hadron phase transition; and
large-scale variations in the primeval baryon-lo-entropy ratio. with the prediction
that where the ratio is low, to make a low helium abundance. the deuterium is
very high. Since none of these pictures seem particularly attractive, the difficult
art of securing precise and believable helium abundances will be followed with
particular attention.

The baryon density parameter for the best fit to helium and the other light
element abundances shown in figure 6.5. Qgh” ~0.013. is between the lower
bound from the seen baryons in the bright parts of galaxies (eq. [5.150}) and the
dynamical measures of the total mass density discussed in section 20. 22 0.1.
This i1s a comforting consistency check, though we must note that the check
is loose because the best chaice for §2zh° is not close to either observational
measure. That is, if all these numbers are correct. we must invoke hypothetical
baryonic and nonbaryonic dark matter. Both are entirely possible, and the former
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is even observationally reasonable, but still it will be interesting to see whether
the situation might simplify.

The standard model bounds the possible mass density in gravitational radj.
tion or other massless quanta in the very eatly universe, through the effect op
the expansion rate through the epoch of light element production (Peebles 19¢6;
Shvartsman 1969). The fit to the observed abundances requires N, < 4, meaning
the standard model requires that there was little beyond the three families of ney-
trinos that are known to exist and are the limit allowed by collider measurements
(Walker et al. 1991). The consistency is a dramatic success for the standard cos-
mological model.

7. Alternative Cosmologies

Many of the elements of the standard hot big bang cosmological model
were in place six decades ago. Lemaitre (1927) gave a clear explanation of the
physics of an expanding universe within general relativity theory. A more stan-
dard and complete reference for cosmological models was the review article by
Robertson (1933). In the 1930s Robertson, Tolman, and others worked out the
classical cosmological tests for the predicted effect of the expansion of the uni-
verse on observations of distant galaxies, and work began on the 200-inch tele-
scope on Mount Palomar, which, it was hoped, might allow the application of
some of these tests. In the 1930s Lemaitre explored what were to become central
elements of physical cosmology, including the gravitational instability of the ex-
panding universe as a possible explanation for the observed tendency of matter to
be concentrated in galaxies and clusters of galaxies, and the physics of the violent
early stages of expansion that might have left behind observable remnants. Tol-
man had explained the behavior of a particularly important remnant, blackbody
radiation. The evolution of all these ideas into what now might be called a ma-
ture physical science has been so slow because it has depended on a wide range
of developments in technology and an enormous effort in the application. As on¢
example, it has only recently been possible to show that galaxies observed at red-
shifts z 2, 1, when in the standard model they and the universe were young, really
do look something like the younger cousins of the galaxies in our neighborhood.

It is natural 1o ask whether such a slowly moving subject really can be promis-
ing, whether there might not be other more likely cosmologies. People have con-
sidered a series of candidates that arguably are at least no less plausible a priori
than the hot big bang, and the debate over their merits has been an important stim-
ulus to progress in research and in the development of concepts. At a time when
it was not possible to make very meaningful tests of the relativistic Friedmann-
Lemaftre picture, the discovery of the steady-state cosmology was particularly
important as a stimulus for research (and even for enraging the participants). Al-
ternative cosmologies give us a way to gauge the significance of observational
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tests. For example, Milne explained that the linear redshift-distance relation fol-
jows from the assumplions of homogeneity and the nonrelativistic law of addition
of velocities for neighboring observers (eq. [5.2]). Since we have precision lab-
oratory tests of Lorentz invariance. and as discussed in section 3 the tests for
large-scale hormogeneity seem quite convincing, it is likely that any interesting
cosmology will contain good approximations 1o these symmetries. Thus it is rea-
sonable to counl the linear redshift-distance relation as an element in the net of
evidence for the homogeneous large-scale structure of the universe, but not for
the Friedmann-Lemaitre picture in particular.

The darker sides to the tradition of dissent in cosmology are the overreactions
of those who consider themselves the guardians of the true and canonical faith
(as presented in this book), and the tendency for dissent to slip into pathological
science. There are documented examples of frivolous criticism of dissenting ar-
guments, which is irrational and destructive. On the other hand, it is doubtful that
the establishment view has been overly reactionary on average. for we observe
that most cosmologists would be delighted to abandon the standard model for
something new to think about if only the alternatives looked reasonably promis-
ing. Minor examples are the bursts of activity produced by what are at best mod-
erately interesting ideas within the standard model. We also observe that there
has not been a high rate of production of ideas in cosmology that have proved to
be of lasting interest. This has two implications: the old ideas have proved to be
durable, and the standard model remains schematic, with considerable room for
improvements and even revolutionary changes.

Those who would seek a revolution in cosmology must bear in mind that the
days are gone when it was easy to think of viable alternatives. Now any serious
attempt at a revision of the main elements of the standard world picture would in-
volve a survey of a considerable (though certainly limited) store of observational
and laboratory constraints. An excellent picture of the state of the art is given in
the proceedings of the conference “Theory and Observational Limits in Cosmol-
0gy” (Stoeger 1987). There are two lessons: nature is quite capable of surprising
us, but in a mature science surprises are rare. The major surprise in the century
since Maxwell’s unification of electromagnetism is the quantum principle. but the
€xpansion of the universe is startling enough, and we do know that the standard
cosmological model has to be pointing to another surprise of some sort, because
the mode] applied in a straightforward way traces back to a singularity.

Despite the fact that surprises must lurk there is good reason for the tabu
against the postulate of new physics to solve new problems, for in the silly limit
One invents new physics for every new phenomenon. We become convinced that
a physical science is a believable approximation to reality in the opposite limit.
Where new results are predicted or could have been predicted from the accepted
Physics. For example, superconductivity was a surprise only because quantum
Mechanics is so subtle. Is the missing mass puzzle in extragalactic astronomy
(section 18) a result of the application of the wrong gravity physics, or only of our



198 T ALTERNATIVE COSMOLOG g

limited imagination in the telling of the masses? The record suggests we ought (o
put most of our money on the latter possibility, but save a little for the former.

The steady-state theory is discussed here as a part of the central lore of cosmg).
ogy. The other examples are selected for their use in clarifying the significance of
various cosmological tests. Ideas on the physics of the very early universe are
placed in part 3, because they have not been subject to serious tests.

Miine

E. A. Milne was one of the most interesting figures in cosmology in the
1930s. In earlier work he had contributed to the theory of stellar structure, with
emphasis on the analysis of radiative transport in stellar photospheres. His kine-
matic cosmology now receives little attention, but his methods, and his critique of
the Friedmann-Lemaitre cosmotogy, have had a lasting influence. They are sum-
marized in his book, Relarivity, Gravitation and World Structure (Milne 1935).

Milne pointed out that it is trivial to find a model for Hubble's law, the linear
relation beiween redshift and distance. Consider a collection of noninteracting
particles in a bounded region in flat spacetime. Suppose the particles suddenly
are given velocities, perhaps by an explosion. We will imagine that the velocities
are drawn from an isotropic and broad distnibution. Then as the particles move
freely, the fastest move farthest away, leading asymptotically to a linear relation
between recession velocity v and distance r from the explosion,

v—r/ft, (7.1)

where ¢ is the time since the explosion. This velocity sorting effect reappears in
the plasma universe discussed below.

Milne showed that Hubble's law follows from the assumptions that the uni-
verse is homogeneous, that it is expanding in the sense that the proper distances
between neighboring comoving observers are increasing, and that we can apply
the usual law of vector addition of relative velocities. This is the argument in
equation (5.2).

Milne (1934) and McCrea and Milne (1934) showed how the Friedmann-
Lemaitre equation (5.17) for the expansion rate can be derived using elements
of Newtonian mechanics (as in egs. [4.21] to [4.28] and [5.14] 1o [5.17]). As for
so much of the fundamental physics of the standard model, the point was first
made by Lemaitre (193 1e), but in a popular article that was not much noticed by
cosmologists.

Within the standard Friedmann-Lemaitre cosmology, the Newtonian compu-
tation is a simple way to apply Einstein’s field equation (though more work is
required to make the connection between the constant of integration in eq. [5.17]
and the radius of curvature of space sections of fixed world time). However, the
derivation really only requires that Newtonian gravity apply in the weak-field
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low-velocity limit, as well as some arrangement to prevent the enormous mass

of distant matter from affecting the local expansion rate. The former is a condi-

gon for any reasonable gravity physics. because the Newtonian theory works so

well on scales ranging from the Solar System to the inner parts of galaxies. In
eneral relativity theory, the latter is Birkhott's theorem.,

In Miine’s cosmology spacetime is flat. as in special relativity. He showed
that under the cosmological principle observers can be assigned fixed spatial
coordinates r, 6. and é. with ¢ the proper time kept by the comoving observers.
and that the line element is

dst=di® — ( ld"', +r:dQ) . (7.2)

+rd

It is an interesting exercise to show how one knows (from the theorems of
Birkhoff and of Robertson and Walker) that this must be a coordinate labeling
of flat spacetime. and to find the coordinate transformation that brings it to the
standard Minkowski form.

We saw in section 5 that if the standard relativistic model with pressure p > 0 18
applied all the way to the singularity, @ — 0, it has a particle horizon (eq. [5.32]).
This means we can observe galaxies that have not been in causal contact with
each other subsequent to the singularity. and so arguably never have been n con-
tact. How can these galaxies know how to look so similar? Milne considered the
particle horizon an argument against relativistic cosmology. The recent tendency
is to assume this embarrassment can be resclved by inflation or some other ad-
Jjustment of the physics of the very early universe.

Milne introduced the phrase “Einstein’s cosmological principle.” or for short
the “cosmological principle,” for the assumption that the universe is spatially ho-
mogeneous and isotropic in the large-scale average. His attempt to base a com-
plete world picture on this principle is no longer considered interesting, but it
did make clear the power of the homogeneity assumption. and his use of it fore-
shadowed the steady-state cosmology that became the major competitor to the
Friedmann-Lemaitre model in the two decades following the Second World War.

The Steady-State Cosmology

An excellent description of the state of thinking in cosmology in the late
19405 is given by Bondi (1960). Bondi and others emphasized the remarkable
observation that, as far as can be deduced from the broadband spectra and the
ammangement of the spectral lines in the light from distant galaxies. the gas and
Stars in these remote objects are governed by the physics we observe operating
Nearby. An example discussed in section 5 is the close agreement of redshifts de-
rived from the radio 21-cm line and the optical lines in the spectra of objects with
redshifts well in excess of unity. It is natural to ask whether this remarkable sta-
bility of the physics might be refated to the fact that the mass distribution is close
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to homogencous, for Einstein did hit on the cosmological principle through the
idea that inertia is determined by the distribution and motion of matter. Galaxjeg
at redshifts greater than unity are seen as they were in the past, when the expang.
ing model would say the universe was denser. We have other glimpses of the pag;
from the pattern of decay products of long-lived radioactive nuclei in meteorite
and minerals. Could such observations reveal evidence of evolution of the dimep.-
sionless constants of physics induced by the evolution of the universe? The ques.
tion was addressed by Dicke (1970); the search has revealed fascinating hints buyg
so far no pronounced indication that physics is evolving. The usual interpretation
is that there apparently is not a tight connection between microscopic physics and
the state of the universe, The alternative considered in the steady-state cosmology
is that the universe is not evolving. Bondi and Gold (1948) expressed this idea as
the perfect cosmological principle. Hoyle (1948) adopted the same steady-state
picture, but arrived at it by writing down a generalization of general relativity
theory. The approach from the perfect cosmological principle will be discussed
here.

According to this concept, the universe is spatially homogeneous and isotropic
on average, that is, unchanged by translations or rotations in space, and it is un-
changed also under time translations, that is, it is in a steady state. To provide
fresh hydrogen to keep a steady supply of young stars, it is assumed that there
i spontaneous creation of matter, at a steady mean rate. To remove the evolved
stars and the radiation they have produced, the universe has to be expanding. It is
assumed that the geometry of spacetime is described by a metric tensor. Since the
universe is spatially homogeneous and isotropic, we can write the line element in
the general Robertson-Walker form of equation (5.9). Since the radius of curva-
ture of constant time sections, a(/)R, is in principle observable, and observable
quantities describing the structure of the universe are supposed to be independent
of time, R ! has to vanish. The rate of expansion of the universe is (eq. [3.2])

aja=H,. (7.3)

Since H, must be constant, the expansion parameter is an exponential function of
time. Thus the line element (5.9) has to reduce to

ds? =dr® — e (dx? + x?dD) (7.4)
in the steady-state theory. This is the de Sitter solution (eq. [5.24]), but here the
form is dictated by symmetry, not by general relativity theory.

The mean number density » of baryons satisfies the equation

n=—3nafa+C. (7.5)

The first term on the right-hand side is the effect of the expansion of the universe,
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gs in equation (5.16). In a steady state 72 =0, so the mean rate of continual creation
of baryons in the second term is

C=3H,n. (7.6)

with the numbers in equations (5.65), (5.68). and (5.150), the mean creation
rate is

C~107% baryons em sl (7.7

This would be detectable only if the creation were preferentially near preexisting
matter (such as us).

Since the stars in galaxies eventually die, and the galaxies are being swept
away by the general expansion of the universe, new galaxies have to be forming
out of the newly created matter, at the rate C; =3H,n, to maintain the mean
number density of galaxies at ng. At a given epoch, ¢, the mean number of
galaxies in the volume V that have ages in the range ¢ to ¢ + dt is the mean number
that were created in the same comoving region at the size it had at the epoch
to— 1

dN =di CoVlalt, — 1)/at,)]. (7.8)

The mean distribution in galaxy ages ¢ at any epoch is then

e _ 3H nge” Mol (7.9
di ;

It follows that the mean age of a galaxy is
(y=1/(3H,). (7.10)

When the steady-state cosmology was discovered. the accepted value of Hub-
ble’s constant was the original estimate from fifteen years earlier, 2~ 5, and the
Hubble time, ' ~ 2 x 10° y (eq. [5.65)). was uncomfortably close to the es-
timates of the radioactive decay age of the Earth. This was a problem for the
Friedmann-Lemaitre model, but certainly not difficult for the steady-state the-
Oory because some galaxies are considerably older than the mean. Section S de-
scribes the correction to the timescale by Baade and Sandage, which contributed
1o a shift of attention to pioneering work on the galaxies much younger than the
Hubble age H ;' to be expected in the steady-state picture (Burbidge, Burbidge,
and Hoyle 1963). As we will discuss shortly, the evidence for youthful-looking
galaxies at low redshifts continues to accumulate, but it now seems clear that the
abundance of these immature galaxies increases with increasing redshift. contrary
o what would be expected in the steady-state picture.
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The cosmological tests to be discussed in sections 13 and 14 are based op the
counts and observed properties of distant objects compared to nearby ones. Since
the line element in the steady-state cosmology is fixed (eq. (7.4]), and in thig
theory distant objects are on average the same as the ones observed nearby, (pe
theory gives definite predictions for testable relations such as the angular sizes of
galaxies as a function of redshift, or the counts of extragalactic radio sources ag
a function of flux density. The conclusion is that the perfect cosmological prin-
ciple gives an elegant path to interesting and testable predictions in cosmology.
Evidence of problems with the predictions has surfaced only fairly recently. We
begin with the evolution of galaxies.

The prediction that galaxies at all redshifts are drawn from the same distri-
bution is tested by comparing morphologies and spectra of galaxies at diffes-
ent redshifts. Stebbins and Whitford (1948) found indications that the colors of
galaxies correlate with z, but Whitford and others later concluded that this was a
systematic error (Oke and Sandage 1968), Color evolution reappeared, with the
opposite sign, in the discovery of the Butcher-Oemler (1978) effect, that at red-
shifts = 2 0.3 the galaxies in rich clusters tend to be bluer than is typical of cluster
members at lower redshifts. This agrees with the observation that cluster mem-
bers at z ~ 0.4 t0 0.6 tend to have spectra indicating an unusually high population
of main-sequence A stars, whose lifetimes are on the order of 10° years (Dressler
and Gunn 1983; Gunn and Dressler 1988). The conclusion is that these cluster
members have passed through recent bursts of star formation, as would befit their
youth. Dressler (1987) estimates the rate of occurrence of this phenomenon at the
present epoch is down by at least an order of magnitude from what is observed at
z~(0.5.

Another example of galaxy evolution is given by the radio galaxies shown in
the redshift-magnitude diagram in figure 5.3. The radio and optical appearances
of these galaxies show a distinct trend with redshift. At z < 0.6 the radio lobes
exhibit some preference for alignmem along the minor axes of the optical im-
ages, while at larger redshifts there is a distinct preference for alignment of radio
and optical axes, and for increasingly prominent clouds of gas (identified by the
emission lines) and increasingly irregular images in the optical (ultraviolet at the
source) (Chambers and McCarthy 1990). The continuity and small scatter in the
redshift-magnitude relation in figure 5.3 suggest the objects at z > 1 are drawn
from the same physical population as the low redshift galaxies, bul as they were
when they were young.

Faint galaxy counts, at redshifts z ~ 0.5, are larger at galaxy rest frame wave-
lengths in the ultraviolet than in the red. That is, field galaxies were considerably
bluer at z ~0.5. and there likely was a larger number density of galaxies with
ultraviolet luminosities comparable to L. (Cowie 1991).

The purpose of this lengthy sampler is to emphasize that there is abundant
and unambiguous evidence that galaxy properties correlate with redshift. The
indicated evolution is in the direction expected in the standard model, where
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high redshift galaxies are seen as they were when they were young. And these
observations are inconsistent with the classical steady-state cosmology.

As it happened, most people were led to abandon the steady-state picture be-
fore galaxy evolution was unambiguously observed. The deciding event was the
difficulty of understanding the thermal cosmic background radiation and the light
element abundances within this cosmology and, as discussed in the last section,
the apparent ease of understanding them within the Friedmann-Lemaitre picture.
Wwith the recent dramatic advances in the measurement of the CBR spectrum, it is
useful to consider in more detail the problem of accounting for the ¢BR if the uni-
verse has always been as it is now. The steady-state cosmology is ideal for this
purpose because, as we have noted, it makes it easy 10 armve at cleanly defined
models.

It would be reasonable to suppose radiation is produced along with the con-
tinuous creation of baryons, but absurd to imagine the created radiation is just
such that the sum over redshifts adds up to a blackbody spectrum. Let us suppose
therefore that the spontaneously produced radiation is absorbed and reradiated by
intergalactic dust grains at a fixed grain temperature, 7. Let x be the opacity per
unit path length through this dust. To keep the discussion simple, let us assume &
is independent of wavelength in the CBRr band.

Recall that in a static spacetime the radiative transfer equation for the rate of
change of the surface brightness {(v) (energy flux per unit area, solid angle and
frequency interval) with respect to displacement along the path of the radiation is

di ldi ]

d_f—z—d_t—ﬁﬁ_’ﬁ. (71])
where j is the luminosity density (energy radiated per unit time, volume, and
frequency interval), and & is the loss of surface brightness by absorption per unit
path length. For blackbody radiation, i(v) is the Planck function (6.12),

20 l
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(7.12)

If the radiation were blackbody at the same temperature as the dust. the right-
hand side of equation (7.11) would have to vanish. absorption balancing emis-

sion. This means that if the dust grains are at temperature 7 their luminosity
density is

jwy=4rxP(T.v). (7.13)

In the expanding steady-state universe. the radiation emitted at time 7 in the
Past is redshifted by the factor

Do dls) oy,
(l+h)—)\e—a(ra_’)—e . (7.14)
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The contribution to the sky brightness by the radiation produced in the time
interval 7 to ¢ +dt in the past starts out as £P(T,v) ¢ dl, by equations (7,] 1) and
(7.13). Absorption by dust attenuates this contribution by the factor EXP ~ ket
The sequence of velocity transformations leading to equation (6.45) shows

the temperature parameter for this radiation at the detector is shifted 10 T /(1 4 2).
The detected integrated surface brightness of the radiation is then

00 203 1
(V)= / Kcdt ;I e
0 C

o 1f (7.15)

with y=¢'_ This is equation (5.159), with the addition of the absorption term,
and equation (7.13) for the luminosity density.

Absorption by the dust decreases the observed flux density from a distant radio
source. This is described by equation (7.11) with j =0, giving

folf =™ = (1 4+2) /Mo (7.16)

where the observed flux density from a source at redshift z is f,, and f 1s the flux
density expected in the absence of absorption.

The dashed line in figure 7.1 shows the spectrum predicted by equation (7.15),
with the temperature 7 adjusted to get the best fit to the COBE observations shown
as boxes (Mather et al. 1990), and xc/H,=3.3. With this opacity, the optical
depth for absorption is unity at redshift z=0.3 (f,/f =¢! in eq. [7.16])). This the-
oretical spectrum departs from the observations by many times the measurement
errors, which are well below the box size in the figure. With

ke/H,=10, (7.17)

the predicted spectrum still is convincingly excluded by the CBR spectrum mea-
surements. With this opacity, the extinction (7.16) at redshift z =2 is close to five
orders of magnitude. This certainly does not agree with the observations of ra-
dio galaxies in figure 5.3 at redshifts greater than two and with apparently normal
ratios of radio to optical luminosities.

The point of this calculation is that if the universe were postulated to be opaque
enough at radio wavelengths to have caused the radiation background to relax 10
the observed very nearly thermal spectrum of the CBR, space would be predicted
to have been 100 opaque to have allowed the observations of distant radio sources
(Peebles et al. 1991; Wright 1992).

It is an interesting exercise to consider the properties of the dust grains that
would be needed to produce the opacity in equation (7.17). Following Wright
(1982), who was considering the idea that the CBR is starlight thermalized at red-
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Figure 7.1. Spectrum of the cosmic background radiation (Mather et al. 1990).
This is an earlier version of the measurement shown in figure 6.1. The dashed
line shows the steady-state prediction in equation (7.15) with opacity n¢/H, =
3.3 (Peebles et al. 1991).

shift z ~ 100 in an initially cold Friedmann-Lemaitre universe. suppose the grains
consist of straight needles all with the same diameter & and length /, which is
small compared to CBrR wavelengths A ~ 1 cm, and made of material with con-
ductivity o. That is, we are modeling the grains as wire segments with resistance
R~ 1/(od?), Consider one of these needles placed in a radiation field with the
electric field vector £ = E,, cos wt pointing along the needle. I the current is lim-
ited by the resistance of the wire segment, rather than its electrostatic capacity,
the current is / = 0d*E. Then the charge on the wire ends is Q ~ i /w, and the con-
dition that the current is not limited by the capacity of the wire segment is

Q/1* ~od’E /() SE. (7.18)

Thus the condition on the radiation frequency for resistance-limited current is
2]
w2 o(d/D.

(7.19)

Still following Wright (1982). let us suppose the grains are graphite, with con-
ductivity
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o~10"s71, (7.20)
At 1-cm wavelength, the frequency is w ~ 10! s~1, Then the condition (7.19) is
satisfied if the aspect ratio for the grains is //d 2 30, which is not unreasonable
for graphite whiskers.

In this simple resistance-limited case, the current density within a grain is £
so the mean rate of dissipation of energy per unit volume is 0E2, and the rate oi'
dissipation of energy per unit volume of space is

P=ngvea{E) /3 =nc(E%) o . (7.21)

In the second expression vg is the volume of a grain, n, is the number density
of grains, and the factor of three corrects to the mean square component of the
electric field along the grain. In the third expression « is the resulting opacity, or
optical depth per unit distance, defined in equation (7.11). Let us take the mass
density within a grain to be that of graphite, g, ~2gem™>. Then, if the opac-
ity of space is the number in equation (7.17), the mean mass density in these
grains 1§

() = ngvgpe = (10H,)(3p, /4m0) ~ 107> gcm ™3, (7.22)

If the conductivity were degraded by the ionizing radiation in interstellar space,
or if the aspect ratio in the grains were less favorable than in equation (7.19), it
would increase the needed mass density,

The abundance of carbon observed in stars and gaseous nebulae is less than one
percent by mass relative to hydrogen, and it would not be plausible to imagine
that most of it is in these grains. Since the total mass density in galaxies (eq.
[5.149]) is comparabte to the wanted mass density in grains in equation (7.22),
the conclusion is that grains are nol likely to make the universe as it is now
opaque at radio wavelengths. That is a good thing, for it agrees with the fact that
high redshift radio galaxies are observed.

We noted in the last section that the dust picture is considerably less prob-
lematic if the CBR is thermalized at redshift z ~ 100 in an evolving Friedmann-
Lemaitre universe, because the universe is denser, the CBR wavelengths shorter
and more readily coupled to the dust, and there is no reason to think the universe
has to be transparent (Wright 1982). But of course this is not allowed by the per-
fect cosmological principle.

Hoyle has consistently emphasized thar the perfect cosmological principle
could only apply in the sense of a time average, just as the cosmological principle
applies in the sense of an average over large enough spatial volumes. Independent
of the discovery of the cBr, Hoyle and Narlikar (1966) had considered extending
this point to the idea that matter creation occurs in bursts between which the
universe expands as a conventional evolving world model. If the interval between
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pursts Were long enough, and the bursts correspondingly intense, the results could
be observationally indistinguishable from the standard model.

The steady-state cosmology, the inflation scenario to be discussed in section
17, and the standard cosmological model each were found by a bold ansat: that
pad no direct empirical basis, but led an elegant world picture. The classical
steady-state cosmology has floundered. first on the ¢Br and light element abun-
dances, more recently on the observed evolution of galaxies. The observation of
evolution is a success for the standard model, and commonly considered to be a
general philosophical problem as well, because it generally is believed that the
universe ought not to have a beginning or end. It is interesting to note the sim-
jlarity of the Hoyle-Narlikar resolution of this conundrum and versions of the
inflation scenario in section 17.

Plasma Universe

The cosmology of Klein (1971) and Alfvén follows another attractive
and sensible path that keeps to standard physics and minimal extrapolations from
what is observed of the universe around us. But as we will discuss, there is no way
the results can be consistent with the isotropy of the cBR and X-ray backgrounds.

In his book, Worlds-Antiworlds, Alfvén (1966) raises an interesting question.
Given that the galaxies are observed to be moving apart, and that the natural
interpretation is that the density averaged over the observed system of galaxies
is growing lower, why extrapolate this motion all the way back to the enormous
densities of a big bang? We cannot observe the transverse components of the
motions of distant galaxies, but it is not difficult to imagine they are present. 1f
80, one might expect that the transverse motions were larger in the past, and that
there was a time and a finite mean density at which transverse and radial motions
were comparable. Prior to that, if galaxies already existed, they would have been
moving together, in a general contraction of the material universe.

The beginning assumption of the plasma universe is that the material in the
galaxies we observe originated as a dilute, slowly contracting cloud of matter
?.nd antimatter. That goes considerably beyond what is observed. but the big bang
18 by far the greater extrapolation. As the cloud contracts, matter and antimat-
ter would start to annihilate. The pressure of the annihilation radiation eventually
Would become high enough to reverse the contraction and tum it into violent ex-
Pansion. One can imagine that instabilities in this explosion are capable of piling
Mmatter into clumps such as galaxies, and perhaps also capable of segregating mat-
ter and antimatter well enough to avoid violating the limits on the present rate of
annihilation from bounds on the gamma ray luminosities of well-mixed systems
Such as the plasma in rich clusters of galaxies (Steigman 1976; eq. [18.114] be-
low). The Milne velocity sorting process would ensure that the galaxy motions
approach Hubble's law well after the explosion (eq. [7.1]).

The size of the cloud of gas and galaxies in this picture is limited by the
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condition that during the collapse phase the gravitational potential energy per unj,
mass, ¢, cannot exceed the critical value for relativistic collapse of the bulk of the
material to a black hole, for the remnant would be hard to miss. On writing the
present mean mass density within the system in terms of the density parameter ip
equation (5.55), and the present radius of the system as r ~ ¢z, /H,. where :, i
the redshift at the edge, we have that the present potential energy per unit mass is

M

1
— ~ 5% (7.23)

¢
The dynamical estimates to be discussed in section 20 indicate that the density
parameter is not less than about 2 ~ 0.1, Galaxies are seen in abundance in red-
shift surveys to at least z ~ 0.5. (Many more galaxies are observed at higher red-
shifts, but let us suppose this high velocity tail carries relatively little net mass.)
The present value of the dimensionless potential ¢ is then at least ¢ ~ 0.01. This
means that, if the cloud radius at maximum coliapse were less than a few per-
cent of the present value, the conventional physics of general relativity theory
says the cloud would have suffered relativistic collapse, however violent the ex-
plosion. More important, if z, were much larger than 0.5 it would leave no room
for collapse and reexpansion. That is, the edge of the system has 10 be at a mod-
est redshift, and the edge therefore can be probed by available observations. The
powerful test is the angular distribution of radiation from distant matter.

It would be hard to imagine that the explosion produced a sphencally symmet-
ric expanding system of galaxies, and if that happened it would be quite implausi-
ble to imagine we are in one of the few galaxies at the center of symmetry. There-
fore, the prediction of this picture surely is that the surface density of matenal
integrated along a line of sight to the edge of the system of galaxies is substan-
tially different in different directions. That is not seen in the radio source map in
figure 3.10, despite the fact that many of these sources are known to be a1 z 2 1,
as one sees in figure 5.3 for radio galaxies. The X-ray background in figure 3.11
is isotropic to &¢/i < 3% on angular scales ~ 3°, and 8i/f < 0.00! on an angular
scale of one radian. As in equation (7.11), the X-ray background is a line integral
of the source density along the line of sight. Since individual X-ray sources ar¢
observed at redshifts greater than unity, the isotropy of the integrated background
could not be due to scattering of the radiation. Rather, it is telling us once again
that the integrated mass per unit area out to the Hubble length is quite close (0
1sotropic.

The centimeter to submillimeter cosmic background radiation also could not
have been made isotropic by scattering, for high redshift objects are observed at
radio wavelengths. One might imagine the CBR was present to begin with, with a
thermal spectrum, along with the original dilute cloud of matter and antimatter.
Since the CBR moves freely through the present expanding sysiem of galaxies.
as does the radiation from observed radio sources, the dipole anisotropy of the
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CBR says the velocity of the Local Group relative to the center of mass of the

rimeval cloud is only a few hundred kilometers per second (eq. [6.29]). Since
1he redshifts of most galaxies correspond to at least mildly relativistic speeds of
recession away from us. our low velocity relative to the csr would have to be a
truly remarkable coincidence.

The standard cosmological model steps from the observed roughly homoge-
neous distribution and expansion of the nearby galaxies to a universe that is
close to homogeneous within the Hubble length. That is a considerable extrapola-
tion, but one that we see has received impressive observational support from the
isotropy of the radianon backgrounds. The alternative 1s that we are very close
to the center of a bounded spherically symmetric system, but that seems highly
unlikely, for there appears to be nothing special about our galaxy. In the inflation
scenario, the nearly homogeneous universe we observe is bounded. but the red-
shift at the boundary can be enormous. adjusted to avoid any problem with the
observations.

Fractal Universe and Large-Scale Departures from Homogeneity

The idea that the galaxy space distribution might be a pure scale-
invariant fractal, or clustering hierarchy. traces back to Charlier’s map in fig-
ure 3.1. Mandelbrot (1975a) gives a fascinating survey of still earlier arguments.
The geometrical picture is elegant, but since it has not been translated into a
physical model we cannot discuss some of the precision cosmological tests. In
particular, it is not clear how to deal with such observations as the isotropic radi-
ation backgrounds. the thermal spectrum of the CBR. or the cosmological redshift.
It is a useful exercise. however, to confine the discussion to a single question:
From the observations of the galaxies. can we find 4 convincing test for or against
the idea that the galaxy space distribution is a fractal extending to very large
scales? The conclusion from the analysis 1o be presented here is that, if a single
fractal dimension is adjusted to fit the observations of galaxy clustering on small
scales, the predicted large-scale distribution strongly violates well-established
observations of galaxy counts as a function of apparent magnitude (Sandage,
Tammann, and Hardy 1972). and counts as a function of direction at fixed depth
(LSS, § 62). If the fractal dimension (eq. [7.24]) for the large-scale distribution
were close to d =3, it would remove the problem with the counts. We will see
that 10 get consistency with the large-scale isotropy of the X-ray background. ¢i-
ther we live at the center of a spherically symmetric universe or d differs from
homogeneity. ¢ = 3, by no more thun about one partin 10" (eq. [7.70}).

The analysis presented here is lengthy but useful for a broader purpose. for it
yields a successful positive test of the assumption that the galaxy space distri-
bution is a stationary random process. and it yields a numerical measure of the
length scale on which the fluctuations from homogeneity become small.

In astronomy the original name for a fractal distribution is a clustering hier-
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archy. In a scale-invariant clustering hierarchy, observations at any length scaja
show that the mass tends to be concentrated in clusters. Observations at a larger
scale would show that these concentrations tend to appear in superclusters, anq
observations at a smaller scale that the concentrations break up into subclusters.
For a more explicit prototype, place a stick of length I. At each end place stickg
of length I/, with random orientations, On each end of each stick place sticks
of length // X%, randomly oriented. Continue, shrinking the length by successive
powers of A> 1, until there are enough sticks that we can place a galaxy at the
ends of each of the shortest ones. The stick we started with could be on one eng
of a stick of length /A, and so on. In the extreme, one could imagine that all ob-
servable galaxies are on the ends of the shortest sticks in one hierarchy.!8

The fractal dimension of the galaxy distribution is based on the mean value
N (< r) of the number of galaxies found within distance r of a galaxy, averaged
over counts centered on a fair sample of galaxies. In a scale-invariant fractal,
with all the galaxies in the same hierarchy, this statistic varies as a power of the
distance

N(<r)=Ar?, (7.24)

where A is a constant and the index 4 is Mandelbrot’s fractal dimension. In
a spatially uniform distribution, N(<r) would be proportional to the volume
enclosed, so d would be the dimension of the space, here three. To get d for the
stick construction, note that if r is increased to Ar it increases N by a factor of
two, because on average we have doubled the number of levels of the hierarchy
within the distance to which we are counting. This gives

N(< Ar)=24r1=A(r) (7.25)
so the fractal dimension, d, is given by the equation
x=2, (7.26)

In this model, the mean number density of galaxies within distance r of a
galaxy is

n(r)xN(< r)/r3o<r"7, vy=3-d. (7.27)

¥ Figures 19.1 and 19.2 show model galaxy maps based on a variant of this construclion, with finite
clustering hierarchies built of siicks, and started at random places so as to satisfy the cosmological
principle. This gives a reasonable approximation to the observed galaxy distribution, but it is not a
scale-invariant fractal because the density fluctuations average 1o zero on scales large compared to the
mean distance between independent clustering hierarchies.
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In three spatial dimensions a fractal dimension ¢ < 3 has zero mean density, in
the sense that the average in equation (7.27) approaches zero in the limit of
arbitrarily large averaging length r, yet each observer is surrounded by galaxies in
a distribution that is statistically independent of the observer’s galaxy. Mandelbrot
points out that the gravitational potential energy per galaxy belonging to a typical
mass concentration scales with the radius r of the concentration as

GNm* )
b 2 =T 2 (7.28)

re-

where m is a characteristic galaxy mass. The fractal dimension d =1, or 4y =2, has
the attractive feature that the potential does not diverge to relativistic velocities
on large or small scales. In a static fractal universe, in which it is postulated that
stars live forever. the mean integrated surface brightness of the sky is proportional
to the mean mass per unit area reckoned from a galaxy,

J'O(/ n(rydr . (7.29)
0

For -y greater than unity the integral converges at large r, so in this static uni-
verse there would be no Olbers’ paradox even if it were assumed that stars shine
forever.

This fractal picture is elegant enough to motivate a cosmology, and there are
even observations that seem to support it. As Charlier (1908, 1922) noted. the
strong clustering of the extragalactic nebulae in his map reproduced in figure 3.1
certainly looks like a hierarchical clustering pattern, The conspicuous empty band
across the middle of the figure is now known to be an artifact of the obscuration
by dust in the plane of the Milky Way, but the larger number of galaxies in the
top half of the map is real, the concentration of galaxies in the Virgo cluster and
the surrounding Local Supercluster. In the 1930s Shapley directed galaxy surveys
at shallower depths and in larger fields than Hubble (1936) was using for his test
of the 107%™ Jaw for a homogeneous universe (eq. {3.15]). The surveys revealed
concentrations of galaxies much larger than the Virgo cluster (Shapley 1934).
Abell (1958) found that in his catalog of the richest clusters of galaxies there
is again a tendency for the clusters to appear in concentrations, which he called
superclusters.

With all this evidence. it is natural to follow Shapley (1938), de Vaucouleurs
(1970), Mandelbrot (1975a,b). Coleman and Pietronero (1992), and others in ask-
ing whether the clustering hierarchy might continue to very large scales, perhaps
€ven indefinitely. As it has happened. however, deeper galaxy counts do not sup-
port this picture, at least for a scale-invariant fractal.

The following analysis compares two models for the galaxy space distribution,
a scale-invariant fractal, and a distribution that is a statistically homogeneous and
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isotropic (stationary) random process, The latier follows the cosmological prip.
ciple in assuming that the galaxy space distribution is homogeneous on average,
The fractal will be a mathematically convenient variant of the above construction
of a clustering hierarchy. The analysis is lengthy but useful as a way to measure
the fluctuations in the mass distribution within the standard model. This aspect of
the discussion is continued in sections 19 to 21.

The idea behind the test of the pure clustering hierarchy model is that a scale-
invariant fractal space distribution of galaxies with d < 2 would look the same, in
a statistical sense, when viewed at any depth. This follows from the fact that there
is no characteristic length in the distribution to set the depth at which it could
start to look smooth. The effect is vividly illustrated in Mandelbrot’s (1975a)
examples. And it is not observed in the maps in figures 3.3 to 3.11. We will
see in equation (7.70) below that this requires that the fractal dimension of the
large-scale distribution of matter differs from the value 4 =3 required by the
cosmological principle by no more that about one part in 10°.

The measures used to test these models will be two-point correlation functions
of the galaxy distributions in space and projected on the sky. Since the projected
distributions give an indirect test of the fractal model, it may seem surprising
tha there is not more emphasis on the direct test of the three-dimensional galaxy
distribution based on redshift maps. The reason in part is that only recently have
we had redshift surveys deep enough compared to the known galaxy clustering
length for useful tests for clustering on larger scales. (These are based on the
IRAS sources, as in figs. 3.7 and 3.8.) There also are practical limitations to the
use of redshift surveys to measure galaxy clustering. As we noted in connection
with figure 3.6, galaxy peculiar motions bias the small-scale clustering seen in
redshift maps. Until galaxy distance measures are a good deal better than any
we have now, statistical measures of spatial clustering on small scales will have
to be based on projected distributions, following the methods outlined here. An
example, for the analysis of the CfA redshift survey in figure 3.4, is given by
Davis and Peebles (1983). Peculiar motions are thought not to affect redshift
maps of the large-scale galaxy distribution, but 10 use these maps to test for radial
variations of the galaxy density we must be sure the efficiency of detection of
the galaxies does not vary with distance. Since distant galaxies are seen as they
were when they and the universe were young, we need some way to separaté
the effects of evolution of galaxies from a possible radial gradient in the galaxy
number density. The angular distributions compare galaxies in different directions
at the same depth, and so presumably at the same state of evolution. This allows a
much more precise test of large-scale density gradients, always assuming Nature
has not placed us at the center of an inhomogeneous but spherically symmetric
world.

The statistically homogeneous model for the space distribution of the galaxies
is characterized by statistics that are functions only of relative position. Thus, the
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probability that a galaxy is found to be centered in the randomly placed volume
element dV is proportional to the size of the element,

dP =ndV . (7.30)

The constant of proportionality, the galaxy number density #, is a universal quan-
tity, reflecting the assumption that the process is stationary. The joint probatlity
of finding galaxies centered within the two volume elements dV) and ¢V, at sep-
aration r is proportional to the sizes of each of the elements,

dP = n*(1 +£(r fr,)} dVidVs. (7.31)

In a stationary random Poisson process (galaxies placed independently at random
with spatially homogeneous probability), the joint probability would be the first
term in this expression, the product of the one-point probabilities from equation
(7.30). The dimensionless function &(r/r,) is the reduced two-point correlation
function for the distribution. Since we are assuming a stationary process. £ can
only be a function of the distance between the volume elements. We will assume
that £ is small when r is large compared to a characteristic clustering length
rs, and that r,, is small compared to the Hubble length ¢/H,,. The observations
indicate that for galaxies r, is about one-tenth of one percent of the Hubble
length.

Analyses of galaxy distributions within the framework of this model, along the
lines to be presented below, show that at small separations the reduced two-point
correlation function for galaxies is well approximated as a power law,

E=(ro/r)”, (7.32)

where the parameters are
v=1.77+0.04, ro=54+1h""Mpc. (7.33)

Since &(ryatr<r, is proportional to the mean density of galaxies as a function
of distance  from a galaxy. this says the galaxy distribution on small scales has
fractal dimension d =1.23 £ 0.04. The slope of the correlation function steepens
atr 2,2r,, and at much larger separations we have only upper bounds on £ (Groth
and Peebles 1977, 1986; Maddox et al. 1990).

Higher-order correlation functions generalize the definition in equation (7.31)
to the three-point correlation function, {(7,. rs. r:). Which the stationary process
allows 1o be a function only of the sides of the triangle defined by the three
Points, and so on. As described in LSS and section 19 below, the estimates of
the higher-order functions are consistent with the picture that on scales less than
Yo the galaxy distribution is a clustering hierarchy.
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For the alternative fractal model, we will use an elegant construction, the
Rayleigh-Lévy random walk, which Mandelbrot (1975b) introduced in cosmyg].
ogy. It proceeds as follows.

Starting from a galaxy, place the next galaxy in a randomly chosen direction g
distance / drawn from the distribution

_ )@ /h* fori>|,

PDD—{I for 1 <, (7.34)
Repeat from the new galaxy position, using a new displacement drawn from thjs
distribution, and a new randomly chosen direction. This continues indefinitely. It
is an easy exercise in statistics (LSS, § 62) to check that if o > 2 this is equiv-
alent to the more familiar random walk with fixed steps, producing a Gaussian
distribution in the net displacement after a fixed number of steps. If 0 < a <2,
the probability that after any number of steps starting from a chosen galaxy an-
other is placed in the volume element &°r at distance r >/, from the initial
one is

dP =Cr="d*r | y=3-q. (7.35)

The constant C is fixed by /, and a,

The statistics in equations (7.32) and (7.35) are power laws, and by taking the
same value for the index <y in the two models we can get the same mean numbers
of close neighbors. The higher-order n-point correlation functions derived from
the random walk model also have forms quite similar to the measured functions
for galaxies (LSS, § 62); that is, on small scales the two models are quite similar.
The issue is whether the fractal model might be a valid description of the galaxy
distribution on large scales as well as small.

We have to assign galaxy luminosities. In both models, we will assume they are
drawn independently from a universal distribution, and we will use the Schechter
form in equation (5.129) as a convenient and realistic approximation,

In the computation of galaxy counts as a function of apparent magnitude, we
will assume Euclidean geometry, so the energy flux density f from a galaxy of
luminosity L at distance r is

L

ym—t (7.36)

f=

Then a galaxy at distance r is bright enough to be seen at flux density f if its
luminosity exceeds 4nrif. That is, the probability, P, that a galaxy at distance r
is included in a catalog with limiting flux density f is

o0

P p@dnrif /L) = Pw)dw . (1.37)
axrif /L,
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where @(L/L,) is the luminosity function (5.128). In the Schechter model,
o )
D(x) =/ wee dw, a=-107+£0.05, x=L/L,=4nrf/L, .(7.38)

The selection function, ¥, and the geometry of the galaxy distribution determine
tbe distribution of distances of galaxies selected by apparent magnitude.

In the homogeneous random process model, the mean number of galaxies per
steradian brighter than f is

N(>f)=/ .nrzdr 1,[)(47rr2f/L,). (7.39)
0

The first factor is the constant one-point probability in equation (7.30), and ¢
gives the probability that a galaxy at distance r is bright enough to be in the
sample. The mean space number density, n. has be chosen to agree with the
normalization of .

The change of variables 47r2f = L.v? in equation (7.39) gives

[Lo\3? >
N:fl(47rf) /(; yodyY(ye). (7.40)

This is the f ~/2 law of equation (3.9). The Schechter function (7.38) gives

3 WAL
N:n('/z;m (f;rf) . (7.41)

In the fractal model, the probability of finding a galaxy in the volume element
d¥ at distance r from a galaxy is given by the power law in equation (7.35). The
expectation value for the number of galaxies per steradian brighter than f counted
by an observer in a galaxy is

x
N=2C / P e L)
0

g [ (3-7)/2 o ) ,
=2C (47;)’) /0 Yo dvy w(yv) (7.42)
3/9 —~ /2 1 . 3-v/2
e 3/2-~/2+a) ( L .
3—-~ dnf

In the first line there is a factor of two because the observer's galaxy could have
been placed before or after the one at distance r. This expression for the mean
Number density represents an ensemble average over observations from a fair
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sample of galaxies. It is a useful approximation to what is observed from a typica|
galaxy, though as we will see the fluctuations are large,

The prediction in equation (7.42) for the fractal model, expressed in apparent
magnitudes, is

dN m -
_[% x ]0‘3 y 16 —0-2(3 - 7) . (7'43)

With the fractal dimension adjusted to fit the distribution of neighbors observed
at small scales, v~ 1.8, the slope is 3~ 0.24. The first crisis for the fractal
picture is that this is well below the observed slope of the galaxy counts (Sandage,
Tammann, and Hardy 1972). The situation is illustrated in figure 3.2. At the
bright end the slope is shallow because of the concentration of galaxies in the
Local Supercluster. At m ~ 13 the slope of the counts steepens 10 a reasonable
approximation to the 109" Hubble relation, and well above the prediction of the
fractal model with vy~ 1.8,

An even more manifest problem for the fractal model comes from the predicted
fluctuations in counts of galaxies as a function of angular position at a fixed
apparent magnitude. Consider the joint probability that an observer in a galaxy
finds that galaxies brighter than f are centered in both of the elements of solid
angle dS2; and d€}; at angular separation @ in the sky. Following the definition of

the spatial two-point correlation function in equation (7.31), this probability can
be written as

dP = N2dQ0,dhLi1 +w(B)]. (7.44)

In the fractal model this again represents an average over observations from an
ensemble of galaxies. In the statistically homogeneous model, observations at
depths large compared to the clustering length r, would be very nearly the same
viewed from any galaxy, or any point in space.

In the homogeneous model the probability in equation (7.44) for the angular
distribution is an integral over the spatial probability in equation (7.31),

dP = n?d(,d f r2drir2dr(1 +Era frolldivs. (7.45)

The last factors are the selection functions, ¥ =(4nri’f/L.), as in equa-
tion (7.39). The distance between the points of integration along the two lines of
sight is

r12=(r,2+r22 — 2ryracos 9)1/2_ (7.46)

With equation (7.39) for the mean number per steradian, \/, we see from equa-
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tions (7.44) and (7.45) that the angular two-point correlation function in the ho-
mogeneous model 15

[riraydrdrannlria/r,)

(0) =
wie) L[ ridrw)?

(7.47)

This relation between the spatial and angular two-point correlation functions was
first written down by Limber (1953) and Rubin (1954).

With the change of variables used in equation (7.40), and the power law model
for the spatial function £ in equation (7.32), equation (7.47) becomes

dmrs T v dyidvawr( e v
M'h(())z( rf) ]n(_ | AR Ad ._1.‘)_}1)1" _2).\1- (7.48)

L. 1 ¥ dv D)

The subscript on this statistic stands for the homogeneous model. This equation
says that w,(#) at fixed # decreases with increasing sample depth, which is de-
creasing f, as Y% This is because we are assuming the galaxy distribution is
homogeneous in the large-scale average, so the angular fluctuations are averaged
away as the depth of the sample increases.

In the fractal model. the probability that an observer in a galaxy finds that
galaxies are centered in the volume elements d¥) and 4%, at positions r; and
r; relative to the observer is, from equation (7.35).

d