


Magnetic fields influence many natural and man-made flows. They are
routinely used in industry to heat, pump, stir and levitate liquid metals.
There is the terrestrial magnetic field which is maintained by fluid motion
in the earth's core, the solar magnetic field which generates sunspots and
solar flares, and the galactic field which influences the formation of stars.
This is an introductory text on magnetohydrodynamics (MHD) - the
study of the interaction of magnetic fields and conducting fluids.

This book is intended to serve as an introductory text for advanced
undergraduate and postgraduate students in physics, applied mathe-
matics and engineering. The material in the text is heavily weighted
towards incompressible flows and to terrestrial (as distinct from astro-
physical) applications. The final sections of the text also contain an out-
line of the latest advances in the metallurgical applications of MHD and
so are relevant to professional researchers in applied mathematics, engi-
neering and metallurgy.

Dr. P.A. Davidson is a Reader in Fluid Mechanics at the University of
Cambridge, where his current research is in fluid mechanics in process
metallurgy, turbulence and stability theory. He is the author of over 50
publications, and was awarded the Institute of Materials prize in 1996 for
the best paper on non-ferrous metallurgy.
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Preface

Prefaces are rarely inspiring and, one suspects, seldom read. They gen-
erally consist of a dry, factual account of the content of the book, its
intended readership and the names of those who assisted in its prepara-
tion. There are, of course, exceptions, of which Den Hartog's preface to a
text on mechanics is amongst the wittiest. Musing whimsically on the
futility of prefaces in general, and on the inevitable demise of those
who, like Heaviside, use them to settle old scores, Den Hartog's preface
contains barely a single relevant fact. Only in the final paragraph does he
touch on more conventional matters with the observation that he has
'placed no deliberate errors in the book, but he has lived long enough
to be quite familiar with his own imperfections'.

We, for our part, shall stay with a more conventional format. This
work is more of a text than a monograph. Part A (the larger part of
the book) is intended to serve as an introductory text for (advanced)
undergraduate and post-graduate students in physics, applied mathe-
matics and engineering. Part B, on the other hand, is more of a research
monograph and we hope that it will serve as a useful reference for profes-
sional researchers in industry and academia. We have at all times
attempted to use the appropriate level of mathematics required to expose
the underlying phenomena. Too much mathematics can, in our opinion,
obscure the interesting physics and needlessly frighten the student.
Conversely, a studious avoidance of mathematics inevitably limits the
degree to which the phenomena can be adequately explained.

It is our observation that physics graduates are often well versed in the
use of Maxwell's equations, but have only a passing acquaintance with
fluid mechanics. Engineering graduates often have the opposite back-
ground. Consequently, we have decided to develop, more or less from
first principles, those aspects of electromagnetism and fluid mechanics

xvn



xviii Preface

which are most relevant to our subject, and which are often treated
inadequately in elementary courses.

The material in the text is heavily weighted towards incompressible
flows and to engineering (as distinct from astrophysical) applications.
There are two reasons for this. The first is that there already exist several
excellent texts on astrophysical, geophysical and plasma MHD, whereas
texts oriented towards engineering applications are somewhat thinner on
the ground. Second, in recent years we have witnessed a rapid growth in
the application of MHD to metallurgical processes. This has spurred a
great deal of fruitful research, much of which has yet to find its way into
textbooks or monographs. It seems timely to summarise elements of this
research. We have not tried to be exhaustive in our coverage of the
metallurgical MHD, but we hope to have captured the key advances.

The author is indebted to the late D. Crighton, without whose support
this text would never have seen the light of day, to H.K. Moffatt and
J.C.R. Hunt for their constant advice over the years, to K. Graham for
typing the manuscript, and to C. Davidson for her patience. Above all,
the author would like to thank Stephen Davidson who painstakingly read
each draft, querying every ambiguity and exposing the many inconsisten-
cies in the original text.



Part A:

The Fundamentals of MHD

Nothing can be more fatal to progress than a too confident
reliance on mathematical symbols; for the student is only too
apt to take the easier course, and consider the formula and not

the fact as the physical reality.
Kelvin (1879)

Introduction: The Aims of Part A

Magnetohydrodynamics (MHD for short) is the study of the interaction
between magnetic fields and moving, conducting fluids. In the following
seven chapters we set out the fundamental laws of MHD. The discussion
is restricted to incompressible flows, and we have given particular empha-
sis to the elucidation of physical principles rather than detailed mathe-
matical solutions to particular problems.

We presuppose little or no background in fluid mechanics or electro-
magnetism, but rather develop these topics from first principles. Nor do
we assume any knowledge of tensors, the use of which we restrict (more
or less) to Chapter 7, in which an introduction to tensor notation is
provided. We do, however, make extensive use of vector analysis and
the reader is assumed to be fluent in vector calculus.

The subjects covered in Part A are:

1. A qualitative overview of MHD
2. The governing equations of electrodynamics
3. The governing equations of fluid mechanics
4. The kinematics of MHD: advection and diffusion of a magnetic field
5. Dynamics at low magnetic Reynolds' number
6. Dynamics at high magnetic Reynolds' number
7. MHD turbulence at low and high magnetic Reynolds' numbers

One point is worth emphasising from the outset. The governing equa-
tions of MHD consist simply of Newton's laws of motion and the pre-
Maxwell form of the laws of electrodynamics. The reader is likely to be
familiar with elements of both sets of laws and many of the phenomena
associated with them. Thus, while the mathematical formulation of
MHD may often seem daunting, the underlying physical phenomena

1



2 Part A: The Fundamentals of MHD

are usually fairly straightforward. It pays, therefore, when confronted
with a welter of mathematical detail, to follow the advice of Kelvin
and keep asking the question: 'What is really going on?'

In line with this principle, we start, in §1.3, not with fully fledged
MHD, but rather with a simple laboratory experiment. This consists of
a static magnetic field at right angles to a conducting rod which in turn
slides along two conducting rails. Such an apparatus is commonly used in
high schools to illustrate Faraday's law of induction. However, when the
dynamics of the sliding rod are investigated we discover a lot more than
just Faraday's law. In fact, this simple experiment illustrates many of the
key physical phenomena to be found in MHD. That is to say, a magnetic
field, B, and a moving, conducting medium interact in such a way as to
restrain the relative motion of the field and medium.

We start our formal analysis in Chapters 2 and 3, where we set out the
governing equations of MHD. These consist of the Navier-Stokes equa-
tion and a simplified version of Maxwell's equations from which Gauss's
law is omitted and displacement currents are neglected.

In Chapter 4 we consider one half of the coupling between B and the
medium. Specifically, we look at the influence of a prescribed fluid velo-
city, u, on the magnetic field without worrying about the origin of the
velocity field or the back-reaction of the Lorentz force on the fluid. In
effect, we take u to be prescribed, dispense with the Navier-Stokes equa-
tion, and focus on the role of u when using Maxwell's equations.

We finally introduce dynamics in Chapters 5 and 6. We start, in
Chapter 5, by considering weakly conducting or slowly moving fluids
in which the magnetic field greatly influences the motion of the conductor
but there is little back-reaction on the imposed magnetic field. This typi-
fies much of liquid-metal MHD. Next, in Chapter 6, we consider highly
conducting, or rapidly moving, fluids in which the two-way coupling of B
and u is strong. Here interest focuses on stability theory, which is impor-
tant in plasma containment, and on dynamo theory, a phenomenon
which is of considerable importance in geophysics. We end, in Chapter
7, with a discussion of MHD turbulence.

Throughout Part A emphasis is placed on physical phenomena, rather
than mathematical rigor, or engineering applications. This is not so much
because we particularly share Rutherford's view of the commanding role
of physics,1 although he had a point, but rather that it provides a con-
venient way of introducing the diverse range of phenomena we call MHD.

1 Ernest Rutherford is reputed to have said: 'Science is divided into two categories, physics
and stamp collecting.'



1
A Qualitative Overview of MHD

The neglected borderland between two branches of knowledge
is often that which best repays cultivation, or, to use a meta-
phor of Maxwell's, the greatest benefits may be derived from a

cross-fertilisation of the sciences.
Rayleigh (1884)

1.1 What is MHD?

Magnetic fields influence many natural and man-made flows. They are
routinely used in industry to heat, pump, stir and levitate liquid metals.
There is the terrestrial magnetic field which is maintained by fluid motion
in the earth's core, the solar magnetic field which generates sunspots and
solar flares, and the galactic magnetic field which is thought to influence
the formation of stars from interstellar clouds. The study of these flows is
called magnetohydrodynamics (MHD). Formally, MHD is concerned
with the mutual interaction of fluid flow and magnetic fields. The fluids
in question must be electrically conducting and non-magnetic, which
limits us to liquid metals, hot ionised gases (plasmas) and strong electro-
lytes.

The mutual interaction of a magnetic field, B, and a velocity field, u,
arises partially as a result of the laws of Faraday and Ampere, and
partially because of the Lorentz force experienced by a current-carrying
body. The exact form of this interaction is analysed in detail in the
following chapters, but perhaps it is worth stating now, without any
form of proof, the nature of this coupling. It is convenient, although
somewhat artificial, to split the process into three parts.

(i) The relative movement of a conducting fluid and a magnetic field
causes an e.m.f. (of order |u x B|) to develop in accordance with
Faraday's law of induction. In general, electrical currents will
ensue, the current density being of order a(u x B), a being the elec-
trical conductivity.

(ii) These induced currents must, according to Ampere's law, give rise to
a second, induced magnetic field. This adds to the original magnetic
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field and the change is usually such that the fluid appears to 'drag'
the magnetic field lines along with it.

(iii) The combined magnetic field (imposed plus induced) interacts with
the induced current density, J, to give rise to a Lorentz force (per
unit volume), J x B. This acts on the conductor and is generally
directed so as to inhibit the relative movement of the magnetic
field and the fluid.

Note that these last two effects have similar consequences. In both cases
the relative movement of fluid and field tends to be reduced. Fluids can
'drag' magnetic field lines (effect (ii)) and magnetic fields can pull on
conducting fluids (effect (iii)). It is this partial 'freezing together' of the
medium and the magnetic field which is the hallmark of MHD.

These effects are, perhaps, more familiar in the context of conven-
tional electrodynamics. Consider a wire loop which is pulled through a
magnetic field, as shown in Figure 1.1. As the wire loop is pulled to the
right, an e.m.f. of order |u x B| is generated which drives a current as
shown (effect (i)). The magnetic field, associated with the induced cur-
rent perturbs the original magnetic field, and the net result is that the
magnetic field lines seem to be dragged along by the wire (effect (ii)).
The current also gives rise to a Lorentz force, J x B, which acts on the
wire in a direction opposite to that of the motion (effect (iii)). Thus it is
necessary to provide a force to move the wire. In short, the wire
appears to drag the field lines while the magnetic field reacts back on
the wire, tending to oppose the relative movement of the two.

Figure 1.1 Interaction of a magnetic field and a moving wire loop.
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Let us consider effect (ii) in a little more detail. As we shall see later, the
extent to which a velocity field influences an imposed magnetic field
depends on the product of (i) the typical velocity of the motion, (ii) the
conductivity of the fluid, and (iii) a characteristic length scale, /, of the
motion. Clearly, if the fluid is non-conducting or the velocity negligible
there will be no significant induced magnetic field. Conversely, if a or u
are (in some sense) large, then the induced magnetic field may substan-
tially alter the imposed field. (Consider the wire shown in Figure 1.1. If it
is a poor conductor, or moves very slowly, then the induced current, and
the associated magnetic field, will be weak.) The reason why / is impor-
tant is a little less obvious, but may be clarified by the following argu-
ment. The e.m.f. generated by a relative movement of the imposed
magnetic field and the medium is of order |u x B| and so, by Ohm's
law, the induced current density is of the order of cr(|u x B|). However,
a modest current density spread over a large area can produce a high
magnetic field, whereas the same current density spread over a small area
induces only a weak magnetic field. It is therefore the product awl which
determines the ratio of the induced field to the applied magnetic field. In
the limit crul ->• oo (typical of so-called ideal conductors) the induced and
imposed magnetic fields are of the same order. In such cases it turns out
that the combined magnetic field behaves as if it were locked into the
fluid. Conversely, when oul -> 0, the imposed magnetic field remains
relatively unperturbed. Astrophysical MHD tends to be closer to the
first situation, not so much because of the high conductivity of the plas-
mas involved, but because of the vast characteristic length scale. Liquid-
metal MHD, on the other hand, generally lies closer to the second limit,
with u leaving B unperturbed. Nevertheless, it should be emphasised that
effect (iii) is still strong in liquid metals, so that an imposed magnetic field
can substantially alter the velocity field.

Perhaps it is worth taking a moment to consider the case of liquid
metals in a little more detail. They have a reasonable conductivity
(~ l O 6 ^ " ^ " 1 ) , but the velocity involved in a typical laboratory or
industrial process is small (~ 1 m/s). As a consequence, the induced cur-
rent densities are generally rather modest (a few Amps per cm2). When
this is combined with a small length-scale (^ 0.1 m in the laboratory), the
induced magnetic field is usually found to be negligible by comparison
with the imposed field. There is very little 'freezing together' of the fluid
and the magnetic field. However, the imposed magnetic field is often
strong enough for the Lorentz force, J x B, to dominate the motion of
the fluid. We tend to think of the coupling as being one way: B controls u
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through the Lorentz force, but u does not substantially alter the imposed
field, B. There are, however, exceptions. Perhaps the most important of
these is the earth's dynamo. Here, motion in the liquid-metal core of the
earth twists, stretches and intensifies the terrestrial magnetic field, main-
taining it against the natural processes of decay. It is the large length-
scales which are important here. While the induced current densities are
weak, they are spread over a large area and so their combined effect is to
induce a substantial magnetic field.

In summary then, the freezing together of the magnetic field and the
medium is usually strong in astrophysics, significant in geophysics, weak
in metallurgical MHD and utterly negligible in electrolytes. However, the
influence of B on u can be important in all four situations.

1.2 A Brief History of MHD

The laws of magnetism and fluid flow are hardly a twentieth-century
innovation, yet MHD became a fully fledged subject only in the late
1930s or early 1940s. The reason, probably, is that there was little
incentive for nineteenth century engineers to capitalise on the possi-
bilities offered by MHD. Thus, while there were a few isolated experi-
ments by nineteenth-century physicists such as Faraday (he tried to
measure the voltage across the Thames induced by its motion through
the earth's magnetic field), the subject languished until the turn of the
century. Things started to change, however, when astrophysicists rea-
lised just how ubiquitous magnetic fields and plasmas are throughout
the universe. This culminated in 1942 with the discovery of the Alfven
wave, a phenomenon which is peculiar to MHD and important in
astrophysics. (A magnetic field line can transmit transverse inertial
waves, just like a plucked string.) Around the same time, geophysicists
began to suspect that the earth's magnetic field was generated by
dynamo action within the liquid-metal of its core, an hypothesis
first put forward in 1919 by Larmor in the context of the sun's
magnetic field. A period of intense research followed and continues
to this day.

Plasma physicists, on the other hand, acquired an interest in MHD in
the 1950s as the quest for controlled thermonuclear fusion gathered pace.
They were particularly interested in the stability, or lack of stability, of
plasmas confined by magnetic fields, and great advances in stability
theory were made as a result.
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The development of MHD in engineering was slower and did not really
get going until the 1960s. However, there was some early pioneering work
by the engineer J. Hartmann, who invented the electromagnetic pump in
1918. Hartmann also undertook a systematic theoretical and experimen-
tal investigation of the flow of mercury in a homogeneous magnetic field.
In the introduction to the 1937 paper describing his researches he
observed:

The invention [his pump] is, as will be seen, no very ingenious
one, the principle utilised being borrowed directly from a well-
known apparatus for measuring strong magnetic fields.
Neither does the device represent a particularly effective
pump, the efficiency being extremely low due mainly to the
large resistivity of mercury and still more to the contact resis-
tance between the electrodes and the mercury. In spite hereof
considerable interest was in the course of time bestowed on the
apparatus, firstly because of a good many practical applica-
tions in cases where the efficiency is of small moment and then,
during later years, owing to its inspiring nature. As a matter of
fact, the study of the pump revealed to the author what he
considered a new field of investigation, that of flow of a con-
ducting liquid in a magnetic field, a field for which the name

Hg-dynamics was suggested.

The name, of course, did not stick, but we may regard Hartmann as the
father of liquid-metal MHD, and indeed the term 'Hartmann flow' is now
used to describe duct flows in the presence of a magnetic field. Despite
Hartmann's early researches, it was only in the early 1960s that MHD
began to be exploited in engineering. The impetus for change came lar-
gely as a result of three technological innovations: (i) fast-breeder reac-
tors use liquid sodium as a coolant and this needs to be pumped; (ii)
controlled thermonuclear fusion requires that the hot plasma be confined
away from material surfaces by magnetic forces; and (iii) MHD power
generation, in which ionised gas is propelled through a magnetic field,
was thought to offer the prospect of improved power station efficiencies.
This last innovation turned out to be quite impracticable, and its failure
was rather widely publicised in the scientific community. However, as the
interest in power generation declined, research into metallurgical MHD
took off. Two decades later, magnetic fields are routinely used to heat,
pump, stir and levitate liquid metals in the metallurgical industries. The
key point is that the Lorentz force provides a non-intrusive means of
controlling the flow of metals. With constant commercial pressure to
produce cheaper, better and more consistent materials, MHD provides
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a unique means of exercising greater control over casting and refining
processes.

1.3 From Electrodynamics to MHD: A Simple Experiment

Now the only difference between MHD and conventional electrody-
namics lies in the fluidity of the conductor. This makes the interaction
between u and B more subtle and difficult to quantify. Nevertheless,
many of the important features of MHD are latent in electrodynamics
and can be exposed by simple laboratory experiments. An elementary
grasp of electromagnetism is then all that is required to understand the
phenomena. Just such an experiment is described below. First, however,
we shall discuss those features of MHD which the experiment is intended
to illustrate.

1.3.1 Some important parameters in electrodynamics and MHD

Let us introduce some notation. Let /x be the permeability of free space, a
and p denote the electrical conductivity and density of the conducting
medium, respectively, and / be a characteristic length scale. Three impor-
tant parameters in MHD are:

Magnetic Reynolds number, Rm = iiaul

Alfven velocity, va —

Magnetic damping time, r = [a

(1.2)

(1.3)

The first of these parameters may be considered as a dimensionless mea-
sure of the conductivity, while the second and third quantities have the
dimensions of speed and time, respectively, as their names suggest.

Now we have already hinted that magnetic fields behave very differ-
ently depending on the conductivity of the medium. In fact, it turns out to
be Rm, rather than a, which is important. Where Rm is large, the magnetic
field lines act rather like elastic bands frozen into the conducting medium.
This has two consequences. First, the magnetic flux passing through any
closed material loop (a loop always composed of the same material par-
ticles) tends to be conserved during the motion of the fluid. This is indi-
cated in Figure 1.1. Second, as we shall see, small disturbances of the
medium tend to result in near-elastic oscillations, with the magnetic field
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providing the restoring force for the vibration. In a fluid, this results in
Alfven waves, which turn out to have a frequency of co ~ va/l

When Rm is small, on the other hand, u has little influence on B, the
induced field being negligible by comparison with the imposed field. The
magnetic field then behaves quite differently. We shall see that it is dis-
sipative in nature, rather than elastic, damping mechanical motion by
converting kinetic energy into heat via Joule dissipation. The relevant
time scale is now the damping time, r, rather than l/va.

All of this is dealt with more fully in Chapters 4-6. The purpose of this
chapter is to show that a familiar high-school experiment is sufficient to
expose these two very different types of behaviour, and to highlight the
important roles played by Rm, va and r.

1.3.2 A brief reminder of the laws of electrodynamics

Let us start with a reminder of the elementary laws of electromagnetism.
(A more detailed discussion of these laws is given in Chapter 2.) The laws
which concern us here are those of Ohm, Faraday and Ampere. We start
with Ohm's law (Figure 1.2(i)).

This is an empirical law which, for stationary conductors, takes the
form J — orE, where E is the electric field and J the current density. We
interpret this as J being proportional to the Coulomb force/ = gE which
acts on the free charge carriers, q being their charge. If, however, the
conductor is moving in a magnetic field with velocity u, the free charges
will experience an additional force, qxx x B, and Ohm's law becomes

J = <r(E + u x B ) (1.4)

The quantity E + u x B , which is the total electromagnetic force per unit
charge, arises frequently in electrodynamics and it is convenient to give it
a label. We use

I E

J = oE
J = a(E + ux B)

v. 0 8

(a) (b)

Figure 1.2 (i) Ohm's law in stationary and moving conductors.
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Er = E + u x B = f /q

Formally, Er is the electric field measured in a frame of reference moving
with velocity u relative to the laboratory frame (see Chapter 2). However,
for the present purposes it is more useful to think of Er as i/q. Some
authors refer to Er as the effective electric field. In terms of Er, (1.4)
becomes J = aEr.

Faraday's law (Figure 1.2 (ii)) tells us about the e.m.f. which is gener-
ated in a conductor as a result of: (i) a time-dependent magnetic field; or
(ii) the motion of a conductor within a magnetic field. In either case
Faraday's law may be written as

emf = (1.5)

Here C is a closed curve composed of line elements d\. The curve may be
fixed in space, or else move with the conducting medium (if the medium
does indeed move). S is any surface which spans C. (We use the right-
hand screw convention to define the positive directions of a\ and dS.) The
subscript on Er indicates that we must use the 'effective' electric field for
each line element a\.

Er = E + u x B (1.6)

where E, u and B are measured in the laboratory frame and u is the
velocity of the line element d\.

Next, we need Ampere's law (Figure 1.3). This (in a round-about way)
tells us about the magnetic field associated with a given distribution of
current, J. If C is a closed curve drawn in space, and S is any surface
spanning that curve, then Ampere's circuital law states that

(a)

Figure 1.2 (ii) Faraday's law (a) e.m.f. generated by movement of a conductor;
(b) e.m.f. generated by a time-dependent magnetic field.
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B = |LiJA/(2rcr)

Figure 1.3 Ampere's law applied to a wire.

= u J • dS (1.7)

Finally, there is the Lorentz force, F. This acts on all conductors carrying
a current in a magnetic field. It has its origins in the force acting on
individual charge carriers, f = q(n x B) and it is easy to show that the
force per unit volume of the conductor is given by

F = J x B (1.8)

1.3.3 A familiar high-school experiment

We now turn to the laboratory experiment. Consider the apparatus illu-
strated in Figure 1.4. This is frequently used to illustrate Faraday's law of
induction. It consists of a horizontal, rectangular circuit sitting in a ver-
tical magnetic field, Bo. The circuit is composed of a frictionless, con-
ducting slide which is free to move horizontally between two rails. We
take the rails and slide to have a common thickness A and to be made
from the same material. To simplify matters, we shall also suppose that
the depth of the apparatus is much greater than its lateral dimensions, L
and W, so that we may treat the problem as two-dimensional. Also, we
take A to be much smaller than L or W.

We now show that, if the slide is given a tap, and it has a high con-
ductivity, it simply vibrates as if held in place by a (magnetic) spring. On
the other hand, if the conductivity is low, it moves forward as if immersed
in treacle, slowing down on a time scale of r. Suppose that, at t = 0, the
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Figure 1.4 A simple experiment for illustrating MHD phenomena.

slide is given a forward motion, u. This movement of the slide will induce
a current density, J, as shown. This, in turn, produces an induced field Bt

which is negligible outside the closed current path but is finite and uni-
form within the current loop. It may be shown, from Ampere's law, that
Bz is directed downward and has a magnitude and direction given by

(1.9)

Note that the direction of Bz is such as to try to maintain a constant flux
in the current loop (Lenz's law) (Figure 1.5). Next we combine (1.4) and
(1.5) to give

Figure 1.5 Direction of the magnetic field induced by current in the slide.
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4 (1.10)

where C is the material circuit comprising the slide and the return path
for J. This yields

~ = jt[LW(B0-^AJ)] = 2J(L+ W)/a (1.11)

Here O = (Bo — iiAJ)LW is the flux through the circuit (see Figure 1.6).
Finally, the Lorentz force (per unit depth) acting on the slide is

= -J(B0-tiAJ/2)AWex (1.12)

where the expression in parentheses represents the average field within the
slide (Figure 1.7). The equation of motion for the slide is therefore

d2L du
(1.13)

where p is the density of the metal.
Equations (1.11) and (1.13) are sufficient to determine the two

unknown functions L{t) and J(t). Let us introduce some simplifying nota-
tion: Bi = /xA/, / = AW/L, T = [ioAW and Rm = \xoul Evidently, Bj
is the magnitude of the induced field and T is a measure of the conduc-
tivity, a, which happens to have the dimensions of time. Our two equa-
tions may be rewritten as

dU(R RM-[L(B0-BI)]= (1.14)

and

w

Flux = IBI LW = (Bo - |iAJ) LW

o o o

© B O O

Figure 1.6 Relationship between flux and current.
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Figure 1.7 Forces acting on the slide.

2p/xA ̂  = 2p^A jt=(Bo~ (1.15)

Now we might anticipate that the solutions of (1.14) and (1.15) will
depend on the conductivity of the apparatus as represented by T, and
so we consider two extreme cases:

1. high conductivity limit;
2. low conductivity limit;

(Rm = itoul » 1)
(Rm = naul « 1)

In the high conductivity limit, the right-hand side of (1.14) may be
neglected and so the flux 0 linking the current path is conserved during
the motion. In such cases we may look for solutions of (1.15) of the form
L = L0 + rj, where rj is an infinitesimal change of L and Lo = $>/B0W.
Multiplying through (1.15) by L2W, noting that 4> is constant and equal
to L0BQ W, and retaining only leading order terms in rj, yields

dt2 (1.16)

Thus, when the magnetic Reynolds number is high, the slide oscillates in
an elastic manner, with an angular frequency of co ~ va/*JAL0, va9 being
the Alfven velocity. In short, if we tap the slide it will vibrate (Figure 1.8).
It seems to be held in place by the magnetic field.

Now consider the low conductivity limit, Rm <^ 1 (Figure 1.9). In this
case the induction equation (1.14) tells us that Bj <̂C Bo and so the left-
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A""A'

Figure 1.8 Oscillation of the slide when Rm > 1.

hand side of (1.14) reduces to uB0. Substituting for Bj (in terms of u) in
the equation of motion (1.15) yields

M = 0 (1.17)

Again we look for solutions of the form Lo + r\, with r] <£ Lo and
Lo = L(t = 0). This time u declines exponentially on a time scale of
T = (crBl/p)~l, the magnetic damping time. The magnetic field now
appears to play a dissipative role. Indeed, it is not difficult to show that

d4 =-\(J2/a)dV (1.18)

where the volume integral is taken over the entire conductor and E is the
kinetic energy of the slide. Thus the mechanical energy of the slide is lost
to heat via Ohmic dissipation.

Let us summarise our findings. When Rm ^> 1, and the slide is abruptly
displaced from its equilibrium position, it oscillates in an elastic manner
at a frequency proportional to the Alfven velocity. During the oscillation

Figure 1.9 Motion of the slide when Rm <£ 1.
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the magnetic flux trapped between the slide and the rails remains con-
stant. If 7?m <$C 1, on the other hand, and the slide is given a push, it
moves forward as if it were immersed in treacle. Its kinetic energy decays
exponentially on a time scale of r = (CTBQ/p)~\ the energy being lost to
heat via Ohmic dissipation. Also, when Rm is small, the induced magnetic
field is negligible.

We shall see that precisely the same behaviour occurs in fluids. The
counterpart of the vibration is an Alfven wave (Figure 1.10), which is a
common feature of astrophysical MHD. In liquid-metal MHD, on the
other hand, the primary role of B is to dissipate mechanical energy on a
time scale of r.

We have yet to explain these two types of behaviour. Consider first the
high Rm case. Here the key equation is Faraday's law (1.10),

4
dt

As a -> oo, the flux, O, enclosed by the slide and rails must be conserved.
If the slide is pushed forward, J = Bj/fiA must rise to conserve O. The
Lorentz force therefore increases until the slide is halted. At this point the
Lorentz force J x B is finite but u is zero and so the slide starts to return.
The induced field Bu and hence / , now falls to maintain the magnetic
flux. Eventually the slide returns to its equilibrium position and the
Lorentz force falls to zero. However, the inertia of the slide carries it
over its neutral point and the whole process now begins in reverse. It is
the conservation of flux, combined with the inertia of the conductor,

(t
•

Figure 1.10 Alfven waves. A magnetic field behaves like a plucked string, trans-
mitting a transverse inertial wave with a phase velocity of va.
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which leads to oscillations in this experiment, and to Alfven waves in
plasmas (Figure 1.11).

Now consider the case where Rm <^ 1. It is Ohm's law which plays the
critical role here. The high resistivity of the circuit means that the cur-
rents, and hence induced field, are small. We may consider B to be
approximately equal to the imposed field, Bo. Since B is now almost
constant, the electric field must be irrotational

V x E = ^ 0

dt

Ohm's law and the Lorentz force per unit volume now simplify to

J = cr[—VF + u x Bo], F = J x Bo (1.19a,b)

where V is the electrostatic potential. Integrating Ohm's law around the
closed current loop eliminates V and yields a simple relationship between
u and / :

2/(L+ W) = aWBou

The Lorentz force per unit mass becomes

F _ W (aBl\ u

p""2(i+^)7r"T

from which

dn
It

u
r

(1.20)

/f / u = 0
/ •

P—̂"
¥ /J

/JxE

Bo

)

HI
1—1

= (B0-Bi)LW
= constant

(a)

Slide reaches
a halt

(b)

Slide
reverses

(c)

Bj = 0

L returns to Lo

and J falls to zero

(d)

Figure 1.11 Mechanism for oscillation of the slide.
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Thus the slide slows down exponentially on a time scale of r. The role of
the induced current here is quite different to the high Rm case. The fact
that J creates an induced field is irrelevant. It is the contribution of / to
the Lorentz force J x Bo which is important. This always acts to retard
the motion. As we shall see, the two equations J = a[—WV + u x Bo] and
F = J x Bo are the hallmark of \ow-Rm MHD.

This familiar high-school experiment encapsulates many of the phe-
nomena which will be explored in the subsequent chapters. The main
difference is that fluids have, of course, none of the rigidity of electro-
dynamic machines, and so they behave in more subtle and complex ways.
Yet it is precisely this subtlety which makes MHD so intriguing.

1.3.4 A summary of the key results for MHD

1. When the medium is highly conducting (Rm ^> 1), Faraday's law tells
us that the flux through any closed material loop is conserved. When
the material loop contracts or expands, currents flow so as to keep the
flux constant. These currents lead to a Lorentz force which tends to
oppose the contraction or expansion of the loop. The result is an
elastic oscillation with a characteristic frequency of ~ va/U va being
the Alfven velocity.

2. When the medium is a poor conductor ((Rm <3C 1), the magnetic field
induced by motion is negligible by comparison with the imposed field,
Bo. The Lorentz force and Ohm's law simplify to

F = J x Bo, J = or[-VF + u x Bo]

The Lorentz force is now dissipative in nature, converting mechanical
energy into heat on a time scale of the magnetic damping time, r.

Statements 1 and 2 are, in effect, a summary of Chapters 4-6.

1.4 Some Simple Applications of MHD

We close this introductory chapter with a brief overview of the scope of
MHD, and of this book. In fact, MHD operates on every scale, from the
vast to the minute. For example, magnetic fields pervade interstellar
space and aid the formation of stars by removing excess angular momen-
tum from collapsing interstellar clouds. Closer to home, sunspots and
solar flares are magnetic in origin, sunspots being caused by buoyant
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Flux tube erupts
from surface

Sunspot pair, AB

Figure 1.12 Sunspot formation.

magnetic flux tubes, perhaps 104 km in diameter and 105 km long, erupt-
ing from the surface of the sun (Figure 1.12). Sunspots are discussed in
Chapter 4.

Back on earth, the terrestrial magnetic field is now known to be main-
tained by fluid motion in the core of the earth (Figure 1.13). This process,
called dynamo action, is reviewed in Chapter 6.

MHD is also an intrinsic part of controlled thermonuclear fusion. Here
plasma temperatures of around 108 K must be maintained, and magnetic
forces are used to confine the hot plasma away from the reactor walls. A
simple example of a confinement scheme is shown in Figure 1.14.
Unfortunately, such schemes are prone to hydrodynamic instabilities,
the nature of which is discussed in Chapter 6.

Solid inner core

Figure 1.13 Motion in the earth's core maintains the terrestrial magnetic field.
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"Pinch force

Solenoid current

Solenoid

Current induced in
surface of plasma

Figure 1.14 Plasma confinement. A current in the solenoid which surrounds the
plasma induces an opposite current in the surface of the plasma and the resulting
Lorentz force pinches radially inward.

In the metallurgical industries, magnetic fields are routinely used to
heat, pump, stir and levitate liquid metals. Perhaps the earliest applica-
tion of MHD is the electromagnetic pump (Figure 1.15). This simple
device consists of mutually perpendicular magnetic and electric fields
arranged normal to the axis of a duct. Provided the duct is filled with a
conducting liquid, so that currents can flow, the resulting Lorentz force
provides the necessary pumping action. First proposed back in 1832, the
electromagnetic pump has found its ideal application in fast-breeder
nuclear reactors, where it is used to pump liquid sodium coolant through
the reactor core.

Perhaps the most widespread application of MHD in engineering is the
use of electromagnetic stirring. A simple example is shown in Figure 1.16.
Here the liquid metal which is to be stirred is placed in a rotating mag-
netic field. In effect, we have an induction motor, with the liquid metal
taking the place of the rotor. This is routinely used in casting operations
to homogenise the liquid zone of a partially solidified ingot. The resulting
motion has a profound influence on the solidification process, ensuring
good mixing of the alloying elements and the continual fragmentation of

Flow J

<s~ ^JxB
\B

Figure 1.15 The electromagnetic pump.
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Figure 1.16 Magnetic stirring of an ingot.

the snowflake-like crystals which form in the melt. The result is a fine-
structured, homogeneous ingot. This is discussed in detail in Chapter 8.

Perversely, in yet other casting operations, magnetic fields are used to
dampen the motion of liquid metal. Here we take advantage of the ability
of a static magnetic field to convert kinetic energy into heat via Joule
dissipation (as discussed in the last section). A typical example is shown
in Figure 1.17, in which an intense, static magnetic field is imposed on a
casting mould. Such a device is used when the fluid motion within the
mould has become so violent that the free surface of the liquid is dis-
turbed, causing oxides and other pollutants to be entrained into the bulk.
The use of magnetic damping promotes a more quiescent process, thus
minimising contamination. The damping of jets and vortices is discussed
in Chapters 5 and 9.

Metal in

Mould

South pole of
magnet

Solid skin

Figure 1.17 Magnetic damping of motion during casting.
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Another common application of MHD in metallurgy is magnetic
levitation or confinement. This relies on the fact that a high-frequency
induction coil repels conducting material by inducing opposing currents
in any adjacent conductor (opposite currents repel each other). Thus a
'basket' formed from a high-frequency induction coil can be used to
levitate and melt highly reactive metals, or a high-frequency solenoid
can be used to form a non-contact magnetic valve which modulates and
guides a liquid metal jet (Figure 1.18). Such applications are discussed
in Chapter 12.

MHD is also important in electrolysis, particularly in those electrolysis
cells used to reduce aluminium oxide to aluminium. These cells consist of
broad but shallow layers of electrolyte and liquid aluminium, with the
electrolyte lying on top. A large current (perhaps 200kAmps) passes
vertically downward through the two layers, continually reducing the
oxide to metal. The process is highly energy intensive, largely because
of the high electrical resistance of the electrolyte. For example, in the
USA, around 3% of all generated electricity is used for aluminium pro-
duction. It has long been known that stray magnetic fields can destabilise
the interface between the electrolyte and aluminium, in effect through the
generation of interfacial gravity waves (Figure 1.19). In order to avoid
this instability, the electrolyte layer must be maintained at a depth above
some critical threshold, and this carries with it a severe energy penalty.
This instability turns out to involve a rather subtle mechanism, in which
interfacial oscillations absorb energy from the ambient magnetic field,

Solenoid -

Flow

- Pinch force

Figure 1.18 An electromagnetic valve.
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Figure 1.19 Instabilities in an aluminium reduction cell.

converting it into kinetic energy. The stability of aluminium reduction
cells is discussed in Chapter 11.

There are many other applications of MHD in engineering and metal-
lurgy which, in the interests of brevity, we have not described here.
These include electromagnetic (non-contact) casting of aluminium,
vacuum-arc remelting of titanium and nickel-based super alloys (a pro-
cess which resembles a gigantic electric welding rod - see Chapter 10),
electromagnetic removal of non-metallic inclusions from melts, electro-
magnetic launchers (which have the same geometry as Figure 1.4, but
where the slide is now a projectile and current is forced down the rails
accelerating the slide) and the so-called 'cold-crucible' induction melting
process, in which the melt is protected from the crucible walls by a thin
solid crust of its own material. This latter technology is currently find-
ing favour in the nuclear industry, where it is used to vitrify highly
active nuclear waste.

All-in-all, it would seem that MHD has now found a substantial and
permanent place in the world of materials processing. However, it would
be wrong to pretend that every engineering venture in MHD has been a
success, and so we end this section on a lighter note, describing one of
MHD's less notable developments: that of MHD propulsion for military
submarines.

Stealth is all important in the military arena and so, in an attempt to
eliminate the detectable (and therefore unwanted) cavitation noise asso-
ciated with propellers, MHD pumps were once proposed as a propul-
sion mechanism for submarines. The idea is that sea-water is drawn into
ducts at the front of the submarine, passed through MHD pumps
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within the submarine hull, and then expelled at the rear of the vessel in
the form of high-speed jets. It is an appealing idea, dating back to the
1960s, and in principle it works, as demonstrated recently in Japan by
the surface ship Yamato. Indeed, this idea has even found its way into
popular fiction! The concept found renewed favour with the military
authorities in the 1980s (the armaments race was at fever pitch) and
serious design work commenced. Unfortunately, however, there is a
catch. It turns out that the conductivity of sea-water is so poor that
the efficiency of such a device is, at best, a few per cent, nearly all of the
energy going to heat the water. Worse still, the magnetic field required
to produce a respectable thrust is massive, at the very limits of the most
powerful superconducting magnets. So, while in principle it is possible
to eliminate propeller cavitation, in the process a (highly detectable)
magnetic signature is generated, to say nothing of the thermal and
chemical signatures induced by electrolysis in the ducts. To locate an
MHD submarine, therefore, you simply have to borrow a Gauss meter,
buy a thermometer, invest in litmus paper, or just follow the trail of
dead fish!

Submarine propulsion apart, engineering MHD has scored some nota-
ble successes in recent years, particularly in its application to metallurgy.
It is this which forms the basis of Part B of this text.

Suggested Reading

J A Shercliff: A textbook of magnetohydrodynamics, 1965, Pergamon Press.
(Chapter 1 gives a brief history of MHD.)

Examples

1.1 A bar of small but finite conductivity slides at a constant velocity u
along conducting rails in a region of uniform magnetic field. The
resistance in the circuit is R and the inductance is negligible.
Calculate: (i) the current / flowing in the circuit; (ii) the power
required to move the bar; and (iii) the Ohmic losses in the circuit.

1.2 A square metal bar of length / and mass m slides without friction
down parallel conducting rails of negligible resistance. The rails are
connected to each other at the bottom by a resistanceless rail parallel
to the bar, so that the bar and rails form a closed loop. The plane of
the rails makes an angle 0 with the horizontal, and a uniform vertical
field, B, exists throughout the region. The bar has a small but finite



Examples 25

conductivity and has a resistance of R. Show that the bar acquires a
steady velocity of u = mgR sin 0/(Bl cos 0)2.

1.3 A steel rod is 0.5 m long and has a diameter of 1 cm. It has a density
and conductivity of 7 x 103kg/m3 and 106mho/m, respectively. It
lies horizontally with its ends on two parallel rails, 0.5 m apart. The
rails are perfectly conducting and are inclined at an angle of 15° to
the horizontal. The rod slides up the rails with a coefficient of friction
of 0.25, propelled by a battery which maintains a constant voltage
difference of 2 V between the rails. There is a uniform, unperturbed
vertical magnetic field of 0.75 T. Find the velocity of the bar when
travelling steadily.

1.4 When Faraday's and Ohm's laws are combined, we obtain (1.10).
Consider an isolated flux tube sitting in a perfectly conducting
fluid, and let Cm be a material curve (a curve always composed of
the same material) which at some initial instant encircles the flux
tube, lying on the surface of the tube. Show that the flux enclosed
by Cm will remain constant as the flow evolves, and that this is true of
each and every curve enclosing the tube at t = 0. This suggests that
the tube itself moves with the fluid, as if frozen into the medium.
Now suppose that the diameter of the flux tube is very small. What
does this tell us about magnetic field lines in a perfectly conducting
fluid?

1.5 Consider a two-dimensional flow consisting of an (initially) thin jet
propagating in the x-direction and sitting in a uniform magnetic field
which points in the j-direction. The magnetic Reynolds number is
low. Show that the Lorentz force (per unit volume) acting on the fluid
is —auxB ex. Now consider a fluid particle sitting on the axis of the
jet. It has an axial acceleration of ux(dux/dx). Show that the jet is
annihilated within a finite distance of L ~ uor, where u0 is the initial
value of ux (r is the magnetic damping time).

1.6 Calculate the magnetic Reynolds number for motion in the core of
the earth, using the radius of the core, Rc = 3500 km as the charac-
teristic length-scale and w ~ 2 x 10~4m/s as a typical velocity. Take
the conductivity of iron as 0.5 x 106 mho/m. Now calculate the mag-
netic Reynolds number for motion in the outer regions of the sun
taking / ~ 103 km, u ~ 1 km/s and a = 104 mho/m. Explain why it is
difficult to model solar and geo-dynamos using scaled laboratory
experiments with liquid metals.

1.7 Magnetic forces are sometimes used to levitate objects. For example,
if a metal object is situated near a coil carrying an alternating current
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/, eddy currents will flow in the object and there will result a repulsive
force. Show that the force in the x-direction is \l2(dL/dx) if the
object is allowed to move in the x-direction (L is the effective induc-
tance of the coil).
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From a long view of history of mankind - seen from, say, ten
thousand years from now - there can be little doubt that the
most significant event of the 19th Century will be judged as

Maxwell's discovery of the laws of electrodynamics.
R P Feynman (1964)

We are concerned here with conducting, non-magnetic materials. For
simplicity, we shall assume that all material properties, such as the con-
ductivity, a, are spatially uniform, and that the medium is incompressi-
ble. The topics which concern us are the Lorentz force, Ohm's law,
Ampere's law and Faraday's law. We shall examine these one at a time.

2.1 The Electric Field and the Lorentz Force

A particle moving with velocity u and carrying a charge q is, in general,
subject to three electromagnetic forces:

f = qEs + qEi + quxB (2.1)

The first is the electrostatic force, or Coulomb force, which arises from
the mutual repulsion or attraction of electric charges (Es is the electro-
static field). The second is the force which the charge experiences in the
presence of a time-varying magnetic field, Ei being the electric field
induced by the changing magnetic field. The third contribution is the
Lorentz force which arises from the motion of the charge in a magnetic
field. Now Coulomb's law tells us that Es is irrotational, and Gauss's law
fixes the divergence of Es. Together these laws yield

V • E5 = pe/e0, V x Es = 0 (2.2a,b)

Here pe is the total charge density (free charges plus bound charges) and
£0 is the permittivity of free space. In view of (2.2b), we may introduce the
electrostatic potential, V, defined by Es = — VF. It follows from (2.2a)
that V 2 F = -pe/e0.

The induced electric field, on the other hand, has zero divergence, while
its curl is finite and governed by Faraday's law.

27
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V.E,- = O, VxE, = - ^ (2.3)
ot

It is convenient to define the total electric field as E = E^ + Eh and so we
have

( 2 4 )

(Gauss's law) (Faraday's law)
f = q(E + uxB)
(electrostatic force plus Lorentz force)

Equations (2.4) uniquely determine the electric field since the require-
ments are that the divergence and curl of the field be known (and suitable
boundary conditions are specified). It is customary to use equation (2.5)
to define the electric field E and the magnetic field B. Thus, for example,
the electric field E is the force per unit charge on a small test charge at rest
in the observer's frame of reference.

Due attention must be given to frames of reference. Suppose that in the
laboratory frame there is an electric field and a magnetic field. The elec-
tric field, E, is defined by the force per unit charge on a charge at rest in
that frame. If the charge is moving, the force due to the electric field is
still given by f = qE but the additional force g u x B appears, which is
used to define B. If, however, we use a frame of reference in which the
charge is instantaneously at rest (but moving with velocity u relative to
the laboratory frame), then the force on the charge can only be inter-
preted as due to an electric field, say Er (the subscript r indicates 'relative
to a moving frame'). Newton's second law then gives, for the two frames,
f = q(E + u x B) and fr = qEr. However, Newtonian relativity (which is
all that is required for MHD) tells us that f = fr. It follows that the
electric fields in the two frames are related by

Er = E + u x B (2.6)

The magnetic fields B and Br are equal.
We close this section by noting that B is a pseudo-vector and not a true

vector. That is to say, the sense of B is somewhat arbitrary, to the extent
that B reverses direction if we move from a right-handed coordinate
system (the usual convention) to a left-handed one. This may be seen
as follows. Suppose we transform our coordinate system according to
x -> xf = —x. (This is referred to as an inversion of the coordinates, or
else as a reflection about the origin.) We have moved from a right-handed
coordinate system to a left-handed one in which x — —x, y' = —y,
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z = —z, \ = — i, j ' = — j and k' = —k. Now the components of a true
vector, such as force, f, or velocity, u, transform like/^ = —fx etc., which
leaves the physical direction of the vector unchanged since

f =/A +fyiy +/ziz = (-A')K) + ( - / ; )K) + ("A') K )

Thus, after an inversion of the coordinates, a true vector (such as f or u)
has the same magnitude and direction as before, although the numerical
values of its components change sign. Now consider the definition of B:
f = q(u x B). Under an inversion of the coordinates the components of u
and f both change sign and so those of B cannot. Thus the magnetic field
transforms according to Bx = Bx, etc. By implication, the physical direc-
tion of B reverses. (Such vectors are called pseudo-vectors.) So, if one
morning we all agreed to change convention from a right-handed coor-
dinate system to a left-handed one, all the magnetic field lines would
reverse direction! The fact that B is a pseudo-vector is important in
dynamo theory.

2.2 Ohm's Law and the Volumetric Lorentz Force

In a stationary conductor it is found that the current density, J, is pro-
portional to the force experienced by the free charges. This is reflected in
the conventional form of Ohm's law, J = aE. In a conducting fluid the
same law applies, only now we must use the electric field measured in a
frame moving with the local velocity of the conductor:

J = aEr = (r(E + uxB) (2.7)

Note that u will, in general, vary with position.
Now the Lorentz force (2.5) is important not just because it lies behind

Ohm's law, but also because the forces exerted on the free charges are
ultimately transmitted to the conductor. In MHD we are less concerned
with the forces on individual charges than the bulk force acting on the
medium, but this is readily found. If (2.5) is summed over a unit volume
of the conductor then J2a becomes the charge density, pe, and J2au

becomes the current density, J. The volumetric version of (2.5) is there-
fore

F = peE + J x B (2.8)

where F is the force per unit volume acting on the conductor. However, in
conductors travelling at the sort of speeds we are interested in (much less
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than the speed of light), the first term in (2.8) is negligible. We may
demonstrate this as follows. Conservation of charge requires that

V - J = - ^ (2.9)

(This simply says that the rate at which charge is decreasing inside a small
volume must equal the rate at which charge flows out across the surface
of that volume.) By taking the divergence of both sides of (2.7), and using
Gauss's law and (2.9), we find that

The quantity xe is called the charge relaxation time, and for a typical
conductor has a value of around 1CT18 s. It is extremely small! To
appreciate where its name comes from, consider the situation where
u = 0. In this case, dpe/dt + pe/ze = 0 and so

Any net charge density which, at t = 0, lies in the interior of a conductor
will move rapidly to the surface under the action of the electrostatic
repulsion forces. It follows that pe is always zero in stationary conduc-
tors, except during some minuscule period when a battery, say, is turned
on. Now consider the case where u is non-zero. We are interested in
events which take place on a time-scale much longer than xe (we exclude
events like batteries being turned on) and so we may neglect dpe/dt by
comparison with pe/xe. We are left with the pseudo-static equation

Pe = -s0W • (u x B) (2.10)

Thus, when there is motion, we can sustain a finite charge density in the
interior of the conductor. However, it turns out that pe is very small, i.e.
too low to produce any significant electric force, peE. That is, from (2.10)
we have pe ~ SQUB/1, while Ohm's law requires E ~ J /a , and so

Here / is a typical length-scale for the flow. Evidently, since uxe/l ~ 10~18,
the Lorentz force completely dominates (2.8) and we may write

F = J x B (2.11)

Note also that (2.10) is equivalent to ignoring dpe/dt in the charge con-
servation equation (2.9). That is to say, the charge density is so small that
(2.9) simplifies to

V - J = 0 (2.12)
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2.3 Ampere's Law

The Ampere-Maxwell equation tells us something about the magnetic
field generated by a given distribution of current. It is

VxB = J j + e o ^ l (2.13)

The last term in (2.13) may be unfamiliar. It does not, for example,
appear in Ampere's circuital law (1.7). This new term was introduced
by Maxwell as a correction to Ampere's law and is called the displace-
ment current. To see why it is necessary, we take the divergence of (2.13).
Noting that V • V x (•) = 0 and using Gauss' law, this yields

This is just the charge conservation equation which, without the displace-
ment current, would be violated. However, Maxwell's correction is not
needed in MHD. That is, we have already noted that dpe/dt is negligible
in conductors, and so we might anticipate that the contribution of e0 ̂  to
(2.13) is also small in MHD. This is readily confirmed:

9E eodJ 33 _
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We are therefore at liberty to use the pre-Maxwell form of (2.13), which is
simply the differential form of Ampere's law:

V x B = /xJ (2.14)

This is consistent with (2.12), since the divergence of (2.14) yields

Finally, we note that in infinite domains, (2.14) may be inverted
using the Biot-Savart law. That is, when the current density is a
known function of position, the magnetic field may be calculated
directly from

M f J ( x ' ) x V x , r = x _ x ,
V x r = x x

r

This comes from the fact that a small element of material located at x'
and carrying a current density of J(x') induces a magnetic field at point x
which is given by (see Figure 2.1)
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Figure 2.1 Coordinate system used in the Biot-Savart law.

Note that (2.15), which is equivalent to (2.14)1, reveals the true character
of Ampere's law. It really tells us about the structure of the magnetic field
associated with a given current distribution.

Example: Force-free fields

Magnetic fields of the form V x B = aB, a = constant, are known as
force-free fields, since J x B = 0. (More generally, fields of the form
V x G = aG are known as Beltrami fields.) They are important in
plasma MHD where we frequently require the Lorentz force to vanish.
Show that, for a force-free field,

Deduce that there are no force-free fields, other than B = 0, for which
J is localised in space and B is everywhere differentiable and 0(x~3) at
infinity.

2.4 Faraday's Law in Differential Form

Faraday's law is sometimes stated in integral form and sometimes in
differential form. You have already met both. In Section 2.1 we stated
it to be

In fact, (2.15) is a stronger statement than (2.14) as it determines both the divergence and
the curl of B.
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—=-!

This tells us about the electric field induced by a time-varying magnetic
field. However, in Chapter 1 we gave the integral version,

e.m.f. = I E r . dl = - 4 f B dS
Jc dtJs

(2.16)

where Er is the electric field measured in a frame of reference moving with
dl (see equation (2.6)). In fact, it is easily seen that (2.16) is a more
powerful statement than the differential form of Faraday's law. In
words, it states that the e.m.f. around a closed loop is equal to the
total rate of change of flux of B through that loop. In (2.16), the flux
may change because B is changing with time, or because the loop is
moving uniformly in an inhomogeneous field, or because the loop is
changing shape. Whatever the cause, (2.16) gives the induced e.m.f. We
shall return to the integral version of Faraday's law in Section 2.7, where
we discuss its full significance. In the meantime, we shall show that the
differential form of Faraday's law is a special case of (2.16).

Suppose that the loop is rigid and at rest in a laboratory frame. Then
the e.m.f. can arise only from a magnetic field which is time-dependent. In
this case (2.16) becomes

: J)(V x E) -dS = - [E • d\ = (b(V x E) • dS = - (3B/dt) • dS

Since this is true for any and all (fixed) surfaces, we may equate the
integrands in the surface integrals. We then obtain the differential form
of Faraday's law:

V x E = - ^ (2.17)

In this form, Faraday's law becomes one of Maxwell's equations (see
Section 2.5). Note, however, that (2.17) is a weaker statement than
(2.16). It only tells us about the electric field induced by a time-varying
magnetic field.

Now (2.17) ensures that dB/dt is solenoidal, since V • (V x E) = 0. In
fact, it transpires that we can make an even stronger statement about B.
It turns out that B is itself solenoidal,

V-B = 0 (2.18)
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This allows us to introduce another field, A, called the vector potential,
defined by

V x A = B, V A = 0 (2.19a,b)

This definition automatically ensures that B is solenoidal, since
V • V x A = 0. If we substitute for A in Faraday's equation we obtain

V x E = - V x (dA/dt)

from which

8A
E = VF (2.20)

ot

where V is an arbitrary scalar function. However, we also have, from
(2.2) and (2.3),

E = E,- + Es, V x Es = 0, V • E, = 0

and so we might anticipate that Et = —dA/dt and Es = — VF where F is
now the electrostatic potential. This is readily confirmed by taking the
divergence of (2.20) which, given (2.19b), shows that all of the divergence
of E is captured by VF in (2.20), as required by (2.2) and (2.3).

Example: The divergence ofB

Faraday's law implies that (d/dt)(V • B) = 0. If this is also true relative
to all sets of axes moving uniformly relative to one another, show that
V B = 0.

2.5 The Reduced Form of Maxwell's Equations for MHD

We have mentioned Maxwell's equations several times. When combined
with the force law (2.5) and the law of charge conservation (2.9), they
embody all that we know about electrodynamics, and so it seems appro-
priate that, at some point, we should write them down. For materials
which are neither magnetic nor dielectric, Maxwell's equations state that:

V • E = P6/SQ (Gauss' law)

V • B = 0 (Solenoidal nature of B)

V x E = —— (Faraday's law in differential form)
ot

V x B = /xl J + s0-^ ) (Ampere—Maxwell equation)

In addition, we have
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V • J = — dpe/dt (charge conservation),

35

For our purposes these may be simplified considerably. In MHD, the
charge density pe plays no significant part. For example, we have seen
that the electric force, #E, is minute by comparison with the Lorentz
force, and that the contribution of dpe/dt to the charge conservation
equation is also negligible. Apparently pe is significant only in Gauss's
law and so we simply drop Gauss's law and ignore pe. Also, we have seen
that in MHD the displacement currents are negligible by comparison
with the current density, J, and so the Ampere-Maxwell equation reduces
to the differential form of Ampere's law. We may now summarise the
(pre-Maxwell) form of the electrodynamic equations used in MHD:

Ampere's law plus charge conservation,

V x B = /x J VJ = (2.21)

Faraday's law plus the solenoidal constraint on B,

(2.22)

Ohm's law plus the Lorentz Force,

J = a(E + u x B) = J x B (2.23)

Equations (2.21)-(2.23) encapsulate all that we need to know about
electromagnetism for MHD.

Example 1: A paradox

Although electrostatic forces are of no importance in MHD, they can
lead to some unexpected effects in those cases where they are signifi-
cant, as we now show. Consider a hollow plastic sphere which is
mounted on a frictionless spindle and is free to rotate. Charged
metal pellets are embedded in the surface of the sphere and a wire
loop is placed near its centre, the axis of the loop being parallel to
the rotation axis. The loop is connected to a battery, so that a current
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flows and a dipole-like magnetic field is created. We now ensure that
everything is stationary and (somehow) disconnect the battery. The
magnetic field declines and so, by Faraday's law, we induce an electric
field which is azimuthal, i.e. E takes the form of rings which are con-
centric with the axis of the wire loop. This electric field now acts on the
charges to produce a torque on the sphere, causing it to spin up. At the
end of the process we have gained some angular momentum in the
sphere, but at the cost of the magnetic field. Apparently, we have
contravened the principle of conservation of angular momentum!
Can you unravel this paradox? (Hint: consult Feynman's 'Lectures
on Physics' Vol. 2.)

The earth has a large negative charge on its surface, which gives rise
to an average surface electric field of around 100 V/m. It also has a
dipole magnetic field, and rotates about an axis which is more-or-less
aligned with the magnetic axis. Do you think the rotation rate of the
earth changes when the earth's magnetic field reverses (as it occasion-
ally does)?

Example 2: The Poynting vector

Use Faraday's law and Ampere's law to show that

4 f (B2/2ij)dV = -{ J - E J F - | [ ( E X B ) / / X ] - dS

s

Now use Ohm's law to confirm that

f J • EdV = - f J2dV + f (J x B) • udV

Combining the two we obtain

J2</F-[ (JxB).udV-lv-dS
s

where P = (E x B)//x is called the Poynting vector. The integrals on
the right represent Joule dissipation, the rate of loss of magnetic
energy due to the rate of working of the Lorentz force on the med-
ium, and the rate at which electromagnetic energy flows out through
the surface S, the Poynting vector being the electromagnetic energy
flux density.
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2.6 A Transport Equation for B

If we combine Ohm's law, Faraday's equation and Ampere's law we
obtain an expression relating B to u.

3B
— = - V x E = - V x [(J/or) - u x B ] = V x [ u x B - V x B/fia]
ot

Noting that V x V x B = —V2B (since B is solenoidal), this simplies to

X = (/xa)"1 (2.24)

This is sometimes called the induction equation, although, as we shall see,
a more descriptive name would be the advection-diffusion equation for
B. The quantity X is called the magnetic diffusivity. Like all diffusivities it
has the units m2/s. Equation (2.24) is, in effect, a transport equation for
B, in the sense that if u is known then it dictates the spatial and temporal
evolution of B from some specified initial condition. We shall spend much
of Chapter 4 unpicking the physical implications of (2.24): it is one of the
key equations in MHD.

Example: Decay of force-free fields

Show that if, at t = 0, there exists a force-free field, V x B = aB, in a
stationary fluid, then that field will decay as B ~ exp(—Xa2t), remain-
ing as a force-free field.

2.7 On the Remarkable Nature of Faraday and of Faraday's Law

We shall now show that the integral version of Faraday's law, (2.16), is a
quite remarkable result, encompassing not just one physical law, but two!
Moreover, as we shall see, Faraday's law in its most general form embo-
dies many of the key phenomena of MHD. We start, however, with a
historical footnote.

2.7.7 An historical footnote

Faraday played a crucial part in the development of MHD for three
reasons. First, his law of induction, discovered in 1831, shows that mag-
netic field lines in a perfectly conducting fluid must move with the fluid, as
if frozen into the medium. This result is usually attributed to the 20th
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century astrophysicist Alfven, but really it follows directly from
Faraday's law. Second, he performed the first experiment in MHD
when he tried to measure the voltage induced by the Thames flowing
through the earth's magnetic field.2 Third, he invented magnetic fields!

Prior to the work of Faraday, the scientific and mathematical commu-
nities were convinced that the laws of electromagnetism should be for-
mulated in terms of action at a distance. The notion of a field did not
exist. For example, Ampere had discovered that two current-carrying
wires attract each other, and so, by analogy with Newton's law of grav-
itational attraction, it seemed natural to try and describe this force in
terms of some kind of inverse square law. In this view, nothing of sig-
nificance exists between the wires.

Faraday had a different vision, in which the medium between the wires
plays a role. In his view, a wire which carries a current introduces a field
into the medium surrounding it. This field (the magnetic field) exists
whether or not a second wire is present. When the second wire is intro-
duced it experiences a force by virtue of this field. Moreover, in Faraday's
view the field is not just some convenient mathematical intermediary. It
has real physical significance, possessing energy, momentum and so on.

Of course, it is Faraday's view which now prevails, which is all the
more remarkable because Faraday had no formal education and, as a
consequence, little mathematical skill. James Clerk Maxwell was greatly
impressed by Faraday, and in the preface to his classic treatise on
Electricity and Magnetism he wrote:

Before I began the study of electricity I resolved to read no
mathematics on the subject till I had first read through
Faraday's Experimental Researches in Electricity. I was
aware that there was supposed to be a difference between
Faraday's way of conceiving phenomena and that of the math-
ematicians, so that neither he nor they were satisfied with each

other's language...
As I proceeded with the study of Faraday, I perceived that his
method of conceiving the phenomena was also a mathematical
one, though not exhibited in the conventional form of

mathematical symbols...

2 In Faradays words: 'I made experiments therefore (by favour) at Waterloo bridge, extend-
ing a copper wire nine hundred and sixty feet in length upon the parapet of the bridge, and
dropping from its extremities other wires with extensive plates of metal attached to them to
complete contact with the water. Thus the wire and the water made one conducting circuit;
and as the water ebbed and flowed with the tide, I hoped to obtain currents.' (1832)
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For instance, Faraday, in his mind's eye, saw lines of force
traversing space where the mathematicians saw centres of
force attracting at a distance: Faraday sought the seat of the
phenomena in real actions going on in the medium, they were
satisfied that they had found it in a power of action at a

distance...
When I translated what I considered to be Faraday's ideas into
mathematical form, I found that in general the results of the
two methods coincided, so that the same phenomena were
accounted for, and the same laws of action deduced by both
methods, but that Faraday's methods resembled those in
which we begin with the whole and arrive at the parts by
analysis, while the ordinary mathematical methods were
founded on the principle of beginning with the parts and build-
ing up the whole by synthesis. I also found that several of the
most fertile methods of research discovered by the
mathematicians could be expressed much better in terms of
the ideas derived by Faraday than in their original form...
If by anything I have written I may assist any student in under-
standing Faraday's modes of thought and expression, I shall
regard it as the accomplishment of one of my principle aims -
to communicate to others the same delight which I have found

myself in reading Faraday's 'Researches'.
(1873)

When Maxwell transcribed Faraday's ideas into mathematical form,
correcting Ampere's law in the process, he arrived at the famous laws
which now bear his name. Kelvin was similarly taken by Faradays phy-
sical insight:

One of the most brilliant steps made in philosophical
exposition of which any instance existed in the history of
science was that in which Faraday stated, in three or four
words, intensely full of meaning, the law of magnetic attraction
or repulsion... Mathematicians were content to investigate the
general expression of the resultant force experienced by a globe
of soft iron in all such cases; but Faraday, without any mathe-
matics, devined the result of the mathematical investigations.
Indeed, the whole language of the magnetic field and 'lines of
force' is Faraday's. It must be said for the mathematicians that
they greedily accepted it, and have ever since been most zeal-

ous in using it to the best advantage.'
(1872)

The central role played by fields acquires special significance in relati-
vistic mechanics where, because of the finite velocity of propagation of
interactions, it is not meaningful to talk of direct interactions of particles
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(or currents) located at distant points. We can speak only of the field
established by one particle and of the subsequent influence of this field on
other particles. Of course, Faraday could not have foreseen this! Einstein
explicitly noted the important role played by Faraday and Maxwell in his
popular introduction to Relativity:

during the second half of the 19th century, in conjunction with
the researches of Faraday and Maxwell, it became more and
more clear that the description of electromagnetic processes in
terms of fields was vastly superior to a treatment on the basis
of the mechanical concepts of material points One
psychological effect of this immense success was that the
field concept, as opposed to the mechanistic framework of

classical physics, gradually won greater independence.
(1916)

Of course, Faraday's contribution to magnetism did not stop with the
introduction of fields. He also discovered electromagnetic induction. In
fact, in 1831, in no more than ten full days of research, Faraday unra-
velled all of the essential features of electromagnetic induction. Even
more remarkable, the integral equation now attributed to Faraday
encompasses not just one physical law, but two, as we now show.
First, however, we need an important kinematic result.

2.7.2 An important kinematic equation

Suppose that G is a solenoidal field, V • G = 0, and Sm is a surface which
is embedded in a conducting medium, i.e. Sm is locked into the medium
and moves as the fluid moves. (The subscript m indicates that it is a
material surface) Then it may be shown that

(2.25a)

A formal proof of (2.25) will be given in a moment. First, however, we
might try to get a qualitative feel for its origins. The idea behind (2.25a) is
the following. The flux of G through Sm changes for two reasons. First,
even if Sm were fixed in space there is a change in flux whenever G is time-
dependent. This is the first term on the right of (2.25a). Second, if the
boundary of Sm moves it may expand at points to include additional flux,
or perhaps contract at other points to exclude flux. It happens that, in a



On the Remarkable Nature of Faraday and of Faraday's Law 41

time 8t, the surface adjacent to the line element d\ increases by an amount
dS = (u x d\)St, and so the increase in flux due to movement of the
boundary Cm is

8 [ G • dS = | G • (u x d\)8t = - J> (u x G) • d\8t

sm cm cm

Using Stoke's theorem, the last line integral may be converted into a
surface integral, which accounts for the second term on the right of
(2.25a). Of course, we have yet to show that JS = (u x d\)8t.

The formal proof of (2.25) proceeds as follows. The change in flux
through Sm in a time 8t is

8\ G-dS = (8t) f (dG/dt) • dS + 4) G • 8S

where 8S is the element of area swept out by the line element d\ in time 8t.
However, <5S = d\! x d\, where d\f is the infinitesimal displacement of the
element d\ in time 8t (Figure 2.2). Since d\f = uSt, we have 8S = (u x d\)8t
and so

8\ G-dS
ism

= (8t) f (BG/dt) • dS - d) u x G • d\(8i)
ism

(We have used the cyclic properties of the scalar triple product to rearrange
the terms in the line integral.) Finally, the application of Stoke's theorem to
the line integral gets us back to (2.25), and this completes the proof.

Now (2.25) should not be passed over lightly: it is a very useful result.
The reason is that often in MHD (or conventional fluid mechanics) we
find that certain vector fields obey a transport equation of the form

at time t

at time t + 8t

Figure 2.2 Movement of the material surface in a time 8t.
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— = V x [u x G]
ot

This is true of V x u in an unforced, inviscid flow (see Chapter 3) and of B
in a perfect conductor (see equation (2.24)). In such cases, (2.25) tells us
that the flux of B (or V x u) through any material surface, Sm, is con-
served as the flow evolves. We shall return to this idea time and again in
subsequent chapters.

Note that it is not necessary to invoke the idea of a continuously
moving medium and of material surfaces in order to arrive at (2.25). If
we consider any curve, C, moving in space with a prescribed velocity, u,
then

4 f G • dS = f I — - V x (u x G) 1 • dS (2.25b)
dtjs isldt }\

where S is any surface which spans the curve C

2.7.3 The full significance of Faraday's law

We now return to electrodynamics. Recall that the differential form of
Faraday's law is

V x E = -dB/dt (2.26)

As noted earlier, this is a weaker statement than the integral version
(2.16), since it tells us only about the e.m.f. induced by a time-dependent
field. Let us now see if we can deduce the more general version of
Faraday's law, (2.16), from (2.26).

Suppose we have a curve, C, which deforms in space with a prescribed
velocity u(x). (This could be, but need not be, a material curve.) Then, at
each point on the curve, (2.26) gives

- - V x ( u x B )
dt

We now integrate this over any surface S which spans C and invoke the
kinematic equation (2.25b). The result is

So far we have used only Faraday's law in differential form. We now
invoke the idea of the Lorentz force. This tells us that, in a frame of
reference moving with velocity u, the electric field is Er = E + u x B .
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Given that E transforms in this way, we may rewrite our integral equa-
tion as

~

Note that this applies to any curve C. For example, C may be fixed in
space, move with the fluid, or execute some motion quite different to that
of the fluid. It does not matter. The final step is to introduce the idea of
an e.m.f. We define the e.m.f. to be the closed integral of Er, from which

= -J[B • dS (2.27)

We have arrived at the integral version of Faraday's law. Note, however,
that to get from (2.26) to (2.27) we had to invoke the force law
F = q(u x B). Note also that if C and S happen to be material curves
and surfaces embedded in a fluid, then (2.27) becomes

e.m.f. = |Er.<fl = - 4 f B -dS (2.28)

Now it is intriguing that the integral version of Faraday's law describes
the e.m.f. generated in two very different situations, i.e. when E is
induced by a time-dependent magnetic field, and when Er is induced
(at least in part) by motion of the circuit within a magnetic field. The
two extremes are shown in Figure 2.3. If B is constant, and the e.m.f. is

(a)

Figure 2.3 An e.m.f. can be generated either by movement of the conducting
medium (motional e.m.f.) or else by variation of the magnetic field (transformer
e.m.f.).
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due solely to movement of the circuit, then §Er • d\ is called a motional
e.m.f. If the circuit is fixed and B is time-dependent, then §E • d\ is
termed a transformer e.m.f. In either case, however, the e.m.f. is equal
to (minus) the rate of change of flux. Now motional e.m.f. is due
essentially to the Lorentz force, qw x B, while transformer e.m.f. results
from the Maxwell equation V x E = — dB/dt, which is usually regarded
as a separate physical law. Yet both are described by the integral equa-
tion (2.27). Faraday's law is therefore an extraordinary result. It em-
bodies two quite different phenomena. It seems that it just so happens
that motional e.m.f. and transformer e.m.f. can both be described by
the same flux rule! (At a deeper level both Maxwell's equations and the
Lorentz force can, with some additional assumptions, be deduced from
Coulomb's law plus the Lorentz transformation of special relativity,
and so it is not just coincidence that Faraday's equation embraces
two apparently distinct physical laws. Nevertheless, from a classical
viewpoint, it represents a remarkably convenient equation.)

2.7.4 Faraday's law in ideal conductors: Alfven's theorem

From Ohm's law, J = aE r , and (2.28) we have

(2.29)

for any material surface, Sm. Now suppose that a -*• oo. Then

B • dS = 0 or -> oo (2.30)

We have arrived at a key result in MHD. That is to say, in a perfect
conductor, the flux through any material surface Sm is preserved as the
flow evolves. Now picture an individual flux tube sitting in a perfectly
conducting fluid. Such a tube is, by analogy to a stream-tube in fluid
mechanics, just an aggregate of magnetic field lines (Figure 2.4). Since
B is solenoidal (V • B = 0), the flux of B along the tube, O, is constant.
(This comes from applying Gauss's divergence theorem to a finite
portion of the tube.) Now consider a material curve Cm which at
some initial instant encircles the flux tube. The flux enclosed by Cm

will remain constant as the flow evolves, and this is true of each and
every curve enclosing the tube at t = 0. This suggests (but does not
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Figure 2.4 A magnetic flux tube.

prove) that the tube itself moves with the fluid, as if frozen into the
medium. This, in turn, suggests that every field line moves with the
fluid, since we could let the tube have a vanishingly small cross sec-
tion. We have arrived at Alfven's theorem (Figure 2.5), which states
that:

magnetic field lines are frozen into a perfectly conducting fluid
in the sense that they move with the fluid.

We shall give formal proof of Alfven's theorem in Chapter 4.

Figure 2.5 An example of Alfven's theorem. Flow through a magnetic field
causes the field lines to bow out.
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Suggested Reading

Feynman, Leighton & Sands, The Feynman lectures on physics, Vol. II, 1964
Addison-Wesley (Chapters 13-18 for an introduction to Maxwell's
equations).

P Lorrain & D Corson, Electromagnetism Principles and Applications, W H
Freeman & Co. (A good all-round text on electricity and magnetism.)

J A Shercliff, A Textbook of Magnetohydrodynamics, 1965. Pergamon Press
(Chapter 2 for the MHD simplifications of Maxwell's equations).

Examples

2.1 A conducting fluid flows in a uniform magnetic field which is negli-
gibly perturbed by the induced currents. Show that the condition for
there to be no net charge distribution in the fluid is that
B • (V x u) = 0.

2.2 A thin conducting disc of thickness h and diameter d is placed in a
uniform alternating magnetic field parallel to the axis of the disc.
What is the induced current density as a function of distance from
the axis of the disc?

2.3 Show that a coil carrying a steady current, /, tends to orientate itself
in a magnetic field in such a way that the total magnetic field linking
the coil is a maximum. Also, show that the torque exerted on the coil
is m x B, where m is the dipole momentum of the coil. What do you
think will happen to a small current loop in a highly conducting fluid
which is permeated by a large-scale magnetic field?

2.4 A fluid of small but finite conductivity flows through a tube con-
structed of insulating material. The velocity is very nearly uniform
and equal to u. To measure the velocity of the fluid, a part of the tube
is subjected to a uniform transverse magnetic field, B. Two small
electrodes which are in contact with the fluid are installed through
the tube walls. A voltmeter detects an induced e.m.f. of V. What is
the velocity of the fluid?

2.5 Show that it is impossible to construct a generator of electromotive
force constant in time operating on the principle of electromagnetic
induction.



The Governing Equations of Fluid Mechanics

In his 1964 lectures on physics, R P Feynman noted that:

The efforts of a child trying to dam a small stream flowing in
the street, and his surprise at the strange way the water works
its way out, has its analog in our attempts over the years to
understand the flow of fluids. We have tried to dam the water
by getting the laws and equations... but the water has broken
through the dam and escaped our attempt to understand it.

In this chapter we build the dam and write down the equations. Later,
particularly in Chapter 7 where we discuss turbulence, we shall see how
the dam bursts open.

Part 1: Fluid Flow in the Absence of Lorentz Forces

In the first seven sections of this chapter we leave aside MHD and focus
on fluid mechanics in the absence of the Lorentz force. We return to
MHD in Section 3.8. Readers who have studied fluid mechanics before
may be familiar with much of the material in Sections 3.1 to 3.7, and may
wish to proceed directly to Section 3.8. The first seven sections provide a
self-contained introduction to the subject, with particular emphasis on
vortex dynamics, which is so important in the study of MHD.

3.1 Elementary Concepts

3.1.1 Different categories of fluid flow

The beginner in fluid mechanics is often bewildered by the many diverse
categories of fluid flow which appear in the text books. There are entire
books dedicated to such subjects as potential flow, boundary layers,
turbulence, vortex dynamics and so on. Yet the relationship between
these different types of flow, and their relationship to 'real' flows, is
often unclear. You might ask, if I want to understand natural convection
in a room do I want a text on boundary layers, turbulence or vortex

47
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dynamics? The answer, probably, is all three. These subjects rarely exist
in isolation, but rather interact in some complex way. For example, a
turbulent wake is usually created when the turbulent fluid within one or
more thin boundary layers is ejected from the boundaries into the main
flow. The purpose of this section is to give some indication as to what
expressions such as boundary layers, turbulence and vorticity mean, how
these subjects interact, and when they are likely to be important in prac-
tice. The discussion is essentially qualitative, and anticipates some of the
results proved in the subsequent sections. So the reader will have to take
certain facts at face value. Nevertheless, the intention is to provide a
broad framework into which the many detailed calculations of the sub-
sequent sections fit.

We shall describe why, for good physical reasons, fluid mechanics and
fluid flows are often divided into different regimes. In particular, there are
three very broad sub-divisions in the subject. The first relates to the issue
of when a fluid may be treated as inviscid, and when the finite viscosity
possessed by all fluids (water, air, liquid metals) must be taken into
account. Here we shall see that, typically, viscosity and shear stresses
are of great importance close to solid surfaces (within so-called boundary
layers) but often less important at a large distance from a surface. Next
there is the sub-division between laminar (organised) flow and turbulent
(chaotic) flow. In general, low speed or very viscous flows are stable to
small perturbations and so remain laminar, while high speed or almost
inviscid flows are unstable to the slightest perturbation and rapidly
develop a chaotic component of motion. The final, rather broad, subdivi-
sion which occurs in fluid mechanics is between irrotational (sometimes
called potential) flow and rotational flow. (By irrotational flow we mean
flows in which V x u = 0.) Turbulent flows and boundary layers are
always rotational. Sometimes, however, under very particular conditions,
an external flow may be approximately irrotational, and indeed this kind
of flow dominated the early literature in aerodynamics. In reality,
though, such flows are extremely rare in nature, and the large space
given over to potential flow theory in traditional texts probably owes
more to the ease with which such flows are amenable to mathematical
description than to their usefulness in interpreting real events.

Let us now explore in a little more detail these three sub-divisions. We
need two elementary ideas as a starting point. We need to be able to
quantify shear stress and inertia in a fluid.

Let us start with inertia. Suppose, for the sake of argument, that we
have a steady flow. That is to say, the velocity field u, which we normally
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write as u(x,O, is a function of x but not of t. It follows that the speed of
the fluid at any one point in space is steady, the flow pattern does not
change with time, and the streamlines (the analogue of B-lines) represent
particle trajectories for individual fluid 'lumps'. Now consider a particu-
lar streamline, C, as shown in Figure 3.1, and focus attention on a parti-
cular fluid blob as it moves along the streamline. Let s be a curvilinear
coordinate measured along C, and V(s) be the speed |u|. Since the stream-
line represents a particle trajectory, we can apply the usual rules of
mechanics and write

dV. V2 .
(acceleration of lump) = V—-et —— enas R

where R is the radius of curvature of the streamline, and e?, en represent
unit vectors tangential and normal to the streamline. In general, then, the
acceleration of a typical fluid element is of order |u|2//, where / is a
characteristic length scale of the flow pattern.

Next we turn to shear stress in a fluid. In most fluids this is quantified
using an empirical law known as Newton's law of viscosity. This is most
simply understood in a one-dimensional flow, ux(y), as shown in
Figure 3.2. Here fluid layers slide over each other due to the fact that
ux is a function of y. One measure of this rate of sliding is the angular
distortion rate, dy/dt, of an initially rectangular element. (See Figure 3.2
for the definition of y.) Newton's law of viscosity says that a shear stress,
r, is required to cause the relative sliding of the fluid layers. Moreover it
states that r is directly proportional to dy/dt: x = ii{dy/dt). The coeffi-
cient of proportionality is termed the absolute viscosity. However, it is
clear from the diagram that dy/dt = du/dy, and so this expression is
usually rewritten as

Figure 3.1 Acceleration of a fluid element in a steady flow.
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\\\\\\\\\\\\\W

Figure 3.2 Distortion of a fluid element in a parallel flow.

dux
r = pv—-, v

°y

where v is called the kinematic viscosity. (The choice of kinematic visc-
osity rather than absolute viscosity is arbitrary, but has the benefit of
avoiding confusion between permeability and viscosity.)

In a more general two-dimensional flow, u(x, y) = (wx, uy, 0), it turns
out that y, and hence dy/dt, has two components, one arising from the
rotation of vertical material lines, as shown above, and one arising from
the rotation of horizontal material lines. A glance at Figure 3.9 will
confirm that the additional contribution to dy/dt is duy/dx. Thus, in
two dimensions, Newton's law of viscosity becomes

This generalises in an obvious way to three dimensions (see Chapter 3,
Section 1.2). Now shear stresses are important not just because they cause
fluid elements to distort, but because an imbalance in shear stress can give
rise to a net force on individual fluid elements. For example, in Figure 3.2
a net horizontal force will be exerted on the element if rxy at the top of the
element is different to xxy at the bottom of the element. In fact, in this
simple example it is readily confirmed that the net horizontal shear force
per unit volume isfx = drxy/dy = pvd2ux/dy2.

We are now in a position to estimate the relative sizes of inertial and
viscous forces in a three-dimensional flow. The viscous forces per unit
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volume are of the form of gradients in shear stress, such as dzxy/dy, and
have a size:/v ~ pv|u|//i, where /±is a characteristic length scale normal
to the streamlines. The inertial forces per unit volume, on the other hand,
are of the order of fin ~ p x (acceleration) ~ pu2/l where / is a typical
geometric length scale. The ratio of the two is of order

ul
RQ = —

v

This is the Reynolds number. When Re is small, viscous forces outweigh
inertial forces, and when Re is large viscous forces are relatively small.
Now we come to the key point. When Re is calculated using some char-
acteristic geometric length scale, it is almost always very large. This
reflects the fact that the viscosity of nearly all common fluids, including
liquid metal, is minute, of the order of 10~6 m2/s. Because of the large size
of Re, it is tempting to dispense with viscosity altogether. However, this is
extremely dangerous. For example, inviscid theory predicts that a sphere
sitting in a uniform cross-flow experiences no drag (d'Alembert's para-
dox) and this is clearly not the case, even for 'thin' fluids like air.

Something seems to have gone wrong. The problem is that, no matter
how small v might be, there are always regions near surfaces where the
shear stresses are significant, i.e. of the order of the inertial forces. These
boundary layers give rise to the drag on, say, an aerofoil. Consider the
flow over an aerofoil shown in Figure 3.3. Here we use a frame of refer-
ence moving with the foil. The value of Re for such a flow, based on the
width of the aerofoil, will be very large, perhaps around 108.
Consequently, away from the surface of the aerofoil, the fluid behaves
as if it is inviscid. Close to the aerofoil, however, something else happens,
and this is a direct result of a boundary condition called the no-slip
condition. The no-slip condition says that all fluids are 'sticky', in the
sense that there can be no relative motion between a fluid and a surface

Potential flow Boundary layer

Figure 3.3 Boundary layer on an aerofoil.
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with which it comes into contact. The fluid 'sticks' to the surface. In the
case of the aerofoil, this means that there must be some transition region
near the surface where the fluid velocity drops down from its free-stream
value (the value it would have if the fluid were inviscid) to zero on the
surface. This is the boundary layer. Boundary layers are usually very thin.
We can estimate their thickness as follows. Within the boundary layer
there must be some force acting on the fluid which pulls the velocity down
from the free-stream value to zero at the surface. The force which does
this is the viscous force, and so within the boundary layer the inertial and
viscous forces must be of similar order. Let 8 be the boundary layer
thickness and / be the span of the aerofoil. The inertial forces are of
order pu / / and the viscous forces are of order pvu/8 . Equating the
two gives

8/1 ~ (ul/v)-l/2 « 1

Thus we see that, no matter how small we make v, there is always some
(thin) boundary layer in which shear stresses are important. This is why
an aerofoil experiences drag even when v is very small.

We have reached the first of our three general sub-divisions in fluid
mechanics. That is to say, often (but not always) a high-Re flow may be
divided into an external, inviscid flow plus one or more boundary layers.
Viscous effects are then confined to the boundary layer. This idea was
introduced by Prandtl in 1904 and works well for external flow over
bodies, particularly streamlined bodies, but can lead to problems in con-
fined flows. (It is true that boundary layers form at the boundaries in
confined flows, and that shear stresses are usually large within the bound-
ary layers and weak outside the boundary layers. However, the small but
finite shear in the bulk of a confined fluid can, over long periods of time,
have a profound influence on the overall flow pattern (see Chapter 3,
Section 5.))

Boundary layers have another important characteristic, called separa-
tion. Suppose that, instead of an aerofoil, we consider flow over a sphere.
If the fluid were inviscid (which no real fluid is!) we would get a sym-
metric flow pattern as shown in Figure 3.4(a). The pressure at the stagna-
tion points A and C in front of and behind the sphere would be equal (by
symmetry), and from Bernoulli's equation the pressure at these points
would be high, PA = P^ + \pV%o, with P^ and V^ being the upstream
pressure and velocity, respectively. The real flow looks something like
that shown in Figure 3.4(b). A boundary layer forms at the leading
stagnation point and this remains thin as the fluid moves to the edges
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of the sphere. However, towards the rear of the sphere something unex-
pected happens. The boundary layer separates. That is to say, the fluid in
the boundary layer is ejected into the external flow and a turbulent wake
forms. This separation is caused by pressure forces. Outside the boundary
layer the fluid, which tries to follow the inviscid flow pattern, starts to
slow down as it passes over the outer edges of the sphere (points B and D)
and heads towards the rear stagnation point. This deceleration is caused
by pressure forces which oppose the external flow. These same pressure
forces are experienced by the fluid within the boundary layer and so this
fluid also begins to decelerate (Figure 3.4(c)). However, the fluid in the
boundary layer has less momentum than the corresponding external flow
and very quickly it comes to a halt, reverses direction, and moves off into
the external flow, thus forming a wake. Thus we see that the flow over a
body at high Re can generally be divided into three regions: an inviscid
external flow, boundary layers, and a turbulent wake.

Now the fact that Re is invariably large has a second important con-
sequence: most flows in nature are turbulent. This leads to a second
classification in fluid mechanics. It is an empirical observation that at
low values of Re flows are laminar, while at high values of Re they are
turbulent (chaotic). This was first demonstrated in 1883 by Reynolds,
who studied flow in a pipe. In the case of a pipe the transition from
laminar to turbulent flow is rather sudden, and occurs at around
Re ^2000, which usually constitutes a rather slow flow rate.

A turbulent flow is characterised by the fact that, superimposed on the
mean (time-averaged) flow pattern, there is a random, chaotic motion.
The velocity field is often decomposed into its time-averaged component
and random fluctuations about that mean: u = u + u/. The transition
from laminar to turbulent flow occurs because, at a certain value of
Re, instabilities develop in the laminar flow, usually driven by the inertial

Boundary layer separates

Boundary layer Turbulent wake p low P high

External flow
decelerates

Fluid in boundary layer
comes to a halt

Figure 3.4 Flow over a sphere: (a) inviscid flow; (b) real flow at high Re; (c)
pressure forces which cause separation.
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forces. At low values of Re these potential instabilities are damped out by
viscosity, while at high values of Re the damping is inadequate.

There is a superficial analogy between turbulence and the kinetic
theory of gases. The steady laminar flow of a gas has, at the macro-
scopic level, only a steady component of motion. However, at the
molecular level, individual atoms not only possess the mean velocity
of the flow, but also some random component of velocity which is
related to their thermal energy. It is this random fluctuation in velocity
which gives rise to the exchange of momentum between molecules and
thus to the macroscopic property of viscosity. There is an analogy
between individual atoms in a laminar flow and macroscopic blobs
of fluid in a turbulent flow. Indeed, this (rather imperfect) analogy
formed the basis of most early attempts to characterise turbulent
flow. In particular, it was proposed that one should replace v in
Newton's law of viscosity, which for a gas arises from thermal agita-
tion of the molecules, by an 'eddy viscosity' vt, which arises from
macroscopic fluctuations.

The transition from laminar to turbulent flow is rarely clear cut. For
example, often some parts of a flow field are laminar while, at the same
time, other parts are turbulent. The simplest example of this is the bound-
ary layer on a flat plate (Figure 3.5). If the front of the plate is stream-
lined, and the turbulence level in the external flow is low, the boundary
layer usually starts off as laminar. Of course, eventually it becomes
unstable and turns turbulent.

Often periodic (non-turbulent) fluctuations in the laminar flow precede
the onset of turbulence. This is illustrated in Figure 3.6, which shows flow
over a cylinder at different values of Re. At low values of Re we get a

t t

Figure 3.5 Development of a boundary layer on a flat plate.
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Re«1

Re~ 100

Re~104

Re- 106

Figure 3.6 Flow behind a cylinder at various values of Re.

symmetric flow pattern. This is called creeping flow. As Re rises above
unity, steady vortices appear at the rear of the cylinder. By the time Re
has reached ^ 100 these vortices start to peel off from the rear of the
cylinder in a regular, periodic manner (at this point the flow is still
laminar). This is called Karman's vortex street. At yet higher values of
Re the shed vortices become turbulent, but we still have a discernible
vortex street. Finally, at a value of Re ~ 105, the flow at the rear of the
cylinder loses its periodic structure and becomes a turbulent wake. Notice
that upstream of the cylinder fluid blobs possess linear momentum but no
angular momentum. In the Karman street, however, certain fluid ele-
ments (those in the vortices) possess both linear and angular momentum.
Moreover, the angular momentum seems to have come from the bound-
ary layer on the cylinder. This leads us to our third and final sub-division
in fluid mechanics. In some flows (potential flows) the fluid elements
possess only linear momentum. In others (vortical flows) they possess
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both angular and linear momentum. In order to pursue this idea a little
further we need some measure of the rotation of individual fluid elements.
This is called vorticity.

So far we have discussed flow fields in terms of the velocity field u.
However, there is a closely related quantity, the vorticity, which is defined
as o) = V x u. From Stokes' theorem we have, for a small disc-like ele-
ment of fluid (with surface area dS),

o - dS = (pu • d\

c

We might anticipate, therefore, that o is a measure of the angular velo-
city of a fluid element, and this turns out to be true. In fact, the angular
velocity, O, of a fluid blob which is passing through point x0 at time t0 is
just G)(x0, *o)/2. Thus, while u is related to the linear momentum of fluid
elements, co is related to the angular momentum of blobs of fluid. Now co
is a useful quantity because it turns out that, partially as a result of
conservation of angular momentum, it cannot be created or destroyed
within the interior of a fluid. (At least that is the case in the absence of
external forces such as buoyancy or the Lorentz force.)

That is not to say that the vorticity of a fluid particle is constant.
Consider the vortices within a Karman vortex street. It turns out that,
as they are swept downstream, they grow in size in much the same way
that a packet of hot fluid spreads heat by diffusion. Like heat, vorticity
can diffuse. In particular, it diffuses between adjacent fluid particles as
they sweep through the flow field. However, as with heat, this diffusion
does not change the global amount of vorticity (heat) present in an iso-
lated patch of fluid. Thus, as the vortices in the Karman street spread, the
intensity of co in each vortex falls, and it falls in such a way that \codA is
conserved for each vortex.

There is a second way in which the vorticity in a given lump of fluid can
change. Consider the ice-skater who spins faster by pulling his or her arms
inward. What is true for ice-skaters is true for blobs of fluid. If a spinning
fluid blob is stretched by the flow, say from a sphere to cigar shape, it will
spin faster, and the corresponding component of co increases.

In summary, then, vorticity cannot be created within the interior of a
fluid unless there are body forces present, but like heat it spreads by
diffusion and can be intensified by the stretching of fluid elements. The
way in which we quantify the diffusion and intensification of vorticity will
be discussed in the next section. However, for the moment, the important
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point to grasp is that, like heat, vorticity cannot be created in the interior
of a fluid.

So where does the vorticity evident in Figure 3.6 come from? Here the
analogy to heat is useful. We shall see that, in the absence of stretching of
fluid elements, the governing equation for co is identical to that for heat.
It is transported by the mean flow (we say it is advected) and diffuses
outward from regions of intense vorticity. Also, just like heat, it is the
boundaries which act as sources of vorticity. In fact, boundary layers are
filled with the vorticity which has diffused out from the adjacent surface.
(In a pseudo-one-dimensional boundary layer, with velocity ux(y), the
vorticity is \coz\ = dux/dy ~ u/8.) This gives us a new way of thinking
about boundary layers: they are diffusion layers for the vorticity gener-
ated on a surface. Again there is an analogy to heat. Thermal boundary
layers are diffusion layers for the heat which seeps into the fluid from a
surface. In both cases the thickness of the boundary layer is fixed by the
ratio of: (i) the rate at which heat or vorticity diffuses across the stream-
lines from the surface, and (ii) the rate at which heat or vorticity is swept
downstream by the mean flow. Usually when Re is large, the cross-stream
diffusion is slow by comparison with the stream-wise transport of vorti-
city, and this is why boundary layers are so thin.

We are now in a position to introduce our third and final classification
in fluid mechanics. This is the distinction between potential (vorticity
free) flows and vortical flows. Consider Figure 3.7(a). This represents
classical aerodynamics. There is a boundary layer, which is filled with
vorticity, and an external flow. The flow upstream of the aerofoil is (in
classical aerodynamics) assumed to be irrotational (free of vorticity), and
since the vorticity generated on the surface of the foil is confined to the
boundary layer, the entire external flow is irrotational. (This kind of
external flow is called a potential flow.)

The problem of computing the external motion is now reduced to
solving two kinematic equations: V • u = 0 (conservation of mass) and
V x u = 0. In effect, aerodynamics becomes aerokinematics. However,
potential flows (irrotational flows) are extremely rare in nature. In fact,
flow over streamlined bodies (plus certain types of water waves) repre-
sent the only common examples. Almost all real flows are laden with
vorticity: vorticity which has been generated somewhere in a boundary
layer and then released into the bulk flow (see Figures 3.6 and 3.7(b)).
The rustling of leaves, the blood in our veins, the air in our lungs, the
wind blowing down the street, natural convection in a room, and the
flows in the oceans and atmosphere are all examples of flows laden with
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Potential flow |—Hu(y) Boundary layer

Figure 3.7 (a) Classical aerodynamics (potential flow).

(a) The turbulent wake is
full of vorticity

(b) In a turbine the vorticity (c) In confined flows the
created by one blade spills vorticity created at the

out into the next blade boundaries slowly
seeps into the entire

flow, eventually
dominating the flow

Figure 3.7 (b) Most real flows are laden with vorticity.

vorticity. So we have two types of flow: potential flows, which are easy
to compute but infrequent in nature, and vortical flows, which are very
common but much more difficult to understand. The art of quantifying
this second category of flow is to track the progress of the vorticity
from the boundaries into the bulk of the fluid. Often this arises from
wakes or from boundary-layer separation. Sometimes, as in the case of
confined flows, it is due to a slow but finite diffusion of vorticity from
the boundary into the interior of the flow. In either case, it is the
boundaries which generate the vorticity.

To these two classes of flow, potential flow and unforced vortical flow,
we should add a third: that of MHD. Here the Lorentz force generates
vorticity in the interior of the fluid. On the one hand this makes MHD
more difficult to understand, but on the other it makes it more attractive.
In MHD we have the opportunity to grab hold of the interior of a fluid
and manipulate the flow.

With this brief, qualitative overview of fluid mechanics we now set
about quantifying the motion of a fluid. Our starting point is the equa-
tion of motion of a fluid blob.
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3.1.2 The Navier-Stokes equation

The Navier-Stokes equation is a statement about the changes in linear
momentum of a small element of fluid as it progresses through a flow
field. Let/? be the pressure, tg the viscous stresses acting on the fluid, and
v the kinematic viscosity. Then Newton's second law applied to a small
blob of fluid of volume 8V yields1

Du
Dt

= -(Vp)8V (3.1)

That is to say, the mass of the element, p8V, times its acceleration, Du/Dt,
equals the net pressure force acting on the surface of the fluid blob,

l(-p)dS = f(-Vp)dV = -(Vp)8V
j J

plus the net force arising from the viscous stress, r#. The last term in (3.1)
may be established by considering the forces acting on a small rectangu-
lar element dxdydz, as indicated in Figure 3.8.

We shall take the fluid to be incompressible so that the conservation of
mass, expressed as V • (pu) = —dp/dt, reduces to the so-called continuity
equation

V • u = 0 (3.2)

We also take the fluid to be Newtonian, so that the viscous stresses are
given by the constitutive law

1

f z = ^xz
dX

(jXyy

(a) Sign convention for stresses (b) Net effective body force, per unit volume,
(note that xy = Xjj) caused by an inbalance in stresses.

Only components in th xz plane are shown

Figure 3.8 Stresses acting on a cube of fluid.

1 Those unfamiliar with tensor notation will find a brief summary in Section 7.1.
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( 3 - 3 )

where v is the kinematic viscosity of the fluid. Substituting for r# in (3.1)
and dividing through by p8V yields the conventional form of the Navier-
Stokes equation

(3.4)

The boundary condition on u corresponding to (3.4) is that u = 0 on any
stationary, solid surface, i.e. the fluid 'sticks' to any solid surface. This is
the 'no-slip' condition.

The expression D()/Dt represents the convective derivative. It is the
rate of change of a quantity associated with a given element of fluid. This
should not be confused with d(-)/dt, which is, of course, the rate of change
of a quantity at a fixed point in space. For example, DT/Dt is the rate of
change of temperature of a fluid lump as it moves around, whereas dT/dt
is the rate of change of temperature at a fixed point (through which a
succession of fluid particles will move). It follows that Du/Dt is the accel-
eration of a fluid element, which is why it appears on the left of (3.4).

An expression for Du/Dt may be obtained as follows. Consider a scalar
function of position and time,/(x,0. We have 8f = (df/dt)8t + (df/dx)8x
+ . . . If we are interested in the change in/following a fluid particle, then
8x = ux8t etc. and so

The same expression may be applied to each of the components of the
vector field, say a. We write this symbolically as

^ ( a ) = | ( a ) + (u.V)(a)
Vt ot

which represents three scalar equations, each of the form given above.
We now set a = u, which allows us to rewrite (3.4) in the form

| J + (u • V)u = -V(/?/p) + vV2u (3.5)
ot

Note that, in steady flows (i.e. flows in which du/dt = 0), the streamlines
represent particle trajectories and the acceleration of a fluid element is
u • Vu. The physical origin of this expression becomes clearer when we
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rewrite (u • V)u in terms of curvilinear coordinates attached to a stream-
line. As noted earlier,

dV V2

( u - V ) u = K — e , - — ew (3.6)

(see Chapter 3, Section 1.1). Here V = |u|, et and en are unit vectors in the
tangential and principle normal directions, s is a streamwise coordinate,
and R is the local radius of curvature of the streamline. The first expres-
sion on the right is the rate of change of speed, ̂ , while the second is the
centripetal acceleration, which is directed toward the centre of curvature
of the streamline and is associated with the change in direction of the
velocity of a particle.

3.2 Vorticity, Angular Momentum and the Biot-Savart Law

So far we have concentrated on the velocity field, u. However, in common
with many other branches of fluid mechanics, in MHD it is often more
fruitful to work with the vorticity field defined by

a) = V x u (3.7)

The reason is two-fold. First, the rules governing the evolution of w are
somewhat simpler than those governing u. For example, pressure gradi-
ents appear as a source of linear momentum in (3.5), yet the pressure
itself depends on the instantaneous (global) distribution of u. By focusing
on vorticity, on the other hand, we may dispense with the pressure field
entirely. (The reasons for this will become evident shortly.) The second
reason for studying vorticity is that many flows are characterised by
localised regions of intense rotation (i.e. vorticity). Smoke rings, dust
whirls in the street, trailing vortices on aircraft wings, whirlpools, tidal
vortices, tornadoes, hurricanes and the great red spot of Jupiter represent
just a few examples!

Let us start by trying to endow a) with some physical meaning.
Consider a small element of fluid in a two-dimensional flow
u(x, y) = (ux, uy, 0), a) = (0, 0, o)z). Suppose that, at some instant, the ele-
ment is circular (a disk) with radius r. Let u0 be the linear velocity of the
centre of the element and £1 be its mean angular velocity, defined as the
average rate of rotation of two mutually perpendicular material lines
embedded in the element. From Stoke's theorem, or else from the defini-
tion of the curl as a line integral per unit area, we have
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coznr2 = (V x u) • dS = cbu • d\ (3.8)

We might anticipate that the line integral on the right has a value of
(Slr)2nr. If this were the case, then

CO7 = (3.9)

In fact exact analysis confirms that this is so: the anti-clockwise rotation
rate of a short line element, dx, orientated parallel to the x-axis is duy/dx,
while the rotation rate of a line element, dy, parallel to the y-axis is
-Bux/dy9 giving Q = (duy/dx - dux/dy)/2 = coz/2 (Figure 3.9). This con-
firms equation (3.9). It appears, therefore, that coz is twice the angular
velocity of the fluid element. This result extends to three dimensions. The
vorticity at a particular location is twice the average angular velocity of a
blob of fluid passing through that point. In short, co is a measure of the
local rotation, or spin, of a fluid element.

It should be emphasised, however, that CD has nothing at all to do with
the global rotation of a fluid. Rectilinear flows may possess vorticity,
while flows with circular streamlines need not. Consider, for example,
the rectilinear shear flow u(y) = (yy, 0, 0), y = constant. The streamlines
are straight and parallel yet the fluid elements rotate at a rate
co/2 = —y/2. This is because vertical line elements, dy, move faster at
the top of the element than at the bottom, so they continually rotate
towards the horizontal.

Figure 3.9 Rotation of a fluid element.
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Conversely, we can have global rotation of a flow without local rota-
tion of the fluid elements. One example is the so-called free vortex u(r) =
(0, k/r, 0) in (r, 0, z) coordinates. Here k is a constant. It is readily con-
firmed that co = 0 in such a vortex.

So far we have been concerned only with kinematics. We now intro-
duce some dynamics. Since we are interested in rotation, it is natural to
focus on angular momentum rather than linear momentum. Consider the
angular momentum, H, of a small material element that is instantaneously
spherical. Then

where / i s the moment of inertia of the blob. This angular momentum will
change at a rate determined by the tangential surface stresses alone. The
pressure has no influence on H at the instant at which the element is
spherical since the pressure forces all point radially inward. Therefore,
at one particular instant in time, we have

= vT
Dt

where vT denotes the viscous torque acting on the sphere. Now the con-
vective derivative satisfies the usual rules of differentiation and so we
have

I157 = - 0 > ^ + 2vT (310)

Evidently, the terms on the right arise from the change in the moment of
inertia of a fluid element and the viscous torque, respectively. In cases
where viscous stresses are negligible (i.e. outside boundary layers) this
simplifies to

§-t(Ia>) = 0 (3.11)

Now (3.10) and (3.11) are not very useful (or even very meaningful) as
they stand, since they apply only at the initial instant during which the
fluid element is spherical. However, they suggest several results, all of
which we shall confirm by rigorous arguments in the next section. First,
there is no reference to pressure in (3.10) and (3.11), so that we might
anticipate that co evolves independently of p. Second, if co is initially zero,
and the flow is inviscid, then co should remain zero in each fluid particle
as it is swept around the flow field. This is the basis of potential flow
theory in which we set co = 0 in the upstream fluid, and so we can assume
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Blob of vorticity

Converging potential flow

Figure 3.10 Stretching of fluid elements can intensify the vorticity.

that co is zero at all points. Third, if / decreases in a fluid element (and
v = 0), then the vorticity of that element should increase. For example,
consider a blob of vorticity embedded in an otherwise potential flow field
consisting of converging streamlines, as shown in Figure 3.10.

An initially spherical element will be stretched into an ellipsoid by the
converging flow. The moment of inertia of the element about an axis
parallel to co decreases, and consequently co must rise to conserve H. It
is possible, therefore, to intensify vorticity by stretching fluid blobs.
Intense rotation can result from this process, the familiar bath-tub vortex
being just one example. We shall see that something very similar happens
to magnetic fields. They, too, can be intensified by stretching.

Finally we note that there is an analogy between the differential form
of Ampere's law, V x B = /xJ, and the definition of vorticity, V x u = co.
We can therefore hijack the Biot-Savart law from electromagnetic theory
to invert the relationship co = V x u. That is to say, in infinite domains,

x', r = x-x' (3.12)

Also, note that, like u and B, the vorticity field is solenoidal, V • co = 0,
since it is the curl of another vector. Consequently, we may invoke the
idea of vortex tubes, which are analogous to magnetic flux tubes or
streamtubes.

3.3 Advection and Diffusion of Vorticity

3.3.1 The vorticity equation

We now formally derive the laws governing the evolution of vorticity. We
start by writing (3.5) in the form
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ot
- V(P/p + u2/2) + vV2u

65

(3.13)

which follows from the identity

V(w2/2) = (u V)u 4- u x V x u = (u V)u + u x o

Note, in passing, that steady, inviscid flows have the property that
u • V(P/p + u2/2) = 0, so that C = P/p + u2/2 is constant along a
streamline. This is Bernoulli's theorem, C being Bernoulli's function.

We now take the curl of (3.13), noting that the gradient term
disappears:

— = V x [u x a)] + vV2c?)
ot

(3.14)

Compare this with (2.24). It appears that o and B obey precisely the same
evolution equation! We shall exploit this analogy repeatedly in subse-
quent chapters. Now since u and a> are both solenoidal, we have the
vector relationship

V x (u x (o) = (a) • V)u — (u

and so (3.14) may be rewritten as

(3.15)

Compare this with our angular momentum equation for a blob which is
instantaneously spherical:

Day Dl
I

We might anticipate that the terms on the right of (3.15) represent: (a) the
change in the moment of inertia of a fluid element due to stretching of
that element; (b) the viscous torque on the element. In other words, the
rate of rotation of a fluid blob may increase or decrease due to changes in
its moment of inertia, or change because it is spun up or slowed down by
viscous stresses.
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3.3.2 Advection and diffusion ofvorticity: temperature as a prototype

There is another way of looking at (3.15). It may be interpreted as an
advection-diffusion equation for vorticity. The idea of an advection-diffu-
sion equation is so fundamental to MHD that it is worth dwelling on its
significance. Perhaps this is most readily understood in the context of
two-dimensional flows, in which u(x, y) = (ux, uy, 0) and
o)(x, y) = (0, 0, coz). The first term on the right of (3.15) now vanishes
to yield

^ V 2 O ) z (3.16)yVO)z

Compare this with the equation governing the temperature, T, in a fluid,

DT 9

— = aV2T (3.17)

where a is the thermal diffusivity. This is the advection-diffusion equa-
tion for heat. In some ways (3.17) represents the prototype advection-
diffusion equation and we shall take a moment to review its properties.
When u is zero, we have, in effect, a solid: the temperature field evolves
according to

dt

Heat soaks through material purely by virtue of thermal diffusion (con-
duction). At the other extreme, if u is non-zero but the fluid is thermally
insulating (a — 0), we have

Dt

As each fluid lump moves around it conserves its heat, and hence tem-
perature. This is referred to as the advection of heat, i.e. the transport of
heat by virtue of material movement. In general, though, we have both
advection and diffusion of heat. To illustrate the combined effect of these
processes, consider the unsteady, two-dimensional distribution of tem-
perature in a uniform cross flow, (ux, 0, 0). From (3.17) we have

dT dT _ 2

Suppose that heat is injected into the fluid from a hot wire. When the
velocity is low and the conductivity high the isotherms around the wire
will be almost circular. When the conductivity is low, however, each fluid
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element will tend to conserve its heat as it moves. The isotherms will then
become elongated, as shown in Figure 3.11.

The relative size of the advection to the diffusion term is given by the
Peclet number P = ul/a. (Here / is a characteristic length scale.) If the
Peclet number is small, then the transfer of heat is diffusion-dominated.
When it is large, advection dominates.

Now consider the case of a wire which is being pulsed with electric
current to produce a sequence of hot fluid packets. These are swept
downstream and grow by diffusion. In Figure 3.12, heat is restricted to
the dotted volumes of fluid. Outside these volumes T = 0 (or equal to
some reference temperature). Note that advection and diffusion represent
processes in which heat is redistributed. However, heat cannot be created
or destroyed by advection or diffusion. That is, the total amount of heat
is conserved. This is most easily seen by integrating (3.17) over a fixed
volume in space and then using Gauss's theorem:

— TdV + <b(uT)- dS = a<bVT' dS
at) J J

Now heat per unit mass is directly proportional to T, and so this states
that the net rate of change of heat within a fixed volume decreases if heat
is advected across the bounding surface but increases if heat is conducted
(diffuses) into the volume from the surrounding fluid. We now apply this
equation to a volume which encloses one of the dotted volumes shown in
Figure 3.12 (where T is zero at the boundary). We obtain

dt)
TdV =

Heat is conserved within each of the dotted volumes as it is swept down-
stream.

From (3.16) we see that the vorticity in a two-dimensional flow is
advected and diffused just like heat. The analogue of the diffusion coeffi-
cient is v and the Reynolds number, ul/v, now plays the role of the Peclet

Isotherms

Low a

* Isotherms

Figure 3.11 Advection and diffusion of heat from a hot wire.
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Low a

High a

Figure 3.12 Advection and diffusion of heat from a pulsed wire.

number. In other words, vorticity is advected by u and diffused by the
viscous stresses. Moreover, just like heat, vorticity cannot be created or
destroyed within the interior of the flow. The net vorticity within a
volume V can change only if vorticity is advected in or out of the volume,
or else diffused across the boundary. In the absence of surface effects,
global vorticity is conserved. A simple example of this (analogous to the
blobs of heat above) are the vortices in the Karman vortex street behind a
cylinder (Figure 3.13). The vortices are advected by the velocity and
spread by diffusion, but the total vorticity within each eddy remains
constant as it moves downstream.

A simple illustration of the diffusion of vorticity is given by the follow-
ing example (Figure 3.14). Suppose that a plate of infinite length is
immersed in a still fluid. At time t = 0 it suddenly acquires a constant
velocity V in its own plane. We want to find the subsequent motion,
u(y,t). Now, by the no-slip condition, the fluid adjacent to the plate sticks
to it, and so moving the plate creates a gradient in velocity, which gives
rise to vorticity. The plate becomes a source of vorticity, which subse-
quently diffuses into the fluid. Since ux is not a function of x, the con-
tinuity equation gives duy/dy = 0, and since uy is zero at the plate, uy — 0
everywhere. The vorticity equation (3.16) then becomes

deoz
- = v- (Jt)7 = — -

dy2 ' ~ z dy

This is identical to the equation describing the diffusion of heat from an
infinite, heated plate whose surface temperature is suddenly raised from

Figure 3.13 Karman vortices behind a cylinder.
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Figure 3.14 Diffusion of vorticity from a plate.

T = 0 to T = To. This sort of diffusion equation can be solved by looking
for a similarity solution. To illustrate this, consider first the analogous
thermal problem.

We know that heat diffuses a distance (2at)l/2 away from the plate in a
time t, and that the temperature distribution has the form

T=TQf(y/l), l = (2at)l/2

The quantity / is called the diffusion length. The equation above states
that the dimensionless temperature profile, T/To, depends only on the
dimensionless coordinate y/l. When y is scaled by / in this way, the
temperature distribution appears always to have a universal form.

The analogy to heat suggests that we look for a solution of our vorti-
city equation of the form

o> = jf(y/D, / = (2vr)1/2

Substituting this into (3.18) reduces our partial differential equation to

fin) + nfiri) = o, n = y/i

This may be integrated to give

O)7 = •

To fix the constant of integration, C1? we need to integrate to find ux on
the surface of t
distribution is
the surface of the plate. From this we find C\ = 2/n, and so the vorticity

This may now be integrated once more to give the velocity field.
However, the details of this solution are perhaps less important than
the overall picture. That is, vorticity is created at the surface of the
plate by the shear stresses acting on that surface. This vorticity then
diffuses into the interior of the fluid in exactly the same way as heat
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diffuses in from a heated surface. There is no vorticity generation within
the interior of the flow. The vorticity is merely redistributed (spread) by
virtue of diffusion.

3.3.3 Vortex line stretching

Let us now return to our general vorticity equation (3.15)

— - = (O) - V)U + VV2G)

In three-dimensional flows the first term on the right is non-zero, and it is
this additional effect which distinguishes three-dimensional flows from
two-dimensional ones. It appears that the vorticity no longer behaves like
a temperature field. We have already suggested, by comparing this with
our angular momentum equation, that (w • V)u represents intensification
of vorticity by the stretching fluid elements. We shall now confirm that
this is indeed the case.

Consider, by way of example, an axisymmetric flow consisting of con-
verging streamlines (in the r-z plane) as well as a swirling component of
velocity, ue. By writing V x u in terms of cylindrical coordinates, we find
that, near the axis, the axial component of vorticity is

a>z=r
r or

Now consider the axial component of the vorticity equation (3.15)
applied near r = 0. In addition to the usual advection and diffusion
terms we have the expression

duz
(o - V)u ~ coz ——

oz

This appears on the right of (3.15) and so acts like a source of axial
vorticity. In particular, the vorticity, oz, intensifies if duz/dz is positive,
i.e. the streamlines converge. This is because fluid elements are stretched
and elongated on the axis, as shown in Figure 3.15. This leads to a
reduction in the axial moment of inertia of the element and so, by con-
servation of angular momentum, to an increase in coz.

More generally, consider a thin tube of vorticity, as shown in Figure
3.16. Let u/i be the component of velocity parallel to the vortex tube and
s be a coordinate measured along the tube. Then
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r
Figure 3.15 Stretching of a material element.

Now the vortex line is being stretched if the velocity u// at point B is
greater than u// at A. That is, the length of the material element AB
increases if dujj/ds > 0. Thus the term (w • V)u represents stretching of
the vortex lines. This leads to an intensification of vorticity through
conservation of angular momentum, confirming our interpretation of
(a). V)uin(3.15).

3.4 Kelvin's Theorem, Helmholtz's Laws and Helicity

We now do something dangerous. We set aside viscosity so that we can
discuss the great advances made in inviscid fluid mechanics by the nine-
teenth century physicists and mathematicians. This is dangerous because,
as we shall see, a fluid with no viscosity behaves very differently to a fluid
with a small but finite viscosity. To emphasise this, John von Neumann
refers to inviscid fluid mechanics as the study of dry water]

3.4.1 Kelvin's Theorem and Helmholtz's Laws

We now summarise the classical theorems of inviscid vortex dynamics.
We start with the idea of a vortex tube. This is an aggregate of vortex
lines, rather like a magnetic flux tube is composed of magnetic field lines.
Since V • co = 0 we have

r
a • dS = 0

Vortex tube

Figure 3.16 Stretching of a tube of vorticity.
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It follows that the flux of vorticity, 0 = J o • dS, is constant along the
length of a vortex tube since no flux crosses the side of the tube. A closely
related quantity is the circulation, F. This is defined as the closed line
integral of u:

F = lud\ (3.19)

If the path C is taken as lying on the surface of a vortex tube, and passing
once around it (Figure 3.17), Stoke's theorem tells us that F = 4>. F is
sometimes called the strength of the vortex tube.

Kelvin's (1869) theorem is couched in terms of circulation. It says that,
if Cm(t) is a closed curve that always consists of the same fluid particles (a
material curve), then the circulation

r = d) \x d\
J

cm{t)

is independent of time. Note that this theorem does not hold true if C is
fixed in space; Cm must be a material curve moving with the fluid. Nor
does it apply if the fluid is subject to a rotational body force, F, such as
J x B, or for that matter if viscous forces are significant at any point on

The proof of Kelvin's theorem follows directly from the kinematic
equation (2.25).

f G • dS = I 1"^ - V x (u x G) j

If we take G = <o, invoke the vorticity equation (3.14), and use Stokes'
theorem, we have

O

Figure 3.17 A vortex tube.
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dT
~dt

I 1 f> P>

= — \codS = v \ V2o> • dS = 0

and Kelvin's theorem is proved.
Helmholtz's laws are closely related to Kelvin's theorem. They were

published in 1858 and, like Kelvin's theorem, apply only to inviscid flows.
They state that:

(i) the fluid elements that lie on a vortex line at some initial instant
continue to lie on that vortex line for all time, i.e. the vortex lines
are frozen into the fluid;

(ii) the flux of vorticity

- I co- dS

is the same at all cross sections of a vortex tube and is independent of
time.

Consider Helmholtz's first law. In two-dimensional flows it is a trivial
consequence of Dcoz/Dt = 0. In three-dimensions, for which

^ («>-V)u (3.20)

more work is required. First we need the following result. Let dl be a
short line drawn in the fluid at some instant, and suppose dl subsequently
moves with the fluid. Then the rate of change of dl is u(x + dl) — u(x), and
so

where x and x + dl are the position vectors at the two ends of dl. It
follows that

^ ( d l ) = (rfl-V)u (3.21)

Compare this with (3.20). Evidently, co and dl obey the same equation.
Now suppose that at t = 0 we have co = kdl then from (3.20) and (3.21)
we have DX/Dt = 0 at t = 0 and so co = Xdl for all subsequent times.
That is to say, co and dl evolve in identical ways under the influence of
u and so the vortex lines are frozen into the fluid.

Helmholtz's second law is now a trivial consequence of Kelvin's theo-
rem and of V • co = 0. The fact that the vorticity flux, O, is constant along
a flux tube follows from the solenoidal nature of co, and the temporal
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Tube 2

Tube 1

t = U t = to

Figure 3.18 Interlinked vortex tubes preserve their topology as they are swept
around.

invariance of <P comes from the fact that a flux tube moves with the fluid
and so, from Kelvin's theorem, F = O = constant. (Here the curve C for
F lies on the surface of the flux tube.)

Helmholtz's first law, which states that vortex tubes are frozen into an
inviscid fluid, has profound consequences for inviscid vortex dynamics.
For example, if there exist two interlinked vortex tubes, as shown in
Figure 3.18, then as those tubes are swept around they remain linked
in the same manner, and the strength of each tube remains constant. Thus
the tubes appear to be indestructible and their relative topology is pre-
served forever. This state of permanence so impressed Kelvin that, in
1867, he developed an atomic theory of matter based on vortices. This
rather bizarre theory of the vortex atom has not stood the test of time.
However, when, in 1903, the Wright brothers first mastered powered
flight, an entirely new incentive for studying vortex dynamics was born.
Kelvin's theorem, in particular, plays a central role in aerodynamics2.

3.4.2 Helicity

The conservation of vortex-line topology implied by Helmholtz's laws is
captured by an integral invariant called the helicity. This is defined as

h= f u
JvM

- odV (3.22)

where Vw is a material volume (a volume composed always of the same
fluid elements) for which o • dS = 0. For example, the surface of V^ may

2 Ironically, Kelvin was not a great believer in powered flight. In 1890, on being invited to
join the British Aeronautical Society, he is reputed to have said 7 have not the smallest
molecule of faith in aerial navigation other than ballooning ...so you will understand that I
would not care to be a member of the society?
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be composed of vortex lines. A blob of fluid has helicity if its velocity and
vorticity are (at least partially) aligned, as indicated in Figure 3.19.

We may confirm that h is an invariant as follows. First we have

^ (u -o>) = — -o> + — -u = -V(/?/p) a + (o Vu) u

Since co is solenoidal, this may be written as

Now consider an element of fluid of volume 8V. The fluid is incompres-
sible and so D(8V)Dt = 0. It follows that

— [(u • co)8V] = V • [(u2/2 -p/p)co]8V

from which

ij<«.c,MF = j[0,V2-,/,)»].,« = <•

Thus the helicity, h, is indeed conserved. The connection to Helmholtz's
laws and vortex-line topology may be established using the following
simple example. Suppose that co is confined to two thin interlinked vortex
tubes, as shown in Figure 3.18, and that V^ is taken as all space. Then h
has two contributions, one from vortex tube 1, which has volume Vx and
flux O1? and another from vortex tube 2. Let these be denoted by hx and
h2. Then

f f f
h] = (u • co)dV = (b u • (<£idl) = $>x (b u • d\

J J I
Vx Cx C,

U , CO

(a) Alignment of velocity and (b) Particle trajectories
vorticity gives helicity

Figure 3.19 A blob of fluid with helicity.
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since a>dV = ®xd\ (Figure 3.20). Here Cx is the closed curve representing
tube 1. However, §c ud\ is, from Stoke's theorem, equal to O2. A
similar calculation may be made for h2, and we find that

f f
h = hi + h2 = Oi d)u • d\+ O2 (pu • d\ = 2Oi4>2

Note that if the sense of direction of a> in either tube were reversed, h
would change sign. Moreover, if the tubes were not linked, then h would
be zero. Thus the invariance of h in this simple example stems directly
from the conservation of the vortex line topology. More elaborate exam-
ples, illustrating the same fact, are readily constructed.

Finally, we note in passing that minimising kinetic energy subject to
conservation of global helicity leads to a Beltrami field satisfying
V x u = ofu, a being constant. We shall not pause to prove this result,
but we shall make reference to it later.

This ends our discussion of inviscid vortex dynamics. From a mathe-
matical perspective, inviscid fluid mechanics is attractive. The rules of the
game are simple and straightforward. Unfortunately, the conclusions are
often at odds with reality and so great care must be exercised in using
such a theory. The dangers are nicely summarised by Rayleigh:

The general equations of (inviscid) fluid motion were laid
down in quite early days by Euler and Lagrange ... (unfortu-
nately) some of the general propositions so arrived at were
found to be in flagrant contradiction with observations, even
in cases where at first sight it would not seem that viscosity was
likely to be important. Thus a solid body, submerged to a
sufficient depth, should experience no resistance to its motion
through water. On this principle the screw of a submerged boat
would be useless, but, on the other hand, its services would not
be needed. It is little wonder that practical men should declare

Vortex tube 2

-Vortex tube 1

Figure 3.20 The physical interpretation of helicity in terms of flux.



The Prandtl-Batchelor Theorem 11

that theoretical hydrodynamics has nothing at all to do with
real fluids.

Rayleigh (1914)

Rayleigh was, of course, referring to d'Alembert's paradox. With this
warning, we now return to 'real' fluid dynamics.

There are three topics in particular which will be important in our
exploration of MHD. The first is the Prandtl-Batchelor theory which
says, in effect, that a slow cross-stream diffusion of vorticity can be
important even at high Re. The second is the concept of Reynolds' stres-
ses in turbulent motion, and the third is the phenomenon of Ekman
pumping, which is a weak secondary flow induced by differential rotation
between a viscous fluid and an adjacent solid surface. The Prandtl-
Batchelor theorem is important because it has its analogue in MHD
(called flux expulsion), Reynolds' stresses and turbulent motion are
important because virtually all 'real' MHD is turbulent MHD (Re is
invariably very large), and Ekman pumping is important because it dom-
inates the process of magnetic stirring and possibly contributes to the
maintenance of the geodynamo.

3.5 The Prandtl-Batchelor Theorem

We now return to viscous flows. We start with the Prandtl-Batchelor
theorem which, as we have said, has its analogue in MHD. This theorem
is one of the more beautiful results in the theory of two-dimensional
viscous flows. It has far-reaching consequences for internal flows. In
effect, it states that a laminar motion with high Reynolds number and
closed streamlines must have uniform vorticity.

Consider a two-dimensional flow which is steady and has a high
Reynolds number. Suppose also that the streamlines are closed. We intro-
duce the streamfunction \[r. The velocity and vorticity are, in terms of i/r,

\dy* dxj'

In two-dimensions, the steady vorticity equation becomes

(u • V)a) = vV2co

If we now take the limit v ^ O w e obtain

(u • V)<o = 0
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The vorticity is therefore constant along the streamlines and so is a
function only of i/r, co = co(ty). This is all the information which we may
obtain from the inviscid equation of motion. Unfortunately, the problem
appears to be underdetermined. There are an infinite number of solutions
to the equation

V2^ = —co(ilf), V" = 0 o n the boundary

each solution corresponding to a different distribution of co. (Note that
u • dS = 0 at the boundary requires ^ = constant at the boundary and it
is usual to take that constant as zero.) So what distribution of co does
nature select? We appear to be missing some information. In cases where
the streamlines are open the problem is readily resolved. We must specify
the upstream distribution of co and then track it downstream (Figure
3.21). However, when the streamlines are closed, such as in the cavity
in Figure 3.21(b), we have no 'upstream point' at which we can specify

Let us go back to the steady, viscous vorticity equation. If we integrate
this over the area bounded by some closed streamline then we find, with
the help of Gauss's theorem,

r
co - dS = 0

This integral constraint must be satisfied for all finite values of v, no
matter how small v may be. Now if Re is large, then co = CO(X/J) plus
some small correction due to the finite value of v. Consequently

V&> = co\^f)V^ + (small correction)

where o/(V0 is proportional to the cross-stream gradient of vorticity.
Next we substitute back into our integral equation to give

v\ co\f) kV\jr - dS + (small correction) | = 0

co(\j/) specified
here

. How do we
(a) (b) specify co(\|/)?

Figure 3.21 The specification o
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(Note that <*/(V0 is constant along a streamline and so may be taken
outside the integral.) We now assume v is very small (Re is large) and
throw away the small correction. Invoking Gauss's theorem once again,
this time in reverse, we end up with

\ 2 -va>'(f) [ codA = 0

This expression must be satisfied for all flows with a small but finite value
of v. From Stokes' theorem this can be rewritten in the form

where C is a streamline. Since v is finite, the only possibility is that
o)\\lr) = 0. In other words, there is no cross-stream gradient in co, and
so co is uniform throughout the flow.

We have proved the Prandtl-Batchelor theorem. It states that, for high
Reynolds number flows with closed streamlines, the vorticity is uniform
throughout the flow, co = co0, except in the boundary layers (Figure 3.22).
(We must exclude the boundary layers since our proof assumed that
viscous effects are small and this is clearly not the case in the boundary
layers.) In the cavity flow shown below, co will be constant within the
region of closed streamlines (excluding the thin boundary layers). Of all
possible vorticity distributions, co{^r), the Prandtl-Batchelor theorem tells
us that nature will select the one where vorticity is not only constant
along the streamlines, but is also constant across the streamlines.

Armed with the Prandtl-Batchelor theorem, it is relatively straightfor-
ward to compute flow fields of the type sketched below. One simply
solves the equation

V2i/r = — co0, i/f = 0 o n the boundary

where co0 is the (unknown but constant) vorticity in the flow. This yields u
at all points (except in the boundary layer). There is, however, still the

Uniform vorticity
here

Figure 3.22 Example of the Prandtl-Batchelor theorem.
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unknown constant a)0 to determine. This is usually fixed by solving the
boundary layer equations.

Of course, if the Reynolds' number is high enough then the flow will
become unsteady and eventually turbulent. The Prandtl-Batchelor theory
does not then apply. However, there are many cases where Re is low
enough for the motion to be steady and laminar, yet high enough for
the Prandtl-Batchelor theorem to work well. One example is the two
attached eddies which form in the wake of a cylinder at intermediate
Reynolds number. Curiously, even when the flow becomes turbulent,
the Prandtl-Batchelor theorem often works surprisingly well when
applied to the time-averaged flow. Presumably, this is because the argu-
ments above can be repeated, but with v now representing an 'eddy
viscosity'.

The physical interpretation of the Prandtl-Batchelor theorem is
straightforward. Suppose a flow is initiated at, say, t = 0. Then, over a
short timescale of the order of the eddy turnover-time, the flow adopts a
high Reynolds number form: i.e. co = CD(\IS). (Depending on how the flow
is initiated, different distributions of &>(V0 may appear.) There then begins
a slow cross-stream diffusion of vorticity which continues until all the
internal gradients in vorticity have been eliminated (except in the bound-
ary layers). This takes a long time, but the flow does not become truly
steady until the process is complete.

Examples

1. Starting with the energy equation

Dt

show that for laminar, high-Peclet number, closed-streamline flows,
the temperature outside the boundary layer is constant. This is the
thermal equivalent of the Prandtl-Batchelor theorem. Give a physical
interpretation of your result.

2. In two-dimensional MHD flows which have the form u = (ux, uy, 0)
and B = (Bx, By, 0) = V x (Azez)9 the induction equation (2.24)
reduces to

Dt

Where do you think the Prandtl-Batchelor arguments lead here?
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3.6 Boundary Layers, Reynolds Stresses and Turbulence Models

3.6.1 Boundary layers

During the last few years much work has been done in con-
nection with artificial flight. We may hope that before long this
may be coordinated and brought into closer relationship with
theoretical hydrodynamics. In the meantime one can hardly
deny that much of the latter science is out of touch with reality.

Rayleigh, 1916.

We have already mentioned boundary layers without really defining
what we mean by this term, and so it seems appropriate to review briefly
the key aspects of laminar boundary layers. (We leave turbulence to
Section 3.6.2.)

The concept of a boundary layer, and of boundary layer separation,
was first conceived by the engineer L Prandtl and it revolutionised fluid
mechanics. It formed a bridge between the classical 19th century math-
ematical studies of in viscid fluids and the subject of experimental fluid
mechanics, and in doing so it resolved many traditional dilemmas such
as d'Alembert's paradox. Prandtl first presented his ideas in 1904 in a
short paper crammed with physical insight. Curiously though, it took
many years for the full significance of his ideas to be generally
appreciated.

Consider a high-Reynolds' number flow over, say, an aerofoil (Figure
3.23). By high Reynolds' number we mean that uL/v is large where L is a
characteristic geometric length scale, say the span of the aerofoil. Since
Re is large we might be tempted to solve the inviscid equations of motion,

(u • V)u = -

subject to the inviscid boundary condition u • dS = 0 on all solid surfaces.
This determines the so-called external problem.

Potential flow Boundary layer

Figure 3.23 Boundary layer near a surface.
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Now in reality the fluid satisfies a no-slip boundary condition u = 0 on
dS. (We take a frame of reference moving with the aerofoil.) Thus there
must exist a region surrounding the aerofoil where the velocity given by
the external problem adjusts to zero (Figure 3.23 ). This region is called
the boundary layer, and it is easy to see that such a layer must be thin.
The point is that the only mechanical forces available to cause a drop in
velocity are viscous shear stresses. Thus the viscous term in the Navier-
Stokes equation must be of the same order as the other terms within the
boundary layer,

vV2u ~ (u • V)u

This requires that the transverse length scale, <5, which appears in the
Laplacian, is of order

8 ~ (vL/u)l/2 ~ Re~1/2

which fixes the boundary layer thickness. Since Re is large this implies
that

Note that, because the boundary layer is so thin, the pressure within a
boundary layer is virtually the same as the pressure immediately outside
the layer. (There can be no significant gradient in pressure across a
boundary layer since this would imply a significant normal acceleration,
which is not possible since the velocity is essentially parallel to the sur-
face.)

Boundary layers occur in other branches of physics; it is not a phe-
nomenon peculiar to velocity fields. In fact, it occurs whenever a small
parameter, in this case v, multiplies a term containing derivatives which
are of higher order than the other derivatives appearing in the equation.
In the case above, when we throw out vV2u on the basis that v is small,
our equation drops from second order to first order. There is a corre-
sponding drop in the number of boundary conditions we can meet
(u • dS = 0 rather than u = 0) and so solving the external problem leaves
one boundary condition unsatisfied. This is corrected for in a thin transi-
tion region (in this case the velocity boundary layer) where the term we
had thrown out, i.e. vV2u, is now significant because of the thinness of the
transition region. However, we can have other types of boundary layers,
such as thermal boundary layers and magnetic boundary layers. In the
case of thermal boundary layers the small parameter is a and it multiplies
V27\
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Note that the thickness of a boundary layer is not always ~R
For example, we shall see later that the force balance within MHD
boundary layers is more complicated than that indicated above, and so
the estimate 8 ~ Re~1/2L often needs modifying.

We conclude with one comment. As noted in Section 3.1.1, boundary
layers exhibit a phenomenon known as separation. That is, when the flow
external to the boundary layer decelerates, the pressure gradient causing
that deceleration is also imposed on the fluid in the boundary layer.
However, this fluid has less kinetic energy than the external flow and
so it rapidly comes to a halt and starts to move backward. The fluid
within the boundary layer is then ejected into the external flow and a
wake is formed, such as the wake at the rear of a cylinder. It is this wake
which gives rise to the asymmetric flow over bluff bodies which inviscid
theory fails to predict, and which so discredited theoretical
hydrodynamics.

3.6.2 Reynolds stresses and turbulence models

We now consider the more elementary aspects of turbulent flow. A more
detailed discussion is given in Chapter 7, where we consider the nature of
turbulence itself. Here we restrict ourselves to the much simpler problem
of characterising the influence of turbulence on the mean flow.

It is an empirical observation that if Re is made large enough (viscosity
made small enough) a flow invariably becomes unstable and then turbu-
lent (Figure 3.24). Suppose we have a turbulent flow in which u and p
consist of a time-averaged component plus a fluctuating part:

u = u + u', p=p+pf

When we time-average the Navier-Stokes equation, new terms arise from
the fluctuations in velocity. For example, the x-component of the time-
averaged equation of motion is

Figure 3.24 Velocity component in a turbulent flow.
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d ) J
Here the overbar represents time-averaging. Now the laminar stresses,
from Newton's law of viscosity, are given by

ox = 2pv^

r

Txz = /

The turbulence seems to have produced additional stresses. These are
called Reynolds stresses in honour of Osborne Reynolds' pioneering
work on turbulence (~1883). The stresses are

xxy = -puxuy

We can rewrite the x-component of the time-averaged equation in a more
compact way:

Here the index, /, is summed over x, y and z. Similar expressions may be
written for the y and z components. If we wish to make predictions from
this equation we need to be able to relate the Reynolds stresses, —puxu-,
to some quantity which we know about, such as mean velocity gradients
of the type dux/dy. This is the purpose of turbulence modelling. Its aim is
to recast the time-averaged equations in a form which may be solved, just
like the Navier-Stokes equations. In effect, a turbulence model provides a
means of estimating the Reynolds stresses.

However, it should be emphasised from the outset that 'Reynolds stress
modellers' live dangerously. The quest to find a universal turbulence
model, which may be defended on theoretical grounds, is doomed to
failure from the outset. There is no such thing as a universal turbulence
model! The best that we can do is construct semi-empirical models, based
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Figure 3.25 Time-averaged velocity in a turbulent flow.

on laboratory tests, and try to apply these models to flows not too dif-
ferent from the laboratory tests on which they were based. For example,
Reynolds stress models developed from boundary layer experiments need
not work well when applied to rapidly rotating flows.

The reason for this difficulty is the so-called 'closure problem' of tur-
bulence. We can, in principle, derive rigorous equations for u'xu'y etc. (see
Chapter 7). However, this involves quantities of the form u'xu'yu'z. When
an equation for these new quantities is derived, we find that it involves yet
more functions such as uxuxu'yu

r
z, and so on. There are always more

unknowns than equations, and it is impossible to close the set in a rig-
orous way. This is the price we pay in moving from the instantaneous
equations of motion to a statistical (time-averaged) one3.

This is all bad news since much of fluid mechanics centres around
turbulent flows, and quantitative predictions of such flows require a tur-
bulence model. Fortunately, some of the simpler, empirical turbulence
models work reasonably well if applied to the appropriate classes of flow.

Historically, the first serious attempt at a theoretical study of turbulent
flows was made by Boussinesq around 1877 (6 years before Reynolds'
famous pipe experiment). He proposed that the shear-stress strain-rate
relationship for time-averaged flows of a one-dimensional nature (Figure
3.25) was of the form

^ x
*xy = (v< + V>t)-r-dy

(Here /JL is the dynamic viscosity, JJL = pv and should not be confused with
the permeability of free space.) Boussinesq termed ixt an eddy viscosity.
While /x is a property of the fluid, \xt will be a property of the turbulence.
The first attempt to estimate /x? was due to Prandtl in 1925. He invoked
the idea of a mixing length, as we shall see shortly.

3 This is not to say that we cannot make rigorous and useful statements about turbulence.
We can! (see Chapter 7.) We cannot, however, produce a rigorous Reynolds stress model.



86 3 The Governing Equations of Fluid Mechanics

The idea of an eddy viscosity is not restricted to simple shear flows of
the type above, i.e. ux{y). It is common to introduce eddy viscosities into
flows of arbitrary complexity. Then,

[diix duyxxy = (/x + iit) — + —y dy dx

ra^ ay
t}[dz + dx\*xz = O + fit.

etc. We have, in effect, accounted for the Reynolds stresses by replacing /x
in Newton's law of viscosity by /x + fit. Now in virtually all turbulent
flows the eddy viscosity is much greater than /x, so the viscous stresses
may be dropped, giving

dux duy

dy dx

rr7 = - /

We shall refer to these as Boussinesq's equations. The question now is,
what is /x/? Prandtl was struck by the success of the kinetic theory of gases
in predicting the properties of ordinary viscosity in which the 'mean free
path length' plays a role. In fact, the simple kinetic theory of gases leads
to the prediction

where V is the molecular velocity and / is the mean free path length.
Could the same thing be done for the eddy viscosity? In fact, there is
an analogy between Newton's law of viscosity and Reynolds stresses. In a
laminar flow, layers of fluid which slide over each other experience a
mutual shear stress, or drag, because thermally agitated molecules
bounce around between the layers exchanging energy and momentum
as they do so (Figure 3.26).

For example, a molecule in the slow moving layer at A may move up to
B, slowing down the fast moving layer. Conversely, a molecule in the fast
moving layer may drop down from C to D, speeding up the lower layer.
This is the basic idea which lies behind the expression /x = plV/3.
However, just the same sort of thing happens in a turbulent flow, albeit
at the macroscopic, rather than molecular, level. Balls of fluid are
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Figure 3.26 Exchange of momentum due to thermal motion of the molecules.

exchanged between the layers due to turbulent fluctuations, and this
causes a mixing of momentum across the layers.

This analogy between the transfer of momentum by molecules on the
one hand and balls of fluid on the other led Prandtl to propose the
relationship

fit = plmVT

where lm is called the mixing length. (Actually Boussinesq proposed
something similar in 1870.) lm is a measure of the size of the large eddies
in the flow. VT is a measure of u\ and indicates the intensity of the
turbulence. The more intense the fluctuations, the larger the cross-stream
transfer of momentum, and so the larger the eddy viscosity.

To a large extent the equation above is simply a dimensional necessity,
since /x,/p has the dimensions of m1 Is. Boussinesq's equations, however,
are a little more worrying. At one level we may regard them as simply
defining /z,, and so transferring the problem of estimating r to one of
estimating /x?, but there is an important assumption here. We are assum-
ing that the eddy viscosity in the xy plane is the same as the eddy viscosity
in the xz plane, and so on. This, in turn, requires that the turbulence is
statistically isotropic. Still, let us see how far we can get with an eddy
viscosity model. We now need to find a way of estimating lm and VT. For
the particular case of simple shear flows (one-dimensional flows), Prandtl
found a way of estimating VT. This is known as Prandtl's mixing length
theory (Figure 3.27).

Consider a mean flow, ux, which is purely a function of y. Suppose also
that the turbulence has components u'x, Uy, uz.

u = (iix, 0, 0)

u ' = (u'x, uy, u'z)

Then Prandtl's theory says that, in effect, the fluid at y, with mean velo-
city wx(y), will, on average, have come from levels y ± /, where / is the
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Figure 3.27 Prandtl's mixing length theory.

mixing length. Suppose that, as a fluid lump is thrown from y + l (or
y — /) to y, it retains its forward momentum, which on average will be
ux(y ± I). Then the mean velocities ux{y db /) represent the spread of
instantaneous velocities at position y. We can represent this spread by

ux ± J(ux)
2. If / is small (unfortunately it is not!), then we have

ux(y±l)
dy

It follows that

[ux\ :/2i^£

Next we note that there is a strong negative correlation between ux and
Uy, since a positive ux is consistent with fluid coming from y + l, requiring
a negative u'y. (If dux/dy is negative we expect a positive correlation.)
Thus,

where c{ is some constant of order unity (called a correlation coefficient).
If ux and u'y are of similar orders of magnitude, we now have

uxuy

du,

dy dy

where c2 is a second constant of order unity. Note the inclusion of the
modulus on one of the dux/dy terms. This is needed to ensure that the
correlation is negative when dux/dy > 0 and positive when dux/dy < 0.

We now redefine our mixing length to absorb the unknown constant c2.
We set /^ = c2l

2, and the end result is

Txy = -pUxUy = pln
dy

dux
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Compare this with Boussinesq's equation

dux , Tr dux

dy dy

Evidently, for this particular sub-class of one-dimensional shear flows,
the turbulent velocity scale is

dux
VT = .

dy

The eddy viscosity is therefore

dy

This represents what is known as the 'mixing length model' of Prandtl.
Conceptually this is a tricky argument which ultimately cannot be justi-
fied in any formal way. Besides which, we still need to decide what lm is,
perhaps guided by experiment. Nevertheless, Prandtl's mixing length
model appears to work well for one-dimensional shear flows, provided
lm is chosen appropriately. (By shear flows we mean flows like boundary
layers, free shear layers and jets.) For flow over a flat plate, it is found
that lm = ky, where k ^ 0.4 and is known as Karman's constant.

Example: The a-effect in electrodynamics

The process of averaging chaotic or turbulent equations, in the spirit of
Reynolds, is not restricted to the Navier-Stokes equation. For exam-
ple, the heat equation or induction equation can be averaged in a
similar way. Suppose we have a highly conducting, turbulent fluid in
which u = u0 + v and B = Bo + b where u0 and Bo are steady or slowly
varying and v = 0, b = 0. Show that the averaged induction equation is

—± = V x (u0 x Bo) + A V % + V x (v x b)
at

The quantity v x b is the electromagnetic analogue of the Reynolds
stress. In some cases it is found that v x b = aB0, where a is the ana-
logue of Boussinesq's eddy diffusivity. This leads to the 'turbulent'
induction equation

^ V x ( u o x B o ) + a V x Bo + AV2B0

In Chapter 6 you will see that the new term, called the a-effect, can give
rise to the self-excited generation of a magnetic field.
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3.7 Ekman Pumping in Rotating Flows

We now consider the phenomenon of Ekman pumping, which occurs
whenever there is differential rotation between a viscous fluid and a
solid surface. This turns out to be important in magnetic stirring (see
Chapter 8) and in the geo-dynamo (Chapter 6). We start with Karman's
solution for laminar flow near the surface of a rotating disk.

Suppose we have an infinite disk rotating in an otherwise still liquid. A
boundary layer will develop on the disk due to viscous coupling, and
Karman found an exact solution for this boundary layer. Suppose that
the disc rotates with angular velocity Q. Then we might expect a bound-
ary layer thickness to scale as 8 ~ (v/Q)l/2. Karman suggested looking
for a solution in polar coordinates in which z (which is normal to the
disk) is normalised by 8. Karman's solution is of the form

ur = QrF(rj), u9 = firGfa), uz =

Here 8 = (v/Q)l/2 and r\ — z/8. If these expressions are substituted into
the radial and azimuthal components of the Navier-Stokes equation and
the equation of continuity, we obtain three differential equations for
three unknown functions F, G and H

F2+F'H-G2 = F"

2FG + HG' = G"

We take z to be measured from the surface of the disk, and so we have the
boundary conditions

z = 0: F = 0, G = 1, H = 0

z-+ oo: F = 0, G = 0

Our three equations can be integrated numerically and the result is shown
schematically in Figure 3.28. This represents a flow which is radially
outward within a boundary layer of thickness 8 ~ 48 = 4(v/Q)l/2. The
flow pattern in the r-z plane is shown in Figure 3.29. Within the thin
boundary layer the fluid is centrifuged radially outward, so that each
particle spirals outward to the edge of the disk. Outside the boundary
layer ur and u0 are both zero, but uz is non-zero. There is a slow drift of
fluid towards the disk, at a rate

kl ~ 0.9ns ~ 0.2ns
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1 2 3 4 z/6

Figure 3.28 Solution of Karman's problem.

Of course, this is required to supply the radial outflow in the boundary
layer. We have, in effect, a centrifugal fan.

Suppose now that the disk is stationary but that the fluid rotates like a
rigid body (ue — Qr) in the vicinity of the disk. Near the disk's surface
this swirl is attenuated due to viscous drag and so a boundary layer
forms. This problem was studied by Bodewadt, who showed that
Karman's procedure works as before. It is only necessary to change the
boundary conditions. Once again the boundary layer thickness is con-
stant and of the order of 4(v/Q)l/2. This time, however, the flow pattern
in the r-z plane is reversed (Figure 3.30). Fluid particles spiral radially
inward, eventually drifting out of the boundary layer. Outside the bound-
ary layer we have rigid body rotation, ue = Qr, plus a weak axial flow
away from the surface of magnitude

uz~ IAQ8-035Q8

The flow in the r-z plane is referred to as a secondary flow, in as much as
the primary motion is a swirling flow. The reason for the secondary flow
is that, outside the boundary layer, we have the radial force balance

- 4 (v/Q)1/2

Figure 3.29 Secondary flow in Karman's problem.
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z

Figure 3.30 Bodewadt's problem (stationary disk, rotating fluid).

dp _ u\

That is, the centrifugal force sets up a radial pressure gradient, with a low
pressure near the axis. This pressure gradient is imposed throughout the
boundary layer on the plate. However, the swirl in this boundary layer is
diminished through viscous drag, and so there is a local imbalance
between the imposed pressure gradient and the centripetal acceleration.
The result is a radial inflow, with the fluid eventually drifting up and out
of the boundary layer.

In general then, whenever we have a swirling fluid adjacent to a sta-
tionary surface we induce a secondary flow, as sketched in Figure 3.30.
This is referred to as Ekman pumping, and the boundary layer is called
an Ekman layer.

The axial velocity induced by Ekman pumping is relatively small if the
Reynolds number is large:

Nevertheless, this weak secondary flow often has profound consequences
for the motion as a whole. Consider, for example, the problem of 'spin-
down' of a stirred cup of tea. Suppose that, at / = 0, the tea is set into a
state of (almost) inviscid rotation. Very quickly an Ekman layer will
become established on the bottom of the cup, inducing a radial inflow
at the base of the vessel. By continuity, this radial flow must eventually
drift up and out of the boundary layer, where it is recycled via side layers
(called Stewartson layers) on the cylindrical walls of the cup. A secondary
flow is established, as shown in Figure 3.31. As each fluid particle passes
through the Ekman layer it gives up a significant fraction of its kinetic
energy. The tea finally comes to rest when all of the contents of the cup
have been flushed through the boundary layer. The existence of the sec-
ondary flow is evidenced (in the days before tea-bags!) by the accumula-
tion of tea-leaves at the centre of the cup.

The spin-down time, rs, is therefore of the order of the turn-over time
of the secondary flow:
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Figure 3.31 Spin-down of a stirred cup of tea.

xs ~ R/uz ~ R/Q8 ~ R/VvQ

If there were no secondary flow, the spin-down time would be controlled
by the time taken for the core vorticity to diffuse to the walls:

Suppose that R = 3 cm, v = 10~6m2/s and £2 = 1 s"1. Then r̂  ~ 30 s,
which is about right, whereas r* ~ 15 min! Evidently, the Ekman layers
provide an efficient mechanism for destroying energy.

Now consider a problem more relevant to engineering. Suppose we
have a cylindrical vessel in which swirl is induced by rotating the lid
(Figure 3.32). If the vessel is much broader than it is deep we might
model it as two parallel disks, one rotating and one stationary. If the
top disk rotates at a rate Q, a natural question to ask is: what is the
rotation rate in the core flow? It turns out that this is, once again, con-
trolled by the weak secondary flow. The fluid is accelerated by one disk
and retarded by the other. Consequently, it will rotate at a rate some-
where between 0 and Q. It follows that a Bodewadt (or Ekman) layer will
form on the lower disk and a Karman layer will form on the upper
surface. Fluid will be ejected by the lower boundary layer and then
sucked up into the upper layer. The answer to the question of the core
rotation rate is now straightforward. The fluid lying outside the two

Karman layer

Ekman layer

Figure 3.32 Flow between two disks, one of which rotates.
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boundary layers will rotate at a rate such that the mass flow out of the
Ekman layer balances the mass flow into the Karman layer. If Qc is the
core rotation rate, then for the fluid leaving the Ekman layer

u2~lAQl
c
/2vl/2

The fluid entering the Karman layer has velocity

uz ~ 0.9(ft - Qc)
l/2vl/2

Equating the two, we find that

QC - 0.3^

Therefore the bulk of the fluid rotates at approximately one-third of the
disk rotation rate. A similar calculation can be performed when an elec-
tromagnetic torque induces swirl in a conducting fluid held between two
fixed plates (see Chapter 5, Section 5).

Ekman pumping not only dominates confined swirling flows of the
type described above, but also plays a key role in large-scale geophysical
flows. For example, there is some evidence that the solid inner core of the
earth rotates at a slightly different rate to the solid outer mantle. Between
the two we have liquid iron. If this differential rotation does indeed
occur, then we might expect a flow structure such as that shown in
Figure 3.33. Ekman layers form on the top and bottom surfaces of the

Mantle

Figure 3.33 Ekman pumping in the core of the earth.
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inner core. This kind of differential rotation can cause intense stretching
and twisting of magnetic fields and may be a component of the process by
which the earth maintains its magnetic field.

Part 2: Incorporating the Lorentz Force

We now incorporate the Lorentz force into the Navier-Stokes equations
and consider some of the more elementary and immediate consequences
of this.

3.8 The Full Equations of MHD and Key Dimensionless Groups

Let us start by summarising the governing equations of MHD. We have
the reduced form of Maxwell's equations

V - J = 0 (3.23)

V - B = 0 (3.24)

and the auxiliary expressions

J = or(E + u x B) F = J x B (3.25)

These combine to give the induction equation

— = V x (u x B) + A V2B
dt

X = (JJUX)
- l (3.26)

On the other hand, Newton's second law gives us
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(3.27)

from which we obtain the vorticity equation

= V x (u x (o) + vVzeo + V x (J x B)/p (3.28)

There are four dimensionless groups which regularly appear in the MHD
literature. Three of them represent the relative magnitudes of the different
force terms in (3.27). The fourth relates to (3.26). The first is the Reynolds
number, Re = ul/v, where / is a characteristic length scale of the motion
and u is a typical velocity. As in conventional fluid mechanics, this is
representative of the ratio of inertia, (u • V)u, to viscous forces, vV2u. The
second dimensionless group is the obscurely named interaction para-
meter,

N = aB2l/pu = l/ux (3.29)

where r is the magnetic damping time (oB2/p)~l which was introduced in
Chapter 1. This is relevant in situations where J is primarily driven by
u x B in Ohm's law, and so |J| ~ auB. In such a case, TV represents the
ratio of the Lorentz force, J x B/p, to inertia, (u • V)u.

The third dimensionless group, called the Hartmann number, is a
hybrid of Re and N. It is

Ha = (7VRe)1/2 = Bl(a/pv)x'2 (3.30)

Evidently {Ha)1 represents the ratio of the Lorentz force to viscous
forces. The final dimensionless group has nothing at all to do with forces.
Rather, it is indicative of the relative strengths of advection and diffusion
in the induction equation (3.26). This is the magnetic Reynolds number

Rm = ul/X = /jLcrul (3.31)

which was first introduced in Chapter 1. When Rm is large, diffusion is
weak. These various groups are listed in Table 3.1.

Note that the characteristic length scale of the flow, /, need not be
known in advance, but rather it may emerge from some internal force
balance. The obvious example is a boundary layer, where Re based on the
boundary layer thickness is always of the order of unity. That is the
whole point about boundary layers: viscous and inertia forces are always
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Name

Reynolds number
Interaction Parameter
Hartman number

Magnetic Reynolds
number

Symbol

Re
TV
Ha

Definition

ul/v
aB2l/pu

Bl(a/pv)l/2

ul/k

Ratio
Ratio
Ratio
forces
Ratio
of B

Significance

of inertia to shear forces
of Lorentz forces to inertia
of Lorentz forces to shear

of advection to diffusion

of the same order, no matter how small v may be. One must always be
careful in the choice of length scale when constructing meaningful dimen-
sionless groups. In general, each case must be treated on an individual
basis. Nevertheless, dimensionless groups are extremely useful. Often,
when they are very large or very small, they allow us to throw out certain
terms in the governing equations, thereby greatly simplifying the pro-
blem.

3.9 Maxwell Stresses

We conclude this chapter with a discussion of the Lorentz force itself.
From Ampere's law we may rewrite the Lorentz force in terms of B alone.
We start with the vector identity

V(B2/2) = (B V)B + B x V x B

from which, using V x B = /xJ,

J x B = (B V)(B//x) - V(B2/2/x) (3.32)

The second term on the right of (3.32) acts on the fluid in exactly the same
way as the pressure force — V/?. It is irrotational, and so makes no con-
tribution to the vorticity equation. In flows without a free surface its role
is simply to augment the fluid pressure. (Its absence from the vorticity
equation implies that it cannot influence the flow field.) For this reason,
B /2/x is called the magnetic pressure and in many, if not most, problems
it is of no dynamical significance. Which brings us to the first term on the
right. We can write the /th component of this force as

B • (3.33)
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where there is an implied summation over the index/ From this we may
show that the effect of the body force in (3.33) is exactly equivalent to a
distributed set of fictitious stresses, B^/fi, acting on the surface of fluid
elements. One approach is simply to compare (3.33) with the viscous
forces in (3.1), making use of Figure 3.8. Alternatively, this can be estab-
lished by integrating (3.33) over an arbitrary volume V and invoking
Gauss's theorem. Since V • (Bfi) = B • V ^ + 5Z V B = B VBh we find

[B • ViBi/rildV = JW/*)B • dS (3.34)

The surface integral on the right of (3.34) is equal to the cumulative effect
of the distributed stress system BtBj/iJL acting over the surface of V. That
is to say, the tangential and normal stresses, BtBn/fi and B%/[i9 acting on
the surface element dS give rise to a force B(B • dS)//x. However, equa-
tion (3.34) tells us that this surface stress distribution is, in turn, equiva-
lent to the integrated effect of the volume force (B • V)(B//x). Since this is
true for any volume V, it follows that the body force (B • V)(B//x) and the
stress system BtBj/ii are entirely equivalent in their mechanical action.

In summary then, we may replace the Lorentz force, J x B, by an
imaginary set of stresses

^• = ( ^ / / x ) - ( B 2 / 2 / x ) ^ (3.35)

where the second term on the right is the magnetic pressure. (The symbol
8ij means: Sy = 1 if / =j\ 8tj- = 0 if / ^j.) These are called the Maxwell
stresses, and their utility lies in the fact that we can represent the inte-
grated effect of a distributed body force by surface stresses alone.

Now there is another, perhaps more useful, representation of J x B.
This comes from replacing u by B in (3.6):

(B.V)B = B™et-^en (3.36)

Here s is now a coordinate measured along a magnetic field line, et and en

are unit vectors in the tangential and principal normal direction, respec-
tively, B = |B|, and R is the local radius of curvature of the field line. It
follows that the Lorentz force may be written as

(3.37)
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We now have two alternative representations of J x B. In cases where
the magnetic pressure is unimportant, which is usually the case, we are
concerned only with B • V(B//x). In such situations, J x B may be pic-
tured as the result of the stress system BtBn//ji, or else it may be written in
the form (3.36). To illustrate the difference, consider a flux tube as shown
in Figure 3.34. In the first interpretation, (B • V)(B//x) arises from tensile
stresses of B2//x acting on the ends of the tube (there are no stresses on
the sides). These are referred to as Faraday tensions, or Maxwell ten-
sions, in the field lines. In the second interpretation there &VQ force com-
ponents iA~lBdB/dS and B2/iiR tangential and normal, respectively, to
the flux tube at each location.

In a qualitative sense then, we may think of field lines as being in
tension and exerting a pseudo-elastic stress on the fluid. This lies at the
root of many MHD phenomena, particularly the Alfven wave. We have
already seen in Section 2.7 that, when Rm is high, the magnetic field
lines tend to be frozen into a fluid (Figure 3.35). Now we see that the
field lines also behave as if they are in tension. Consider what happens
then if, at t = 0, we try to push a region of highly conductive fluid past
a magnetic field. The field lines will be swept along with the fluid, and
the resulting curvature of the lines will create a back reaction B2//JLR on
the fluid. The fluid will eventually come to rest and the Faraday ten-
sions will then reverse the flow. Oscillations (Alfven waves) may even
result. This is effectively what happens in the experiment described in
Section 1.3.

Figure 3.34 The contribution B • V(B//x) to the Lorentz force may be inter-
preted either in terms of Faraday tensions, B2/fi, in the field lines, or else in
terms of the forces (B//ji)dB/dS and B2/JJLR acting tangential and normal to the
field line, respectively.
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B I I VB I IB

(a)

Figure 3.35 Magnetic field lines can behave like elastic bands frozen into the
fluid.
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Addison-Wesley (Chapters 40, 41 provide an introduction to fluid
mechanics).

D J Acheson, Elementary fluid dynamics, 1990. Clarendon Press. (Chapter 5 for
vortex dynamics, chapter 9 for boundary layers.)

G K Batchelor, An introduction to fluid mechanics, 1967. Cambridge University
Press. (Chapter 7 for vortex dynamics.)

J A Shercliff, A textbook of magnetohydrodynamics, 1965. Pergamon Press.
(Chapter 4 for the Lorentz force and Maxwell stresses.)

H Tennekes & J L Lumley, A first course in turbulence, 1972. The MIT Press.
(Chapter 2 for a discussion of Reynolds stresses.)

Examples

3.1 Show that the circulation is the same around all simple closed circuits
enclosing the wing shown in Figure 3.3 (ignore any vorticity in the
wake).

3.2 A bathtub vortex forms because random vorticity in the bath
becomes aligned with the axis of the vortex by the action of the
converging, draining flow. Explain why the vorticity is also intensi-
fied by the action of the converging flow.

3.3 A peculiar vortex motion may be observed in rowing. At places
where the oar breaks the surface of the water, just previous to
being lifted, a pair of small dimples (depressions) appear on the sur-
face. Once the oar is lifted from the water the pair of dimples pro-
pagate along the surface. They are the end points of a vortex arc (half
of a vortex ring). Explain what is happening.

3.4 Estimate the pressure at the centre of a typical tornado.
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3.5 Show that the free surface of a tidal vortex is a hyperbola. You may
assume that the velocity distribution is approximately that of a free
vortex, ue ~ T/r where F = constant (ignore the singularity at the
centre of the vortex).

3.6 Use the Biot-Savart law to calculate the velocity at the centre of a
thin vortex ring.



Kinematics of MHD: Advection and Diffusion of a
Magnetic Field

We adopt the suggestion of Ampere, and use the term
'Kinematics' for the purely geometrical science of motion in
the abstract. Keeping in view the properties of language, and
following the example of most logical writers, we employ the
term 'dynamics' in its true sense as the science which treats the

action of force.
Kelvin (1879), preface to Natural Philosophy

We now consider one half of the coupling between B and u. Specifically,
we look at the influence of u on B without worrying about the origin of
the velocity field or the back reaction of the Lorentz forces on the fluid. In
effect, we take u to be prescribed, forget about the Navier-Stokes equa-
tion, and focus on the interaction of u with Maxwell's equations. This is
referred to as the kinematics of MHD.

4.1 The Analogy to Vorticity

In Chapter 2 we showed that Maxwell's equations lead to the induction
equation

—- = V x (u x B) + AV2B (4.1)
ut

where A = (/xa)"1. Compare this with the transport equation for vorti-
city,

do 9— = Vx(ux(o) + vVz(o (4.2)
at

There appears to be an exact analogy. In fact, the analogy is not perfect
because w is functionally related to u in a way that B is not. Nevertheless,
this does not stop us from borrowing many of the theorems of classical
vortex dynamics and re-interpreting them in terms of MHD, with B
playing the role of co. For example, B is advected by u and diffused by
k, and in the limit X -> 0, the counterpart of Helmholtz's first law is that
B is frozen into the fluid.

102
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4.2 Diffusion of a Magnetic Field

When u = 0 we have

^ ? = AV2B (4.3)

which may be compared with the diffusion equation for heat,

— = aV2T (4.4)

It appears that, like heat, magnetic fields will diffuse through a medium at
a finite rate. We cannot suddenly 'impose' a distribution of B throughout
a conductor. All we can do is specify values at the boundaries and wait
for it to diffuse inward. For example, suppose we have a semi-infinite
region of conducting material occupying y > 0, and at t = 0 we apply a
magnetic field Boex at the surface y = 0. Then B will diffuse into the
conductor in precisely the same way as heat or vorticity diffuses. In
fact, to find the distribution of B at any instant we may simply lift the
solution directly from the equivalent thermal problem. Such diffusion
problems were discussed in Section 3.3, where we found that T (or co)
diffuses a distance / ~ ojai, (or y/vi) in a time t. By implication, B dif-
fuses a distance of order */Xt in the same time.

Example: Extinction of a magnetic field

Consider a long conducting cylinder which, at t = 0, contains a uni-
form axial magnetic field, Bo. The field outside the cylinder is zero. The
axial field inside the cylinder will decay according to the diffusion
equation

dB 1 d ( dS

subject to B — 0 at r = R and B = Bo at t = 0. Show that a Fourier-
Bessel series of the form

oo

B = J2AJo(Ynr/R)cxp(-y2
nXt/R2)

n=\

is a possible solution, where Jo is the usual Bessel function, yn are the
zeros of/0, and An represents a set of amplitudes. Deduce that the field
decays on a time scale of R2/(5J5X).
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4.3 Advection in Ideal Conductors: Alfven's Theorem

4.3.1 Alfven's theorem

We now consider the other extreme, where there is no diffusion (X = 0)
but u is finite. This applies to conducting fluids with a very high con-
ductivity (ideal conductors). Consider the similarity between

? = Vx(uxB) (4.5)
ot

and the vorticity equation for an inviscid fluid,

do
— = V x (u x o)

We might anticipate, therefore, that Helmholtz's first law and Kelvin's
theorem (which is, in effect, Helmholtz's second law) have their analo-
gues in MHD. This turns out to be so. The equivalent theorems are:

Theorem I:
(analogue of Helmholtz's first law) The fluid elements that lie on a

magnetic field line at some
initial instant continue to lie on
that field line for all time, i.e.
the field lines are frozen into
the fluid.

Theorem II:
(analogue of Kelvin's theorem) The magnetic flux linking any

loop moving with the fluid is
constant.

These two results are collectively known as Alfven's theorem. In fact,
Theorem II is a direct consequence of the generalised version of
Faraday's law, which was introduced in Section 2.7.4. Moreover, the
first theorem may be proved in precisely the same manner as
Helmholtz's first law, the proof relying on the analogy between (4.5) in
the form

^ ? = (B.V)u (4.6)

and equation (3.21) for a material line element
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The 'frozen-in' nature of magnetic fields is of crucial importance in
astrophysics, where Rm is usually very high. For example, one might
ask: why do many stars possess magnetic fields of the order of 10 or
1000 Gauss? The answer, possibly, is that there exists a weak galactic
field of ^10~6 Gauss. As a star starts to form due to the gravitational
collapse of an interstellar cloud, the galactic field, which is trapped in the
plasma, becomes concentrated by the inward radial movement. A simple
estimate of the increase in B due to this mechanism can be obtained if we
assume the cloud remains spherical, of radius r, during the collapse. Two
invariants of the cloud are its mass, M a pr3, and the flux of the galactic
field which traverses the cloud, <J> oc Br2. It follows that during the col-
lapse, B oc p2/3 which suggest (Bsiar/Bgal) - (pstar/Pgai)2/3- Actually, this
overestimates i?star somewhat, possibly because the collapse is not sphe-
rical, and possibly because there is some turbulent diffusion of B, despite
the high value of Rm.

Now the analogy between B and w can be pushed even further. For
example, our experience with vorticity suggests that, in three-dimensions,
we can stretch the magnetic field lines (or flux tubes) leading to an inten-
sification of B. That is, the left of (4.6) represents the material advection
of the magnetic field, so that when (B • V)u = 0 (as would be the case in
certain two-dimensional flows) the magnetic field is passively advected.
However, in three-dimensional flows (B • V)u need not be zero and,
because of the analogy with vortex tubes, we would expect this to lead
to a rise in B whenever the flux tubes are stretched by the flow (see
Section 3.3). In fact, this turns out to be true, as it must because the
mathematics in the two cases are formally identical. However, the phy-
sical interpretation of this process of intensification is different in the two
situations. In vortex dynamics it is a direct consequence of the conserva-
tion of angular momentum. In MHD, however, it follows from a combi-
nation of the conservation of mass, p8V = p8Adl, and flux, O = B8A,
applied to an element of a flux tube, as shown in Figure 4.1. If the flux

A'

Figure 4.1 Stretching of a flux tube intensifies B.
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tube is stretched, 8A decreases and so B rises to conserve flux. This is the
basis of dynamo theory in MHD, whereby magnetic fields are intensified
by continually stretching the flux tubes.

4.3.2 An aside: sunspots

As an illustration of the 'frozen-in' behaviour of magnetic fields, and of
flux-tube stretching, we shall describe here the phenomenon of sunspots.
We give only a qualitative description, but the interested reader will find
more details in the suggested reading list at the end of this chapter.

If you look at the sun through darkened glass it is possible to discern
small dark spots on its surface. These come and go, with a typical lifetime
of several days. These spots (sunspots) typically appear in pairs and are
concentrated around the equatorial plane. The spots have a diameter of
~ 104 km, which is around the same size as the earth! To understand how
they arise, you must first know a little bit about the structure of the sun.

The surface of the sun is not uniformly bright, but rather has a gran-
ular appearance. This is because the outer layer of the sun is in a state of
convective turbulence. This convective layer has a thickness of 2 x 105 km
(the radius of the sun is 7 x 105 km) and consists of a continually evolving
pattern of convection cells, rather like those seen in Benard convection
(Figure 4.2). The cells nearest the surface are about 103 km across. Where
hot fluid rises to the surface, the sun appears bright, while the cooler
fluid, which falls at the junction of adjacent cells, appears dark. A typical
convective velocity is around 1 km/s and estimates of Re and Rm are,
Re -10 1 1 , Rm ~ 108, i.e. very large!

Surface of sun

Convection y^k

' RaHiatinn ' A l t t V ^
Flux tube

e-\j\ ic ' / X

Convection zone

Figure 4.2 Schematic representation of the formation of sunspots. A buoyant
flux tube erupts through the surface of the sun. Sunspots form at A and B where
the magnetic field suppresses the turbulence, cooling the surface.
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Now the sun has an average surface magnetic field of a few Gauss,
rather like that of the earth. Because Rm is large, this dipole field tends to
be frozen into the fluid in the convective zone. Large-scale differential
rotation in this zone stretches and intensifies this field until large field
strengths (perhaps 103 Gauss) build up in azimuthal flux tubes of varying
diameter. The pressure inside these flux tubes is significantly less than the
ambient pressure in the convective zone, essentially because the Lorentz
forces in a flux tube point radially outward. The density inside the tubes is
correspondingly less, and so the tubes experience a buoyancy force which
tends to propel them towards the surface. This force is strongest in the
thick tubes, parts of which become convectively unstable and drift
upwards, with a rise time of perhaps a month. Periodically then, flux
tubes of diameter ~ 104 km burst through the surface into the sun's atmo-
sphere (Figure 4.2). Sunspots are the footpoint areas where the tubes
pierce the surface (A and B in Figure 4.2). These footpoints appear
dark because the intense magnetic field in the flux tubes (~ 3000 Gauss)
locally suppresses the fluid motion and convective heat transfer, thus
cooling the surface.

This entire phenomenon relies on the magnetic field being (partially)
frozen into the fluid. It is this which allows intense fields to form in the
first place, and which ensures that the buoyant fluid at the core of a flux
tube carries the tube with it as it moves upward. We shall return to this
topic in Chapter 6, where we shall see that sun spots are often accom-
panied by other magnetic phenomena, such as solar flares.

Figure 4.3 Magnetic activity in the solar atmosphere (Encyclopaedia
Britannica).
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4.4 Magnetic Helicity

We can take the analogy between a) and B yet further. In Section 3.4 we
saw that the helicity

\-(odV

is conserved in an inviscid flow. Moreover, this is a direct consequence of
the conservation of vortex-line topology which is enforced by
Helmholtz's laws. We would expect, therefore, that the magnetic helicity

hm = J A • BdV (4.7)

will be conserved as a consequence of Alfven's theorem. (A is the vector
potential defined by (2.19).) This is readily confirmed. First we uncurl
(4.5) to give

^ = u x B + V0 (4.8)

where 0 is a scalar defined by the divergence of (4.8). From (4.8) and (4.5)
we have

- ( A B) = V (0B) + A • [V x (u x B)]
ot

which, with the help of the vector relationship

V • [A x (B x u)] = V • [(A • u)B - (A • B)u] = A • V x [u x B]

becomes

^ ( A . B ) = V.[(0 + A-u)B] (4.9)

We now integrate (4.9) over a material volume VB which always consists
of the same fluid particles (each of volume 8 V) and for which
B • dS — 0. Remembering that D(8V)Dt = 0 in an incompressible fluid,
we obtain,

- I (A.B)«/K = O

as required. As with the helicity of a vorticity field, this conservation law
is topological in nature. It stems from the fact that interlinked flux tubes
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in an ideal conductor remain linked for all time, conserving their relative
topology as well as their individual fluxes (see Section 3.4). Finally, we
note that minimising magnetic energy subject to the conservation of
helicity leads to the field V x B = o?B which, as noted in Chapter 2, is
called a force-free field.

There is one other topological invariant of ideal (diffusionless) MHD.
This is called the cross-helicity, and is defined as

f B • xxdV

Cross-helicity is conserved whenever X and v are zero. It represents the
degree of linkage of the vortex lines and B-lines. We shall not pause here
to prove the conservation of cross-helicity, but leave it as an exercise for
the reader.

4.5 Advection plus Diffusion

We now consider the combined effects of diffusion and advection. For
simplicity we focus on two-dimensional flows in which there is no flux-
tube stretching. In such cases it is convenient to work with the vector
potential A, rather than B. Suppose that u = (dx/f/dy, —di/r/dx, 0) and B
= (dA/dy, —dA/dx, 0) where xjr is the streamfunction for u, u = Vx(Vrez),
and A is the analogous flux function for B, B = V x (Aez). Then the
induction equation (4.1) becomes dA/dt = u x B + XV2A, from which

§ ^ = AVl4 (4.10)

Note that the contours of constant A represent magnetic field lines. Also,
as noted in Section 3.8, Rm = ficrul = ul/X is a measure of the relative
strengths of advection and diffusion.

4.5.1 Field sweeping

Now A is transported just like heat, c.f. (4.4). Let us start, therefore, with
a problem which is analogous to a heated wire in a cross flow, as this
example was discussed at some length in Chapter 3, Section 3. The
equivalent MHD problem is sketched in Figure 4.4.

We have a thin wire carrying a current / (directed into the page) which
sits in a uniform cross flow, u. The magnetic field lines surrounding the
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Magnetic field line

Figure 4.4 Magnetic field induced by a current-carrying wire in a cross flow.

wire are swept downstream by u, just like the isotherms in Figure 3.11. In
the steady state (4.10) can be written as

u^ = XV2A (4.11)
OX

Now there is no natural length scale for this problem. (The wire is con-
sidered to be vanishingly thin.) The only way of constructing a magnetic
Reynolds number is to use r = (x2 + J2)1 / 2 as the characteristic length-
scale. Thus, Rm — \iaur — ur/k. Near the wire, therefore, we will have a
diffusion-dominated regime (Rm < 1), while at large distances from the
wire (Rm > 1) advection of B will dominate. It turns out that equation
(4.11) may be solved by looking for solutions of the form
A =f(x,y)exp(ux/2k). This yields V2/ = (u/2X)2f, and the solution for
A is thus

A = CK0(ur/2X)Qxp(ux/2X)

where Ko is the zero-order Bessel function normally denoted by K. The
constant C may be determined by matching this expression to the diffu-
sion-dominated solution A = (/jLl/2jr)\n(r) at r - • 0. This gives
C = /x//27T. The shape of the field lines is as shown in Figure 4.4. They
are identical to the isotherms in the analogous thermal problem.

4.5.2 Flux expulsion

We now consider another example of combined advection and diffu-
sion. This is a phenomenon called flux expulsion which, from the math-
ematical point of view, is nothing more than the Prandtl-Batchelor
theorem applied to A rather than o. Suppose that we have a steady
flow consisting of a region of closed streamlines of size /, and that Rm =
ul/X is large. Then we may show that any magnetic field which lies
within that region is gradually expelled (Figure 4.5). The proof is essen-
tially the same as that for the Prandtl-Batchelor theorem. In brief, the
argument goes as follows. We have seen that A satisfies an advection
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t = 0.0 t = 0.5 t = 1.0

t = 3.0 t = 3.5 t = 4.0

Figure 4.5 An example of flux expulsion in a square at Rm = 100 (based on
computations by N O Weiss). The figures show the distortion of an initially
uniform field by a clockwise eddy. (From H K Moffat, Magnetic field generation
in electrically conducting fluids. CUP, 1978, with permission.)

diffusion equation, just like vorticity. When Rm is large we find A is
almost constant along the streamlines. However, a small but finite dif-
fusion slowly eradicates cross-stream gradients in A until it is perfectly
uniform, giving B = 0. We now work through the details, starting with
the high Rm equation

DA
^ 0

Dt

In the steady state this simplifies to u • WA = 0, which in turn implies
A = A(\/r). That is, A is constant along the streamlines so that B and u
are co-linear. Now suppose that A is small but finite. The steady version
of (4.10)
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u • VA = AV2 A

yields the integral equation

I = X I V2A dV = 0 (4.12)

where V^ is the volume enclosed by a closed streamline. Now (4.12) must
hold true for any finite value of X, and in particular it remains valid when
A. is very small, so that A ^ A{\jr). Let us now explore the consequences of
the integral constraint (4.12) for our high-Rrn flow. We have, using
Gauss's theorem,

= X I V2A dV = X | VA - dS = XA\f) | Wxj/ • dS

where Ar{^ff) is the cross-stream gradient of A, which is constant on the
surface S^. However, the integral on the right is readily evaluated. We use
Gauss's and Stokes' theorems as follows:

^ • dS = [ V2fdV = - I codV = - I u • d\= [ V2fdV = - I

Here, C^ is the streamline which defines S^. It follows that our integral
constraint may be rewritten as

\-dl = 0 (4.13)

Again it is emphasised that this holds true no matter how small we make
X. It is only necessary that A be finite. Now it follows from (4.13) that
A\\jr) = 0, since the line integral cannot be zero. We conclude, therefore,
that in a region of closed streamlines with a high value of Rm, the flux
function is constant. It follows that B = 0. This phenomenon is known as
flux expulsion.

An example of this process is shown below. A magnetic field B = Boey

pervades a conducting fluid, and a region of this fluid, r < R, is in a state
of rigid body rotation, the remainder being quiescent. This local rotation
distorts B and the distortion is readily calculated. Let £2 be the angular
velocity of the fluid. In the steady state, (4.10) gives us
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with W2A = 0 for r > R. It is natural to look for solutions of the form
A = /(r)exp(/0), where we extract only the real part of A. This yields

The solution for / is then

/ = -Bor + C/r, r > R

f = DJl(pr), 0<r<R

where C and D are constants, Jx is the usual first-order Bessel function,
and/? = (1 —j){Q/2X)1^2. The unknown constants can be evaluated from
the condition that B is continuous at r — R. In the limit of Rm -> oo, we
find that A = 0 inside r = R and A = -B0(r - R2/r) cos 0 for r > R.

The flux function, A, is then identical to the streamlines of an irrota-
tional flow past a cylinder. The shape of the magnetic field lines for
different values of Rm = QR2/k are shown in Figure 4.6. As Rm increases
the distortion of the field becomes greater, and this twisting of the B-lines,
combined with cross-stream diffusion, gradually eradicates B from the
rotating fluid. This form of flux expulsion is related to the skin effect in
electrical engineering. Suppose we change the frame of reference and
rotate with the fluid. Then the problem is that of a magnetic field rotating
around a stationary conductor. In such a case it is well known that the
field will penetrate only a finite distance, 8 = <J2k/Q, into the conductor.
This distance is known as the skin depth. As Q -> oo the field is excluded
from the interior of the conductor.

(a) Rm = 1 (b)Rm = 10 (c)Rm = 25

Figure 4.6 Distortion and expulsion of a magnetic field by differential rotation.
(From H K Moffatt, Magnetic field generation in electrically conducting fluids.
CUP, 1978, with permission.)
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4.5.3 Azimuthal field generation by differential rotation

Our penultimate example of combined advection and diffusion is axisym-
metric rather than planar. It is mainly of interest to astrophysics and
concerns a rotating fluid permeated by a magnetic field. It turns out
that stars do not always rotate as a rigid body. Our own sun, for example,
exhibits a variation of rotation with latitude. Consider a non-uniformly
rotating star possessing a poloidal magnetic field, i.e. a field of the form
Bp(r, z) = (Br, 0, Bz) in (r, 0, z) coordinates. Suppose the sun rotates faster
at the equator than at its poles, u = (0, £l(z)r, 0), then, by Alfven's theo-
rem, the poloidal field lines will tend to be advected, as shown in Figure
4.7. The field lines will bow out until such time as the diffusion created by
the distortion is large enough to counter the effects of field sweeping. This
is readily seen from the azimuthal component of the steady induction
equation

where Bp is the poloidal magnetic field. The source of the azimuthal field
is the term V x (u x Bp), which may be rewritten as r(Bp • V)£2, showing
the role played by Q(z) in generating the azimuthal field. Note that, if A is
very small, then extremely large azimuthal fields may be generated by this
mechanism, of order Rm\Bp\. This is a key process in many theories
relating to solar MHD, such as the origin of sunspots.

Figure 4.7 Distortion of the magnetic field lines by differential rotation.
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Figure 4.8 Severing of a flux tube.

4.5.4 Magnetic reconnection

Finally, we consider the role played by a small but finite diffusivity in the
reconnection of magnetic flux tubes. Consider a flux tube in the form of a
ring which at t — 0 sits in a differentially rotating fluid, as shown in
Figure 4.8. When the two branches of the tube come into contact, the
field lines locally compress and the gradients in B become large.
Eventually the gradients become so large that, despite the smallness
of A, significant diffusion sets in. The result is that the magnetic field
lines reconnect, forming two smaller flux tubes. This kind of process is
very important in solar MHD, particularly the theory of solar flares,
where the nominal value of Rm is very large, yet flux-tube reconnections
are an important part of the origin of flares.

Suggested Reading

J A Shercliff, A textbook of magnetohydrodynamics, 1965, Pergamon Press.
(Chapter 3)

R Moreau, Magnetohydrodynamics, 1990, Kluwer Acad. Pub. (Chapter 2)
P H Roberts, An Introduction to magnetohydrodynamics, 1967, Longmans.

(Chapter 2)
H K Moffatt, Magnetic field generation in electrically conducting fluids, 1978,

Cambridge University Press. (Chapter 3 for kinematics, Chapter 5 for sun-
spots.)

Examples

4.1 A semi-infinite region of conducting material is subject to mutually
perpendicular electric and magnetic fields of frequency co at, and
parallel to, its plane boundary. There are no fields deep inside the
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stationary conductor. Derive expressions for the variation of ampli-
tude and phase of the magnetic field as a function of distance from
the surface.

4.2 A perfectly conducting fluid undergoes an axisymmetric motion and
contains an azimuthal magnetic field B9. Show that B9/r is conserved
by each fluid element.

4.3 An electromagnetic flow meter consists of a circular pipe under a
uniform transverse magnetic field. The voltage induced by the fluid
motion between electrodes, placed at the ends of a diameter of the
pipe perpendicular to the field, is used to indicate the flow rate. The
pipe walls are insulated and the flow axisymmetric. Show that the
induced voltage depends only on the total flow rate and not on the
velocity profile.

4.4 A perfectly conducting, incompressible fluid is deforming in such a
way that the magnetic field lines are being stretched with a rate of
strain S. Show that the magnetic energy rises at a rate SB2//A per unit
volume.

4.5 Fluid flows with uniform velocity past an insulated, thin flat plate
containing a steady current sheet orientated perpendicular to the
velocity. The intensity of the current sheet varies sinusoidally with
the stream wise coordinate, and the electric field in the fluid is zero.
Find the form of the magnetic field and show that it is confined to
boundary layers when Rm is large.



Dynamics at Low Magnetic Reynolds Numbers

It was perhaps for the advantage of science that Faraday,
though thoroughly conscious of the forms of space, time and
force, was not a professed mathematician. He was not tempted
to enter into the many interesting researches in pure mathema-
tics ... and he did not feel called upon either to force his results
into a shape acceptable to the mathematical taste of the time,
or to express them in a form which the mathematicians might
attack. He was thus left to his proper work, to coordinate his
ideas with his facts, and to express them in natural, uncompli-

cated language.
Maxwell (1873)

In Chapter 4 we looked at the effect of fluid motion on a magnetic field
without worrying about the back reaction of B on u. We now consider the
reverse problem, in which B influences u (via the Lorentz force), but u
does not significantly perturb B. In short, we look at the effect of a
prescribed magnetic field on the flow. To ensure that B remains unaf-
fected by u we must restrict ourselves to low magnetic Reynolds numbers:

Rm = ul/k = ficrul « 1 (5.1)

However, this is not overly restrictive, at least not in the case of liquid-
metal MHD. For example, in most laboratory experiments, or industrial
processes, k ~ 1 m2/s, / ^ O . l m and internal friction keeps u to a level of
around 0.01 m/s —• 1 m/s. This gives Rm ~ 0.001 -> 0.1. The only excep-
tion is dynamo theory, where the large length scales involved result in
Rm ~ 100. We also note in passing that the viscosity, v, of liquid metal is
similar to that of water, and so the Reynolds numbers of most liquid-
metal flows is very high.

Now a magnetic field can alter u in three ways. It can suppress bulk
motion, excite bulk motion, or alter the structure of the boundary layers in
some way. We look at the first of these possibilities in Part 1, where we
discuss the damping of flows using a static magnetic field. We tackle the
second possibility in Part 2, where the effect of a rotating magnetic field is
investigated. Finally, we examine boundary layers (Hartmann layers) in
Part 3. We start, however, with the governing equations of low-i?m MHD.

117
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5.1 The Low-/?™ Approximation in MHD

The essence of the low-7?m approximation is that the magnetic field asso-
ciated with induced currents, J ~ on x B, is negligible by comparison
with the imposed magnetic field. There are three distinct cases which
commonly arise.

(i) The imposed magnetic field is static, the flow is induced by some
external agency, and friction keeps u to a modest level in the sense
that |u| < A/7.

(ii) The imposed magnetic field travels or rotates uniformly and slowly
such that lifted <̂C A//. This induces a flow u which, due to friction in
the fluid, is somewhat slower than the speed of the field,

(iii) The imposed magnetic field oscillates extremely rapidly, in the sense
that the skin-depth 8 = {2/ixaco)x/1 is much less than /, co being the
field frequency. The magnetic field is then excluded from the interior
of the conductor (see Section 4.5) and inertia or friction in the fluid
ensures that |u| <£ col.

Categories (i)-(iii) cover the majority of flows in engineering applications.
Typical examples are the magnetic damping of jets, vortices or turbulence
(case (i)), magnetic stirring using a rotating magnetic field (case (ii)) and
magnetic levitation (case (iii)). We shall leave the discussion of flows of
type (iii) until Chapter 12. Here we focus on cases (i) and (ii).

Now if the imposed magnetic field travels or rotates in a uniform
manner, then a suitable change of frame of reference will convert pro-
blems of type (ii) into those of type (i). Without loss of generality, there-
fore, we may take B to be steady.

We now discuss the simplifications which result in the governing equa-
tions when Rm is low and the imposed magnetic field is steady. Let Eo, Jo

and Bo represent the fields which would exist in a given situation if u = 0,
and let e, j and b be the infinitesimal perturbations in E, J and B which
occur due to the presence of a vanishingly small velocity field. These
quantities are governed by

V x Eo = 0, Jo = O-EQ (5.2a, b)

V x e = -8b/8t, j = a(e + u x Bo) (5.3a, b)

where we have neglected the second-order term u x b in (5.3b). Now
Faraday's equation gives e ~ ub and so the perturbation in the electric
field may also be neglected in (5.3b). Ohm's law now becomes

J = Jo + j = ^(EQ + u x Bo)
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However, Eo is irrotational and so may be written as —VF, where Kis an
electrostatic potential. Our final version of Ohm's law is therefore

(5.4)

while the leading-order term in the Lorentz force (per unit volume) is

F = J x Bo (5.5)

Equations (5.4) and (5.5) are all that we require to evaluate the Lorentz
force in low-i?m MHD. There is no need to calculate b since it does not
appear in the Lorentz force. Moreover, J is uniquely determined by (5.4)
since

V • J = 0, V X J = ( T V X ( U X B 0 ) (5.6a, b)

and a vector field is unambiguously determined if its divergence and
curl are known (and some suitable boundary conditions are specified).

From now on we shall drop the subscript on Bo, on the understanding
that B represents the imposed, steady magnetic field.

Part 1: Suppression of Motion

5.2 Magnetic Damping

There are many industrial and laboratory processes in which an intense,
static magnetic field is used to suppress unwanted motion in a liquid
metal. For example, in the continuous casting of large steel slabs, an
intense DC magnetic field (~ 104 Gauss) is commonly used to suppress
motion within the mould. Sometimes the motion takes the form of a
submerged jet which feeds the mould from above, at others it takes the
form of large vortices. In both cases the aim is to keep the free surface of
the liquid quiescent, thus avoiding the entrainment of surface debris.
Magnetic damping is also used in the laboratory measurements of che-
mical and thermal diffusivities, particularly where thermal or solutal
buoyancy can disrupt the measurement technique. These examples are
discussed in more detail in Chapter 9. Here we present just a glimpse of
the possibilities offered by magnetic damping. We shall consider the fluid
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to be infinite in extent, or else bounded by an electrically insulating sur-
face, S. For simplicity we neglect the viscous forces and take the imposed
magnetic field to be uniform.

5.2.1 The destruction of mechanical energy via Joule dissipation

To some extent, the mechanism of magnetic damping is clear. Motion
across magnetic field lines induces a current. This leads to Joule dissipa-
tion and the resulting rise in thermal energy is accompanied by a corre-
sponding fall in kinetic energy. This is evident from (5.4) and (5.5), which
give the rate of working of the Lorentz force as

(J x B) u = - J (u x B) = -(J2/a) - V • [VJ]

while the product of the inviscid equation of motion with u yields

Combining the two furnishes the energy equation

Thus, as anticipated, Joule dissipation leads to a fall in kinetic energy.
However, there are other, more subtle effects associated with magnetic
damping. Specifically, the action of a magnetic field is anisotropic. It
opposes motion normal to the field lines but leaves motion parallel to
B unopposed. Moreover, as we shall see, vorticity and linear momen-
tum tend to propagate along the field lines by a pseudo-diffusion
process. These anisotropic effects can be understood in terms of
field sweeping and a Maxwell tension in the B-lines, as discussed in
Section 3.9.

For example, consider a jet which is directed at right angles to a uni-
form magnetic field. Motion across the field lines induces a second, weak,
magnetic field. The combined field is then bowed slightly in the direction
of u and the resulting curvature gives rise to a Lorentz force B /IJLR which
opposes the motion. The tension in the field lines then causes the distur-
bance to spread laterally along the B-lines.

Now all of this is, to say the least, a little heuristic. However, a couple
of simple examples will help establish the general ideas. We start with the
jet shown in Figure 5.1.



B i

Magnetic Damping

B2/JLLR

121

Disturbance

Disturbance

(a) (b) (c)

Figure 5.1 Motion across the field lines distorts those lines and the resulting
curvature gives rise to a force B2/JJLR opposing the motion. The disturbance
also propagates laterally along the magnetic field lines.

5.2.2 The damping of a two-dimensional jet

The Lorentz force per unit mass acting on the jet shown in Figure 5.1 is,
from (5.4),

F = (J x B)/p = -U_L/T - V F X (crB/p) (5.8)

Here u^ represents the velocity components normal to B, and r is the
magnetic damping time, r = (crB2/p)~l. Note the anisotropic nature of
this force. Pressure forces and the effect of V apart, each fluid particle
decelerates on a time scale of r, according to

Du i u± Dx\,

xDt Dt
0

It is as if each element of fluid which tries to cross a magnetic field line
experiences a frictional drag. As a simple example, consider a thin,
steady, two-dimensional jet, u(x, y) — (ux, uy, 0), directed along the x-
axis and passing through a uniform field imposed in the j-direction.
This geometry is particularly easy to handle since both the pressure p
and potential V are zero (or constant), as we now show. The divergence
of Ohm's law gives

V2F = V • (u x B) = B • co = 0 (5.9)

and so V is zero provided there is no electrostatic field imposed from the
boundaries (we exclude such cases). The induced current, J = au x B, is
then directed along the z-axis and the Lorentz force, J x B = —auxB ex,
acts to retard the flow. Moreover, the fluid surrounding the jet is quies-
cent and so Vp = 0 outside the jet. Provided the jet is thin, in the sense
that its characteristic thickness, <5, is much less than a characteristic axial
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length scale, /, then Vp is also negligible within the jet. (If the streamlines
are virtually straight and parallel then there can be no significant pressure
gradients normal to the streamlines.) In this simple example, then, both
the pressure forces and W x B are zero. It follows that

u-Vux = -ux/x (5.10)

Equation (5.10) is readily solved. We look for a similarity solution of
the form ux = uo(x)f(y/8(x)), where u0 is the velocity on the axis and uo8

2

is constant. Then (5.10) applied to the axis gives UQ(X) = — 1/r. Next we
find uy using continuity, evaluate u • Vwx, and substitute for this term in
(5.10). This yields

f, n=y/S
o

which has solution/ = sech2(/y). Thus the velocity distribution in the jet is

ux = [U- x/x] sech2(y/8) (5.11)

where U = ux(0, 0). The most striking feature of this solution is that the
jet is annihilated within a finite distance L = Ux. The situation is as
shown below. Note that our solution ceases to be valid as we approach
x = Ux since 8/1 ~ 8/Ux ~ 8(0)/(Ur - x), which is not small for x ~ Ux.

We shall return to the topic of MHD jets in Chapter 9, where we look
at more complex flows. Interestingly, it turns out that Figure 5.2(a) is
quite misleading when it comes to three-dimensional jets. In fact, a three-
dimensional jet maintains its linear momentum and so cannot come to a
halt. It has the shape shown in Figure 5.2(b).

5.2.3 Damping of a vortex

Let us now consider a second example, designed to bring out the ten-
dency for vorticity to diffuse along the magnetic field lines. As before, we
take B to be uniform. This time, however, we consider the initial velocity
field to be an axisymmetric, swirling vortex, u = (0, F/r, 0) in (r, 0, z)
coordinates. B is taken to be parallel to the z-axis. At t = 0 the angular
momentum per unit mass, F(r, z), is assumed to be confined to a sphere of
size 8, as shown in Figure 5.3(a).

Now the axial gradients in F will, via the centrifugal force, tend to
induce a poloidal component of motion, u^ = (ur, 0, uz). That is, if F is a
function of z then the centripetal force, (F2/r3)er, is rotational and cannot
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Figure 5.2 (a) A two-dimensional jet is destroyed by a magnetic field in a dis-
tance UT.

Jet entrains fluid from far field

' Outward flow
of mass caused
by reverse flow

Figure 5.2 (b) A three-dimensional MHD jet.

be balanced by a radial pressure gradient. A secondary, poloidal motion
then results which complicates the problem. However, in the interests of
simplicity, we shall take J x B » u • Vu, which is equivalent to specifying
that the magnetic damping time, r, is much less than the inertial timescale
8/UQ. Since poloidal motion grows on a timescale of 8/UQ, we may then
neglect u^ for times of order r.

Let us now determine the induced current, J, and hence the Lorentz
force which acts on the (initially) spherical vortex. The term u x B in
Ohm's law gives rise to a radial component of current, Jr. However,
the current lines must form closed paths and so an electrostatic potential,
V(r, z), is established, whose primary function is to ensure that the J-lines
close. The distribution of Fis in accordance with the first part of (5.9). It
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drives an axial component of current, thus allowing J to form closed
current paths in the r-z plane, as shown in Figure 5.3(a). Since J is
solenoidal, we can introduce a vector potential defined by

In the fluid mechanics literature 0 would be called the Stokes streamfunc-
tion for J. For reasons which will become apparent shortly, it is conve-
nient to take the curl of this,

where V* is the Laplacian-like operator,

(5.12)

However, Ohm's law (5.6b) gives us V x J = oBdw/dz, and so

2 _ ar
* dz

We have managed to relate <p, and hence J, to the flow field. This allows
us to evaluate the Lorentz force per unit mass, F = —(JrB/p)e9 = F9e9,
in terms of P.

Swirling vortex

Induced currents and
associated Lorentz force

Figure 5.3 (a) An initially spherical vortex is damped by a magnetic field.
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Here the inverse operator/ = V~2(g) is simply a symbolic representation
= g. From Figure 5.3(a) we might anticipate that Fe is negative in

the core of the vortex, decelerating the fluid, and positive above and
below the vortex, inducing motion in previously quiesant regions. This,
in turn, suggests that T spreads along the magnetic field lines. We shall
now confirm that this is indeed the case. The azimuthal equation of
motion is

Note that, in the absence of the Lorentz force, angular momentum is
materially conserved (i.e. preserved by each fluid particle), there being
no azimuthal pressure gradient in an axisymmetric flow. Since we are
neglecting the poloidal motion on a timescale of r, our equation of
motion becomes

The first thing to note from (5.13) is that the global angular momentum,
H, of the vortex is conserved:

dt dt) p

Yet energy is continually dissipated in accordance with (5.7),

How can the vortex preserve its angular momentum in the face of con-
tinual Joule dissipation? We shall see that the answer to this question
holds the key to the evolution of the vortex. Let lr and lz be characteristic
radial and axial length scales, respectively, for the vortex. At t = 0 we
have lr = lz = 8, and we shall suppose that lr remains of order 8 through-
out the life of the vortex, there being no reason to suppose otherwise.
(We shall confirm this shortly.) Then (5.6b), in the form
V x J = aV x (u x Bo), allows us to estimate the magnitude of V x J,
and hence J, from which

"~M»U E^h (5,4,
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o

o

o

, ~ 8(t/x)1

Figure 5.3 (b) Diffusion of angular momentum along the magnetic field lines
causes an initially spherical vortex to elongate into a cigar-like shape.

However, we also have

H ~ T82L = constant (5.15)

It is evident that lz must increase with time since otherwise E would decay
exponentially on a timescale of r, which contradicts (5.15). In fact the
only way of satisfying both (5.14) and (5.15) is when F and lz scale as

l/\ 8{t/x)x'2lz (5.16)

which, in turn, suggests that the kinetic energy of the vortex declines as
(r/r)~1 /2 . It seems that the vortex evolves from a sphere to an elongated
cigar-like shape on a timescale of r (Figure 5.3(b)). This is the first hint of
the pseudo-diffusion process discussed earlier. In fact, we might have
anticipated (5.16) from (5.13), written in the form

i a2 , „ , x 82 d2rar
—
dz2

dz2 (5.17)

suggesting diffusion along the magnetic field lines with a diffusivity of
aB ~ 82/r. (This argument may be made rigorous by taking Fourier
transforms.) Recalling that the diffusion rate in a typical thermal pro-
blem is / ~ +Jai, we have lz ~ 8(t/r)l/2, as in (5.16).

In the spirit of field sweeping and Maxwell tensions, we might picture
this diffusion process as a spiralling up of the magnetic field lines, which
then slowly unwind, propagating angular momentum along the z-axis.
We shall return to this idea in Section 6.1, where we show that this
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pseudo-diffusion is the last vestige of Alfven wave propagation at low
Rm. We shall also see, in Chapter 7, that lz - (t/r)l/2 and K.E. - (r/r)~1/2

characterises MHD turbulence at low Rm, which is perhaps hardly sur-
prising since turbulence just consists of an ensemble of vortices, rather
like that shown in Figure 5.3(b).

An exercise for the enthusiastic or the sceptical

The estimates (5.16) may be confirmed by detailed analysis. The most
direct method of solving (5.13) is to use Fourier transforms. In axisym-
metric problems the three-dimensional Fourier transform reduces to
the so-called cosine-Hankel transform, defined by the transform pair

/•OO /*OO

F(u9) = U(kn kz) = 4n\ [ue]Jx (krr) cos(k2z)rdrdz
Jo Jo

F~\U) = ue(r, z) = - L
2TT2

This transform has the convenient properties

F( ctf/dz2) = -k]F(f), F(V2J) = -(k2
r+ k])F(f) = -k2F(f)

and so the transform of (5.13) is

a\ —, cos a = kz/k

Solving for U and performing the inverse transform yields

dU r 2—-=— ^cos a\

= ^ 2 j J

where Uo = F(ue) at t = 0. Confirm that for t > r this integral takes
the form

r = (t/r)-i/2G(r,z/(t/r)l/2) (5.18)

where G is determined by the initial condition. Thus confirm that

r ~ (t/r)-l/2, lz ~ (t/rf2

as suggested earlier on the basis of qualitative arguments. Evidently,
the vortex distorts from a sphere to a column, growing axially at a rate
h ^ S(t/r)l/2. This axial elongation is essential to preserving the angu-
lar momentum of the vortex.
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5.3 A Glimpse at MHD Turbulence

The last example in Section 5.2 suggests that a turbulent flow evolving in
a magnetic field will behave very differently to conventional turbulence,
and this is indeed the case. We examine this issue in detail in Chapter 7;
here we just give a flavour of some of the underlying ideas. A classic
problem in conventional turbulence theory is the so-called free decay of
a turbulent flow, and it is worth considering this purely hydrodynamic
problem first.

Suppose that the fluid in a large vessel is stirred vigorously and then
left to itself. Suppose also that the eddies created by the stirring are
randomly orientated and distributed throughout the vessel, so that the
initial turbulence is statistically homogeneous and isotropic. Let the ves-
sel have size L and a typical eddy have size / and velocity u. We take B to
be zero and L ^> / so that the boundaries have little influence on the bulk
of the motion. The first thing which happens is that some of the eddies
which are set up at t = 0 break up through inertially driven instabilities,
creating a whole spectrum of eddy sizes, from / down to /min ~ (ul/v)~3/4l,
the latter length scale being the smallest eddy size which may exist in a
turbulent flow without being eradicated by viscosity. (Eddies of size /min

are characterised by vV2u ~ u • Vu - see Chapter 7.) There then follows a
period of decay in which energy is extracted from the turbulence via the
destruction of small-scale eddies by viscous stresses, kinetic energy being
continually passed down from the large scales to the small scales through
the break up of the larger eddies. This 'free decay' process is characterised
by the facts that: (i) the turbulence remains approximately homogeneous
and isotropic during the decay; (ii) the energy (per unit mass) declines
according to Kolmogorov's decay law E ~ EQ(u0t/l0)~

l0/1, or something
fairly close to this (UQ and /0 are the initial values of u and I). Again, the
details are spelled out in Chapter 7.

Now suppose that we repeat this process but in the presence of a uni-
form magnetic field B = Bez. For simplicity, we take the fluid to be
inviscid and to be housed in a large electrically insulated sphere of radius
R, with R » / (Figure 5.4(a)). From (5.6b) and (5.7) we have

dt per
rfK E=l-lu2dV (5.19)

2 J
du

= a£—, V J = 0 (5.20)
oz
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2R

Figure 5.4 (a) Decaying turbulence in a magnetic field.

Clearly the kinetic energy of the flow falls monotonically, and this process
ceases if, and only if, u is independent of z, i.e. J = 0. However, one
component of angular momentum is conserved during this decay.
Formally, this may be seen by transforming the expression for the com-
ponent of torque parallel to B as follows:

[x x (J x B)] • B = [(x • B)J - (x • J)B] • B = -(B2/2)V • [x\j] (5.21)

This integrates to zero over the sphere (remember that J • dS = 0). Thus
the global Lorentz torque parallel to B is zero and so, since there are no
viscous forces, one component of angular momentum,

H// =

is conserved as the flow evolves. (We take the origin of coordinates to lie
at the centre of the sphere and use // and _L to indicate components of a
vector parallel and normal to B.) The physical interpretation of (5.21) is
straightforward. The current density, J, may be considered to be com-
posed of many current tubes, and each of these may, in turn, be consid-
ered to be the sum of many infinitesimal current loops, as in the proof of
Stokes' theorem. However, the torque on each elementary current loop is
dm x B, where dm is its dipole moment, and this is perpendicular to B.
Consequently, the global torque, which is the sum of many such terms,
can have no component parallel to B. Conservation of H// then follows.

As we shall see, this conservation law is fundamental to the evolution
of a turbulent flow. In fact, we may show that, as in the last example of
Section 5.2, the conservation of H / /? combined with continual Joule dis-
sipation, leads to an elongation of the eddies. Let us pursue this idea a
little further. Since H// is conserved, the energy of the flow cannot fall to
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zero. Yet (5.20) tells us that J is non-zero, and the Joule dissipation finite,
as long as u is a function of z. It follows that, eventually, the flow must
settle down to a two-dimensional one, in which u exhibits no variation
along the field lines. We may determine how quickly this happens as
follows. Noting that the /th component of torque may be written as

2[x x (J x 8)],-= [(x x J) x B],.+V • [(x x (x x B))fJ] (5.22)

we may rewrite the global Lorentz torque in terms of the dipole moment,
m, of J,

= fxx(JxB)rfK = j fj f x x 3 d v \ x B = m x B

Also, from Ohm's law (5.4), we have

(x x J) = a[x x (u x B) + V x (xV)]

(Here V now stands for the electrostatic potential rather than volume.)
On integrating this expression over the spherical volume, the second term
on the right converts to a surface integral which is zero since x x dS = 0.
The first contribution on the right may be rewritten (using a version of
(5.22) in which u replaces J ) a s | ( x x u ) x B plus a divergence, which also
integrates to zero. It follows that

m = (or/4)H x B

and so the global Lorentz torque becomes

The global angular momentum equation

3H
T

then yields

H /7 = constant, Hj_ = H±(0) exp(-t/4r) (5.23a, b)

As expected, H// is conserved while H± decays exponentially on a time
scale of r. The simplicity of this inviscid result is surprising, partially
because of its generality (the initial conditions may be quite random),
and partially because the local momentum equation

pi — + u Vu) = -V/7 + J x B
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is quadratic in u and so possesses analytical solutions only for the most
trivial of flows.

Equations (5.23a, b) are highly suggestive. The preferential destruction
of H ± suggests that vortices whose axes are perpendicular to B are anni-
hilated, leading to a quasi-two-dimensional flow. We may quantify this as
follows. First we need the Schwartz integral inequality. In its simplest
form this states that any two functions, / and g, satisfy the inequality

The analogous results for arbitrary vector fields A and B are

and

I f A x BdV 1 < [ A2dV [ B2dV

In the present context, this yields

H2/ < ixldV lu2
±dV

which, in turn, furnishes a lower bound on the energy, E,

E>H2n\2\x2
±dv\ (5.24)

Thus, provided H// is non-zero, the flow cannot come to rest. Yet (5.20)
tells us that, as long as there is some variation of velocity along the B-
lines, the Joule dissipation remains finite, and E falls. Consequently,
whatever the initial condition, the flow must evolve to a steady state
that is strictly two-dimensional, exhibiting no variation of u along the
field lines. In short, the flow adopts the form of one or more columnar
vortices, each aligned with the B-field (Figure 5.4(b)), all other compo-
nents of angular momentum being destroyed on a time scale of 4r. The
simplicity of this result is surprising, particularly since it is valid for any
value of ur/l, i.e. unlike the example in Section 5.2, this is valid for any
ratio of |J x B| to inertia.

It appears, therefore, that magnetic fields tend to induce a strong ani-
sotropy in a turbulent flow, stretching the eddies in the direction of B. Of
course, any real fluid is viscous and so this stretching of vorticity will be
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t = 0

Figure 5.4 (b) MHD turbulences evolve to a two-dimensional state under the
influence of pseudo-diffusion.

accompanied by viscous dissipation, just as in conventional turbulence.
The eddies become elongated only if they survive for long enough. This,
in turn, requires that J x B be at least of order (u • V)u and so we would
expect strong anisotropy in a real flow only if the interaction parameter
N = l/uz is greater than unity. We return to this topic in Chapter 7.

5.4 Natural Convection in the Presence of a Magnetic Field

As a final example of the dissipative effect of a static magnetic field we
consider the influence of a uniform, imposed field on natural convection.
We start with a description of natural convection in the absence of a
magnetic field.

5.4.1 Rayleigh-Benard convection

It is a common experience that a fluid pool heated from below exhibits
natural convection. Hot, buoyant, fluid rises from the base of the pool.
When this fluid reaches the surface it cools, and sinks back down to the
base. Such a flow is characterised by the continual conversion of gravita-
tional energy into kinetic energy, the potential energy being released as
light fluid rises and heavy fluid falls. However, this motion is opposed by
viscous dissipation, and if the heating is uniform across the base of the
pool, and the viscosity high enough, no motion takes place. Rather, the
fluid remains in a state of hydrostatic equilibrium and heat diffuses
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upwards by conduction alone. The transition between the static, diffusive
state and that of natural convection occurs at a critical value of

Ra = gfiATd3/va

called the Rayleigh number. Here AT is the imposed temperature differ-
ence between the top and the bottom of the pool, d the depth of the pool,
P the expansion coefficient of the fluid (in units of K"1) and a is the
thermal diffusivity. The sudden transition from one state to another is
called the Rayleigh-Benard instability, in recognition of Benard's experi-
mental work in 1900 and the subsequent analytical investigation by
Rayleigh in 1916. Rayleigh described Benard's experiment thus:

Benard worked with very thin layers, only about 1 mm deep,
standing on a levelled metallic plate which was maintained at a
uniform temperature... The layer rapidly resolves itself into a
number of 'cells', the motion being an ascension in the middle
of a cell and a descension at the common boundary between a

cell and its neighbours.

Inspired by these experiments, Rayleigh developed the theory of con-
vective instability for a thin layer of fluid between horizontal planes. He
found that the destabilising effect of buoyancy (heavy fluid sitting over
light fluid) wins out over the stabilizing influence of viscosity only when
Ra exceeds a critical value (Ra)c. For fluid bounded by two solid planes
the critical value is 1708, while an open pool with a free upper surface has
(Ra)c = 1100. In principle, one can also do the calculation where both the
bottom and top surfaces are free (although the physical significance of
such a geometry is unclear) and this yields (Ra)c = 658.

Ironically, many years later, it was discovered that the motions
observed by Benard were driven, for the most part, by surface tension,
and not by buoyancy. (This is because Benard used very thin layers.)
Nevertheless Rayleigh's analysis of convective instability remains valid.
We now extend this analysis to incorporate the stabilising (dissipative)
effect of a magnetic field.

5.4.2 The governing equations

When dealing with natural convection in a liquid it is conventional and
convenient to use the Boussinesq approximation. In effect, this says that
density variations are so small that we may continue to treat the fluid as
incompressible and having uniform density, p, except to the extent that it
introduces a buoyancy force per unit volume, <5pg, into the Navier-Stokes
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equation. This buoyancy force is usually rewritten as —pfiTg, where /3 is
the expansion coefficient, —(dp/3T)/p, and T is the temperature (relative
to some datum). The governing equations in the presence of an imposed,
vertical field, Bo, are then

V • u = 0, J = cr(-VK + u x Bo)

DT 2

Dt

Here we have ignored the internal heating due to viscous and Joule
dissipation by comparison with the heat transfer from the lower bound-
ary. The stationary configuration whose stability is in question is

uo = O, T0 = AT(l-z/dl 30 = 0

Here we take z to point vertically upward, the top and bottom surfaces to
lie at z = 0 and d, and AT is the imposed temperature difference
T(z = 0) — T(z = d). Now the formal method of determining the stability
of such a base state is straightforward. One looks for slightly perturbed
solutions of the form T = To + 8T, u = u0 + <5u and J = Jo + 83 = 83,
substitute these into the governing equations, discard terms which are
quadratic in the disturbance, and look for separable solutions of the
linearised equations in the form u = u(x)exp(jst). If all goes well, this
results in an eigenvalue problem, the eigenvalues of which determine
the growth (or decay) rate of some initial disturbance. This process is
long and tedious, resulting in an eighth-order differential system, and we
do not intend to do it. Rather, we shall give an heuristic description of the
instability which captures the key physics of the process and yields a
surprisingly accurate estimate of (Ra)c.

5.4.3 An energy analysis of the Rayleigh-Benard instability

If we take the product of the Navier-Stokes equation with u, we obtain

2\

[(;•«)•]•;- ( J x Bo) • u - v(u • (V x oi)) + g0Tuz

The rate of working of the Lorentz, viscous and buoyancy forces may be
rewritten as
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1 1 J2

- ( J x Bo) • u = — ( u x Bo) • J = V • (VJ/p)
p p op

-v[u • (V x a))] = -v[co2 + V • (o x u)J

gfi{Tuz) = gfc8Tuz + AT(\- z/d)uz)

= gP[8Tuz + V • ((z - z2/2d)ATu)\

where 8T is the (small) departure of T from the static, linear distribution.
We now gather all the divergence terms together and rewrite our energy
equation as

Now the divergence term vanishes when this equation is integrated over
the entire pool (or a single convection cell) and we obtain

d
Jt

f \ — )dV = — - \j2dV -v\(o2

J \2) pa) J

The dissipative roles of the viscous and Lorentz forces are now apparent,
as is the source of potential energy, gf$8Tuz. We would expect that the
equilibrium is unstable wherever the fluid can arrange for

gp f uz8TdV > — f J2dV + v f co2dV

with marginal stability corresponding to the equality sign. Let us now try
to estimate the various integrals above. Suppose that the convection cells
are two-dimensional, taking the form of rolls, with u confined to the x-z
plane. We might approximate the shape of these by the streamfunction
V̂ (x, i) = \jr(t) sin(nz/d) sm(jrx/l), where 2/ is the wavelength of the
instability. Also, we suppose the onset of the instability to be non-oscil-
latory, so that s = 0 at Ra = (Ra)c. (All of the experimental and analy-
tical evidence suggests that this is the case, except perhaps in certain hot
plasmas in which v > X.) Since the electrostatic potential, V, is zero for
two-dimensional flow, (5.4) gives, for one cell,

The viscous dissipation, on the other hand, takes the form
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v f co2dV = O/4) [ (TT/ / ) 2 +

Finally, the buoyancy integral can be estimated with the aid of
(u . V)r0 = aS72(8T), which yields

8T = a~lW~2(u • Vr0) = ot~x[(n/lf + (n / d)2]~X uz(&T / d)

where / = V~2g is a symbolic representation of g = V2/. This gives the
estimate

gP [8TuzdV = gPa~l[(n/lf + (7t/d)2Y\AT/d)(n/2l)2jf2ld

Thus the transition to instability occurs when

j3"\gPATd3

L
= Aa-

(driving force) (Joule dissipation) (viscous dissipation)

Introducing the cell aspect ratio, a — (nd/l), this simplifies to

(Ra)c = a'2 (a2 + n2){{n2 + a2)2 + n2{Ha)2\

where Ha = (oB$d2/pv)l/2 is the Hartmann number introduced in
Chapter 3. It remains to estimate a. We now suppose that the cell
shape is chosen so as to maximise the rate of working of the buoyancy
force and minimise the dissipation. That is to say, we choose Ijd such that
(Ra)c is a minimum. This yields

(2a2 - n2)(a2 + 7T2)2 = it\Hd)2

from which we find

Ha-+0: a = 2.22, (Ra)c = 675

Ha^oo\ a = (7TA/2)x/\Ha)x/\ (Ra)c = n2{Haf

Note that, for Ha — 0, the convection rolls are predicted to have an
aspect ratio d/l of the order of unity, while the cells are narrow and
deep at high Ha. We have made many assumptions in deriving these
criteria, and so we must now turn to the exact analysis to see how our
guesses have faired. Fortuitously it turns out that our estimate of (Ra)c at
large Ha is exactly correct! Our estimate of (Ra)c = 675 at Ha = 0 is less
good though. Depending on the boundary conditions at z = 0 and d, an
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exact analysis gives (Ra)c = 658 (two free surfaces), 1100 (one free, one
solid) and 1708 (two solid surfaces). Still, our energy analysis seems to
have caught the essence of the process, and it is satisfying that its pre-
dictions are exact at high Ha. (The errors at low Ha are due to the
assumed distribution of x/r.) It would seem that the cell size automatically
adjusts to give the best possibility of an instability, minimising dissipation
while maximising the rate of working of the buoyancy flow.

5.4.4 Natural convection in other configurations

The Rayleigh-Benard configuration represents a singular geometry in the
sense that it admits a static solution of the governing equations (uniform
conduction, u = 0). Convection appears only because this solution is
unstable at high values of AT7 or low values of v. In most geometries
(for example a heated plate whose flat faces are vertical) motion develops
irrespective of the size of v and AT. There is no static solution of the
governing equations. In such cases the smallest temperature difference
will drive motion. The influence of an imposed magnetic field is then
different. It does not delay the onset of convection, as in the Rayleigh-
Benard geometry, but rather moderates the motion which inevitably
occurs.

Consider the case of a vertical plate held at a temperature AT above
the ambient fluid temperature. Here the motion is confined to a thermal
boundary layer, 8, which grows from the base of the plate as the fluid
passes upwards. When there is no imposed field we can estimate u and 8
from the equations

u(du/dz) ~ gfiAT (vertical equation of motion)

u(dT/dz) ~ aT/82 (heat balance)

This yields

where z is measured from the base of the plate. (Actually, these estimates
are accurate only for low Prandtl number fluids, v/a <£ 1, such as liquid
metals. When the Prandtl number is of order unity, or greater, the viscous
term vu/82 must be included in the vertical force balance, leading to a
modification in the estimate of 8. However, we shall stay with liquid
metals for the moment.) Let us see how magnetic damping alters the
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situation. The imposition of a horizontal magnetic field, B, modifies the
first of these equations to

u(du/dz) - gfiAT - w/r, r~l = crB2/p

Evidently, the fluid ceases to accelerate when u reaches a value of vt given
by

For a plate of length /, the ratio of wmaxwith and without a magnetic field
is therefore

w* (gPATl)l/2 (Ra)l/2(a/v)l/2

u aB2l/p Ha2

so that the damping effect goes as ^B2. (The expression above assumes r
is small enough, or / large enough, for u to saturate before it leaves the
plate.) For efficient damping, therefore, we require

Ha2 > (Ra)l/2(a/v)l/2

The use of magnetic fields to curtail unwanted natural convection is
quite common. For example, in the casting of aluminium, the natural
convection currents in a partially solidified ingot are significant (a few
cm/s), and are thought to be detrimental to the ingot structure, causing
a non-uniformity of the alloying elements through the transport of
crystal fragments. Static magnetic fields have been used to minimise
this natural convection. In the laboratory, on the other hand, the stan-
dard method of measuring the thermal diffusivity of liquid metals relies
on injecting heat into the metal and measuring the rate of spread of
heat by conduction. However, natural convection disrupts this proce-
dure, and since it is difficult to design an apparatus free from convec-
tion, magnetic damping is employed to minimise the flow. Convection
in a magnetic field is also important in geophysics and astrophysics. The
terrestrial magnetic field is maintained by motion in the liquid core of
the earth and this is driven, in part, by solutal and thermal convection.
However, this convection is damped by the terrestrial field (see Chapter
6). Finally, in the outer layers of the sun, heat is transferred from the
interior to the surface by natural convection, and in the case of sun-
spots this happens in the presence of a significant magnetic field. There
are many other applications of magnetoconvection and it is not surpris-
ing, therefore, that this subject is receiving much attention at the pre-
sent time.
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Part 2: Generation of Motion

5.5 Rotating Fields and Swirling Motions

5.5.1 Stirring of a long column of metal

Let us now consider a problem which frequently arises in engineering.
This illustrates the capacity for magnetic fields to induce motion as well
as suppress it. Suppose that fluid is held in a long cylinder of radius R and
that a uniform magnetic field rotates about the cylinder with angular
velocity Q as shown in Figure 5.5. In effect, we have a simple induction
motor, with the fluid playing the role of rotor. The rotating magnetic field
therefore induces an azimuthal velocity, ue(r), in the fluid, stirring the
contents of the cylinder.

The use of magnetic stirring is very common in the continuous casting
of steel. Here, alloying elements tend to segregate out of the host metal
during solidification, giving rise to inhomogeneity in the final ingot.
Moreover, small cavities can form in the ingot either because of trapped
gas or because of the shrinkage of the metal during freezing. All of these
defects can be alleviated by stirring the liquid pool.

We now try to estimate the magnitude of the induced velocity. Let us
start by evaluating the Lorentz force. For simplicity, we suppose that the
field rotation rate is low (in the sense that QR < X/R). Next we change
frames of reference so that the field is stationary. The fluid then appears
to rotate in a clockwise direction at a rate u = (Qr — ue). We now satisfy
the low-i?m conditions of Section 5.1 and so

xB), F = J x B (5.25a, b)

Figure 5.5 Magnetic stirring using a rotating magnetic field.
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Now the divergence of (5.25a) gives us V2 V = 0, and so we may take V =
0 provided that no electrostatic field is applied at the boundaries. It
follows that

F = J x B = a ( u x B ) x B = -aB2u± (5.26)

In (r, 0) coordinates this becomes

F = aB2(Qr - ue) cos #(sin 0, cos 0)

which may be conveniently split into two parts:

F = ^aB2(Qr - ue)ee + ^-aB2(Q - uo/r)V(r2 sin20) (5.27)

Now, although we have assumed that QR < X/R (i.e. /JLCTQR2 <£ 1), it
may be shown that expression (5.27) is a good approximation up to
values of /xaQR2 ~ 1, with a maximum error of ~ 4 % . (There is some
hint of this in Figure 4.6, which shows very little field distortion at
Rm = 1.) It turns out that this is useful since most engineering applica-
tions are characterised by the double inequality

< X/R

and so, for most practical purposes, we may take

F = - aB2Qree + V0, 0 = - oB2 Qr2 sin 20

The second term may now be dropped since 0 simply augments the
pressure distribution in the fluid and plays no role in the dynamics of
the flow. Finally we end up with

1 9 ~F = -aBzQree

We now consider the equations of motion for the fluid. The radial com-
ponent of the Navier-Stokes equation simply expresses the balance
between dp/dr and the centripetal acceleration. The azimuthal component
gives, in the steady state,

W 2 = " f r2Fedr
Jo

This represents the torque balance on a cylinder of radius r (Figure 5.6).
Substituting for xr6 using Newton's law of viscosity yields
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Figure 5.6 Torque balance between the Lorentz force and viscous stresses

which may be integrated to give

(5.28)

(5.29)

Unfortunately (5.29) is of little practical value since very few flows of this
type are laminar. The viscosity, v, of most liquid metals is similar to that
of water, and so the Reynolds' number in practical applications is invari-
ably high, implying a turbulent motion. In such cases we must return to
(5.28) and replace the laminar shear stress by the turbulent Reynolds
stress which appears in the time-averaged equations of motion for a
turbulent flow (see Section 3.6). This gives

= -laB2Qr2 (5.30)

where v represents the fluctuating component of velocity and the overbar
denotes a time average. We now need some means of estimating the
Reynolds stress. As noted in Section 3.6, a commonly used, although
ultimately empirical, model for turbulent shear flows is Prandtl's mixing
length model. The essence of this model is that we approximate the
Reynolds' stress in a planar flow adjacent to a wall by

?xv = dy
dilx

where ux is the time-averaged velocity, lm is called the mixing length, and
y is the distance from the wall. The empirical constant K is usually taken
to be 0.4. The rotational equivalent of this is,

dr\r)
3_(iie\
dr\r)'

lm = K(R - r)
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Substituting into (5.30) and integrating yields (see example 5.4)

(u$/r)r=0= fiJ_^infe^j + 1.01 (5.31)

where QJ = crQB2/p. Note that in a turbulent flow ue scales linearly with B
(with a logarithmic correction), whereas in a laminar flow ue scales as B .

Equation (5.31) gives values of ue which compare favourably with
estimates obtained using more complicated turbulence models.
However, its main limitation is the fact that few engineering applications
are strictly one-dimensional. The problem is immediately obvious if we
refer back to Figure 3.31 showing spin-down of a stirred cup of tea. In a
confined domain, rotation invariably induces a secondary flow via
Ekman pumping. The inertial forces in the bulk of the fluid are then
no longer zero and, in fact, at high values of Re, these forces greatly
exceed the shear stresses, even the Reynolds stress. However, (5.31) is
based entirely on a balance between J x B and shear, the inertia asso-
ciated with secondary flow being ignored. Evidently, such a balance is
rarely satisfied in practice, and so estimate (5.31) must be regarded with
caution.

We shall examine the practical consequences of Ekman pumping in
some detail in Chapter 8, where we shall see that (5.31) is often quite
misleading. In the meantime, we can gain some hint as to the difficulties
involved by considering a second, related example.

5.5.2 Swirling flow induced between two parallel plates

We can gain some insight into the role of Ekman pumping by con-
sidering a second model problem. This is the MHD analogue of the
classical flow shown in Figure 3.32. Suppose we have two infinite,
parallel disks located at z = 0 and z = 2w, and that the gap is filled
with liquid metal. The body force Fe = \o£lB2r is applied to the fluid
inducing a steady, laminar swirling flow. We choose Fe so that Re is
high and look for a steady solution of the Karman type:

ur = SlcrF(z/l)

u9 = QcrG(z/l)

uz = QJH(z/l)
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Here / is some characteristic length scale, yet to be determined, and Qc is
a characteristic rotation rate in the core of the flow. We might anticipate
that the flow divides into thin Bodewadt layers on the disk surfaces
between which lies an inviscid core (Figure 8.4). In fact, this is precisely
what happens, as we now show.

Consider the lower half of the flow 0 < z < w. Away from the disc we
take / = lc = w (the subscript on / denotes the core flow). In the boundary
layer, on the other hand, we try the scaling I = lb = (v/Qc)

1^2, which is
Bodewadt boundary layer scaling. The ratio of these length scales is a sort
of inverse Reynolds number,

s = (v/Qcw
2)l/2 = lh/lc

We shall take s to be vanishingly small and try to match the velocity
profiles in the two regions using the method of matched asymptotic expan-
sions. Substituting our proposed velocity functions in the Navier-Stokes
and continuity equations yields, for both the core and the boundary
layer,

F2 + HF' - G2 + 1 = (v/Qcl
2)F" (radial equation)

2FG + G'H = (v/Qcl
2)G" + X-QJ/Q2

C (0 equation)

H' + IF = 0 (continuity)

where the prime represents differentiation with respect to z/l and, as
before, Qf is defined by Q2 = crQB2/p. In the core of the flow, where
/ — lc = w, these equations yield (for s - • 0)

H'c + 2FC = 0

where again the prime represents differentiation with respect to z/lc. The
boundary conditions for Fc, Gc and Hc arise from the fact that the flow
must be symmetric about z = w and that uz in the core and boundary
layer must match at the interface in the sense that

This gives

lim[wz]
z/lc - • 0 = z/lb - • oo
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z/lc = 1: Hc = 0, F'c = 0, G'c = 0 (symmetry)

z/lc -> 0: /c//c = lbHb(oo), or / / c = sHb(oo) (matching condition)

z//c ^ 0: Gc = 1 (definition of Qc)

Here Hb(oo) is the value of H furnished by the boundary-layer solution,
while the condition Gc = 1 effectively defines Qc. Formally

Hb(oc)= l m Hb(z/lb)
z/lb -> oo

We now expand Fc, Gc and Hc in polynomials of s and substitute these
into the governing core equations. To leading order in s we find

Fc =
 l-sHb(oo)

Gc = \

Hc = sHb(oo)[\ - z/w]

So the core velocity distribution is

uc = (-eHb(po)acr, Qcr, eHb{oo)Qc[w - z\\

Note that we have rigid-body rotation in the core and that ur and uz are
of order ^eue. It appears that, for small e, the core velocity is determined
by only three parameters: £, Qc and Hb(oo). The second of these, Qc, is
fixed by the azimuthal component of the core equation of motion, which
may be rearranged to give

ftc = Qf[Qfw
2/v]l/3[2Hb(oo)]-2/3

It now remains to find Hb(oo), and this is furnished by the boundary-
layer equations. Immediately adjacent to the disk, the azimuthal equation
of motion becomes

where the prime now represents differentiation with respect to z/lb.
However, we have already shown that the last term on the right of this
equation is of order e. Consequently, magnetic forcing is negligible in the
boundary layer (by comparison with viscous and inertial forces) and the
equations locally reduce to those for a conventional Bodewadt layer, for
which Hb(oo) = 1.349. It follows that the core rotation rate is
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Qc = 0.5l6Qf[Qfw
2/v]l/?>

Compare this with our one-dimensional equation for swirl-only flow,

The dependence of ue on B is entirely different in the two cases, reflecting
the different force balances. In the swirl-only flow, J x B is balanced by
shear. In this second problem the primary balance in the core of the flow
is between J x B and Coriolis forces. (This may be confirmed by tracing
the origin of the terms in the azimuthal equation of motion.)

So this simple swirling flow is more complex than you might think!
There are subtle and unexpected effects introduced by Ekman pumping.
We shall return to this issue in Chapter 8, where we show that the balance
between J x B and Coriolis forces is, in fact, typical of most flows
encountered in practice.

5.6 Motion Driven by Current Injection

There is a second way of driving motion in a conducting fluid. So far we
have considered only currents which are induced in the fluid by rotation
of the magnetic field. However, we can also inject current directly into a
fluid, and the resulting Lorentz force will, in general, produce motion.
The simplest example of this is the electromagnetic pump, which was
described in Chapter 1. Such a device consists of a duct in which mutually
perpendicular magnetic and electric fields are arranged normal to the axis
of the duct. The resulting Lorentz force, J x B, is directed along the axis
of the duct and this can be used to pump a conducting fluid. For example,
sodium coolant is pumped around fast breeder nuclear reactors by this
method. It turns out, however, that an understanding of this flow comes
down to a careful consideration of the boundary layers, and so we shall
postpone any discussion of this problem until the next section. Here we
consider a configuration related to electric welding. The discussion is
brief, but we shall return to this problem in Chapter 10.

5.6.1 A model problem

A useful model problem is the following. Suppose we have a liquid-metal
pool which is hemispherical in shape, of radius R. The boundaries are
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Figure 5.7 Geometry of the model problem.

assumed to be conducting and a current, /, is introduced into the pool by
an electrode of radius r0, which touches the surface. The entire geometry
is axisymmetric and we use cylindrical polar coordinates (r, 0, z) with the
origin at the pool's surface, as shown in Figure 5.7. The poloidal current
gives rise to an azimuthal field, Bo, and the two are related by Ampere's
law, according to which

Jo
(2nrJz)dr

The interaction of J with Be gives rise to a Lorentz force, and it is readily
confirmed that

F = J x B/p = - - [B2
d/(PfMr)\er

Of course, the magnetic pressure merely augments the fluid pressure and
does not influence the motion in the pool. We therefore write

on the understanding that p is augmented by BJ/(2/JL). Clearly, this
Lorentz force will drive a recirculating flow which converges at the sur-
face (where Be is largest) and diverges near the base of the pool. The
question is: can we estimate the magnitude of the induced flow?

5.6.2 A useful energy equation

We now describe a useful trick which we shall employ repeatedly in the
subsequent chapters. Whenever we wish to estimate the recirculating flow
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induced by a prescribed Lorentz force, it is useful to integrate the Navier-
Stokes equation

— = u x a) — V
ot

P u
P 2

vV2u + F

once around a closed streamline, C. In the steady state this yields

since (u x w) • d\ = 0 and the gradient of Bernoulli's function integrates
to zero. Evidently there must be a global balance between the Lorentz
force and the shear stresses. Physically, this arises because the work done
by F on a fluid particle as it passes once around the streamline must be
balanced by the (dissipative) work performed by the shear stresses acting
on the same particle. If the two did not match, then the kinetic energy of
the fluid particle would not be the same at the beginning and end of the
integration, which is clearly not the case in a steady flow. We may use this
integral equation to estimate |u|.

Let us see where this leads in our model problem. We take C to be the
bounding streamline, comprising the surface, the axis and the curved
boundary. Starting with the left-hand integral we have

d>F.<fl= (B2
e/pfir)dr\ - (B2

e/pixr)dr\
J UO Jz=0 U0 Jr2+z2=R2

The first of these integrals is readily evaluated since, from Ampere's law,
2nrBe = /z/(r/r0)2 for r < r0 and 2itrBe — /JLI for r > r0. This yields

The second integral is more difficult. However, if r0 <3C R then the field in
the vicinity of the boundary is that due to a point source of current, and
the corresponding field is readily shown to be

2nrBe = /x/[l - z/(r2 + z2)1/2], (r0 « R)

This yields

r ?R -i j2

(B2
e/pfir)dr = -q—ytln2 ~ l/Ji

U o Jr2+z2=R2 47T pRr2+z2=R2

Combining these expressions gives us
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r

For cases where r0 does not satisfy r0 <£. R the factor of In 2 above will
need modification. However, the details do not matter. The main point is
that

Although we have performed the integration only for the bounding
streamline, a similar relationship must hold for all streamlines which
pass close to the electrode. For streamlines remote from the electrode
we would expect

4n2pR2

since r0 ceases to be a relevant dimension in such cases. We can use these
equations to estimate |u|.

5.6.3 Estimates of the induced velocity

Suppose that the Reynolds number is not too high, say somewhat less
than 100. Then there are no significant boundary layers on the outer wall.
(Such layers usually start to form when Re >~100.) The only region
where high velocity gradients will form is near the electrode where the
characteristic gradient in F is |F|/r0, and so we would expect local gra-
dients in u to be of the order of |u|/r0. Elsewhere we would expect V2u to
scale as \u\/R2. If these statements are true, then our integral equations
suggest that

al , xu ~ —~ (near electrode)
4nzpvr0

(elsewhere)
4n2pvR

Somewhat surprisingly these scalings turn out to be valid (provided Re is
not too large), as we shall see in Chapter 10.

We end this section by considering the highly idealised case where the
outer boundary is removed and r0 -^ 0, so that we have a point electrode
located on the surface of a semi-infinite fluid. Of course, this is of little
practical significance, but it has been the subject of considerable attention
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in the literature because it turns out that there is an exact, self-similar,
solution for this flow. This solution is of the form

(see suggested reading at the end of this chapter), where 0 is the angle
between the z-axis and the position vector, x, and g is a function of 0 and
of Re = u\x\/v. The similarity to our estimates above is reassuring.
However, it would be wrong to place too much emphasis on this exact
solution since, in many respects, it is atypical. It turns out that the
absence of an outer boundary at large |x| means that the streamlines in
this self-similar flow do not close on themselves, but merely converge
towards the axis. The flow is therefore free from integral constraints of
the form

F-dl = -vcbv2u- d\

We might anticipate, therefore, that there is a fundamental difference
between this self-similar flow and those in which R is large but finite,
and we shall confirm this in Chapter 10.

5.6.4 A paradox

We close this section with an apparent paradox. Of course, there are no
real paradoxes in science, only confusion in our muddled attempts to
understand nature. We shall describe the paradox here and leave the
explanation to Chapter 10.

The integral constraint

is a very powerful one. It must be satisfied by every closed streamline in a
steady flow. Now suppose that we make Re large so that boundary layers
form on the boundary of the pool. Inside the boundary layers the viscous
dissipation is intense, while outside it is small. The boundary layer thick-
ness usually scales as 8 ~ (Re)~1/2/, where / is a typical length-scale for the
flow, say R. If this is true here, then the integral equation applied to a
streamline lying close to the boundary gives

~ u2
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For a streamline away from the boundary, on the other hand,

Thus the flow in the boundary layer appears to scale as u ~ (|F|/)1/2,
while that in the core scales according to u ~ |F|/2/v, which is much
greater than (|F|/)1/2 when Re is large. However, this cannot be so,
since the velocity scale in the boundary layer is set by the velocity in
the core. Clearly, there is a mistake somewhere! (The mistake is not in
the estimate of 8.) Physically, this paradox arises because the fluid in the
boundary layer appears to receive significant dissipation, while that in the
core is almost inviscid and so, according to previous arguments, larger
velocities will develop away from the boundaries.

We will return to this issue in Chapters 8 and 10, where it will be seen
that the flow does quite bizarre things in order to satisfy the integral
equation.

Example: A false scaling for forced, recirculating flow in a confined
domain

Suppose we have a steady laminar, two-dimensional flow, driven by a
prescribed Lorentz force, and with a high Reynolds number. The flow
is confined to the domain V with the no-slip boundary condition u = 0
on the surface of V. Confirm that, for any streamline C,

(J x B) • d\ + pv A V2u • dl = 0

The implication is that viscous and magnetic forces are of similar
magnitudes. Since Re » 1, it follows that inertia greatly exceeds
both J x B and pvV u, except in the boundary layers. It follows that,
outside the boundary layers, the vorticity is governed by u • Vco ^ 0, or
equivalently, a> & (o(\j/). Show that

V2u = — a/($)u

and hence confirm that for each streamline which avoids the boundary
layers

ft/(^) = < t ( J x B ) - d l / L v (odA\
J L J A J
C

where A is the area enclosed by the streamline C. The implication is
that u scales as v"1. Now show that such a scaling is, in fact, impos-
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sible! [Hint: show that this scaling implies an order of magnitude bal-
ance between the generation and dissipation of mechanical energy in
the core of the flow, which is incompatible with highly dissipative
boundary layers.] We appear to have a paradox.

In fact, this is the same paradox as that described above. In prac-
tice, the fluid circumvents this dilemma by becoming turbulent at
rather low Reynolds numbers (of ~100), or else by forcing all of
the streamlines through the dissipative boundary layers so that co ^
a)(\lf) (see Chapter 8).

Part 3: Boundary Layers

5.7 Hartmann Boundary Layers

5.7.1 The Hartmann layer

So far we have considered the influence of J x B on the interior of a flow
only. We have not considered its effect on boundary layers. We close this
chapter with a discussion of a phenomenon which received much atten-
tion in the early literature on liquid-metal MHD: the Hartmann layer.
This is often discussed in the context of duct flows, but is really just a
boundary-layer effect. The main point is that a steady magnetic field
orientated at right angles to a boundary can completely transform the
nature of the boundary layer, changing its characteristic thickness, for
example.

Suppose we have rectilinear shear flow u(y)ex adjacent to a plane,
stationary, surface. Far from the wall the flow is uniform and equal to
Woo, but close to the wall the no slip condition ensures some kind of
boundary layer (Figure 5.8). There is a uniform, imposed magnetic
field B = Bey. Now B • o = 0 and so (5.9) tells us V2F = 0, implying
that the electric field is zero. We shall also assume that there is no
imposed electric field, and so V = 0. It then follows from (5.4) and
(5.5) that

F = J x B = -aB2uex

and so we have the usual damping force. The Navier-Stokes equation is
now
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\ \

Figure 5.8 A Hartmann flow.

which may be transformed to

a2

(
u-uo = 0, 8 = (pv/aB2)l/2

where u^ is the velocity remote from the boundary.
The solution is

(5.33)

We see that the velocity increases rapidly over a short distance from
the wall (Figure 5.9). This boundary layer, which has thickness ~8, is
called a Hartmann layer. Note that the thickness of a Hartmann
boundary layer is quite different to that of a conventional boundary
layer.

5.7.2 Hartmann flow between two planes

We now consider the same flow, but between two stationary parallel
plates located at y = ±w. We also allow for the possibility of an imposed
electric field, Eo, in the z-direction. Our equation of motion is now

J x B

wwwwww
Figure 5.9 The Hartmann boundary layer.
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Figure 5.10 Duct flow at low and large Hartmann numbers.

d2u dp
—j - oB2u = — + GBE0
dyz ax

which has the solution,

[
u = u0 1 cosh(w/5)J

2 dp
aB u0 = - — - aE0B° dx °

It is conventional to introduce the Hartmann number at this point,
defined by

Ha = w/8 = Bw(a/pv)l/2

As noted in Section 3.5, (Ha)2 represents the ratio of the Lorentz forces to
the viscous forces. Our solution is then

cosh[(Ha)y/Ha)y/w]-]

htffe) J (5.34)

It is instructive to look at the two limits: Ha -> 0, Ha -> oo (Figure 5.10).
When Ha is very small we recover the parabolic velocity profile of con-
ventional Poiseuille flow.

u = «o(l - iy/wf)

When Ha is very large, on the other hand, we find that exponential
Hartmann layers form on both walls, separated by a core of uniform
flow. All of the vorticity is pushed to the boundaries.
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5.8 Examples of Hartmann and Related Flows

When Ha is large, Hartmann flow is characterised by the three equations

(5.35)

(5.36)

Note that we are free to choose the value of Eo, the external electric field.
Depending on how we specify Eo, we obtain quite separate technological
devices.

5.8.1 Flow-meters and MHD generators

Suppose we choose J = 0, so that Eo = —u0B. In this case there is no
pressure gradient associated with B, the Lorentz force being zero. Such
a device is called an MHD flow-meter since Eo may be measured to
reveal u0.

Alternatively, if EQ is zero, or small and positive, we have

GUQB, • oB UQ (5.37)

In this case we induce a current, but at the cost of a pressure drop. We are
converting mechanical energy into electrical energy plus heat, and such a
device is called a generator (Figure 5.11). This is the basis of MHD power
generation, where hot ionised gas is propelled down a duct. The techno-
logical failure of MHD power generation, which was much publicised in
scientific circles, is often attributed to the inability to develop refractory

Highp

J x B
Low p

Generator (E = 0) Flow-meter (J = 0)

Figure 5.11 Principles of MHD generators and flow-meters.
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materials capable of withstanding the high temperatures
(~3000K), rather than to any flaw in the MHD principle.

involved

5.8.2 Pumps, propulsion and projectiles

If £0 is negative, and has a magnitude in excess of u0B, the direction of /
(and hence J x B) is reversed. In this case dP/dx is positive and we have a
pump. Electrical energy is supplied to the device and this is converted into
mechanical energy plus heat.

MHD pumps are in common use, both in the metallurgical and the
nuclear industries. Their obvious attraction is that they contain no
moving parts and so, in principle, they are mechanically reliable. One
can even combine a generator with a pump to produce a so-called
MHD flow-coupler. Here two ducts sit side by side, one producing
electrical power for the other, which acts as a pump. One application
is to transfer mechanical energy from one sodium loop to another in
fast breeder reactors.

A variant of the MHD pump is the electromagnetic gun, sometimes
called a rail gun or electromagnetic launcher. Here there is no applied
magnetic field and so this is not a Hartmann flow. Rather, one relies on
the field associated with the flow of current along the electrodes and
through the fluid (plasma). It is readily confirmed that the interaction of
J with its self-field B induces a Lorentz force parallel to the electrodes
(Figure 5.12). This is used to propel a plasma ahead of which sits a
non-conducting projectile. The advantage of such a device is that, as
long as current is supplied, the projectile will accelerate. This contrasts
with conventional chemical guns where movement of the projectile is

Lowp

JxB
A

1
s

Highp

Electrode
Plasma

(a) MHD Pump (b) Electromagnetic launcher

Figure 5.12 Principles of MHD pumps and guns.
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associated with an expansion of the gas and hence a loss in pressure.
Small masses have been accelerated up to speeds of around 7 km/s in
such devices.

Typically the electrodes are connected to a capacitor bank which deli-
vers a current pulse of around 105 -> 106Amps in a period of a few
milliseconds. In the first instance this vaporises a metal foil placed
between the electrodes (rails) and so initiates a plasma. Current then
enters the top rail, is syphoned off through the plasma and returns via
the bottom rail. The resulting force accelerates the plasma along the duct,
pushing the projectile ahead of it.

This simple idea is attractive to the extent that it can produce velocities
much higher than those achievable by conventional means. It has been
suggested that it might be used in fusion research, to create high impact
velocities, as a laboratory tool to study high velocity projectiles and, of
course, it has military applications. However, in practice it has three
major drawbacks. First, the electrical power involved is substantial and
this has to be delivered in a very short pulse. Considerable attention must
be paid, therefore, to the storage and delivery of the electrical power.
Second, the magnetic repulsion forces between the rails is very large, and
great care is required in the mechanical design of the gun, otherwise it is
prone to self-destruct! Third, the plasma temperatures are very high,
^2.5 x 104 K, and so there is a severe ablation of material from the inside
surface of the duct. As a consequence, the plasma grows rapidly in size
and weight, increasing the inertia of the propelled mass and reducing the
projectile acceleration.

A variant of the electromagnetic gun, in which the projectile is
removed, is the electromagnetic jet thruster. Here the device operates
continuously: heating, ionising and propelling a plasma. Typically this
has an annular geometry with a central cathode surrounded by a
cylindrical anode. The gas is accelerated down the annular gap
between the two, producing thrust. This has been proposed as a
means of propelling space vehicles, its perceived advantages being its
low fuel consumption.

There are many other variants of electromagnetic pumps and thrusters,
including the much-publicised, but ill-fated, sea-water thruster for sub-
marines. Some, such as the liquid-metal pump, are in common use.
Others, such as the electromagnetic launcher, have yet to find any sig-
nificant commercial application. In general it seems that the simplest,
almost mundane, applications have faired best, while the more exotic
suggestions have not been realised.
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5.9 Conclusion

We have seen that, because of Joule dissipation, an imposed, static
magnetic field tends to dampen out fluid motion, while simultaneously
creating a form of anisotropy, in which the gradients in u parallel to B
are preferentially destroyed. Thus turbulence in the presence of a strong
magnetic field becomes quasi-two-dimensional as the eddies elongate in
the direction of B. Travelling or rotating magnetic fields, on the other
hand, tend to induce a motion which reduces the relative speed of the
field and fluid. The magnitude of the induced velocity is controlled by
friction. Finally we have shown that magnetic fields alter the structure
of boundary layers, which are now controlled by the competition
between Lorentz forces and shear. All in all, it seems that magnetic
fields provide a versatile, non-intrusive, means of controlling liquid-
metal flows.

Suggested Reading

J A Shercliff, A Textbook of Magnetohydrodynamics, 1965, Pergamon Press
(Chapter 6).

R Moreau, Magnetohydrodynamics, 1990, Kluwer Acad. Pub. (Chapter 4 for
Hartmann layers, Chapter 5 for damping of jets, Chapter 6 for rotating
flow and for the point electrode problem.)

S Chandrasekhar, Hydrodynamic Stability, 1981, Dover. (Chapters 2 and 4 for
Benard convection.)

Examples

5.1 Consider the MHD jet shown in Figure 5.2(b). The imposed mag-
netic field is weak, in the sense that axial gradients in u are much
smaller than the transverse gradient. Sketch the induced current dis-
tribution at any one cross section of the jet and estimate, qualita-
tively, the distribution of J x B. Explain why the jet elongates in the
direction of B and also explain why a reverse flow is induced.

5.2 Consider the vortex shown in Figure 5.3(b). Sketch the induced cur-
rent distribution (which is poloidal) and estimate, qualitatively, the
distribution of J x B. Show that this force induces a counter rotation
in an annulus which surrounds the primary vortex.

5.3 Consider the inviscid flow shown in Figure 5.4(a). Show that the
result H// = constant is not restricted to low values of N. (Hint,
the interaction of J with its self-magnetic field can give rise to no
net torque on the fluid.)
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5.4 The integration of (5.30) using the mixing length model of turbulence
yields

u0/rQf = (2V2K\ \n(R - r) + constant

The constant of integration is determined by the fact that, near the
wall, the velocity profile must blend smoothly into the universal law
of the wall:

u/u* = K~X \n(u*y/v) + 5.5, y = R - r

where u* = (rw/p)l/2 is the shear velocity. This yields (5.31). When the
surface is rough, however, the universal law of the wall changes to

u/u* = K~1 ln(y/k*)

where k* is the roughness height. Under these circumstances, show
that (5.31) must be modified to

5.5 When liquid metal is stirred in a hemispherical container by an azi-
muthal Lorentz force, Ekman layers are set up on the boundaries.
Sketch the secondary flow induced by Ekman pumping.



Dynamics at Moderate to High Magnetic Reynolds'
Number

... and to those philosophers who pursue the inquiry (of induc-
tion) zealously yet continuously, combining experiment with
analogy, suspicious of their preconceived notions, paying more
respect to the fact than a theory, not too hasty to generalise,
and above all things, willing at every step to cross-examine
their own opinions, both by reasoning and experiment, no
branch of knowledge can afford so fine and ready a field for

discovery as this.

Faraday (1837)

When Rm is high there is a strong influence of u on B, and so we obtain a
two-way coupling between the velocity and magnetic fields. The tendency
for B to be advected by u, which follows directly from Faraday's law of
induction, results in a completely new phenomenon, the Alfven wave. It
also underpins existing explanations for the origin of the earth's magnetic
field and of the solar field. We discuss both of these topics below. First,
however, it may be useful to comment on the organisation of this chapter.

The subject of high-i?m MHD is vast, and clearly we cannot begin to
give a comprehensive coverage in only one chapter. There are many
aspects to this subject, each of which could, and indeed has, filled text-
books and monographs. Our aim here is merely to provide the beginner
with a glimpse of some of the issues involved, offering a stepping-stone to
more serious study. The subject naturally falls into three or four main
categories. There is the ability of magnetic fields to support inertial
waves, both Alfven waves and magnetostrophic waves. (The latter
involves Coriolis forces, the former does not.) This topic is reasonably
clear-cut. Then there is geodynamo theory, which attempts to explain the
maintenance of the earth's magnetic field in terms of a self-excited fluid
dynamo. This is anything but clear-cut! Geodynamo theory is complex
and difficult and there exist many unresolved issues. Next there is plasma
containment, motivated for the most part by fusion applications. Here
much of the interest lies in the stability of magnetic equilibria, and this is
now reasonably well understood, or at least as far as linear (small ampli-

159
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tude) stability is concerned. Finally, there is astrophysical MHD, parti-
cularly topics such as star formation and magnetic phenomena in the sun:
field oscillations, sunspots, solar flares and so on. Like geodynamo the-
ory, the picture here is far from complete.

The layout of the chapter is as follows. We start with the simplest topic,
that of wave theory. We then move to the geodynamo. This divides
naturally into two parts. There is the simpler and largely understood
kinematic aspect, and the altogether more difficult topic of dynamical
theories. We restrict ourselves here to the kinematics of geodynamo the-
ory, where perhaps there is less controversy. Next we give a brief and
entirely qualitative tour of one or two aspects of solar MHD. There is no
pretence here of a mathematical dissection of the issues involved. The
discussion is purely descriptive. We end with a discussion of MHD equi-
libria. Although the motivation here is plasma MHD, we (artificially)
restrict ourselves to incompressible fluids. The reason for this is simple:
the algebra involved in developing stability theorems for even incompres-
sible fluids is lengthy and somewhat tedious, and so it seems inappropri-
ate in such a brief discussion to embrace all the additional complexities of
compressibility.

Finally, perhaps it is worthwhile to comment on the notation employed
in this chapter. Throughout this text we employ only cylindrical polar
coordinates (r, 6, z). We make no use of spherical polar coordinates
(r',0',4>). When dealing with axisymmetric fields in cylindrical polar
coordinates it is natural to divide a vector field, say B, into azimuthal
(0, Be, 0) and poloidal (Bn 0, Bz) components. For example, the dipole-
like external field of the earth is (more or less) poloidal. The field induced
by a long straight wire is azimuthal. In the geophysical and astrophysical
literature it is normal to use a different terminology. The field is divided
into toroidal and poloidal components. When the field is axisymmetric,
toroidal is equivalent to azimuthal. Occasionally the term meridional is
substituted for poloidal. We shall not employ the terms toroidal or
meridional.

6.1 Alfven Waves and Magnetostrophic Waves

6.1.1 Alfven waves

One of the remarkable properties of magnetic fields in MHD is that they
can transmit transverse inertial waves, just like a plucked string. We have
already discussed the physical origin of this phenomenon. It relies on the



Alfven Waves and Magnetostrophic Waves 161

fact that the B-field and fluid are virtually frozen together when a is high.
To give an illustration, suppose that a portion of a field line is swept
sideways by the lateral movement of the fluid (Figure 6.1). The resulting
curvature of the field line gives rise to a restoring force, B2/fiR, as dis-
cussed in §3.9. (R is the radius of curvature of the field line.) As the
curvature increases, the restoring force rises and eventually the inertia
of the fluid is overcome and the lateral movement is stopped. However,
the Lorentz force is still present, and so the flow now reverses, carrying
the field lines back with it. Eventually, the field lines return to their
equilibrium position, only now the inertia of the fluid carries the field
lines past the neutral point and the whole process starts in reverse.
Oscillations then develop, and this is called an Alfven wave.

We now place our physical intuition on a formal mathematical basis.
Suppose we have a uniform, steady magnetic field Bo which is perturbed
by an infinitesimally small velocity field u. Let j and b be the resulting
perturbations in current density and B. Then the leading order terms in
the induction equation are

• = V x (u x Bo) + AV2b, V x b = /xj
dt

which yields

! = > •

AV2j (6.1)

We now consider the momentum of the fluid. Since (u • V)u is quadratic in
the small quantity u it may be neglected in the Navier-Stokes equation
and so we have, to leading order in the amplitude of the perturbation,

p— = ) x B 0 - V
ot

B2/|LiR

(a) (b) (c)

Figure 6.1 Formation of an Alfven wave.
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The equivalent vorticity equation is

^ = ! (B 0 .V) j + vV2a> (6.2)
ot p

We now eliminate j from (6.2) by taking the time derivative and then
substitute for d\/dt using (6.1). After a little algebra, we find

Next we look for plane-wave solutions of the form

a) ~ a)0 exp[/(k • x — Inft)] (6.4)

where k is the wavenumber. Substituting (6.4) into our wave equation
(6.3) gives the dispersion relationship

2nf = - [(v + X)k2/2]i ± [B^k/f/iPfi) - (v - X)2k4/4]

Here kj/ is the component of k parallel to Bo. There are three special
cases of interest. When X = v = 0 (a perfect fluid) we obtain 2nf = ±
vak/i where va is the Alfven velocity B0/(P/JL)1/2. This represents the pro-
pagation of transverse inertial waves, with phase velocity va. When v = 0
and X is small but finite, which is a good approximation in stars, and for
liquid-metal flows at high Rm, we find

2jrf=-(Xk2/2)i±vak//

This represents a plane wave propagating with phase velocity va and
damped by Ohmic dissipation. Finally, we consider the low-jRm case of
v = 0, X ->• oo, which characterises most of liquid-metal MHD. Here we
find that

2itf = -iXk2, 2nf = -ix-xk2
nlk

2

where r is the magnetic damping time (aB /p) . The first of these solu-
tions represents a disturbance which is rapidly eradicated by Ohmic dis-
sipation. This is of little interest. However, the second solution represents
a non-oscillatory disturbance which decays rather more slowly, on a time
scale of T (Figure 6.2). This is the origin of the pseudo-diffusion phenom-
enon discussed in Chapter 5.

Alfven waves are of little importance in liquid-metal MHD since Rm is
usually rather modest in such cases. However, they are of considerable
importance in astrophysical MHD, where they provide an effective
mechanism for propagating energy and momentum. For example, it
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High Rm Low Rm

Figure 6.2 Damped Alfven waves at low and high Rm. Note the low Rm wave is
non-oscillatory.

has been suggested that they are responsible for transporting angular
momentum away from the core of an interstellar cloud which is collap-
sing to form a star under the influence of self-gravitation.

Example: Finite-amplitude Alfven waves

Show that finite-amplitude solutions of the ideal induction equation
and Euler's equation exist in the form

u = f(x - h00, h = h0 - f(x -

or

u = g(x + h00, h = h0 + g(x

where h = B/(p/x)1/2, h0 = constant, and f and g are arbitrary solenoi-
dal vector fields.

6.1.2 Magnetostrophic waves

There is a second type of inertial wave motion which magnetic fields can
sustain. These are called magnetostrophic waves, indicating that they
involve both magnetic and rotational effects. Suppose that we repeat
the calculation of §6.1.1. This time, however, we let the fluid rotate
and take the quiescent base state to be in a rotating frame of reference,
rotating at Q. The effect of moving into a rotating frame of reference is to
introduce a centripetal acceleration, which is irrotational and so merely
augments the fluid pressure, and a Coriolis force 2u x Q. Neglecting
dissipative effects, our governing equations are now

du
p — =

ot



164 6 Dynamics at Moderate to High Magnetic Reynolds' Number

so that (6.1) and (6.2) become

at

1

p

We now proceed as before and eliminate j to give

dt p\i

There are three special cases of interest. First, if Q = 0 we arrive back at
(6.3), representing undamped Alfven waves. Second, if Bo = 0, then we
find

a2

— (V2u) + 4(fl • V)2u = 0

This represents conventional inertial waves - waves which propagate in ro-
tating fluids (Figure 6.3). For disturbances of the form u exp[/(k • x — 2nft)]
this yields the dispersion relationship

2jr/ = ±2(ft .k)/ |k |

and a group velocity (the velocity at which wave energy propagates) of

Group velocity /

t i

C3"

* Inertial wave '

\| I ' I 1/
T Slowly oscillating disc

Surfaces of
constant phase

Figure 6.3 An inertial wave.
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c, = ±2(k2Q - k(k • Q))k~3
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Note that the group velocity is perpendicular to k, so that the phase
velocity and group velocity are mutually perpendicular. Thus a wave
appearing to travel in one direction, according to the surfaces of constant
phase, is actually propagating energy in a perpendicular direction.

Evidently, slow disturbances if <^ |fl|) correspond to Q • k & 0 and
cg & ±2fl/|k|. Such disturbances propagate as wave packets in the +Q
and — Q directions, and the net effect is that the disturbance appears to
elongate along the rotational axis, leading to columnar structures called
Taylor columns (Figure 6.4). More generally, the frequency of inertial
waves varies from zero, when the group velocity is aligned with Q, to
2\Q\, when the group velocity is normal to Q.

The third case of interest is when both Bo and Q are finite but / <^\Q\
- slow waves. In this case

V ) | j + ( B V ) 2 0

which, on application of the operator(f2 • V) ft, yields

,92" r i ~"2
4(fl

dr \_pix
;0 . V)2 V2u = 0

~2QRt

Slowly moving disc

All of the fluid in the Taylor
column moves upward at
the same speed as the disc

Figure 6.4 Formation of Taylor columns by inertial waves.
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This is the governing equation for magnetostrophic waves. The corre-
sponding dispersion equation is

27tf = ± — (B0'k)2k/[2(Q-k)]
p/x

Since we require/ <C |fi|, such waves can exist only if

so in some sense we are considering cases where the Coriolis effect is
dominant. Magnetostrophic waves are significant in solar and geophysi-
cal MHD since both the sun and the earth are rapidly rotating and the
Coriolis force is dominant.

6.2 Elements of Geo-Dynamo Theory

Where does the earth's magnetic field come from? Nobody
really knows - there have only been some good guesses.

R P Feynman (1964) Lectures on Physics

6.2.1 Why do we need a dynamo theory for the earth?

Dynamo theory is the name given to the process of magnetic field gen-
eration by the inductive action of a conducting fluid, i.e. the conversion
of mechanical energy to magnetic energy through the stretching and
twisting of the magnetic field lines. It is generally agreed that this is the
source of the earth's magnetic field, since the temperature of the earth's
interior is well above the Curie point at which ferro-magnetic material
loses its permanent magnetism. Moreover, the earth's magnetic field can-
not be the relic of some primordial field trapped within the interior of the
earth. Such a field would long ago have decayed. To see why this is so,
suppose that there is negligible motion in the earth's core. The product of
B with Faraday's law yields the energy equation

(Here we have used the fact that B • (V x E) = (V x B) • E + V • [E x B].)
We now integrate over all space and note that there is no flux of the
Poynting vector, E x B, out of a sphere of infinite radius. The result is

^l=-l(^/a)dV (6.6)
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where EB is the energy of the magnetic field and the integral on the right
is confined to r < Rc, Rc being the outer radius of the earth's conducting
core. As we might have anticipated, EB falls due to Ohmic dissipation.
Now the rate of decline of EB may be found by a normal mode analysis in
which the diffusion equation defines an eigenvalue problem for B. It turns
out that this yields a decay time of td ~ R2

c/(Xn2). For the earth, we have
Rc ~ 3500 km and A ~ 2m2 /s, which gives td ~ 104 years1. However, the
earth's magnetic field has been around for at least 108 years, and so there
must be some additional mechanism maintaining EB despite the Ohmic
losses. Just such a mechanism was discussed in §4.3: the stretching of flux
tubes by an imposed velocity field. In fact, it is not just the earth's
magnetic field which is thought to arise from dynamo action. Virtually
all of the planets as well as the sun have magnetic fields, many of which
are likely to be maintained by a self-excited, fluid dynamo.

Historically there have been many attempts to explain the origins of
the earth's magnetic field, other than MHD. Now all abandoned, these
included a magnetic mantle, the Hall effect, thermoelectric effects, rotat-
ing electrostatic charges, and even, as a last act of desperation, a pro-
posed modification to Maxwell's equations. The electrostatic argument
arises from the fact that the earth's surface is negatively charged. In fact,
this charge is so great that near the earth's surface there exists an atmo-
spheric electric field of ~ 100 V/m, directed, on average, radially inward.
This surface charge is maintained by lightning storms that are charging
the earth, relative to the upper atmosphere, with an average current of
1800 Amperes!

One by one these theories have been abandoned, often because they
failed on an order of magnitude basis. Kelvin was on the right track
when, in 1867, he noted:

We may imagine, as Gilbert did, the Earth to be wholly or in
part a magnet, such as a magnet of steel, or we may conceive it
to be an electromagnet, with or without a core susceptible of
induced magnetism. In the present state of our knowledge this
second hypothesis seems to be the more probable and indeed
we now have reasons for believing in terrestrial
currents The question which occurs now is this:- Can the
magnetic phenomena at the earth's surface, and above it, be
produced by an internal distribution of closed currents occu-

pying a certain limited space below the surface.

This calculation was first performed by H Lamb in 1889.
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The problem, of course, is what maintains the currents. It was Larmor
who, in 1919, first suggested a self-excited fluid dynamo (in the solar
context) in his paper: 'How could a rotating body like the sun become
a magnet?' When, in 1926, Jeffreys discovered the liquid core of the earth,
Larmor's idea suddenly became very relevant to the geo-dynamo.

The general idea behind geo-dynamo theory is that fluid motion in the
earth's core stretches and twists the magnetic field lines, thus intensifying
the magnetic field. This relies on the advection term in the induction
equation being dominant, which in turn requires that Rm is large.
However, this seems quite likely. The earth has a liquid iron annulus of
inner radius ~ 103km and outer radius ^ 3 x 103km (see Figure 6.7).
Typical scales for u and / are estimated to be M ~ 2 X 10~4m/s and
/ ~ 103 km, giving Rm ~ 100: not massive, but large.

Mechanical analogues of a self-excited dynamo are readily constructed.
A simple, and common, example is the homopolar disk dynamo, shown
in Figure 6.5. Here a solid metal disk rotates with a steady angular
velocity Q and a current path between its rim and its axis is provided
by a wire twisted as shown. It is readily confirmed that, provided Q is
large enough, any small magnetic field which exists at t = 0 will grow
exponentially in time. First we note that rotation of the disk results in an
e.m.f. of Q®/2n between the axis and the edge of the disk, 0 being the
magnetic flux which links the disk. (This may be confirmed by the use of
Faraday's law (2.28), or else by a consideration of Ohm's law.) This e.m.f.
drives a current, /, which evolves according to

L—- + RI = e.m.f. = QMI/2n

Figure 6.5 Homopolar disk dynamo.
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Here M is the mutual inductance of the current loop and the rim of the
disk, and L and R are the self-inductance and resistance, respectively, of
the total circuit. Evidently /, and hence B, grow exponentially whenever
Q exceeds 2nR/M. This increase in magnetic energy is accompanied by
a corresponding rise in the torque, T, required to drive the disk, the
source of the magnetic energy being the mechanical power, TQ. In any
real situation, however, this exponential rise in T cannot be maintained
for long, and eventually the applied torque will fall below that needed
to maintain a constant Q. At this point the disk will slow down, even-
tually reaching the critical level of Q = 2nR/M. T9 Q and B then
remain steady.

Now this kind of mechanical device differs greatly from a fluid dynamo
because the current is directed along a carefully constructed path.
Nevertheless a highly conducting fluid can stretch and twist a magnetic
field so as to intensify EB (see Figure 6.6, for example). The central
questions in dynamo theory are therefore: (i) can we construct a steady
(or steady-on-average) velocity field which leads to dynamo action?; (ii)
can such a velocity field be maintained by, say, Coriolis or buoyancy
forces in the face of the Lorentz force which, presumably, tends to
slow the fluid down? It is now generally agreed that the answers to
these questions are 'yes ' a n d 'probably', respectively. However, it should

(e) Final state

Figure 6.6 A magnetic field can be intensified by a sequence of operations:
stretch + twist + diffuse + fold.
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be said from the outset that there is, as yet, no self-consistent model of the
geo-dynamo. In fact, the entire subject is shrouded in controversy!

In the following subsections we sketch out some of the more elemen-
tary ideas and results in geo-dynamo theory. The key points are:

(i) Rm must be large for dynamo action;
(ii) an axisymmetric geo-dynamo is not possible;

(iii) differential rotation in the earth's core can (if it exists) spiral out an
azimuthal magnetic field from the familiar dipole one, and in fact
this azimuthal field could well be the dominant field in the interior
of the earth;

(iv) small-scale turbulence tends to tease out a (small-scale) magnetic
field from the large-scale azimuthal field;

(v) this small-scale, random magnetic field is thought (by some) to
organise itself in such a way as to reinforce the large-scale dipole
field.

In short, one candidate for a geo-dynamo is: dipole field plus differential
rotation —> azimuthal field; azimuthal field plus turbulence -> small-
scale, chaotic field; re-organisation of small-scale field —• dipole field.
However, this model (called the a-Q model) is somewhat speculative
and, as we shall see, alternatives have been proposed.

The central role played by the azimuthal field here is, at first sight,
somewhat surprising. After all, measurements made at the surface of
the earth indicate only a dipole field. However, it should be remembered
that the azimuthal field is supported by poloidal currents which are
confined to the core of the earth (Figure 6.7) and that Ampere's law

Mantle

Liquid outer core

Solid inner core

Figure 6.7 The core of the earth. The earth has solid inner core of iron/nickel
alloy (radius ~ 10 km), a liquid outer core of iron plus some lighter elements
(radius ~ 3 x 103 km), and an outer mantle of ferro-magnesium silicates
(radius ~ 6 x 103 km).
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'Dipole field
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Solid core
assumed to
rotate faster
than mantle

Azimuthal field

Figure 6.8 Generation of an azimuthal field by differential rotation in the core
of the earth.

tells us that such a field cannot extend beyond the core-mantle bound-
ary (see Figure 6.10). The likely source of the azimuthal field is differ-
ential rotation between the inner regions of the core and the remainder
of the earth (Figure 6.8). This sweeps out Be from the dipole field, B^,
and order of magnitude analysis suggests, Be ~ RmBp (see Chapter 4
Section 5.3).2

6.2.2 A large magnetic Reynolds number is needed

Now it is clear that dynamo action will occur only if Rm is large enough,
since the intensification of EB by flux tube stretching has to outweigh, or
at least match, the decay of EB through Ohmic losses. This may be
quantified as follows. Starting with Faraday's equation,
dB/dt = - V x E, we may show that,

We now integrate over all space, noting that the Poynting flux integrates
to zero. This yields

dEB

dt - \
J-EdF

The sense of the earth's magnetic field regularly reverses. For simplicity we shall take the
field to point from south to north.
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Next we assume that J and u are confined to a sphere r < R, and that u
vanishes at r = R. Using Ohm's law to rewrite J • E as

J E = (J2/a) - [B x (V x B)] • (u//x)

we have

^ = - f u • [B x (V x B)]dV - - f J2 dV = P-D (6.7)
dt fi) a)

The first term on the right is (minus) the rate of working of the Lorentz
force, while the second is, of course, the Joule dissipation. To maintain a
magnetic field the first integral must be positive. The next step is to place
bounds on D, the dissipation integral, and P, the (so-called) production
integral. Starting with P we have

x (V x B)</KJ < t/Lx | B 2 ^ F | ( V x B)2dV

where wmax is the maximum value of |u| and the second inequality comes
from the Schwartz inequality introduce in §5.3. It follows that

\P\ < (2A)1/2
Mmax£f D"2

Also, by standard methods of the calculus of variations, it may be shown
that

D > 27t2(X/R2)EB

(The idea here is that J (V x B) dV has a minimum value of
~ J B2dV/LmaX where Lmax is the maximum relevant length scale. In
this case it so happens that Lmax is R/n.) Combining the two inequalities
yields

Evidently, a necessary (though not sufficient) condition for dynamo
action is

Rm = (*Wx*A) > T (6.8)

Below this value of Rm the stretching of the field lines cannot compete
with the Ohmic losses.

So how much larger than n must Rm be to get a dynamo, In or 2007T?
The answer is: not much larger, perhaps 5n. The simplest known dynamo
is that of Ponomarenko and was developed in the 1970s. It consists of
helical pipe flow of the form u = (0, Qr, F), in (r, 6, z) coordinates. Here
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Q and V are constants. For such a flow the induction equation
admits separable solutions of the type B ~ exp[/(m# + kz + &tf)] and the
resulting eigenvalue problem yields growing solutions when Rm = R(V2

-\-Q2R2)l/2/X exceeds 17.72 (here R is the pipe radius). These growing
fields are asymmetric, despite the symmetry of the base flow, with
m = 1, V - \3\QR, and kR - -0.388.

Later, in the 1980s, generalisations of the Ponomarenko dynamo were
developed, in which Q and V are functions of r and Q = V = 0 at r = R.
This avoids the singular behaviour at the pipe wall, inherent in
Ponomarenko's dynamo. Yet another variant was developed which has
a finite length, a return path being provided for the fluid. In fact, this
latter model was put to the test in a laboratory in Riga, but insufficiently
high values of Rm were achieved to get a self-sustaining dynamo.
Undaunted, the Latvian scientists plan a second attempt at creating a
fluid dynamo at the laboratory scale (albeit in a very large laboratory!). A
similar experiment was undertaken in Karlsruhe, Germany with success-
ful results, and so the next few years should prove very interesting to
dynamo enthusiasts.

Note that the Ponomarenko dynamo has helicity h = u • o. This is no
accident. Almost all working dynamo models involve helicity. Note also
that the dynamo is not symmetric. Again, as we shall see, this is no
accident.

Example: Rate of change of dipole moment

It may be shown that, if currents are contained within a spherical
volume, V, then the dipole moment, m, of the current distribution is
related to its associated magnetic field by

m = \ f x x W F ^ f BdV
2JV 2fiJv

Use Faraday's equation and Ohm's law to show that

If A. = 0, show that a motion which tends to sweep the field lines
towards the polar regions will increase m. (This dynamo mechanism
is limited though, and ceases to operate when all of the flux lines cross-
ing S are concentrated at the poles.) Note that if u is zero on S then a
finite diffusivity is required to increase m.
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6.2.3 An axisymmetric dynamo is not possible

The idea of a competition between flux-tube stretching and Ohmic dis-
sipation allows us to rule out the possibility of a steady, axisymmetric
dynamo. This is important because the earth's external magnetic field is
essentially a dipole, field and so it is natural to look for a steady, axisym-
metric, dynamo in which B is poloidal, (Bn 0, Bz) in (r, 0, z) coordinates,
J is azimuthal (0, J0, 0) and up is also poloidal. However, a result known
as Cowling's neutral-point theorem says that such a dynamo cannot exist.
The proof is as follows.

Let us suppose that an axisymmetric dynamo can indeed be realised. In
the steady state, Ohm's law gives J = a ( - V F + u x B): however, V2F =
B • a) — /xu • J = 0 since co is azimuthal. It follows that V = 0 and so
J = <j(u x B). Now in an axisymmetric, poloidal field there is always at
least one so-called neutral ring, N, where B vanishes and the B-lines are
closed in the neighbourhood of the ring (Figure 6.9). It is clear from
Ampere's circuital law applied to a B-line in the vicinity of N that J is
non-zero at N. However J = a(u x B) and so we cannot have a finite
current where there is no magnetic field. Such a configuration is therefore
impossible. This is Cowling's neutral-point theorem.

It seems, therefore, that the earth's dynamo must involve a fairly com-
plex flow field, and in fact the nature of this field is still a matter of
considerable debate.

Now there is an alternative, less elegant, but more informative, way
of establishing Cowling's theorem. In fact this second proof goes
further, showing that a poloidal field cannot be intensified by flux-
tube stretching whenever u and B are both axisymmetric. This includes
cases where u comprises both poloidal and azimuthal components. The

Conductor

Neutral ring

Figure 6.9 All axisymmetric, poloidal fields have a neutral ring, N.
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Azimuthal field

Poloidal field

Figure 6.10 Azimuthal and poloidal magnetic fields.

first step is to decompose both B and u into poloidal and azimuthal
parts:

B(r, z) = u(r, z) = up +u e

Note that a poloidal magnetic field requires azimuthal currents to sup-
port it, while an azimuthal field requires poloidal currents (Figure 6.10).
Note also that B^ is restricted to the domain in which the currents flow,
which is a direct consequence of Ampere's law.

We now introduce a vector potential for the poloidal field,

B, = V x [(x/r)e9] = V x (A,)

which is allowable because Bp is solenoidal. The parameter x is called the
flux function. It is the magnetic equivalent of the Stokes stream function,
the B^-lines being contours of constant x- Now it is readily confirmed
that the curl of a poloidal field is azimuthal, while the curl of an azi-
muthal field is poloidal. It follows that the induction equation may also
be divided into poloidal and azimuthal components, according to

^ = V x (u, x B,) + V x (u, x B,) 4- XV2B,

Uncurling the first of these gives

(6.9)

(6.10)

which yields
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Dt -• * ( 6 ' H )

Here D/Dt is the convective derivative, d/dt + (u^ • V), and V* is the
Laplacian-like operator defined by

The second component of the induction equation may be manipulated
into the form

(6.13)

(This is left as an exercise for the reader.) The important point, as far as
Cowling's theorem is concerned, is that (6.11) contains no source term.
The flux function is passively advected by u^, subject only to (a form of)
diffusion. There is no term in (6.11) which might lead to an intensification
of x, and hence of B^. On the contrary, we may use (6.11) to show that B^
must always decline in accordance with

d
Jt

By contrast, (6.13) does contain a source term. Any gradient of swirl
along a B^-line results in the generation of an azimuthal field Be. This
is readily understood in terms of field sweeping, (see Figure 6.1 la).

We might note in passing that (6.13) suggests that, at high Rm, Be

exceeds |BJ in the core of the earth, scaling as Be ~ Rm\Bp\. The point

Blob

Figure 6.11 An azimuthal magnetic field can be generated by differential rota-
tion in the core of the earth, while turbulence, such as that generated by rising
spinning blobs, can tease out a poloidal field from the azimuthal magnetic field,
(a) The omega effect, (b) The alpha effect.
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is that the left of (6.13) integrates to zero over any volume enclosed (in
the r-z plane) by a poloidal stream-line. The two terms on the right must
therefore balance (in a global sense), giving Be ~ (t/6>//A,)|B/7|. Physically,
differential rotation causes Be to build up and, at first, there is nothing to
oppose this. (Advection of B9/r merely redistributes the azimuthal field.)
This process continues until Be is so large that diffusion of Be is capable
of offsetting the generation of an azimuthal field by differential rotation.
This happens when Be ~ (uel/X)\Bp\.

In summary, we conclude that an axisymmetric velocity field cannot
intensify a poloidal magnetic field, such as that of the earth, but it can
sweep out a (possibly strong) azimuthal field by differential rotation. This
is one of the main stumbling blocks to a self-consistent, kinematic,
dynamo theory. To complete the dynamo cycle we must find a mechan-
ism of generating a poloidal field from an azimuthal one,
i.e.B^ -> B<9 -> B^. Clearly, this last step cannot be axisymmetric.

6.2.4 The influence of small-scale turbulence: the a-effect

This impasse has been circumvented by the suggestion of a two-scale
approach to the problem. On the one hand, we might envisage axi-
symmetric, large-scale behaviour in which Be is swept out from B^
through differential rotation between the solid inner core (and its
adjacent fluid) and the rest of the liquid annulus. On the other
hand, we might postulate small-scale (non-axisymmetric) turbulence
which teases out a poloidal field from Be. This would complete the
cycle Bp -» B0 —• B^. This small-scale turbulence might, for example,
be generated by natural convection, by shear layers (Ekman layers), by
wave motion, or by buoyant, spinning blobs, randomly stretching and
twisting the B^-lines as they rise up through the liquid core (Figure
6.11). Such blobs are thought to be released near the inner solid core
where relatively pure iron solidifies, leaving liquid rich in an admixture
of lighter elements. Whatever the source of the small-scale motion, the
general idea is that a random repetition of helical, small-scale events
(turbulence, waves or blobs) might lead to the systematic generation of
a poloidal field from an azimuthal one. This is known as the 'alpha
effect' - a rather obscure name.

Mathematically, the alpha effect may be quantified as follows. Suppose
we divide B and u into mean and turbulent parts, just as we did when
averaging the Navier-Stokes equation in a turbulent flow:
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B(x, i) = B0(x, 0 + b(x, 0

u(x, 0 = uo(x, 0 + v(x, 0

Here b and v are the turbulent components which vary rapidly in space
and time, whereas B0(x, i) and uo(x, i) vary slowly in space and in time.
The means, Bo and u0, might for example be defined as spatial averages
over a sphere of radius much smaller than Rc (the outer core radius), yet
much larger than the scale of the turbulent motion (the blob size in
Figure 6.11). The induction equation may also be separated into mean
and fluctuating parts:

dB0/dt = V x (u0 x Bo) + V x (v x b) + XV2B0

db/dt = V x (u0 x b) + V x (v x BQ) + V x (v x b - v x b) + AV2b

The first of these is reminiscent of the time-averaged Navier-Stokes equa-
tion, in which the small-scale turbulence has introduced a new term,
v x b, just as Reynolds stresses appear in the averaged momentum equa-
tion. The second of these equations is linear in b with V x (v x Bo) acting
as a source of b. Now suppose that b = 0 at some initial instant. Then the
linearity of this equation ensures that b and Bo are linearly related. It
follows that v x b is also linearly related to Bo, and since the spatial scale
for Bo is assumed to be much larger than that of b, we might expect v x b
to depend mainly on the local value of Bo. This suggests that
(v x b).= ctijBQj, where atj is some unknown tensor, analogous to an
eddy viscosity in turbulence theory. If the turbulence is assumed to be
statistically homogeneous and isotropic (something which is unlikely to
be true in practice), then atj = aSy and the mean part of the induction
equation becomes

dBo/dt = V x (uo x Bo) + aV x Bo + AV2B0 (6.14)

The turbulence has introduced a new term into the mean component of
the induction equation. This is the a-effect. In effect, the e.m.f. v x b has
introduced a mean current density J which we model as J = aaB0.

At first sight, the idea of the a-effect may seem a little implausible. Why
should small-scale activity give rise to a large-scale magnetic field? One
way to think about it is to consider the small-scale e.m.f, v x b, as like a
battery, driving current through the core. If many such e.m.f s are all
aligned, then we would expect a large-scale current to emerge from the
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cumulative influence of many small-scale eddies. Presumably the partial
alignment of the small-scale eddies (which is a dynamic effect) arises from
the combined presence of rotation and of the ambient large-scale field.
(This is vaguely reminiscent of the alignment of molecular dipoles in
ferromagnetic material under the influence of a mean field, thus enhan-
cing the mean field.) Actually, we have already seen this kind of 'small to
large-scale' process at work. Recall the example given in §5.3, in which
low Rm turbulence is confined to a sphere of radius R. The fluid is subject
to an imposed field Bo and maintained in (turbulent) motion by some
external agency. We showed that, whatever the motion, there is an
induced dipole moment, m, whenever the global angular momentum,
H, of the turbulence is non-zero:

m = (a/4)H x Bo

This is illustrated in Figure 6.12. Now it is a standard result in magneto-
statics that whenever electrical currents are confined to a sphere, then the
spatial average (over the sphere) of the field associated with those cur-
rents is proportional to m:

It follows that

bdV = (2/x/3)m

bdV = (H x B0)/(6A)

Figure 6.12 Example of small-scale turbulence generating a large-scale field.
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Thus we have obtained a (weak) large-scale magnetic field from small-
scale turbulence. (Actually, this is not really an a-effect but it does
demonstrate the potential for small-scale motion to interact with a
mean field to generate a second, large-scale field.)

The a-effect is important in the dynamo context because the poloidal
field, B^, is governed by

dBp - 2

or equivalently by

The a-effect allows a poloidal field to emerge from an azimuthal one
through the action of turbulence. This completes the regenerative cycle
Bp -+ Be -> B,.

The coefficient a, like Boussinesq's eddy viscosity, is a property of the
turbulence. We might ask: what properties of the turbulence promote an
a-effect, and can we estimate the size of a? In this respect, the most
important thing to note is that a is a pseudo-scalar: that is, a changes
sign under a coordinate transformation (inversion) of the form x -> — x
What do we mean by this? Consider the definition of a: v x b = aB0. Here
v is a polar (true) vector, in the sense that v always points in the same
physical direction, whatever coordinate system is used to describe it. Force
is another example of such a vector. However, b and Bo are examples of
what are called pseudo-vectors, a strange type of vector that reverses
physical direction, although it retains the same numerical values of its
components, under a coordinate transformation in the form of a reflection
through the origin x —• —x (see Chapter 2). Note that such a coordinate
inversion involves a change from a right-handed to a left-handed frame of
reference. (To confirm that B is a pseudo-vector, consider its definition,
F = q\x x B. On inverting the coordinates the numerical values of the
components of F and u reverse sign, so those of B cannot.)

Now under the inversion x' = —x, b and Bo retain the same component
values, i.e. they reverse direction, while v retains the same physical direc-
tion but reverses its component values. It follows from the definition of a,
v x b = aB0, that a must change sign under a coordinate transformation
of the form x -> —x, and this is what we mean by a pseudo-scalar. It is a
strange kind of scalar, not at all like, say, temperature whose value
cannot possibly depend on the coordinate system used to describe
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space. Another example of a pseudo-scalar is helicity, v • (V x v), V x v
being a pseudo-vector.

This may all sound a little abstract, but it turns out to be important. For
example, a is a statistical property of the turbulence which creates it. Thus,
if a is to be non-zero, the statistical properties of the turbulence must also
change sign under a reflection of the coordinates x' = - x . We say that the
turbulence must lack reflectional symmetry, otherwise a will be zero.

The next question might be: can we estimate the size of a? We might
expect a to depend on only |v|, A and /, where |v| is a measure of the eddy
velocity and / is the size of the turbulent eddies or blobs. If this is so then,
on dimensional grounds, a/\\\ =f(\\\l/X), a/\\\ and |v|//A being the only
two dimensionless groups which we can create from these variables. Two
important special cases are Rm ^> 1 and Rm ^ I. In cases where Rm is
large (on the scale of /) we might expect a not to depend on the diffusiv-
ity, A. That is to say, diffusion should not be an important physical
process in the a-effect, except at scales much smaller than / where flux
tube reconnections occur. In such a case, we might expect a ~ |v|.
However, this cannot be true, since a is a pseudo-scalar while |v|, the
r.m.s. turbulence velocity, is not. Given that a is independent of A, and of
order |v|, yet reverses sign in a coordinate inversion, the simplest estimate
of a one can come up with is

a ~ - | v - ( V x v ) J / / | v | , (Rm » 1)

Such estimates are, in fact, commonly used. Note the minus sign. This
arises because a positive helicity tends to induce b-loops whose associated
current density, with which we associate aaB0, is anti-parallel to Bo

(Figure 6.13). This kind of argument implies (but does not prove) that
helicity is a key component of the a-effect at high Rm.

For low Rm turbulence we would expect a to depend on X as well as on
/ and |v|. In fact, the induction equation tells us |b| ~ (|v|//A)|B0|, and so

Figure 6.13 (a) Turbulent eddies with positive helicity tend to induce a current
density anti-parallel to Bo.
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we might expect a ~ v2//A. However, as in the case above, this cannot be
true since a is a pseudo-scalar while v2//A is not. We might anticipate that

a ~ - / 2 [ v - V x v ] A , ORW«1)

which suggests helicity is important whatever the value of Rm, as implied
in Figure 6.11.

In fact, when Rm is small, we can evaluate a exactly. We require only
that the turbulence be statistically homogeneous. That is, the ensemble
average of any turbulent quantity, which we denote (~), is independent
of position. Our starting point is the identity

V(a • b) - a • Vb - b • Va = a x (V x b) + b x (V x a)

where a is the vector potential for v: v = V x a, V • a = 0. We now sub-
stitute for V x b using (5.4), the low-Rm form of Ohm's law. This gives

v x b = A-1[a x (v x B) - a x VK] - V(a • b) + V • (-)

Rearranging the term involving the electrostatic potential, V, yields

v x b = AT1 [a x (v x B) - K(V x a)] - V(a • b) + V • (~) + V x (AT1 Fa)

We now express V in terms of a and B by taking the divergence of (5.4):

Thus, to within an arbitrary harmonic function, we have V = —B • a, and
so our expression for v x b simplifies to

v x b = A"1[2(a • B)v - (a • v)B] - V(-) + v • (~) + V x (~)

The final step is to take ensemble averages, at which point the terms
involving grad, div and curl vanish by virtue of our assumption of homo-
geneity. The end result is

(v x b) = -AT1 ((a • v)B - 2(a • B)v)

In terms of afj this yields

ay = - A x ((a • \)Sij - (a/V/ + a/V/) 1)

If we define a = a n /3 , which is consistent with atj = aSy in the isotropic
situation, then
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a = -(a-v)/(3A)

Compare this with our previous estimate,

a - -/2[v-Vxv]A, (Rm « 1)

It seems that the helicity-like pseudo-scalar, a • v, plays a key role in the
\ow-Rm a-effect.

In summary then, helical turbulence can give rise to an a-effect, and
when combined with differential rotation we have the possibility of a self-
sustaining dynamo. Actually, integration of the induction equation,
incorporating differential rotation and the a-effect, does indeed lead to
a self-sustaining dynamo for sufficiently high dynamo number, (al/X)
(uel/X). Typically, in such integrations, a is chosen to be skew-symmetric
about the equator, reflecting the supposed structure of the core turbu-
lence. These integrations often yield oscillatory dynamos when the solid
inner core is ignored, and non-oscillatory dynamos when the electrical
inertia of the inner core is included.

One candidate, then, for a geo-dynamo is the generation of an azi-
muthal field through differential rotation in the liquid core (the omega
effect), supplemented by random, small-scale helical disturbances which
convert the azimuthal field back into a poloidal one (the alpha effect). It
has to be said, however, that this is a highly simplified picture. For
example, we have not addressed the issue of why the turbulence should
be dynamically pre-disposed to create an a-effect. Nor have we identified
the source of this turbulence.

Example 1: The a-effect induced by helical waves

Suppose that, in Cartesian coordinates, a small amplitude, helical wave
of the form

v(x, t) — Re[\0 exp(/(k • x - cot))]

where v0 = vo(—i, 1,0) and k = (0, 0, &), travels through a uniform
magnetic field Bo. Confirm that v is a Beltrami field, in the sense that
V x v = h , and that the helicity density is v • (V x v) = k\Q. Now use
the linearised induction equation to show that the induced magnetic
field, b, is
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where v* = Re[/v0 exp(z(k • x — cot))]. Hence show that

In the low Rm limit, Xk ^> co, confirm that ay is given by

ay = a8iz8jz, a = -\2
0/(Xk) = - v • (V x \)/(Xk2)

Example 2: A dynamo wave

A two-dimensional analogue of the a-Q equations can be constructed
as follows. Suppose that B depends only on y and t, By = 0, and that
u = Qxez. Then

dB7 3 B7 _ _ dBx „ 3 Bx

dt ~ dy2 ' x' 3t " 3 /

We might equate Bz to B^ and 5X to B^. Suppose now that we intro-
duce the a-effect into the equation for Bx, while neglecting it in the Bz

equation. Our governing equations now become

$BZ d2Bz ^n dBx 82BX

X ^ + QB ^ X ^= X ^ + QBX, X ^ + a
dt dy2 dt dy2 dy

Show that these equations support solutions of the form B
cot) and that these represent growing, oscillatory waves provided that a
suitably defined dynamo number exceeds some threshold. What is the
critical value of the dynamo number? (This is known as a dynamo
wave.)

Example 3. The dependence of the a-effect on magnetic helicity

Show that, for statistically homogeneous turbulence at low Rm,
a = — X(b • V x b)/BJ). Hint, first show that, to within a divergence,
which integrates to zero, b V x b = X~lb • (v x Bo).

Example 4. Another anti-dynamo theorem

Starting with the induction equation, show that

— (x • B) = B • V(x • u) + AV2(x • B)

Now show that (x • u) must be non-zero for sustained dynamo action.
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6.2.5 Some elementary dynamical considerations

6.2.5.1 Preamble

So far we have restricted ourselves to kinematic aspects of dynamo
theory. Of course, this is the simpler part of the problem, in the
sense that we give ourselves great latitude in the choice of u. That is,
we are free to prescribe the velocity field without any concern as to how
such a motion might be sustained. Thus, in kinematic dynamo theory
we ask only: 'can we find a velocity field, any velocity field, which will
maintain B in the face of Joule dissipation?' It would seem that the
answer to this question is 'yes', but this is a long way from providing a
coherent explanation for the maintenance of the Earth's magnetic field.
We must also determine which of these velocity fields is likely to arise
naturally in the interior of the planets, or indeed in the sun. In short, to
provide a plausible explanation for the observed planetary magnetic
fields, and in particular that of the Earth, we must (somehow) obtain
a self-consistent solution of both the induction equation and the
momentum equation. This is a tall order and, despite great advances,
dynamo enthusiasts are not yet there. Analytical theories tend to be
complex and based on rather tentative foundations, while the numerical
simulations cannot yet span the wide range of length and time scales
inherent in a typical planetary dynamo.

The complexity of the analytical theories lies in stark contrast with the
apparently ubiquitous nature of dynamo action. Consider the list of
planets, and their magnetic fields, in Table 6.1.

The Earth, Jupiter, Saturn, Uranus and Neptune all have strong dipole
moments, Mercury has a rather modest dipole moment, while Venus and
Mars exhibit extremely weak (possibly zero) magnetic fields (Venus is
probably non-magnetic). It is thought that many of these planetary mag-
netic fields are self-sustaining dynamos. Yet the constitution, size and
rotation rate of the planets vary considerably. The magnetic planets
have rotation periods, T, ranging from 0.4 to 59 days, radii which span
the range 2400 to 71000 km and dipole moments from 1019 to
1027amps/m2.

The magnitudes of the planetary fields also vary considerably. It is
possible to estimate the mean magnetic field in the planets using the
relationship

f BdV = (2jLt/3)m
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Table 6.1. Properties of the planets

Planet

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune

Material & density
of core

(103kg/m3)

Iron, 7.6
Iron, 10.6
Iron, 10.6
Iron, 7.5
Liquid hydrogen, 1.3
Liquid hydrogen, 0.7
?
?

Rotation
period,
T (days)

59
243

1
1.03
0.41
0.43
0.72
0.66

Equatorial
radius

(103km)

2.44
6.05
6.38
3.40
71.4
60.3
25.6
24.8

Core
radius

(103km)

1.84
3.15
3.49
1.50
55
28
?

?

Dipole
moment

(1022ampm2)

0.005
0?
7.9

< 0.002
150000
4700
390
200

Mean Bz

in core
(Gauss)

0.016
0?
3.7
?
18

4.3
7
7

Mean Bz

in planet
(Gauss)

0.007
0?

0.60
7

8.2
0.42
0.46
0.26

(BX)PT
(Gauss-days)

0.60
0?

0.60
7

3.4
0.18
0.34
0.16
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where m is the dipole moment and VR is any spherical volume which
encloses the core currents. This suggests that the mean axial field in the
core is of order

Bz ~ ii\m\/(2nRl)

Estimates of Bz are given in Table 6.1, based on both the core and
equatorial radii. Evidently, the mean axial field in the magnetic planets
varies from ~ 10~2 to ~ 10 Gauss. We might note in passing that, by and
large, those planets with the highest rotation rates exhibit the largest
magnetic fields, as indicated by the final column in Table 6.1. The main
point, though, is that the magnetic planets are all rather different. If it is
true that planetary dynamos are so common, yet manifest themselves in
such varied circumstances, then one might have hoped that an explana-
tion of dynamo action would be both simple and robust. Not a bit of it!
Dynamo theories are complex and, as yet, incomplete.

We shall now outline some of the more elementary dynamical issues.
Of course, we have one eye on whether or not the a-Q dynamo survives
scrutiny. In particular, the a-Q model relies on significant and sustained
differential rotation in the core, and requires a separation of scales in the
core motion, with a significant amount of kinetic energy at the small
scales. We shall see that, while (weak) differential rotation probably
does exist, there is little support for a formal separation of scales.

6.2.5.2 Typical time scales in the core

Let us suppose that we have both large-scale motion, for which
L ~ 2000 km, and small-scale eddies, of size no greater than, say, 2 km.
(It may turn out that the small scale-scale motion is both weak and
transitory - too weak to contribute to an a-effect. However, we should
at least make some provision for such a motion since it is a key ingredient
of the a-Q model.) A common estimate of |u|, based on variations of the
surface magnetic field, is 0.2mm/s. Thus the large-scale motion, which
might include differential rotation, buoyant up-wellings and magnetos-
trophic waves, has a large magnetic Reynolds number, Rm = uL/k ~ 200.
The small-scale motion, which might be associated with turbulence gen-
erated in shear layers, or perhaps small, buoyant plumes, has a relatively
low value of Rm, say Rm = vl/k ~ 0.2. (We shall take the large-scale

3 Some caution must be exercised when making the \ow-Rm approximation. For example,
we have seen that Alfven waves occur when Rm based on the Alfven speed, v.d, exceeds
~ n. Typically this wave speed is somewhat greater than v, and so we can have high-i?w

phenomena (waves), even though vl/k is small.
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motion, w, and the small-scale velocity, v, to be of similar magnitudes.) A
natural starting point, therefore, is to characterise the large-scale phe-
nomena, such as the ^-effect, as high-7?w, while the small-scale dynamics
might be treated as \ow-Rm.3

Let us also allow for differential rotation in the core, as required by the
a-Q model. The probable origin of this relative rotation is discussed more
fully in Section 6.2.5.3. We merely note here that differential rotation is
observed in certain numerical simulations and in some seismic studies
(although the interpretation of the seismic data is not always clear cut).
Both the numerical and experimental evidence suggests that the inner core
has a rotation rate which is around one degree per year faster than that of
the mantle.4 This differential rotation is thought to be maintained by the
secular cooling of the earth, and resisted by viscous coupling of the core
and the mantle. That is, cooling causes the solid inner core to grow by
solidification, precipitating the release of latent heat and solute-rich,
buoyant fluid at the inner-core boundary. The resulting thermal and com-
positional buoyancy drives a large-scale motion, convecting angular
momentum across the core in a systematic manner. The end result is a
slight difference in rotation between the inner core and the mantle.

The most important consequence of differential rotation is the inevi-
table shearing of the dipole field, which sweeps out an azimuthal field
of magnitude Be ~ (ueL/k)Bz. Thus the dominant field in this picture
is azimuthal. Given that Bz ~ 4 Gauss in the core, and that (ueL/X) ~
200 we might anticipate that Be ~ 800 Gauss in regions of intense differ-
ential rotation, i.e. near the inner core. Of course, Be does not penetrate
beyond the core-mantle boundary, so we have no way of verifying this.
We must fall back on the (imperfect) numerical simulations. These sug-
gest that 800 Gauss is an overestimate, and that ~ 50 Gauss is more
realistic near the inner core, where the differential rotation is strongest,
while BQ is somewhat weaker in the rest of the core, say, 20 Gauss.

Thus our picture of the large-scale field is one dominated by Be. We
might further suppose that non-axisymmetric, large-scale convection
exists which advects the azimuthal field, forcing low-wavenumber oscilla-
tions (magnetostrophic waves) in the large-scale field. This is also a high-
l y process, operating on the scale L. Thus, in this picture, the large-scale
field is weakly non-axisymmetric and predominantly azimuthal, as shown
in Figure 6.13(b). If we arbitrarily take the internal dipole field to point

A differential rotation of 1 degree per year translates to a velocity of 0.6mm/s, which is
consistent with the estimate of u above.
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Figure 6.13 (b) (1) The dominant large-scale field is assumed to be azimuthal,
produced by differential rotation. It contains a non-axisymmetric, low-wavenum-
ber oscillation caused by large-scale convective motions. Both the differential
rotation and the large-scale convective motions occur at large Rm. (2) A small
eddy of size / teases out a small-scale field, b. This occurs at low Rm.

north (at present it points south), then enhanced rotation of the core
relative to the mantle implies that Be is positive in the southern hemi-
sphere and negative in the north, as shown.

In addition to these large-scale structures we shall suppose that we
have a range of small-scale eddies of size ~ /. For lack of a better phrase
we might call these small eddies 'turbulence'. In the a-Q model, the role
of these small eddies is to tease out a small-scale field, b, from Be, thus
regenerating the dipole field Bp.

Let us now try to estimate the characteristic times associated with the
large and small-scale structures. To focus thoughts we shall (somewhat
arbitrarily) take: u ~ v ~ 0.2mm/s, L ~ 2000 km, / ~ 2 km, X ~ 2m2/s,
v ~ 3 x 10"6m2/s, p ~ 104kg/m3, |B^| ~ 4 Gauss, Be - 50 Gauss (near
the inner core), and Be ~ 20 Gauss (elsewhere).

Table 6.2. Approximate time scales for large-scale
phenomena in the core

Decay/diffusion time for B, t^ ~ RI/
Period of magnetostrophic waves ,T
Convective time scale, L/u

104 years
104 years
300 years
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Table 6.3. Approximate time scales for small-scale phenomena in the
core

Eddy turn-over time, l/v 100 days
Time required to form a Taylor column, tQ = L/(2£2l) 80 days
Damping time for an Alfven wave, 12/(2XTT ) 1 day
Low-Rm magnetic damping time away from the inner 8 hours
core, 4r = 4(aB2/p)~l

Low-Rm magnetic damping time near the inner core, 1 hour
4r = 4(oB2/Pyl

Consider first the large-scale phenomena. There are at least three time
scales of interest here: (i) the convective time scale L/u; (ii) the period, T,
of the magnetostrophic waves which propagate along the i^-lines (see
section 6.1.2); (iii) the large-scale diffusion/decay time for B, td ~ R^/Xn1.
Estimates of these are given in Table 6.2.

The key point is that all of these time scale are relatively large. For
example, it takes 104 years for a fluctuation in B to diffuse through the
core!

Now consider the time scales associated with a small-scale eddy. If we
can categorise its behaviour as low-7?m (and it is not clear that this is
always valid - see footnote at the beginning of this sub-section), then
there are three time scales of interest. These are: (i) the eddy turn-over
time, l/v; (ii) the time required for an inertial wave to propagate across
the core and thus form a Taylor column, tQ = L/(2Q)l (iii) the \ow-Rm

damping time, 4r = 4(aB2/p)~l. (Here Q is the angular velocity of the
Earth.) For cases where vj/a > ~ TV, va being the Alfven speed, we must
add a fourth time scale - that of the damping time for Alfven waves,
l2(2Xn2). (For vj/a < ~ n these waves do not exist.) Thus the key time
scales are as given in Table 6.3.

Of course, we do not really know what Be or u are in the core, and so
these estimates must be regarded with extreme caution. Nevertheless, if
these are at all indicative of the real time scales then they give consider-
able food for thought. For example, the small-scale processes seem to be
extremely rapid by comparison with the large-scale phenomena. Thus, if
a buoyant plume left the inner core on the day that Newton first picked
up his pen to write Principia, it would only just be arriving at the mantle
now! Yet small-scale inertial waves can traverse the core in a month or so,
while small, neutrally buoyant eddies located near the inner core are
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annihilated in a matter of hours! This separation of time scales suggests
that we might picture the small-scale eddies as evolving in a pseudo-static,
large-scale environment.

We might also note that the turn-over time of a small eddy is large by
comparison with the magnetic damping time. This implies that the iner-
tial forces associated with a small eddy are negligible by comparison with
the Lorentz forces. The immediate implication is that there is little small-
scale turbulence (in the conventional meaning of the word) since the non-
linear inertial forces, which are responsible for the turbulent cascade, are
absent.

It seems probable, therefore, that the dominant forces acting on a small
eddy are the Lorentz, Coriolis and buoyancy forces. The ratio of the
Lorentz to Coriolis forces, or equivalently the ratio of the inertial wave
period to the magnetic damping time, is represented by the Elsasser
number, A = aB2/(2pQ). If Be ~ 50 Gauss, as it might be near the
inner core, then A ~ 7, and if Be ~ 20 Gauss, then A~\. Thus, if our
estimates of Be are reasonable, it would seem that the Coriolis and
Lorentz forces are of similar magnitudes in the core. In regions where
the Coriolis force wins out we might anticipate quasi-two-dimensional
structures, two-dimensionality being enforced by the rapid propagation
of inertial waves across the core (see Figure 6.4). In regions where the
Lorentz force is dominant, on the other hand, we might expect heavily
damped Alfven waves (if val/a > ~ n) or else non-oscillatory, \ow-Rm

damping of the type discussed in Section 5.2 (when val/a < ~ n). In either
case, eddies are smeared out along the i^-lines while undergoing intense
dissipation. The \ow-Rm damping of eddies is discussed at length in
Chapter 9. However, for the present purposes it is sufficient to note
that, in the absence of buoyancy, the kinetic energy of an eddy declines
as (t/r)~l/2, where r = (aB2/p)~l.

The broad picture which emerges, then, is that there is a wide range of
time 'scales. Small eddies are either damped by Be or else extruded into
Taylor columns by inertial wave propagation. Both processes take place in
a matter of days. The convective transport of momentum or magnetic flux
is much slower, taking several hundred years to traverse the core. Finally,
the large-scale magnetic phenomena (diffusion, magnetostrophic waves)
occur on vast time scales, of the order of 104 years. There are two impor-
tant implications of this. First, full numerical simulations are difficult to
realise because a wide range of scales have to be resolved. Second, the
efficiency with which the particularly small eddies are damped (by Joule
dissipation) raises some doubt as to the likely-hood of an energetic small-
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scale motion, as required by the a-Q model. We shall return to this second
issue in Section 6.2.5.4. First, however, we consider the large scales.

6.2.5.3 The large-scale dynamics

The discussion above raises at least two questions relating to the large-
scale motion. First, why should compositional or thermal buoyancy give
rise to differential rotation? Second, if the inertial forces are so small, is it
possible to achieve a quasi-static balance between Coriolis, Lorentz and
buoyancy forces? This second question leads to something known as
Taylor's constraint. Let us start, however, with the issue of differential
rotation.

Perhaps the simplest way to picture how differential rotation might
arise is to consider an axisymmetric motion, consisting of an up-welling
of buoyant fluid rising vertically upward from the inner core. Let us
suppose that inertial and viscous forces are negligible (we shall justify
this shortly). Moreover, for simplicity, we shall ignore the Lorentz
force. (This is completely unjustified. However, the Lorentz force,
while modifying the motion, plays no part in the mechanism we are
about to describe.) In a frame of reference rotating with the Earth, we
have

2u x Q — V(p/p) + (8p/p)g = inertial forces ^ 0

where Sp is the perturbation in density which drives the convection, Q is
the angular velocity of the Earth, and g is the gravitational vector which
points inwards. Taking the curl of this force balance yields

9w# 3 /8p
dz dz\p

(Remember that we using cylindrical polar coordinates.) Now it is
observed in some numerical simulations that the regions above and
below the inner core tend to consist of relatively light, buoyant 'fluid
and that, consequently, 8p rises as r increases. The implication is that
due/dz is negative in the north and positive in the south.The fluid near the
inner core then rotates faster than the mantle, and magnetic coupling, via
the dipole field, causes the inner core to rotate at a speed close to that of
the surrounding fluid. (The inner core has a relatively small moment of
inertia and so reacts almost passively to the magnetic forces which couple
it to the surrounding fluid.) The net effect, therefore, is a difference in
rotation between the inner core and the mantle.
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Thus it appears that there are plausible grounds for believing in
differential rotation. Indeed, recent seismic evidence has tended to con-
firm that the inner core has a prograde rotation relative to the mantle of
between 0.3 and 3 degrees per year (although the interpretation of this
evidence has been disputed). The energy which maintains this differen-
tial rotation (in the face of viscous coupling) comes from the slow
growth of the inner core. That is to say, as relatively pure iron solidifies
on the inner core, latent heat and solute-rich buoyant fluid are released.
The resulting thermal and compositional convection drives the differ-
ential rotation, compositional convection probably being the more
important of the two.

Let us now turn to the broader issue of how, in the absence of inertial
and viscous forces, the Lorentz, buoyancy and Coriolis forces all balance.
We have already seen that u • Vu is negligible by comparison with the
Lorentz and Coriolis forces. For example, the ratio of the inertial to
Coriolis terms is, u/2QL ~ 10~6. The viscous stresses are also small (out-
side the boundary layers) since Re = uL/v ~ 108, while the so-called
Ekman number, E = v/(2QL2), is of the order of 10~14. (The Ekman
number represents the ratio of viscous to Coriolis forces.) It appears,
therefore, that the viscous and inertial forces are negligible outside the
boundary layers.

Now, we have already seen (in Section 3.7) that differential rotation
between a fluid and an adjacent solid surface sets up an Ekman bound-
ary layer of thickness (v/Q)1^2 provided, of course, that the flow is
laminar. Such layers might be expected to form on the inner core and
on the mantle. Indeed, it is the viscous coupling between the core and
the mantle which moderates the differential rotation. However, the Ekman
layers in the core cannot be laminar since the estimate 8 ~ (yQ)x/1 leads to
the bizarre conclusion that 8 ~ 20 cms, yet all other relevant length scales
are measured in kilometres. For example, the surface of the inner core is
thought to consist of a 'forest' of dendritic crystals, about 1 km deep. It
seems probable, therefore, that the Ekman thickness is controlled by
surface roughness and by turbulence. Some authors allow for this by
replacing v by an eddy viscosity, vt. It should be noted, however, that
an effective Ekman number based on vt is not expected to exceed ~ 10~9,
so that turbulent stresses are negligible outside the Ekman layers.

The neglect of inertial and viscous forces has profound implications for
the large-scale motion. Consider a control-volume, F, confined to the
core and bounded by the cylindrical surface r = r0 and by the mantle.
In the absence of the non-linear inertial term we have
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^ = 2u x Q - V(p/p) + (Sp/p)g + p~lJ x B + vV2u
ot

which yields the angular momentum equation

^X X U) = 2 x x ( u x f l ) + Vx Ox/p) + p~lx x (J x B) + vx x (V2u)
ot

If we now integrate the z-component of this equation over the volume F,
then the pressure torque integrates to zero while the Coriolis term, which
can be expanded as a vector triple product, also vanishes, i.e.

f 2(x x (u x Q)\dV = 2Q f (zuz - x • u)dV = Q f V • ((z2 - x2)u)dV
JV JV JV

Thus we are left with,

d [ _i f
— (x x u)zdV = p I (x x (J x B))zdV + (viscous torque on mantle)
at) J

It is conventional to reformulate this so that it applies to a thin annulus at
r = r0. The end result is

— uedA = p~l ( Jx B)9dA + (viscous torque)
at) J

Here dA is an element of the surface r = r0. Now the viscous contribution
to this equation is of order vt(ue/8). Thus the ratio of the Lorentz to the
viscous torques is ~ AEJX/1, where A is the Elsasser number and Et is the
effective Ekman number based on a turbulent eddy viscosity. Since
A ~ 1, we have

| dA ~xj t | uddA = p~x | (J x B)9dA

Thus, in the steady state, the Lorentz torque must satisfy

T(r0) = p~l J(J x B ) , ^ = 0(£,1/2) « 0

This is known as Taylor's constraint. In short, the annulus cannot sup-
port a sizeable Lorentz torque since there are no significant forces (iner-
tial or viscous) to balance such a torque. If, at some initial instant, this
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constraint is broken, torsional oscillations are thought to ensue between
adjacent annuli, these annuli being coupled by the Br field. Damping of
the oscillations then causes the flow to evolve towards an equilibrium
state, called a Taylor state.

There are several ways in which the Taylor constraint can be satisfied.
It turns out that one of these is to ensure that Br is suitably small in the
core. That is, in terms of Maxwell stresses,

Ur0BrBe/ii)dA = f (x x (J x B))zdV

(There is no contribution to the integral on the left from the core-mantle
boundary since Be is zero there.) Thus the Taylor constraint is satisfied if
Br is suitably small in the core, i.e. the poloidal field lines are almost axial
in the core. (This idea has led to a clutch of models known collectively as
Model z.)

The limitations imposed by the Taylor constraint are quite profound,
and in fact this has dominated much of the recent literature on the
geodynamo. It might be noted, however, that the net toque arising
from a closed system of currents interacting with its 'self field' is neces-
sarily zero. Thus, in a global sense, the Taylor constraint is always satis-
fied (if we ignore any currents in the mantle).

6.2.5.4 The small-scale dynamics

We now turn to the small-scale motion in the core. The main issue here is
whether or not the small-scale structures, which are so important in the
a-Q model, can survive the relatively intense Joule dissipation and so
contribute, via the a-effect, to the global dipole field.

We have already seen that, at scales of 1 ~ 2 km the magnetic Reynolds
number is less than unity. This suggests that many of the small-scale
eddies are subject to \ow-Rm damping of the type discussed in Chapters
5 and 9. Such eddies will decay rather rapidly unless they are maintained
by some external force, such as buoyancy. For example, it is shown in
Chapter 9 that, in the absence of buoyancy, the kinetic energy of a low-
Rm eddy evolving in a uniform magnetic field declines as (t/r)~^2, where
r is the Joule damping time (crB2/p)~l. Moreover, in the absence of
Coriolis and buoyancy forces, an eddy whose axis of rotation is parallel
to B conserves its angular momentum, while one whose axis is normal to
B loses its angular momentum at a rate H ± ~ H±oexp(—t/4r). In the
former case, the eddy evolves into an elongated, cigar-like structure
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whose main axis is aligned with B (see Figure 5.3b), while in the latter
case the eddy loses its angular momentum by disintegrating into a net-
work of plate-like structures whose planes are orientated parallel to B
(see Figure 9.12). In both cases the eddy elongates in the direction of B at
a rate (t/r)l/2.

The situation is more complicated when both Lorentz and Corlios
forces act on a small eddy. Some hint as to how Coriolis forces might
influence the decay of a \ow-Rm eddy is furnished by the following simple
model problem.

Suppose we have a small, localised, \ow-Rm eddy sitting in a locally
uniform field B = Bex. It has finite angular momentum and is subject to
Coriolis and Lorentz forces (with Q = Qez). However, viscous, gravita-
tional and non-linear inertial forces are neglected. Thus the momentum
equation simplifies to

9u i
— = 2u x Q - V(p/p) + p~ J x B
ot

from which we have

d(x x u)
- ^ — - = 2xx (ux f i ) + Vx (px/p) + p~lx x (J x B)

ot

Using (5.22) to rearrange the Lorentz force, and a variant of (5.22) to
recast the Coriolis force, we find that

* = ( x x u ) x * 2 + Vx (px/p) + (2p)~\x x J) x B
at

+ V • (~ u) + V • (~ J)

Next we integrate over a large spherical volume, and insist that u.dS and
J.dS are zero on some remote boundary. This yields

dt

where m is the dipole moment induced by the interaction of the eddy with
B. Finally, following the arguments leading up to (5.23), and on the
assumption (which is not always valid in the core) that the \ow-Rm

form of Ohm's law applies, we recast m in terms of H to give
JTT If

H±=(0,Hy,Hz)

It appears that Hz declines exponentially. Hy and Hx, on the other hand,
decay in a sinusoidal fashion if A — crB2/(2pQ) is less than 4, and decay
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exponentially if A exceeds 4. In either case the characteristic decay time is
4T. NOW it is readily confirmed that the Coriolis force does not change the
rate of decline of energy and so the energy of the eddy falls as (t/r)~l/2.
An algebraic decline in energy, yet exponential decline in angular
momentum, requires that the eddy adopts a spatial structure in which
the angular momentum alternates in sign and integrates to zero. So we
might anticipate that, whatever the value of A, plate-like structures will
emerge, as shown in Figure 9.12. Moreover, when A is small, an eddy
presumably undergoes a substantial elongation before being destroyed,
the Coriolis force extruding the eddy into a Taylor column. Thus the
eddy shown on the left of Figure 9.12 will grow at a rate (t/r)l/2 parallel
to B and at a rate Qt parallel to Q, forming a set of platelets of
alternating vorticity which, when added together, have zero net angular
momentum.

So what does all this mean in the context of the Earth's core? For Be ~
20 Gauss we have a dissipation time scale of 4r ~ 1 day. This is very
rapid by comparison with the other relevant time scales, and so it is by no
means clear that these eddies can be replenished as fast as they are
destroyed.

At present, the prevailing view is that, as far as planetary dynamos are
concerned, the a-effect is, at best, a pedagogical idealisation.

6.2.6 Competing kinematic theories for the geo-dynamo

Two-scale a-Q models have been around for some time now. They repre-
sented a significant breakthrough in dynamo theory because they circum-
vented the fundamental limitations imposed by Cowling's theorem while
providing a theoretical framework for constructing possible dynamo
mechanisms. Their weaknesses, however, are three-fold. First, the a-effect
is essentially a kinematic theory. Why should the turbulence in the earth's
core be dynamically predisposed to reconstruct a large-scale dipole field
from a random small-scale field? Second, they rely on significant differ-
ential rotation in the core, which requires the inner core and the mantle to
rotate at different rates. As noted above, there is some indication that this
is indeed the case. However, the evidence is not yet conclusive. Third, they
presuppose a two-scale structure for u and B, with significant energy in the
small-scale turbulence. There is no real evidence that this is the case and,
as we have seen, there are arguments to the contrary.
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Many other dynamo mechanisms have been proposed. For example,
if we accept the notion of a two-scale approach, but reject the idea of
strong differential rotation, then we can still get a dynamo through the
a-effect. That is, Be can be generated from |Bp| by an ar-effect, which is
then converted back into a poloidal field, again by the a-effect. This is
called an a2-dynamo (see example below). Alternatively, we might
abandon the two-scale picture altogether and consider large-scale con-
vective motions driven by buoyancy and Coriolis forces. Indeed, there
have been many computer simulations of that type. However, despite
all of this research, there is still no self-consistent theory which explains
the observations.

In any event, it looks like the search for an entirely self-consistent
model of the geo-dynamo will continue for some time. Great advances
have been made, yet there is still some resonance in Maxwell's comment:

... we are not yet fully acquainted with one of the most power-
ful agents in nature, the scene of whose activity lies in those
inner depths of the earth, to the knowledge of which we have
so few means of access.

(1873)

Example: An a2-dynamo

Consider the averaged induction equation in cases where a = constant
and u0 = 0:

Consider solutions of this equation of the form Bo = B(x)e/7rwhere
B(x)is a so-called 'force-free' field satisfying,

Show that, for suitable initial conditions, this is a solution of the
averaged induction equation, and that

p = ak- Xk1

Deduce the criterion for a self-sustaining a2-dynamo.



A Qualitative Discussion of Solar MHD 199

6.3 A Qualitative Discussion of Solar MHD

One lot cogitates on the way of religion, Another ponders on the
path of mystical certainty; But I fear one day the cry will go up,
'Oh you fools, neither this nor that is the way!'

Omar Khayyam

The capricious behaviour of sunspots has been the source of speculation
since the first observations in ancient China. Considered debate in the
West probably dates back to the early 17th century and to the develop-
ment of the telescope by Galileo. Indeed it was Galileo's Letters on Solar
Spots, published in Rome in 1613, which precipitated the clash between
Galileo and the church. Thus the battle between science and religion
began; a skirmish which had still not abated by 1860 when Huxley and
Bishop Wilberforce debated Darwin's Origin of the Species.

Records of sunspot appearances have been kept more or less con-
tinuously since Galileo's time. By 1843 it was realised that the appear-
ance of spots followed an eleven-year cycle (although there was a
curious dearth of sunspots during the reign of the Roi Soleil in
France!). The reason for the eleven-year cycle remained a mystery for
some time, but it was clear by the end of the 19th century that there
was an electromagnetic aspect to the problem. As Maxwell noted in
1873, when discussing terrestrial magnetic storms: 'It has been found
that there is an epoch of maximum disturbance every eleven years, and
that this coincides with the epoch of maximum number of sunspots in

Corona
Chromosphere

Photosphere

Convection zone

Radiative zone

Figure 6.14 (a) The structure of the sun.
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the sun.' Maxwell was on the right track, but it was not until the
development of MHD that we have begun to understand some of the
observations.

The following paragraphs give a brief qualitative introduction to solar
MHD. The focus is on sunspots and solar flares. The discussion is purely
descriptive, intended only to give a glimpse of some of the more intri-
guing phenomena involved. To date, many problems concerned with the
solar dynamo have not been solved, and models which have been pro-
posed require for their understanding mathematics beyond the level of
this book. Some reading suggestions are given at the end of the chapter
which fearless readers may consult.

6.3.1 The structure of the sun

The sun's interior is conventionally divided into three zones (Figure
6.14(a). The central core of radius ~ 2 x 105km is the seat of thermo-
nuclear fusion. This is surrounded by the so-called radiative zone which
extends up to a radius of ^ 5 x l 0 5 k m Here heat is transported
diffusively by radiation and conditions are hydrodynamically
stable. The outer region is called the convection zone. It is approximately
2 x 105km deep, convectively unstable and so in a state of constant
motion. Heat is carried to the surface via convection.

The solar atmosphere is also divided into three regions. The 'surface' of
the sun is called the photosphere. This is a thin transparent layer of
relatively dense material about 500 km deep. Above this lies the hotter,
lighter chromosphere which is around 2500 km deep. The outermost layer
is the corona, which has no clear upper boundary and extends in the form
of the solar wind out to the planets. There is a dramatic rise in tempera-
ture in passing from the chromosphere to the corona.

The existence of the solar convection zone is evident in the granular
appearance of the photosphere. In photographs it looks like a gravel path
and is reminiscent of multi-cellular Benard convection. The granules
(convection cells), which are continually evolving on a time-scale of min-
utes, have a typical diameter of ~ 103km and are bright at the centre,
where hot plasma is rising to the surface, and darker at the cell bound-
aries where cooler plasma falls. Because they are influenced by surface
radiation, these granules are not necessarily representative of the scale of
the internal motion deep within the convection zone.
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As was mentioned in Chapter 4, the sun does not rotate as a rigid body.
The average surface rotation is faster at the equator than it is near the
poles but the radiative zone rotates more or less like a rigid body at a rate
somewhere between the equatorial and polar surface rates. This differ-
ential rotation is crucial to much of solar MHD.

6.3.2 Is there a solar dynamo?

The natural decay time for a magnetic dipole field in the sun is around
109 years, which is about the age of the solar system itself. This is not
inconsistent with the notion that the field is the relic of some galactic field
which was trapped in the solar gas at the time of the sun's formation.
However, the sun's magnetism is constantly varying in a manner that
cannot be explained by some frozen-in primordial field. Sunspot activity
could be attributable to transient, small-scale processes, but the periodic
(22-year) variation of the sun's global field suggests that theories based on
a frozen-in relic are incorrect. It seems likely, therefore, that the explana-
tion of solar magnetism lies in dynamo action within the convective zone.
Note that while dynamo theory is invoked to explain the unexpected
persistence of the earth's magnetic field, it is invoked in the solar context
to explain the rapid evolution of the sun's field.

The dynamo theories which have been developed in the context of the
earth and the sun are, however, very different. In the core of the earth,
velocities are measured in fractions of a millimetre per second, and as a
result Rm is rather modest, Rm < 100. In the convective zone of the sun, on
the other hand, velocity fluctuations are around 1 km/s, giving Rm ~ 107.
While concerns in geodynamo theory often centre around finding turbu-
lent motions which have an Rm high enough to induce significant field
stretching, in the solar dynamo the problem is of the opposite nature. Rm

is so high that molecular diffusivity becomes very weak, and so extremely
large gradients in the magnetic field must develop in order to allow the flux
tube reconnections needed to explain the observed behaviour.

6.3.3 Sunspots and the solar cycle

We have already discussed sunspots in Chapter 4. They are a manifesta-
tion of unstable, buoyant flux tubes which float up through the convec-
tive zone and erupt into the solar atmosphere (see Figure 4.2). These dark
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spots appear in pairs and are the foot-points of the flux tube in the solar
surface, where the intense local magnetic field (~ 3000 G) suppresses fluid
motion and cools the surface. The spots are typically 104 km in diameter
(much larger than a granule) and they appear mainly near the equatorial
plane. Often they occur in groups (an 'active region') and this gives rise to
an increased brightness, called photospheric faculae.

The intensity of sunspot activity fluctuates on a regular 11-year cycle.
At the sunspot minimum there may be no sunspots, while at the max-
imum there are typically around a hundred. After their rapid initial for-
mation, sunspot pairs may survive for some time, disintegrating over a
period of days or weeks, the so-called 'following spot' vanishing first. The
fragments of the flux tube which caused the spot are then convected
around by the photospheric flows accumulating along granular
boundaries.

The area of the photosphere covered by sunspots varies during the
11-year cycle. At the minimum point new spots appear first at latitudes
of ~ ±30°. The number of active zones then increases, gathering
towards the equator, until finally the sunspot activity dies away. The
magnetic field in an active region is predominantly azimuthal (field lines
which circle the solar axis), so that the sunspot pairs are aligned
(almost) with a line of latitude. They rotate with the surface of the
sun, the leading spot being slightly closer to the equator than the fol-
lowing spot. Leading and following spots are observed to have opposite
orientations of B, as you would expect. However, all pairs in one hemi-
sphere have the same orientation (e.g. B directed outward in the leading
spot and B directed inward in the following spot) and this orientation
reverses as we move from one hemisphere to the other. This suggests
that the sub-surface azimuthal field is unidirectional in each hemisphere
and antisymmetric about the equator: a picture which is consistent with
an azimuthal field being swept out from a dipole field by differential
rotation (see §4.5.3). Crucially, however, the field orientation in the
sunspot pairs reverses from one 11-year cycle to the next, suggesting
a periodic variation of the subsurface azimuthal field every 22 years. If
this azimuthal field is generated from a dipole field by differential rota-
tion, then this, in turn, suggests a periodicity in the dipole field, or else
a periodic reversal in the differential rotation which sweeps out the
azimuthal field. If the latter were true there would be no need for a
solar dynamo to explain the 22-year cycle. However, observation sug-
gests that it is the first explanation which is correct. The sun's poloidal
(dipole) field appears to reverse at the sunspot maximum, strongly sug-
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gesting (but not proving) that the solar magnetic field is maintained by
dynamo action in the convective zone.

6.3.4 The location of the solar dynamo

It might be thought that the entire convective zone contributes equally to
dynamo action, and indeed this was once taken to be the case. However,
recently it has been suggested that much of the dynamo action occurs in a
relatively thin layer at the interface of the radiative and convection zones.
In part, this change in view arose from measurements of rotation in the
sun which suggest that differential rotation is concentrated at this inter-
face and so this thin layer is likely to be the location of intense azimuthal
field generation.

Mathematical models of the solar dynamo have been proposed based
on this idea, including, for example, an a-Q model. In this picture,
strong azimuthal fields build up at the base of the convective zone
due to differential rotation (the ^-effect). These fields support low-fre-
quency magnetostrophic waves (see Section 6.1) which, when combined
with buoyancy-driven motion, regenerate a dipole field from the azi-
muthal one (the a-effect). However, such a model is, perhaps, a little
idealistic, representing a convenient conceptual framework which cap-
tures key physical mechanisms, but not really providing a truly predic-
tive model of the solar dynamo. As with the geo-dynamo, much
remains to be done.

6.3.5 Solar flares

The solar atmosphere is anything but passive. It is threaded with vast
magnetic flux tubes which arch up from the photosphere into the cor-
ona and which are constantly evolving, being jostled by the convective
motions in the photosphere (see Figure 4.3). Some of these flux tubes
are associated with sunspots, others are associated with so-called pro-
minences. Prominences extend from the chromosphere up into the cor-
ona, appearing as arch-like, tubular structures of length ~ 105 km and
thickness ~ 104 km. They contain cold, chromospheric gas, perhaps 300
times colder than the surrounding coronal gas. This relatively cold
plasma is threaded by a magnetic field of ~ 10 Gauss, which is much
weaker than that in a sunspot, but larger than the mean surface field of
~ 1 Gauss. A prominence is itself immersed in, and surrounded by,
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Figure 6.14 (b) A cartoon of a two-ribbon solar flare.
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Figure 6.14 (c) The solar wind.

thinner flux tubes which arch up from the photosphere, criss-crossing
the prominence. Some flux tubes lie below the prominence, providing a
magnetic cushion. Others lie above, pushing down on the prominence.
The flux tubes which overlie the prominences are sometimes referred to
as a magnetic arcade.

Quiescent prominences are stable, long-lived structures which survive
for many weeks, while explosively eruptive prominences give rise to spec-
tacular releases of mass and energy in relatively short periods of time
(hours). The mass which is propelled from the sun in this way is called a
coronal mass ejection (CME), and the sudden release of energy is called a
solar flare.

As yet, there is no self-consistent model for solar flares, although all
current theories agree that the power source is stored magnetic energy
whose release is triggered by magnetic reconnection. The largest flares
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are called two-ribbon-flares and they are thought to arise as follows.
Consider a prominence which is supported by a magnetic cushion and
has a magnetic arcade overlying it. Now suppose that the prominence
starts to rise, perhaps because of a build-up of magnetic pressure in the
magnetic cushion (which itself might arise from the photospheric jos-
tling of the flux tube roots). The field lines in the overlying arcade,
which also have their roots in the photosphere, will become increasingly
stretched. Eventually, large gradients in B will build up, allowing mag-
netic reconnections to occur. This, in turn, allows the arcade flux tubes
to 'pinch off, releasing magnetic energy, as shown in Figure 6.14(b).
When this occurs the downward force associated with the overlying flux
tubes is suddenly removed and so the prominence is propelled explo-
sively upward by the magnetic pressure in the underlying magnetic
cushion. Some of this energy is also propagated down the arcade field
lines to their foot points in the chromosphere and photosphere. The
footprints of these field lines then appear as two highly energetic 'rib-
bons' in the chromosphere - hence the name.

It has to be said, however, that this picture is rather simplistic.
Recent measurements suggest that there is not a one-to-one correspon-
dence between coronal mass ejection and solar flares. Often CMEs
occur without flares while flares need not be accompanied by a CME.
Clearly, the entire process is much more complicated than that sug-
gested above.

Whatever the true explanation of solar flares, it cannot be denied that
they are spectacular events. They are vast in scale, extending over
~ 105km, and release prodigious amounts of energy, of the order of
~ 1025J. This sudden release of mass and energy enhances the solar
wind which, even in quiescent times, spirals radially outward from the
sun. At times of vigorous solar activity (at sunspot maximum) the con-
centration of particles in the solar wind can increase from ~ 5 x 106m~3

to ~ 107 m~3, and their velocity rises from around 400 km/s to 900 km/s.
The mass released by these solar flares sweeps through the solar system
and one or two days after a large flare is observed the earth is buffeted by
magnetic storms.

Such storms can cause significant damage, as one Canadian power
company discovered to its embarrassment in 1989. Around the 11th of
March 1989 a large solar flare burst from the surface of the sun, and as
dawn broke on the 13th of March six million Canadians found them-
selves without power!
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6.4 Energy-Based Stability Theorems for Ideal MHD

One of the major successes of high-i?m MHD lies in the area of sta-
bility theory. This has its roots, not in liquid-metal MHD, but rather
in plasma physics. A question which is often asked in fluid mechanics
is: 'Is a given equilibrium or steady motion stable to small distur-
bances?' That is to say, if a steady flow is disturbed, will it evolve
into a radically different form or will it remain close (in some sense) to
its initial distribution. The method used most often to answer this
question is so-called normal mode analysis. This proceeds by looking
for small amplitude disturbances which are of the separable form
5u(x, /) = uo(x)^ f. When quadratic terms in the small disturbance are
neglected the governing equations of motion become linear in 8n, and
this defines an eigenvalue problem for the amplitude of the distur-
bance, uo(x). The eigenvalues of this equation determine p, and the
motion is deemed to be unstable if any p can be found which has a
real positive part. This works well when the geometry of the base flow
is particularly simple, possessing a high degree of symmetry, e.g. one-
dimensional flow. However, if there is any significant complexity to the
base flow (it is two- or three-dimensional) this procedure rapidly
becomes very messy, requiring numerical methods to determine the
eigenvalues.

In MHD an alternative method has been developed, which relies on
the conservation of energy. This has the advantage that it may be
applied to equilibria of arbitrary complexity, but it has two major
short-comings. First, it applies only to non-dissipative systems
(X = v = 0), which we might call ideal MHD. Second, it usually pro-
vides sufficient, but not necessary, conditions for stability. Thus often
an equilibrium may be proved stable, but it cannot be shown to be
unstable. We shall describe this energy method here. First, however,
we shall discuss the motivation for developing special stability methods
in MHD.
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Figure 6.15 The linear pinch, (i) The confinement principle, (ii) Instability of
the pinch.
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6.4.1 The need for stability theorems in ideal MHD: plasma containment

In the 1950s the quest for controlled thermonuclear fusion began in
earnest. This required that the (very) hot plasma be confined away
from material surfaces, and since these plasmas are good conductors,
magnetic pressure seemed the obvious confinement mechanism. A sim-
ple confinement system is shown in Figure 6.15. An axial current is
induced in the surface of the plasma, which is in the form of a cylin-
der, and the resulting azimuthal field creates a radial Lorentz force
which is directed inward. (To form a more compact confinement sys-
tem, the cylinder could be deformed into a torus.) This configuration
is known as the linear pinch. Regrettably, it is unstable. Let / be the
total current passing along the column. Then the surface field is Be —
ixl/2TVR where R is the radius of the column. If R locally decreases for
some reason, then Be rises by an amount 8Be = Be8R/R. A 'sausage-
mode' instability then develops because there is a rise in magnetic
pressure, 8pm = Be8Be//ji, at precisely those points where the radius
reduces.

This sausage-mode instability may be stabilised by trapping a long-
itudinal magnetic field, BL, within the plasma. The idea is the following.
If A. is very small then this longitudinal field is frozen into the plasma, so if
R reduces locally to R — 8R, the longitudinal magnetic field will increase
by an amount 8BL = 2BL8R/R, the total longitudinal flux remaining
constant. The magnetic pressure due to BL therefore increases by 8pm =
BL8BL/fi = 2B2

L8R/IJLR and this tends to counterbalance the rise in 'pinch
pressure' 8pm = B2

e8R/^R. The column is then stable to axisymmetric
disturbances provided that B2

L > BJ/2.
Unfortunately, this is not the end of the story. The column is unstable

to non-axisymmetric disturbances even in the presence of a longitudinal
field. This is known as the kink instability. Suppose that the column is
bent slightly, as shown in Figure 6.16. The field lines are pressed together
on the concave side, and spaced out on the other side. Thus the magnetic
field, and hence the magnetic pressure, is increased on the concave side of

B low

Figure 6.16 The kink instability.
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the column and reduced on the convex side. This produces a net sideways
force which accentuates the initial disturbance.

In fact, confining plasmas using magnetic fields turns out to be alto-
gether rather tricky. It is not just the linear pinch which is unstable. In the
late 1950s, plasma physicists were faced with the problem of deciding
which confinement schemes were unstable. Conventional, normal-mode
techniques seemed cumbersome and so a new stability theory was devel-
oped (primarily at Princeton), first for magnetostatic equilibria, such as
that shown in Figure 6.15, and shortly afterwards for any steady solution
of the equations of ideal MHD, static or otherwise. This new method is
based on the conservation of energy, and in fact it is more in line with our
intuitive notions of stability than conventional normal-mode analysis.
For example, it predicts that a magnetostatic equilibrium is stable if its
magnetic energy is a minimum at equilibrium. Unfortunately, though, the
proof of these new stability theorems requires a great deal of vector
manipulation. Consequently, the proofs which follow are not for the
impatient or the faint-hearted. The end result, though, is rewarding.

6.4.2 The energy method for magnetostatic equilibria

To get an idea of how conservation of energy may be used in a stability
analysis, we first consider the simpler problem of the magnetostatic equi-
librium of an ideal, incompressible fluid. The fluid and magnetic field are
both assumed to be contained in a volume, V, with a solid surface, S, and
the equilibrium is governed by

Jo x Bo = VP0, Bo • dS = 0

Here the subscript 0 indicates a steady, base configuration whose stability
is in question, and dS is an element of the boundary, S. Now suppose that
this equilibrium is slightly disturbed, and that during the initial distur-
bance the magnetic field is frozen into the fluid. Let f (x, t) be the dis-
placement of a particle, p, from its equilibrium position x,

C(x, t) = xp(t) - x /0) , x,(0) = x

Following the initial disturbance some motion will ensue, perhaps in the
form of an oscillation, e.g. Alfven waves, or perhaps something rather
more drastic. In any event, B will be frozen into the fluid and the resulting
velocity field, u(x,t), is related to the instantaneous particle displacement,
C,by
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ot
(6.15)

Let us now evaluate the change in magnetic energy, EB, which results
from the particle displacement, £. We first expand EB in a series

2/2ti)dV = Em+SlEB + S2EB-

Here S 1 ^ and 82EB are the first- and second-order changes in EB, £
being assumed small at all times. We shall see shortly that 8lEB = 0,
while the stability of the magnetostatic equilibrium is determined by the
sign of 82EB. Specifically, if 82EB is positive, so that EB is a minimum at
equilibrium, the magnetic field is stable. The question, then, is how to
evaluate 8XEB and 82EB. We now employ a trick. EB depends only on
the instantaneous position of the fluid particles and not their previous
histories. That is, EB is completely determined by the instantaneous
spatial distribution of B. There are infinitely many ways in which
each particle could get from x to x + £, but, since EB does not care
about the history of the particles, we shall consider the simplest.
Suppose that we apply an imaginary, steady velocity field, v(x), to the
fluid for a short time r. We choose v(x) such that it shifts the fluid from
its equilibrium configuration to x + £. Since the fluid is incompressible,
v(x) must be solenoidal. We shall call v(x) a virtual velocity field (Figure
6.17). Since B is frozen into the fluid during the application of v we
have

dB
— = V x (v x B),
at

0<t<x (6.16)

Figure 6.17 Perturbation of Bo by a virtual velocity field.
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It follows that the first- and second-order changes in B are

81B = V x ( i | x B o ) (6.17a)

52B = ^ V x ( i / x 5 1 B ) (6.17b)

where x\ = vr. This new fields satisfies

V.f/ = 0, ti-dS = 0 (6.18)

We shall call tj the virtual displacement field in order to distinguish it from
the Lagrangian particle displacement f. Note that r\ and f are not iden-
tical. During the application of our imaginary velocity field, v(x), we
have, from (6.15),

It follows that

{; = „ + ! „ . V , + ... (6.19a)

«/ = C - ^ - V C + ... (6.19b)

Thus, the particle displacement and the virtual displacement are equal
only at first order. Let us now use (6.17) to evaluate the changes in EB

which result from the application of r\. The first-order change is

SlEB = - f (Bo • SlB)dV = - [Bo • V x fo x B0]dV
I1 J M J

which we might anticipate is zero. To show that this is indeed the case, we
note that the integrand may be rewritten as

Bo • V x [t, x Bo] = (f/ x Bo) • (V x Bo) + V • [fa x Bo) x Bo]

Rearranging the scalar triple product and expanding the vector triple
product yields

Bo • V x [ti x Bo] = -/x(Jo x Bo) • * + V • [(Bo • f/)B0 -

The divergence integrates to zero and so

- (VP0) dV = - J V • [Poti]dV = 0
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The first-order change in energy is evidently zero, as stated above. The
second-order change is

from which,

S2EB = ^- f [b2 + Bo • V x [tj x b]] dV, b = V x [t, x Bo] (6.20a)

Now iy is an imaginary displacement resulting from our virtual velocity
field. However, we have iy = C~^C-^C + H.O.T. and so when we sub-
stitute for t\ and discard cubic and higher-order terms we find that

62EB = - L f [b2 + Bo • V x [C x b]]dV, b = V(C x Bo) (6.20b)

This gives us the instantaneous perturbations in magnetic energy and
magnetic field (to leading order) at any instant in terms of the
Lagrangian particle displacement field, £(x, i). Now we expect the equili-
brium to be stable if EB is a minimum at equilibrium, i.e. S2EB > 0. We
now show that this is indeed the case. First we note that the total energy
is conserved in ideal MHD, that is, the momentum equation gives us

^(H=-V . (Pu) + (J x B) • u

while the dot product of B with the induction equation yields, after a little
work,

j t (B2/(2/x)) = (u x B) • J + V • [(u x B) x (B//x)]

Rearranging the scalar triple product and combining the two we have

If we take B • dS = u • dS = 0 at the boundary (we are assuming B is
contained within V), then this gives us conservation of energy in the form

E = Eu + EB = ]- f [pu2 + B2//x]dV = constant (6.21)
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It follows that, for our perturbed magnetostatic equilibrium,

- Eo = - + S2EB = constant

(cubic and higher-order terms have been neglected here). We also have, to
leading order in f, u(x, i) — £(x, i). Conservation of energy therefore gives

us

-pt2 dV + 62EB = constant = AE (6.22)

where j indicates a partial derivative with respect to time. We can now, at
last, discuss stability. We take as our definition of stability the condition
that the kinetic energy of the disturbance is always bounded from above
by the initial energy of the disturbance, AE. In effect, this limits the size of
the resulting velocity field. It follows that an equilibrium is stable if 82EB

is positive for all possible shapes of disturbances. That is to say, stability
is ensured if 82EB > 0 for all possible £ (or tj). Thus, to show that a
magnetostatic equilibrium is stable we merely need to demonstrate that
(6.20) is positive for any choice of t\. We have, in effect, a form of stability
test.

All of this is in accord with our intuitive notions of stability. We may
think of EB as potential energy, in the sense that it is the conserved energy
of a force acting on the fluid. Like a ball sitting on a hillside, the fluid (or
ball) is in equilibrium if the potential energy is stationary, 8lEB = 0, and
it is stable if the potential (i.e. magnetic) energy is a minimum (Figure
6.18).

' Unstable
Unstable

Figure 6.18 Analogy between magnetostatic and mechanical equilibria.
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6.4.3 An alternative method for magnetostatic equilibrium

Now there is a different, though ultimately equivalent, route to establish-
ing this stability criterion. This alternative method proves more useful
when working with non-static equilibria, and so we shall describe it in
some detail. The idea is to develop a dynamic equation for the distur-
bance. This time we work, not with the virtual displacement field, J/, but
rather with the particle displacement, f. Of course, to leading order in the
amplitude of the disturbance, f and i; are equal. We also work only with
first-order quantities, such as b = 8lB, and discard all higher-order terms.
The induction and momentum equations then give us the disturbance
equations

— = V x (u x Bo)
at

du
p— = ] x B 0 + J o x b - Vp

ot

Here lower-case letters represent perturbed quantities, e.g. J = Jo + j ,
and quadratic terms in the disturbance, such as u • Vu or j x b, are
neglected. We also have, to leading order,

C(x, t) = u(x, 0, V • f = 0, C • dS = 0

The perturbation equations then give us

b = V x (C x Bo) (6.23)

= (V x b) x Bo + (V x Bo) x b - Vp (6.24)

The first of these is a restatement of (6.17a), since f = t\ to leading order.
The second equation may be rewritten as

(p/x)C = F(O + V(.) (6.25)

where V(-) denotes the gradient of some scalar function whose value does
not concern us, and

F(C) = (V x b) x Bo + (V x Bo) x b, b = V x (£ x Bo) (6.26)

It is straightforward, but tedious, to show that the linear force operator
F(C) is self-adjoint, in the sense that

J (6.27)
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We now multiply (6.25) by f, and invoke (6.27) in the form, £i = £, £2 = C
The result is an energy-like equation

The next step is to evaluate the integral on the right. In fact, it may be
shown that

( 6 ' 2 9 )

which, when combined with (6.28), gets us back to the energy stability
criterion (6.22). The proof of (6.29) is a little involved and so we give here
a schematic outline only.

Schematic proof of (6.29)

First we need a vector identity based on the equilibrium equation
Jo x Bo = VP0

Jo x [V x (q x Bo)] + [V x (q x Jo)] x B 0 = -V(q • VP0) (6.30)

where q is any solenoidal field. (We shall not pause to prove (6.30).)
Next we take q = f and rewrite (6.26) as

F(O - V x [V x (C x Bo) - C x (V x Bo)] x Bo + VQ

from which

F(C) • C = -(£ x Bo) • V x [V x (C x Bo) - C x (V x Bo)] + f • V(.)

After a little algebra we find

J F(O • CdV = - f [b2 + Bo • V x K x b]]dV (6.31)

It is evident from (6.20b) that the right-hand integral is equal to
—2/JL82EB and so

as required.

It follows from (6.29) and our energy-like equation (6.28) that the sum
of the kinetic energy of the disturbance, plus 82EB, is conserved in the
linear approximation, i.e.

[X-pt2dV + 82EB = constant (6.32)
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Of course, this is identical to (6.22). Once again we conclude that the
magnetostatic equilibrium is stable if 82EB is positive for all possible £ (or
equivalently, all possible t\). This is known as Bernstein's stability criter-
ion.

6.4.4 Proof that the energy method provides both necessary and sufficient
conditions for stability

This second proof of (6.32) is less elegant than the first. However, it does
set the scene for our more general stability analysis (UQ ^ 0). In fact, we
can push this second method a little further. It can be used to establish
both necessary and sufficient conditions for stability. That is to say, a
magnetostatic equilibrium is stable if and only if EB is a minimum. The
proof of the necessity of 82EB > 0 is as follows: suppose that W(Q < 0 for
some £ = £*. Then we introduce a constant, / , defined by

Next we note that (6.24) is second order in t, and so £ and £ may be
specified separately at t = 0. We choose £(0) = £* and £(0) = y£* The
total disturbance energy is then zero and so, for all t,

(6.33)

We now return to (6.25) which, on multiplication by £ and integration
over V, yields

where / = jpjjC2dV. Combining this with (6.33) gives us

t2dV (6.34)

Now the Schwartz inequality tells us that

I2 <2llpt2dV

and so (6.34) may be rewritten as, II > P. This, in turn, ensures the
exponential growth of any disturbance at a rate, / > 7(0)exp[2y/]. [The
proof of this last statement can be verified by making the substitution
y = ln(///(0)), which yields y > 0. Integrating this equation subject to
j(0) = 2y and y(0) = 0 gives y > 2yt.] Thus a magnetostatic equilibrium
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is stable if and only if EB is a minimum. Unfortunately, when we extend
the energy method to the stability of non-static equilibria (u0 / 0), we
obtain only sufficient conditions for stability. That is to say, we can prove
that a given flow is stable, but not that it is unstable.

6.4.5 The stability of non-static equilibria

We now repeat these arguments, but for equilibria in which UQ is non-
zero. Our aim is to use conservation of energy to provide a sufficient
condition for stability. To avoid carrying the constants p and /x all the
way through the analysis, we take p = \x = 1. (In effect, we rescale B as
B/(p/z)1//2.) Also, in the interests of simplicity, we shall take B to be
confined to the fluid domain, V. Now the development of a more general
stability criterion turns out to be no more difficult than the magnetostatic
case, at least at a conceptual level. However, the algebra is long and
tedious. We shall therefore give a schematic proof only. We start with

— = u x i 2 - B x J - V C , u-dS = 0
dt

— = V x (u x B), B • dS = 0
dt

which are the governing equations of ideal MHD. Here C is Bernoulli's
function and Q is the vorticity. It is readily confirmed that these are
consistent with the conservation of energy E = ^ J (u2 + B2)dV (see
(6.21)). Steady flows are governed by

u0 x Bo = VD (6.35)

u 0 x O o - B 0 x J o = VC0 (6.36)

and it is the stability of equilibria governed by these equations which
concern us here. At this point it is convenient to introduce two vector
identities, analogous to (6.30), which stem directly from the equilibrium
equations. If q is any solenoidal field, then it may be shown that

u0 x [V x (q x Bo)] + [V x (q x u0)] x Bo = -V(q • VZ)) (6.37)

u0 x [V x (q x O0)] + [V x (q x u0)] x « 0 + J o x [ V x ( q x Bo)]

+ [V x (q x Jo)] x Bo = -V(q • VC0) (6.38)

We shall not pause to prove these uninspiring-looking relationships, but
they will be used in the analysis which follows.
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We now consider small-amplitude perturbations in u0 and Bo, in which
B = Bo + b, (b • dS = 0) and u = u0 + Su, (Su • dS = 0). Related quantities
are j = V x b and to = V x (<5u). In the analysis which follows we shall
ignore all quantities which are quadratic, or of higher order, in the ampli-
tude of the disturbance. As with the magnetostatic stability analysis, our
first step is to introduce the particle displacement field £(x, t)9 defined by

£(x, 0 = xp(t) - xp0(t)

where X̂ Q is the position vector of particle p in the base flow and x^ is the
position of the same particle in the perturbed flow. The generalisation of
(6.15) is then

In the linear (small-amplitude) approximation, this becomes

ft + u0 • V£ = 5u(x, 0 + uo(x + C) - uo(x)

which, using the approximation uo(x + £) — uo(x) = £ • Vu0, simplifies to

§ = «u(x, 0 - V x (C x u0) (6.39)
ot

Note that, in the small-amplitude approximation, £ is solenoidal. Also,
since u • dS = 0, we have £ • dS = 0. We now turn to the perturbation
equations b and <5u. When we discard quadratic and higher-order terms
in the perturbation, we find

î

— = V x [ju x Bo + u0 x b] (6.40)
ot

— — = 8u x Qo + u0 x o) — b x J o — Bo x j — Vc (6.41)
ot

We concentrate first on the induction equation. Introducing,
AB = b — V x (£ x Bo), this may be rewritten as

- ( A B ) = V x [u0 x AB + u0 x (C x Bo) + V x (C x u0) x Bo]
Ot

which, by virtue of (6.37), simplifies to

| (6.42)

Evidently, if we set AB = 0 at some initial instant, then AB remains zero
for all time. Let us assume that this is so. We then have
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b = V x (C x Bo) (6.43)

which is identical to (6.23). Setting AB = 0 in the initial condition is
therefore equivalent to assuming that B is frozen into the fluid during
the initial disturbance. Such a disturbance might be triggered by, say, a
pressure pulse travelling through the fluid. In the analysis which follows,
therefore, we shall assume that AB = 0 at / = 0 so that (6.43) holds at all
times.

We now turn to the momentum equation (6.41). Substituting for b and
<5u using (6.39) and (6.43) we find, after a little algebra, that

(6.44)

Here F is given by

F(C) = (V x b) x Bo + (V x Bo) x b - (V x u) x u0 - (V x u0) x u

(6.45)

and b and ii are defined by

b = V x (C x Bo); u = V x (£ x u0) (6.46)

It should be noted that, while b represents the perturbation in B, ii does
not represent the perturbation in u. Rather, u is the difference between <5u
and f: ii = 8u — j .

Now compare (6.44) and (6.45) with (6.25) and (6.26). It is clear that
we have extended the dynamical equation for f from equilibria in which
u0 is zero to those where it is not. Note that (6.44) and (6.45) reduce to the
magnetostatic perturbation equations (6.25) and (6.26) when u0 = 0, as
they should. Note also the skew-symmetric roles played by Bo and UQ in
(6.45). It is now a small step to obtain a sufficient condition for stability.
In effect, we simply repeat the arguments used in the magnetostatic case.
As before, F is self-adjoint:

(6.47)

and so (6.44), multiplied by j , yields
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(6.48)

Also, using (6.37) and (6.38), we can determine the analogue of (6.29).
After a little work we find

(6.49)ZdV = 62EB - ^ j[(fi)2 +u 0 • V x [C x u]\dV

which leads to the conservation equation

^ U2dV + 62EB - i f [(u)2 + u0 • V x (C x u)] dV = constant (6.50)

or

- t2dV + W(Q = e = constant (6.51)

If we take J C^dV as a measure of our disturbance, then the equilibrium
flow (u0, Bo) is stable whenever W(Q is positive for all possible choices of
£. This is, in effect, a generalisation of Bernstein's criterion and was
developed in the 1960s by researchers working at Princeton on plasma
containment.

Unfortunately, we cannot extend the argument to give a necessary
condition for stability. The term involving UQ on the right of (6.44) pre-
vents us from repeating the arguments used for the magnetostatic case. In
fact, it is not difficult to construct flows which are stable yet admit nega-
tive values of W(Q. Consider the axisymmetric flow UQ = Qre0, Bo = cm0

(for some constants a, Q) which is confined to r < R. If the two-dimen-
sional stability of this flow is examined then (6.44) leads (eventually) to
the dynamic equation,

The resulting solutions are stable Alfven waves travelling (clockwise or
anti-clockwise) along the B0-lines and riding on the back of the base flow.
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However, it is readily confirmed that W(Q is negative whenever \a\ < 1,
and so this is an example of a flow which violates our stability criterion,
yet is perfectly stable.

In summary then, equilibrium solutions of the ideal MHD equations
are stable to small disturbances provided that W(Q, defined by

(6.52)

( b - V x ( C x B o ) , u = Vx(Cxu0))

is positive for all possible choices of £. This is a remarkably general result
which has been rediscovered many times by alternative means. It covers
magnetostatics, ideal MHD, and inviscid flows in the absence of a mag-
netic field. Unfortunately, there are relatively few three-dimensional flows
for which W(Q can be shown to be positive. However, there are many
two-dimensional flows which may be shown to be stable by this method.

It turns out that a simpler derivation of (6.51) and (6.52) may be
formulated by appealing directly to Lagrange's equation, and this is
described in Appendix 2.

6.5 Conclusion

This concludes our brief exploration of high-i?m dynamics. The subject is
an attractive one, rich in physical phenomena and full of unresolved pro-
blems. For example, we have discussed stability criteria only in the context
of incompressible flows. Yet ideal MHD only really holds in plasma
MHD, not liquid-metal MHD, and so actually we want stability criteria
for compressible fluids. Then there is dynamo theory. While kinematic
aspects of the subject seem well understood, there are many unanswered
questions concerning the dynamics of the geo-dynamo and solar dynamo.
The interested reader is urged to consult the references given below.

Suggested Reading

H K Moffatt, Magnetic field generation in electrically conducting fluids, 1978.
Cambridge University Press. (Chapters 6-12 for a very detailed discussion
of dynamo theory.)
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P H Roberts, An introduction to magnetohydrodynamics, 1967, Longmans.
(Chapter 3 for dynamo theory (without the a-effect), Chapter 5 for Alfven
waves, Chapters 8 and 9 for stability theory.)

M R E Proctor & A D Gilbert, Lectures on solar and planetary dynamos, 1994.
Cambridge University Press. (Chapter 1, by P H Roberts, for an introduc-
tion to geo-dynamo theory, Chapter 2, by N O Weiss, for solar MHD.)

D Biskamp, Nonlinear magnetohydrodynamics, 1993. Cambridge University
Press. (Chapter 4 for stability theory.)

Examples

6.1 In an ideal fluid (A = v = 0) there exist a velocity field u and a scaled
magnetic field h = B/(p/z)1/2. Now consider the alternative fields, V!
= u + h and v2 = u — h. Show that these fields are governed by

ds2/dt + (V! • V)v2 = -

where p is the sum of the fluid pressure and the magnetic pressure
(V] and v2 are known as Elsasser variables).

6.2 Suppose that a uniform magnetic field permeates an (almost) invis-
cid, (almost) perfectly conducting fluid and is orientated at right
angles to a plane solid surface which forms the boundary of the
semi-infinite fluid domain. A constant current sheet, / , is suddenly
applied in the stationary wall giving rise to a tangential field, B / / 5 at
the wall. Show that jumps in U// and B// across the Hartmann-
vortex sheet at the wall are related by

Determine the subsequent motion and field distribution for the case
where v <^X.

6.3 Show that W in (6.52) is always sign-indefinite for three-dimen-
sional equilibria in which B and u are not aligned. (The inference
is that such equilibria are usually unstable.)

6.4 Consider a two-dimensional magnetic field which is in equilibrium
and sits in a steady, two-dimensional velocity field. Show that Win
(6.52) is always sign-indefinite if B2 < pfiu2 at any point. (Restrict
the analysis to two-dimensional stability.)



MHD Turbulence at Low and High Magnetic
Reynolds Number

You asked, 'What is this transient pattern?'
If we tell the truth of it, it will be a long story;
It is a pattern that came up out of an ocean
And in a moment returned to that ocean's depth

(Omar Khayyam)

Turbulence is not an easy subject. Our understanding of it is limited, and
those bits we do understand are arrived at through detailed and difficult
calculation. G K Batchelor gave some hint of the difficulties when, in
1953, he wrote:

It seems that the surge of progress which began immediately
after the war has now largely spent itself, and there are signs of
a temporary dearth of new ideas we have got down to the
bedrock difficulty of solving non-linear partial differential

equations.

Little has changed since 1953. Nevertheless, it is hard to avoid the subject
of turbulence in MHD, since the Reynolds number, even in metallurgical
MHD, is invariably very high. So at some point we simply have to bite
the bullet and do what we can. This chapter is intended as an introduc-
tion to the subject, providing a springboard for those who wish to take it
up seriously. In order not to demotivate the novice, we have tried to keep
the mathematical difficulties to a minimum. Consequently, only sche-
matic outlines are given of certain standard derivations and proofs.
For example, deriving the standard form for second- and third-order
velocity correlation tensors in isotropic turbulence can be hard work.
Such derivations are well documented elsewhere and so there seems little
point in giving a blow-by-blow description here. We have concentrated
rather on trying to get the main physical ideas across.

Now the sceptic might say: 'if the theory of turbulence is so hard, why
bother with it at all? After all we now have powerful computers available
to us, which can compute both the mean flow and the motion of every
turbulent eddy.' The experimentalist Corrsin had one answer to this.

222
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Having estimated the computing resources required to simulate even the
most modest of turbulent flows, and shown them to be well beyond the
capacity of the time, he made the following whimsical comment:

The foregoing estimate (of computing power) is enough to
suggest the use of analog instead of digital computation; in
particular, how about an analog consisting of a tank of water?

Corrsin said this in 1961, but actually it is still pertinent today. Despite
the great advances which have occurred in computational fluid dynamics,
forty years later our capacity to simulate accurately turbulent flows by
computation is still rather poor, restricted to simple geometries and low
Reynolds numbers (around 500). The problem, as you will see shortly, is
that turbulent flows contain, at any instant, eddies (vortical structures)
which have a wide range of sizes from the large to the minute, and it is
difficult to capture this full spectrum of eddies in a numerical simulation.

7.1 A Survey of Conventional Turbulence

As a prelude to discussing MHD turbulence it seems prudent to summar-
ise first the simpler features of conventional turbulence. Of course, tur-
bulence is a vast subject, filling many erudite if forbidding texts. We have
time to touch on only a few issues here. We start with a short historical
introduction.

7.1.1 A historical interlude

At times water twists to the northern side, eating away the base
of the bank; at times it overthrows the bank opposite on the
south; at times it leaps up swirling and bubbling to the sky; at
times revolving in a circle it confounds its course Thus
without any rest it is ever removing and consuming whatever
borders upon it. Going thus with fury it is turbulent and

destructive.
Leonardo da Vinci

So began man's study of turbulent fluid motion.
We start this section with a brief historical survey of turbulence, a

survey which begins with Newton and the ideas of viscosity and eddy
viscosity (Table 7.1). The relationship between shear stress and gradients
in mean velocity has been a recurring theme in turbulence theory. In the
laminar context this was established in 1687 by Newton who, in Principia,
hypothesised that the resistance to relative movement in parts of a fluid
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Table 7.1. Comparison of the history of theories of turbulence with those

of magnetism

Theory of turbulence

1500s Leonardo's first
observations

11th century
1269
1600
1750s

1820s
1831

Electricity and magnetism

Compass
Peregrinus: magnetic poles
Gilbert: geomagnetism
Coulomb: action at a
distance
Ampere: forces on currents
Faraday: electromagnetic
induction, concept of fields

1850s Boussinesq: eddy viscosity

1880s Reynolds: two types of
flow, turbulent stresses

1904 Prandtl: boundary layers

1920s Prandtl: mixing-length
theory

1930s Taylor, von Karman:
statistical theory of
turbulence

1940s Kolmogorov: modern
theory of turbulence

1860s Maxwell's equations

1889 Hertz: emission of
electromagnetic waves

1942 beginning of MHD - Alfven's waves discovered

are 'proportional to the velocity with which the parts of fluid are separated

from one another', i.e. the relative rate of sliding of layers in the fluid. The

constant of proportionality is, of course, the coefficient of viscosity.

Newton's idea of internal friction was somewhat overlooked by the

18th century mathematicians and it languished until 1823 when Navier,

and a little later Stokes, introduced viscous forces into the equations of

hydrodynamics.

Shortly after the introduction of Newton's law of viscosity, questions

were raised as to the uniformity of v. For example, in 1851 Saint-Venant

speculates that*:

If Newton's assumption,..., which consists in taking interior
friction proportional to the speed of the fluid elements sliding
against one another, can be applied approximately to the set of
points of a given fluid section, all the known facts lead us to

* Translation by U. Frisch, 1995.
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infer that the coefficient of this proportionality should increase
with the size of transverse sections; this may be explained up to
a point by noticing that the fluid elements are not progressing
parallel to each other with regularly graded velocities, and that
ruptures, eddies and other complex and oblique motions,
which must strongly effect the magnitude of frictions, are

formed.

There is clearly some embryonic notion of turbulence and of eddy visc-
osity here, albeit confused with molecular action. This was pursued by
both Reynolds and Boussinesq, the latter being Saint-Venant's student.
Boussinesq came first, noting that turbulence must greatly increase the
(eddy) viscosity because: 'the (turbulent) friction experienced, being
caused by finite sliding between adjacent layers, will be much larger than
would be the case should velocities vary in a continuous way' (1870).
Shortly after, Reynolds' classic paper on pipe flow appeared (1883).
This clearly differentiates between laminar and turbulent flow, and iden-
tifies the key role played by ul/v in determining which state prevails.
Later, Reynolds reaffirmed the idea of an eddy viscosity while introdu-
cing the notion that the fluid velocity might be decomposed into a mean
and fluctuating component, the latter giving rise to the fictitious, time-
averaged shear stresses which now bear Reynolds' name. Reynolds used
the term sinuous to describe the appearance of turbulence.

By 1925 Prandtl clearly recognised the analogy between the turbulent
transport of momentum (through turbulent eddies) and the laminar shear
stress caused by molecular motion, as predicted by the kinetic theory of
gases. He introduced the mixing length model of turbulence described in
Chapter 3, which had some notable successes at the time (e.g. the log-law
of the wall) but is now regarded as flawed. (The problem is that there is
no real separation of length scales between the turbulent fluctuations and
gradients in mean velocity as required by a mixing length theory. In fact,
any result deduced by mixing length can also be deduced by purely
dimensional arguments.)

The great breakthrough in turbulence theory came with the pioneering
work of G I Taylor in the early 1930s, who for the first time fully
embraced the need for a statistical approach to the subject. He introduced
the idea of the velocity correlation function Qy(r) = u-(x)uj(x + r), a
generalisation of the Reynolds stress, which is now the common currency
of turbulence theory. The quantity Qtj tells us about the degree to which
the fluctuating component of motion, u', is statistically correlated at two
points separated by a distance |r|. A strong correlation implies that there
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are eddies which span the gap |r|. Conversely, if Qtj is very small, then x
and x + r are statistically independent. Thus Qtj contains information
about the structure of the turbulence. Taylor also promoted the useful
idealisation of statistically homogeneous and isotropic turbulence. This
initiative was pursued by the engineer von Karman, who showed that,
with the help of the symmetry implied by isotropy, Qtj could be expressed
in terms of a single scalar function, / ( | r | ) , and that the Navier-Stokes
equation could be manipulated into the form df/dt = (...). At last there
was the possibility of making rigorous, quantitative predictions about
turbulence. Unfortunately the right-hand side of this equation includes
new terms such as triple velocity correlations of the form
Ui(x)Uj(x)uk(x + r). Consequently, it is not always possible to predict
the evolution of/. Nevertheless, in certain circumstances the triple corre-
lations can be finessed away, and so Karman's equation, now called the
Karman-Howarth equation, can provide useful information.

The statistical theory of turbulence was greatly developed in the (then)
USSR in the 1940s, particularly by Kolmogorov and Obukhov. These
researchers realised that a vast range of scales (eddy sizes) exist in a
turbulent flow, and that viscosity influences only the smallest eddies.
They quantified the idea of the energy cascade, in which eddies continu-
ally break up into smaller and smaller vortices, until viscosity destroys the
motion. This allowed them to predict how the energy of a turbulent flow
is distributed between the various eddy sizes. Great strides were made,
and by 1950 a physical and mathematical picture of homogeneous tur-
bulence had emerged which is little different today. However, this picture
is not completely deductive, but relies rather on certain (plausible) phy-
sical assumptions based on empirical evidence.

Turbulence plays a key part in MHD. Virtually all laboratory and
industrial flows are turbulent. Moreover, turbulence is an essential ingre-
dient of geo-dynamo theory, and it is needed in astrophysical MHD to
explain the flux tube reconnections which are so hard to account for in
terms of the vanishingly small molecular diffusivity. Comparing the
development of turbulence and the laws of electromagnetism, we see
that turbulence was rather a late developer, reflecting the formidable
difficulties inherent in tackling a non-linear, random process. Even
today there is no universal 'theory of turbulence'. We have a few theore-
tical results relating to various idealised configurations, and a great deal
of experimental data. Sometimes, but not always, the two coincide. Of
course, it is when theory and experiment differ, and we try to reconcile
those differences, that we learn the most. As with all fluid mechanics, our
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understanding of turbulence has developed through a careful assessment
of the experimental evidence; which brings us back to Leonardo da
Vinci's observations.

One cannot help but be struck by the similarities between Reynolds'
idea of two motions, a mean forward motion and a turbulent vortical
motion, and his observation of the sinuous nature of turbulence in a pipe,
and Leonardo da Vinci's note in 1513:

Observe the motion of the surface of water, which resembles
the behaviour of hair, which has two motions, of which one
depends on the weight of the strands, the other on the line of
its revolving; thus water makes revolving eddies, one part of
which depends upon the impetus of the principle current, and
the other depends on the incident and reflected motions.

[Note accompanying Leonardo's well-known sketches of water flow
around obstacles.!

7.1.2 A note on tensor notation

It is difficult to make much progress in turbulence without the use of
tensor notation, something which we have managed to avoid so far. This
sub-section is for those who have not met tensors before, or who have
studiously avoided them.

Tensor notation is compact and efficient, but it can be off-putting to
those who are unfamiliar with it. Luckily, to get through this chapter,
there is only one thing you need to know about tensors, and that is the
implied summation convention. A couple of examples will get the general
idea across.

Consider the convective derivative (u • V)/, where/is some scalar func-
tion:

In tensor notation we write this as simply ut(df /dx;). The rule is: if a suffix
is repeated then there is an implied summation over that index. Thus, in
the example above,

¥ 9/ 3/ 9/
Uj = Ur \- Uv \-U2 —

ldxt
 xdx ydy zdz

Sometimes there is more than one suffix. For example, (u • V)u is a sym-
bolic representation of the vector having the three components (u • V)wx,
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(u • V)uy and (u • V)wz. In tensor notation, we would write (u • V)u as
Ui(dUj/dXj), implying an automatic summation over the repeated suffix i
(but no summation over 7). Put another way, u^duj/dXi) is the 7th com-
ponent of (u • V)u. Sometimes we have two repeated indices, in which case
there are two implied summations. For example, [(u • V)u] • B is written as
[ui(dUj/dXj)\Bj. That is, we take the 7th component of (u • V)u, multiply it
by the 7th component of B, repeat the operation for 7 = x, y and z, and
sum the terms.

The Navier-Stokes equation

p \y + (u • V)u = -S/p + yovv2u

is, in tensor notation,

duj dujl dp d2uj

This represents the 7th component of the Navier-Stokes equation and the
summation convention has appeared twice, once in the convective
derivative, K/[3(-)/3*;]> and once in the Laplacian, 82/dx2 = d2/dx2

+d2/dy2 + 32/3z2. The continuity equation is, in tensor form,

Some quantities, such as the stress tensor, r#, depend themselves on
two indices. In the case of the stress tensor, Ty represents the component
of stress pointing in the 7th direction and evaluated on the surface whose
normal points in the /th direction. This is illustrated in Figure 7.1.

The Navier-Stokes equation written in terms of the viscous stress
tensor is

J*S+ »ij__± + a (7.3,
dt dXj] dxj dXi

where Newton's law of viscosity stipulates that

Here Stj is called the strain-rate tensor. (The reader might wish to check
that substituting (7.4) into (7.3), and using (7.2), we arrive back at (7.1).)
The term drtj/dXi in (7.3) arises from the fact that the net viscous force per
unit volume acting on the cube shown in Figure 7.1 is
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5x

(a) Sign convention for stresses
(note that xy = ijj)

(b) Net effective body force, per unit volume,
caused by an inbalance in stresses.

Only components in th xz plane are shown

Figure 7.1 The stress tensor.

Jx ~ dx + dy + dz

in the x-direction, with analogous expressions for fy and/ z .
Finally we introduce the symbol Sy, which has the usual meaning of

8tj = 1 if / =j and 8tj = 0 if / ^j. Armed with this brief introduction to
tensor notation, we now start our survey of conventional (non-MHD)
turbulence.

7.1.3 The structure of turbulent flows: the Kolmogorov picture of
turbulence

Let us start with a traditional question in turbulence theory. Suppose we
have a (statistically) steady flow, say flow in a pipe. Then the turbulent
eddies are continually subject to viscous dissipation yet the energy of the
turbulence does not, on average, change. Where does the turbulence
energy come from? Of course, in some sense it comes from the mean
flow. The traditional way of quantifying this relies on the idea of dividing
the flow into two distinct parts, a mean component and a turbulent
motion, and then examining the exchange of energy between the two:
which brings us back to the idea of a Reynolds stress.

You are already familiar with the concept of the Reynolds stress, x*-. In
Chapter 3 we showed that, when we time-average the Navier-Stokes
equation in a turbulent flow, the presence of the turbulence gives rise
to additional stresses, if- = —pu-uj, which act on the mean flow. Here
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the prime on u' indicates that this is a fluctuating component of velocity,
u' = u — u, and the overbar signifies a time average. Now these Reynolds
stresses give rise to a net force acting on the mean flow,/ = dzy/dxj, and
if the rate of working of this force, ftuh is negative, then the mean flow
must lose mechanical energy to the agent which supplies the force, i.e. the
turbulence. We say that energy, usually kinetic, is transferred from the
mean flow to the turbulence. This is why the turbulence in a pipe, say,
does not die away. The viscous dissipation of turbulent eddies is matched
by the rate of working of/).

Of course, this is all a little artificial, in the sense that we have just one
fluid and one flow. All we are saying is that when we decompose u into u
and u' then the total kinetic energy, which is conserved in the absence of
viscosity, is like-wise divided between ^u2 and ^u /2. When/jw, is negative,
energy is transferred from u to u'. Physically this corresponds to the
creation of turbulent eddies through some form of instability in the
mean flow. Now we can write /)w, as

Here Stj is the strain-rate tensor introduced in Chapter 7, Section 1.2. The
first term on the right of (7.5) is just the divergence of utx^. In a finite,
closed domain, in which iij is zero on the boundary, or else in a statisti-
cally homogeneous turbulent flow, this term integrates to zero. Thus the
net rate of transfer of mechanical energy to the turbulence is just the
volume integral of tfjSy, which is sometimes called the deformation
work. Usually r^Sy is a positive quantity, reflecting the tendency for
parts of the mean flow to disintegrate into eddies due to inertially driven
instabilities. Thus a finite strain-rate in the mean flow tends to keep the
turbulence alive. Note that there are no viscous effects involved in this
transfer of energy (if Re is large): it is a non-dissipative process. The next
question, therefore, is where does this turbulent energy go to?

If we have a steady-on-average flow in a pipe, say, then there is a
continual energy transfer from the mean flow, via rjjSy, to the turbu-
lence. However, the turbulence in such a situation will be statistically
steady and so this energy must be dissipated somehow. Ultimately, of
course, it is viscosity which destroys the mechanical energy of the eddies.
However, when Re is large, the viscous stresses acting on the large eddies
are negligible, so there must be some rather subtle process at work. This
leads to the idea of the energy cascade, a concept first proposed by the
British meteorologist L F Richardson in the 1920s.
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It is an empirical observation that any turbulent flow comprises
'eddies' which have a wide range of sizes. That is to say, there is always
a wide spectrum of length scales, velocity gradients etc. Richardson's idea
is that the largest eddies, which are created by instabilities in the mean
flow, are themselves subject to inertial instabilities and rapidly break up
into yet smaller vortices. These smaller eddies then, in turn, become
unstable and break up into even smaller vortices and so on. There is a
continual cascade of energy from the large scale down to the small
(Figure 7.2).

It should be emphasised, however, that viscosity plays no part in this
cascade. That is, when Re is large (based on u and a typical eddy size),
then the viscous stresses acting on the larger eddies are negligible. The
whole thing is essentially driven by inertia. The cascade is halted, how-
ever, when the eddies become so small that the Reynolds number based
on the small-scale eddy size is of the order of unity. That is, the very
smallest eddies are dissipated by viscous forces, and for the viscous forces
to be significant we need a Reynolds number of order unity. We may
think of viscosity as providing a dustbin for energy at the very end of the
cascade. In this sense the viscous forces are passive in nature, mopping up
whatever energy is fed down from above. This process of a progressive
energy cascade from large to small eddies was nicely summed up by
Richardson in his parody of Swift's 'Fleas Sonnet': 'Big whirls have little
whirls, which feed on their velocity, and little whirls have lesser whirls and
so to viscosity.'

Flux of energy

OOOO^O^OOOOO

I
Viscosity

Figure 7.2 A schematic representation of the energy cascade.
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Let us try to quantify this process. Let / and u be typical length and
velocity scales for the larger eddies. We might, for example, define u
through (wr) = (u'x)

2 or (tiy) . Also, let s be the rate of dissipation of
mechanical energy (per unit mass) due to viscosity acting on the small-
scale eddies. In statistically steady turbulence e must also equal the rate at
which energy is fed to the turbulence from the mean flow, rfjSy. If it did
not, the turbulence would either gain or lose energy. In fact, if we are to
avoid a build-up of eddies of a particular size, s must equal the rate at
which energy is past down the cascade at any point within that cascade.
Let G be the rate at which energy (per unit mass) is passed down the
cascade. Symbolically, we have G = e.

If we plot the energy contained in the eddies of a particular size against
eddy size we might get something that looks like Figure 7.3. Remember,
there is dissipation only at the smallest scales, and so G has to be the same
at all points between A and B, i.e. GA = GB, where GA = r^Sy/p. Now it
is an empirical observation that the rate of extraction of energy (per unit
mass) from the large eddies to the energy cascade is of the order of

GA - (u'f/l

This is not a trivial result. As we shall see, it turns out to be very useful.
Physically, it states that the largest eddies break up on a time scale of//w',
their turn-over time.

We now try to determine the size of the smallest eddies. Let v and r\ be
the velocity and length scales, respectively, of the smallest structures in

j x Log (energy)
Energy cascades

downward at a rate G

Energy destroyed
at a rate e

Log
(eddy size)

Eddies depend on
u'

Eddies depend on v

Figure 7.3 The energy cascade.
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the flow. There are two things we can say about these eddies. First,
vr]/v ~ 1. That is, rather like a boundary layer, the size of the small eddies
automatically adjusts to make the viscous forces an order-one quantity.
Second, the energy dissipation rate per unit mass, which in a laminar flow
is —v(V2u) • u, must be of order e ~ vv2/r]2. Let us now summarise every-
thing we know about the energy cascade.

1. The process is inviscid except at the smallest scales and so, in sta-
tistically steady turbulence,

e = G, GA = GB (7.6a, b)

2. Empirically it is observed that energy is extracted from the large
scales, through eddy break-up, at a rate

GA ~ (u'f/l (7.7)

3. The smallest scales must satisfy

vri/v ~ 1, e ~ vv2/r]2 (7.8a, b)

We may eliminate either r? or v from (7.8a) and (7.8b), and then use the
fact of s ~ (wr) / / to express rj or v in terms of the large-scale parameters.
Following this procedure we find that

/4 (7.9)

v/u' ~ (M7/V)- 1 / 4 = (Re)"1/4 (7.10)

Here the Reynolds number is based on the large-scale velocity and length
scales. Suppose, for example, that Re ~ 104 and / ~ 1 cm, which is not
untypical in a wind tunnel. Then rj ~ 0.01 mm, which is very small! There
is, therefore, a large spectrum of eddy sizes in a typical turbulent flow,
and it is this which makes them so difficult to simulate numerically.

The quantities v and rj are known as the Kolmogorov microscales of
velocity and length, respectively, whereas /, the size of the large eddies, is
known as the integral scale of the turbulence. (It is possible to give a
rigorous definition of /, which we do later.)

There is something else of interest to be extracted from these simple
estimates. Eliminating v from (7.8a) and (7.8b), and then equating e to
GB, we find that the rate at which energy cascades downward at the tail
end of the energy cascade is

GB~- (7.11)
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Table 7.2. Time and velocity scales for small eddies

Dimension Ratio of Kolmogorov scale to large scale

Length */// = Re~3/4

Velocity v/w' = Re"1/4

Time u'x/l = Re~1/2

Compare this with (7.7). The implication is that the small eddies, just like
the largest ones, break up on a timescale of their turn-over time, r = rj/v.
Moreover, (7.9) and (7.10) give r - (Re)~1/2//wr « l/u. So the charac-
teristic timescale for the break up of the small eddies is very much faster
than the turn-over time of the large eddies. Things happen very rapidly at
the small scales. The relationship between the smallest and largest scales
is given in Table 7.2.

Let us now try to predict the shape of the energy curve shown in Figure
7.3. We focus attention on the central region, well removed from the
largest scales and the Kolmogorov microscale. For convenience we
shall assume that this part of the eddy spectrum is statistically isotropic
and homogeneous, an approximation which becomes increasingly sound
as we move away from region A. We need to introduce some notation.
Let r be the size of some intermediate eddy in the cascade, rj < r < I.
Next, we introduce the so-called velocity increment, Av, defined by
[Av(r)] = [Ux(x) — u'x(x + rex)] , or else defined using the equivalent
expression involving y or z. Only eddies of size r or smaller contribute
to Av, and so (Av)2 is an indication of the energy per unit mass contained
in eddies of size r and less.

We now try to predict Av at points well removed from regions A and
B, the so-called inertial subrange. If we are well away from A, then the
eddies which concern us have a complicated heritage. They are the off-
spring of larger eddies which, in turn, come from yet bigger eddies, and so
on. We would expect, therefore, that Av in the inertial subrange is inde-
pendent of the structure of the very largest scales, and hence of / and u .
Moreover, since we are well removed from region B, Av will not depend
on v. Thus, provided rj <&r <&l, Av will be a function of G = e and r
alone, there being no other relevant physical parameter. Symbolically,
Av — Av(s, r). Now A^ has dimensions of ms~x, s has dimensions of m2

s~3 and r has dimensions of m. The only dimensionless group which can
be constructed from Av, £ and r is (Av)/sl/3rl/3. It follows that (Av)/sl/3

r1/3 is a pure number, presumably of the order of unity, and so
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This is known as Kolmogorov and Obukhov's two-thirds law and it is an
excellent fit to the experimental data!

Sometimes (7.12) is expressed in a slightly different way. Many
researchers work in Fourier space and introduce an energy spectrum,
E(k), where A: is a wave number, k ~ 1/r. E(k) is defined by the require-
ment that E(k)dk gives all the energy contained in eddies whose size lies in
the range k -> k + dk. Since

Jk
E(k)dk ~ (energy in eddies of size smaller than k~x)

k

we find

2/35/3 (7.13)

In this form it is known as Kolmogorov's five-thirds law.
Now the arguments above are all rather qualitative and more than a

little heuristic. What, for example, do we mean by an eddy? It would be a
mistake, however, to dismiss them lightly. The Kolmogorov-Richardson
picture of turbulence gives an excellent qualitative description of conven-
tional turbulence. Still, there is a need to introduce a more formal
descriptive framework, and we start with the idea of velocity correlation
functions.

7.1.4 Velocity correlation functions and the Karman-Howarth equation

In order to simplify matters we now restrict ourselves to a form of idea-
lised turbulence. We consider flows which are statistically homogeneous
and isotropic, i.e. their statistical properties do not depend on position or
direction. Also, we shall take the mean velocity to be zero. Since, in the
absence of a mean shear, there is no mechanism for injecting energy into
the turbulence, such a flow will always decay in the course of time. We
might picture this as a fluid which is subjected to vigorous stirring and
then left to itself. The properties of the turbulence are now time-depen-
dent and so we need to introduce a different means of performing
averages. We rely on ensemble averages, i.e. an average over many rea-
lisations of the flow. This is represented by (•). In homogeneous turbu-
lence, such an average can be shown to be equivalent to a spatial average,
while in statistically steady turbulence, ensemble averages are equivalent
to time averages, (•) = (•)•
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From a practical point of view, the easiest way of generating homo-
geneous turbulence is to pass air uniformly through a wire mesh in a wind
tunnel and adopt a frame of reference moving with the mean flow.
(Actually, such a turbulence is not strictly homogeneous because of the
boundaries and because it decays as we move downstream, but it is not a
bad approximation.) The workhorse of turbulence theory is the velocity
correlation tensor, sometimes called the velocity correlation function
(Figure 7.4). This plays the same role in turbulence theory as velocity
or momentum does in laminar flow. The second-order velocity correlation
tensor is defined as

r)) (7.14)

(Actually Qtj also depends on t, so strictly this should be written as
Qij(r, 00 Note that, because the turbulence is homogeneous, Qtj does
not depend on x. Also, since the mean velocity is zero, there is no need
to use a prime to indicate a fluctuating velocity component. This correla-
tion function has the geometric property Qy(f) = Qjt(-r) and is related to
the kinetic energy per unit mass by |(u2) = \Qu(0).

So what does G//(r) represent? Conceptually it is easier to think in
terms of time averages rather than ensemble averages, and so we tem-
porarily move back to thinking about steady-on-average flows and write

Qijir) = Ui(x)Uj(x + r)

The first thing to note about Qy is that, when r = 0, it is proportional to
the Reynolds stress, r* = -p6,y(0). Yet what if r ^ 0? In this case Qtj

simply tells us if two scalar quantities, / = ut(x) and h = Uj(x + r), are
statistically correlated. We say t h a t / a n d h are correlated \i fh ^ 0 and
uncorrelated iffh = 0. Often a correlation coefficient, c, is introduced,
defined by

Q,lyy

CL

Figure 7.4 (a) Definition of velocity correlation functions.
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Figure 7.4 (b) Shape of the velocity correlation functions.

f2h2

If c = ±1 , the correlation is said to be perfect. (Any variable is, of course,
perfectly correlated to itself.) Iffh = 0 then it means that b o t h / and h
fluctuate in time in a manner quite independent of each other.

We now go back to ensemble averages. Consider two points, A and B,
separated by r = rex (Figure 7.4(a)). The correlation function Qxx(rex)
represents the degree to which the horizontal velocities at A and B (at
some particular instant) are correlated when averaged over many realisa-
tions. If the velocity fluctuations at A and B were statistically independent
then Qxx(r) would be zero. On the other hand, if precisely the same thing
is happening at A and B (the two points are perfectly correlated) then
Qxx = (u2

x). We expect that Qxx -> [ux) as r -> 0 and Qxx -> 0 as r -> oo,
remote points in a turbulent flow being uncorrelated. We now introduce
some additional notation. Let u be a characteristic turbulence velocity,
defined by

u 2 = [u2
x) = (u2

y) = .(ul)
and write Qxx(r) and Qyy(r) in the form

Qxx(rex) = u2f(r)

Qyy(rex) - u2g(r)

(7.15)

(7.16)

(7.17)

The functions / and g are known as the longitudinal and lateral velocity
correlation functions (or coefficients), respectively. They are dimension-
less, satisfy /(0) = g(0) = 1, and have the shape shown in Figure 7.4(b).
The integral scale, /, of the turbulence is often defined as

i=r/(r)dr
Jo
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This provides a convenient measure of the extent of the region within
which velocities are appreciably correlated, i.e. the size of the large
eddies. In fact , /and g are not independent functions. It may be shown
that the continuity equation demands

Moreover, symmetry and continuity arguments allow us to express 2//(r)
purely in terms of f{r) and r. The details are long and tedious and we
merely state the end result. For isotropic turbulence it may be shown that

(see suggested reading at end of the chapter).
The third-order (or triple) velocity correlation function (or tensor) is

defined as

Siji(r) = (w/(x)w/(x)w/(x + r))

It too can be written in terms of a single scalar function, k(r), defined by

Again, symmetry and continuity arguments may be used to show that, in
homogeneous, isotropic, turbulence

The function k is known as the longitudinal triple-velocity correlation
function.

So far we have made lots of definitions and exploited certain kinematic
relationships. However, this has not really got us very far. To make
progress we need to introduce some dynamics in the form of the
Navier-Stokes equation. Let x ' = x + r and u' = u(x'). (From now on,
a prime will indicate a quantity at position x' and has nothing to do with
a fluctuating, as distinct from mean, variable.) Then we have

? ? = - / • («««*) " F" iP/P) + ^2
xut (7.20)

ot oXfc oXf
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On multiplying the first of these by uj, and the second by uh adding the
two and averaging, we obtain

l / dp' ,dp\
- ^ + M ^ / (7.22)

This looks a bit of a mess! However, it may be tidied up considerably. We
note that, (i) operations of taking averages and differentiation permute,
(ii) d/dXj and d/dxj operating on averages may be replaced by —d/drt and
d/drj, respectively, and (iii) ut is independent of x ' while uj is independent
of x. (7.22) then simplifies to something a lot neater:

8-^L = l-k[Sikj + Sjki]+2vW2Qij (7.23)

(Consult one of the suggested texts at the end of the chapter for the
details.) We have dropped the terms involving pressure since it may be
shown that (puj) = 0 in isotropic turbulence.

We have managed to relate the rate of change of the second-order
velocity correlation tensor to the third-order one. We might now go on
to obtain an equation for the rate of change of Sijk. Unfortunately,
however, this contains terms involving fourth-order correlations, which
in turn depend on fifth-order correlations and so on. We have come up
against the closure problem of turbulence. So let us stick with (7.23) and
see where it leads. Substituting for Qtj and Sijk in terms of the scalar
functions f(r) and k(r) yields, after a considerable amount of algebra,

(7.24)

This is known as the Karman-Howarth equation and it constitutes one of
the central results in the theory of isotropic turbulence. We shall see in the
next section that it can be used to estimate the rate of decay of freely
evolving turbulence.

We close this section with a brief discussion of a different type of
velocity correlation function, sometimes called a second-order structure
function. It is defined by

** = ((«/ '-«/)(«*-«*)) (7-25)
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For example, Bu = /(u — u') ) . This is closely related to the velocity incre-
ment, Av, introduced in the last section. It is easy to show that the
second-order correlation tensors Qtj and Btj are related by

and so By may be expressed in terms of/, just like Qy. However, the
tensor Btj has an advantage over Qy. Only eddies of size less than or equal
to |r| can contribute to 2?,y(r). Consequently, by making |r| progressively
smaller, we can move down the energy cascade, focusing on smaller and
smaller eddies.

7.1.5 Decaying turbulence: Kolmogorov9s law, Loitsyansky's integral.
Landau's angular momentum and Batchelor's pressure forces

It is natural to suppose that well-separated points in a turbulent flow are
statistically uncorrelated, and so we expect f(r) and k(r) to decrease
rapidly with distance. In fact, prior to 1956 it was assumed t h a t / a n d
k decay exponentially at large r. If this is the case, then the Karman-
Howarth equation may be integrated to yield

Jo
r4f(r)dr = constant (7.27)

This is known as Loitsyansky's integral. A N Kolmogorov took advan-
tage of the (supposed) invariance of / to predict the rate of decay of
energy in freely evolving, isotropic turbulence. The argument goes as
follows. The integral scale, /, is defined as ^fdr. We would expect,
therefore, that in freely evolving (decaying) turbulence

/ - u
2l5 = constant (7.28)

We also know that the large eddies tend to break up on a timescale of
their turn-over time, so that the large scales lose energy at a rate

%-$

and this energy is not replenished. Combining (7.28) and (7.29) yields
Kolmogorov's decay laws for isotropic turbulence:

u2 = «§[1 + (7/lO)(Wor//o)r1O/7 (730)

/~/o[l+(7/10)(M 0 ; / /0)]2 / 7 (7.31)
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Here u0 and /0 are initial values of u and /. In fact, these predictions are
reasonably in line with the experimental data, which typically give / —
t035 and u ~ r 1 2 6 -> rL 3 4 , depending on the Reynolds number.

The supposed invariance of / has another consequence. It can be
shown that for many, if not most, types of turbulence the energy spec-
trum at small k has the form E ~ (I/37t)k4 (plus higher order terms in k).
We would expect, therefore, that the conservation of / should lead to the
energy spectrum at small k being invariant during the decay, and this is
indeed observed. This phenomenon is termed the permanence of the large
eddies (since E at small k represents the energy of the largest eddies). All-
in-all, it would seem that the experiments support (7.27).

There remain two problems, however. First, if we are to trust (7.27),
then we would really like some physical explanation for the invariance of
/. Second, we need some evidence that/and k decay exponentially, rather
than algebraically, at large r. The physicist L D Landau resolved the first
of these issues. He showed that, provided/and k decay exponentially, as
assumed by Loitsyansky and Kolmogorov, then the invariance of / is a
direct consequence of the conservation of angular momentum. He argued
as follows.

In general, a patch of turbulence will contain a finite amount of
angular momentum. Consider, for example, turbulence which has
been created in a wind tunnel by passing air through a wire grid.
The turbulence is created because vortices are randomly shed from
the wires, just like Karman vortices are shed from a cylinder. This
ensemble of coherent vortices interact as the fluid is swept downstream
until eventually a full field of turbulence emerges. Now each time a
vortex is shed from a wire a finite amount of angular momentum is
injected into the flow. (An eddy contains angular momentum.) This is
evident from the shuddering of a loosely suspended grid, which is a
manifestation of the back reaction (torque) exerted by the fluid on the
grid. Thus, in grid-produced turbulence, we inject angular momentum
into the fluid in the form of a sequence of randomly orientated
vortices.

Now this angular momentum is important since, as the fluid moves
downstream, its energy decays according to

yet this decay is subject to the constraint that the angular momentum of a
given mass of turbulent fluid is conserved. (We ignore the viscous torque
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exerted by the boundaries.) Landau's great achievement was to show that
the conservation of / is simply a manifestation of the conservation of
angular momentum.

There are two hurdles to overcome, however, in establishing this fact.
First, / = constant is a statistical statement about the turbulence, in the
sense that it says something about the local, quadratic quantity (u • u').
However, the angular momentum

H = f x x udV

is a global, linear measure of the velocity field, which is clearly not a
statistical quantity. We must find someway of relating H to (u • u'). The
second problem is that as our field of turbulence becomes infinite
(V -+ oo) we would expect the angular momentum per unit volume,
H/ V, associated with a field of randomly orientated vortices to tend to
zero. How can an infinitesimally small quantity influence the dynamical
behaviour of the turbulence?

The trick is to consider a large but finite volume of turbulent fluid
which has been stirred up and then left to itself. In this finite volume
there will, in general, be an imperfect cancellation of the angular momen-
tum associated with the vortices. In fact, as we shall see shortly, H/V
does tend to zero as V tends to infinity, but at finite rate: V~l/2. Thus a
finite volume contains a finite global angular momentum of order F1 / 2 .
(The relationship (H2) ~ V follows from the central limit theorem. This
states that, if x x u at each location, x, can be considered as an indepen-
dent random variable, which might be the case at t = 0, then the variance
of the volumetric average of x x u over some large volume V will tend to
zero at the rate F"1 as V -> oo. It follows that, if we take (•) to be a
volume average, (H2) ~ V.)

We are still left with the problem of how to convert the conservation of
H into a statistical statement. To this end it is useful to take (•) as an
ensemble average and to consider a large number of realisations of the
turbulence in our large but finite volume. That is, we stir the fluid up N
times and examine the subsequent decay for each realisation. Now if the
size of V is very much larger than the eddy size, /, then the turbulence
should behave in a way which does not depend on the boundaries. We
may then ignore the torque associated with the shear stresses exerted on
the fluid by the boundaries. In each realisation, then, H 2 / F will be inde-
pendent of t. It follows that, when we average over all of the realisations,
(H2)/V will be independent of time and of the size of the domain. It is the
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invariance of(H )/V, rather than H, which leads to (7.27). The exact
relationship between (H2)/F and / may be established as follows.

Suppose the turbulent flow evolves in a large, closed sphere, whose
radius R greatly exceeds / (Figure 7.5). The global angular momentum
of the turbulence is then

h
x x udV

(We will not bother carrying the density p through the calculation.) The
square of H

H2= f xxudV- f x' xu'dV
Jv Jv

can, with a little effort, be rearranged into the form

H2 = - [ f (x'-xfu-u'dVdV
Jv Jv

We now ensemble average over each pair of points separated by a fixed
distance r = x' — x to give

Next, Landau assumed that (u • ur) decays rapidly with r so that far-field
contributions to the integral

Turbulence almost
isotropic away
from surface

Figure 7.5 Landau's thought experiment.



(H2)/V=- fr2(u-uV:

244 7 MHD Turbulence at Low and High Magnetic Reynolds Number

are small. In such a situation only those velocity correlations taken close
to the surface R are aware of the presence of the boundary, and in this
sense the turbulence is approximately homogeneous and isotropic. To
leading order in l/R we then have

(7.32)

However, (7.18) allows us to evaluate the integral on the left, which turns
out to be SnI. The invariance of / then follows from conservation of
angular momentum, the viscous stresses on the boundary having negli-
gible effect as R/l -> oo. So, according to L D Landau, Kolmogorov's
decay law is a direct consequence of the conservation of angular momen-
tum. Given that the predictions of (7.30) and (7.31) are reasonably in line
with the experimental data, and that there is a firm physical basis for the
conservation of /, there was, for some time, a general feeling of satisfac-
tion with the r 1 0 / 7 decay law.

However, in 1956, G K Batchelor opened a can of worms when he
showed that, at least in anisotropic turbulence, k ~ r~4 as r - • oo. If this
is also true of isotropic turbulence, then the Karman-Howarth equation
gives

^-=\u3r4k]^0 (7.33)

and Loitsyansky's integral becomes time-dependent. The reason for the
relatively slow decline in k (algebraic rather than exponential) is interest-
ing and subtle. It arises from the action of long-range pressure forces. A
fluctuation in u at one point in a flow sends out pressure waves, which
travel infinitely fast in an incompressible fluid, and these produce pres-
sure forces, and hence accelerations, which fall off algebraically with
distance from the source. Thus, because of pressure, a fluctuation in u
at one point is felt everywhere within the fluid. Now Batchelor argued
that turbulence in, say, a wind-tunnel would behave as if it had emerged
from initial conditions in which remote points were statistically indepen-
dent. However, because of the long-range pressure forces such a situation
cannot persist, and long-range (algebraic) velocity correlations, (u • u'),
inevitably develop. At least this is the case in anisotropic turbulence
(Figure 7.6).
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Pressure due to
eddy at A

Eddy induced by
pressure fluctuations
at A

Figure 7.6 A schematic representation of Batchelor's long-range effects.

For iso tropic turbulence, however, there is a high degree of symmetry
in the statistics, and this symmetry is sufficiently strong to cause the direct
effect of the long-range pressure forces on (u • u') to cancel. (This is why
the pressure terms disappeared as we moved from (7.22) to (7.23).)
Nevertheless, the pressure forces can still influence the triple correlations
in isotropic turbulence and these, in turn, can influence the double cor-
relations. In particular, it may be shown that,1

where s = u\ — u2
y. Combining this with (7.33) yields

fl=*[Jr*k\ =3\r2lss')dr = J
dt1 dtl Jo° J * '

Thus, in general, we would expect / to be time dependent. This is a direct
result of the pressure forces which induce a k^ ~ r~4 algebraic tail in the
triple correlations and thus an r~6 tail i n / ^ . (Remember that such alge-
braic tails invalidate both Landau's and Loitsyansky's arguments.)
Crucially, however, we have failed to determine the magnitude of / .
Now, over the years, / has been estimated using a variety of closure
hypotheses, such as the so-called quasi-normal approximation.
However, these closure hypotheses are unreliable. In fact, the safest
thing to do is to examine the experimental evidence. Interestingly, this
suggests that / is rather small. There are no direct measurements of/, but
there is some indirect evidence. This comes in three parts.

1 This equation only holds if the so-called cummulants of the fourth-order velocity correla-
tions are negligible for well-separated points. Such a situation occurs when fourth-order
velocity correlations are statistically independent for well-separated points. There is some
experimental evidence to support this assertion.
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- First, there is the predicted invariance of E(k) at small k (perma-
nence of the large eddies) which comes from E ~ (l/3n)k4. Is this in
accordance with observation?

- Second, there have been measurements of u2(t). How do these com-
pare with Kolmogorov's decay law?

- Third, there exist measurements of Qtj in the so-called final period
of decay (when the turbulence is weak and viscosity is important).
Do these show exponential or algebraic behaviour at large r?

It seems that, by and large, the experiments support Landau,
Loitsyansky and Kolmogorov to the extent that they suggest that, once
the turbulence is fully developed, / is negligible. The permanence of the
large eddies is indeed observed, and the form of Qtj at large r is expo-
nential in the final period of decay. Moreover, the measured decay rate of
isotropic turbulence is not too far out of line with Kolmogorov's law. In
1960, Corrsin found u2 ~ t~n where n lies in the range 1.2 -> 1.4 with an
average value of 1.26. Later, Lumley, in 1978, found u2 ~ t~XM and
/-w0-35 . ( Kolmogorov's law predicts u2 - r1 '4 3 and / ~ t029) The
observed exponential decay of Qtj in particular seemed to have surprised
Batchelor who, having just established the existence of these long-range
pressure forces and the associated long-range correlations in anisotropic
turbulence, noted that: 'it is disconcerting that the present more extensive
analysis cannot do as well as the old'.

Interestingly, some authors suggest that Loitsyansky's integral is
strongly time-dependant, or else does not exist (i.e. diverges). There are
two reasons for this. First, a turbulence closure model which was popular
in the 1960s, the quasi-normal (QN) model, predicts that / varies as

d2l [E2

where E(k) is the energy spectrum. (This was shown by Proudman and
Reid in 1954.) However, the quasi-normal model has no real physical
basis and is known to produce anomalous effects, such as a negative
energy spectrum. A variant of this, called the EDQNM model, avoids
some of the worst excesses of the QN model, while still predicting a
(slight) time-dependance for / . However, the EDQNM model automati-
cally assumes k^ ~ r~4 and so builds in long-range effects from the out-
set. In short, it prejudges the issue.

The second reason often given for doubting the approximate conserva-
tion of / is the discovery by Saffman in 1967 that, for suitable initial
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conditions, long-range correlations can exist in a turbulent motion which
are even stronger than those of Batchelor. This leads to an energy spec-
trum at small k of the form E ~ k2, unlike the usual assumption of
E — k4. In such a situation Loitsyansky's integral diverges. However,
these particularly potent long-range correlations are too strong to have
emerged from Batchelor's pressure forces, and so if they are to exist they
must be imbedded in the initial conditions. Saffman himself argued that
such initial conditions are unlikely to be met in, say, wind-tunnel turbu-
lence, and so we would expect 'conventional' turbulence to have a
Batchelor spectrum, E ~ k4. Certainly, this is in accord with measure-
ments of the decline of u2 in the final period of decay, which clearly shows
results compatible with E ~ k4 and incompatible with Saffman's spec-
trum.

All-in-all, it would seem likely that the Landau-Loitsyansky equation

(H2)/ V = 8TT/ = constant (7.34)

is approximately valid in isotropic turbulence provided the initial condi-
tions are of the form assumed by Batchelor (i.e. those where remote
points are statistically independent). Moreover, such initial conditions
are probably typical of, say, wind-tunnel turbulence.

7.1.6 On the difficulties of direct numerical simulations (DNS)

For some time now people have been computing the evolution of turbu-
lent flows in a cubic domain in which the boundaries have very special
properties; they are periodic. That is to say, whatever is happening at one
face of the cube happens on the opposite face. Such domains are called
periodic cubes and they lend themselves to particularly efficient numerical
algorithms for solving the Navier-Stokes equations. So far these simula-
tions have been restricted to Reynolds numbers of around
ul/v ~ 100 -» 500. Higher values of Re are difficult to achieve because
of the computational cost of computing all of the turbulent scales down
to the Kolmogorov microscale. (As Re increases so the range of scales
increases.) Still, many people believe that turbulence at, say, Re = 500
might capture some of the features of high-Re turbulence, and so con-
siderable attention has been given to these simulations.

It might be thought, therefore, that issues such as the rate of dissipa-
tion of energy, or the invariance (or otherwise) of Loitsyansky's integral
could be settled by computer simulations in a periodic cube. After all,
such simulations are now routinely performed and it is usually assumed,
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either implicitly or else explicitly, that turbulence in a periodic cube is
representative of homogeneous, isotropic turbulence in an infinite
domain. Unfortunately, such an assumption is somewhat misleading.
In fact, turbulence in a periodic cube represents a rather special dynami-
cal system, the large scales of which are somewhat different from real-life
turbulence. It is this which makes it difficult to investigate the behaviour
of u2(t) or of /.

There are two important points to note. First, turbulence in a periodic
cube is anisotropic at the large scales. To see that this is so, simply
consider Qtj{r). Suppose that r = Lbox and choose x and x to lie at the
bottom corners of one of the vertical faces of the cube. Then Qu(r) = 3u2

since the two points are perfectly correlated. Now rotate r by some angle,
say, 45°. One point lies at the corner of the box and the other in the
interior. Qa(r) is now less than 3w2 since there is no longer a perfect
correlation. It follows that the turbulence is anisotopic, at least at the
large scales. Worse still, strong, long-range correlations, which are quite
unphysical, are built into the periodic cube at the scale of the box.

Still, it seems plausible that if Lbox is, say, two orders of magnitude
greater than the integral scale, /, then there may be some sub-domain
within the box in which the influence of the boundaries are not felt. The
bulk of the turbulence might then be homogeneous and isotropic. It
seems likely, therefore, that the requirements for a simulation to be
representative of real-life turbulence are

(i) R e » l
(ii) / « L b o x

Unfortunately, because of limitations in computer power, it is difficult to
satisfy both of these criteria. In order to obtain Re ~ 500, it is normally
required to have / ~ Lbox/3. Conversely, if we require a value of
/~Lbox/100, then it is difficult to get Re much larger than -20. In
short, turbulence in a periodic cube usually knows it is in a periodic
cube and the large scales behave accordingly. At least, that is the story
to date.

This concludes our introduction to turbulence. We have omitted a
great deal in our brief survey, including many of the details of the deriva-
tions of (7.18), (7.19) and the Karman-Howarth equation, as well as the
proof of
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However, the interested reader can readily fill the gaps using one or more
of the many excellent texts which exist on turbulence.

We now turn to MHD turbulence, which is our main interest. We shall
see that Landau's ideas prove particularly fruitful, but that G K
Batchelor's warnings of long-range statistical correlations continue to
haunt the subject.

7.2 MHD Turbulence

We now examine the influence of a uniform, imposed magnetic field on
the decay of (initially isotropic) freely evolving turbulence. We start by
returning to the model problem discussed in §5.3, extending it, with the
help of Landau's ideas, to a formal statistical theory (Figure 7.7).

7.2.7 The growth of anisotropy at low and high Rm

Suppose that a conducting fluid is held in an insulated sphere of radius R.
The sphere sits in a uniform, imposed field Bo, so that the total magnetic
field is B = Bo + b, b being associated with the currents induced by u
within the sphere. For simplicity, we take the fluid to be inviscid (we
shall put viscosity back in later). However, we place no restriction on
Rm, nor on the interaction parameter which we define here to be
N = crBll/pu, I being the integral scale of the turbulence. When Rm is
small we have |b| <3C |B0|, but in general |b| may be as large as, or possibly
even larger than, |B0|. At / = 0 the fluid is vigorously stirred and then left
to itself. The questions of interest are: (i) can we characterise the aniso-
tropy introduced into the turbulence by Bo; (ii) how does the energy
decay?

Figure 7.7 MHD turbulence evolving in a sphere.
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We shall attack the problem in precisely the same way as in §5.3. We
start by noting that the global torque exerted on the fluid by the Lorentz
force is

- j x x (J x B0)dV + x x (J x b)dV (7.35)

However, a closed system of currents produces zero net torque when they
interact with their self-field, b. (This follows from conservation of angular
momentum.) It follows that the second integral on the right is zero. We
now transform the first integral using the identity

2x x [G x Bo] = [x x G] x Bo + V • [(x x (x x B0))G] (7.36)

(Here G is any solenoidal vector field.) Setting G = J we find

T = j - (x x J)dV\ x Bo = m x Bo (7.37)

and consequently the global angular momentum evolves according to

p ^ = T = m x Bo, H = f (x x u)dV (7.38)
at J

By implication, H// is conserved. This, in turn, gives a lower bound on
the total energy of the system,

u> H2
/f (2 I xidv\ (7.39)

(Expression (7.39) follows from the Schwarz inequality in the form
H// > $u]_dV fx2

±dV. See Chapter 5, Section 3.) However, the total
energy declines due to Joule dissipation and so we also have

dt dt]VR 2 dt)Voo2ix a)yR

We have the makings of a paradox. One component of angular momen-
tum is conserved, requiring that E is non-zero, yet energy is dissipated as
long as J is finite. The only way out of this paradox is for the turbulence
to evolve to a state in which J = 0, yet Eu is non-zero (to satisfy (7.39)).
However, if J = 0 then Ohm's law requires E = - u x Bo, while Faraday's
law requires that V x E = 0. It follows that, at large times,
V x (u x Bo) = (Bo • V)u = 0, and so u becomes independent of X// as
t ->• 00. The final state is therefore strictly two-dimensional, of the
form u± = u_|_(x±), U// = 0. In short, the turbulence ultimately reaches
a state which consists of one or more columnar eddies, each aligned
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with Bo. Note that all of the components of H, other than H// are
destroyed during this evolution.

At low Rm this transition will occur on the timescale of r =
the magnetic damping time. This was demonstrated in § 5.3 and the argu-
ment is straightforward. A low Rm, the current density is governed by

J = a(-VF + uxB0) (7.41)

and so the global dipole moment, m, is

m = i f x x JdV = (a/2) f x x (u x B0)dV - (a/2) ct(Kx) x dS

The surface integral vanishes while the volume integral transforms, with
the aid of (7.36), to give

m = (a/4)H x Bo

Substituting into (7.38) we obtain

dU H ± 1 2
dt 4r

(7.42)

and so H// is conserved (as expected) while H±declines exponentially on a
timescale of r.

In summary then, whatever the initial condition, and for any Rm or N,
the flow evolves towards the anisotropic state (Figure 7.8)

u± - UL(X±), H// = H7/(0), H± = xx,, = b = J = 0 (7.43)

From the point of view of turbulence theory, the two most important
points are: (i) Bo introduces severe anisotropy into the turbulence, and (ii)

Figure 7.8 Growth of anistropy in MHD turbulence.
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H// is conserved during the decay. Following Landau's arguments, the
latter point implies that

(H^7) = - f f ri(u_L • u'±)d3r d3x = constant (7.44)
j J

where r = x ' — x. If (and it is a significant if) we can ignore Batchelor's
long-range statistical correlations, then, for as long as R ^> /, we have the
invariant

(H^/)/F = - f ri(u_L • U _ L ) A = constant (7.45)

This is Loitsyansky's integral for MHD turbulence. (When Bo = 0 and
the turbulence is isotropic, we can replace (7.45) by (7.34).)

Of course, in these arguments we have ignored v and hence the process
of energy removal via the energy cascade. In reality, for a finite v, the
predicted growth of anisotropy will occur only if the turbulence lives for
long enough and this, in turn, requires J x B > ~ p(u • V)u, i.e. TV > ~ 1.
Note, however, that (7.45) is valid for any TV provided that the long-range
statistical correlations are weak.

7.2.2 Decay laws at low Rm

We now restrict ourselves to low values of Rm, and reintroduce viscosity.
We would like to develop the MHD equivalent of Kolmogorov's decay
laws (7.30) and (7.31)

Recall that these were based on the estimates

-^ y , r2(u • u')<i3r ~ u2l5 = constant (7.46a, b)

We require MHD analogues of these equations.
In MHD turbulence the total energy, which at low Rm is dominated by

kinetic energy (b being vanishingly small), declines due to both Joule
dissipation and viscosity:

^ = - - f J 2 dV - pv f a)2dV (7.47)
dt a) J

(Here we have used the fact that the viscous dissipation is minus the rate
of working of the viscous force, — v(V2u) • u, and this is related to the
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vorticity by — (V2u) • u = w2 + V • (o x u), the latter term integrating to
zero.) Now let us suppose that the energy cascade proceeds as usual,2 on
a timescale of l/u. Then the MHD analogue of (7.46a) is

Here l± and /// represent suitably defined transverse and longitudinal
integral scales for the turbulence. The new term in (7.47) represents the
Joule dissipation (J2)/pa, (J2) having been estimated from the curl of the
\ow-Rm form of Ohm's law, V x J = <J(B0 • V)u. We now need the analo-
gue of (7.46b). This is provided by our conservation law (7.45), which, in
the absence of long-range statistical correlations, yields the estimate

u2l/il]_ = constant (7.49)

Expressions (7.48) and (7.49) are the analogues of Kolmogorov's equa-
tions (7.46a, b). However, because of the anisotropy of MHD turbulence,
we have three, rather than two, unknowns: w, ///, l±. We need a third
relationship if we are to predict the rate of decay of energy. This comes
from the fact that l///l± = 1 if N is small, and obeys (5.16) if N is large.
For example, in the high-TV examples given in Chapter 5, Section 2, where
isolated vortices evolve in a uniform magnetic field, /// increases due to Bo

but /j_ is unaffected by the field. The end result is l///l± ~ (t/r)l/2. Both
limits (low and high N) are captured by the heuristic expression

- - (7.50)
r

Expressions (7.48) -> (7.50) represent a closed system for u, I// and lL.
They contain two timescales, r and l±/u, the ratio of which is N, and they
predict very different kinds of behaviour depending on the initial value of
N. For example, whenever inertia is negligible by comparison with
J x Bo, (7.48) -> (7.50) reduce to

u2l//l\_ = constant

dt\l

rentz f
of the bulk of the eddies being much shorter than r. See Appendix 4.

d_(ljj\2
 =2

d\lj X

2 This is plausible since the Lorentz force is felt only by the largest eddies, the turnover time
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These are readily integrated to yield u2 ~ (^/r)~1/2, /// ~ (t/r)l/2, results
which coincide with our study of isolated vortices at high TV (see Section
5.2). In fact, these turbulence scalings may be verified by exact analysis
through integration of the linearised (inertia-less) Navier-Stokes equa-
tion. However, the procedure is complicated, involving three-dimensional
Fourier transforms, and so we shall not reproduce the results here.

When N is small, on the other hand, (7.48) -> (7.50) yield
Kolmogorov's law, u2 ~ /~10/7, with a small correction due to Joule dis-
sipation. For intermediate values of N, however, the situation is rather
different. In general there is no power law decay behaviour, although for
the particular case N(t = 0) = 7/\5 we find u2 ~ (t/r)~n/\
/// ~ (r/r)5/7and l± ~ (//r)3/14. This compares favourably with laboratory
experiments performed at N ~ I.3

So the general theme here is that the eddies tend to elongate in the
direction of Bo, causing /// to grow faster than l±, as anticipated in
Chapter 7, Section 2.1. There are three distinct but related explanations
for the growth of /// given in the literature. One is the argument presented
in the preceding section, the essence of which is that the conservation of
H//, in the face of continual Joule dissipation, is possible only if/// grows.
That is to say, at high N

dt

which implies that u2 declines according to

, 1
(7.51)

If / j _ / / / / were to remain of order unity, then u2 would decline exponen-
tially, in direct contradiction to

u2l//l]_ = constant

It is inevitable, therefore, that l///l± grows, thus introducing anisotropy
into the turbulence.

An alternative argument relies on the fact that the curl of the Lorentz
force (per unit mass) may be written in the form

V x F = V x [ J x Bo/p] = -T-xV-2[d2o)/x2
n] (7.52)

which looks a bit like

3 See Appendix 4.
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(7.53)

(When /// ^> /±, this may be made rigorous by Fourier transforming the
vorticity equation in the transverse plane, so that (7.52) transforms to
(k\x) d2co/dx2/j, k± being a wavenumber in the transverse plane). The
implication is that, provided inertia is small, so that V x (u x co) is much
weaker than (7.52), the vorticity will diffuse along the B0-lines with a
diffusion coefficient of l±/r. This pseudo-diffusion is the last vestige of
Alfven wave propagation, as discussed in Chapter 6, Section 1.

A third, more mechanistic, argument is the following. Suppose we have
a vortex, as shown in Figure 7.9, in which co is aligned with Bo. (We use
local cylindrical polar coordinates as shown.) Then the vortex will spread
along the B-line. The mechanism for this elongation is as follows. The
term u ^ x B tends to drive a current, Jn in accordance with Ohm's law.
Near the centre of the vortex, where axial gradients in ue are small, this is
counter-balanced by an electrostatic potential, VF, and so no current
flows. However, near the top and bottom of the vortex, the current can
return through regions of small or zero swirl, as shown. The resulting
inward flow of current above and below the vortex gives rise to an azi-
muthal torque which, in turn, creates swirl in previously stagnant regions.
In this way vorticity diffuses out along the B-lines. (We will return to this
issue in Chapter 9, where we look at vortices of arbitrary orientation.)

We close this section on a note of caution. Because of anisotropy, great
care must be taken in the definition of N. A nominal definition might be

Swirling vortex

Induced currents and
associated Lorentz force

Figure 7.9 Mechanism for the elongation of vortices in a magnetic field.
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NL = crB2
ol±/pu (7.54a)

or perhaps

Nn = oBllnlpu (7.54b)

However, it is readily demonstrated that the true ratio of J x Bo to inertia
is

^true = ^//(/±////)3 (7.54C)

In practice, the difference between N// and 7Vtrue can be large. Suppose,
for example, that /// ~ 3/j_ and Nj/ ~ 10 (which is not untypical in the
laboratory). It might be thought, naively, that J x Bo is the dominant
force. In fact 7Vtrue in this case is less than unity, so that inertia is domi-
nant! Such misconceptions occur commonly in the literature.

Interestingly, whatever the initial value of N, NtmQ always evolves
towards unity, representing a balance between J x Bo and inertia. For
example, if N is initially very large, then u2 ~ /~1/2, /// ~ tl/2 and
/± = constant. As a result NtmQ = N_L(/_L////)2 ~ N0(r/r)~3/4, ^o being
the initial value of N (the initial conditions are assumed to be isotropic).
Thus, NtmQ will fall as the eddies elongate, essentially because J x B 0

declines due to a fall in J. Conversely, if N is initially very small, so
the turbulence remains (almost) isotropic, then u2 ~ f~10/7, / ~ t2/1 and
^true ~ No(uot/lo). In this case A t̂rue rises as the inertia of the eddies
becomes weaker. In either case, for large or small 7V0, NtmQ —• ~ 1 as
t -> oo.

7.2.3 The spontaneous growth of a magnetic field at high Rm

We now turn to high-i?m turbulence and consider the case where the
imposed field, Bo, is zero. We are interested in whether or not a small
'seed' field, present in the fluid at t = 0, will grow or decay in statistically
steady turbulence. An intriguing argument, proposed by G K Batchelor,
suggests a seed field will grow if X < v and decay if A > v.

Batchelor noted that the fate of the seed field is determined by the
balance between the random stretching of the flux tubes by u, which
will tend to increase (B2), and Ohmic dissipation, which operates mainly
on the small-scale flux tubes (which have large spatial gradients in B). He
also noted the analogy between a> and B in the sense that they are gov-
erned by similar equations:
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dco 2
—- = V x (u x co) + v V co
ot

— = V x (u x B) + A,V2B
dt

If X = v, there exists a solution for the seed field of the form
B = constant x co. Thus, since (co2) is steady, so is (B2). It follows that,
if X = v, flux-tube stretching and Ohmic dissipation have equal but oppo-
site influences on (B2). If X exceeds v, however, we would expect enhanced
Ohmic dissipation and a decline in (B2), while X < v should lead to
spontaneous growth in the seed field, a growth which is curtailed only
when J x B is large enough to suppress the turbulence significantly.
(Note that the threshold X — v is a very stringent condition. In most
liquid metals, for example, v/X ~ 10~6. Since a and v increase with the
mean free path lengths of the charge and mass carriers, respectively, the
condition X < v is likely to be met only in the astrophysical context,
perhaps in the solar corona or the interstellar gas.)

These arguments are intriguing but imperfect. The problems are two-
fold. First, the analogy between B and co is not exact: co is functionally
related to u in a way in which B is not. Second, if the turbulence is to be
statistically steady, then a forcing term must appear in the vorticity equa-
tion representing some kind of mechanical stirring (which is required to
keep the turbulence alive). Since the corresponding term is absent in the
induction equation, the analogy between B and co is again broken. One
might try to circumvent this objection by considering freely decaying
turbulence. Unfortunately, this also leads to problems, since the turbu-
lence will die on a timescale of l/u, and if Rm = uolo/X is large, this implies
we can get a growth in (B2) only for times much less than the Ohmic
timescale, 12/X. However, in the dynamo context, such transient growths
are of little interest. Thus the conditions under which (B2) will sponta-
neously grow are still unclear.

If we accept the argument that a seed field is amplified for sufficiently
small X, it is natural to ask what the spatial structure of this field might
be. Will it have a very fine-scale structure due to flux tube stretching, or a
large-scale structure due to flux-tube mergers? In this context it is inter-
esting to note that arguments have been put forward to suggest that there
is an inverse cascade of the magnetic field in freely evolving, high-7?m

turbulence. That is to say, the integral scale for B grows as the flow
evolves because small-scale flux tubes merge to produce a large-scale
field. The arguments are rather tentative, and rest on the approximate
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conservation of magnetic helicity which, in turn, relies on the three equa-
tions:

V • [(E x B)//x]

— (A • B) = V • [(u • A)B] - cr"1 [2J • B + V • (J x A)]

The first of these equations comes from taking the product of u with the
Navier-Stokes equation, noting that the rate of working of the Lorentz
force is (J x B) • u = —(u x B) • J, and then using Ohm's law to write u x
B in terms of E and J. The second arises from the product of B with
Faraday's law, and noting that

B - V x E = E . V x B + V - ( E x B ) = E- (//, J) + V • (E x B)

The third relates to magnetic helicity which, as we saw in Chapter 4,
Section 4, is globally conserved when A = 0. We now take averages,
and assume that the turbulence is statistically homogeneous so that the
divergences of averaged quantities disappear. Adding the first two equa-
tions to eliminate (J • E) yields

<2?2>/2/zj = -pv(co2) - (J2)/a

)/or

We recognise the first of these as representing the decline of energy
through viscous and Ohmic dissipation. Let us write these symbolically as

dE 9 9

— =-pv(a>2)-(J2)/(T

The next step is to show that, as a -» oo, dE/dt remains finite while
dHB/dt tends to zero. We proceed as follows. The Schwarz inequality
(see Chapter 5, Section 3) tells us
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jf JBt?Fj < \j2dv\B2dV

This may be rewritten as

and so we can place an upper bound on the rate of destruction of mag-
netic helicity:

We now let o —> oo. In the process, however, we assume that E remains
finite. We might try to justify this as follows. We expect that, as a —> oo
more and more of the Joule dissipation is concentrated into thin current
sheets. However, by analogy with viscous dissipation at small v, we might
expect that (J2)/cr remains finite in the limiting process. (This is, however,
an assumption.) If this is true, it follows that, in the limit X -> 0, HB is
conserved. Thus, for small A, we have the destruction of energy subject to
the conservation of magnetic helicity. In finite domains this presents us
with a well-defined variational problem. Minimising E subject to the
conservation of HB in a bounded domain gives us (see Chapter 4,
Section 4)

V x B = aB, u = 0

where a is an eigenvalue of the variational problem. The implication is
that B ends up with a large length scale, comparable with the domain
size.

In summary then, the assumption that E remains finite as a ->- oo leads
to the conservation of helicity, and minimising energy subject to the
invariance of HB gives, for a finite domain, a large-scale static magnetic
field with J and B aligned. However, this picture of high-i?m turbulence
raises as many questions as it answers. What, for example, is the physical
mechanism for the inverse cascade of B?

This completes our survey of MHD turbulence. We have left a great
deal out. For example, we have not discussed the growth of anisotropy in
high-i?m turbulence, where two-dimensionality is thought to be related to
the propagation of Alfven waves. However, the reader will find many
useful references at the end of the chapter. We now turn to one of the
extreme consequences of an intense magnetic field - two-dimensional
turbulence.
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7.3 Two-Dimensional Turbulence

Everything should be made as simple as possible, but not
simpler.

A Einstein

Probably the most common statement made about two-dimensional tur-
bulence is that it does not exist. While factually correct, it rather misses
the point. There are many flows whose large-scale behaviour is, in some
sense, two-dimensional. Large-scale atmospheric and oceanic flows fall
into this category, if only because of the thinness of the atmosphere and
oceans in comparison with their lateral dimensions. Moreover, both
rapid rotation and strong stratification tend to promote two-dimensional
flows through the propagation of internal waves, and, of course, strong
magnetic fields promote two-dimensionality. While no flow will ever be
truly two-dimensional, it seems worthwhile to examine the dynamics of
strictly two-dimensional motion in the hope that it sheds light on certain
aspects of real, 'almost' two-dimensional phenomena.

In moving from three- to two-dimensions we greatly simplify the equa-
tions. Most importantly, we throw out vortex stretching. One might
expect, therefore, that two-dimensional turbulence should be much sim-
pler than isotropic turbulence. Mathematically, this is correct, as it must
be. Curiously though, the physical characteristics of two-dimensional
turbulence are, in many ways, more counter-intuitive than conventional
turbulence. At least, this is the case for one brought up in the tradition of
Richardson and Kolmogorov. For example, in two dimensions, there is
an inverse cascade of energy, from the small to the large, as small vortices
merge to form larger ones!

7.3.1 Batchelor's self-similar spectrum and the inverse energy cascade

When a number of vortices having the same sense of rotation
exist in proximity to one another, they tend to approach one

another, and to amalgamate into one intense vortex.
(Aryton, 1919)

We shall restrict ourselves to strictly two-dimensional turbulence,
u(x, y) = (ux, uy, 0), co = (0, 0, &>), and to turbulence which is homoge-
neous and isotropic (in a two-dimensional sense). We shall ignore all
body forces, such as Lorentz forces or the Coriolis force, and address
the problem of freely evolving turbulence. As before, we define the char-
acteristic velocity u through u2 = lul) = (ul).
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All existing phenomenological theories are based on the two equations

(7.55)

(7.56)

These state that the kinetic energy density, ^(u2), and the so-called enstro-
phy, (&>2), both decline monotonically in freely evolving two-dimensional
turbulence. The first of these relationships comes from taking the product
of u with

DM (p\
— = — VI — I - v V x w
Dt \pj

which yields

We now average this equation, noting that an ensemble average is equiva-
lent to a spatial average, and that statistical homogeneity of the turbu-
lence ensures that all divergences integrate to zero. The end result is
(7.55). Similarly, starting with

D(D _ 2

~Dt~V

from which

we obtain, on forming a spatial average, (7.56).
Now the key point about (7.55) and (7.56) is that, as Re ->• oo, u2 is

conserved, since the enstrophy remains finite and bounded by its initial
value. This is in stark contrast to three-dimensional turbulence, where a
decline in v is accompanied by a rise in (co2) in such a way that the
dissipation of kinetic energy remains finite (of order w3//) as Re -» oo.
This conservation of energy in two-dimensional turbulence implies a
long-lived evolution for these flows.

In the limit Re -> oo diffusion becomes small (except at the smaller
scales) and so the isovortical lines become material lines, and are con-
tinually teased out as the flow evolves so that the vorticity field rapidly
adopts the structure of thin, sinuous sheets, like cream stirred into coffee.
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This filamentation of vorticity feeds an enstrophy cascade (lumps of
vorticity are teased out to smaller and smaller scales) which is halted at
the small scales only when the transverse dimensions of the sheets are
small enough for viscosity to act, destroying the enstrophy and diffusing
the vorticity. As in three dimensions, viscosity plays a passive role, mop-
ping up the enstrophy (energy in three dimensions) which has cascaded
down from above. The dynamics are controlled by the large scales, and
even as v -> 0 the destruction of enstrophy remains finite.

This passive role of viscosity led G K Batchelor to propose a self-
similar distribution of energy for the large and intermediate scales. In
terms of the velocity increment, Av, which represents the r.m.s. difference
in velocity between two points separated by a distance r (see Chapter 7,
Section 1.3), this self-similar energy spectrum takes the form

[Av(r)]2= u2g(r/ut) (7.57)

The argument behind (7.57) is essentially a dimensional one. If the tur-
bulence has evolved long enough for the influence of the initial conditions
to be erased, and viscosity controls only the smallest scales, then all that
the large scales remember is u. It follows that w, r and t are the only
parameters determining Av(r), and (7.57) is then inevitable. In this model
then, the integral scale grows as / ~ ut. That is, if we divide Av by u and r
by / = ut, we obtain a self-similar energy spectrum valid throughout the
evolution of the flow (Figure 7.10) and so the size of the most energetic
eddies must grow as ut.

<(Av)2>

u2

Small
structures

Large structures

-r/ut

Dissipation I
range

Self-similar spectrum valid for all time

Figure 7.10 Batchelor's universal energy spectrum for two-dimensional
turbulence.
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For almost thirty years, dating from its introduction in 1969,
Batchelor's self-similar energy spectrum, and associated theories by
Kraichnan, dominated the literature on two-dimensional turbulence.
Note, however, that this dimensional argument hinges on the flow
remembering nothing other than u. It might, for example, also remember
(H2), but this is a whole new story to which we shall return later.

In the Batchelor-Kraichnan picture we have two cascades: a direct
cascade of enstrophy from the large scale to the small, going hand-in-
hand with an inverse cascade of energy (as anticipated by Ayrton in 1919)
as more and more energy moves to larger scales, the total energy being
conserved. Physically, we can picture this in terms of the filamentation of
vorticity, as shown in Figure 7.11. A (red) blob of vorticity, such as that
shown in Figure 7.11 (a), will be teased out into a strip of thickness 8 by
eddies whose dimensions are comparable with the blob size, R. Area is
conserved by the vortex patch and so 8 falls as the characteristic integral
dimension, /, increases. The strip is then further teased and twisted by the
flow ((b) -> (c)), and in the process / continues to grow at a rate / ~ ut
while 8 declines. The process ceases, for this particular vortex patch, when
8 becomes so small that diffusion sets in, and the red spaghetti of Figure
7.1 l(c) becomes the pink cloud of (d). The direct cascade of enstropy is
associated with the reduction in 8, while the inverse cascade of energy is
associated with the growth of /, which characterises the eddy size asso-
ciated with the vortex patch.

7.3.2 Coherent vortices

In Batchelor's theory the vorticity is treated essentially like a passive
tracer in the flow. However, following the rapid development of compu-

(a) Red blob (b) Red strip (c) Red spaghetti (d) Pink cloud

Figure 7.11 Destruction of a lump of vorticity in two-dimensional turbulence.
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tational fluid dynamics in the 1980s, and its application to two-dimen-
sional turbulence, it soon became clear that this was not the whole story.
While filamentation of vorticity does indeed occur, numerical experi-
ments suggested that intense patches of vorticity, embedded in the initial
conditions, survive the filamentation process (process (a) - • (b) in Figure
7.11), forming long-lived coherent vortices. These coherent vortices obey a
different set of dynamical rules, interacting with each other, sometimes
merging and sometimes being destroyed by a stronger vortex. The picture
is now one of two sets of dynamical processes coexisting in the same
vorticity field. Weak vorticity is continually filamented, feeding the
enstrophy cascade in the manner suggested by Batchelor. However,
within this sea of quasi-passive vorticity filaments, bullets of coherent
vorticity fly around, rather like point vortices, increasing in size and
decreasing in number through a sequence of mergers.

The emergence of coherent vortices is generally attributed to the equa-
tion

r\2 i /F)S \

^ [ V w ] + -[w2 - S? - Sl]Vco = terms of o r d e r ( - ^ V w j (7.58)

where S\ and S2 represent the strain fields 2dux/dx and (dux/dy + duy/dx),
respectively. ((7.58) follows from Dco/Dt = 0). If the rate of change of S\
and S2 (following a material particle) is much less than the corresponding
rate of change of Vco, then the right-hand side of (7.58) may be neglected.
It then follows that vorticity gradients will grow exponentially in regions
where the strain field dominates, or else oscillate in regions where the
vorticity dominates. The latter regime leads to coherent vortices, or at
least that is the idea. It should be stressed, however, that there is no real
justification for neglecting the terms on the right of (7.58) and so this is an
imperfect explanation. Nevertheless, we have the empirical observation
that the peaks in vorticity, say co, survive the filamentation and so are
remembered by the flow. This leads to the idea that Batchelor's energy
spectrum should be generalised to

[Av(r)]2= u2g(r/ut, cot) (7.59)

7.3.3 The governing equations of two-dimensional turbulence

The arguments above are essentially heuristic, although the evidence of
the numerical experiments suggest that they are reasonably sound.
However, it seems natural to go further and establish the governing
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equations for two-dimensional turbulence to see if they tell us anything
more.

The two-dimensional analogues of (7.18) and (7.19) are

(7.60a)

where / and k are the usual longitudinal velocity correlation functions.
Substituting these into the dynamic equation

^ = ^T iSikj + Sjk,] + iv^Qy (7.61)

yields the two-dimensional analogue of the Karman-Howarth equation:

(7.62)

(Compare this with (7.24).) Next we integrate over all space. This fur-
nishes a result reminiscent of Loitsyansky's integral equation

'•VtoUoo <7-63)

Now, if we follow Batchelor's argument and look at the long-range pres-
sure forces in order to determine the form of k^, then it can be shown
that kcc ~ r~3, or less. This is the analogue of the three-dimensional
result, kco ~ r~4 (or less) (see Chapter 7, Section 1.4). It follows from
(7.62) that, at mos t , /^ ~ r~5, and so our integral equation simplifies to

Owing to the similarity between (7.64) and Loitsyansky's integral (7.27) it
seems natural to investigate the angular momentum of two-dimensional
turbulence. (Remember, Loitsyansky's integral is a measure of angular
momentum.) In two dimensions, the global angular momentum of a flow
is H = fv (x x u)zdV = 2 fv \jrdV, where ^ is the streamfunction. This, in
turn, suggests that we introduce the correlation function (V^')* which is
related to Qu by

(7.65)
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(see references at the end of this chapter). Substituting for Qu using
(7.60a) we find

/ ) = (xlr2) - u2 f rfdr (7.66)
Jo

We now introduce the two-dimensional analogue of Loitsyansky's
integral

/ = u2 f°° ?fdr = (47T)"1 {4 I (W)d2r} (7.67)
where the second equality comes from (7.66). In terms of /, (7.64)
becomes

J H e o (7-68)
So far we have made no assumption about k^, other than noting that it
decreases no more slowly than k^ ~ r~3. Now it turns out that, just like
in three-dimensional turbulence, Batchelor's long-range pressure forces
cannot directly influence (u-u'), although they can create an algebraic
tail in the triple correlations. This, in turn, can produce an algebraic tail
in (u • u'). In fact it may be shown that

where s = u\ — u2, from which,

d2l d , 3 3 n f / /\
—T = — \urk\ = \r(ss)dr
dt2 dtl Jo° J \ /

Thus a kco ~ r " 3 ^ ~ r~5) tail is kinematically feasible. Of course, this
would invalidate a Loitsyansky-type argument for the invariance of / .
However, there is some slight evidence that, for certain initial conditions
(i.e. those where the long-range correlations are absent), the long-range
pressure forces remain weak as the flow evolves. This leads to precisely
the conditions assumed by Loitsyansky and Kolmogorov prior to
Batchelor's discovery of long-range, pressure-induced forces. Under
these conditions Landau's angular momentum argument of Chapter 7,
Section 1.4, adapted to two-dimensions, yields

[H2)/ V = 4 f (\lnlr')d2r = constant (7.69)

This is consistent with (7.68) which, for k^ < 0(r"3), becomes

AnI = 4 f [W')d2r = constant (7.70)
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Combining these we obtain the Landau-Loitsyansky equation for two-
dimensional turbulence

J'OO

r3fdr = (H2)/(4nV) = constant
o

(7.71)

[conservation of angular momentum]

Of course, we also have conservation of energy (at high Re) and so

u2 = constant (7.72)

[conservation of energy]

These conservation laws provide powerful constraints on the evolution of
freely decaying turbulence. If valid, they invalidate Batchelor's self-simi-
lar energy spectrum which relies on the existence of only one invariant,
u2. However, it is believed by many that the long-range effects can be
significant in two-dimensional turbulence, in which case (7.71) is incor-
rect and the most that we can say is

d f°°
u2 = constant, — r'fdr — u[r3k]T_

dt Jo
(7.73)

(long-range effects significant)

The whole issue of freely evolving two-dimensional turbulence is still a
matter of considerable debate and, as of now, it does not seem possible to
progress much beyond this point.

7.3.4 Variational principles for predicting the final state in confined
domains

We now turn to freely decaying turbulences in confined domains (at high
Re). Unlike three-dimensional turbulence, the conservation of w2, and the
continual growth of /, means that two-dimensional turbulence in a finite
domain will evolve to a quasi-steady state, containing (almost) the same
energy as the initial conditions, but with an integral scale comparable
with the domain size. In short, a two-dimensional turbulent flow will
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eventually evolve into just one or two eddies which fill the domain.
Although contrary to intuition, this is precisely what is observed in the
numerical simulations. Once this quasi-steady state has been reached,
which takes a time t ~ R/u, R being the domain size, the flow then settles
down to a laminar motion which decays slowly due to friction on the
boundary (Figure 7.12).

Heuristic theories have been developed which, given the initial condi-
tions, purport to identify the quasi-steady state reached at the end of the
cascade-enhanced destruction of enstrophy. These theories are essentially
all variational principles and we shall discuss them in the context of
circular domains, where H is (almost) conserved.

The simplest model for predicting the quasi-steady state (state (c) in
Figure 7.12) is the so-called minimum enstrophy theory. The idea is that
the enstrophy falls monotonically during the cascade-enhanced evolution
and this occurs on the fast (inertial) timescale of the eddy turn-over time.
Once a quasi-steady state is reached, the enstrophy, as well as the energy
and angular momentum, evolve on the much slower diffusive timescale,
R2/v. It is plausible, therefore, that the quasi-steady state corresponds to
a minimum in (co2) subject to the conservation of u2 and of H. In practice,
though, this (and all other similar variational principles) suffer from three
major drawbacks. First, while seeming plausible, they are all ultimately
heuristic. Second, the transition from a cascade-enhanced evolution to a
slow diffusive evolution is not always clear-cut. Third, at finite Re, H and
u2 will not be exactly conserved. Nevertheless, let us see where the mini-
mum enstrophy theory leads.

Minimising enstrophy subject to the conservation of u2 and
H = 2 J xfsdVis equivalent to minimising the functional

(a) t = 0 (b) Intermediate time (c) Eddies span the domain

Figure 7.12 Two-dimensional turbulence in a confined domain.
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F = [ [R2co2 - \2(Viji)2+2X2Qf]dV

where A. and Q are constants (Lagrange multipliers) which we shall deter-
mine from the initial condition. The use of the calculus of variations
shows that the minimum value of F, compatible with no-slip boundary
conditions on r = R, is obtained when co is given by

co XJ0(kr/R)
Q~ 2JX(X) y }

Here Jo, Ju etc are the usual Bessel functions denoted by these symbols.
The Lagrange multipliers are now fixed by the initial values of H and u2.
On integration of (7.74) we find

H = -{7T/A)QRAJ?){k)/Jx{k) (7.75)

[nR3u/Hf = [2J2
2(X) - 3Jl(X)J3(X)]/4(X) (7.76)

The second of these equations fixes X in terms of u2 and H, so that the
first determines Q. The vorticity distribution (and by implication the
velocity distribution) of the quasi-steady state is now uniquely deter-
mined by the initial conditions through (7.74)-(7.76). Somewhat surpris-
ingly, (7.74) compares well with numerical experiments of two-
dimensional turbulence (provided H is not too small), so that, at least
for this simple geometry, the minimum enstrophy-theory works well.

There are other variational principles designed to do the same as mini-
mum enstrophy. One has the impressive name: maximum entropy. In
effect, this defines some measure of mixing and then assumes that the
turbulence maximises this mixing (rather than minimising enstrophy)
subject to the conservation of u2 and H. The maximum entropy theory
seems, at first sight, appealing because there are analogues in statistical
physics. In practice, however, it is a heuristic model and has all the same
advantages and disadvantages of the minimum entrophy theory. In fact,
as often as not, maximum entropy and minimum enstrophy give virtually
identical predictions.
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Examples

7.1 Derive Kolmogorov's five-thirds law by dimensional analysis.

7.2 Show that (/?«/) = 0 is homogeneous, isotropic turbulence.

7.3 Sketch the shape of the second-order structure function Bxx(rex).

7.4 Show that the idea of a self-similar energy spectrum, E(k/l), in freely

decaying isotropic turbulence is incompatible with conservation of

Loitsyansky's integral.

7.5 Show that \ow-Rm MHD turbulence in a large spherical domain (of

radius much greater than the integral scale) which is subject to a

uniform magnetic field, Bo, and has angular momentum H, satisfies
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((H • B0)
2) = - J J ri(u± • u'±)dhd3xB2

0

7.6 Show that \ow-Rm turbulence always tends to a state where
i V t rue x-

7.7 Give a physical explanation for the growth of the integral scale,
/ ~ ut, in Batchelor's self-similar spectrum for 2D turbulence.





Part B:
Applications in Engineering and Metallurgy

Introduction: An Overview of Metallurgical Applications

1 The History of Electrometallurgy

When Faraday first made public his remarkable discovery that
a magnetic flux produces an emf, he was asked, 'What use is
it?'. His answer was: 'What use is a new-born baby?' Yet think
of the tremendous practical applications his discovery has led
to. . . Modern electrical technology began with Faraday's dis-
coveries. The useless baby developed into a prodigy and chan-
ged the face of the earth in ways its proud father could never

have imagined.
R P Feynman (1964)

There were two revolutions in the application of electricity to industrial
metallurgy. The first, which occurred towards the end of the nineteenth
century, was a direct consequence of Faraday's discoveries. The second
took place around eighty years later. We start with Faraday.

The discovery of electromagnetic induction revolutionised almost all of
19th century industry, and none more so than the metallurgical indus-
tries. Until 1854, aluminium could be produced from alumina only in
small batches by various chemical means. The arrival of the dynamo
transformed everything, sweeping aside those inefficient, chemical pro-
cesses. At last it was possible to produce aluminium continuously by
electrolysis. Robert Bunsen (he of the 'burner' fame)1 was the first to
experiment with this method in 1854. By the 1880s the technique had
been refined into a process which is little changed today (Figure I.I).

In the steel industry, electric furnaces for melting and alloying iron
began to appear around 1900. There were two types: arc-furnaces and
induction furnaces (Figure 1.2). Industrial-scale arc furnaces made an
appearance as early as 1903. (The first small-scale furnaces were designed
by von Siemens in 1878.) These used an electric arc, which was made to
play on the molten metal surface, as a means of heating the metal.
Modern vacuum-arc remelting furnaces are a direct descendant of this

1 Actually, it was Faraday who invented the burner!
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^> Molten cryolite
fH| alumina mixture

Carbon anode

Molten aluminium

~T~ """^ Carbon lining

Iron block

Figure I.I Turn-of-the-century aluminium reduction cell.

technology (see Figure 1.6). The first induction furnace, which used an
AC magnetic field (rather than an arc) to heat the steel, was designed by
Ferranti in 1887. Shortly thereafter, commercial induction furnaces
became operational in the USA. Thus, by the turn of the century, elec-
tromagnetic fields were already an integral part of industrial metallurgy.
However, their use was restricted essentially to heating and to electro-

(a)

»
c

c

o

(b)

>

Figure 1.2 (a) An early arc-furnace, (b) An early induction furnace.
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lysis. The next big step, which was the application of electromagnetic
fields to casting, was not to come for another eighty years or so.

The great flurry of activity and innovation in electrometallurgy which
began at the end of the nineteenth century gave way to a process of
consolidation throughout much of the twentieth. Things began to change,
however, in the 1970s and 1980s. The steel industry was revolutionised by
the concept of continuous casting, which displaced traditional batch-cast-
ing methods. Around the same time, the oil crisis focused attention on the
cost of energy, while the worldwide growth in steelmaking, particularly in
the East, increased international competition. Once again, the time was
ripe for innovative technologies. It is no coincidence that around this time
'near-net-shape' casting began to make an appearance (Figure 1.3a).
Instead of casting large steel ingots, letting them cool, and then expending
large amounts of energy reheating the ingots and rolling them into sheets,
why not continuously cast sheet metal in the first place?

There was another reason for change. The aerospace industry was
making increasing demands on quality. A single, microscopic, non-metal-
lic particle trapped in, say, a turbine blade can lead to a fatigue crack and
perhaps ultimately to the catastrophic failure of an aircraft engine. New
techniques were needed to control and monitor the level of non-metallic
inclusions in castings.

Figure 1.3 (a) Twin-roll casting of steel.
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Metallurgists set about rethinking and redesigning traditional casting
and melting processes, but increasing demands on cost, purity and con-
trol meant that traditional methods and materials were no longer ade-
quate. However, just like their predecessors a century earlier, they found
an unexpected ally in the electromagnetic field, and a myriad of electro-
magnetic technologies evolved. Metallurgical MHD, which had been sit-
ting in the wings since the turn of the century, suddenly found itself
centre-stage.

Magnetic fields provide a versatile, non-intrusive, means of controlling
the motion of liquid metals. They can repel liquid-metal surfaces, dampen
unwanted motion and excite motion in otherwise still liquid. In the 1970s,
metallurgists began to recognise the versatility of the Lorentz force, and
magnetic fields are now routinely used to heat, pump, stir, stabilise, repel
and levitate liquid metals.

Metallurgical applications of MHD represent a union of two very
different technologies - industrial metallurgy and electrical engineering
- and it is intriguing to note that Faraday was a major contributor to
both. It will come as no surprise to learn that, on Christmas day 1821,

Figure 1.3 (b) The first electric motor as devised by Faraday in 1921. A wire
carrying a current can be made to rotate about a stationary magnet, and a magnet
to rotate about a stationary wire.
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Faraday built the first primitive electric motor (Figure 1.3b) and of course
his discovery of electromagnetic induction (in 1831) marked the begin-
ning of modern electrical technology. However, Faraday's contributions
to metallurgy are, perhaps, less well known. Not only did his researches
into electrolysis help pave the way for modern aluminium production,
but his work on alloy steels, which began in 1819, was well ahead of his
time. In fact, as far back as 1820, he was making razors from a non-
rusting platinum steel as gifts for his friends. As noted by Robert
Hadfield: 'Faraday was undoubtedly the pioneer of research on special
alloy steel; and had he not been so much in advance of his time in regard
to general metallurgical knowledge and industrial requirements his work
would almost certainly have led immediately to practical development'. It
is interesting to speculate how Faraday would have regarded the fusion of
two of his favourite subjects - chemistry and electromagnetism - in a
single endeavour.

In any event, that unlikely union of sciences has indeed occurred, and
the application of magnetic fields to materials processing has acquired
not one but two names! The term electromagnetic processing of materials
(or EPM for short) has found favour in France and Japan. Elsewhere, the
more traditional label of metallurgical MHD still holds sway: we shall
stay with the latter. The phrase metallurgical MHD was coined at an
IUTAM conference held in Cambridge in 1982 (Moffatt, 1984). In the
years immediately preceding this conference, magnetic fields were begin-
ning to make their mark in casting, but those applications which did exist
seemed rather disparate. This conference forged a science from these
diverse, embryonic technologies, and almost two decades later we have
a reasonably complete picture of these complex processes. From both a
technological and a scientific perspective, the subject has come of age.

Unfortunately, much of this research has yet to find its way into text
books and monographs, but rather is scattered across various conference
proceedings and journal papers. The purpose of Part B, therefore, is to
give some sense of the breadth of the industrial developments and of our
attempts to understand and quantify these complex flows.

2 The Scope of Part B

The content and style of Part B is quite different to that of Part A. It is
not of an introductory nature, but rather provides a contemporary
account of recent developments in metallurgical MHD.
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We shall look at five applications of MHD. These are:

(i) magnetic stirring induced by a rotating magnetic field (Chapter 8);
(ii) the magnetic damping of jets, vortices and natural convection

(Chapter 9);
(iii) motion arising from the injection of current into a liquid-metal

pool (Chapter 10);
(iv) interfacial instabilities which arise when a current is passed

between two conducting fluids (Chapter 11);
(v) magnetic levitation and heating induced by high-frequency mag-

netic fields (Chapter 12).

The hallmark of all these processes is that Rm is invariably very small.
Consequently, Part B of this text rests heavily on the material of
Chapter 5.

Although these five processes may be unfamiliar in the metallurgical
context, they all have simple mechanical analogues, each of which would
have been familiar to Faraday.

- Magnetic stirring (the first topic) is nothing more than a form of
induction motor where the liquid metal takes the place of the
rotor.

- Magnetic damping takes advantage of the fact that the relative
motion between a conductor and a magnetic field tends to induce
a current in the conductor whose Lorentz force opposes the rela-
tive motion. (As far back as the 1860s, designers were placing
conducting circuits around magnets in order to dampen their
vibration.) This is the second of our topics.

- Current injected into a conducting bar causes the bar to pinch in
on itself (parallel currents attract each other), and the same is true
if current passes through a liquid-metal pool. Sometimes the pinch
forces caused by the injection of current can be balanced by fluid
pressure; at other times it induces motion in the pool (topic (iii)).

- The magnetic levitation of small metallic objects is also quite famil-
iar. It relies on the fact that an induction coil carrying a high-
frequency current will tend to induce opposing currents in any
adjacent conductor. Opposite currents repel each other and so
the conductor is repelled by the induction coil. What is true of
solids is also true of liquids. Thus a 'basket' composed of a high-
frequency induction coil can be used to levitate liquid-metal
droplets (topic (v)).



The Scope of Part B 279

Let us now re-examine each of these processes in a little more detail,
placing them in a metallurgical context. Magnetic stirring is the name
given to the generation of swirling flows by a rotating magnetic field
(Figure 1.4). This is routinely used in casting operations to homogenise
the liquid zone of a partially solidified ingot. In effect, the liquid metal
acts as the rotor of an induction motor, and the resulting motion has a
profound influence on the metallurgical structure of the ingot, producing
a fine-grained product with little or no porosity. From the perspective of
a fluid dynamicist, this turns out to be a study in Ekman pumping. That
is, Ekman layers form on the boundaries, and the resulting Ekman pump-
ing (a secondary, poloidal motion which is superimposed on the primary
swirling flow) is the primary mechanism by which heat, chemical species
and angular momentum are redistributed within the pool. Magnetic
stirring is discussed in Chapter 8.

In contrast, magnetic fields are used in other casting operations to
suppress unwanted motion. Here we take advantage of the ability of a
static magnetic field to convert kinetic energy into heat via Joule dissipa-
tion. This is commonly used, for example, to suppress the motion of
submerged jets which feed casting moulds. If unchecked, these jets can
disrupt the free surface of the liquid, leading to the entrainment of oxides
or other contaminants from the surface (Figure 1.5). It turns out, how-
ever, that although the Lorentz force associated with a static magnetic
field destroys kinetic energy, it cannot create or destroy linear or angular
momentum. A study of magnetic damping, therefore, often comes down
to the question: how does a flow manage to dissipate kinetic energy while
preserving its linear and angular momentum? The answer to this question

(a) T C)

Figure 1.4 (a) Electromagnetic stirring, (b) Ekman pumping.
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Figure 1.5 Magnetic damping.

furnishes a great deal of useful information, and we look at the damping
of jets and vortices in Chapter 9.

In yet other metallurgical processes, an intense DC current is used to
fuse metal. An obvious (small-scale) example of this is electric welding. At
a larger scale, intense currents are used to melt entire ingots! Here the
intention is to improve the quality of the ingot by burning off impurities
and eliminating porosity. This takes place in a large vacuum chamber and
so is referred to as vacuum-arc remelting (VAR). In effect, VAR resembles
a form of electric-arc welding, where an arc is struck between an electrode
and an adjacent metal surface. The primary difference is one of scale. In
VAR the electrode, which consists of the ingot which is to be melted and
purified, is ^ 1 m in diameter. As in electric welding, a liquid pool builds
up beneath the electrode as it melts, and this pool eventually solidifies to
form a new, cleaner, ingot (Figure I.6(a)).

However, vigorous stirring is generated in the pool by buoyancy forces
and by the interaction of the electric current with its self-magnetic field.
This motion, which has a significant influence on the metallurgical struc-
ture of the recast material, is still poorly understood. It appears that there
is delicate balance between the Lorentz forces, which tend to drive a
poloidal flow which converges at the surface, and the buoyancy forces
associated with the relatively hot upper surface. (The buoyancy-driven
motion is opposite in direction to the Lorentz-driven flow.) Modest
changes in current can transform the motion from a buoyancy-domi-
nated flow to a Lorentz-dominated motion. This change in flow regime
is accompanied by a dramatic change in temperature distribution and of
ingot structure (Figure I.6(b)). This is discussed in Chapter 10.

Next, in Chapter 11, we give a brief account of an intriguing and
unusual form of instability which has bedevilled the aluminium industry
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Figure 1.6 (a) Vacuum-arc remelting.
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Figure 1.6 (b) Changes in flow pattern and temperature field with current in
VAR.
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for several decades. As we shall see, the solution to this problem is finally
in sight and the potential for savings is enormous.

The instability arises in electrolysis cells which are used to reduce alumina
to aluminium. These cells consist of broad, but shallow, layers of electrolyte
and liquid aluminium, with the electrolyte lying on top. A large current
(perhaps 300 k Amps) passes vertically downward through the two layers,
continually reducing the oxide to metal (Figure 1.7). The process is highly
energy-intensive, largely because of the high electrical resistance of the
electrolyte. For example, in the USA, around 2% of all generated electricity
is used for aluminium production. It has long been known that stray mag-
netic fields can destabilise the aluminium-electrolyte interface, in effect, by
amplifying interfacial gravity waves. In order to avoid this instability, the
electrolyte layer must be maintained at a thickness above some critical
threshold, and this carries with it a severe energy penalty.

This instability has been the subject of intense research for over two
decades. In the last few years, however, the underlying mechanisms have
finally been identified and, of course, with hindsight they turn out to be
simple. The instability depends on the fact that the interface can support
interfacial gravity waves. A tilting of the interface causes a perturbation
in current, j , as shown in Figure 1.8. Excess current is drawn from the
anode at points where the highly resistive layer of electrolyte thins, and
less current is drawn where the layer thickens. The resulting perturbation
in current shorts through the highly conducting aluminium layer, leading
to a large horizontal current in the aluminium. This, in turn, interacts
with the vertical component of the background magnetic field to produce
a Lorentz force which is directed into the page. It is readily confirmed

Covers

Carbon
anodes

Carbon
bus

I—
lining

^- Collector bars

Figure 1.7 A modern aluminium reduction cell.

- Molten salt L- Molten
electrolyte aluminium
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Figure 1.8 Unstable waves in a reduction cell.

that two such sloshing motions, which are mutually perpendicular, can
feed on each other, the Lorentz force from one driving the motion of the
other. The result is an instability. This is discussed in Chapter 11.

A quite different application of MHD in metallurgy is magnetic levita-
tion. This relies on the fact that a high-frequency induction coil will repel
any adjacent conducting material by inducing opposing currents in the
adjacent conductor (opposite currents repel each other). Thus a 'basket'
formed from a high-frequency induction coil can be used to levitate and
melt highly reactive metals (Figure 1.9), or a high-frequency solenoid can
be used to form a magnetic valve which modulates the flow of a liquid-
metal jet (Figure 1.10).

Figure 1.9 Magnetic levitation.
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Figure 1.10 An electromagnetic valve.

The use of high-frequency fields to support liquid-metal surfaces is now
commonplace in industry. For example, in order to improve the surface
quality of large aluminium ingots, some manufacturers have dispensed
with the traditional, water-cooled mould and replaced it with a high-fre-
quency induction coil. Thus ingots are cast by pouring the molten metal
through free space, the sides of the ingot being supported by magnetic
pressure (Figure I.I 1). Such applications are discussed in Chapter 12.

This concludes our brief overview of Part B of this textbook.

Liquid metal

Figure I.I 1 Electromagnetic casting of aluminium.
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Liquid metals freeze in much the same way as water. First, snowflake-like
crystals form, and as these multiply and grow a solid emerges. However,
this solid can be far from homogeneous. Just as a chef preparing ice-
cream has to beat and stir the partially solidified cream to break up the
crystals and release any trapped gas, so many steelmakers have to stir
partially solidified ingots to ensure a fine-grained, homogeneous product.
The preferred method of stirring is electromagnetic, and has been dubbed
the 'electromagnetic teaspoon'. We shall describe this process shortly.
First, however, it is necessary to say a little about commercial casting
processes.

8.1 Casting, Stirring and Metallurgy

It will emerge from dark and gloomy caverns, casting all
human races into great anxiety, peril and death. It will take
away the lives of many; with this men will torment each other
with many artifices, traductions and treasons. O monstrous
creature, how much better it would be if you were to return

to hell
(Leonardo da Vinci on the extraction and casting of metals)

Man has been casting metals for quite some time. Iron blades, perhaps
5000 years old, have been found in Egyptian pyramids, and by 1000 BC
we find Homer mentioning the working and hardening of steel blades.
Until relatively recently, all metal was cast by a batch process involving
pouring the melt into closed moulds. However, today the bulk of alumi-
nium and steel is cast in a continuous fashion, as indicated in Figure 8.1.
In brief, a solid ingot is slowly withdrawn from a liquid-metal pool, the
pool being continuously replenished from above. In the case of steel,
which has a low thermal diffusivity, the pool is long and deep, resembling
a long liquid-metal column. For aluminium, however, the pool is roughly
hemispherical in shape, perhaps 0.5 m in diameter. Casting speeds are of
the order of a few mm/s.
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Figure 8.1 (a) Casting of steel; (b) casting of aluminium.

Unfortunately, ingots cast in this manner are far from homogeneous.
For example, during solidification alloying elements tend to segregate
out of the host material, giving rise to inhomogeneities in the final
structure. This is referred to as macro-segregation1. Moreover, small
cavities can form on the ingot surface or near the centre-line. Surface
cavities are referred to as blow holes or pin holes, and arise from the
formation of gas bubbles (CO or N2 in the case of steel). Centre-line
porosity, on the other hand, is associated with shrinkage of the metal
during freezing.

All of these defects can be alleviated, to some degree, by stirring the
liquid pool (Birat & Chone, 1983; Takeuchi et al., 1992). This is most
readily achieved using a rotating magnetic field, as shown in Figure 8.2.
The stirring has the added benefit of promoting the nucleation and
growth of equi-axed crystals (crystals like snowflakes) at the expense of
dendritic crystals (those like fir-trees) which are large, anisotropic and
generally undesirable. In addition to these metallurgical benefits, it has
been found that stirring has a number of incidental operational advan-
tages, such as allowing higher casting temperatures and faster casting
rates (Marr, 1984).

1 Macro-segregation was a recognized problem in casting as far back as 1540, when
Biringuccio described macro-segregation problems in the production of gun barrels.
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Figure 8.2 (a) Magnetic stirring of aluminium; (b) stirring of steel.
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The perceived advantages of magnetic stirring led to a widespread
implementation of this technology in the 1980s, particularly in the steel
industry. In fact, by 1985, some 20% of slab casters (casters producing
large steel ingots) and 50% of bloom casters (casters producing medium-
sized steel ingots) had incorporated magnetic stirring.

However, this was not the end of the story. While some manufacturers
reported significant benefits, others encountered problems. For example,
in steel-making excessive stirring can lead to the entrainment of debris
from the free surface and to a thinning of the solid steel shell at the base
of the mould. This latter phenomenon is particularly dangerous as it can
lead to a rupturing of the solid skin. Different problems were encountered
in the aluminium industry. Here it was found that, in certain alloys,
macrosegregation was aggravated (rather than reduced) by stirring, pos-
sibly because centrifugal forces tend to separate out crystal fragments of
different composition.

By the mid-1980s it was clear that there was a need to rationalise the
effects of magnetic stirring and this, in turn, required that metallurgists
and equipment manufacturers develop a quantitative picture of the
induced velocity field. The first, simple models began to appear in the
early 1980s, usually based on computer simulations. However, these were
somewhat naive and the results rather misleading. The difficulty arose
because early researchers (quite naturally) tried to simplify the problem,
and an obvious starting point was to consider a two-dimensional ideali-
sation of the process. Unfortunately, it turns out that the key dynamical
processes are all three-dimensional, and so two-dimensional idealisations
of magnetic stirring are hopelessly inadequate. We shall describe both the
early two-dimensional models and their more realistic three-dimensional
counterparts in the subsequent sections.
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There are many ways of inducing motion in a liquid-metal pool. The
most common means of stirring is to use a rotating, horizontal magnetic
field, an idea which dates back to 1932. The field acts rather like an
induction motor, with the liquid taking the place of the rotor (Figure
8.3a). In practice, a rotating magnetic field may be generated in a variety
of ways, each producing a slightly different spatial structure for B. (The

Figure 8.3 (a) A one-dimensional model of stirring.
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Figure 8.3 (b) Core angular velocity versus Qf for one-dimensional flow.
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field is never perfectly uniform nor purely horizontal.) However, the
details do not matter. The key point is that a rotating magnetic field,
which is predominantly horizontal, induces a time-averaged Lorentz
force which is a prescribed function of position, is independent of the
velocity of the metal, and whose dominant component is azimuthal:
(0, Fe, 0) in (r, 0, z) coordinates. The important questions are: (i) How
does the induced velocity scale with the Lorentz force? (ii) Does the
induced swirl (0, ue, 0) have a spatial structure which mimics the spatial
variations of the applied Lorentz force (i.e. strong swirl in regions where
Fe is intense and weak swirl where Fe is low)? (iii) Are there significant
secondary flows (un 0, uz)l To cut a long story short, the answers turn out
to be:

(i) ue^B
(ii) ue does not mimic the spatial variations in the Lorentz force;
(iii) the secondary flows are intense and dominate the dynamics of the

liquid metal.

It is the subtle, yet critical, role played by the secondary flows which
invalidates the results of the early, two-dimensional models and which
makes this problem more interesting than it might otherwise be.

8.2 Early Models of Stirring

The first step in predicting the spatial structure of u is to determine the
Lorentz force. Fortuitously, the magnitude and distribution of the time-
averaged Lorentz force is readily calculated. There are two reasons for
this. First, the magnetic field associated with the current induced in the
liquid metal is almost always negligible by comparison with the imposed
field, B (see, for example, Davidson & Hunt, 1987.) Faraday's law then
gives the electric field as

VxE=-aB 0 / a f (8.1)

where Bo is the known, imposed magnetic field. Second, the induced
velocities are generally so low (by comparison with the rate of rotation
of the B-field) that Ohm's law reduces to

J = aE (8.2)
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Consequently, E (and hence J) may be found directly by uncurling (8.1)
and the Lorentz force follows. In fact, we have already seen an example
of just such a calculation in Chapter 5, Section 5.1. Here we evaluated the
time-averaged Lorentz force generated by a uniform magnetic field rotat-
ing about an infinitely long, liquid-metal column. The force is

]aBQree (8.3)

where Q is the field rotation rate and r is the radial coordinate. The
restrictions on this expression are

uo<^QR< X/R, X = (ficr)~l (8.4)

where R is the radius of the column. However, these conditions are
almost always satisfied in practice. The first inequality, ue <^ QR, is pre-
cisely the condition required to ignore u x B in Ohm's law, while the
second, QR < X/R, is equivalent to saying that Rm (based on QR) is
small, so that the induced magnetic field is negligible.

Of course, for more complicated distributions of B we cannot use (8.3).
Nevertheless, for almost any rotating field the Lorentz force is predomi-
nantly azimuthal, and on dimensional grounds it must be of order
oB2QR (provided that (8.4) is satisfied). Moreover, for fields which are
symmetric about a plane through the origin, the Lorentz force must
vanish on the axis. It follows that rotating, symmetric magnetic fields
which satisfy (8.4) will induce a force of the form

(8.5)

Here Bo is some characteristic field strength, a n d / i s a function of order
unity whose spatial distribution depends on that of B and whose exact
form can be determined by uncurling (8.1). When B is uniform,/ = 1.

We now consider the dynamical consequences of this force. The earliest
attempts to quantify magnetic stirring consisted of taking a transverse
slice through the problem. That is, the axial variations in F were
neglected, the sides of the pool were considered to be vertical, and end
effects were ignored. In effect, this represents uniform stirring of a long,
deep column of radius R. Although this is a natural first step, it turns out
that this idealisation is quite misleading, as we shall now show.

These z-independent models are characterised by the fact that F drives
a one-dimensional swirl flow ue(r). There are no inertial forces and so
rings of fluid simply slide over each other like onion rings, driven by Fe
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and resisted by shear stresses (Figure 8.3a). The Reynolds-averaged
Navier-Stokes equation reduces to a balance between the applied
Lorentz force and shear:

) - pv^Fe = -r~2 | Fer
2dr (8.6)

r / Jo
rre = pvr— p ) -

or \r /

Here v is the viscosity, v represents the fluctuating component of velocity
and the overbar denotes a time average. In fact we have already met this
problem. We used a simple mixing length model to estimate v/v^j in
Chapter 5, Section 5.1. Integration of (8.6) is then straightforward. The
results are best expressed in terms of a quantity Qf defined by

Qj = aQB2/p (8.7)

When B is uniform a n d / = 1, equation (8.6) yields

(ue/r)r=0 = Qf{QfR
2/\6v} (8.8)

(Laminar flow)

(8.9)
/ J

(Turbulent flow)

These correspond to (5.29) and (5.31). Note that K = 0.4 is Karman's
constant. When the surface at r = R is rough and dendritic, rather than
smooth, the mixing length estimate of v/vjj must be modified slightly. The
required modification is well known in hydraulics and it turns out that, if
k* is the typical roughness height, then (8.9) becomes

(8.10)

(Turbulent flow, rough wall)

Note that in a turbulent flow ue scales linearly with |B| (with a possible
logarithmic correction), whereas in a laminar flow ue scales linearly as B2.
These results are summarised in Figure 8.3(b).

Expressions (8.9) and (8.10) were first given by Davidson & Hunt
(1987). However, there were many earlier 'numerical experiments'.
(Computerised integrations of the Navier-Stokes equation for particular
values of B, R, Q, a, etc.) For example, Tacke & Schwerdtfeger (1979)
integrated the time-averaged Navier-Stokes equations and used a popu-
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lar, if rather complex, two-parameter turbulence model to estimate the
Reynolds stresses. (They used a variant of the popular k-e model.)
However, their results are very similar to the mixing length predictions
above.

There were many other numerical experiments, but unfortunately all
predictions based on integrating (8.6) are substantially out of line with
the experimental data, no matter what turbulence model is used!2 The key
point is that the force balance (8.6) relies on the time-averaged inertial
forces being exactly zero. However, in practice, there are always signifi-
cant secondary flows (un 0, uz) induced, for example, by Ekman pumping
on the base of the pool (see Chapter 3, Section 7 for a discussion of
Ekman pumping). This secondary motion ensures that the inertial forces
are finite. Indeed, when Re is large, as it always is, we would expect the
inertial forces to greatly exceed the shear stresses, except near the bound-
aries. Consequently, in the core of the flow, the local force balance should
be between Fe and inertia, not between Fe and shear. To obtain realistic
predictions of u we must embrace the three-dimensional nature of the
problem, seek out the sources of secondary motion, and incorporate these
into the analysis.

Some hint as to the role of secondary motion appears in the example
discussed in Chapter 5, Section 5.2. Here we looked at the laminar flow of
a liquid held between two flat, parallel plates and subject to the force
(8.3). It was found that Ekman-like layers form on the top and bottom
surfaces, and that these layers induce a secondary, poloidal flow as shown

Figure 8.4 Swirling flow between two discs driven by the force F9 — \oQB2r.

2 See Davidson & Hunt, 1987, and Davidson, 1992.
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in Figure 8.4. We showed that, outside the Ekman (or Bodewadt) layers,
the viscous stresses are negligible and the fluid rotates as a rigid body, the
rotation rate being quite different to that predicted by (8.8). In fact, the
core rotation is

where 2w is the distance between the plates. Moreover, we saw that the
Ekman layers are unaffected by the presence of the forcing (the Lorentz
force is negligible by comparison with the viscous forces) and so they
look like conventional Bodewadt layers. For example, the thickness of
the boundary layer is of the order of 8 ~ 4(v/O)1/2.

This simple model problem is discussed at some length in Davidson
(1992), where the key features are shown to be:

(i) the flow may be divided into a forced, inviscid core, and two
viscous boundary layers in which the Lorentz force is
negligible;

(ii) all of the streamlines pass through both regions, collecting energy
in one region and losing it in the other;

(iii) the applied Lorentz force in the core is exactly balanced by the
Coriolis force.

We shall see shortly that all of these features are characteristic of stirring
an aluminium ingot. The main point, however, is (iii). When a secondary
flow is present, the Lorentz force is balanced locally by inertia, not shear,
and this is why (8.8) and (8.11) look so different. An important question
is, therefore: what kinds of secondary flow occur during the stirring of an
ingot?

From an industrial perspective there are two distinct cases of particular
interest. The first is where the pool is as deep as it is broad, which is
typical of aluminium casting. Here the source of secondary motion is
Ekman pumping, as in the model problem above. The second case is
where we have a long column of liquid, but with the stirring force Fe

applied over a short portion of that column. This is relevant to the casting
of steel, and in this case the secondary motion arises from differential
rotation along the length of the column. We shall consider each of these
in turn, starting with pools which are roughly hemi-spherical or parabolic
in shape.



294 8 Magnetic Stirring Using Rotating Fields

8.3 The Dominance of Ekman Pumping in the Stirring of Confined
Liquids

Suppose that the pool has an aspect ratio of the order of unity, as indi-
cated in Figure 8.2(a). We make no particular assumptions about the
shape of the boundary, although we have in mind profiles which are
roughly parabolic. It turns out that this is a long-standing and much
studied problem, and not just in the case of aluminium casting. For
example, Zibold et al. (1986) looked at magnetically forced swirl in a
cylindrical cavity in the context of single crystal pulling. Bojarevics &
Millere (1982) studied the equivalent problem in a hemisphere, motivated
by problems in electric-arc welding, while Vlasyuk & Sharamkin (1987)
and Muizhnieks & Yakovich (1988) looked at forced swirl in paraboloids
and cylinders, motivated this time by vacuum-arc remelting of ingots. All
of these studies were, in effect, numerical experiments. (Integrations of
Navier-Stokes equation for particular values of B, Q, R, cr, v, etc.)
However, as we shall see, it is possible to develop a single unified
model which encapsulates all of these studies.

The key to establishing the distribution of swirl lies in the simple,
text-book problem of 'spin-down' of a stirred cup of tea (Figure 8.5).
(This is discussed in Chapter 3, Section 7.) In this well-known example,
the main body of the fluid is predominantly in a state of inviscid rota-
tion. The associated centrifugal force is balanced by a radial pressure
gradient, and this pressure gradient is also imposed throughout the
boundary layer on the base of the cup. Of course, the swirl in this
boundary layer (the Ekman layer) is diminished through viscous drag,
and so there is a local imbalance between the radial pressure force and
ul/r. The result is a radial inflow along the bottom of the cup, with the
fluid eventually drifting up and out of the boundary layer. In short, we

Secondary^
flow

Ekman >
flow

Figure 8.5 Spin-down of a stirred cup of tea.
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have a kind of Bodewadt layer. Of course, continuity then requires that
the boundary layer is replenished via the side walls and the end result is
a form of Ekman pumping, as shown above. As each fluid particle
passes through the Ekman boundary layer, it gives up a significant
fraction of its kinetic energy and the tea finally comes to rest when
all the contents of the cup have been flushed through the Ekman
layer. The spin-down time, therefore, is of the order of the turn-over
time of the secondary flow.

It is useful to consider a variant of this problem. Suppose now that the
tea is continuously stirred. Then it will reach an equilibrium rotation rate
in which the work done by the tea-spoon exactly balances the dissipation
in the Ekman layers. This provides the clue to analysing magnetic stir-
ring, and we now return to this problem.

Suppose we integrate the time-averaged Navier-Stokes equations
around a streamline which is closed in the r-z plane. For a steady flow,
we obtain

. dx = (8.12)

Here vt is an eddy viscosity which for simplicity we treat as constant, and
F is the Lorentz force per unit mass. This is an energy balance: it states
that all of the energy imparted to a fluid particle by the Lorentz force
must be destroyed or diffused away by shear before it returns to its
original position. However, the shear stresses are significant only in the
boundary layers. By implication, all streamlines must pass through a
boundary layer. Of course, Ekman pumping provides the necessary
entrainment mechanism. Note also that Ekman layers can and will

(a)

Surface S(

Figure 8.6 (a) Secondary (poloidal) flow induced by swirl in a cavity,
(b) Coordinate system.
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form on all surfaces non-parallel to the axis of rotation. The structure of
the flow, therefore, is as shown in Figure 8.6(a) (Davidson, 1992). It
consists of an interior body of (nearly) inviscid swirl surrounded by
Ekman wall jets on the inclined surfaces. Each fluid particle is continually
swept first through the core, where it collects energy and angular momen-
tum, and then through the Ekman layers, where it deposits its energy.
The motion is helical, spiralling upwards through the core, and down-
wards through the boundary layers.

The fact that all streamlines pass through the Ekman layers has pro-
found implications for the axial distribution of swirl. Let ub and uc be
characteristic values of the poloidal recirculation (un 0, uz) in the bound-
ary layer and in the core. Also, let 8 be the boundary layer thickness, R be
a characteristic linear dimension of the pool, and F — uer be the angular
momentum. Now ub and ue are of similar magnitudes (one drives the
other) and so continuity requires that

uc ~ ub(8/R) - uo(8/R) (8.13)

That is, the core recirculation is weak. However, the core recirculation
is related to the core angular momentum, FC9 by the inviscid vorticity
equation

^ | (8.14)

Combining (8.13) and (8.14) we have (Davidson, 1992)

Fc = rc(r)[l + O(8/R)2] (8.15)

It is extraordinary that, no matter what the spatial distribution of the
Lorentz force, the induced swirl is independent of height to second order
in (8/R). This prediction has been confirmed in the experiments of
Davidson, Short & Kinnear (1995), where highly localised distributions
of F9 were used.

Since the flow has a simple, clear structure, it is possible to piece
together an approximate, quantitative model of the process. We give
only a schematic outline here, but more details may be found in
Davidson (1992). In the inviscid core the applied Lorentz force is
balanced by inertia: (u • V)rc = rFe. Since Fc is a function only of r,
the left-hand side reduces to urF'c(r), the Coriolis force. Thus,

ur = rFe/r'c(r) (8.16)
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Now all the fluid which moves radially outward is recycled via the bound-
ary layer and so (8.16) may be used to calculate the mass flux in the
Ekman layer. In particular, if we apply the continuity equation to the
shaded area in Figure 8.6(b) we obtain an estimate of the mass flux in the
boundary layer:

8 zs

C C 1 AT

q = 2nrs ubdn = 2jtrs urdz = —TT^~j~ (8.17a)
J J •* cvs) ™s
0 0

where

r = [' [2nr2Fedrdz (8.17b)
Jo Jo

Here Tis the total magnetic torque applied to the fluid between r = 0 and
r = rs, where (rs, zs) represents the coordinates of the boundary (Figure
8.6(b)). Also, n is a coordinate measured from the boundary into the
fluid, and ub(n) is the velocity profile in the boundary layer.

Next, we turn our attention to the boundary layer. Equation (8.16) tells
us that the ratio of the Lorentz force to inertia in the boundary layer is
rF9/(u • Vr) ~ (ucrc/R)/(ubrc/R) ~ 8/R. Since (8 <£ R we may neglect
Fe in the boundary layer and the azimuthal equation of motion reduces to

(u • V)r = viscous terms

In integral form this becomes

Ai • dS ~ (b (viscous stresses)JS
j

s

where S is any closed surface. This states that the net flux of angular
momentum out of some closed surface is proportional to the viscous
torque acting on that surface. Frequently, in boundary layer analysis, it
is useful to apply an integral equation of this form to a short portion of
the boundary layer. (This is equivalent to integrating the equation of
motion across the boundary layer.) The result is referred to as a momen-
tum integral equation, and in this case the azimuthal integral equation
takes the form (see Davidson, 1992)

(8.18)

Here Cf is the dimensionless skin-friction coefficient, re/(^pul), x is a

shape factor related to the velocity profile in the Ekman wall jet (usually
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taken as 1/6), and s is a curvilinear coordinate measured along the bound-
ary from the surface. (Typically, Cf = 0.052(Fc/v)~l/5). Eliminating q
from (8.17a) and (8.18) furnishes

dT d

This simple o.d.e. allows the distribution of the core swirl, Fc(r), to be
calculated whenever the applied Lorentz torque, T, is known. It applies
to any shape of cavity and any distribution of Fe, and so provides a
unified model of forced swirl in a cavity. For example, in hemispheres
wi th / = 1 it predicts a maximum value of Fc ofOA2QfR

2c7l/2, so that F
ciq J J

scales as Fe' . The predictions of (8.19) have been tested against experi-
ments performed in cones, hemispheres and cylinders, and there is a
reasonable correspondence between theory and experiment. (Davidson
et al. 1995.) However, perhaps the most important results are (i) the
existence of the Ekman wall jets, which sweep down the solidification
front carrying crystal fragments with them, and (ii) equation (8.15),
which shows that the fluid is quite insensitive to the detailed distribution
of the applied Lorentz force. It cares only about the globally averaged
torque. This model has been generalised to unsteady flows by Ungarish
(1997).

8.4 The Stirring of Steel

The simplest idealisation of the magnetic stirring of steel is that shown
in Figure 8.2(b). That is, the fluid occupies a long cylindrical column,
while the Lorentz force, Fe, is applied over a relatively short portion of
that column. Evidently, there is no Ekman pumping and we must seek a
different way of satisfying (8.12). Once again, the secondary flows turn
out to be crucial. This time the secondary (poloidal) motion is gener-
ated by differential rotation between the forced and unforced regions of
the column. The relatively low pressure on the axis of the more rapidly
rotating fluid causes the magnetic stirrer to act like a centrifugal pump
(Figure 8.7). Fluid is drawn in from the far field, moving along the axis
towards the magnetic field. It enters the forced region, is spun up by the
Lorentz force and is then thrown to the walls. Finally, the fluid spirals
down the solidification front where, eventually, it loses its excess energy
and angular momentum through wall shear. In the steady state the fluid
cannot return until its excess energy is lost (cf. (8.12)), and it takes a
long time for the boundary layers on the outer cylindrical walls to
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Stagnation point
5, boundary layer
thickness

Eye of vortex

Figure 8.7 Secondary flow in the stirring of steel.

dissipate this energy, essentially because the cross-stream diffusion of
energy to the wall is a slow process. Consequently, this centrifugal
pumping ensures that a very long portion of the liquid metal column
is eventually set into rotation (of order / ~ ueR

2/vt), even though Fe is
restricted to a relatively short part of the column. The picture, there-
fore, is one of fluid being continuously cycled first through the forced
region, where it is spun up, then through the side-wall boundary layers,
where energy is lost. Note that the local force balance is between inertia
(u • Vr) and the applied torque, rather than between Fe and shear. As a
consequence, one-dimensional models of the form discussed in Section
8.2 over-estimate the induced swirl by a factor of around five!
(Davidson & Hunt, 1987.) An approximate analytical model of this
flow has been proposed by Davidson Hunt, which predicts that the
maximum swirl occurs, not where Fe is largest, but rather at the upper
and lower edges of the forced region, where Fo falls to zero. This has
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been confirmed by experiment. Yet again, we see that the spatial dis-
tribution of swirl does not mimic that of Fe, and that secondary (poloi-
dal) flows play a key role in the overall dynamics.

From a practical point of view perhaps the most important point to
note is that the swirl generated by a stirrer will penetrate many diameters
above and below the stirrer. This gives the designer some latitude in his
choice of location of the device.

Examples

8.1 Estimate the magnitude of swirl, u&9 in terms of the force, F09

induced by the localised stirring of a long steel strand. (Hint: first
estimate the relationship between up and ue.)

8.2 Show that the depth of stirring induced in a long steel column by a
localised Lorentz force is of order / ~ u9R

2/vt. Use two different
methods: (1) perform an overall torque balance on the column; and
(2) estimate the rate of growth of the boundary layer on the wall
r = R.

8.3 Derive the momentum equation (8.18) by integrating the azimuthal
equation of motion across the boundary layer.

8.4 By considering the appropriate overall torque balance, explain why
one-dimensional models of stirring will always overestimate the
localised stirring in a long steel strand by an order of magnitude.
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Science is nothing without generalisations. Detached and ill-
assorted facts are only raw material, and in the absence of a
theoretical solvent, have little nutritive value. At the present
time and in some departments, the accumulation of material is

so rapid that there is a danger of indigestion.
Rayleigh (1884)

We have seen that the relative movement of a conducting body and a
magnetic field can lead to the dissipation of energy. This has been used by
engineers for over a century to dampen unwanted motion. Indeed, as far
back as 1873 we find Maxwell noting: 'A metallic circuit, called a damper,
is sometimes placed near a magnet for the express purpose of damping or
deadening its vibrations/ Maxwell was talking about a magnetic field
moving through a stationary conductor. We are interested in a moving
conductor in a stationary field, but of course, this is really the same thing.
We have already touched upon magnetic damping in Chapter 5, and we
discussed some of its consequences in Chapter 6. In particular, we saw
that the intense magnetic field in a sunspot locally deadens the convective
motions in the outer layer of the sun, thus cooling the spot and giving it a
dark appearance. Here we make the jump from sunspots to steelmaking,
and describe how magnetic fields are used in certain casting operations to
suppress unwanted motion.

There has been a myriad of papers on this topic and at times one is
reminded of Rayleigh's indigestion. Here we focus on the unifying themes.
We shall see that the hallmark of magnetic damping is that the dissipa-
tion of energy is subject to the constraint of conservation of momentum,
and that this constraint is a powerful one.

9.1 Metallurgical Applications

We have already seen that a static magnetic field can suppress motion
of an electrically conducting liquid. The mechanism is straightfor-
ward: the motion of a liquid across the magnetic field lines induces
a current. This leads to Joule dissipation and the resulting rise in

301
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thermal energy is accompanied by a fall in magnetic and/or kinetic
energy. We are concerned here only with cases where the magnetic
Reynolds number is small, so that changes to the applied magnetic
field are negligible. In such cases, the rise in Joule dissipation is
matched by a fall in kinetic energy. Thus, for example, in an elec-
trically insulated pool, (5.7) gives

— I -pu 2 )dV = J2dV + viscous dissipation
dt) \2 ) o)

In the last decade this phenomenon has been exploited in a range of
metallurgical processes. For example, in the continuous casting of large
steel slabs, an intense, static magnetic field (of around 0.5 Tesla) is com-
monly used to suppress motion within the mould (Figure 9.1). Sometimes
the motion takes the form of a submerged jet which feeds the mould from
above; at others it takes the form of large eddies or vortices. In both cases
the objective is to keep the free surface of the liquid quiescent, thus
avoiding the entrainment of surface debris (see Iron & Steel Institute of
Japan, 1994.) In other solidification processes, such as the Bridgeman
technique for growing semi-conductor crystals or the continuous casting
of aluminium, it is widely believed that natural convection has a detri-
mental effect on the metallurgical structure of the solid. Again, the impo-
sition of a static magnetic field is seen as one means of suppressing these
unwanted motions (Muller, Neumann & Weber, 1984). This is discussed
in Section 5 of this chapter. Finally, magnetic damping is used in the
laboratory measurements of chemical and thermal diffusivities, particu-

Metal in

Mould

South pole of
magnet

Solid skin

Figure 9.1 Magnetic damping is used to suppress motion in the continuous
casting of steel slabs.
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larly where solutal or thermal buoyancy can disrupt the measurement
technique (Nakamura et al., 1990). For example, in the 'hot-wire' tech-
nique for measuring the thermal conductivity of liquid metals, the con-
ductivity is determined by monitoring the rate at which heat diffuses into
the liquid from a long, thin, vertical wire. This technique relies on con-
duction being dominant over convection. Yet natural convection is
always present to some degree in the form of a buoyant plume. The
simplest way of suppressing the unwanted motion is magnetic damping
(Figure 9.2(a)).

In this chapter we examine the magnetic damping of jets, vortices and
natural convection. Our aim is to present a unified theoretical framework
from which the many disparate published studies may be viewed. We
shall see that the hallmark of magnetic damping is that mechanical
energy is destroyed while momentum is conserved. It is this need to
conserve momentum, despite the dissipation of energy, which gives mag-
netic damping its special character.

Hot wire

u

/

•
s

VBuoyant plume x x ^
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^ y
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T

1

Jet *•

(a) (b)

Region of intense swirl

Figure 9.2 Examples of magnetic damping of liquid-metal flows, (a) A buoyant
plume is generated by a hot wire and suppressed by an imposed field, (b) A jet is
created by side-wall injection at the boundary, (c) A magnetic field dissipates an
isolated vortex.
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9.2 Conservation of Momentum, Destruction of Energy and the Growth
of Anisotropy

We consider flows in which the Reynolds number is large and the mag-
netic field induced by currents flowing in the liquid is much smaller than
the externally imposed field. This covers most laboratory and industrial
applications. In view of the large Reynolds number, we may treat the
motion as inviscid, except of course when it comes to the small-scale
components of turbulence. In the interests of simplicity we take B to be
uniform, imposed in the z-direction, and consider domains which are
infinite in extent or else bounded by an electrically insulated surface.

Since B is fixed and uniform, Faraday's equation demands that
V x E = 0. Ohm's law then takes the form

J = cr ( - V<D + u x B ) (9.1a)

where 0 is the electrostatic potential and B is the uniform, imposed
magnetic field. Now we also know, from Ampere's law, that J is solenoi-
dal and so we have

V J = 0, V x J = aB-Vu (9.1b)

Equations (9.1b) uniquely determine J. (Recall that a vector field is
uniquely determined if its divergence and curl are specified.) The key
point is that J is zero if and only if u is independent of z. Now
the Lorentz force per unit mass, J x B/p, is readily obtained from
(9.1a):

^ a ( B x V O ) > (9.2)

Here u± = (ux, uy, 0) and r is the Joule damping term. Note that the first
term in (9.2) looks like a linear friction term. However, this expression for
F is awkward as it contains the unknown potential 0 . This potential is
given by the divergence of Ohm's law (9.1a), which yields 4> = V~2(B • o)
(here co is the vorticity field.) Clearly, when B and o are mutually per-
pendicular, the Lorentz force simplifies to —u±/r, and so (pressure forces
apart) u± declines on a time scale of r. This is the phenomenological basis
of magnetic damping. Loosely speaking, we may think of rotational
motion being damped out provided that its axis of rotation is perpendi-
cular to B. The ratio of the damping time, r, to the characteristic advec-
tion time, l/u, gives the interaction parameter

N = oB2l/pu
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Typically, N is indicative of the relative sizes of the Lorentz and inertial
forces.

We now consider the role of Joule dissipation. This provides an alter-
native way of quantifying magnetic damping. The inviscid equation of
motion

yields the energy equation

^ = ^Ljj2dv = _D (9.3)

where D is the Joule dissipation rate and E is the global kinetic energy.
Clearly, E declines until J is zero, which happens only when u is inde-
pendent of z. We can use (9.3) to estimate the rate of decline of energy.
Let /// and /minbe two characteristic length scales for the flow, the first
being parallel to B. Then V x J, and hence |J| ~ /min^ x J> m a v be esti-
mated from (9.1b), and this yields

from which

(9.4b)

The implication is that, provided /min and ///remain of the same order, the
flow will be destroyed on a time scale of r. Indeed, this might have been
anticipated from (9.2). However, this is not the end of the story. The
dissipation is subject to some powerful integral constraints. The key
point is that F cannot create or destroy linear momentum, nor (one
component of) angular momentum. For example, since J is solenoidal,

= -B x ijdV = 0 (9.5)

Thus the Lorentz force cannot itself alter the global linear momentum of
the fluid. Similarly, following Davidson (1995), we have

(x x F) • B = p~l[(x • B)J - (x • J)B] • B = -(B2/2p)V • [x i j ] (9.6)

which integrates to zero over the domain (see also the discussion in
Chapter 5, Section 3). Evidently, the Lorentz force has zero net torque
parallel to B, and so cannot create or destroy the corresponding compo-
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nent of angular momentum. The physical interpretation of (9.6) is that J
may be considered to be composed of many current tubes, and that each
of these tubes may, in turn, be considered to be the sum of many infini-
tesimal current loops, as in the proof of Stokes' theorem. However, the
torque on each elementary current loop is (dm) x B, where dm is its
dipole moment. Consequently, the global torque, which is the sum of
many such terms, can have no component parallel to B.1

Now the fact that F cannot create or destroy linear momentum, nor
one component of angular momentum, would not be important if the
mechanical forces themselves changed these momenta. However, in cer-
tain flows, such as submerged jets, the mechanical (pressure) forces can-
not alter the linear momentum of the fluid. In others, such as flow in an
axisymmetric container, the pressure cannot alter the axial component of
angular momentum. In such cases there is always some component of
momentum which is conserved, despite the Joule dissipation. This implies
that the flow cannot be destroyed on a time scale of r, and from (9.4) we
may infer that l///lm[n must increase with time. We might anticipate,
therefore, that these flows will exhibit a pronounced anisotropy, with
/// increasing as the flow evolves, and indeed, this is exactly what hap-
pens. These results are summarised in Table 9.1.

Of course, it has been known for a long time that a strong magnetic
field promotes two-dimensional turbulence. However, the traditional
explanation is rather different from that given above, and so is worth
repeating here. If V x F is evaluated from (9.2) and substituted into the
vorticity equation, we obtain

V 2 2 2 (9.7)

(Roberts, 1967). Phenomenologically, we might consider V~ to be
replaced by — /^in, in which case the Lorentz term promotes a unidirec-
tional diffusion of vorticity along the B-lines, with a diffusivity of /min/r.
For cases where /// ^> /min, this may be made rigorous by taking the two-
dimensional Fourier transform of (9.7) in the x-y plane. This argument is
a powerful one when TV is large, so that the non-linear inertial terms are
negligible. However, when N is small or moderate, the vortex lines stretch
and twist on a time scale of l/u, which is smaller than, or of the order of,
r. In such cases it is difficult to infer much from (9.7) and there is an
advantage in returning to the integral arguments given above.

1 Private communication, S. Davidson, 1993.



Table 9.1. The 'rules' of magnetic damping

Quantity Equation Implication

If is is to remain finite then /// must grow relative to /min.
Some form of anisotropy then develops

Linear momentum is neither created nor destroyed by
t h e L o r e n t z f o r c e

The parallel component of angular momentum is neither
created nor destroyed by the Lorentz force

Energy

Global Lorentz force

Global Lorentz torque

dE
~di

= -

fjxBc

x(JxI
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9.3 Magnetic Damping of Submerged Jets

We are interested here in the dissipation of submerged jets such as that
shown in Figure 9.2(b). However, we start with the slightly artificial
problem of a long, uniform jet which is dissipated by the sudden applica-
tion of a magnetic field. This provides a useful stepping stone to the more
important problem of a submerged jet which evolves in space, rather than
in time.

Suppose that we have a unidirectional jet, u = u(x, z, t)ey, which is
initially axisymmetric (Figure 9.3a). At t = 0 we impose a uniform mag-
netic field in the z-direction. Current will be induced as shown in Figure
9.3(b), driven parallel to x by u x B, but forced to recirculate back
through regions of weak or zero flow by the electrostatic potential.
Since the current is two-dimensional, we may introduce a streamfunction,
x/r, for J which is related to u by Ohm's law.

J = V x [>e,],

Our equation of motion is then

dt~ p dz

(9.8)

(9.9)

Evidently, linear momentum is conserved, since di/r/dz integrates to zero.
Now let 8 be the thickness of the jet in the x-direction and /// be the
characteristic lengthscale for u parallel to B.

Then, from conservation of momentum, in conjunction with energy
equation (9.4a), we have

—- = - ( — J - , E- u2lf/8, ul/,8 = constant (9.10)
at \l//j x

(a) (b)

• - B

B

Figure 9.3 Magnetic damping of a jet: (a) initial axisymmetric velocity profile;
(b) the induced current; (c) cross-section through the jet. A reverse flow forms at
points marked R.
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Clearly, ////<$ must increase with time. If it did not, then E would decline
exponentially, which is forbidden by conservation of momentum. For
fixed 8 the only possible solutions to (9.10) are (Davidson, 1995)

/ / / ~ <5(f/r)1/2, u~uo(t/T)-l/2 (9.11)

Thus the flow spreads laterally along the field lines, evolving from a jet
into a sheet. The mechanism for this lateral spreading is evident from
Figure 9.3. The induced currents within the jet give rise to a braking
force, as expected. However, the current which is recycled either side of
the jet actually accelerates previously stagnant fluid at large \z\. Hence
the growth in ///. Notice also, that at points marked R a counterflow
will be generated since F points in the negative ^-direction and u is
initially zero.

The existence of a counterflow, as well as the scaling laws (9.11), are
readily confirmed by exact analysis. For example, taking the Fourier
transform of (9.9) leads to an exact solution in terms of hypergeometric
functions, as we now show. Let U be the cosine transform of u. Then

w(x, z) cos(xkx) cos(zkz)dxdz
o Jo

Our equation of motion (9.9) transforms to

—- + cos20— = 0, cos0 = kz/k
ot x

where k2 = k2
x + k2. Solving for U and taking the inverse transform yields

u(x, i) = 7t~2l f e~(cos2 0)F cos(xkx) cos(zkz) U0{k)kdkd(f)
Jo Jo

Here i is the scaled time, t/x and U0(k) is the transform of the initial
axisymmetric velocity profile, uo(r). For large t this can be simplified
using the relationship

{•• cos(Xp)dp =
JO

to give

w(x, t) = — 1 - = f e~k2z2/4' cos(xk)U0(k)kdk
2ns nt Jo

(This is left as an exercise for the reader.) It is clear from this integral that,
for large t, u must be of the form
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u(x,t)~i-l/2F(z/il/2,x)

which confirms the scaling laws (9.11). Of course, the form of F depends
on the initial conditions. For example, if we take uo(r) = Kexp(—r2/<52),
r2 = x2 + z2, then the integral above yields

v n(r\ -2

w(x, t) =

where G(£) is Kummer's hypergeometric function, G(£) = M ( l + — £
An examination of the shape of G(£) confirms that a reverse flow
develops, as anticipated in Figure 9.3.

Consider now a submerged, steady jet evolving in space, rather than in
time. This is illustrated in Figure 9.4. It is generated by injecting fluid
through a circular aperture in a side wall and into a uniform magnetic
field. We consider the case where B is weak (N is small) so that the jet
inertia is much larger than the Lorentz force. This configuration is parti-
cularly relevant to the magnetic damping of jets in castings.

Figure 9.4 MHD jet produced by side-wall injection: (a) spatial evolution of jet;
(b) the current paths. A reverse flow occurs at points marked R.
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Since N is small, the magnetic field influences the jet only slowly. As a
result, the characteristic axial length scale of the jet, ly, is much greater
than lx and lz. Now the current must form closed paths. However, each
cross section of the jet looks very much like its neighbouring cross sec-
tions, and so the current must close in the (x,z)-plane, just as it did in the
previous example. Figure 9.4 illustrates the situation. As before, the
induced current recirculates through regions of weak or zero flow. It
follows that a reverse flow will form at points marked R, and momentum
will diffuse out along the z-axis by precisely the same mechanism as
before. Thus the jet cross section becomes long and elongated. Now if
the jet is to spread laterally along the B-lines, then continuity of mass
requires that there is some entrainment of the surrounding fluid. (We
shall confirm this shortly.) We would expect, therefore, that the jet
draws in fluid from the far field, predominantly at large \z\.
Conversely, regions of reverse flow on the x-axis will produce an outward
flow of mass near the wall (Figure 9.5). This complex three-dimensional
flow pattern was proposed independently by Davidson (1995), based on
theoretical considerations, and by Harada et al. (1994), based on experi-
mental observations.

We now confirm this picture using the Euler equation. The equation of
motion for the jet is very similar to (9.9). In terms of the streamfunction
V̂ , we have

DUy

~Dt pdz
(9.12)

Jet entrains fluid from far field

r Outward flow
of mass caused
by reverse flow

Figure 9.5 MHD jet produced by side-wall injection. The jet draws in fluid from
the far field and the reverse flow produces on outward flow of mass near the wall.



312 9 Magnetic Damping Using Static Fields

Unlike (9.9), this is non-linear, and so exact solutions are unlikely to be
found. However, we may still use conservation of momentum in conjunc-
tion with an energy dissipation equation. Let M be the momentum flux in
the jet, M = \\?ydA. From (9.12) this is conserved. Also from (9.12) we
can construct an energy equation reminiscent of (9.4a).

It follows that uy and /// scale as (Davidson, 1995)

~rM2"
1/3

7/ i2M

1/3

(9.13)

(It is readily confirmed that these are the only scalings which satisfy M —
constant as well as the energy equation above.) Note that mass flux in the
jet increases with j , as shown in Figure 9.5.

It is interesting to compare (9.13) and Figure 9.5 with the two-dimen-
sional jet analysed in Chapter 5, Section 2.2. Evidently a two-dimensional
jet, where the current paths do not close in the fluid, behaves quite
differently from a three-dimensional jet. Of course, it is the three-dimen-
sional jet which is the more important in practice.

9.4 Magnetic Damping of Vortices

9 A.I General considerations

So far we have considered only cases where the conservation of linear
momentum provides the key integral constraint. We now consider
examples where conservation of angular momentum is important, i.e.
vortices. The discussion is restricted to inviscid fluids. Suppose we have
one or more vortices, of arbitrary orientation, held in a spherical
domain. Then, as we saw in Chapter 5, Section 3, the global magnetic
torque is given by

T = - f x x (J x B)dV = - J - f (X x u)±dV (9.14)

(This holds for any distribution of u.) If H is the global angular momen-
tum of the fluid, then (9.14) gives the inviscid equation of motion
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is conserved while H ± declines exponentially

H ± (0 = H±(0)exp[-t/4r] (9.15a, b)

It follows that I
(Davidson, 1995):

H// = constant;

The simplicity of this result is rather surprising, particularly as it applies
for any value of N, and so is valid even when inertia is dominant and the
stretching and twisting of vorticity is more vigorous than the damping.
Now the conservation of H// gives us a lower bound on E:

2r r 2 I"1

E>rff\2]xldv\ (9.16)
This, in conjunction with the energy equation

provides a powerful constraint on the way in which these flows evolve.
Typically, the energy of the flow decreases through the destruction of H ±

until only H// remains. Since there is a lower bound on E, it follows that
the flows must eventually evolve to a state in which u is finite, but J is
everywhere zero. From (9.1b) it is clear that the final motion must be two-
dimensional (Figure 9.6), u = u(x, y) consisting of one or more columnar
vortices which span the sphere and whose axes are parallel to B. A
natural question to ask is: how do the vortices evolve into these long
columnar structures? We would expect the initial evolution of a small
vortex to be independent of the shape of the remote boundaries, and so
we now dispense with the spherical boundary and consider vortices in

t = 0

Figure 9.6 Inviscid flow in a sphere which is subject to a uniform field always
evolves towards a two-dimensional state.
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infinite (or else large, but finite) domains. There are two special cases
which deserve particular attention. One is where the vorticity is aligned
with B, and the other is where B and o are mutually perpendicular. We
start with transverse vortices.

9.4.2 Damping of transverse vortices

In the interests of simplicity we shall consider a two-dimensional vortex
whose axis is normal to the imposed magnetic field. Suppose our flow is
confined to the (x,z)-plane and bounded by the cylindrical surface
x2 + z2 = R2. We are interested particularly in isolated vortices whose
characteristic radius, 8, is much less than R. We shall take the vortex
to be initially axisymmetric and subject to a uniform magnetic field, B,
imposed in the z-direction (see Figure 9.7). Once again, we shall find that
global angular momentum provides the key to determining the evolution
of the flow.

Since B and co are mutually perpendicular the electrostatic potential
is zero (c.f. O = V~2(B • &>)), and so (9.2) gives the Lorentz force and
magnetic torque as

F = -(ux/r)ex, Ty = -r'1 \zuxdV = -Hy/2x (9.17, 9.18)

Here Hy is the global angular momentum, which may be expressed either
in terms of u or else in terms of the two-dimensional streamfunction, yjr.

Hy = f (zux - xuz)dV = 2 f zuxdV = 2 f fdV

It follows immediately that, even in the low N (non-linear) regime, the
angular momentum decays in a remarkably simple manner:

Hy{t) = Hy(0)e-t/2r (9.19)

This is the two-dimensional counterpart of (9.15). It is tempting to con-
clude, therefore, that the vortex decays on a time-scale of 2r. However,
this appears to contradict (9.7) which, in the present context, simplifies to

— = - - V"2 [tfco/dz1] (9.20)

We may write this in the form

Deo 82 d2co



I (9-21)
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and anticipate (correctly) that there is a continual diffusion of vorticity
along the z-axis. In the limit of large N we have the simple diffusion
equation

dco 82 d— ^/
dt r a

which suggest that the cross section of the vortex distorts from a circle to
a sheet on a time-scale of r. If this picture is correct, and we shall see that
it is, this distortion should proceed in accordance with

lz - 8(t/r)l/2 (9.22)

This elongation of the eddy will cease only when the influence of the
boundary is felt. We therefore have two conflicting views. On the one
hand, (9.19) suggests that the flow is destroyed on a time-scale of 2r. On
the other, (9.22) suggests a continual evolution of the vortex until such
time as the boundary plays an important role. This will occur when
lz ~ R, which requires a time of the order of (R/8)2r. We shall now
show how these two viewpoints may be reconciled.

We consider the linear case where the magnetic field is relatively
intense, so that N ^> I. We further simplify the problem by insisting
that the boundaries are remote (R ^> 8) so that we may consider flow
in an infinite domain. This greatly simplifies the algebra, but at a cost. In
order that all relevant integrals converge, particularly the angular
momentum, we require that the integral of ^ converges, and this limits
our possible choice of initial conditions. However, this sub-class of flows
will suffice to show the general behaviour.

Let us introduce the Fourier transform
/•oo poo

V(kx, kz) = 4 f(x, Z) cos(xkx) cos(zkz)dxdz (9.23)
Jo Jo

and apply this transform to (9.20), rewritten as

ft . • * • ( 9 ' 2 4 )

Let t be the dimensionless time t/x, k the magnitude of k, and *I>0 the
transform of \/r at t = 0. Then the transformed version of (9.24) is readily
integrated to give *I> = ^ 0 ( ^ ~ ^ c ° s > cos^ = kz/k. However, this is
identical to the solution we obtained for a two-dimensional jet in
Section 9.3. Thus, without any further work, we may say that at large
times
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iKx, t) = \ [°° e~k2z2/4i cos(xkx)%(k)kdk (9.25)
27t(nt) ' Jo

Evidently, for t ^> r, V1X t) adopts the form

iKx, 0 ~ tl/2F(z/tl/2,x) (9.26)

where i7 is determined by the initial conditions. It would appear, there-
fore, that the arguments leading to (9.22) are substantially correct. An
initially axisymmetric vortex progressively distorts into a sheet-like struc-
ture, with a longitudinal length scale given by (9.22). Note that (9.26)
implies that ux <$C uz while uz ~ i~l/2. It follows that the kinetic energy of
the eddy is progressively 'channelled' into the z-component of motion,
and that the energy, E, declines as E ~ (r/r)~1/2.

Let us now consider a specific example. Suppose that the initial eddy
structure is described by

(9.27)

Then (9.25), which is valid for large t, may be integrated to give

where G is Kummer's hypergeometric function, G(t;) = M(1, \, — f). Now
expressions (9.26) and (9.28) seem to contradict (9.19), which predicts
that the angular momentum decays as exp(—t/2x). However, (9.28) has
an interesting property. For t ^> r, the global angular momentum, Hy, is

This integrates to zero, since Jo°° t;~l/2G(t;)dt; = 0. It would appear, then,
that the structure of the flow at large times is such that the angular
momentum is zero. The reason for this can be seen from Figure 9.7,
which shows the flow for t > r (the structure of the flow at low N is
also shown). Regions of reverse flow occur either side of the centre line of
the vortex. This reverse flow has a magnitude which is just sufficient to
cancel the angular momentum of the primary eddy.

We conclude, therefore, that the structure of the flow for large t is long
and streaky, comprising vortex sheets of alternating sign. In short, the
vorticity diffuses along the B-lines in accordance with (9.22) while simul-
taneously adopting a layered structure which has zero net angular
momentum, thus satisfying (9.19).
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Negative vorticity
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Negative vorticity

Figure 9.7 Magnetic damping of a transverse vortex at low and high TV: a
schematic view.

9.4.3 Damping of parallel vortices

We now consider a vortex whose axis is aligned with B. For simplicity, we
restrict ourselves to axisymmetric vortices, described in terms of cylind-
rical polars (r, 0, z) with B parallel to z. We shall neglect viscosity and
assume that initial conditions are such that the integral of the angular
momentum converges at t = 0. Aspects of this problem have been
touched upon in Chapter 5, Section 2.3

Suppose we have an isolated region of intense swirl, of characteristic
radius 8, in an otherwise quiescent liquid. We may uniquely define the
instantaneous state of the flow using just two scalar functions: T, the
angular momentum, and *F, the Stokes streamfunction. These are defined
through the expressions

u = lie + up = (V/r)ee + V x (9.29)

(9.30)

Note that the velocity has been divided into azimuthal and poloidal
components. The Lorentz force, which is linear in u, may be similarly
divided, giving

F = _ ^ e r = — — e r , Fe = - - — = —— (9.31, 9.32)
p x r rx dz r ° xoB rxdz v '

Here oBcj) is the Stokes streamfunction for Jp which, by virtue of Ohm's
law, is related to F by

= -dr/dz (9.33)
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The governing equations for F and W are the azimuthal components of
the momentum and vorticity equations, respectively (Davidson, 1995):

Note the appearance of the pseudo-diffusion terms. We might anticipate
that angular momentum propagates along the magnetic field lines, and
we shall see that this is substantially correct.

We shall now draw some general conclusions from (9.34) and (9.35).
First, it is apparent from (9.34) that the global angular momentum is
conserved:

• j FdV = constant. (9.36)

This is a special case of (9.15a) and may be contrasted with the angular
momentum of a transverse vortex. Second, for confined domains the
kinetic energy of the flow has a lower bound. Specifically, the Schwarz
inequality gives

* ?dV (9.37)

where Ee is the energy of the azimuthal component of motion. Third, as
noted earlier, any initial condition (in a confined domain) must evolve to
a steady state of the form (0, ue(r), 0). In fact, this is true for any value of
N, and follows directly the energy equation (9.3). That is, we know that
the flow eventually reaches a steady state with non-zero Ee, at which time
the Joule dissipation must vanish. Yet from (9.31) -> (9.33) we know that
| J|, and hence the dissipation disappears only when ur and dF/dz are both
zero. This is a special case of the three-dimensional result discussed in
Section 4.1 of this chapter.

For infinite domains (9.37) does not apply. However, we can still use
conservation of angular momentum to determine the manner in which
the flow evolves. From (9.4a) we have

dE ^
~di^

Thus the total energy declines as
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(9.39)z)
2di

If angular momentum is to be conserved, then there are only two ways in
which this decrease in energy can be accommodated. Either lz increases
with time to reduce the dissipation, thus avoiding the exponential decline
in energy, or else the angular momentum centrifuges itself radially out-
ward, allowing the energy to decline despite the conservation of 7r. We
shall see that axial spreading of angular momentum is typical of high-A^
flows, while the radial spreading of angular momentum is characteristic
of \ow-N flows.

Let us now consider separately the limits of high and low N. When N is
large, the azimuthal and poloidal motions are decoupled. Specifically, N
is of the order of l/ur, so that when N is large the kinetic energy exchange
between ue and up (via the centrifugal force) is negligible by comparison
with the Joule dissipation. If the energy of the poloidal flow, Ep, is
initially small (of the order of N~lE0), it remains small. The flow is
then governed by the simple linear equation

f = - ^ [ V . " 2 r ] ,9.40,

We expect, therefore, that any localised region of swirl will diffuse along
the magnetic field lines at a rate determined by

lz - 8(t/r)l/2 (9.41)

We may confirm this by taking the Fourier transform of (9.40). Suppose
that the flow is unbounded and let U be the first-order Hankel-cosine
transform of ue.

U(kr, kz) = 4n\ f F(r, z)Jx (krr) cos(kzz)rdrdz (9.42)
Jo Jo

Then (9.40) shows that U decays as

U = U0e-(cos2 *)', cos 4> = kz/k (9.43)

As before, t is the dimensionless time t/r, Uo represents the initial con-
dition, and k is the magnitude of k . We can now determine F by taking
the inverse transform. For large times this is (Davidson, 1997)

?-l/2 /.oo roo

r(?-> oo) =—-y- [kU0(k,kz)]e-q Jx(kr)cos(kqz/tx/2)kdkdq
2TT JO JO

(9.44)
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This confirms that, for large values of t, the distribution of angular
momentum is of the form

(9.45)

Note the similarity between (9.45) and the evolution of ifr for two-
dimensional transverse vortices. As expected, the angular momentum
propagates along the z-axis at a rate governed by (9.41), but decays
according to ue ~ (t/r)~l/2. The energy of the vortex therefore declines
at a rate

(t/r) -1/2 (9.46)

which is exactly the same as for a transverse vortex.
By way of an example, suppose that, at t = 0, we have a spherical blob

of swirling fluid, so that our initial condition is

ro(r,z) = i2r2exp[-(r2+z2)/52]

Then it is readily confirmed that (9.44) gives

r2

(9.47)

-0.2

Figure 9.8 Magnetic damping of a parallel vortex at high N. i/(?) is the dis-
tribution of swirl with radius at large /. Note the reverse rotation at large radii.
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Here H(t;) is the hypergeometric function H(t;) = M ( | , 2, — f). The shape
of H(t;) is shown in Figure 9,8. Curiously, at large £, the function H
becomes negative (H ~ —^~5/2/2nl/2), so that the primary vortex is sur-
rounded by a region of counter-rotating fluid. This may be attributed to
the way in which the induced currents recirculate back through quiescent
regions outside the initial vortex (see later). We conclude, therefore, that
the asymptotic structure of a vortex aligned with B is as shown schema-
tically in Figure 9.9. It is cigar-like in shape, and quite different in struc-
ture to the transverse vortex shown in Figure 9.7. Curiously, though,
despite the fact that the two classes of vortices adopt very different
structures, their energies both decay as {t/x)~x/1

The mechanism for the propagation of angular momentum is shown
in Figure 9.10. The term \xe x B tends to drive a radial current, Jr. Near
the centre of the vortex, where the axial gradient in F is small, this is
counter-balanced by an electrostatic potential, #, and so almost no
current flows. However, near the top and bottom of the vortex, the
current can return through regions of small or zero swirl. The resulting
inward flow of current above and below the vortex gives rise to a
positive azimuthal torque which, in turn, creates positive angular
momentum in previously stagnant regions. Notice also that regions of
reverse flow form in an annular zone surrounding the initial vortex
where Fo is negative.

We now turn our attention to the case where TV is low. Since the Joule
dissipation is negligible on time scales of the order of l/u, the flow evolves

Lz~5(t/x)1/2

Figure 9.9 Magnetic damping of a parallel vortex at high N, The figure shows
schematically the structure of the flow at large t.
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Region of intense swirl

Axial diffusion of r

Figure 9.10 Magnetic damping of a region of intense swirl: (a) the initial swirl
distribution; (b) the axial diffusion of angular momentum.

in accordance with the undamped Euler equations. Our initial blob of
swirling fluid, which is centrifugally unstable, will centrifuge itself radially
outward. This occurs through the angular momentum organizing itself
into one or more ring-shaped vortices. These propagate radially outward
with the characteristic mushroom-like structure of a thermal plume. This
is shown schematically in Figure 9.11.

C 3

C 3

3-

Figure 9.11 Magnetic damping of a parallel vortex at low N. The vortex will
disintegrate through hoops of swirling fluid centrifuging themselves radially
outward.
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9.4.4 Implications for low-Rm turbulence

Consider a homogeneous, \ow-Rm turbulent flow which is freely evolving
in a uniform magnetic field. Suppose that the interaction parameter,
TV = GBQI/PU, is large when based on the integral scale of the turbulence.
Then inertia may be neglected as far as the large (energy containing)
eddies are concerned and, since J is linear in u, these eddies are governed
by the (linear) equation of motion,

du
p - = -V(P) + J x B 0ot

In view of the linearity of this equation, we might regard the turbulence
as an ensemble of independent eddies, some of which are initially aligned
with the field Bo and some of which are non-aligned. These eddies will
evolve in a manner not unlike those described in the previous sections.
Vortices whose rotation axis is aligned with the magnetic field will
develop into long, columnar structures. Those which are perpendicular
to Bo will develop into sheet-like structures consisting of thin, interwoven
layers of oppositely signed vorticity, the dominant velocity being ii//.
Both types of vortices will lose their kinetic energy at a rate
E — {t/r)~x/1. Thus we might expect two generic types of structures to
emerge: columns and sheets (Figure 9.12). Moreover, since wL is prefer-

- Reverse
flow

A

\J

Figure 9.12 Typical flow structure in high-iV turbulence.
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entially destroyed in the sheets, we might expect U///uj_ to increase as the
flow evolves from some initial isotropic state. In fact, this is precisely
what is observed in numerical simulations. The ratio U///ui tends to a
value of 2 at large times (as predicted by Moffatt, 1967), as long as N
remains large.

9.5 Damping of Natural Convection

We have already discussed the damping of natural convection in the
context of Rayleigh-Benard convection. Here we shall consider a differ-
ent configuration, which is particularly important in the casting of alu-
minium. We shall examine natural convection in an axisymmetric pool,
driven by a difference in temperature between the surface and the sides of
the pool. We consider first convection in the absence of a magnetic field,
and then examine the influence of an imposed field.

9.5.1 Natural convection in an aluminium ingot

Consider a cavity which is filled with liquid metal and has maximum
radius R. Suppose that the walls of the cavity are maintained at a refer-
ence temperature, TM, while the upper surface of the metal is maintained
at the higher temperature of TM + AT. Then natural convection will
ensure that the liquid metal flows as shown in Figure 9.13, falling at
the walls and rising up through the core. The problem just specified is
a zero-order model of the casting of aluminium. Figure 9.14 is a simple
representation of an aluminium caster. In essence, a solid ingot is slowly
withdrawn from a liquid metal pool, the pool being continuously replen-
ished from above. It is well known that buoyancy-driven flow arises
during this process, and that this flow has a substantial influence on
the metallurgical structure of the solid, affecting both the grain size
and the macro-segregation within the ingot. There is considerable moti-
vation then to understand how the magnitude and distribution of the
flow field varies with, say, the pool size or superheat AT.

The Reynolds number for the flow is assumed to be large, and the flow
is taken to be laminar (although in practice it is likely to be turbulent).
The Prandtl number is, of course, much less than one. We shall invoke
the Boussinesq approximation, in which the velocity field remains sole-
noidal. The equation of motion for the liquid metal is then
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Thermal boundary?
layer

Figure 9.13 Thermally driven flow in a cavity. The upper surface is maintained
at temperature TM + AT and the walls at the lower temperature of TM. Cold fluid
falls near the walls.

— = -v _)-gj8(r-rM)k+vv2u (9.48)

and the corresponding transport equations for vorticity and heat are, in
cylindrical polar coordinates,

r dr

Dt

rdr\r
(9.49)

(9.50)

Liquid metal

Mould

Figure 9.14 Casting of aluminium.
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Here a is the thermal diffusivity, /3 the expansion coefficient and v the
kinematic viscosity.

We shall denote the thickness of the thermal boundary layer on the
cavity wall by 5, and use subscripts c and b to indicate parameters inside
and outside the thermal boundary layer, respectively. Thus, for example,
the temperature field in the core is Tc, while the velocity field in the
thermal boundary layer is û ,. We now show that the core of the melt is
thermally stratified: that is

Tc « Tc(z) (9.51)

To this end it is useful to integrate (9.48) around any closed streamline to
give

i - TM)dz = vJ)V2u • d\ (9.52)

This states that the energy gained by a fluid particle, by virtue of the
buoyancy force, must be diffused or dissipated out of the particle by
shear. However, in view of the smallness of v, the second integral
would appear to be vanishingly small. Nevertheless, there are three
ways in which we could guarantee that all streamlines satisfy (9.52).
These are:

(a) u scales as l/v;
(b) all streamlines pass through a singular region, where the velocity

gradients scale as v1/2;
(c) the core is thermally stratified, in accordance with (9.51).

We may eliminate the first of these possibilities, as it implies very large
velocities. We are left, therefore, with options (b) and (c). There are two
possible singular regions which are candidates for option (b). One is the
viscous boundary layer on the cavity wall, and the other is the region at
the bottom of the cavity where the wall jets collide. However, to pass
through the dissipative region at the base of the cavity, a streamline must
first have entered the wall jet. Consequently, option (b) is equivalent to
saying that all streamlines must pass through the thermal boundary layer.

In fact, we may show that both (b) and (c) hold true. That is, the core is
thermally stratified, and all the streamlines pass through the thermal
boundary layer. The argument proceeds by showing that if either one
of (b) or (c) holds, then the other must follow. The argument is as fol-
lows. Suppose (c) holds true, but (b) does not. Then (9.50) applied to the
core requires that
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uzX{z) = ctT^{z) (9.53)

This implies that uzc is a function of z only, and hence from continuity, urc

is a linear function of r. This, in turn, implies that all streamlines will pass
out of the core and into the boundary layer. Consequently, (b) must hold
true after all.

We may also show that the converse is true by using scaling arguments.
For convenience, we shall take the datum for temperature to be TM.
Also, let LT be the axial length-scale in the core. Then (9.48) applied in
the boundary layer requires that

uzb

In addition, if all the streamlines pass through the thermal boundary
layer, continuity requires that

uzc R

These estimates show that, in the core,

from which we deduce

Consequently, provided LT^> 8 (and we shall see that this is indeed the
case), the core is thermally stratified according to

Tc = Tc(z) 1 + 0 —

Thus it appears that the flow satisfies both conditions (b) and (c)
(Davidson & Flood, 1994)

We might speculate, then, that the flow field is as shown in Figure 9.15.
There is a relatively quiescent, stratified core, bounded by thermal wall
jets, within which the temperature adjusts from the core distribution to
the wall temperature. The role of the wall jets is to carry hot fluid away
from the top surface and allow it to cool on the colder, curved boundary.
If we now allow for a small inflow, w0, at the top surface, then some
additional (open) streamlines will start at the surface and leave through
the cavity wall. Since these additional lines cannot cross the recirculating
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Isothermal

- — • - —

Bottom jet

Thermal boundary layer
(wall jet)

Figure 9.15 General structure of the flow field.

streamlines, they must be diverted into the wall jet and pass down behind
the closed streamlines. Eventually, they will leave the flow field in (pre-
dominantly) the lower half of the cavity. We shall show later that the
axial length-scale for the decay of core temperature, L r , typically has a
value of ~ R/6. (This follows from general scaling arguments.)
Consequently, the stratified region occupies only the upper part of the
pool. Below this, we have an isothermal melt, with T = TM.

Let us now determine the scaling laws for LT, uc, ub and 8. We have
four equations to be satisfied. First (9.48) and (9.50) demand that, in the
boundary layer,

(9.54, 9.55)

(9.56, 9.57)

ub/LT ~ a/82

Next, (9.53) and continuity yield

uc ~ ot/LT, ucR ~ ŵ ,5

If we introduce the dimensionless parameter

Gr =

then (9.54) to (9.57) give us the required scaling laws:
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LT ~ (Gryx/1R, - - (Gry2/1 (9.58,9.59)
R

«6 ~ ^(Grf1, uc ~ ^(Gr)1 / 7 (9.60,9.61)

In casting, typical parameter values are Gr = 106, a = 4 x 10~5m2/s
and R = 0.3 m, from which LT ~ 0.14R, 5 ~ 0.021*, wc - 1 mm/s
and ub ~ 50 mm/s. The inlet velocity is typically of the order of u0 =
1 mm/s, which is similar to uc but much less than ub. These scaling
laws have been tested against experimental data and numerical simula-
tions and found to be reasonably accurate. A typical numerical simula-
tion, taken from Davidson & Flood (1994), is shown in Figure 9.16.

It is widely believed that this natural convection pattern is detrimental
to the ingot structure, causing inhomogeneities in chemical composition.
The argument is that small (snow-flake-like) crystals, which nucleate near
the boundaries, become caught up in the wall jets and are swept down to
the base of the pool. For thermodynamic reasons, the crystals which form
near the top of the pool tend to be depleted in the alloying elements, and
it is these crystals which get caught up in wall jets and end up at the centre
of the ingot. Two radically different solutions to this problem have been
proposed. One is magnetic stirring, which was discussed in the previous
chapter, and the other is magnetic damping.

9.5.2 Magnetic damping in an aluminium ingot

It is evident that the driving force for natural convection is concentrated
near the top of the pool and within the thermal boundary layer. Since the
sides of the pool are approximately vertical at this point, it seems natural
to use a (predominantly) horizontal magnetic field to suppress the
motion. The required magnitude of the imposed field may be determined
as follows. If the Lorentz force is to reduce the velocity significantly it
must be as large as the buoyancy force, and so

u/r^gpAT, r"1 =crB2/p

This implies that ub is of the order of ub ~ (gfiAT)r. If the damping is to
be effective then ub should be less than the estimate (9.60), and so we find
that the minimum acceptable value of |B| is given by

aB2
miaR

2/pa ~ (Grf7 (9.62)
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Figure 9.16 Computed isotherms and streamfunction for AT = 50°C.

Examples

9.1 Consider the one-dimensional jet shown in Figure 9.3. Suppose that
the jet is driven by buoyancy and that N » 1, a -> 0. Show that, at
large times,

where AT is a measure of the temperature difference driving the
flow.
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9.2 Consider the axisymmetric vortex discussed in Section 9.4.3. Show
that the energies of the azimuthal and poloidal motions are governed

Now show that these are compatible with the overall energy
balance 9.4(a). When N is small, estimate the time taken for the
structures shown in Figure 9.11 to emerge.



— 10
Axisymmetric Flows Driven by the Injection of

Current

Matters of elegance should be left to the tailor and to the
cobbler.

A. Einstein 1916

When an electric current is made to pass through a liquid-metal pool it
causes the metal to pinch in on itself. That is to say, like-signed currents
attract one another, and so each part of the pool is attracted to every
other part. When the current is perfectly uniform, the only effect is to
pressurise the liquid. However, often the current is non-uniform; for
example, it may spread radially outwards from a small electrode placed
at the surface of the pool. In such cases the radial pinch force will also be
non-uniform, being largest at places where the current density is highest
(near the electrode). The (irrotational) pressure force, — Wp, is then unable
to balance the (rotational) Lorentz force. Motion results, with the fluid
flowing inward in regions of high current density and returning through
regions of small current.

Perhaps the first systematic experimental investigation of the 'pinch
effect' in current-carrying melts was that of E F Northrup who, in
1907, injected current into pools of mercury held in a variety of different
configurations. It should be noted, however, that industrial metallurgists
have been routinely passing large currents through liquid metals since
1886, when Hall and Heroult first developed the aluminium reduction cell
and von Siemens designed the first electric-arc furnace. One of the many
descendants of the electric-arc furnace is vacuum-arc remelting (VAR).

10.1 The VAR Process and a Model Problem

10.1.1 The VAR process

There are occasions when an ingot cast by conventional means is of
inadequate quality, either because of excessive porosity in the ingot or
else because it contains unacceptably high levels of pollutants (oxides,

332
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refractory material and so on). This is particularly the case in the casting
of high-temperature melts, such as titanium or nickel-based alloys, which
tend to react with (or erode) the refractory vessel in which they are
melted. It also arises when the components fashioned from the ingot
are expected to exhibit consistently high levels of strength and ductility.
Here, aerospace applications come to mind. In such situations it is nor-
mal to improve the ingot quality by remelting it in a partial vacuum,
burning off the impurities, and then slowly casting a new ingot. This is
achieved by a process known as vacuum-arc remelting.

In effect, VAR resembles a giant version of electric welding (Figure
10.1). The initial ingot, which may be a metre in diameter and several
metres long, is used as an electrode. A large current is passed down the
ingot (electrode) and an arc is struck between the tip of the ingot and a
cooled metal surface. The ingot then starts to melt, and droplets of mol-
ten metal fall through the plasma arc to form a pool on the cooled plate.
As the electrode is slowly melted, so a new ingot forms beneath it. The
entire process takes place in a partial vacuum. The metallurgical structure
of the final ingot depends critically on the temperature distribution and
fluid motion within the molten pool and this, in turn, depends on the
gravitational and Lorentz forces acting on the melt. There is some incen-
tive, therefore, to characterise the flow within the pool and to determine
its dependence on such factors as ingot current.

In this regard a useful model problem is the following. Suppose we
have a hemispherical pool of radius R. The boundaries of the pool are
conducting, and a current, /, is introduced into the pool via an electrode

•* Vacuum system

Electrode

^ Metal pool

Solidified ingot

Cooling water

Figure 10.1 Vacuum-arc remelting.
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of radius r0, the current density being uniform in the electrode. We
neglect buoyancy forces and try to determine the motion within the
pool as a function of /, r0 and R.

This model problem is relevant, not only to VAR, but also to electro-
slag remelting of ingots and electric-arc welding. The flow pattern is as
shown in Figure 10.2. Like-signed currents attract each other, and so the
current passing through the pool causes the liquid to pinch in on itself.
This radially inward force is greatest at the surface, where |J| is most
intense, and weakest at the base of the pool where |J| is smallest. The net
result is a flow which converges at the surface.

This seemingly simple problem has been the subject of a myriad of
papers. Indeed, an entire book has been devoted to it (Bojarevics et al.,
1989). Yet, arguably, we know less about this problem than about most
of the other flows discussed in Part B of this book. One reason is that
the apparently simple flow shown in Figure 10.2 turns out to be sur-
prisingly complex. For example, it becomes unsteady (and eventually
turbulent) at surprisingly low Reynolds numbers, around Re ~ 10. It is
also extremely sensitive to weak, stray magnetic fields, such as those
associated with remote inductors or perhaps even the Earth's magnetic
field. In particular, a stray magnetic field which is only 1% of the
primary field (i.e. that field associated with the passage of the current
through the pool) is enough to suppress completely the poloidal flow
shown in Figure 10.2 and replace it by an intense swirling motion. It
seems that, one way or another, the laminar flow shown in Figure 10.2
is somewhat ephemeral, evolving into something quite different at the
slightest provocation. The word 'unstable' appears quite often in the
literature.

Figure 10.2 A model problem.
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However, this is not the only reason that our attempts to understand
this flow have been so unsuccessful. It turns out that the special case of
a point electrode (r0 -> 0) injecting current into a semi-infinite fluid (
R~l = 0) has an exact solution for laminar flow. Of course, exact solu-
tions of the Navier-Stokes equations are extremely rare and beautiful
things, and so it was natural for those first investigating this problem to
focus on the semi-infinite-domain, point-electrode problem. In a sense
this exercise has been successful: we now know a lot about this exact
solution. Unfortunately, though, it turns out that the point-electrode
problem tells us very little about the flow shown in Figure 10.2. That is
to say, the special case r0 - • 0, R~l = 0 is a singular one, whose char-
acteristics are often quite misleading in the context of real, confined
flows. Yet a tradition grew up where a detailed, elegant analysis of
some feature of the exact solution was performed, and then inferences
were made about real, confined flows such as those observed in the
laboratory. Unfortunately, when the experimental data were examined,
the 'theory' was often found to be wanting. In short, we had been
solving the wrong problem. (Perhaps we should have heeded
Einstein's warning!)

There are a number of questions which naturally arise concerning the
model problem shown in Figure 10.2.

(i) What is the direction and magnitude of the Lorentz force acting on
the pool?

(ii) Why is there such a large difference in behaviour between real,
confined flows and the point-electrode, semi-infinite-domain pro-
blem? Is there some fundamental physical difference between the
two?

(iii) What does the exact solution of the (laminar) point-electrode pro-
blem tell us and can we transcribe any of its conclusions to real,
confined flows?

(iv) Why do real, confined flows become unstable (and then turbulent)
at such low Reynolds numbers?

(v) Given that any industrial flows will be turbulent, how does u scale
with /, R and r0 in a turbulent flow?

(vi) How does buoyancy influence this flow (the surface of the pool is
assumed to be hotter than the sides)?

(vii) Why is the flow so sensitive to weak, stray magnetic fields, and
does the laminar, point-electrode problem (about which we know
so much) give us any hint as to the nature of this sensitivity?
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(viii) Can we construct a quantitative theory which predicts the sensi-
tivity of this flow to stray magnetic fields? Will this theory predict
the unexpected emergence of swirl?

With the impatient reader in mind, these questions are listed in Table 10.1
along with some hints as to the answers. (Note that we use cylindrical
polar coordinates (r, 6, z) throughout this chapter, and that the term
'azimuthal' refers to the 6 components of a vector field, while 'poloidal'
refers to the r-z components.)

Much of the discussion which follows (in Sections 2 to 7) is based on a
variety of energy arguments. It seems appropriate to review first the key
energy equations which are relevant to our model problem.

10.1.2 Integral constraints on the flow

The Lorentz force, J x B, does work on the fluid. This causes the kinetic
energy of the flow to rise until such time as the viscous dissipation
matches the rate of working of J x B. If, for a given current, we can
characterise the relationship between (J x B) • u and the rate of dissipa-
tion of energy, then we should be able to estimate the magnitude of |u|.
Thus the key to estimating |u| lies in determining the mechanism by which
the fluid dissipates the energy injected into the flow. For example, is the
dissipation confined to boundary layers or are internal shear layers set
up, and what happens to those streamlines which manage to avoid all
such dissipative layers? There are two energy equations of importance
here; both rest on the steady version of the Navier-Stokes equation:

0 = u x a - V(p/p + u2/2) + vV2u + F (10.1)

(Here F is the Lorentz force per unit mass.) The first equation comes from
integrating (10.1) around a closed streamline, which yields

V dl = 0 (10.2)

This represents the balance between the work done by the Lorentz and
viscous forces acting on a fluid particle as it passes once around a closed
streamline. The second energy equation comes from taking the product
of (10.1) with u and then integrating the result over the entire domain.
Noting that terms of the form u • V(~) = V • (~ u) integrate to zero and
that (V2u) • u = V • (u x a) - co2, we find

f F u J F = y \a?dV (10.3)
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Table 10.1. Questions concerning the model problem shown in Figure 10.2

Question Answer Consult

(i)

(ii)

(iii)

(iv)

What is the magnitude and
direction of the Lorentz force?
Why are confined and
unconfined flows so different?

Radial, of magnitude

Does the point-electrode, semi-
infinite-domain problem tell us
anything useful?
Why do confined flows become
unstable at such low values of
Reynolds number?

(v) How does u scale in a turbulent
flow?

(vi) Wha t is the influence of
buoyancy?

(vii) Why is the flow so sensitive to
weak, stray magnetic fields?

(viii) Does the point electrode
problem help explain this
sensitivity to stray fields?

(ix) Can we construct a quantitative
theory which predicts the
unexpected emergence of swirl?

10.2

Two reasons, (a) Unconfined 10.3.1
flows are free from intense,
boundary-layer-dissipation.
Confined flows are dominated
by the balance between the
work down by J x B and
boundary-layer dissipation (b)
The streamlines in unconfined
flows do not close on
themselves, so that we are free
to ' impose' conditions in the
far field

Yes, but only about the point- 10.3.2
electrode, semi-infinite-domain
problem
We do not know, but it 10.3.3
appears that the boundary
layer becomes unstable at
relatively low values of Re

1/2 10.3.3
| U | 2nR
It tends to drive motion in the
opposite direction
Stray fields produce an
azimuthal torque which tends
to induce swirl. It is much
easier to spin a fluid in the
azimuthal direction than
generate the poloidal motion
shown in Figure 10.2
Probably not

10.4

10.5
10.7.1

10.6

Yes. This relies on establishing 10.7.2,
a balance between the 10.7.3
centripetal acceleration and
the poloidal Lorentz force
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This represents a global balance between the rate of working of the
Lorentz force and the viscous dissipation. Either (10.2) or (10.3) may
be used to estimate the magnitude of u provided, of course, that F is
known. Actually, it is not difficult to show that (10.3) is equivalent to
evaluating (10.2) for each streamline in the flow and then adding together
all such integrals (see Example 1 at the end of the chapter).

In the remainder of this chapter we shall see how (10.2) and (10.3) may
be used to determine the flow in our model problem. The discussion is
arranged as follows. In Section 2 we determine the Lorentz force asso-
ciated with the current. Next, in Section 3, we discuss the structure of,
and scaling laws for, this flow. Here particular attention is given to the
special (if somewhat misleading) case in which r0 -> 0 and R recedes to
infinity. As explained above, the reason for the extended discussion for
this (singular) case is that, rather surprisingly, it possesses an exact, self-
similar solution. Traditionally, a great deal of emphasis has been placed
on this exact solution.

Next, in Section 4, we note that in both VAR and arc-welding the
upper surface of the pool is hotter than its sides. We therefore consider
the influence of buoyancy on the Lorentz-driven flow. Buoyancy forces
tend to drive a flow which diverges at the surface of the pool; precisely
opposite to the Lorentz-driven flow. Thus there is a direct competition
between the buoyancy and Lorentz forces. We determine the conditions
under which buoyancy prevails.

We conclude, in Sections 5 to 7, with a discussion of an old, but still
controversial, subject. We shall examine the influence of weak, stray
magnetic fields on the fluid motion. As mentioned above, these stray
fields have a disproportionate influence on the pool dynamics, suppres-
sing the poloidal flow and driving an intense swirling motion. There has
been a great deal written about this problem. In Section 5 we review the
experimental evidence for the extraordinary sensitivity of the confined,
current-carrying fluids to a weak, stray magnetic field. Next, in Section 6,
we discuss the traditional, if flawed, explanation of the phenomenon. We
conclude, in Section 7, with a modern interpretation.

10.2 The Work Done by the Lorentz Force

If we are to use (10.2) or (10.3) to estimate the magnitude of u then the
first step is to evaluate the Lorentz force, F. Let us assume that the entire
geometry is axisymmetric. We shall use cylindrical polar coordinates (r,
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0, z) with the origin at the pool's surface, as shown in Figure 10.3.
Evidently, the current is poloidal (Jn 0, Jz), and this gives rise to an
azimuthal magnetic field, (0, Be, 0) (see Figure 10.2). The magnetic field
and current density are related via Ampere's circuital law, according to
which

= ix
Jo

27TrBe = /x (2nrJz)dr (10.4)
Jo

An expression for the corresponding Lorentz force per unit mass is given
in Chapter 5, Section 6.1:

B2

F = JxB/p= °-er (10.5)
Pfir

This drives a flow which converges at the surface, where B9 is largest, and
diverges near the base of the pool (Figure 10.2).

There are certain cases, such as electric-arc welding, where r0 <£C R.
Here we might try to model the electrode as a point source of current.
In these situations it is useful to introduce the additional (spherical polar)
coordinates, s and (p, defined by s2 = r2 + z2 and cos 0 = r/s. It is not
difficult to show that, for a point source of current,

J = —^(cos0 , 0, sin0), F = ^—T(1 - sin0)2er (10.6, 10.7)
2nsz Anlpr

Let us now return to the more general case of finite r0. Given the impor-
tance of the integral constraint (10.2), it seems appropriate to evaluate the
work done by F. The simplest case to consider is a fluid particle which
follows a streamline lying close to the boundary. Integrating F along the
surface from point 'a' (r — R, z = 0) in Figure 10.3 to point '&' (r = 0, z =
0) gives

c

Figure 10.3 Coordinate system.
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Ja

The integral of F along the symmetry axis is zero, since Be = 0 on r = 0,
while the integral along the curved boundary depends on the aspect ratio
ro/R. When r0 «; R, (10.7) yields

from which

(10.10)

This represents the work done by F on a fluid particle as it completes one
cycle in the r-z plane. It is the balance between this integral and the
viscous dissipation which determines the magnitude of the induced velo-
city. It is interesting to note that §¥ • d\ tends to infinity as r0 -> 0. This,
in turn, suggests that there is something singular about the point elec-
trode problem. We shall return to this issue shortly.

10.3 Structure and Scaling of the Flow

10.3.1 Differences between confined and unconfined flows

Both electric welding and VAR are characterised by the facts that: (i) the
electrode has a finite size; (ii) the Reynolds number is high and the flow
turbulent; (iii) the presence of the boundary at s = R controls the mag-
nitude of u since most of the dissipation occurs in the boundary layers.
Nevertheless, most studies of this problem have focused on laminar flow
driven by a point electrode in a semi-infinite domain! The reason for this
concentration on an idealised problem was the discovery by Shercliff
(1970) and others that there exists an exact solution of the Navier-
Stokes equation for the case of a point electrode on the surface of a
semi-infinite domain. Unfortunately, as noted above, these point-elec-
trode, semi-infinite-domain problems can be quite misleading in the con-
text of real, confined flows. There are three key differences. First, the
streamlines in the semi-infinite problem converge toward the axis but
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do not close on themselves (Figure 10.4). They are therefore free from
integral constraints of the form

F- (10.11)

where C is a closed streamline. Integrals such as (10.11) determine the
magnitude of u in closed-streamline problems, yet are irrelevant in cases
where the streamlines are open. Thus, for example, any difference
between j F - d l and vJV 2 u-dl in the semi-infinite problem simply
appears as a difference in the energy of the incoming and outgoing fluid.

The second, related, difference lies in the fact that flows in confined
domains are subject to (intense) dissipation associated with the boundary
layer at s = R. This is significant since, as we have seen,

l F-uJF = v f o2dV (10.12)

That is to say, the global rate of working of F must be balanced by
viscous dissipation. For confined domains the right-hand side of
(10.12) is dominated by the boundary-layer dissipation and so we
might expect the boundary layers to determine the magnitude of u.
However, there are no boundary layers in the infinite-domain problem,
and so we might expect the characteristic velocity in confined and uncon-
fined problems to be rather different.

The third difference is evident from (10.10). The point-electrode pro-
blem represents a singular (and somewhat artificial) problem in which the
work done by F on the fluid becomes infinite:

Figure 10.4 Schematic representation of inviscid flow driven by a point elec-
trode.
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The implication is that, whenever v is small, a fluid particle will acquire
an infinite amount of kinetic energy as it passes by the electrode. This
turns out to be the case, and it is the hallmark of these point-elec-
trode, semi-infinite-domain problems that, as v becomes small (Re
becomes large), a singularity appears in the velocity field. Indeed, it
is the combination of a self-similar solution (which makes the algebra
clean) plus the intriguing appearance of a singularity in u which has
made this point-electrode problem such a popular subject of study. It
should be emphasised, however, that the appearance of a singularity in
u is simply an artefact of the (unphysical) assumption that r0 is
vanishingly small.

All in all, it would seem that confined and unconfined flows represent
quite different problems. Our primary concern here is in confined flows,
such as those which occur in VAR or electric welding. Nevertheless, since
the bulk of the literature addresses the semi-infinite-domain, point-elec-
trode problem, it would seem prudent to review first the key features of
such flows.

10.3.2 Sher cliffs self-similar solution for unconfined flows

Let us consider a semi-infinite domain and look for a solution of (10.1) in
which F is given by the point electrode distribution (10.7). It is convenient
to introduce the Stokes streamfunction defined by

00.13)

and to take the curl of (10.1), converting it into a vorticity transport
equation:

f [ ( ) F (r dz i \ r / r dr\ r

We now look for self-similar solutions of (10.14) of the form

^=sg(r]), 77 = sin 0 = z/s (10.15)

Let us evaluate the various terms in (10.14). After a little algebra we find
that
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[(1

(10.16)

where the primes represent differentiation with respect to rj. Substituting
these into (10.14) and integrating three times we obtain the governing
equation for g,

g2 + 2K(l + t]f ln(l + n) + 2v[(l - i / V + 2rig] = ar? + ftiy + c (10.17)

Here

(10.18)

and a, b and c are constants of integration. The simplest case to consider
is the inviscid one. The constants a, b and c are then determined (in part)
by the requirements that: (i) uz is zero on z = 0; (ii) ur is zero on r = 0.
These conditions are equivalent to demanding that g(0) = g(l) = 0.
Inspection of the inviscid equation yields c = 0, a + b = 8K In 2, from
which

g2 = K[ari(ri - 1) + (81n2)i; - 2(1 + r;)2ln(l + 17)] (10.19)

This represents a flow of the type shown in Figure 10.4
Of course, the question now is: what determines al Before answering

this question it is instructive to return to (10.8), which gives the integral of
F along the surface from r = R to r = 0. If we let R recede to infinity then
we obtain

r=0 2

This represents the work done on a fluid particle as it moves along the
surface under the influence of the Lorentz force. Recall that r0 is the
radius of the electrode. For a point source of current this integral
diverges. Evidently, in the case of a point electrode, an infinite amount
of work is done on each fluid particle as it moves radially inward along
the surface. This suggests that something is going to go wrong with our
inviscid solution, since we have no mechanism for dissipating the energy
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created by F. In practice, this manifests itself in the following way. We
could try to fix V by demanding that ur is finite on the surface (i.e. the
incoming flow has finite energy). In such cases we find that uz is infinite
on the axis (i.e. the outgoing flow has infinite energy), which is an inevi-
table consequence of (10.20). The details are simple to check. The require-
ment that ur is finite on z = 0 demands that, a = 8 In 2 — 2, from which

g2 = #[(8 In 2 - 2)r]2 + 2r]- 2(1 + rj)2 ln(l + rj)] (10.21)

Near the axis, however, this leads to an axial velocity of

uz-

Evidently, uz diverges as r tends to zero.
If we now reinstate viscosity into our analysis, then it seems plausible

that a regular solution of (10.18) will emerge, provided, of course, that
the viscous stresses are large enough to combat the tendency for F to
generate an infinite kinetic energy. In practice, this is exactly what occurs.
When the (Reynolds-like) parameter Kl/2/v is less than ~ 7, regular
solutions of (10.18) exist without any singularity in u. For higher values
of Kl/2/v, uz becomes singular on the axis (Bojarevics et al., 1989). Of
course, this does not imply that anything special, such as an instability,
occurs at the critical value of Kl/2/v. It merely means that our attempt to
find a self-similar solution of the form \jr ~ sg(rj) has failed. Notice that
Kl/2/v = 7 corresponds to a relatively low current, of around 1 Amp,
which is several orders of magnitude smaller than the currents used in
industrial applications.

10.3.3 Confined flows

Let us now return to flows which are confined to the hemisphere s < R
and in which the electrode has a finite radius, r0, of order R. In VAR and
electric welding the Reynolds number is invariably high. It is natural,
therefore, to ask two questions:

(i) what is the structure of the laminar flow when Re is large?
(ii) what is the magnitude of u when the flow becomes turbulent?

The answer to the first of these questions is surprising: it is likely that
there are no stable, laminar flows at moderate-to-high values of Re! The
reasons for this are discussed in detail in Kinnear & Davidson (1998) and
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we will give here only a brief summary of the arguments. Suppose that we
have a steady, laminar flow and that r0 ~ R, then the key equation is
(10.2)

F • d\ + vd)V2u • d\ = 0 (10.22)

This integral constraint is powerful. It must be satisfied by every closed
streamline. When Re is of the order unity (or less) it tells us that
u ~ FR2/v, where F is a characteristic value of |F|. Now suppose that
Re is large so that boundary layers form on the wall s = R. Inside the
boundary layer the viscous dissipation is intense, while outside it is small.
The boundary thickness, <5, is determined by the force balance
(u • V)u ~ vV2u, which gives 8 ~ (Re)~l/2R. Thus our integral equation
applied to a streamline lying close the boundary yields

FR ~ (vuR)/82 - u2

For a streamline away from the boundary, however, V2 ~ R~2, and so

FR - (yuR)/R2 - vu/R

The implication is that the flow in the boundary layer scales as
ub ~ (FR)l/2, while that in the core scales according to uc ~ FR2/v,
which is much larger than ub. However, this cannot be so, since the
velocity scale in the boundary layer is set by the core velocity. Clearly,
something has gone wrong!

The numerical experiments discussed in Kinnear & Davidson (1998)
suggest that nature resolves this dilemma in an unexpected way. At sur-
prisingly low Reynolds numbers, of the order of 10, the flow becomes
unstable and starts to oscillate. The integral equation (10.22) is then
irrelevant. The oscillation consists of a periodic 'bursting' motion in
the boundary layer which gives rise to a continual exchange of fluid
between the dissipative boundary layer and the less dissipative core. If
we now increase Re a little further, the flow becomes turbulent, which
brings us to our second question.

We wish to determine how|u| scales with / and R in a turbulent flow.
Let us apply (10.22) to the time-averaged streamlines of a turbulent flow,
with Reynolds stresses replacing the laminar shear stress. Noting that, for
a streamline close to the boundary, (10.8) yields

F • dl ~ K/2R2

(assuming r0 ~ R), we obtain
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Here rw and Sw are the wall shear stress and the characteristic length scale
for gradients in r near the wall. Now rw/p ~ (u')2 and so (10.23a) can be
used to estimate the turbulence level in the pool:

~ ( 1

We now take u ~ u/3.5 and 8W ~ i?/10, where w is a typical mean velo-
city. (These estimates are typical of a confined, turbulent flow, as
observed in induction furnaces.) In this case (10.23b) yields

(10.24)

Velocities compatible with (10.24) are indeed observed.

10.4 The Influence of Buoyancy

So far we have neglected the buoyancy forces acting on the pool. In VAR
these can be significant. Indeed, in some cases, they are the dominant
forces acting on the liquid. It is useful to start by considering two
extremes: one in which buoyancy may be neglected by comparison with
J x B, and the other in which buoyancy greatly outweighs the Lorentz
force. These two extremes are shown in Figure 10.5. Notice that the
Lorentz and gravitational forces tend to drive motion in opposite
directions.

In Chapter 9, Section 5 we discussed natural convection in an axisym-
metric cavity driven by a difference in temperature, AT, between the
surface and the boundary. We showed that the maximum velocity in
the pool is of the order of

where a is the thermal diffusivity and ft the expansion coefficient.
Actually, it turns out that (Davidson & Flood, 1994),
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Figure 10.5 Two extremes in vacuum-arc remelting: (a) buoyancy forces are
neglected; (b) the Lorentz forces are neglected.

3/7

(10.26)

Compare this with the other extreme where buoyancy is neglected and the
flow is driven by J x B :

" - 2,R - O l S ^ r <10-27)

In the case where the gravitational forces are dominant the fluid diverges
at the surface and falls at the outer boundary. When the Lorentz forces
dominate we have the opposite pattern, with the fluid converging at the
surface. We might estimate the point of transition between these two
flows by equating (10.26) and (10.27):

(Or)3/7. K 1/2

(10.28)

Thus, the transition from buoyancy to Lorentz-driven flow should occur
when the dimensionless parameter

X = Kl/2(Gr)-3/1/a (10.29)

exceeds a number of order unity. In practice, it is found that the motion
resembles a classical buoyancy-driven flow (of the type discussed
in Chapter 9, Section 5.1) when x is less than ~ 0.4. In such cases the
Lorentz forces may be neglected when calculating u. Conversely, when x
exceeds ~ 1.4 the buoyancy forces are unimportant. For intermediate
values, 0.4 < x < 1.4, the flow may have a complex, multi-cellular struc-
ture. This is illustrated in Figure I.6(b) (see introduction to Part B), where
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the three figures correspond to x = 0.5, 1.2, 1.5. Apparently, modest
changes in current can transform the motion from a buoyancy-domi-
nated flow to a Lorentz force-dominated one. This change in flow regime
is accompanied by a dramatic change in temperature distribution and of
ingot structure. Interestingly, many commercial VAR units operate at
just the verge of this transition.

10.5 Stability of the Flow and the Apparent Growth of Swirl

There are several industrial processes where current is injected into a
liquid-metal pool, via its surface, but where the pool is also subject to
a weak, stray magnetic field, perhaps associated with remote inductors.
In such cases, the weak, stray magnetic field can have an astonishing
influence on the motion in the pool, often to the detriment of the process.
There is some incentive, therefore, to understand why stray magnetic
fields have such a disproportionate influence on the pool motion. It is
this question which occupies the remainder of this chapter.

10.5.1 An extraordinary experiment

Bojarevics et al. (1989) reported an intriguing experiment which exhibits
a curious phenomenon, often called 'spontaneous swirl'. In this experi-
ment, current is passed radially downward through an axisymmetric pool
of liquid metal, as indicated in Figure 10.6. As we have seen, the inter-
action of the current density, J, with its associated magnetic field, B9

gives rise to a Lorentz force, F = J x B/p, which is poloidal. Of course,
the resulting motion is also poloidal; at least this is the case at low levels

Free surface

\

Liquid
metal

Solid
metal

(a)

Low-Re flow
is poloidal

High-Re flow
is mostly
azimuthal ^

Figure 10.6 Experiment of Bojarevics et al. (a) Current flows down through the
pool producing a poloidal force F ^ J ^ x B ^ . (b) At low levels of current the flow
is poloidal, while a higher level of current initiates an intense swirling motion.
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of forcing. At higher levels of current, though, something rather surpris-
ing occurs. The pool is seen to rotate, and this rotation is much more
vigorous than the poloidal motion.

The observed rotation must, in some sense, result from a lack of sym-
metry in J or B. That is, a finite azimuthal force, Fe, is required to
maintain the swirl and in particular to overcome the frictional torque
exerted on the pool by the boundaries. This additional force is thought
to arise from the interaction of J with a weak, stray magnetic field. (For
example, a vertical field Bz gives rise to an azimuthal force —JrBz/p.)
Nevertheless, it is surprising that a force composed of a large poloidal
component plus a weaker azimuthal contribution can give rise to a flow
dominated by swirl, i.e. u0 ^> un uz. In the experiment the stray field
arises in part from the Earth's magnetic field (Bojarevics et al., 1989).
At the lower levels of current used (~ 15 Amps) the average magnetic
field induced by the current on the pool surface is ~ 0.6 Gauss, which is
comparable with the Earth's magnetic field. However, at the highest
current levels (~ 1200 Amps) the average surface value of Be is around
42 Gauss, which is a factor of ~ 100 greater than the Earth's magnetic
field. The key question, therefore, is why do low levels of azimuthal
forcing give rise to disproportionately high levels of swirl?

Precisely the same phenomenon is seen at a larger scale in industrial
processes such as vacuum-arc remelting of ingots. Here the stray mag-
netic field arises from inductors which carry current to and from the
apparatus. Unless great effort is made to minimize the stray magnetic
fields, an intense swirling motion is generated which can adversely affect
the final product.

In all of these processes the Reynolds number, Re, is high, perhaps
300 -> 104 in Bojarevic's experiment, and around 105 in industrial appli-
cations. It is almost certain, therefore, that these flows are turbulent.
Moreover, the phenomenon seems to be particular to high Reynolds
numbers, in the sense that there is a value of Re below which dispropor-
tionately high levels of swirl are not observed (Bojarevics et al., 1989).
There is, however, a second threshold. That is, as we shall see, ue dom-
inates the poloidal motion, up, only when Fo exceeds ~ 0.01 IF^I. (We use
subscript p to indicate poloidal components of u or F.) Below this thresh-
old, the poloidal motion remains dominant, no matter what the value of
Re. In particular, if Fe -+ 0 then there is no swirling motion at all.

Let us summarise the experimental evidence. The term 'spontaneous
swirl' is commonly used to describe high-Re flows in which the forcing
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has both azimuthal and poloidal components, F = F^ + ¥p, but where the
swirl dominates the motion despite the relative weakness of ¥e. That is,

ue» lu,!, F9 « \Fp\, ( R e » 1) (10.30)

Note that it is not the appearance of abnormally high values of ue which
typifies the experiment. Rather, it is the high value of the ratio ue/\up\
which is unexpected. This distinction may seem trivial, but it turns out to
be important. Traditionally, this phenomenon was regarded as an
instability, with the sudden appearance of swirl marking some instability
threshold, rather like the sudden eruption of Taylor vortices in unstable
Couette flow. Recently, however, it has been shown that this view is
incorrect. We shall see that the magnitude of ue is simply governed by
the (prescribed) magnitude of Fe, and that there is nothing mysterious
about the level of swirl. In fact, it is an unexpected suppression of \up\
rather than a growth in UQ, which typifies the observations.

10.5.2 There is no spontaneous growth of swirl!

We shall see that flows characterised by (10.30) do indeed exist, but that
the phrase 'spontaneous swirl' is somewhat of a misnomer. Such flows
would be better characterized by the term poloidal suppression. That is,
the mystery is not that u0 is unexpectedly large, but that, in the presence
of swirl, | ^ | is disproportionately small. In fact, the magnitude of u0 can
always be estimated from the global torque balance,

F0dV = \2nr2xedl (10.31)

Here / is a curvilinear coordinate measured along the pool boundary and
XQ is the azimuthal surface shear stress. In a turbulent flow x0 = CfQpUg),
where the skin friction coefficient Cf is, perhaps, of the order 10~2

(Davidson, Short and Kinnear, 1995). If R is a typical pool radius, this
yields the estimate

ue - (RFe/cf)
l/2~ lO(RFe)

l/2 (10.32)

Similar estimates may be made for laminar flow, but the details are
unimportant. The key point is that ue is fixed in magnitude by Fe.

We shall see that flows of type (10.30) arise from the action of the
centrifugal force. That is, there are two driving forces for poloidal
motion, the poloidal Lorentz force, F^, and the centrifugal force
— {ul/r)er, and it turns out that these conspire to eliminate each other.
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Specifically, provided Re ^> 1 and Fe/\¥p\ > ~ 0.01, the angular momen-
tum of the fluid always distributes itself in such a way that these two
forces almost exactly cancel (to within the gradient of a scalar), and that
consequently, the poloidal motion is extremely weak. It is this balance
between ¥p and uj/r which underpins the experimental observations.

10.6 Flaws in the Traditional Explanation for the Emergence of Swirl

Traditionally, great significance has been attached to the fact that there
appears to be a threshold value of Re above which swirl is dominant. This
has led some researchers to conclude that the underlying poloidal motion
is unstable and that the appearance of swirl is simply a manifestation of
this instability. Consequently, it has been popular to study the break-
down of the self-similar poloidal flow associated with the injection of
current from a point source located on the surface of a semi-infinite
domain. As we have seen, these flows are characterised by the fact that
the self-similar solution breaks down at a low value of Re. However, it
turns out that a self-similar solution may be re-established above the
critical value of Re if (somehow) just the right amount of angular
momentum is injected into the flow at infinity. One of the deductions
of this type of analysis is that flows which converge at the surface are
potentially unstable, whereas those which diverge are stable. (Self-similar
diverging flows may be realized using a slightly more complex, but still
singular, arrangement of current injection.)

Perhaps the most thorough study of this type is that of Shtern &
Barrero (1995). Like many before, they examined the breakdown of the
self-similar flow, attributed this breakdown to an instability, and then
suggested that these stability characteristics extend to confined domains,
thus explaining the experimental observations. However, such a model
problem differs from confined flows in two crucial respects. First, there is
no outer frictional boundary and so this model problem is free from the
integral constraint (10.31). That is, no external torque is required to
maintain the swirl. Second, the streamlines in the self-similar solution
do not close, but rather converge radially, as shown in Figure 10.7.

Now it happens that at Re ~ 7 the similarity solution breaks down in
the sense that the velocity on the axis becomes infinite (see Section 8.3.2).
However, if just the right amount of swirl is introduced into the far field
then, due to the radially inward convection of angular momentum, the
singularity on the axis is alleviated. Thus, in semi-infinite domains there
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Figure 10.7 Geometry analysed by Shtern & Barrero.

exists the possibility of a bifurcation from a non-swirling to a swirling
flow, provided, of course, that (somehow) nature provides just the right
amount of angular momentum in the far field. This, according to tradi-
tional argument, is the origin of the experimental observations.

However, there are several fundamental objections to making the
jump from infinite to confined flows. The first point to note is that
the appearance of a singularity in the self-similar solution is simply
an artefact of the (idealised) assumption of a point source of current
(see (10.20)). Second, flow in a hemisphere bears little resemblance to
the self-similar flow in an infinite domain. If R is the pool radius and r0

the electrode radius, then a self-similar solution may be justified only in
the small region r0 <C (r2 + z2) <<£ R. In the experiments of Bojarevics
et al. no such region exists (R/r0 ~ 45). Third, the evidence for sponta-
neous swirl (poloidal suppression) is not restricted to point sources of
current, but rather exists for many different distributions of current
within the pool. An explanation of this behaviour which rests on the
breakdown of a very particular class of motion (the self-similar flow)
cannot explain the widespread occurrence of this phenomenon. Fourth,
the infinite domain model relies on angular momentum being injected
into the fluid in the far field. In confined domains, where does this
angular momentum come from? If swirl exists in confined flows it
must be maintained by an external torque, and the magnitude of this
torque fixes the magnitude of the swirl. There can be no sudden 'erup-
tion' of swirl due to an increase in Re. Fifth, according to the semi-
infinite domain, point-electrode model, the sudden appearance of swirl
occurs only if the flow converges at the surface. In practice, however,
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this is not the case. As we shall see, the dominance of swirl (ue > lu^l)
occurs just as readily if the flow diverges at the surface. Clearly, we
must seek an alternative explanation of the phenomenon.

10.7 The Role of Ekman Pumping in Establishing the Dominance of
Swirl

10.7.1 A glimpse at the mechanisms

As a prelude to our detailed analysis we provide here a qualitative expla-
nation of the phenomenon. The key point is this: it turns out to be easier
to generate swirl in a hemispherical pool than poloidal motion. Suppose,
for example, that we apply a force Fo and measure the resulting swirl. We
then remove F0 and apply a force F^, again measuring the resulting
motion. Then we would find that u9/Fe ^> lu^l/IF^. Thus small azimuthal
forces, which result from the stray magnetic field, can give rise to a
relatively large swirling motion. However, this is not the end of the
story. This swirl, when large enough, arranges itself such that the centri-
petal acceleration, u2

e/r, counterbalances the poloidal Lorentz force (to
within the gradient of a scalar). The poloidal flow then virtually disap-
pears.

When we work through the details, it turns out that Ekman pumping,
which played such an important role in Chapter 8, once again rears its
head. You will recall that Ekman pumping is an inevitable by-product of
confined swirl. Perhaps it is worth digressing for a moment to describe its
main features. It is most simply understood in those cases where the
Lorentz force is purely azimuthal (F^ = 0), and so we now consider
this special case.

Suppose that F = (0, F0, 0) and the dominant motion is ue. Ekman
pumping takes the form of a wall jet, as shown on the right of Figure
10.8. That is to say, the swirl induces a secondary poloidal motion con-
sisting of a high-speed wall jet (Ekman jet) which runs downward within
the boundary layer (the Ekman layer) and recirculates back up through
the (almost) inviscid core flow. The driving force for the wall jet is a radial
pressure gradient which is established in the core of the flow in order to
maintain the centripetal acceleration of the swirling fluid. (This radial
pressure gradient is unbalanced in the boundary layer where u2

0/r falls
to zero.) It is important to note that Ekman pumping is not an incidental
feature of this flow, but rather controls the magnitude of the swirl (see
Chapter 8, Section 3). That is, in the steady state, the rate of generation of
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Ffl.
Ekman flow

(a) Poloidal force only (Fr, 0, Fz)
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jet

(b) Azimuthal force only (0, Fe, 0)

Figure 10.8 Flows driven by poloidal and azimuthal Lorentz forces, (a) Poloidal
flow driven by a poloidal force, (b) Angular momentum contours and secondary
Ekman flow induced by azimuthal force.

angular momentum and energy by Fe must be matched by frictional
dissipation, and it is this balance between the generation and dissipation
of energy which dictates the steady state value of ue. However, the dis-
sipation of energy is controlled by the Ekman pumping. It ensures that all
the fluid particles are periodically flushed through thin, dissipative
boundary layers, and this is the mechanism by which (10.2) is satisfied
and a steady state is achieved.

We now return to the case in hand, where the dominant Lorentz force
is poloidal rather than azimuthal. Suppose we have a pool of liquid metal
into which we inject current (Figure 10.6). The current may be injected
through a small region near the axis, or else distributed across the top of
the pool. It does not matter. The current density in the metal is poloidal
and induces an azimuthal magnetic field, Be. Suppose that, in addition,
we have a weak, stray magnetic field, Bz. Then F comprises a strong
poloidal component, J x Be/p, plus a weaker azimuthal contribution
J x BJp. Now suppose that, at least initially, Bz is so small that the
induced swirl is much weaker than the primary poloidal motion. The
distribution of up is then uniquely determined by the poloidal force
(uj/r is negligible). Now consider the swirl. The governing equation for
the angular momentum, T = ru0, is

DT _ar
~Dt ~ ~dt + Up

Here the subscript on vt indicates that we have in mind a turbulent flow
which we model rather crudely using a turbulent eddy viscosity. Let the
pool be a hemisphere of radius R (the precise shape is not too important),
and define an effective Reynolds number by Re, = |uJ R/vt. When Re,

= rFe + v,V • [r2V(r/r2)] (10.33)
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is large (typically it has a value of ~ 100), the shear stresses are dominant
only in the boundary layers. Outside these regions (10.33) simplifies to

rFe + 0(Re7) (10.34)

Evidently, angular momentum is generated in each fluid particle as a
result of the azimuthal force and, provided boundary layers are avoided,
this growth in F is constrained only by the relatively weak shear stresses
in the core. Consequently, large values of swirl can build up, even though
Fe is small. From (10.33) we can estimate ue by equating the two terms on
the right:

ue/up - (FeR/u2
p)Ret (10.35)

Now suppose that we increase F9 with ¥p fixed, up to the point where ue

and up are of similar magnitudes. (In practice we could do this by increas-
ing the stray field Bz.) We have seen that, for small u0, up scales roughly as
lu l̂ ~ (\¥p\R)l/2 (see equation (10.24), and so ue~up when
FQ ~ Ite^lF^I ~ 0.01 |F^|. Thus a small but finite azimuthal force can
give rise to a significant (i.e. large) swirling motion. Once ue reaches a
value of ~ up, V ceases to play a passive role. It can react back on the
poloidal motion through the centrifugal force (—u2

e/r)tr. There now exists
an intriguing possibility. Suppose that T is distributed in such a way that
(—i4/r)er balances F^ to within the gradient of a scalar:

(-u2
e/r)er = Fp + V(t> + 0(Re;1) (10.36)

The driving force for poloidal motion then disappears (0 is absorbed into
the pressure) and we are left with a swirling motion plus its associated
(weak) Ekman pumping. If this were to occur, then the energy of the
poloidal flow, and hence of the flow as a whole, should collapse as Fo

approaches a value of ~ 0.01|Fp|. We shall see that this is precisely what
happens, the resulting core flow being governed by

d / r 2 \
V Vr = rFe + 0(v,), - - ( - j \ = (V x F^+Ofo) (10.37, 10.38)

Note that when the poloidal force is effectively eliminated, the poloidal
motion reduces to a weak Ekman pumping. This not only dramatically
reduces the energy of the poloidal flow, but also helps keep ue at a modest
level. That is, if the only poloidal motion is Ekman pumping, all of the
streamlines will be flushed through the dissipative Ekman layers where
the angular momentum created by F6 can be efficiently destroyed.
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Evidently, if we can find core solutions for up and V which satisfy
(10.37) and (10.38), then this represents an energetically favourable
state. We shall see that these core equations are readily satisfied, and
that the flow does indeed adopt this low-energy state. The net result is
that when Fe exceeds the modest threshold of ^O.OIIF^I, the flow is
dominated by swirl, despite the weakness of the azimuthal force.

10.7.2 A formal analysis

Let us assume that the flow is axisymmetric and the liquid pool occupies a
hemisphere of radius R, as shown in Figure 10.6. The current enters the
pool at the free surface and spreads radially outward as it passes down
through the pool. In addition to the azimuthal field, we shall allow for a
weak external magnetic field. For simplicity, we take this to be uniform
and vertical. It is convenient to introduce the scaled magnetic field
C = B/(p/x)1/2, which has the dimensions of velocity. Then, from
(10.5), the Lorentz force (per unit mass) has components

Fp = - ^ e r , Fe = Cz^- (10.39, 10.40)

We shall take the flow to be turbulent and model the Reynolds stresses
using a turbulent eddy viscosity, vt. The poloidal velocity field, up, is
uniquely determined by its vorticity, a)0. From (10.39), (10.40) and the
Navier-Stokes equation, it is easy to show that the governing equations
for coe and F are

u • Vr = UrCzCe] + v,V • [r2V(F/r2)] (10.41)
dz1

d r2 q_
r2

v,V • [r-2V(rcoe)] (10.42)

In terms of velocity, equation (10.42) may be uncurled to give the poloi-
dal equation of motion

up • Vu, - -V(/?/p) + [{u2
e - C2

e)/r]er + vtV
2up (10.43)

Evidently, whenever ue — Ce is independent of z, the poloidal motion
vanishes. Let us now look for solutions to these equations for the case
where Fe <^\¥p\. We start by examining the energy balance in these
confined flows. For a steady-on-average turbulent flow, (10.2) becomes
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tF • d\ + vt (b V2u • d\ = 0 (10.44)

This integral constraint must be satisfied by every streamline in the time-
averaged flow. This could be achieved by high levels of internal dissipa-
tion. However, when vt is small, it is natural to look for solutions in
which the dissipation is largely confined to the boundary layers. This,
in turn, requires that each streamline passes through a boundary layer.
(Every streamline must satisfy (10.44).) If Ekman pumping is to supply
the necessary entrainment mechanism, then it is essential that it domi-
nates the poloidal flow, despite the weakness of Fe. However, inspection
of (10.41) and (10.42) shows that such a flow is indeed possible. Let Fc be
the angular momentum distribution in the core of the flow, and Tcs(r) be
the corresponding value of Tc just outside the Ekman layer (at the same
radius). Now suppose we require Vc to satisfy

T2
C = r2C2

e + / ( r ) (10.45)

where/(r) is an arbitrary function of radius. Then from (10.42) there is no
source of poloidal motion other than Ekman pumping. This guarantees
entrainment of all of the streamlines and so provides an effective dissipa-
tion mechanism for the flow. We now explore the consequences of this
distribution of swirl. We shall see that there is no contradiction between
(10.45) and the azimuthal equation of motion.

If (10.45) is satisfied, then the poloidal equations of motion (10.42) and
(10.43) tell us nothing more about the core flow, other than the fact that
Ekman pumping will occur. It remains to be seen if our assumed distri-
bution of F, (10.45), is consistent with the azimuthal equation of motion
(10.41). Now suppose that Cz = —Co where Co > 0. Since Be is a decreas-
ing function of z this ensures that F > 0. Equation (10.41) now becomes,
in the core of the flow,

a ~u . (10.46)
oz

Clearly, as each fluid particle spirals upward through the core its angular
momentum increases. We now ask if this is consistent with our assumed
distribution of T: that is, is dFc/dz < 0 compatible with (10.45)? The
answer is 'yes'. Note that (10.45) gives

r c ^ = r 2 c 3 < 0 (since Jr > 0) (10.47)

which is exactly what is required.
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Finally, we must check that (10.45) is consistent with the azimuthal
equation of motion in the Ekman layer. To this end we use (10.31), the
integrated version of this equation:

f rF9dV = nicfT
2

csdl (10.48)
j J

Typically, Cf is of the order of 10~2 in a confined turbulent flow (the
precise value depends on Re). Now the left-hand side of (10.48) is of
order CQCQR3* while the right-hand side is at least of order CfCgR?.
Thus (10.48) requires Co > cfCe9 or equivalently Fe > cf\¥p\ ~ 0.01 \Fp\.
This estimate was introduced earlier. It places a bound on the value of
/^/ |Fp| below which an Ekman-dominated flow cannot be seen. If Fo is
less than this value, then the the induced swirl is too weak to counter-
balance ¥p.

It appears, therefore, that an Ekman-dominated flow is physically rea-
lisable provided that F9 is not too small. We shall see shortly that this is
exactly what happens. When /V|Fp| < 10~3, ue < |up|. In the range
10~3 < i^ / |F p | < 10~2the swirl ue grows to be of order ju ĵ, and for

^ > 10~2the poloidal force is balanced by gradients in u2
e/r and

we get Ekman pumping, with ue ^> ju^. It is remarkable that the velocity
field should be dominated by ue despite the relative weakness of Fe.

Finally, we note that, in the arguments above, we have made no
assumption about the direction of the poloidal force. We might antici-
pate, therefore, that the proposed solution works equally well for flows
which (in the absence of FQ) diverge at the surface, and we shall see that
this is so in the next section. (Diverging surface flows may be created by a
rather more elaborate arrangement of current injection.)

10.7.3 Some numerical experiments

We now describe a sequence of numerical experiments reported in
Davidson et al. (1999). These relate to the flow of liquid steel in a hemi-
spherical pool of radius R = 0.1 m. The flow was taken to be turbulent
(Re ~ 105) and the Reynolds stresses Xy were estimated using the K-S
turbulence closure model. The current distribution is controlled by the
boundary condition set for J, and the distribution used in the simulations
is shown in Figure 10.9(a). The computations also allowed for an axial
magnetic field Cz = —Co, where Co lies in the range 0 -> lm/s . The
contours of constant Fr and Fe (for Co = 0.01) are shown in Figure
10.9(b) and 10.9(c).
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(a)

Figure 10.9 Current and forces in the liquid pool: (a) current; (b) contours of Fp,
(c) contours of Fe.

It is convenient to introduce the symbol C to represent the maximum
value of CQ. Note that CQ/C is a measure of the relative size of /^ / IF^.
With C fixed at 1 m/s, the flow was calculated for a range of values of
Co/C, corresponding to 0, 0.005, 0.01, 0.02, 0.05, 0.1 and 1.0. This repre-
sents the full range from Fe = 0 to Fe ^ \¥p\. The resulting variation of
the kinetic energies Ee and Ep (defined as the integrals of uj/2 and u^/2)
are shown in Figure 10.10. Note that, when the azimuthal force reaches a
value of ~ 0.01 \Fp\, the swirl and poloidal motions have similar intensi-
ties. As F9 is further increased, the energy of the poloidal motion col-
lapses, dropping by a factor of 100. This is exactly the behaviour
anticipated in Section 7.3.

The flow patterns for the cases Co = 0, 0.01 and 0.05 are shown in
Figure 10.11. The transition to an Ekman-dominated structure is quite
striking. For F9 < ~ 0.01 [F^, there is no Ekman pumping and the poloi-
dal flow is dominated by ¥p, the swirl being too weak to react back on np.

0.01 |FJ the poloidal flow is virtually eliminated through theFJ
u

For Fd

balance F^ ~ -{ue/r)tr + V0. What little poloidal motion there is corre-
sponds to Ekman pumping. Moreover, it is clear from Figure 10.10 that,
for low values of Fo, ue scales as ue oc Fe, which is what we would expect
from (10.35). For large Fe, on the other hand, we have ue oc i^ / 9 , which is
typical of an Ekman flow (see Chapter 8).

The flows for the cases Co = 0.1 and 1.0 are shown in Figure 10.12 and
compared with the case where the poloidal forcing is removed (Co = 1.0,

A.

C = 0). Again, the motion is clearly dominated by Ekman pumping. It is
remarkable that removing the poloidal forcing altogether makes almost
no difference to the flow pattern. It is even more remarkable that, when
the azimuthal forcing is only a few per cent of Fp, the motion is domi-
nated by swirl.

Finally, Davidson et al. (1999) considered a different distribution of J,
designed to drive a base flow, u ,̂ which diverges at the surface. The
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Figure 10.10 Variations of energy of the swirling (Ee) and poloidal (Ep) com-
ponents of motion as the ratio Fe/\Fp\ is increased.

motivation here is to demonstrate that the phenomenon is quite unrelated
to the direction of the poloidal base flow. Current was fed into the pool
from the base and withdrawn at the sides. The resulting poloidal flow (in
the absence of azimuthal forcing) then diverges at the surface.
Nevertheless, they found precisely the same behaviour as before. When
FQ reaches a value of ~ 0.01 |Fp | the energy of the poloidal motion col-
lapses as an Ekman-dominated flow emerges.

These numerical experiments are broadly in line with the predictions of
Section 7.1. It seems that the phenomenon of poloidal suppression is quite
unrelated to the direction of the poloidal base flow and is not a manifesta-
tion of the breakdown of the self-similar solution. Rather, it results from a
suppression of the poloidal motion through the balance uj/r ~ ¥p. This
allows the motion in the r-z plane to be dominated by Ekman pumping
which, in turn, ensures that every streamline is flushed through the thin,
dissipative Ekman layer. The result is a flow of low energy: Ep is virtually
eliminated while E^ scales as i^10/9, rather than F | .
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(a)

(b)

(c)

Figure 10.11 Contours of constant ug, poloidal velocity vectors and poloidal
streamfunction for (a) Q = 0, (b) Co = 0.01 and (c) Q = 0.05.

Examples

10.1 Show that, for 2D flows, the global energy equation (10.3) is
equivalent to evaluating the line integral (10.2) for each streamline
and then adding all such integrals. Hint: consider a streamtube
characterised by a jump in the stream-function Si//, and then
show that uSA = Sxj/dl where 8 A is an element of area with stream-
wise length dl.

10.2 Show that, for a point source of current on the surface of a semi-
infinite domain,

B9 = - s i n
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(a)

(b)

(c)

Figure 10.12 Contours of constant u0x poloidal velocity vectors and poloidal
streamfunction for (a) Q = 0.1, C = 1.0, (b) Co = 1.0, C = 1.0 and
(c) Co = 1.0, C = 0.

10.3 The magnetic field used in the numerical experiments of Section
10.7.3 is

Ce = C / j ^ r A R ) c o s h ^ l - z / i O V I / ^ O c o s h ^ i ) ]

Show that this corresponds to a current which leaves the cylinder
r < R, z < R normal to the surfaces r = R, z = R.
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MHD Instabilities in Reduction Cells

It is easier to write ten volumes on theoretical principles than
to put one into practice.

Tolstoy

The amount of energy required to reduce alumina to aluminium in elec-
trolysis cells is staggering. In North America, for example, around 2% of
all generated electricity is used to produce aluminium. Worldwide,
around 2 x l 0 1 0 k g of aluminium are produced annually, and this
requires in excess of 1011 kWh p.a. The corresponding electricity bill is
around £1010 p.a.! Yet much of this energy (around one half) is wasted in
the form of I2R heating of the electrolyte used to dissolve the alumina.
Needless to say, strenuous efforts have been made to reduce these losses,
mostly centred around minimising the volume of electrolyte. However,
the aluminium industry is faced with a fundamental problem. When the
volume of electrolyte is reduced below some critical threshold, the reduc-
tion cell becomes unstable. It is this instability, which is driven by MHD
forces, which is the subject of this chapter.

11.1 Interfacial Waves in Aluminium Reduction Cells

11.1.1 Early attempts to produce aluminium by electrolysis

It is not an easy matter to produce aluminium from mineral deposits. The
first serious attempt to isolate elemental aluminium was that of
Humphrey Davy, Faraday's mentor at the Royal Institution. (In fact,
Davy's preferred spelling - aluminum - is still used today in North
America.) In 1809 he passed an electric current through fused compounds
of aluminium and into a substrate of iron. Although an alloy of alumi-
nium and iron resulted in place of the pure aluminium he sought, Davy
had at least managed to prove that aluminium oxide was indeed
reducible.

Oersted, and later Wohler, set aside electricity and concentrated on
chemical means of isolating aluminium. By 1827 Wohler was able to
produce small quantities of aluminium powder by displacing the metal

363
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from its chloride using potassium. Later, in the 1850s, potassium was
replaced by sodium, which was cheaper, and aluminium fluoride was
substituted for the more volatile chloride. Wohler's laboratory technique
had at last become commercially viable and the industrial production of
aluminium began. However, those chemical processes were all swept
aside by the revolution in electrical technology initiated by Faraday. In
particular, the development of the dynamo made it possible to produce
aluminium by electrolysis.

The electrolytic route was first proposed by Robert Bunsen in 1854,
but it was not until 1886 that a continuous commercial process was
developed. It was a 22-year-old college student from Ohio, Charles
Martin Hall, and the Frenchman Paul Heroult who made this break-
through: the Frenchman as a result of good fortune (which he had the
wit to pursue), and the American as a result of systematic enquiry. Hall
and Heroult realised that molten cryolite, a mineral composed of fluor-
ine, sodium and aluminium, readily dissolves alumina and that a cur-
rent passed through the solution will decompose the alumina, leaving
the cryolite unchanged. Full commercial production of aluminium
began on Thanksgiving Day 1888 in Pittsburgh in a company founded
by Hall. An example of an early Hall-Heroult reduction cell is shown in
Figure 11.1 (a). Remarkably, over a century later, the process is virtually
unchanged.

11.1.2 The instability of modern reduction cells

Today almost all aluminium is produced by electrolysis, and the cells
which are used look remarkably similar to those envisaged by Hall and
Heroult. A schematic of a modern cell is shown in Figure ll.l(b). A large
vertical current, perhaps 300 kA, flows downward from the carbon
anode, passing first through the electrolytic layer (where it reduces the
alumina) and then through a liquid aluminium pool before finally being
collected at the carbon cathode at the base of the cell. The liquid layers
are broad and shallow, perhaps 4m x 10m in plan, yet only a few centi-
metres deep.

The aluminium is an excellent conductor, the carbon a moderate one
and the electrolyte (cryolite) a very poor conductor. Consequently, most
of the electrical energy consumed by the cell is lost in Ohmic heating of
the cryolite. In fact, these losses are vast, and there is considerable incen-
tive to lower the resistance of the electrolyte layer by reducing its thick-
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Molten aluminium
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Figure 11.1 (a) A schematic of a 1920s reduction cell.
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Figure 11.1 (b) A modern reduction cell.

ness. (Note the difference in electrolyte thickness in Figures 11.1 (a) and
ll.l(b).)

The energy problem aside, this process works reasonably well.
However, there is one fundamental problem. It turns out that unwanted
disturbances are readily triggered at the electrolyte-aluminium interface
(Figure 11.2). In effect, these are long-wave-length, interfacial gravity
waves, modified by the intense magnetic and electric fields which pervade
the cell. Under certain conditions these disturbances are observed to
grow, disrupting the operation of the cell. These instabilities have been
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Figure 11.2 Interfacial waves in a reduction cell.

the subject of much research over the last two decades, since they repre-
sent the greatest single impediment to increasing the energy efficiency of
these cells. In particular, the cryolite depth, h, must be maintained above
a certain critical value to ensure stability, and this imposes a large energy
penalty. Indeed, one aluminium company has estimated that each milli-
metre of cryolite costs them $1 million per year in waste heat!

To some extent, the mechanism of the instability is clear. Tilting the
interface causes a perturbation in current, j . Excess current is drawn into
the aluminium at those points where the thickness of the highly resistive
cryolite is reduced, and less current is drawn at points where the electro-
lyte depth is increased. Since the carbon cathode is much more resistive
than the aluminium, these perturbations in vertical current feed into the
aluminium but do not penetrate the cathode. In the long-wavelength
approximation (kh —> 0, k being the wavenumber) the perturbed current
in the electrolyte is purely vertical while that in the aluminium is hori-
zontal (to leading order in kh). This perturbation in current is shown in
Figure 11.3 for the simplest of wave shapes.

Now the change in current causes a perturbation in the Lorentz force,
8¥ = j x Bo + Jo x b. In the long-wavelength limit, the dominant contri-
bution to 8¥ can be shown to be j x Bz, where Bz is the vertical compo-
nent of the ambient magnetic field in the cell (see Section 3 of this
chapter). The key question is, therefore, whether or not this change in
Lorentz force amplifies the initial motion.

After many years of research, this issue was finally resolved by Sneyd &
Wang (1994) and Bojorevics & Romerio (1994). Subsequently, their ana-
lyses were generalised by Davidson & Lindsay (1998). These authors all
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Figure 11.3 Perturbations in current caused by a movement of the interface. In
the long-wave-length limit the perturbation current, j , is largely vertical in the
cryolite and horizontal in the aluminium. The 'sloshing' motion in the two liquids
is largely horizontal.

simplify the geometry to that of a closed, rectangular domain (i.e. a shoe-
box), as shown in Figure 11.2. Sneyd & Wang start by noting that, in the
absence of a magnetic field, the interface may support an infinite number
of conventional standing waves. The normal modes associated with these
form an orthogonal set of functions, so that one can represent an arbi-
trary disturbance of the interface as the superposition of many such
gravitational modes. When the Lorentz force is absent, these modes are
decoupled. However, when the Lorentz force is taken into account, cer-
tain gravitational modes are coupled. That is, the redistribution of cur-
rent caused by one mode gives rise to a Lorentz force which, when
Fourier-decomposed, can excite many other modes. This leads to a
coupled set of equations of the form

x + Qx = eKx, e = J0Bz/paH (11.1)

Here x is a column vector which represents the amplitudes of the grav-
itational modes, Q is diagonal with elements equal to the square of the
conventional gravitational frequencies, H and pa are the depth and den-
sity of the aluminium, respectively, and K is the interaction matrix which
arises from j x Bz. Now K is skew-symmetric and so complex eigenvalues,
and hence instabilities, are guaranteed when s is large. Unfortunately
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however, (11.1) sheds little light on the all-important instability mechan-
ism. Consequently, before going on to describe the instability in detail, we
shall discuss a simple mechanical analogue which highlights the basic
instability mechanism. This is due to Davidson & Lindsay (1998) and
relies on the fact that, in the long-wavelength limit, the motion in the
aluminium is purely horizontal (Figure 11.3).

11.2 A Simple Mechanical Analogue for the Instability

Suppose we replace the liquid aluminium by a thin, rigid, aluminium
plate attached to the centre of the anode by a light rigid strut. The
strut is pivoted at its top and so the plate is free to swing as a compound
pendulum about two horizontal axes, x and y (Figure 11.4a). Let the
plate have thickness H, lateral dimensions Lx, Ly and density pa. The
gap h between the plate and the anode is filled with an electrolyte of
negligible inertia and poor electrical conductivity. A uniform current
density, Jo, passes vertically downward into the plate and is tapped off
at the centre of the plate. Finally, suppose that there is an externally
imposed vertical magnetic field Bz.

Evidently, we have replaced one mechanical system (the cell), which
has an infinite number of degrees of freedom, with another which has
only two degrees of freedom. However, electrically the two geometries are
alike. Moreover, the nature of the motion in the two cases is not dissim-
ilar. In both systems we have movement of the aluminium associated with
tilting of the electrolyte-aluminium interface. In a cell this takes the form
of a 'sloshing' back and forth of the aluminium as the interface tilts first
one way and then the other (Figure 11.3).

Electrolyte

Aluminium plate

Lx

Pa>

Figure 11.4 (a) The compound pendulum shown here contains all of the essen-
tial physics of the reduction cell instability.
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Let Ox and Oy be the angles of rotation of the plate measured about x
and y axes. Then it is not difficult to show that, as a result of these
rotations, the perturbation of the current / in the aluminium plate is
given by

8L=-
2h

y 2h

The perturbation in the Lorentz force j x B z can be calculated from these
expressions and the equations of motion for the compound pendulum
then follow. They are

Yx + ">xyx = ~(J0Bz/paH)yy = -eyy

J paH)yx =

(11.2a)

(11.2b)

where yx = 0x/Lx , yy = 0y/L
2
y and cox, coy are the conventional gravita-

tional frequencies of the pendulum. Note the similarity to (11.1). If we
look for solutions of the form y ~ Qxp(icoi) we find oscillatory solutions
for small values of s — J0Bz/paH and exponential (unstable) solutions for
large s.

Figure 11.4(b) shows the movement of a? in the complex plane as e is
increased. The two natural frequencies o?x and o?y move along the real axis
until they meet. At this point, they move off into the complex plane and
an instability develops. The important points to note are:

1. The tendency for instability depends only on the magnitude of JQBZ/

paH and on the natural gravitational frequencies cox and coy.

CO*

Figure 11.4 (b) Variations of co2 with /0Bz in the complex plane for the pendu-
lum.
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2. To minimise the danger of an instability it is necessary to keep JQBZ/

paH low and the gravitational frequencies well apart. The closer the
natural frequencies are, the lower the threshold value of JOBZ at which
an instability appears. (Circular and square plates are unstable for
vanishingly small values of JQBZ.)

3. The system is unstable whenever

JoBz 1 i 2 2i> — I ft>x — o ,̂ I

4. When s is large the unstable normal mode corresponds to a rotating,
tilted plate.

Very similar behaviour is seen in reduction cells governed by (11.1). In
particular, the sensitivity of reduction cells to the destabilising influence
of J$BZ depends on the initial separation of the gravitational frequencies.
The closer the gravitational frequencies, the lower the stability threshold.
Moreover, unstable waves frequently correspond to a rotating, tilted
interface.

The physical origin of the instability of the pendulum is now clear.
Tilting the plate in one direction, say 0x, produces a horizontal flow of
current in the aluminium which interacts with Bz to produce a horizontal
force 8FX, which is perpendicular to the movement of the plate and in
phase with 0x. This tilting also produces a horizontal velocity, uy, which is
7r/2 out of phase with the force 8FX and mutually perpendicular to it.
Two such tilting motions in perpendicular directions can reinforce each
other, with the force from one doing work on the motion of the other.
This is the instability mechanism of the pendulum, and essentially the
same thing happens in a reduction cell.

We may think of the Lorentz force as playing two roles. In the first
instance it modifies the gravitational frequencies, pulling them together
on the real axis. Once these frequencies coincide, so that the plate oscil-
lates at the same frequency in two directions, the Lorentz force adopts a
second role in which it supplies energy to the pendulum. Unstable motion
then follows.

A simple energy argument shows why, whenever the plate oscillates
with a single frequency in two perpendicular directions, an instability is
inevitable. From the expressions for 81 x and 81 y we can calculate the
Lorentz force 8¥ and hence the rate of work done by the force, 8¥ • u,

W = 8¥ • u = J0BzLxLy[L2
y0xdy - L2

xOydx]/\2 (11.3)
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Now suppose that 0x and 6y both oscillate at frequency co, but are n/2 out
of phase. Then the time-averaged value of W is non-zero, implying
unstable motion.

Note that this instability mechanism is independent of the action of
gravity. That is, provided the plate can oscillate at the same frequency
in two directions, it will become unstable. (Circular and square plates are
unstable at arbitrarily small values of Bz.) The stability threshold, on the
other hand, does depend on gravity, in that it is dependent on the initial
separation of the gravitational frequencies.

We now return to reduction cells. We shall see that interfacial waves
are described by the wave-like differential equation

^-c
2V2q = co2

B[ezxq]P (11.4)

where q is the horizontal mass flux in the cryolite, co2
B = J0Bz/(pcH + pah)

and c2 = (pa — pc)g/((Pc/h) + (Pa/H)). The subscript P on the term ez x q
implies that we take only the irrotational (i.e. potential) component of
ez x q. This equation is valid quite generally and makes no assumption
regarding the existence or shape of the lateral boundaries. Also, note that
all of the electromagnetic effects are captured by the single parameter co2

B.
There are four special cases of interest.

(i) When coB = 0 we recover the standard wave equation for interfacial
disturbances,

(ii) If o)B is non-zero, and we look for solutions in the channel 0 < x < L,
then we find unstable travelling waves.

(iii) For a closed circular domain, (11.4) yields unstable standing waves
for vanishingly small values of coB. (Remember, a circular pendulum
is unstable for vanishingly small JQBZ.) Moreover, the unstable nor-
mal mode corresponds to a rotating, tilted interface, just like that of
the pendulum.

(iv) If we place (11.4) in a rectangular domain we recover the matrix
equation of Sneyd & Wang (1994):

x + Qx = £Kx, e — J0Bz/paH

where the coupling matrix, K, is skew-symmetric and Q is diagonal
with elements equal to the square of the gravitational wave frequen-
cies. (Note the similarity to (11.2).) We now set about deriving (11.4).
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11.3 Simplifying Assumptions

A model of the cell is shown in Figure 11.2. The undisturbed depths of
cryolite and aluminium are h and H, respectively, and the unperturbed
current flow is purely vertical and has magnitude Jo. We use a Cartesian
coordinate system, (x, y, z), where the positive direction of z is upward
and the origin for z lies at the undisturbed interface. On occasion we shall
refer to cells which are rectangular in plan view, and these are given
dimensions Lx and Ly. However, much of the analysis can be applied
to any shape of cell.

We take the characteristic time-scale for the wave motion to be much
greater than the diffusion time of the magnetic field. That is, we make the
pseudo-static approximation ixauh < 1, where /x is the permeability, a is
the conductivity, and u is a typical velocity. Thus, each time the interface
moves, the current immediately relaxes to a new equilibrium distribution.
Ohm's law is then

J = a E = -aV0>, V2<D = 0

We are concerned only with linear stability, and so we consider infini-
tesimal perturbations of the interface of the form zs = rj, rj <& h9 H. The
corresponding distributions of J and B are

J = Jo + j = -Joez - o-V0, B = Bo + b

and the boundary conditions on J arise from the ranking of the conduc-
tivities. That is,

<*a > ^carbon » °c (H- 5 )

Here the subscripts 'a' and 'c' refer to the aluminium and cryolite. It is
not difficult to show that (11.5) requires <pc = 0 on z = h and 30fl/3z = 0
on z = —H. Here (j> is the perturbation in the electrostatic potential. The
first of the boundary conditions states that the anode potential is fixed,
while the second ensures that j does not penetrate into the cathode
blocks.

We shall assume that the fluid is inviscid, that surface tension can
be ignored, and that there is no background motion in the unperturbed
state. The first of these assumptions means that our equations of motion
cannot mimic the damping of high-wavenumber perturbations which
occur in practice. To compensate for this, we simply ignore those
modes whose wavelengths are shorter than a certain (small but arbitrary)
value. The last of the three assumptions (i.e. u0 = 0) greatly simplifies
the stability analysis. However, this simplification does severely limit
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the allowable distributions of Bo. That is, to ensure that the perturbation
occurs about an equilibrium configuration, we must satisfy
V x (Jo x Bo) = 0. Given our assumed distributions of Jo, we require
Bo to be of the form

B0 = (Bx(x,ylBy(x,ylBz) (11.6)

where Bz is spatially uniform. We shall assume that all three components
of Bo are of the same order of magnitude. From Ampere's law,
V x B = /xJ, which implies that Bx — By ~ Bz ~ /x/0L where L is a typi-
cal lateral dimension.

Our final assumption relates to the aspect ratio of the liquid layers. We
shall assume that kh <& 1, where k is a typical wavenumber. In effect, we
use the shallow-water approximation. This leads directly to a number of
simplifying features. In particular, as a result of the shallow-water
approximation, and to leading order in kh, it may be shown that:

(a) j is vertical in the cryolite;
(b) j is horizontal in the aluminium and is uniformly distributed across

that layer;
(c) the perturbed Lorentz force acting on the cryolite may be neglected;
(d) the velocity in each layer is uniform in z and horizontal;
(e) the dominant contribution to the perturbed Lorentz force in the alu-

minium is j x (Bzez).

In fact, it is not difficult to see how these simplifications arise. Consider
the situation shown in Figure 11.3, where the disturbance has a long
wavelength. Approximations (a) and (b) are purely geometric and are a
consequence of the ranking of the conductivities. That is, the dominant
resistance to the flow of current is the thin sheet of cryolite, so that the
current passes directly downward through this layer (condition (a)). The
aluminium, which is a very good conductor, is almost an equipotential
surface, so that spatial variations of Jz in the cryolite (due to undulations
of the interface) lead to a 'shorting' of the perturbed current through the
aluminium. This 'shorted' current is almost purely horizontal (condition
(b)). The neglect of the perturbed Lorentz force in the cryolite (condition
(c)) stems from the fact that }c <^}a, which in turn arises from the aspect
ratio kh <$£ 1. The uniformity of the velocity in the two fluid layers (con-
dition (d)) follows from the fact that the Lorentz force in the aluminium
is independent of depth.

This leaves only simplification (e) to justify, and here there is some
subtlety in the argument. Using subscripts H and V to indicate horizontal
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and vertical components of J and B, it seems reasonable to neglect \H x
BH and ]v xBH because the former is vertical and so merely perturbs the
vertical pressure gradient, while the latter is much smaller than \H x B F ,
by virtue of (b). Finally, the neglect of b x Jo relies on the fact that |b| is
of order \/JL\HH\, while |B0| is of order /x/0Lx, so that |J0 x b| is of order
kH smaller than |j x BF | .

11.4 A Shallow-Water Wave Equation and Key Dimensionless Groups

We now derive a dynamic equation for interfacial waves. This equation
(11.4) is more general than the 'mode-by-mode' description of (11.1) in
that it makes no assumption regarding the existence or shape of lateral
boundaries. The derivation is long and somewhat technical, and so the
impatient reader may wish to jump directly to the end result, which is
equation (11.18).

11.4.1 A shallow-water wave equation

We start with conventional shallow-water theory. It is not difficult to
show that, to second order in kH, the pressure in each layer is hydro-
static. As a consequence, we may apply the conventional shallow-water
equation to each layer in turn. This is a two-dimensional equation for the
horizontal motion:

Here Ha(x, y) is the aluminium depth, Po is the interfacial pressure, and
¥H is the horizontal body force in each layer. The unfamiliar term on the
left arises from the horizontal gradient in pressure. For example, the
pressure at the base of the aluminium layer is Po + PagHa>

 s o that the
horizontal pressure force at the base of the layer is — VP0 — pagVHa.
Similarly, the horizontal pressure force at the top of the cryolite layer
is - V P 0 + Pcg^Hc = - V P 0 - PcgVHa.

Note that, since ¥H is independent of z (to leading order in kH), our
shallow-water equation is a strictly two-dimensional equation of motion.
We now linearise our equation of motion about a base state of zero
background motion. Taking Ha — H + rj(x, y, t), we obtain
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Although uH is a two-dimensional velocity field, vertical movement of the
interface means that the two-dimensional divergences of waH and wcH are
both non-zero. In fact, it is readily confirmed that (figure 11.5)

(Here we have dropped the subscript H for convenience.)
Next, we replace ua and uc by the volume fluxes qa = Hua and

qc = — h\ic. Also, by virtue of condition (c) in Section 3 of this chapter,
we may take Fc = 0 (to leading order in kH). This is valid because, as we
have seen, the current perturbation in the cryolite is an order of magni-
tude smaller than that in the aluminium. The governing equations
become

(11.7)

(11.8)

V-qc = V qa = (11.9)

We now perform a so-called Helmholtz decomposition on q: q = q^ + q .̂
That is, we divide q into a solenoidal, rotational part and an irrotational
component of finite divergence. The boundary conditions on qa and qc

are that q • n vanishes at the boundary, S. An appropriate decomposition
is therefore

V7 r\ v~7 / r\ o /1 1 1 r\\

= 0, . • n = 0 on S (11.11)

Figure 11.5 The horizontal divergence of ua.
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Evidently, q^ is zero in the electrolyte, while qP is the same in both layers:
qc = qp; qa = qp + qR. We now rewrite (11.7) and (11.8) in terms of qP

and q^, eliminate Po by adding the equations, and use (11.10) to express rj
in terms of qP. The resulting equation of motion is

(11.12)

where p — pc/h + pa/H and Ap — pa — pc. The subscript P on the
bracket implies that we take only the irrotational component of the
corresponding term. Note that, when the Lorentz force is zero, we
recover the conventional equation for interfacial waves in the shallow-
water limit:

(11.13)

We now evaluate ) a , and hence Ffl, using the long-wavelength approxima-
tion. In the cryolite we have, to leading order in kH, d2<&/dz2 = 0, from
which

Jc = -(joT]/h)ez + O(kh)

This current passes into the aluminium, and so the boundary conditions
on J7n are

'ha = -(JoV/h)ez on z = 0

]za = 0 on z = -H

It is readily confirmed that the conditions of zero divergence and zero
curl, as well as the boundary conditions given above, are satisfied by

la = 1H(*> V) - (1 + z/H)(J0ri/h)ez (11.14)

Here j# is the horizontal component of the current density in the alumi-
nium, which satisfies

V x j / f = 0, v ' J / / = ^ ' J V n = 0 onS (11.15)

Comparing equation (11.15) with (11.10) we find that
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(11.16)

This is the key relationship which allows us to express the Lorentz force
in terms of the fluid motion, and therefore it deserves some special atten-
tion. The physical basis for (11.16) is contained in Figure 11.3. When the
interface tilts, there is a horizontal flow of current from the high to the
low side of the interface. Simultaneously, there is a horizontal rush of the
aluminium in the opposite direction. It is this coupling which lies at the
heart of the instability, and which is expressed by (11.16).

We now invoke condition (e) of Section 11.3 which states that the
leading term in the Lorentz force arises from the background component
of Bz. Substituting for ¥a in (11.12) and introducing

= J0Bz/phH (11.17)

we find, after a little algebra, that

(11.18)

Finally, to obtain the most compact version of our wave equation, it is
convenient to introduce potentials for q̂  and F^ = ¥a — ¥R.

qP =

Then (11.18) becomes

(11.19)

(11.20)
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where kB is defined as coB/c. The corresponding boundary conditions on
0 P and W are

• n = 0, • n = {V(j)p x n)z (11.21)

Note that the boundary condition on *I> comes directly from (11.16) and
from the definition of FP .

11.4.2 Key dimensionless groups

At last we are in a position to investigate cell stability! Solving (11.19)
subject to boundary conditions (11.21) will determine the stability of the
interface. Note that (11.19) is valid for any shape of domain, since we
have made no assumptions about the lateral boundaries. We shall see
that (11.19) can support both standing waves and travelling waves, and
that both may go unstable.

Consider now a rectangular domain of size Lx, Ly. We can make
(11.19) dimensionless by rescaling t according to i = kBct and x accord-
ing to x = kBx. In scaled units, (11.19) becomes

0 P - V20P = ^ , V2vj/ = 0

Evidently, the behaviour of interfacial waves in a rectangular domain is
controlled only by (scaled) boundary shape, i.e. by Lx = kBLx and
Ly = kBLy. It follows that the stability threshold in a rectangular domain
is uniquely determined by two dimensionless parameters,

(11.22a, b)

Here e* is a dimensionless version of s introduced in (11.1). Later, when
we show some examples of cell instabilities, we shall find it convenient to
introduce a slightly different dimensionless measure of JQBZ.

6 =
(2LX

ApghHLxL, - \ - LrLv
(11.22c)
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11.5 Travelling Wave and Standing Wave Instabilities

Our shallow-water equation supports both travelling waves and standing
waves. We shall show that both may become unstable.

11.5.1 Travelling waves

Consider an infinitely long channel of width L, say 0 < x < L, as shown
in Figure 11.6. The easiest way of identifying travelling waves is to write
both W and (j)P in the form

(j)p = 0(x) exp[j(a)t - kyy)]

and define a second wavenumber, kx, through the expression kx =
(co2/c2) — k2

y. Then (11.19) gives the eigenvalue problem

0" + k2j = - ^ = 0 on x = 0, L

il/" - k2
y^ = 0, -—=jky(j) o n x = 0,L

ox

After a little algebra this yields a dispersion relationship for kx in the
form

2(kBL)4 cosh q cosp — 1 + - (p/q — q/p) sinh q sin/?
(11.23)

+ (p2 + = o
where p = kxL and q = kyL. When the Lorentz forces are zero (kB = 0),
this gives kx = rnn/L, which represents conventional travelling waves in a
channel. For a finite value of kB, and for an arbitrary wavenumber, ky, we
can always find a solution of (11.23) for which kx is real. This represents
stable travelling waves. However, (11.23) also supports unstable waves.
That is, for real values of kB and ky, we can find complex values of kx

\ \ \ \ \ \

Figure 11.6 Travelling waves in a channel.
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which satisfy (11.23). This leads to complex frequencies and therefore to
unstable motion. Figure 11.7 shows the neutral stability curve for waves
in the range 0 < q < 10.

11.5.2 Standing waves in circular domains

We now consider waves in a closed, circular domain. This is of interest as
it demonstrates the instability in a particularly simple way. Suppose the
fluids occupy the domain 0 < r < R, and consider solutions of the form

0 P = 0(r) exp[/(0 - cot)], V = V(r) exp[/(<9 - cot)]

It is readily confirmed that (11.19) requires ^ to be linear in r, ^ = Ar,
and that 0 takes the form

0(r) = BJX (kr) - (k2
B/k2)Ar, k = co/c

where Jx is the usual Bessel function. Boundary conditions (11.21) require

0;(i?) = O, $(R)=jRA

which yields the dispersion relation

k2
BJ2(kR)=jk2J[(kR)

This requires that k is complex, and so the waves are unstable for all non-
zero kB. The key point, though, is that the interface near marginal sta-
bility is of the form

rj ~ J\(kr) sin(0 — cot)

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Figure 11.7 Neutral stability curves corresponding to (11.23).
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which represents a rotating, tilted interface. This is precisely what is
expected from the compound pendulum analogue.

11.5.3 Standing waves in rectangular domains

We now turn to rectangular domains. Here it is convenient to rewrite
(11.19) in matrix form. This can be achieved by expanding qP in a set of
orthogonal cosine functions fa of the form

fa = ^mn ~ cos(m7rx/Lx)cos(n7ty/Ly)

k] = k2
mn = (mjT/Lx)

2 +

Here xt{i) are the amplitudes of the modes. Of course, fa are just the
gravitational modes in the absence of Lorentz forces, and kt are the
corresponding wavenumbers.
We now take the dot-product of (11.18) and V^- and integrate over V.
The result is

xK0+4-*«-= "*£*(/*/ (1L24)
where cogi are the gravitational frequencies and the interaction matrix Ktj

has elements

j ) z V (11.25)

We have normalized fa such that

\\fidV=l (11.26)

Note that Ktj is skew-symmetric and has all of its diagonal elements equal
to zero:

K^-Kji (11.27)

Finally we truncate xt at some suitably small wavenumber and rewrite
(11.24) in matrix form:

x + ngx = co2
BKx (11.28)

Let us now consider some of the more general properties of (11.28).
Consider the case where coB is much greater than the gravitational
frequencies of the truncated system. In this case, (11.28) gives
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-£=-a>4
BSlx, S^-KK (11.29)

The equivalent eigenvalue problem is

Sxx = -(co/coB)4x = Xx (11.30)

Now Si is real, symmetric and has positive diagonal elements. It follows
that the eigenvalues, Xh are real and at least some of them are positive.
We conclude, therefore, that for large coB at least some frequencies of our
truncated system are complex.

Let us now return to the general eigenvalue problem represented by
(11.28):

(Qg - co2
BK)x = Ax, X = o? (11.31)

Suppose that x is truncated after N modes and that the diagonal elements
of Qg are arranged in order of increasing frequency from o?gX to a)2

gN.
Then we may show that in the truncated system the eigenvalues, Xh have
the following general properties:

(a) co2
gl < Re(X) < co2

gN;

(b) £*.- = E«&;
(c) ki/o)2

B are zero or purely complex if, o?B ^> o?gN.

These properties are sufficient to define the general behaviour of X. The
first follows from the skew-symmetry of K. That is, if xt is the complex
conjugate of xh then

If we normalize the eigenvectors to have unit magnitude and take the
complex conjugate of the transpose of this equation, we obtain

Condition (a) then follows. Condition (b), on the other hand, arises from
the fact that the sum of the eigenvalues equals the trace of Qg — &>|K,
while condition (c) is a standard result for skew-symmetric matrices.

The situation is therefore clear. As coB is increased, the eigenvalues
move along the real axis but remain within the limits o?gX < X < a)2

gN.
At some critical value of coB two or more eigenvalues become complex
(an inevitable consequence of condition (c)) and do so in the form of
complex conjugate pairs (condition (b)). However, the real part of the
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complex eigenvalues remain bounded by the least and largest gravita-
tional frequency of the truncated set of modes (condition (a)).

We now present a simple numerical example which illustrates the
phenomenon. We shall show that frequently it is not the pair of
modes with the closest gravitational frequencies which go unstable
first. Moreover, the modes which go unstable at the lowest value of
JQBZ need not be the most dangerous. Often the highest growth rates
are observed in the pairs of modes which are the second or third to go
unstable. Of course, it is the modes with the highest growth rates which
are most likely to survive the friction which is inevitably present in any
real flow. We start by rewriting (11.31) in dimensionless form. We use
kx = 7T/Ly as a characteristic (inverse) lengthscale and introduce kt =
kt/kx, X = a?/(ckl)

2, and

2Ly\
4 JOBZ = (2Ly\

4 col

) )
= (2

ApghHLxLy \ n ) c2LxLy

Consider the case Ly/Lx = 0.3, which is typical of a real cell. The trajec-
tories of the eigenvalues in the complex plane are shown in Figure 11.8.
Three ranges of e are indicated, corresponding to e < 0.12, s < 0.15 and
s < 0.20. Figure 11.8(a) shows that, by 8 = 0.12, one pair of eigenvalues
has coalesced and moved into the complex plane. In fact, these complex
eigenvalues first appear at 8 = 0.0577, through the interaction of the
(3, 0) and (0, 1) modes. (We classify the eigenvalues in terms of their
mode number (m, n) when 8 = 0). By 8 = 0.15, the complex eigenvalues
have returned to the real axis and a new pair of unstable frequencies have
appeared. This arises from an interaction of a (2, 0)mode with one of the
pair of previously unstable eigenvalues. By 8 = 0.2 two additional
unstable pairs have appeared. One arises from the interaction of (1, 1)
and (2, 1) modes, and the other through the interaction of the (1,0) mode
with the second of the pair of previously unstable modes. The behaviour
is summarised in Table 11.1.

Table 11.1. Formation of unstable frequencies

Instability Modes Comments

First . . . (3,0) + (0, 1) Restabilises
Second... (2, 0) + ±[(3, 0) + (0, 1)] -
Third. . . (1,1) + (2, 1) Furthest to the right
Fourth. . . (1, 0) + \ [(3, 0), (0, 1)] Furthest to the left



384 11 MHD Instabilities in Reduction Cells

Im

0.15

0.10

0.05

0

-0.05

-0.10

-0.15

-0.20
C

0.2

0.1

Im 0

-0.1

-0.2

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

(a) >

J

0.4 0.8

0.4 0.8

Im

1.2 1.6 2.0

. (b)

1.2 1.6 2.0

(c)

-

0 0.4 0.8 1.2 1.6 2.0
Re

Figure 11.8 Instabilities in a rectangular cell, Ly/Lx = 0.3.
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This simple example exhibits two interesting features. First, it is not the
modes with the closest gravitational frequencies cogi which go unstable. In
fact, the closest gravitational frequencies are the (0, 1) and (1, 1) modes,
yet at no time do they combine to produce an instability. Second, by
e = 0.2, the largest growth rate is exhibited not by the first instability,
but by the fourth one. Given that any real flow has dissipation, it is this
last instability which is the most likely to appear in practice.

Notice that the first instability appears at quite low values of e, e =
0.0577 (i.e., coBLy/c = 1.08). The idea is that, while coB is still quite small,
two adjacent frequencies might interact, converge and move off onto the
complex plane. If the initial frequencies are close, this interaction is a
local one, in the sense that it does not involve the other modes. This, in
turn, leads to the idea that modes with close gravitational frequencies are
dangerous. However, it is important to note that K is very sparse. Indeed
only around one in five mode-pairs are coupled. In general, then, rela-
tively few modes exchange energy. It is not difficult to show that an
instability cannot develop from these uncoupled modes, so it is only
the separation of the coupled modes which is important. Thus a stability
criterion based on keeping all gravitational modes apart is overly con-
servative. This point is of considerable practical importance.

11.6 Implications for Reduction Cell Design

There are many idealisations embedded in our stability analysis, and so it
would be imprudent to consider it as representing an accurate working
model of a real cell. Nevertheless, it does capture the key instability
mechanism and so the broad conclusions of the model should be valid.
It follows that if we wish to avoid instabilities it is sensible to:

(i) choose the cell aspect ratio Lx/Ly to ensure that the natural frequen-
cies of the dominant interfacial waves are well separated;

(ii) minimise the ambient vertical field, Bz;
(iii) carefully control the fluid depths, h and H.

If we wish to eliminate the instability completely then more drastic action
is required. One possibility is to introduce baffles into the liquid alumi-
nium, whose function is to break up the long-wavelength sloshing
motions. Another is to monitor the interface position continuously,
and slowly tilt or move the anode in sympathy with any wave so as to
keep the electrolyte thickness roughly uniform. This will prevent the build
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up of large current perturbations and so remove the driving force for the
instability. However, there are many practical problems associated with
these modifications. Perhaps Tolstoy was right when he suggested that it
is easier to hypothesise than to act.

Examples

11.1 The depth of the electrolyte in present-day reduction cells is around
5 cm. Estimate the annual savings which would result from reducing
this by 1 cm.

11.2 There are at least three simple ways of eliminating the instability.
Two are listed above. The third is to use sloping cathode blocks to
continuously drain the aluminium and so avoid the build-up of a
thick aluminium layer. Why do you think this has not been imple-
mented?

11.3 Find the normal mode shape for the oscillations of the compound
pendulum shown in Figure 11.5. Confirm that for large s the mode
consists of a rotating, tilted plate.

11.4 Give a simple physical explanation, based on the compound
pendulum, why travelling wave instabilities in a channel are
inevitable.



High-Frequency Fields: Magnetic Levitation and
Induction Heating

Electricity is of two kinds, positive and negative. The differ-
ence is, I presume, that one comes a little more expensive, but
is more durable; the other is a cheaper thing, but the moths

get in.
Stephen Leacock

A high-frequency induction coil can be used to heat, levitate and stir
liquid metal. This has given rise to a number of metallurgical processes,
some old (such as induction furnaces) and some new. In this chapter, we
shall discuss five.

(i) Induction furnaces. These have remained virtually unchanged for
the best part of a century, yet we are still unable to calculate
reliably the stirring velocity within a furnace!

(ii) Cold crucible melting. This is an ingenious process which com-
bines the functions of an induction melter and a continuous caster,
all in one device.

(iii) Levitation melting. This is now routinely used in the laboratory to
melt small specimens of highly reactive metals. Unfortunately, if
the levitated drop becomes too large, it tends to drip.

(iv) The electromagnetic valve. This provides a non-contact means of
modulating and shaping a liquid-metal jet. It is a sort of levitation
melter in which the metal is allowed to leak out of the bottom,

(v) Electromagnetic casting. Some aluminium producers have
replaced the casting mould in a continuous caster by a high-fre-
quency induction coil. Thus, the melt pool is supported by mag-
netic pressure rather than by mechanical means. It is extraordinary
that large ingots, which may be a metre wide and ten metres long,
can be formed by pouring the liquid metal into free space and
soaking it with water jets!

These industrial processes are described in Section 3 of this chapter. First,
however, there is some work to do. We need to develop expressions for
the levitation force per unit area (magnetic pressure), the heating rate per

387
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unit volume, and the stirring force (the rotational part of J x B) induced
by a high-frequency magnetic field.

12.1 The Skin Effect

We are concerned here with the ability of high-frequency magnetic fields
to heat, levitate and stir liquids. All of these processes are controlled by
the so-called skin effect: the ability of a conducting medium, solid or
liquid, to exclude high-frequency fields. In this section, we describe (in
words) the physical origin of this phenomenon. In Section 2, we will
quantify the process.

The skin effect is most readily understood in the context of solid, rather
than fluid, conductors, and so we start with solids. We have already seen
that a magnetic field diffuses through a solid conductor according to

f^V2B (12.1)
ot

We cannot suddenly impose a magnetic field throughout a conductor. All
we can do is apply a field at the boundaries and then let it diffuse inward.
In fact, we saw in Chapter 4 that a magnetic field diffuses inwards by a
distance of under (2Xt)l/2 in a time t. There is an analogy here with heat.
Heat (temperature) diffuses through a thermally conducting medium
according to

— = aV2T (12.2)

If the surface temperature of a body is suddenly raised by an amount A77,
then that temperature difference will diffuse inward into the conducting
medium, travelling a distance of order (2at)1/2 in a time t.

Let us stay with the thermal analogy as we consider oscillating, rather
than steady, boundary conditions. Suppose that the temperature at the
surface of some thermally conducting medium oscillates rapidly accord-
ing to T = To + ATsin(o)t), where To is the initial bulk temperature of
the medium. Heat is periodically injected into, and extracted from, the
conductor. As successive waves of positive and negative temperature
difference diffuse inward from the boundary, there is a tendency for
them to overlap and cancel. In the limit of a high angular frequency,
&>, the temperature fluctuations are felt only in a thin region adjacent
to the surface, of thickness 8 ~ (2a/co)l/2 (Figure 12.1). (This is readily
confirmed by looking for oscillatory solutions of (12.2).) What is true of
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T = 0

389

T(y)

T = AT sin(cot)

Figure 12.1 Thermal oscillations imposed at a boundary are restricted to thin
boundary layers adjacent to that boundary.

jHis also true of B. If an oscillating magnetic field is applied parallel to the
surface of an electrically conducting medium, the field will penetrate only
a finite distance, of order (2A/o>)1^2, into the medium. This is illustrated in
Figure 12.2.

Now if the magnetic field is excluded from the interior of the medium
then there must be currents induced in the surface of the conductor whose
direction is, in some average sense, opposite to that of the external cur-
rents which generated the field. That is to say, the magnetic field in the
interior of the conducting medium is the superposition of two fields: one
associated with the external currents and one associated with the induced
currents, each calculated in accordance with the Biot-Savart law. If the
combined field is to be zero in the interior then the external and induced
currents must, in some average sense, oppose each other.

In general, then, a high-frequency magnetic field induces currents in the
surface of a conductor whose distribution is such as to shield the interior
of the conductor from the imposed field. These currents are restricted to a
thin surface layer of thickness 8 ~ (2A./o>)1/2, called the skin depth. In fact,
we take as our working definition of the term 'high frequency' that 8 must
be much less than any relevant geometric length scale, say the character-
istic size of the body. Now the fact that a magnetic field is shielded from
the interior of a conductor is not, in itself, particularly important in
metallurgical MHD. However, the existence of a thin surface layer of
induced current is useful. Opposite currents repel each other, and so
the conductor shown in Figure 12.2 will experience a sideways repulsion
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Figure 12.2 A high-frequency magnetic field is shielded from the interior of a
conductor by the formation of surface currents which are restricted to a thin layer
of thickness (2X/co)x/2.

force. Moreover, the induced currents will heat the conductor. It is the
ability of high-frequency conductors to repel and heat conducting mate-
rial, liquid or solid, which is the key to many industrial processes.

12.2 Magnetic Pressure, Induction Heating and High-Frequency Stirring

Let us now quantify the arguments of the previous section. We shall
derive expressions for:

(i) the levitation force;
(ii) the surface heating rate;

(iii) the stirring force (the rotational part of J x B).

Suppose that we have a magnetic field B = Bo cos(&tf)£zapplied at the
surface of a conducting fluid, as shown in Figure 12.3. In the first instance
we shall take Bo to be uniform. Let us assume that the velocity of the fluid
is everywhere much less than col, where / is the smallest characteristic
length scale of the problem. (This is almost always true in practice.)
Then, for the purposes of calculating B, we may treat the fluid as a
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1
Bo cos (cot)

Figure 12.3 A simple model problem.

stationary, solid conductor. The governing equation for B simplifies to
(12.1), which has the simple solution

B = Bo Qxp(—x/8) cos(cot — x/S)ez, 8 = (2X/co)l/2

As expected, B is confined to a thin layer of thickness ~ 8. The induced
current is given by Ampere's law which, for this geometry, simplifies to

1 dB
j = -±^ey (12.3)

Substituting for Bz we find

Jy = (B0//JL8) Qxp(-x/8)[cos(a)t - x/S) - sin(cot - x/S)] (12.4)

The Lorentz force within the skin depth can now be calculated:

This contains both a mean and an oscillatory component. However, we
are interested only in the time-averaged value of the Lorentz force, since
the finite inertia of the fluid means that a high-frequency, oscillatory force
induces very little motion in the fluid. The time-averaged force is

= - ^ 7 r e x P ( - ^ / * ) \*x

If we integrate this through the skin depth we find

(12.5)

(12.6)
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This is the repulsion force anticipated in the previous section. Of course,
BQ/AIX is simply the magnetic pressure which is an inevitable consequence
of |B| dropping from Bo to zero across the skin depth.

It is also of interest to calculate the Joule dissipation, J2/a, within the
fluid. Integrating J2/a across the skin depth gives the net heating rate per
unit surface area. It is readily confirmed that

(12.7)

Let us now consider some of the consequences of allowing BQ to vary
slowly along the surface, as indicated in Figure 12.2. Let L be a typical
geometric length scale, say B0/(dB0/dz). We shall take L^> 8. (Recall that
this is our working definition of 'high-frequency'.) When L^> 8, expres-
sions (12.6) and (12.7) remain valid (to leading order in 8/L) provided
that Bo is interpreted as the local field strength. However, allowing Bo to
vary slowly within z introduces an additional effect: it induces motion in
the fluid.

Consider the simplest case where B is two-dimensional: (Bx, 0, Bz). The
variation of Bz along the surface implies that Bx is non-zero, and in fact
V • B = 0 fixes the horizontal field as

Bx = -—— [cos(cot - x/8) + sm(cot - x/8)] exp(-x/<5) (12.8)
2 oz

Since we have a small but finite horizontal field, the Lorentz force takes
on a slightly different form. To find this force it is convenient to rewrite
J x B as

/xJ x B = -V(5 2 /2) + (B • V)B

We now throw out all terms of order (8/L)2 and smaller. The result is

This can be further simplified. Noting that

dBJdx = (BQ/8) exp(-x/(5)[- cos(cot - x/8) + sin(arf - x/8)]

it is evident that Bx(dBz/dx) has zero time average, and so the mean
Lorentz force is
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(12.9)

We may regard J x B as being composed of two parts. The first is
irrotational and for confined fluids this merely supplements the fluid
pressure. It is this term which leads to the magnetic pressure, JBQ/4/X.

The second term is rotational and so cannot be balanced by the fluid
pressure. It is much smaller than the first and is directed along the
surface towards the peak value of Bo. This tangential force drives a
fluid motion within the skin depth, pushing fluid from regions of low
magnetic pressure to those of high magnetic pressure, as shown in
Figure 12.4.

In summary, then, a high-frequency magnetic field, imposed at the
boundary of a conducting fluid, has three effects:

(i) it repels the surface with a magnetic pressure of BI/4/JL;

(ii) it generates heat at a rate of {BQ/AJJL) a)8 per unit surface area;
(iii) it induces a tangential force 3/3z(l?o/4/z)exp(—2x/)ez which drives

fluid motion from regions of low magnetic pressure to regions of
high pressure.

Figure 12.4 Motion induced by a variation in surface field strength.
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12.3 Applications in the Casting of Steel, Aluminium and Super-Alloys

12.3.1 The induction furnace

The first induction furnace was designed by Ferranti in 1887. It reached
more or less its present form around the turn of the century and has
changed very little over the last one hundred years. The so-called 'core-
less' induction furnace consists of a cylindrical, refractory vessel, filled
with liquid metal, and surrounded by a high-frequency induction coil in
the form of a solenoid. The coil generates a magnetic field which is almost
parallel to the axis of the vessel, but which is confined to the skin depth of
the molten pool. The primary purpose of the magnetic field is to heat the
metal, although it has the added effect of stirring the liquid. This stirring
turns out to be useful because it provides an effective mechanism for
transporting the heat created at the boundaries into the interior of the
liquid. However, it has the disadvantage that excessive velocities can lead
to the erosion of the vessel wall.

We have already seen that the stirring force is confined to regions
where the magnetic field varies along the surface of the melt. That is to
say, the rotational component of J x B is, from (12.9),

Here the subscript V indicates a rotational force, B0(s) is the surface
field, s is a coordinate measured along the boundary and n is the dis-
tance from the surface. An inspection of Figure 12.5 suggests that this
stirring force is confined largely to the corner regions of the furnace
where the magnetic field enters and leaves the metal. In fact, this is
often the case, and so the motion in the fluid is largely determined by
the magnetic field distribution in a relatively small part of the furnace.
This has two consequences. First, there exists the interesting possibility
of controlling the flow by making small local changes to B. Second, if
the driving force for u is rather sensitive to small geometrical features
then it may be difficult to formulate simple, reliable estimates of |u|.
Still, we might expect the gross flow pattern to be like that shown in
Figure 12.5. The rotational Lorentz force will drive fluid along the walls
from the corner regions, where the magnetic pressure is low, to the mid-
plane of the furnace where Bo is high. This flow will then recirculate
back through the core of the furnace, giving us an axisymmetric flow
pattern consisting of two toroidal vortices. (If the stirring force in one
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Figure 12.5 An induction furnace.

corner greatly outweighs the force in the other, then one of the toroidal
vortices may be suppressed.

We shall now try to estimate the magnitude of |u|. The procedure is
somewhat circuitous, in that we first estimate the turbulence level in the
furnace and then try to estimate the magnitude of the mean flow which
would support such a level of turbulence. The arguments are all a bit
rough and ready, but they do furnish estimates which are reasonably in
line with experiments.

The starting point is to integrate the time-averaged Navier-Stokes
equation around a closed streamline. When conditions are steady on
average, this yields

(12.11)

where u is time-averaged velocity and ztj is the Reynolds stress. This
represents an energy balance. It states that the work done by F r on a
fluid particle moving once around a closed streamline must be exactly
balanced by the (negative) work done by the frictional shear stresses.
If the two did not balance then the fluid particle would return to its
starting position with a different mean energy, which cannot be the case
in a steady-on-average flow. Now ztj might be estimated as ztj ~ pu2 where
u is a measure of the fluctuating velocity. It follows from (12.11) that

F r • d\ ~ pu2l/lz



396 12 High-Frequency Fields

where / is a characteristic geometric length scale and lT is a typical length
scale for cross-stream gradients in Xy. Substituting for F r yields

1/2

u ft
However, we are interested in the mean velocity u, rather than u . In
many forced, confined flows u is around one-third of the peak mean
velocity. If this is true in an induction furnace (and there are measure-
ments to suggest it is), we might anticipate that the peak stirring velocity
is of the order of

(12.12)

The next question is, of course: what is /T? Some researchers assume that,
since F r is concentrated in a thin surface region of thickness 8, the flow
near the wall must consist of thin wall jets, of thickness 8, which are
driven by F r. These jets start near the corners of the furnace and direct
fluid along the walls towards the mid-plane where opposing jets collide,
driving fluid out into the core. If this is all true, then the bulk of the
turbulent dissipation will be confined to the wall regions. In such cases lT

should be taken as 8, and (12.12) yields (Hunt & Maxey, 1980)

An alternative possibility is that jets do not form and so the dissipation is
distributed across the whole of the flow, in which case lT ~ / and we have
the simpler estimate

(12.13b)
(PM) 1 / 2

There are many assumptions and approximations built into (12.13a, b).
Somewhat surprisingly, the experimental data tend to support (12.13a,
b). It is found that u does indeed scale linearly with i?0/(p/z)1/2, and
typically it is of the order of B0/(pfji)l/2. It is less clear, however, which
of these two estimates is the better. In most experiments (5//)1/2is around
0.4 -» 0.8, and in view of the uncertainty in the multiplying factor of 3 it
is not possible to distinguish clearly between (12.13a) and (12.13b) by
simply examining the magnitude of u. A better test is to examine the
dependence of u on co, since (12.13a) suggests u ~ co~l/4 while (12.13b)
gives u independent of co. The experiments indicate a behaviour some-
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where between the two (Taberlet & Fautrelle, 1985), suggesting that
(12.13a,b) are really too simplistic and that a more detailed analysis is
required. So one hundred years after its introduction, we are still unable
to estimate the velocity induced in an induction furnace!

12.3.2 The cold crucible

We now consider a device known as the cold crucible. This is designed to
both melt and cast a metal in a single operation. The upper part of the
crucible acts like an induction furnace, into which solid material is fed.
This is inductively melted to form a liquid pool. The lower part acts like a
casting mould, in which the liquid metal freezes on contact with the cold
walls of the crucible. In steady-state operation solid fragments are con-
tinually fed in from above, while an ingot is withdrawn from the bottom.
A schematic representation of the process is shown in Figure 12.6.

The name 'cold crucible' derives from the fact that the walls of the
vessel are constructed from water-cooled metal segments which cause the
molten pool to freeze on contact with the vessel wall. This is quite dif-
ferent from an induction furnace whose insulating, refractory walls are
hot, leaving the metal as a liquid. The ingenious part of the cold crucible
lies in the construction of the wall. In order to heat the metal it is neces-
sary to find some way of allowing the magnetic field to pass through the
conducting wall of the crucible. This is achieved by segmenting the wall,
as shown in Figure 12.6. Each segment is electrically insulated and so the
eddy currents which are induced in the outer surface of the wall, and
which would ordinarily shield the interior from the applied field, are
forced to recirculate around each segment. The end result is a smooth
distribution of current on the inside surface of the wall, which in turn
generates a magnetic field in the interior of the crucible. It is as if the
segmented wall is transparent to the magnetic field. The lower part of the
vessel acts just like a conventional casting mould, with the liquid freezing
on contact with the water-cooled metal wall. As in conventional casting,
it is necessary to feed small quantities of casting flux down the gap
between the ingot and the crucible wall. This acts as a lubricant and
provides a thin thermal barrier between the ingot and the walls.

Cold crucibles are also used to melt material in batches, rather like an
induction furnace. In such cases the bottom of the crucible is blanked off
using a segmented, water-cooled plate. The bulk of the crucible contents
is then liquid, but we retain a thin crust of solid metal (called a skull)
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Figure 12.6 A cold crucible consists of water-cooled segments surrounded by a
high-frequency induction coil.

adjacent to the walls and base. This is often used to melt highly reactive
metals, such as titanium or nickel, which would attack the refractory
walls of a conventional furnace.

12.3.3 Levitation melting

We now turn to industrial and laboratory processes where the primary
function of the magnetic field is to levitate or repel the liquid metal.
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These, of course, rely on the existence of the magnetic pressure, BI/4/JL. In
this section we focus on levitation melting, a technique which was first
suggested in 1923, but had to wait until the 1950s to be tried in the
laboratory, and the 1960s to be developed commercially.

Levitation melting is now commonly used in the laboratory as a means
of melting small specimens of highly reactive metal. It is also used as a
means of measuring the surface tension of liquid metals. The topics we
will discuss here are:

(i) the shape of the levitation coils;
(ii) the fact that the process is pseudo-static (the induced velocities are

low);
(iii) there is a limit on the drop size which may be levitated;
(iv) a method for calculating the drop shape;
(v) a variational principle associated with the drop shape.

A simple levitation device is shown in Figure 12.7. It consists of a lower
toroidal coil, wound into a basket shape, above which sits the metal
droplet. A second, smaller, coil is located above the specimen and this
carries a current which is 180° out of phase with the lower coil. We shall
see shortly that there is a strict limit to the size of specimens which may be
levitated in this way: typically the droplet size is no more than one or two
centimetres. Since we require 8 <^ (drop size) in order to generate mag-
netic pressure, this implies that high frequencies are required, of the order
of 100 kHz.

Figure 12.7 Levitation melting of a small metal specimen.
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The two coils shown in Figure 12.7 have rather different functions. The
lower coil provides support against the weight of the metal. The top coil,
on the other hand, is required to provide stability. That is, the introduc-
tion of the upper coil creates a field configuration which, in the absence of
the specimen, has a null point somewhere on the axis between the two
coils. A small test specimen placed at such a point is stable to small lateral
movements because any movement of the specimen brings it into a region
of higher magnetic field, and the resulting change in magnetic pressure
will tend to push the metal back towards the null point. At least that is
the theory. In practice, instabilities such as vertical oscillations and rota-
tions often develop.

In order to understand the shape of the levitated droplet, and to predict
the maximum mass which can be levitated, it is necessary to consider the
balance between magnetic pressure, fluid pressure (which is due to self-
weight) and surface tension. Usually this balance may be treated as
pseudo-static, in the sense that the effect of motion on the fluid pressure
may be ignored. The reason for this simplification is as follows. The
rotational component of the Lorentz force, which drives motion in the
droplet, is of order |F r | ~ BQ//JLI where Bo is the surface field strength and
/ is a typical geometric length scale (say the droplet size). This force acts
parallel to the surface. Now suppose we integrate this through the (nar-
row) skin depth and replace the distributed force by an effective shear
stress of order r ~ (i?o//z) (<$//). Compare this with the magnetic pressure,
pm = BQ/AJJL. Evidently, since 8 is much less than /, we have
T ~ Pm(&/1) ^Pm- However, r leads to fluid motion, while pm counter-
balances the hydrostatic pressure, and so we would expect pu2 <3C pgl in
the limit of 8 <£ /. Thus, if our sole purpose is to determine the equili-
brium shape of the drop, we may ignore F r and the associated motion
within the liquid. It follows that the surface shape is determined by the
pseudo-static force balance

B2

—^- + pgz + yK = constant

where K is the surface curvature, z is the vertical position of the surface
and y is the surface tension coefficient. If we take the origin of z to be at
the base of the droplet, and note that the Lorentz force is zero at z = 0,
we obtain

^ + pgz + yK = yK0 (12.14)
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where Ko is the curvature at the base of the drop.
It is now clear that there is a fundamental limitation to this process. In

any axisymmetric configuration the induced currents fall to zero on the
axis, and so the magnetic pressure is zero at the base and the top of the
drop. It follows that the hydrostatic pressure on the axis must be
balanced by surface tension alone, and this limits the height of the droplet
which can be levitated. We can estimate this critical height, hc, from
(12.14). The maximum value of Ko will be of order 6"1, since we require
the local droplet thickness to be greater than 8 in order to maintain some
magnetic pressure. If we take K at the top of the drop to be much less
than Ko, which seems reasonable, then (12.14) gives pghc ~ y/8 and so
the critical height is of the order of

(12.15)

Drops larger than this will tend to drip near the axis.
The process of calculating the drop shape, although pseudo-static, is

still non-trivial. This is because the shape depends on the distribution of
B0(s), the surface field strength. Yet B0(s) itself depends on the presence
and shape of the drop since the field is excluded from the interior of the
drop and so must deform around its surface. In general, it is necessary to
adopt an iterative approach to calculate the shape, in which an initial
guess of the surface profile leads to a provisional estimate of B0(s). (This
is obtained by solving V • B = 0 and V x B = 0 outside the droplet, sub-
ject to B • n = 0 on the drop surface.) From this estimate of B0(s) the
magnetic pressure can be calculated and compared with that required to
hold the droplet in its chosen shape. At points the actual magnetic pres-
sure will be greater than that required by (12.14) and at other positions it
will be too small. The surface shape is then changed slightly, moving
outward at places where pm is found to be too small and inward where
pm is excessive. The procedure is now repeated for the new estimate of the
drop shape. After a few iterations a solution of (12.14) can be found
which is compatible with the external coil geometry.

An alternative iterative procedure for calculating the drop shape can be
established using a variational principle. This principle applies only in the
limit (5^-0 and assumes that the electric current in the external coils is
fixed and independent of the droplet shape. We proceed as follows. We
know that the equilibrium configuration, if stable, must correspond to a
minimum value of Eg + Ey + Ep where Eg is the total gravitational poten-
tial energy, Ey is the surface tension energy, and Ep is the potential energy
associated with the magnetic pressure. This latter energy is the work done
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against pm by the fluid boundary in establishing the presence of the drop.
(Imagine blowing up a balloon which is subject to some external pres-
sure.) The complication is that pm itself depends on the presence and
shape of the drop, and so we need some way of calculating Ep. It turns
out that, to within a constant, Ep is (minus) the energy of the external
magnetic field.

To see why this is so, consider what happens if the surface S of the
droplet deforms slightly. Let 8n be the movement of the surface at any
point on S, being positive if outward and negative if inward. We now
deform the drop, while conserving volume. The work done by the fluid
against pm is

= lpm8ndS

s

It follows that the increase in Ep caused by this movement is

SEp = l(£%/4n)8ndS (12.16)
j
s

Now consider the change in magnetic energy EB associated with the
deformation of the surface. This comes in two parts. First there is the
reduction in EB associated with the fact that the small volume 8ndS
previously contained a magnetic field which had an energy of
(Bl/4/ji)(8ndS). Second, the deformation of the drop changes the eddy
currents circulating in its surface, and this leads to a change in the exter-
nal magnetic field. If Vext is external volume we have

8EB = 8 [ (B2/4fi)dV - i(B2
0/4fi)8ndS (12.17)

However, it is easily seen that the first integral is zero. To this end we write
B = I*! + B2, where Bi is the field due to the coil which would exist in the
absence of the drop and B2 is the field associated with the eddy currents in
the surface S. Within the drop Bj and B2 are equal and opposite. Outside
we have 8(B2) = 2B <5B = 2B 8B2 since 5Bj = 0, the coil current being
fixed. However, <5B2 satisfies V x B = 0 in Fext and so this can be written
as <5B2 = V(0). This yields 5(B2) = 2V • (</>B), which integrates to zero in
Vext since B -> 0 at infinity and B • n = 0 on S. It follows that

8EB = -b(B2
0/4tjL)8ndS = -8Ep (12.18)
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It follows that the equilibrium configuration corresponds to a stationary
value of Eg + Ey — EB (Sneyd & Moffatt, 1982). This provides the basis
for an alternative iterative procedure for finding the droplet shape, i.e.
the boundary is systematically deformed so as to minimise
Eg + Ey — EB.

123.4 Processes which rely on magnetic repulsion: EM valves and EM
casters

Suppose we increase the mass of the droplet shown in Figure 12.7 until
the critical height, hc, is exceeded. The drop will start to drip, and if h is
made large enough a small jet will emerge, centred on the axis. If the
droplet mass is continually replenished from above we have a rudimen-
tary form of electromagnetic valve. The simplest embodiment of such a
device is shown in Figure 12.8. This provides a means of modulating the
flow of a liquid-metal jet without the need for any moving mechanical
part. By increasing the power in the induction coil, the flow rate through
the electromagnetic valve is reduced.

A simple estimate of the reduction in flow rate may be determined by
applying Bernoulli's equation from some upstream location, say the sur-
face of the reservoir which feeds the valve, to the point at which the jet
separates from the nozzle wall. The pressure in the jet at the separation
point is/?m (atmospheric pressure being taken as a datum for pressure). In
the absence of friction, Bernoulli's equation yields

Solenoid-

Flow

- Pinch force

Figure 12.8 A simple electromagnetic valve.
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pgH = -pu2 +pm

where H is the head of liquid above the separation point. The mean
velocity at the separation point is then

u=[2gH-Bl/(2pti)]
1/2

(12.19)

Of course, this is a rather simplistic estimate, which ignores frictional
losses and variations in velocity across the jet. For example, it predicts
that the flow is completely shut off at a critical value of magnetic pres-
sure, pm = pgH, yet we have already seen that this cannot be true in an
axisymmetric configuration. Nevertheless, experiments suggest that
(12.19) captures the gross behaviour of the device provided pm is not
too close to the critical value.

A quite different application of magnetic repulsion is illustrated in
Figure 12.9. This shows the electromagnetic casting of aluminium, a
process which was developed by Getselev in the USSR in 1971 and is
now used throughout Europe and North America. In effect, it is identical
to the conventional casting of aluminium except that the water-cooled
mould which normally surrounds the liquid pool (see Figure 8.1) is
replaced by a high-frequency induction coil. However, the mould and
coil fulfil similar roles: they are both required to maintain the pool
shape, the former achieving this by mechanical support while the latter
uses magnetic pressure. Remarkably, the process turns out to be stable.
The primary advantage of electromagnetic casting is that the surface
quality of the ingot is improved. This means that the ingot surface
does not require machining prior to rolling.

Figure 12.9 Electromagnetic casting of aluminium.



Appendix 1
Vector Identities and Theorems

(1) Grad, div and curl in Cartesian coordinates:

In cylindrical polar coordinates
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(2) Vector identities:
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(3) Integral theorems:
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(4) Navier-Stokes equations in cylindrical polar coordinates:



Appendix 2
Stability Criteria for Ideal MHD Based on the

Hamiltonian

This appendix is a generalisation of the discussion of stability given in
§6.4. There are several systematic approaches to developing sufficient
conditions for the stability of ideal (conservative) flows. The Kelvin-
Arnold1 variational principle, and the energy-Casimir2 method are, per-
haps, the best known (see Morrison, 1998, or Davidson, 1998, for a
review of these). Both methods are, in effect, elaborate procedures for
constructing an (energy-like) functional which is (i) quadratic in the dis-
turbance, and (ii) conserved by the linearised dynamics. Provided the
resulting integral invariant is non-zero for all possible disturbance shapes,
it can be used like a Lyaponov functional to bound the growth of dis-
turbances. That is to say, if ||5u|| is some norm for the disturbance, and
82F a conserved quadratic function of 8u then the flow will be unstable if
||£u|| grows despite the conservation of <52F, and so for instability we
require \\8u\\2/82F -> oo. Consequently, if there exist bounds of the
form |<52F| > A.||<5u||2for all <5u, then the flow cannot be unstable. In
short, stability is ensured if 82F is positive or negative definite.

However, as we shall see, there exists a third procedure for creating a
conserved, quadratic functional. Like the Kelvin-Arnold and energy-
Casimir methods it relies (in some sense) on the conservation of energy.
However, unlike these other methods, it is the Lagrangian, L, rather than
the energy, E, which plays the central role. We shall describe this proce-
dure in a moment, but we might note in passing that it relies on expand-
ing the Lagrangian up to quadratic terms in particle displacement, using
Lagrange's equations to discard the first variation in L, and then con-

1 This principle is often attributed to Arnold, but actually is was first stated (without proof)
by Kelvin in 1887 (see Phil. Mag. 23, 529-539.) Indeed, Kelvin used it to prove what
is now known as Rayleigh's inflection point theorem. It was later rediscovered by
Arnold in 1966.

2 A Casimir is any integral invariant other than energy.

407
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structing a conserved Hamiltonian for the truncated system. In order to
differentiate this procedure from the Kelvin-Arnold and energy-Casimir
methods we briefly summarise these other approaches.

In the Kelvin-Arnold method the appropriate functional is the distur-
bance energy AE = E — Eo, where Eo is the energy of the base flow.
Evidently, AE is conserved by the perturbed flow. However, in order
to ensure that AE is quadratic in the disturbance it is necessary to insist
that 8lE = 0. It turns out that this can be achieved by restricting the
choice of disturbances to those which conserve the topological (frozen-
in) invariants of the flow. (Such perturbations are termed isovortical
perturbations in the case of Euler flows, or generalised isovortical per-
turbations for other systems.) In such cases, 82E provides a conserved,
quadratic measure of the disturbance (as far as the linearised dynamics
are concerned), and stability to infinitesimal disturbances is then ensured
if 82E is positive or negative definite. The art of applying the Kelvin-
Arnold variational principle lies in spotting how to conserve all of the
topological (frozen-in) invariants when calculating AE, i.e. knowing how
to construct the generalised isovortical perturbations. This is readily
achieved for Euler flows where it is necessary only to ensure that Q is
frozen-in during the disturbance. However, it becomes quite intricate
when it comes to MHD, where it becomes necessary to ensure that B is
frozen-in as well as to conserve the cross-helicity of B and u.

In the energy-Casimir method, on the other hand, the appropriate
functional is A = E + C where C (the Casimir) is an integral invariant
for the flow which reflects, as generally as possible, the frozen-in (topo-
logical) invariants such as helicity, cross-helicity etc. If C is constructed in
a sufficiently general way, then it is usually possible to choose the precise
form of C such that 8lA = 0 at equilibrium (i.e. we choose C so that
8lC = —8lE). Linear stability is then ensured if 82A is positive or negative
definite. The Kelvin-Arnold and energy-Casimir methods are, in fact,
closely related, with C playing the role of a Lagrange multiplier, effec-
tively building in the topological constraints required by the Kelvin-
Arnold method (see, e.g. Davidson, 1998)

The use of conserved, quadratic functionals (which are non-zero for all
possible disturbance shapes) to bound the growth of perturbations is
often referred to as establishing formal stability.

We now differentiate our procedure from the Kelvin-Arnold and
energy-Casimir methods. A trivial example taken from mechanics will
suffice to show the difference. Consider a particle of mass m moving in a
circular orbit of radius r0 under the influence of the radial force
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F =/(r)e r. Suppose that/has potential V,f = -V\r) and let F = r26 be
the angular momentum of the particle. (We restrict ourselves to two-
dimensional motion and use polar coordinates r and 0.) We now perturb
the trajectory, r = r0 + r], 0 = 00 + ?/r0, and examine the linear stability
of the perturbed trajectory. For this simple system a conventional per-
turbation analysis provides the necessary and sufficient conditions for
stability. The trajectory is stable if and only if [rjJF0" + 3r§F0'] > 0.

Let us now see if we can obtain the same information using the energy
principles described above. The energy of the particle on the perturbed
path is

E = T + V = ]-m(r2 + r202) + V = Eo + 8lE + 82E + ...

where 8l and S2 represent terms which are linear and quadratic in the
disturbance, respectively. For arbitrary values of r\ and ?, 8lE is non-zero.
Thus, despite the conservation of E, 82E does not, in general, provide a
conserved, quadratic measure of the disturbance. (Remember, formal
stability requires that we can find a conserved, quadratic measure of
the disturbance which is positive or negative definite.) In the Kelvin-
Arnold procedure we remedy this as follows. We note that the particle
conserves not only E but also F. We now restrict ourselves to initial
perturbations in which 8F = 0. Since 8F — 0 at t = 0, it must remain
zero for all t. Thus we write E as

and treat F as a constant, F = Fo. For this restricted set of disturbances
we find 8lE = 0 and 82E = \mi]2 +\r)2\V" + 3V'/r]Q. In this case con-
servation of E does indeed ensure that 82E is conserved by the distur-
bance (to quadratic order), and so we have formal stability if 82E > 0 for
all possible r] and rj. Thus stability is ensured if [r3F/r + 3r2F/]0> 0,
which coincides with our conventional perturbation analysis. Note that
the Kelvin-Arnold method only provides a stability criterion for a
restricted set of perturbations (in this case ones where 8V = 0), although
it is readily verified that the value of 8V at t = 0 does not influence the
stability of the perturbed trajectory.

The energy-Casimir method also requires that we spot that F is con-
served by the particle, although this time there is no need to restrict the
form of the initial disturbance. It proceeds as follows. We introduce the
generalised invariant, A = E + C(F) where C is an arbitrary function of F
(a Casimir). We now choose C such that 8XA = 0 for all possible choices
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of r) and £ (this requires C = —m00r). It
the motion. It is readily confirmed that

We have formal stability if 82A > 0 for all (?/, £) and this requires that
> 0. This coincides with our perturbation analysis since VQ
ensures that VQ +3Vo/ro > 0. Thus the energy-Casimir

method has provided a sufficient (though not necessary) condition for
stability.

The third approach does not require that the Casimir invariants of the
system (in this case F) be identified, although it still relies on the con-
servation of energy. We proceed as follows. Let L—T—V and rj and £
be generalised coordinates, qt. We now evaluate

and calculate the generalised momenta, pt = dL/dqt. The final step is to
evaluate the Hamiltonian, H:

Since L is not an explicit function of time, H is an invariant. It turns out
that

Once again we have a conserved quadratic measure of the disturbance
and the motion is stable provided that e is positive definite.

Now in this simple example the third procedure offers no obvious
advantage over the others. However, when it comes to more complex
systems, where it is by no means obvious what the Casimir invariants
are, it does provide an advantage, as we shall see.

We shall now show that for any conservative system

e = - i/2dV - d2L(rj) = constant (A2.1)

which is a generalisation of (6.51). (Here t\ is the virtual displacement field
introduced in Section 6.4.2.) This furnishes a variety of stability criteria.
The proof of (A2.1) relies on expanding the Lagrangian up to second
order in the particle displacements, invoking Lagrange's equation to dis-
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pense with the first variation in L, and then performing a transformation
to create a conserved Hamiltonian, which is quadratic in the disturbance.
The first and most important step is to introduce the Lagrangian displa-
cement,

C(x, 0 = xp(t) - xp0(t)

where xp0 is the position vector of particle p in the base flow and xp is the
position of the same particle in the perturbed flow. The generalisation of
(6.15) is then

| + uo(x). VC = ^ = u(x + C, 0 - uo(x) (A2.2)

In the linear (small amplitude) approximation, this becomes

§ + u0 • VC = «u(x, 0 + uo(x + 0 - uo(x) (A2.3)
ot

which, using the approximation uo(x -f 0 — uo(x) = £ • Vu0, simplifies to

«1u = C + V x [ C x u 0 ] (A2.4)

The key step is now to switch from £ to i/(x, t), the virtual displacement
field. (The two are related by (6.19).) This greatly simplifies the subse-
quent analysis. Since t\ and £ are equal to leading order, (A2.4) yields

8lu = ri(x, i) + V x [iy x u0] (A2.5)

Returning to (A2.2), but retaining terms up to second order, we find

82u = -Vx[tj x jfl + - V x [t, x (V x (ti x u0))] (A2.6)

We now introduce some notation. We take 8 to represent an arbitrary
(physically realisable) variation of some field, say 8u. We take d, on the
other hand, to represent a frozen-in variation of any field. In the case of
the B-field, the two coincide (<5B = dB) since (6.42) demands that, if B is
frozen into the fluid during the initial perturbation, then it is frozen in for
all subsequent time. In the case of u, however, dxx does not represent a
dynamically meaningful perturbation. Nevertheless, we are still free to
ask what happens to u and T (the kinetic energy) in the event of a varia-
tion in which the u-lines are frozen in. What we choose to do with that
information is another matter. From (6.17) and (6.20) (with u replacing
B) we have, in terms of the virtual displacement field,
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dlu = Vx(fjx u0), d2u = X- V x [t] x dlu] (A2.7)

dx T = f(UQ • ^u)dV, dlT = \ [[(<* V + 2uo ' d2u]dV (A2.8)

Evidently,

^u = it + </V <52u = i V x [i; x jy] + rf2u (A2.9)

(The equivalent expressions in terms of f are far more complicated.) We
shall return to these expressions shortly. In the meantime, let us try to
understand the significance of d-perturbation as applied to u. We shall
use the term 'd-variation' to mean a perturbation of the equilibrium
configuration in which: (i) u is perturbed according to (A2.7), i.e. the u-
lines are frozen in during the perturbations; (ii) any auxiliary field, such
as B, is perturbed in a manner compatible with the governing equations,
e.g. B is frozen in. (This requires that the perturbations in B are given by
(6.17).) Also, let us introduce a generalised version of the Euler equation
in the form

^ = u x f 2 - V C + f (A2.10)
ot

where f is any conservative body force, such as [J x B]/p. Let V be the
potential energy associated with f. This could, for example, be magnetic
energy, gravitational energy, or some combination of these. From (A2.7)
and (A2.8),

dlT = j[Q0 • (i; x uo)]dx = - jti- V x = dlV (A2.ll)

It follows that dlL = 0 under this type of variation, which is the first hint
that there is, in fact, some significance to our J-variation. Actually, in two
dimensions, the physical significance of du is that, by advecting the u-
lines, we create a new set of particle trajectories with the special property
that the time of flight between two fixed points is preserved. This is
precisely the sort of perturbation demanded by Hamilton's principle
and dx L = 0 is, in fact, a direct consequence of Hamilton's principle
(see Davidson, 1998.) In three dimensions we must do a little more
work to explain the significance of dlL = 0. Once again it rests on the
fact that the time of flight of a fluid particle is preserved by the d-varia-
tion. To see that this is so, consider the time of flight equation

V ( A 2-1 2 )
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Here <£ is the volume flux down a stream-tube which surrounds a path-
line linking A and B, and \dV is the volume of the stream-tube (of
rectangular cross section) which may be constructed from pairs of inter-
secting stream surfaces which, in turn, might be locally represented by
Clebsch variables. Such stream surfaces are frozen into the fluid during a
^/-perturbation and so, as in two dimensions, the time of flight of fluid
particles is preserved. This ensures that the first variation of the action
integral is zero, and it is this which lies behind (A2.ll).

So the idea of a d-variation has some physical basis. We now examine
second variations, and this will lead to our stability criterion (A2.1). The
first step is to calculate AT = T — To and AL = L — Lo for an arbitrary
(physically realisable) ^-variation of the equilibrium state. We have

8XT = [u0 • 8ludV, 82T = ]- f|"(S1u)2+2uo • 82u\dV

Next, using (A2.9) to substitute for 8lu and <52u, we find

8lT = dlT(ij) + \UQ-iidV (A2.13)

82T = d2T{ti) + \\n2dV + /(f/, n) (A2.14)

where / is bi-linear in r\ and jy and is given by

I = ]-lri-[2dlu + Q0 xtj]dV (A2.15)

Now if f is conservative, then the potential energy, V, will depend only on
the instantaneous configuration of the flow and not on its history. Thus,

AV=V-V0 = 8l V(tj) + 82 V(t/) + H.O.T.

This gives us an expression for AL in terms of r\ and r\\

AL = \\n2dV + [dlT(tj) - 8l V(fj)] + [d2T(fi) - 52F(i/)]+/(iy, iy)+H.O.T

where I(tj, J/) = / + J u0 • ijdV. Now recall that we defined our d-variation
such that u is perturbed according to (A2.7), but the auxiliary fields, such
as B and p, are varied in a physically realisable manner. (This requires
that B is frozen in.) It follows that, as a matter of notation, we can write
8lV = dlV and 82V = d2 V. Our expression for the Lagrangian becomes
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AL = x-1 ij2 dv + [dx T{n) - dx v(tjj\ + [d2 nn) - d2 v(n)} + /(*, n)

We now use t\ as a set of generalised coordinates describing the instanta-
neous state of the system. Note that AL is a function only of t\ and J/. It is
not an explicit function of time. Now for a system with a finite number of
degrees of freedom, f/i9 we have

) - = 0 (A2.16)

so that steady solutions are represented by dL/drij = 0. Also if L = L(rjh

rji) is not an explicit function of time, the system possesses a conserved
Hamiltonian:

. dL
e = rjj —— L = constant

The equivalent results for our continuous system are that dlL = 0 for an
equilibrium solution and

e=\\ fj2dV + /fa, n) - AL = constant

The fact that dlL = 0 follows directly from Lagrange's equations is reas-
suring since (for two-dimensional flows) we have already noted that this
may be deduced from Hamilton's principle. Next, substituting for AL
yields, at last, our conserved, quadratic functional:

(A2.17)e = \\i,2dV

d2L{t,)=\\[(

- d2L(i,) = constant

• V x (i; xrf'u)]

dlL(t,) --

dV-62

= 0

(A2.18)

This is the key result. Since e is a conserved quadratic measure of the
disturbance, many stability criteria may be established on the back of
(A2.17). We might refer to (A2.17) as a principle of maximum action.

The following two theorems follow directly from (A2.17) and (A2.18).
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Theorem 1

The equilibrium of any conservative, incompressible flow possesses (formal)
stability provided that

d2L(tj) = i [ |Vu)2+ u0 • V x (i; x dlu)]dV - 82V(ti),
2 J L J

dl\x = V x (rj x UQ)

is negative definite for all possible r\.

Theorem 2

The equilibrium of any conservative, incompressible flow posses (formal)
stability provided that

e = - tfdV — d2L(ri), i\ = 8lu — V x (J/ x u0)

is positive or negative definite for all possible perturbations of the equili-
brium.

It is easy to show that special cases of Theorem 1 are Rayleigh's cir-
culation criterion, the Rayleigh-Taylor criterion for stratified fluids,
Bernstein's (1958) principle for magnetostatics (c.f.(6.32)), and
Friedlander & Vishik's (1990) and Frieman & Rottenberg's (1960) stabi-
lity tests for ideal MHD equilibria (c.f. (6.51)). A special case of Theorem
2 is Arnold's (1966) variational principle for Euler flows.

Note that (A2.16) also furnishes the governing equation for tj(x,t).
Substituting for AL in (A2.16) yields,

!/ + 2u0 • Vii = V(i/ • u0) + Ffa) (A2.19)

where

(A2.20)

The form of F(^) depends on the nature of the body force. When
f = J x B, as in ideal MHD, the B-field is frozen in during the perturba-
tion and we have

82V(ti) =X-j [(J1 B)2+B0 • V x (ft x dlB)]dV, Bo)

(This is just 82EB given by (6.20).) In this case (A2.20) yields, after a little
algebra,
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F = u0 x I V x (dlu) | + / u x [ V x u0]
(A2.21)

- Bo x [V x (dlB)] - dlB) x [V x Bo] + V(~)

which is identical to (6.45).
We conclude by showing that the Kelvin-Arnold variational principle,

as applied to Euler flows, is a special case of Theorem 2. We start by
noting that, when f = 0, (A2.19) becomes

ij + 2u0 • VJ/ = u0 x (V x dlu) + dlu x (V x u0) + V(-)

This may be integrated once to give

iy = t\ x Qo - V x (f/ x u0) + m + V(-)

where m is independent of r\ and is governed by

dm/dt = V x (u0 x m)

It follows from (A2.9) that

8lu = rj x O0 + m +V(-)

If, at t = 0, we specify that m = 0, then m will be zero for all time. In such
a case

8lQ =

Evidently, this is a perturbation in which the O-lines are frozen into the
fluid - an isovortical perturbation. The Kelvin-Arnold principle states
that a steady Euler flow is stable provided that 82T is positive definite
or negative definite under an isovortical perturbation. Let us denote such
a perturbation by J, to distinguish it from a general perturbation, 8.
However, using (A2.9) it is readily confirmed that

d2T = ]- f ri2dV-d2T = e

Thus the Kelvin-Arnold principle is simply a special case of Theorem 2.



Metal

Titanium
Steel1

Iron
Nickel
Copper

Aluminium
Magnesium
Tin
Lithium
Sodium

Woods metal
Potassium
Galium
NaK2

Mercury

Physical Properties of Liquid Metals

Melting
point
(°Q

1685
1495
1535
1454
1083

660
650
232
181
98

70
64
30

- 1 2
- 3 8

Reference
temperature

(°Q

1700
1600
1600
1500
1100

700
700
280
200
100

100
70
70
40
30

Density

(103kg/m3)

4.1
7.0
7.0
7.9
7.9

2.4
1.6
6.9
0.51
0.92

9.7
0.82
6.1
0.87
13.5

Kinematic
viscosity

(10~6m2/s)

1.3
0.88
0.80
0.62
0.51

0.60
0.80
0.28
1.2
0.68

0.29
0.58
0.31
0.86
0.12

Electrical
conductivity
(lO'sr'nT1)

0.58
0.71
0.72
1.2
4.8

4.1
3.6
2.1
4.0

10

0.98
7.0
3.8
2.6
1.0

Thermal
conductivity
(Wirf 'cr1)

_
26
41
_

160

95
81
31
47
89

8.0
52
30
22
8.0

Notes: x Approximate values for steel with .2% carbon.
2 Sodium-potassium eutectic.
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Appendix 4
MHD Turbulence at Low Rm

We have commented on MHD turbulence in a number of places in this
book. In Chapter 7 we discussed the decay laws for freely evolving MHD
turbulence, while in Chapter 9 we examined the influence of an intense
magnetic field on isolated vortices. The purpose of this appendix is to pull
together these various threads and to produce a coherent picture of
MHD turbulence at low Rm. We shall restrict ourselves to statistically
homogeneous turbulence, so that the influence of boundaries may be
ignored. We shall assume that there is no mean motion.

We are interested in the evolution of turbulence in a uniform, imposed
magnetic field, Bo. For simplicity, the initial conditions are taken to be
statistically isotropic and Rm is assumed to be small. This latter condition
implies that the induced magnetic field is negligible by comparison with
the imposed field.

The nature of MHD turbulence depends crucially on the initial value
of the interaction parameter, N = crBll/pu, where / is the integral scale of
the turbulence and u is a typical velocity fluctuation, say u = ((u2

x)) .
When TV is initially small, J x Bo is negligible by comparison with inertia
and the turbulence evolves as discussed in Section 1.5 of Chapter 7. We
then have conventional, decaying turbulence. This is governed by two
equations:

du2 i?

r2(u • u')dr = constant

The first of these describes the rate at which energy is lost by the large
eddies to the energy cascade, the large eddies breaking up on a timescale
of l/u, the eddy turn-over time. The coefficient a is found experimentally

418
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to lie in the range a = 1.0 ->• 1.2. The second equation represents the
conservation of Loitsyansky's integral and implies that

u2l5 = constant

These equations may be combined to yield Kolmogorov's decay laws

u2 = ul[\ + (la/\0)(u0t/l0)]-l0/\ I = /0[l + (7a/\0)(u0t/l0)]
2/1

where w0
 a n d /o are the initial values of u and /.

When TV is very large, on the other hand, the turbulence is governed by
the linearised equation of motion

(Recall that J is linear in u.) In view of the linearity of this equation, we
might regard the turbulence as an ensemble of independent eddies. Some
of the eddies will have an axis of rotation which is more or less aligned
with Bo. Some will be non-aligned. These eddies will evolve in a manner
not unlike those described in Section 4 of Chapter 9. Vortices whose axes
of rotation are initially aligned with Bo will develop into long, columnar
structures, with characteristic length scales, /// and l±, evolving as l± ~ /0
and /// ~ lo(t/r)l/2, where r is the Joule damping time, (aBl/p)~l. The
energy of such an eddy declines as u2 ~ ul(t/r)~l/2. Vortices which are
initially perpendicular to Bo, on the other hand, will develop into sheet-
like structures consisting of thin, interwoven layers of oppositely signed
vorticity (see Chapter 9, Section 4). The dominant velocity component in
these sheets is u//. Like the columns, we find l± ~ /0, /// ~ k(t/x)x/2 and
u2 ~ ul(t/r)~l/2. Thus, as long as TV remains large, we expect two distinct
types of structures to emerge from isotropic initial conditions: columns
and sheets. We might anticipate that more sheets than columns will
develop since relatively few vortices will have their axis of rotation
aligned with Bo at t = 0. If this is the case, we might expect U//gradually
to exceed u5_as the anisotropy develops. In fact, this is exactly what is
observed in numerical experiments, with U// ~ 2u^_at large times.

The energy equation governing high-TV turbulence is the Joule dissipa-
tion equation (5.7)

Using (5.6b) to estimate {J2), this yields
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di?

which we might rewrite as

dt %,) T

where /3 is a coefficient of order unity. (For isotropic turbulence it is
possible to show that f$ = |.) In addition, conservation of the
Loitsyansky integral for MHD turbulence yields (see equation 7.49)

u2l//l\_ = constant

Moreover, when N is large, we know from our analysis of individual
vortices that l± = constant on a time scale of r. It follows that the two
expressions above may be combined to yield

Let us now consider the case where N takes some intermediate value,
perhaps of order unity. The energy equation must now combine the
influence of the energy cascade and Joule dissipation. From (7.48) we
have

(A4.1)

Moreover, we still have conservation of Loitsyansky's integral for MHD
turbulence:

u2l//t\_ = constant (A4.2)

Unfortunately, these two equations are insufficient to determine the three
unknowns ///, /j_ and u. Let us introduce a third, heuristic equation for
/ / / / / j _ . When TV is small we have /// ~ l± on a timescale of l/u. Conversely,
when iV is large, we have l///l±
and N <£l) satisfy

(1 + 2pt/x)x/2. Both extremes (N » 1
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(
dt\l

(A4.3)

Let us suppose that the heuristic equation (A4.3) also applies for inter-
mediate values of N. Then (A4.1)-(A4.3) provides a closed system of
equations for w, /// and l±. For simplicity we shall take a = ft = 1.0
and /// = /j_ = /0 at t = 0. The general solution to these equations is then

(A4.4)

(A4.5)

(A4.6)

where No is the initial value of N and i = 1 + 2(t/r). The high- and low-TV
results given above are special cases of (A4.4)-(A4.6). Note that, in gen-
eral, w2, /// and /_|_ do not obey simple power laws. However, for the
special case of 7V0 = 7/15 we have,

The dependence u2 ~ t~n/1 is not far out of line with the experimental
data for No ~ 1, which suggests u2 ~ t~1'6.
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damping, magnetic

of convection, 132-138, 329-330
of eddies, 122-127, 312-324
of jets, 121-122, 308-312
of turbulence, 128-132, 249-256,

418-421
dendrite, 286
differential rotation

in aco dynamos, 176, 180
mechanism, 114, 192

diffusion
of heat, 66-68
of magnetic fields, 109-113
of vorticity, 68-69

diffusivity, magnetic, 37
dimensionless groups

dynamo number, 183
Ekman number, 193
Elsasser number, 191
Hartmann number, 96
interaction parameter, 96
magnetic Reynolds number, 8, 96
Rayleigh number, 133
Reynolds number, 51, 96

dipole moment
definition of, 130
rate of change of, 173
relationship to magnetic field, 130,

179, 250-251
direct numerical simulations (DNS),

247-249
disc dynamo, 168
displacement current, neglect of, 30-31
dissipation

ohmic, 120, 128, 135, 166
viscous, 93, 135, 147, 232-233, 295

326, 336

dissipation range, 232-233
double correlations in turbulence, 236
duct flows, 153-155
dynamo theory

a-effect, 89, 177-184
axisymmetric dynamo not possible,

174-176
need for a dynamo theory for the

earth, 166-168
solar dynamo, 201-203

earth, internal structure of, 170, 186
earth's magnetic field, 166-198
eddy, magnetic damping of, 122-127,

312-324
eddy viscosity, 85-89
ejector, 156
Ekman layer, 90-92
Ekman pumping, 90-94, 142-145, 279,

292-296, 353-356
electric charge, neglect of, 30
electric field, 27-28
electrical conductivity of metals, 417
electrodes, 155, 365
electrolysis cells, 363-365
electrolytes, 365
electromagnetic

casting, 404
damping, 119-138,301-331
launcher, 155
levitation, 398-403
pump, 155
skin effect, 388-393
stirring, 388-390
valve, 403-404

Elsasser number, 191
e.m.f. 10, 43
energy

cascade, 231-234
equation for MHD, 120, 125, 134-136,

302-306
equation for MHD turbulence, 128
methods for stability analysis,

208-220, 407-416
spectrum in three-dimensional

turbulence, 232-235
spectrum in two-dimensional

turbulence, 262
enstrophy, 261, 268
erupting filament, 203-204
expulsion of magnetic field, 110-113

Faraday, 37-40
Faraday's law, 32-34, 4 2 ^ 5
Faraday's tensions, 98-100
field, concept of, 38^0
field line curvature, 98-100
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filament, solar, 203-205
flare, solar, 203-205
flow meters, 154
flux expulsion, 110-113
flux tubes, 45, 105-106
force-free fields, 32, 37, 109
frozen-in law

for magnetic fields, 104—105
for vorticity, 71-77

furnace
arc, 274
induction, 394-397
vacuum-arc remelting, 332-362

fusion, nuclear, 6, 7, 207

generator, 154
geomagnetism, 166-198
granulation, solar, 106, 200
group velocity, 164-165

Hall-Heroult cells, 363-386
Hamiltonian, 407^*10
Hartmann

distance, 152
layer, 151-152
number, 96, 153

heat
conduction of, 66
convection of, 66-68

helicity
of magnetic field, 108
of velocity field, 74-76

Helmholtz decomposition, 375
Helmholtz's laws of vortex dynamics,

71-74
homogeneous turbulence, 229-247

ideal fluid, 71-77
ideal MHD, 104-106, 208-220, 407-416
induction equation, 37, 102-114
induction furnace, 394-396
induction heating, 390-395
inertial range, 234-235
inertial waves, 164
instability

Arnold, 407^16
of ideal fluid, 206-219, 407^16
reduction cell, 363-386

integral scale, 237
interaction parameter, 96
interfacial instabilities, 366-386
interior

of earth, 166-171, 186
of sun, 199-200

inviscid fluid, 71-77, 407-416
ionosphere, 204

jet, damping of
in three dimensions, 308-312
in two dimensions, 121-122

Joule damping
of convection, 132-138, 329-330
of a three-dimensional jet, 308-312
of turbulence, 128-132, 249-256
of a two-dimensional jet, 121-122
of a vortex, 122-127, 312-324

Jupiter, 186

Karman-Howarth equation, 239
Karman vortex sheet, 55, 68
Kelvin's theorem, 71-73
kinematic dynamo theory, 166-184
Kolmogorov microscale, 233
Kolmogorov's decay laws, 240
Kolmogorov's spectrum, 234-235

Lagrange's equations, 414
Lagrangian, 410
Lagrangian displacement, 210, 213, 411
Landau-Loitsyansky equation, 247
Larmor, 168
levitation force, 390-393
levitation melting, 398^03
linear pinch, 206
lines of force

linkage of, 108-109
stretching of, 105

liquid metals, properties of, 417
Loitsyansky integral, 240-247
long-range pressure forces in turbulence,

34^346
Lorentz force, 11, 29-30

magnetic
boundary layers, 151-153
damping of jets, 121-122, 308-312
damping of turbulence, 128-132,

249-256, 418^21
damping of vortices, 122-127, 312-324
diffusion, 109-113
diffusivity, 37
field lines, 38^0
flux expulsion, 110-113
flux tubes, 45, 105-106
helicity, 108
pinch, 206
pressure, 97, 390-392
reconnection, 115
Reynolds number, 8, 96
skin depth, 388-393
stirring, 139-145, 285-300
stresses, 97-99

magnetosphere, 204
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magnetostatics
in fusion reactors, 207
stability of, 208-216

magnetostrophic waves, 163-166
Maxwell, 38-39
Maxwell's equations, 34-35
Maxwell's stresses, 97
metallurgical applications of MHD,

273-284
metallurgy, 273-277, 285-287
MHD

accelerator, 155
damping, 119-138, 301-331
generator, 154
pump, 155
stirring, 139-145, 285-300
turbulence, 249-260, 418-421
valve, 403

microscale of turbulence, 233
minimum energy theorem for stability,

208-220, 407^16
mixing length, 87-89

natural convection
damping of, 132-137, 329-330
in ingots, 324-329
in a thin layer of fluid, 132-137

Navier-Stokes equation, 59-61
neutral-point theorem, 174-176
Newtonian fluid, 49-50, 59-60
normal mode analysis, 206
nozzle flow, 403

ohmic heating, 390-394
Ohm's law, 29

Peclet number, 67
perfect conductor, 44-45, 104-106,

206-220, 407^16
photosphere, 200
pinch force, 207
planetary magnetic fields, 186
planets, 186
plasma, 206-208
point electrode, 145-148, 341-344
poloidal-azimuthal decomposition, 160,

174-176
Poynting vector, 36
Poynting's theorem, 36
Prandtl-Batchelor theorem, 77-80, 110
pressure, magnetic, 97, 390-393
primordial field, 166
prominence, 244
propulsion, MHD 23-24, 155

quadratic invariant of stability theory,
211,219,407

radiative interior of sun, 200
rate of strain, 228
Rayleigh-Benard convection, 132-137
Rayleigh number, 133
reconnection, magnetic, 115
reduction cells for aluminium

production, 363-366
reflectional symmetry, lack of, 181
relaxation time for charge, 30
remelting, vacuum-arc, 332-334
Reynolds number, 51, 96
Reynolds stresses, 84
rotating magnetic field, 139-145, 287-299

sausage-mode instability, 207
sea water thrusters, 23-24
self-similar spectrum for two-dimensional

turbulence, 260-263
shaping, magnetic, 398^04
Shercliff s self-similar solution for a

point electrode, 342-344
skin effect, 388-393
spectrum of energy

in three-dimensional turbulence,
232-235

in two-dimensional turbulence, 262
spontaneous growth of a magnetic field,

256-257
spontaneous growth of swirl, 348-362
stability

of ideal MHD, 208-220, 407^16
of interfacial waves, 366-385
minimum energy theorem for, 208-220
of the pinch force, 207
in the Rayleigh-Benard configuration,

132-137
steel casting, 285-286
stirring, magnetic

of aluminium, 294-298
of steel, 298-300
of super alloys, 281, 332-348

stratification of metal in casting, 326-330
stream function, 77
stress tensor, 50, 59-60
stretching of field lines, 105
structure function, 239-240
sun

dynamo of, 201, 203
flares, 203-204
interior of, 200

sunspots, 201-203

Taylor columns, 165
Taylor's constraint, 194-195
thermal

conductivity of metals, 417
convection, 66-68
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thermal (cont.)
diffusion, 66

theta pinch, 20
topological invariants, 74-76, 108-109
triple correlations in turbulence, 238
turbulence

MHD 128-132, 249-259
three-dimensional, 222-249
two-dimensional, 260-269

two-ribbon flare, 204-205

universal energy spectrum for turbulence,
234-235

vacuum-arc remelting, 280-281, 333-334
valve, magnetic, 403-404
variational formulation of stability

criteria, 208-212
variational principles for two-

dimensional turbulence, 267-269
virtual displacement, 209-210

viscosity
eddy, 87-89
laminar, 50, 59-60

viscous dissipation, 93, 135, 147,
232-233, 295, 326, 336

vortex
advection and diffusion of, 64-70
stretching, 70-71
tubes, 71-73

vorticity
advection and diffusion of, 64-70
governing equation for, 65
Helmholtz's theorems for, 73-74
Kelvin's theory for, 71-73

waves
Alfven, 160-163
interfacial, 366-385
magnetostrophic, 163-166

welding, 339


