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Preface

This handbook complements the second edition of the Handbook on Data Envelop-
ment Analysis (Cooper et al. 2011, Springer). Data envelopment analysis (DEA) is
a “data-oriented” approach for evaluating the performance of a set of entities called
Decision Making Units (DMUs) whose performance is categorized by multiple met-
rics. These performance metrics are indicated as inputs and outputs under DEA.
Although DEA has a strong link to production theory in economics, the tool is also
used for benchmarking in operations management where a set of measures is se-
lected to benchmark the performance of manufacturing and service operations. In
the circumstance of benchmarking, the efficient DMUs, as defined by DEA, may not
necessarily form a “production frontier,” but rather lead to a “best-practice frontier”
(Cook et al. 2014).

Since the publication of the second edition of Handbook on Data Envelopment
Analysis, there has been a significant amount of research on DEA methodology. As
pointed out in a citation-based DEA survey by Liu et al. (2013), it is expected that
the literature will grow to at least double its current size. With the recent publica-
tion of Data Envelopment Analysis: A Handbook of Modeling Internal Structures
and Networks (Cook and Zhu 2014) written by experts on models and applications
of DEA dealing with network and internal DMU structures, the current handbook
is intended to represent another milestone in the progression of DEA. Written by
experts, who are often major contributors to the DEA theory, it includes a collection
of 16 chapters that represent the current state-of-the-art DEA research.

Chapter 1, by Färe, Grosskopf and Margaritis, provides an overview of the dual
measurement of efficiency by means of distance functions and their value duals, the
profit, revenue and cost functions.

Chapter 2, by Cook and Zhu, discusses cross-efficiency measures in DEA. While
DEA has been proven an effective approach in identifying best practice frontiers,
its flexibility in weighting multiple performance measures (inputs and outputs) and
its nature of self-evaluation have been criticized. The cross efficiency method is
developed as a DEA extension to rank DMUs and as a peer-evaluation approach.
To complement Chap. 2, Lim and Zhu discuss how to use Variable Returns to Scale
(VRS) models to develop cross efficiency in Chap. 3.

v



vi Preface

While the standard DEA assumes that data for inputs and outputs are continuous,
there are situations where data are discrete and take form of integers. Chapter 4, by
Kuosmanen, Keshvari and Kazemi Matin, examines the axiomatic foundations of
integer DEA. The authors examine alternative efficiency metrics available for integer
DEA, and consider estimation of the integer DEA technology under stochastic noise,
modeling inefficiency and noise as Poisson distributed random variables.

There is a large literature on the use of weight restrictions in multiplier DEA
models. In Chap. 5, Podinovski provides an alternative view of this subject from the
perspective of dual envelopment DEA models in which weight restrictions can be
interpreted as production trade-offs.

Chapter 6, by Olesen and Petersen, is concerned with development of indicators to
determine whether or not the specification of the input and output space is supported
by data in the sense that the variation in data is sufficient for estimation of a frontier
of the same dimension as the input output space.

Kuosmanen, Johnson and Saastamoinen present a unified framework of productiv-
ity analysis, referred to as Stochastic Nonparametric Envelopment of Data (StoNED)
in Chap. 7.

Chapter 8, by Pastor and Aparicio, presents an overview of the different
approaches that have considered translation invariant DEA models. Translation in-
variance is a relevant property for dealing with non-positive input and/or non-positive
output values in DEA.

Chapter 9, by Sahoo and Tone, provides a critical review of various possible esti-
mation methods of scale economies in a non-parametric data envelopment analysis
approach.

Chapter 10, by Zhu, describes several DEA models that can be used as a bench-
marking tool where a set of DMUs is compared to existing standards. These existing
standards can be in a form of DEA best-practice frontier or a set of pre-selected
DMUs.

The conventional DEA assumes a set of homogeneous DMUs in the sense that
each uses the same input and output measures (in varying amounts from one DMU to
another). In some situations however, the assumption of homogeneity among DMUs
may not apply. Chapter 11, by Cook, Harrison, Imanirad, Rouse and Zhu, presents
DEA approaches for performance evaluation in the absence of homogeneity.

Chapter 12, by Kao, introduces a set of fuzzy DEA models in which data are
missing and have to be estimated or predicted.

While it is generally assumed that all DEA outputs are impacted by all DEA inputs,
there are many situations where this may not be the case. Chapter 13, by Cook and
Zhu, extends the conventional DEA methodology to allow for the measurement of
technical efficiency in situations where only partial input-to-output impacts exist.
The new methodology involves viewing the DMU as a business unit, consisting of a
set of mutually exclusive subunits, each of which can be treated in the conventional
DEA sense.

In an effort to discriminate the performance of DMUs, the concept of super-
efficiency is proposed in DEA. When applied to the variable returns to scale (VRS)
situation, the resulting super-efficiency model may become infeasible for certain
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DMUs. In Chap. 14, Chen and Du present a comprehensive overview of the
infeasibility issues in the super efficiency DEA.

Chapter 15, by Zhou and Liu, discusses the treatment of undesirable measures
in DEA. Chapter 16, by Asmild, reviews different ways of comparing the efficiency
frontiers for subgroups within a data set, specifically program efficiency, the meta-
technology (or technology gap) ratio and the global frontier difference index.

The current handbook focuses only on (new) models/approaches of DEA. Empir-
ical studies using DEA will appear in Data Envelopment Analysis: A Handbook of
Empirical Studies and Applications, which I am currently editing. Along with other
DEA handbooks, I hope that this handbook can serve as a reference for researcher
and practitioners using DEA and as a guide for further development of DEA. I am
indebted to the many DEA researchers worldwide for their continued effort in push-
ing the DEA research frontier. Without their work, many of the DEA models and
approaches would not exist and be applied. I would like to thank the support from the
Priority Academic Program Development of Jiangsu Higher Education Institutions
in China.

September 2014 Joe Zhu
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Chapter 1
Distance Functions in Primal and Dual Spaces

Rolf Färe, Shawna Grosskopf and Dimitri Margaritis

Abstract This chapter provides an overview of the dual measurement of efficiency
by means of distance functions and their value duals, the profit, revenue and cost
functions. We start by showing how the Shephard (input) distance function in quan-
tity space is a cost function in price space and how the cost function in quantity
space is a distance function in price space. We then proceed to formulate a more
unifying structure that allows for the simultaneous adjustment of inputs and outputs
via establishing duality between the profit function and the directional (technology)
distance function which also enables us to derive duality results for the revenue and
cost functions as special cases. We complete our exposition by explaining how we
can implement empirically dual forms of these efficiency measures either via activ-
ity analysis accounting for environmental technologies, slack-based measures and
endogenous directional vectors or via parametric methods.

Keywords DEA · Directional distance functions · Shephard distance functions ·
Duality theory · Profit efficiency · Cost efficiency · Revenue efficiency · Slack-based
measures · Endogenous directional vectors Generalized quadratic forms

1.1 Introduction

Introduced into economics by Ronald W. Shephard (1953), distance functions have
proved to be useful tools for both theory and applied work. In this chapter we start
with an in depth examination of their role in both primal (quantity) and dual (price)
spaces. This forms the basis for the further study, including their key role in efficiency
measurement and duality.

R. Färe (�)
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2 R. Färe et al.

We extend our earlier work, Färe et al. (2007a) by introducing primal and dual
optimization, slack-based directional distance functions and endogenous directional
vectors.

Estimation issues complete the chapter including the nonparametric DEA/Activity
Analysis estimators as well as an appendix addressing parametric estimation of
distance functions.

1.2 Cost and Distance Functions in the Primal and Dual Spaces:
An Introductory Example

In this section we introduce the idea of duality between distance functions and value
functions.The specific example we use is the duality between the cost function and
the input distance function. Both of these functions can be defined as an optimization
of distance or value, where the latter is an inner product.

In order to make this concrete we begin with some notation. Let x =
(x1, . . . , xN ) ∈ �N+ be an N−vector of non-negative inputs employed in produc-
ing a vector y = (y1, . . . , yM ) ∈ �M+ of non-negative outputs. We represent the
technology which maps outputs into inputs by

L : �N+ → L(y) ⊆ �M+ , (1.1)

where

L(y) = {x : x can produce y}, y ∈ �M+ , (1.2)

denotes the input requirement sets, one for each y ∈ �M+ . These sets are assumed
to satisfy standard set of conditions (axioms) including1 strong disposability of
inputs:

x ′ � xo ∈ L(y) ⇒ x ′ ∈ L(y)

and convexity

x ′, xo ∈ L(y), 0 � λ � 1 ⇒ λx ′ + (1 − λ)xo ∈ L(y).

These conditions are required for duality theory, when we also require non-negative
input prices w = (w1, . . . , wN ) ∈ �N+ .

The cost and distance functions can be derived from the technology by optimiza-
tion, specifically by minimization. Let

wx =
N∑

n=1

wnxn

1 See Färe and Primont (1995) for a discussion of these axioms.
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Fig. 1.1 Cost and distance
function minimizations

L(y)

x/Di(y, x)
f
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b
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x2
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be the inner product of the price vector w and the input quantity vector x.2 The cost
function is derived by the minimization of this inner product (value) as3

C(y, w) = min
x
{wx : x ∈ L(y)}. (1.3)

The input distance function is derived by ‘minimizing’ the distance to the boundary
of L(y), where L(y) is assumed to be closed, i.e.,

Di(y, x) = sup
λ

{λ :
x

λ
∈ L(y)}. (1.4)

These two functions are illustrated in Fig. 1.1. The boundary of L(y) is defined to
be the isoquant for the output vector y, i.e.,

Isoq L(y) = {x : x ∈ L(y), λ < 1 ⇒ λx /∈ L(y)}, y ∈ �M+ . (1.5)

The isoquant for output vector y is given by the line segments a-b-c-d-e and the input
requirement set L(y) is the area northeast of the isoquant.

Cost is minimized at b for the inner product wx expressed in terms of the hyper-
plane H. In general a hyperplane is described in terms of the inner product of prices
and quantities, wx as

H (w, c) = {x : wx = c}, (1.6)

where c is a constant and we are in the primal. To distinguish the dual hyperplane
from the primal hyperplane H (w, c) we refer to the dual or price space hyperplane
for wx as

H(x, c) = {w : wx = c}, (1.7)

2 We think of x ∈ �N+ as belonging to the primal (quantity) space and w ∈ (�N+ )∗ as belonging to
its dual (price) space. Since x is a vector of real numbers its dual space (�N )∗ equals �N . Hence in
this case we need not distinguish between the primal and dual spaces. See Luenberger (2001).
3 For the existence of the minimum see Färe and Primont (1995).
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where the set is defined in prices rather than quantities.
To continue with our figure, the distance between x and the isoquant along the

ray (x/||x||) is minimized at f , where

x̂ = x/Di(y, x). (1.8)

Note that the cost and distance functions are homogeneous of degree +1 in w and x
respectively, i.e.,

C(y, λw) = λC(y, w), λ > 0, (1.9)

and

Di(y, λx) = λDi(y, x), λ > 0. (1.10)

Also note that since inputs are weakly disposable (x ∈ L(y), λ > 1 ⇒ λx ∈ L(y)),
the input distance function is a representation of the input requirement set

L(y) = {x : Di(y, x) � 1}, y ∈ �M+ .
We also have that

Isoq L(y) = {x : Di(y, x) = 1}, y ∈ �M+ ,

i.e., the distance function takes a value of one if and only if the input vector x ∈ L(y)
belongs to the isoquant, x ∈ Isoq L(y). We next establish the dual relationship
between the input distance function and the cost function. Since the cost function
C(y, w) minimizes the inner product wx over all feasible input vectors x ∈ L(y), we
have

C(y, w) � wx for all x ∈ L(y). (1.11)

We also know that

(x/Di(y, x)) ∈ L(y), (1.12)

thus

C(y, w) � w(x/Di(y, x)) = wx

Di(y, x)
(1.13)

or

C(y, w)/wx � 1/Di(y, x), (1.14)

where the normalized minimum cost is not larger than the reciprocal of the distance
function. This inequality known as the Mahler inequality (Mahler 1939) is the basis
for the following duality:

C(y, w) = min
x

wx

Di(y, x)
(1.15)
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Di(y, x) = min
w

wx

C(y, w)

The first expression shows how the cost function may be recovered from the input
distance function, and the second expression retrieves the distance function from the
cost function.4

To find a similar primal and dual interpretation of the cost function we need to
establish it as a distance function in price space. We begin by defining the ‘price’
technology as

£(y, c) = {w : C(y, w) � c}. (1.16)

The distance function defined on £(y, c) is

min{λ : w/λ ∈ £(y, c)} (1.17)

:C(y, w/λ � c}
:C(y, w)/c) � λ}
=C(y, w)/c,

showing that the (normalized) cost function is a distance function in price space.
Summing up: we have established that the cost function in quantity space is a

distance function in price space and that the distance function in quantity space is a
cost function in price space.5

1.3 Distance Functions and Their Duals

From the introductory example showing the relation between the input distance
function (Shephard 1953) and the cost function we now turn to the directional distance
functions and their duals.

Recall that x ∈ �N+ denotes inputs and y ∈ �M+ outputs. Another way of repre-
senting the technology follows:

T = {(x, y) : x can produce y}
which is related to the input sets introduced previously as

(x, y) ∈ T ⇔ x ∈ L(y).

A third model of the technology is the output set defined as

P (x) = {y : x can produce y, y ∈ �M+ },

4 This requires convexity.
5 This was first noted by Shephard (1953), in less detail.
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Fig. 1.2 The directional
technology distance function

y

T

x0

(x,y)

(x-β*gx, y+β*gy)

and it follows that all three representations are related by

y ∈ P (x) ⇔ (x, y) ∈ T ⇔ x ∈ L(y). (1.18)

In order to define the directional distance function we need to introduce a direction
vector. Let g = (gx , gy) ∈ �N+ × �M+ , g 
= 0, be a directional vector, a vector in
which (x, y) is projected to the boundary of the relevant technology set, in this case
T .6 The particular value of the direction vector is chosen by the researcher; there is
no general rule for this choice. In Sect. 1.6 we show how one may endogenize the
directional vector through optimization.

We are now ready to define the directional technology distance function,7

following Chambers et al. (1988):

�DT (x, y; gx , gy) = max{β : (x − βgx , y + βgy) ∈ T } (1.19)

is well-defined if there exists a β ∈ � such that (x − βgx , y + βgy) ∈ T and +∞
otherwise. Figure 1.2 illustrates.

The input-output vector (x, y) is expanded along the directional vector (gx , gy)
where gx is subtracted from x and gy is added to y. The optimalβ∗ = �DT (x, y; gx , gy)
is achieved at the boundary of T .

This distance function inherits its properties from those of the technology T , see
Chambers et al. (1998) for detail. Given its properties, the distance function satisfies
the representation property, i.e.,

�DT (x, y; gx , gy) � 0 ⇔ (x, y) ∈ T . (1.20)

In words, the directional distance function fully describes technology and is consis-
tent with the properties in T , i.e., it is a function representation of the technology
set, T .

6 Note that the input directional vector gx is taken here to be non-negative, however we ‘deduct’ it
from the input vector x, analogous to the subtraction of cost from revenue to obtain profit.
7 This was first introduced by Luenberger (1992) in the form of a shortage function.
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From its definition—which has an additive structure—the distance function
satisfies the translation property,

�DT (x − αgx , y + αgy ; gx , gy) = (1.21)

�DT (x, y; gx , gy) − α,α ∈ �.
This condition corresponds to homogeneity of the input distance function. It will be
shown to be important empirically when the distance function is given a functional
form representation.

Next we introduce output price p = (p1, . . . ,pM ) ∈ �M+ , which together with
input prices w ∈ �N+ are required to define the profit function as

�(p, w) = max
x,y

{py − wx : (x, y) ∈ T } (1.22)

and when it exists

�(p, w) � py − wx, for all (x, y) ∈ T . (1.23)

Since

(x − �DT (x, y; gx , gy)gx , y + �DT (x, y; gx , gy)gy) ∈ T,

from the definition of the distance function, it follows that

�(p, w) − (py − wx)

pgy + wgx
� �DT (x, y; gx , gy) (1.24)

which establishes the relationship between the directional technology distance
function and its dual profit function.

This inequality between the profit and distance function is the basis for

i) the Nerlovian profit indicator and
ii) the duality between the profit function and the directional technology distance

function.

(The reader should recall the associated duality between the input distance function
and the cost function.)

Chambers et al. (1998) used the above to define and name the Nerlovian Profit
Indicator as

NPI = �(p, w) − (py − wx)

pgy + wgx
. (1.25)

It subtracts observed from maximal profit and normalizes that by the value of the
directional vectors. This indicator can be decomposed into technical efficiency

�DT (x, y; gx , gy) = TE (1.26)
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which is measured by the distance function, and a residual term, �AET , called
allocative efficiency. Together they form the additive decomposition

NPI = T E + �AET . (1.27)

The duality between the profit function and the directional technology distance func-
tion is derived from the above inequality in (1.24) by optimizing over quantities (x, y)
and prices (w,p), respectively.

�(p, w) = max
x,y
p(y + �DT (x, y; gx , gy)) − w(x − �DT (x, y; gx , gy)) (1.28)

and

�DT (x, y; gx , gy) = min
w,p

�(p, w) − (py − wx)

pgy + wgx
. (1.29)

Convexity of the technology T is required for the distance function to be retrieved
from �(p, w), i.e., for the last equality to hold.

The directional distance function includes other distance functions as special cases
by restricting the directional vectors gx and gy . If we first take g = (gx , 0), we have
the directional input distance function, i.e.,

�Di(x, y; gx) = �Di(x, y; gx , 0). (1.30)

By also choosing py = py∗, where y∗ is the profit optimizing output bundle, we can
solve for the directional input distance function’s dual cost function:

�Di(x, y; gx) � wx − C(y, w)

wgx
. (1.31)

If we further restrict the direction vector gx to be the observed input vector x, we
find that

�Di(x, y; x) = �DT (x, y; x, 0) (1.32)

= 1 − 1/Di(y, x),

which is the Shephard input distance function, and it follows that

�Di(x, y : x) = 1 − 1

Di(y, x)
� wx − C(y, w)

wx
. (1.33)

Rearranging yields the inequality derived in our introductory example

C(y, w)

wx
� 1

Di(y, x)
. (1.34)

As shown in Sect. 1.2 this inequality is the basis for Shephard’s cost/distance function
duality. In addition if we add a residual (multiplicative) ‘allocative efficiency’ term,
the Farrell (1957) decomposition of cost efficiency follows
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C(y,w)
wx = 1

Di (y,x) × AEi

cost technical allocative
efficiency efficiency efficiency

Returning to the directional input distance function, we note that it may be defined
directly on the technology:

�Di(x, y; gx) = max{β : (x − βgx , y) ∈ T } (1.35)

= max{β : (x − βgx , y) ∈ L(y)}
If instead of setting gy = 0, we restrict gx = 0, we can derive the parallel on the
output side, namely, the directional output distance function as follows

�Do(x, y; gy) = �DT (x, y; 0, gy), (1.36)

and by choosing wx = wx∗, x∗ being the profit maximizing input vector we have

�Do(x, y; gy) � R(x,p) − py
pgy

, (1.37)

where

R(x,p) = max
y
{py : y ∈ P (x)} (1.38)

is the revenue function. The inequality above is a Mahler inequality which may be
used to formulate the duality between revenue and the directional output distance
function as

R(x,p) = max
y
{p(y + �Do(x, y; gy)gy)}. (1.39)

Rearranging and accounting for the definition of the revenue function we have

�Do(x, y; gy) � max
p

R(x,p) − py
pgy

. (1.40)

Again by adding a residual allocative component we have a revenue indicator
efficiency decomposition which is analogous to the Nerlovian profit efficiency
decomposition:

R(x,p)−py
pgy

= �Do(x, y; gy) + �AEo
revenue technical allocative

indicator indicator indicator

When we further restrict the directional output vector to be equal to observed output,
gy = y, we find that

�Do(x, y; gy) = 1

Do(x, y)
− 1, (1.41)
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which demonstrates that the directional output distance function and Shephard’s
output distance function

Do(x, y) = min
λ
{λ : y/λ ∈ P (x)}, x ∈ �N+ , (1.42)

are closely related. Using this relationship we can derive a Farrell type output oriented
(revenue) efficiency decomposition, namely

R(x,p)
py

= 1
Do(x,y) × AEo

revenue technical allocative
efficiency efficiency efficiency

We refer to Färe et al. (2008) for a summary of the relationships concerning duality
and the efficiency inequalities discussed in this section, including an approximate
reproduction of the associated diagram below.

Π( p,w)( p,w) (py−−

− −

wx)
pgy+ wgx

>=

* *

D

D

T(x, y;gx, gy)

↓ ↓
gx = 0, wx= wx gy = 0, py= py

R(x,p) py
pgy

>=Do(x, y; gy)
wx C(y,w)

pgx
>= i(x, y;gx)

↓↓
gy = gy x = x

↓↓
R(x,p)
py

>=
1

Do (x,y)
C(y,w)

px
<=

1
Di (y,x)

Efficiency Inequalities

Beginning at the top we have the most general case, the relationship between profit
and the directional distance function. We continue by quoting from Färe et al. (2008)

If we restrict our focus to scaling on either outputs or inputs (setting the appropriate di-
rectional vector equal to zero) and set observed cost (revenue) equal to its optimal value,
we arrive at the middle row relationships between an additive revenue efficiency indicator
(additive cost efficiency indicator) and the associated directional distance function. If we set
the restricted direction vector equal to the value of the observation under evaluation, our cost
and revenue inequalities reduce to the familiar Farrell relationships using Shephard distance
functions. Summing up, we have given a brief overview of the relationships between the
various distance functions and their value duals, including
• directional technology distance function and the profit function,
• Shephard output distance function and the revenue function, and
• Shephard input distance function and the cost function.
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1.4 Distance Functions and Efficiency Measurement

Economists distinguish between isoquants and efficient (sub)sets, which has implica-
tions for efficiency measurement. Following Russell and Schworm (2009), different
efficiency measures have what they call different representation properties. For ex-
ample, the Farrell input-oriented measure of technical efficiency indicates efficiency
as membership in the isoquant, but not necessarily the efficient subset since these do
not generally coincide in an activity analysis framework.

Färe (1975)8 first addressed this issue by introducing an efficiency measure which
takes value of one if and only if the input vector belongs to an efficient subset. He
writes:

...the isoquant and the efficient subset need not coincide; this fact makes the Farrell measure
of (in)efficiency inappropriate for technologies ....where these sets differ.

In this section we take up the topic of efficiency measurement with these two different
indication properties, namely the isoquant and the efficient subset. We choose the
input correspondence and input-oriented measures of technical efficiency as our
focus.9

Denote the input correspondence as

L : �M+ → L(y) ∈ 2�
N+ , (1.43)

where the input sets are

L(y) = {x : x can produce y}, y ∈ �M+ . (1.44)

The isoquants are defined as

Isoq L(y) = {x : x ∈ L(y), λx /∈ L(y), λ < 1}, y ∈ �M+ , (1.45)

and the efficient subsets are

Eff L(y) = {x : x ∈ L(y), xo � x, xo 
= x ⇒ xo /∈ L(y)}, y ∈ �M+ . (1.46)

As mentioned above, these two subsets of L(y) are in general not equal, as the
Leontief production function below illustrates (Fig. 1.3):

y = min{x1, x2}. (1.47)

This figure depicts the input requirement set for our simple Leontief technology. Its
isoquant is bounded by the line segments ab-bc and their extensions, whereas the
efficient subset is the set {b}.

8 This paper is the consequence of many conversations with Professor R.W. Shephard.
9 A ‘must read’ on this topic is W. Schworm and R. R. Russell: Axiomatic Foundations of Technical
Efficiency Measurement (in progress).
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Fig. 1.3 Leontief input
requirement set

L(y)

cb

a

x2

x1

In general it is true that

Eff L(y) ⊆ Isoq L(y), (1.48)

but as our example demonstrates—these sets need not coincide.10

Recall that the Farrell input measure of technical efficiency is the reciprocal of
the input distance function, i.e.,

Fi(y, x) = (Di(y, x))−1 = inf
λ
{λ : λx ∈ L(y)}, (1.49)

and since

Di(y, x) = 1 ⇔ x ∈ Isoq L(y), (1.50)

we have that the Farrell input measure of technical efficiency indicates the isoquant
as consisting of efficient points, i.e.,

Fi(y, x) = 1 ⇔ x ∈ Isoq L(y), (1.51)

which makes it inappropriate as a measure of ‘efficiency’ whenever

Eff L(y) 
= Isoq L(y). (1.52)

Following Färe (1975) a variety of technical efficiency measures which ‘indicate’ ef-
ficiency relative to the efficient subset have been developed. Some are multiplicative
such as the Russell Measure, proposed by Färe and Lovell (1978) and some are addi-
tive such as the Slack-Based Measure due to Tone (2001) or the directional distance

10 This is often the case in the DEA/Activity Analysis case, and always when inputs are strictly
positive as in Charnes et al. (1978).
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function based measure in Färe and Grosskopf (2010). We focus our discussion on
the input oriented version from Färe and Grosskopf (2010).11 It is defined as

�SDi(xo, yo; gx) = max β1 + . . . βN (1.53)

s.t. (xo1 − β1gx1 , xo2 − β2gx2 , . . . , xoN − βNgxN ) ∈ L(y).

Note that if we take gxn = xon , n = 1, . . . ,N we have

�SDi(xo, yo; gx) = N · 1 + (1 − β1) − . . .− (1 − βN ) (1.54)

s.t. ((xo1 (1 − β1), xo2 (1 − β2), . . . , xoN (1 − βN ) ∈ L(y),

which is an additive version of the Russell measure, see Färe et al. (2007b). One
can prove that �SDi(xo, yo; gx) indicates efficiency relative to the efficient subset, see
Färe and Grosskopf (2010). As a final note, Färe, Grosskopf and Zelenyuk point
out that the Russell-type efficiency measures are difficult to associate with a dual
formulation.

1.5 DEA Estimators

Given a set of observations (xk , yk), k = 1, . . . ,K of inputs and outputs we may
construct the DEA/Activity Analysis technology as

T = {(x, y) :
K∑

k=1

zkxkn � xn n = 1, . . . ,N (1.55)

K∑

k=1

zkykm � ym, m = 1, . . . ,M

zk � 0, k = 1, . . . ,K}.
We assume that the data satisfy the Kemeny, Morgenstern and Thompson et al. (1956)
conditions:

(i)
M∑

m=1

ykm > 0, k = 1, . . . ,K , (ii)
K∑

k=1

ykm > 0,m = 1, . . . ,M , (1.56)

(iii)
N∑

n=1

xkn > 0, k = 1, . . . ,K , (iv)
K∑

k=1

xkn > 0, n = 1, . . . ,N.

The condition (i) states that each Decision Making Unit (DMU) produces at least
one type of output, (ii) states that each output is produced by at least one DMU.

11 Färe and Grosskopf (2010) develop their model based on technology T rather than as we do here
with the input set L(y).



14 R. Färe et al.

Similarly the last two conditions require that each DMU uses some input and each
input is used by some DMU. These conditions are weaker than originally imposed
by Charnes et al. (1978), which required strictly positive inputs and outputs.

Given that (i–iv) hold, one can prove that T is a closed convex set with bounded
output sets P (x). In addition the technology set T defined above satisfies free
disposability of inputs and outputs together with constant returns to scale (CRS).
CRS is imposed through the non-negativity constraint on the intensity variables
zk , k = 1, . . . ,K .

Returning to our cost function, with input prices w ∈ �N+ , w 
= 0, then the DEA
version of the cost minimization problem for observation k′ is

C(yk
′
, w) = min

z,x
wx (1.57)

s.t.

K∑

k=1

zkxkn � xn n = 1, . . . ,N

K∑

k=1

zkykm � yk′m, m = 1, . . . ,M

zk � 0, k = 1, . . . , K.

Since the efficient subset Eff L(y) is bounded and L(y) is closed, one may have
some prices equal to zero.

The dual problem is the input distance function which is solved for observation
k′ as

(Di(y
k′ , xk

′
)−1) = min

z,λ
λ (1.58)

s.t.

K∑

k=1

zkxkn � λxk′n n = 1, . . . ,N

K∑

k=1

zkykm � yk′m, m = 1, . . . ,M

zk � 0, k = 1, . . . ,K.

Thus the Farrell input-oriented measures of efficiency are

C(yk
′
,w)

wxk′ = 1
Di (yk

′ ,xk′ ) × AEi

cost technical allocative
efficiency efficiency efficiency

Other Farrell type efficiency measures have similar DEA estimators and are left to
the reader.
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Next we introduce undesirable outputs, b1, . . . , bJ , such as pollution, and show
how to adapt the DEA estimator to account for it. Let

T = {(x, y, b) : x can produce (y, b)}. (1.59)

We say that y and b are null joint if

(x, y, b) ∈ T and y = 0 ⇒ b = 0. (1.60)

In words, y and b are jointly produced (or b is a byproduct of y), e.g., there is no fire
y without smoke b, or y > 0 ⇒ b > 0.

When we wish to model production with undesirable outputs where those outputs
are regulated, we no longer wish to impose free disposability of those outputs, which
would suggest that they may be costlessly disposed. Rather we assume that good and
bad outputs are together weakly disposable:

(x, y, b) ∈ T , 0 � θ � 1 ⇒ (x, θy, θb) ∈ T . (1.61)

This states that proportional reductions in good and bad output together are feasible,
which captures the idea that bads may be reduced by redirecting given inputs to
abatement (and thereby reducing feasible good output). The DEA technology which
includes these features of production with null jointness and weak disposability is
written as

{(x, y, b) : (1.62)

K∑

k=1

zkxkn � xn, n = 1, . . . ,N

K∑

k=1

zkykm � ym, m = 1, . . . ,M

K∑

k=1

zkbkj = bj , j = 1, . . . , J

zk � 0, k = 1, . . . ,K}.
Note that the j = 1, . . . , J constraints are strict equalities, which imposes joint weak
disposability of good and bad outputs. Null jointness may be imposed by requiring:

v)
∑J
j=1bkj > 0, k = 1, . . . ,K

vi)
∑K
k=1bkj > 0, j = 1, . . . , J ,

i.e., each DMU produces some bad output and each bad output is produced by some
DMU.
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1.6 Endogenous Directional Vectors

In this section we show how the directional vectors for the directional distance
functions may be solved for endogenously. We limit our exposition to the input-
oriented case.12

In Sect. 1.4 we introduced a slack-based directional input distance function which
we can be exploited to endogenize the choice of the directional input vector, gx . First
we specify the slack-based measure in a DEA framework, i.e.,

�SDi(xo, yo; gx) = max β1 + . . . βN (1.63)

s.t.

K∑

k=1

zkxkn � xon − βngxn , n = 1, . . . ,N

K∑

k=1

zkykm � yom, m = 1, . . . ,M

zk � 0, k = 1, . . . ,K

Next let us endogenize the directional vector gx = (gx1 , . . . , gxN ), so our revised
problem becomes (with β a scalar)

max
z,β,gx

(1.64)

s.t.

K∑

k=1

zkxkn � xon − βgxn , n = 1, . . . ,N

K∑

k=1

zkykm � yom, m = 1, . . . ,M

zk � 0, k = 1, . . . ,K

N∑

n=1

gxn = 1.

Here we restrict gx to the unit simplex in order for our maximization problem to have
a solution. Note that this is a nonlinear optimization problem.

To transform this into a linear form, we show that this problem is equivalent to
our slack-based DEA model. To see this, consider our slack based measure with

12 See Färe et al. (2013b) for the output orientation.
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gx = (1, . . . , 1):

max β1 + . . .+ βN
s.t.

K∑
k=1

zkxkn � xon − βn · 1, n = 1, . . . ,N

K∑
k=1

zkykm � yom, m = 1, . . . ,M

zk � 0, k = 1, . . . ,K
N∑
n=1
gxn = 1.

(1.65)

Let β∗n be an optimal solution and take gx such that

β∗n = βgxn , n = 1, . . . ,N (1.66)

N∑

n=1

βgxn = 1,

and write the slack-based problem as

max βgx1 + . . .+ βgxN = β(
∑N
n=1gxn ) = β

s.t.
K∑
k=1

zkxkn � xon − βgxn , n = 1, . . . ,N

K∑
k=1

zkykm � yom, m = 1, . . . ,M

zk � 0, k = 1, . . . ,K
N∑
n=1
gxn = 1,

(1.67)

which is equivalent to our endogenous gx problem.
As an illustration of this problem, consider the following data set:

DMU 1 2

y 1 1

x1 1 2

x2 1 2

The slack-based solution to this problem for DMU 1 is

β∗1 = β∗2 = 0 (1.68)

and we may take

g1 = g2 = 1/2. (1.69)
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For DMU 2 we have

β∗1 = β∗2 = 1 (1.70)

and the directional vector for this DMU is

gxn =
1

1 + 1
= 1/2, n = 1, 2. (1.71)

1.7 Appendix: Parametric Distance Functions

Data Envelopment Analysis or Activity Analysis is often referred to as a nonparamet-
ric representation of production technology since they do not require specification
of a (parametric) functional form such as Cobb-Douglas, translog or quadratic func-
tions for estimation. Although the focus in this chapter is nonparametric models13

the chapter would be incomplete without a discussion of parametric estimation of
distance functions.14

Recall that by its definition the directional distance function satisfies the transla-
tion property while the Shephard distance functions satisfy homogeneity. As we will
demonstrate, these two properties generate different parametric forms.

Let F : �I → �,h : � → � and ξ : � → � be real-valued functions with ξ−1

well-defined. If ai , aij are real constants and qi ∈ �+, we say that

ξ−1(F (q)) = ao +
I∑

i=1

aih(qi) +
I∑

i=1

I∑

j=1

aijh(qi)h(qj ) (1.72)

is a generalized quadratic function (Chambers 1988), a transformed quadratic func-
tion (Diewert 2002) or a function having a second order Taylor’s series approximation
(Färe and Sung 1986).
F is homogeneous of degree +1 if

F (λq) = λF (q), λ > 0 (1.73)

and satisfies the translation property if

F (q + αg) = F (q) + α,α ∈ �, (1.74)

where g = (g1, . . . , gI ) ∈ �I is a directional vector.
Note that F : �I → � is linear in the parameters ao, ai , aij , and hence can be

estimated using linear programming or linear regression.

13 An alternative form of nonparametric estimators which is considered to be econometric is
discussed in Martins-Filho in Färe et al. (2013a).
14 This appendix builds on Chambers et al. (2013).
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The generalized quadratic form together with either homogeneity or translation
produce two sets of (two) functional equations:

ξ (F (q)) = ao +
I∑

i=1

aih(qi) +
I∑

i=1

J∑

j=1

aijh(qi)h(qj ) (1.75)

F (λq) = λF (q) homogeneity property

and

ξ (F (q)) = ao +
I∑

i=1

aih(qi) +
I∑

i=1

J∑

j=1

aijh(qi)h(qj ) (1.76)

F (q + αg) =F (q) + α translation property

The first set of equations with the homogeneity property has two solutions (see Färe
and Sung (1986):

F (q) = ao +
I∑

i=1

ai ln (qi) +
I∑

i=1

J∑

j=1

aij ln (qi) ln (qj ) (1.77)

and

F (q) =
⎛

⎝ao +
I∑

i=1

J∑

j=1

aij q
r/2
i q

r/2
j

⎞

⎠
1/r

. (1.78)

The first solution is known as the translog function (Christensen et al. 1971) and
the second is known as the quadratic mean of order r (Denny 1974; Diewert 1976).
Note that the translog has both first order parameters ai as well as second order
parameters aij , while the quadratic function has only second order parameters, since
homogeneity requires that ai = 0.

The second set of equations with the translation property also has two solutions
(Färe and Lundberg 2006). Assuming that g = (1, . . . , 1) we have

F (q) = ao +
I∑

i=1

aiqi +
I∑

i=1

J∑

j=1

aij qiqj (1.79)

the quadratic function and

F (q) = 1

2λ
ln

⎛

⎝
I∑

i=1

J∑

j=1

aij exp (λqi) exp (λqj )

⎞

⎠, λ 
= 0, (1.80)

called ‘quadratic exponential mean of order s’, here s = λ (Kolm 1976) and
exponential mean of order s due to Diewert and Wales (1988).
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Again the first solution has both first and second order terms while the second has
only second order terms.

We conclude that if a generalized quadratic function can be justified, Shephard’s
distance functions should be parameterized as translog, while the directional distance
function should be specified as quadratic functions.
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Chapter 2
DEA Cross Efficiency

Wade D. Cook and Joe Zhu

Abstract Data envelopment analysis (DEA) provides a relative efficiency measure
for peer decision making units (DMUs) with multiple inputs and outputs. While DEA
has been proven an effective approach in identifying the best practice frontiers, its
flexibility in weighting multiple inputs and outputs and its nature of self-evaluation
have been criticized. The cross efficiency method was developed as a DEA extension
to rank DMUs with the main idea being to use DEA to do peer evaluation, rather
than in pure self-evaluation mode. However, cross efficiency scores obtained from the
original DEA model are generally not unique, and depend on which of the alternate
optimal solutions to the DEA linear programs is used. The current chapter discusses
various cross efficiency approaches in dealing with non-unique solutions from DEA

Keywords Data Envelopment Analysis (DEA) · Cross efficiency · Multiplicative ·
Cobb-Douglas

2.1 Introduction

While DEA has been proven an effective approach in identifying best practice
frontiers, its flexibility in weighting multiple inputs and outputs and its nature of
self-evaluation have been criticized. The cross efficiency method was developed as
a DEA extension to rank DMUs (Sexton et al. 1986), with the main idea being to
use DEA to do peerevaluation, rather than to have it operate in a pure self-evaluation
mode. Cross efficiency has been further investigated by Doyle and Green (1994).
There are mainly two advantages of the cross-evaluation method. It provides an or-
dering among DMUs, and it eliminates unrealistic weight schemes without requiring
the elicitation of weight restrictions from application area experts (e.g., Anderson
et al. 2002).
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Cross efficiency evaluation has been used in various applications, e.g., efficiency
evaluations of nursing homes (Sexton et al. 1986), R&D project selection (Oral
et al. 1991), preference voting (Green et al. 1996), and others. However, as noted in
Doyle and Green (1994), the non-uniqueness of the DEA optimal weights/multipliers
possibly reduces the usefulness of cross efficiency. Specifically, cross efficiency
scores obtained from the original DEA methodology are generally not unique. Thus,
depending on which of the alternate optimal solutions to the DEA linear programs is
used, it may be possible to improve a DMU’s (cross efficiency) performance rating,
but generally only by worsening the ratings of others. With that in mind, Sexton
et al. (1986) and Doyle and Green (1994) propose the use of a secondary goal to
deal with the non-unique DEA solutions. They developed aggressive (benevolent)
model formulations to identify optimal weights that not only maximize the efficiency
of a particular DMU under evaluation, but also minimize (maximize) the average
efficiency of other DMUs

In the current chapter, we present the standard DEA cross efficiency method, and
discuss several approaches that have been developed to address the non-uniqueness
issue dicussed above. These approaches include the game cross efficiency method-
ology of Liang et al. (2008a) and the maximum cross efficiency concept (Cook and
Zhu 2014) based upon a set of log-linear DEA models.

2.2 Cross Efficiency

Suppose we have a set of n DMUs and each DMUj have s different outputs and m
different inputs. We denote the ith input and rth output ofDMUj (j = 1,2, . . . , n) as
xij (i = 1, . . . ,m) and yrj (r = 1, . . . , s), respectively. Cross efficiency is generally
presented as a two-phase process. Specifically, phase 1 is the self-evaluation phase
where DEA scores are calculated using the constant returns-to-scale (CRS) DEA
model of Charnes et al. (1978). In the second phase, the multipliers arising from
phase 1 are applied to all peer DMUs to arrive at the so-called cross evaluation score
for each of those DMUs.

Phase 1: Suppose DMUd is under evaluation by the CRS model (Charnes et al.
1978). Then that DMU’s (self-evaluation) efficiency score is determined by the
following DEA model

Max Edd =
∑s
r=1 urdyrd∑m
i=1 vidxid

s.t. Edj =
∑s
r=1 urdyrj∑m
i=1 vidxij

≤ 1, j = 1,2, . . . , n.

urd ≥ 0, r = 1, . . . , s.

vid ≥ 0, i = 1, . . . ,m.

(2.1)

where vid and urd represent ith input and rth output weights for DMUd .
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Phase 2: The cross efficiency ofDMUj , using the weights thatDMUd has chosen
in model (2.1), is given by

Edj =
∑s
r=1 u∗rdyrj∑m
i=1 v∗idxij

, d , j = 1,2, . . . , n (2.2)

where (*) denotes optimal values in model (2.1). For DMUj (j = 1, 2, · · · , n), an
average of all Edj (d = 1,2, . . . , n),

Ej = 1

n

n∑

d=1

Edj , (2.3)

is referred to as the cross efficiency score for DMUj .
We should point out that each individual Edj is called cross efficiency and the

average defined in (2.3) is also called cross efficiency in the DEA literature. In
general, “cross efficiency” refers to the average defined in (2.3), not the individual
scores defined in (2.2).

While the DEA model (2.1) is a non-linear model, model (2.1) is usually solved
in its equivalent multiplier model,

max Edd =
s∑

r=1

urdyrd

Subject to

m∑

i=1

vidxid = 1 (2.4)

s∑

r=1

urdyrj −
m∑

i=1

vidxij ≤ 0 j = 1, . . . ., n

urd , vid ≥ 0

Due to the fact that the above cross efficiency is based upon input-oriented models,
cross efficiency scores are not greater than one.

We here briefly illustrate the concept of cross efficiency by adopting the cross
efficiency matrix from Doyle and Green (1994). In Fig. 2.1, we have six DMUs. Edj
is the (cross) efficiency of DMUj based upon a set of DEA weights calculated for
DMUd . This set of DMU weights gives the best efficiency score for DMUd under
evaluation by a DEA model, andEdd (in the leading diagonal) is the DEA efficiency
for DMUk . The cross efficiency for a given DMUj is defined as the arithmetic
average down column j, given by Ēj . (We point out that in Doyle and Green (1994),
the efficiency score for DMU k is not included as part of the average.)

Obviously, Edj (d 
= j ) and Ēj are not unique due to the often-present multiple
optimal DEA weights in model (2.4), for example. As a result of this non uniqueness,
the cross efficiency concept has been criticized as unreliable.
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Rated DMU

Rating DMU

Averaged appraisal by peers (peer appraisal)

1 2 3 4 5 6
Averaged 
appraisal of peers

1 E11 E12 E13 E14 E15 E16 A1

2 E21 E22 E23 E24 E25 E26 A2

3 E31 E32 E33 E34 E35 E36 A3

4 E41 E42 E43 E44 E45 E46 A4

5 E51 E52 E53 E54 E55 E56 A5

6 E61 E62 E63 E64 E65 E66 A6

E 1 E 2 E 3 E 4 E 5 E 6

Fig. 2.1 Cross efficiency matrix. (Doyle and Green 1994)

Note that the above discussion is based upon input-orientation. Similarly, we can
use output-oriented models to calculate cross efficiency. In this case, Edj in (2.2)
becomes

Edj =
∑m
i=1 v∗idxij∑s
r=1 u∗rdyrj

(2.5)

where v∗id and u∗rd are optimal values in the following output-oriented model when
DMUd is under evaluation

min Edd =
∑m
i=1 vidxid∑s
r=1 urdyrd

s.t. Edj =
∑m
i=1 vidxij∑s
r=1 urdyrj

≥ 1, j = 1,2, . . . , n

vid ≥ 0, i = 1, . . . ,m

urd ≥ 0, r = 1, . . . , s.

(2.6)

The above model (2.6) is equivalent to the following output-oriented CRS multiplier
model:

Min
s∑

r=1

vidxid

subject to
m∑

i=1

vidxij −
s∑

r=1

urdyrj ≥ 0, j = 1,2, . . . , n

m∑

i=1

urdyrd = 1 (2.7)

vid ≥ 0, i = 1, . . . ,m

urd ≥ 0, r = 1, . . . , s
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Table 2.1 Numerical example

DMU Input 1 Input 2 Input 3 Output 1 Output 2

1 7 7 7 4 4

2 5 9 7 7 7

3 4 6 5 5 7

4 5 9 8 6 2

5 6 8 5 3 6

Table 2.2 Input-oriented CRS efficiency and optimal multipliers

DMU CRS efficiency x1 x2 x3 y1 y2

1 0.68571 0.00000 0.14286 0.00000 0.17143 0.00000

2 1.00000 0.07143 0.07143 0.00000 0.14286 0.00000

3 1.00000 0.00000 0.16667 0.00000 0.00000 0.14286

4 0.85714 0.07143 0.07143 0.00000 0.14286 0.00000

5 0.85714 0.00000 0.00000 0.20000 0.00000 0.14286

Note that under the output-oriented case, all cross efficiency scores are not less than
one, as the output-oriented CRS efficiency score is not less than one. Then, the
output-oriented DEA cross efficiency score can be defined in a similar manner as in
(4.3).

Finally, the above discussion is based upon CRS. Similar developments can be
obtained under non-CRS situations. We, however, point out that negative cross ef-
ficiency scores can be obtained under non-CRS conditions, for example, variable
returns-to-scale (VRS) (see Lim and Zhu (in press) or Chap. 3.

2.3 Numerical Example

Throughout the chapter, we use the numerical example shown in Table 2.1 to illustrate
various cross efficiency approaches. This example is from Liang et al. (2008a) and
has five DMUs with three inputs and two outputs.

Table 2.2 reports the CRS efficiency scores obtained from model (2.4) along with
a set of optimal multipliers. Based upon this set of multipliers, an input-oriented
cross efficiency matrix is provided in Table 2.3. Tables 2.4 and 2.5 report cross
efficiency results based upon the output-oriented model (2.7). As we can see, unlike
the standard CRS efficiency scores, the input-oriented cross efficiency score is not
(always) the reciprocal of the associated output-oriented cross efficiency score.
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Table 2.3 Input-oriented standard cross efficiency matrix

Cross efficiency matrix

Rating DMU DMU1 DMU2 DMU3 DMU4 DMU5

1 0.68571 0.93333 1.00000 0.80000 0.45000

2 0.57143 1.00000 1.00000 0.85714 0.42857

3 0.48980 0.66667 1.00000 0.19048 0.64286

4 0.57143 1.00000 1.00000 0.85714 0.42857

5 0.40816 0.71429 1.00000 0.17857 0.85714

Cross efficiency 0.54531 0.86286 1.00000 0.57667 0.56143

Table 2.4 Output-oriented CRS efficiency and optimal multipliers

DMU CRS efficiency x1 x2 x3 y1 y2

1 1.45833 0.00000 0.20833 0.00000 0.25000 0.00000

2 1.00000 0.07143 0.07143 0.00000 0.14286 0.00000

3 1.00000 0.00000 0.16667 0.00000 0.00000 0.14286

4 1.16667 0.08333 0.08333 0.00000 0.16667 0.00000

5 1.16667 0.00000 0.00000 0.23333 0.00000 0.16667

Table 2.5 Output-oriented standard cross efficiency matrix

CRS Cross efficiency matrix

Rating DMU DMU1 DMU2 DMU3 DMU4 DMU5

1 1.45833 1.07143 1.00000 1.25000 2.22222

2 1.75000 1.00000 1.00000 1.16667 2.33333

3 2.04167 1.50000 1.00000 5.25000 1.55556

4 1.75000 1.00000 1.00000 1.16667 2.33333

5 2.45000 1.40000 1.00000 5.60000 1.16667

Cross efficiency 1.89000 1.19429 1.00000 2.88667 1.92222

2.4 Maximum Log Cross Efficiency

To address the non-uniqueness in cross efficiency, the idea of secondary goals was
introduced, with the original proposal being to maximize or minimize the average
appraisal of peers as indicated byAk in Fig. 2.1. Specifically,Ak is the arithmetic aver-
age across the row k. However, due to the DEA model (CCR multiplier model) used,
Ekj =

∑
r μrkyrj∑
i νikxij

, where yrj , (r = 1, 2, . . . , s) are outputs and xij , (i = 1, 2, . . . ,m)
are inputs for DMUj , and μrk , νik are corresponding output and input weights
chosen by DMUk .



2 DEA Cross Efficiency 29

Thus, Ak = 1
n

∑
j Ekj appears in the form of a non-linear fractional problem

that cannot be converted into linear format. To remedy this, Sexton et al. (1986), and
Doyle and Green (1994) suggested the use of linear surrogates for the secondary goal
in form of the numerators in Ekj minus the sum of the denominators, and modified
ratios that can be converted into linear relations. However, due to the fact that these
surrogates are not equivalent to the optimal values ofAk , the resulting cross efficiency
scores are, at best, approximations of these optimal values.

While such approaches as those of Doyle and Green (1994), and those suggested
by others (e.g., Liang et al. 2008b), help to reduce the variability of DEA optimal
weights, these approaches all produce cross efficiency scores that differ from one
another. Cook and Zhu (2014), on the other hand, propose to use multiplicative
DEA models developed in Charnes et al. (1982) and Charnes et al. (1983) to obtain
maximum (and unique) cross efficiency scores under the condition that each DMU’s
DEA efficiency score remains unchanged. To introduce the Cook and Zhu (2014)
approach, we need first to present the multiplicative DEA models.

2.5 Multiplicative DEA Model

Charnes et al. (1982) introduce the following multiplicative DEA model when DMUo

is under evaluation

max

∏s
r=1 y

μr
ro∏m

i=1 x
νi
io

s.t.

∏s
r=1 y

μr
rj∏m

i=1 x
νi
ij

≤ 1, j = 1, . . . , n

μr, νi ≥ 1

(2.8)

Taking logarithms (to any base), model (2.8) becomes

max
s∑

r=1

μrŷro −
m∑

i=1

νi x̂io

subject to

s∑

r=1

μrŷrj −
m∑

i=1

νi x̂ij ≤ 0 (2.9)

μr , νi ≥ 1

where (∧) denotes logarithms.
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The dual to model (2.9) can be written as

max
m∑

i=1

s−i +
s∑

r=1

s+r

subject to

n∑

j=1

λj x̂ij + s−i = x̂io i = 1,2, . . . ,m; (2.10)

n∑

j=1

λj ŷrj − s+r = ŷro r = 1,2, . . . , s;

λj , s
−
i , s+r ≥ 0

It can be seen that model (2.10) is actually the CRS additive model. We therefore
call model (2.8) (and its equivalents) the CRS multiplicative DEA model.

Charnes et al. (1983) introduce the following multiplicative DEA model when
DMUo is under evaluation

max
eη

∏s
r=1 y

μr
rk

eξ
∏m
i=1 x

νi
ik

s.t.
eη

∏s
r=1 y

μr
rj

eξ
∏m
i=1 x

νi
ij

≤ 1, j = 1, . . . , n

η, ξ ≥ 0, μr, νi ≥ 1

(2.11)

Taking logarithms (to any base), model (2.11) becomes

max η − ξ +
s∑

r=1

μrŷro −
m∑

i=1

νi x̂io

subject to

η − ξ +
s∑

r=1

μrŷrj −
m∑

i=1

νi x̂ij ≤ 0 (2.12)

η, ξ ≥ 0

μr , νi ≥ 1

where (∧) denotes logarithms.
The dual to model (2.12) is
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max
m∑

i=1

s−i +
s∑

r=1

s+r

subject to

n∑

j=1

λj x̂ij + s−i = x̂io i = 1,2, . . . ,m; (2.13)

n∑

j=1

λj ŷrj − s+r = ŷro r = 1,2, . . . , s;

n∑

j=1

λj = 1

λj , s
−
i , s+r ≥ 0

Obviously, model (2.13) is the VRS version of the additive model. We therefore call
model (2.11) (and its equivalent) the VRS multiplicative DEA model.

The above two multiplicative DEA models identify Cobb-Douglas production
functions directly from observations (see Charnes et al. (1982, 1983) for more
discussions.)

Model (2.8) or (2.9) yields the best efficiency score for DMUo with a set of
“weights” chosen by DMUo. Denote an optimal set of weights by μ∗ro, ν∗io, and the
efficiency score from (2.8) as θ∗o . Then cross efficiency ofDMUj using the weights
that DMUo has chosen, is given by

Eoj =
∏s
r=1 y

μ∗
ro

rj

∏m
i=1 x

ν∗
io

ij

(2.14)

The efficiency score for DMUo obtained from model (2.8) is Eoo = θ∗o
Then we define the following geometric average peer appraisal cross efficiency

score as the CRS multiplicative cross efficiency score

Ēj =
(

n∏

k=1

Ekj

)1/n

=
⎛

⎝
n∏

k=1

∏s
r=1 y

μ∗
rk

rj

∏m
i=1 x

ν∗
ik

ij

⎞

⎠
1/n

(2.15)

The VRS multiplicative cross efficiency score can be defined in a similar manner.
Specifically, for a DMUk under evaluation of model (2.11), we have

Ekj =
eη

∗
k

∏s
r=1 y

μ∗
rk

rj

eξ
∗
k

∏m
i=1 x

ν∗
ik

ij

(2.16)
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as the cross efficiency of DMUj using the weights that DMUk has chosen, where
η∗k , ξ

∗
k , μ∗rk , ν

∗
ik are optimal solutions from model (2.11) or (2.12).

Then we define the following geometric average peer appraisal VRS multiplica-
tive cross efficiency score as

Ēj =
(

n∏

k=1

Ekj

)1/n

=
⎛

⎝
n∏

k=1

eη
∗
k

∏s
r=1 y

μ∗
rk

rj

eξ
∗
k

∏m
i=1 x

ν∗
ik

ij

⎞

⎠
1/n

(2.17)

where Ekk is the optimal value to model (2.11) or (2.12).

2.6 Maximum Log Cross Efficiency

We now present the approach developed in Cook and Zhu (2014). These authors
point out that one can maximize the average cross efficiency score Ēj (defined in
(2.15)) subject to the condition that Ekk = θ∗k for all k = 1, . . . , n. Specifically, for
DMUjo we have

max

(
n∏

k=1

∏s
r=1 y

μ
rk

rjo∏m
i=1 x

ν
ik

ijo

)1/n

s.t.

∏s
r=1 y

μ
rk

rj
∏m
i=1 x

ν
ik

ij

≤ 1, j = 1, . . . , n, k = 1, . . . n

Ekk =
∏s
r=1 y

μ
rk

rk∏m
i=1 x

ν
ik

ik

= θ∗k , k = 1, . . . , n

μrk, νik ≥ 1, k = 1, . . . n; i − 1, . . . ,m; r = 1, . . . , s

(2.18)

Making logarithmic transformations in (2.18), we arrive at the following linear
program

max
1

n

(
∑

k

∑

r

μrkŷrjo −
∑

k

∑

i

νikx̂ij0

)

s.t.
s∑

r=1

μ
rk
ŷrj −

m∑

i=1

ν
ik
x̂ij ≤ 0, j , k = 1, . . . , n

s∑

r=1

μ
rk
ŷrk −

m∑

i=1

ν
ik
x̂ik = ln (θ∗k ), k = 1, . . . , n

μrk, νik ≥ 1, k = 1, . . . n; i − 1, . . . ,m; r = 1, . . . , s

(2.19)

where “∧′′ denotes data in logarithmic form. Since logarithms are used in the process,
we call this type of cross efficiency (the optimal value to model (2.19)) “Maximum
Log Cross Efficiency”.
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Cook and Zhu (2014) point out that the attractive feature of the proposed multi-
plicative approach is that the resulting cross efficiency score (the objective function
in model (2.19)) is uniquely determined; this is not the case for any of the other
approaches taken up to now. Specifically, in the standard cross efficiency, the fact
that alternate optimal solutions can occur, gives rise to non-unique peer ratings for
a DMU, and hence the average of these (the cross efficiency score for that DMU) is
not uniquely determined. It is noted that while there may as well be alternate optimal
solutionsμ∗rk , ν

∗
ik yielding this unique optimal value in (2.19), this fact in and of itself

is immaterial. It is the uniqueness of the cross efficiency score, not the multipliers
that lead to it, that matters.

In addition to the above development based upon CRS, we have the following
VRS maximum log cross efficiency model

max

(
n∏

k=1

eηk
∏s
r=1 y

μ
rk

rjo

eξk
∏m
i=1 x

ν
ik

ijo

)1/n

s.t.
eηk

∏s
r=1 y

μ
rk

rj

eξk
∏m
i=1 x

ν
ik

ij

≤ 1, j = 1, . . . , n, k = 1, . . .n

Ekk = eηk
∏s
r=1 y

μ
rk

rk

eξk
∏m
i=1 x

ν
ik

ik

= θ∗k , k = 1, . . . , n

ηk , ξk ≥ 0,μrk, νik ≥ 1, k = 1, . . .n; i = 1, . . . ,m; r = 1, . . . s

(2.20)

Making logarithmic transformations in (2.20), we arrive at the following linear
program

max
1

n

(
∑

k

ηk +
∑

k

∑

r

μrkŷrjo −
∑

k

ξk −
∑

k

∑

i

νikx̂ij0

)

s.t. ηk +
s∑

r=1

μ
rk
ŷrj − ξk −

m∑

i=1

ν
ik
x̂ij ≤ 0, j , k = 1, . . . , n

ηk +
s∑

r=1

μ
rk
ŷrk − ξk −

m∑

i=1

ν
ik
x̂ik = ln (θ∗k ), k = 1, . . . , n

ηk , ξk ≥ 0,μrk, νik ≥ 1, k = 1, . . .n; i = 1, . . . ,m; r = 1, . . . s

(2.21)

where “∧′′ denotes data in logarithmic form.
To demonstrate the above approach, we apply it to the numerical example in

Table 2.1. Table 2.6 reports the results from models (2.12) and (2.18) under CRS.
Table 2.7 reports standard (multiplicative) cross efficiency matrix based upon (2.15).
Table 2.8 reports the maximum Log cross efficiency matrix under CRS.

We next apply the numerical example in Table 2.1 to the VRS model. The
efficiency scores from model (2.12) are reported in the first column of Table 2.9.
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Table 2.6 CRS multiplicative results

DMU Efficiency from model
(2.12)

Standard cross efficiency
(2.15)

Maximum log cross efficiency
(2.18)

1 0.1348 0.0543 0.0563

2 1 0.6704 0.7603

3 1 1 1

4 0.1314 0.0841 0.1013

5 0.2332 0.0763 0.0763

Table 2.7 Standard CRS multiplicative log cross efficiency matrix

Rated DMU
Rating DMU 1 2 3 4 5

1 0.1348 0.6900 1 0.1314 0.1739

2 0.0021 1 1 0.0910 0.0016

3 0.1122 0.5333 1 0.0517 0.2332

4 0.1348 0.6900 1 0.1314 0.1739

5 0.1122 0.5333 1 0.0517 0.2332

jE defined in 
(15) 0.0543 0.6704 1 0.0841 0.0763

Table 2.8 Maximum log cross efficiency matrix under CRS
Rated DMU

Rating DMU 1 2 3 4 5
1 0.1348 0.6900 1 0.1314 0.1740
2 0.0021 1 1 0.0910 0.0016
3 0.1348 1 1 0.1314 0.23323
4 0.1348 0.6901 1 0.1314 0.1739
5 0.1122 0.5334 1 0.0517 0.2332

jE
(maximum) 0.0563 0.7603 1 0.1013 0.0763

Column 2 reports the cross efficiency using (2.17), and the he last column reports
the maximum cross efficiency scores based upon model (2.21). The related standard
cross efficiency matrix is displayed in Table 2.10. It can be seen that the standard
cross efficiency scores of DMUs 1 and 5 are at their maximum. Table 2.11 presents
the cross efficiency scores as calculated by model (2.21).

We finally apply our approach to a data set of 37 project proposals relating to the
Turkish iron and steel industry (see Oral et al. 1991). Each project is characterized by
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Table 2.9 VRS multiplicative results

DMU Efficiency model (2.1) Standard cross efficiency Maximum cross efficiency

1 0.1599 0.1354 0.1354

2 1 0.6858 0.7777

3 1 1 1

4 0.1607 0.1310 0.1402

5 0.2571 0.1755 0.1755

Table 2.10 Standard VRS multiplicative log cross efficiency matrix

Rated DMU
Rating DMU

0.1354       0.6858        1 0.1310 

1 2 3 4 5
1 0.1599 0.5333 1 0.1143 0.2571

2 0.1054 1 1 0.1607 0.0990

3 0.1599 0.5333 1 0.1143 0.2571

4 0.1054 1 1 0.1607 0.0990

5 0.1599 0.5333 1 0.1143 0.2571
  defined in (17)jE 0.1755

Table 2.11 Maximum log cross efficiency matrix under VRS
Rated DMU

Rating DMU 1 2 3 4 5
1 0.1599 0.5333 1 0.1143 0.2571
2 0.1054 1 1 0.1607 0.0990

3 0.1599 1 1 0.1607 0.2571

4 0.1054 1 1 0.1607 0.0990

5 0.1599 0.5333 1 0.1143 0.2571

jE defined in (3) 0.1354 0.7777 1 0.1402 0.1755

five output measures: direct economic contribution, indirect economic contribution,
technological contribution, scientific contribution and social contribution. The single
input is the cost. The results are reported in Table 2.12 where columns 2 and 3 report
the multiplicative efficiency and its related standard Log cross efficiency based upon
model (2.12), and column 4 reports the maximum cross efficiency based upon model
(2.21).
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Table 2.12 Log cross efficiency for project selection

Project Multiplicative efficiency Standard log cross efficiency Maximum log cross efficiency

1 1 0.2654 0.3160

2 0.5579 0.0606 0.0764

3 0.0003 0.0000 0.0000

4 0.0398 0.0001 0.0002

5 0.1210 0.0016 0.0025

6 0.1598 0.0076 0.0115

7 0.0883 0.0011 0.0020

8 0.1312 0.0008 0.0013

9 1 0.0117 0.0202

10 0.2293 0.0031 0.0039

11 0.3043 0.0071 0.0089

12 0.0387 0.0000 0.0000

13 0.0503 0.0002 0.0003

14 1 0.3983 0.4464

15 0.1956 0.0103 0.0160

16 0.1908 0.0010 0.0013

17 1 0.2103 0.2198

18 0.1584 0.0005 0.0007

19 0.1493 0.0010 0.0013

20 0.0063 0.0000 0.0000

21 1 0.0218 0.0282

22 0.3407 0.0091 0.0115

23 1 0.2253 0.2606

24 1 0.0272 0.0361

25 0.0295 0.0000 0.0000

26 0.5612 0.0459 0.0542

27 0.5744 0.0372 0.0417

28 0.0505 0.0001 0.0001

29 0.2665 0.0066 0.0081

30 0.2165 0.0027 0.0034

31 1 0.0009 0.0014

32 0.0384 0.0000 0.0000
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Table 2.12 (continued)

Project Multiplicative efficiency Standard log cross efficiency Maximum log cross efficiency

33 0.0122 0.0000 0.0000

34 1 0.0000 0.0000

35 1 0.0039 0.0053

36 1 0.0479 0.0556

37 1 0.0056 0.0083

Table 2.13 Selected projects

Project Budget Game cross efficiency

14 95 Yes

1 84.2 Yes

23 75.6 Yes

17 32.1 Yes

2 90 No

36 64.1 Yes

26 69.3 Yes

27 57.1 Yes

24 92.3 No

21 74.4 Yes

9 95.9 No

15 83.8 Yes

22 90 No

Based upon a project selection rule, which chooses projects by decreasing values
of DEA cross efficiency scores, until the budget for the program (e.g., 1000) is
exhausted, 13 projects are selected as shown in Table 2.13. The last column shows
whether a selected project is also selected by the game cross efficiency approach of
Liang et al. (2008a), which we will introduce in the next section. The difference can
be due to the fact that the game cross efficiency approach is based upon the standard
DEA whereas our approach is based upon the log linear frontier.

2.7 Game Cross Efficiency

Liang et al. (2008a) develop an approach called Game Cross Efficiency, which is
based upon the concept of DEA cross efficiency. As pointed out by Liang et al.
(2008a), in many DEA applications, some form of direct or indirect competition
may exist among the DMUs under evaluation. Certainly any setting where DMUs
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compete for scarce funds, competition is present by definition. R&D project propos-
als submitted by different departments in an organization can be viewed as DMUs,
and subjected to a DEA analysis. These proposals are clearly competing for available
funds. Candidates in a preferential election setting can be looked upon as DMUs,
and competition is obviously present. An academic applying for research grants is
in competition with other academics. Participants in organized sporting events such
as the Olympic games, constitute competitive DMUs. When DMUs are viewed as
players in a game, cross efficiency scores may be viewed as payoffs, and each DMU
may choose to take a non-cooperative game stance to the extent that it will attempt
to maximize its (worst possible) payoff.

The idea of game cross efficiency can be presented as follows. For each competing
DMUj , a multiplier bundle is determined that optimizes the efficiency score for j,
with the additional constraint that the resulting score for DMU d should be at or
above DMU d’s estimated best performance, in a cross-efficiency sense. In game
cross efficiency case, rather than using the ideal score forDMUd , we strive to use a
score which will actually be representative of its final measure of performance. The
problem, of course, arises that we will not know this best performance score for d
until the best performances of all other DMUs are known as well. To combat this
“chicken and egg” phenomenon, Liang et al. (2008a) adopt an iterative approach that
leads to an equilibrium.

To make these ideas more concrete, suppose that in a game sense, one player
DMUd is given an efficiency score αd , and that another player DMUj then tries to
maximize its own efficiency, subject to the condition that αd cannot be decreased.
The game cross efficiency for DMUj relative to DMUd is defined as

αdj =
∑s
r=1 udrj yrj∑m
i=1 vdij xij

, d = 1, 2, . . . , n (2.22)

where udrj and vdij are optimal weights in model (2.23) below. The subscript dj is
intended to indicate that DMUj is permitted only to choose weights that will not
deteriorate the current efficiency of DMUd .

The difference between the standard cross efficiency (2.2) and the game cross
efficiency (2.22) is that weights in (2.22) are not necessarily an optimal solution in
the DEA model (2.4), but rather are a feasible solution to the CRS multiplier model
(2.4). Such a definition allows DMUs to choose (negotiate) a set of weights, (hence
a form of cross efficiency scores), that are best for all of the DMUs. So, in this sense,
Liang et al. (2008a) adopt a non-cooperative game approach.

We use the following model to calculate the game cross efficiency defined in
(2.22) for each DMUj (given that cross efficiency score of DMUd cannot be less
than αd )

Max
s∑

r=1

udrj yrj
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subject to

m∑

i=1

vdij xil −
s∑

r=1

udrj yrl ≥ 0, l = 1,2, . . . , n

m∑

i=1

vdij xij = 1 (2.23)

αd ×
m∑

i=1

vdij xid −
s∑

r=1

udrj yrd ≤ 0

vdij ≥ 0, i = 1, . . . ,m

udrj ≥ 0, r = 1, . . . , s

where αd ≤ 1 is a parameter. This model (2.23) is very similar to the CRS multiplier
model, except for the additional constraint of αd ×∑m

i=1 vdij xid −
∑s
r=1 udrj yrd ≤

0 which ensures that the (cross) efficiency score of DMUd cannot be less than
αd . Model (2.23) is referred to as the DEA game cross efficiency model, based
uponDMUd . Note that model (2.23) maximizes the efficiency ofDMUj , under the
condition that the efficiency of a given DMUd , is not less than a given value ( αd ).
Thus, the efficiency ofDMUj is further constrained by the requirement that the ratio
efficiency of DMUd is not less than its original average cross efficiency.

The αd in model (2.23) initially takes the value given by the average original
cross efficiency of DMUd defined in (2.3). When the algorithm converges, this αd
becomes the best (average) game-cross efficiency score.

For eachDMUj , model (2.23) is solved n times, once for each d = 1, . . . ., n. Note
that for each d, at optimality,

∑m
i=1 vdij xij = 1 holds for DMUj (j= 1, 2, . . . , n).

Therefore, for each DMUj , the optimal value to model (2.23) actually represents a
game cross efficiency with respect toDMUd , as defined in (2.22). In other words, for
each DMUj , αj = 1

n

∑n
d=1

∑s
r=1 ud∗rj (αd )yrj is called the input-oriented (average)

game cross efficiency for DMUj , where ud∗rj (αd ) represent an optimal solution to
model (2.23).

Note that the average game cross efficiency no longer represents a regular DEA
cross efficiency value. Liang et al. (2008a) show that optimal game cross efficiency
scores constitute a Nash Equilibrium point.

We now present the procedure for determining the best average input-oriented
game-cross efficiency for DMUj , as described in Liang et al. (2008a).

Algorithm Step1: Solve model (2.4) and obtain a set of original DEA cross
efficiency scores Ed defined in (2.3). Let t= 1 and αd = α1

d = Ed .
Step2: Solve model (2.23). Let α2

j = 1
n

∑n
d=1

∑s
r=1 ud∗rj (α1

d )yrj or in a general
format,

αt+1
j = 1

n

n∑

d=1

s∑

r=1

ud∗rj (αtd )yrj ,
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where ud∗rj (αtd ) represents optimal value of udrj in model (2.23) when αd = αtd .

Step3: If |αt+1
j − αtj | ≥ δ for some j, where δ is a user-specified small positive

value, then let αd = αt+1
d and go to Step 2. If |αt+1

j − αtj | < δ for all j, then stop.

αt+1
j is the best average game-cross efficiency given to DMUj . (In calculation, we

can set δ = 0.001 , for example.)
In Step1, the Ed represent traditional (average) cross efficiency scores for

DMUd , d = 1,2, . . . , n, and are the initial values for αd (denoted as α1
d ) in

model (2.23). Although the cross efficiency scores may not be unique, Liang
et al. (2008a) show that any initial values for αd (or any traditional cross ef-
ficiency scores), will lead to unique game-cross efficiency scores. When the
algorithm stops, since

∑s
r=1 ud∗rj (αtd )yrj is the optimal value to model (2.23), αt+1

j =
1
n

∑n
d=1

∑s
r=1 ud∗rj (αtd )yrj , t ≥ 1 is unique. Also, the notation αd = αtd , t ≥ 1,

given in Step 2, means that in model (2.23) αd is replaced with αtd . Step 3 is used to
indicate when to terminate the process of executing model (2.23).

In a similar manner, we can develop an output-oriented game cross efficiency
approach. In this case, we rely on the output-oriented CRS model. First, αdj , game
cross efficiency for DMUj relative to DMUd , is defined as

αdj =
∑m
i=1 vdij xij∑s
r=1 udrj yrj

, d = 1, 2, . . . , n (2.24)

Similar to model (2.23), we have the following output-oriented model whenDMUj
is under evaluation

Min
m∑

i=1

vdij xij

subject to

m∑

i=1

vdij xil −
s∑

r=1

udrj yrl ≥ 0, l = 1,2, . . . , n

s∑

r=1

udrj yrj = 1 (2.25)

m∑

i=1

vdij xid − αd ×
s∑

r=1

udrj yrd ≤ 0

vdij ≥ 0, i = 1, . . . ,m

udrj ≥ 0, r = 1, . . . , s

where αd ≥ 1 is a parameter. This model (2.25) is very similar to the output-oriented
CRS multiplier model, except for the additional constraint of

∑m
i=1 vdij xid − αd ×∑s

r=1 udrj yrd ≤ 0 which ensures that the (cross) efficiency score of DMUd cannot
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Table 2.14 Game cross efficiency

DMU Input-oriented
game cross efficiencya

Output-oriented
game cross efficiency

Output-oriented VRS
game cross efficiencya

1 0.63813 1.58809 1.45102

2 0.97638 1.01304 1

3 1 1 1

4 0.79833 1.22833 1.24265

5 0.66659 1.60533 1.46813

aSee the Conclusions section for discussions on the VRS game cross efficiency

be greater than αd . Note that under output-oriented model, a larger score indicates
worse performance.

This αd initially takes the value given by the (average) original output-oriented
cross efficiency ofDMUd . When the algorithm converges, this αd becomes the best
(average) game-cross efficiency score. Model (2.25) is referred to as the output-
oriented DEA game cross efficiency model.

For eachDMUj , model (2.25) is solved n times, once for each d = 1, . . . ., n. Note
that for each d, at optimality,

∑s
r=1 udrj yrj = 1 holds for DMUj (j = 1, 2, . . . , n).

Therefore, for each DMUj , the optimal value to model (2.25) actually represents a
game cross efficiency with respect toDMUd , as defined in (2.24). Namely, for each
DMUj ,αj = 1

n

∑n
d=1

∑m
i=1 vd∗ij (αd )xij is called the output-oriented (average) game

cross efficiency for DMUj , where vd∗ij (αd ) represent an optimal solution to model
(2.25).

Liang et al. (2008a) provide detailed discussion on the numerical example in
Table 2.1 based upon the input-oriented game cross efficiency model (2.23). We here
only provide the results for both models (2.23) and (2.25) in Table 2.14. In both
cases, the standard DEA cross efficiency scores in Tables 2.3 and 2.5 are used as the
initial αd , and we set δ= 0.001. The input-oriented game cross efficiency scores are
reached after 10 iterations, and the output-oriented game cross efficiency scores are
reached after 27 iterations.

2.8 Conclusions

The above discussion is based upon CRS. We can also develop game cross efficiency
under the condition of VRS. However, due to the fact that the input-oriented VRS
model can yield negative cross efficiency, we here only present the game cross
efficiency based upon the output-oriented VRS model where cross efficiency scores
are always positive.

The output-orientedVRS game cross efficiencyDMUj relative toDMUd is given
by

αdj =
∑m
i=1 ω

d
ij xij + vd

∑s
r=1 μ

d
rjyrj

, d = 1, 2, . . . , n (2.26a)
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Table 2.15 Output-oriented VRS cross efficiency matrix

VRS Cross efficiency matrix

DMU Cross efficiency DMU1 DMU2 DMU3 DMU4 DMU5

DMU1 1.63167 1.41667 1.00000 1.00000 1.16667 2.11111

DMU2 1.09429 1.41667 1.00000 1.00000 1.16667 2.11111

DMU3 1.00000 1.45833 1.07143 1.00000 1.25000 2.22222

DMU4 2.07000 1.41667 1.00000 1.00000 1.16667 2.11111

DMU5 1.94444 2.45000 1.40000 1.00000 5.60000 1.16667

Based upon the output-oriented VRS multiplier model and model (2.25), we have the
following VRS model for obtaining the output-oriented VRS game cross efficiency
score.

Min
m∑

i=1

vdij xij + vd

subject to

m∑

i=1

vdij xil −
s∑

r=1

udrj yrl + vd ≥ 0, l = 1,2, . . . , n

s∑

r=1

udrj yrj = 1 (2.26b)

m∑

i=1

vdij xid − αd ×
s∑

r=1

udrj yrd + vd ≤ 0

vdij ≥ 0, i = 1, . . . ,m

udrj ≥ 0, r = 1, . . . , s

vdf ree

where
∑m
i=1 vdij xid−αd×

∑s
r=1 udrj yrd+vd ≤ 0 ensures that the game cross efficiency

score of DMUd cannot be greater than αd . Note that under output-oriented model,
a larger score indicates worse performance.

We use the regular output-oriented VRS cross efficiency as the starting point for
our game cross efficiency scores. Table 2.15 shows a VRS cross efficiency matrix
along with cross efficiency scores shown in column 2.
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Chapter 3
DEA Cross Efficiency Under Variable
Returns to Scale

Sungmook Lim and Joe Zhu

Abstract While cross-efficiency evaluation has been used in a wide variety of DEA
applications due to its attractive mechanism, so has it been for DEA models mostly
with constant returns to scale (CRS) assumption. This is due to the fact that negative
VRS cross-efficiency arises for some DMUs. Since there exist many instances that
require the use of the VRS DEA model, it is imperative to develop cross-efficiency
measures under VRS. This chapter introduces a recent development of DEA cross-
efficiency evaluation approach under VRS, which is motivated by the observation
that cross-efficiency evaluation is closely related to the issue of incorporation of
weight restrictions and that negative VRS cross-efficiency is related to free produc-
tion of outputs. The new approach is based upon a geometric interpretation of the
relationship between the CRS and VRS DEA models that the VRS model can be
cast as a series of CRS models under translated Cartesian coordinate systems. We
illustrate this approach using a simple example and show how the VRS negative
cross-efficiency problem is addressed under the new framework.

Keywords Data envelopment analysis · Cross-efficiency ·Variable returns to scale
(VRS) · Free production of outputs

3.1 Introduction

As discussed in Chap. 2, cross-efficiency evaluation incorporates peer-appraisal in
addition to self-appraisal into DEA models to address the criticism of too much flexi-
bility in weighting multiple inputs and outputs. While cross-efficiency evaluation has
been used in a wide variety of DEA applications due to its attractive mechanism, so
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has it been for DEA models mostly with constant returns to scale (CRS) assumption,
such as the CRS model or CCR model of Charnes et al. (1978). The literature, to the
extent of the authors’ knowledge, has been almost silent on (and has not properly
addressed) the issue that cross-efficiency evaluation for input-oriented DEA models
with variable returns to scale (VRS) assumption, such as the input-oriented VRS
model or the BCC model of Banker et al. (1984), has the problem of negative cross-
efficiency for some units. There are many instances where a change in inputs does
not result in the same change in outputs that require the use of the VRS DEA model.
If DMUs (e.g., bank branches) are of various sizes, then the VRS model is more
appropriate to use so that a small sized DMU is not benchmarked against large sized
DMUs. The VRS DEA model is one of the basic DEA models that is widely used
in various DEA applications. Therefore, it is imperative to develop cross-efficiency
measures under the condition of VRS. Wu et al. (2009) propose to add an additional
constraint in the VRS model so that cross-efficiencies are non-negative. However,
such a modification does not properly address the root cause of the negative VRS
cross-efficiency problem.

In the current chapter, we present an approach of DEA cross-efficiency evaluation
under VRS developed by Lim and Zhu (2014). Their approach is based upon the
observation that cross-efficiency evaluation is closely related to the issue of incor-
poration of weight restrictions in the sense that each DMU is evaluated by weights
chosen by other DMUs in addition to its own. It is well known that the incorporation
of weight restrictions in DEA models may result in their infeasibility or non-positive
efficiency scores of some units. Podinovski and Bouzdine-Chameeva (2013) finds
that these problems arise when weight restrictions induce free production of out-
puts (i.e., positive outputs with zero inputs) in the underlying technology, which
is unacceptable from the production theory point of view. Applying the same con-
cept, Lim and Zhu (2014) find that the problem of negative cross-efficiency in the
input-oriented VRS DEA model arises when a DMU is cross-evaluated by a weight
vector associated with an efficient frontier which extends to induce free production
of outputs in the underlying technology. They claim that such problematic weights
are invalid (or unacceptable) to be used for cross-efficiency evaluation and need to
be adjusted. To develop a way of resolving the problem of negative cross-efficiency
in the input-oriented VRS DEA model, they develop a geometric interpretation of
the relationship between the VRS and CRS models. They show that every DMU, via
solving the VRS model, seeks for a translation of the Cartesian coordinate system
and an optimal bundle of weights such that its CRS-efficiency score, measured under
the chosen coordinate system, is maximized. Therefore, VRS cross-efficiency is re-
lated to the CRS cross-efficiency measures. Using the fact that any efficient frontier
does not extend to induce free production of outputs in the CRS model, they propose
that cross-efficiency evaluation for the VRS model should be done via a series of
CRS models under translated Cartesian coordinate systems.
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3.2 Negative Cross Efficiency and Free Production

In this section, we illustrate the problem of negative cross-efficiency and show how
it is related to free production of outputs, as discussed in Lim and Zhu (2014).
Assume that there are n DMUs which consume m inputs to produce s outputs. DMU
k (k = 1,2, . . . , n) uses a vector of inputs xk = (x1k , . . . , xmk)T ∈ Rm+ to produce
a vector of outputs yk = (y1k , . . . , ysk)T ∈ Rs+. The input-oriented VRS model in
multiplier form is as follows:

max
s∑

r=1

uryr0 − ξ

s.t.
m∑

i=1

vixij −
s∑

r=1

uryrj + ξ ≥ 0, j = 1, . . . , n (3.1)

m∑

i=1

vixi0 = 1

vi , ur ≥ ε ∀i, r , ξ free in sign.

where ε is a positive non-Archimedean infinitesimal. When the above model
is solved, an input-oriented efficiency score of DMU0 and input-oriented cross-
efficiencies of the other DMUs (evaluated by DMU0) are obtained together.
Specifically, a (conventional input-oriented) cross-efficiency of DMUj is given by

eI0j =
∑s
r=1 u∗r yrj − ξ ∗∑m

i=1 v∗i xij
(3.2)

where * denotes an optimal solution to the model. Due to the free variable ξ
cross-efficiency calculated by (3.2) may be negative when ξ > 0, which results
in problematic situation. Averaging eIij over i, we get a (conventional input-oriented)
cross-efficiency score of DMUj . Note that eI00 is an input-oriented efficiency score
of DMU0.

Following is the output-oriented VRS model in multiplier form:

min
m∑

i=1

vixi0 + ξ

s.t.
m∑

i=1

vixij −
s∑

r=1

uryrj + ξ ≥ 0, j = 1, . . . , n (3.3)

s∑

r=1

uryr0 = 1

vi , ur ≥ ε ∀i, r , ξ free in sign.
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When the above model is solved, an output-oriented efficiency score of DMU0

and output-oriented cross-efficiencies of the other DMUs (evaluated by DMU0) are
obtained together. Specifically, a (conventional output-oriented) cross-efficiency of
DMUj is given by

eO0j =
∑m
i=1 v∗i xij + ξ ∗∑s
r=1 u∗r yrj

(3.4)

where v∗i , u∗r and ξ ∗ are an optimal bundle of weights to model (3.3). Differently from
the input-oriented case, the problem of negative cross-efficiency does not occur due to
the first set of constraints in model (3.3). Averaging eOij over i, we get a (conventional
output-oriented) cross-efficiency score of DMUj . Note that eO00 is an output-oriented
efficiency score of DMU0.

The free variable ξ provides an indication of the type of returns to scale (RTS)
that prevails at a particular DMU under evaluation. Specifically, increasing returns
to scale (IRS) (decreasing returns to scale (DRS)) prevails at (x0, y0) if and only if
ξ ∗ < 0 (ξ ∗ > 0) for all optimal solutions to the VRS model, whereas CRS prevails
at (x0, y0) if and only if ξ ∗ = 0 in any optimal solution (see Banker et al. (2011)).

It is worthwhile to note that the VRS model itself involves cross-efficiency eval-
uation in its constraints (and the same is true with the CRS model). Model (3.1)
dictates that each DMU seeks for an optimal bundle of weights while making
cross-efficiencies of the other DMUs not exceed unity. Also note that these cross-
efficiencies are measured (in a linearized form within the constraints of model (3.1))
no matter which type of RTS prevails at cross-evaluated DMUs. In other words,
optimal weights chosen by a DMU exhibiting one type of RTS (say IRS) are used to
cross-evaluate the other DMUs exhibiting different types of RTS (say CRS or DRS)
within model (3.1). A similar observation can be made in model (3.3). This interpre-
tation provides a justification of the use of cross-efficiency evaluation in DEA as a
peer-appraisal approach, particularly under the VRS assumption.

Now let us illustrate how the problem of negative cross-efficiency arises in the
input-oriented VRS model using a simple one-input and one-output example. Sup-
pose the data set in Table 3.1 is given, which consists of seven DMUs with a single
input and a single output. An input-orientedVRS efficiency score of each DMU along
with its optimal weights are provided in Table 3.1. It also reports optimal solutions
to the output-oriented model (3.3) as well as RTS classifications.

Figure 3.1 plots the data set and the supporting hyperplane associated with an
optimal bundle of weights chosen by DMU F in model (3.1). Hyperplane HF repre-
sents an optimal bundle of weights (v∗, u∗, ξ ∗) = (

1
4 , 3

8 , 5
4

)
for DMU F, with which

DMU F attains an efficiency score of unity. Using an input-oriented radial dis-
tance measure, (conventional input-oriented) cross-efficiencies of DMUs D, E, and
G evaluated by DMU F can be determined with reference to the hyperplaneHF . For
instance, a cross-efficiency of DMU D isD0D1/D0D, which is 1

6 , a cross-efficiency

of DMU E is E0E1/E0E, which is 5/2
3 = 5

6 , and a cross-efficiency of DMU G is

G0G1/G0G, which is 11/2
7 = 11

14 . The same results can also be obtained when we
use (3.2) for calculating cross-efficiency: eIFD = 3/2−5/4

3/2 = 1
6 , eIFE = 15/8−5/4

3/4 = 5
6 ,
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Table 3.1 Data and VRS model solutions

DMU Input Output Input-oriented VRS model (1) Output-oriented VRS model (3)

v∗ u∗ ξ ∗ Efficiency RTS v∗ u∗ ξ ∗ Efficiency RTS
score score

A 1 1 1
1

4
−3

4
1 IRS 4 1 −3 1 IRS

B 4 2
1

4

1

16
− 3

16

5

16
IRS

1

2

1

2
1 3 DRS

C
3

2
3

2

3

1

3
0 1 CRS

2

3

1

3
0 1 CRS

D 6 4
1

6

1

8

1

8

3

8
DRS

1

12

1

4

7

6

5

3
DRS

E 3 5
1

3

1

4

1

4
1 DRS

4

15

1

5

1

5
1 DRS

F 4 6
1

4

3

8

5

4
1 DRS

1

9

1

6

5

9
1 DRS

G 7 7
1

7

3

7
2 1 DRS

1

21

1

7

2

3
1 DRS

and eIFG = 21/8−5/4
7/4 = 14

11 . While any problem, at least seemingly, doesn’t occur
in calculating cross-efficiencies of these DMUs, a difficulty will be encountered in
determining cross-efficiencies of the other DMUs positioned below the horizontal

line (labelled x’-axis) that intersects the y-axis at O
′ =

(
0, ξ∗

u∗
)
= (

0, 10
3

)
. In fact,

model (3.1) forces cross-efficiencies of DMUs A, B, and C to be determined with
reference to the ‘negative-input’ segment of hyperplane HF . For instance, a cross-

efficiency of DMU A is A0A1/A0A, which is −7/2
1 = − 7

2 , and a cross-efficiency of

DMU B is B0B1/B0B, which is −2
4 = − 1

2 . The negative sign is due to the position
of A1 and B1 (left to the y-axis). Note that the same results can be obtained when
we use (3.2): eIFA = 3/8−5/4

1/4 = − 7
2 , and eIFB = 3/4−5/4

1 = − 1
2 . The same problem of

negative cross-efficiency occurs for DMU C as well.
This problem is caused by situations where weights chosen by some DMUs are

invalid for cross-evaluating other DMUs; an optimal bundle of weights chosen by
DMU F is not valid for determining cross-efficiencies of DMUs A, B, and C. To
justify this, it is worthwhile to note that the efficient frontier associated with the
optimal weights chosen by DMU F extends to induce the point O

′
which represents

a free production of outputs in the underlying technology. Furthermore, model (3.1)
forces DMUs A, B, and C to be cross-evaluated with reference to the invalid part of
the extended efficient frontier that emanates from the unacceptable free production
point O

′
and points southwest. This implies that some kind of adjustment is required

for those invalid weights to be properly used for cross-efficiency evaluation. We
proceed to examine the case of negative values of ξ *.
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Fig. 3.1 Input-oriented cross-efficiency evaluation by DMU F

Figure 3.2 shows the supporting hyperplane associated with an optimal bundle of
weights chosen by DMU A. HyperplaneHA represents an optimal bundle of weights
(v*, u*, ξ *) = (1, 1

4 ,− 3
4 ) for DMU A, with which DMU A attains an efficiency

score of unity. Using an input-oriented radial distance measure, (conventional
input-oriented) cross-efficiencies of the other DMUs evaluated by DMU A can
be determined with reference to hyperplane HA. For instance, a cross-efficiency

of DMU D is D0D1/D0D, which is 7/4
6 = 7

24 , and a cross-efficiency of DMU

G is G0G1/G0G, which is 5/2
7 = 5

14 . Note that the same results can be obtained
when we use (3.2) for calculating cross-efficiency; eIAD = 1−(−3/4)

6 = 7
24 and

eIAG = 7/4−(−3/4)
7 = 5

14 . When the optimal value of the free variable, ξ *, is
non-positive, the problem of negative cross-efficiency does not seem to occur. In
other words, when a DMU is cross-evaluated by another DMU exhibiting IRS, it
always attains a positive cross-efficiency.

Although seemingly unproblematic for this case, the claim made in the above
(using the case of DMU F) still applies. According to Podinovski and Bouzdine-
Chameeva (2013), a technology is said to allow free production of outputs when
it is possible to produce positive outputs with zero inputs. This definition can be
extended to include the case of negative outputs with zero inputs such as point
O

′ = (0, −3) in Fig. 3.2. This case may be interpreted as consumption (opposite to
production) of outputs without any inputs, and it can be considered as extended free
disposability of outputs which may not be unacceptable. However, here it is assumed
to be unacceptable, which provides a more general framework. ‘Positive outputs with
zero inputs’ and ‘negative outputs with zero inputs’ are referred to as ‘type I’ and
‘type II’ of free production of outputs, respectively. Note that the efficient frontier
associated with the optimal weights chosen by DMUA extends to induce the point O′
(in Fig. 3.2), which represents a type II free production of outputs in the underlying
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Fig. 3.2 Input-oriented cross-efficiency evaluation by DMU A

technology. Model (3.1) forces the other DMUs to be cross-evaluated with reference
to the invalid efficient frontier (which extends to induce the unacceptable type II free
production point O′) for them.

The problem of negative cross-efficiency cannot be actually observed in the
output-oriented VRS model because its constraints prevent it. Figure 3.3 plots the
same data set and the supporting hyperplane associated with an optimal bundle
of weights chosen by DMU F in the output-oriented model (3.3). Hyperplane HF
represents an optimal bundle of weights (v∗, u∗, ξ ∗) = (

1
9 , 1

6 , 5
9

)
for DMU F,

with which DMU F attains an efficiency score of unity. Using an output-oriented
radial distance measure, (conventional output-oriented) cross-efficiencies of the
other DMUs evaluated by DMU F can be determined with reference to the hy-

perplane HF . For instance, a cross-efficiency of DMU A is A0A1/A0A, which is
4
1 = 4, a cross-efficiency of DMU B is B0B1/B0B, which is 6

2 = 3, and a cross-

efficiency of DMU G is G0G1/G0G, which is 8
7 . The same results can also be

obtained by using the conventional output-oriented cross-efficiency formula (3.4):
eOFA = 1/9+5/9

1/6 = 4, eOFB = 4/9+5/9
2/6 = 3, and eOFG = 7/9+5/9

7/6 = 8
7 . It can be easily

shown that cross-efficiencies of the remaining DMUs are also positive. This is quite
obvious due to the geometric structure of the output-oriented radial distance mea-
sure used in model (3.3). In other words, the problem of negative cross-efficiency
never occurs, as in the case of the optimal value of the free variable ξ * being non-
positive. However, the same weight invalidity problem related to free production
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Fig. 3.3 Output-oriented cross-efficiency evaluation by DMU F

of outputs occurs in cross-efficiency evaluation for the output-oriented VRS DEA
model as well, since the input-oriented and output-oriented VRS models have the
same efficient frontier structure. Observe that the efficient frontier associated with
the optimal weights chosen by DMU F in Fig. 3.3 extends to induce the point O

′

which represents a (type I) free production of outputs in the underlying technology,
and thus the optimal bundle of weights chosen by DMU F is not valid for determining
cross-efficiencies of the other DMUs. A similar argument can be made with DMU A
in which the associated efficient frontier extends to induce a type II free production
of outputs.

The above observations lead to the conclusion that cross-efficiency evaluation
via the conventional VRS model is not proper no matter whether the problem of
negative cross-efficiency actually arises or not. Therefore, for the VRS DEA model,
some significant change of the framework of cross-efficiency evaluation should be
developed. Lim and Zhu (2014) accomplish this based on a geometric view of the
relationship between the VRS and CRS models, which will be presented in the next
section.

3.3 DEA and Coordinate Systems: A Geometric Link Between
the VRS and CRS Models

To lay a foundation for valid cross-efficiency evaluation in the VRS DEA model,
Lim and Zhu (2014) provide a geometric interpretation of the VRS model as a series
of CRS models under translated Cartesian coordinate systems, which is formalized
by the following theorem.
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Theorem 1 Given any optimal solution (v∗, u∗, ξ ∗) to model (3.1) chosen by a
VRS-efficient DMU (denoted DMU0), a CRS-efficiency score of DMU0, measured
under the translated Cartesian coordinate system defined by an adjusted origin
O∗ = (− β1ξ

∗
v∗1

, . . . , − βmξ
∗

v∗m
, βm+1ξ

∗
u∗1

, . . . , βm+s ξ∗
u∗s

), is unity, for any βk ∈R+ (k =
1, . . . , m+ s) such that

∑m+s
k=1 βk = 1.

Proof Under the translated Cartesian coordinate system with origin O∗, the input-
oriented VRS model (3.5) with the same set of DMUs is presented as follows:

max
s∑

r=1

μr

(
yr0 − βm+r ξ ∗

u∗r

)
− κ

s.t.
m∑

i=1

νi

(
xij + βiξ

∗

v∗i

)
−

s∑

r=1

μr

(
yrj − βm+r ξ ∗

u∗r

)
+ κ ≥ 0, j = 1, . . . , n

m∑

i=1

νi

(
xi0 + βiξ

∗

v∗i

)
= 1

νi, μr ≥ ε ∀i, r , κ free (3.5)

Consider a solution (ν, μ, κ) = ( v∗
�

, u∗
�

, 0) with � = 1+ ξ∗∑m
k=1 βk. Note that that

� > 0 since ξ ∗ ≥ −1+∑s
r=1 u∗r yr0 > −1 and

∑m
k=1 βk ≤ 1. Plugging ( v∗

�
, u∗
�

, 0) in
the first set of constraints of model (3.5), we obtain

m∑

i=1

v∗i
�

(
xij + βiξ

∗

v∗i

)
−

s∑

r=1

u∗r
�

(
yrj − βm+r ξ ∗

u∗r

)

= 1

�

(
m∑

i=1

v∗i xij −
s∑

r=1

u∗r yrj + ξ ∗
m+s∑

k=1

βk

)

= 1

�

(
m∑

i=1

v∗i xij −
s∑

r=1

u∗r yrj + ξ ∗
)
≥ 0, ∀j

where the non-negativity is ensured due to the fact that (v∗, u∗, ξ ∗) is a feasible
solution to model (3.1) and � > 0. If

(
v∗
�

, u∗
�

, 0
)

is plugged in the second set of
constraints of model (3.5), we obtain

m∑

i=1

v∗i
�

(
xi0 + βiξ

∗

v∗i

)
= 1

�

(
m∑

i=1

v∗i xi0 + ξ ∗
m∑

k=1

βk

)
= 1

�

(
1 + ξ ∗

m∑

k=1

βk

)
= 1

using the fact that
∑m
i=1 v∗i xi0 = 1. Therefore,

(
v∗
�

, u∗
�

, 0
)

is a feasible solution to
model (3.5). Now examine its objective value, which is

s∑

r=1

u∗r
�

(
yr0 − βm+r ξ ∗

u∗r

)
= 1

�

(
s∑

r=1

u∗r yr0 − ξ ∗
m+s∑

k=m+1

βk

)
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= 1

�

(
s∑

r=1

u∗r yr0 − ξ ∗ + ξ ∗
(

1 −
m+s∑

k=m+1

βk

))

= 1

�

(
1 + ξ ∗

m∑

k=1

βk

)
= 1.

Hence,
(

v∗
�

, u∗
�

, 0
)

is an optimal solution to model (3.5) with which DMU0 attains
an efficiency score of unity, implying that DMU0 is VRS-efficient at which CRS
prevails since κ = 0 in the optimal solution. This leads to the conclusion that DMU0

is CRS-efficient under the translated coordinate system. �

We also provide a parallel theorem for the output-oriented case as follows:

Theorem 2 Given any optimal solution (v∗, u∗, ξ ∗) to model (3.3) chosen by
a VRS-efficient DMU (denoted DMU0), a CRS-efficiency score of DMU0, mea-
sured under the translated Cartesian coordinate system defined by an adjusted origin
O∗ = (− β1ξ

∗
v∗1

, . . . , − βmξ
∗

v∗m
, βm+1ξ

∗
u∗1

, . . . , βm+s ξ
∗

u∗s
), is unity, for any βk ∈R+(k= 1, . . . ,

m+ s) such that
∑m+s
k=1 βk = 1.

Proof Under the translated Cartesian coordinate system with origin O∗, the output-
oriented VRS model (3.6) with the same set of DMUs is presented as follows:

min
m∑

i=1

νi

(
xi0 + βiξ

∗

v∗i

)
+ κ

s.t.
m∑

i=1

νi

(
xij + βiξ

∗

v∗i

)
−

s∑

r=1

μr

(
yrj − βm+r ξ ∗

u∗r

)
+ κ ≥ 0, j = 1, . . . , n

s∑

r=1

μryr0 = 1 (3.6)

νi , μr ≥ ε ∀i, r , κ free

Consider a solution (ν, μ, κ) = (
v∗
�

, u∗
�

, 0
)

with � = 1 − ξ∗∑m+s
k=m+1 βk. Note that

� > 0 since ξ∗ = 1−∑m
i=1 v∗i xi0 < 1 and

∑m+s
k=m+1 βk ≤ 1. Plugging

(
v∗
�

, u∗
�

, 0
)

in
the first set of constraints of model (3.6), we obtain

m∑

i=1

v∗i
�

(
xij + βiξ

∗

v∗i

)
−

s∑

r=1

u∗r
�

(
yrj − βm+r ξ ∗

u∗r

)

= 1

�

(
m∑

i=1

v∗i xij −
s∑

r=1

u∗r yrj + ξ ∗
m+s∑

k=1

βk

)

= 1

�

(
m∑

i=1

v∗i xij −
s∑

r=1

u∗r yrj + ξ ∗
)
≥ 0, ∀j
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where the non-negativity is ensured due to the fact that (v∗, u∗, ξ ∗) is a feasible
solution to model (3.3) and. � > 0. If

(
v∗
�

, u∗
�

, 0
)

is plugged in the second set of
constraints of model (3.6), we obtain

s∑

r=1

u∗r
�

(
yi0 − βm+r ξ ∗

u∗r

)
= 1

�

(
s∑

r=1

u∗r yr0 − ξ ∗
m+s∑

k=m+1

βk

)

= 1

�

(
1 − ξ ∗

m+s∑

k=m+1

βk

)
= 1

using the fact that
∑s
r=1 u∗r yr0 = 1. Therefore,

(
v∗
�

, u∗
�

, 0
)

is a feasible solution to
model (3.6). Now examine its objective value, which is

m∑

i=1

v∗i
�

(
xi0 + βiξ

∗

v∗i

)
= 1

�

(
m∑

i=1

v∗i xi0 + ξ ∗
m∑

k=1

βk

)

= 1

�

(
m∑

i=1

v∗i xi0 + ξ ∗ − ξ ∗
(

1 −
m∑

k=1

βk

))

= 1

�

(
1 − ξ ∗

m+s∑

k=m+1

βk

)
= 1.

Hence,
(

v∗
�

, u∗
�

, 0
)

is an optimal solution to model (3.6) with which DMU0 attains
an efficiency score of unity, implying that DMU0 is VRS-efficient at which CRS
prevails since κ = 0 in the optimal solution. This leads to the conclusion that DMU0

is CRS-efficient under the translated coordinate system. �

Theorem 1 (Theorem 2) indicates that each DMU, via solving the VRS model,
seeks for an optimal bundle of weights and free variable value with which its
input-oriented (output-oriented) CRS-efficiency score, measured under a translated
Cartesian coordinate system, is maximized (minimized). In addition, the theorems
show that the location of the adjusted origin of the translated coordinate system is
associated with the chosen optimal bundle of weights and free variable value. It
should be noted here that the efficient frontier determined by the CRS model does
not extend to induce free production of outputs, and thus the CRS model does not
suffer from the problem of negative cross-efficiency. Therefore, we expect that the
problem of negative cross-efficiency can be effectively resolved by transforming the
VRS model into a series of CRS models.

Although Theorem 1 and Theorem 2 deal with only VRS-efficient DMUs, they
can be applied implicitly to VRS-inefficient ones as well since inefficient DMUs can
choose the same weights with their reference points (projections) on the efficient
frontier to maximize (or minimize in the output-oriented case) their CRS efficiency
scores. However, it should be pointed out that an input-oriented VRS efficiency
score of an inefficient DMU under the original coordinate system may differ from its
input-oriented CRS efficiency score under a translated coordinate system chosen by
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Theorem 1. On the other hand, an output-oriented VRS efficiency score of an ineffi-
cient DMU under the original coordinate system coincides with its output-oriented
CRS efficiency score under a translated coordinate system chosen by Theorem 2.

On the basis of Theorem 1 and Theorem 2, the following corollaries, which are
slight modifications of the original versions in Lim and Zhu (2014), can be established
to provide a link between VRS optimal weights and free production. Their proofs
can be found in Lim and Zhu (2014).

Corollary 1 The supporting hyperplane of the efficient frontier associated with an
optimal bundle of weights in model (3.1) or model (3.3) chosen by a VRS-efficient
DMU exhibiting DRS extends to induce type I free production of outputs in the
underlying technology.

Corollary 2 The supporting hyperplane of the efficient frontier associated with an
optimal bundle of weights in model (3.1) or model (3.3) chosen by a VRS-efficient
DMU exhibiting IRS extends to induce type II free production of outputs in the
underlying technology.

If a VRS-efficient DMU exhibits CRS (i.e., it is CRS-efficient), the correspond-
ing efficient frontier may or may not extend to induce free production of outputs,
depending on the sign of the chosen ξ *.However, an optimal solution to model (3.1)
where ξ * = 0 always exists for a CRS-efficient DMU, and it is assumed that such
solution is always chosen. (In applications, once the CRS condition is identified with
a DMU, we can use the CRS model to calculate cross efficiency scores.)

Corollaries 1 and 2 suggest that optimal weights chosen by DMUs at which
either DRS or IRS prevails are not valid for cross-evaluating other DMUs, and
this provides a good rationale for the development of the current cross-efficiency
evaluation approach in the VRS DEA model, which will be presented in the next
section. Before we proceed we illustrate Theorem 1, Theorem 2, and the related
corollaries using the example introduced in the previous section.

For an illustration for the input-oriented case, we use DMU F which is
VRS-efficient and exhibits DRS under the original coordinate system with origin
O, depicted in Fig. 3.1. Its optimal bundle of weighs chosen to model (3.1) is
(v∗, u∗, ξ ∗) = ( 1

4 , 3
8 , 5

4 ). The supporting hyperplane HF intersects the y-axis at

O
′ = (0, ξ

∗
u∗ ) = (0, 10

3 ) and the x-axis at O
′′ = (− ξ∗

v∗ , 0) = (−5, 0). Any point on the

line O′O′′ can be represented by a convex combination of the two extreme points;
O∗ = (− β1ξ

∗
v∗ , β2ξ

∗
u∗ ) = (−5β1, 10

3 β2) where β1 + β2 = 1 and β1, β2 ∈ R+. Ob-
serve that the supporting hyperplane HF of the efficient frontier associated with the
optimal weights chosen by DMU F extends to induce the point O

′
(in Fig. 3.1) which

represents a type I free production of outputs, as indicated by Corollary 1. Therefore,
the optimal weights to model (3.1) chosen by DMU F at which DRS prevails are not
valid for cross-evaluating the other DMUs; for some DMUs such as A, B, and C, this
invalidity results in the actually observable realization of negative cross-efficiency.

On the other hand, an input-oriented VRS efficiency score of DMU F, measured
under the translated Cartesian coordinate system with an adjusted origin O*, is unity
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Fig. 3.4 Input-oriented cross-efficiency evaluation by DMU F under a translated coordinate system

and CRS prevails at DMU F, meaning that DMU F is CRS-efficient under the trans-
lated coordinate system, as indicated by Theorem 1. Considering a special case
where β1 = 1 and β2 = 0, the Cartesian coordinate system defined by the x-axis
and the y’-axis with the adjusted origin O* = O′′ = (−5, 0) renders DMU F CRS-
efficient. Note that, under the translated coordinate system, the optimal weights
( v*

�
, u*

�
) = ( v*

1+ξ*β1
, u*

1+ξ*β1
) = ( 1/4

9/4 , 3/8
9/4 ) = ( 1

9 , 1
6 ) chosen by DMU F, represented

again byHF , are valid for cross-evaluating the other DMUs since they do not induce
free production of outputs. For instance, under the translated coordinate system, the
coordinates of DMU A are (6,1), and its input-oriented cross-efficiency using the
weights ( 1

9 , 1
6 ) is eIFA = 1/6

6/9 = 1
4 . This score can also be determined geometrically

under the translated coordinate system in Fig. 3.4: eIFA = A3A1/A3A = 3/2
6 = 1

4 .

The coordinates of DMU B under the translated coordinate system are (9, 2), and
its input-oriented cross-efficiency using the weights ( 1

9 , 1
6 ) is eIFB = 2/6

9/9 = 1
3 . This

score can also be determined geometrically under the translated coordinate system

in Fig. 3.4: eIFB = B3B1/B3B = 3
9 = 1

3 .

For another illustration for the input-oriented case, we use DMU A which is
VRS-efficient and exhibits IRS under the original coordinate system with origin
O, depicted in Fig. 3.2. Its optimal bundle of weighs chosen to model (3.1) is
(v∗, u∗, ξ ∗) = (1, 1

4 ,− 3
4 ). The supporting hyperplane HA intersects the y-axis at

O
′ = (0, ξ

∗
u∗ ) = (0, −3) and the x-axis at O

′′ = (− ξ∗
v∗ , 0) = ( 3

4 , 0). Any point on the

line O′O ′′ can be represented by a convex combination of the two extreme points;
O∗ = (− β1ξ

∗
v∗ , β2ξ

∗
u∗ ) = ( 3

4β1,−3β2) where β1 + β2 = 1 and β1,β2 ∈ R+. Observe
that the supporting hyperplaneHA of the efficient frontier associated with the optimal
weights chosen by DMU A extends to induce the point O′ (in Fig. 3.2) which rep-
resents a type II free production of outputs, as indicated by Corollary 2. Therefore,
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Fig. 3.5 Input-oriented cross-efficiency evaluation by DMU A under a translated coordinate system

the optimal weights to model (3.1) chosen by DMU A at which IRS prevails are not
valid for cross-evaluating the other DMUs, although this invalidity does not result
in actually observable realization of negative cross-efficiency.

On the other hand, an input-oriented VRS efficiency score of DMU A, measured
under the translated Cartesian coordinate system with an adjusted origin O*, is unity
and CRS prevails at DMU A, meaning that DMU A is CRS-efficient under the
translated coordinate system, as indicated by Theorem 1. Considering a special case
where β1 = 1 and β2 = 0, the Cartesian coordinate system defined by the x-axis
and the y’-axis with the adjusted origin O* = O

′′ = ( 3
4 , 0) renders DMU A CRS-

efficient. Note that, under the translated coordinate system, the optimal weights
( v*

�
, u*

�
) = ( v*

1+ξ*β1
, u*

1+ξ*β1
) = ( 1

1/4 , 1/4
1/4 ) = (4, 1) chosen by DMU A, represented

again byHA, are valid for cross-evaluating the other DMUs since they do not induce
free production of outputs. For instance, under the translated coordinate system, the
coordinates of DMU D are ( 21

4 , 4), and its input-oriented cross-efficiency using the
weights (4,1) is eIAD = 4

21 . This score can also be determined geometrically under

the translated coordinate system in Fig. 3.5: eIAD = D3D1/D3D = 1
21/4 = 4

21 . The

coordinates of DMU G under the translated coordinate system are ( 25
4 , 7),and its

input-oriented cross-efficiency using the weights (4, 1) is eIAG = 7
25 . This score can

also be determined geometrically under the translated coordinate system in Fig. 3.5:

eIAG = G3G1/G3G = 7/4
25/4 = 7

25 .
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Turning to the output-oriented case, we revisit Fig. 3.3 for an illustration. Observe
that DMU F is VRS-efficient and exhibits DRS under the original coordinate system
with origin O, as depicted in Fig. 3.3. Its optimal bundle of weighs chosen to model
(3.3) is (v∗, u∗, ξ ∗) = ( 1

9 , 1
6 , 5

9 ). The supporting hyperplane HF intersects the y-axis

at O′ = (0, ξ∗
u∗ ) = (0, 10

3 ) and the x-axis at O′′ = (− ξ∗
v∗ , 0) = (−5, 0).Any point

on the line O′O′′ can be represented by a convex combination of the two extreme
points; O∗ = (− β1ξ

∗
v∗ , β2ξ

∗
u∗ ) = (−5β1, 10

3 β2) where β1 + β2 = 1 and β1,β2 ∈ R+.
Observe that the supporting hyperplane HF of the efficient frontier associated with
the optimal weights chosen by DMU F extends to induce the point O′ (in Fig. 3.3)
which represents a type I free production of outputs, as indicated by Corollary 1.
Therefore, the optimal weights to model (3.3) chosen by DMU F at which DRS
prevails are not valid for cross-evaluating the other DMUs, although this invalidity
does not result in actually observable realization of negative cross-efficiency.

On the other hand, an output-oriented VRS efficiency score of DMU F, mea-
sured under the translated Cartesian coordinate system with an adjusted origin O*, is
unity and CRS prevails at DMU F, meaning that DMU F is CRS-efficient under the
translated coordinate system, as indicated by Theorem 2. Considering a special case
where β1 = 1 and β2 = 0, the Cartesian coordinate system defined by the x-axis
and the y’-axis with the adjusted origin O* = O

′′ = (−5, 0) renders DMU F CRS-
efficient. Note that, under the translated coordinate system, the optimal weights
( v*

�
, u*

�
) = ( v*

1−ξ*β2
, u*

1−ξ*β2
) = ( 1/9

1 , 1/6
1 ) = ( 1

9 , 1
6 ) chosen by DMU F, represented

again byHF , are valid for cross-evaluating the other DMUs since they do not induce
free production of outputs. For instance, under the translated coordinate system, the
coordinates of DMU A are (6,1), and its output-oriented cross-efficiency using the
weights ( 1

9 , 1
6 ) is eOFA = 6/9

1/6 = 4.This score can also be geometrically confirmed under
the translated coordinate system (defined by the x-axis and the y’-axis) in Fig. 3.3.
Actually, the output-oriented radial distance measurement is not altered by input-
oriented translations of the coordinate system, as is well known. The coordinates of
DMU G under the translated coordinate system are, (12, 7), and its output-oriented
cross-efficiency using the weights ( 1

9 , 1
6 ) is eOFG = 12/9

7/6 = 8
7 . This score can also be

confirmed geometrically under the translated coordinate system in Fig. 3.3.

3.4 Cross Efficiency in the VRS Model

Recall that Theorem 1, Theorem 2, and the corollaries show that optimal weights
chosen by a VRS-efficient DMU exhibiting IRS or DRS are not valid for cross-
evaluating other DMUs because the corresponding supporting hyperplane of the
efficient frontier extends to induce type I or type II free production of outputs. They
also imply a geometric relationship between the VRS and CRS models which can
be stated as “the VRS model for any DMU can be casted as the CRS model for the
same DMU under a translated Cartesian coordinate system.” Using the fact that
any supporting hyperplane of the efficient frontier does not extend to induce free
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production of outputs in the CRS model and thus is always valid for cross-efficiency
evaluation, Lim and Zhu (2014) propose that cross-efficiency evaluation for the
VRS model should be done via a series of CRS models under translated Cartesian
coordinate systems.

Let us first examine the input-oriented case. For an intuitive exposition, DMU F
in Fig. 3.1 is examined. Solving the input-oriented VRS model for DMU F is equiv-
alent to solving the input-oriented CRS model for the same unit under a translated
Cartesian coordinate system. While there exist numerous choices of an adjusted ori-
gin according to Theorem 1 (i.e., any point along O′O′′ will do), a convenient choice
will be either a point on the x-axis or one on the y-axis. However, if the point on
the y-axis, O′, is chosen for an adjusted origin, some units (DMUs A, B, and C) will
have negative outputs under the translated coordinate system, which is not accept-
able. This is not the case with the point on the x-axis, O′′, and therefore it is selected
for an adjusted origin. It should be noted that O′′ is not the only choice for O* along
O′O′′ which does not give rise to the negative-output problem, and resulting cross-
efficiencies depend on the choice of O*. However, the choice of an adjusted origin
on the x-axis makes it possible to derive a general formula (that does not depend on
coefficients βk) for VRS cross-efficiency as follows in the subsequent paragraphs.
With such translation of the coordinate system applied, it becomes valid for DMU F
to cross-evaluate the other DMUs with reference to its supporting hyperplane HF .

A similar reasoning can be applied to DMU A in Fig. 3.2. Solving the input-
oriented VRS model for DMU A is equivalent to solving the input-oriented CRS
model for the same unit under a translated Cartesian coordinate system. Again there
exist numerous choices of an adjusted origin along O′O′′ according to Theorem 1.
While a convenient choice will be either a point on the x-axis or one on the y-axis, the
point on the x-axis, O′′, can be selected to ensure consistency. With such translation
of the coordinate system applied, it becomes valid for DMU A to cross-evaluate the
other DMUs with reference to its supporting hyperplane HA.

Now a general formula for cross-efficiency evaluation in the input-oriented VRS
model is developed. Suppose that DMU0 cross-evaluates DMUj using its optimal
solution (v∗, u∗, ξ ∗) to model (3.1). The translation of the coordinate system is
considered defined by an adjusted origin O∗ = (− β1ξ

∗
v∗1

, . . . , − βmξ
∗

v∗m
, 0, . . ., 0) where

zero repeats s times for the output-associated coordinates,
∑m
k=1 βk = 1 and βk ∈

R+.Under this translated coordinate system, an input-oriented CRS cross-efficiency
eI0j of DMUj is determined using the optimal weights ( v∗

�
, u∗
�

) chosen by DMU0,
where � = 1 + ξ ∗∑m

k=1 βk as defined in Theorem 1, as follows:

eI∗0j =
∑s
r=1

u∗r
�
yrj

∑m
i=1

v∗i
�

(
xij + βiξ

∗
v∗i

) =
∑s
r=1 u∗r yrj

∑m
i=1 v∗i

(
xij + βiξ

∗
v∗i

) =
∑s
r=1 u∗r yrj∑m

i=1 v∗i xij + ξ ∗
(3.7)

This formula can be used for an input-orientedVRS cross-efficiency of DMUj (evalu-
ated by DMU0) under the original coordinate system. Note that the final formula does
not involve coefficients βr and it has the same form with the inverse of the conven-
tional cross-efficiency formula used in the output-oriented VRS model. According to
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the following proposition, input-oriented VRS cross-efficiencies calculated by (3.7)
are positive and less than or equal to unity.

Proposition 1

0 < eI∗0j ≤ 1

Proof Optimal weights used in (3.7) are obtained by solving model (3.1). The first
set of constraints in model (3.1) can be rewritten as follows:

m∑

i=1

vixij + ξ ≥
s∑

r=1

uryrj > 0, j = 1, . . . , n

Therefore, it follows that 0 < eI∗0j ≤ 1 for all j. �

Let us now turn to the output-oriented case. As pointed out in Sect. 3.2, the
same weight invalidity problem related to free production of outputs occurs in
cross-efficiency evaluation for the output-oriented VRS model as well, although
the problem of negative cross-efficiency cannot be actually observed in the output-
oriented VRS model due to its constraints. Therefore, it is required to develop
this case. Suppose that DMU0 cross-evaluates DMUj using its optimal solution
(v∗, u∗, ξ ∗) to model (3.3). The translation of the coordinate system is considered
defined by O∗ (the same choice with the input-oriented case). Under this translated co-
ordinate system, an output-oriented CRS cross-efficiency eO0j of DMUj is determined

using the optimal weights
(

v∗
�

, u∗
�

)
chosen by DMU0, where � = 1− ξ ∗∑m+s

k=m+1 βk
as defined in Theorem 2, as follows:

eO∗0j =
∑m
i=1

v∗i
�

(
xij + βiξ

∗
v∗i

)

∑s
r=1

u∗r
�
yrj

=
∑m
i=1 v∗i xij + ξ ∗

∑m
i=1 βi∑s

r=1 u∗r yrj
=

∑m
i=1 v∗i xij + ξ ∗∑s
r=1 u∗r yrj

(3.8)

This formula can be used for an output-oriented VRS cross-efficiency of DMUj (eval-
uated by DMU0) under the original coordinate system. Note that the final formula
does not involve coefficientsβr and it coincides with the conventional output-oriented
cross-efficiency formula. This coincidence is obvious due to the well-known fact that
the output-oriented VRS model is invariant with respect to the input-oriented trans-
lation of the coordinate system. Output-oriented VRS cross-efficiencies calculated
by (3.8) are greater than or equal to one, as shown in the following proposition.
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Proposition 2

eO∗0j ≥ 1

Proof Optimal weights used in (3.8) are obtained by solving model (3.3). The first
set of constraints in model (3.3) can be rewritten as follows:

m∑

i=1

vixij + ξ ≥
s∑

r=1

uryrj > 0, j = 1, . . . , n

Therefore, it follows that eO∗0j ≥ 1 for all j. �

As pointed out in Sect. 3.3, an input-oriented VRS cross-efficiency of a DMU
evaluated by the DMU itself, calculated using (3.7), differs from its (simple) input-
oriented VRS efficiency score calculated using (3.2). This means that one DMU will
be given n + 1 scores; n cross-efficiencies and one (simple) efficiency score. Lim
and Zhu (2014) suggests to average these n cross-efficiencies to calculate an input-
oriented VRS cross-efficiency score of the DMU. An alternative is to average all
n+ 1 scores. In case of the output-oriented VRS model, one DMU is given n scores
consisting of n− 1 cross-efficiencies (eO∗0j , j 
= 0) and one (simple) efficiency score
(eO∗00 ), as in the conventional approach. All n scores can be averaged to calculate
an output-oriented VRS cross-efficiency score of the DMU. An alternative is not
to include the simple efficiency score as part of the average, which is suggested in
Doyle and Green (1994).

Tables 3.2 and 3.3 show an input-oriented and an output-oriented VRS cross-
efficiency matrix, respectively, for the example data set (seven DMUs) given in
Table 3.1. In case of the input-oriented VRS model, each DMU is given eight scores;
seven input-oriented VRS cross-efficiencies and one input-oriented VRS (simple)
efficiency score. An input-oriented VRS cross-efficiency score of each DMU is cal-
culated by averaging its eight scores, which is given in the last row of Table 3.2.
In case of the output-oriented VRS model, each DMU is given seven scores; six
output-oriented VRS cross-efficiencies (excluding cross-efficiency rated by itself)
and one output-oriented VRS (simple) efficiency score. Note that output-oriented
VRS (simple) efficiency scores can be found on the diagonal of the cross-efficiency
matrix. An output-oriented VRS cross-efficiency score of each DMU is calculated
by averaging its seven scores, which is given in the last row of Table 3.3.

Considering that cross-efficiency evaluation in DEA is a method of peer-
evaluation, eI∗0j (or eO∗0j ) implements peer-evaluation for the VRS DEA model more
fully. Note that the VRS DEA model allows a DMU to choose an optimal value
ξ ∗ in addition to (v∗, u∗), where ξ ∗ indicates the RTS type of the DMU. By The-
orem 1 (and Theorem 2), we see that an optimal choice (v∗, u∗, ξ ∗) of a DMU
determines the normal vector (v∗, u∗) of the supporting hyperplane associated with
the efficient frontier (onto which the DMU is projected), as well as the origin of
a new Cartesian coordinate system under which the DMU exhibits CRS (i.e., the
most productive scale size). The new origin can be determined based on the value
of ξ ∗. Note that the CRS DEA model determines only (v∗, u∗) fixing ξ ∗ = 0. There-
fore, cross-efficiency evaluation in the VRS DEA model should properly take into
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Table 3.2 Input-oriented VRS cross-efficiency matrix

Rated DMU

Rating DMU A B C D E F G

A 1
2

13
1

4

21

5

9

6

13

7

25

B 1
2

13
1

4

21

5

9

6

13

7

25

C
1

2

1

4
1

1

3

5

6

3

4

1

2

D
3

7

6

19
1

4

9
1

18

19

21

31

E
3

7

6

19
1

4

9
1

18

19

21

31

F
1

4

1

3

9

13

6

11

15

16
1

7

8

G
1

5

1

3

18

31

3

5

15

17
1 1

Input-oriented VRS
(simple) efficiency score

1
5

16
1

3

8
1 1 1

Input-oriented VRS
cross-efficiency score

0.6009 0.2711 0.9091 0.3905 0.8455 0.8210 0.6612

account the role of ξ ∗. Recall that the role of ξ ∗ is to determine a new Cartesian
coordinate system under which the evaluated DMU attains the most productive
scale size (i.e., CRS efficiency). Lim and Zhu (2014) define the general concept
of peer-evaluation in DEA as follows: ‘each DMU cross-evaluates other peer DMUs
under its own best evaluation environment’. Here the best evaluation environment
refers to the weights on the input-output factors as well as the new coordinate sys-
tem that are most favourable to the DMU. Under this best evaluation environment,
the DMU itself attains the highest efficiency score as well as the most productive
scale size. This concept of peer-evaluation can be implemented by eI∗0j (or eO∗0j ) by
allowing each DMU to cross-evaluate other peer DMUs under its own best evalu-
ation environment properly represented by all components of the DMU’s optimal
weights (v∗, u∗, ξ ∗).

3.5 Conclusions

While cross-efficiency evaluation has been regarded as a powerful extension of DEA,
its use has been limited to the case of the CRS model up to recently. In this chapter, we
have introduced the approach of Lim and Zhu (2014) for cross-efficiency evaluation
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Table 3.3 Output-oriented VRS cross-efficiency matrix

Rated DMU

Rating DMU A B C D E F G

A 1
13

2
1

21

4

9

5

13

6

25

7

B 3 3
7

6
2 1 1

9

7

C 2 4 1 3
6

5

4

3
2

D 5 3
31

18

5

3

17

15
1 1

E
7

3

19

6
1

9

4
1

19

18

31

21

F 4 3
13

9

11

6

16

15
1

8

7

G 5 3
31

18

5

3

17

15
1 1

Output-oriented VRS
(simple) efficiency score

1 3 1
5

3
1 1 1

Output-oriented VRS
cross-efficiency score

3.1905 3.6667 1.2937 2.5238 1.1905 1.2222 1.6395

under VRS, which is based on a novel geometric view of the relationship between
the VRS and CRS models.

As noted by Lim and Zhu (2014), two other alternative approaches can be applied.
One is to incorporate a non-negativity constraint on

∑s
r=1 uryrj − ξ , ∀j in model

(3.1), as is suggested by Wu et al. (2009). Although this seems a quick fix, it can be
easily observed that this fix distorts the feasible region of multipliers. Specifically, for
the example given in Table 3.1, the non-negativity constraints collectively become
ξ

u ≤ min yj = 1. Note that, for a feasible solution (v, u, ξ ), ξu denotes the y-intercept
of the associated supporting hyperplane. With this distorted feasible region of mul-
tipliers, DMUs F and G cannot attain an efficiency score of unity, even though they
are VRS-efficient. Therefore, this alternative does not correctly address the issue of
negative VRS cross efficiency score.

The other is just not to use problematic (or invalid) optimal weights, such as the one
chosen by DMU G in the example, for cross-efficiency calculation. In other words,
only optimal weights chosen by DMUs exhibiting CRS are used for cross-efficiency
evaluation. While this approach is reasonable in that only valid optimal weights are
used in the calculation of cross-efficiency, it may cause an unbalanced (or partial)
cross-efficiency evaluation. In other words, it prevents a full range of peer evaluation.

It may appear that under VRS cross efficiency, a small sized DMU can be bench-
marked against a large sized DMU. However, this particular issue should not be a
concern under the concept of cross efficiency. Lim and Zhu (2014) point out that the
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basic idea of cross efficiency is peer evaluation, namely applying one DMU’s per-
spective (manifested in its optimal bundle of weights) to others. As recently pointed
out by Cook et al. (2014), although DEA has strong link to production theory in
economics, the tool is also used for benchmarking in operations management, where
a set of measures is selected to benchmark the performance of manufacturing and
service operations. In the circumstance of benchmarking, the efficient DMUs, as
defined by DEA, may not necessarily form a “production frontier”, but rather lead
to a “best-practice frontier”. Under this general concept, size or frontier type should
not be an issue of concern and the proposed approach works. VRS and CRS are just
two terms used to characterize the shapes of the DEA best practice frontier. Without
the concept of RTS, these two different shapes of DEA frontiers still exist. VRS sim-
ply offers a tighter envelopment. Furthermore, under multiple inputs and multiple
outputs, it is difficult to define what constitutes a small- or large-sized DMU. The
idea of cross efficiency is to benchmark DMUs against each other, regardless of their
size, whether under CRS or VRS. Under CRS cross efficiency, a large-sized DMU
is also benchmarked against a small-sized DMU. If one uses the concept of RTS to
characterize the shape of the DEA frontier and to classify DMUs, one can clearly see
the difference between CRS and VRS cross efficiency. In general, a set of DMUs can
be classified into three groups: IRS, CRS, and DRS. Under the CRS cross efficiency,
all the CRS efficient facets are applied to IRS and DRS DMUs, while under the VRS
cross efficiency IRS, CRS, and DRS efficient facets are applied to all DMUs. Since
the general concept of cross efficiency is to look at the performance of a DMU by
using other DMUs’ weights or facets, it is reasonable to apply IRS, CRS, and DRS
facets to all DMUs and to generate VRS cross efficiency

With the approach introduced in the current chapter, we can now use the cross-
efficiency concept under the VRS assumption. We note that non-uniqueness of
cross-efficiency resulting from multiple optimal multipliers is still an issue with
the VRS cross-efficiency approach. As in Doyle and Green (1994), we can add a set
of secondary goals in the proposed VRS cross efficiency approach. See also Liang
et al. (2008a) and Lim (2012). We can also develop a game cross efficiency approach
as in Liang et al. (2008b). These are possible future research topics.
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Chapter 4
Discrete and Integer Valued Inputs and Outputs
in Data Envelopment Analysis

Timo Kuosmanen, Abolfazl Keshvari and Reza Kazemi Matin

Abstract Standard axioms of free disposability, convexity and constant returns to
scale employed in Data Envelopment Analysis (DEA) implicitly assume continuous,
real-valued inputs and outputs. However, the implicit assumption of continuous
data will never hold with exact precision in real world data. To address the discrete
nature of data explicitly, various formulations of Integer DEA (IDEA) have been
suggested. Unfortunately, the axiomatic foundations and the correct mathematical
formulation of IDEA technology has caused considerable confusion in the literature.
This chapter has three objectives. First, we re-examine the axiomatic foundations of
IDEA, demonstrating that some IDEA formulations proposed in the literature fail to
satisfy the axioms of free disposability of continuous inputs and outputs, and natural
disposability of discrete inputs and outputs. Second, we critically examine alternative
efficiency metrics available for IDEA. We complement the IDEA formulations for
the radial input measure with the radial output measure and the directional distance
function. We then critically discuss the additive efficiency metrics, demonstrating
that the optimal slacks are not necessarily unique. Third, we consider estimation
of the IDEA technology under stochastic noise, modeling inefficiency and noise as
Poisson distributed random variables.

Abbreviations of key concepts referred to in this chapter: DEA=Data Envelopment Analysis,
DMU=Decision Making Unit, CNLS=Convex Nonparametric Least Squares, IDEA= Integer
DEA, MILP=Mixed Integer Linear Programming, RTS=Returns To Scale, SFA= Stochastic
Frontier Analysis, StoNED= Stochastic Nonparametric Envelopment of Data.
Abbreviations of articles frequently cited in this chapter: KJS=Kuosmanen, Johnson and Saasta-
moinen (in this volume), KKM=Kuosmanen and Kazemi Matin (2009), KMK=Kazemi Matin
and Kuosmanen (2009), KSM=Khezrimotlagh, Salleh, and Mohsenpour (2012, 2013a, 2013b),
LV=Lozano and Villa (2006, 2007).
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Keywords Axiomatic production theory · Efficiency analysis · Mixed integer linear
programming · Stochastic noise

4.1 Introduction

Data envelopment analysis (DEA, Charnes et al. 1978) is an axiomatic, mathematical
programming approach to assessing efficiency of decision making units (DMUs).1

DEA does not assume any particular functional form for the frontier, but relies on
the axioms of production theory, most importantly, free disposability, convexity, and
some specification of returns to scale (i.e., variable, non-increasing, non-decreasing,
or constant). The standard axioms of free disposability, convexity and constant re-
turns to scale employed in DEA implicitly assume continuous, real-valued inputs
and outputs. In contrast, input-output data used in applications are always discrete
because the precision of measurement is necessarily restricted to a limited number
of decimal digits. Therefore, the implicit assumption of continuous data will never
hold with exact precision in real world data.

From a practical point of view, this is not a problem if the observed discrete data
can be meaningfully approximated by continuous variables. For example, if the labor
input is measured by the number of hours worked, rounded to the nearest integer, and
the measured input varies between 1000 and 100,000 h across evaluated DMUs, then
the continuous approximation of the discrete data of labor input is perfectly valid as
the possible rounding error is small (at most 0.1 %) relative to the measured input.
In contrast, if the labor input is the number of workers performing certain function
(e.g., firm managers, university professors, hospital physicians), and the DMUs under
evaluation are small, the rounding error can become a significant issue. For example,
Kuosmanen and Kazemi Matin (2009) consider efficiency analysis of university
departments where the number of professors and the number of published articles
are examples of integer valued input and output variables. Suppose a university
department currently has three professors. Suppose further that the conventional
DEA analysis suggests the efficient level of professors is 2.7. How should this result
be interpreted? If we round up the efficient number of professors to 3, then the
evaluated DMU will appear as efficient, even though the DEA analysis indicates
input efficiency of 90 %. However, rounding the input target downwards to 2 may
result as an infeasible solution. Since the conventional DEA implicitly assumes all
inputs and outputs to be real-valued, the estimated DEA frontier does not necessarily
provide meaningful reference points if one simply rounds the input or output targets
to the nearest whole number.

1 We will henceforth use the term “DMU” to refer to any entity that transforms inputs to output,
including both non-profit firms and for-profit companies. DMU can refer to a production plant,
facility, or sub-division of a company, or to an aggregate entity such as an industry, a region, or a
country.
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Lozano and Villa (2006, 2007) (henceforth LV) were the first to address this issue
explicitly in DEA.2 They proposed to estimate the production possibility set as the
intersection of the standard DEA technology and the set of non-negative integers.
Unfortunately, they did not provide any theoretical justification for their integer
DEA (henceforth IDEA) technology, even though it is obvious that the proposed
technology does not satisfy the standard axioms of free disposability or convexity.
To address this problem Kuosmanen and Kazemi Matin (2009) (henceforth KKM)
introduced two new axioms of natural disposability and natural divisibility. Imposing
the classic additivity axiom (Koopmans 1951), KKM proved that LV’s constant
returns to scale (CRS) technology has a sound axiomatic foundation. Specifically,
they showed that the IDEA technology is the smallest set that contains all observed
data points and satisfies the axioms of additivity, natural disposability, and natural
divisibility. Subsequent paper by Kazemi Matin and Kuosmanen (2009) (henceforth
KMK) extended the result to the variable returns to scale (VRS) case, introducing
the axiom of natural convexity.

Another contribution of LV is the development of a mixed integer linear pro-
gramming (MILP) DEA formulation to measure efficiency of DMUs relative to the
IDEA technology using Farrell’s (1957) radial input-oriented measure. KKM argue
that the classic Farrell measure needs to be modified in the context of integer-valued
input-output data, and propose to measure efficiency as the radial distance to the
monotonic hull of the IDEA technology. They further argue that LV’s MILP formu-
lation over-estimates efficiency, and they demonstrate their argument by means of a
numerical example and an application.

Following the pioneering works by LV and KKM, a number of extensions and
applications of integer DEA have been published (see, e.g., Wu et al. 2009, 2010;
Lozano et al. 2011; Kazemi Matin and Emrouznejad 2011; Alirezaee and Sani 2011;
Chen et al. 2012; Du et al. 2012; Nöhren and Heinzl 2012; Lozano 2013; Chen et al.
2013). We will survey the extensions and applications in more detail Sect. 4.8 of this
chapter.

Unfortunately, the axiomatic foundation and the MILP formulation of integer
DEA have also caused serious confusion since the original works by LV. Recently,
a series of papers by Khezrimotlagh et al. (2012, 2013a, 2013b) (henceforth KSM)
have contributed to further confusion by discrediting the contributions of KKM
and disregarding both the importance of a sound axiomatic foundation and rigorous
mathematical formulations. While the bogus critique by KSM is not worth serious
consideration, the naı̈ve mistakes of KSM provided us some further motivation to
elaborate our arguments and shed some new light on the intimate connection between
the axioms of production theory and the implementation through MILP.

2 Previous studies such as Banker and Morey (1986), Kamakura (1988), and Rousseau and Semple
(1993) (among others) consider inputs and outputs measured on the categorical or ordinal scale,
which are obviously integer valued. However, input-output variables defined on the interval or ratio
scales can be integer valued as well.
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The purposes of this chapter are three-fold. First, we re-examine the axioms and
MILP formulations of integer DEA, elaborating some aspects that have apparently
caused confusion in the literature. Emphasizing the importance of the axiomatic
foundation, we demonstrate that LV’s MILP formulations fail to satisfy the axioms
of free disposability of continuous inputs and outputs, and natural disposability of
discrete inputs and outputs. We illustrate the inconsistency of LV’s MILP formulation
with the IDEA technology they suggested through detailed numerical examples,
which demonstrate the differences between the LV’s formulation and those developed
by KKM and KMK.

Second, we critically examine alternative efficiency metrics available for integer
DEA. We complement the MILP formulations for the radial input oriented Farrell
(1957) measure proposed by KKM and KMK with the radial output oriented mea-
sure, and the general directional distance function (Chambers et al. 1996, 1998).
We then critically discuss the additive efficiency metrics considered by LV (2007),
demonstrating that the optimal slacks are not necessarily unique. The same problem
applies to the range adjusted additive measure proposed by Cooper et al. (1999). The
non-uniqueness of slacks can make the application of the slack based measure by
Tone (2001) problematic in the context of integer DEA.

Third, attributing all deviations from the frontier to inefficiency, ignoring stochas-
tic noise, is generally recognized as the main limitation of DEA (see Kuosmanen,
Johnson and Saastamoinen, in this volume, (henceforth KJS) for a review of recent
advances in modeling noise). To address this shortcoming, we examine the estimation
of the IDEA technology in the single output setting under stochastic noise. Modeling
inefficiency and noise as Poisson distributed random variables, we outline the first
extension of stochastic nonparametric envelopment of data (StoNED) approach by
Kuosmanen and Kortelainen (2012) to discrete output variables.

The rest of this chapter is organized as follows. Section 4.2 introduces and
discusses the axioms for a DEA problem with integer-valued inputs and outputs.
Section 4.3 derives the associated DEA production sets that satisfy the fundamen-
tal minimum extrapolation principle,3 and generalize the method to the hybrid case
where both real and integer valued inputs and outputs are present. Section 4.4 mod-
ifies the Farrell input efficiency measure to the integer DEA setting, and show how
the efficiency score can be computed by solving a MILP problem. Section 4.5 dis-
cusses new developments on integer DEA and some extensions. Section 4.6 presents
concluding discussion with some potential avenues for future research. The paper
includes several theorems: proofs of all theorems and lemmas are presented in the
Appendix.

3 The minimum extrapolation principle was formally introduced by Banker et al. (1984), but formal
minimum extrapolation theorems (and proofs) date back at least to Afriat (1972).
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4.2 Axioms

The axiomatic approach to constructing production possibility sets as a combination
of observed activities has a long history in economics, dating back at least to Von
Neumann (1945–1946) and Koopmans (1951). Afriat (1972) was the first to prove the
minimum frontier production functions that envelop all observed data and satisfy the
following sets of axioms: i) free disposability, ii) convexity and free disposability, and
iii), CRS, convexity and free disposability. Banker et al. (1984) extended Afriat’s
result to the multi-output production possibility sets, and formally introduced the
fundamental minimum extrapolation principle.

Multi-output production technology can be generally characterized by the
production possibility set T defined as

T = {
(x, y)|x ∈ R

m
+ can produce y ∈ R

s
+
}
,

where x is a m-dimensional vector of input quantities and y is a s-dimensional vector
of output quantities.4 Intuitively, the set T can be understood as a list of feasible input-
output combinations. Even if we restrict to discrete or integer valued input-output
vectors, in general, there are infinitely many feasible input-output vectors, which
makes the list infinitely long. It is worth emphasizing that, in many applications, the
production possibility set T is interpreted as the benchmark technology that forms a
reference for performance comparisons and efficiency analysis. In this interpretation,
the boundary of set T characterizes standards for good performance, not only the
production possibilities from the strictly technical point of view.

Observed DMUs are characterized by a pair of non-negative input and output vec-
tors (xj , yj )j ∈ J = {1, . . . , n}. Conventional DEA approaches implicitly assume
that all inputs and outputs are continuous, real-valued variables. However, observed
data are always discrete as the number of decimal digits is necessarily finite. This
forms the motivation for integer DEA. Note that any discrete data that cannot be
meaningfully approximated as continuous data can easily be converted to integers
by a simple multiplicative transformation. Suppose, for example, that a continuous
output variable is measured at the precision of one decimal digit (e.g., 0, 0.1, 0.2,
. . . ), but rounding the DEA targets to the nearest decimal digit seems problematic
for one reason or another. This discrete output variable an be harmlessly multiplied
by factor 10 (amounting to a change of units of measurement), which results as an
integer valued output variable.

In the following we will focus on integer-valued inputs and outputs (x, y) ∈ Z
m+s
+ ,

which lead us to integer DEA (IDEA) introduced by LV. In the following sub-sections
we will adapt the classic axioms of DEA to allow for integer valued inputs and outputs,
following KKM and KMK.

4 For clarity, we denote vectors by bold lower case letters (e.g., x) and matrices by bold capital
letters (e.g., X).
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4.2.1 Free Disposability and Natural Disposability

Free disposability is an intuitive and widely used axiom. It is closely related to
monotonicity of functional representations of technology: free disposability implies
that the production function is monotonic increasing in inputs and the cost function is
monotonic increasing in outputs. It is possible to assess efficiency relying solely on
the free disposability axiom, using the free disposable hull (FDH) method (Deprins
et al. 1984; Tulkens 1993). However, free disposability is not always a meaningful
axiom. For example, if the output vector y includes undesirable outputs (bads) such
as waste or pollution, the free disposability axiom can be replaced by the weak
disposability axiom.5 Free disposability is also relaxed for modeling congestion. 6

The axiom of free disposability is conventionally stated as follows:
(A1) Free disposability: (x, y) ∈ T and (u, v) ∈ R

m+s
+ , y ≥ v ⇒

(x + u, y − v) ∈ T .
This axiom states that it is always possible to produce less output with a given level

of inputs, or alternatively, use more inputs to produce the same amount of output.
Vector u can be interpreted as the amount of excess inputs used, and vector v repre-
sents the foregone output. If we interpret this axiom literally, it seems impossible to
consume infinite amounts of inputs in a finite production process. Hence axiom (A1)
is not necessarily valid from a purely technical point of view. However, it does have
a compelling economic interpretation: (A1) essentially states that inefficient produc-
tion (in the sense of Koopmans 1951) is feasible. Stated differently, if our objective
is to assess technical efficiency in the sense of Koopmans (1951), and we interpret
T as a benchmark technology rather than as a list of technically feasible points, then
(A1) is a completely harmless axiom irrespective of whether it is technically feasible
or not.

Axiom (A1) implies continuity. Clearly, if this axiom holds, then there are feasible
real-valued input-output vectors (x, y) ∈ T that are not included in Z

m+s
+ . Stated

conversely, if the production possibility set T contains only integer-valued input-
output vectors, then it cannot satisfy the standard free disposability axiom. Therefore,
it is necessary to adapt this axiom to be consistent with integer-valued inputs and
outputs. KKM propose the following axiom:

(B1) Natural disposability: (x, y) ∈ T and (u, v) ∈ Z
m+s
+ , y ≥ v ⇒

(x + u, y − v) ∈ T .
The economic rationale of axiom (B1) is exactly the same as that of the standard

free disposability axiom (A1): inefficient production is feasible. However, (B1) only
allows for integer-valued disposal of outputs through vector v and integer-valued
excess inputs through vector u. Therefore, axiom (B1) is a suitable counterpart of
(A1) that applies for integer valued inputs and outputs.

5 The correct way of implementing weak disposability in DEA has caused some confusion in the
literature: see Kuosmanen (2005), Färe and Grosskof (2009), Kuosmanen and Podinovski (2009),
and Podinovski and Kuosmanen (2011) for an interesting debate on this issue.
6 This is another issue that has caused confusion: see Cherchye et al. (2001).
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4.2.2 Convexity and Natural Convexity

The classic DEA approaches (Farrell 1957; Charnes et al. 1978; Banker et al. 1984)
impose convexity in addition to free disposability. The standard convexity axiom can
be stated as follows:

(A2) Convexity : (x, y), (x′, y′) ∈ T, (̃x, ỹ)

= λ(x, y) + (1 − λ)(x′, y′), 0 ≤ λ ≤ 1 ⇒ (̃x, ỹ) ∈ T .
This axiom states that convex combinations of observed DMUs are always feasible.
The weights assigned to the observations are characterized by parameterλ. In general,
we can form convex combinations of all n observations in J using a n-dimensional
parameter vector λ.

Convexity does not necessarily have a strong justification from the technical point
of view, but it is a fundamental axiom in economic theory. For example, convexity
is critically important for establishing duality results between alternative represen-
tations of technology (Shephard 1970; Färe and Primont 1995). For example, if the
profit function of a firm is known, we can always recover the convex hull of its
production possibility set T (see Kuosmanen 2003, for details). If we interpret T as
a benchmark technology for competitive profit maximizing firms that take prices as
given, then convexity is an equally harmless axiom as free disposability. However,
if we consider nonprofit firms or monopolistic competition, convexity may be a re-
strictive assumption as it assumes away economies of scale (see, e.g., Kuosmanen
2001). Weaker forms of quasi-convexity (i.e., convex input or output sets) have also
been considered in the DEA literature (e.g., Petersen 1990; Bogetoft 1996; Bogeoft
et al. 2000; Post 2001).

Clearly, if axiom (A2) holds, then there are feasible real-valued input-output vec-
tors (x, y) ∈ T that are not integer-valued. Conversely, if the production possibility
set T contains only integer-valued input-output vectors, then it violates convexity.
Therefore, it is necessary to adapt this axiom to be consistent with integer-valued
inputs and outputs. KMK propose the following axiom:

(B2) Natural convexity: (x, y), (x′, y′) ∈ T , (̃x, ỹ) = λ(x, y) + (1 − λ)(x′, y′),
0 ≤ λ ≤ 1 and (̃x, ỹ) ∈ Z

m+s
+ ⇒ (̃x, ỹ) ∈ T .

Analogous to the pair of axioms (A1) and (B1), the rationale of axiom (B2) is
to adapt (A2) to the context of integer-valued inputs without changing its meaning.
Note that (B2) only adds to (A2) the requirement that (̃x, ỹ) ∈ Z

m+s
+ , that is, the

resulting convex combination must itself be integer-valued. Note that KMK allow
the weights λ used for forming convex combinations to be real valued. They do not
see a problem in using real valued numbers in the mathematical operations involved
in the axioms as far as the resulting input-output vectors are integer-valued.

KSM (2012) criticize KMK for the use of real valued weights λ for forming
convex combinations.7 They propose to substitute weights λ in (B2) by the ratio u/v,

7 KSM (2012) state: ”Now, if it has been supposed that only the integer numbers set is considered,
then it should not have been used the real number variable in the integer axioms! In fact, a new
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such that u ≤ v, u, v ∈ Z+. Mathematically, this restricts the domain of weights
λ from the real numbers to the set of rational numbers. Therefore, the alternative
axiom proposed by KSM does not expand the production possibility set, it can only
contract it. In fact, we can prove the following:

Lemma 1 Assume Axiom (B2) is satisfied. Then for any given (x, y), (x′, y′) ∈ T ,
if there exists a real valued λ such that (̃x, ỹ) = λ(x, y) + (1 − λ)(x′, y ′) ∈ T , then
there exist integers u, v ∈ Z+, u ≤ v, such that

λ = u/v

This lemma shows that the alternative convexity axiom proposed by KSM makes
no difference whatsoever. If one finds the axiom by KSM more aesthetic or elegant,
one can harmlessly use it, without a need to revise the theory developed by KKM.
However, for the sake of intuition and transparency, we prefer to maintain a close
connection between the axioms for real valued and integer valued variables (i.e.,
axioms A and axioms B). Since there is no real benefit from restricting the domain
of weights λ from the set of real numbers to the set of rational numbers, this is only a
matter of subjective preference. In this light, the claims about “major shortcomings”
that KSM repeatedly express in their papers are completely irrational.

4.2.3 Returns to scale

Returns to scale concerns radial contraction or expansion of all inputs and outputs
by the same factor. Note that if no axioms concerning returns to scale are imposed,
then the technology is said to exhibit variable returns to scale (VRS). To implement
VRS in DEA, the weights λ employed for forming convex combinations of observed
DMUs must sum to one (i.e.,

∑n
j=1 λj = 1).When further axioms concerning returns

to scale are imposed, this constraint can be relaxed.
Consider first the radial contraction possibilities. The conventional axiom of non-

increasing returns to scale (NIRS) can be stated as follows:
(A3) Non-increasing returns to scale: (x, y) ∈ T and 0 ≤ λ ≤ 1 ⇒ (λx, λy) ∈ T .
This axiom allows one to scale down any observed input-output vector by factor

λ. Note that axiom (A3) implies that inactivity is feasible: the origin (0,0) is included
in the production possibility set T because, starting from any observed (x, y), we can
set factor λ = 0. If we simply insert the origin (0,0) as one of the observed points
in the data set, then the variable returns to scale DEA technology will automatically
satisfy axiom (A3). This provides an implicit way of implementing NIRS, which
may be useful in some context (see Kuosmanen 2005). A more standard way of

axiom must not have any doubts or parallel affects with those previous axioms. In other words, an
axiom is an evident premise as to be accepted as true without controversy.” This discussion reveals
that KSM do not understand the economic meaning of axioms in DEA. In fact, none of the standard
DEA axioms can meet the requirements of KSM.
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implementing NIRS in DEA is to set a constraint that the sum of intensity weights
must be less than or equal to one (i.e.,

∑n
j=1 λj ≤ 1).

Clearly, even if we start from an inter-valued input-output vector (x, y) ∈ Z
m+s
+ ,

the rescaled vector (λx, λy) is not necessarily integer valued. Therefore, axiom (A3)
is not directly applicable for integer DEA. KKM propose to modify axiom (A3) as

(B3) Natural divisibility: (x, y) ∈ T and 0 ≤ λ ≤ 1 and (λx, λy) ∈ Z
m+s
+ ⇒

(λx, λy) ∈ T .
Natural divisibility simply introduces an additional restriction that the downward

rescaled version of the original input-output vector must result as an integer valued
production plan to be feasible.

Consider next the radial expansion. The conventional axiom of non-decreasing
returns to scale (NDRS) can be stated as follows:

(A4) Non-decreasing returns to scale: (x, y) ∈ T and λ ≥ 1 ⇒ (λx, λy) ∈ T .
This axiom allows for radial expansion of any observed input-output vector away

from the origin by factor λ ≥ 1. The NRDS axiom is implemented in DEA by
enforcing the sum of intensity weights to be greater than or equal to one (i.e.,∑n
j=1 λj ≥ 1).
Obviously, the rescaled vector (λx, λy) does not have to be integer valued.

Therefore, KMK propose to adapt this axiom for integer DEA as
(B4) Natural augmentability: (x, y) ∈ T and λ ≥ 1 and (λx, λy) ∈

Z
m+s
+ ⇒ (λx, λy) ∈ T .

Natural augmentability requires that the radial expansion must result as an integer
valued input-output vector in order to be feasible.

Note that in both (B3) and (B4), KMK assume a real-valued multiplier λ. In both
cases, we could equally well express λ as a ratio of two integers.

Lemma 2 For any given (x, y) ∈ T , if there exists a real valued λ such that
(λx, λy) ∈ T , then there exist integers u, v ∈ Z+, u ≤ v, such that

λ = u/v.

This result again shows that the alternative formulations of the KMK axioms
suggested by KSM do not make any practical difference whatsoever.

Finally, if both (A3) and (A4) hold, then the technology is said to satisfy constant
returns to scale (CRS):

(A5) Constant returns to scale: (x, y) ∈ T and λ ≥ 0 ⇒ (λx, λy) ∈ T .
In the CRS case, the sum of intensity weights λ is unrestricted. Observe that

imposing additional axioms on returns to scale implies less restrictive constraints for
the intensity weights λ, which leads to the expansion of the estimated production
possibility set.

From a pure technical point of view, the CRS axiom appears totally unrealistic.
However, it does have compelling economic justification in many applications. If the
objective of the firm is to maximize profitability (i.e., the ratio of revenue to cost)
at given prices, then the CRS axiom is completely harmless (see Kuosmanen et al.
2004; Lemma 1).
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KMK did not introduce an integer equivalent of (A5): note that if both (A3) and
(A4) hold, then (A5) holds. The converse is also true. Therefore, the CRS case is
obtained in integer DEA by imposing (B3) and (B4). For the sake of completeness,
we can state the integer version of (A5) as

(B5) Natural radial rescaling: (x, y) ∈ T and λ ≥ 0 and (λx, λy) ∈
Z
m+s
+ ⇒ (λx, λy) ∈ T .

In fact, KKM examine the CRS case in detail, imposing the axiom of additivity
(adopted from Koopmans 1951) in addition to natural divisibility (B3).

(A6) Additivity: (x, y), (x′, y′) ∈ T ⇒ (x + x′, y + y′) ∈ T .
Since axiom (A6) was first introduced in the context of continuous variables, we

label it as type-A axiom. Note, however, that the additivity axiom does not require
or imply continuity, and hence it applies equally well to integer valued inputs and
outputs. Interestingly, we can build the IDEA technology under CRS to the axioms
of additivity and natural divisibility axioms, as shown by the following result:

Lemma 3 If the axioms (B2) Natural convexity and (B5) Natural radial rescaling
are satisfied, then the axioms of (B3) Natural divisibility and (A6) Additivity must
also hold. Conversely, if axioms (B3) and (A6) are satisfied, then axioms (B2) and
(B5) must also hold. In other words, these two pairs of axioms are equivalent in the
following sense:

[(B2) and (B5)]⇔ [(B3) and (A6)].

4.2.4 Envelopment

In addition to the standard axioms of production theory (e.g., Shephard 1970; Färe
and Primont 1995), the classic DEA article by Banker et al. (1984) imposes the
following axiom:

(E1) Envelopment: all observed data points (xj , yj ) are feasible: (xj , yj ) ∈ T ∀j ∈
J.

For clarity, we label this assumption as type-E postulate, as (E1) not really an
axiom in the same sense as (A1)–(A6) and (B1)–(B5) considered above. Note that
all axioms introduced before are conditional statements expressed using ⇒ (i.e.,
if condition “A” holds, then “B” is feasible). In contrast, (E1) is an unconditional
statement about the observed data. In our interpretation, the minimum extrapolation
principle together with (E1) form the estimation principle of DEA analogous to the
minimization of least squares or the maximization of the log-likelihood function in
regression analysis.

In a technical sense, (E1) is a natural and intuitive axiom: if point (xj , yj ) is
observed, then it clearly must be feasible. One could argue that this axiom is proved
by empirical evidence.

However, the fact that (xj , yj ) is observed once does not necessarily guarantee that
DMU j can replicate (xj , yj ) again in the future, or that other DMUs can achieve the
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Table 4.1 Axioms considered in this paper

Axioms that imply continuity Corresponding axioms for discrete variables

(A1) Free disposability (B1) Natural disposability

(A2) Convexity (B2) Natural convexity

(A3) Non-increasing returns to scale (B3) Natural divisibility

(A4) Non-decreasing returns to scale (B4) Natural augmentability

(A5) Constant returns to scale (B5) Natural radial rescaling

Other axioms/conditions

(A6) Additivity

(E1) Envelopment

point (xj , yj ). In many applications of efficiency analysis, production process is sub-
ject to uncontrollable random elements, including technological risks (e.g., machine
failure). There are also economic risks (e.g., variation in demand and input-output
prices), and risks related to the operating environment (e.g., competition, regulation,
weather conditions). In practice, DEA can handle a limited number of input and
output variables,8 and hence one often needs to either omit some relevant inputs or
outputs, or resort to aggregated inputs and outputs (e.g., monetary cost or revenue
aggregates) that are subject to errors of aggregation. While DEA implicitly assumes
homogenous DMUs that operate in a homogenous environment, in reality, evaluated
DMUs tend to be heterogenous and operate in heterogenous environments. The ran-
dom variations, omitted variables, data errors, and hetereogeneity are some of the
possible reasons for why the envelopment condition (E1) is not valid in applications.

The recent works by Kuosmanen (2008), Kuosmanen and Johnson (2010), and
Kuosmanen and Kortelainen (2012) demonstrate that it is possible to relax the en-
velopment condition (E1), and estimate production technologies subject to some of
the axioms (A1)–(A6) in a nonparametric or semi-nonparametric fashion (see KJS
for a review). We consider the CNLS (convex nonparametric least squares) and
StoNED (stochastic nonparametric envelopment of data) developed in these papers
a promising way forward. An extension of StoNED method to IDEA technology
will be developed in Sect. 4.6. To pave a way for the stochastic extension, we will
maintain the assumption (E1) in Sects. 4.3–4.5.

To summarize this section, Table 4.1 lists the axioms considered, indicating the
standard axioms (A1)–(A5) that imply continuity and the corresponding axioms
(B1)–(B5) for discrete, integer-valued variables, and the other axioms/ conditions.

8 DEA is a nonparametric estimator subject to the curse of dimensionality. This implies that the
precision of DEA estimator deteriorates rapidly as the number of input and output variables in-
creases. Also the discriminating power of DEA is affected: when the dimensionality is large, almost
all DMUs appear as inefficient.
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4.3 Continuous, Integer-Valued and Hybrid DEA Technologies

Having introduced the axioms, we will next examine the continuous and integer-
valued DEA estimators of the production possibility set T, and a hybrid case where
some inputs and outputs are integer-valued while others are continuous.

Applying the fundamental minimum extrapolation principle, any DEA technol-
ogy can be constructed as the intersection of such sets S ⊂ R

m+s
+ that contain all

observed DMUs (E1) and satisfy the stated axioms (Banker et al. 1984). In the case
of continuous input-output variables, the DEA estimator of the production possibility
set T can be stated as

T RT SDEA = {(x, y) ∈ R
m+s
+

subject to

x ≥
∑n

j=1
xjλj ;

y ≤
∑n

j=1
yjλj ;

λ ∈ �RT S},
where �RT S denotes the generic domain of intensity weights under alternative RTS
specifications. Specifically,�RT S can be specified by choosing one of the four options
below:

�VRS =
{∑n

j=1
λj = 1; λ ≥ 0

}

�NIRS =
{∑n

j=1
λj ≤ 1; λ ≥ 0

}

�NDRS =
{∑n

j=1
λj ≥ 1; λ ≥ 0

}

�CRS = {λ ≥ 0}
This generic domain allows for alternative specifications of RTS known in the
DEA literature. The connection to the axioms introduced in Sect. 4.2 is the
following. Under axioms (A1)+ (A2), we have the VRS specification. �VRS
Axioms (A1)+ (A2)+ (A3) imply the NIRS specification �NIRS , while ax-
ioms (A1)+ (A2)+ (A4) imply the NDRS specification �NDRS. Under axioms
(A1)+ (A2)+ (A5), we have the CRS specification �CRS.

Banker et al. (1984) formally show that set T RT SDEA satisfies the envelopment con-
dition (E1) and the stated axioms, and that T RT SDEA is the intersection of all such sets
that satisfy those axioms. In this sense, T RT SDEA is the smallest set that satisfies the
stated axioms.9 Note that the axiom of convexity is implemented through the use

9 In the single output case, Afriat (1972) proves the similar minimum extrapolation result for the
smallest production function satisfies axioms (A1), (A1)+ (A2), or (A1)+ (A2)+ (A5).
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of intensity weights λj (compare with axiom (A2)), which allow for any convex
combination of observed DMUs. Restricting weights λj to be integers relaxes the
convexity axiom (A2), leading to the free disposable hull (Deprins et al. 1984) and
free replicable hull (Tulkens 1993) technologies. The axiom of free disposability is
implemented through the inequality constraints for inputs and outputs. Replacing
the inequality constraints by equality constraints would relax the free disposability
axiom (A1), leading to the DEA formulations of weak disposability (e.g. Kuosmanen
2005) and congestion (e.g. Cherchye et al. 2001).

In the case of integer-valued inputs and outputs, the generic IDEA technology
first proposed by LV can be similarly stated as

T RT SIDEA = {(x, y) ∈ Z
m+s
+

subject to

x ≥
∑n

j=1
xjλj ;

y ≤
∑n

j=1
yjλj ;

λ ∈ �RT S},
where�RT S is the generic domain of intensity weights under alternative RTS speci-
fications introduced above. In the case of the IDEA technology, axioms (B1)+ (B2)
imply the VRS specification �VRS. Under axioms (B1)+ (B2)+ (B3) we have the
NIRS specification �NIRS , and axioms (B1)+ (B2)+ (B4) imply the NDRS spec-
ification �NDRS . Finally, the CRS specification �CRS is obtained under axioms
(B1)+ (B2)+ (B5).

Comparing the sets T RT SIDEA and T RT SDEA, it is obvious that T RT SIDEA ⊂ T RT SDEA. LV
correctly note that

T RT SIDEA = T RT SDEA ∩ Z
m+s
+ .

In words, IDEA technology is the intersection of the set of integer vectors and the
conventional DEA technology, and the latter set is further an intersection of all such
sets that satisfy (E1), (A1), (A2), and the specified RTS axioms. However, it is easy
to see that T RT SIDEA itself does not satisfy any of the axioms (A1) – (A4). This is the
reason why KKM criticized LV for the lack of axiomatic foundation. It is not enough
that a benchmark technology is an intersection of some arbitrary sets: the minimum
extrapolation principle requires that T RT SIDEA itself satisfies the stated axioms, and is
the smallest set that does so.

Fortunately, the axiomatic foundation can be established using the parallel set
of axioms (B1) – (B4), as shown by KKM and KMK. The minimum extrapolation
theorems by KKM and KMK can be formally summarized as follows:

Theorem 1 Production possibility set T RT SIDEA is the intersection of all sets S ⊂
Z
m+s
+ that satisfy the envelopment (E1), axioms (B1) and (B2), the RTS axioms ((B3),

(B4), (B5), or none) corresponding to the specified returns to scale.
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Note that axioms (B1) and (B2) could be relaxed in the same way as in the standard
DEA technology. If the inequality constraints for inputs and outputs are replaced by
equality constraints, this amounts to relaxing axiom (B1). Similarly, if intensity
weights λj are restricted to be binary integers, the convexity axiom (A2) is relaxed.
We emphasize the direct correspondence between the axioms and the mathematical
formulations of alternative DEA technologies.

In addition to the settings where all inputs and outputs are either continuous or
integer valued, in many applications of IDEA some of the input-output variables
are integer valued while others can be meaningfully approximated as continuous
variables. Following LV, KKM, and KMK, this case will be henceforth referred to
as the hybrid integer DEA (HIDEA). In general, we can partition the set of input
variables as I = I I ∪ IN and the set of output variables as O = OI ∪ON , where
subsets I I andOI contain the integer valued inputs and outputs, respectively, whereas
subsets INI and ONI include the real valued inputs and outputs. Without loss of
generality, subsets I I and INI , as well as OI and ONI , are assumed to be mutually
disjoint, and

∣∣I I
∣∣ = p ≤ m and

∣∣OI
∣∣ = q ≤ s. Applying these notations, we

can state any non-negative input and output vectors (x, y) as

x =
⎛

⎝ xI

xNI

⎞

⎠, y =
⎛

⎝ yI

yNI

⎞

⎠.

In the hybrid setting, we can impose type-A axioms for the continuous inputs and
outputs included in INI and ONI , while type-B axioms are used for integer-valued
inputs and outputs included in I I andOI . In practice, we can formulate the HIDEA
technology as

T RT SHIDEA =
⎧
⎨

⎩

⎛

⎝ xI

xNI
,

yI

yNI

⎞

⎠

subject to

(xI , yI ) ∈ Z
p+q
+ ;

⎛

⎝ xI

xNI

⎞

⎠ ≥
∑n

j=1

⎛

⎝ xIj
xNIj

⎞

⎠ λj ;

⎛

⎝ yI

yNI

⎞

⎠ ≤
∑n

j=1

⎛

⎝ yIj
yNIj

⎞

⎠ λj ;

λ ∈ �RT S
⎫
⎬

⎭ ,

where�RT S are specified for VRS, NIRS, NRDS, or CRS as noted above. Note that
the same set of intensity weights λj are used for both integer-valued and continuous
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input-output variables. However, the constraint (xI , yI ) ∈ Z
p+q
+ only applies to the

subset of integer-valued input-output variables.
The next theorem generalizes the axiomatic foundation established in Theorem 1

to this hybrid setting.

Theorem 2 Production possibility set T RT SHIDEA is the intersection of all sets S
that satisfy the envelopment (E1), axioms (A1) and (A2) for the subsets (INI ,ONI ),
axioms (B1) and (B2) for the subsets (I I ,OI ), and the RTS axioms ((A3), (A4), (A5),
or none for the subsets (INI ,ONI ), and (B3), (B4), (B5), or none for for the subsets
(I I ,OI )) corresponding to the specified returns to scale.

In addition to these symmetric cases where the real-valued and integer-valued
variables exhibit the same type of returns to scale, it could be interesting to allow the
returns to scale differ for the real-valued and integer-valued variables, in the spirit of
the hybrid returns to scale technology by Podinovski (2004). For example, in some
applications it might be reasonable to assume the real-valued variables are subject to
VRS, while the integer-valued variables exhibit CRS. Extending the HIDEA problem
to hybrid returns to scale specifications falls beyond the scope of the present paper,
and is left as an interesting topic for future research.

4.4 Efficiency Measures and Distance Functions

4.4.1 Modified Farrell Input Efficiency Measure

Having introduced the IDEA and HIDEA technologies, we will next examine the
measurement of efficiency as a distance from the observed input-output vector of
the evaluated DMU to the efficient boundary of the benchmark technology. Before
proceeding, we must stress that the standard efficiency measures (including the ra-
dial Farrell input and output measures, the additive Pareto-Koopmans efficiency
measures, and the directional distance functions) all implicitly assume continu-
ous, real-valued inputs and outputs. Consider, for example, the classic Farrell input
efficiency measure, defined as

Eff In(x0, y0) = min {θ |(θx0, y0) ∈ T },
where vector (x0, y0) is the input-output vector of the DMU under evaluation (which
can be one of the observed DMUs or a hypothetical unit of interest). Value θ = 1
indicates full efficiency, and values θ < 1 imply the evaluated DMU is inefficient:
100% × (1 − θ ) indicates the degree of inefficiency. Unfortunately, applying the
standard Farrell measure directly to TIDEA is likely problematic because TIDEA
is essentially a discrete set of disconnected points. Hence, applying the standard
Farrell measure as such can yield very strange, counterintuitive results. For example,
it is possible that Eff In(x0, y0) = 1 for input-output vector (x0, y0) that is strictly
dominated by another point in TIDEA.
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To avoid complications due the discrete nature of IDEA and HIDEA technologies,
KKM propose to modify the Farrell input efficiency measure as:

Eff In+(x0, y0) = min
{
θ ∈ R+|∃(̃x, ỹ) ∈ T : x̃I ∈ Z

p
+ ; θx0 ≥ x̃; y0 ≤ ỹ

}
.

This modified Farrell measure gauges radial distance to the monotonic hull of the
benchmark technology, requiring that the reference point (θx0, y0) must be dominated
by a feasible input-output vector (̃x, ỹ) which has integer-valued inputs for the subset
I I . For the sake of completeness, note that we could also add a requirement that
ỹI ∈ Z

q
+, but this would be completely redundant in the case of input-oriented

efficiency measure.
The modified input efficiency measure Eff In+ preserves the usual interpretation

of the Farrell measure as a downward scaling potential in inputs at the given output
level. It guarantees that DMUs assigned the efficiency score one are weakly efficient
in the Pareto-Koopmans sense. Unfortunately, the original papers by LV suggested
MILP formulations for computing the radial input- and output-oriented efficiency
measures without explicit recognition of the need to modify the efficiency metric.
Therefore, it is not immediately clear what LV intend to measure in the first place,
and how the constraints of LV’s MILP formulations should be interpreted: do the
inequality constraints of LV represent the disposability axioms of the benchmark
technology or the measurement of distance to the monotonic hull of the benchmark
technology? This appears to be the source of confusion for KSM, who similarly
overlook the modification of the Farrell efficiency measured clearly stated in both
KKM and KMK articles. We return to this point in more detail in the numerical
examples considered below.

4.4.2 MILP Formulation

In the case of the general THIDEA benchmark technology, the modified input
efficiency measureEff In+ can be computed by solving the following MILP problem:

Eff In+(x0, y0) = minθ ,λ,̃x θ

subject to
⎧
⎪⎪⎨

⎪⎪⎩

∑n
j=1 xijλj ≤ x̃i , ∀i ∈ I I
x̃i ≤ θxi0, ∀i ∈ I I
x̃i ∈ Z+, ∀i ∈ I I

∑n

j=1
xijλj ≤ θxi0, ∀i ∈ INI ,

∑n

j=1
yrjλj ≥ yr0, ∀r ∈ O,

λ ∈ �RT S.
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To clarify some key issues that continue to cause confusion in the IDEA literature,
it is worth to examine the interpretation and the rationale of the constraints of the
MILP problem in detail, highlighting the direct connections between the axioms
introduced in Sect. 4.2 and their implementation in the MILP formulation.

For clarity, the constraints of the above MILP problem have been stated as in-
equalities, and the non-radial slacks have been omitted. In contrast, KKM and KMK
state their MILP formulations using equality constraints and slacks.10 This is one
potential source of confusion prevailing in the IDEA literature. In particular, KSM
(2013b) have criticized the MILP formulations by KKM and KMK for producing
sub-optimal slacks. We find this critique misplaced because KKM and KMK were
mainly interested in measuring efficiency using the radial metric Eff In+: the slacks
were used merely as instruments for imposing the free disposability and natural dis-
posability axioms (A1), (B1), and for measuring the distance to the monotonic hull of
the benchmark technology. In the case of continuous variables, we see the non-radial
slacks merely as artifacts of the DEA technology, which do not necessarily have
any relation to the underlying production technology: even if the true technology
is smooth, the piece-wise linear DEA technology will have slacks. The presence of
slacks does not imply the true technology is non-smooth. In the case of IDEA tech-
nology, the non-radial slacks may be meaningful. However, the slacks determined
by the MILP problem are not necessarily unique, and not even Pareto-Koopmans
efficient, as will be demonstrated below by means of numerical examples. For these
reasons, we do not consider the non-radial slacks to be particularly interesting or
useful.

To further clarify the MILP formulation, we use curly bracket { to identify the
constraints associated with integer-valued inputs (subset II ). The first constraint
introduces a vector of integer-valued variables x̃ ∈ Z

p
+. Variables x̃ represent the

integer-valued benchmark introduced in the definition of Eff In+: note that the ele-
ments of x̃ are optimized subject to the first and the second constraint of the MILP
problem. The first constraint states that the convex combination of the observed
DMUs must dominate the benchmark x̃. Note that the inequality sign stated in the
first constraint imposes the natural disposability axiom (B1). If the first inequality
constraint is stated as the equality, then we effectively relax axiom (B1).

The second constraint states that the benchmark x̃ must dominate the radial con-
traction of the evaluated DMU θx0. Note that the inequality sign of the constraint
is due to the fact that Eff In+ is defined as a distance to the monotonic hull of
the benchmark technology (i.e., the HIDEA technology in this case). Relaxing the
natural disposability axiom (B1) does not affect this inequality constraint because
the inequality represents a property of the efficiency metric, and not the benchmark
technology.

The third constraint states that the benchmark x̃ must be integer-valued for the
subset of inputs I I . The fourth constraint is the standard envelopment constraint

10 In their original manuscript, KKM stated their MILP formulation using inequality constraints.
They later introduced slacks by request of a reviewer.
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for outputs. Note that the distinction of continuous versus integer-valued outputs is
redundant for the input-oriented efficiency index that keeps the output vector y0 as
constant. Finally, the optional returns to scale constraints are expressed using the
generic domain �RT S introduced above.

It is worth to note that our MILP formulation stated above differs from that
of LV (2006) in one critical respect. In the original MILP formulation by LV,
the envelopment constraint for the integer-valued inputs is stated as an equality:∑n
j=1 xijλj = x̃i . KKM state that, as a result of this equality constraint, “the inten-

sity weights λj need not be optimal.” The detailed examination of the constraints
of the MILP formulation discussed above allows us to pinpoint the axiomatic con-
sequences of the LV and KKM formulations, revealing the source of the problem
explicitly. Specifically, we noted above that the inequality sign in our first constraint
imposes the natural disposability axiom (B1). By stating the first constraint as an
equality, the LV formulation effectively relaxes the natural disposability axiom for
the integer-valued inputs. Therefore, the MILP implementation by LV (2006) is not
consistent with the specification of their IDEA and HIDEA technologies.

LV (2007) introduced the VRS formulation, where they correctly specify the en-
velopment constraint for the integer-valued inputs as an inequality

∑n
j=1 xijλj ≤ x̃i ,

in contrast to their original CRS formulation in LV (2006). LV do not justify or ex-
plain where the inequality sign comes from in the VRS case, but instead they claim
that “In the CRS model that distinction is not necessary and the integer DEA target
is always equal to the linear combination of the existing DMU.” (LV 2007, p. 15)
This claim is obviously not true. As emphasized above, the inequality sign of the
envelopment constraint for integer inputs is due to the natural disposability axiom,
which LV seem to ignore in their statement quoted above. Obviously, the natural dis-
posability axiom is completely unrelated to the RTS specification. The misleading
and erroneous statement by LV may be one source of confusion.

Another important difference between the VRS specifications of LV and KMK
concerns the treatment of continuous inputs (i.e., the subset INI). KKM apply the ra-
dial contraction by factor θ to both integer-valued and continuous variables, whereas
LV (2007) restrict the radial projection to the subset of integer-valued inputs, keeping
continuous inputs at constant level. This is not a problem as such, it just implies a
different orientation of efficiency measurement.11 A more problematic feature of the
LV (2007) formulation is the use of equality constraints for the continuous inputs
and outputs, specifically,

∑n

j=1
xijλj = xi0, ∀i ∈ INI

∑n

j=1
yrjλj = yr0 ∀r ∈ O

11 In most applications we can think of, it would seem more natural to treat integer-valued inputs
as quasi-fixed factors, and project DMUs to the frontier in the direction of continuous inputs.
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These constraints obviously do not allow for free disposability of the continuous
inputs and outputs. However, LV (2007) do allow for free disposability of integer-
valued inputs and outputs, which seems contradictory. Unfortunately, LV (2007) do
not explicitly state the specific axioms imposed.

Recently, KSM (2012, 2013a, 2013b) confuse the readership further by claiming
that the MILP formulations by LV and KKM are equivalent in the CRS case and
that the formulations of LV and KMK are equivalent in the VRS case. In light of the
observations above, these claims are obviously not true.12 Indeed, detailed exami-
nation of the constraints of alternative MILP formulations presented in the literature
clearly underlines the importance of stating the axioms explicitly and formulating
the DEA problems rigorously, consistent with the maintained axioms.

4.4.3 Numerical Examples

The following simple numerical example illustrates the problem in LV’s (2006) MILP
formulation and the line of argument presented in LV (2007), which KSM (2012,
2013a, 2013b) fail to recognize. Consider a CRS technology with two inputs and
one output, and assume the input-output vector (x1, x2, y) is integer-valued. Assume
two DMUs with the following data: A= (5, 12, 3), and B= (10, 12, 2).

Figure 4.1 illustrates the boundary of the IDEA technology in the three-
dimensional space. The observed DMUs are indicated by black circles labeled as
A and B. In this example, the efficient subset of the IDEA technology is character-
ized by DMU A and any virtual units obtained by applying axioms (B1), (B2), and
(B5) or any combination thereof. DMU B lies in the interior of the IDEA technology,
and is hence inefficient.

Suppose we are interested in measuring efficiency of DMU B. The white circles
in Fig. 4.1 indicate the benchmarks for DMU B, obtained by using the MILP formu-
lations of KKM and LV, respectively, applying the radial input orientation and the
CRS specification. Figure 4.1 indicates that the benchmarks are different. To better
visualize the benchmarks, we next turn to the two-dimensional diagram of the input
isoquants presented in Fig. 4.2.

Figure 4.2 illustrates the input isoquants at output levels 1, 2, and 3, and the radial
projection of the evaluated DMU B to the frontier. As in Fig. 4.1, the benchmarks
obtained with the KKM and LV formulations are indicated by white circles.

The KKM benchmark is obtained from DMUA using the stated axioms as follows.
Firstly, we can use natural disposability axiom (B1) and add one unit of input 1 to
DMU A, to obtain a feasible point A’= (6, 12, 3). Secondly, we can use natural
divisibility axiom (B5) to rescale point A’ downward by factor 2/3 to obtain the point
A”= (4, 8, 2). Note that A” produces two units of output, similar to DMU B. Indeed,

12 An interested reader can easily verify the empirical results reported by KKM and KMK. For
transparency, the data and the computational codes for GAMS and LINGO are freely available on
the website:http://nomepre.net/index.php/integerdea.
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Fig. 4.1 Three-dimensional
illustration of the IDEA
technology considered in the
numerical example. Observed
DMUs A and B are indicated
by black circles. The white
circles indicate the
benchmarks for DMU B
obtained using the KKM and
LV formulations

Fig. 4.2 Two-dimensional
illustration of the numerical
example. Three input
isoquants L(1), L(2), and L(3)
correspond to the output
levels 1, 2, and 3,
respectively. The line between
point B and KKM indicates
the radial projection of the
evaluated DMU B

point A” provides a valid benchmark for DMU B. Contracting the input vector of
DMU B in radial manner, we see that input 2 proves the limiting factor: the radial
input efficiency of DMU B is

Eff In+KKM (10, 12, 2) = x2A′′

x2B
= 8

12
= 2

3
.
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Note that there remains non-radial slack in input 1: 2
3x1B = 6 2

3 > 4. In addition to the
radial contraction, input 1 could be further decreased by 6 2

3−4 = 2 2
3 units. Note that

this input slack is due to the fact that the efficiency metricEff In+ measures distance
to the monotonic hull of the IDEA technology: it has nothing to do with the natural
disposability axiom used for obtaining the benchmark point A”. This is the reason
why KKM introduce two types of slack variables, and in the MILP formulation of
Sect. 4.2 we use two sets of inequality constraints to ensure that

∑n

j=1
xijλj ≤ x̃i ≤ θxi0, ∀i ∈ I I .

The essential problem of the LV formulation is that it does not include separate slacks
for the natural disposability and for the monotonic efficiency metric. Hence, LV do
not allow the use of natural disposability axiom (B1): we can only apply axioms
(B2) and (B5) in this case. The benchmark of LV’s formulation can be constructed as
follows. Firstly, use the natural divisibility axiom (B5) to rescale DMU B downward
by factor 1/2 to obtain the point B’= (5, 6, 1). Secondly, apply the axiom (B2) to
form the convex combination of points A and B’ as

B = 1

2
A + 1

2
B = 1

2
(5,12, 3) + 1

2
(5, 6, 1) = (5, 9, 2).

This convex combination provides the benchmark according to the MILP formulation
of LV. Note we did not use natural disposability or non-radial slack until this point.
Note further that the KKM benchmark A” dominates the LV benchmark B” in this
example: (4, 8) < (5, 9). Contracting the input vector of DMU B in radial manner,
input 2 is the limiting factor also in the LV formulation: the radial input efficiency
of DMU B is

Eff In+LV (10, 12, 2) = x2B ′′

x2B
= 9

12
= 3

4
> Eff In+KKM (10, 12, 2) = 2

3
.

Besides the radial contraction, the LV formulation has non-radial slack in input
1, similar to the KKM case. This slack allows LV to project evaluated DMUs to
the monotonic hull of the IDEA technology. However, a single slack variable is
insufficient for utilizing the natural disposability axiom. In the LV formulation, the
input constraints become

∑n

j=1
xijλj = x̃i ≤ θxi0, ∀i ∈ I I .

The use of equality constraint eliminates the natural disposability axiom.
Before proceeding to the extensions, it is worth to note that the optimal x̃i identified

by the KKM method need not be unique. Indeed, there may be multiple integer-valued
x̃i that fall within the interval characterized by the inequality constraints:

∑n

j=1
xijλj ≤ x̃i ≤ θxi0, ∀i ∈ I I .
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To illustrate the non-uniqueness in terms of the previous numerical example, note
that we could equally well add four units of input 1 to DMU A (rather than just one
unit), to obtain a feasible point C’= (9, 12, 3). Next, we can use natural divisibility
axiom (B5) to rescale point C’ downward by factor 2/3 to obtain the point C”= (6, 8,
2). Although point A” considered above dominates C”, point C” provides an equally
valid reference point for assessing radial input efficiency of DMU B. Contracting the
input vector of DMU B radially, input 2 remains the limiting factor, and the radial
input efficiency of DMU B is 2

3 even if we use C” as the benchmark. However, the
second non-radial slack in input 1 is now 6 2

3 − −6 = 2
3 . This example illustrates

that the integer programming algorithm applied for solving the MILP problem may
well return sub-optimal target points, as KSM (2013b) have noted. We must stress
there is no guarantee that the optimal intensity weights, multiplier weights, or slacks
are unique even in the standard DEA formulations. In the case of discrete inputs
and outputs, it should be nothing surprising to find non-unique slacks and non-
unique targets. To conclude, we emphasize that the MILP formulations presented
by KKM and KMK were developed for measuring radial input efficiency, and can
only be guaranteed to serve that purpose. Since the non-radial slacks obtained as
the optimal solution to the MILP problem are not necessarily unique, adjusting the
radial projection for the non-radial slacks may result as sub-optimal target points.
We return to this issue in Sect. 4.5.3 below.

4.5 Alternative Efficiency Metrics

The sound axiomatic foundation of IDEA technology based on the minimum extrap-
olation principle makes several extensions of the conventional DEA readily available
to IDEA. LV (2007) consider several alternative efficiency metrics, including the in-
put and output oriented radial Farrell measures, additive and range-adjusted slack
based measures, and the Russell measure. Du et al. (2012) consider the additive
super-efficiency measure in the context of DEA. In this section we review some
alternative efficiency measures, starting from the radial output oriented efficiency
measure, and proceeding to the general directional distance function. We complete
this section with a critical review of additive and slack based measures, noting some
problems in these approaches in the context of IDEA technology.

4.5.1 Modified Farrell Output Efficiency Measure and its
Implementation

In Sect. 4.4 we restricted attention to the radial input-oriented efficiency measure by
Farrell (1957), modified by KKM to the IDEA context. In this section we briefly
extend the discussion to the radial output measure.
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Farrell’s output efficiency measure is defined as

EffOut (x0, y0) = max {γ |(x0, γ y0) ∈ T } .
Note that in this case γ = 1 indicates full efficiency, and values γ > 1 indicate
that the evaluated DMU is inefficient (note that we can convert the output efficiency
measures to the interval (0, 1] by using the inverse γ−1). To avoid complications
due the discrete nature of IDEA and HIDEA technologies, we can modify the radial
output efficiency measure as:

EffOut+(x0, y0) = max
{
γ ∈ R+|∃(̃x, ỹ) ∈ T : ỹI ∈ Z

q
+ ; x0 ≥ x̃; γ y0 ≤ ỹ

}
.

This modified Farrell measure gauges radial distance to the monotonic hull of the
benchmark technology, requiring that the reference point (x0, γ y0) must be domi-
nated by a feasible input-output vector (̃x, ỹ) which has integer-valued inputs for the
subset OI .

The modified output efficiency measureEffOut+ has the usual interpretation of the
radial expansion potential of the evaluated output vector at the given level of inputs.
It guarantees that DMUs assigned the efficiency score one are weakly efficient in the
Pareto-Koopmans sense.

In the case of the THIDEA benchmark technology, the modified output efficiency
measure EffOut+ can be computed by solving the following MILP problem:

EffOut+(x0, y0) = maxγ ,λ,̃y γ

subject to
⎧
⎪⎪⎨

⎪⎪⎩

∑n
j=1 yrjλj ≥ ỹr , ∀r ∈ OI

ỹr ≥ γ yr0, ∀r ∈ OI

ỹr ∈ Z+, ∀r ∈ OI

∑n

j=1
yrjλj ≥ γ yr0, ∀r ∈ ONI ,

∑n

j=1
xijλj ≤ xi0, ∀i ∈ I ,

λ ∈ �RT S.
In this case, we indicate the constraints of the integer-valued outputs (subset OI ) by
curly bracket {. Note that it is unnecessary to introduce integer-valued input targets
x̃I ∈ Z

p
+ because the inputs are held constant at their observed levels. This reduces

computational complexity compared with the MILP formulation by LV (2007) be-
cause our formulation excludes p integer-valued model variables as redundant (here
p is the number of input factors). Note further that we set two inequality constraints
for the integer-valued outputs to ensure that

∑n

j=1
yrjλj ≥ ỹi ≥ γ yr0, ∀r ∈ OI .
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The first inequality imposes the natural disposability axiom for the integer-valued
outputs, whereas the latter inequality is due to the fact that we measure distance to
the monotonic hull of the discrete HIDEA benchmark technology.

4.5.2 Modified Directional Distance Function and its
Implementation

We next consider a modified version of the directional distance function (DDF) by
Chambers et al. (1996, 1998). To our knowledge, this is the first application of DDF
to the IDEA context.

DDF allows us to project the observed DMUs to the frontier in non-radial manner,
allowing for simultaneous contraction of inputs and expansion of outputs. DDF indi-
cates the distance from a given input-output vector to the boundary of the benchmark
technology in some pre-assigned direction (gx, gy) ∈ R

m+s
+ . DDF can be formally

defined as

DDF (x0, y0, gx, gy) = sup
{
δ|(x0 − δgx, y0 + δgy) ∈ T}.

Note that in this case δ = 0 indicates full efficiency, and values δ > 0 indicate that
the evaluated DMU is inefficient. Note further that DDF contains the radial input and
output efficiency measures as its special cases. For example, setting (gx, gy) = (0, y0),
we obtain

DDF (x0, y0, gx, gy) = 1 − EffOut+(x0, y0).

To avoid complications due the discrete nature of IDEA and HIDEA technologies,
we can modify the original DDF as:

DDF+(x0, y0, gx, gy) =
sup

{
δ|∃(̃x, ỹ) ∈ T : x̃I ∈ Z

p
+; ỹI ∈ Z

q
+ ; (x0 − δgx) ≥ x̃; (y0 + δgy) ≤ ỹ

}
.

This modified DDF gauges directional distance to the monotonic hull of the bench-
mark technology, requiring that the reference point (x0 − δgx, y0 + δgy) must be
dominated by a feasible input-output vector (̃x, ỹ) which has integer-valued inputs
and outputs for the subsets I I and OI .

In the case of the THIDEA benchmark technology, the modified DDF can be
computed by solving the following MILP problem:

DDF+(x0, y0, gx, gy) = maxδ,λ,̃x,̃y δ

subject to

⎧
⎪⎪⎨

⎪⎪⎩

∑n
j=1 xijλj ≤ x̃i , ∀i ∈ I I

x̃i ≤ xi0 − δgxi , ∀i ∈ I I
x̃i ∈ Z+, ∀i ∈ I I
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⎧
⎪⎪⎨

⎪⎪⎩

∑n
j=1 yrjλj ≥ ỹr , ∀r ∈ OI

ỹi ≥ yr0 + δgyr , ∀r ∈ OI

ỹi ∈ Z+, ∀r ∈ OI

∑n

j=1
yrjλj ≥ yr0 + δgyr , ∀r ∈ ONI ,

∑n

j=1
xijλj ≤ xi0 − δgxi , ∀i ∈ INI .

λ ∈ �RT S.
In general, DDF requires that we introduce integer-valued targets for both inputs
(i.e.,) x̃I ∈ Z

p
+) and outputs (̃yi ∈ Z

q
+) because DDF can adjust all inputs and outputs

simultaneously. However, if the direction vector (gx, gy) contains any zero elements,
we can harmlessly exclude the integer-valued targets for the corresponding inputs and
outputs, and treat those inputs and outputs as fixed factors, similar to the treatment
of outputs in the radial input efficiency measure considered in Sect. 4.4.2, and the
treatment of inputs in the radial input efficiency measure considered in Sect. 4.5.1.

4.5.3 Additive and Slack Based Measures

LV (2007) introduced the additive IDEA formulation, applying the Pareto-Koopmans
measure by Charnes et al. (1985) to the IDEA technology. A slightly modified version
of LV’s additive formulation can be presented as follows:

maxs+,s−,λ,̃x,̃y

∑
i∈I I s

−
i +

∑
r∈OI s

+
r

subject to
⎧
⎪⎪⎨

⎪⎪⎩

∑n
j=1 xijλj ≤ x̃i , ∀i ∈ I I
x̃i ≤ xi0 − s−i , ∀i ∈ I I
x̃i ∈ Z+, ∀i ∈ I I

⎧
⎪⎪⎨

⎪⎪⎩

∑n
j=1 yrjλj ≥ ỹr , ∀r ∈ OI

ỹi ≥ yr0 + s+r , ∀r ∈ OI

ỹi ∈ Z+, ∀r ∈ OI

∑n

j=1
yrjλj ≥ yr0, ∀r ∈ ONI ,

∑n

j=1
xijλj ≤ xi0, ∀i ∈ INI .

λ ∈ �RT S.
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Following LV, our MILP formulation minimizes the sum of slacks in the integer-
valued inputs and outputs (subsets OI and II , respectively), keeping the continuous
inputs and outputs at constant level. We could easily introduce slacks to the
continuous inputs and outputs as well (see Du et al. 2012).

Our MILP formulation of the additive IDEA differs from that of LV (2007) in
that we use inequality constraints for the continuous inputs and outputs (subsets ONI

and INI, respectively), allowing for free disposability of these inputs and outputs. In
contrast, LV do not allow for free disposability of continuous inputs and outputs,
but they do implicitly assume free disposability of integer-valued inputs and outputs,
which may seem confusing.

We noted at the end of Sect. 4.4 that the optimal solution of the KKM and KMK
MILP formulations for computing the modified Farrell input efficiency may yield
sub-optimal benchmarks. Specifically, the optimal integer-valued reference point x̃
need not be unique, and it is possible that x̃ is dominated by another feasible point.
If one is interested in computing efficient benchmarks, one can first compute the
radial or directional projection to the IDEA frontier using the MILP formulations
presented in Sects. 4.4, 4.5.1, or 4.5.3, and subsequently apply the additive MILP
formulation presented in this section to maximize the sum of slacks. While the
additive formulation ensures benchmarks that are efficient in the Pareto-Koopmans
sense, a unique solution cannot be guaranteed.

Consider a simple example of three DMUs that use a single integer-valued input
x to produce a single integer-valued output y. Suppose the observed data of DMUs,
presented as vectors (x, y) is the following: A= (2,1), B = (3,2), and C = (3,1). Note
that A and B lie on the efficient boundary of the IDEA technology, whereas C is
dominated by both A and B. Now, apply the additive IDEA formulation to assess
efficiency of DMU C. The optimal value of the objective function is unique, equal
to 1. However, neither the benchmark (̃x, ỹ) nor the slacks (s−, s+) are unique. It
is possible to identify DMU A as the benchmark (i.e., (̃x, ỹ) = (2,1)), which yields
(s−, s+) = (1,0). It is equally possible to identify DMU B as the benchmark (i.e.,
(̃x, ỹ) = (3,2)), which yields (s−, s+) = (0,1). The MILP algorithm will arbitrarily
identify one of these two alternatives to be presented as the optimal solution. While
even standard DEA does not guarantee a unique optimum for the slacks, benchmarks,
or multiplier weights, alternate optima are likely to occur in the context of integer-
valued inputs and outputs. Therefore, it is important to be aware of the fact that the
optimal slacks need not be unique. It seems some of the critiques by KSM are based
on misunderstanding this fact.

The additive measure can be used for testing whether the evaluated DMU is
on the Pareto-Koopmans efficient frontier (i.e.,

∑
i∈I I s

−
i +

∑
r∈OI s+r = 0) or not.

However, the use of the additive measure for gauging efficiency is problematic. Non-
uniqueness of the optimal slacks noted above is not the only problem. LV (2007) note
that the interpretation of the additive measure as an efficiency index is meaningful
only when the inputs and outputs are measured in the same units of measurements
(e.g., in money), which is not usually the case. Indeed, an appealing feature of DEA
is that inputs and outputs can be measured in different units without a need to convert
them to money metric or other measure of relative values prior to the analysis.
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Several attempts to adjust the additive measure to different units of measurement
have been presented in the DEA literature, most notably the range adjusted measure
(RAM) by Cooper et al. (1999) and the slack-based model (SBM) by Tone (2001).
In RAM formulation, the objective function of the additive IDEA formulation is
replaced by

maxs+,s−,λ,̃x,̃y

∑
i∈I I

s−i
Ri

+
∑

r∈OI
s+r
Rr

,

whereRi = maxj xij−minj xij is the observed range of input i, andRr = maxj yrj−
−minj yrj is the observed range of output r, respectively. Many variants of SBM (Tone
2001) are known in the DEA literature. In SBM we first compute the additive MILP
formulation, or its range adjusted variant. The main idea of SBM is to aggregate thus
obtained slacks to a single efficiency metric. Given the additive IDEA formulation
presented above, the SBM measure can be stated as

SBM =
1 − 1

p

(∑
i∈I I

s−i
xi0

)

1 + 1
q

(∑
r∈OI

s+i
yi0

) .

These examples consider slacks in the integer-valued inputs and outputs (similar to
LV 2007), but one could equally well include slacks to continuous inputs and outputs
as well.

In the context of IDEA technology, the fact that the optimal slacks (s−, s+) are
not necessarily unique can be problematic. Reconsider the numerical example with
three DMUs A, B, and C, and consider SBM efficiency of DMU C. If the MILP
algorithm identifies DMU A as the benchmark, then

SBM = (1 − 1/3)/ (1 + 0) = 2/3.

However, the MILP algorithm can equally well identify DMU B as the benchmark,
resulting with

SBM = (1 − 0)/ (1 + 1) = 1/2.

This example illustrate that the SBM measure is not invariant or robust to alternate
optimal of (s−, s+), and indeed, there is no guarantee that the optimal slacks are
unique. To avoid this problem, one could enumerate the SBM measure for all alter-
nate optima, and choose the slacks that maximize or minimize the SBM measure.
However, identifying all alternate optima of (s−, s+) seems challenging if not com-
putationally prohibitive in practice. To our knowledge, non-uniqueness of slacks and
its potential problems have not been duly addressed in the DEA literature. In our
view, non-uniqueness of slacks in DEA is one rational argument for why the radial
or directional distance functions are preferred over the slack based approaches.

We conclude this section by noting that the numerical examples used in this
section for illustrating the non-uniqueness problem may seem overly simplistic. We
deliberately used the simplest thinkable examples to illustrate. If non-uniqueness can
occur and cause problems in a simple example, it would be foolish to assume the
problem disappears as one proceeds to more complex examples or real applications.
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4.6 Stochastic Noise

In Sect. 4.2.4 we examined the envelopment condition (E1), noting that the best
observed performance level may not be achievable by all DMUs due to unobserved
heterogeneity of DMUs and their operating environments, technological and eco-
nomic risks and uncertainty, omitted factors such as quality differences, errors in
measurement and data processing, and other sources of noise. In this section we will
briefly extend the StoNED framework introduced by Kuosmanen and Kortelainen
(2012) to the present context of integer valued inputs and outputs.

To maintain direct contact with the conventional stochastic frontier analysis (SFA)
and StoNED, we consider the single-output case, and model the production technol-
ogy using the production function f(x), which indicates the maximum output that can
be produced with input vector x (for a general multi-output model, see Sect. 7.4.6.3
in KJS). Thus, the production possibility set T can be stated as

T = {
(x, y) ∈ R

m+1
+ |y ≤ f (x)

}
.

We do not impose any particular functional form for f : we only assume the production
possibility set T satisfies axiom (A1) for continuous inputs and (B1) for integer-
valued inputs, axiom (B2), and possibly some RTS axioms. Inputs x can be integer-
valued or continuous. The main challenge in this setting concerns the modeling
integer-valued output y ∈ Z+. To our knowledge, all previous studies on stochastic
frontier estimation in the single-output case assume a continuous output variable.

To model stochastic noise explicitly, the following data generating process will be
assumed. The observed outputs of DMUs i = 1, . . . , n, denoted as yi , are assumed
to be generated from equation

yi = f (xi) − ui + vi ,

Where xi is the input vector of DMU i (which may contain both discrete or continuous
inputs), ui is a random inefficiency term, and vi is a random noise term. Random
variables ui and vi are assumed to be independent of inputs x and of each other. More
specific assumptions regarding ui and vi are the following.

The inefficiency term ui is assumed to be a discrete, Poisson distributed random
variable:13

ui ∼ Pois(λu),

where parameter λu = E(ui) = V ar(ui) characterizes both the expected value and
variance of the random inefficiency term (note: λu should not be confused with the

13 The Poisson distribution is the most widely used discrete probability distribution in statistics. It
can be derived from the probability of a given number of events occurring in a fixed interval of time
and/or space when the events occur with a known average rate and independently of the time since
the last event. Note that the Poisson distribution can be derived as a limiting case to the binomial
distribution as the number of trials approaches to infinity and the expected number of successes is
fixed.
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intensity weights of DEA). In this model, inefficiency ui is always a non-negative
integer, with a known probability mass function

Pr (ui = k) = λkue
−λ

k! .

Note that a DMU is fully efficient with probability Pr (ui = 0) = e−λu .
The noise term vi is specified as

vi = ṽi − �λv�,
where

ṽi ∼ Pois(λv),

and �λv� denotes the largest integer less than or equal to λv. Parameter λv = E (̃vi) =
V ar (̃vi) characterizes both the expected value and variance of the random variable
ṽi , while �λv� is the mode of ṽi . Note that while random variable ṽi is always
non-negative, the noise term vi has zero mode and it can take either positive and
negative values. As parameter λv increases, the noise term vi approaches to the
normal distribution with zero mean and variance. Note that in this model the impact
of noise term has the lower bound �−λv� .

To estimate the frontier production function f and the parametersλu andλv, we can
modify the stepwise StoNED estimator developed by Kuosmanen and Kortelainen
(2012) as follows. In the first step, we estimate conditional mean output, which can
be written as

E(yi |xi) = f (xi) − λu + λv − �λv� = g(xi).

Note that function g differs from f only by constant−λu+λv−�λv� .Note further that
even though the observed outputs yi are assumed to be integer valued, the conditional
meanE(yi |xi) does not need to be an integer. Therefore, convex nonparametric least
squares (CNLS) provides an unbiased and consistent estimator of function g(xi).
Kuosmanen (2008) shows that the CNLS estimator can be computed by solving the
following quadratic programming problem

min
∑n

i=1
ε2
i

Subject to

yi =αi + β
′
ixi + εi i = 1, . . . , n,

αi + β
′
ixi ≤ αj + β

′
jxi i, j = 1, . . . , n,

βi ≥ 0 i = 1, . . . , n

Where εi are the CNLS residuals that represent the deviations of observed DMUs
from the conditional mean function g(xi ), and βi are vectors of nonnegative slope
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coefficients that together with intercepts αi characterize a supporting hyper plane of
the unknown concave function to be estimated in point xi .14 See KJS, Sect. 7.4.3,
for a more detailed exploration of the CNLS formulation, its interpretation, and
computation.

Having solved the CNLS problem, we can estimate the conditional mean function
g(xi) in the observed data points by

ĝ (xi ) = α̂i + β̂
′
ixi .

Further, we have the CNLS residuals ε̂i that are nonparametric estimators of

(vi − λv + λv) − (ui − λu) = (̃vi − λv) − (ui − λu) = (̃vi − ui) − (λv − λu).

To estimate the parameters λu and λv, we can utilize the CNLS residuals and the
assumption of Poisson distributed inefficiency and noise.

Before proceeding to step two, consider random variable ε̃i = ṽi − ui . Since ε̃i is
a difference of two independent Poisson distributed random variables, it follows the
Skellam distribution (Skellam 1946). The mean, variance and skewness of the Skel-
lam distributed random variable are related to the central moments of the distribution
as follows. Define

Δ = λv − λu, and

μ = (λv + λu)/2.

Using these notations, the variance and skewness of ε̃i can be stated as

V ar (̃εi) = 2μ,

Skew(̃εi) = Δ/(2μ)3/2.

Note that the CNLS residuals are consistent estimators of ε̃i minus a constant. There-
fore, we can use the sample variance and skewness of CNLS residuals as estimators
of V ar (̃εi) and Skew(̃εi), to obtain estimates �̂ and μ̂.

Step 2 of the StoNED estimation is the following. Using the above moment
equations, we obtain the following estimators for parameters λu and λv:

λ̂u = μ̂− 1

2
�̂ = 1

2
(V ar(εi) − Skew(εi)(V ar(εi))

3/2),

λ̂v = μ̂+ 1

2
�̂ = 1

2
(V ar(εi) + Skew(εi)(V ar(εi))

3/2),

Where V ar(εi) and Skew(εi) are the sample variance and skewness of the CNLS
residuals, respectively. Using the parameter estimates λ̂u and λ̂v, we can estimate the

14 The second set of constraints imposes convexity, applying the Afriat theorem (Afriat 1972). The
convexity axiom can be relaxed by replacing CNLS with isotonic regression, see Keshvari and
Kuosmanen (2013), for details.



4 Discrete and Integer Valued Inputs and Outputs in Data Envelopment Analysis 97

probability distributions of inefficiency and noise terms. Recall that expected value
of inefficiency is simply λu, and hence we can use λ̂u directly as the estimator of
mean inefficiency. Note that in the stochastic frontier model Skew(εi) is generally
expected to be negative. Therefore, negative skewness of residuals increases the mean
of the inefficiency term relative to that of the noise term in the Poisson model. If
skewness is zero, then λ̂u = λ̂v. Positive skewness is also allowed: “wrong skewness”
increases the mean of the noise term compared to that of the inefficiency term. This
is an attractive feature of the Poisson model and the proposed method of moments
estimator: wrong skewness does not cause major problems in this framework.15

In step 3 we adjust the CNLS estimate of the conditional mean ĝ(xi) to estimate
the frontier. Note that we need to shift the CNLS estimator upward by the mean
inefficiency, but in this case, also the noise term may have non-zero mean (recall
we assumed vi has zero mode, which does not imply zero mean). Further, we need
to take into account that values of the production function must be integers. Using
the equation of the conditional mean E(yi |xi), the integer-valued StoNED frontier
estimator can be stated as

f̂ (xi) =
⌊
ĝ(xi) + λ̂u − λ̂v +

⌊̂
λv
⌋⌋

,

where symbol �a� is denotes the largest integer less than or equal to a. Function
f̂ can be proved to satisfy the axioms of natural convexity, natural disposability of
output and integer-valued inputs, free disposability of continuous inputs, and any RTS
axioms postulated. Function f̂ does not necessarily envelope all observed DMUs, and
hence the StoNED frontier will typically lie below the corresponding IDEA frontier.
Note that enveloping noisy data will generally result as biased and inconsistent
estimates. Provided that the assumed doubly-Poisson model of inefficiency and noise
is correctly specified, the StoNED estimator f̂ described above can be shown to be
statistically consistent.

To obtain DMU specific efficiency estimates, we must first recognize that the
observed departures from the estimated frontier, that is, yi − f̂ (xi) or yi/f̂ (xi),
cannot be used directly for measuring efficiency. We can write the observed distance
from the estimated frontier as

yi − f̂ (xi) = (f (xi) − ui + vi) − f̂ (xi) = (f (xi) − f̂ (xi)) − ui + vi .

Even if our estimate is precise, that is f (xi)−f̂ (xi) = 0, the distance to the estimated
frontier consists of two components: inefficiency and noise. To make DMU specific
efficiency assessments, we need the conditional distribution of ui for a given level
of yi − f̂ (xi), analogous to Jondrow et al. (1982).

In the discrete case of two Poisson distributed random variables, deriving the
conditional distribution of ui for given yi−f̂ (xi) is relatively straightforward. Firstly,
note that we can calculate the unconditional probabilities Pr(ui = k) for each k =

15 See, e.g., Simar and Wilson (2010) for a more detailed discussion about the wrong skewness
problem in stochastic frontier estimation.
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0,1, . . . ,K , where k denotes the index of possible values of ui , and K is the smallest
integer that satisfies Pr(ui = K) < ε̈ for some pre-specified threshold probability ε̈
(e.g., we can set ε̈ = 106). Secondly, we know that if ui = k, then the noise term
must be equal to vi = yi − f̂ (xi) + k. Hence, we can calculate the unconditional
probabilities Pr(vi = yi − f̂ (xi) + k) associated with each k = 0,1, . . . ,K. Note
that if yi − f̂ (xi)+ k < − ⌊̂

λv
⌋

, then the value of k falls below the minimum bound
of noise vi , and hence we need to set Pr(vi = yi − f̂ (xi) + k) = 0 in such cases.

Having calculated the unconditional probability distributions of ui and νi for
k= 0,1, . . . , K, we calculate the sum product

τi =
∑yi−f̂ (xi )−λ̂v

k=0
Pr(ui = k) × Pr(vi = yi − f̂ (xi) + k)

The conditional distribution of ui for given yi − f̂ (xi) is then obtained as

Pr(ui = k|yi − f̂ (xi)) = Pr(ui = k) × Pr(vi = yi − f̂ (xi) + k)

τi
.

As a point estimator of ui , one could use the mean of the conditional distribution

E(ui |yi − f̂ (xi)) =
∑K

k=0
Pr(ui = k|yi − f̂ (xi)) × k,

following the common practice in the SFA literature. Another possibility is to use the
median of the conditional distribution. However, whichever point estimator might
be used, it is important to keep in mind that ui is essentially a random variable,
and hence point estimation of a single realization of this random variable may be a
pointless exercise. We emphasize that the knowledge of the conditional distribution
of ui at given yi− f̂ (xi) provides means for more useful statistical inferences beyond
computing point estimates for efficiency rankings. For example, one could apply the
conditional distributions for assessing the probability that DMU i is more efficient
than another DMU j, or the probability that a group of DMUs is more efficient than
another group.

While the double-Poisson model and the associated StoNED estimator appear to
be well suited for estimating IDEA technology under noise, one important caveat
is worth noting. We assumed the observed outputs to be non-negative integers, and
we would typically assume some observed yi to be small, as large integers can be
reasonably approximated as continuous variables. While took the lower bound yi ≥ 0
explicitly into account in the conditional distribution of ui , we assumed parametersλu

and λv to be constant at all input levels. This is not necessarily a realistic assumption
as the range of possible output values typically depends on the input levels, and
hence the variances represented by parameters λu and λv are not constant. Therefore,
it would be important to take heteroscedasticity of inefficiency and noise explicitly
into account by modeling these parameters explicitly as functions of inputs, that is,
λu(x) and λv(x). However, we need to walk before we can run. We leave explicit
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modeling of heteroscedasticity as an interesting topic for future research, noting that
there exists extensive econometric literature on this topic.16

4.7 Conclusion and Directions for Future Research

The main insights of this chapter can be classified in three categories. First, a detailed
examination of the axioms of integer DEA and the associated MILP formulations
was presented in order to clarify some points of confusion prevailing in the literature.
The key insight gained through this analysis is the intimate connection between the
axioms and the formulation of the MILP problem. Without a proper understanding
of explicitly stated axioms, the MILP formulation will likely produce erroneous
or misleading results. For example, we demonstrated that LV’s MILP formulations
fail to satisfy such axioms as free disposability of continuous inputs and outputs,
and natural divisibility of discrete inputs and outputs. We illustrated through simple
numerical examples that the MILP formulations by LV and KKM yield different
results, in contrast to what KSM have recently claimed. The numerical examples also
explain how the differences arise from the inconsistency of LV’s MILP formulations
with their definition of IDEA technology. These observations underline the critical
importance of the sound axiomatic foundation.

Second, we examined alternative efficiency metrics available for integer DEA,
complementing the KKM and KMK formulations for the modified radial input ori-
ented measure with the modified versions of the radial output oriented measure and
the directional distance function. We also critically discussed the additive efficiency
measures, demonstrating by simple numerical examples that the optimal slacks are
not necessarily unique. The non-uniqueness of slacks can be particularly problematic
for the slack based measures of efficiency in the context of integer DEA.

Third, we introduced a new model of IDEA technology in the single output setting
under stochastic noise. Modeling both inefficiency and noise as Poisson distributed
random variables, we developed the first extension of the StoNED method to the
discrete setting. We developed the method of moments estimator for identifying
the parameters of the double-Poisson model, and discussed how the conditional
distribution of inefficiency at the given distance from the estimated frontier can be
computed and applied for statistical inferences.

In conclusion, we hope that this chapter helps to clarify some issues that have
caused confusion, but also identify some interesting avenues for future research.
The basic axioms of DEA are already well understood in the context of IDEA,
but there are other axioms such as weak disposability (e.g., Kuosmanen 2005) and
selective proportionality (Podinovski 2004) that deserve to be examined in the context
of IDEA technology. For real applications, probabilistic modeling of noisy data
appears to be the main challenge. In this chapter we presented the first attempt to

16 KJS, Sect. 7.4.8, discusses some of this literature in the context of StoNED estimation.
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modeling stochastic noise in the discrete setting assuming Poisson distributed noise.
Further work is obviously needed to operationalize these ideas to be applicable to
real applications. For example, the truncated distribution of observed outputs above
zero and the associated heteroskedasticity deserve to be addressed explicitly.

4.8 Appendix: Proofs of theorems and lemmas

Lemma 1 Assume Axiom (B2) is satisfied. Then for any given (x, y), (x′, y′) ∈ T ,
if there exists a real valued λ such that (̃x, ỹ) = λ(x, y) + (1 − λ)(x′, y′) ∈ T , then
there exist integers u, v ∈ Z+, u ≤ v, such that

λ = u/v.

Proof.
We can write (̃x, ỹ) equivalently as (̃x, ỹ) = (x′, y′) + λ(x − x′, y − y′). The first

term (x′, y′) is an integer-valued vector by assumption, and the second term is the
product of another vector of integers (x−x′, y−y′) and multiplier λ. Since (̃x, ỹ) ∈ T
implies (̃x, ỹ) ∈ Z

m+s
+ , then obviously λ cannot be an irrational number. Therefore,

there must exist integers u, v ∈ Z+, u ≤ v, such that λ = u/v. �
Lemma 2 For any given (x, y) ∈ T , (x, y) 
= (0,0), if there exists a real valued λ
such that (λx, λy) ∈ T , then there exist integers u, v ∈ Z+, u ≤ v, such that

λ = u/v.

Proof.
Analogous to Proof of Theorem 1, we note that (x, y) ∈ T implies (x, y) ∈ Z

m+s
+ .

For any (x, y) 
= (0,0), it is clear that multiplier λ cannot be an irrational number. �
Lemma 3 If the axioms (B2) Natural convexity and (B5) Natural radial rescaling
are satisfied, then the axioms of (B3) Natural divisibility and (A6) Additivity must
also hold. Conversely, if axioms (B3) and (A6) are satisfied, then axioms (B2) and
(B5) must also hold. In other words, these two pairs of axioms are equivalent in the
following sense:

[(B2) and (B5)]⇔ [(B3) and (A6)]

Proof. Follows directly from Theorem 1 in KKM and Theorem 4 in KMK.

Theorem 1 Production possibility set T RT SIDEA is the intersection of all sets S ⊂
Z
m+s
+ that satisfy the envelopment condition (E1), the axioms (B1) and (B2), the RTS

axioms ((B3), (B4), (B5), or none) corresponding to the specified returns to scale.
Proof.
See KMK, Theorem 1 (VRS), Theorem 2 (NIRS), Theorem 3 (NDRS), and

Theorem 4 (CRS), proved in Appendix A. �
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Theorem 2 Production possibility set T RT SHIDEA is the intersection of all sets S
that satisfy the envelopment (E1), axioms (A1) and (A2) for the subsets (INI ,ONI ),
axioms (B1) and (B2) for the subsets (I I ,OI ), and the RTS axioms ((A3), (A4), (A5),
or none for the subsets (INI ,ONI ), and (B3), (B4), (B5), or none for for the subsets
(I I ,OI )) corresponding to the specified returns to scale.

Proof.
See KMK, Theorem 5 (VRS), Theorem 6 (NIRS), Theorem 7 (NDRS), and

Theorem 8 (CRS), proved in Appendix A. �
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Chapter 5
DEA Models with Production Trade-offs
and Weight Restrictions

Victor V. Podinovski

Abstract There is a large literature on the use of weight restrictions in multiplier
DEA models. In this chapter we provide an alternative view of this subject from the
perspective of dual envelopment DEA models in which weight restrictions can be
interpreted as production trade-offs. The notion of production trade-offs allows us
to state assumptions that certain simultaneous changes to the inputs and outputs are
technologically possible in the production process. The incorporation of production
trade-offs in the envelopment DEA model, or the corresponding weight restrictions
in the multiplier model, leads to a meaningful expansion of the model of production
technology. The efficiency measures in DEA models with production trade-offs retain
their traditional meaning as the ultimate and technologically realistic improvement
factors. This overcomes one of the known drawbacks of weight restrictions assessed
using other methods. In this chapter we discuss the assessment of production trade-
offs, provide the corresponding theoretical developments and suggest computational
methods suitable for the solution of the resulting DEA models.

Keywords Data envelopment analysis · Production trade-offs ·Weight restrictions

5.1 Introduction

The conventional variable and constant returns-to-scale (VRS and CRS) DEA models
can each be stated as two mutually dual linear programs: as an envelopment or
multiplier model (Charnes et al. 1978; Banker et al. 1984). The envelopment model
is based on an explicit representation of the production technology. The efficiency
of decision making units (DMUs) in this model is obtained by their input or output
radial projection on the boundary of the technology. The dual multiplier model is
stated in terms of variable vectors of input and output weights. This model assesses
the efficiency of DMUs in terms of the ratio of their aggregated weighted outputs to
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aggregated weighted inputs, in relation to similar ratios calculated for all observed
DMUs.

One common modification of the multiplier model is based on the use of weight
restrictions—the incorporation among its constraints of additional inequalities on
the input and output weights (Thanassoulis et al. 2008; Cooper et al. 2011a). Weight
restrictions are attractive because of their apparent managerial meaning and also
because their use can significantly improve the efficiency discrimination of DEA
models (Allen et al. 1997; Thanassoulis et al. 2004).

A well-known drawback of weight restrictions arises from the fact that their use
in the multiplier model implicitly changes the model of production technology in the
envelopment form (Allen et al. 1997). Specifically, weight restrictions enlarge the
model of technology and generally shift the efficient frontier to a more demanding
level, as illustrated by Roll et al. (1991). An obvious problem with this is that the
efficient projections of inefficient DMUs located on the expanded frontier may not
be producible (technologically realistic). Furthermore, the traditional meaning if
efficiency as the ultimate and technologically feasible improvement factor generally
becomes unsubstantiated (Podinovski 2004a; Førsund 2013).

The purpose of this chapter is to describe an approach to the construction of
weight restrictions that by definition does not have the above drawback. The idea is
to consider the dual forms of weight restrictions induced in the envelopment models.
These are additional terms that are simultaneously added to, or subtracted from, the
inputs and outputs of the units in the production technology. Following Podinovski
(2004a), we refer to these terms as production trade-offs.

Weights restrictions and production trade-offs are mathematically equivalent.
From the practical point of view they may, however, be regarded as different tools.
While the terminology of weight restrictions is a natural language for the elicitation
and communication of value judgements, the notion of production trade-offs makes
us think in terms of production technology and possible substitutions between its
inputs and outputs.

Production trade-offs do not generally follow from the data—instead, they are
additional assumptions that we (or experts) are willing to make about the production
technology: that a certain simultaneous change (substitution) of inputs and outputs
is technologically possible, at all units.

In this respect production trade-offs should not be confused with marginal rates of
transformation and substitution between the inputs and outputs. The latter represent
the slopes of the supporting hyperplanes to the technology and are generally different
at different boundary units. Changing the inputs and outputs of a boundary unit in
the proportions based on the marginal rates (calculated at this unit) would keep the
resulting unit on the supporting hyperplane—this does not mean that the resulting
unit is producible. In other words, marginal rates represent the movements (changes
to inputs and outputs) that are tangent to the technology and are not supposed to
result in producible units. In contrast, production trade-offs represent movements
that are not necessarily tangent to the boundary of the true technology (that we are
attempting to model), but are assumed to keep the resulting units technologically
possible.
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The use of production trade-offs for the construction of weight restrictions has
been illustrated in different contexts. These include the assessment of efficiency of
university departments (Podinovski 2007a), secondary schools (Khalili et al. 2010),
primary health care providers (Amado and Santos 2009), primary diabetes care
providers (Amado and Dyson 2009), electricity distributors (Santos et al. 2011) and
agricultural farms (Atici 2012). The following are a few examples of production
trade-offs employed in the above studies.

1. Primary health care provision: the hospital outputs should not deteriorate if the
number of nurses is reduced by 1 and the number of doctors is increased by 1
(Amado and Santos 2009). This corresponds to the weight restriction stating that
the weight attached to the number of doctors is at least as large as the weight
attached to the number of nurses.

2. Electricity distribution: a distribution utility should be able to increase the delivery
of electricity by at least 40 KWh per Euro of increase of operating expenses—the
latter is chosen as a representative measure for all distribution costs (Santos et al.
2011). This implies that the weight attached to operating expenses (in Euros)
is greater than or equal to 40 times the weight attached to the number of KWh
delivered.

3. Agricultural farms: the resources required for the production of 1 tonne of wheat
are sufficient for the production of at least 0.75 tonnes of barley, at any farm in
the given region (Atici 2012). This implies that the weight attached to wheat is
greater than or equal to 0.75 times the weight attached to barley.

Production trade-offs have exactly the same effect on the model of technology as
weight restrictions: the technology expands but, in contrast with the latter case, in a
controlled way that we explicitly assume to be technologically possible. Because the
expanded technology and, therefore, its efficient frontier are realistic in the produc-
tion sense, this further implies that the radial targets are producible and the efficiency
measures retain their conventional technological meaning as possible improvement
factors.

The use of production trade-offs overcomes the known drawbacks of weight re-
strictions not because they are different: as noted, both are equivalent concepts. The
advantage of trade-offs is that their assessment explicitly refers to the technology
and requires our judgement to be stated in the language of possible changes to inputs
and outputs. The assessed trade-offs can be incorporated either in the envelopment
model (which currently requires the use of a general linear optimiser), or as equiv-
alent weight restrictions in the multiplier model (which can be performed in most
current DEA solvers). In the latter case, the weight restrictions do not have the above
known general drawbacks because they are constructed by transformation of pro-
duction trade-offs. We call this method the trade-off approach to the construction of
weight restrictions.

It is worth mentioning that several earlier studies came close to the notion of pro-
duction trade-offs. Charnes et al. (1989), Roll et al. (1991) and Halme and Korhonen
(2000) show that the incorporation of weight restrictions in multiplier models induce
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dual terms that change the technology but do not explore this relation as a basis for
the assessment of weight restrictions that have a production meaning.

The assessment of weight restrictions in some earlier applications of DEA can
also be viewed as being implicitly based on (or consistent with) the idea of produc-
tion trade-offs. Dyson and Thanassoulis (1988) consider a DEA model with a single
input. In this study the lower bound on each output weight is related to the minimum
amount of the input required per unit of the output. This is essentially a statement
of a production trade-off, although in a specific DEA model that cannot be easily
generalised to the case of multiple outputs. In the assessment of bank branch perfor-
mance, Schaffnit et al. (1997) and Cook and Zhu (2008) incorporate limits on the
ratios of the weights of different transaction and maintenance activities. Such limits
are based on the lower and upper bounds on the amounts of time that such activities
require and effectively express production trade-offs between the activities.

5.2 Production Trade-offs

Following Podinovski (2004a), in this section we introduce production trade-offs as
the dual forms of weight restrictions. It is also straightforward to introduce production
trade-offs independently and establish their dual relationship to weight restrictions
afterwards. We prefer the former approach because it builds up on the already well-
established concept of weight restrictions in the DEA literature.

Consider technology T ⊂ R
m+ × R

s+ with m ≥ 1 inputs and s ≥ 1 outputs. The
elements of T are DMUs stated as the pairs (X,Y ), where X and Y are the input and
output vectors, respectively. Let J = {1, . . ., n} be the set of observed DMUs. Each
observed DMU can also be stated as (Xj ,Yj ), where j ∈ J . Denote (Xo,Yo) the unit
in T whose efficiency is being assessed.

In order for the DEA models to be well-defined and avoid the consideration of
special cases, we make the following standard data assumption: at least one input
and one output of each observed DMU is strictly positive. We also assume that every
output r = 1, . . ., s is strictly positive for at least one observed DMU j1 ∈ J , and
every input i = 1, . . .,m is strictly positive for at least one observed DMU j2 ∈ J .

Let v ∈ R
m+ and u ∈ R

s+ be, respectively, the vectors of input and output weights
used in the multiplier DEA models. Consider the following K ≥ 1 homogeneous
weight restrictions:

u�Qt − v�Pt ≤ 0, t = 1, . . .,K , (5.1)

where Pt ∈ R
m and Qt ∈ R

s are some constant vectors, for all t, and symbol�
denotes transposition. Components of vectors Pt andQt can be positive, negative or
zero. If, for some t, both Pt 
= 0 andQt 
= 0, the corresponding weight restriction t
in (5.1) is called linked and is often referred to as Assurance Region II (Thompson
et al. 1990). Otherwise, the weight restriction is not linked and is termed Assurance
Region I, or polyhedral cone ratio (Charnes et al. 1989, 1990).
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Suppose we wish to assess the efficiency of some DMU (Xo,Yo) using the mul-
tiplier model with weight restrictions (5.1). To be specific, we consider the case of
CRS first, and comment on the case of VRS afterwards.

The input radial efficiency of DMU (Xo,Yo) is obtained as the optimal value θ∗
in the following multiplier model that incorporates weight restrictions (5.1):

Model M
1
CRS :

θ∗ = max u�Yo, (5.2)

subject to v�Xo = 1,

u�Yj − v�Xj ≤ 0, j = 1, . . ., n,

u�Qt − v�Pt ≤ 0, t = 1, . . .,K ,

u, v ≥ 0.

(In model (5.2) and below, the vector inequalities ≤ and ≥ mean that the
corresponding inequality is true for each component.)

Note that, although model (5.2) maximises the aggregated output u�Yo of DMU
(Xo,Yo), its dual envelopment form (5.4) presented below projects the latter unit
on the boundary of the technology by the radial contraction of the input vector
Xo. This explains why model (5.2) and its dual are conventionally referred to as
input-minimisation, or input-oriented, models (Cooper et al. 2011b).

Similarly, the output radial efficiency of DMU (Xo,Yo) is equal to the inverse 1/η∗
of the optimal value η∗ in the following output-maximisation (or output-oriented)
multiplier model:

Model M
2
CRS :

η∗ = min v�Xo, (5.3)

subject to u�Yo = 1,

u�Yj − v�Xj ≤ 0, j = 1, . . ., n,

u�Qt − v�Pt ≤ 0, t = 1, . . .,K ,

u, v ≥ 0.

The notion of production trade-offs and their relation to weight restrictions becomes
apparent when we consider the envelopment models dual to (5.2) and (5.3). Using
vectors λ = (λ1, . . ., λn) and π = (π1, . . .,πK ), the dual to (5.2) can be stated as
follows:

Model E
1
CRS :

θ∗ = min θ , (5.4)
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subject to
n∑

j=1

λjYj +
K∑

t=1

πtQt ≥ Yo,

n∑

j=1

λjXj +
K∑

t=1

πtPt ≤ θXo,

λ ≥ 0,π ≥ 0, θ sign free.

Similarly, the dual to (5.3) is the envelopment model

Model E
2
CRS :

η∗ = max η,
(5.5)

subject to
n∑

j=1

λjYj +
K∑

t=1

πtQt ≥ ηYo,

n∑

j=1

λjXj +
K∑

t=1

πtPt ≤ Xo,

λ ≥ 0,π ≥ 0, η sign free.

In both envelopment models (5.4) and (5.5) the first group of terms on the left-hand
side of their constraints defines a composite unit (X̄λ, Ȳ λ) in the conventional CRS
technology. This unit is further modified by the pairs of vectors

(Pt ,Qt ), t = 1, . . .,K , (5.6)

used in proportions πt ≥ 0. In particular, vector Pt represents changes to the inputs,
and vector Qt shows changes to the outputs. Therefore, each pair (Pt ,Qt ) in (5.6)
can be referred to as a production trade-off.

It is clear that for some weight restrictions (5.1) the corresponding production
trade-offs (5.6) may not represent a technologically possible substitution between the
inputs and outputs. In this case the unit obtained on the left-hand side of models (5.4)
and (5.5) is generally not producible. An obvious way to overcome this problem is
to construct technologically realistic trade-offs (5.6) in the first place. The efficiency
of DMU (Xo,Yo) can then be assessed by solving either the envelopment models
(5.4) and (5.5) or their dual multiplier models (5.2) and (5.3). In the latter case, the
trade-offs (5.6) should be converted to weight restrictions (5.1).

The above process describes the trade-off approach to the construction of weight
restrictions. Its idea is that the weight restrictions (5.1) are assessed in the dual
envelopment space where they take on the form of production trade-offs (5.6). The
latter are essentially additional production assumptions based on our understanding
of the technology. Examples illustrating the trade-off approach are discussed in
Sect. 5.3 below.
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In the case of VRS, the dual relationship between weight restrictions (5.1) and
production trade-offs (5.6) is the same as above. The VRS analogues of the CRS
envelopment models are the programs (5.4) and (5.5) with the additional normalising
condition

n∑

j=1

λj = 1. (5.7)

Below we denote to the resulting envelopment VRS models as E
1
VRS and E

2
VRS ,

respectively. The corresponding dual multiplier models are referred to as M
1
VRS and

M
2
VRS . Both VRS multiplier models utilise an additional sign free variable u0 dual

to equality (5.7).

Remark 1 The case of non-homogeneous weight restrictions is considered in Podi-
novski (2004a, 2005). Such restrictions have a non-zero constant on the right-hand
side of inequalities (5.1), an example of which is absolute weight bounds (Dyson
and Thanassoulis 1988). Non-homogeneous weight restrictions can also be related to
production trade-offs in the envelopment model, but formula (5.6) is no longer valid.
The exact trade-off induced by a non-homogeneous weight restriction depends on the
DMU (Xo,Yo) under the assessment and the orientation (input minimisation or output
maximisation) of the model. This complicates the assessment of non-homogeneous
weight restrictions and makes them less attractive in practical applications.

A further difficulty arising in DEA models with non-homogeneous weight re-
strictions is that the managerial meaning of the resulting efficiency obtained via the
multiplier DEA model may be unclear. In particular, the optimal input and output
weights in the resulting models do not generally represent the assessed DMU in
the best light compared to the other DMUs (Podinovski and Athanassopoulos 1998;
Podinovski 1999, 2004b).

5.3 Illustrative Example

Below we consider an example that illustrates the use of production trade-offs in the
assessment of efficiency of academic departments from different universities using
a hypothetical data set. The departments are assumed to be from the same academic
area (e.g., economics). The choice of inputs and outputs in this example is the same
as in Podinovski (2007a) but the data set is different.

Table 5.1 shows seven hypothetical university departments denoted D1, D2, . . . ,
D7. The two inputs include full academic staff and research staff. The three out-
puts include undergraduate students, master (postgraduate) students and academic
publications.

To be specific, we consider the case of output radial efficiency. Using the two con-
ventional CRS and VRS output-maximisation DEA models, we obtain the efficiency
scores as shown in the second left columns in Tables 5.2 and 5.3 titled “CRS” and
“VRS”, respectively. It is not surprising that, given the small set of observed DMUs,
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Table 5.1 University departments

Departments

D1 D2 D3 D4 D5 D6 D7

Outputs Undergraduates 800 1200 1680 630 1070 1450 1550

Master students 200 500 250 410 120 230 0

Publications 90 21 2 97 11 109 3

Inputs Full academic staff 92 104 64 75 62 98 63

Research staff 15 11 0 12 1 32 0

Table 5.2 Output radial efficiency (%) of departments in the CRS models with different sets of
production trade-offs/weight restrictions

Department CRS CRS 1 CRS 2 CRS 3 CRS 4 CRS 5 CRS 6 CRS 7 CRS 8

D1 83.27 76.82 76.82 76.47 76.47 76.47 76.47 76.47 76.47

D2 97.37 97.37 73.30 69.59 69.59 69.59 69.59 69.59 69.59

D3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

D4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

D5 100.00 100.00 100.00 100.00 77.61 75.92 75.92 71.78 71.78

D6 100.00 100.00 100.00 86.63 86.63 86.63 86.63 86.63 86.63

D7 100.00 100.00 100.00 100.00 85.33 84.61 84.61 83.02 83.02

Table 5.3 Output radial efficiency (%) of departments in the VRS models with different sets of
production trade-offs/weight restrictions

Department VRS VRS 1 VRS 2 VRS 3 VRS 4 VRS 5 VRS 6 VRS 7 VRS 8

D1 95.68 91.09 91.09 90.07 90.07 81.52 81.52 81.52 81.52

D2 100.00 100.00 100.00 100.00 100.00 95.41 95.41 95.41 92.61

D3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

D4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

D5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 79.66 79.66

D6 100.00 100.00 100.00 100.00 100.00 94.54 94.54 94.54 94.54

D7 100.00 100.00 100.00 100.00 99.36 99.36 97.89 87.03 87.03

the efficiency discrimination is low: in the case of CRS only two departments are
inefficient, and in the case of VRS only one is inefficient.

Table 5.4 shows the optimal input and output weights obtained in the standard
CRS model. The weights u1, u2 and u3 correspond to the three outputs: undergrad-
uate students, master students and publications, respectively. The weights v1 and v2

correspond to the two inputs: academic and research staff, respectively. Although
optimal weights are generally not unique, the weights in Table 5.4 are consistent
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Table 5.4 Optimal output and input weights in the standard output-oriented multiplier CRS model

Department u1 u2 u3 v1 v2

D1 0.0004 0 0.0073 0.0116 0.0088

D2 0 0.002 0 0.0078 0.0195

D3 0.0002 0.0025 0 0.0156 0

D4 0 0 0.0103 0.0005 0.08

D5 0.0001 0.0003 0.0762 0.0066 0.59

D6 0.0003 0 0.0051 0.0082 0.0062

D7 0.0005 0 0.0543 0.0159 0.3683

with the known drawback of conventional DEA models: the complete flexibility of
weights often results in zero weights attached to some of the inputs and outputs.
These represent the areas in which the DMU under the assessment is relatively weak
(Thanassoulis et al. 1987; Dyson and Thanassoulis 1988).

For example, department D4 has a relatively low number of students per member
of staff but the highest number of publications per staff. This is reflected in the
optimal weights attached to these outputs: both undergraduate and master students
have a zero weight attached to them. This implies that the DEA model used for the
assessment of department D4 effectively ignores the first two outputs. Exactly the
same efficiency score for department D4 is obtained if we remove the two types of
student from model specification and assess the efficiency of D4 based on the two
inputs and publications only.

Let us show that both the CRS and VRS DEA models can be improved using
simple production trade-offs.

5.3.1 Undergraduate and Master Students

We start by comparing the resources (academic staff) that are used by the departments
for the teaching of undergraduate and master students.

Assumption 1 The teaching of one undergraduate student does not require more
resources (academic staff time) than the teaching of one master student.

We can restate the above assumption as the following trade-off that all departments
should accept:

P1 =
(

0

0

)
,Q1 =

⎛

⎜⎜⎝

1

−1

0

⎞

⎟⎟⎠. (5.8)
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The meaning of the above trade-off is straightforward: it is possible to replace one
master student (the value −1 in the second component of vector Q1) by one un-
dergraduate student (the value 1 in the first component of vector Q1). For this
replacement, no change of the inputs (resources) is needed: vector P1 is a zero
vector. There should also be no change to the third output (publications): the third
component of vectorQ1 is zero.

Production trade-off (5.8) can be restated as a weight restriction using formula
(5.1):

u1 − u2 ≤ 0. (5.9)

This inequality implies that the weight attached to master students cannot be less
than the weight attached to undergraduate students. The same weight restriction may
possibly be obtained by a value judgement but it is the original production trade-off
(5.8) that makes this weight restriction meaningful in the production sense.

Assumption 2 The teaching of a master student may require more resources than
an undergraduate student, however, by no more than a factor of 3.

Note that the above assumption is not a precise measure of the relative amount of
resources required by the two types of output, and it should not be for two reasons.
First, the estimates of this ratio may vary depending on the methodology used for its
calculation even for one particular department. Second, even if the precise ratio were
possible to assess, this would most likely vary between the departments. Because of
these uncertainties, Assumption 2 is supposed to be a safe conservative estimate (an
upper bound of different possible estimates) that all departments should agree on.

We state Assumption 2 as the following production trade-off:

P2 =
(

0

0

)
,Q2 =

⎛

⎜⎜⎝

−3

1

0

⎞

⎟⎟⎠. (5.10)

The above trade-off means that no extra resources should be claimed (P2 is a zero
vector) and there should be no detriment to the publications if the number of under-
graduate students is reduced by 3 and the number of master students is increased by 1.
Using formula (5.1), production trade-off (5.10) is restated as the weight restriction

−3u1 + u2 ≤ 0. (5.11)

According to (5.11), the weight attached to master students cannot be more than 3
times larger than the weight attached to undergraduate students. Note that the factor
3 does not reflect the perceived importance of master students compared to under-
graduates, as both outputs may be deemed equally important for the departments or
the decision maker who is assessing their efficiency. The factor 3 is obtained as (the
upper bound on) the ratio of the resources that these two outputs require. This should
be acceptable to all departments.
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5.3.2 Research Staff and Publications

Consider the role of research staff in producing academic publications. Because
the rate of publications may vary between different departments and individ-
ual researchers, the following two assumptions are intended to be sufficiently
conservative.

Assumption 3 Each researcher should be able to publish at least one paper in two
years.

The above statement can be stated as the following production trade-off:

P3 =
(

0

1

)
,Q3 =

⎛

⎜⎜⎝

0

0

0.5

⎞

⎟⎟⎠. (5.12)

This trade-off implies that if the number of researchers is increased by 1, it should be
possible to increase the number of papers by 0.5 per year. Equivalently, using formula
(5.1), the above trade-off translates to the following linked weight restriction:

0.5u3 − v2 ≤ 0.

Assumption 4 No department can justify a reduction of the number of papers by
more than 6 per year by referring to a loss of one research staff.

The number 6 in the above statement is purely speculative and is simply used as
an illustration of a reasonably high research output. In real applications this can be
revised either way. Assumption 4 is stated as the following production trade-off:

P4 =
⎛

⎝ 0

−1

⎞

⎠ ,Q4 =

⎛

⎜⎜⎝

0

0

−6

⎞

⎟⎟⎠. (5.13)

Equivalently, Assumption 4 can be stated as the following weight restriction:

−6u3 + v2 ≤ 0.

Production trade-offs (5.12) and (5.13) effectively specify the lower and upper bounds
on the number of papers per average researcher at any department. Any publication
rate below the lower bound of 0.5 is treated as evidence of inefficiency. A publication
rate above the upper bound of 6 is regarded as unrealistically high.

5.3.3 Academic Staff and Students

There are different ways in which the link between academic staff and their outputs
(students and publications) can be expressed. Below we consider two statements that
link one input and two outputs simultaneously in a single trade-off.
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The idea of these two assumptions is based on the common use of student-to-staff
ratios at academic departments and the expectation of certain publication rates.

Assumption 5 One full academic post is a sufficient resource for the number of
undergraduate students at the department to increase by 10 and the number of
publications to increase by 0.5.

This assumption is stated as the following production trade-off:

P5 =
(

1

0

)
,Q5 =

⎛

⎜⎜⎝

10

0

0.5

⎞

⎟⎟⎠. (5.14)

It further translates to the linked weight restriction:

10u1 + 0.5u3 − v1 ≤ 0. (5.15)

Assumption 6 A loss of one academic post should not lead to a reduction of more
than 20 undergraduate students and 5 publications per year.

This assumption is represented by the following trade-off

P6 =
⎛

⎝−1

0

⎞

⎠ ,Q6 =

⎛

⎜⎜⎝

−20

0

−5

⎞

⎟⎟⎠, (5.16)

and the following equivalent weight restriction:

−20u1 − 5u3 + v1 ≤ 0. (5.17)

5.3.4 Students and Publications

Three university departments in our data set, D1, D4 and D6, can be regarded
as research-intensive. They have a moderate teaching-to-staff ratio and a relatively
high publication rate. Departments D3 and D7 are focused primarily on the teaching.
They have a high student-to-staff ratio and a low number of publications. Overall,
this suggests that the departments in Table 5.1 can be viewed as having different
specialisations.

Highly specialised DMUs are often shown as efficient by DEA models. This is
because the peer groups of units to which specialised units can be compared have
to show a similar specialisation, which is a limiting factor. Below we overcome the
above problem by relating the “production” of students and publications by means
of production trade-offs. The latter are based on the evaluation of the resources (staff
time) that are needed for the generation of the two outputs.
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Assumption 7 The reduction of the number of undergraduate students by 20 releases
the academic staff time sufficient to write one academic paper.

As a justification of the above statement, we can think of an academic member
of staff being on a one-year study leave. This involves no teaching load and an
expectation of several research outputs. The reduction of undergraduate students by
20 can be approximately equated to one year of staff time, and the publication of just
one paper is a conservative estimate of the publication output achievable within one
year. This assumption is stated as the following production trade-off:

P7 =
(

0

0

)
,Q7 =

⎛

⎜⎜⎝

−20

0

1

⎞

⎟⎟⎠. (5.18)

It further translates to the weight restriction:

−20u1 + u3 ≤ 0.

Assumption 8 The reduction of the number of publications by 5 releases the aca-
demic staff time sufficient to increase the number of undergraduate students by
20.

This assumption is stated as the following trade-off:

P8 =
(

0

0

)
,Q8 =

⎛

⎜⎜⎝

20

0

−5

⎞

⎟⎟⎠. (5.19)

It further translates to the weight restriction:

20u1 − 0.5u3 ≤ 0.

Taken together, trade-offs (5.18) and (5.19) put the bounds on the ratio between the
resources (staff time) required to teach undergraduate students and publish papers.
Namely, the teaching of 20 undergraduate students may, depending on the depart-
ment, equate to the writing of between 1 and 5 papers. If the number of students is
reduced by 20, any department should be able to compensate for this by increasing
the number of publications by at least 1 paper per year. If the number of students is
increased by 20 (and the staff number is kept constant), this may be used to justify
the reduction of publications by no more than 5 papers per year.

5.3.5 Computational Results

Tables 5.2 and 5.3 show the output radial efficiency of all departments in the CRS
and VRS DEA models with different sets of production trade-offs. We obtained these
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Table 5.5 Optimal output and input weights in the final output-oriented multiplier CRS model with
all eight production trade-offs/weight restrictions

Department u1 u2 u3 v1 v2

D1 0.0004 0.0004 0.0068 0.0120 0.0135

D2 0.0003 0.0010 0.0047 0.0128 0.0093

D3 0.0005 0.0005 0.0088 0.0156 0.0176

D4 0.0003 0.0003 0.0067 0.0103 0.0188

D5 0.0007 0.0007 0.0142 0.0218 0.0397

D6 0.0003 0.0003 0.0049 0.0086 0.0097

D7 0.0006 0.0006 0.0124 0.0191 0.0348

results using a common commercial solver. Obviously, solving the envelopment and
corresponding multiplier models led to the same efficiency scores.

As noted above, in these two tables, the columns titled “CRS” and “VRS” cor-
respond to the standard DEA models without production trade-offs. Models CRS
k and VRS k, where k = 1, . . ., 8, incorporate all production trade-offs (Pt ,Qt ),
t = 1, . . ., k stated above. For example, models CRS 1 and VRS 1 incorporate the
single trade-off (P1,Q1) as stated in (5.8). Models CRS 3 andVRS 3 incorporate three
trade-offs (P1,Q1), (P2,Q2) and (P3,Q3). Models CRS 8 and VRS 8 incorporate all
eight production trade-offs.

Both tables allow us to observe the gradual improvement of efficiency discrimina-
tion as additional trade-offs are progressively incorporated. The final columns CRS
8 and VRS 8 show a significant improvement over the conventional CRS and VRS
models.

Table 5.5 shows the optimal input and output weights in model CRS 8. These
weights were obtained by solving the dual multiplier model with the eight weight
restrictions equivalent to the production trade-offs. In comparison to Table 5.4, all
optimal weights in Table 5.5 are strictly positive.

In this respect it should be noted that in practical applications of production trade-
offs the aim of making all optimal weights strictly positive may be a goal that is hard
to achieve. The incorporation of realistic production trade-offs (or weight restrictions
based on them) is a worthwhile improvement to the DEA model, even if this does
not completely eliminate all zero weights in the optimal solution.

5.4 Graphical Illustrations

To illustrate the effect of production trade-offs on the technology, consider the follow-
ing two examples. Both are concerned with the assessment of efficiency of university
departments. Note that these departments are different from those in Table 5.1.
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Fig. 5.1 Production trade-offs expanding the technology in output dimensions

Example 1 Let units A, B and C shown in Fig. 5.1 be observed departments. These
departments are assumed to have the same level of a single input (staff) which is
not depicted, and different levels of two outputs: undergraduate and master students.
Because the input is equal, the shaded area represents both the VRS and CRS tech-
nology induced by the three units. More precisely, the shaded area is the section of
either technology for the given level of input. For simplicity, we still refer to this
section as the technology.

The efficient frontier of this technology is the line segment AC. Department B is
located on the boundary of technology but is dominated by A. It is therefore only
weakly efficient. The output radial efficiency of all three departments is equal to 1.

Consider production trade-off (5.8). (We ignore the publications and research staff
that are not present in this example.) By the assumption made, this trade-off can be
applied to any department. For example, starting at A, we can increase the number
of its undergraduate students by 1 and simultaneously reduce the number of master
students by 1. This procedure can be repeated multiple times. Increasing the number
of undergraduate students of department A by 100 and reducing the number of master
students also by 100, we arrive at the hypothetical department D. Continuing this
process, we induce the straight line AW.

We have shown that the line AW consists of producible units and should therefore
be regarded as part of the technology. Using the free disposability of outputs, we
should also add the nonnegative area below AW to the technology. Note that, if we
start at any other unit, e.g., at B or C, the application of trade-off (5.8) does not add
any further new points to the technology.
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The use of trade-off (5.8) allows us to add new units in the scenario in which
the number of undergraduate students is increased. To consider the reduction of this
input, we need to refer to production trade-off (5.10). Starting at point A and using
the same logic as above, we move away from A to point U. All points on the line
AU are producible because we are replacing 3 undergraduate students by 1 master
student in this process, as in trade-off (5.10). This adds the line AU to the technology,
along with the dominated nonnegative region below it.

Overall, the specification of two trade-offs (5.8) and (5.10) results in the expansion
of the technology from the shaded area in Fig. 5.1 to the area below the broken line
UAW, and the latter is the new efficient frontier. Department A remains efficient, while
departments B and C are no longer efficient and are projected on the units E and
F, respectively. Note that, because of the assumptions about production trade-offs
(5.8) and (5.10), both target units E and F are technologically feasible. Therefore,
the output radial efficiency of the units B and C retains its traditional technological
meaning. Namely, for each unit the inverse of its output radial efficiency is the
ultimate improvement factor by which both of its outputs can be improved.

Example 2 In this example we illustrate the effect of linked production trade-offs on
the production technology. For simplicity we consider the case of VRS with a single
input (academic staff) and a single output (undergraduate students). The shaded area
in Fig. 5.2 corresponds to the VRS technology induced by two departments A and B.
Both departments are efficient in this technology.

Consider the following variants of linked production trade-offs (5.14) and (5.16)
adapted to our example:

P ∗
5 = (1),Q∗

5 = (10), (5.20)

P ∗
6 = (−1),Q∗

6 = (−20). (5.21)

We use the same logic as in Example 1. Starting from unit A and applying trade-off
(5.20) in different proportions, we add the ray AW to the technology. Similarly, the
application of trade-off (5.21) to unit A induces the line AK. Using free disposability
of input and output, the VRS technology expands to the nonnegative area below the
broken line KAW, and the latter is its new efficient frontier.

Note that unit B is no longer efficient in the expanded technology. Its output
radial efficiency is assessed by its projection on the unit E. Because the latter unit
is producible according to the stated trade-off assumptions, it is a technologically
feasible efficient target for department B.

5.5 CRS and VRS Technology with Production Trade-offs

Above we defined production trade-offs as the dual forms of weight restrictions.
Their use in the example involving university departments resulted in a meaningful
expansion of the CRS and VRS technology and led to a significant improvement of
efficiency discrimination.



5 DEA Models with Production Trade-offs and Weight Restrictions 121

900 

800 

500 

600 

700 

300 

200 

100 

A 

Undergraduate students 

Academic staff60 40 20 0 10 30 50 

400 

K F 

70 80 

B 

E 

L 

W

Fig. 5.2 Linked production trade-offs expanding the VRS technology

The missing link in the above development is the definition of technology with
production trade-offs. Below we address this gap using the axiomatic approach to
the definition of technology pioneered by Banker et al. (1984). The main definitions
and results of this section are based on the results of Podinovski (2004a).

5.5.1 Axiomatic Definitions

The first three axioms are the standard production assumptions that define the conven-
tional VRS technology TVRS . Adding the fourth axiom defines the CRS technology
TCRS .

Axiom 1 (Feasibility of observed data) (Xj ,Yj ) ∈ T , for any j ∈ J.

Axiom 2 (Convexity) Technology T is a convex set.

Axiom 3 (Free disposability) If (X,Y ) ∈ T , Y ≥ Y ′ ≥ 0 and X ≤ X′, then
(X′,Y ′ ) ∈ T .

Axiom 4 (Proportionality) If (X,Y ) ∈ T and α ≥ 0, then (αX,αY ) ∈ T .
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The following axiom states that each of the production trade-offs (Pt ,Qt ) in
(5.6) can be applied to any unit in technology T , and any number of times (in any
proportion) πt ≥ 0 as long as the resulting unit has nonnegative inputs and outputs.

Axiom 5 (Feasibility of production trade-offs) Let (X,Y ) ∈ T . Then, for each
trade-off (Pt ,Qt ) in (5.6) and for any πt ≥ 0, the unit

(X̃, Ỹ ) = (X + πtPt ,Y + πtQt ) ∈ T ,

provided X̃ ≥ 0 and Ỹ ≥ 0.
The next, and last, axiom states that the production technology should be a closed

set. This is a standard property of production technologies (Shephard 1974; Färe
et al. 1985) that is often automatically satisfied and needs not to be stated—this is
true in the cases of CRS, VRS and free disposal hull technology of Deprins et al.
(1984). However, as shown by an example in Podinovski (2004a), this is not so for
technologies that incorporate production trade-offs as stated in Axiom 5. Therefore,
the following axiom needs to be explicitly stated.

Axiom 6 (Closedness) Technology T is a closed set.
The following definition is based on the minimum extrapolation principle

introduced to DEA by Banker et al. (1984).

Definition 1 The CRS technology TCRS−TO with trade-offs (5.6) is the intersection
of all technologies T that satisfy Axioms 1–6.

It is straightforward to verify that technology TCRS−TO satisfies all Axioms 1–6.
For example, Axiom 2 is satisfied because the intersection of convex sets is a convex
set. Definition 1 implies that TCRS−TO is the smallest technology that satisfies all
Axioms 1–6. This means that it contains only those DMUs that are required to satisfy
the axioms and no other arbitrary units.

The above definition is not constructive, and its equivalent operational statement
is given by the following theorem.

Theorem 1 (Podinovski 2004a) Technology TCRS−TO is the set of all units
(X,Y ) ∈ R

m+ × R
s+ that can be stated in the form

Y =
n∑

j=1

λjYj +
K∑

t=1

πtQt − e, (5.22)

X =
n∑

j=1

λjXj +
K∑

t=1

πtPt + d, (5.23)

where λ = (λ1, . . ., λn) ∈ R
n+, π = (π1, . . .,πK ) ∈ R

K+ , e ∈ R
s+ and d ∈ R

m+.
Theorem 1 provides a meaningful interpretation to the envelopment models (5.4)

and (5.5). It shows that the radial improvement of the input and, respectively, output
vectors of the unit (Xo,Yo) is performed within the technology TCRS−TO . Note,
however, that this interpretation is correct only if the improved unit has nonnegative
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input and output vectors, as required by Theorem 1. This requirement is automatically
satisfied in model (5.5) because the output-improvement factor η is maximised. In
model (5.4) the input-improvement factor θ is minimised and may in some cases
become negative. It may appear that we need to add the condition θ ≥ 0 to the
constraints of model (5.4)—this would remedy the problem and guarantee that the
minimisation of θ is performed in technology TCRS−TO . While this is possible, there
are two reasons why this may not be a good idea.

First, adding the condition θ ≥ 0 to the constraints of model (5.4) would invalidate
its duality with the multiplier model (5.2). The second and, perhaps, more important
consideration is that the feasibility of negative values of θ in model (5.4) indicates an
inconsistency within the trade-offs (5.6) or, equivalently, weight restrictions (5.1).
Allowing θ to take on negative values in the envelopment models make them self-
testing for errors in the construction of trade-offs (or weight restrictions). We consider
this issue in detail in the next section.

Generally though, the nonnegativity conditions (X,Y ) ∈ R
m+ ×R

s+ are important
in the statement of technology TCRS−TO and should not be omitted unless proved
redundant in a particular DEA model. This is discussed further in Sect. 5.7 (see
Remark 2) in relation to the additive DEA model based on the above technology.

In the case of VRS, we follow the same logic as above and give the following
definition.

Definition 2 The VRS technology TVRS−TO with trade-offs (5.6) is the intersection
of all technologies T that satisfy Axioms 1–3, 5 and 6.

As in the above case, it is straightforward to verify that technology TVRS−TO
satisfies Axioms 1–3, 5 and 6 and is, therefore, the smallest technology that satisfies
them.

Theorem 2 (Podinovski 2004a) Technology TVRS−TO is the set of all units
(X,Y ) ∈ R

m+ × R
s+ that can be stated in the form (5.22) and (5.23), subject to

the additional normalising equality (5.7) and the same nonnegativity conditions on
vectors λ, π , e and d as in Theorem 1.

The duality of weight restrictions and production trade-offs allows us to give a
positive answer to the long-standing question of whether the use of weight restric-
tions in VRS DEA models is theoretically sound (Thanassoulis and Allen 1998).
The counter-argument is that in CRS models the marginal rates of transformation
and substitution between inputs and outputs (that define the slopes of facets on the
boundary of the technology) are invariant with respect to the scaling (or the size) of
the unit, while in the VRS technology this is not so. The main concern is then that the
weight restrictions that specify bounds on the marginal rates would be inappropriate
in the VRS technology because such rates change with the scale of operations. This
argument is weakened by the fact that the marginal rates in the CRS technology are
still generally different at any two units, unless one is a scaled variant of the other.

The above problem does not arise if we interpret weight restrictions as the dual
forms of production trade-offs and assess the latter in the first place. Indeed, if pro-
duction trade-offs (5.6) are assumed technologically feasible in the CRS technology
TCRS−TO (in the sense of Axiom 5), then they must be technologically feasible in the
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VRS technology TVRS−TO because the latter is a subset of TCRS−TO . Therefore, any
production trade-offs (or weight restrictions based on them) that are deemed realistic
and appropriate in the CRS model, are also acceptable and can be used in the VRS
model.

5.5.2 Some Properties of CRS and VRS Technologies with
Trade-offs

Below we establish two properties of technologies TCRS−TO and TVRS−TO .

Theorem 3 Technologies TCRS−TO and TVRS−TO are polyhedral sets. In particular,
TCRS−TO is a polyhedral cone.

Proof of Theorem 3 The set P of all solutions {X,Y , λ,π , e, d} to the set of linear
equations (5.22), (5.23) and inequalities X,Y , λ,π , e, d ≥ 0 is a polyhedral set in
R

2(m+s)+n+K . Technology TCRS−TO in Definition 1 is the projection of P on its input
and output dimensions X and Y. By the known projection lemma (see, e.g., Jones
et al. 2008, Lemma 3.1), TCRS−TO is a polyhedral set. Because TCRS−TO satisfies
Axiom 4, it is a cone. The case of technology TVRS−TO is considered in a similar
way. �

The second property is somewhat more subtle. Without production trade-offs, the
conventional CRS technology is the cone extension of the VRS technology. This
means that any unit (X,Y ) in the CRS technology is obtained by the scaling of some
unit (X̃, Ỹ ) in the VRS technology by some factor α ≥ 0. This result is generally
incorrect for the CRS and VRS technologies that incorporate production trade-offs
(although it is “almost correct” in the sense defined below).

Example 3 Consider the CRS and VRS technologies with a single input and single
output induced by the single observed unit A = (2,1). Suppose we specified the
linked trade-off: (P ,Q) = (1,2). Figure 5.3 shows the resulting VRS technology
TVRS−TO as the shaded area below the broken line GAF. Note that the ray AF is
obtained by the application of trade-off (P ,Q) to the unit A following the same logic
as in Example 2. Furthermore, the CRS technology TCRS−TO is the cone under the
ray OE: the ray OE is obtained by the application of trade-off (P ,Q) to the zero
unit—the latter is included in the original CRS technology. This implies that, for
example, unit B = (1,2) is in technology TCRS−TO . (As an alternative argument,
unit B satisfies the conditions of Theorem 1 with λ1 = 0 and π1 = 1.) It is, however,
straightforward to show that there exists no unit (X̃, Ỹ ) ∈ TVRS−TO and α ≥ 0 such
that B = α(X̃, Ỹ ).

Example 3 shows that technology TCRS−TO is generally not the cone extension of
TVRS−TO . Below we prove that TCRS−TO is the closed cone extension of TVRS−TO .
To state this formally, denote the cone extension of TVRS−TO as

cone TVRS−TO

=
{

(X,Y ) ∈ R
m × R

s |∃(X̃, Ỹ ) ∈ TVRS−TO ,α ≥ 0 : (X,Y ) = α(X̃, Ỹ )
}
.
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Fig. 5.3 The VRS (dark grey) and CRS (light grey) technologies induced by unit A and production
trade-off (P ,Q) = (1,2)

Denote cl(cone TVRS−TO) the closure of the set cone TVRS−TO (intersection of all
closed sets containing cone TVRS−TO).

Theorem 4 Technology TCRS−TO is the closed cone induced by TVRS−TO :

TCRS−TO = cl(cone TVRS−TO).

Proof of Theorem 4 By Theorem 2, any (X̃, Ỹ ) ∈ TVRS−TO satisfies (5.22), (5.23)
and (5.7) with some vectors λ̃, π̃ , ẽ and d̃ . For any α ≥ 0, α(X̃, Ỹ ) satisfies (5.22)
and (5.23) with the vectors αλ̃, απ̃ , αẽ and αd̃ . By Theorem 1, (X̃, Ỹ ) ∈ TCRS−TO .
Therefore, cone TVRS−TO ⊆ TCRS−TO , and cl(cone TVRS−TO) ⊆ cl TCRS−TO =
TCRS−TO . (The last equality is true because TCRS−TO satisfies Axiom 6.)

Conversely, let (X,Y ) ∈ TCRS−TO . Then (X,Y ) satisfies (5.22) and (5.23) with
some vectors λ′, π ′, e′ and d ′. Let λ∗ =∑n

j=1 λ
′
j . Two cases arise.

Case 1 Assume that λ∗ > 0. Define (X̃, Ỹ ) = (1/λ∗)(X,Y ). Then (X̃, Ỹ ) ∈
TVRS−TO because it satisfies (5.22), (5.23) and (5.7) with λ = λ′/λ∗, π = π ′/λ∗,
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e = e′/λ∗ and d = d ′/λ∗. Because (X,Y ) = α(X̃, Ỹ ) where α = λ∗, we have
(X,Y ) ∈ cone TVRS−TO ⊆ cl(cone TVRS−TO).

Case 2 Assume that λ∗ = 0. Therefore, λ′ = 0. (This is the case for unit B
in Example 3.) Consider the sequence of units (Xk ,Yk), k = 1,2, . . . , defined as
follows:

(Xk ,Yk) =
n∑

j=1

(
1

n
(Xj ,Yj )

)
+ k(X,Y ). (5.24)

Because both terms on the right-hand side of (5.24) are nonnegative, each unit
(Xk ,Yk) is nonnegative. It is straightforward to verify that (Xk ,Yk) satisfies condi-
tions (5.22), (5.23) and (5.7) with the vector λk whose components are (λk)j = 1/n,
j = 1, . . ., n, and vectors πk = kπ ′, ek = ke′ and dk = kd ′. Therefore,
(Xk ,Yk) ∈ TVRS−TO , for all k = 1,2, . . .

Define the sequence of units (X̃k , Ỹk) = (1/k)(Xk ,Yk). Obviously, we have
(X̃k , Ỹk) ∈ cone TVRS−TO , for all k. Note that (X,Y ) is the limit unit of the sequence
of units (X̃k , Ỹk). Indeed, based on (5.24),

(X̃k , Ỹk) = 1

k

n∑

j=1

(
1

n
(Xj ,Yj )

)
+ (X,Y ) →

k→+∞(X,Y ).

Therefore (X,Y ) ∈ cl(cone TVRS−TO). Because (X,Y ) is an arbitrary unit in
TCRS−TO , in both cases 1 and 2 we have TCRS−TO ⊆ cl(cone TVRS−TO). Taking
into account the inverse embedding obtained in the first part of the proof, we have
TCRS−TO = cl(cone TVRS−TO). �

Theorem 4 states that the CRS technology TCRS−TO is obtained from the VRS
technology TVRS−TO by the scaling of its units by all factorsα ≥ 0, and subsequently
adding all limit points (units) to the resulting set.

5.6 Weight Restrictions and the Infeasibility Problem

It is well-known that the use of weight restrictions in multiplier models (5.2) and (5.3),
and in their VRS analogues, may result in their infeasibility (see, e.g., Allen et al.
1997; Pedraja-Chaparro et al. 1997). A similar problem may occur when production
trade-offs are incorporated in envelopment DEA models. By duality, if a multiplier
model with weight restrictions is infeasible, its dual envelopment model (which is
always feasible) must have an unbounded objective function.

The unboundness of the objective function η in the output-maximisation CRS
model (5.5) and its VRS analogue indicates that the incorporation of weight re-
strictions (production trade-offs) has created an unlimited production of the output
vector Yo. (Because ηYo can be taken to infinity while keeping the input vector Xo
constant.) This is inconsistent with the established properties of production tech-
nologies (Shephard 1974; Färe et al. 1985) and indicates that an error has occurred
in the construction of weight restrictions or trade-offs.
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The unboundness of the objective function θ in the input-minimisation model
(5.4) or its VRS analogue implies that θ = 0 is feasible in the model. Consequently,
the technology allows free production of the output vector Yo from the zero vector
of inputs θXo = 0Xo. This is an equally problematic situation that indicates that
weight restrictions should be reconsidered.

In the author’s experience based on teaching DEA to a large class of undergraduate
students for many years, who were asked to use weight restrictions in their work,
the above infeasibility problems are not unusual. These are more likely to happen if
the model incorporates a relatively large number of weight restrictions of complex
structure: those that involve several input and output weights in one inequality, as
in (5.15) and (5.17). The use of trade-offs for the assessment of weight restrictions
facilitates and often encourages the formulation of complex weight restrictions. For
example, weight restrictions (5.15) and (5.17) that have a clear meaning as stated
in Assumptions 5 and 6 are unlikely to be stated using value judgements, because it
may not even be clear what they mean in value terms.

Podinovski and Bouzdine-Chameeva (2013) show that free and unlimited pro-
duction of output vectors may occur even if all multiplier models are feasible and
all efficiency scores appear plausible. In such cases, the technology is modelled
incorrectly and the efficiency scores are also incorrect. One cannot therefore rely
on the fact that the efficiency scores appear unproblematic—there may still be an
undetected underlying problem with weight restrictions that invalidates the results
of analysis and needs correcting.

Below we outline the results presented in Podinovski and Bouzdine-Chameeva
(2013). These include a description of the infeasibility (and unboundness) problem
caused by weight restrictions and the forms it can take, depending on the assumption
of returns to scale (VRS or CRS) and the orientation of the model (input minimisation
or output maximisation). This leads to the formulation of analytical and computa-
tional tests that give us a conclusive answer as to whether there is a problem with
weight restrictions.

5.6.1 Definitions and Examples

We start with the following two definitions. Let Yo ∈ R
s+, Yo 
= 0, be a vector of

outputs.

Definition 3 Technology T allows free production of vector Yo if (0,Yo) ∈ T .

Definition 4 Technology T allows unlimited production of vector Yo if there exists
a vector of inputs Xo such that (Xo,αYo) ∈ T for all α ≥ 0.

Podinovski and Bouzdine-Chameeva (2013) prove that the above two notions are
equivalent in any cone technology, e.g., in technology TCRS−TO : the existence of
free production implies the existence of unlimited production, and vice versa. In
a non-cone technology, e.g., in TVRS−TO , the two notions are generally different.
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Furthermore, in any convex technology (e.g., in TCRS−TO and TVRS−TO), the spec-
ification of vector Xo in Definition 4 is unimportant: if vector Yo can be produced
in an unlimited quantity α from the input vector Xo, then it can be produced in an
unlimited quantity from the input vector X of any other unit (X,Y ) in the technology.

It is straightforward to verify that, under the nonnegativity assumptions made
about the observed DMUs, conventional CRS and VRS production technologies
do not allow free or unlimited production of output vectors, but the incorporation of
weight restrictions (production trade-offs) may create it. The following two examples
demonstrate this effect.

Example 4 Suppose we made a mistake in the assessment of production trade-offs
(5.8) and (5.10), and stated them as follows:

P̃1 =
(

0

0

)
, Q̃1 =

⎛

⎜⎜⎝

4

−1

0

⎞

⎟⎟⎠, (5.25)

P̃2 =
(

0

0

)
, Q̃2 =

⎛

⎜⎜⎝

−3

2

0

⎞

⎟⎟⎠. (5.26)

It is easy to see that the above trade-offs induce unlimited production of the two out-
puts (undergraduate and master students) in the VRS and CRS technology. Figure 5.4
is a modification of Fig. 5.1 to this case.

Starting from unit A and applying trade-off (5.25) 100 times, we substitute 100
master students by 400 undergraduate students. This creates point E1 on the graph.
Subsequently applying trade-off (5.26) 100 times, we substitute 300 undergraduate
students by 200 master students. The resulting unitA1 has 100 more of both types of
student compared to the original unit A, and “achieves” this without any extra input.
We can continue this process and generate a further sequence of units A2, A3, . . .,
taking the production of outputs to infinity. (The lightly shaded area in Fig. 5.4 shows
the region of units dominated by A3. By free disposability of output, this region is
also included in the technology. As the sequence of units At , t = 1,2, . . ., tends to
infinity, the corresponding dominated area covers the whole nonnegative orthant.)

Example 5 Consider the VRS technology as in Fig. 5.2. Assume we replaced the
production trade-off (5.21) by the following trade-off:

P̃ = (−1), Q̃ = (−10). (5.27)

Figure 5.5 shows the effect of trade-off (5.27) on the VRS technology. Starting at unit
A and consecutively applying this trade-off, we generate the line AK which, together
with the region below it, should be added to the technology. Note that unit K has a
zero input and a strictly positive output. This means that the expanded technology
allows free production and indicates that trade-off (5.27) should be reconsidered.
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Note that the above problem cannot be observed by the efficiency calculations:
the output radial efficiency of departments A and B in this example is equal to 1 and
0.5, respectively, and is not suspicious. However, because the slope of the efficient
boundary KA is incorrect, the calculated efficiencies are also incorrect.

5.6.2 Theoretical Results

Below we give a complete characterisation of problematic outcomes in the CRS and
VRS DEA models with weight restrictions (production trade-offs) that are caused
by free or unlimited production of vector Yo in the corresponding technology. If any
of such outcomes are observed in practical computations, this implies that an error
has occurred in the assessment of weight restrictions (or, equivalently, production
trade-offs), and these need to be reconsidered.

The first theorem deals with the case of CRS.

Theorem 5 (Podinovski and Bouzdine-Chameeva 2013) Let (Xo,Yo) ∈ TCRS−TO
and let Xo 
= 0 and Yo 
= 0. (For example, (Xo,Yo) may be an observed unit.) Then
the following three statements are equivalent:

a. There exists free and unlimited production of output vector Yo in technology
TCRS−TO .

b. The CRS input-minimisation envelopment model E
1
CRS is unbounded or has a

finite optimal value θ∗ = 0. Its dual multiplier model M
1
CRS is infeasible or has

an optimal value θ∗ = 0, respectively.
c. The CRS output-maximisation envelopment model E

2
CRS is unbounded. Its dual

multiplier model M
2
CRS is infeasible.

The next result deals with the case of VRS. Because in this technology the notions
of free and unlimited production are generally not equivalent, these are considered
separately.

Theorem 6 (Podinovski and Bouzdine-Chameeva 2013) Let (Xo,Yo) ∈ TVRS−TO
and let Xo 
= 0 and Yo 
= 0. (For example, (Xo,Yo) may be an observed unit.) Then
the following statements are true:

a. There exists free production of output vectorYo in technology TVRS−TO if and only
if the VRS input-minimisation envelopment model E

1
VRS is either unbounded or

has a finite optimal value θ∗ ≤ 0. Its dual multiplier model M
1
VRS is, respectively,

infeasible or has a finite optimal value θ∗ ≤ 0.
b. There exists unlimited production of output vector Yo in technology TVRS−TO if

and only if the VRS output-maximisation multiplier model E
2
VRS is unbounded.

Its dual multiplier model M
2
VRS is infeasible.

One of the differences between the cases of CRS and VRS highlighted by Theorems
5 and 6 is that free production in the VRS technology may result in a finite negative
value of the input efficiency θ∗. For example, consider unitG = (50, 50) in the VRS
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technology in Fig. 5.5. The input radial projection of G is H = (−5, 50). Solving
the envelopment model E

1
VRS produces the finite value θ∗ = −5/50 = −0.1 and

illustrates part (a) of Theorem 6.
The above two theorems do not solve the problem of identifying problematic

weight restrictions (trade-offs) completely: even if no problematic outcomes occur
with the assessment of all observed units (Xj ,Yj ), this guarantees only that there is
no free or unlimited production of the output vectors Yj of observed units. This does
not however guarantee that there is no free or unlimited production of other output
vectors in the technology. For example, in the case of VRS technology in Fig. 5.5,
Theorem 6 would not identify any problem when the input or output radial efficiency
of both observed units A and B is assessed.

Podinovski and Bouzdine-Chameeva (2013) suggest two approaches, analytical
and computational, that allow us to examine if the incorporation of production trade-
offs (weight restrictions) has induced free or unlimited production in the technology.
This task is simplified by the following statement.

Theorem 7 (Podinovski and Bouzdine-Chameeva 2013) The existence of free
(and therefore unlimited production) of the output vector Yo in technology TCRS−TO
is equivalent to the existence of either free or unlimited production of vector Yo (but
not necessarily both) in technology TVRS−TO .

According to Theorem 7, if there is a problem with free or unlimited production in
either CRS or VRS technology, then there is a similar problem in the other. Because
the notions of free and unlimited production are equivalent in the CRS technology,
and also because the choice of vector X is unimportant for the latter notion, it suffices
to test for the existence of unlimited production with the input vector X of an arbitrary
unit (X,Y ) in the CRS technology TCRS−TO .

Podinovski and Bouzdine-Chameeva (2013) consider two cases. The simpler case
arises if weight restrictions (5.1) are not linked. In this case the testing is reduced
to verifying a simple algebraic condition. If weight restrictions (5.1) include linked
restrictions, the testing is performed by solving specially constructed linear programs.
Below we outline the two cases.

5.6.3 Free Production with Not Linked Trade-offs

The most straightforward case arises if the weight restrictions are not linked. Then
(5.1) can be restated as follows:

u�Qt ≤ 0, t = 1, . . .,K1, (5.28)

−v�Pt ≤ 0, t = 1, . . .,K2. (5.29)

Theorem 8 (Podinovski and Bouzdine-Chameeva 2013) Technology TCRS−TO
does not allow free (and unlimited) production if and only if both of the following
two conditions are satisfied:
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a. there exists a strictly positive vector u∗ > 0 that satisfies (5.28);
b. there exists a nonnegative vector v∗ ≥ 0 that satisfies (5.29) such that (v∗)�Xj > 0

holds for all observed units j= 1,. . ., n.

(If either group of weight restrictions (5.28) or (5.29) is missing, then the
corresponding condition (a) or (b) is removed from the above statement.)

Note that the vectors u∗ and v∗ do not need to satisfy the conditions of models
(5.2) or (5.3)—all that is required is that such vectors satisfy (5.28) and (5.29).

In practical applications all inputs of all observed DMUs j = 1, . . ., n are usually
strictly positive. In this case condition (b) of Theorem 8 is equivalent to the simpler
condition: there exists a nonzero vector v∗ ≥ 0 that satisfies (5.29).

If some of the inputs of observed DMUs are equal to zero, the above simplified
condition does not apply. However, to prove that there is no free production, a simpler
sufficient condition may be used. (Obviously, if it is not satisfied, this does not mean
that there is free production—we need to use Theorem 8 for a definitive answer.)

Corollary 1 If there exist strictly positive vectors u∗ > 0 and v∗ > 0 that satisfy
(5.28) and (5.29), then technology TCRS−TO does not allow free (and unlimited)
production.

As an illustration, refer to Example 1 in which we used the trade-offs between
undergraduate and master students as stated in (5.8) and (5.10). The resulting technol-
ogy was illustrated in Fig. 5.1. The corresponding weight restrictions (5.9) and (5.11)
are simultaneously satisfied, for example, by strictly positive weights u1 = u2 = 1.
This means that condition (a) of Theorem 8 is true. Because there are no weight
restrictions involving input weights, condition (b) of Theorem 8 should be ignored.
By Theorem 8 or its Corollary 1, the two trade-offs (5.8) and (5.10) do not cause free
or unlimited production in either CRS or VRS technology, which is consistent with
Fig. 5.1.

Let us illustrate how Theorem 8 can be used to detect free production when it
exists, even if all efficiency scores appear unproblematic.

Example 6 In Example 4 we showed how the use of trade-offs (5.25) and (5.26)
resulted in the unlimited production of two outputs (undergraduate and master stu-
dents). If we use the same two trade-offs with the data set in Table 5.1, they induce
unlimited production of the two outputs in the same way but the problem is not
observed from the efficiency calculations and becomes hidden.

Table 5.6 shows the efficiency scores (in %) in the CRS and VRS DEA models
for the departments as in Table 5.1. Both the CRS and VRS models incorporate only
two production trade-offs (5.25) and (5.26). (These models are obtained from the
models CRS 2 and VRS 2 discussed above in which the “good” trade-offs (5.8) and
(5.10) are replaced by the problematic trade-offs (5.25) and (5.26).)

Note that the results of computations in Table 5.6 do not appear problematic—
the only exception may be the unusually low “efficiency” of department D2 in both
models. In such cases it is easy to miss the underlying problem. To see if there is a
problem we use Theorem 8 and restate production trade-offs (5.25) and (5.26) as the
weight restrictions

4u1 − u2 ≤ 0, (5.30)
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Table 5.6 Output radial efficiency (%) of departments in the CRS and VRS models with trade-offs
(5.25) and (5.26) causing free production

Department CRS VRS

D1 75.64 91.09

D2 23.14 23.55

D3 65.62 66.67

D4 100.00 100.00

D5 100.00 100.00

D6 86.00 100.00

D7 100.00 100.00

−3u1 + 2u2 ≤ 0. (5.31)

It is straightforward to show that the above inequalities cannot be satisfied by strictly
positive weights u1 and u2. Indeed, adding the two inequalities (5.30) and (5.31),
we obtain u1 + u2 ≤ 0, which does not allow a strictly positive solution vector.
By Theorem 8, production trade-offs (5.25) and (5.26) induce free (and unlimited)
production in the CRS technology, and the CRS efficiency scores are, although
plausible, obviously meaningless. By Theorem 7, the efficiency scores in the VRS
model are also incorrect.

5.6.4 Free Production with Linked Trade-offs

In the general case of linked weight restrictions (5.1) Podinovski and Bouzdine-
Chameeva (2013) develop two computational procedures to test if there is free (and
unlimited) production in the CRS technology. Below we describe one of them.

The idea of this method is simple and based on the following fact: technology
TCRS−TO allows an unlimited production of a vector Yo if and only if it allows an
unlimited production of each of its individual positive outputs, provided all the other
individual outputs are taken equal to zero. (The “only if” part of this statement is
obvious. The “if” part follows from the following. Suppose the technology allows
the production of each individual output (Yo)r , r = 1, . . ., s, in any proportion α ≥ 0,
from the input vectorXo. Then the simple average of all s such units, each producing
the single output α(Yo)r , is the unit (Xo, (α/s)Yo) ∈ TCRS−TO . Because s is constant
and α is arbitrarily large, technology TCRS−TO allows an unlimited production of
vector Yo.)

The above suggests that we can test for unlimited production as follows. First,
we select any (e.g., observed) unit (Xo,Yo) ∈ TCRS−TO such that all components of
vector Yo are strictly positive: (Yo)r > 0, for all r = 1, . . ., s. If no such observed
unit exists, we can always take the simple average of all observed units. Because
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each output r is strictly positive for at least one observed unit j, the average of all
observed units will have a strictly positive output vector.

Define s artificial output vectorsUr , r = 1, . . ., s, as follows. Each of these vectors
has only one positive component:

U1 = ((Yo)1, 0, . . ., 0), . . . ,Us = (0, . . ., 0, (Yo)s)
�.

Consider s DMUs in the form (Xo,Ur ), where r = 1, . . ., s. Each of such units is
dominated by the original unit (Xo,Yo) and therefore (Xo,Ur ) ∈ TCRS−TO . We can
now expand the set of observed DMUs J by incorporating the above s artificial units.
Because the latter units are dominated, the technology TCRS−TO remains unchanged.

We now solve s output-maximisation multiplier models, one for each unit
(Xo,Uρ), ρ = 1, . . ., s. (We use index ρ to differentiate from r in the same
formulation.)

η∗ = min v�Xo, (5.32)

subject to u�Uρ = 1,

u�Yj − v�Xj ≤ 0, j = 1, . . ., n,

u�Ur − v�Xo ≤ 0, r = 1, . . ., s,

u�Qt − v�Pt ≤ 0, t = 1, . . .,K ,

u, v ≥ 0.

Theorem 9 (Podinovski and Bouzdine-Chameeva 2013) Technology TCRS−TO
allows free (and unlimited) production if and only if there exists a ρ = 1, . . ., s such
that the multiplier model (5.32) is infeasible.

Obviously, instead of model (5.32), we can solve its dual envelopment model.
In this case the infeasibility of model (5.32) is equivalent to the unboundness of the
envelopment model. Also note that the constraints u�Ur−v�Xo ≤ 0 in model (5.32)
are redundant and can in principle be removed because, as discussed, units (Xo,Ur )
are dominated. From the practical point of view, however, it may be beneficial to
keep model (5.32) as stated, because in this case it can be solved by standard DEA
solvers.

Example 7 As an illustration, consider the university departments in Table 5.1 and
the eight trade-offs discussed in Sect. 5.3. Because some of these trade-offs are
linked, we use the method based on program (5.32) to verify that the combination of
this particular data set and trade-offs does not induce free or unlimited production.

As the starting point, let us choose department D1 as the unit (Xo,Yo). (Alter-
natively, we can choose any department from D1 to D6 for this purpose, but not
D7 because its second output is zero.) Following the above procedure, define three
artificial units with the vector of inputs Xo = (92,15)� as in department D1, and the
following different output vectors:

U1 = (800, 0, 0)�,U2 = (0, 200, 0)�,U3 = (0, 0, 90)�.
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We now add the three units (Xo,U1), (Xo,U2) and (Xo,U3) to the set of departments
D1–D7. Because all three additional departments are dominated by D1, the tech-
nology does not change. Finally, we assess the output radial efficiency of the three
additional departments in the CRS multiplier model (5.32). The corresponding three
optimal values of program (5.32) are finite and equal, respectively, to 3.632, 6.041
and 2.037. (The output radial efficiency of the three artificial units is, respectively,
0.2753, 0.1655 and 0.4909. The output radial efficiency of departments D1–D7, if
calculated simultaneously by the software, is the same as without the additional three
units.) By Theorem 9, the CRS (and consequentlyVRS) technology based on the data
set in Table 5.1 and the eight trade-offs does not allow free or unlimited production.

5.7 Solving DEA Models with Production Trade-offs

Conventional CRS and VRS DEA models (without weight restrictions) are usually
solved using either a two-stage computational procedure or an analogous single-
stage method utilizing a non-Archimedean ε (in practice taken equal to a very small
positive number). These methods are summarized in Thanassoulis et al. (2008) and
Cooper et al. (2011b).

In many applications of DEA only the radial efficiency of the DMUs is of interest,
and the first stage of the two-stage method suffices for this purpose. It identifies the
radial projection of the assessed DMU on the boundary of the VRS or CRS technol-
ogy and produces the DMU’s radial input or output efficiency. Because the radial
projection of an inefficient DMU may be only weakly efficient, the identification
of its efficient target (in the Pareto sense) requires the second optimisation stage in
which the sum of input and output slacks is maximised. Performing the second stage
identifies the efficient target of the DMU and the reference set of its efficient peers.
The latter are the observed DMUs j that have a corresponding multiplier λj > 0 in
the optimal solution to the second-stage linear program.

Podinovski (2007b) shows that the application of the standard second stage to DEA
models with weight restrictions (or production trade-offs) may result in a target unit
with meaningless negative values of some inputs. (This is unrelated to the issue of
inconsistent weight restrictions discussed in the previous section.) In the suggested
corrected procedure, the conventional second stage is split into two new stages, and
the complete solution method becomes a three-stage procedure. Depending on the
purpose of a DEA study, only the first, two first or all three computational stages
may need to be performed.

Below we outline these three stages. We assume that the weight restrictions (pro-
duction trade-offs) have already been checked using the methods described in the
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previous section, and that the underlying VRS or CRS technology does not allow
free or unlimited production of non-zero output vectors.

Stage 1 (Assessing the radial efficiency) This task is straightforward and requires the
solution of the appropriate CRS or VRS envelopment model, or their dual multiplier
forms, as stated in Sect. 5.2.

Stage 2 (Identifying efficient targets) An efficient target of DMU (Xo,Yo) is obtained
by solving the specially constructed additive DEA model formulated in Sect. 5.7.2
below.

Stage 3 (Identifying reference sets of efficient peer units) This stage is required
because, even if the multiplier λj is strictly positive in an optimal solution to the
model used at Stage 2, the corresponding observed DMU j may be inefficient. An
example of this is given in Podinovski (2007b). The linear program solved at Stage
3 is presented in Sect. 5.7.3.

5.7.1 Stage 1: Assessing the Radial Efficiency

Most applications of DEA are concerned only with the input or output radial ef-
ficiency of the units. In such applications this stage is the only one that needs
performing. Depending on the assumption of CRS or VRS and the orientation of the
model (input minimisation or output maximisation), the radial efficiency of DMU
(Xo,Yo) is assessed by solving the corresponding envelopment (or multiplier) model
stated in Sect. 5.2.

This stage also identifies the radial projection (target) unit (X∗,Y ∗) of the DMU
(Xo,Yo). In the case of input minimisation, (X∗,Y ∗) = (θ∗Xo,Yo), where θ∗ is
the input radial efficiency of DMU (Xo,Yo). In the case of output maximisation,
(X∗,Y ∗) = (Xo, η∗Yo), where η∗ is the inverse output radial efficiency of DMU
(Xo,Yo). (The value η∗ is the optimal value in the corresponding envelopment and
multiplier models that is inverse to the output efficiency measure.)

5.7.2 Stage 2: Identifying Efficient Targets

As in the case of conventional CRS and VRS DEA models, this stage should be per-
formed only if we need to identify efficient targets of individual DMUs. In particular,
the computations at this stage do not alter the radial efficiency assessed at Stage 1.

The need of the second stage arises because the radial target (X∗,Y ∗) assessed
at Stage 1 may be a weakly efficient unit and not efficient in the Pareto sense. The
conventional second optimisation stage aims at maximising the sum of input and
output slacks that improve the unit (X∗,Y ∗). The same idea is applicable to DEA
models with weight restrictions (production trade-offs), but an additional care has
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to be taken of the nonnegativity of inputs in the resulting efficient unit (which is
automatically maintained in the standard models without weight restrictions).

The following program identifies possible individual improvements to the inputs
and outputs of the unit (X∗,Y ∗):

σ ∗ = max
s∑

r=1

εr +
m∑

i=1

δi , subject to (X∗ − δ,Y ∗ + ε) ∈ T , (5.33)

where ε ∈ R
s+, δ ∈ R

m+, and technology T is either TCRS−TO or TVRS−TO .
To be specific, consider the case of CRS. Based on Theorem 1, program (5.33)

takes on the form

σ ∗ = max
s∑

r=1

εr +
m∑

i=1

δi , (5.34a)

subject to
n∑

j=1

λjYj +
K∑

t=1

πtQt − e = Y ∗ + ε, (5.34b)

n∑

j=1

λjXj +
K∑

t=1

πtPt + d = X∗ − δ, (5.34c)

Y ∗ + ε ≥ 0, (5.34d)

X∗ − δ ≥ 0, (5.34e)

λ,π , e, d , ε, δ ≥ 0. (5.34f)

Note that program (5.34) can be simplified. First, at any of its optimal solutions the
vector e must be a zero vector. Indeed, if we assume the converse ( e ≥ 0 and e 
= 0)
then redefining ẽ = 0 and ε̃ = ε + e keeps (5.34b) true and improves the objective
function (5.34a), which is impossible due to the assumed optimality of the current
solution. Therefore, vector e in program (5.34) can be assumed zero and removed
from the formulation. Second, condition (5.34d) is redundant because both vectors
Y ∗ and ε are nonnegative.

The resulting model is as follows:

σ ∗ = max
s∑

r=1

εr +
m∑

i=1

δi , (5.35a)

subject to
n∑

j=1

λjYj +
K∑

t=1

πtQt = Y ∗ + ε (5.35b)

n∑

j=1

λjXj +
K∑

t=1

πtPt + d = X∗ − δ, (5.35c)
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X∗ − δ ≥ 0, (5.35d)

λ,π , d , ε, δ ≥ 0. (5.35e)

Model (5.3) is the same as model (6) stated in Podinovski (2007b). In the latter
model the above condition (5.35d) is replaced by an equivalent requirement that the
expression on the left-hand side of equality (5.35c) is nonnegative.

As already stated, we assume that technology TCRS−TO does not allow free and
unlimited production. Therefore the objective function (5.35a) is bounded above,
and there exists an optimal solution to program (5.35) that we denote

λ′,π ′, d ′, ε′, δ′. (5.36)

This defines the efficient target of DMU (Xo,Yo) as

(X′,Y ′) = (X∗ − δ′,Y ∗ + ε′). (5.37)

By the conditions of model (5.35), (X′,Y ′) ∈ TCRS−TO .

Theorem 10 (Podinovski 2007b) DMU (X′,Y ′) in (5.37) is efficient in technology
TCRS−TO .

Obviously, if all optimal slacks in (5.35), and hence the optimal value σ ∗, are
equal to zero, the efficient target (X′,Y ′) coincides with the radial target (X∗,Y ∗).
In particular, DMU (Xo,Yo) is efficient if and only if (Xo,Yo) = (X′,Y ′).

In the case of VRS, model (5.35) requires an additional normalising condition
(5.7). The same formula (5.37) defines the efficient target (X′,Y ′) in this case.

Note that the inequality (5.35d) in model (5.35) guarantees that the maximisation
of the sum of component slacks (5.35a) is performed within the technology by re-
quiring that inputs remain nonnegative. As shown by example in Podinovski (2007b),
the simple maximisation of the sum of slacks without condition (5.35d) (in this case
d could be assumed to be a zero vector) may result in negative values of some of the
inputs.

Remark 2 Model (5.35) is an additive CRS DEA model based on technology
TCRS−TO . It assesses the efficiency of the unit (X∗,Y ∗) by maximising the sum
of component slacks εr and δi , provided the resulting unit remains within the tech-
nology (and, in particular, does not have negative inputs). In the case of VRS, we
need to add the normalising condition (5.7) to the constraints of model (5.35).

Model (5.35) and itsVRS variant become standard additive DEA models (Charnes
et al. 1985) in the absence of trade-offs (5.6). Indeed, in this case the trade-off terms
on the left-hand side of conditions (5.35b) and (5.35c) are omitted. Furthermore,
the maximisation of the sum of slack variables in (5.35) implies that at optimality
d = 0, and therefore vector d can be removed from the formulation. Finally, the
nonnegativity condition (5.35d) is redundant because, in the absence of trade-offs,
it follows from (5.35c).

Like conventional additive DEA models, model (5.35) and its VRS variant can be
used independently for the assessment of efficiency of any unit (X∗,Y ∗) ∈ TCRS−TO ,
without the need to perform the first (radial projection) optimisation stage.
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5.7.3 Stage 3: Identifying Reference Sets of Efficient Peer Units

In conventional DEA models without weight restrictions (production trade-offs), the
reference set of efficient peers consists of the observed DMUs j such that λj > 0
in an optimal solution to the second-stage optimisation model. In a DEA model
with weight restrictions, an observed DMU j with a strictly positive value λ′j in the
optimal solution (5.36) may be inefficient—an example of this is given in Podinovski
(2007b). As proved, in this case there exists an alternative optimal solution to program
(5.35) that results in the same efficient target (X′,Y ′) and for which the condition
λj > 0 implies that the observed unit j is efficient, for all j. Identifying such an
optimal solution to (5.35) requires solving another linear program.

As with Stage 2, the computations of Stage 3 should be performed only if needed.
These computations do not affect the radial efficiency, radial targets and efficient
targets already obtained at Stages 1 and 2.

Following Podinovski (2007b), efficient peers of DMU (Xo,Yo) corresponding to
the efficient target (X′,Y ′) can be obtained by maximising the sum of components of
vector d as the secondary goal in program (5.35), while keeping vectors ε′ and δ′ at
their optimum level as in (5.36). In this case, by (5.37), the constant vectors Y ∗ + ε′
andX∗ − δ′ on the right-hand side of conditions (5.35b) and (5.35c) can be replaced
by Y ′ and X′, respectively. The resulting model takes on the form:

D∗ = max
m∑

i=1

di , (5.38a)

subject to
n∑

j=1

λjYj +
K∑

t=1

πtQt = Y ′, (5.38b)

n∑

j=1

λjXj +
K∑

t=1

πtPt + d = X′, (5.38c)

λ,π , d ≥ 0. (5.38d)

Note that the inequality (5.35d) no longer contains decision variables (because the
vector δ = δ′ is kept constant) and is omitted as redundant in program (5.38).

Because the objective function of program (5.38) is bounded above, there exists
an optimal solution λ̃, π̃ , d̃ to this program. Taken together with the constant vectors
ε′ and δ′, solution

λ̃, π̃ , d̃ , ε′, δ′ (5.39)

is an optimal solution to program (5.35). If the optimal solution (5.36) to program
(5.35) is unique, then (5.39) is the same as (5.36). Otherwise, (5.39) is an optimal
solution to (5.35) that additionally maximises the sum of components of vector d as
in (5.38a).
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Theorem 11 (Podinovski 2007b) If λ̃j > 0 then DMU j is efficient in technol-
ogy TCRS−TO and, consequently, in the smaller standard CRS technology TCRS ⊂
TCRS−TO .

An alternative model to (5.38) is obtained in Podinovski (2000). It has the same
objective (5.38a) as above maximised over the set of constraints (5.35b–e), with the
additional condition

s∑

r=1

εr +
m∑

i=1

δi = σ ∗, (5.40)

and keeping vectors ε and δ variable.
The difference between model (5.38) and the latter model is that, by solving the

former, we identify the reference sets for DMU (Xo,Yo) that are used in the com-
position of its specific efficient target (X′,Y ′) which is fixed. In the latter approach,
the efficient target is not fixed. The model based on condition (5.40) generally has
alternative optima λ′′,π ′′, d ′′, ε′′, δ′′, each identifying a generally different efficient
target (X′′,Y ′′) and the corresponding reference set of efficient peers j.

The above results extend to the case of VRS with obvious modifications. As noted,
in the case of VRS model (5.35) incorporates the additional normalising equality
(5.7). The latter should also be incorporated in (5.38). Let

λ̂, π̂ , d̂ (5.41)

be an optimal solution to program (5.38) with the condition (5.7).

Theorem 12 (Podinovski 2007b) If λ̂j > 0 then DMU j is efficient in tech-
nology TVRS−TO and, consequently, in the smaller standard VRS technology
TVRS ⊂ TVRS−TO .

The above theorem implies the existence of at least one efficient DMU j ∈ J in
any technology TVRS−TO (under the assumption that there is no free or unlimited
production, as stated beforehand).

Corollary 2 In any technology TVRS−TO , there exists at least one efficient observed
DMU.

Proof of Corollary 2 Because of condition (5.7), in solution (5.41) there exists a j
such that λ̂j > 0. By Theorem 12, DMU j is efficient in technology TVRS−TO . �

Note that Corollary 2 does not unconditionally extend to the case of CRS. Ac-
cording to Theorem 1 stated in Charnes et al. (1990), there exists at least one efficient
observed DMU in the CRS technology TCRS−TO , under the condition that weight re-
strictions (5.1) are not linked. The following example shows that the same statement
is generally not true in the case of linked weight restrictions.

Example 8 Consider CRS technology TCRS−TO discussed in Example 3 and
illustrated in Fig. 5.3. The only observed unitA = (2,1) is inefficient in the CRS tech-
nology induced by itself and the single linked production trade-off (P ,Q) = (1,2).
(The latter is equivalent to the linked weight restriction 2u−v ≤ 0.) Therefore, there
are no efficient observed units in technology TCRS−TO in Fig. 5.3. Furthermore, the
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output radial efficiency of A is equal to 0.25. Its unique efficient target is (2,4)—it
is constructed entirely from the above trade-off (P ,Q) applied 4 times to the origin,
with no contribution from the unit A itself. Therefore, unit A has no efficient peers
among observed units, and the efficient target is composed entirely from the pro-
duction trade-off. Finally note that A is efficient in the VRS technology TVRS−TO in
Fig. 5.3, which is consistent with Corollary 2.

5.8 Conclusion

In this chapter we presented the notion of production trade-offs as the dual forms
of weight restrictions. We explored various theoretical, methodological and com-
putational issues arising from the application of production trade-offs in DEA
models.

Although production trade-offs are mathematically equivalent to weight restric-
tions, the assessment of the former is conducted in the language of possible changes
to the inputs and outputs in the technology. In contrast, the assessment of weight
restrictions often involves value judgements that are more managerial in nature and
not directly related to the technological possibilities.

Based on the results of this chapter, the following standard workflow can be
suggested for the practical implementation of production trade-offs and weight re-
strictions. This consists of three steps that may need to be repeated iteratively as the
model is being modified by the incorporation of additional trade-offs.

1. Construction of production trade-offs and weight restrictions. As illustrated in
Sect. 5.3, production trade-offs should represent realistic assumptions about the
technology. In practice, we should be certain that all observed DMUs would be
willing to accept the simultaneous changes stated by the trade-offs.

2. Verification that the trade-offs (or weight restrictions) do not generate free or un-
limited production for the given set of observed DMUs. As discussed in Sect. 5.6,
this stage is important because, if there is free or unlimited production in the
technology, the results of the next stage may be inconsistent and puzzling. Alter-
natively, such results may appear unproblematic but still be erroneous. This stage
requires either the checking of simple inequalities or, in the case of linked weight
restrictions, the use of standard DEA software with the extended set of observed
DMUs.

3. Computation of efficiency, efficient targets and efficient peers. There are three
stages in the computational procedure described in Sect. 5.7. In many practical
applications only the first stage would be needed and may be performed using
standard DEA software. The implementation of Stages 2 and 3 would currently
require the use of general linear solvers.

The use of production trade-offs in DEA models, or the use of weight restrictions
obtained from such trade-offs, is interesting for a number of reasons.
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First, production trade-offs allow us to specify additional information about the
technology that is not otherwise captured by the observed data and standard produc-
tion assumptions. This leads to a meaningful extension of the conventional CRS or
VRS production technology and results in a better-informed model of the production
process. Furthermore, this generally improves the efficiency discrimination of the
model in a technologically meaningful way.

Second, the use of production trade-offs or weight restrictions based on them does
not have the well-known drawback of weight restrictions assessed by other methods.
The use of the latter generally leads to an uncontrolled expansion of the model of
technology. In particular, the value judgements used in the construction of weight
restrictions cannot generally explain the technological meaning of the expanded
technology and its new efficient frontier. As a result, the radial and efficient targets
of inefficient units may not be producible. The meaning of radial efficiency as the
ultimate and technologically feasible improvement factor is no longer preserved. In
contrast, the assessment of production trade-offs explicitly takes into account the
meaning of the resulting expansion of the technology. The use of such trade-offs or
weight restrictions based on them preserves the traditional meaning of efficiency.

Third, because the use of production trade-offs results in a meaningful model of
production technology, the well-established notions of productivity analysis such as
returns to scale, productivity change, and other can be extended to it in a straight-
forward fashion. In particular, the former can be explored by the generic method
of reference technologies developed by Färe et al. (1985) and further explored by
Podinovski (2004c). The Malmquist productivity index in models with production
trade-offs was discussed in Alirezaee and Afsharian (2010).

Fourth, the clear technological meaning of production trade-offs allows us to
make relatively complex statements involving several inputs and outputs in a single
trade-off or weight restriction. Examples of such statements were production trade-
offs (5.14) and (5.16) and the corresponding weight restrictions (5.15) and (5.17).
An advantage of such complex production trade-offs is that they generally add more
points to the model of production technology than simple statements, and therefore
contribute to better efficiency discrimination. It is unlikely that weight restrictions
(5.15) and (5.17) could be obtained using value judgements.

Fifth, production trade-offs can be used in DEA models that do not have dual
multiplier forms. An example of this is the FDH technology.

Sixth, the interpretation of weight restrictions as the dual forms of production
trade-offs allows us to clarify and resolve some theoretical, methodological and
computational issues arising in the context of weight restrictions. For example, as
discussed, the interpretation of weight restrictions in terms of production trade-
offs gives a positive answer to the long-standing question of applicability of weight
restrictions in the VRS technology. In Sect. 5.6 we showed that the notion of trade-
offs is instrumental in understanding the infeasibility and related problems in DEA
models with weight restrictions.
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Chapter 6
Facet Analysis in Data Envelopment Analysis

Ole B. Olesen and Niels Chr. Petersen

Abstract Data Envelopment Analysis (DEA) employs mathematical programming
to measure the relative efficiency of Decision Making Units (DMUs). One of the top-
ics of this chapter is concerned with development of indicators to determine whether
or not the specification of the input and output space is supported by data in the
sense that the variation in data is sufficient for estimation of a frontier of the same
dimension as the input output space. Insufficient variation in data implies that some
inputs/outputs can be substituted along the efficient frontier but only in fixed pro-
portions. Data thus locally support variation in a subspace of a lower dimension
rather than in the input output space of full dimension. The proposed indicators
are related to the existence of so-called Full Dimensional Efficient Facets (FDEFs).
To characterize the facet structure of the CCR- or the BCC-estimators, (Charnes
et al. Eur J Oper Res 2:429–444, 1978; Banker et al. Manage Sci 30(9):1078–1092,
1984) of the efficient frontier we derive a dual representation of the technologies.
This dual representation is derived from polar cones. Relying on the characteriza-
tion of efficient faces and facets in Steuer (Multiple criteria optimization. Theory,
computation and application, 1986), we use the dual representation to define the
FDEFs. We provide small examples where no FDEFs exist, both for the CCR- and
the BCC estimator. Thrall (Ann Oper Res 66:109–138, 1996) introduces a distinction
between interior and exterior facets. In this chapter we discuss the relationship be-
tween this classification of facets and the distinction in Olesen and Petersen (Manage
Sci 42:205–219, 1996) between non-full dimensional and full dimensional efficient
facets. Procedures for identification of all interior and exterior facets are discussed
and a specific small example using Qhull to generate all facets is presented. In Ap-
pendix B we present the details of the input to and the output from Qhull. It is shown
that the existence of well-defined marginal rates of substitution along the estimated
strongly efficient frontier segments requires the existence of FDEFs. A test for the
existence of FDEFs is developed, and a technology called EXFA that relies only
on FDEFs and the extension of these facets is proposed, both in the context of the
CCR-model and the BCC-model. This technology is related to the Cone-Ratio DEA.
The EXFA technology is used to define the EXFA efficiency index providing a lower
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bound on the efficiency rating of the DMU under evaluation. An upper bound on the
efficiency rating is provided by a technology defined as the (non-convex) union of
the input output sets generated from FDEFs only. Finally, we review recent uses of
efficient faces and facets in the literature.

Keywords Efficiency measurement · Data envelopment analysis · Dual represen-
tation of technologies · Virtual multipliers · Model misspecification · Rates of
substitutions · Frontier estimation · Convex analysis · Faces · Facets · Test for facets

6.1 Introduction

1Data Envelopment Analysis (DEA) models like the CCR-model (Charnes et al.
1978), (Charnes et al. 1979) or the BCC-model (Banker et al. 1984) are non-
parametric and extremal methods for estimating production frontiers and evaluating
the efficiency of Decision Making Units (DMUs). In this chapter we illustrate how
to use DEA as a method for estimation of a strongly efficient frontier in line with
(Charnes et al. 1985) and (Charnes et al. 1989). It has been suggested in the liter-
ature to use the optimal virtual multipliers to estimate local scale and substitution
characteristics for the strongly efficient frontier ((Lewin and Morey 1981), (Banker
et al. 1986), (Banker et al. 1988), (Charnes et al. 1990)). In this chapter we state a
number of reservations on the usefulness of virtual multipliers provided by a CCR-
or a BCC estimation. It is argued that a CCR- or a BCC estimation does not in general
provide a strongly efficient frontier with well-defined rates of substitution and that
the optimal virtual multipliers therefore should be interpreted with care, when DEA
is used for estimation of efficiency scores and local substitution characteristics. This
chapter provides alternative nonparametric estimations of efficiency scores which
guarantee a set of well-defined local scale and substitution characteristics.

Efficiency evaluation and estimation of substitutional rates are important objec-
tives in a large number of production studies. Data are often passively generated by
an experimental design proposed by society and collected by agencies for adminis-
trative rather than for research purposes, the number of observations are sometimes
limited and variables may not vary over a sufficiently wide range. As a result, the
sample may not provide enough information for estimation of a frontier with well-
defined rates of substitution, i.e. insufficient variation in data may imply estimation
of a frontier actually located in subspaces of lower dimension than the specified input
output space. Lack of variation in data leads to the collinearity problem in a para-
metric efficiency analysis as reflected by the existence of general interrelationships

1 Parts of the results presented in this chapter are based upon (Olesen and Petersen 1996) with
permission from the Institute for Operations Research and the Management Sciences, and (Olesen
and Petersen 2003) with permission from Springer.
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among the set of explanatory variables and hence instability of parameter estimates.2

The potential presence of collinearity thus constitutes a limit on the level of disag-
gregation in a parametric estimation. More important, perhaps, a number of practical
warning signals for detection of multicollinearity are available within the paramet-
ric approach, e.g. condition numbers, condition indices, and regression coefficient
variance decomposition. DEA provides no practical warning signals in case of insuf-
ficient variation in data. The point to be made is that if the analysis is concerned with
estimation of local scale and substitution characteristics, then the variation in data
must be consistent with the a priori specification of the input-output space, i.e. the
estimated frontier must provide piecewise constant rates of substitution in efficient
production between all pairs of inputs and outputs. The dimensions of the efficient
faces of the estimated strongly efficient frontier is an important determinant for data
consistent specifications of the input-output space. The efficient faces are described
by Koopmans (1957) in the following description of the linear activity model:

Because of the finiteness of the technological basis the graph of the production function is
put together from “flat” linear pieces known as facets.. . . Substitution of inputs and outputs
within one facet therefore takes the form of simultaneous changes in the activity level of
two or more processes, so coordinated as not to affect the net output of commodities not
involved in the substitution. If the facet has the number n-1 of dimensions 3 required for it
to make up a flat piece of the production function, constant rates of substitution (in efficient
production) between all pairs of commodities (inputs, or outputs, or one of each) are uniquely
determined within the facet.. .. However points on the “edges” of a facet, which are points
common to more than one facet, possess infinitely many associated price systems, including
those specific to the facets they help join. (Koopmans 1957, p. 94)

Consider the output isoquant in Fig. 6.1a with DMUs A, B and C producing three
outputs using the same amount of only one input in a technology characterized
by constant returns to scale (CRS). Table 6.1a summarizes the three input output
vectors. The triangle ABC indicates the boundary of a “flat” segment denoted an
efficient facet4 of dimension two in the three dimensional output space. The vector
normal to an efficient facet (scaled to unity length) can be given an interpretation

2 In the case of parametric estimation, extreme collinearity is defined as the existence of an exact
linear relation among the explanatory variables. However, the distinction between independent and
explanatory variables is not straightforward in the context of DEA. Hence, we will refrain from giv-
ing any precise definition of extreme collinearity in relation to DEA; it suffices to note that extreme
collinearity in relation to DEA includes the case, where there exists a vector a α ∈ R

m,α 
= 0,
such that αT X = 0, or β ∈ R

s ,β 
= 0, such that βT Y = 0, where X is the m × N matrix of N
input vectors and Y is the s ×N matrix of N output vectors from N DMUs.
3 n corresponds to the number of inputs and outputs in a DEA analysis.
4 In this paper we take the term facet of a convex polyhedral set P ∈ R

n to mean a maximal face
of P distinct from P (maximal under inclusion), (see Klee 1953; Schrijver 1986). Furthermore,
we follow this definition in our specification of the term efficient facet in the sense that an efficient
facet is a maximal efficient face, i.e. an efficient face not included in any other efficient face.
Using this definition of the term efficient facet we may encounter efficient facets of any dimension
d, 1 ≤ d ≤ n − 1; efficient facets of dimension n − 1 is termed full dimensional efficient facets
(FDEF). However, as pointed out by one of the referees of (Olesen and Petersen 1996), some authors
define a facet of a convex polyhedral set in R

n as a face of dimension n−1; consequently, all facets
are of dimension n − 1 and a non full dimensional facet does not exist. Following that tradition a
FDEF is simply an efficient facet and a non-FDEF is a maximal efficient face of dimension less
than n− 1.
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Fig. 6.1 a The CCR frontier in output space ABC as an efficient facet of dimension two b The CCR
frontier ABC in output space as the union of two efficient facets each of dimension one

Table 6.1 Input output data for the output isoquants in Fig. 6.1a and b

DMU: A B C DMU: A B C

Input 1 1 1 Input 1 1 1

Output 1 15 20 120 Output 1 15 90 120

Output 2 15 90 120 Output 2 15 90 120

Output 3 120 90 1 Output 3 120 90 1

Table 6a: Input output data for Fig. 6.1a Table 6b: Input output data for Fig. 6.1b

in terms of a vector of relative prices. The scaled price vector associated with a
point in the relative interior of an efficient facet is unique if the efficient facet is of
full dimension. The components of a unique price vector associated with an efficient
facet of full dimension define the marginal rates of substitution between inputs and/or
outputs on the efficient facet, i.e. from one efficient point to another in the relative
interior of the efficient facet. The choice between different modes of production thus
opens the same alternatives as would trading at constant prices defined by the ratios
in pairs between components of the price vector within the limit of any given efficient
facet. Hence, we have constant rates of substitution between the three outputs along
the relative interior of the efficient facet, i.e. the relative interior of the strongly
efficient frontier. The specification of the input-output space is thus data consistent;
the estimated strongly efficient frontier is of full dimension and a set of well-defined
rates of substitution exists.

Points in the output possibility set outside ABC correspond either to inefficient or
weakly efficient activities. Consider for instance the weakly efficient segment of the
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frontier ACc′a′. This segment is also a facet of full dimension5 and hence associated
with a unique scaled normal vector with the component corresponding to output
dimension 2 equal to zero. This vector should not be given an interpretation in terms
of a price vector representing efficient rates of substitution because points in the
relative interior of the facet are not (strongly) efficient. Analogous observations hold
true for the remaining weakly efficient segments of the frontier.

DEA is based on a linear programming approach. The virtual multipliers provided
by the CCR model thus correspond to optimal basic solutions. It is well known
that an optimal solution for an extreme efficient6 DMU in the input-output space
is highly degenerate which implies the existence of alternative optimal solutions
in the multiplier space. An optimal solution in the multiplier space with all virtual
multipliers as (strict positive) basics defines a normal vector to the efficient facet
ABC. Such solutions render DMUs A, B, and C efficient and provide estimates of
substitutional rates along the strongly efficient frontier. The remaining alternative
optimal basic solutions in the example in Fig. 6.1a correspond to some projections
and provide estimates of substitutional rates in that projection and not along the
efficient frontier.

A firm distinction between the alternative optimal bases is not required if the
achievement of conservative efficiency measures is the main purpose of the analysis.
But the solution corresponding to the efficient facet ABC is the only solution which
provides estimates of the marginal rates of substitution along the efficient frontier.
It is also the only solution defined by observed data solely; the estimated multipli-
ers corresponding to the remaining set of alternative optimal solutions are easily
seen to be affected by the assumption concerning disposability. The basic solution
corresponding to the efficient facet should therefore be identified if the analysis is
concerned with estimation of substitutional rates along the efficient frontier.

A data set may well yield a strongly efficient CCR frontier without well-defined
rates of substitution7. Consider the situation in Fig. 6.1b again with DMUs A, B and

5 Thrall (1996) distinguishes between interior and exterior facets. In this notation ABC is an interior
facet and ACc’a’ is an exterior facet. We will return to this classification of facets in Sect. 6.4.
6 An efficient point (xo, yo) in the production possibility set T is weakly efficient if (θxo, yo) /∈
T , ∀θ ∈ (0, 1) and ({(x, y) : x ≤ xo, y ≥ yo} ∩ T ) \ {(xo, yo)} 
= ∅. (xo, yo) is strongly efficient if
{(x, y) : x ≤ xo, y ≥ yo} ∩ T = {(xo, yo)}. Charnes et al. (1991, p. 205) further classify a strongly
efficient DMUj in relation to the CCR-model as being extreme efficient if the dimension of the
cone of feasible multipliers

FCCR ({j}) ≡ {
(u,−v) ∈ PCCR, uT Yj − vT Xj = 0

}

in (6.5) below is equal to s + m. Otherwise, the strongly efficient DMU is denoted non-extreme
efficient.
7 It is a peculiar phenomenon that any CCR frontier with at least two extreme efficient observations
in a three dimensional input output space will have no non full dimensional efficient facets. To
illustrate geometrically the concept of a non full dimensional efficient facet we need at least a
four dimensional input output space. Hence, for a geometric illustration of this concept (Olesen
and Petersen 1996) use an output isoquant in a three dimensional output space. Notice however,
that it is very easy to illustrate a non full dimensional efficient facet in the BCC model in a three
dimensional input output space, see below.
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C producing three outputs using the same amount of one input. As summarized in Ta-
ble 6.1b, the two line segments AB and BC define the efficient frontier. The marginal
rates of substitution along the efficient frontier are consequently not well-defined as
each segment possesses infinitely many associated price systems, including those
specific to the (weakly efficient) facets they help join. The variation in data does not
support rates of substitution between the three outputs as outputs 1 and 2 can only
be substituted efficiently for output 3 in fixed proportions along the efficient frontier.
Data thus locally support variation in a two dimensional output subspace rather than
the full three dimensional space8. Each segment of the efficient frontier is in this
sense subject to local collinearity.

A CCR efficiency evaluation on data as in Fig.6.1b is performed relative to a fron-
tier technology without well-defined marginal rates of substitution along the efficient
frontier; variations in inputs and outputs are thus (locally) constrained to occur in
fixed proportions. The optimal bases in the multiplier space reflect substitutional
possibilities along the weakly efficient segments of the estimated frontier, e.g. the
“flat” segments aABb or a′ABb′. Hence, estimates are affected by the hypothesis
concerning disposability and not determined by observed data solely. The estimated
substitutional rates relate to either one of the two projections shown in the figure,
i.e. substitution along ab, bc, a′b′, or b′c′. In effect, no optimal set of multipliers
provided by the CCR model can be given a firm interpretation in terms of marginal
rates of substitution.

More data is no help in generating well-defined rates of substitution if it is simply
more of the same. Additional data from CCR extreme efficient observations generat-
ing efficient facets of a suitable dimension is needed. However, there is often no easy
way to get better data. Data are generated by the functioning of the technology, and
the non-existence of well-defined rates of substitutions may reflect the nature of the
underlying production process. Well-defined rates of substitution thus constitute a
limit on the level of disaggregation in a DEA estimation. The problem can be ignored
if the achievement of conservative efficiency measures is the main purpose of the
analysis, but not if the analysis is concerned with estimation of substitutional rates
along the efficient frontier.

For the case of the BCC model introduced in Banker et al. (1984) let us consider
the production possibility set in Fig. 6.2a with DMUs A, B and C producing one
output using two inputs in a technology characterized by varying returns to scale.
Table 6.2a summarizes the three input output vectors.

The triangleABC indicates the boundary of a “flat” segment of an efficient facet of
dimension two in this three dimensional input-output space. Notice, that with varying
returns to scale we observe an efficient facet of dimension two being spanned by (at
least) three extreme efficient DMUs (the origin does not necessarily belong to the
facet). This is in contrast to the situation with CRS, where a facet of dimension two is
spanned by typically only two observations and the origin. The facetABC determines
a unique normal vector and a unique intercept term. The vector normal to an efficient

8 The problem is thus of the same nature as collinearity in the parametric approach.
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Fig. 6.2 a The frontier ABC as an efficient facet of dimension two. b The frontier ABC as the union
of two efficient facets each of dimension one

Table 6.2 Input output data for Fig. 6.2a and 6.2b

DMU: A B C DMU: A B C

Input 1 120 90 10 Input 1 120 90 10

Input 2 90 90 10 Input 2 100 90 10

Output 100 90 10 Output 100 90 10

Table 6.2a: Input output data for Fig. 6.2a Table 6.2b: Input output data for Fig. 6.2b

facet (scaled to unity length) can be given the same interpretation as described in
the CRS case. The scaled price vector associated with a point in the relative interior
of an efficient facet is unique if the efficient facet is of full dimension. The unique
intercept term can be interpreted as a measure related to the local scale elasticity
characteristic, see (Banker et al. 1984).

As in the CRS case, a data set may well yield a strongly efficient BCC frontier
without well-defined rates of substitution. Consider the situation in Fig. 6.2b again
with DMUs A, B and C producing one output using the two inputs. As summa-
rized in Table 6.2b, the two line segments AB and BC define the efficient frontier.
The marginal rates of substitution along the efficient frontier are consequently not
well-defined as each segment possesses infinitely many associated price systems,
including those specific to the (weakly efficient) facets they help join.

The chapter is organized as follows. In Sect. 6.2 we are concerned with an analysis
of the facet structure of a CCR- estimator of the production possibility set (PPS).
We focus on the non-existence of full dimensional efficient facets (FDEFs) as a
theoretical bound for the level of disaggregation in the CCR-model. We develop a
dual characterization of the empirical production possibility set using the theory of
polar cones. This dual description allows us to trace the impact of restrictions on
feasible multipliers on the estimated PPS. The results from Sect. 6.2 is generalized
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to the BCC-model in Sect. 6.3. In Sect. 6.4 we discuss the relationship between the
notion of FDEFs and the notion of interior and exterior facet proposed by Thrall
(1996). A presentation of procedures for an identification of all interior and exterior
facets and hence all FDEFs using specialized algorithms is at focus in Sect. 6.5.
A detailed “user guide” for one particular software Qhull is included, and detailed
input to and output from Qhull is discussed in Appendix B. In Sect. 6.6 we derive two
alternative technologies for the CCR and the BCC technology. In the first technology
we only allow multipliers in the cone spanned by normal vectors from FDEFs. In
the second technology we create a possibly non-convex set as the union of the input
output sets generated from FDEFs only. Mixed Integer Linear Programs (MILPs) for
test of the existence of FDEFs are developed. Procedures for estimation of efficiency
indices relative to these two technologies are presented and it is argued that these
indices provide a lower and an upper bound on the technical efficiency index (with
the CCR or the BCC index in between). The procedures involve estimation of an
extended facet efficiency index along with a restricted CCR-index or BCC-index
based upon the concept of a frontier technology spanned by only FDEFs. Section 6.7
finally reviews some of the recent uses of efficient faces and facets in the literature.

6.2 Primal and Dual Description of the Production
Possibility Set T CCR

Following the approach outlined in Olesen and Petersen (1996) we will derive a polar
or dual description of a piecewise linear enveloped production possibility set given
as the conical hull (the convex hull is derived in the next section) of the observed
input output combinations set added to R

s− × R
m+, where s (m) is the number of

outputs (inputs). However, contrary to Olesen and Petersen (1996) we will not focus
entirely on the envelopment by Full Dimensional Efficient Facets (FDEFs) only, but
include both interior facets and exterior facets (see Sect. 6.4 for a formal definition
of interior and exterior facets). The discussion in this section refers to a maintained
hypothesis of Constant Returns to Scale (CRS) used in the CCR model; the BCC
model with Varying Returns to Scale (VRS) is developed in the next section.

Let E be an index set for the CCR strongly efficient9 DMUs in a sample
of observations where the j ’th DMU produces an s-dimensional output vector
Yj while consuming an m-dimensional input vector Xj , i.e. Y ≡ [Y1, . . .,Yn] ,
X ≡ [X1, . . .,Xn]. We assume that Yj > 0, Xj > 0, ∀ j . Let T CCR be the estimated
polyhedral empirical production possibility set in the CCR model:

T CCR ≡
⎧
⎨

⎩(y, x) ∈ R
s+m
+ |

∑

j∈E

λjYj ≥ y,
∑

j∈E

λjXj ≤ x, λj ≥ 0, j ∈ E

⎫
⎬

⎭ (6.1)

9 See note 6.
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Let PCCR represent the polyhedral cone of virtual output input multipliers (u,−v)
determined from the halfspace constraints in a CCR-model in multiplier form and
from (u, v) 
= (0, 0):

PCCR ≡
{
(u,−v) ∈ R

s
+ × R

m
− | uT Yj − vT Xj ≤ 0, j ∈ E, (u, v) 
= (0, 0)

}
(6.2)

The representation of the non-parametric production possibility set T CCR in terms of
PCCR follows from Theorem 1:

Theorem 1 Let the polyhedral cone of feasible virtual multipliers PCCR be given
by (6.2). The corresponding production possibility set T in (6.1) is the intersection
of the polar cone P◦

CCR and the non-negative orthant R
s+m
+ :

T CCR = P◦
CCR ∩ R

s+m
+ = {

(y, x) ∈ R
s+m
+ | ∀ (u,−v) ∈ PCCR : uT y − vT x ≤ 0

}

(6.3)

Proof (The following proof is based on Rockefellar (1970), Sec. 14) Consider the
production possibility set

T CCR =
⎧
⎨

⎩(y, x) ∈ R
s+m
+ |

∑

j∈E

λjYj ≥ y,
∑

j∈E

λjXj ≤ x, λj ≥ 0, j ∈ E

⎫
⎬

⎭

T CCR = K ∩ R
s+m
+ , where K is the convex cone:

K ≡ conv
(
cone

((
Yj ,Xj

)
, j ∈ E

))+ R
s
− × R

m
+

where conv {•} is the convex hull operator10 and cone {zi , i ∈ I } ≡
{z | z = λizi , λi ≥ 0, i ∈ I }. K is generated by the following set of N + s + m

vectors:
{(
Yj ,Xj

)
, j ∈ E

BCC ,−ek , k = 1, . . ., s, es+i , i = 1, . . .,m
}

where el is the l’th unit vector and11 N = |E|. The polar cone K◦ is

K◦ = {
(u,−v) ∈ R

s
+ × R

m
− | uT Yj − vT Xj ≤ 0, j = 1, . . .,N

}

Hence K◦ = PCCR ∪ {0} and since K is a closed cone, K = K◦◦ = P◦
CCR

�

The definition of the efficient frontier Eff T CCR is

Eff T CCR ≡ {
(y, x) ∈ T CCR | ∃ (u,−v) ∈ PCCR, u ≥ εe, v ≥ εe : uT y − vT x = 0

}

(6.4)

10 conv ({z1, . . ., zn}) ≡
{

z | z =
n∑
j=1
λj zj ,

n∑
j=1
λj = 1, λj ∈ [0, 1] , ∀j

}
.

11 |E| denotes the number of elements in the index set E.
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where eT is the vector (1, . . . 1) of an appropriate dimension, and ε is a non-
Archimedian. Let FCCR ({j}) be the set of virtual multipliers in PCCR which render
DMUj , j ∈ E, efficient:

FCCR ({j}) ≡ {
(u,−v) ∈ PCCR, uT Yj − vT Xj = 0

}
(6.5)

and let for some J ⊆ E, FCCR (J ) = ⋂
j∈J FCCR{j}. The elements in FCCR{J }

correspond to the set of virtual multipliers in PCCR which render all DMUs in the
index set J efficient (weakly or strongly efficient).
Φ ⊆ T CCR is a face of T CCR ifΦ = T CCR or ifΦ is the intersection of T CCR with

a supporting hyperplane of T CCR. Let us consider the following face F (J ):

F (J ) = {
(ŷ, x̂) ∈ T CCR | ∀ (̂u, −̂v) (6.6)

∈ FCCR (J ), ∀ (y, x) ∈ T CCR, ûT ŷ − v̂T x̂ ≥ ûT y − v̂T x
}

= {
(ŷ, x̂) ∈ T CCR | ∀ (̂u, −̂v) ∈ FCCR (J ), ûT ŷ − v̂T x̂ = 0

}

and define EF (J ) = F (J ) ∩ EffT CCR.
FCCR (J ) = ∅ if the set of the DMUs in the index set J is located at different

supporting hyperplanes of EffT CCR. FCCR (J ) 
= ∅ implies the existence of at least
one (̂u, v̂) 
= 0 which renders all DMUs in the index set J efficient and hence is a
generating normal vector for a supporting hyperplane of EffT CCR with each and every
member of J located on it, see (Banker et al. 1984). EF (J ) is hence an efficient face
of T CCR by construction.

Definition 1 An efficient face EF (J ) with a normal vector (̂u, −̂v) 
= 0 is denoted
an efficient facet if the dimension d of EF (J ) is maximal, i.e. no efficient face
EF (J ′) exists where FCCR

(
J ′
) 
= ∅, with dim(F (J ′)) = d ′, EF (J ) ⊂ EF (J ′)

with d ′ > d (See e.g. (Steuer 1986, p. 182)).

Definition 2 An efficient facet F (J ) is denoted a Full Dimensional Efficient Facet
(FDEF) if the dimension is equal to s +m− 1. An efficient facet F (J ) is denoted a
Nonfull Dimensional Efficient Facet (NFDEF) if the dimension is less than s+m−1.

From Definitions 1 and 2 follows that DMU jo contributes to the spanning of an
FDEF iff:

∃ (̂u, −̂v) ∈ FCCR ({jo}) : (̂u, −̂v)T

⎡

⎣Yj
Xj

⎤

⎦ = 0, for j ∈ Ĵ ≡ {
j ∈ E : ûT Yj − v̂T Xj = 0

}

(6.7)

and rank(D) = s+m−1, whereD is the (s+m)× ∣∣Ĵ
∣∣ matrix12

⎡

⎣

⎡

⎣Yj
Xj

⎤

⎦ , j ∈ Ĵ
⎤

⎦.

12 |J | denotes the number of elements in the index set J .
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Clearly,

EF
(
Ĵ
) =

⎧
⎨

⎩(y, x) : (y, x) =
∑

j∈Ĵ
λj

(
Yj ,Xj

)
, λj ≥ 0, j ∈ Ĵ

⎫
⎬

⎭ (6.8)

and dim(EF (Ĵ )) = rank(D).
Non-existence of so-called FDEFs indicates a misspecification of the input-output

space, see (Olesen and Petersen 1996), in the sense that the estimated rates of sub-
stitution by construction must refer to a projection and not necessarily the same one,
i.e. substitutions take place in various subspaces of the input-output space; the data
set is ill-conditioned in the sense that data do not support the specification of the
input-output space, see (Olesen and Petersen 1996) for details.

6.3 Primal and Dual Description of the Production
Possibility Set T BCC

Following the approach in the previous section we now extent the polar or dual
description to a piecewise linear enveloped production possibility set given as the
convex hull of the observed input output combinations set added to R

s− × R
m+. Let

E
BCC = {1, . . ., n} be an index set for the BCC strongly efficient DMUs in the

sample. Let T BCC be the estimated polyhedral empirical production possibility set
in the BCC model. To allow for an implicit cone representation of T BCC we extend
the input output vector from each DMU in E

BCC with an additional element equal to
one for all DMUs,Zj = 1, ∀j . We can now express T BCC as the intersection of the
cone

CT BCC ≡
⎧
⎨

⎩(y, x, z) ∈ R
s+m
+ × R+ |

n∑

j=1

λjYj ≥ y,
n∑

j=1

λjXj ≤ x,
n∑

j=1

λjZj = z, λj ≥ 0, j ∈ E
BCC

⎫
⎬

⎭

(6.9)

with the hyperplane
{
(y, x) | (y, x, z) ∈ CT BCC , z = 1

}
, i.e.

T BCC = {
(y, x) ∈ R

s+m
+ | (y, x, 1) ∈ CT BCC

}
(6.10)

Let PBCC represent the polyhedral cone of virtual output input multipliers and inter-
cept multiplier (u,−v, νo) determined from the halfspace constraints in a BCC-model
in multiplier form and from (u, v) 
= (0, 0):

PBCC ≡
{
(u,−v, νo) ∈ R

s
+ × R

m
− × R | uT Yj − vT Xj + νo ≤ 0, j ∈ E

BCC , (u, v) 
= (0, 0)
}

(6.11)

Let

P̃BCC ≡
{
(u,−v,νo) ∈ R

s
+ × R

m
− × R | uT Yj − vT Xj + νoZj ≤ 0, j ∈ E

BCC , (u, v) 
= (0, 0)
}

(6.12)
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Clearly, PBCC = P̃BCC . The representation of the non-parametric production
possibility set T BCC in terms of PBCC follows from Theorem 2:

Theorem 2 Let the polyhedral cone of feasible virtual multipliers PBCC be given
by (6.11). The corresponding production possibility set T BCC in (6.10) is a section
of the intersection of the polar cone P◦

BCC and the non-negative orthant R
s+m+1
+ :

T BCC = {
(y, x) ∈ R

s+m
+ | (y, x, 1) ∈ P◦

BCC ∩ R
s+m+1
+

}
(6.13)

= {
(y, x) ∈ R

s+m
+ |∀ (u,−v, νo) ∈ PBCC : uT y − vT x + νo ≤ 0

}

Proof Consider the production possibility set

CT BCC =
⎧
⎨

⎩(y, x, z) ∈ R
s+m
+ × R+ |

n∑

j=1

λjYj ≥ y,
n∑

j=1

λjXj ≤ x,

n∑

j=1

λjZj = z, λj ≥ 0, j ∈ E
BCC

⎫
⎬

⎭

CT BCC = K ∩ (
R
s+m
+ × R+

)
, where K is the convex cone:

K ≡ conv
(
cone

((
Yj ,Xj ,Zj

)
, j ∈ E

BCC
))+ R

s
− × R

m
+ × {0}

K is generated by the following set of N + s +m vectors:

{(
Yj ,Xj ,Zj

)
, j ∈ E

BCC ,−ek , k = 1, . . ., s, es+i , i = 1, . . .,m
}

where el is the l’th unit vector and N = ∣∣EBCC
∣∣. The polar cone K◦ is

K◦ = {
(u,−v, νo) ∈ R

s
+ × R

m
− × R | uT Yj − vT Xj + νoZj ≤ 0, j ∈ E

BCC
}

K◦ = P̃BCC ∪ {0} = PBCC ∪ {0} and since K is a closed cone, K = K◦◦ = P◦
BCC .

Hence, to summarize we know that

CT BCC = K ∩ R
s+m+1
+ (*)

K = P◦
BCC (**)

and from (*) and (**) follows that

CT BCC = P◦
BCC ∩ R

s+m+1
+
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and

T BCC = {
(y, x) ∈ R

s+m
+ | (y, x, 1) ∈ CT BCC

}

= {
(y, x) ∈ R

s+m
+ | (y, x, 1) ∈ P◦

BCC ∩ R
s+m+1
+

}

= {
(y, x) ∈ R

s+m
+ | ∀ (u,−v, νo) ∈ PBCC : uT y − vT x + νo ≤ 0

}

�

The definition of the efficient frontier Eff T BCC is

Eff T BCC ≡ {
(y, x) ∈ T BCC | ∃ (u,−v, νo)∈PBCC , u ≥ εe, v ≥ εe : uT y − vT x + νo = 0

}

(6.14)

where e is the vector (1, . . . 1) of an appropriate dimension, and ε is a non-
Archimedian. Let FBCC ({j}) be the set of virtual multipliers in PBCC which render
DMUj , j ∈ E, efficient:

FBCC ({j}) ≡ {
(u,−v, νo) ∈ PBCC | uT Yj − vT Xj + νo = 0

}
(6.15)

and let for some J ⊆ E
BCC , FBCC (J ) =⋂

j∈J FBCC{j}. The elements in FBCC (J )

correspond to the set of virtual multipliers in PBCC which render all the DMUs in
the index set J efficient. Let us consider the following face F BCC (J ):

F BCC (J )={
(ŷ, x̂) ∈ T BCC | ∀ (̂u, −̂v, vo) ∈ FBCC (J ) , ∀ (y, x) ∈ T BCC ,

ûT ŷ − v̂T x̂ + ν̂o ≥ ûT y − v̂T x + ν̂o
}

= {
(ŷ, x̂) ∈ T BCC | ∀ (̂u, −̂v, vo) ∈ FBCC (J ) , ûT ŷ − v̂T x̂ + ν̂o = 0

}

(6.16)

and define EF BCC(J ) = F BCC(J ) ∩ EffT BCC .
FBCC (J ) = ∅ if the set of DMUs in the index set J is located at different

supporting hyperplanes of EffT BCC . FBCC (J ) 
= ∅ implies the existence of at least
one (̂u, −̂v, ν̂o) 
= 0 which renders all DMUs in the index set J efficient and hence
is a generating normal vector for a supporting hyperplane of EffT BCC with each and
every member of J located on it, see (Banker et al. 1984). EF BCC(J ) is hence an
efficient face of T CCR by construction.

Definition 3 An efficient face EF BCC(J ) with a normal vector (̂u, −̂v) 
= 0 and
an intercept term νo is denoted an efficient facet if the dimension d of EF BCC(J )
is maximal, i.e. no efficient face EF BCC(J ′) exists where FBCC

(
J ′
) 
= ∅, with

dim(F (J ′)) = d ′, EF BCC(J ) ⊂ EF BCC(J ′) with d ′ > d (See e.g. Steuer 1986,
p. 182).

Definition 4 An efficient facet F BCC(J ) is denoted a Full Dimensional Efficient
Facet (FDEF) if the dimension is equal to s + m − 1. An efficient facet F BCC(J )
is denoted a Nonfull Dimensional Efficient Facet (NFDEF) if the dimension is less
than s +m− 1.
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From Definitions 3 and 4 follows that DMU jo contributes to the spanning of an
FDEF iff:

∃ (̂u, −̂v, ν̂o) ∈ FBCC ({jo}) | (̂u, −̂v)T

⎡

⎣Yj
Xj

⎤

⎦+ ν̂o = 0, for j ∈ Ĵ

≡ {
j ∈ E

BCC | ûT Yj − v̂T Xj + ν̂o = 0
}

(6.17)

and rank(D) = s +m, where D is the (s +m) × ∣∣Ĵ
∣∣ matrix

⎡

⎣

⎡

⎣Yj
Xj

⎤

⎦ , j ∈ Ĵ
⎤

⎦.

Clearly,

EF
(
Ĵ
) =

⎧
⎨

⎩(y, x) | (y, x, 1) ∈
⎧
⎨

⎩(y, x, z) =
∑

j∈Ĵ
λj

(
Yj ,Xj , 1

)
, λj ≥ 0, j ∈ Ĵ

⎫
⎬

⎭

⎫
⎬

⎭

(6.18)

and dim(EF (Ĵ )) = rank(D) − 1.
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6.4 Interior and Exterior Facets

A distinction between interior facets and exterior facets is suggested in Thrall (1996).
Focussing on the CRS CCR-model, this distinction is related to the following three
sets, the production possibility set T CCR, the efficient frontier FRCCR, and the
extended efficient frontier EFRCCR:

T CCR ≡
⎧
⎨

⎩(y, x) ∈ R
s+m
+ |

n∑

j=1

λjYj ≥ y,
n∑

j=1

λjXj ≤ x, λj

≥ 0, j ∈ K, λk = 0, k /∈ K

⎫
⎬

⎭

FRCCR = {
(y, x) ∈ T CCR | (y ′,−x ′) ≥ (y,−x), (y ′, x ′) ∈ T CCR

requires
(
y ′,−x ′) = (y,−x)}

EFRCCR = {
(y, x) ∈ T CCR | (y ′,−x ′) > (y,−x) holds for no

(
y ′, x ′

) ∈ T CCR
}

where K is the index set corresponding to weakly and strongly CCR-efficient DMUs.
Let us define the following cone C = R

s+ × R
m−. (y, x) ∈ T CCR belongs to the

efficient frontier FRCCR if no other point
(
y ′, x ′

) ∈ T CCR dominates (y, x) on a
Pareto criterion, i.e. ((y, x)+ C)∩ T CCR = (y, x). FRCCR is identical to EffT CCR in
(6.4). The extended efficient frontier EFRCCR extends the efficient frontier FRCCR

with the weakly efficient input output combinations generated from input and output
disposability. (y, x) ∈ T CCR belongs to the extended efficient frontier EFRCCR if
((y, x)+ int (C)) ∩ T CCR = (y, x). All three sets are cones in R

s+m
+ . T CCR is a

convex cone but neither FR or EFR are in general convex sets. Thrall defines this
distinction as follows: “A facet is called interior if it is a subset of FR, otherwise it
is called exterior. It is quite possible that a domain D may have no interior facets”,
(Thrall 1996, p. 133).

Any FDEF is an interior facet. An NFDEF is an efficient face that is i) contained
in an exterior facet, and ii) never part of an interior facet. Thrall (1996) illustrates
using a numerical example a situation where a data set may generate a T CCR without
any interior facets. In this example no FDEF exists. All efficient facets are NFDEF.

These two different approaches to classification of facets reflect two different def-
initions of an efficient facet. Thrall (1996) takes the term facet of a convex polyhedral
set P ⊂ R

n to mean a maximal face of P distinct from P (maximal under inclusion),
(see Klee 1953; Schrijver 1986). Hence, with T CCR⊂ R

s+m
+ and assuming that all

observed input output vectors are strictly positive we have that any facet, interior or
exterior is of a dimension s + m − 1. Following this tradition an FDEF is simply
an efficient facet and a non-FDEF is a maximal efficient face of dimension less than
s +m− 1.

The approach suggested in (Olesen and Petersen 1996) follows this definition
in the specification of the term efficient facet in the sense that an efficient facet is a
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maximal efficient face, i.e. is an efficient face not included in any other efficient face.
Using this definition of the term efficient facet we may encounter efficient facets of
any dimension d, 1 ≤ d ≤ n− 1. Efficient facets of dimension s+m− 1 are termed
full dimensional efficient facets.

6.5 Procedures for Identification of the Total Set of FDEFs

This section is concerned with a presentation of a procedure for an identification
of all interior and exterior facets and hence all FDEFs in real life data sets. The
procedure identifies all facets of a polyhedron with either known extreme points or
a known collection of halfspaces 13 by specialized convex hull algorithms.

Generating all facets from a piecewise linear envelopment of a number of data
points is a time consuming task, especially in higher dimensions, i.e. with many
inputs and/or outputs, and with many extreme efficient DMUs. However, as more
efficient convex hull algorithms are designed and better implementation taking ad-
vantage of fast memory and fast processors/parallel processors is provided we will
see an increase in the size of data sets that can be processed with reasonable running
times. The number of facets in a polyhedral set in an input output space as defined
by the application at hand may be large, since each extreme efficient DMU defines
an extreme ray in the cone of feasible input output combinations under conditions of
CRS, and since the production possibility set is obtained by an expansion of this cone
due to the assumption of strong disposability, which in turn implies an introduction
of additional extreme rays.

The identification of all FDEFs/interior facets and all exterior facets is for this
reason highly facilitated when carried out in a sequence of local segments of the
polyhedral possibility set so that the identification of FDEFs in one segment is inde-
pendent compared to other segments. The decomposition of the search for interior
and exterior facets into a number of local and mutually independent segments is an
important device.

The underlying idea for the decomposition can be described as follows. Bear in
mind that E is an index set for the set of extreme efficient DMUs, and let N denote an
index set for all DMUs. It is obvious that only extreme efficient DMUs may contribute
to the spanning of interior and exterior facets, which implies that DMUj , j ∈ N�E,
can be eliminated from the sample in an identification of all FDEFs. Moreover,
the only candidates for spanning an interior or exterior facet including any given
DMUj0 , j0 ∈ E, are those that can be termed efficient along with DMUj0 itself. Let
Ej0 denote an index set for this set of extreme efficient DMUs. It is now possible
to identify all interior and exterior facets in the local frontier segment affected by
DMUj0 by an identification of all facets spanned by DMUs in the candidate set Ej0

only and with DMUj0 being one of the spanning units.

13 In other words we know the convex set in either sum form or in intersection form.
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6.5.1 Convex Hull Generation

Several codes for convex hulls generation/vertex enumeration are available. The
following selection of implementations are some of the codes mentioned in directory
of Computational Geometry Software on the website for The Geometry Center,
University of Minnesota:14

1. Qhull, by Brad Barber, David Dobkin and Hannu Huhdanpaa, The Geometry
Center.

2. chD, by Ioannis Emiris, U.C. Berkeley.
3. Hull, by Ken Clarkson, Bell Labs.
4. Porta, by Thomas Christof, Heidelburg University and Andreas Loebel, Konrad-

Zuse-Zentrum fur Informatik (ZIB).
5. cdd, by Komei Fukuda, ETH Zurich, Switzerland and University of Tsukuba,

Japan.
6. lrs, by David Avis, McGill University

We have experimented with the use of Qhull, cdd and lrs both for the generation
of all interior facets (FDEFs) as well as all interior and exterior facets (FDEFs and
NFDEFs). Qhull is very fast on small and moderate sized problems compared to
cdd and lrs. Both cdd and lrs are developed to handle a degenerated hull generation
and both use rational (exact) arithmetic. However, cdd also exists in a floating point
version. lrs uses very little memory compared to Qhull and apparently it can solve
very large convex hull problems. However, it is a slow code compared to Qhull,and
Qhull can solve large problems, if sufficient fast memory is available (see below).

In this section we will concentrate on how to use Qhull for the generation of a
convex hull. Qhull picks in a first phase a subset of s+m+1 data points. These points
are chosen such that the convex hull equals a simplex in Rs+m. Using a simplified
beneath-beyond algorithm (Grünbaum 1961) each of the remaining points is added
one by one and the convex hull is extended successively. Output from Qhull is the
collection of facets, the extreme points for each facet and a neighborhood relationship
between the facets. The three programs have different input format but each one can
to some extent use the format of the others. An input file for Qhull consists of two
integers specifying the dimension (s +m) of each vector and the number of vectors n
to be enveloped. Then follows the coordinates of these n vectors, i.e. n×(s +m) real
numbers. An (s +m) -dimensional zero-vector must be included if zero is regarded a
feasible input output vector as e.g. in the CCR-model. Qhull has a number of options
but the following basic call to Qhull produces a listing of all facets enveloping the
convex hull of the points from data in an input file if ile listed to an output file ofile

Qhull.exe s FF < ifile > ofile

The convex hull generated has of course a number of facets which are not part of
the strongly efficient frontier (in fact, if no FDEFs exists, then none of the generated

14 http://www.geom.uiuc.edu/software/cglist/ch.html.
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Table 6.3 Example of an
input file for Qhull for both
interior and exterior facet
generation. The case of two
inputs, two outputs, n DMUs,
and a CCR model

4

n+ 1 + 4

x11 x21 y11 y21

x12 x22 y12 y22

.

.

.
.
.
.

.

.

.
.
.
.

x1n x2n y1n y2n

0 0 0 0

M 0 0 0

0 M 0 0

0 0 −M 0

0 0 0 −M

facets will do). However, the inclusion of all facets with positive output components
and negative input components in the normal vector only will provide all interior
facets. Furthermore, facets with zero offset are the only ones of interest in the CCR-
model.

The three convex hull programs can also be used to generate all interior and exterior
facets. Both cdd and lrs allow directly for envelopment of both extreme points and
extreme rays. Hence, using these two codes one simply adds (s +m) additional rays
to the input file, namely the s negative (m positive) unit vectors corresponding to the s
outputs (them inputs). The format of the input file for Qhull does not presently allow
for specification of both extreme points and extreme rays. However, the following
procedure remedies this problem. Simply add (s +m) additional vectors to the input
file, namely the s negative (m positive) unit vectors corresponding to the s outputs (the
m inputs) multiplied by some large (but not too large) number. Consider a situation
with two inputs, two outputs and n DMUs. Table 6.3 illustrates the input file15 for
a CCR model, and consists of 2 + (n+ 1) × 4 + 4 × 4 real numbers (M is a large
number16).

The Ifile in Table 6.4 will generate all interior and exterior facets corresponding
to Fig. 6.2a (two inputs and one output).

Part of the information from the output file from Qhull is listed in Appendix B
together with some explanation of the structure of this output.

Exterior facets for the CCR model can now be identified from the generated list
of facets from Qhull as the facets which either contain one or more of the vec-
tors (M , 0, 0, 0) , (0,M , 0, 0) , (0, 0,−M , 0) , (0, 0, 0,−M) in combination with one

15 In Olesen and Petersen (2003), Table 6.3, p. 353 there are typos/errors. In the first two columns
of this table inputs are wrongly stated with minus signs. Table 6.3 in this chapter corrects these
typos/errors.
16 Actually, it is recommended only to put one number on each line in the input file to Qhull.
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Table 6.4 An Ifile to Qhull to
generate all interior and
exterior facets corresponding
to Fig. 6.2a

3

6

120 90 100

90 90 90

10 10 10

100000 0 0

0 100000 0

0 0 -100000

or more of the vertices
(
x1j , x2j , y1j , y2j

)
, j = 1, . . ., n and (0, 0, 0, 0) or equiva-

lently have a normal vector with at least one component equal/close to zero and an
offset equal/close to zero.

Notice, that the theoretical correct value of M is ∞ and that any finite value of
M will only produce exterior facets up to a certain precision. Hence, the normal
component equal to zero for exterior facets will be estimated as close to zero as
possible for any finiteM and as approaching17 zero forM →∞.

To summarize, Qhull can be used for an identification of all interior and exterior
facets from DEA models with constant, decreasing and non increasing returns to
scale as follows:

1. Interior facets (FDEFs) in a BCC-DEA production possibility set are determined
as all facets with strictly positive output components and strictly negative input
components of the normals in a convex hull of all observed input output com-
binations. Add s (and m) additional unit vectors multiplied by M (and −M) to
the input file to get exterior facets as well. In a BCC-DEA production model we
accept exterior facets with a normal vector with all input or all output components
equal/close to zero.

2. Interior facets (FDEFs) in a CCR-DEA production possibility set (i.e. the conical
hull of all observations set added to Rm+ × Rs−) is determined as all facets that
includes the origin and with strictly positive output components and strictly nega-
tive input components of the normals in a convex hull of all observed input output
combinations and the origin. Add m (and s) additional unit vectors multiplied
by M (and −M) to the input file to get exterior facets as well. In a CCR-DEA
production model we do not accept exterior facets with a normal vector with all

17 How to specifyM relatively to the size of the numbers expressing the inputs and outputs is left for
further research. Clearly, there is a trade-off between precision and numerical stability of the results
obtained from Qhull. If high precision of the normal vectors and the offsets is of importance then one
probably should “reestimate” these vectors as soon as the vertices on each facet are identified. Con-
sider e.g. a facet containing the vertices (0, 0, 0, 0) , (x11, x21, y11, y21) , (M , 0, 0, 0) , (0, 0,−M , 0) .A
second stage reestimation of the normal vector would be an estimation of the hyperplane containing
the following four points: (0, 0, 0, 0) , (x11, x21, y11, y21) , (x11 +M , x21, y11, y21) , (x11, x21, 0, y21) .
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input or all output components equal/close to zero. At least one component of
each has to be positive.

The Qhull code was tested in 2003 on a data set from Danish farmers (9 inputs and 4
outputs). A DEA analysis on 399 Danish farms estimated 136 CCR-efficient farms
and 190 BCC-efficient farms. The following results are from using Qhull to generate
all FDEFs:

1. CCR-DEA with 136 CCR efficient DMUs: Qhull finds approximately 3600
FDEFs. Generated in 1 h (pentium 2 pro, 0.5 Gb RAM).

2. BCC-DEA with 190 BCC efficient DMUs: Qhull finds approximately 80000
FDEFs. Generated in 24 h (HP-9 Unix, 3 Gb RAM).

Using Qhull to generate the convex hull of all these efficient observations in this
13 dimensional input output space requires a large amount of memory (>1.5 Gb).
We experimented with various ways to decompose the total facet generation into a
number of separate generations, each one based upon a subset of the efficient vertices.
We tried to separate the computer estimation based on the following idea. For any
fixed data point

(
Yjo ,Xjo

)
, only include other data points

(
Yj1 ,Xj1

)
if a feasible

vector of multipliers exists such that both data points are efficient at this common
set of multipliers. In relation to the CCR model this means that

(
Yj1 ,Xj1

)
is only

included in the analysis if FCCR ({jo, j1}) 
= ∅. However, it turned out that some
farms were efficient in a convex combination with each of more than 185 other farms
(with a total of 190 BCC efficient farms!!). Anyway, focusing on a fixed data point(
Yjo ,Xjo

)
allowed us to generate the convex hull based on

(
Yj1 ,Xj1

)
, j1 ∈ J1, where

FCCR ({jo, j1}) 
= ∅,∀j1 ∈ J1. After generating the convex hull of the subset of the
DMUs in J1 ∪ {jo} we deleted all facets that had non-strictly positive normals or
defined halfspaces that did not contain all data points from DMUs in E\ (J1 ∪ {jo}) .

We are convinced that the rapid progress in the development of the computer
technology will allow us to process larger and larger data sets in larger and larger
input output spaces for an identification of all interior and exterior facets. Currently,
it may not be possible to generate all FDEFs in very large data sets with say more
than 25 inputs and outputs and more than 1000 BCC-efficient DMUs by either one
of the codes above. But this limit will be pushed outwards during the years to come.

6.6 An Efficiency Evaluation Relative to a Technology
Spanned by FDEFs

This section provides an operational procedure for a test of the existence of FDEFs
in a data set. In addition, two operational radial input-oriented measures of the
distance from a feasible input-output combination to a frontier spanned by FDEFs
are suggested, an extended facet measure and a facet constrained DEA-measure.
The extended facet index provides a lower bound and the facet constrained DEA-
measure an upper bound on an input-oriented efficiency index with the CCR-index
in between. In the first subsection we focus on the CRS case and leave the variable
returns to scale (VRS) case to the second subsection.
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6.6.1 The CRS Case: Extending the CCR-Model with
Facet Extensions

Let again E be an index set for the CCR strongly efficient DMUs in a sample of
observations. In order to ease the exposition of the main results of this paper we
employ the following regularity condition18 (a test for this condition can be found in
Appendix A):

Condition 1 REGULARITY CONDITION (RC1). Every subset of s + m − 1

columns for DMUj , j ∈ E of the data matrix

⎡

⎣Y
−X

⎤

⎦ is linear independent, where Y

is (s ×N ), X is (m×N ) and N = |E|.
The following mixed integer linear program provides a test for the existence of at

least one FDEF (given RC1):

min
∑
j∈E
bj

s.t. ut Yj − vtXj + sj = 0 j ∈ E

etv = 1

sj − bjM ≤ 0 j ∈ E

bj binary, sj ≥ 0, ∀j ∈ E, u ≥ εe, v ≥ εe, u ∈ R
s , v ∈ R

m

(6.19)

where ε is a non-Archimedian, M = 1/ε, and e is a vector (1, · · · , 1)T of an
appropriate dimension. The program (6.19) minimizes the sum of binary variables
bj , j ∈ E, i.e., maximizes the number of bj ’s equal to zero. It is easily seen that

bj = 0 ⇔ ut Yj − vtXj = 0. (6.20)

Bearing in mind Definition 1 and RC1, an FDEF thus exists if

∑

j∈E

b∗j = |E| − (s +m− 1), (6.21)

where b∗ is an optimal vector from (6.19). Let J be the family of all subsets of E,
and J ⊇ J FDEF ≡ {J1, . . ., JF } be the subset of subsets such that for k = 1, . . .,F
we have |Jk| = (s +m− 1) and (6.19) has a feasible solution with sj = 0, j ∈ Jk .

18 The necessity of this regularity condition was pointed out by Professor R. M. Thrall. If a subset
of s +m− 1 columns is linear dependent, and these columns span an efficient face of the frontier,
then the dimension of this efficient face will be strictly less than s +m− 1. Hence, this regularity
condition allows us to determine the dimension of a particular efficient face directly from the number
of DMUs located on this efficient face. A test of an eventual violation of RC1 can be performed by
a MILP program included in Appendix A.
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Hence, dim
(
FCCR (Jk)

) = 1.19 Let the F corresponding vectors of multipliers be
given by (uk ,−vk) , k = 1, . . .,F , i.e.,

FCCR (Jk) = {(u,−v) | (u,−v) = ς (uk ,−vk) , ς > 0} , k = 1, . . .,F (6.22)

Let

PCCR
FDEF =

{
(u,−v) ∈ R

s
+ × R

m
− | (u,−v) =

F∑

k=1

λk (uk ,−vk) , λk ≥ 0, k = 1, . . .,F , λ 
= 0

}

(6.23)

The DMUs in the index set Jk thus span an FDEF. (uk ,−vk) is the scaled normal
vector to the efficient facet generating supporting hyperplane and PCCR

FDEF is the poly-
hedral cone spanned by the collection of scaled normals to efficient facet generating
hyperplanes.

We define the k’th extended efficient facet, EEFCCR(Jk), as the intersection of an
FDEF-generating supporting hyperplane and the nonnegative orthant:

EEFCCR (Jk) =
{
(y, x) ∈ R

s+m
+ | uT y − vT x = 0, (u,−v) ∈ F (Jk)

}
(6.24)

The corresponding empirical production possibility set, T CCR
EEF(Jk)

is the intersection
between the halfspace generated by the supporting hyperplane and the nonnegative
orthant:

T CCR
EEF(Jk) =

{
(y, x) ∈ R

s+m
+ | uT y − vT x ≤ 0, (u,−v) ∈ F (Jk)

}
(6.25)

The extended facet production possibility set generated from the sample(
Yj ,Xj

)
, j ∈ E, is the intersection of halfspaces defined by FDEF-generating

supporting hyperplanes and the nonnegative orthant:

T CCR
EXFA =

{
(y, x) ∈ R

s+m
+ | uT y − vT x ≤ 0, ∀ (u,−v) ∈ PCCR

FDEF

} = ∩Fk=1T
CCR
EFF(Jk)

(6.26)

T CCR
EXFA is hence by construction a convex piecewise linear envelopment of observed

data subject to the condition that substitutional rates along the efficient frontier are
well-defined, and determined by data solely. Obviously, T CCR

EXFA is a polyhedral set
which includes T CCR, i.e. T CCR ⊆ T CCR

EXFA.
The following Extended Facet Efficiency Index for DMUjo , jo = 1, . . .,N , mea-

sures the radial distance from observation
(
Yjo ,Xjo

)
to the efficient frontier for the

19 Recall the definition in (6.5):

FCCR ({j}) ≡ {
(u,−v) ∈ PCCR, uT Yj − vT Xj = 0

}
.
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extended facet production possibility set:20

max uT Yjo

s.t. ut Yj − vtXj + sj = 0 j ∈ E

vT Xjo = 1

sj − bjM ≤ 0 j ∈ E

∑
j∈E
bj − (|E| − (s +m− 1)) ≤ 0

bjbinary, sj ≥ 0, ∀j ∈ E, u ≥ εe, u ∈ R
s+, v ≥ εe, v ∈ R

m+

(6.27)

The program (6.27) differs from the DEA-model developed by (Charnes et al. 1978,
1979) by the constraints including the binary bj -variables. In combination these
constraints imply, assuming RC1, that any feasible dual price vector must render
(s + m − 1) DMUs efficient, i.e. the reference point in the evaluation of the jo’th
unit must be positioned on an FDEF. The model (6.27) is related to the Polyhedral
Cone-Ratio DEA Model presented in Charnes et al. (1990)21.

By construction, the extended facet input-oriented efficiency index provides a
lower bound on the efficiency rating of the DMU under evaluation.

Next, we introduce The Full Dimensional Efficient Facet Efficiency Index, which
provides an upper bound on the efficiency rating. The production possibility set

20 An Extended Facet Approach has been proposed by Bessent et al. (1988) by the name “Con-
strained Facet Analysis.” One problem with the procedure proposed in that paper is that a given
subset of DMUs may span a non FDEF. Hence, it may be impossible to reach a FDEF starting from
this given subset of DMUs. The existence of non FDEFs could be the reason why their procedure
fails to identify FDEFs in 41.4 percents of the reported runs.
21 The so-called Polyhedral Cone-Ratio DEA Models are presented in Charnes et al. (1990) along
with an application of one of these models to a set of 48 commercial banks. Using the CCR model
in the evaluation of these 48 U.S. commercial banks the authors conclude that “the results were not
satisfactory so recourse was made to a polyhedral cone-ratio DEA model with results that passed
muster in subsequent reviews with wide experience in banking” (p. 86). The transformational
matrix used by the authors to form the cones used in the cone-ratio model consists of optimal
virtual multiplier vectors of three CCR extreme efficient “model banks.”

One problem related to this application is the following: there is in general no unique dual
optimal multiplier for a CCR extreme efficient DMU. Hence, the three CCR extreme efficient
model banks will probably contribute to the spanning of many different efficient facets. Three of
these efficient facets of full dimension are indicated by the three strict positive normal vectors
exhibited in Table 6.3, p. 87 in Charnes et al. (1990). However, if the model banks contribute to
the spanning of say six different FDEFs then a set of all six strict positive scaled normal vectors to
these FDEFs could/should have been used in the specification of the transformation matrix; or if
only a subset is wanted then any subset of these six scaled normal vectors could equally well have
been used.

In relation to the present paper it is of interest to notice that the extended facet model and the
polyhedral cone-ratio model have some common characteristics. In fact, the extended facet MILP
program (6.27) can be used to solve the problem related to the application of the cone-ratio model to
commercial banks. A cone ratio efficiency analysis based on a transformation matrix consisting of
all strict positive optimal virtual multiplier vectors of the three model banks is the result of solving



168 O. B. Olesen and N. Chr. Petersen

generated from the k’th FDEF is spanned by the subset of DMUs on this efficient
facet:

T CCR
FDEF (Jk) =

⎧
⎨

⎩(y, x) ∈ R
s+m
+ |

∑

j∈Jk
λjYj ≥ y,

∑

j∈Jk
λjXj ≤ x, λj ≥ 0, j ∈ Jk

⎫
⎬

⎭ (6.28)

The Full Dimensional Efficient Facet production possibility set generated from the
sample

(
Yj ,Xj

)
, j ∈ E, is the union of production possibility sets spanned by

FDEFs:

T CCR
FDEF = ∪Fk=1T

CCR
FDEF (Jk). (6.29)

T CCR
FDEF is a possibly nonconvex piecewise linear envelopment of observed data subject

to the condition that substitutional rates along the efficient frontier are well defined
and determined by data solely. Obviously, T CCR

FDEF is a set included in T CCR, i.e.
T CCR

FDEF ⊆ T CCR ⊆ T CCR
EXFA. The Full Dimensional Efficient Facet Efficiency Index for

DMUj , j = 1, . . .,N , measures the radial distance from observation
(
Yjo ,Xjo

)
to

the efficient frontier for the Full Dimensional Efficient Facet production possibility
set:

min θFDEF − ε (eT σ+ + eT σ−)

s.t.
∑|E|
j=1 λjXj − θFDEFXjo + σ− = 0

∑|E|
j=1 λjYj − σ+ = Yjo

ut Yj − vtXj + sj = 0 j ∈ E

vT Xjo = 1

sj − bjM ≤ 0 j ∈ E

λj −
(
1 − bj

)
M ≤ 0 j ∈ E

∑
j∈E
bj − (|E| − (s +m− 1)) ≤ 0

bjbinary, sj ≥ 0, ∀j ∈ E, u ≥ εe, u, σ+ ∈ R
s+, v, σ− ≥ εe, v ∈ R

m+λ ∈ R
|E|
+

(6.30)

the following MILP program:

max uT Yjo

s.t. ut Yj − vtXj + sj = 0 j ∈ E

vT Xjo = 1

sj − bjM ≤ 0 j ∈ E

∑
j∈E
bj − |E| − (s +m− 1) ≤ 0

bj = 0, j ∈ {j1, j2, j3}
bjbinary, sj ≥ 0, ∀j ∈ E, u ≥ εe, u ∈ R

s+, v ≥ εe, v ∈ R
m+

if we assume the regularity condition RC1. M is a large scalar, jo ∈ {1, . . ., 48} is the index of the
bank being evaluated, E is the index set of all the CCR extreme efficient banks among the 48 banks,
and ji ∈ E, i = 1, 2, 3 is the index of the three model banks.
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where ε is a non-Archimedian and M = 1/ε. The program (6.30) differs from the
Extended Facet model in (6.27) by the linked constraints including the sj and the λj
variables, both constrained by the same binary bj -variables. In combination these
constraints imply that the efficiency estimation is performed as a DEA analysis with
reference to a production possibility set spanned by some subset of (s + m − 1)
CCR extreme efficient DMUs, all located on the same FDEF. The MILP program
identifies the particular subset of (s +m− 1) CCR extreme efficient DMUs, which
maximizes the potential radial contraction of inputs from DMUjo .

The production possibility set T CCR
FDEF includes by construction all observed input

output combinations located on FDEFs while observations (CCR-inefficient or CCR-
efficient) outside every FDEF may or may not belong to this set.

For DMUs located outside T CCR
FDEF we have θFDEF>1 which can be interpreted as

the minimum proportional increase in the input vector that is required in order to
move the observation into T CCR

FDEF . An upper bound above one for a CCR-efficient or
CCR-inefficient DMU indicates that this DMU cannot be dominated on the Pareto
criterion by a reference point at an FDEF. Hence, this DMU is located in an area
of the input output space, where we refrain from estimating the frontier of T CCR

FDEF
because of lack of comparable data. We don’t know whether or not this DMU is
located on the frontier of T CCR

FDEF , because data does not support an estimation of the
frontier in a neighborhood around this observation. Since the location of the frontier
is unknown around this observation we assign an upper bound above one.

Table 6.5 summarizes the six different relations between the efficiency indices
from the three models: EXFA, CCR and FDEF. Since T CCR

EXFA ⊇ T CCR ⊇ T CCR
FDEF

we have θEXFA ≤ θCCR ≤ θFDEF . If the j ’th DMU is located on an FDEF, then
θEXFA = θCCR = θFDEF = 1. If the j’th DMU is CCR-inefficient and dominated
by a reference unit located on an FDEF, i.e. the θCCR-projection of the input output
combination:

(
θCCRXj ,Yj

)
is located on an FDEF, then θEXFA = θCCR = θFDEF < 1.

If the j’th DMU is CCR inefficient and the θCCR-projection of the input output
combination:

(
θCCRXj ,Yj

)
is not located on an FDEF but is dominated by DMUs

all located on an FDEF, then we will typically have θCCR = θFDEF < 1. If the j’th
DMU is CCR inefficient and dominated by a reference point located on a non FDEF,
then θEXFA < θCCR and θCCR < θFDEF < 1.

In Appendix C we have included a simple example which illustrates the three
technologies EXFA, CCR and FDEF and the six different relations in Table 6.5

Table 6.5 Combinations of efficiency scores from the three models CCR extreme efficient DMUs

CCR extreme efficient DMUs θEXFA = θCCR = θFDEF (= 1)

θCCR = 1 θEXFA < θCCR < θFDEF ( < 1)

CCR extreme efficient DMUs θEXFA = θCCR = θFDEF

θCCR < 1 θEXFA < θCCR = θFDEF ( < 1)

θEXFA < θCCR < θFDEF ( < 1)1

θEXFA < θCCR < θFDEF ( > 1)2
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between the efficiency indices from the three models. Furthermore, the example
illustrates the geometry behind the case where the frontier consists of both FDEFs
and NFDEFs.

Notes: 1) + 2) These combinations can e.g. emerge if the θCCR -projection of
the input output combination:

(
θCCRXj ,Yj

)
is dominated by a reference set which

includes a CCR extreme efficient DMU not located on any FDEFs. Case 1) occurs
if the output input combination

(
Yj ,−Xj

) ≤ (y,−x) for some (y,−x) on an FDEF.
Case 2) occurs if that is not the case. For details, see Appendix C.

6.6.2 The VRS Case: Extending the BCC-Model with Facet
Extensions

Let E
BCC be an index set for the BCC strongly efficient DMUs in the sample. Ex-

tending the BCC-model with facet extensions requires a similar regularity condition
as in Sect.6.6.1:

Condition 2 REGULARITY CONDITION (RC2). Every subset of s+m columns

for DMUj , j ∈ E
BCC of the data matrix

⎡

⎣−X
Y

⎤

⎦ is linear independent, where Y is

(s ×N ), X is (m×N ) and N=
∣∣EBCC

∣∣

The following mixed integer linear program provides a test for the existence of at
least one FDEF (given RC2):

min
∑
j∈E
bj

s.t. ut Yj − vtXj + νo + sj = 0 j ∈ E
BCC

etv = 1

sj − bjM ≤ 0 j ∈ E
BCC

bjbinary, sj ≥ 0, ∀j ∈ E
BCC , u ≥ εe, v ≥ εe, u ∈ R

s , v ∈ R
m νo ∈ R

(6.31)

where ε is a non-Archimedian,M = 1/ε, and e is a vector (1, · · ·, 1)T of an appropri-
ate length. The program (6.31) minimizes the sum of binary variables bj , j ∈ E

BCC ,
i.e., maximizes the number of bj ’s equal to zero. It is easily seen that

bj = 0 ⇔ ut Yj − vtXj + νo = 0. (6.32)

Bearing in mind Definition 3 and RC2, an FDEF thus exists if
∑

j∈E

b∗j =
∣∣EBCC

∣∣− (s +m), (6.33)

where b∗ is an optimal vector from (6.31). Let J be the family of all subsets of E
BCC ,

and J ⊇ J BCC
FDEF ≡ {J1, . . ., JF } be the subset of subsets such that for k = 1, . . .,F
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we have |Jk| = (s +m) and (6.31) has a feasible solution with sj = 0, j ∈ Jk . Hence,
dim (F (Jk)) = 1. Let the F corresponding vectors of multipliers and intercept term
be given by (uk ,−vk , νok) , k = 1, . . .,F , i.e.,

F (Jk) = {(u,−v, νo) | (u,−v, νo) = ς (uk ,−vk , νok) , ς > 0} , k = 1, . . .,F
(6.34)

Let

PBCC
FDEF =

{
(u,−v, νo) ∈ R

s
+ × R

m
− × R | (u,−v, νo)

=
F∑

k=1

λk (uk ,−vk , νok) , λk ≥ 0, k = 1, . . .,F , λ 
= 0
}

(6.35)

The DMUs in the index setJk thus span an FDEF, (uk ,−vk) is the scaled normal vector
to the efficient facet generating supporting hyperplane, νok is the scaled intercept term
and PBCC

FDEF is the polyhedral cone spanned by the collection of scaled normals and
scaled intercepts to efficient facet generating hyperplanes.

We define the k’th extended efficient facet, EEFBCC(Jk), as the intersection of an
FDEF-generating supporting hyperplane and the nonnegative orthant:

EEFBCC (Jk) =
{
(y, x) ∈ R

s+m
+ | uT y − vT x + νo = 0, (u,−v, νo) ∈ F (Jk)

}

(6.36)

We now follow the same approach as in the previous section on CRS using
EEFBCC (Jk) to define the corresponding empirical production possibility set,
T BCC

EEF(Jk)
as the intersection between the halfspace generated by the supporting

hyperplane and the nonnegative orthant:

T BCC
EEF(Jk) =

{
(y, x) ∈ R

s+m
+ | uT y − vT x + νo ≤ 0, (u,−v, νo) ∈ F (Jk)

}
(6.37)

However, with VRS we need to make sure that no output vector y ≥ 0, y 
= 0 exists,
such that (y, 0) ∈ ∩Fk=1T

BCC
EFF(Jk)

. If such an output vector y ≥ 0, y 
= 0 exists,
then the output input combination (y, 0) violates the axiom of “no free lunch”, if
we follow the approach used in CRS case in the previous subsection and define
the extended facet production possibility set T BCC

EXFA as T BCC
EXFA = ∩Fk=1T

BCC
EFF(Jk)

. Two
different paths seem to be possible to make sure that “no free lunch” is not violated
by T BCC

EXFA = ∩Fk=1T
BCC
EFF(Jk)

. One possibility is to assume the following regularity
condition RC3:

Condition 3 REGULARITY CONDITION (RC3)22. There exists κ ∈ {1, . . . F }
such that (0, 0) /∈ T BCC

EFF(Jκ )
.

22 Notice, that regularity condition RC3 is satisfied if we have at least one FDEF with an intercept
term being strictly positive.
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Alternatively, we can restrict the validity of T BCC
EXFA in input space to the convex

hull of the observed input vectors, i.e. we define T BCC
EXFA as

T BCC
EXFA =

(∩Fk=1T
BCC
EFF(Jk)

) ∩ (
R
s
+ × conv {X1, . . .,Xn}

)
(6.38)

Assuming the regularity condition RC3 the extended facet production possibility set
generated from the sample

(
Yj ,Xj

)
, j ∈ E

BCC , can be defined as the intersection of
halfspaces defined by FDEF-generating supporting hyperplanes and the non-negative
orthant:

T BCC
EXFA =

{
(y, x) ∈ R

s+m
+ | uT y − vT x + νo ≤ 0, ∀ (u,−v, νo) ∈ PBCC

FDEF

}

= ∩Fk=1T
BCC
EFF(Jk)

(6.39)

T BCC
EXFA is hence by construction a convex piecewise linear envelopment of observed

data subject to the condition that substitutional rates along the efficient frontier are
well-defined, and determined by data solely. Obviously, T BCC

EXFA is a polyhedral set
which includes T BCC , i.e. T BCC ⊆ T BCC

EXFA. Alternatively, if RC3 is violated we defined
T BCC

EXFA as indicated in (6.38)
Assuming that RC3 is not violated, the following Extended Facet Efficiency Index

for DMUjo , jo = 1, . . .,N , measures the radial distance from observation
(
Yjo ,Xjo

)

to the efficient frontier for the extended facet production possibility set

max uT Yjo + νo
s.t. ut Yj − vtXj + νo + sj = 0 j ∈ E

BCC

vT Xjo = 1

sj − bjM ≤ 0 j ∈ E
BCC

∑
j∈EBCC bj −

(∣∣EBCC
∣∣− (s +m)) ≤ 0

bjbinary, sj ≥ 0, ∀j ∈ E
BCC , u ≥ εe, u ∈ R

s+, v ≥ εe, v ∈ R
m+

(6.40)

The program (6.40) differs from the DEA-model developed by (Banker et al. 1984)
by the constraints including the binary bj -variables. In combination these constraints
imply, assuming RC2, that any feasible dual price vector must render (s+m) DMUs
efficient, i.e. the reference point in the evaluation of the jo’th unit must be positioned
on an FDEF.

By construction, the extended facet input-oriented efficiency index provides a
lower bound on the efficiency rating of the DMU under evaluation. The Full Dimen-
sional Efficient Facet Efficiency Index provides an upper bound on the efficiency
rating. The production possibility set generated from the k’th FDEF is spanned by
the subset of DMUs on this efficient facet:

T BCC
FDEF (Jk) =

⎧
⎨

⎩(y, x) ∈ R
s+m
+ |

∑

j∈Jk
λjYj ≥ y,

∑

j∈Jk
λjXj ≤ x,

∑

j∈Jk
λj = 1, λj ≥ 0, j ∈ Jk

⎫
⎬

⎭ (6.41)
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The Full Dimensional Efficient Facet production possibility set generated from the
sample

(
Yj ,Xj

)
, j ∈ E, is the union of production possibility sets spanned by

FDEFs:

T BCC
FDEF = ∪Fk=1T

BCC
FDEF (Jk). (6.42)

T BCC
FDEF is a possibly nonconvex piecewise linear envelopment of observed data

subject to the condition that substitutional rates along the efficient frontier are well-
defined and determined by data solely. Obviously, T BCC

FDEF is included in T BCC , i.e.
T BCC

FDEF ⊆ T BCC ⊆ T BCC
EXFA. The Full Dimensional Efficient Facet Efficiency Index for

DMUj , j = 1, . . .,N , measures the radial distance from observation (Yk ,Xk) to the
efficient frontier for the Full Dimensional Efficient Facet production possibility set:

min θFDEF − ε (eT σ+ + eT σ−)

s.t.
∑|EBCC|
j=1 λjXj − θFDEFXjo + σ− = 0

∑|EBCC|
j=1 λjYj − σ+ = Yjo

∑|EBCC|
j=1 λj = 1

ut Yj − vtXj + νo + sj = 0 j ∈ E
BCC

vT Xjo = 1

sj − bjM ≤ 0 j ∈ E
BCC

λj −
(
1 − bj

)
M ≤ 0 j ∈ E

BCC

∑
j∈EBCC bj −

(∣∣EBCC
∣∣− (s +m)) ≤ 0

bjbinary, sj ≥ 0, ∀j ∈ E, u ≥ εe, u, σ+ ∈ R
s+, v, σ− ≥ εe, v ∈ R

m+ λ ∈ R
|E|
+

(6.43)

where ε is a non-Archimedian and M = 1/ε. The program (6.43) differs from the
Extended Facet model in (6.40) by the linked constraints including the sj and the λj
variables, both constrained by the same binary bj -variables. In combination these
constraints imply that the efficiency estimation is performed as a DEA analysis with
reference to a production possibility set spanned by some subset of (s + m) BCC
extreme efficient DMUs, all located on the same FDEF. The MILP program identifies
the particular subset of (s+m) BCC extreme efficient DMUs, which maximizes the
potential radial contraction of inputs from DMUjo .

In Appendix D we have included a simple example which illustrates the three
technologies EXFA(BCC), BCC and FDEF(BCC). Furthermore, the example illus-
trates the geometry behind the case where the frontier consists of both FDEFs and
NFDEFs.
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6.7 Use of Efficient Faces and Facets in DEA

We have argued that a CCR- or a BCC-estimation does not in general provide a
strongly efficient frontier with well defined marginal rates of substitution. The opti-
mal virtual multipliers should for that reason be interpreted with care, when DEA is
used for estimation of efficiency scores and local substitution or scale characteristics.
The estimates may well be affected by the axiom of strong disposability of inputs and
outputs, and they are not determined by observed data only as in the extended facet
approach. The estimation of lower and upper bounds for efficiency scores relative
to a strongly efficient frontier with well defined marginal rates of substitution and
determined by observed data only is an important use of the extended facet approach.

Strong disposability means that the polyhedral empirical production possibility set
includes weakly efficient or exterior facets characterized by zero components in their
normal vectors. Zero multipliers are a source of trouble when estimating marginal
rates of substitution or transformation, see (Cooper et al. 2011, Chap. 4). Zero
multipliers also mean that some of the inputs and/or outputs are eventually ignored.
Moreover, zero multipliers may imply non-zero slacks in the primal envelopment
form, which means that the unit under assessment using a radial measure is evaluated
with reference to a point that is not strongly efficient. Zero values in an optimal
solution for a primal or dual LP program are indicators of degeneracy and multiple
optimal solutions. The optimal LP-solution for a CCR- or a BCC-model in input-
output space is highly degenerate for any extreme efficient DMU, which implies that
alternative optimal solutions prevail in multiplier space. (Cooper et al. 2007) discuss
the choice of weights from alternative optimal solutions of dual multiplier models in
DEA.

Imposing strictly positive lower bounds on the multipliers in the dual formulation
of the model is an easy way to avoid zero weights. (Charnes et al. 1979) introduced
non-Archimedian concepts to exclude zero weights based upon the assumption “that
a reduction in any input or an expansion of any output has some value”. The non-
Archimedian approach is perfectly consistent with DEA as a value free and highly
conservative procedure, where the unit under assessment is put in the best possible
position regarding its distance to the production frontier. The approach guarantees
that reference points are located on strongly efficient segments of the frontier and
provides a firm identification of the set of strongly efficient DMUs. However, the
approach can be argued not to produce efficiency scores that can be readily used,
because inefficiencies in terms of strictly positive slacks are accounted for in terms
of a non-Archimedian weighting only.

Different approaches for avoiding zero weights have been reported in the litera-
ture, see (Cooper et al. 2011, Chap. 4) for a survey. A number of these approaches
involve the incorporation of price information reflecting meaningful trade-offs, value
information, and managerial goals into the analysis by imposing upper and lower
bounds on the (relative) multipliers, which in turn means that values based on eco-
nomic or other considerations are introduced into DEA. The work on facet models
and the extension of FDEFs of the frontier can be seen as a highly different approach
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for addressing the problems with zero weights and consequently non-zero slacks.
The distinguishing feature of the facet approach compared to the incorporation of
bounds in multiplier space is that DEA is maintained value free.

Focus in the remainder of this section is on other uses of facet models reported in
the literature.

As observed by Cook and Seiford (2009), significant work has been done relating
to facet identification and facet extension. Bessent et al. (1988) were the first to
introduce the idea of so-called constrained facet analysis. They observe that a review
of reported studies in the literature reveals that DEA-solutions in some cases produce
efficiency ratings and marginal rates of substitution that are difficult to interpret and
unacceptable to unit managers. The problem is argued to arise when an inefficient
unit has a mix of inputs and/or outputs that is different from any frontier point. Such
units are referred to as not naturally enveloped inefficient units. By contrast, an
inefficient DMU is said to be naturally enveloped by a complete frontier facet, if its
frontier reference group has s +m− 1 observations.

In the case that a unit under assessment is projected to an exterior facet - so that the
reference group includes less than s+m−1 DMUs - the suggested procedure attempts
to augment this reference group iteratively, until a reference set of an appropriate
cardinality is identified. Each DMU added to the reference group results in the
elimination of a slack in input-output space accompanied by the elimination of a
zero weight in multiplier space.

The algorithm is based upon linear programming procedures only and allows for
no backtracking; once a DMU has entered the reference group, it is not allowed to
be removed from that group again. It should come as no surprise that the procedure
may well terminate with slacks in the optimal basis in input-output space and zero
weights in multiplier space, since there is no guarantee that the involved sets of
DMUs of cardinality less than s+m− 1 contribute to the spanning of one (or more)
FDEFs. There is no guarantee either that the procedure will identify an FDEF, if one
exists. And if the procedure does terminate with the identification of an FDEF, there
is no guarantee that it will be the one with the minimum distance to the DMU under
assessment.

Lang et al. (1995) improved on the idea in terms of a two-stage approach. The
integer programming procedures suggested by Green et al. (1996) and Olesen and
Petersen (1996) guarantee radial projections against FDEFs.

The basic DEA models uses an input or output oriented radial measure of efficiency
projecting the unit under assessment to a point on the frontier with the same mix of
inputs and outputs as that of the unit under assessment. The conservation of the mix
is the characteristic that makes the resulting distance measure radial. The perceived
arbitrariness in imposing targets preserving the mix may be considered a weakness
of radial measures, since a firm’s very reason to change its input or output levels may
well be an intention to change that mix, Chambers and Mitchell (2001).

The identification of targets is to be considered one of the key practical outcomes
in an efficiency assessment. Radial measures may - unless followed by a slack max-
imizing procedure - find targets on the weakly efficient segments of the frontier.
Non-radial measures designed for an identification of targets at the strongly efficient
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segments of the frontier have for that reason been developed. The hyperbolic measure
suggested by Färe et al. (1985), the Russell-measure suggested by Färe and Lovell
(1978) and the additive model due to Charnes et al. (1985) are early examples of
DEA-based non-oriented and non-radial efficiency measures. The directional dis-
tance function introduced by Chambers et al. (1996, 1998) is another non-oriented
measure.

As observed by Portela et al. (2003), the non-oriented DEA-models share the
common feature of maximizing slacks. Consequently, the targets identified by these
models are in this sense those furthest away from rather than those closest to the unit
under assessment. Takeda and Nishimo (2001), Briec and Leleu (2003) and Aparicio
et al. (2007) suggest for this reason efficiency to be measured compared to so-called
close targets. Fukuyama and Sekitani (2012) label this kind of approach a minimum
distance model.

It is well known that models of this kind face a computational difficulty caused by
the requirement that targets must be located on the strongly efficient frontier. It is also
well known that a complete description of the strongly efficient frontier in terms of its
FDEFs and its strongly efficient facets not positioned at an FDEF provides a remedy
to this difficulty. These observations are the starting point for the decomposition of
the efficient frontier of the DEA production possibility set into a set of so-called
Maximal Efficient Faces (MEF) suggested by (Fukuyama and Sekitani 2012). An
MEF is in terms of Definitions 2 and 4 either an FDEF or an NFDEF.

The underlying idea is that an explicit identification of the complete set of exterior
facets in terms of its defining hyperplanes is not needed for a complete description of
the strongly efficient production frontier. An identification of the set of FDEFs and
the set of NFDEFs is sufficient. The strongly efficient frontier is the collection of all
MEFs, or equivalently the collection of all FDEFs and all NFDEFs. A mixed integer
programming procedure is suggested for the identification of all MEFs. Results based
upon three real-world data sets related to international airline companies, Japanese
banks, and Japanese soccer players are reported. One of the findings is that about
40% or more of the MEFs were not FDEFs. This result highlights the observation
above that the optimal virtual multipliers must be interpreted with care, when DEA is
used for estimation of efficiency scores and local substitution or scale characteristics,
since zero values are involved.

Portela et al. (2003) is an example of a minimum distance model. Traditional non-
oriented DEA-models and those based upon them are criticized either for imposing
strong restrictions on the movements towards the efficient frontier or for aiming at
maximizing slacks rather than looking for so-called close targets. The following
measure developed by (Brockett et al. 1997) (BRWZ) is argued to be more appro-
priate. The BRWZ-measure allows each input and each output to change by different
proportions, since hio, i = 1, ....,m and gro, r = 1, ...., s are measures of the relative
change in input i = 1, ....,m and output r = 1, ...., s. Observe that changes in inputs



6 Facet Analysis in Data Envelopment Analysis 177

and outputs are coupled multiplicatively:

BRWZo =

m∑
i=1
hio ×

s∑
r=1

1/gro

m× s
Minimizing BRWZo is the only way to assure that the targets are positioned at

the Pareto-efficient frontier and that efficiency is measured. However, one needs to
maximizeBRWZo while at the same time assuring projection on the efficient frontier
in order to find the closest targets.
BRWZo is maximized over all facets - one at the time - in the empirical produc-

tion possibility set in order to make sure that the maximum BRWZo compares to a
projection on the efficient frontier. The procedure can be summarized as follows:

1. Determine the set of Pareto efficient units by solving the additive model.
2. Identify all Pareto-efficient facets (and faces) Fk , k = 1, ....,K , using Qhull.
3. For each k = 1, ....,K , maximize BRWZo subject to the requirement that

(hoXo, goYo) ∈ Fk
The reference set positioned at the facet giving rise to the maximumBRWZo is argued
to provide the closest target.

Close targets are believed to be more relevant for the units under assessment to
attain and more in line with the way management exercise judgment in general. The
concept of close targets or minimum distance models require an a priori identification
of all facets. It has been applied by Portela and Thanassoulis (2005) in a study of
the profitability of a sample of Portuguese bank branches and its decomposition into
technical and allocative components. The sample includes two inputs, four outputs
and 60 DMUs. The model is an example of a design, where an a priori identification
of all facets—interior as well as exterior—is necessary. Qhull provides an appropriate
tool for that purpose.

The Russell output measure of technical efficiency involves a maximization of
the sum of the relative proportional expansion rate of output r = 1, ...., s divided by
number of outputs:

Γ (Xo,Yo) = max

{
1

s

s∑

r=1

Φr : ΦYo ∈ P (Xo),Φr ≥ 1, r = 1, ...., s

}

This measure can be shown to satisfy the following set of desirable properties, see
(Färe et al. 1985):

1. 0 < 1/Γ (Xo,Yo) ≤ 1.
2. 1/Γ (Xo,Yo) = 1 if and only if Yo ∈ ∂s(P (Xo)).
3. 1/Γ (Xo,Yo) is units invariant.
4. 1/Γ (Xo,Yo) is strongly monotonic in outputs.

Aparicio and Pastor (2013) suggest a minimum distance version of the output oriented
Russell measure by replacing the max -operator with a min-operator in order to
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determine closest targets instead of furthest targets. It is demonstrated that the new
measure lacks the property of strong monotonicity when applied in the context of
the BCC-model. The problem is shown to be related to the fact that, in general, not
all facets of an empirical production possibility set are FDEFs. Then, resorting to the
notion of an extended facet production possibility set, the new version of the Russell
index is shown to satisfy the complete set of desirable properties including strong
monotonicity in outputs.

The suggested procedure for an estimation of the index is similar to the one
suggested by Portela et al. (2003) augmented with a fourth step designed to provide
an explicit identification of the closest targets and with Step 2 modified in terms of
an identification of all FDEFs using Qhull. The paper includes a small empirical
example with 19 DMUs, one input and three outputs. The model is an example of
a design, where the extended facet model provides a highly appropriate framework,
where an a priori identification of all FDEFs is necessary, and where Qhull provides
an appropriate tool for that purpose.

The cross efficiency score of a given DMU is obtained by computing for that DMU
the set ofN efficiency scores using theN sets of optimal weights corresponding to the
N DMUs in the sample and then averaging those scores. Thus, cross efficiency goes
beyond the pure self evaluation inherent in conventional DEA analysis, and combines
this with the other (N − 1) scores arising from the optimal peer multipliers.

Doyle and Green (1994a) point out that the non-uniqueness of the optimal DEA
multipliers possibly reduces the usefulness of cross efficiency and suggest various
secondary goals such as given by the so-called aggressive and benevolent models.
Appa et al. (2006) examine the aggressive formulations of four cross evaluation
approaches taken from Doyle and Green (1994a), and argue that the availability of
all alternative multiplier solutions allows for the construction of a complete cross
efficiency matrix of dimension N ×K thus enhancing cross evaluation analyses.

The availability of all possible alternative multiplier solutions translates into a
requirement of complete frontier information in terms of the set of normal vectors for
all facets defining the possibility set - interior as well as exterior. The procedure is for
this reason an example of the possibilities made available by the dual representation
of the technology as well as the advantages to be gained by identifying all facets of
the production possibility set.

The dual representation of polyhedral possibility sets in intersection form corre-
sponding to an envelopment of observed data by FDEFs as in Olesen and Petersen
(1996) or by interior as well as exterior facets as in this chapter provides a highly
appropriate framework for studying the characteristics of the resulting produc-
tion frontier and answering questions relating to the two key features of efficient
production, substitution properties and scale properties:

• Which are the trade-offs along isoquants?
• How sensitive is the mix of inputs and outputs to changes in relative prices?
• What is Most Productive Scale Size for any given mix of inputs and outputs?
• What is The Expansion Path for a given set of relative prices?
• How does the elasticity of scale change for any given mix of inputs and outputs?
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Olesen and Petersen (2003) demonstrate that complete information on the facial
structure of an empirical possibility set in terms of an identification of all (internal)
facets can be used for a characterization of the underlying data generation process,
an estimation of isoquants and relevant elasticities of substitution, and a specification
of appropriate constraints on the virtual multipliers in a Cone Ratio model (Charnes
et al. 1990). Accordingly, questions of the following types can also be answered:

• Which are the characteristics of the underlying data generation process?
• Is there a local bias in efficiency scores, and—if yes–does it differ between

segments of the input-output space?
• Does the sample include outliers?

Førsund et al. (2007) provide a method that can be used to numerically evaluate scale
elasticity at any point on the DEA surface using an idea introduced in Krivonozhko
et al. (2004). The starting point is a standard neoclassical production or transfor-
mation function representing the efficient input-output configurations assumed to
be continuously differentiable, increasing in outputs and decreasing in inputs thus
exhibiting free disposability such that

F (x, y) = 0,
∂F (x, y)

∂yr
> 0, r = 1, ..., s,

∂F (x, y)

∂xi
< 0, i = 1, ...,m,

where the production possibility set T is given as T = {x, y|F (x, y) ≤ 0}. Scale
elasticity, as a function of inputs and outputs, is defined as the marginal change in
an output expansion factor caused by a marginal change in an input expansion factor
over the average ratio.

The polyhedral DEA-frontier of dimension s+m−1 is clearly not differentiable.
However, one-sided directional derivatives can be shown to exist at every point
and in every direction obtained by cutting through the DEA-frontier with a two-
dimensional plane for any fixed input mix and any fixed output mix. This result
allows for a calculation of the scale elasticity at any point along the intersection of
this plane and the frontier with the relevant one-sided derivatives calculated as the
slope of the appropriate curves defining the resulting piecewise linear segment of the
frontier.

The procedure does not require an a priori identification of all facets. How-
ever, the building of intersections of the boundary and the relevant two-dimensional
hyperplanes is easy, if facets are known.

We observe that the path along the frontier emanating in the origin and passing
through any given input-output configuration may well include segments of exterior
facets; in fact, paths of this type may well traverse no FDEFs at all. Accordingly, the
computed scale elasticities may relate to weakly efficient segments of the frontier.
This is in some conflict with the assumption that the transformation function is in-
creasing in outputs and decreasing in inputs. One may argue that the incorporation
of non-Archimedians provides a solution to the problem. However, a calculation of
scale elasticities based upon an extended facet specification of a VRS-technology
may be considered a more appropriate remedy, since it is based upon observed data,
and since the resulting frontier is made up of strongly efficient segments only. A
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calculation of scale elasticities based upon an extended facet technology most cer-
tainly requires an a priori specification of all FDEFs corresponding to the underlying
VRS-frontier.

We also observe that a similar argument applies regarding an estimation of trade-
offs along isoquants.

Asmild et al. (2013) provides the final example of use of the facet structure in
DEA to be reported here. The paper introduces a test whether observed data points
are over- (or under-) represented in certain zones of the input-output space. The test
is based upon a comparison of the number of observations located in a certain zone
with the expected number of observations in that zone.

The definition of zones is based upon the facet structure. The empirical facets are
argued to provide a natural discretization of the range of input (and output) mixes.
Each zone is in turn sliced into smaller convex subsets each of which mimics the
properties of the underlying facet on the efficient frontier. The decomposition of the
possibility set into zones followed by a slicing of zones provides the foundation for
a discrete approximation of the distribution of efficiency scores.

The procedure requires an identification of facets of the possibility set followed
by a decomposition of the possibility set into K convex subsets - one for each facet
- each of which is finally sliced in accordance with the structural properties of the
underlying facet. Facets on the production frontier as well as the volumes of the slices
are found using Qhull. Accordingly, the procedure is an example that information
on the complete facet structure of an empirical possibility set can be used for other
purposes than an efficiency estimation or an analysis of the properties of the frontier
and that Qhull is a powerful tool for the analysis of polyhedral sets.

Appendix A

Let Zj =
(
Y Tj ,XTj

)T
j ∈ E. The following mixed integer linear program tests for

the regularity condition RC1:

min
∑
j∈E
b+j +

∑
j∈E
b−j (9)

s.t.
∑
j∈E
λ+j Zj −

∑
j∈E
λ−j Zj = 0 (9a)

∑
j∈E
b+j +

∑
j∈E
b−j − (s +m− 1) ≤ 0 (9b)

∑
j∈E
b+j +

∑
j∈E
b−j ≥ 1 (9b)

M−1b+j ≤ λ+j ≤ Mb+j j ∈ E (9c)

M−1b−j ≤ λ−j ≤ Mb−j j ∈ E (9d)

b+j + b−j ≤ 1 j ∈ E (9e)

b+j , b−j binary, sj ≥ 0, ∀j ∈ E, λ+j , λ−j ∈ R
n+
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Table B.1 Ifile to Qhull to
generate all interior and
exterior facets corresponding
to Fig. 6.2a

3

6

120 90 100

90 90 90

10 10 10

100000 0 0

0 100000 0

0 0 -100000

whereM ∈ R+ andM large. Assume that a feasible solution exists. Let the optimal
values of the variables be denoted by b̂+j , b̂−j , λ̂+j , λ̂−j , and let

E
′ =

{
j ∈ E|̂b+j + b̂−j = 1

}

(9c)–(9d) implies that
λ̂ij > 0 ⇔ b̂ij = 1, i ∈ {+,−} , j ∈ E.
From (9b) follows that∣∣E′∣∣ ≤ (s +m− 1). By (9e)

(
b̂+j , b̂−j

)

= (1, 1) or λ̂+j × λ̂−j = 0,, j ∈ E.

Hence, a feasible solution specifies at most s+m−1 output input vectorsZj , j ∈
E’ such that (9a) is true and thereby

∑
j∈E′ λ̂jZj = 0, for λ̂+j − λ̂−j ≡ λ̂j 
= 0, j ∈ E’.

Hence, RC1 is violated. Conversely, RC1 is satisfied if the program has no feasible
solution.

Appendix B: How to Use Qhull

The Ifile in Table B.1 will generate all interior and exterior facets corresponding to
Fig. 6.2a for the situation with two inputs and one output.

We execute Qhull by writing: Qhull.exe s FF < Ifile > Ofile, where the options
s and FF ask for a summary and detailed information on the facets structure. Qhull
writes the following messages to the screen:

Convex hull of 6 points in 3-d:
Number of vertices: 6
Number of facets: 8
Statistics for: | Qhull s FF
Number of points processed: 6
Number of hyperplanes created: 12
Number of distance tests for Qhull: 14
CPU seconds to compute hull (after input): 0
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Hence, all 6 data points have been declared vertices in the convex hull 23. The
intersection form of the hull is the intersection of 8 halfspaces generated from 8 facets.
Inspecting Fig. 6.2a, 7 of the 8 facets are visible. The facet not visible in Figure 2A is
the facet spanned by the three “artificial” vectors: (M , 0, 0) , (0,M , 0) , (0, 0,−M).

The first section of the Ofile consists of a listing of vertexes. The 6 vertices listed
in the sequence used in Table B.1 are p0,...,p5,where p0 is “A”, p1 is “B” and p2 is
“C”. Qhull’s internal vertex names are v0,...,v5.

Vertices and facets:
- p5 (v2): 0 0 -1e+05
- p3 (v1): 1e+05 0 0
- p4 (v0): 0 1e+05 0
- p0 (v3): 1.2e+02 90 1e+02 <-------- Point "A"
- p2 (v5): 10 10 10 <---------------------- Point "C"
- p1 (v6): 90 90 90 <---------------------- Point "B"
The second section in the Ofile consists of a detailed listing of the charac-

teristics of each of the 8 facets. Qhull’s internal facet names are in this case
f1,f2,f5,f7,f8,f9,f10,f11.

The format for each of the 8 subsections is as follows:
- name (here fi,i∈ {1, 2, 5, 7, 8, 9, 10, 11})
- flags: top simplicial or bottom simplicial
- normal: n1 n2 n3
- offset: n4
- vertices: list of vertices
- neighboring facets: list of facets

The 7 visible facets fi , i ∈ {2, 5, 7, 8, 9, 10, 11} from Fig. 6.2a are indicated in the
following Fig. B1:

To illustrate the information available from Qhull let us have a closer look at the
subsections with information on the FDEF (interior facet) f11 and the exterior facets
f9 and f10.

- f11
- flags: bottom simplicial
- normal: -0.2673 -0.5345 0.8018
- offset: 0
- vertices: p1 (v6) p2 (v5) p0 (v3)
- neighboring facets: f8 f9 f10

The output related to the FDEF f11 (interior facet) from Qhull provides us with the
following information. The output component of the normal vector is strictly positive
and the two input components are strictly negative. The intercept (the offset) is here
zero and p0,p1 and p2 are located on the facet. The facet f11 has three neighboring
facets: f8,f9 and f10.

23 This need of course not to be the case. If the data points included in the Ifile include inefficient
data points (points that will turn up as being located in the interior of the convex hull) then these
points are declared non-vertex points and are ignored in the generation of the convex hull.
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Fig. B.1 The technology from Fig. 6.2a with indication of the seven visible facets generated from
Qhull

- f9
- flags: bottom simplicial
- normal: -0.3162 0.0005697 0.9487
- offset: -56.97226
- vertices: p1 (v6) p0 (v3) p4 (v0)
- neighboring facets: f2 f10 f11
- f10
- flags: top simplicial
- normal: -0.7071 0 0.7071
- offset: 0
- vertices: p1 (v6) p2 (v5) p4 (v0)
- neighboring facets: f5 f9 f11

The output related to the exterior facet f9 and f10 from Qhull provides us with the
following information. The output components of the normal vectors are both strictly
positive but the second input components are zero or close to zero (the first input
components are strictly negative). The intercept (the offset) is here zero for facet f10
and negative for facet f9. p1,p2 and p4 are located on the facet f10, where p4 is the
artificial vector (0,M , 0). The facet F10 has three neighboring facets: f5,f9 and f11.
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Fig. C.1 Three Outputs and one input, Seven DMUs, Two FDEFs and Two NFDEFs. a The frontier
1-2-3-4-5-6-7 as the collection of four efficient facets. b The FDEF output possibility set as the
union of two sets spanned from the two FDEFs.

Qhull is directly interfaced to or integrated with other programs like Matlab. There
exists a nice small interface mPower24, that allows Qhull to be executed from within
Mathematica and all output is routed back to Mathematica as lists. This feature allows
e.g. for easy graphical illustrations of facets structures in three dimensional space
like the ones used in this chapter.

Appendix C. FDEF and NFDEF in a CCR-Production
Possibility Set

As an illustration of a more complex facet structure than the relatively simple one
in Fig. 6.1 we have included an illustrative example with data given in Table C1
(seven CCR extreme efficient DMUs, three CCR-inefficient DMUs, one input and
three outputs). The seven CCR extreme efficient DMUs span four efficient facets
as illustrated in the three dimensional output space in Fig. C1a. The first column in
Table C1 contains the index of each DMU, the second column is input consumed,
the next three columns are output produced of each of the three types and the three
last columns contain the efficiency scores from the three models EXFA, CCR and
FDEF.

The last three DMUs in Table C1, i.e. DMU 8, 9, and 10, are CCR inefficient
DMUs of the three last types mentioned in Table 6.1. The four efficient facets shown
in Fig. C1a as (1 → 2 → 3 → 1), (5 → 6 → 7 → 5), (3 → 4), (4 → 5), are
spanned by DMUj , j ∈ Fi , i = 1, 2, 3, 4, where J1 = {1, 2, 3} , J2 = {5, 6, 7} , J3 =
{3, 4} , J4 = {4, 5}. The dimension of the first two facets is two; hence, the two

24 See e.g. http://xlr8r.info/mPower/install.html.
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Table C.1 Three outputs, one input, ten DMUs, two FDEFs and two NFDEFs

Input Output1 Output2 Output3 θEXFA θCCR θFDEF

DMU1 1.0 5 10 120 1.00 1.00 1.00

DMU2 1.0 10 5 120 1.00 1.00 1.00

DMU3 1.0 50 50 110 1.00 1.00 1.00

DMU4 1.0 80 80 100 0.976 1.00 1.11

DMU5 1.0 100 100 90 1.00 1.00 1.00

DMU6 1.0 115 125 1 1.00 1.00 1.00

DMU7 1.0 125 115 1 1.00 1.00 1.00

DMU8 1.0 10 15 55 0.476 0.480 0.480

DMU9 1.0 42 42 45 0.450 0.471 0.5000

DMU10 1.0 85 85 95 0.944 0.982 1.056

first facets are FDEFs. The dimension of the two last efficient facets is one; hence,
the two last efficient facets are NFDEFs. The CCR extreme efficient DMU4 is the
only CCR extreme efficient DMU not located on any FDEF. Let us consider the
scores θEXFA. Clearly, all DMUs located on FDEFs will get a score equal to one.
The score for DMU4 is below one because this CCR extreme efficient DMUs is
not located on any FDEF. The inefficient DMU8 is carefully placed such that it’s
θCCR

8 -projected output vector, i.e. (θCCR
8 (10, 15, 55)) is located on the facet spanned

by DMU2, DMU3 and these two DMUs projection onto Y1-Y3 space. Hence, the
θCCR

8 -projected input output vector is not on an FDEF and therefore we have 0.476
≈ θEXFA

8 < θCCR
8 ≈ 0. 480. All three CCR inefficient DMUs share these features and

hence θEXFA
j < θCCR

j , j = 8, 9, 10.
Next, let us consider the FDEF-technology spanned by these seven CCR extreme

efficient DMUs. The geometric picture of this technology is exhibited in Fig. C1b.
The first FDEF spanned by DMUj , j ∈ J1 generates the following subset of the
output space (input is equal to one):

PFDEF(1, J1) =
{
y ∈ R

3
+|

[
1, yT

]T ∈ TFDEF (J1)
}

=
⎧
⎨

⎩y∈ R
3
+|y≤ λ1Y1 + λ2Y2 + λ3Y3,

3∑

j=1

λj = 1, λj ≥ 0, j = 1, 2, 3

⎫
⎬

⎭

Hence, every output vector in and below the triangle (1 → 2 → 3 → 1) belongs
to this set. In a similar vein the second facet generates the following subset of the
output space (again, input is equal to one):

PFDEF(1, J2) =
{
y ∈ R

3
+|

[
1, yT

]T ∈ TFDEF (J2)
}

=
⎧
⎨

⎩y∈ R
3
+|y≤ λ1Y5 + λ2Y6 + λ3Y7,

3∑

j=1

λj = 1, λj ≥ 0, j = 1, 2, 3

⎫
⎬

⎭
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Hence, every output vectors in and below the triangle (5 → 6 → 7 → 5) belongs
to this set. Finally, since no more FDEFs are available the total output possibility set
PFDEF (1) generated from the FDEF technology is the union of these two sets, i.e.

PFDEF (1) =
{
y ∈ R

3
+|

[
1, yT

]T ∈ TFDEF

}

= PFDEF(1, J1) ∪ PFDEF(1, J2)

Let us consider the first CCR inefficient DMU8. The output vector from DMU8

belongs to the interior ofPFDEF (1, J1) and it’s θCCR-projection is onto a facet spanned
by DMU2, DMU3 and these two DMUs projection onto Y1 − Y3 space. This facet
is left intact after switching from the CCR-technology in Fig. C1a to the FDEF-
technology in Fig. C1b. Hence, the change of model has no consequence for the size
of the possible radial expansion of the output vector for DMU8, and 0.480 ≈ θCCR

8 =
θFDEF

8 .
The picture is different for the two other CCR inefficient DMUs. DMU9 is care-

fully placed in output space such that its output vector belongs to the interior of
PFDEF (1, J2) and it’s θCCR -projection is onto a facet spanned by DMU4, DMU5 and
these two DMUs projection onto Y1 − Y3 space. Now, DMU4 is not located on any
FDEF. Hence, this facet is no longer valid after switching from the CCR-technology
in Fig. C1a to the FDEF-technology in Figure C1b. Hence, the change of model im-
plies an increase of the score: 0.471 ≈ θCCR

9 < θFDEF
9 = 0.5. The output vector from

the last CCR inefficient DMU10 is approximately two times the output vector from
DMU9. Hence, DMU10’s θCCR-projection is onto the same facet spanned by DMU4,
DMU5 and these two DMUs projection onto Y1 − Y3 space. However, DMU10 is
carefully placed in output space such that its output vector does not belong to any
of the sets PFDEF (1, Ji) , i = 1, 2. Hence, we get 0.982 ≈ θCCR

10 < θFDEF
10 ≈ 1.056,

with θFDEF
10 > 1.

Appendix D. FDEF and NFDEF in a BCC-Production
Possibility Set

As an illustration of a more complex facet structure than the relatively simple one
in Fig. 6.2 we have included an illustrative example with data given in Table D1
(seven BCC extreme efficient DMUs, three BCC inefficient DMUs, two inputs and
one output). The seven BCC extreme efficient DMUs span four efficient facets as
illustrated in the three dimensional output space in Fig. D1. The data behind these
efficient facets are exhibited in Table D1 where the first column contains the index
of each DMU, the second and third columns are inputs consumed, the fourth column
is the output produced. The last three columns contain the efficiency scores from the
three models EXFA, CCR and FDEF.

The last three DMUs in Table D1, i.e. DMU 8, 9, and 10, are BCC inefficient
DMUs of the three last types mentioned in relation to Table 6.1. The four efficient
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Fig. D.1 One output, two inputs, seven DMUs, two FDEFs and two NFDEFs. a The frontier 1-
2-3-4-5-6-7 as the collection of four efficient facets. b The FDEF production possibility set as the
union of two sets spanned from the two FDEFs

facets shown in Fig. D1a as (1 → 2 → 3 → 1), (5 → 6 → 7 → 5), (3 → 4),
(4 → 5), are spanned by DMUj , j ∈ Fi , i = 1, 2, 3, 4, where J1 = {1, 2, 3} , J2 =
{5, 6, 7} , J3 = {3, 4} , J4 = {4, 5}. The dimension of the first two facets is two and the
dimension of the last two facets is one. Hence, the first two facets are FDEFs and the
last two are NFDEFs. The BCC extreme efficient DMU4 is the only BCC extreme
efficient DMU not located on any FDEF. Notice, that the regularity condition is
satisfied since the intercept term for the facet (1 → 2 → 3 → 1) clearly is positive.

Table D.1 One output, two inputs, ten DMUs, two FDEFs and two NFDEFs

Input 1 Input 2 Output θEXFA θCCR θFDEF

DMU1 5 20 10 1.00 1.00 1.00

DMU2 20 5 10 1.00 1.00 1.00

DMU3 30 30 65 1.00 1.00 1.00

DMU4 40 40 80 0.869 1.00 1.25

DMU5 50 50 90 1.00 1.00 1.00

DMU6 130 110 120 1.00 1.00 1.00

DMU7 110 130 130 1.00 1.00 1.00

DMU8 20 100 15 0.235 0.364 0.364

DMU9 100 100 80 0.348 0.400 0.500

DMU10 40 40 70 0.790 0.833 1.250

As an illustration of the violation of the regularity condition RC3 we can consider
the data in Table D2 where we replace the data from DMU1 and DMU2 in Table D1
with (10, 10, 5) and (15, 15, 25). The Fig. D2 illustrates the production possibility
set, and with only one FDEF spanned by 5− 6− 7 we clearly see, that an extension
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Fig. D.2 The frontier 1-2-3-4-5-6-7 as the collection of five efficient facets. An example of a convex
hull technology where the extended facet will provide a technology that violate “no free lunch’.

of this facet will violate the axiom of no free lunch. The scores estimated based on
this technology is:

Table D.2 One output, two
inputs, ten DMUs, two
FDEFs and two NFDEFs

θEXFA θCCR θFDEF

DMU1 −12 1.00 5

DMU2 −5.33 1.00 3.333

DMU3 0.0 1.00 1.67

DMU4 0.75 1.00 1.25

DMU5 1.00 1.00 1.00

DMU6 1.00 1.00 1.00

DMU7 1.00 1.00 1.00

DMU8 −1 0.625 2.5

DMU9 0.3 0.400 0.500

DMU10 0.25 0.833 1.250

Table D2 illustrates how the estimated possible radial contraction of the in-
put vectors makes no sense, since the contraction to the extension of the facet
(5 − 6 − 7 − 5) involves contracted input vectors in the negative othant R

2−. Notice,
that for DMU3 we see a contraction of the input vector (40, 40) to (0, 0), implying
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that (y, x) = (80, (0, 0)) is a feasible production plan, which clearly illustrates “a
free lunch”.
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Chapter 7
Stochastic Nonparametric Approach to
Efficiency Analysis: A Unified Framework

Timo Kuosmanen, Andrew Johnson and Antti Saastamoinen

Abstract Bridging the gap between axiomatic Data Envelopment Analysis (DEA)
and econometric Stochastic Frontier Analysis (SFA) has been one of the most vexing
problems in the field of efficiency analysis. Recent developments in multivariate con-
vex regression, particularly Convex Nonparametric Least Squares (CNLS) method,
have led to the full integration of DEA and SFA into a unified framework of pro-
ductivity analysis, referred to as Stochastic Nonparametric Envelopment of Data
(StoNED). The unified framework of StoNED offers a general and flexible platform
for efficiency analysis and related themes such as frontier estimation and production
analysis, allowing one to combine existing tools of efficiency analysis in novel ways
across the DEA-SFA spectrum, facilitating new opportunities for further method-
ological development. This chapter provides an updated and elaborated presentation
of the CNLS and StoNED methods. This chapter also extends the scope of the
StoNED method in several directions. Most notably, this chapter examines quantile
estimation using StoNED and an extension of the StoNED method to the general
case of multiple inputs and multiple outputs. This chapter also provides a detailed
discussion of how to model heteroscedasticity in the inefficiency and noise terms.
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7.1 Introduction

Efficiency analysis is an essential and extensive research area that provides answers
to such important questions as: Who are the best performing firms and can we
learn something from their behavior?1 What are the sources of efficiency differences
across firms? Can efficiency be improved by government policy or better managerial
practices? Are there benefits to increasing the scale of operations? These are examples
of important questions we hope to resolve with efficiency analyses.

Efficiency analysis is an interdisciplinary field that spans such disciplines as
economics, econometrics,2 operations research and management science,3 and en-
gineering, among others. The methods of efficiency analysis are utilized in several
fields of application including agriculture, banking, education, environment, health
care, energy, manufacturing, transportation, and utilities, among many others. Ef-
ficiency analysis is performed at various different scales. Micro level applications
range from individual persons, teams, production plants and facilities to company
level and industry level efficiency assessments. Macro level applications range from
comparative efficiency assessments of production systems or industries across coun-
tries to efficiency assessment of national economies. Indeed, efficiency improvement
is one of the key components of productivity growth (e.g., Färe et al. 1994), which
in turn is the primary driver of economic welfare. The benefits to understanding the
relationship between efficiency and productivity and quantifying efficiency cannot
be overstated. In words of Paul Krugman (1992, p. 9), “Productivity isn’t everything,
but in the long run it is almost everything. A country’s ability to improve its stan-
dard of living over time depends almost entirely on its ability to raise its output per
worker.” Note that macro-level performance of a country is an aggregate of the in-
dividual firms operating within that country. Therefore, sound micro-foundations of
efficiency analysis are critical for the integrity of productivity and efficiency analysis
at macro level.

Unfortunately, there currently is no commonly accepted methodology of effi-
ciency analysis, but the field is divided between two competing approaches: Data
envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA).4

1 We will henceforth use the term “firm” referring to any production unit that transforms inputs to
output, including both non-profit and for-profit organizations. The firm can refer to an establishment
(facility) or sub-division of a company or to an aggregate entity such as an industry, a region, or a
country.
2 Observe that 13 of the 100 most cited articles published in a leading field journal, the Journal
of Econometrics, are efficiency analysis papers, including Simar and Wilson (2007) that has 436
citations, making it the #32 most cited paper in the journal in just 6 years from its publication
(citations data gathered from Scopus, Nov 25, 2013).
3 In operations research and management science, Charnes et al. (1978) ranks #1 as most cited article
published in the European Journal of Operational Research (EJOR) and Banker et al. (1984) is the
#1 most cited article in Management Science, two of the leading journals of this field (the flagship
journals of EURO and INFORMS, respectively). In fact, Charnes et al. article has more than five
times more citations than the 2nd most cited paper in EJOR (Nov 25, 2013).
4 Citation statistics of some of the key papers provide undisputable evidence about the significant
influence of this field. The four most cited papers are Charnes et al. (1978) with 6152 citations,
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Data envelopment analysis (DEA, Farrell 1957; Charnes et al. 1978) is an ax-
iomatic, mathematical programming approach to efficiency analysis. DEA’s main
advantage compared to econometric, regression-based tools is its nonparametric
treatment of the frontier, building upon axioms of production theory such as free
disposability (monotonicity), convexity (concavity), and constant returns to scale
(homogeneity). DEA does not assume any particular functional form for the fron-
tier or the distribution of inefficiency. It’s direct, data-driven approach is helpful
for communicating the results of efficiency analysis to decision-makers. However,
the main shortcoming of DEA is that it attributes all deviations from the frontier to
inefficiency. This is often a heroic assumption.

Stochastic frontier analysis (SFA,Aigner et al. 1977; Meeusen and van den Broeck
1977) is often, incorrectly, viewed as a direct competitor of DEA. The key strength
of SFA is its probabilistic modeling of deviations from the frontier, which are de-
composed into a non-negative inefficiency term and an idiosyncratic error term that
accounts for omitted factors such as unobserved heterogeneity of firms and their oper-
ating environments, random errors of measurement and data processing, specification
errors, and other sources of noise. In contrast to DEA, SFA utilizes parametric regres-
sion techniques, which require ex ante specifications of the functional forms of the
frontier and the inefficiency distribution. Since the economic theory rarely justifies a
particular functional form, flexible functional forms such as translog are frequently
used. However flexible functional forms often violate axioms of production theory,
whereas imposing the axioms will reduce flexibility. In summary, the DEA and SFA
methods are not direct competitors but rather complements: in the tradeoff between
DEA and SFA something is sacrificed for something to be gained. Namely DEA
does not model noise, but is able to impose axiomatic properties and estimate the
frontier non-parametrically, while SFA cannot impose axiomatic properties, but has
the benefit of modeling inefficiency and noise.

Bridging the gap between axiomatic DEA and stochastic SFA was for a long time
one of the most vexing problems in the field of efficiency analysis. The recent works
on convex nonparametric least squares (CNLS) by Kuosmanen (2008), Kuosmanen
and Johnson (2010), and Kuosmanen and Kortelainen (2012) have led to the full
integration of DEA and SFA into a unified framework of productivity analysis, which
we refer to as stochastic nonparametric envelopment of data (StoNED).5

We see the development of StoNED as a paradigm shift for efficiency analysis. It
is no longer necessary to decide if modeling noise is more important than imposing
axioms of production theory: we can do both using StoNED. The unified framework
of StoNED offers deeper insights to the foundations of DEA and SFA, but it also
provides a more general and flexible platform for efficiency analysis and related

Banker et al. (1984) with 3415 citations, Farrell (1957) with 3296 citations, and Aigner et al. (1977)
with 1875 citations (Scopus, Nov 25, 2013).
5 The term StoNED was coined by Kuosmanen (2006). By request of referees, Kuosmanen and
Kortelainen (2012) used the term stochastic “non-smooth” envelopment, as their model specification
involves parametric distributional assumptions. In this chapter we show that the distributional
assumptions can be relaxed: see Sect. 7.5.2.3 and 7.6.2.
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themes such as frontier estimation and production analysis. Further, a number of
extensions to the original DEA and SFA methods have been developed over the past
decades. The unified StoNED framework allows us to combine the existing tools of
efficiency analysis in novel ways across the DEA-SFA spectrum, facilitating new
opportunities for further methodological development.

The main objective of this chapter is to provide an updated and elaborated pre-
sentation of the CNLS and StoNED methods, the most promising new tools for
axiomatic nonparametric frontier estimation and efficiency analysis under stochas-
tic noise. Our secondary objective is to extend the scope of the StoNED method in
several dimensions. This chapter provides the first extension of the StoNED method
to the general case of multiple inputs and multiple outputs. We also consider quan-
tile estimation using StoNED, and present a detailed discussion of how to model
heteroscedasticity in the inefficiency and noise terms.

The rest of this chapter is organized as follows. Section 7.2 introduces the unified
StoNED framework and its special cases by reviewing alternative sets of assumptions
that motivate different estimation methods applied in productivity analysis. Our focus
is explicitly on the axiomatic DEA-style approaches. Section 7.3 presents the CNLS
regression as a quadratic programming problem. Section 7.4 discusses the intimate
connections between CNLS and DEA, and introduces a step-wise C2NLS estimator.
Section 7.5 further develops the step-wise estimation approach for the StoNED esti-
mator. Section 7.6 reviews some important extensions to the StoNED, including the
multiplicative formulation (Sect. 7.6.1), observations from multiple time periods that
make up a panel data (Sect. 7.6.2), directional distance functions (DDF) for mod-
eling multiple output variables (Sect. 7.6.3), and quantile regression formulation
(Sect. 7.6.4). The model of contextual variables that represent operational condi-
tions or practices is examined in detail in Sect. 7.7. Testing of heteroscedasticity and
modeling heteroscedasticity of inefficiency and noise using a doubly-heteroscedastic
model discussed in Sect. 7.8. Finally, Sect. 7.9 concludes with discussion of some
promising avenues of future research.

7.2 Unified Frontier Model

To maintain direct contact with the SFA literature, we introduce the unified model
of frontier production function in the multiple input, single output case. Multiple
outputs can be modeled using cost functions (see Kortelainen and Kuosmanen 2012,
Sect. 7.4.4; and Kuosmanen 2012) and distance functions. A general multi-input
multi-output directional distance function model will be introduced in Sect. 7.6.3.

Production technology is represented by a frontier production function f (x), where
x is a m-dimensional input vector.6 Frontier f (x) indicates the maximum output that

6 For clarity, we denote vectors by bold lower case letters (e.g., x) and matrices by bold capital
letters (e.g., Z). All vectors are column vectors, unless otherwise indicated. Note: x′ denotes the
transpose of vector x.
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can be produced with inputs x, and hence the function f (x) characterizes the boundary
of the production possibility set. We assume that function f belongs to the class of
continuous, monotonic increasing, and globally concave functions that can be non-
differentiable (we denote this class as F2). This is equivalent to stating that the
production possibility set satisfies the classic DEA assumptions of free disposability
and convexity. In contrast to SFA, no specific functional form for f is assumed.

The observed output yi of firm i may differ from f (xi) due to inefficiency and
noise. We follow the SFA literature and introduce a composite error term εi = vi−ui ,
which consists of the inefficiency term ui > 0 and the stochastic noise term vi ,
formally,

yi = f (xi) + εi
= f (xi) − ui + vi , i = 1, . . ., n (7.1)

Variables ui and vi (i = 1, . . ., n) are random variables that are assumed to be statisti-
cally independent of each other as well as of inputs xi . We assume that the inefficiency
term has a positive mean and a constant finite variance, that is, E(ui) = μ > 0 and
V ar(ui) = σ 2

u < ∞. We further assume zero mean noise with a constant finite
variance, that is, E(vi) = 0 and V ar(vi) = σ 2

v <∞. Assuming σ 2
u and σ 2

v are con-
stant across firms is referred to as homoscedasticity; models with heteroskedastic
inefficiency and noise will be discussed in Sect. 7.8. For the sake of generality and to
maintain the fully nonparametric orientation, we do not introduce any distributional
assumptions for ui or vi at this point. However, some estimation techniques to be
introduced below require additional parametric assumptions.

In model (7.1), the deterministic part (i.e., production function f ) is defined anal-
ogous to the DEA literature, while the stochastic part (i.e., composite error term εi)
is defined similar to SFA. As a result, model (7.1) encompasses the classic models
of the SFA and DEA literature as its constrained special cases. Note that in this
chapter we use the term “model” in the sense of the econometric literature to refer
to the description of the data generating process (DGP). DEA and SFA are alter-
native estimators or methods for estimating the production function f, the expected
inefficiency μ, and the firm-specific realizations of the random inefficiency term ui .
We note that in the DEA literature it is common to use the term “model” for the
linear programming problem (e.g., LP model) or other mathematical programming
formulations for computing the estimator. To avoid confusion, we will follow the
econometric terminology and refer to Eq. (7.1) and the related assumptions as the
model, whereas DEA, SFA, CNLS, and StoNED are referred to as estimators. In
this terminology, “DEA model” or “SFA model” refer to the specific assumptions
regarding the variables of model (7.1).

The literature of efficiency analysis has conventionally focused on fully paramet-
ric or nonparametric versions of model (7.1). Parametric models postulate a priori a
specific functional form for f (e.g., Cobb-Douglas, translog, etc.) and subsequently
estimate its unknown parameters. In contrast, axiomatic nonparametric models as-
sume that f satisfies certain regularity axioms (e.g., monotonicity and concavity), but
no particular functional form is assumed. At this point, we must emphasize that the
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term nonparametric does not necessarily imply that there are no restrictive assump-
tions. It is not true that the assumptions of a nonparametric model are necessarily
less restrictive than those of a parametric model. For example, the fully nonpara-
metric DEA estimator of model (7.1) is based on the assumption of no noise (i.e.,
vi = 0 for all firms i). Assuming away noise does not require any specific parametric
specification, but it is nevertheless a restrictive assumption. In fact, it is less restric-
tive to impose parametric structure and assume vi are identically and independently
distributed according to the normal distribution N (0, σ 2

v ). Note that this parametric
specification contains the fully nonparametric “deterministic” case of no noise as its
restricted special case, obtained by imposing the parameter restriction σ 2

v = 0.
In addition to the pure parametric and nonparametric alternatives, the intermediate

cases of semiparametric and semi-nonparametric models have become increasingly
popular in recent years. However, the exact meaning of this terminology is often
confused. Chen (2007) provides an intuitive and useful definition that we find worth
quoting:

An econometric model is termed “parametric” if all of its parameters are in finite di-
mensional parameter spaces; a model is “nonparametric” if all of its parameters are
in infinite-dimensional parameter spaces; a model is “semiparametric” if its parameters
of interests are in finite-dimensional spaces but its nuisance parameters are in infinite-
dimensional spaces; a model is “semi-nonparametric” if it contains both finite-dimensional
and infinite-dimensional unknown parameters of interests. Chen (2007), p. 5552, footnote 1.

Note that according to the above definition both the semiparametric and semi-
nonparametric model contain a nonparametric part and a parametric part. The
distinction between the terms semiparametric and semi-nonparametric is subjective,
dependent on whether we are interested in the empirical estimates of the nonpara-
metric part or not. The same model can be either semiparametric, if our main interest
is in the parameter estimates of the parametric part and the nonparametric part is of
no particular interest, or semi-nonparametric, if we are interested in the results of
the nonparametric part.

Model (7.1) can be interpreted as a neoclassical or frontier model depending on
the interpretation of the disturbance term (cf., Kuosmanen and Fosgerau 2009). The
neoclassical model assumes that all firms are efficient and disturbances are random,
uncorrelated noise terms. Frontier models typically assume that all or some part of
the deviations from the frontier are attributed to systematic inefficiency.

Table 7.1 combines the criteria described above to identify six alternative esti-
mation methods commonly used for estimating the variants of the unified model
(7.1), together with some canonical references. On the parametric side, OLS refers
to ordinary least squares, PP means parametric programming, COLS is corrected
ordinary least squares, and SFA is stochastic frontier analysis (see, e.g., Kumb-
hakar and Lovell 2000, for an introduction to the parametric approach to efficiency
analysis). The focus of this chapter is on the axiomatic nonparametric and semi-
nonparametric variants of model (7.1): CNLS refers to convex nonparametric least
squares (Sect. 7.3), DEA is data envelopment analysis (Sect. 7.4.1), C2NLS is cor-
rected convex non-parametric least squares (Sect. 7.4.2), and StoNED is stochastic
nonparametric envelopment of data (Sect. 7.5).



7 Stochastic Nonparametric Approach to Efficiency Analysis. . . 197

Table 7.1 Classification of methods

Parametric Nonparametric

Central tendency OLS
Cobb and Douglas
(1928)

CNLS (Sect. 7.3)
Hildreth (1954)
Hanson and Pledger
(1976)

Deterministic frontier Sign constraints PP
Aigner and Chu (1968)
Timmer (1971)

DEA (Sect. 7.4.1)
Farrell (1957)
Charnes et al. (1978)

2-step estimation COLS
Winsten (1957)
Greene (1980)

C2NLS (Sect. 7.4.2)
Kuosmanen and
Johnson (2010)

Stochastic frontier SFA
Aigner et al. (1977)
Meeusen and van den
Broeck (1977)

StoNED (Sect. 7.5)
Kuosmanen and
Kortelainen (2012)

7.3 Convex Nonparametric Least Squares

In this section we consider the special case of model (7.1) where the composite error
term ε consists exclusively of noise v, and there is no inefficiency (i.e., we assume
u= 0). This special case is relevant for modeling firms that operate in the competitive
market environment, which meets (at least by approximation) the conditions of
perfect competition considered in microeconomic theory. We will relax this no
inefficiency assumption from Sect. 7.4 onwards, but the insights gained in this
section will be critical for understanding the developments in the following sections.

In the case of a symmetric zero-mean error term that satisfies E(εi)= 0 for all i,
the expected value of output conditional on inputs equals the value of the production
function, that is,

E(yi |xi) = E(f (xi)) + E(εi) = f (xi).

Therefore, in this setting the production function f can be estimated by nonparametric
regression techniques. Note that the term “regression” refers to the conditional mean
E(yi |xi).

Hildreth (1954) was the first to consider nonparametric regression subject to
monotonicity and concavity constraints in the case of a single input variable x (see
also Hanson and Pledger 1976). Kuosmanen (2008) extended Hidreth’s approach to
the multivariate setting with a vector-valued x, and coined the term convex nonpara-
metric least squares (CNLS) for this method. CNLS builds upon the assumption
that the true but unknown production function f belongs to the set of continuous,
monotonic increasing and globally concave functions, F2, imposing exactly the same
production axioms as standard DEA.
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The CNLS estimator of function f is obtained as the optimal solution to the infinite
dimensional least squares problem

min
f

n∑

i=1

(yi − f (xi))2

subject to

f ∈ F2 (7.2)

The functional form of f is not specified beforehand. Rather, the optimal solution
will identify the best-fit function f from the family F2. Note that set F2 includes an
infinite number of functions, which makes problem (7.2) impossible to solve through
brute force trial and error. Further, problem (7.2) does not generally have a unique
solution for any arbitrary input vector x, but a unique solution exists for estimating f
for the observed data points (xi , yi), i = 1, . . ., n. Therefore, we will next discuss the
estimation of f for the observed data points and extrapolation to unobserved points
in sub-section 7.3.2.

7.3.1 CNLS Estimator for the Observed Data Points

A unique solution to problem (7.2) for the observed data points (xi , yi), i = 1, . . ., n,
can be found by solving the following finite dimensional quadratic programming
(QP) problem

min
α,β,ε

n∑

i=1

(εCNLS
i )

2

subject to

yi = αi + β′ixi + εCNLS
i ∀i

αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i (7.3)

where αi and βi define the intercept and slope parameters of tangent hyperplanes
that characterize the estimated piece-wise linear frontier (note that β′ixi = βi1xi1 +
βi2xi2 + ... + βimxim). Symbol εCNLS

i denotes the CNLS residual, which is an
estimator of the true but unobserved εi = vi . Note that in (7.3) the Greek letters are
variables and the Latin letters are parameters (i.e., (xi , yi) are observed data).

Kuosmanen (2008) introduced the QP formulation (7.3), and proved its equiva-
lence with the infinite dimensional optimization problem (7.2). Specifically, if we
denote the value of the objective function in the optimal solution to the infinite di-
mensional CNLS formulation (7.2) by SSECNLS (SSE = the sum of squares of errors),
and that of the finite QP problem (7.3) by SSEQP , then the equivalence can be stated
as follows.
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Theorem 1 SSECNLS = SSEQP .

Proof. See Kuosmanen (2008), Theorem 2.1.
The equivalence result does not restrict to the objective functions, the optimal

solution to problem (7.3) also provides us unique estimates of function f for the
observed data points. Once the optimal solution is found, we will add “hats” on top
of α̂i , β̂i , and ε̂CNLS

i , and refer to them as estimators.7 In other words, αi , βi , and
εCNLS
i are variables of problem (7.3), whereas estimators α̂i , β̂i , and ε̂CNLS

i provide
the optimal solution to problem (7.3). Given α̂i and β̂i from (7.3), we define

f̂ CNLS(xi) = α̂i + β̂
′
ixi = yi − ε̂CNLS

i . (7.4)

This estimator of function f satisfies the following properties:

Theorem 2 In the case of the neoclassical model with no inefficiency, f̂ CNLS(xi)
is a unique, unbiased and consistent estimator of f (xi) for the observed data points
(xi , yi), i = 1, . . ., n.

Proof. Uniqueness is proved by Lim and Glynn (2012), Proposition 1. Unbiased-
ness follows from Seijo and Sen (2011), Lemma 2.4. Consistency is proved under
slightly different assumptions in Seijo and Sen (2011), Theorems 3.1 and 3.2, and
Lim and Glynn (2012), Theorems 1 and 2.

The constraints of the QP problem (7.3) have the following compelling interpreta-
tions.8 The first constraint of the least squares formulation (7.3) is a linear regression
equation. However, the CNLS regression does not assume linear f. note that coeffi-
cients αi and βi are specific to each observation i. Using the terminology of DEA,
αi and βi are directly analogous to the multiplier coefficients of the dual formulation
of DEA. The inequality constraints in (7.3) can be interpreted as a system of Afriat
inequalities (compare with Afriat 1967, 1972; and Varian 1984). As Kuosmanen
(2008) emphasizes, the Afriat inequalities are the key to modeling the concavity
axiom in the general multiple regression setting.

Coefficients αi and βi should not be misinterpreted as parameters of the estimated
function f, but rather, as parameters characterizing tangent hyperplanes to an un-
known production function f. These coefficients characterize a convex piece-wise
linear function, to be examined in more detail the next sub-section. At this point, we
must emphasize that we did not assume or restrict the domain F2 to only include
piece-wise linear function. In fact, it turns out that the “optimal” functional form
to solving the infinite dimensional least squares problem (7.2) is always a convex
piece-wise linear function characterized by coefficients αi and βi . However, this
optimal solution is unique only for the observed data points.

7 In application, when estimators are calculated for a specific data set we will refer to these as
estimated parameters.
8 Note this formulation is written for ease of interpretation. Other formulations might be preferred
to improve computational performance.
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7.3.2 Extrapolating to Unobserved Points

In many applications we are interested in estimating the frontier not only for the
observed data points, but also for unobserved input vectors x. Although the CNLS
estimator is unique for the observed data points, there is no unique way of extrap-
olating the CNLS estimator to unobserved points. In general, the optimal solution
to the infinite dimensional least squares problem (7.2) is not unique, but there exists
a set of functions f ∗ ∈ F ∗

2 that solve the optimization problem (7.2). Formally, we
denote the set of alternate optima to (7.2) as

F ∗
2 =

{
f ∗

∣∣∣∣∣f
∗ = arg min

f∈F2

n∑

i=1

(yi − f (xi))2

}
.

Kuosmanen (2008) characterizes the minimum and maximum bounds for the func-
tions f ∗ ∈ F ∗

2 . It turns out that both bounds are piece-wise linear functions. However,
only the minimum bound satisfies the postulated monotonicity and concavity proper-
ties. To resolve the non-uniqueness issue, Kuosmanen and Kortelainen (2012) appeal
to the minimum extrapolation principle and propose to use the lower bound

f̂ CNLS
min (x) = min

α,β

{
α + β′x

∣∣α + β′xi ≥ f̂ CNLS(xi) ∀i = 1, . . ., n
}

(7.5)

Note that the lower bound f̂ CNLS
min is simply the DEA estimator (single output, variable

returns to scale) applied to the observed inputs xi and the fitted outputs f̂ CNLS(xi)
obtained from Eq. (7.4).9 The lower bound function satisfies the postulated properties
of monotonicity and concavity. We can make the following connection between the
lower bound (7.5) and the infinite dimensional CNLS problem (7.2).

Theorem 3 Function f̂ CNLS
min stated in Eq. (7.5) is one of the optimal solutions to the

infinite dimensional optimization problem (7.2). It is the unique lower bound for the
functions that solve problem (7.2), formally

f̂ CNLS
min (x) ≤ f ∗(x) for all x ∈ �m+ and f ∗ ∈ F ∗

2 .

Proof. See Kuosmanen (2008) Theorem 4.1.
Note that while f̂ CNLS is unbiased and consistent for the observed points xi

(Theorem 3), the use of the piece-wise linear minimum function f̂ CNLS
min will cause

downward bias in finite samples as we apply the minimum extrapolation principle to
extrapolate to unobserved points x. Within the observed range of data, the downward
bias will diminish as the sample size increases.

It is also worth noting that the optimal solution to the QP problem (7.3) does
not necessarily produce unique coefficients α̂i and β̂i . Although f̂ CNLS

min is a unique

9 In addition to the use of DEA to identify the lower bound function, there is a more fundamental
connection between CNLS and DEA, to be explored in Sect. 7.4.
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lower bound, consistent with the minimum extrapolation principle, the coefficients
α̂i and βi obtained as the optimal solution to (7.5) need not be unique either. It is
well-known in the DEA literature that these multiplier coefficients are not unique in
the vertices of the piece-wise linear function.

7.3.3 Computational Issues

The CNLS problem (7.3) has linear constraints and a quadratic objective function,
hence it can be solved by QCP solvers such as CPLEX or MOSEK.10 Standard
solvers work well in relatively small sample sizes (50–200 firms) available in the
majority of published applications of efficiency analysis. However, since the number
of Afriat inequalities in (7.3) grows at a quadratic rate as a function of the number of
observations, the computational burden becomes a significant issue when the sample
size increases beyond 300 firms. Note that adding a new firm to the sample increases
the number of unknown parameters by m+ 2, and the number of Afriat inequality
constraints increases by 2n. Introducing an additional input variable increases the
number of unknown parameters by n, but there is no impact on the number of
constraints. For these reasons, standard QP algorithms are inadequate for handling
large samples with several hundreds or thousands of observations.

As a first step towards improving computational performance in small samples
and to allow for larger problems to be solved, Lee et al. (2013) propose to follow
the strategy of Dantzig et al. (1954, 1959) to iteratively identify and add violated
constraints. The algorithm developed by Lee et al. first solves a relaxed CNLS
problem containing an initial set of constraints, those that are likely to be binding, and
then iteratively adds a subset of the violated concavity constraints until a solution that
does not violate any constraint is found. In computational experiments, this algorithm
allowed problems with up to 1000 firms to be solved. Therefore, this algorithm has
practical value especially in large sample applications and simulation-based methods
such as bootstrapping or Monte Carlo studies. Another recent study by Hannah and
Dunson (2013) implements CNLS in Matlab, reporting promising results. However,
further algorithm development is needed to make the CNLS problem computable in
very large sample sizes containing several thousands or millions of observations.

7.4 Deterministic Frontiers

In this section we consider another special case of model (7.1) where the composite
error term ε consists exclusively of inefficiency u, and there is no noise (i.e., v= 0).
In the SFA literature, this special case is commonly referred to as the deterministic
model. This does not imply, however, that probabilistic inferences are impossible.

10 Examples of computational codes for GAMS are available on the StoNED website:
www.nomepre.net/stoned/.
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Banker (1993) was the first to show that DEA can be understood as a maxi-
mum likelihood estimator of the deterministic model, with a statistical (probabilistic)
foundation. However, the known statistical properties and inferences in the DEA lit-
erature restrict to the finite sample error that generally diminishes as the sample size
increases. Or stated differently, the model specification and input and output data in
the deterministic model are assumed to be exact and correct, so the only probabilistic
component is the random sample of observations drawn from the production pos-
sibility set. This same deterministic model and its associated statistical foundation
are used for inference in the bootstrapping methods (e.g., Simar and Wilson 1998,
2000). Thus, statistical inference and confidence intervals estimated using bootstrap-
ping methods only account for uncertainty in sampling and do not account for other
sources of random variation or noise. Thus, bootstrap confidence intervals of DEA
are not directly comparable to confidence intervals of other models that are genuinely
stochastic in their nature (e.g., the SFA confidence intervals).

It is important to recognize that if the no noise assumption (v= 0) of the de-
terministic model does not hold, the statistical foundations of DEA collapse. The
bootstrapping methods to adjust for the small sample are not a remedy against noise,
rather adjusting for the sampling bias can make the DEA estimator worse if data
are perturbed by noise. The stochastic case that includes both inefficiency and noise
simultaneously will be considered in Sect. 7.5. The purpose of this section is to
establish some useful connections between the ‘neoclassical’ CNLS and the ‘deter-
ministic’ DEA to develop a unified framework and pave the way for a stochastic
nonparametric StoNED estimator.

7.4.1 DEA as Sign-Constrained CNLS

In the single-output case, the variable returns to scale (VRS) DEA estimator of
production function f can be stated as

f̂ DEA(x) = min
α,β

{
α + β′x

∣∣α + β′xi ≥ yi ∀i = 1, . . ., n
}

= max
λ

{
n∑

h=1

λhyh

∣∣∣∣∣x ≥
n∑

h=1

λhxh ;
n∑

h=1

λh = 1

}
(7.6)

Note the difference between formulations (7.5) and (7.6): the former one uses the
estimated output values f̂ CNLS(xi), whereas in the latter one uses the observed out-
puts yi . Otherwise the formulations (7.5) and (7.6) are equivalent. The minimization
formulation in (7.6) can be interpreted as the DEA multiplier formulation, whereas
the maximization formulation of (7.6) is known as the DEA envelopment formula-
tion. The duality theory of linear programming implies that the two formulations are
equivalent.
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Consider next a version of the CNLS estimator with an additional sign constraint
on the residuals

min
α,β,ε

n∑

i=1

(εCNLS−
i )

2

subject to

yi = αi + β′ixi + εCNLS−
i ∀i

αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i
εCNLS−
i ≤ 0 ∀i (7.7)

Comparing (7.3) and (7.6), we see that the only difference is the last constraint
of (7.7), which is not present in the original CNLS formulation. Due to the sign
constraint, Kuosmanen and Johnson (2010) interpret (7.6) as an axiomatic, nonpara-
metric counterpart to the classic parametric programming approach of Aigner and
Chu (1968).

We now establish the formal connection between CNLS and DEA as follows. Let
f̂ CNLS−

min (x) denote the piece-wise linear function obtained by applying Eq. (7.5) to
the observed inputs xi and the fitted values ŷi of the sign-constrained formulation
(7.7).

Theorem 4 The sign-constrained CNLS estimator is equivalent to the DEA VRS
estimator:

f̂ CNLS−
min (x) = f̂ DEA(x)

Proof. Follows directly from Theorem 3.1 in Kuosmanen and Johnson (2010).
Although Theorem 4 was stated in the VRS case, the equivalence of DEA and

sign-constrained CNLS does not restrict to the VRS case. Indeed parallel results
are available for the other standard specifications of returns to scale by imposing
additional constraints on the coefficients αi in formulations (7.3) or (7.7) as follows:

Constant returns to scale (CRS): impose αi = 0 ∀i
Non-increasing returns to scale (NIRS): impose αi ≥ 0 ∀i
Non-decreasing returns to scale (NDRS): impose αi ≤ 0 ∀i

Similarly, if the convexity assumption of DEA is relaxed the free disposable hull
(FDH), Afriat (1972), estimator provides the minimum envelopment of data subject
to free disposability. Keshvari and Kuosmanen (2013) show that the FDH formulation
is a sign-constrained special case of isotonic nonparametric least squares (INLS),
which in turn is the concavity relaxed version of CNLS.

From a practical point of view, the least squares interpretation of DEA opens up
new avenues for applying tools from econometrics to DEA. For example, Kuosmanen
and Johnson (2010) propose to measure the goodness-of-fit of DEA estimator by
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using the standard coefficient of determination from regression analysis, specifically

R2 =
∑n
i=1

(
ŷi − ȳ

)2

∑n
i=1 (yi − ȳ)2

. (7.8)

Where ȳ = 1
n

n∑
i=1
yi is the average output in the sample. The R2 statistic measures

the proportion of output variation that is explained by the DEA frontier. While this
variance decomposition can be applied to any regression model (including DEA), we
note that DEA does not maximize the value of R2 and hence negative R2 values are
possible for DEA estimators. This variance decomposition assumes a single output,
however, one could compute and report separate R2 statistics for each output.

7.4.2 Corrected CNLS

DEA builds on the minimum extrapolation principle to estimate the smallest function
that envelops all data points. From the statistical point of view, insisting on the
minimum extrapolation results in a systematic downward bias (i.e., the small sample
error of DEA). For the deterministic model, Kuosmanen and Johnson (2010) show
that a consistent and asymptotically unbiased estimator is obtained by applying a
nonparametric variant of the classic COLS estimator. The proposed corrected convex
nonparametric least squares (C2NLS) estimator has always better discriminating
power than DEA: the C2NLS frontier envelops the DEA frontier everywhere, and the
probability of finding multiple efficient units in randomly generated data approaches
zero.

The C2NLS method combines the nonparametric CNLS regression with the
stepwise COLS approach first suggested by Winsten (1957), and more formally de-
veloped by Gabrielsen (1975) and Greene (1980). In this approach the most efficient
firm in the sample is considered to be fully efficient, and the remaining inefficiency
terms are normalized accordingly relative to the most efficient firm in the sample.
A widely used panel data approach by Schmidt and Sickles (1984) applies a similar
two-step approach (see Sect. 7.6.2 for details).

The essential steps of the C2NLS routine can be described as follows:

Step 1 Apply the CNLS estimator (7.3) to estimate the conditional mean output
E(yi |xi).
Step 2 Identify the most efficient unit in the sample (i.e., ûC2NLS

benchmark =
max

h∈{1,...,n}ε̂
CNLS
h ) as the benchmark. Adjust the CNLS residuals according to ûC2NLS

i =
( max
h∈{1,...,n}ε̂

CNLS
h ) − ε̂CNLS

i .

Step 3 Apply Eq. (7.5) to estimate the minimum function f̂ CNLS
min (x). Adjust the

minimum function by adding the residual of the benchmark firm to estimate the
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frontier using

f̂ C2NLS(x) = f̂ CNLS
min (x) + ûC2NLS

benchmark

Thus obtained ûC2NLS
i can be used as measures of inefficiency in the deterministic

setting without noise. The most appealing properties of the C2NLS estimator can be
summarized as follows:

Theorem 5 if σv = 0, then the C2NLS estimator is statistically consistent:

plim
n→∞

f̂ C2NLS(xi) = f (xi) f or all i = 1, . . ., n.

Proof. Follows from Theorem 4.1 in Kuosmanen and Johnson (2010).

Theorem 6 the C2NLS frontier envelops the DEA frontier, that is,

f̂ C2NLS(x) ≥ f̂ DEA(x) ∀x ∈ �m+.
Proof. Follows from Theorem 4.2 in Kuosmanen and Johnson (2010).

Note that the inefficiency estimates ûC2NLS
i are non-negative by construction,

with the value of zero indicating full efficiency. The inefficiency measures can be
converted to Farrell (1957) output efficiency scores (θ̂C2NLS

i ∈ [0,1]) by using

θ̂C2NLS
i = yi

f̂ C2NLS(xi)
= yi

yi + ûC2NLS
i

. (7.9)

7.5 Stochastic Nonparametric Envelopment of Data (StoNED)

We are now equipped to consider the general stochastic nonparametric model that
does not restrict to any particular functional form of f and includes both inefficiency
u and stochastic noise v. Before proceeding to estimation, we must emphasize that
the shift from the deterministic case to a stochastic model is rather dramatic. For
example, measuring the distance from an observed point to the frontier does not
provide a measure of inefficiency if the observed point is perturbed by noise. While
probabilistic inference in the deterministic case only investigates finite sample er-
ror, in the stochastic model the noise term is still relevant even if the sample size
approaches infinity. Clearly, when all data points are subject to noise enveloping all
observations would overestimate the true frontier production function. The CNLS
regression that fits a monotonic increasing and concave curve through the middle of
the cloud of data provides a natural starting point for the next generation of DEA
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that can deal with noise.11 Following Kuosmanen (2006), we refer to this approach
as stochastic nonparametric envelopment of data (StoNED).

Analogous to the parametric COLS and MOLS (modified OLS) estimators and the
nonparametric C2NLS, the StoNED estimator consists of multiple steps. The main
steps can be described as follows (a detailed description of each step follows below):

Step 1 Apply the CNLS estimator (7.3) to estimate the conditional mean output
E(yi |xi).
Step 2 Apply parametric methods (e.g., the method of moments or quasi-likelihood
estimation) or nonparametric methods (e.g., kernel deconvolution) to the CNLS
residuals εCNLS

i to estimate the expected value of inefficiency μ.

Step 3 Apply Eq. (7.5) to estimate the minimum function ĝCNLS
min (x). Adjust the

minimum function by adding the expected inefficiency μ to estimate the frontier
using

f̂ StoNED(x) = ĝCNLS
min (x) + μ̂

Step 4 Apply parametric methods (see e.g., Jondrow et al. 1982, JLMS hereafter) or
nonparametric deconvolution (e.g., kernel smoothing, Horrace and Parmeter 2011)
to estimate firm-specific inefficiency using the conditional mean E(ui

∣∣εCNLS
i ).

We will next describe each step in detail, noting that each step provides alternative
modeling choices (depending on the assumptions one is willing to impose), and that
it is not necessary to go through all of the steps. We discuss the information available
at the end of each step and the possible motivations for proceeding to further steps.

7.5.1 Step 1: CNLS Regression

The CNLS estimator was described in detail in Sect. 7.3 under the assumption of no
inefficiency (u= 0). If the observed outputs are subject to asymmetric inefficiency, as
the general frontier model (7.1) assumes, then the zero-mean assumption E(εi) = 0
of regression analysis is violated. Indeed, E(εi) = E(vi − ui) = −E(ui) < 0 due
to the asymmetric non-negative inefficiency term. Therefore, the CNLS estimator is
no longer a consistent estimator of the frontier production function f.

11 Banker and Maindiratta (1992) consider maximum likelihood estimation of the unified frontier
model subject to monotonicy and concavity constraints. However, their maximum likelihood prob-
lem appears to be computationally prohibitive. We are not aware of any application of this method.
Gstach (1998) presents another early attempt to incorporate noise in DEA. However, he needs to
make a rather restrictive assumption of truncated noise (see Simar and Wilson 2011, for sharp
critique of this assumption).
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Recall that CNLS regression estimates the conditional mean. Therefore, define
the conditional mean function g as12

g(xi) = E(yi |xi) = f (xi) − E(ui). (7.10)

If the random inefficiency term u is independent of inputs x, then the CNLS estimator
ĝCNLS(xi) is an unbiased and consistent estimator of function g. The CNLS estimator
ĝCNLS(xi) is obtained by solving the QP problem (7.3) and applying Eq. (7.4), as
already discussed in Sect. 7.3, so we do not reproduce the CNLS formulations again
here. Note that function g is simply the frontier production function f less the expected
value of the inefficiency term u. If the inefficiency term u has a constant variance
(i.e., inefficiency term u is homoscedastic), then the expected value of the inefficiency
term u is a constant, denoted as μ. In other words, the CNLS provides a consistent
estimator of the frontier f minus a constant. The constant μ can be estimated based
on the CNLS residuals ε̂CNLS

i , as discussed in more detail in Sect. 7.5.2. The case of
heteroscedastic inefficiency where E(ui) is no longer a constant will be examined in
Sect. 7.8.

Even if the data generating process (DGP) involves both inefficiency and noise,
the CNLS estimator may be sufficient in some applications, without a need to proceed
to the further stages. For example, if one is mainly interested in the relative efficiency
rankings, then one could rank the evaluated units in descending order according to the
CNLS residuals ε̂CNLS

i . Further, if one is mainly interested in the marginal products of
the input factors, the coefficients βi from (7.3), which are analogous to the multiplier
coefficients (shadow prices) of DEA, then the CNLS regression provides consistent
estimates (Seijo and Sen 2011). The following steps described below do not influence
the estimates of marginal products or the relative efficiency ranking of units. If one is
interested in the frontier production function, average (in)efficiency in the sample, or
cardinal firm-specific (in)efficiency estimates, then it is necessary to proceed further.

In the first step, one can impose some assumptions about returns to scale as
described in Sect. 7.4.1. In addition, alternative modeling possibilities concern the
multiplicative composite error and contextual variables are discussed as extensions
in Sects. 7.6 and 7.7.

7.5.2 Step 2: Estimation of the Expected Inefficiency

Given the CNLS residuals ε̂CNLS
i , it is possible to estimate the expected value of

the inefficiency term μ = E(ui). Note that if the variance of the inefficiency is
constant across firms (the homoscedasticity assumption), then the expectation is
taken unconditional and is constant across firms.

12 Note that we use g to denote the conditional mean function when the composite error term
contains inefficiency. This distinction was unnecessary in Sect. 7.3 because g(x)= f (x) when there
is no inefficiency present.
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Alternative approaches for estimating μ are available. We will next briefly review
the commonly used parametric approaches based on the method of moments (Aigner
et al. 1977), quasi-likelihood estimation (Fan et al. 1996), and the nonparametric
kernel deconvolution (Hall and Simar 2002).

7.5.2.1 Method of Moments

The method of moments requires some additional parametric distributional assump-
tions. The moment conditions are known at least for the commonly used half-normal
and exponential inefficiency distributions, but not for all distributions considered in
the SFA literature (e.g., the gamma distribution). In the following, we will discuss
the commonly assumed case of half-normal inefficiency and normal noise. Stated
formally, we assume

ui ∼ N+(0, σ 2
u )

and

vi ∼ N (0, σ 2
v )

The CNLS residuals are known to sum to zero
n∑
i=1
ε̂CNLS
i = 0 (Seijo and Sen 2011).

Hence, we can calculate the second and the third central moment of the residual
distribution as

M̂2 =
n∑

i=1

(ε̂CNLS
i )

2
/(n− 1) (7.11)

M̂3 =
n∑

i=1

(ε̂CNLS
i )

3
/(n− 1). (7.12)

The second central moment M̂2 is simply the sample variance of the residuals and the
third central moment M̂3 is a component of the skewness measure. The hats on top of
these statistics indicate these statistics are estimators of the true but unknown values
of the central moments. If the parametric assumptions of half-normal inefficiency
and normal noise hold, then the second and the third central moments are equal to

M2 =
[
π − 2

π

]
σ 2

u + σ 2
v (7.13)

M3 =
(√

2

π

)[
1 − 4

π

]
σ 3

u (7.14)

Note that the third moment only depends on the standard deviation of the inefficiency
distribution (σu). Thus, given the estimated M̂3 (which should be negative), we can
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estimate σu as

σ̂u =
3

√√√√√
M̂3(√

2
π

) [
1 − 4

π

] (7.15)

Subsequently, the standard deviation of the error term σv is estimated based on (7.12)
as

σ̂v =
√

M̂2 −
[
π − 2

π

]
σ̂ 2

u . (7.16)

There has been considerable discussion in the recent literature regarding the question
of how to proceed if M̂3 is positive. Carree (2002), Alminidis et al. (2009), and
Alminidis and Sickles (2012) consider alternative inefficiency distributions that allow
for positive skewness. Simar and Wilson (2010) maintain the standard distributional
assumptions, but suggest instead the use of bootstrapping method.

7.5.2.2 Quasi-likelihood Estimation

Another way to estimate the standard deviations σu, σv is to apply the quasi-likelihood
method suggested by Fan et al. (1996) (who refer to it as pseudo-likelihood). In this
approach we apply the standard maximum likelihood (ML) method to estimate the
parameters σu, σv, taking the shape of the CNLS curve as given (thus the term quasi-
likelihood, in contrast to the full information ML which would also parameterize the
coefficients of the frontier).

One of the main contributions of Fan et al. (1996) was to show that the quasi-
likelihood function can be stated as a function of a single parameter (i.e., the signal-
to-noise ratio λ = σu/σv)13 as,

lnL(λ) = −n ln σ̂ +
n∑

i=1

ln�

[−ε̂iλ
σ̂

]
− 1

2σ̂ 2

n∑

i=1

ε̂2
i , (7.17)

where

ε̂i = ε̂CNLS
i −

(√
2λσ̂

)/ [
π
(
1 + λ2

)]1/2
, (7.18)

σ̂ =
⎧
⎨

⎩
1

n

n∑

j=1

(ε̂CNLS
i )

2

/[
1 − 2λ2

π(1 + λ)
] ⎫
⎬

⎭

1/2

. (7.19)

13 The signal-to-noise ratio λ should not be confused with the intensity weights λi used in the
envelopment formulation of DEA.



210 T. Kuosmanen et al.

Symbol � denotes the cumulative distribution function of the standard normal dis-
tribution N(0,1). We first use (7.18) and (7.19) to substitute out ε̂i and σ̂ from (7.17).
We then maximize the quasi-likelihood function (7.17) by enumerating over λ val-
ues, using a simple grid search or more sophisticated search algorithms. When the
quasi-likelihood estimate λ̂ that maximizes (7.17) is found, we insert λ̂ to Eqs (7.18)
and (7.19) to obtain estimates of εi and σ . Subsequently, we can calculate estimates
of σ̂u = σ̂ λ̂/(1 + λ̂) and σ̂v = σ̂ /(1 + λ̂).

A simple practical trick to conduct quasi-likelihood estimation is to use ML algo-
rithms available for SFA in standard software packages (e.g., Stata, Limdep, or R).
By specifying the CNLS residuals ε̂CNLS

i as the dependent variable (i.e., the output)
and a constant term as an explanatory variable (input), we can trick the ML algorithm
to perform the quasilikelihood estimation. This trick can also be used for estimating
models involving contextual variables or heteroscedasticity (to be explored in Sects.
7.7 and 7.8) by applying standard ML techniques as a second step.

7.5.2.3 Nonparametric Kernel Density Estimation for the Convoluted
Residual

While both method of moments and quasilikelihood techniques require parametric
assumptions, a fully nonparametric alternative is available for estimating the signal-
to-noise ratio λ, as proposed by Hall and Simar (2002). Their strategy is to search for
a discontinuity in the residual density. The logic is that if an inefficiency term is left
truncated, to represent efficient performance, there must be a discontinuity in distri-
bution. When inefficiency is convoluted with noise, characterized by a continuous
and smooth function, the discontinuity will still exist in the convoluted variable’s
density, the estimated residuals density. Thus, Hall and Simar suggest estimating
the density of the residual using kernel methods and use these estimates to identify
the largest change in the derivative on the right-side of the distribution (in the case
of a production function and left-side in the case of the cost function). Then under
the assumption of homoscedastic noise and inefficiency, the location of the largest
change in the derivative can be used to estimate the mean inefficiency in the sample.

More formally, note that residuals ε̂CNLS
i are consistent estimators of ε+i = εi+μ.

Thus, we can apply the kernel density estimator for estimating the density function
of ε+i . Denote the kernel density estimator by fε+ . Hall and Simar (2002) show
that the first derivative of the density function of the composite error term (f ′ε) is
proportional to that of the inefficiency term (f ′u) in the neighborhood of μ. This is
due to the assumption that fu has a jump discontinuity at zero. Therefore, a robust
nonparametric estimator of expected inefficiency μ is obtained as

μ̂ = arg max
z∈ (f̂ ′ε+ (z)),

where  is a closed interval in the right tail of fε+ .
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7.5.3 Step 3: Estimating the Frontier Production Function

In the presence of asymmetric inefficiency, the CNLS estimator estimates the condi-
tional mean function g(xi) = f (xi)−μ. Having estimated the expected inefficiency
μ in Step 2, we can easily adjust the CNLS estimator to obtain an estimator of the
frontier f. However, recall from Sect. 7.3 that the CNLS estimator of g is unique at
the observed points xi (i= 1,. . . , n) but not in unobserved x. Therefore, Kuosmanen
and Kortelainen (2012) recommend applying the lower bound of g (analogous to Eq.
(7.5)), defined as

ĝCNLS
min (x) = min

α,β

{
α + β′x

∣∣α + β′xi ≥ ĝCNLS(xi) ∀i = 1, . . ., n
}
. (7.20)

We can subsequently add the expected inefficiency μ to estimate the frontier using

f̂ StoNED(x) = ĝCNLS
min (x) + μ̂.

This equation summarizes the relation between the StoNED frontier and the CNLS
estimator as well as the relation between the frontier function f and the conditional
mean function g. The heteroscedastic case where the shapes of the frontier f and the
regression E(yi |xi) are different will be discussed in Sect. 7.8 below.

7.5.4 Step 4: Estimating Firm-Specific Inefficiencies

Measuring the distance from an observation to frontier is not enough for estimating
efficiency in the stochastic setting because all observations are subject to noise. Hence
the measured distance to frontier consists of both inefficiency and noise (plus any
error in our frontier estimate).

We must emphasize that even though there exist statistically unbiased and con-
sistent methods for the estimation of the frontier f, there is no consistent method for
estimating firm-specific efficiencies u in the cross-sectional setting subject to noise.
In a cross-section, estimating firm-specific realizations of a random variable ui is im-
possible because we have only a single observation of each firm and all observations
are perturbed by noise. This is not a fault of the methods (let alone their developers),
it is just impossible to predict a realization of random variable based on a single
observation that is subject to noise.

In the normal—half-normal case, Jondrow et al. (1982) (JLMS) develop a for-
mula for the conditional distribution of inefficiency ui given εi . The commonly used
JLMS estimator for inefficiency is the conditional mean E(ui

∣∣εi). Given the pa-
rameter estimates σ̂u and σ̂v, the conditional expected value of inefficiency can be
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calculated as 14

E(ui
∣∣ε̂i) = σ̂uσ̂v√

σ̂ 2
u + σ̂ 2

v

⎡

⎢⎢⎣

φ

(
ε̂i σ̂u

σ̂v

√
σ̂ 2

u+σ̂ 2
v

)

1 −�
(

ε̂i σ̂u

σ̂v

√
σ̂ 2

u+σ̂ 2
v

) − ε̂i σ̂u

σ̂v

√
σ̂ 2

u + σ̂ 2
v

⎤

⎥⎥⎦, (7.21)

where φ is the density function of the standard normal distribution N(0,1), � is the
corresponding cumulative distribution function, and

ε̂i = ε̂CNLS
i − σ̂u

√
2/π

is the estimator of the composite error term (compare with (7.18)). It is worth to
note that there is nothing “stochastic” in the Eq. (7.21): the JLMS formula is a
simply a deterministic transformation of the CNLS residuals ε̂CNLS

i to a new metric
that represents the conditional expected value of the inefficiency term. Indeed, the
rank correlation of the CNLS residuals ε̂CNLS

i and the JLMS inefficiency estimates is
equal to one (see Ondrich and Ruggiero 2001). For the purposes of relative efficiency
rankings, the CNLS residuals ε̂CNLS

i are sufficient.
Horrace and Parmeter (2011) show that the parametric assumption of the inef-

ficiency distribution can be relaxed. Their approach still requires the parametric
assumption of normally distributed noise. Rather than assuming a specific paramet-
ric distribution for the inefficiency term, the authors assume the density of u belongs
to the ordinary smooth family of distributions, which includes exponential, gamma
or Laplace (see also Fan 1991). They apply Hall and Simar’s (2002) method to es-
timate the jump discontinuity and thus the signal to noise ratio. Given the mean
inefficiency level the authors are then able to construct the full density distribution
of the inefficiency term using kernel smoothing and the residuals from a conditional
mean estimation.

7.5.5 Statistical Specification Tests of the Frontier Model

As discussed above, the StoNED estimator consists of four steps. If all firms are
efficient and deviations from the frontier are due to noise, the step 1 of estimating
the conditional mean function is sufficient, and there is no reason to proceed further
to step 2 of estimating the mean inefficiency to step 3 shifting the conditional mean
function or step 4 estimating firm specific inefficiencies. To determine whether one
should proceed from step 1 further to step 2, the efficiency analyst may want to
test the data for evidence of inefficiency. If the results of a statistical specification
test indicate that there is significant inefficiency present, this can be a convincing
argument even for skeptics who believe that markets function efficiently.

14 Note that Eq. (7.21) corrects the errors noted in formulations stated by Kuosmanen and
Kortelainen (2012) and Keshvari and Kuosmanen (2013).
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The residual ε̂CNLS
i consists of two components, a normally distributed noise term

and a left-truncated inefficiency term. Schmidt and Lin (1984) propose a test of
the skewness of the residuals as a method to investigate if inefficiency is present.
By only looking at the skewness, the method is robust to the common alternative
specifications of the inefficiency term in the stochastic frontier model. Thus, the null
hypothesis is the residuals are normally distributed and a

√
b1 test calculated as

√
b1 = M3

(M2)3/2
(7.22)

Where M2 and M3 are, the second and third moments of the residuals respectively.
The distribution of the skewness test statistic,

√
b1 can be constructed by a simple

Monte Carlo simulation as described in D’Agostino and Pearson (1973). The authors
also provide tables with critical values of the proposed test statistic for different
sample sizes.

Kuosmanen and Fosgerau (2009) consider a fully nonparametric specification test
that relaxes the normality assumption of the noise term. They show that the same test
statistic

√
b1 considered by Schmidt and Lin (1984) can be used for testing the null

hypothesis of a symmetric v against the alternative hypothesis of skewness. They
also recognize the

√
b1 can wrongly reject the null hypothesis if the distribution is

symmetric but has fat tails. Thus, they propose the additional b2 test of the fourth
moment

b2 = M4

(M2)2 (7.23)

WhereM2 andM4 are the second and fourth moments of the residuals respectively.
The null hypothesis is that the distribution is normally distributed. The alternative
hypothesis is that there is non-normal kurtosis. The results of the

√
b1 and b2 tests

can be given the following interpretation:

• If the null hypothesis of normality is rejected in the
√
b1 test but maintained in

the b2 test, there is strong evidence in favor of a frontier model.
• If the null hypothesis of normality is maintained both in the

√
b1 and b2 tests, this

supports the hypothesis of a competitive market with no inefficiency present.
• If the null hypothesis is rejected in the b2 test, there may be data problems or

model misspecification. There is no conclusive evidence in favor or against the
frontier model.

It is worth noting that the power of the test depends on how specifically the null
hypothesis and the alternative hypothesis are stated. For example, the

√
b1 test of

normality is more powerful than the fully nonparametric test of symmetry. If we are
willing to impose some distributional assumptions for the inefficiency term, then
more powerful specification tests are available. For example, Coelli (1995) proposed
a variant of the Wald test to test the null hypothesis that there is no inefficiency, i.e.
σ 2

u = 0, against the alternative σ 2
u > 0. While imposing distributional assumptions

can increase the power of the test, it will also increase the risk of misspecification,
which would make the statistical test inconsistent.
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7.6 Extensions

7.6.1 Multiplicative Composite Error Term

Most SFA studies use Cobb-Douglas or translog functional forms where inefficiency
and noise affect production in a multiplicative fashion. In the present context, it is
worth noting that the assumption of constant returns to scale (CRS) would also require
multiplicative error structure, as will be discussed in more detail below. Further, a
multiplicative error specification implies a specific model of heteroscedasticity in
which the variance of the composite error term increases with firm size.

Multiplicative composite error structure is obtained by rephrasing model (7.1) as

yi = f (xi) · exp (εi) = f (xi) · exp (vi − ui) (7.24)

Applying the log-transformation to Eq. (7.23), we obtain

ln yi = ln f (xi) + εi . (7.25)

Note that the log-transformation cannot be applied directly to inputs x—it must be
applied to the production function f.

In the multiplicative case, the CNLS formulation (7.3) can be rephrased as

min
α,β,φ,ε

n∑

i=1

(εCNLS
i )2

subject to

ln yi = ln (φi + 1) + εCNLS
i ∀i

φi + 1 = αi + β′ixi ∀i
αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i (7.26)

where φi + 1 is the CNLS estimator of E(yi |xi). The value of one is added here to
make sure that the computational algorithms do not try to take logarithm of zero. The
first equality can be interpreted as the log transformed regression equation (using the
natural logarithm function ln(.)). The second through fifth constraints are similar to
(7.3) with the exception observed output in (7.3) is replaced with φi + 1. The use
of φi allows the estimation of a multiplicative relationship between output and input
while assuring convexity of the production possibility set in original input-output
space.15

15 If we apply the log transformation directly to input data, the resulting frontier would be a piece-
wise log-linear frontier, which has been considered in the DEA literature by Charnes et al. (1982) and
Banker and Maindiratta (1986). Unfortunately, the piece-wise log-linear frontier does not generally
satisfy the concavity of f.



7 Stochastic Nonparametric Approach to Efficiency Analysis. . . 215

Note that the log-transformation of a model variable renders the optimization for-
mulation as a nonlinear programming (NLP) problem. These constraints are shown
separately to illustrate the connection to previous formulations, but the first equality
constraint can be moved to the objective function by solving and substituting for
ε̂CNLS
i . Thus we have a convex solution space and a nonlinear objective function.

This formulation can be solved by standard nonlinear programming algorithms and
solvers. NLP solvers are available for example in such mathematical programming
packages as GAMS, AIMMS, Matlab, and Lindo, among others.

In the multiplicative case, the CNLS estimator (7.25) can be applied, or as the
first step of the C2NLS or StoNED estimation routine. The standard method of
moment, quasi-likelihood and kernel deconvolution techniques apply, as described
in Sect. 7.5. However, note that in step 3 the frontier production function is obtained
as f̂ StoNED(xi)ĝCNLS

min (x) ·exp(μ̂), where ĝCNLS
min (x) is the minimum function computed

using Eq. (19.5) and exp(μ̂) is the estimated average efficiency. A convenient feature
of the multiplicative model is that exp(ui) can be interpreted as the Farrell output
efficiency measure.

7.6.2 Panel Data

In panel data the sample of firms is observed repeatedly over multiple time periods.
Panel data applications are common in the SFA literature and a number of alternative
SFA models involving time invariant and time varying inefficiency are available (see,
e.g., Greene 2008, Sect. 7.2.7). In contrast, DEA studies ignore the time dimension
of the panel data and either pool the panel together as a single cross section or treat
each time period as an independent cross section.16

The regression interpretation of DEA examined in Sect. 7.4.1 allows us to combine
DEA-style axiomatic frontier with the modern panel data methods from economet-
rics. Kuosmanen and Kortelainen (2012, Sect. 4.1) were the first consider a fixed
effects approach to estimating a time invariant inefficiency model. Their fully non-
parametric panel data StoNED estimator can be seen as a nonparametric counterpart
to the classic SFA approach by Schmidt and Sickles (1984). In the following we
consider the random effects approach, building upon Eskelinen and Kuosmanen
(2013).

Consider a data set where each firm is observed over time periods t = 1, . . ., T
and define a time invariant frontier model

yit = f (xit ) − ui + vit ∀i = 1, . . ., n ∀t = 1, . . ., T , (7.27)

where yit is the observed output of firm i in time period t, xit is a vector of inputs
consumed by firm i in time period t, and f is a frontier production function that is
time invariant and common to all firms. As before, ui is a firm specific inefficiency
term that does not change over time, and vit is a random disturbance term of firm

16 One notable exception is Ruggiero (2004).
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i in period t. Similar to the cross-sectional model, we assume that ui and vit are
independent of inputs xit and of each other.17

To estimate the model (7.27), we can adapt the standard CNLS estimator as

min
α,β,ε

T∑

t=1

n∑

i=1

(εCNLS
it )

2

subject to

yit = αit + β′itxit + εCNLS
it ∀i = 1, . . ., n ∀t = 1, . . ., T

αit + β′itxit ≤ αit + β′itxhs ∀h, i = 1, . . ., n ∀s, t = 1, . . ., T

βit ≥ 0 ∀i = 1, . . ., n ∀t = 1, . . ., T (7.28)

where ε̂CNLS
it is the CNLS residual of firm i in period t. Note the parameters αit and βit

that define the tangent hyperplanes of the estimated production function are specific
to each firm in each time period. Thus, a piece-wise linear frontier is estimated with
as many as nT hyperplanes.

Given the optimal solution to (7.28), we compute the firm-specific effects as

ε̄CNLS
i = 1

T

T∑

t=1

ε̂CNLS
it (7.29)

Following Schmidt and Sickles (1984) we measure efficiency relative to the most effi-
cient firm in the sample (analogous to the C2NLS approach considered in Sect. 7.4.2)
and define

ûStoNEDi =
(

max
h∈{1,...,n}

ε̄CNLS
h

)
− ε̄CNLS

i . (7.30)

To estimate theconditional mean function, we can adapt Eq. (7.20) to panel data as

ĝCNLS
min (x) = min

α,β

{
α + β′x

∣∣α + β′xit ≥ ĝCNLS(xit ) ∀i = 1, . . ., n; ∀t = 1, . . ., T
}
.

The StoNED frontier estimator is then obtained as

f̂ StoNED(x) = ĝCNLS
min (x) +

(
max

h∈{1,...,n}
ε̄CNLS
h

)
.

Both the frontier and inefficiency estimators can be shown to be statistically
consistent under the assumptions stated above.

Note that the panel data StoNED estimator described above is fully nonpara-
metric in the sense that no parametric functional form or distributional assumptions

17 The random effects approach to panel data requires that the time invariant inefficiency is un-
correlated with inputs. This is a strong assumption. Marschak and Andrews (1944) were among
the first to note that rational firm manager will adjust the inputs to take into account the technical
inefficiency, and hence the observed inputs are correlated with inefficiency. In that case, the random
effects estimator is biased and inconsistent. The fixed effects estimator considered by Kuosmanen
and Kortelainen (2012) does not depend on this assumption.
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are required. Still, the model described in Eq. (7.27) relies on two strong assump-
tions: (i) there is no technical progress, and (ii) inefficiency is constant over time.
It is possible to relax these assumptions, but this will require some additional as-
sumptions (typically imposing some parametric structure). Note that random effects
estimator considered above may still be useful even if inefficiency changes over
time. In that case, the inefficiency estimator can be interpreted as the average
efficiency during the time period under study. Eskelinen and Kuosmanen (2013)
propose to examine the development trajectories of the normalized CNLS residuals
ε̂CNLS
it /(maxh∈{1,...,n}ε̄CNLS

h ) to gain a better understanding how the firm performance
has developed during the study period. While the normalized CNLS residuals con-
tain random noise, a growth trend (or decline) provides a clear indication that the
performance of the firm has improved (or deteriorated) during the study period.

Based on the previous discussion, two insights are worth noting:

1. Panel data is not a panacea: while we recognize that panel data provides a richer set
of information, we must also acknowledge that the intertemporal setting involves
complex dynamics such as technological progress and changes in efficiency over
time. The random effects approach to panel data considered above would be
ideal for modeling experimental data where the researcher can control the input
levels and keep the production technology the same across repeated experiments.
However, most panel data applications of stochastic frontiers use observational
data where both the production function and the level of efficiency will likely
change over time.

2. Resorting to a fully nonparametric approach does not imply freedom from re-
strictive assumptions. In fact, avoidance of parametric assumptions often comes
at the cost of very restrictive assumptions of no noise, no technical progress, or
time invariant inefficiency. Indeed, insisting on a fully nonparametric approach
can be more restrictive than resorting to some parametric assumptions that allow
for explicit modeling of noise, technical progress, or time varying inefficiency.

7.6.3 Multiple Outputs (DDF Formulation)

The ability to model multiple inputs and multiple outputs has long been touted as an
advantage of DEA over SFA: several DEA papers erroneously state that SFA cannot
deal with multiple outputs. Lovell et al. (1994) and Coelli and Perelman (1999, 2000)
were the first to consider a stochastic distance function model that characterizes a
general multiple inputs and multiple outputs technology using the radial input and
output distance functions. The recent paper by Kuosmanen et al. (2013) (henceforth
KJP) examines the assumptions of the data generation process that need to be satisfied
for econometric identification of the distance function when the data are subject to
random noise. Although the econometric estimation of distance functions is feasible,
the well-established drawbacks of SFA still apply: a functional form needs to be
specified for the distance function and parametric assumptions are typically made
to decompose the residual into inefficiency and noise. Further, the commonly used
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parametric functional forms have the wrong curvature in output space, which is a
serious problem for modeling joint production of multiple outputs.18

Up to this point, the CNLS/StoNED framework has been presented in the single
output, multiple input setting. In this section we describe the CNLS estimator within
the directional distance function (DDF) framework, Chambers et al. (1996, 1998).
The CNLS formulation satisfies the axiomatic properties of the DDF by construction,
models multiple inputs and multiple outputs, and accounts for stochastic noise ex-
plicitly, addressing the key limitations of both DEA and the parametric approaches.
In the following we will briefly describe the stochastic data generating process (DGP)
and the estimation of the DDF by CNLS. See KJP for a more detailed discussion.

The DDF indicates the distance from a given input-output vector to the boundary
of the production possibility set T in some pre-assigned direction (gx , gy) ∈ �m+s+ ,
formally,

−→
DT (x, y, gx , gy) = sup

θ

{
θ
∣∣(x − θgx , y + θgy) ∈ T }

. (7.31)

Denote the reference input-output vector of firm i in the direction (gx , gy) by (x∗i , y∗i ).
In this section we do not impose any particular behavioral hypothesis, but it may be
illustrative to interpret (x∗i , y∗i ) as the optimal solution to firm i’s profit maximization
problem. Regardless of the firm manager’s objective, we assume (x∗i , y∗i ) lies on the
boundary of the production possibility set T and hence the values of the DDF satisfy

−→
DT (x∗i , y∗i , gx , gy) = 0 ∀i = 1, . . ., n (7.32)

The observed input-output vectors (xi , yi), i = 1, ..., n, are perturbed in direction
(gx , gy) ∈ �m+s+ by random inefficiency ui and noise vi , which form the composite
error term εi = ui+vi (note the positive sign of the inefficiency term ui). Specifically,
the observed data are perturbed versions of the optimal input-output vectors as follows

(xi , yi) = (x∗i + εigx , y∗i − εigy) ∀i = 1, . . ., n (7.33)

We assume the inefficiency and noise terms satisfy the assumptions discussed in
Sect. 7.2. Note that the elements of the direction vector (gx , gy) represent the impacts
of inefficiency and noise on specific input and output variables. If an element of
(gx , gy) is equal to zero, it means that the corresponding input or output variable
is immune to both inefficiency and noise in the DGP. The larger the value of an
element of (gx , gy) in the DGP, the larger the impact of inefficiency and noise on the
corresponding input or output variable is. Interestingly, Proposition 3 in KJP shows

18 The wrong curvature violates some of the most elementary properties of production technologies.
For example, the Cobb-Douglas or translog specifications of the distance function will violates
the basic properties of null jointness and unboundedness (see, e.g., Färe et al. 2005). Another
problem concerns the economies of scope (e.g., Panzar and Willig 1981). For example, the Cobb-
Douglas distance function cannot capture the economies of scope at any parameter values. Since
the economic rationale for joint production is rooted to economies of scope, it is contradictory to
apply a technology that exhibits economies of specialization for modeling joint production.
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that in the DGP described above the value of the DDF equals the composite error
term:

−→
DT (xi , yi , gx , gy) = εi ∀i.

This result provides implicitly a regression equation for estimating the DDF. We can
resort to a similar stepwise procedure as described in Sect. 7.5.

The first step is to estimate the conditional mean distance defined as

d(xi , yi , gx , gy) = −→
D(xi , yi , gx , gy) − μ (7.34)

Let � denote the set of functions that satisfy the axioms of free disposability, con-
vexity, and the translation property.19 We can adapt the CNLS estimator to the DDF
setting by postulating the following infinite dimensional least squares problem

min
d

n∑

i=1

d(xi , yi , gx , gy)2

subject to

d ∈ � (7.35)

Formulation (7.35) is a complex, infinite dimensional optimization problem that
cannot be solved by brute-force numerical methods. The main challenge is to find a
way to parameterize the infinitely large set of functions that satisfy the stated regu-
larity conditions. Here again we apply insights from Kuosmanen (2008) and show
an equivalent finite dimensional representation in terms of quadratic programming.
Consider the following QP problem

min
α,β,γ,ε

n∑

i=1

(εCNLS
i )

2

subject to

γ′iyi = αi + β′ixi − εCNLS
i ∀i = 1, . . ., n

αi + β′ixi − γ′iy ≤ αh + β′ixi − γ′hyi ∀h, i = 1, . . ., n

γ′i ig
y + β′i ig

x = 1 ∀i = 1, . . ., n

βi ≥ 0 ∀i = 1, . . ., n

γi ≥ 0 ∀i = 1, . . ., n (7.36)

Note that the residual ε̂CNLS
i here represents the estimated value of di(i.e.,−→

D (xi , yi , gx , gy)+ ui). We also introduce new firm-specific coefficients γγi that rep-
resent marginal effects of outputs to the DDF. The first constraint defines the distance

19 The translation property, Chambers et al. (1998), states that if we move from the initial point
(x, y) in the direction (gx , gy ) by factor α, i.e., to the point (x+ αgx , y− αgy ), then the distance to
the frontier decreases by α. This property is crucial for the internal consistency of the DDF and can
be seen as an additive analogue of the linear homogeneity property of the input distance function.
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to the frontier as a linear function of inputs and outputs. The linear approximation
of the frontier is based on the tangent hyperplanes, analogous to the original CNLS
formulation. The second set of constraints is the system of Afriat inequalities that
impose global concavity. The third constraint is a normalization constraint that en-
sures the translation property. The last two constraints impose monotonicity in all
inputs and outputs. It is straightforward to show that the CNLS estimator of function
d satisfies the axioms of free disposability, convexity, and the translation property
(see Theorem 3 in KJP).

After solving the CNLS problem, one can proceed to estimate the deterministic
frontier by Corrected CNLS as described in Sect. 7.4.2 or the stochastic frontier
by StoNED as described in Sect. 7.5.2. Note that the CNLS estimator described
above does not estimate the DDF directly, but rather

−→
D (xi , yi , gx , gy) + E(ui). If

the inefficiency term is homoscedastic, then the techniques described in Sect. 7.5.2
apply for the estimation of E(ui) = μ. The case of heteroskedastic inefficiency term
is discussed in Sects. 7.8.2 and 7.8.3 below. Subsequently, the estimate of the DDF
is obtained by shifting the CNLS estimate of function d in direction (gx , gy) by the
estimated expected inefficiency.

To connect the multi-output DDF to the single output case, it is worth noting in the
single output case, specifying the direction vector as gy = 1 and gx = 0, the CNLS
problem (7.36) reduces to

min
α,β,ε

n∑

i=1

(εCNLS
i )

2

subject to

yi = αi + β′ixi − εCNLS
i ∀i = 1, . . ., n

αi + β′ixi ≤ αh + β′hxi ∀h, i = 1, . . ., n

βi ≥ 0 ∀i = 1, . . ., n (7.37)

This formulation is equivalent to the CNLS formulation (7.3) developed in Kuos-
manen (2008), except for the sign of the residual ε̂CNLS

i in the first constraint. Note
that the DDF has positive values below the frontier and negative values above the
frontier, which explains the negative sign.

7.6.4 Convex Nonparametric Quantile Regression and
Asymmetric Least Squares

While CNLS estimates the conditional meanE(yi |xi), quantile regression aims at es-
timating the conditional median or other quantiles of the response variable (Koenker
and Bassett 1978; Koenker 2005).20 Denoting the pre-assigned quantile by parameter

20 In the DEA literature, the quantile frontiers are commonly referred to as robust order-m and order-
α frontiers (e.g., Aragon et al. 2005; Daouia and Simar 2007). However, while quantile frontiers are
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q ∈ (0,1), we can modify the CNLS problem (7.3) to estimate convex nonparametric
quantile regression (CNQR) (Wang et al. 2014) as follows:21

min
α,β,ε+,ε−

q

n∑

i=1

ε+i + (1 − q)
n∑

i=1

ε−i

subject to

yi = αi + β′ixi + ε+i − ε−i ∀i
αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i
ε+i ≥ 0 ∀i
ε−i ≥ 0 ∀i (7.38)

The CNQR problem differs from CNLS in that the composite error term is now
broken down to two non-negative components ε+i , ε−i ≥ 0. The objective function
minimizes the asymmetric absolute deviations from the frontier instead of symmetric
quadratic deviations. The pre-assigned weight q defines the quantile to be estimated.
For example, by setting q= 0.05, the piece-wise linear CNQR function will allow
at most 5 % of observations to lie above the fitted function and envelope at most
95 % of the observed data points. As the sample size approaches to infinity, the q-
order frontier will envelop exactly q percent of the observed data points (Wang et al.
2014, Theorem 1). Two important special cases are worth noting. First, if we set
q= 0.5, then CNQR estimates the conditional median (whereas CNLS estimates the
conditional mean). Secondly, as q approaches to zero, the negative deviations ε−i get
a larger weight, and the CNQR approaches to the DEA frontier.

An appealing feature of the CNQR formulation is that its objective function and
all constraints are linear functions of unknown parameters, and hence the CNQR
problem can be solved by standard linear programming (LP) algorithms. However, a
major drawback compared to CNLS is that the optimal solution to the CNQR problem
is not necessarily unique, not even for the observed data points (xi , yi), i = 1, . . ., n.
In econometrics, non-uniqueness of quantile regression is usually assumed away
by assuming the regressors x are randomly drawn from a continuous distribution.
In practice, however, input vectors x are not randomly drawn, and there may be
two or more firms use exactly the same amounts of inputs (i.e., xi = xj for firms
i and j). In our experience, non-uniqueness of CNQR seems to be particularly a prob-
lem in samples where inputs x are discrete variables. Wang et al. (2014) recognize
non-uniqueness of the CNQR estimator, illustrating the problem with a numerical
example.

One possible way to resolve the non-uniqueness problem is to apply the asymmet-
ric least squares criterion suggested by Newey and Powell (1987), and reformulate

more robust to outliers than the conventional DEA frontiers, the quantile DEA approaches typically
assume away noise.
21 Similar quantile formulation was first considered by Banker et al. (1991), who refer to it as
“stochastic DEA”.
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the CNQR problem as

min
α,β,ε+,ε−

q

n∑

i=1

(ε+i )
2 + (1 − q)

n∑

i=1

(ε−i )
2

subject to

yi = αi + β′ixi + ε+i − ε−i ∀i
αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i
ε+i ≥ 0 ∀i
ε−i ≥ 0∀i (7.39)

To our knowledge, this asymmetric least squares formulation has not been considered
before; we will henceforth refer to it as convex asymmetrically weighted least squares
(CAWLS). The CAWLS problem differs from CNQR only in terms of the objective
function, which now minimizes the asymmetric squared deviation instead of the
absolute deviations. In the case of the linear regression, Newey and Powell (1987)
show that the properties of the asymmetric least squares estimator are analogous
to those of the quantile regression, but the asymmetric least squares can be more
convenient for statistical inferences. In the present context, we hypothesize that the
use of the quadratic loss function similar to CNLS ensures that the optimal solution
to the CAWLS problem is always unique for the observed data points (xi , yi), i =
1, . . ., n. We leave confirming or rejecting this hypothesis as an open question for
future research. Besides the question of uniqueness, the statistical properties of both
CNQR and CAWLS would require further research.

CNQR and CAWLS formulations allow one to estimate the q-quantile or q-
expectile frontiers directly, without a need to impose parametric distributional
assumptions for the inefficiency and noise terms or resort to stepwise estimation
along the lines described in Sect. 7.5. This is one of the attractive properties of CNQR
and CAWLS. For the purposes of efficiency analysis, however, the use of quantiles
or asymmetric weighted least squares is not a panacea. It is important to stress that
the distance from the frontier, measured as ε̂CNQRi = ε̂+i − ε̂−i or ε̂CAWLSi = ε̂+i − ε̂−i
(note: in both cases the residuals satisfy ε̂+i ε̂

−
i = 0 ∀i), should not be interpreted as

a measure of inefficiency, as the distance to frontier also includes noise. To estimate
conditional expected value of inefficiency along the lines of JLMS, we still need
to resort to stepwise estimation. One possibility is to replace CNLS by CNQR or
CAWLS as the first step of the StoNED procedure outlined in Sect. 7.5. Of course,
residuals ε̂CNQRi or ε̂CAWLSi can be used as such for relative performance rankings,
but such performance rankings obviously depend on the chosen parameter value of
q. Wang et al. (2014) examine the specification of q for frontier estimation, showing
that the optimal value of q is a monotonically decreasing function of the signal to
noise ratio λ = σu/σv. One may set the value of q based on subjective judgment,
but in real world applications (consider, e.g., regulation of electricity distribution
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networks; see Kuosmanen 2012; Kuosmanen et al. 2013), some objective criteria for
specifying q would be important.

One appealing feature of the q-quantile and q-expectile frontiers is that they are
robust to heteroscedasticity. Therefore, testing of and dealing with heteroscedasticity
provide one promising application area for the CNQR and CAWLS techniques. If
the composite error term is homoscedastic, then the quantile and expectile frontiers
should have similar shapes at different values of q. Newey and Powell (1987) apply
this idea for testing heteroscedasticity. We return to this issue in more detail in
Sect. 7.8.

7.7 Contextual Variables

A firm’s ability to operate efficiently often depends on operational conditions and
practices, such as the production environment and the firm specific characteristics
for example technology selection or managerial practices. Banker and Natarajan
(2008) refer to both variables that characterize operational conditions and practices
as contextual variables. Currently two-stage DEA (2-DEA) is widely applied to
investigate the importance of contextual variables as summarized by the citations
included in Simar and Wilson (2007). However, its statistical foundation has been
subject to sharp debate between Simar and Wilson (2007, 2011) and Banker and
Natarajan (2008) (see also Hoff 2007; McDonald 2009). In this section we shed
some new light on this debate following Johnson and Kuosmanen (2011, 2012).

It is important to note that Simar and Wilson (2007, 2011) do not consider stochas-
tic noise in their DGP. In contrast, Banker and Natarajan (2008) introduce a noise term
that has a doubly-truncated distribution, following the DEA+ approach by Gstach
(1998). In this setting, Johnson and Kuosmanen (2012) show that the 2-DEA esti-
mator of contextual variables is consistent under more general assumption that those
stated by Banker and Natarajan (2008) and criticized by Simar and Wilson (2011).
Further, Johnson and Kuosmanen (2012) employ the least squares formulation of
DEA to develop a one-stage DEA method (1-DEA) for estimating the effects of the
contextual variables. Relaxing the peculiar assumption of truncated noise,22 John-
son and Kuosmanen (2011) develop stochastic (semi-) nonparametric envelopment
of z-variables data (StoNEZD).

22 We label this assumption as peculiar because it contradicts standard statistical assumptions,
namely, the residual term is often model as normally distributed because a mixture of a large
number of unknown distributions is approximately normal in finite samples and asymptotically
normal. The large number of unknown distributions is a result of measurement errors, modeling
simplifications, and other sources of noise. Thus, the motivation for truncated normal distribution
used in Gstach (1998) and Banker and Natarajan (2008) is lacking and peculiar as also noted by
Simar and Wilson (2011). Johnson and Kuosmanen (2012) argue this truncation may come from an
outlier detection procedure that would remove extreme observations from the analysis. However, in
this case 1-DEA (introduced below) would still be preferred to 2-DEA because the bias introduced
in two-stage estimation.
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Taking the multiplicative model described in Sect. 7.6.1 as our starting point,
we introduce the contextual variables, represented by r-dimensional vectors zi that
represent the measured values of operational conditions and practices, to obtain the
following semi-nonparametric, partial log-linear equation

ln yi = ln f (xi) + δ′zi + vi − ui . (7.40)

In this equation, parameter vector δ = (δ1 . . . δr )′ represents the marginal effects of
contextual variables on output. All other variables maintain their previous definitions.

In the following sub-sections we will present two-stage DEA (2-DEA), one-stage
DEA, and StoNEZD estimators. First, the 2-DEA estimator is described and the
statistical properties of it are discussed. Given the assumptions necessary for the
consistency of two-stage DEA method we then present the one-stage alternative.
The joint estimation avoids the bias in the DEA frontier being transmitted to the pa-
rameter estimates of the coefficients on the contextual variables; however, the frontier
estimated is still the minimum envelopment of the data and thus does not account for
noise in the production model or input/output data. To account for stochastic noise,
StoNEZD is introduced in 7.3.

7.7.1 Two-Stage DEA

The literature on 2-DEA includes a number of variants. This sub-section follows the
approach by Banker and Natarajan (2008). The two stages of their 2-DEA method
are the following. In the first stage, the frontier production function f is estimated
using the nonparametric DEA estimator formally stated as (7.5). The DEA output
efficiency estimator of firm i is stated as θ̂DEA

i = yi/f̂ DEA(xi) and computed as

(θ̂DEA
i )

−1 = max
θ∈�,λ∈�n+

{
θ

∣∣∣θyi ≤
∑n

h=1
λhyh; xi ≥

∑n

h=1
λhxh;

∑n

h=1
λh = 1

}

(7.41)

In the second stage, the following linear equation is estimated using OLS or ML

ln θ̂DEA
i = α + δ′zi + ε2−DEA

i , i = 1, . . ., n, (7.42)

where the intercept α captures the expected inefficiency and the finite sample bias of
the DEA estimator, and the composite disturbance term ε2−DEA

i captures the noise
term vi and the deviations of ui from the expected inefficiency μ. Note that the
dependent variable has the “hat” because the DEA efficiency estimate is computed
beforehand using (7.41), whereas the parameters on the right hand side of (7.42) are
estimated using OLS or ML in a second stage.

Johnson and Kuosmanen (2012) state that the 2-DEA estimator is statistically
consistent in the case of truncated noise as shown by Banker and Natarajan (2008),
however, the assumptions required for consistency in Banker and Natarajan are
unnecessarily restrictive.
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Let Z denote a n× r matrix of contextual variables. Assume the noise terms are
truncated as |vi | ≤ VM and denote v = (v1, ..., vn)′. Denote the domains of vectors
x and z by Dx and Dz, respectively. Then the statistical consistency of the 2-DEA
estimator can be established under the relaxed set of assumptions as follows.

Theorem 7 If the following five assumptions are satisfied

(i) sequence {(yi , xi , zi), i= 1, . . ., n} is a random sample of independent
observations,
(ii) lim

n→∞Z′Z/n is a positive definite matrix,

(iii) noise term v has a truncated distribution: |v| ≤ VM1, fv(VM ) > 0,
(iv) elements of domain Dz are bounded from above or below such that δ′z has a
finite maximum ζ = max

z∈Dz
δ′z at a point zξ ∈ arg max

z∈Dz
δ′z,

(v) the joint density f is continuous and satisfiesf (x, zξ , 0,VM ) > 0 for all x ∈ Dx ,
then the 2-DEA estimators are statistically consistent in the following sense

plim
n→∞

f̂ DEA(xi) = f (xi) · exp (VM + ζ ) f or all i = 1, . . ., n,

plim
n→∞

δ2-DEA = δ

Proof. See Johnson and Kuosmanen (2012), Theorem 1.
This theorem by Johnson and Kuosmanen (2012) generalizes the consistency

result by Banker and Natarajan (2008) result by relaxing the following two
assumptions:

1. inputs and contextual variables are statistically independent,
2. the effect of contextual variables is one-sided: Z ≥ 0, δ ≤ 0.

Note that the DEA frontier does not converge to the true frontier f, it converges to
f (x)·exp (VM+ζ ) (i.e., the frontier augmented by the maximum noise VM under the
ideal conditions represented by zζ ) thus estimation of the frontier requires observing
firms that are operating efficiently and are operating in the best environment and
happen to get a noise drawn close to the upper bound VM .

Consistency is a relatively weak property. In practice a data set will be finite in
size and probably not as large as we would like. However, Johnson and Kuosmanen
(2012) are able to provide the explicit form of the bias in the 2-DEA estimator.
Specifically it depends on the bias of the DEA frontier (f̂ DEA) as follows:

Bias(δ̂
2-DEA

) = −(Z′Z)−1Z′
[
Bias(f̂ DEA(X))

]
, (7.43)

where

Bias(f̂ DEA(X)) =

⎛

⎜⎜⎜⎝

E( ln f̂ DEA(x1)) − f (x1) · exp (VM + ζ )
...

E( ln f̂ DEA(xn)) − ln f (xn) · exp (VM + ζ )

⎞

⎟⎟⎟⎠. (7.44)
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Thus, the bias of the first-stage DEA estimator carries over to the second-stage OLS
regression. Importantly, the bias of the second-stage OLS estimator is due to the
correlation of Z and bias of the first-stage DEA estimator.

In summary we would like to emphasize two critical points about 2-DEA.

1. correlation of inputs and contextual variables does not influence the statistical
consistency of 2-DEA estimator as long as the columns of X and Z matrices are
not linearly dependent.

2. the bias of the DEA frontier in the first-stage carries over to the second-stage
OLS estimator through the correlation of the DEA frontier with the contextual
variables.

We note that statistical independence of inputs and contextual variables does not
necessarily guarantee that Bias(f̂ DEA(X)) is uncorrelated with Z. Thus, 2-DEA does
not suffer from some of the problems noted by Simar and Wilson (2011) and in
fact requires significantly weaker assumptions than Banker and Natarajan (2008)
suggest. However, the DEA frontier is always biased downward in a finite sample
and thus this bias may be transferred to the estimation of the effect of the contex-
tual variables. The following two sub-sections propose alternatives building on the
regression interpretation of DEA which do not suffer from this bias.

7.7.2 One-Stage DEA

The fundamental problem of the 2-DEA procedure is that the impact of the con-
textual variables Z is not taken into account in the first stage DEA. This problem
has been recognized in the SFA literature, where the standard approach is to jointly
estimate the frontier and the impacts of the contextual variables (e.g., Wang and
Schmidt 2002). In the similar vein, the least squares regression interpretation of
DEA described in Sect. 7.4.1 allows us to estimate the DEA frontier and the coef-
ficients δ jointly. Specifically, we can introduce the contextual variables to the least
squares formulation of DEA, stated as the QP problem (7.6), to obtain:

min
α,β,δ,φ,ε

n∑

i=1

(ε1−DEA
i )

2

subject to

ln yi = ln (φi + 1) + δ′zi + ε1−DEA
i ∀i

φi + 1 = αi + β′ixi ∀i
αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i
ε1−DEA
i ≤ VM ∀i (7.45)

Notable differences compared to the problem (7.7) concern the use of the log-
transformation to enforce the multiplicative formulation of the inefficiency term
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(compare with Sect. 7.6.1) and the truncation of the residual ε1−DEA
i at point VM .

Note that by setting VM = 0 restricts the noise term to zero, and the 1-DEA formu-
lation reduces to the joint estimation of the effect of the contextual variables and the
classic deterministic DEA frontier where all input/output data is observed exactly
and residuals are non-positive.

Note further that the parameter vector δ is common to all observations, and hence
it can be harmlessly omitted from the Afriat inequalities that impose convexity. In
fact, the contextual variables can be interpreted as inputs that have constant marginal
products across all firms23 (i.e., we can think of matrix Z as a subset of X for which
βi = βj ∀i, j ).

The statistical properties of the 1-DEA estimator generally depend on the speci-
fication of the truncation point VM . Performance of the 1-DEA estimator has been
investigated via Monte Carlo simulations in Johnson and Kuosmanen (2012) where
the authors find that 1-DEA performs well even when the truncation point is misspec-
ified. However, the assumption of truncated noise (i.e., |vi | ≤ VM ) is non-standard
and debatable (see, e.g., Simar and Wilson 2011). While the consistency of 2-DEA
critically depends on this assumption, the CNLS estimator allows us to harmlessly
relax it. The next sub-section discusses the StoNED estimator with z-variables that
does not rely on the truncated noise assumption.

7.7.3 StoNED With z-Variables (StoNEZD)

Relaxing the assumption of truncated noise, we can apply CNLS to jointly estimate
the expected output conditional on inputs and the effects of the contextual variables.
Johnson and Kuosmanen (2011) were the first to explore this approach, referring
to it as StoNED with z-variables (StoNEZD). StoNEZD incorporates the contextual
variables to the stepwise procedure sescribed in Sect. 7.5. In the following, we will
focus on the CNLS estimator applied in the first step: steps 2–4 follow as described
in Sect. 7.5, and are hence omitted here.

To incorporate the contextual variables in step 1 of the StoNED estimation routine,
we can refine the multiplicative CNLS problem as follows:

min
α,β,δ,φ,ε

n∑

i=1

(εCNLS
i )

2

subject to

ln yi = ln (φi + 1) + δ′zi + εCNLS
i ∀i

φi + 1 = αi + β′ixi ∀i
αi + β′ixi ≤ αh + β′hxi ∀h, i

βi ≥ 0 ∀i (7.46)

23 This interpretation would vary slightly if the δi is negative. Then the contextual variable would
be an output which would reduce the firm’s ability to produce y.
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Note that problem (7.46) is identical to (7.45), except that the truncation constraint
εi ≤ VM ∀i has been removed. Therefore, the least squares residuals are unrestricted,
and hence problem (7.46) is a genuine conditional mean regression estimator.

Denote by δ̂
StoNEZD

the coefficients of the contextual variables obtained as the
optimal solution to (7.46). Johnson and Kuosmanen (2011) examine the statistical
properties of this estimator in detail, showing its unbiasedness, consistency, and
asymptotic efficiency.24 Most importantly, the authors show that the conventional
methods of statistical inference from linear regression analysis (e.g., t-tests, con-
fidence intervals) can be applied for asymptotic inferences regarding coefficients
δ. Their main result can be summarized as follows:

Theorem 8 If the following conditions are satisfied

i) sequence {(yi , xi , zi) , i = 1, . . .,n}, i = 1,. . .,n} is a random sample of inde-
pendent observations,
ii) lim

n→∞Z′Z/n is a positive definite matrix,

iii) the inefficiency terms u and the noise terms v are identically and independently
distributed (i.i.d.) random variables with V ar(u) = σ 2

u I and V ar(v) = σ 2
v I,

then the StoNEZD estimator for the coefficients of the contextual variables (δ̂
StoNEZD

)
is statistically consistent and asymptotically normally distributed according to:

δ̂
StoNEZD∼aN

(
δ, (σ 2

v + σ 2
u )(Z′Z)−1

)
.

Proof. See Johnson and Kuosmanen (2011), Theorem 2.
This theorem extends the standard result of asymptotic normality of the OLS

coefficients to the StoNEZD estimator of the contextual variables. In other words,
even though model (7.40) includes a nonparametric function in addition to a linear
regression function, the presence of the nonparametric function does not affect the
limiting distribution of the parameter estimator in the linear part. In addition, Johnson

and Kuosmanen (2011) show that the estimator δ̂
StoNEZD

converges at the standard
parametric rate, despite the presence of the nonparametric part in the regression
equation. Therefore, we can apply the standard techniques from regression analysis
such as t-tests and confidence intervals for asymptotic inferences.

A simple trick to compute standard errors for δ̂
StoNEZD

is to run OLS regression
where the contextual variables Z are regressors and the dependent variable is the
difference between the natural log of observed output subtracting the natual log of

the input aggregation plus 1, specifically ln yi − ln (φ̂i + 1) = δ̂′zi + ε̂CNLS
i . This

OLS regression will yield the same coefficients δ̂′
StoNEZD

that were obtained as the
optimal solution to problem (7.46),25 but also return the standard errors and other
standard diagnostic statistics such as t-ratios, p-values, and confidence intervals.

24 Johnson and Kuosmanen (2012) report some Monte Carlo evidence of the finite sample
performance of the StoNEZD estimator.
25 Note that this two-stage regression procedure is not subject to the problems of the 2-DEA pro-
cedure because we do control for the effects of the contextual variables in the first stage CNLS
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7.8 Heteroscedasticity

Up to this point we have assumed that the composite error term is homoscedastic,
implying the variance parameters σ 2

u and σ 2
v are constant across all firms. This is a

standard assumption both in regression analysis and in the parametric literature of
frontier estimation (e.g., Aigner et al. 1977). However, this assumption is not always
realistic in applications.

We can relax the assumption of constant σ 2
u and σ 2

v , and allow these parameters
to be firm specific (i.e., σ 2

u,i and σ 2
v,i), and potentially dependent on inputs x and

contextual variables z. We stress that the least squares approach considered in this
paper enables us to apply standard econometric techniques of testing and modeling
heteroscedasticity considered in the SFA literature (see, e.g., Kumbhakar et al. 1991;
Caudill and Ford 1993; Caudill et al. 1995; Battese and Coelli 1995; Hadri 1999;
and Kumbhakar and Lovell 2000). The purpose of this section is to provide a brief
review of how some of those techniques could be adapted for the purposes of CNLS
and StoNED.

The first question to consider is how would heteroscedasticity affect the CNLS
and StoNED estimators if we simply ignore it? Like standard OLS, the CNLS
estimator remains unbiased and consistent despite heteroscedasticity. A weighted
CNLS estimator (to be considered below) might be more efficient, provided that
the heteroscedastic variance parameters can be estimated with a sufficient precision.
However, heteroscedasticity is not a major problem for CNLS, and trying to improve
its performance through explicit modeling and estimation of heteroscedasticity may
not be worth the effort. Further research would be needed to investigate this issue.

The stepwise StoNED procedure is more sensitive to heteroscedasticity, as dis-
cussed by Kuosmanen and Kortelainen (2012). At this point, we need to distinguish
between (i) heteroscedastic inefficiency term and ii) heteroscedasticity noise term.
Ignoring type (ii) heteroscedasticity is less harmful in the StoNED estimation because
the skewness of the CNLS residuals is still driven by the homoscedastic inefficiency
term, the expected value of inefficiency is constant, and hence the shape of the
regression function (i.e., the conditional mean E(yi |x i)) is identical to that of the
frontier production function f. Type (i) heteroscedasticity will cause bigger prob-
lems, as Kuosmanen and Kortelainen (2012) recognize. If the inefficiency term is
heteroscedastic, then the expected value of inefficiency is no longer constant, and the
shapes of the regression function and the frontier production function will diverge.
To take both types of heteroscedasticity explicitly into account, in Sect. 7.8.2 we will
consider a doubly-heteroscedastic model where both inefficiency and noise terms are
heteroscedastic. But before proceeding to the explicit modeling of heteroscedasticity,
we describe a diagnostic test of the homoscedasticity assumption.

regression. It is just a computational trick to calculate the standard errors, but it can also serve as
a simple diagnostic check that the solution to problem (7.32) is indeed optimal with respect to the
contextual variables.
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7.8.1 White Test of Heteroscedasticity Applied to CNLS

Although the heteroscedastic inefficiency term would bias the StoNED estimator, it is
important to emphasize that we do not need to take the homoscedasticity assumption
by faith. Standard econometric tests of heteroscedasticity such as the White or the
Breusch-Pagan tests are directly applicable to CNLS residuals. In this sub-section
we briefly describe how the White (1980) test can be applied following Kuosmanen
(2012).

The null hypothesis of theWhite test is that composite error term is homoscedastic,
that is, H0: σε,i = σε,j ∀i, j. The alternative hypothesis states there is heteroscedas-
ticity, that is, H1: σε,i 
= σε,j for some i, j. Note that the alternative hypothesis does
not assume any particular model of heteroscedasticity, which makes the White test
compatible with the nonparametric approach. Postulating a more specific alternative
hypothesis can increase the power of the test. However, the White test provides a
useful starting point for more explicit modeling of heteroscedasticity.

The White test can be built upon the OLS regression of the following equation:26

(ε̂CNLS
i )2 = α +

m∑

j=1

βjxij + 1

2

m∑

j=1

j∑

h=1

γjxij xih + εi . (7.47)

In words, we explain the squared CNLS residual by a constant, all m input variables,
and their squared values and cross-products using a flexible quadratic functional
form as an approximation of the true but unknown heteroscedasticity effects. The
test statistic is

W = nR2,

where R2 is the coefficient of determination of the OLS regression of Eq. (7.47).
Under the null hypothesis of homoscedasticity, the test statistic W follows the χ2(J )
distribution with J degrees of freedom, where J = 1+m+m(m+1)/2 is the number
of α,β, γ parameters on the right hand side of Eq. (7.47). If the value of test statistic
W falls below the critical value of χ2(J ) at the given level of significance (note:
the usual significance levels considered are 5 and 1 %), then the null hypothesis of
homoscedasticity is maintained. In that case, the test result provides some additional
reassurance that the original model is well specified. On the other hand, if the value
of test statistic W exceeds the critical value of χ2(J ) at the given level of significance,
then the null hypothesis is rejected, and hence explicit modeling of heteroscedasticity
is needed.

26 In econometrics, heteroscedasticity is usually modeled as a function of explanatory variables
(i.e., inputs x). In contrast, the SFA literature usually models heteroscedasticity as a function of
z-variables that may contain some (or all) of the inputs x. For clarity, in this section we follow the
econometric convention and focus on heteroscedasticity with respect to inputs x and discuss the
additional z-variables below.
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The White test is usually presented in terms of the regressors of the original
regression model (i.e., in terms of inputs x in the present context). Note that we are
mainly concerned about possible heteroscedasticity with respect to inputs, which
would cause bias in StoNED estimation. If we are interested in heteroscedasticity
with respect to contextual variables z, we can also introduce the z-variables to the
regression Eq. (7.47). We only need to adjust the degrees of freedom J to include the
number of additional parameters for the z-variables, otherwise the test procedure is
conducted as described above.

If significant heteroscedasticity is found, the White test does not indicate whether
heteroscedasticity is in the inefficiency term or the noise term, or possibly both. To
our knowledge, general diagnostic testing of whether heteroscedasticity is in the
inefficiency or noise term has attracted little attention in the SFA literature. The
doubly-heteroscedastic model (following Hadri 1999; and Wang 2002), to be ex-
amined in detail in the next sub-section, does allow us model heteroscedasticity in
both inefficiency and noise terms, and also test for significance of the parameter
estimates. However, such specification tests are conditional on the assumed model
of heteroscedasticity, including the parametric distributional assumptions regarding
inefficiency and noise. An appealing feature of the White test is it does not assume
any specific model of heteroscedasticity and it does not depend on the distributional
assumptions. Further, the parameter estimates of the auxiliary regression (7.47) and
the associated diagnostic tools can provide some insights on which specific inputs (or
contextual variables) are most likely causes of heteroscedasticity, and whether het-
eroscedasticity effect appears to be linear or non-linear, and whether the interaction
terms (cross-products) are significant. These insights can be useful for specifying
parametric models of heteroscedasticity, to be considered in the next sub-section.

Before proceeding, note that quantile estimation (see Sect. 7.6.4) could provide a
promising nonparametric route for testing heteroscedasticity. If the composite error
term is homoscedastic, then the q-quantiles should have approximately same shape
for different values of parameter q. Provided that the number of input (and output)
variables is sufficiently small, plotting the estimated q-quantiles at different values
of q allow one to visually inspect whether homoscedasticity holds by a reasonable
approximation. If homoscedasticity is violated, the q-quantile plots can help one
to identify in which part of the frontier heteroscedasticity occurs, and which inputs
are likely sources of heteroscedasticity. In the context of linear quantile regression,
Koenker and Bassett (1982) propose formal tests of heteroscedasticity based on the
comparison of the estimated q-quantiles at different values of q. Newey and Powell
(1987) apply a similar idea for the q-expectiles, noting that the q-expectiles could
also be used for testing symmetry of the composite error term (i.e., whether the
asymmetric inefficiency term u is significant; compare with Sect. 7.5.5). Adapting
these tests to the nonparametric CNQR method for estimating q-quantiles and the
CAWLS method for estimating q-expectiles introduced in Sect. 7.6.4 provides an
interesting challenge for future research further discussed in Sect. 7.9.
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7.8.2 Doubly-Heteroscedastic Model

If the White test indicates significant heteroscedasticity, it is difficult to tell a priori
whether heteroscedasticity is due to the inefficiency term, the noise term, or pos-
sibly both. Therefore, we will consider the general doubly-heteroscedastic model
where both the inefficiency and noise term can be heteroscedastic. The doubly-
heteroscedastic model was first considered by Hadri (1999). Our formulation below
is mainly based on Wang (2002) and Kumbhakar and Sun (2013).

Consider the unified model described in Sect. 7.2. In this section we assume the
inefficiency term has a truncated normal distribution and the noise term is normally
distributed according to

ui ∼ N+(μi , σ
2
u,i)

vi ∼ N (0, σ 2
v,i)

The pre-truncation mean of the inefficiency term is assumed to be a linear function
of inputs:

μi = α0 + β′xi .

The pre-truncation standard deviation of the inefficiency term and the standard
deviation of the noise term are specified as

σu,i = exp (α1 + γ′xi)

σv,i = exp (α2 + ρ′xi)

Note that the exponent functions are commonly used in this context to guarantee that
the standard deviations are positive at all input levels. While the specific parametric
assumption may appear arbitrary, this model is one of the most flexible and gen-
eral parametric specifications of heteroscedasticity. Note that the truncated normal
distribution where both the pre-truncation mean and variance depend on the input
level allows that the location (mean) and the shape (variance)of the inefficiency
distribution can change as a function of inputs.

This formulation of heteroscedastic inefficiency term implies that the expected
value of inefficiency can be stated as (see Wang 2002; Kumbhakar and Sun 2013)

E(ui |ui > 0) = σu,i

[
�i + φ(�i)

�(�i)

]
, (7.48)

where

�i = μi

σu,i

and φ and � are the density function and the cumulative distribution function of
the standard normal N(0,1) distribution, respectively. The expected inefficiency is
no longer a constant, but its dependence on inputs x has a well-defined functional
form conditional on the parametric assumptions stated above. This allows us to
both estimate the heteroscedasticity effects empirically, and take heteroscedasticity
explicitly into account in the StoNED procedure.
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7.8.3 Stepwise StoNED Estimation Under Heteroscedasticity

To estimate the doubly-heteroskedastic model, we can adjust the stepwise StoNED
routine presented in Sect. 7.5 as follows (a more detailed elaboration of each step
follows below):

Step 1 Apply the CNLS estimator (7.3) to estimate the conditional mean output
ĝCNLS(xi) = E(yi |xi).
Step 2 Apply quasi-likelihood estimation to the CNLS residuals εCNLS

i to estimate
the parameters of μi , σu,i , and σv,i .

Step 3 Adjust the conditional mean function by adding the expected inefficiency
E(ui

∣∣xi , μ̂i , σ̂u,i) to estimate the frontier for the observed data points using

f̂ StoNED(xi) = ĝCNLS(xi) + E(ui
∣∣xi , μ̂i , σ̂u,i).

Then apply Eq. (7.5) to estimate the frontier f̂ StoNEDmin (x) for unobserved points.

Step 4 Apply JLMS method to estimate firm-specific inefficiency using the
conditional mean E(ui

∣∣ε̂CNLS
i ).

In step 1, we estimate the conditional mean function g(x). The CNLS estimator
remains unbiased and consistent estimator of the conditional mean g, despite het-
eroscedastic composite error term (similar to OLS). However, note that in the case
of the doubly-heteroscedastic model

g(xi) = E(yi |xi) = f (xi) − E(ui |xi).
Note that the shape of function g can differ from that of frontier f because E(ui |xi)
is a function of inputs x. We will take this into account in step 3 where we shift
function g upward, not by a constant μ, but rather, by the estimated E(ui |xi).27 It is
also worth noting that function g is not necessarily monotonic increasing and concave
even if the production function f satisfies these axioms because −E(ui |xi) can be a
non-monotonic and non-concave function of inputs (note: there does exist parameter
values for which −E(ui |xi) is indeed monotonic and concave in the domain of non-
negative x). To apply CNLS in step 1, we need to assume that the curvature of the
production function f dominates and that function g is monotonic increasing and
concave (at least by approximation). Even if one assumes that f exhibits CRS, it is
recommended to apply the VRS specification in step 1 to allow for the nonlinear
effects of E(ui |xi), and impose CRS later in step 3.

27 In the context of SFA, Kumbhakar and Lovell (2000) state strongly that the stepwise MOLS
procedure cannot be used in the case of heteroscedastic inefficiency. They correctly note that the
OLS estimator used in the first step yields biased estimates of not only the intercept but also the
slope coefficients of the frontier. However, Kumbhakar and Lovell seem to overlook the possibility
of eliminating the bias by shifting function g upward by a conditional expectation of inefficiency
that depends on inputs x.
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Having estimated the parameters of the inefficiency and noise terms, it is possible
to test if monotonicity and concavity assumptions of g hold. If g does not satisfy
monotonicity and concavity, we can substitute CNLS by techniques depending on
which axiom does not hold. Specifically, if the concavity assumption is violated, it is
possible to apply isotonic nonparametric least squares (INLS) suggested by Keshvari
and Kuosmanen (2013). Another possibility is to estimate order-q quantile frontier
using either CNQR or CAWLS techniques introduced in Sect. 7.6.4. Specifying the
correct value for q will ensure that the quantile frontier inherits the monotonicity
and concavity properties of frontier f even if the heteroscedastic inefficiency term
is a non-monotonic or non-convex function of inputs. Indeed, we do not insist on
estimating the conditional mean in step 1, the conditional quantile is equally suitable.

In step 2 it is natural to resort to the pseudolikelihood method since we utilize a
rather heavily parametrized model of heteroscedasticity. As already noted in Sect. 7.5,
a simple practical trick to conduct quasi-likelihood estimation is to use the standard
ML algorithms available for SFA in standard software packages (e.g., Stata, Limdep,
or R). In this case we specify the CNLS residuals ε̂CNLS

i as the dependent variable
(i.e., the output) and a constant term as an explanatory variable (input), and the
ML algorithm performs the quasilikelihood estimation. For example, the frontier
modeling tools of Stata allows one to include “explanatory variables for technical
inefficiency variance function (uhet)” and “explanatory variables for idiosyncratic
error variance function (vhet)” if the distribution of inefficiency term is specified as
half-normal or exponential. It is also possible to include covariates to the truncated
normal specification of the inefficiency term, but in this specification the noise term
is assumed to be homoscedastic. Hung-Jen Wang has developed a Stata package for
the model described in Wang (2002), which can be used for estimating the model
estimating the heteroscedasticity model described above.28

Having estimated the underlying parameters of μi , σu,i , σv,i , it is recommended to
apply standard specification tests available for ML (i.e., likelihood-ratio, Lagrange
multiplier, or Wald test) to test restrictions β = 0, γ = 0, and ρ = 0. For example, if
the null hypothesis of ρ = 0 is not rejected, then the assumption of homoscedastic
noise term can be maintained. Similarly, if α0 = 0, β = 0, and γ = 0, then the model
of heteroscedastic truncated normal inefficiency term reduces to a homoscedastic
half-normal inefficiency term. If the specification tests provide evidence that some
of the heteroscedasticity effects are not significant, we would recommend excluding
those effects from the heteroscedasticity model and estimating step 2 again.

One additional issue is in the context of linear regressionthat efficiency of the least
squares estimator can be improved by applying weighted least squares or generalized
least squares. Having estimated the firm specific σu,i , σv,i , it is possible to return
back to step 1 and apply a weighted version of the CNLS estimator. Defining σ̂ 2

ε,i

28 The Stata package is available from Wang’s homepage: http://homepage.ntu.edu.tw/∼wangh/.
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= σ̂ 2
u,i + σ̂ 2

v,i , we can modify the objective function of the CNLS problem as

min
n∑

i=1

(εCNLS
i )2

σ̂ 2
ε,i

maintaining the original constraints of (7.3). Interpreting the given 1/σ̂ 2
ε,i as firm-

specific weights, this weighted least squares formulation of CNLS is directly
analogous to the generalized least squares (GLS) estimator of the linear regres-
sion model.29 However, as yet there is no evidence that the use of weighted least
squares can improve efficiency of the CNLS estimator. Intuitively, the direct ana-
logue with GLS would suggest that weighted least squares can be more efficient
than the unweighted CNLS under heteroscedasticity. On the other hand, recall that
CNLS approximates the underlying function g by a piece-wise linear curve. Since
the hyperplane segments of the unweighted CNLS formulation provide local ap-
proximation, assigning larger or smaller weights to certain regions of the frontier
may not have much effect on the piece-wise linear approximation. In our limited
experience, introducing the weights 1/σ̂ 2

ε,i does not necessarily have any notable
impact on the results. Further, we need to be able to estimate σ 2

ε,i with a sufficient
precision. Overall, we are somewhat skeptical whether the possible benefit in terms
of improved efficiency of the CNLS estimator can outweigh the cost of additional
effort of conducting the weighted least squares estimation. This forms an interesting
open question for future research.

In step 3 we adjust the conditional mean function g estimated in step 1 (or alterna-
tively, the conditional q-quantile) for the estimated expected inefficiency to estimate
the frontier f. Note that the conditional mean E(ui |xi) is no longer a constant, but
a function that depends on inputs x. Using Eq. (7.48), we can write the estimated
expected inefficiency as the function of inputs and parameter estimates as

E(ui
∣∣xi , μ̂i , σ̂u,i) = μ̂i + σ̂u,i

φ(�̂i)

�(�̂i)

= (α̂0 + β̂′xi) + exp (α̂1 + γ̂′xi)

[
φ

(
α̂0 + β̂

′
xi

exp (α̂1 + γ̂′xi)

)
/�

(
α̂0 + β̂′xi

exp (α̂1 + γ̂′xi)

)]

This expression reveals that in the doubly-heteroscedastic model the expected value
of inefficiency has a linear part originating from the mean μi = α0 + β′xi , and a
nonlinear part driven by σu,i = exp (α1 + γ′xi). Having estimated the parameters of
the inefficiency term, it is useful to evaluate whether −E(ûi |xi) is monotonically
increasing and concave within the observed range of inputs (e.g., plot the values
of −E(û |x) at different levels of x to visually inspect possible violations of mono-
tonicity and concavity). To ensure that the estimated frontier function satisfies the

29 Note that in the CNLS context we prefer to introduce weights to the objective function instead of
applying variable transformations (as in GLS) because the monotonicity and concavity constraints
must hold for the original input variables x.
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postulated axioms despite minor violations of monotonicity and concavity (which
may be just artifacts of the arbitrary parametric specification of the heteroscedasticity
model), we apply the minimum extrapolation principle and utilize the DEA method
stated in Eq. (7.5) to obtain the convex monotonic hull of the fitted values f̂ StoNED(xi)
of observations i= 1,. . ., n, which yields the frontier estimator f̂ StoNEDmin (x).

In step 4, we can compute firm specific inefficiency estimates using the JLMS con-
ditional mean E(ui

∣∣ε̂CNLS
i ) using the firm specific parameter estimates μ̂i , σ̂u,i , σ̂v,i .

Note that the expected inefficiency E(ui
∣∣xi , μ̂i, σ̂u,i) applied for shifting the condi-

tional mean function g to estimate frontier f does not depend on the heteroscedasticity
of the noise term. However, the JLMS efficiency does also depend on the het-
eroscedasticity of the noise term σ̂v,i . Kumbhakar and Sun (2013) discuss this issue
in more detail, showing that the marginal effect of inputs on the conditional JLMS
efficiency also depend on the heteroscedasticity of the noise term.

7.9 Directions for Future Research

This chapter has provided an updated and elaborated presentation of the CNLS
and StoNED methods. Bridging the gap between the established DEA and SFA
paradigms, these methods represent a major paradigm shift towards a unified and
integrated methodology of frontier estimation and efficiency analysis that has a con-
siderably broader scope than the conventional DEA and SFA tools. This chapter did
not only review previously published method developments and their extensions, but
also presented some new innovations, including the first extension of the StoNED
method to the general case of multiple inputs and multiple outputs, and the first
detailed examination of how heteroscedastic inefficiency and noise terms can be
modeled within the CNLS and StoNED estimation frameworks.

We see CNLS and StoNED not only as the state of the art in axiomatic nonpara-
metric frontier estimation and efficiency analysis under stochastic noise, but also
a promising way forward. Kuosmanen and Kortelainen (2012) stated explicitly 12
promising avenues of future research on the StoNED methodology. In the following
we will provide an updated version of a 12 point research program, indicating the
work that has already been done as well as work that remains to be done.

1. Adapting the known econometric and statistical methods for dealing with heteroskedas-
ticity, endogeneity, sample selection, and other potential sources of bias, to the context of
CNLS and StoNED estimators.

In this chapter we presented the first detailed examination about the modeling of het-
eroscedasticity in the inefficiency and noise terms. Kuosmanen et al. (2013) examine
the endogeneity problem from a novel perspective employing directional distance
functions. Obviously, a lot of further work is needed in this area. Alternative models
of heteroscedasticity as well as estimation techniques deserve careful attention. The
convex nonparametric quantile regression and the convex asymmetrically weighted
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least squares methods discussed in Sect. 7.6.4 and the generalized least squares es-
timator discussed in Sect. 7.8.3 provide potential methods for modeling and testing
heteroskedasticity. The use of instrumental variables in CNLS for modeling mea-
surement errors, sample selection, and other types of endogeneity bias should be
investigated.

2. Extending the proposed approach to a multiple output setting.

In this chapter we also presented the first extension of the StoNED method to the
general case of multiple inputs and multiple outputs using the directional distance
function (see also Kuosmanen et al. 2013). Further work is also needed in this area.
Alternative representations of the joint production technology, including the radial
input and output distance functions, should be investigated. The main challenge in
modeling joint production is not the formulation of the mathematical programming
problem for the CNLS estimator (the usual DEA problem) or deconvoluting the
composite error term (the usual SFA problem). The main challenge is the probabilistic
modeling of the data generating process in the case of joint production, involving
multiple endogenous inputs and outputs. Kuosmanen et al. (2013) provides a useful
starting point in this respect.

3. Extending the proposed approach to account for relaxed concavity assumptions (e.g.,
quasiconcavity).

Keshvari and Kuosmanen (2013) presented the first extension in this direction, apply-
ing isotonic regression that relaxes the concavity assumption of CNLS. This approach
estimates a step function analogous to free disposable hull (FDH) in the middle of the
data cloud. The insights of Keshvari and Kuosmanen could be useful for examining
the intermediate cases between the non-convex step function and the fully convex
CNLS, allowing one to postulate quasiconcavity or quasiconvexity in terms of some
variables (e.g., inputs, or input prices in the estimation of the cost function). Many
opportunities for future research exist in this direction.

4. Developing more efficient computational algorithms or heuristics for solving the CNLS
problem.

Lee et al. (2013) is the first contribution in this direction. The algorithm developed in
that paper first solves a relaxed CNLS problem containing an initial set of constraints,
those that are likely to be binding, and then iteratively adds a subset of the violated
concavity constraints until a solution that does not violate any constraint is found.
We believe the computational efficiency can be improved considerably by clever
algorithms and heuristics (see, e.g., Hannah and Dunson 2013). This is an important
avenue for future research in the era of “big data”.

5. Examining the statistical properties of the CNLS estimator, especially in the multivariate
case.

Seijo and Sen (2011) and Lim and Glynn (2012) were the first to address this
challenge, proving statistical consistency of the CNLS estimator in the general mul-
tivariate case under slightly different assumptions about the data generating process.
Further research on both the finite sample properties (e.g., unbiasedness or bias,
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efficiency, mean squared error) and the asymptotic properties (e.g., rates of con-
vergence, limiting distributions) under different assumption of the data generating
process would be needed. In this respect, Groeneboom et al. (2001a, 2001b) provide
an excellent starting point. The statistical properties of the convex nonparametric
quantile regression (CNQR) and the convex asymmetrically weighted least squares
(CAWLS) methods introduced in Sect. 7.6.4 also deserve further research.

6. Investigating the axiomatic foundation of the CNLS and StoNED estimators.

CNLS regression builds upon the same axioms as DEA, and StoNED estimation
applies the minimum extrapolation principle to obtain a unique frontier function that
satisfies the postulated axioms. However, it would be compelling if the technology
characterized by CNLS and/or StoNED could be stated rigorously from the axiomatic
point of view as the intersection of all sets that satisfy the stated axioms and satisfy
axiom X. It remains unknown whether axiom X exists, and how it could be formulated
explicitly.

7. Implementing alternative distributional assumptions and estimating the distribution of the
inefficiency term by semi- or nonparametric methods in the cross-sectional setting.

In this chapter (Sect. 7.5.2) we have provided an extensive review of possibilities, in-
cluding parametric and semi-parametric alternatives. In principle, the quasilikelihood
method is applicable to any parametric specification of inefficiency distribution. The
most promising way forward seems to be the nonparametric kernel deconvolution
of the CNLS residuals, following the works by Hall and Simar (2002) and Horrace
and Parmeter (2011). One challenge that remains is to adapt the JLMS conditional
mean inefficiency to the semi-parametric setting where no parametric distribution is
specified for the inefficiency term.

8. Distinguishing time-invariant inefficiency from heterogeneity across firms, and identifying
inter-temporal frontier shifts and catching up in panel data models.

Kuosmanen and Kortelainen (2012) present a simple fixed effects approach to mod-
eling panel data, assuming time-invariant inefficiency. In this chapter we considered
the parallel random effects approach, following Eskelinen and Kuosmanen (2013).
Ample opportunities for extending these basic techniques to more sophisticated semi-
parametric models allowing for technical progress and time-varying inefficiency are
available. Indeed, panel data models have been extensively studied both in general
econometrics and in the SFA literature. Both the insights and practical solutions from
panel data econometrics can be imported to the CNLS and StoNED framework.

9. Extending the proposed approach to the estimation of cost, revenue, and profit functions
as well as to distance functions.

Kuosmanen and Kortelainen (2012) consider the estimation of cost function in the
single output case under CRS. They made these restrictive assumptions because the
cost function must be a concave function of input prices. However, if the standard
convexity axiom of the production possibility set holds, then the cost function is a
convex function of outputs. A challenge that remains is to formulate the CNLS prob-
lem such that we can estimate a function that is convex in one subset of variables (i.e.,
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outputs), but concave in another subset of variables (i.e., input prices). Kuosmanen
(2012) estimates a multi-output cost function using StoNED, but the input prices
were excluded by assuming that all firms take the same input prices as given.

10. Developing a consistent bootstrap algorithm and/or other statistical inference methods.

An earlier version of Kuosmanen and Kortelainen (2012) proposed to adapt the para-
metric bootstrap method proposed by Simar and Wilson (2010) for drawing statistical
inferences in the StoNED setting. However, the anonymous reviewers were not con-
vinced that the proposed boostrap method is necessarily consistent when applied
to the CNLS residuals. Indeed, one should be wary of naı̈ve bootstrap and resam-
pling approaches that produce invalid and misleading results. Since Kuosmanen and
Kortelainen were not able to prove consistency of Simar and Wilson’s bootstrap pro-
cedure in the CNLS case, the suggestion was excluded from the published version.
We stress that adapting one of the known variants of the bootstrap method to the
context of CNLS and StoNED would be straightforward. The challenge is to prove
that the chosen version of bootstrap method is consistent under the stated assump-
tions about the data generating process. Another promising approach is to test if
CNLS estimates differ significantly from the corresponding estimates obtained us-
ing parametric methods (see Sen and Meyer 2013). As for the contextual variables,
Johnson and Kuosmanen (2012) prove that conventional inference techniques from
linear regression analysis (e.g., t-tests, p-values, confidence intervals) can be applied
for the parametric part (i.e., the coefficients of the contextual variables).

11. Conducting further Monte Carlo simulations to examine the performance of the proposed
estimators under a wider range of conditions, and comparing the performance with other
semi- and nonparametric frontier estimators.

Several published studies provide Monte Carlo evidence on the finite sample per-
formance of CNLS and StoNED estimators. Kuosmanen (2008) and Kuosmanen
and Kortelainen (2012) provide the first simulation results for CNLS and StoNED,
respectively, focusing on the precision in estimating the frontier production function
f. Johnson and Kuosmanen (2011) present MC simulations regarding the estimation
of the parametric δ representing the effect of a single contextual variable z that may
be correlated with input x. Andor and Hesse (2014) provide an extensive comparison
of the performances of DEA, SFA, and StoNED, mainly focusing on the estimation
of the firm specific inefficiency ui . However, note that all estimators considered are
inconsistent in the noisy setting considered because ui is just a single realization of
a random variable. Kuosmanen et al. (2013) compare performances of DEA, SFA
and StoNED in terms of estimating a frontier cost function. They calibrate their sim-
ulations to match the empirical characteristics of the Finnish electricity distribution
firms. Their simulations demonstrate that if the premises stated by the Finnish en-
ergy regulator hold, then the StoNED estimator has superior performance compared
to its restricted special cases, DEA and SFA. As for further research, it would be
interesting to compare performance of CNLS and StoNED with those of other semi-
and nonparametric frontier estimation techniques such as kernel regression and local
maximum likelihood.



240 T. Kuosmanen et al.

12. Applying the proposed method to empirical data, and adapting the method to better serve
the needs of specific empirical applications.

The first published application of the StoNED method was Kuosmanen and Kuos-
manen (2009), who estimated the production function from the data of 332 Finnish
dairy farms in order to assess sustainability performance of farms. Subsequently,
there have been several applications in the energy sector, both in production and
distribution of electricity. Mekaroonreung and Johnson (2012) applied StoNED to
estimate the shadow prices of SO2 and NOx from the data of U.S. coal-fired power
plants. Thus far, the most significant real-world application of StoNED has been
the study by Kuosmanen (2012) [see also Kuosmanen et al. (2013), Dai and Ku-
osmanen (2014), and Saastamoinen and Kuosmanen (2014)]. Based on the results
of this study, the Finnish energy market regulator adopted the StoNED method in
systematic use in the regulation of the Finnish electricity distribution industry, with
the total annual turnover of more than € 2 Billion. Another real-world application
of StoNED is Eskelinen and Kuosmanen (2013), who assessed inter-temporal per-
formance of sales teams using monthly data of Helsinki OP-Pohjola Bank, in close
collaboration with the central management of the bank. The results and insights
gained in this study were communicated to the team managers and were utilized for
setting performance targets for sales teams. These empirical applications illustrate
the flexibility and adaptability of the StoNED methodology to suit the specific needs
of the application. The applications also provide motivation for developing further
methodological extensions to meet the requirements of future applications.

In conclusion, we hope the 12-point program discussed above might inspire future
methodological research along the lines described or along new avenues that have
escaped our attention. We also hope that the methodological tools currently available
would find inroads to empirical applications. In our experience from both Monte
Carlo simulations and real empirical applications, CNLS and StoNED has proved
dependable, reliable and robust, with an ability to produce results and insights that
could not be found using the conventional methods.
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Chapter 8
Translation Invariance in Data Envelopment
Analysis

Jesus T. Pastor and Juan Aparicio

Abstract In this chapter we present an overview of the different approaches that have
considered translation invariant Data Envelopment Analysis (DEA) models. Trans-
lation invariance is a relevant property for dealing with non-positive input and/or
non-positive output values. We start by considering the classical approach and con-
tinue revising recent contributions. We also consider non-translation invariant DEA
models that are able to deal with negative data at the expense of modifying the model
itself. Finally, we propose to study translation invariance in a general framework
through a recently introduced distance function: the linear loss distance function.

Keywords Data envelopment analysis · Translation invariance · Negative data ·
Linear loss distance function

8.1 Introduction

Charnes et al. (1978, 1979) defined the first DEA model, the so called CCR model—
or constant returns to scale (CRS) radial model-, requiring strict positivity of all
the input and output values. Later on, Charnes et al. (1986) relaxed this strong
requirement and, based on the ratio-form of the CCR model, showed that for each
unit under scrutiny it is enough to have at least one positive input and at least one
positive output. Ali and Seiford (1990) showed that resorting to the additive model
(Charnes et al. 1985) is a way to deal with units with all its input and output values
at level 0. In 1994 Pastor was the first to extend the latter results for dealing with
negative data. His findings were published in Lovell and Pastor (1995) and in Pastor
(1996). In the above-mentioned papers the three basic DEA models –the CCR, the
BCC (Banker et al. 1984) and the additive- appear classified according to their
translation invariant characteristics. Moreover, the result of the additive model was
extended to the family of weighted additive models. Historically, prior to 1995, the
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way of dealing with negative data in a DEA framework was quite arbitrary. The
easiest way was simply to delete the units with negative data from the sample. A
more sophisticated way, although equally unjustified, was to perform an appropriate
change of variables. Nonetheless, there are only a few manuscripts dealing with
negative data prior to the paper by Lovell and Pastor (1995). References to four of
them as well as their associated applications can be found in Pastor and Ruiz (2007).
See also Thanassoulis et al. (2008).

During the decade starting in 1995, only four new contributions to the treatment
of negative data by means of DEA models were proposed. The first one is by Cooper
et al. (1999) and is known as the RAM (range adjusted measure), which is nothing
other than a specific weighted additive model satisfying the translation invariant
property. The second one assumes that each unrestricted in sign variable is an interval-
scale variable that has a known decomposition as a sum of two ratio-scale variables;
the first one non-negative and the second one non-positive (see Halme et al. 2002).
The third one modifies the facets of the DEA frontier associated to a DEA radial
output-oriented model if a unit with negative outputs is rated as efficient, which is
judged as unacceptable (see Seiford and Zhu 2002). The last one introduces a new
variable returns to scale DEA model, called range directional model (RDM), inspired
by a directional distance function model that is fully translation invariant (see Silva
Portela et al. 2004). All of them are described in detail and discussed in Pastor and
Ruiz (2007). Nevertheless we will go back to the second and the fourth model later
on.

During the period starting in 2005, at least ten more papers have tackled the
problem of how to deal with negative data by means of DEA models. Let us start
with the only three proposed models that are translation invariant. In 2007, Sharp et al.
reformulated the objective function of the DEA model associated to the slacks based
measure by Tone (2001), also known as Enhanced Russell Graph Measure (Pastor
et al. 1999), obtaining a translation invariant model. In 2011, Cooper et al. published
a new DEA efficiency model, known as BAM (bounded adjusted measure), which
constitutes the first example of a weighted additive model with variable weights
that happens to be translation invariant. Recently, Hadi-Vencheh and Esmaeilzadeh
(2013) introduced a new super-efficiency model with negative data based on RDM.
The rest of the papers that follow are not translation invariant.

In 2011, Kerstens and Van de Woestyne proposed considering a modified version
of the proportional directional distance function instead of the RDM model, justifying
this new approach through its economic appeal. In the same year, Kazemi Matin and
Azizi designed a two phase approach in the same spirit as the paper by Seiford and
Zhu (2002), i.e., to avoid efficient projections with negative outputs, but resorting to
an additive model and not to a radial model.

The last five papers that follow are based on traditional radial measures. The most
influential one, by Emrouznejad et al. (2010), defines several DEA models based on a
semi-oriented radial measure (SORM) that allows the presence of unrestricted in sign
variables. SORM constitutes a new less restrictive version of the model proposed
by Halme et al. (2002). Besides being less restrictive it is also less reliable, as
already pointed out by Jahanshahloo and Piri (2013), who proposed an extension of
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SORM for accommodating not only negative values but also integer variables. A year
before, Hadad et al. (2012) published an application of SORM for the Indonesian
banking sector including a robustness analysis based on RDM. Kordrostami and
Noveiri (2012) extended the SORM model so as to accommodate what they call
flexible variables, i.e., variables that can be used at the same time as an input and
as an output. Finally, Cheng et al. (2013) propose a variant of the traditional radial
models, called VRM, which are nothing other than particular oriented cases of the
model published two years earlier by Kerstens and Van de Woestyne (2011).

8.2 Translation Invariance for Dealing with Data Which Have
Value Zero

As mentioned in the Introduction, Ali and Seaford (1990) were able to relax the weak
requirement about non-negative data in connection with the CCR model introduced
by Charnes et al. (1986) at the expense of forgetting the CCR model. They proposed
considering the additive model instead of a DEA radial model, showing that it is
possible to deal with units with all their inputs at level zero and/or all their outputs at
level zero. The relevant feature of the additive model is that it works under a variable
returns to scale (VRS) technology. They further considered an initial dataset of n
units to be rated. For the specific subset of units with all its inputs at level zero and/or
all its outputs at level zero the corresponding additive problem could not be solved.
Consequently, these authors proposed to consider a derived specific subset of units
to be rated, which gave rise to a subset of specific derived additive problems. Each
derived unit is obtained by translating the data of the original one by means of a
fixed translation vector. For a problem with m inputs and s outputs they considered
an (m+ s) translation vector with nonnegative components. It may happen that the
original DEA problem and the corresponding translated problem are equivalent, i.e.,
both problems rate each original unit and its corresponding translated unit in exactly
the same way. In this case, the model satisfies the translation invariance property or is
a translation invariant model, and through translation we can transform the original
dataset into a new derived one with any data greater than zero. This was exactly what
happened with the envelopment form1 of the additive model, as proved by Ali and
Seiford (1990). They also considered a VRS radial model—the BCC input-oriented
model (Banker et al. 1984)—obtaining less interesting results. Here is a summary of
their findings.

1 Each DEA linear program has a linear dual. Usually the primal or envelopment form evaluates
each unit by measuring its “distance” with respect to the frontier, while the dual or multiplier form
determines the supporting hyperplane where the unit under evaluation is projected (see Ali and
Seiford 1993). Moreover, linear programming theory shows us that the objective function values of
both dual programs are the same if they are finite.



248 J. T. Pastor and J. Aparicio

Proposition 1 The envelopment form of the additive model by Charnes et al. (1985)
is translation invariant.

Proposition 2 The BCC input-oriented model is not translation invariant. Never-
theless it is translation invariant for the subset of efficient points, i.e., an efficient unit
of the original problem is also efficient for the translated problem, and conversely.

The first result establishes that the VRS additive model by Charnes et al. (1985)
meets the property of translation invariance, while the second result states that al-
though the BCC is also a VRS DEA model, it is not a translation invariant model
for inputs and outputs. Nonetheless, the subset of technically efficient units of the
translated model is exactly the translated subset of technically efficient units of the
initial model.

8.3 Translation Invariant Models for Dealing with Non-Positive
Data

The analysis carried out by Ali and Seiford (1990) for dealing with the presence of
multiple zero values is perfectly valid for dealing with non-positive data since in
both situations the clue is data displacement. Nevertheless, the most relevant contri-
bution on translation invariance, and also on units invariance, is the paper by Lovell
and Pastor (1995) (see also Pastor 1996), where the basis for achieving translation
invariant models in DEA were stated. In addition, the paper shows that the unique
family of models that are fully translation invariant is the so called weighted additive
model. On the other hand, any CRS DEA model can never be translation invariant
because its efficient frontier depends on the location of the origin of coordinates.

Overall, the property of translation invariance allows a model using the original
unrestricted in sign data and the same model using the translated positive data to be
equivalent, which means that both have the same optimal value and that the role-
efficient unit(s) of any unit with translated data are exactly the translated role-unit(s)
of the same unit based on the original data. In particular, the subset of translated effi-
cient unit(s) corresponds to the subset of efficient unit(s) of the model with translated
data.

Both papers, Ali and Seiford (1990) and Lovell and Pastor (1995), reached the
same conclusion: the basic key to satisfying translation invariance in inputs and
outputs is the independence of the VRS frontier from the origin of coordinates.
The special configuration of the DEA technology under VRS, in contrast to CRS
technology, permits that data translation does not affect the structure of the technical
efficient frontier. This point can be illustrated graphically.

Suppose we have observed five units, A= (1,2), B= (2,3.5), C= (3,4), D=
(2.5,1), and E= (4,2.5), each of which consumes one input to produce one out-
put. Figure 8.1 shows the representation of the DEA VRS technology estimated
through the sample of five units. Additionally, Fig. 8.1 shows a displacement of the
VRS frontier obtained by substracting 6 units from each input and 5 units from each
output. This translation moves the sample of units from the first to the third quadrant.
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Fig. 8.1 Graphical example for the VRS case

The translated points are identified as A’, B’, C’, D’, and E’. Similarly, we show the
estimated DEA CRS frontier using the same five units in Fig. 8.2. Here we prefer
to show an easier case, where the translated points, obtained by adding 5 units to
the input of each observation while maintaining the output values, belong to the first
quadrant.

The graphical intuitive idea behind Fig. 8.1 is that under VRS, the supporting
hyperplanes containing facets of the translated efficient frontier are parallel to the
original ones. As a consequence, the translated original efficient points are the ef-
ficient points of the translated model. On the contrary, in Fig. 8.2 under CRS, all
the supporting hyperplanes of the technology must pass through the origin of coor-
dinates. Therefore, any translation changes the slope of the supporting hyperplanes
and, as a consequence, even the points on the efficient frontier may change. Con-
sequently, the targets and the corresponding optimal value of each DEA problem
will change accordingly which means that translation invariance is not fulfilled. In
this particular case, we note that, in contrast to the VRS case, under CRS the subset
of technically efficient units of the translated model, {B’,C’}, does not match with
the translated subset of technically efficient units of the initial model, {A’}. Conse-
quently, the role unit(s) for each inefficient unit and its corresponding translated unit
are not related.

Mathematically, the single added constraint that transforms the envelopment form
of a CRS DEA model into aVRS model is nj=1λj0 = 1 (the sum of intensity variables
equals one). For example, the well-known additive model by Charnes et al. (1985)
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Fig. 8.2 Graphical example for the CRS case

includes this restriction:

Max
m∑
i=1
s−i0 +

s∑
r=1
s+r0

s.t.
n∑
j=1
λj0xij = xi0 − s−i0, i = 1, . . . ,m

n∑
j=1
λj0yrj = yr0 + s+r0, r = 1, . . . , s

n∑
j=1
λj0 = 1,

s−i0, s+r0, λj0 ≥ 0, ∀i, r , j

(8.1)

In this way, if we translate the original data by adding to the inputs of each unit the
vector h ∈ Rm, the first subset of constraints in (8.1) would be transformed into the
next one:  nj=1λj0(xij + hi) = (xi0 + hi)− s−i0, i = 1, . . .,m, which is equivalent to
 nj=1 λj0xij + hi nj=1 λj0 = xi0 + hi − s−i0, i = 1, . . .,m. Since nj=1 λj0 = 1, each
of these constraints can be finally rewritten as  nj=1 λj0xij + hi = xi0 + hi − s−i0 ⇔
 nj=1 λj0xij = xi0 − s−i0, which coincides with the first constraint of the model as-
sociated with the original data. The same steps may be undertaken with the second
subset of constraints in (8.1) in case we translate the outputs of each unit by adding
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the vector k ∈ Rs, arriving at the same conclusion. Finally, another relevant feature
of (8.1) that allows the satisfaction of the translation invariance property is the fact
that the objective function of the additive model remains unchanged after perform-
ing any translation. Next, we analyze the main results found by Lovell and Pastor
(1995), which do not focus on the additive model, but on the weighted additive model.
Each weighted additive model is defined by multiplying each slack of the objective
function by a real number, which constitutes the attached weight. They constitute
the family of weighted additive models with constant weights. Mathematically, the
weighted additive model maximizes a weighted !1-distance to the efficient frontier
from the assessed unit rather than maximizing the !1-distance as the additive model
does. The envelopment form of a weighted additive model with weights w−

0 ∈ Rm+
for inputs and w+

0 ∈ Rs+ for outputs is as follows.

Max
m∑
i=1

w−
i0s

−
i0 +

s∑
r=1

w+
r0s

+
r0

s.t.
n∑
j=1
λj0xij = xi0 − s−i0, i = 1, . . .,m

n∑
j=1
λj0yrj = yr0 + s+r0, r = 1, . . ., s

n∑
j=1
λj0 = 1,

s−i0, s+r0, λj0 ≥ 0, ∀i, r , j

(8.2)

The next proposition establishes that the family of weighted additive models with
constant weights is translation invariant.

Proposition 3 Any weighted additive model with constant weights is translation
invariant.

As said before, Cooper et al. (1999) introduced another well-known weighted
additive model known as RAM. It is a weighted additive model with non-constant
weights. In fact, each of its weights is inversely proportional to the range of the
corresponding variable. In particular, w−

i0 = 1/((m+ s)R−i ), i = 1, . . .,m, and
w+
r0 = 1/((m+ s)R+r ), r = 1, . . ., s, where R−i = max

j=1,...,n
{xij } − min

j=1,...,n
{xij } and

R+r = max
j=1,...,n

{yrj } − min
j=1,...,n

{yrj }. In this case it is easy to prove that the defined

weights for inputs and outputs are translation invariant and, consequently, we are
able to state the following.

Proposition 4 Any weighted additive model with non-constant weights is translation
invariant if, and only if, the weights are translation invariant.

Corollary 4.1 The RAM model is translation invariant.
We can find examples in literature of weighted additive models that are not trans-

lation invariant. This is the case of the Measure of Inefficiency Proportions (MIP)
by Charnes et al. (1987). The corresponding weights are defined as w−

i0 = 1/xi0,
i = 1, . . .,m, and w+

r0 = 1/yr0, r = 1, . . ., s, which are clearly modified by any
translation.
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Lovell and Pastor (1995) introduced the so-called normalized weighted additive
DEA model that is, by definition, a weighted additive model with the following set of
weights: w−

i0 = 1/σ−i , i = 1, . . .,m, and w+
r0 = 1/σ+r , r = 1, . . ., s, where σ−i and

σ+r denote the sample standard deviation of input i-th and output r-th, respectively.
The next result is a direct consequence of the last proposition.

Corollary 4.2 The normalized weighted additive DEA model is translation invari-
ant.

As mentioned in the introduction, the most recently defined weighted additive
model with non-constant weights introduced by Cooper et al. (2011) is known as
BAM. In this case, w−

i0 = 1/((m+ s)Li0), i = 1, . . . ,m, and w+
r0 = 1/((m+ s)Ur0),

r = 1, . . . , s, where Li0 = xi0 − min
j=1,...,n

{xij } and Ur0 = max
j=1,...,n

{yrj } − yr0. It is easy

to verify that these weights are also translation invariant. Hence, we can formulate
the next corollary.

Corollary 4.3 The BAM model is translation invariant.
On the other hand, Ali and Seiford (1990) and Lovell and Pastor (1995) also

studied the traditional radial models, trying to determine relationships between the
translation invariance property and the optimal value of these models. As already
mentioned, Ali and Seiford (1990) established a partial result as shown above in
Proposition 2. Lovell and Pastor (1995) went a step further and realized that in an
oriented BCC model the corresponding efficiency score does not remain invariant
when the variables—inputs or outputs—associated to the orientation are translated
simply because the score is related to the position of the origin of coordinates.
Nonetheless, they were able to establish that the BCC model is partially translation
invariant, as the next proposition shows.

Proposition 5 The input (output)-oriented BCC model is translation invariant with
respect to output (input) changes only.

Some extensions of the last proposition considering non-discretionary variables
as well as non-increasing or non-decreasing DEA models can be found in Pastor and
Ruiz (2007).

Regarding other approaches that have tried to define translation invariant mod-
els in DEA, a distance function that has captured the interest of researchers is the
directional distance function (DDF) (see Chambers et al. 1998, for properties of
the DDF). As pointed out before, the first remarkable example is not a pure DDF
model but a closely related one, known as the Range Directional Model (RDM)
by Silva Portela et al. (2004). These authors proposed a specific model based
on the DDF, which is able to handle datasets with negative data and to gener-
ate efficiency scores that may be readily utilized without the need to transform
the data. Indeed, the generated efficiency scores have a similar interpretation as
the traditional input-oriented radial measures since in the case of the RDM the
origin of coordinates is substituted by the zenith point, an ideal point defined
as

(
min
j=1,...,n

{x1j }, . . . , min
j=1,...,n

{xmj }, max
j=1,...,n

{y1j }, . . . , max
j=1,...,n

{ysj }
)
, and the evaluated

DMU0 is projected towards the efficient frontier along the direction that connects
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DMU0 with the zenith point. The RDM model has the following formulation.

Max β

s.t.
n∑
j=1
λj0xij ≤ xi0 − βLi0, i = 1, . . . ,m

n∑
j=1
λj0yrj ≥ yr0 + βUr0, r = 1, . . . , s,

n∑
j=1
λj0 = 1,

λj0 ≥ 0, j = 1, . . . , n

(8.3)

where Li0, i = 1, . . . ,m, and Ur0, r = 1, . . . , s are defined as above. The specific
definition of the directional vector guarantees that RDM is translation invariant. The
proof follows the same lines as the proof of Corollary 4.1. On the other hand, an
implementation of the RDM to estimate productivity change over time can be found in
Silva Portela and Thanassoulis (2010), where a unique globalVRS frontier is required
to define both a Malmquist-type index based on the RDM efficiency measure and
a Luenberger productivity indicator based on the RDM inefficiency measure. The
proposed approach is applied to a sample of bank branches with unrestricted in sign
data.

As with the RDM, other existing measures also have a wide set of interesting
properties. For instance, the ERG (Enhanced Russell Graph) by Pastor et al. (1999),
also known as the SBM (Slacks-Based Measure) by Tone (2001), is a measure that
satisfies the following properties: (1) it is always between zero and one; (2) the
measure is equal to one if and only if the rated DMU is Pareto-Koopmans efficient;
(3) it is units invariant; and (4) it is strongly monotonic in inputs and outputs. The
original formulation of the ERG is as follows:

Min

1

m

m∑
i=1
θi0

1

s

s∑
r=1
φr0

s.t.
n∑
j=1
λj0xij = θi0xi0, i = 1, . . . ,m

n∑
j=1
λj0yrj = φr0yr0, r = 1, . . . , s,

n∑
j=1
λj0 = 1,

(8.4)
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λj0 ≥ 0, j = 1, . . . , n

θi0 ≤ 1, i = 1, . . . ,m

φr0 ≥ 1, r = 1, . . . , s

If we consider the change of variables s−i0 = xi0(1 − θi0), i = 1, . . . ,m, and
s+r0 = yr0(φr0 − 1), r = 1, . . . , s, then the objective function of (4) can be rewritten

as
1− 1

m
 mi=1

s
−
i0
xi0

1+ 1
s
 mi=1

s
+
r0
yr0

and the constraints as  nj=1λj0xij = xi0 − s−i0, i = 1, . . . ,m, and

 nj=1λj0yrj = yr0 + s+r0, r = 1, . . . , s, with s−i0 ≥ 0, i = 1, . . . ,m, and s+r0 ≥ 0,
r = 1, . . . , s. This alternative formulation is exactly the SBM (see Tone 2001). Note
also that the value of the ERG may be interpreted as the ratio between the average
efficiency of inputs and the average efficiency of outputs.

On the other hand, in the case of strictly positive inputs, we have that s−i0 =
xi0 − nj=1λj0xij ≤ xi0, since xij > 0 and λj0 ≥ 0. However, this is not necessarily
the case for negative inputs, as pointed out by Sharp et al. (2007). Consequently,
there is the possibility that the optimal value in model (4) is negative and, therefore,
meaningless. Taking this fact into account, Sharp et al. (2007) introduced a mod-
ification of the SBM in order to define an efficiency measure capable of handling
negative data. The model proposed by Sharp et al. (2007) follows.

Min

1 − 1

m

m∑
i=1

w−
i
s−i0

Li0

1 + 1

s

m∑
i=1

w+
r s

+
r0

Ur0

s.t.
n∑
j=1
λj0xij = xi0 − s−i0, i = 1, . . . ,m

n∑
j=1
λj0yrj = yr0 + s+r0, r = 1, . . . , s,

n∑
j=1
λj0 = 1,

λj0 ≥ 0, j = 1, . . . , n

s−i0 ≥ 0, i = 1, . . . ,m

s+r0 ≥ 0, r = 1, . . . , s

(8.5)

where Li0, i = 1, . . . ,m, and Ur0, r = 1, . . . , s, are defined as before, and w−
i , i =

1, . . . ,m, and w+
r , r = 1, . . . , s, are user pre-specified constant weights.

Although model (8.5) is not linear, it can be easily transformed into a linear
program through a specific change of variables (see Sharp et al. 2007). Despite the
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fact that the modified-SBM has good properties, among them translation invariance,
one drawback is that the previously shown interpretation for SBM is no longer valid
for the modified model.

8.4 Non-Translation Invariant Models for Dealing with
Negative Data

One of main implications of translation invariance is that models satisfying this
property are valid for dealing with several inputs and/or outputs taking negative
values. However, there are other alternative approaches defined in literature, which
aim to work well when data present some negative values. In this section, we review
these approaches.

We start our revision with the work by Halme et al. (2002), which has gone largely
overlooked in literature. They considered the problem of working with interval scale
data in the CCR and BCC models. In most cases, the negative observations in the
data results from the fact that variables are measured on an interval scale and these
types of inputs and outputs are usually derived from the difference of two ratio scale
variables. For example, profit, which could be negative, is the difference between
two non-negative magnitudes: income and cost. Note also that both income and cost
are ratio scale variables. In this way, the mentioned authors suggest that the interval
scale variable, like profit, should be replaced by the two corresponding ratio scale
variables. The two new variables could be interpreted as one output (income) and
one input (cost). If we assume that t ≤ m inputs and p ≤ s outputs are interval scale
variables, then we should replace each by two ratio scale variables. In this particular
case, Halme et al. (2002) suggest solving the following model:

Max β0 + ε
(
m+p∑
i=1
s−i0 +

s+t∑
r=1
s+r0

)

s.t.
n∑
j=1
λj0xij = xi0 − β0xi0 − s−i0, i = 1, . . . ,m+ p

n∑
j=1
λj0yrj = yr0 + β0yr0 + s+r0, r = 1, . . . , s + t

n∑
j=1
λj0 = 1,

λj0 ≥ 0, j = 1, . . . , n

s−i0 ≥ 0, i = 1, . . . ,m+ p

s+r0 ≥ 0, r = 1, . . . , s + t

(8.6)
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Basically, (8.6) is the directional distance function model with (g−, g+) = (x0, y0).

Nevertheless, in the objective function of (6) the expression ε
(
 
m+p
i=1 s

−
i0 + s+tr=1s

+
r0

)

is maximized, where ε > 0 is a non-Archimedean number. It is well-known that this
technique is equivalent to using the method based on two phases for solving radial
models. In other words, Halme et al. (2002) were seeking (final) Pareto-efficient
targets for all the assessed units. On the other hand, (6) is not translation invariant
as a consequence of the definition of the directional vector. Finally, let us point out
some advantages and drawbacks of the approach proposed by Halme et al (2002).
Regarding the advantages, these authors proved that the units that are initially rated
as technically efficient remain efficient when they are evaluated by using (8.6). As for
the drawbacks, unfortunately it is necessary to know the value of the components of
the interval scale variables for all the units; information that is not always available.

There are other approaches in literature that implement a directional distance
function-type model in order to deal with negative data. One of them is by Silva
Portela et al. (2004). As we have shown in Sect. 8.3, the RDM introduced by these
authors uses a directional vector that is translation invariant, which in turn implies
that this particular directional distance function model satisfies translation invariance
under VRS. However, a new approach has recently been published that criticizes the
RDM with respect to its interpretation. Specifically, Kerstens and Van de Woestyne
(2011) argue that a straightforward modification of the well-known proportional dis-
tance function may equally be used to accommodate negative data, with the advantage
of having a simpler interpretation in terms of the percentage change that facilitates
its use in a managerial context. The model that Kerstens and Van de Woestyne (2011)
propose to solve is the following:

Max β

s.t.
n∑
j=1
λj0xij ≤ xi0 − β |xi0|, i = 1, . . . ,m

n∑
j=1
λj0yrj ≥ yr0 + β |yr0|, r = 1, . . . , s

n∑
j=1
λj0 = 1,

λj0 ≥ 0, j = 1, . . . , n

(8.7)

Clearly, (8.7) does not meet the property of translation invariance since the cor-
responding reference vector (g−, g+) = ( |x0| , |y0| ) depends on data and is not
translation invariant in contrast to the reference vector used by the RDM.

Continuing with the revision of literature, Kazemi Matin and Azizi (2011) have
introduced a two-phase approach in order to set suitable targets in DEA when negative
data are observed. This paper starts with a critical revision of the existing related
literature. Then, the authors propose a new procedure to provide targets with non-
negative values corresponding to originally negative variables (basically outputs). An
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application on banking is included in the paper in order to illustrate the new procedure
and its implications. Specifically, in the application, the amount of returns on equity
is considered as an output with some negative observations in the sample, and any
assessed unit is required to present a positive value as a target for this variable.

The model by Kazemi Matin and Azizi (2011) consists of two phases. The first
one is based on the original additive model (Charnes et al. 1985) and is used for de-
termining a set of targets that will be improved in a subsequent step of the procedure.
Let (s−∗0 , s+∗0 ) be the optimal slacks of the additive model when DMU0 is rated. Then,
the targets in inputs and outputs are defined for this first phase as x̂0 = x0 − s−∗0
and ŷ0 = y0 + s+∗0 . However, these are not the final targets since some output com-
ponents could be strictly negative2. In particular, let us assume that the acceptable
role models must have non-negative outputs. LetR′′0 andR′0 denote the set of indexes
of outputs with and without negative values in ŷ0, respectively. Then, in the second
phase of the method a modified version of a weighted additive model is solved to
determine final targets with all the output components being nonnegative:

Max
∑
r∈R′′0

δ+r0

s.t.
n∑
j=1
λj0xij = x̂i0 + δ−i0x̂i0, i = 1, . . . ,m

n∑
j=1
λj0yrj = ŷr0 − δ+r0ŷr0, r = 1, . . . , s

n∑
j=1
λj0 = 1,

δ−i0 ≤ qi , i = 1, . . . ,m

δ+r0 ≤ pr , r ∈ R′0

δ+r0 ≥ 0, r ∈ R′′0

λj0 ≥ 0, j = 1, . . . , n

(8.8)

where qi and pr are pre-defined nonnegative parameters suggested by the decision
maker. (8) is a slight modification of a weighted additive model because it is equiva-
lent to a slacks-based model applying the following change of variables: s−i0 = δ−i0x̂i0,
i = 1, . . . ,m and s+r0 = δ+r0ŷr0, r = 1, . . . , s. In this way, the objective function in

(8) would be equivalent to  r∈R′′0

s+r0
ŷr0

and, therefore (see Sect. 8.3), the second phase
of the procedure is not translation invariant. Anyway, by using the original additive

2 As mentioned before, Seiford and Zhu (2002) is another previous approach where a method based
on the extension of facets is proposed in order to achieve the same goal but resorting to radial
models.
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model, a clear weakness of this approach is that it focuses on determining suitable
targets for the evaluated units neglecting the definition of a corresponding efficiency
measure with good properties.

Finally, we revise a set of papers that deal with negative data modifying the tradi-
tional radial measures. Probably the most well-known among them is the approach
introduced by Emrouznejad et al. (2010). In this paper, the authors propose a semi-
oriented radial measure (SORM) that permits the presence of variables (inputs or
outputs) with positive and negative values for several units in the sample. In partic-
ular, these authors treat each variable of this type as consisting of the combination
of two new variables as follows. To put it more simply, let us consider an output
variable r ′ so that it is positive for some units and negative for others. Let us now
define two new variables y1

r ′ ≥ 0 and y2
r ′ ≥ 0 as:

y1
r ′j =

⎧
⎨

⎩
yr ′j , yr ′j ≥ 0

0, yr ′j < 0
, y2

r ′j =
⎧
⎨

⎩
0, yr ′j ≥ 0

−yr ′j , yr ′j < 0
, j = 1, . . ., n. (8.9)

In this way, the value of output yr ′j can be obtained as yr ′j = y1
r ′j − y2

r ′j .
In their paper, Emrouznejad et al. introduce several models, all of which are

modifications of the usual radial models in order to accommodate them to different
scenarios. In order to illustrate the approach introduced by Emrouznejad et al., we
next show the case where an input-orientation is needed and negative and positive
values have been observed for the r ′-th output.

Min θ0

s.t.
n∑
j=1
λj0xij ≤ θ0xi0, i = 1, . . . ,m

n∑
j=1
λj0yrj ≥ yr0, r = 1, . . . , s; r 
= r ′

n∑
j=1
λj0y

1
r ′j ≥ y1

r0,

n∑
j=1
λj0y

2
r ′j ≤ y2

r ′0,

n∑
j=1
λj0 = 1,

λj0 ≥ 0, j = 1, . . ., n

(8.10)

Note that in model (8.10) one of the defined variables has been included as an output,
y1
r ′ , and the other one has been included as an input, y2

r ′ . Note also that the approach
by Emrouznejad et al. is closely related to the ideas introduced by Halme et al. in
2002, since in both models the variable that takes positive and negative values is
decomposed into two variables. The main difference between the two approaches is
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that in Halme et al. the components are observable variables with managerial meaning
such as income and cost, while in the case by Emrouznejad et al. the mathematical
decomposition does not have an economic meaning.

Regarding the translation invariance property and SORM, we next show that this
approach is not translation invariant. In fact, model (8.10) is not even translation in-
variant for output translations despite its resemblance to the traditional input-oriented
radial model. To illustrate this point, let us introduce a simple example with one in-
put, one output and three units: A= (1;−1), B= (3;1) and C= (3;−0.5). If we apply
model (8.10) for evaluating unit C, then the optimal value equals θ∗C = 2/3 . How-
ever, if we transform the original output y into a new variable (y+2) and apply (8.10)
again to assess the level of technical efficiency of C, then θ∗C(y + 2) = 1/2 
= 2/3 .
Consequently, as we pointed out, model (8.10), an input-oriented version of SORM,
is not even translation invariant for output translations.

As for the advantages and disadvantages of SORM, we want to highlight that it
is always possible to use SORM for handling negative data within DEA in contrast
to other alternatives, such as the one by Halme et al. (2002), where it is necessary
to know additional information (e.g., income and cost for the case of decomposing
profit). This is due to the fact that it is always feasible to treat each variable as
being the difference of two nonnegative new magnitudes. As for the drawbacks of
SORM, we point out that this technique increases the dimensionality of the problem
unnaturally as a consequence of treating negative parts of variables as new variables.
This point implies that the number of technically efficient units artificially augments
through the application of this method. Moreover, the possible economic meaning
does not play any role and, consequently, the results could be misleading.

Kordrostami and Noveiri (2012) is a more modern version of SORM for dealing
with negative data. These authors modify SORM to accommodate the scenario where
‘flexible variables’ are present. A flexible variable can be considered both as an input
or as an output. One example for banking evaluation is the number of worthwhile
customers. From a prospective view, this variable plays the role of a proxy for future
investment, being then an output, but, on the other hand, it may be also considered
as an “environmental” input for the analyzed branch (see also Cook and Zhu 2007).

Finally, Cheng et al. (2013) propose a variant of the (traditional) radial model,
called VRM, where original values of the rated DMU are replaced with absolute
values to estimate the proportion of improvement needed to reach the efficient fron-
tier. The VRM is units invariant and preserves the interpretation of the original
radial measures. Specifically, Cheng et al. (2013) introduce two versions: an input-
oriented and an output oriented model. In this respect, we would like to highlight
that the VRM by Cheng et al. is only a particularization of a more general model
that estimates technical efficiency through changing both inputs and outputs at the
same time. We are particularly referring to the model introduced by Kerstens and
Van de Woestyne (2011), which is based on the directional distance function with
the directional vector (g−, g+) = ( |x0| , |y0| ). To simplify, here we show only the
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input-oriented adaptation of the VRM approach.

Max β

s.t.
n∑
j=1
λj0xij ≤ xi0 − β|xi0|, i = 1, . . . ,m

n∑
j=1
λj0yrj ≥ yr0, r = 1, . . . , s

n∑
j=1
λj0 = 1,

λj0 ≥ 0, j = 1, . . . , n

(8.11)

Note that if xi0 > 0 for all i = 1, . . . ,m and we take the change of variables
β = 1− θ , then (8.11) is equivalent at the optimal solutions to the traditional input-
oriented radial model under VRS. On the other hand, it is not hard to prove that
the VRM inherits the same properties regarding the translation invariance as the
traditional radial models. In other words, the VRS input-oriented VRM is translation
invariant to changes in outputs while the VRS output-oriented version is translation
invariant to changes in inputs.

8.5 The Linear Loss Distance Function Model and the Property
of Translation Invariance

In this section, we present a recently introduced distance function: the linear loss
distance function (see Pastor and Aparicio 2010; Aparicio and Pastor 2011; Pastor
et al. 2012). As we will show later on, the formulation of a linear DEA model resorting
to this new distance function is a straightforward approach for an easy check of the
translation invariant property.

The linear loss distance function allows us to rewrite any known linear DEA model
by considering a specific subset of restrictions each time, known as the linear nor-
malization constraints, together with a fixed structure that always includes the same
set of variables, the same objective function and the same fixed subset of restrictions.
Consequently, this fix structure or sub-model is common to any DEA linear model.
By adding one or more specific linear normalization constraints to this sub-model,
we get either the same optimal value of the multiplicative form of the corresponding
DEA model or an optimal value that is related to it in a simple linear way. In other
words, the DEA model that defines the linear loss distance function in each particular
case has exactly the same restrictions as the corresponding multiplicative form and a
linearly related objective function. The multiplicative form, which is the dual linear
of the more widely used envelopment form, has a nice geometrical interpretation
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since the hyperplane obtained associated to its optimal solution is a supporting hy-
perplane of the production possibility set, where the efficient projection of the unit
under scrutiny is located (see Ali and Seiford 1993).

Besides this main structural characteristic of the linear loss distance function mod-
els there are other two features worth mentioning. First, provided some mathematical
conditions are fulfilled, it is possible to derive new DEA efficiency measures from the
linear loss distance function just by considering new normalization constraints (see
Aparicio and Pastor 2011). Secondly, the new distance function has a simple dual
relationship with respect to the profit function (see Pastor and Aparicio 2010, Propo-
sition 12). Duality allows, among other things, profit efficiency to be decomposed
into the usual two components: technical and allocative efficiency.

The linear loss distance function was inspired by Debreu’s famous coefficient of
resource utilization (Debreu 1951). Specifically, the notion that has most influenced
this study is the ‘loss function’, as a precursor of Debreu’s famous coefficient, and
which has gone largely overlooked in literature. This concept, which was initially
developed for assessing “dead loss” associated with a non-optimal allocation of
resources in an economic system, is a (shadow) money metric measure of the distance
from an actual allocation to a set of optimal allocations. In order to measure this loss,
Debreu suggested resorting to the shadow prices associated with the convex reference
technology. The minimization problem suggested by Debreu wasMinzpz · (z0 − z),
with z0 a vector representing the actual allocation of resources; z a vector belonging to
the set of optimal allocations andpz one of the shadow price vectors of z. Debreu also
recognized a weakness of his approach: “pz is affected by an arbitrary positive scalar”.
The influence of this scalar means that the objective function may be driven to zero by
a down scaling of all elements ofpz. To avoid this problem, Debreu proposed dividing
the objective function by a price index such as pz · z0, reformulating the original
problem asMinzpz · (z0 − z)/pz · z0, or, equivalently,Maxzpz · z/pz · z0.As pointed
out by Debreu, an optimal solution to the last maximization problem is z∗ = ρz0,
where the scalar ρ ≤ 1 is the so-called Debreu’s coefficient of resource utilization.
Nevertheless, we highlight that the influence of the arbitrary multiplicative scalar can
also be consistently eliminated by adding a “normalization” constraint to the initial
loss minimization problem (see Pastor et al. 2012). Indeed, Debreu’s problem can
be rewritten equivalently asMinz {pz · (z0 − z) :pz · z0 = 1}.

Next, we introduce the notion of linear loss distance function inspired by Debreu’s
loss minimization problem. We need to consider a typical production context where
each unit is identified through a specific set of inputs or resources that are used
to produce a specific set of outputs. As usual, let us consider a unit to be rated,
(x0, y0) ∈ Rm+s+ , with m inputs and s outputs. Let us further denote by (x, y) ∈ ∂(T )
any point that belongs to the Debreu-Farrell frontier ∂(T ) of the production possibility
set T, and by LNC(c(x, y),p(x, y)) a set of linear normalization condition(s) on the
shadow prices c and p.

Definition 1 Given (x0, y0) ∈ Rm+s+ and LNC, a finite set of linear normalization
constraint(s) on the shadow prices, the loss distance function L(x0, y0;LNC) is
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defined as the optimal value of the following minimization model.

L(x0, y0;LNC) := Min

(
s∑
r=1
pryr −

m∑
i=1
cixi

)
−
(

s∑
r=1
pryr0 −

m∑
i=1
cixi0

)

s.t. (x, y) ∈ ∂(T ), (c(x, y),p(x, y)) ∈ Q(x, y)

LNC(c(x, y),p(x, y))

(8.12)

whereQ(x, y) is the set of all shadow prices of (x, y) ∈ ∂(T ).
In a DEA framework, and assuming variable returns to scale, Pastor et al. (2012)

have proved that (8.12) can be reformulated as the following linear program.

L(x0, y0;LNC) = Min α −
(

s∑
r=1
pryr0 −

m∑
i=1
cixi0

)

s.t.
s∑

r=1

pryrj −
m∑

i=1

cixij − α ≤ 0, ∀j

c ≥ 0m,p ≥ 0s

LNC(c,p,α)

(8.13)

whereLNC(c,p,α) denotes a finite set of linear normalization constraint(s) defined
on the shadow prices of the problem and on the free variableα3. In fact, α∗ at optimum
can be interpreted as shadow profit since it equals the value of the profit function at
the optimal shadow prices c∗ and p∗ (recall the objective function of model (8.12)).
As a consequence, the aim of (8.13) is to minimize the difference between the profit
function and the profit at the assessed point (x0, y0), evaluated through shadow prices
that satisfy the corresponding linear normalization constraint(s) LNC(c,p,α).

Regarding the flexibility of the linear loss distance function model to encompass
the most usual efficiency measures in DEA, pointed out at the beginning of this
section, let us show how it is possible to generate the inefficiency part of each
measure simply by considering its specificLNC(c,p,α). Many of the existing DEA
efficiency or inefficiency measures were originally defined through optimization
programs in the quantity space, what we call envelopment form. However, all of
them have a dual linear; its multiplier form, which exhibits a common structure in
the (shadow) price space and matches with or is closely related to the linear loss
distance function model (8.13). For this reason, it is possible to derive each measure

3 Each linear restriction is either an equality or a non-strict inequality. On the other hand, the
generation of a DEA loss function program under different returns to scale is straightforward
(Pastor et al. 2012). For instance, in order to get a non-increasing returns to scale program we just
add the restriction α ≥ 0; if we want a constant returns to scale program we just delete α in model
(8.13).
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Table 8.1 DEA models and their corresponding normalization constraints

DEA Models Normalization Constraint(s)

The input-oriented BCC cx0 = 1

The output-oriented BCC py0 = 1

The Additive Model c ≥ 1m,p ≥ 1s

The Weighted Additive Model (w−, w+) c ≥ w−,p ≥ w+

The input-oriented Russell Model ci ≥ 1
mxi0

, i = 1, . . . ,m

The output-oriented Russell Model pr ≥ 1
syr0

, r = 1, . . . , s

The Enhanced Russell Graph Model (SBM)
ci ≥ 1

mxi0
, i = 1, . . . ,m

pr ≥ 1

syr0
(1 + py0 − cx0 − α), r = 1, . . . , s

The Directional Distance Function Model
(g−, g+)

cg− + pg+ = 1

The Modified Directional Distance Function
Model (g−, g+)

cg− ≥ 1

pg+ ≥ 1

by means of the same linear program where only the normalization condition(s)
have been changed according to each particular case. Next, in Table 8.1 we list
the normalization constraint(s) associated to a selection of DEA models. According
to our previous sections and in order to search for translation invariant models we
consider only VRS technologies as model (8.13) does.

If we revise the first model in Table 8.14, we can see that the input-oriented
BCC model has only one normalization restriction which is a linear equality.
The coefficients of the variables (c,p,α) are x0, 0s ,0. If we now consider the
VRS enhanced Russell Graph model, which is the model in Table 8.1 with
the most complex set of (m+ s) normalization constraints, we can see that the
coefficients of the variables (c,p,α) in the first subset of m restrictions are
(0, . . . , 0,mxi0, 0, . . . , 0), 0s , 0, i = 1, . . . ,m, while in the second and last sub-
set of s constraints they are−x0, (y01, . . . , y0r−1, y0r (1− s), y0r+1, . . . , ys),−1, r =
1, . . . , s. As we will show later on, the nature of these coefficients is crucial for
deciding if a specific model is translation invariant or not.

The relationship between the optimal value of each model and the optimal value
of the loss distance function model is given in Table 8.2.

It is quite curious that all the models whose optimal value, v∗, correspond to a
true efficiency score, verifying nice properties such as 0 ≤ v∗ ≤ 1 (see Cooper
et al. 1999), satisfy v∗ = 1− L(x0, y0,LNC). In Table 8.2, you can find three well-
known examples. Additionally, the models that satisfy v∗ = 1 + L(x0, y0,LNC)

4 The last model of Table 8.1 is defined as follows (see Aparicio et al. 2013):

max
{
β−+β+ :  nj=1λjxj ≤ x0 − β−g−, nj=1λjyj ≥ y0+β+g+, nj=1λj =1,β−,β+, λj ≥ 0

}
.
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Table 8.2 Relating the optimal value of each DEA model to their corresponding loss distance
function

DEA Model, optimal value v∗ Relation between v∗and L(xo,yo,LNC)

The input-oriented BCC v∗ = 1 − L(x0, y0,LNCBCC−IO )

The output-oriented BCC v∗ = 1 + L(x0, y0,LNCBCC−OO )

The Additive Model v∗ = L(x0, y0,LNCAM )

The Weighted Additive Model (w−, w+) v∗ = L(x0, y0,LNCWA)

The input-oriented Russell Model v∗ = 1 − L(x0, y0,LNCR−IO )

The output-oriented Russell Model v∗ = 1 + L(x0, y0,LNCR−OO )

The Enhanced Russell Graph Model (SBM) v∗ = 1 − L(x0, y0,LNCERG)

The Directional Distance Function Model
(g−, g+)

v∗ = L(x0, y0,LNCDDF )

The Modified Directional Distance Function
Model

v∗ = L(x0, y0,LNCMDDF )

also generate a derived efficiency score between 0 and 1 just by taking the inverse
of their optimal value.5 In Table 8.2, you can find two examples that correspond
to output-oriented models. Finally, the models that satisfy v∗ = L(x0, y0,LNC)
estimate profit inefficiency and need some adjustments in their objective functions
so as to get a standardized inefficiency, i.e. an inefficiency value v∗St between 0 and 1,
or, equivalently, an efficiency score defined simply as 1− v∗St . Well-known examples
of these adjustments in connection with the weighted additive models are the RAM
(Cooper et al. 1999) and the BAM (Cooper et al. 2011) measures of efficiency.

Now we are ready to present a proposition that states a condition under which the
linear loss distance function is translation invariance or at least one-sided translation
invariance, i.e., either in inputs or in outputs.

Proposition 6 If any of the constraints of LNC do not involve the value of α and
all the coefficients of the variables (c,p) that appear in the constraints of LNC are
translation invariant in inputs and outputs then model (8.13) is translation invariant.

Proof. The hypothesis of Proposition 6 guarantees that the finite subset of LNC
restrictions is translation invariant. We propose a sequential proof with m+ s steps.
Since a translation of m inputs and s outputs can be decomposed as a sequence of
m+ s translations, each of which moves only a single variable, let us consider without
loss of generality, that only the first input is translated. Specifically, we generate a new
input 1, defined as x ′1j = x1j +h1, with h1 ∈ R. Let us denote this new model (8.13)
with translated data as (8.13’). Let us also consider an optimal solution of (8.13) and
denote it as (c∗,p∗,α∗). We are going to prove that (c∗,p∗,α′) with α′ = α∗ − c∗1h1

5 The known relationship between the values of the Shephard input and output distance functions
(Shephard 1953) under CRS suggests the last introduced efficiency score.
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is a feasible solution of (8.13’). The definition of (c∗,p∗,α∗) guarantees that c∗ ≥
0m,p∗ ≥ 0s . The hypothesis guarantees that LNC(c∗,p∗,α′ ) = LNC(c∗,p∗,α∗)
and that, therefore, (c∗,p∗,α′) satisfies all the normalization constraints. To complete
the proof we need to verify that  sr=1p

∗
r yrj − c∗1x ′1j −  mi 
=1c

∗
i xij − α′ ≤ 0, ∀j. It

is accomplished as follows.  sr=1p
∗
r yrj − c∗1x ′1j −  mi 
=1c

∗
i xij − α′ =  sr=1p

∗
r yrj −

c∗1(x1j + h1)− mi 
=1c
∗
i xij − (α∗ − c∗1h1) =  sr=1p

∗
r yrj − mi=1c

∗
i xij −α∗ ≤ 0, for all

j = 1, . . . , n.
Hence, (c∗,p∗,α′) is a feasible solution of (8.13’). Regarding the corresponding

value of the objective function the next chain of equalities show that it is the same
as the optimal value of (8.13): α′ − ( sr=1p

∗
r yr0 − c∗1x ′10 − mi 
=1c

∗
i xi0) = α∗ − c∗1d −

( sr=1p
∗
r yr0 − c∗1(x10 + d) − mi 
=1c

∗
i xi0) = α∗ − ( sr=1p

∗
r yr0 − mi=1c

∗
i xi0).

Let us finally prove that (c∗,p∗,α′) is an optimal solution of (8.13’), by contradic-
tion. If it is not, there would exist another feasible solution of (8.13’), (ĉ, p̂, α̂), such
that α̂− ( sr=1p̂ryr0− ĉ1x

′
10− mi 
=1ĉixi0) < α′ − ( sr=1p

∗
r yr0− c∗1x ′10− mi 
=1c

∗
i xi0).

But then, it is not hard to prove, following the same steps as before, that
(ĉ, p̂, α̃) with α̃ = α̂ + ĉ1h1 would be a feasible solution of (13). In addition,
α̃−( sr=1p̂ryr0− mi=1ĉixi0) = α̂+ ĉ1h1−( sr=1p̂ryr0− ĉ1(x ′10−h1)− mi 
=1ĉixi0) =
α̂ − ( sr=1p̂ryr0 − ĉ1x

′
10 − mi 
=1ĉixi0) < α′ − ( sr=1p

∗
r yr0 − c∗1x ′10 − mi 
=1c

∗
i xi0) =

α∗ − ( sr=1p
∗
r yr0 −  mi=1c

∗
i xi0), which contradicts that (c∗,p∗,α∗)is an optimal so-

lution of (8.13). Therefore, (c∗,p∗,α′) is an optimal solution of (8.13’) and, as
shown before, the optimal values of both models, (8.13) and (8.13’), coincide. This
completes the proof6.

We also note that: (1) since the optimal solution of model (8.13) always cor-
responds to an inefficiency measure we can talk about a “translation invariant
inefficiency measure”. (2) If the inefficiency measure of model (8.13) is linearly
related to a true efficiency measure—see Table 8.2—we can talk about a “translation
invariant efficiency measure”. (3) The proof of the last proposition clearly shows
why a CRS model cannot be translation invariant. In fact, CRS requires α = 0 and
any translation modifies the value of α!

Next, we present a by-product of the above result that allows us to relate, among
other things, the linear loss distance function to translation invariance when input or
output orientation is assumed.

Corollary 6.1 If any of the constraints of LNC do not involve the value of α and
if all the coefficients associated to the variables (c,p) that appear in the constraints
of LNC are only translation invariant in inputs (outputs), then model (8.13) is only
translation invariant in inputs (outputs).

Proof. It is a direct consequence of Proposition 6.
The findings of the last results clearly show that translation invariance in a DEA

model depends only on the behavior of its linear normalization restrictions. We
have created Table 8.3 to systematize these results. Looking at Table 8.1, we see

6 If we were translating the first output instead of the first input the proof is completely similar.
The new translated input would be y

′
1j
= y1j + k1, ∀j , which generates a derived feasible solution

defined as (c∗,p∗,α′) where α′ = α∗ + p∗1k1.
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Table 8.3 DEA models, normalization constraints and translation invariance

DEA models Linear Normalization equalities or
inequalities

Translation invariance

The input-oriented BCC cx0 = 1
Depends on input values

Only for outputs

The output-oriented BCC py0 = 1:
Depends on output values

Only for inputs

The Additive Model c ≥ 1m,p ≥ 1s Yes

The Weighted Additive
Model (w−, w+)

c ≥ w−,p ≥ w+
Depends on (w−, w+)

Not always

The input-oriented Russell
Model

ci ≥ 1
mxi0

, i = 1, ...,m Only for outputs

Depends on input values

The output-oriented Russell
Model

pr ≥ 1
syr0

, r = 1, . . . , s Only for inputs

Depends on output values

The Enhanced Russell Graph
Model (SBM)

ci ≥ 1
mxi0

, i = 1, ...,m

pr ≥ 1
syr0

(1 + py0 − cx0 − α), r=1, ..., s
No

First (second) restriction depends on
input (output) values

The Directional Distance
Function Model (g−, g+)

cg− + pg+ = 1
Depends on (g−, g+)

Not always

The Modified Directional
Distance Function Model
(g−, g+)

cg− ≥ 1

pg+ ≥ 1
First (second) restriction depends on
g- (g+)

Not always

that the coefficients of the variables of the unique restriction of LNCBCC−IO do
depend only on the input values of the unit being rated. Therefore the BCC-IO
model is only translation invariant for outputs. A similar and symmetric reasoning is
valid for the BCC-OO model. The Weighted Additive model is translation invariant
provided the weights attached to the objective function are translation invariant.
In particular, the Additive Model (Charnes et al. 1985) is a translation invariant
model. The RAM and the BAM models are also translation invariant. On the other
hand, the input-oriented Russell model is translation invariant in outputs, while
the output-oriented Russell model is translation invariant in inputs for the same
reasons as the BCC models. Moreover, the Enhanced Russell Graph model is never
translation invariant. As a matter of fact, the first subset of m restrictions ofLNCERG
is only translation invariant for outputs, and the second subset of s restrictions is
only translation invariant for inputs. Finally, the Directional Distance Function and
the Modified- Directional Distance Function models are in general not translation
invariant. Both models are translation invariant if (g−, g+) is a constant vector. But
they are not if, e.g. (g−, g+) = (x0, y0) in contrast to the claim by Färe and Grosskopf
(2013).
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8.6 Conclusions

We have been able to accomplish two very differentiated tasks. The first one has been
to present a state of the art of translation invariant DEA models, extended to non-
translation invariant DEA models that, nonetheless, are able to deal with negative
data. The second one has been to present a new distance function, the linear loss
distance function, which constitutes a powerful tool for revising translation invariance
of any known DEA model. As far as we know, the linear loss distance function is the
first distance function defined on the multiplier—or shadow price—space. Its most
relevant feature is that it unifies all the existing DEA models under a similar structure
which allows an easy checking of the different models. Consequently we have been
able to revise the most well known DEA models and to classify them according to
their translation invariant characteristics.
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Chapter 9
Scale Elasticity in Non-parametric DEA
Approach

Biresh K. Sahoo and Kaoru Tone

Abstract This contribution is an attempt to make an exhaustive critical review of
various possible estimation methods of scale economies in a non-parametric data
envelopment analysis approach. Three types of technology structure—piecewise
linear, piecewise log-linear, and FDH—are found to be adopted for such estimation
exercise. These technology structures are built up either in input-output space or
in cost-output space. The strengths and weaknesses of the uses of each of these
estimation methods are discussed. The issue of which method to use in any empirical
application is a matter of an examination of various issues concerning (1) whether
factor inputs are indivisible, (2) whether price data are available, and if available,
whether they are well measured with certainty, and (3) whether the non-convexities
in the underlying production technology are present.

Keywords Scale elasticity ·Returns to scale ·Economies of scale ·Data envelopment
analysis

9.1 Introduction

Competition is a driving force behind numerous important policy changes. It puts
forth downward pressure on costs, reduces slacks, provides incentives, and drives
innovation forward. To analyze the performance of a firm, the concept of productivity
growth has been widely used in the literature, and the sources of this growth are
largely due to the contributions from either economies of scale (returns to scale,
RTS) or technical change or both. However, empirical evidence suggests that the
sources of productivity growth are due to more of increasing returns to scale and
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less of technical progress (Rosenberg 1963, 1981; Sokoloff 1988; Morrison 1992;
Devereux et al. 1996; Basu and Fernald 1997; Jones 2004).

One of the most important aspects in applied production analysis of firms is the
measurement of RTS since its informational contents can provide important insights
to firm managers making operational decisions in strengthening their competitive
position. In this paper, we concentrate on this aspect within the framework of data
envelopment analysis (DEA). The RTS or scale elasticity (SE) or Passus Coefficient
in the terminology of Frisch (1965), is the property of a production function, and is
regularly used to describe the relationship between scale and efficiency. In case of
a multi-output-multi-input production technology, the RTS relates to the case where
it measures the maximum proportional increase in all outputs relative to a given
proportional increase in all inputs. Constant RTS are said to prevail at a point on
the production frontier if an increase of all inputs by, say, 1 % leads to an increase
of all outputs by 1 %. Decreasing RTS are present if outputs increase by less than
1 %, while increasing RTS exist if they increase by more than 1 %.The changes in
input- and output mixes remain constant in this measure of SE. See Hanoch (1970),
Starrett (1977), Panzar and Willig (1977) and Baumol et al. (1982) for the detailed
discussion on this.

Economies of scale may arise from four major sources: (a) economies of scope (b)
indivisibility comprising size, (c) learning by doing through cumulative experience,
and (d) reduced input costs due to power over suppliers. The benefits of scale increases
flow from the many diverse components of the concept of a ‘firm’. The emphasis here
is not only on technology but more on the entire gamut of organization, management,
learning by doing, reorganization of inputs, and other capabilities of firm. These
sources of scale can be easily traced in the Silberston’s broader definition of scale—
“economies of scale can be said to exist if an expansion in the volume of output
produced results in a decrease in the unit cost of production when at each higher
level of output, all possible adaptations in technology and organization have been
carried through” (Silberston 1972).

Therefore, an appropriate estimation strategy for the underlying production tech-
nology structure is essential in understanding and capturing the RTS properties of
a firm. We have chosen the DEA for the estimation of RTS. The non-parametric
DEA approach yields both qualitative and quantitative information about the RTS.
Using this approach, the RTS estimation has been researched in many studies since
1984. See, e.g., Banker et al. (1984, 1986, 1996a, b, 2004); Färe et al. (1986, 1988);
Banker and Thrall (1992); Zhu and Shen (1995); Førsund (1996); Golany and Yu
(1997); Sueyoshi (1997, 1999); Seiford and Zhu (1998, 1999); Sahoo et al. (1999,
2012); Zhu (2000); Tone (2001); Tone and Sahoo (2003); Førsund and Hjalmarsson
(2004); Hadjicostas and Soteriou (2006); Førsund et al. (2007); Sueyoshi and Seki-
tani (2007a, b); Podinovski et al. (2009); Podinovski and Førsund (2010), Zelenyuk
(2013), and Sahoo and Sengupta (2014), among others.

In the DEA literature, researchers involved in the empirical estimation of RTS,
generally, uses either a factor-based technology set or a cost-based technology set.
Either of the two technology sets is generally taken to be a satisfactory way of
empirically verifying scale economies behavior without mentioning whether they
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are taken to highlight the same causal factors. One can, however, argue that the
shortcomings associated with RTS measure underlying the factor-based technology
set are too strong enough to measure any relevant scale effects of a real-life firm.
This is because in this measure the output is related to the inputs only by defining
the input-mix in a special way, e.g., as a replication measure, as a size measure, or
as a long-run measure of only one input such as plant and machinery or capital.

The replication measure is purely statistical in nature, often, used in the statistical
theory of design of experiments. Any firm can be replicated by a new firm, but this has
no economic meaning because it is not a controlled experiment. The techniques and
inputs used at higher scale are very different from those used at lower scale. And, it is
usually very hard to judge the economic relevance (i.e., effect) of a replicated firm of
a given size (i.e., treatment) unless it is well compared with an actual firm of that size.
The issue involved here is how representative a replicated firm is of an actual firm to
which the investigator would like to project. It can be argued that a replicated firm
may not properly represent an actual firm because of indivisibilities associated not
only in technology, but also in unique attributes associated with geographic locations
and innovative mangers.

The size measure in terms of inputs is not unequivocal. In agricultural economics,
it is natural to measure size by acres, but in industrial manufacturing there is no natural
measure. The measure of plant and machinery is difficult due to heterogeneity except
through costs. Note that if the current input mix can be represented by a size measure,
then the size elasticity of output is a good measure of RTS, and so is for the plant and
machinery. In the light of the aforementioned problems, the cost measure seems to
score well over the factor-based technology set measure to estimate scale economies.

Therefore, when inputs/outputs are heterogeneous across firms, the construction
of factor-based technology set in DEA becomes problematic. As a result, the al-
ternative cost-based technology set is very useful in estimating various productive
efficiency behaviors of firms. See, e.g., Färe and Grosskopf (1985); Grosskopf et al.
(1987); Grosskopf andYaiswarng (1990); Fried et al. (1998); Sengupta (1999, 2002,
2003, 2004a, b, 2005a, b); Sahoo et al. (2007, 2012, 2014a); Sahoo (2008); Sahoo
and Tone (2009a, b); Sahoo and Gstach (2011); Sahoo and Tone (2013), among
others. We use this approach to discuss the SE estimation of firms. Note that in
the presence of factor heterogeneity (indivisibility), the non-convex (log convex)
technology set could also be used to determine the RTS properties of firms.

Note that all the standard methods of determining SE in the DEA approach proceed
by examining tangential planes to the frontier at a given point. This is done either by
looking at the constant term (the variable u0 originally introduced in the literature by
Banker et al. 1984) that represents the intercept of that plane with the plane in which
all inputs are set to zero or, by observing the weights of the corner points of the
facet of the frontier associated with that plane. This determination, however, may be
difficult because the plane need not be unique. In this study we will, therefore, deal
with both the right-hand (lower bound) and left-hand (upper bound) SEs. Note that
one could also use the Golany andYu (1997)’s envelopment DEA model to determine
the right-hand and left-hand SE estimates.
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The remainder of the paper proceeds as follows. Section 9.2 first deals with the
evaluation of right-hand and left-hand SEs based on a factor-based technology set
involving no indivisibility and indivisibility respectively, then argue for the use of
the multiplicative DEA models to obtain the exact estimates of SEs. Finally, this
section deals with the discussion of SE based on the cost-based technology set when
inputs and outputs are considered heterogeneous. Section 9.3 concludes with some
remarks.

9.2 Technology Specification and Scale Elasticity

9.2.1 Technology

There are at least two approaches for estimating scale elasticity parameter in produc-
tion economics literature: (1) production/distance function approach in the primal,
and (2) support functions approach such as cost and revenue functions in the dual.
Throughout we assume to deal with n observed firms; each uses m inputs to produce
s outputs. Let xj = (x1j , . . . , xmj )T ∈ R

m
≥0 and yj = (y1j , . . . , ysj )T ∈ R

s
≥0 be,

respectively, the vector of inputs and outputs of firm j; wj = (w1j , . . . , wmj ) ∈ R
m
≥0

and pj = (p1j , . . . ,psj ) ∈ R
s
≥0 be, respectively, the price vectors of inputs and

outputs of firm j; and J be the index set of all the observed firms, i.e., J = {1, . . . , n}.
The production technology that transforms an input vector x ∈ R

m
≥0 to an output

vector y ∈ R
s
≥0, can be characterized by the technology set T ⊂ R

m
≥0×R

s
≥0, defined

as

T = {
(x, y) ∈ R

m+s
≥0

∣∣x ∈ R
m
≥0 can produce y ∈ R

s
≥0

}
(9.1)

We assume here that the set T satisfies the following axioms to ensure the existence
of duality between cost and production: (a) inactivity is allowed, (b) “free lunch”
is not allowed, (c) free disposability of both inputs and outputs and (d) technology
set is compact and convex (Färe 1988; Fare and Primont 1995). The neoclassical
characterization of production function is the transformation functionψ(x, y), which
decreases with y and increases with x such that

ψ(x, y) ≤ 0 if and only if (x, y) ∈ T (9.2)

ψ(x, y) = 0 represents those input–output vectors that operate on the boundary of
the set T, and hence are technically efficient. The set T can also be described by an
input requirement set L(y):

L(y) = {x : (x, y) ∈ T } (9.3)

or by an output set P (x):

P (x) = {y : (x, y) ∈ T } (9.4)
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or by an input distance function Di(x, y):

Di(x, y) = inf {α : αx ∈ L(x)} (9.5)

orby an output distance function Do(x, y):

Do(x, y) = sup {β : βy ∈ P (y)} (9.6)

Note that x ∈ L(x) if and only ifDi(x, y) ≤ 1, y ∈ P (y) if and only ifDo(x, y) ≥ 1.
Di(x, y) and Do(x, y) are linearly homogeneous in x and y, respectively.

9.2.2 Primal Measure of Scale Elasticity

The SE is based on a relationship that with a given proportional expansion of all
inputs (α), one can find out the maximum proportional expansion in all outputs (β)
such that

ψ(αx,βy) = 0 (9.7)

On differentiation of (9.7) with respect to input scaling factor α yields the following
measure of SE ε(x, y) (Hanoch 1970; Panzar and Willig 1977):

∂β

∂α
= ε(x, y) = −

∑m
i=1

∂ψ(·)
∂xi
xi

∑s
r=1

∂ψ(·)
∂yr
yr

(9.8)

Proposition 1 The RTS defined at point (x, y) are increasing (IRS), constant (CRS)
and decreasing (DRS) if ε(x, y)> 1, ε(x, y)= 1 and ε(x, y)< 1, respectively.

Färe et al. (1986, 1988) redefine the transformation function ψ(x, y) as
(Di(x, y)− 1), and this redefinition yields the following input-oriented measure of
SE:

εi(x, y) = Di(·)
/(

s∑

r=1

∂Di(·)
∂yr

yr

)
(9.9)

Similarly, by redefiningψ(x, y) as (1−Do(x, y)), Färe et al. (1986, 1988) derive the
output-oriented measure of SE as

εo(x, y) =
(

m∑

i=1

∂Do(·)
∂xi

xi

)/
Do(·) (9.10)
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9.2.3 Dual Measure of Scale Elasticity

Following Panzar and Willig (1977) and Baumol et al. (1982), the dual measure of
SE, called cost elasticity εc(y, w), is defined as

εc(y, w) = C(y; w)
/(

s∑

r=1

∂C(y; w)

∂yr

)
(9.11)

WhereC(y; w) = min
x
{w.x : x ∈ L(y)} is the minimum cost of producing the output

vector y at the input price vector w. However, the duality relationship between cost
functionC(y; w) and input distance functionDi(x, y) suggests that the scale elasticity
and the cost elasticity are same, i.e.,

εc(y, w) = C(y; w)
/(

s∑

r=1

∂C(y; w)

∂yr

)
= εi(x, y) = Di(·)

/(
s∑

r=1

∂Di(·)
∂yr

yr

)

(9.12)

Similarly, the duality relationship between revenue function R(x;p) and the output
distance function Do(x, y) implies that the revenue elasticity εr (x,p) and the scale
elasticity εo(x, y) are the same, i.e.,

εr (x,p) =
(

m∑

i=1

∂R(x;p)

∂xi
xi

)/
R(x;p) = εo(x, y) =

(
m∑

i=1

∂Do(·)
∂xi

xi

)/
Do(·)

(9.13)

where R(x;p) = max
y
{p.y : y ∈ P (x)} is the maximum revenue obtained from the

input vector x at the given the output price vector p. See Fare and Primont (1995,
pp. 44–54) for the proof.

9.2.4 Scale Elasticity in DEA Models

9.2.4.1 Scale Elasticity in Production DEA Models

The DEA estimator of the true but unknown technology set that allows variable
returns to scale (VRS), is the BCC technology (Banker et al. 1984) given by

T DEAVRS =
⎧
⎨

⎩(x, y) :
∑

j∈J
xijλj ≤ xi(∀i),

∑

j∈J
yrjλj ≥ yr (∀r),

∑

j∈J
λj = 1, λj ≥ 0(∀j )

⎫
⎬

⎭

(9.14)

Now we consider the evaluation of input-oriented SE for any firm o (o∈ J) in the
T DEAVRS . The input-oriented technical efficiency of firm o can be obtained from the
following linear programming (LP) problem:

Di(xo, yo) = α(β) = min
{
α : (αx,βy) ∈ T DEAVRS ;β = 1

}
(9.15)
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Alternatively, the primal envelopment-form based LP program (9.15) can be set up
in its dual multiplier form as

Di(xo, yo) = α(1) = max
s∑

r=1

uryro − uo (9.16)

s.t.
s∑

r=1

uryrj −
m∑

i=1

vixij − uo ≤ 0,

m∑

i=1

vixio = 1,

ur , vi ≥ 0(∀i, r); uo : f ree.

For any firm o (o∈ J), the following transformation function

ψ(α(1)xo, yo) ≡
s∑

r=1

uryro −
m∑

i=1

vi(α(1)xio) − uo = 0 (9.17)

Using the formula (9.8), the input-oriented SE of firm o can be obtained as

εi(xo, yo) = −
∑m
i=1

∂ψ(α(1)xo ,yo)
∂xio

xio
∑s
r=1

∂ψ(α(1)xo ,yo)
∂yro

yro
= α(1)

α(1) + uo
= 1

1 + uo/Di(xo, yo)
(9.18)

Now let us turn to the SE evaluation of firm o in an output-oriented BCC model given
by

Do(xo, yo) = β(α) = max
{
β : (αx,βy) ∈ T DEAVRS ;α = 1

}
(9.19)

Alternatively, the envelopment-form based LP problem (9.19) can be set up in its
dual multiplier form as

Do(xo, yo) = β(1) = min
m∑

i=1

vixio + vo (9.20)

s.t. −
s∑

r=1

uryrj +
m∑

i=1

vixij + vo ≥ 0,

s∑

r=1

uryro = 1,

ur , vi ≥ 0(∀r , i); vo : f ree.

For any firm o (o∈ J), the following transformation function

ψ(xo,βyo) ≡
s∑

r=1

ur (β(1)yro) −
m∑

i=1

vixio − vo = 0 (9.21)
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Using the formula (9.8), the output-oriented SE of firm o can now be obtained as

εo(xo, yo) = −
∑m
i=1

∂ψ(xo ,β(1)yo)
∂xio

xio
∑s
r=1

∂ψ(xo ,β(1)yo)
∂yro

yro
= β(1) − vo

β(1)
= 1 − vo

Do(xo, yo)
(9.22)

where β(1) = Do(xo, yo) is the reciprocal measure of output technical efficiency.
It is well known that the DEA technologies are not differentiable at extreme effi-

cient points due to multiple optimal solutions for uo(vo). Following Banker and Thrall
(1992), we, therefore set up the following LP problems to find out the maximum and
minimum values of uo for firm o as:

u+o (u−o ) = max(min)uo (9.23)

s.t.
s∑

r=1

uryro − uo = Di(xo, yo),
m∑

i=1

vixio = 1,

s∑

r=1

uryrj −
m∑

i=1

vixij − uo ≤ 0(∀j 
= o), vi , ur ≥ 0(∀i, r), uo : free

Based on the results of (9.23), one can determine, respectively, the input-oriented
right-hand SE (ε+i (·)) and left-hand SE (ε−i (·)) for firm o as

ε+i (xo, yo) = 1

1 + u+o /Di(xo, yo)
and ε−i (xo, yo) = 1

1 + u−o /Di(xo, yo)
(9.24)

We have now our Proposition 2.

Proposition 2 Assuming alternate optima in uo, the firm o in the T DEAVRS exhibits
(input-oriented) IRS (ε+i (·)> 1) if u+o < 0, (input-oriented) CRS (ε+i (·) ≤ 1 ≤ ε−i (·))
if u+o ≥ 0 ≥ u−o and (input-oriented) DRS (ε−i (·) < 1) if u−o > 0.

Let us now diagrammatically illustrate in Fig. 9.1 the input-oriented measure
of right-hand and left-hand SEs. For sake of simplicity, we assume a single-input-
single-output technology that comprises of six firms labelled as A, B, C, D, E and
F. Firms—A, B, C and D—form the BCC efficiency frontier. Consider, e.g., the SE
evaluation of two firms: one efficient firm, say, A and one inefficient firm, say E,
whose input and output bundles are, respectively, (2,1) and (5,1). The running of LP
program (9.23) yields the following results: Di(2,1) = 1, u+A = −0.5 and u−A = −1
(for A) and Di(5,1) = 2/5 = 0.4, u+E = −0.2 and u−E = −0.4 (for E). Using (9.24),
the right-hand and left-hand SEs of efficient firm A can be computed, respectively, as
ε+i (2,1) = 1/[1+(−0.5)/1] = 2 and ε−i (2,1) = 1/[1+(−1)/1] = ∞. And, the right-
hand and left-hand SEs of inefficient firm E can be computed at its projected point
A as ε+i (5,1) = 1/[1 + (−0.2)/0.4] = 2 and ε−i (5,1) = 1/[1 + (−0.4)/0.4] = ∞
respectively. The right-hand and left-hand SEs of other firms can be computed in an
analogous manner.

In order to compute the output-oriented right-hand and left-hand SEs for firm
o, we first find out the maximum and minimum values of vo for firm o from the
following LP programs:

v+o (v−o ) = max(min)vo (9.25)



9 Scale Elasticity in Non-parametric DEA Approach 277

Fig. 9.1 The diagrammatic illustration of SE measure

s.t.
m∑

i=1

vixio − vo = Do(xo, yo),
s∑

r=1

uryro = 1,

−
s∑

r=1

uryrj +
m∑

i=1

vixij + uo ≥ 0(∀j 
= o), vi , ur ≥ 0(∀i, r), vo : free

Based on the results of (9.25), the output-oriented right-hand SE ε+o (xo, yo) and
left-hand SE ε−o (xo, yo) for firm o can be computed as

ε+o (xo, yo) = 1 − v+o
Do(xo, yo)

and ε−o (xo, yo) = 1 − v−o
Do(xo, yo)

(9.26)

We have now our Proposition 3.

Proposition 3 Assuming alternate optima in vo, firm o in the T DEAVRS exhibits
(output-oriented) IRS (ε+o (·) > 1) if v+o < 0, (output-oriented) CRS (ε+o (·) ≤ 1 ≤
ε−o (·)) if v+o ≥ 0 ≥ v−o and (output-oriented) DRS (ε−o (·) < 1) if v−o > 0.

Note that Banker et al. (1984) are the first to show that the intercept uo(vo) in the
multiplier form of BCC model can be used to estimate the SE. Several contributions
exist, at the extreme points, on the evaluation of right-hand (lower bound) and left-
hand SE (upper bound) measures based on production model. See, e.g., Banker and
Thrall (1992); Fukuyama (2000, 2001, 2003); Førsund and Hjalmarsson (2004);
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Tone and Sahoo (2004); Hadjicostas and Soteriou (2006); Førsund et al. (2007),
Podinovski et al. (2009); Podinovski and Førsund (2010), Zelenyuk (2013), and
Sahoo and Sengupta (2014), among others.

Note that instead of using the multiplier DEA models—(9.16) and (9.20); one
could also use the envelopment models—(9.15) and (9.19)—to calculate the input-
oriented right-hand SE and the output-oriented left-hand SE. To start with, we assume
that firm o is input-oriented technically efficient, i.e., α(1) = 1 in (9.15). In order to
compute its input-oriented right-hand SE of firm o ε+i (xo, yo), we set up the following
model:

Di(xo, yo) = α(β) = min
{
α : (αx,βy) ∈ T DEAVRS ;β = 1 + δ, δ > 0

}
(9.27)

If 1+ δ > α(·) > 1, then IRS prevail to the right of firm o’s (xo, yo); if 1+ δ = α(·),
then CRS prevail to the right of firm o’s (xo, yo); and if 1 + δ < α(·), then DRS
prevail to the right of firm o’s (xo, yo); and if there is no feasible solution to (9.27),
then there are no data to determine RTS to the right of (xo, yo) (Golany and Yu 1997,
p. 32).

Based on the solution of program (9.27), the input-oriented right-hand SE for firm
o ε+i (xo, yo) can be computed as

[
ε+i (xo, yo)

]−1 = lim
β→1+

α(β) − 1

β − 1
= α(1 + δ) − 1

δ
(9.28)

Now let us turn to show the computation of output-oriented left-hand SE for firm
o ε−o (xo, yo) for which we assume firm o to be output-oriented technically efficient,
i.e., β(1) = 1 in (9.19). Consider the following LP program:

Do(xo, yo) = β(α) = max
{
β : (αx,βy) ∈ T DEAVRS ;α = 1 − δ, δ > 0

}
(9.29)

If 1 > β(·) > 1− δ, then DRS prevail to the left of firm o’s (xo, yo); if β(·) = 1− δ,
then CRS prevail to the left of firm o’s (xo, yo); and if β(·) < 1+ δ, then IRS prevail
to the left of firm o’s (xo, yo); and if there is no feasible solution to (9.27), then there
are no data to determine RTS to the left of (xo, yo) (Golany and Yu, 1997, p. 32).

From the optimal solutions of program (9.29), the output-oriented left-hand SE
for firm o ε−o (xo, yo) can be computed as

ε−o (xo, yo) = lim
α→1−

β(α) − 1

α − 1
= 1 − β(1 − δ)

δ
(9.30)

9.2.4.2 Scale Elasticity in Multiplicative DEA Model

The problem underlying DEA models based on piece-wise linear technology set
(9.14) is that the resulting production frontier is concave, i.e., the marginal prod-
ucts of factor inputs are non-increasing, which is not consistent with neoclassical
production theory that posits an S-shape for the production function obeying the
Frisch (1965)’s Regular Ultra Passum (RUP) Law. See Olesen and Petersen (2013)
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for a discussion on how the piece-wise linear technology can be consistent with
neoclassical production technologies obeying the RUP Law—the marginal product
first increases but diminishing returns eventually set in. Therefore, another class
of models—commonly known as multiplicative models—is developed to allow the
production frontier to be concave in some region and non-concave elsewhere so as to
reveal increasing, constant and decreasing marginal productivities along the frontier.
Another distinct advantage of using this technology structure is that the exact esti-
mates of SEs can be obtained. For the evaluation of SE, we selected the multiplicative
model of Banker and Maindiratta (1986) that is based on the piece-wise log-linear
technology T L−DEAVRS given by

T L−DEAVRS =

⎧
⎪⎨

⎪⎩

( log x, log y) :
∑
j∈J
λj log xij ≤ log xi(∀i),

∑
j∈J
λj log yrj ≥ log yr (∀r), ∑

j∈J
λj = 1, λj ≥ 0(∀j )

⎫
⎪⎬

⎪⎭
(9.31)

The input-oriented TE of firm o can be evaluated against T L−DEAVRS as:

min
{
log δ : ( log xo + log δ, log yo) ∈ T L−DEAVRS

}
(9.32)

The dual of (9.32) can be set up as

max
s∑

r=1

ur log yro −
m∑

i=1

vi log xio − ûo (9.33)

s.t.
s∑

r=1

ur log yrj −
m∑

i=1

vi log xij − ûo ≤ 0,

m∑

i=1

vi = 1,

ur , vi ≥ 0(∀r , i); ûo : f ree.

For any technically efficient firm o (o∈ J), the following transformation function

ψ(xo, yo) ≡
s∑

r=1

ur log yro −
m∑

i=1

vi log xio − ûo = 0 (9.34)

Using the formula (9.8) the input-oriented SE of firm o εmi (xo, yo) can be obtained as

εmi (xo, yo) = −
∑m
i=1

∂ψ(xo ,yo)
∂xio

xio
∑s
r=1

∂ψ(xo ,yo)
∂yro

yro
=

∑m
i=1 vi∑s
r=1 ur

= 1∑s
r=1 ur

(9.35)

Proposition 4 Firm o in the T L−DEAVRS exhibits (input-oriented) increasing RTS if∑s
r=1 ur < 1, (input-oriented) constant RTS if

∑s
r=1 ur = 1, and (input-oriented)

decreasing RTS if
∑s
r=1 ur < 1.

One can also use the other multiplicative models (Banker et al. 2004; Zarepisheh
et al. 2010; Mehdiloozad et al. 2014) to determine SE.
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9.2.4.3 Scale Elasticity in Production DEA Models with Indivisibilities

The DEA models based on the piece-wise linear technology (9.14) are based on
the maintained hypothesis that the technology set is convex. Convexity, as argued
by Farrell (1959), assumes away some important technological features such as
indivisible production activities, economies of scale and economies of specialization,
which all, in fact, result from concavities in production. Barring a few authors like
Thrall (1999), the recent literature favoring the dropping of convexity axiom include,
among others, Scarf (1981a, b, 1986, 1994); Tulkens (1993); Tulkens and Vanden
Eeckaut (1995); Bouhnik et al. (2001); Tone and Sahoo (2003), Kuosmanen (2003);
Briec et al. (2004); and Briec and Liang (2011). And the literature on some exciting
economic analysis arising from the violation of convexity include Yang and Ng
(1993); Yang (1994); Yang and Rice (1994); Borland and Yang (1995) and Shi
and Yang (1995). The only argument favoring convexity postulate is that there is
possible reduction of small sample errors, which, but, comes at the cost of possible
specification error that is likely to be negligible in large samples.

A closer look at the DEA-related economic literature on production analysis
(Afriat 1972; Hanoch and Rothschild 1972; Varian 1984) reveals that the convexity
properties are motivated from the perspective of economic objectives, but not as
inherent feature of technology. However, looking at the structures of real-life tech-
nologies leads one to suspect the harmless character of the convexity postulate. For
the details, see Cherchye et al. (2000, 2001) and Kuosmanen (2003) who have pro-
vided empirical as well as theoretical arguments, less in favor of, but, mostly against
the convexity postulate.

In the presence of indivisibilities, the technology set is no longer convex; as a
result, the linear technology in (9.14) fails to enable us to correctly determine the
local RTS possibilities along the frontier. Tone and Sahoo (2003) have shown that in
the presence of technological indivisibilities, the use of convex BCC technology pro-
duces erroneous inferences concerning the local RTS possibilities of firms. Kerstens
and Vanden Eeckaut (1999) and later on Briec et al. (2000) proposed a more general
method by considering variations in RTS on the existing free disposal hull (FDH)
technology that is suitable for all reference technologies - FDHCRS , FDHNIRS and
FDHNDRS , where the superscripts CRS, NIRS and NDRS represent, respectively,
CRS, non-increasing RTS and non-decreasing RTS. These technologies are given by

FDHCRS =
⎧
⎨

⎩(x, y) :
∑

j∈J
xj zj ≤ x,

∑

j∈J
yj zj ≥ y,

∑

j∈J
λj

= 1, λj ∈ {0,1} , zj = δλj , δ ≥ 0

⎫
⎬

⎭ (9.36)
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FDHNIRS =
⎧
⎨

⎩(x, y) :
∑

j∈J
xj zj ≤ x,

∑

j∈J
yj zj ≥ y,

∑

j∈J
λj

= 1, λj ∈ {0,1} , zj = δλj , 0 ≤ δ ≤ 1

⎫
⎬

⎭ (9.37)

FDHNDRS =
⎧
⎨

⎩(x, y) :
∑

j∈J
xj zj ≤ x,

∑

j∈J
yj zj ≥ y,

∑

j∈J
λj

= 1, λj ∈ {0,1} , zj = δλj , δ ≥ 1

⎫
⎬

⎭ (9.38)

Here, λ is the only activity operating subject to a non-convexity constraint and
the re-scaled activity, z allows for any scaling of the observations spanning the
production frontier. The technical efficiency of any firm o can be computed against
these technologies as follows:

ρFDH−CRS = min
{
ρ : (ρxo, yo) ∈ FDHCRS

}
(9.39)

ρFDH−NIRS = min
{
ρ : (ρxo, yo) ∈ FDHNIRS

}
(9.40)

ρFDH−NDRS = min
{
ρ : (ρxo, yo) ∈ FDHNDRS

}
(9.41)

Proposition 5 The input-oriented RTS for any firm o (o∈ J) can be characterized
as follows:

CRS ⇔ ρFDH−CRS = max
{
ρFDH−CRS , ρFDH−NIRS , ρFDH−NDRS

}

IRS ⇔ ρFDH−NDRS = max
{
ρFDH−CRS , ρFDH−NIRS , ρFDH−NDRS

}

DRS ⇔ ρFDH−NIRS = max
{
ρFDH−CRS , ρFDH−NIRS , ρFDH−NDRS

}

Bouhnik et al. (2001) also proposed two new non-convex DEA models, referred to as
Fixed-Charge models where a lower limit on permissible divisibility is established.
In these models the observed firms are scaled for the construction of composite firm
where the scaled firm must be at least as large as a pre-defined lower bound imposed
on the envelopment intensities to ensure fair comparisons without sacrificing the
required discriminating power inherent in the CRS and VRS DEA models. For the
details, refer to Bouhnik et al. (2001).
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9.2.4.4 Scale Elasticity in Cost DEA Models

Sueyoshi (1997) is the first who measured scale elasticity using the cost efficiency
DEA model of Färe et al. (1985) given by

C(yo; wo) = minx,λ

m∑

i=1

wioxi (9.42)

s.t.
∑

j∈J
xijλj ≤ xi(∀i),

∑

j∈J
yrjλj ≥ yro(∀r),

∑

j∈J
λj = 1, λj ≥ 0.

Here, the cost efficiency of firm o (CEo) is defined as the ratio of minimum cost
C(yo; wo) over actual cost co, i.e.,

CEo = C(yo; wo)/co =
∑m

i=1
wiox

∗
i

/∑m

i=1
wioxio (9.43)

where x∗i is the optimal solution to (9.42). The following dual LP program of (9.42)
can be used to compute the SE of firm o, εc(y, w) as follows:

C(yo; wo) = maxu,ω

s∑

r=1

uryro − ωo

s.t.

s∑

r=1

uryrj − ωo ≤ cj , (∀j ), ur ≥ 0 (∀r),ωo : free (9.44)

If firm o is efficient, the minimum and actual costs are both the same, and it also
holds that

co = C(yo; wo) =
s∑

r=1

u∗r yro − ω∗o (9.45)

Following Panzar and Willig (1977), εc(y; w) can then be obtained as

εc(y; w) = C(yo; wo)∑s
r=1 yro

∂C(yo;wo)
∂yro

= C(yo; wo)∑s
r=1 u∗r yro

= 1

1 + [ω∗o/C(yo; wo)]
(9.46)

Proposition 5 Firm o in the T DEAVRS exhibits increasing RTS if ω∗o < 0 in all optimal
solutions, constant RTS if ω∗o = 0 in an optimal solution, and decreasing RTS if
ω∗o > 0 in all optimal solutions.

Since there are multiple optima in ω∗o , following Banker and Thrall (1992), we
set up the following LP problems to find out the max. and min. values of ωo for firm
o as:



9 Scale Elasticity in Non-parametric DEA Approach 283

ω+o (ω−o ) = max(min) ωo (9.47)

s.t.
s∑

r=1

uryro − ωo = C(yo; wo),

s∑

r=1

uryrj − uo ≤ cj (∀j 
= o), vi , ur ≥ 0 (∀i, r), uo : free

Using the results of (9.47), one can determine the input-oriented right-hand SE (ε+c (·))
and left-hand SE (ε−c (·)) for firm o as

ε+c (yo; wo) = 1

1 + ω+o /C(yo; wo)
and ε−c (yo; wo) = 1

1 + ω−o /C(yo; wo)
(9.48)

Proposition 6 Assuming alternate optima in ωo, firm o in the T DEAVRS exhibits IRS
(ε+c (·) > 1) if ω+o < 0, CRS (ε+c (·) ≤ 1 ≤ ε−c (·)) if ω+o ≥ 0 ≥ ω−o and DRS
(ε−c (·) < 1) if ω−o > 0.

Note that the CE model (9.42), which is based on a factor-based technology set
(9.14), can be of limited use in actual applications when market imperfections exist
(Camanho and Dyson 2008; Sahoo and Tone 2013; Sahoo et al. 2014a). This is
because this model is based on a number of simplifying assumptions, which hardly
hold in practice. First, the inputs are assumed to be homogeneous across firms; and
their prices are also assumed to be exogenously given, and are, measured and known,
with full certainty by firms. In real-life applications, however, when production is
expanded, firms experience changes in the organization of their processes or in
the characteristics of their inputs that are economically more attractive than the
replicated alternatives of those already in use. That is, the techniques and inputs used
at higher scale are very different from those used at lower scale. Hence, the inputs
are heterogeneous across firms. Since the inputs available at the firm levels vary in
their quality, the construction of factor-based linear technology set (9.14) becomes
problematic.

Furthermore, even if the inputs are homogenous across firms, in many cases their
prices cannot be measured accurately enough to make use of CE measurement. This
is because accounting data can give a poor approximation for economic prices, i.e.,
marginal opportunity costs due to debatable valuation and depreciation schemes.
The input prices are not exogenous, but they vary according to the actions by firms
(Chamberlin 1933; Robinson 1933; Engel and Rogers 1996). Also, firms often face
ex ante price uncertainty while making their production decisions (McCall 1967;
Sandmo 1971; Camanho and Dyson 2005). Economic theory suggests that the firms
enjoying some degree of monopoly power should charge different prices if there is
heterogeneity in productivity of their inputs. This is empirically valid since most firms
are observed facing upward slopping supply curve in their input purchase decisions.
This observation also suggests that the assumption of facing common unit prices by
firms, i.e., the law of one price, which has long been maintained as a necessary and
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sufficient condition for Pareto efficiency in competitive markets (Kuosmanen et al.
2006), is not at all justified in revealing the proper CE and SE behavior of firms.

The CE model (9.42) can also be of limited value in actual applications even when
the inputs are homogeneous across firms. This is because as pointed out by Camanho
and Dyson (2008), the CE measure, as defined in (9.43), reflects only input ineffi-
ciencies (technical inefficiency and/or allocative efficiency) but not market (price)
inefficiencies (deviation from fully competitive setting leading to price differences
between firms). Therefore, as a remedy, they suggested using a more comprehensive
scheme to measure CE that can be attributed to both the input inefficiencies and
the market (price) inefficiencies. Note that this problem was also alternatively ad-
dressed by Cross and Färe (2008) who attributed the value-based technical efficiency
(technical efficiency obtained from inputs measured in value terms) to three sources:
(a) quantity-based technical efficiency (technical efficiency obtained from the inputs
measured in physical quantities), (b) technology effect, and (c) firm effect.

While it is true that the measure of scale economies, as defined in (9.46), involves
the cost effects of output expansion with input prices held constant in perfectly
competitive market structure, at the same one cannot deny the possibility of linking
scale economies with further cost reduction due to other sources, i.e., pecuniary
economies. Hence, it can be argued that the above measure of scale economies is
not comprehensive in actual applications when imperfections exist. Therefore, when
the inputs are heterogeneous, in order to account for situation where the input prices
vary between firms as a result of negotiations or to reflect the qualitative differences
in the resources, the alternative value-based CE model of Tone (2002) should be
followed by setting up the technology set in cost-output space. This alternative CE
model was further extended to directional DEA of Chambers et al. (1996, 1998) by
Fukuyama and Weber (2004), Färe and Grosskopf (2006) and Sahoo et al. (2014a)
to develop the directional value-based measures of technical inefficiencies.

9.2.4.5 Scale Elasticity in Alternative Cost DEA Model

Let us now turn to discuss the alternative value-based CE model of Tone (2002) in
estimating the scale economies behavior of firms. This alternative CE model is based
on a value-based technology set in the cost-output space given by

T C−DEAVRS =
⎧
⎨

⎩(c, y) :
∑

j∈J
cjλj ≤ c,

∑

j∈J
yrjλj ≥ yr (∀r),

∑

j∈J
λj = 1, λj ≥ 0(∀j )

⎫
⎬

⎭,

(9.49)

where cj = ∑m
i=1 wij xij . The value-based technical efficiency of firm o can be

obtained from the following LP program:

θ∗ = min
{
θ : (θco, yo) ∈ T C−DEAVRS

}
(9.50)
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In order to compute the SE of firm o, we consider the dual of (9.50):

θ∗ = max
s∑

r=1

uryro − ω̄o (9.51)

s.t.
s∑

r=1

uryrj − vcj − ω̄o ≤ 0,

vco = 1,

v ≥ 0, ur ≥ 0 (∀r); ω̄o : f ree.

For any firm o (o∈ J), the following transformation function

ψ(θ∗co, yo) ≡
s∑

r=1

uryro − v(θ∗co) − ω̄o = 0 (9.52)

Using the SE formula (9.8) the input-oriented SE of firm o can be obtained as

εi(co, yo) = −
∂ψ(θ∗co ,yo)

∂co
co

∑s
r=1

∂ψ(θ∗co ,yo)
∂yro

yro
= 1

1 + ω̄o/θ∗ (9.53)

Proposition 7 Firm o exhibit increasing RTS (εi(co, yo)> 1) if ω̄o < 0 in all op-
timal solutions; constant RTS (εi(co, yo) = 1) if ω̄o= 0 in an optimal solution; and
decreasing RTS (εi(co, yo) < 1) if ω̄o > 0 in all optimal solutions.

Assuming multiple optima in ω̄o, we set up the following LP problems to find out
the maximum and minimum values of ω̄o for firm o as:

ω̄+o (ω̄−o ) = max(min)ω̄o (9.54)

s.t.
s∑

r=1

uryro − ω̄o = θ∗

s∑

r=1

uryrj − vcj − ω̄o ≤ 0 (∀j 
= o),

vco = 1,

v ≥ 0, ur ≥ 0 (∀r).
Using the results of (9.54), the input-oriented right-handand left-hand SEs of firm o
can be obtained as

ε+i (co, yo) = 1

1 + ω̄+o /θ∗ and ε−i (co, yo) = 1

1 + ω̄−o /θ∗ (9.55)
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Proposition 8 Assuming alternate optima in ω̄o, the firm o in the T C−DEAVRS exhibits
(input-oriented) IRS (ε+i (co, yo) > 1) if ω̄+o < 0, (input-oriented) CRS (ε+i (co, yo) ≤
1 ≤ ε−i (co, yo)) if ω̄+o ≥ 0 ≥ ω̄−o and (input-oriented) DRS (ε−i (co, yo) < 1) if
ω̄−o > 0.

See, Tone and Sahoo (2005, 2006); Sengupta and Sahoo (2006); Sahoo et al.
(2007); Sahoo and Gstach (2011); Sahoo et al. (2012) and Sahoo and Tone (2013) on
an elaborate discussion of the estimation of RTS based on the alternative CE model.

9.3 Concluding Remarks

Various models for the empirical evaluation of SE are critically reviewed in non-
parametric DEA approach. This nonparametric approach is classified into two:
production approach and cost approach. In the former three types of technology
structure—piece-wise linear, piece-wise log-linear and FDH—are employed. In the
latter, the piece-wise linear technology is employed in two environment—one in
input-output space and the other in cost-output space.The SE estimates based on the
piece-wise linear technology in production environment can be biased upward or
downward when the technology involves some indivisibilities. Furthermore, the SE
estimates of firms are not unique in this technology. In this scenario the SE estimates
based on the piece-wise log-linear and FDH technologies are argued to be preferred.
Between the two cost models, the cost model defined in cost-output space is to be
preferred to the one defined in input-output space on two grounds: (1) the price data
are often not available, or, if available, are not well measured due to debatable val-
uation and depreciation schemes, and (2) the factor inputs are heterogeneous across
real-life firms.

The DEA models discussed in this study for the evaluation of SE treat production
technology as a black box. It is, however, possible that the idea underlying these
models could be used to compute the SE in network technologies that will enable
researchers in locating the sources of increasing returns of a network firm in the
sub-technologies. We consider this as avenue for future research, which we have
addressed elsewhere in Sahoo et al. (2014b).
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Chapter 10
DEA Based Benchmarking Models

Joe Zhu

Abstract Data envelopment analysis (DEA) is a methodology for identifying the
efficient or best-practice frontier of decision making units (DMUs). It is required that
all DMUs under consideration be evaluated against each other in a same pool. Adding
or deleting an inefficient DMU does not alter the efficient frontier and the efficiencies
of the existing DMUs. The inefficiency scores change only if the efficient frontier is
altered. Benchmarking is the process of comparing a DMU’s performance to the best
practices formed by a set of DMUs. DEA is also called “balanced benchmarking”,
because DEA considers multiple performance metrics in a single model. Under such
a notion, the best practices are the benchmarks identified by DEA. However, in
a more general sense, best practices do not have to be identified by DEA—they
can be existing “standards”. This chapter presents two DEA-based benchmarking
approaches where one set of DMUs is compared (or benchmarked) against another.
One approach is called “context-dependent” DEA where a set of DMUs is evaluated
against a particular evaluation context. Each evaluation context represents an efficient
frontier composed by DMUs in a specific performance level. The context-dependent
DEA measures the attractiveness and the progress when DMUs exhibiting poorer
and better performance are chosen as the evaluation context, respectively. The other
approach consists of a fixed benchmark model and a variable benchmark model
where each (new) DMU is evaluated against a set of given benchmarks (standards).

Keywords Data Envelopment Analysis (DEA) · Attractiveness · Progress · Best
practice · Context-dependent · Benchmarking

10.1 Introduction

Data envelopment analysis (DEA) uses the linear programming technique to evaluate
the relative efficiency of decision making units (DMUs) with multiple performance
metrics. These performance metrics are classified as DEA outputs and inputs. DEA
classifies a set of DMUs into a set of efficient DMUs which form a best-practice
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frontier and a set of inefficient DMUs. Adding or deleting an inefficient DMU does
not alter the efficient frontier and the efficiencies of the existing DMUs. The inef-
ficiency scores change only if the efficient frontier is altered. The performance of
DMUs depends only on the identified efficient frontier characterized by the DMUs
with a unity efficiency score.

If the performance of inefficient DMUs deteriorates or improves, the efficient
DMUs still may have a unity efficiency score. Although the performance of inefficient
DMUs depends on the efficient DMUs, efficient DMUs are only characterized by a
unity efficiency score. The performance of efficient DMUs is not influenced by the
presence of inefficient DMUs, once the DEA frontier is identified.

In this sense, all DMUs under consideration are being benchmarked against the
“identified” DEA efficient frontier or best practice. Note that the best practices are
part of the DMUs under evaluation. In other words, DEA simultaneously identifies
the best practices and measures the performance of under-performing DMUs. As
such, DEA is called “balanced benchmarking” where multiple performance metrics
are integrated in a single model (Sherman and Zhu 2013).

However, benchmarking can refer to a situation where a set of DMUs is compared
to a set of given standards or DMUs. The setup in the conventional DEA does not
allow such benchmarking to be performed using DEA. There are two DEA-based
approaches that benchmark DMUs against a given set of standards represented by a
set of DMUs.

One approach is called “context-dependent” DEA (Seifrod and Zhu 2003) where
a set of DMUs is evaluated against a particular evaluation context. Each evaluation
context represents an efficient frontier composed by DMUs in a specific performance
level. The context-dependent DEA measures the attractiveness and the progress when
DMUs exhibiting poorer and better performance are chosen as the evaluation context,
respectively.

The other approach consists of a fixed benchmark model and a variable bench-
mark model where each (new) DMU is evaluated against a set of given benchmarks
(standards) (Cook et al. 2004).

10.2 Context-Dependent Data Envelopment Analysis

Performance evaluation is often influenced by the context. A DMU’s performance
will appear more attractive against a background of less attractive alternatives and
less attractive when compared to more attractive alternatives. Researchers of the
consumer choice theory point out that consumer choice is often influenced by the
context. e.g., a circle appears large when surrounded by small circles and small
when surrounded by larger ones. Similarly, a product may appear attractive against
a background of less attractive alternatives and unattractive when compared to more
attractive alternatives (Tversky and Simonson 1993).

Considering this influence within the framework of DEA, one could ask “what
is the relative attractiveness of a particular DMU when compared to others?” As in
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Tversky and Simonson (1993), one agrees that the relative attractiveness of DMUx
compared to DMUy depends on the presence or absence of a third option, say DMUz
(or a group of DMUs). Relative attractiveness depends on the evaluation context
constructed from alternative options (or DMUs).

In fact, a set of DMUs can be divided into different levels of efficient frontiers.
If we remove the (original) efficient frontier, then the remaining (inefficient) DMUs
will form a new second-level efficient frontier. If we remove this new second-level
efficient frontier, a third-level efficient frontier is formed, and so on, until no DMU
is left. Each such efficient frontier provides an evaluation context for measuring the
relative attractiveness. e.g., the second-level efficient frontier serves as the evaluation
context for measuring the relative attractiveness of the DMUs located on the first-
level (original) efficient frontier. On the other hand, we can measure the performance
of DMUs on the third-level efficient frontier with respect to the first or second level
efficient frontier.

The context-dependent DEA (Seiford and Zhu 2003) is introduced to measure
the relative attractiveness of a particular DMU when compared to others. Relative
attractiveness depends on the evaluation context constructed from a set of different
DMUs.

The context-dependent DEA is a significant extension to the original DEA ap-
proach. The original DEA approach evaluates each DMU against a set of efficient
DMUs and cannot identify which efficient DMU is a better option with respect to the
inefficient DMU. This is because all efficient DMUs have an efficiency score of one.
Although one can use the super-efficiency DEA model (Andersen and Petersen 1993;
Seiford and Zhu 1999b) to rank the performance of efficient DMUs, the evaluation
context changes in the evaluation of each efficient DMU, and the efficient DMUs are
not evaluated against the same reference set.

In the context-dependent DEA, the evaluation contexts are obtained by partition-
ing a set of DMUs into several levels of efficient frontiers. Each efficient frontier
provides an evaluation context for measuring relative attractiveness and progress.
When DMUs in a specific level are viewed as having equal performance, the at-
tractiveness measure allows us to differentiate the “equal performance” based upon
the same specific evaluation context. A combined use of attractiveness and progress
measures can further characterize the performance of DMUs.

Context-dependent DEA has been used for the ranking and benchmarking of the
Asian Games achievements (Wu et al. 2013). Lu and Lo (2012) construct the China
regions’benchmark-learning ladders for those inefficient regions to improve progres-
sively and to identify real benchmark for those efficient regions to rank ascendant by
incorporating the stratification DEA method, attractiveness measure, and progress
measure.

Chiu and Wu (2010) adopt the context-dependent DEA model to analyze the op-
erating efficiencies of 49 international tourism hotels in Taiwan from 2004 through
2006. Ulucan and Atici (2010) evaluate the efficiency of a World Bank supported
Social Risk Mitigation Project in Turkey through context-dependent DEA. Yang
et al. (2007) use context-dependent DEA to explore the operating efficiency and
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the benchmark-learning roadmap of military retail stores for Taiwan’s General Wel-
fare Service Ministry. Chen et al. (2005) also provide an illustrative application to
measuring the performance of Tokyo public libraries.

Context-dependent DEA has been extended to use with cross efficiency
(Lim 2012). Lu and Hung (2008) propose an alternative context-dependent DEA
technique to explore the managerial performance and the benchmarks of 24 global
leading telecom operators. Tsang and Chen (2013) present a revised context-
dependent DEA model to identify multilevel strategic groups in the case of
International Tourist Hotels in Taiwan. Brissimis and Zervopoulos (2012) de-
velop a step-by-step effectiveness assessment model for customer-oriented service
organizations based upon the context-dependent DEA.

10.2.1 Stratification DEA Model

The first step in the context-dependent DEA is to identify the performance levels
or contexts. Assume that there are n DMUs which have s outputs and m inputs. We
define the set of all DMUs as J 1 and the set of efficient DMUs in J 1 as E1. Then
the sequences of J l and El are defined interactively as J l+1 = J l − El. The set of
El can be found as the DMUs with optimal value φlk of 1 to the following linear
programming problem:

minimize
λ,θ

θ lk = θ
subject to

∑
j∈J l

λjxij ≤ θxik , i = 1, . . .,m

∑
j∈J l

λjyrj ≥ yrk , r = 1, . . . ., s

λj ≥ 0, j ∈ J l

(10.1)

where xij and yrj are i-th input and r-th output of DMUj respectively. When l = 1,
model (10.1) becomes the original input-oriented CCR model (Charnes et al. 1978)
and E1 consists of all the radially efficient DMUs. A radially efficient DMU may
have non-zero input/output slack values. The DMUs in set E1 define the first-level
efficient frontier. When l = 2, model (10.1) gives the second-level efficient frontier
after the exclusion of the first-level efficient DMUs. In this manner, we identify
several levels of efficient frontiers. We call El the l-th level efficient frontier. The
following algorithm accomplishes the identification of these efficient frontiers by
model (10.1).

Step 1 Set l = 1. Evaluate the entire set of DMUs, J 1, by model (10.1) to obtain
the first-level efficient DMUs, set E1 (the first-level efficient frontier).
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Fig. 10.1 Efficient Frontiers
in Different Levels
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Table 10.1 Numerical example

DMU 1 2 3 4 5 6 7 8 9 10

Input 1 4 2 1 1 5 2.5 1.5 5 4 2.5

Input 2 1 1.5 3 4 2 2.5 5 3 3 4.5

Step 2 Let J l+1 = J l − El to exclude the efficient DMUs from future DEA runs.
If J l+1 = Ø then stop.

Step 3 Evaluate the new subset of “inefficient” DMUs, J l+1, by model (10.1) to
obtain a new set of efficient DMUs El+1 (the new efficient frontier).

Step 4 Let l = l + 1. Go to step 2.

Stopping rule If J l+1 = Ø, the algorithm stops.
Model (10.1) yields a stratification of the whole set of DMUs, which partitions

the DMUs into different subgroups of efficiency levels characterized byEl. It is easy
to show that these sets of DMUs have the following properties:

1. J 1 =⋃
El and El ∩ El′ = φ for l 
= l′;

2. The DMUs in El
′
are dominated by the DMUs in El if l′ > l;

3. Each DMU in set El is efficient with respect to the DMUs in set J l
′
for all l′ > l.

Figure 10.1 plots the three levels of efficient frontiers of 10 DMUs with two inputs
and one single output as shown in Table 10.1.
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10.2.2 Attractiveness and Progress

Based upon the evaluation context El, the context-dependent DEA measures the
relative attractiveness of DMUs. Consider a specific DMUq in El. The following
model is used to characterize the attractiveness with respect to levels exhibiting
poorer performance in El

′
for l′ > l.

minimize
λ,θ

θ l
′
q = θ

subject to
∑

j∈J l′
λjxij ≤ θxiq , i = 1, . . .,m

∑

j∈J l′
λjyrj ≥ yrq , r = 1, . . ., s

λj ≥ 0, j ∈ J l′

(10.2)

It is easy to show that θ l
′
q > 1 for l′ > l, and θ l1q > θ

l2
q for l1 > l2. Then θ l

′
q is called

the input-oriented d-degree attractiveness of DMUq from a specific level El, where
d = l′ − l.

In model (10.2), each efficient frontier represents an evaluation context for eval-
uating the relative attractiveness of DMUs in El. Note that the bigger the value of
θ l

′
q > 1, the more attractive DMUq is, because DMUq makes itself more distinctive

from the evaluation contextEl
′
. We are able to rank the DMUs inEl based upon their

attractiveness scores and identify the best one.
To obtain the progress measure for a specific DMUq in El, we use the following

context-dependent DEA, which is used to characterize the progress with respect to
levels exhibiting better performance in El

′
for l′ < l.

minimize
λ,ϕ

ϕl
′
q = ϕ

subject to
∑

j∈J l′
λjxij ≤ ϕxiq , i = 1, . . .,m

∑

j∈J l′
λjyrj ≥ yrq , r = 1, . . ., s

λj ≥ 0, j ∈ J l′

(10.3)

We have that ϕl
′
q < 1 for l′ < l, and ϕl1q < ϕl2q for l1 > l2. Then ϕl

′
q is called the

input-oriented g-degree progress of DMUq from a specific levelEl, where g = l− l′.

10.2.3 Output Oriented Context-Dependent DEA Model

Here we provide the output-oriented context-dependent DEA model. Consider the
following linear programming problem for DMUq in specific level El based upon
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the evaluation context El
′
for l′ > l.

maximize
λ,H

H l′
q = H

subject to
∑

j∈J l′
λjxij ≤ xiq , i = 1, . . .,m

∑

j∈J l′
λjyrj ≥ Hyrq , r = 1, . . ., s

λj ≥ 0, j ∈ J l′

(10.4)

This problem is used to characterize the attractiveness with respect to levels exhibiting
poorer performance in El

′
. Note that dividing each side of the constraint of (10.4) by

H gives

∑

j∈J l′
λ̃j xij ≤ 1

H
xiq

∑

j∈J l′
λ̃j yrj ≥ yrq

λ̃j = λj

H
≥ 0, j ∈ J l′

Therefore, (10.4) is equivalent to (10.2), and we have that Hl′
q < 1 for l′> l and

Hl′
q = 1/θ l

′
q . ThenHl′

q is called the output-oriented d-degree attractiveness of DMUq

from a specific level El, where d = l′ − l. The smaller the value of Hl′
q is, the more

attractive DMUq is. Model (10.4) determines the relative attractiveness score for
DMUq when inputs are fixed at their current levels.

To obtain the progress measure for DMUq in El , we develop the following linear
programming problem, which is used to characterize the progress with respect to
levels exhibiting better performance in El

′
for l′ < l.

maximize
λ,G

Gl
′
q = G

subject to
∑

j∈J l′
λjxij ≤ xiq , i = 1, . . .,m

∑

j∈J l′
λjyrj ≥ Gyrq , r = 1, . . ., s

λj ≥ 0, j ∈ J l′

(10.5)

We have thatGl
′
q > 1 for l′< l andGl

′
q = 1/ϕl

′
q . ThenGl

′
q is called the output-oriented

g-degree progress of DMUq from a specific level El, where g = l − l′.
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To improve the performance of inefficient DMU, the target of improvement should
be given among the efficient DMUs. The reference set suggests the target of im-
provement for the inefficient DMUs. Actually, when l = 1, model (10.1) gives the
reference set of DMUs from the efficient DMUs for inefficient DMUs. It may be a
final goal of improvement; however, for some inefficient DMUs, this goal may be
quite different from the current performance and difficult to achieve. Therefore, it is
not appropriate to set a benchmark target for improvement from the efficient DMUs
directly. Step-by-step improvement is a useful way to improve the performance, and
the benchmark target at each step is provided based on the evaluation context at each
level of efficient frontier.

10.2.4 Context-Dependent DEA With Value Judgment

Both attractiveness and progress are measured radially with respect to different levels
of efficient frontiers. The measurement does not require a priori information on the
importance of the attributes (input/output) that feature in the performance of DMUs.
However different attributes play different roles in the evaluation of a DMU’s overall
performance. Therefore, we introduce value judgment into the context-dependent
DEA.

In order to incorporate such a priori information into our measures of attrac-
tiveness and progress, we first specify a set of weights related to the m inputs,
vi , i = 1, . . .,m such that

∑m
i=1 vi = 1. Based upon Zhu (1996), we develop the

following linear programming problem for DMUq in El.

Maximize
λj ,$iq

$l
′
q

∗ =
s∑

r=1

vi$iq

subject to
∑

j∈El′
λjxij ≤ $iqxiq ,i = 1, . . .,m

∑

j∈El′
λjyrj ≥ yrq ,r = 1, . . ., s

$iq ≥ 1,i = 1, . . .,m

λj ≥ 0, j ∈ El′

(10.6)

$l
′∗
q is called the input-oriented value judgment d-degree attractiveness of DMUq

from a specific levelEl , where d = l′ − l. Obviously,$l
′∗
q > 1. The larger the$l

′∗
q is,

the more attractive the DMUq appears under the weights vi , i = 1, . . .,m. We now
can rank DMUs in the same level by their attractiveness scores with value judgment
which are incorporated with the preferences over outputs.
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If one wishes to prioritize the options (DMUs) with higher values of the io-th input,
then one can increase the value of the corresponding weight vio . These user-specified
weights reflect the relative degree of desirability of the corresponding outputs. For
example, if one prefers a printer with faster printing speed to one with higher print
quality, then one may specify a larger weight for the speed. The constraints of
$iq ≥ 1, i = 1, . . .,m ensure that in an attempt to make itself as distinctive as
possible, DMUq is not allowed to decrease some of its outputs to achieve higher
levels of other preferred outputs.

Note that $l
′∗
q is an overall attractiveness of DMUq in terms of inputs while

keeping the outputs at their current levels. On the other hand, each individual op-
timal value of $iq , i = 1, . . .,m measures the attractiveness of DMUq in terms of
each input dimension.$∗

iq is called the input-oriented value judgment input-specific
attractiveness measure for DMUq.

With the input-specific attractiveness measures, one can further identify which
inputs play important roles in distinguishing a DMU’s performance. On the other
hand, if $∗

ioq
= 1, then other DMUs in El

′
or their combinations can also produce

the same amount as the io-th input of DMUq, i.e., DMUq does not exhibit better
performance with respect to this specific input dimension. Therefore, DMUq should
improve its performance on the io-th input to distinguish itself in the future.

Similar to the development in the previous section, we can define the input-
oriented value judgment progress measure:

Maximize
λj ,�iq

�l
′
q

∗ =
s∑

r=1

vi�iq

subject to
∑

j∈El′
λjxij ≤ �iqxiq ,i = 1, . . .,m

∑

j∈El′
λjyrj ≥ yrq ,r = 1, . . ., s

�iq ≤ 1, i = 1, . . .,m

λj ≥ 0, j ∈ El′

(10.7)

The optimal value$l
′∗
q is called the input-oriented value judgment g-degree progress

DMUq from a specific level El , where g = l − l′. The larger $l
′∗
q is, the greater the

amount of progress is expected for DMUq. Here the user-specified weights reflect
the relative degree of desirability of improvement on the individual output levels.
Let �∗

iq , i = 1, . . .,m, represent the optimal value of (10.7) for a specific level l.
By Zhu (1996), we know that

∑
j∈El′ λ

∗
j xij = �∗

iqxiq holds at optimality for each
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i = 1, . . .,m. Consider the following linear programming problem:

Maximize
s∑

r=1

s+r

subject to
∑

j∈El′
λjxij = �∗

iqxiq , i = 1, . . .,m

∑

j∈El′
λjyrj − s+r = yrq , r = 1, . . ., s

s+r ≥ 0, r = 1, . . ., s

λj ≥ 0, j ∈ El′

(10.8)

The following point

{
x̂iq = �∗

iqxiq , i = 1, . . .,m

ŷrq = yrq + s+r ∗, r = 1, . . ., s

is called a preferred global efficient target for DMUq in level El for l′ = l − 1;
otherwise, if l′ < l − 1, it represents a preferred local efficient target, where �∗

iq is
the optimal value in (10.7), and s+r

∗ represent the optimal values in (10.8).

10.3 Variable and Fixed Benchmarking Models

Cook et al. (2004) develop DEA-based models for use in benchmarking where mul-
tiple performance measures are needed to examine the performance and productivity
changes. The standard data envelopment analysis method is extended to incorporate
benchmarks through (i) a variable-benchmark model where a unit under benchmark-
ing selects a portion of benchmark such that the performance is characterized in
the most favorable light, and (ii) a fixed-benchmark model where a unit is bench-
marked against a fixed set of benchmarks. Cook et al. (2004) apply these models
to a large Canadian bank where some branches’ services are automated to reduce
costs and increase the service speed, and ultimately to improve productivity. Their
empirical investigation indicates that although the performance appears to be im-
proved at the beginning, productivity gain has not been discovered. The models can
facilitate the bank in examining its business options and further point to weaknesses
and strengths in branch operations. The current chapter presents the benchmarking
models developed by Cook et al. (2004).
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10.3.1 Variable-Benchmark Model

Let E∗ represent the set of benchmarks or the best-practice identified by the DEA.
Based upon the input-oriented Constant Returns to Scale (CRS) DEA model, we
have

min δCRS

subject to
∑

j∈E∗
λjxij ≤ δCRSxnewi

∑

j∈E∗
λjyrj ≥ ynewr

λj ≥ 0, j ∈ E∗

(10.9)

where a new observation is represented byDMUnew with inputs xnewi (i = 1, . . .,m)
and outputs ynewr (r = 1, . . ., s). The superscript of CRS indicates that the benchmark
frontier composed by benchmark DMUs in set E∗ exhibits CRS.

Model (10.9) measures the performance of DMUnew with respect to benchmark
DMUs in set E∗ when outputs are fixed at their current levels. Similarly, based upon
the output-oriented CRS envelopment model, we can have a model that measures
the performance of DMUnew in terms of outputs when inputs are fixed at their
current levels.

max τCRS

subject to
∑

j∈E∗
λjxij ≤ xnewi

∑

j∈E∗
λjyrj ≥ τCRSynewr

λj ≥ 0, j ∈ E∗

(10.10)

Note that δCRS
∗ = 1/τCRS

∗
, where δCRS

∗
is the optimal value to model (10.9) and

τCRSo

∗
is the optimal value to model (10.10).

Model (10.9) or (10.10) yields a benchmark for DMUnew. The ith input and the
rth output for the benchmark can be expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

j∈E∗
λ∗j xij (ith input)

∑

j∈E∗
λ∗j yij (rth output)

(10.11)

Note also that although the DMUs associated with set E∗ are given, the resulting
benchmark may be different for each new DMU under evaluation. For each new DMU
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Fig. 10.2 Variable-benchmark Model

under evaluation, (10.11) may represent a different combination of DMUs associ-
ated with set E∗. Thus, models (10.9) and (10.10) represent a variable-benchmark
scenario.

We have

1. δCRS
∗
< 1 or τCRS

∗
> 1 indicates that the performance ofDMUnewo is dominated

by the benchmark in (10.11).
2. δCRS

∗ = 1 or τCRS
∗ = 1 indicates thatDMUnew achieves the same performance

level as the benchmark in (10.11).
3. δCRS

∗
> 1 or τCRS

∗
< 1 indicates that input savings or output surpluses exist in

DMUnewo when compared to the benchmark in (10.11).

Figure 10.2 illustrates the three cases. ABC (A’B’C’) represents the input (output)
benchmark frontier. D, H and G (or D’, H’, and G’) represent the new DMUs to be
benchmarked against ABC (or A’B’C’). We have δCRS

∗
D > 1 for DMU D ( τCRS

∗
D′ < 1

for DMU D’) indicating that DMU D can increase its input values by δCRS
∗

D while
producing the same amount of outputs generated by the benchmark (DMU D’ can
decrease its output levels while using the same amount of input levels consumed by
the benchmark). Thus, δCRS

∗
D > 1 is a measure of input savings achieved by DMU D

and τCRS
∗

D′ < 1 is a measure of output surpluses achieved by DMU D’.
For DMU G and DMU G’, we have δCRS

∗
G = 1 and τCRS

∗
G′ = 1 indicating that

they achieve the same performance level of the benchmark and no input savings or
output surpluses exist. For DMU H and DMU H’, we have δCRS

∗
H < 1 and τCRS

∗
H ′ > 1

indicating that inefficiency exists in the performance of these two DMUs.
Note that for example, in Fig. 10.2, a convex combination of DMU A and DMU

B is used as the benchmark for DMU D while a convex combination of DMU B and
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DMU C is used as the benchmark for DMU G. Thus, models (10.9) and (10.10) are
called variable-benchmark models.

We can define δCRS
∗ − 1 or 1− τCRS∗ as the performance gap betweenDMUnew

and the benchmark. Based upon δCRS
∗

or τCRS
∗
, a ranking of the benchmarking

performance can be obtained.
It is likely that scale inefficiency may be allowed in the benchmarking. We there-

fore modify models (10.9) and (10.10) to incorporate scale inefficiency by assuming
variable returns to scale (VRS).

min δVRS

subject to
∑

j∈E∗
λjxij ≤ δVRSxnewi

∑

j∈E∗
λjyrj ≥ ynewr

∑

j∈E∗
λj = 1

λj ≥ 0, j ∈ E∗

(10.12)

max τVRS

subject to
∑

j∈E∗
λjxij ≤ xnewi

∑

j∈E∗
λjyrj ≥ τVRSynewr

∑

j∈E∗
λj = 1

λj ≥ 0, j ∈ E∗

(10.13)

We have

1. δVRS
∗
< 1 or τVRS

∗
> 1 indicates that the performance ofDMUnew is dominated

by the benchmark in (10.11).
2. δVRS

∗ = 1 or τVRS
∗ = 1 indicates thatDMUnew achieves the same performance

level as the benchmark in (10.11).
3. δVRS

∗
> 1 or τVRS

∗
< 1 indicates that input savings or output surpluses exist in

DMUnew when compared to the benchmark in (10.11).

Note that model (10.10) is always feasible, and model (10.9) is infeasible only if
certain patterns of zero data are present (Zhu 1996b). Thus, if we assume that all
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       Y  
(output) 

 Case I 
• Input-oriented benchmarking model is infeasible 
• The benchmarking performance is indicated by output 
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 F  
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performance is 
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      Case III 
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 A  

E’
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C  
E 

Fig. 10.3 Infeasibility of VRS Variable-benchmark Model

the data are positive, (10.9) is always feasible. However, unlike models (10.9) and
(10.10), models (10.12) and (10.13) may be infeasible.

We have

1. If model (10.12) is infeasible, then the output vector of DMUnew dominates the
output vector of the benchmark in (10.11).

2. If model (10.13) is infeasible, then the input vector of DMUnew dominates the
input vector of the benchmark in (10.11).

The implication of the infeasibility associated with models (10.12) and (10.13) needs
to be carefully examined. Consider Fig. 10.3 where ABC represents the benchmark
frontier. Models (10.12) and (10.13) yield finite optimal values for any DMUnew

located below EC and to the right of EA. Model (10.12) is infeasible for DMUnew

located above ray E”C and model (10.13) is infeasible for DMUnew located to the
left of ray E’E.

Both models (10.12) and (10.13) are infeasible for DMUnew located above E”E
and to the left of ray EF. Note that ifDMUnew is located above E”C, its output value
is greater than the output value of any convex combinations of A, B and C.

Note also that if DMUnew is located to the left of E’F, its input value is less than
the input value of any convex combinations of A, B and C.

Based upon Fig. 10.3, we have four cases:
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Case I: When both models (10.12) and (10.13) are infeasible, this indicates that
DMUnew has the smallest input level and the largest output level compared to
the benchmark. Thus, both input savings and output surpluses exist inDMUnew.

Case II: When model (10.12) is infeasible and model (10.13) is feasible, the infeasi-
bility of model (10.12) is caused by the fact that DMUnew has the largest output
level compared to the benchmark. Thus, we use model (10.13) to characterize the
output surpluses.

Case III: When model (10.13) is infeasible and model (10.12) is feasible, the infea-
sibility of model (10.13) is caused by the fact thatDMUnew has the smallest input
level compared to the benchmark. Thus, we use model (10.12) to characterize the
input savings.

Case IV: When both models (10.12) and (10.13) are feasible, we use both of them
to determine whether input savings and output surpluses exist.

10.3.2 Fixed-Benchmark Model

Although the benchmark frontier is given in the variable-benchmark models, a
DMUnew under benchmarking has the freedom to choose a subset of benchmarks so
that the performance of DMUnew can be characterized in the most favorable light.
Situations when the same benchmark should be fixed are likely to occur. For exam-
ple, the management may indicate that DMUs A and B in Fig. 10.2 should be used
as the fixed benchmark. i.e., DMU C in Fig. 10.2 may not be used in constructing
the benchmark.

To couple with this situation, Cook et al. (2004) turn to the multiplier DEA
models. For example, the input-oriented CRS multiplier DEA model determines a
set of referent best-practice DMUs represented by a set of binding constraints in
optimality. Let set B = {

DMUj : j ∈ IB
}

be the selected subset of benchmark set
E∗. i.e., IB ⊂ E∗ Based upon the input-oriented CRS multiplier model, we have

σ̃CRS∗ = max
s∑

r=1

μry
new
r

subject to
s∑

r=1

μryrj −
m∑

i=1

νixij = 0 j ∈ IB

s∑

r=1

μryrj −
m∑

i=1

νixij ≤ 0 j /∈ IB

m∑

i=1

νix
new
i = 1

μr , νi ≥ 0.

(10.14)
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Table 10.2 Fixed-benchmark Models

Frontier type Input-oriented Output-oriented

max
s∑

r=1

μry
new
r + μ

subject to

s∑

r=1

μryrj −
m∑

i=1

νixij + μ = 0 j ∈ IB

s∑

r=1

μryrj −
m∑

i=1

νixij + μ ≤ 0 j /∈ IB

m∑

i=1

νix
new
i = 1

μr , νi ≥ 0

min
m∑

i=1

νix
new
i + ν

subject to

m∑

i=1

νixij −
s∑

r=1

μryrj + ν = 0 j ∈ IB

m∑

i=1

νixij −
s∑

r=1

μryrj + ν ≥ 0 j /∈ IB

s∑

r=1

μry
new
r = 1

μr , νi ≥ 0

CRS Where μ = 0 Where ν= 0

VRS Where μ free Where ν free

By applying equalities in the constraints associated with benchmark DMUs, model
(10.14) measuresDMUnew’s performance against the benchmark constructed by set
B. At optimality, some DMUj j /∈ IB , may join the fixed-benchmark set if the
associated constraints are binding.

Note that model (10.14) may be infeasible. For example, the DMUs in set B may
not be fit into the same facet when they number greater than m+ s-1, where m is the
number of inputs and s is the number of outputs. In this case, we need to adjust the
set B.

Three possible cases are associated with model (10.14). σ̃ CRS
∗
> 1 indicat-

ing that DMUnew outperforms the benchmark. σ̃ CRS
∗ = 1 indicating that DMUnew

achieves the same performance level of the benchmark. σ̃ CRS
∗
< 1 indicating that

the benchmark outperforms DMUnew.
By applying returns to scale (RTS) frontier type and model orientation, we obtain

the fixed-benchmark models in Table 10.2.
A commonly used measure of efficiency is the ratio of output to input. For exam-

ple, profit per employee measures the labor productivity. When multiple inputs and
outputs are present, we may define the following efficiency ratio

∑s
r=1 uryro∑m
i=1 vixio

where vi and ur represent the input and output weights, respectively.
DEA calculates the ratio efficiency without the information on the weights. In fact,

the multiplier DEA models can be transformed into linear fractional programming
problems. For example, if we define νi = t vi and μr = t ur , where t = 1/

∑
νixio,



10 DEA Based Benchmarking Models 307

the input-oriented CRS multiplier model can be transformed into

max

∑s
r=1 uryro∑m
i=1 vixio

subject to
∑s
r=1 uryrj∑m
i=1 vixij

≤ 1j = 1,2, . . ., n

ur , vi ≥ 0 ∀r , i

(10.15)

The objective function in (10.15) represents the efficiency ratio of a DMU under
evaluation. Because of the constraints in (10.15), the (maximum) efficiency cannot
exceed one. Consequently, a DMU with an efficiency score of one is on the frontier. It
can be seen that no additional information on the weights or tradeoffs are incorporated
into the model (10.15).

If we apply the input-oriented CRS fixed-benchmark model to (10.15), we obtain

max

∑s
r=1 urynewr∑m
i=1 vixnewi

subject to
∑s
r=1 uryrj∑m
i=1 vixij

= 1j ∈ IB

(10.16)

∑s
r=1 uryrj∑m
i=1 vixij

≤ 1j /∈ IB

ur , vi ≥ 0 ∀r , i
It can be seen from (10.16) that the fixed benchmarks incorporate implicit tradeoff
information into the efficiency evaluation. i.e., the constraints associated with IB can
be viewed as the incorporation of tradeoffs or weight restrictions in DEA. Model
(10.16) yields the (maximum) efficiency under the implicit tradeoff information
represented by the benchmarks.

As more DMUs are selected as fixed benchmarks, more complete information on
the weights becomes available.

10.4 Concluding Remarks

This chapter presents the context-dependent DEA and benchmarking DEA ap-
proaches. Morita et al. (2005) show that non-zero slacks can be incorporated into the
context-dependent DEA. Zhu (2014) provides spreadsheet models for calculating the
presented DEA models. The benchmarking models developed by Cook et al. (2004)
provide tools needed to monitor the performance change and further facilitates the
development of the best strategic option for the organization with regard to DMU
makeup. The interested reader is referred to Cook et al. (2004).
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Chapter 11
Data Envelopment Analysis with
Non-Homogeneous DMUs

Wade D. Cook, Julie Harrison, Raha Imanirad, Paul Rouse and Joe Zhu

Abstract Data envelopment analysis (DEA), as originally proposed is a methodology
for evaluating the relative efficiencies of a set of homogeneous decision making units
(DMUs) in the sense that each uses the same input and output measures (in varying
amounts from one DMU to another). In some situations, however, the assumption
of homogeneity among DMUs may not apply. As an example, consider the case
where the DMUs are plants in the same industry which may not all produce the
same products. Evaluating efficiencies in the absence of homogeneity gives rise to
the issue of how to fairly compare a DMU to other units, some of which may not be
exactly in the same ‘business’. A related problem, and one that has been examined
extensively in the literature, is the missing data problem; a DMU produces a certain
output, but its value is not known. One approach taken to address this problem is to
‘create’a value for the missing output (e.g. substituting zero, or by taking the average
of known values), and use it to fill in the gaps. In the present setting, however, the
issue isn’t that the data for the output is missing for certain DMUs, but rather that
the output isn’t produced. We argue herein that if a DMU has chosen not to produce
a certain output, or for any reason cannot produce that output, and therefore does
not put the resources in place to do so, then it would be inappropriate to artificially
assign that DMU a zero value or some ‘average’ value for the nonexistent factor.
Specifically, the desire is to fairly evaluate a DMU for what it does, rather than

W. D. Cook (�) · R. Imanirad
Schulich School of Business, York University, Toronto, ON M3J 1P3, Canada
e-mail: wcook@schulich.yorku.ca

R. Imanirad
e-mail: rimanirad09@schulich.yorku.ca

J. Harrison · P. Rouse
Department of Accounting & Finance, University of Auckland, Auckland, New Zealand
e-mail: j.harrison@auckland.ac.nz

P. Rouse
e-mail: p.rouse@auckland.ac.nz

J. Zhu
School of Business, Worcester Polytechnic Institute, Worcester, MA 01609, USA
e-mail: jzhu@wpi.edu

© Springer Science+Business Media New York 2015 309
J. Zhu (ed.), Data Envelopment Analysis, International Series in Operations
Research & Management Science 221, DOI 10.1007/978-1-4899-7553-9_11



310 W. D. Cook et al.

penalize or credit it for what it doesn’t do. In the current chapter we present DEA-
based models for evaluating the relative efficiencies of a set of DMUs where the
requirement of homogeneity is relaxed. We then use these models to examine the
efficiencies of a set of manufacturing plants.

Keywords Nonhomogeneous DMUs · Missing outputs · Subgroups · Assurance
regions

11.1 Introduction

Data envelopment analysis (DEA), as originally proposed by Charnes et al. (1978),
is a methodology for evaluating the relative efficiencies of a set of homogeneous
decision making units (DMUs) belonging to the same technology in the sense that
each uses the same inputs and outputs, measured the same way (in varying amounts
from one DMU to another). In some situations, however, the assumption of homo-
geneity among DMUs may not apply, even though they use the same technology. As
an example, consider the case where the DMUs are plants in the same industry which
may not all produce the same products, and therefore are not homogeneous. Another
example is that where the DMUs are a set of universities, where not all have the same
departments. In the current chapter we present DEA-based models for evaluating the
relative efficiencies of a set of DMUs that belong to the same technology, but where
the requirement of homogeneity is relaxed. We then use these models to examine the
efficiencies of a set of manufacturing plants.

Evaluating efficiencies in the absence of homogeneity gives rise to the issue of
how to fairly compare a DMU to other units, some of which may not be exactly in the
same ‘business’. A related problem, and one that has been examined extensively in
the literature, is the missing data problem; a DMU produces a certain output, but its
value is not known. One approach taken to address that problem is to ‘create’ a value
for the missing output (e.g. by taking the average of known values), and use it to fill in
the gaps. For outputs, using zero as a dummy for blank entries is another prescribed
solution. The question of blank output entries is thus closely related to the treatment
of zeros in the data matrices (see e.g. Thompson et al. (1993) for discussion).

In the present setting, however, the issue isn’t that the data for the output is
missing for certain DMUs, but rather that the output isn’t produced. In the case of
the universities acting as the DMUs, those without engineering departments cannot
be directly compared to those that do have such departments, and substituting a value
such as zero for this ‘missing’ data is not appropriate. We argue herein that if a DMU
has chosen not to produce a certain output (e.g. the missing engineering department),
or for any reason cannot produce that output, and therefore does not put the resources
in place to do so, then it would be inappropriate to artificially assign that DMU a
zero value or some ‘average’ value for the nonexistent factor. Specifically, the desire
is to fairly evaluate a DMU for what it does, rather than penalize or credit it for what
it doesn’t do.
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Potentially, the non-homogeneous DMU issue could be handled by breaking the
set of DMUs into multiple groups, with all members of any group producing the
same outputs, and then doing a separate DEA analysis for each group. In this way, a
DMU is evaluated against only true peers, specifically those whose output profiles are
identical to its own. No attempt would be made to compare a DMU to other ‘partial
peers’, namely those whose output profiles overlap with, but are not identical to
those of the said DMU. There are at least two problems with this approach. One is
a small sample issue in that there may be, in some cases, very few (if any) actual
peers. Specifically, in some situations this would require the set of DMUs to be split
into multiple small sets to reflect the permutations. The greater the number of splits
required, the more difficult it is to estimate meaningful efficiency. It would commonly
mean that efficiency scores would be artificially inflated. Another problem is that true
best practices for a DMU may in fact be those practices adopted by the partial peers,
and excluding consideration of the latter may result in a failure to identify such best
practices. This being the case, we wish, wherever possible, to include all DMUs in
the comparison set.

Section 2 describes a problem setting involving the evaluation of a set of manu-
facturing plants, where identifiable groups of DMUs produce only proper subsets of
the full set of outputs. Section 3 is devoted to the development of a DEA-type model
for handling the general missing output situation. Generally, this is brought about
by viewing the DMU as consisting of mutually exclusive subgroups of outputs. One
important extension of the DEA concept that has been discussed extensively in the
literature is that involving the imposition of multiplier restrictions, in particular those
based upon assurance regions (AR). In a setting where there is lack of homogeneity
among DMUs, such AR constraints can be problematic in that multiple and often
inconsistent sets of restrictions may materialize out of the above-mentioned output
subgroups. Section 4 extends the new DEA methodology to allow for consideration
of such conflicting AR constraints. Section 5 looks into other issues that may arise
relating to non-homogeneous DMUs, and suggests ways of handling such issues.
Section 6 applies the new methodology to data for a set of 47 plants relating to the
steel fabrication industry, as discussed above. Conclusions appear in Sect. 7.

11.2 Manufacturing Plants with Variable Output Sets

To demonstrate the problem of non-homogeneity of DMUs in DEA, a set of 47 steel
fabrication plants is considered. The main product lines manufactured by the plants
consist of:

1. Sheet steel products (ladders, guards, bumpers and conveyors);
2. Flat bar products used mainly in building construction (brackets, base plates,

headers and posts);
3. Pipes and cylinders (storm drains, plumbing products, etc);
4. Furnace and air conditioning ducts;
5. Structural steel (e.g., joists and support beams);
6. Tanks (residential and industrial).
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Outputs 

Sheet Flat Pipes/ Cylindrical. Structural Storage

Group Steel(1) Bar(2) Cylinders(3) Bearings(4) Steel (5)           Tanks (6) 

1N X X X  X 

2N  X X X X X 

3N   X   X X 

4N X   X  X 

Fig. 11.1 Product lines by DMU Group

In addition, resources employed by all plants are comprised of: (1) Plant labor; (2)
Shears and saws; (3) Presses and rolling equipment; and (4) Cutting torches and
welding equipment.

In this particular industry some plants choose not to manufacture certain products.
As shown in Fig. 11.1, plants with similar product lines have been grouped together
into P DMU groupsNp p = 1, ..,P , where in our particular case P= 4. Observe, for
example, that plants in N1 manufacture products 1,2,3,5; those in N2 make products
2,3,4,5,6; etc. Part of the reason for the variability of products across a business
(DMU) has to do with the focus on industrial versus residential clientele. Some
companies also may cater more to sectors such as automotive than is true of others.

In the following section we develop a DEA based methodology for dealing with
non-homogeneous settings such as that represented by Fig. 11.1.

11.3 A DEA Model for DMUs with Variable Output Sets

In an earlier paper (Cook et al. (2012)) a simple case where DMUs appeared in a
2-group setting was explored, and affords a convenient and transparent backdrop
and introduction for demonstrating the methodology to be developed herein. For
completeness, we summarize some of the elements of that earlier development.
Specifically, consider the situation where n DMUs are organized into two subgroups
N1 andN2, with those inN1 producing 4 outputs y1, y2, y3, y4, while those inN2 pro-
duce only 3 outputs y1, y2, y3, with both subgroups using the same inputs. Figure 11.2
demonstrates the split of DMUs across subgroups N1 and N2.

Hence, when we want to evaluate a DMU, say in the first group N1, we argue
that the evaluation may reasonably be undertaken by carrying out a separate DEA
analysis on each of that DMUs 2 output subgroupsR1 = {y1, y2, y3}, andR2 = {y4}.
We further argue that for DMUs in N1, one may think of each input as being split
between the production of the subset of outputs in R1 and those in R2. (The situation
where some inputs are not separable is discussed later in Sect. 6). If we knew what the
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Fig. 11.2 A two-group setting

proportional split of inputs was between these two output groups, we could proceed
in three stages as follows:

Stage 1 In this stage we decide on a split of the inputs across the output sub-
groups. For the moment and to facilitate transparency, let us assume it is known that
α1N1 = 90 % of each input for any DMU in N1 goes toward the production of R1,
and that the remaining α2N1 = 10 % goes toward the production of outputs in R2. We
generalize this idea below.

Stage 2 In this stage we derive, for each DMU, efficiency scores for the individual
subgroups making up that DMU. Specifically, take 90 % of each of the inputs held by
each DMU inN1 and carry out a standard DEA analysis of all n DMUs (using outputs
in R1). Here, whenever we are looking at a DMU j in N1, we need to remember we
have replaced the original amounts of its inputs xij by the proportional amounts of
these x̃1

ij = α1N1xij (that have been assigned to the outputs in R1). Note as well, that
in this simple case, the inputs held by DMUs in N2 do not need to be split up, as
there is only one relevant subgroup of outputs (R1). Hence, in this case, α1N2 = 1
and α2N2 = 0. Carry out a standard DEA analysis of each of the members in N1

using the output in R2 and with inputs x̃2
ij = α2N1xij . Recall that we do not include

the members from N2 in this analysis, as these DMUs do not produce the output in
R2.

Stage 3 For DMUs in N2, the DEA scores arrived at in stage 2 are the final scores.
For DMUs in N1 we combine the scores from steps 1 and 2 by taking a weighted
average (discussed below).
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We point out that this idea of splitting inputs across various subsets of outputs
is similar in nature to the methodology developed for uncovering multiple variable
proportionality (MVP), as described in Cook and Zhu (2011)

It is reasonable to argue at this point that rather than following the above procedure,
one might instead simply assign to DMUs inN2 a value of zero for the missing output
y4 and proceed with a conventional DEA analysis. Perhaps the best counter argument
to this is that the DMUs in N2 are, under a conventional DEA analysis, at liberty to
assign a zero weight to those outputs (y4 in this case), that are at a zero level, thereby
inferring in a mathematical sense that the DMUs in N1 are in the same ‘business’ as
those in N2. The problem with this is that DMUs in N2, with their limited product
line, would commonly use less resources than is the case for their full service peers in
N1 . . . less labor, less machine time, less inventory carrying cost, etc. Hence, DMUs
in N2 are accorded an unfair advantage over their N1 peers. To illustrate, consider
the simple example where two DMUs have the following profiles:

DMU # y1 y2 x

1 100 100 20

2 100 20

Here DMU #1 is producing 100 units of each of two products, utilizing 20 units
of a single input, while DMU #2 uses the same amount of input but produces only
100 units of output 1. Clearly under a conventional DEA analysis both DMUs will
be deemed efficient given that DMU #2 can assign a zero multiplier to the second
output. Suppose, however that we knew that approximately 80 % of DMU #1’s input
went toward the production of product 1 and the remaining 20 % was used to produce
product 2. Let us present the above data in a more exact manner, replacing DMU #1
by two sub-DMUs which we call DMU #1(a) and DMU #1(b).

DMU# y1 y2 x

1(a) 100 16

1(b) 100 4

2 100 20

Now, following the above notation, R1 is the output set consisting of y1 and R2

contains the output y2. DMU #2 is now evaluated properly against DMU #1(a), and
since the latter uses less input than the former, the input-oriented efficiency score for
DMU #2 is only 0.8.

Hence, our argument is that in evaluating the efficiency of DMU #2 (or in general
those in N2), the comparison to DMU #1 (or those in N1), should be against only
that part of DMU #1’s business that it has in common with DMU #2.

The General Case Let us now examine the general setting, and as a working ex-
ample, consider the situation portrayed in Fig. 11.1 where a set of manufacturing
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plants produces a certain set of products, but not all products are produced in all
plants. Suppose the plants fall into P mutually exclusive (M.E.) groups, as described
in Sect. 2, which we denote by

{
Np

}P
p=1 Here P= 4.

Now form M.E. output subgroups Rk , k = 1, . . . K , where Rk denotes the subset
of outputs with the property that all of its members appear as the outputs of exactly
the same set of DMUs (same DMU ‘profile’). Specifically, if outputs r1, r2 ∈ Rk ,
then the DMU profiles of these two outputs are identical. Hence, if r1 is an output
for DMU groups 1,2,4, then r2 is an output for exactly the same DMU groups. Also,
each Rk is maximal in the sense that there is no output r /∈ Rk that has the same
DMU profile as members of Rk . It can be shown that for the above DMU profiles,
the K output sets are:

R1 = {1},R2 = {2},R3 = {3,5},R4 = {4},R5 = {6}
A general algorithm for deriving the maximal output groupings is found in
Appendix 1.

Theorem 3.1 The generated set of maximal output subgroups is unique.

Proof Let us assume that the set of maximal output subgroups is not unique. In that
case there must exist at least two different sets of output subgroups S1 and S2. It can
then be implied that there must be at least one Rk in S1 that is different from Rk in
S2. Consequently, there must exist at least one output r ∈ Rk in S1 such that r /∈ Rk
in S2. This proves that Rk in S2 is not maximal because there exists output r /∈ Rk
that has the same DMU profile as members of Rk. Hence, it can be concluded that
for each k there exists only one maximal Rk and as a result there can only be one set
of maximal output subgroups. This completes the proof.

Definition 3.1 Let LNp denote those Rk forming the full output set for any DMU
in Np.

In the steel plant setting, LN1 = {R1,R2,R3}, LN2 = {R2,R3,R4,R5}, LN3 =
{R3,R5}, LN4 = {R1,R3}.

To evaluate the efficiency of a given DMU, we need to proceed in three stages.
In stage 1 we decide (for the DMU under evaluation, say jo∈Npo ), what portion of
each input i will be allocated to each of the output subgroups Rk ∈LNpo ; we denote
this proportion by αiRkpo . In stage 2 we evaluate the efficiency of the DMU in terms
of each of its subgroups Rk , and in stage 3 we take a weighted average of these
subgroup scores to get the overall efficiency of the DMU.

Stage 1: Deriving the Split of Inputs Let us formalize the ideas for the situation
where we do not know the precise split of resources as was assumed above. Let the
decision variable αiRkp denote the proportion of input i to be allocated to outputs in
subgroup Rk of LNp . We argue that the best way to divide up the resources, hence
determining the most appropriate alpha variables, is to do so in a manner that results
in the best overall or aggregate score for the DMU, across all of its business subunits.
Further, we argue that the overall efficiency of a DMU jo ∈Npo can reasonably
be represented as a weighted average (convex combination) of the Rk-subgroup
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efficiencies (across all output subgroups in Npo ). We point out that this argument is
essentially that the DMU is the sum of its parts, and therefore assumes there are no
economies or dis-economies of scope. In cases where it is believed such economies
(dis-economies) of scope exist, our approach may not accurately capture efficiency
at the aggregate level.

Given that it is aggregate efficiency of the DMU that we wish to derive, and that
this aggregate will be represented as a convex combination of the Rk-subgroup effi-
ciencies, we set out to determine theα-split of inputs with the objective of maximizing
this aggregate efficiency. With this in mind, consider the following input-oriented
radial projection model (11.1) for a DMU jo∈Npo . It is noted that the development
in this section is, in the spirit of Charnes et al. (1978), presented from the perspec-
tive of the constant returns to scale (CRS) technology. As demonstrated in a later
section, however, the concepts are equally valid for a variable returns to scale (VRS)
technology.

eo = max
∑

Rk∈LNpo
WRkjo

[∑

r∈Rk
uryrjo

/∑

i

νiαiRkpoxijo

]
(11.1a)

subject to

∑

Rk∈LNp
WRkj

[∑

r∈Rk
uryrj

/∑

i

νiαiRkpxij

]
≤ 1 ∀j ∈ Np,Rk ∈ LNp ,p = 1, . . .P

(11.1b)

∑

r∈Rk
uryrj −

∑

i

νiαiRkpxij ≤ 0 ∀j ∈ Np,Rk ∈ LNp ,p = 1, . . .P (11.1c)

∑

Rk∈LNp
αiRkp = 1 ∀i, p = 1 . . .P (11.1d)

aiRkp ≤ αiRkp ≤ biRkp ∀i, Rk , p = 1, . . .P (11.1e)

ur , νi ,αiRkp ≥ 0, ∀i,Rk ,p (11.1f)

We point out that while in the above example it was assumed that the same values
of alpha applied to all DMUs, in the general case here, the model makes provi-
sion for a different set of alpha variables for each DMU j. The basic idea of this
model is to represent the overall efficiency of a DMU as a convex combination(∑

Rk∈LNpo WRkjo = 1
)

of the efficiencies
∑
r∈Rk uryrjo/

∑
i νiαiRkpoxijo of the indi-

vidual subgroupsRk . While the weightsWRkjo may be any set of values that represent
the importance to be attached to the relevant subgroups, there would appear to be
at least two reasonable and obvious choices. From an accounting perspective, it is
appropriate and reasonable to let the proportion of inputs assigned to (or consumed
by) a subgroup, dictate the importance of that subgroup to the overall DMU; the
subgroup assigned the largest share of resources would be given the highest weight.
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An equally valid definition of importance of a subgroup would be to base it upon
the proportion of the aggregate output for the DMU generated by that subgroup; the
subgroup that creates the greatest value for the DMU would be weighted the highest.
One might also adopt a net contribution or profit criterion to select weights. As a
convenience in the case of the input oriented model adopted herein, we select the
first of these two approaches, namely we base the weights for the subgroup ratios
on the proportions of the aggregate inputs consumed by those subgroups. Thus, we
define the weightWRkjo to be assigned to subgroup Rk as:

WRkjo =
∑

i

νiαiRkpoxijo/
∑

Rk∈LNpo

[∑

i

νiαiRkpoxijo

]
(11.2)

Constraints (11.1b) require that the multipliers chosen for a DMU jo satisfy the
condition that when they are applied to any other DMU, the corresponding ratio (of
outputs to inputs) does not exceed unity. At the same time, and in anticipation of the
second stage, we impose the requirement that the ratio of outputs to inputs at the
subgroup level also not exceed unity. Specifically, constraints (11.1c) specify that the
resource splitting variables αiRkp be selected in a manner that allows the efficiency
ratio corresponding to the subset of outputs in Rk to assume a value that does not
exceed unity for some values of the multipliers ur , νi . We note that in the presence
of (11.1c), constraints (11.1b) are redundant and may be dropped from the model.

Constraints (11.1d) specify that the α values assigned to the subgroups of outputs
corresponding to any set p sum to unity for each i. Finally, constraints (3.1e) place
lower and upper limits on the sizes of the α variables. It is worth noting that in a
situation wherein a particular input may not in fact impact certain outputs or output
subgroups, the corresponding αiRkp can of course be set to zero.

The Equivalent Linear Formulation Problem (11.1) in its current form is nonlinear.
To facilitate linearization, first note that by virtue of the definition we choose to use
for theWRkjo as given by (11.2), the objective function (11.1a) becomes

eo = max
[ ∑

Rk∈LNpo

∑

r∈Rk
uryrjo/

∑

i

νixijo

]
(11.1a’)

Specifically, maximizing the weighted average of subgroup ratios is equivalent to
maximizing the overall efficiency ratio of the DMU.

Now make the change of variables ziRkp = νiαiRkp, and note that

∑

Rk∈LNp
αiRkp = 1 ⇒ νi

∑

Rk∈LNp
αiRkp = νi ⇒

∑

Rk∈LNp
ziRkp = νi

Using the usual transformation t = 1/
∑
i νixijo (see Charnes et al. (1978)), and

defining μr = tur , υi = tνi , γiRkp = tziRkp, problem (11.1) becomes:

eo = max
∑

Rk∈LNpo

∑

r∈Rk
μryrjo (11.3a)
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subject to

∑

Rk∈LNp◦

(∑

i

γiRkpoxij◦
)
= 1 (11.3b)

∑

r∈Rk
μryrj −

∑

i

γiRkpxij ≤ 0 ∀j ∈ Np,Rk ∈ LNp ,p = 1, . . .P (11.3c)

∑

Rk∈LNp
γiRkp = υi ∀i, p = 1 . . .P (11.3d)

υiaiRkp ≤ γiRkp ≤ υibiRkp ∀i,Rk ∈ LNp ,p = 1, . . .P (11.3e)

μr , υi , γiRkp ≥ ε, ∀r , i,Rk ,p = 1, . . .P (11.3f)

Stage 2: Deriving the Subgroup Efficiency Scores Note that the purpose of stage 1
is to derive, for each DMU jo inNpo , the ‘optimal’ proportions of inputs α̂iRkpo to be
assigned to output subgroupsRk . These are given by α̂iRkpo = γ̂iRkpo/υ̂i . When these
proportions are available (from the solution to model (11.3)), one can then allocate
to subgroup Rk the appropriate amount of input xijo , namely x̃kijo = α̂iRkpoxijo . The
conventional CCR DEA model (see Charnes et al. (1978)) can then be applied to
each of the subgroups Rk of jo. Specifically, determine MRk , the set of all DMU
groups that have Rk as a member, that is

MRk = {Np such that Rk ∈ LNp }. (11.4)

Note, for example, in the six-output steel fabrication application described above,
MR1 = {N1,N4},MR2 = {N1,N2}, . . . etc.

Now, for each DMU jo, and each subgroup Rk◦ corresponding to the set Npo that
contains jo as a member, solve the DEA model:

eRk◦ jo = max
∑

r∈Rk◦
μryrjo

subject to

∑

i

υi x̃
k◦
ijo
= 1

∑

r∈Rk◦
μryrj −

∑

i

υi x̃
k◦
ij ≤ 0, j ∈ Np, for Np ∈ MRk◦

μr , υi ≥ ε (11.5)

Stage 3: Deriving the Aggregate Efficiencies The overall efficiency score of the
DMU jo is now derived by taking a weighted average of the subgroup scores obtained
in stage 2, using theWRkjo defined in (11.2). It should be pointed out that in computing
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WRkjo an appropriate set of input multipliers νi needs to be chosen. Furthermore,
the multipliers need to be computed in an environment where all subunits are being
compared simultaneously. The aggregate model (11.3) provides such an environment.
That is, in (11.3) when DMU jo is being evaluated, the input portion of expression
(11.3c), namely

∑
i γiRkpoxijo (for j = jo), represents the value of that DMU’s

resources that are assigned to subgroupRk . The total value of all resources consumed
by DMU jo is given by

∑
i υijoxijo , which is scaled to unity as per constraint (11.3b).

Hence, the weights WRkjo reduce to WRkjo =
∑
i γiRkpoxijo . Note again that this set

of weights is dependent on the particular DMU jo under investigation, to reflect the
fact that the proportion of inputs allocated to the kth subunit is DMU-specific.

The model developed in this section permits one to evaluate efficiencies of a set of
DMUs where output profiles are not homogeneous across those units. The proposed
approach portrays a DMU’s performance as a convex combination of its component
parts (subgroups). It is important to point out that in the above structure we do
not consider restrictions that might be imposed on the multipliers μ, υ (referring to
model (11.3)), other than those that restrict efficiency ratios to not exceed unity. This
is raised here because such restrictions may lead to infeasibilities that would normally
not occur in the conventional DEA setting. The following section investigates the
role that multiplier restrictions play in this more general environment. First, however,
we point to related literature.

Relation to Previous Work The methodology developed above is related to two
strands of previous research. First, network DEA as originated by Fare and Grosskopf
(1996), sets out to evaluate DMU performance by examining the internal sub-
processes that make up the DMU. While one can define performance in many ways, if
one concentrates on technical efficiency, network DEA provides for both sub-process
efficiency scores as well as an overall score for the DMU itself. Thus, the approach
herein is a form of network DEA analysis in that the sub-processes are the subunits
as we have described above. Arguably, one difference between our methodology and
that characterizing network DEA is that our definition of the overall performance of
the DMU is that it is a weighted average of the subunit efficiencies. What is normally
done in network DEA is to use a conventional DEA model to describe overall effi-
ciency in terms of all inputs entering the DMU versus all outputs leaving the DMU.
As well, sub-process shares of inputs would normally be known in advance (except
in allocative efficiency settings), as opposed to those shares being derived as part of
the optimization procedure, as is the situation herein. Furthermore, there is no clear
direct connection in network DEA between the efficiency score for the overall DMU
and the scores of the sub-processes. We provide that connection in the methodology
presented here.

Other related research carried out by Cook and Hababou (2001) and by Cook
et al. (2000) is closer still to work done herein. In that former work, the DMUs
are bank branches which are viewed as consisting of two components or subunits,
namely sales and service. Those authors develop an overall efficiency score for the
branch using a model analogous to (11.1) above. Their model sets out to optimize
the ratio of total weighted outputs to total weighted inputs for the overall branch.
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Component efficiencies (sales and service) are then simply taken as the ratio of
weighted outputs to inputs for those components,

∑
r∈Rc μryrj /

∑
i∈I γikxij similar

to expression (11.3c). Here Rc denotes the output bundles for either the sales or
service component. The problem with using this ratio to capture component efficiency
is that it doesn’t properly capture the component’s performance. Specifically, since it
is overall branch performance that is being maximized, there is no internal mechanism
for insuring that at the same time component scores are appropriately set, consistent
with DEA constructs. Our model herein takes the next important step (step 2 above)
of using the resource split across the subunits to find the maximal efficiencies for
each of those subunits, and then taking the weighted average of those maximal
scores (step 3) to arrive at the score for the DMU. In addition, our methodology
herein identifies the subunits into which to decompose the DMU, whereas the earlier
research pertained only to those applications where components or subunits are well
defined in advance. Finally, the earlier work did not consider the issue of conflicting
AR constraints as we do herein. This topic is covered in the next section.

11.4 AR Restrictions on Pairs of Input Variables

Many different forms of multiplier restrictions in DEA analyses have been discussed
in the literature, but none more than those that take the form of assurance regions
(AR). AR constraints, as first discussed by Thompson et al. (1990), involve the
placing of bounds on the ratios of pairs of multipliers. The resulting DEA-AR model
has been employed extensively in numerous performance measurement settings. In
this section, we address the problem of non-homogenous DMUs in the presence of
such AR restrictions on input multipliers, and the inherent problems that can arise
thereon. It should be noted that while the discussion focuses on input multipliers,
the concepts apply equally to the output side.

Let us assume, in reference to model (11.3), that for each output subgroup Rk AR
constraints of the form ckiLυi2 ≤ υi1 ≤ ckiUυi2 , k = 1, . . . ,K , have been specified.
As indicated above, such constraints identify the relative magnitudes of pairs of
input multipliers υi1 to υi2 within output subgroup Rk . It can be argued that all
such constraints across all output subgroups Rk can be expressed in the form ckiL ≤
υi/υn ≤ ckiU , such that υn is the designated numeraire, the multiplier for one of the
inputs against which all other multipliers are compared (see Thompson et al. (1990)).
Given that subgroups of outputs are in some senses a signal that multiple business
units are operating under one umbrella, it is often the case that multiple sets of AR
constraints on any given pair of multipliers can emerge simultaneously. Moreover,
such multiple sets can result in infeasibility. For example, let us assume that the
following constraints 3 ≤ υ2/υ1 ≤ 5 and 6 ≤ υ2/υ1 ≤ 8 have been specified for
output subgroups Rk1 and Rk2 , respectively. If these two sets of restrictions were to
be imposed simultaneously on model (11.3), infeasibility would obviously result.
This being the case, there is reason to look for a mechanism that will permit one to
fold such multiple sets of constraints involving any multiplier υi into a single set,
thereby insuring that model (11.3) is feasible.
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Assume AR constraints ck1
iL ≤ υi/υn ≤ c

k1
iU and ck2

iL ≤ υi/υn ≤ c
k2
iU have been

imposed within Rk1 and Rk2 respectively. To reduce this pair of AR restrictions to a
single expression, we propose focusing attention on one of the bounds, say the lower
bound. It is observed that by expressing

c
k2
iL ≤ υi/υn ≤ ck2

iU (11.6)

in the form (ck1
iL/c

k2
iL)ck2

iL ≤ (ck1
iL/c

k2
iL)υi/υn ≤ (ck1

iL/c
k2
iL)ck2

iU , and by subsequently
making the following transformation υ ′i = (ck1

iL/c
k2
iL)υi , (11.6) can be converted to

c
k1
iL ≤ υ ′i/υn ≤ (ck1

iL/c
k2
iL)ck2

iU . Consequently, for each DMU jo ∈ MRk2
, υixij can be

replaced by
c
k1
iL

c
k2
iL

υixij
c
k2
iL

c
k1
iL

or υ ′ixij
c
k2
iL

c
k1
iL

, meaning that by scaling the multiplier υi by a

factor
c
k1
iL

c
k2
iL

, we can scale the data for xi inMRk2
by the reciprocal of that factor.

To illustrate, refer again to the above example of constraints 3 ≤ υ2/υ1 ≤ 5 and
6 ≤ υ2/υ1 ≤ 8 in subgroups Rk1 and Rk2 respectively, and assume that input 1 is
used as the numeraire. In order to arrive at a single set of constraints involving υ2

we first replace the constraint 6 ≤ υ2/υ1 ≤ 8 with 3
6 6 ≤ 3

6υ2/υ1 ≤ 3
6 8. By making

the transformation υ ′2 = 3
6υ2 we can then replace υ2x2 in MRk2

with 3
6υ2( 6

3x2) or

υ
′
2( 6

3x2).
Specifically, by scaling υ2 down by a factor 3

6 we can scale up the data for x2

in subgroup MRk2
by a factor 6

3 .Along the same lines, the upper bound on υi/υn is

replaced by c̄k2
iU = (

c
k1
iL

c
k2
iL

)ck2
iU .

This exercise is then repeated for all other output subgroups that have AR
constraints involving multipliers υi and υn. Let us define

c̄iL = ck1
iL (11.7)

c̄iU = min{c̄k1
iU , c̄k2

iU , . . . ..}, (11.8)

where it is understood that the minimum in (11.8) is taken over all Rk that contain
an AR constraint involving the two variables υi and υn. Expression (11.6) can now
be replaced by

c̄iL ≤ υi

υn
≤ c̄iU (11.9)

To repeat, assume a set ofAR restrictions on a pair of input variables (υi , υn) has been
imposed within various output subgroupsRk . That is, the AR restrictions can vary by
output subgroup. Let one of these subgroups, Rk̂ be the base against which all other
sets will be compared. As a result of the adjustments made to reduce these multiple
restrictions to a single AR constraint, the corresponding inverse adjustments must
be made to variable xi within each of the Rk subgroups. (We are assuming that υn is
the designated numeraire for this pair of variables). Let us now denote the adjusted
input data by xikj , that is

xikj = (ckiL/c
k̂
iL)xij (11.10)
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With these adjustments having been made to the input data, model (11.3) for a given
DMU jo in DMU group Npo now takes the form

eo = max
∑

Rk∈LNp◦

∑

r∈Rk
μryrjo (11.11a)

subject to
∑

Rk∈LNp◦

(∑

i

γiRkpoxikjo
)
= 1 (11.11b)

∑

r∈Rk
μryrj −

∑

i

γiRkpxikj ≤ 0 ∀j ∈ Np,Rk ∈ LNp ,p = 1, . . .P (11.11c)

∑

Rk∈LNp
γiRkp = υi ∀i, p = 1 . . .P (11.11d)

υiaiRkp ≤ γiRkp ≤ υibiRkp ∀i,Rk ∈ LNp ,p = 1, . . .P (11.11e)

υnc̄iL ≤ υi ≤ υnc̄iU ∀i, i 
= n (11.11f)

μr , υi , γiRkp ≥ ε, ∀r , i,Rk ,p = 1, . . .P (11.11g)

Note that (11.11f) represents the final constraints resulting from the amalgamation
of the multiple AR restrictions corresponding to the various Rk subgroups.

In the case of the stage 2 subgroup optimization, where the efficiency of subgroup
Rko is to be determined, the AR-equivalent of model (11.5) is given by (11.12). Here,
it is important to note that only AR restrictions relevant to this particular output
subgroup, and no AR restrictions outside this subgroup are invoked. This being the
case, input data requires AR-adjustment only in cases where multiple AR restrictions
on a pair of variables arise. This latter can happen when constraints (on a given pair of
variables) are invoked in one of the output subgroupsRk that are different from those
invoked in another subgroup. We use the notation x̂k

o

ij to denote the alpha-adjusted,
and AR- adjusted version of input xi consumed by output subgroup Rko . Constraints
(11.12d) reflect the imposed AR constraints. The following model is now solved for
each of the output subgroups, Rko or each DMU jo.

eRko jo = max
∑

r∈Rko
μryrjo (11.12a)

subject to
∑

i

υi x̂
ko

ijo
= 1 (11.12b)

∑

r∈Rko
μryrj −

∑

i

υi x̂
ko

ij ≤ 0, j ∈ Np, f or Np ∈ MRk◦ (11.12c)

υnc
k◦
iL ≤ υi ≤ υnck

◦
iU ∀i, i 
= n (11.12d)

μr , υi ≥ ε
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11.5 Other Considerations

Non-Separable Inputs In many instances there can be inputs that do not lend them-
selves to subdivision in the manner described above. If, for example, in the analysis
of the steel fabrication plants, one wished to include as an input a quality measure
pertaining to supplier reliability, it would appear to be unreasonable to suggest sub-
dividing this factor, and assigning portions of it across the various subunits; such a
factor, in its entirety, would affect the outputs in each subunit k. Generalizing, let
us use the notation Is , Ins to denote the sets of separable and non-separable inputs
respectively. In the discussion thus far, all inputs have been assumed to belong to Is .
The efficiency ratio for a given subgroupRk within DMU jo can now be expressed in
the form

∑
r∈Rk uryrjo/(

∑
i∈Is νiαiRkxijo+

∑
i∈Ins ν

Rk
i xijo ) where νRki is the worth or

weight assigned to the non-separable input xijo , i ∈ Ins , and represents the impact of
that input on the outputs inRk . Note that we are permitting this weight to be different
from one subgroup to another. Following the logic of (11.2) we define the weight
attached to the efficiency ratio for subgroup Rk by

WRkjo =
[∑

i∈Is
νiαiRkpoxijo +

∑

i∈Ins
ν
Rk
i xijo

]
/

∑

Rk∈LNpo

[∑

i∈Is
νiαiRkpoxijo +

∑

i∈Ins
ν
Rk
i xijo

]

(11.13)

The optimization model for this more general case would be identical in form to
(11.3) with the exception that constraint (11.3b) and (11.3c) are replaced by

∑

i∈Is
υixijo +

∑

Rk∈Npo

(∑

i∈Ins
υ
Rk
i

)
xijo = 1 (11.3b’)

and
∑

r∈Rk
μryrj −

∑

i∈Is
γkixij −

∑

i∈Ins
υ
Rk
i xij ≤ 0, ∀j ∈ Np, (11.13c’)

respectively, to account for the two types of inputs. Furthermore, constraints (11.4d)
and (11.4e) apply only to separable inputs i. Here, υRki = tν

Rk
i under the usual

transformation as discussed above.

Variable Returns to Scale The development above is based on a CRS technology.
In the situation where a VRS technology is deemed to be more appropriate, it is
sufficient to replace terms such as

∑
r∈Rk uryrj by

∑
r∈Rk uryrj−uo. An advantage of

theVRS formulation is that the sign of uo is subgroup-dependent, and signals whether
the projected version of that (sub) DMU will be experiencing increasing, constant
or decreasing returns to scale. This can provide useful information to management
regarding the returns to scale orientation of various parts of the business, and may
aid in deciding how to redistribute resources, given that common resources (Is) are
shared among the subgroups.
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Output Orientation The development throughout has assumed that efficiency is to
be viewed from the perspective of an input orientation. If the organization intends
to improve efficiency by pursuing output expansion rather than input reduction, then
an output orientation would be an appropriate model structure to use. Specifically,
model (3.1) would be replaced by:

eo = min
∑

Rk∈LNpo
WRkjo

[∑

i

νiαiRkpoxijo/
∑

r∈Rk
uryrjo

]
(11.13a)

subject to

∑

Rk∈LNp
WRkj

[∑

i

νiαiRkpxij /
∑

r∈Rk
uryrj

]
≥ 1 ∀j ∈ Np,Rk ∈ LNp ,p = 1, . . .P

(11.13b)
∑

i

νiαiRkpxij −
∑

r∈Rk
uryrj ≥ 0 ∀j ∈ Np,Rk ∈ LNp ,p = 1, . . .P (11.13c)

∑

Rk∈LNp
αiRkp = 1 ∀i, p = 1 . . .P (11.13d)

aiRkp ≤ αiRkp ≤ biRkp ∀i, Rk , p = 1, . . .P (11.13e)

ur , νi ,αiRkp ≥ 0, ∀i,Rk ,p (11.13f)

As discussed earlier, it appears equally valid to base the definition of weightsWRkjo

on either inputs consumed or outputs generated. In the case of the output oriented
model it is therefore reasonable to weight the efficiency ratios according to the latter
(outputs generated). Specifically, if the weight on subgroup Rk is chosen as

WRkjo =
∑

r∈Rk
uryrjo/

∑

Rk∈LNpo

[∑

r∈Rk
uryrjo

]
(11.14)

then the above aggregate objective function (11.13a) becomes the ratio of overall
DMU input to overall DMU output, namely,

eo = min
∑

Rk∈LNpo

[∑

i

νixijo/
∑

r∈Rk
uryrjo

]
(11.13a’)

We now apply the above methodology to the derivation of efficiencies of a set of
steel fabrication plants.

11.6 Application

To demonstrate the application of the models developed in the earlier sections, data
on a set of 47 plants, as per Appendix 3 Tables 11.8 and 11.9, were considered.
These plants are grouped into four DMU subgroups N1 to N4 such that plants
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Table 11.1 Input cost rates per machine per quarter

Quarterly costs
thousands of dollars

Input k= 1 k= 2 k= 3 k= 4 k= 5

Labor $5–$7.5 $5–$7.5 $5–$7.5 $5–$7.5 $5–$7.5

Shears $7–$10 $14–$19 $14–$19 $7–$10 $9–$12

Presses $6–$9.6 $16–$21 $12–$15 $6–$9.6 $5–$9

Lathes $7–$11 $7–$11 $7–$11 $7–$11 $7–$11

belonging to any DMU group Np produce identical products. The profiles of the
four groups of DMUs Np are as described in Sect. 2. For example, DMUs in N1

produce outputs 1,2,3 and 5. Note from Appendix 3 Table 11.8, that N1 consists of
DMUs 1,3,4,6,9,10,11,19,32,35,39,and 46.

In the application considered herein, AR restrictions play an important role, par-
ticularly on the input side. They provide a way to bring resource tradeoffs into the
picture. Input multipliers effectively mimic resource costs. Hence, while it is the
case in many real world settings that the development of such restrictions can be
problematic, in manufacturing situations resource costs often provide the appropri-
ate route to deriving the desired restrictions. To that end data was collected relating
to per unit costs for each of the four inputs. The data provided in Table 11.1 represent
per unit costs incurred during the last quarter of 2010. For example, the range of cost
estimates specified for labor (x1) for the last quarter of 2010 is from $5000 to $7500
per plant employee (wages and benefits). While there is no implied variation in labor
costs across the five bundles, k= 1,2,3,4,5, wage rates can differ from plant to plant
and over time due to the mix of full time and part time labor used. For this reason a
range is given for this input.

For the other three inputs, machine ‘rates’ were assumed to be the estimated quar-
terly costs of depreciation, routine maintenance and unforeseen breakdown costs. In
the case of the shearing machines, for example, the estimated quarterly cost (depre-
ciation and maintenance) of operating one machine would generally vary between
$7000 and $10,000 per quarter in the case of output bundle k= 1, and $14,000 and
$19,000 in the case of k= 2. The increased stress placed on the equipment in the
production of flat bar products versus that created in the manufacture of sheet steel
products, contributes to the difference in cost between the two product groupings.

Table 11.1 can be used to set AR constraints corresponding to the various pairs
of multipliers. See Table 11.2 for the full set. Note that the lower bounds on all
constraints ckiL ≤ υi/υn ≤ ckiU , can be expressed as the ratio of the lowest value υi
can take divided by the highest value υn can assume. Similarly, the upper bounds are
defined as the ratio of the highest value υi can take divided by the lowest value taken
by υn.For example, given that the range for labor cost is $5–$7.5 and the range for
shears is $7–$10 in the case of k= 1, the AR constraints corresponding to υ2 and υ1

are expressed as 7
7.5 ≤ υ2

υ1
≤ 10

5 .
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Table 11.2 AR constraints

i= 2 i= 3 i= 4

K= 1 0.93 ≤ υ2
υ1
≤ 2 0.8 ≤ υ3

υ1
≤ 1.92 0.93 ≤ υ4

υ1
≤ 2.2

K= 2 1.87 ≤ υ2
υ1
≤ 3.8 2.13 ≤ υ3

υ1
≤ 4.2 0.93 ≤ υ4

υ1
≤ 2.2

K= 3 1.87 ≤ υ2
υ1
≤ 3.8 1.6 ≤ υ3

υ1
≤ 3 0.93 ≤ υ4

υ1
≤ 2.2

K= 4 0.93 ≤ υ2
υ1
≤ 2 0.8 ≤ υ3

υ1
≤ 1.92 0.93 ≤ υ4

υ1
≤ 2.2

K= 5 1.2 ≤ υ2
υ1
≤ 2.4 0.67 ≤ υ3

υ1
≤ 1.8 0.93 ≤ υ4

υ1
≤ 2.2

All constraints are expressed in terms of labor (υ1) which has been chosen as the
numeraire. Refer to Appendix 2 for a detailed discussion on generating a single set
of AR constraints for each pair of input multipliers.

Following the methodology presented in Sect. 3, model (11.3) is applied to the
data of Appendix 3 Tables 11.8 and 11.9. Recall that the purpose of solving this stage
1 problem is to facilitate an apportioning of the inputs to the subunits that make up
the DMU. To bound the values of α so that a representative apportioning occurs,
survey data from a sample of the plants suggested the following ranges:

N1: (0.15, 0.80)
N2: (0.10, 0.60)
N3: (0.20, 0.90)
N4: (0.20, 0.90)

It is noted that the ranges vary according to the DMU subgroup Np, and is related to
the number of subunits K comprising the subgroup. Specifically, the more subunits
that Np contains, the narrower are the ranges. Recall that

LN1 = {R1,R2,R3}, LN2 = {R2,R3,R4,R5}, LN3 = {R3,R5}, LN4 = {R1,R3}.
For example, since DMU subgroupN2 contains 4 subunits, a minimum of 10 % and
a maximum of 60 % of each input can be assigned to any subunit. In the case of N3,
however, which contains only 2 subunits, the alpha range is wider.

Applying model (11.3), the α̂iRkp for each DMU jo inNp have been derived. The
results are displayed in Appendix 3, Tables 11.10, 11.11, 11.12, 11.13, 11.14. Recall
that α̂iRkp values are used to adjust the corresponding data in each DMU subgroup
MRk , in preparation for the subunit analysis. Specifically, using the appropriately
adjusted data, model (11.5) is applied to each DMU inMRk , resulting in the subunit
scores displayed in Appendix 3 Table 11.16. To derive an overall efficiency score
for each DMU jo in Np, the relevant subunit scores are combined using the weights
WRkjo , as per Appendix 3 Table 11.15. The resulting overall scores are presented
along with their relevant subunit scores in Appendix 3 Table 11.16.

It is noted that none of the DMUs are technically efficient. Recall that a DMU can
be efficient only if all subunits for that DMU are efficient as well. However, within
each subgroup Rk at least one of the (sub) DMUs inMRk is inefficient.



11 Data Envelopment Analysis with Non-Homogeneous DMUs 327

To demonstrate the degree of sensitivity of the overall efficiency scores (as per
the right-most column in Appendix 3 Table 11.16) to the choice of alpha ranges, the
above analysis was repeated, but with two new sets of alpha ranges. A summary of
the results is as follows:

Scenario Lower and upper limits on
α̂iRkp

Average absolute change in
overall efficiency scores

1 (0.10, 0.80) 0.12219

2 (0.05, 0.90) 0.33868

Based on this, it would appear that very wide ranges such as those given as scenario
2, result in substantial swings in the overall efficiency scores when compared with
base results as described above. Somewhat tighter ranges such as those in Scenario
1 significantly decrease the variation in efficiency scores vis a vis the base results.

To complete the analysis of this section, it is worth comparing the efficiency re-
sults obtained using our model with what would have occurred had conventional
DEA analysis been carried out, by simply inserting zeros in the data for any miss-
ing outputs. Two levels of analysis were conducted, namely one without any AR
constraints, and one with the AR constraints applied. The results are displayed in
Appendix 3, Table 11.17. It is noted that having replaced all blank spaces with ze-
ros, a significant number of DMUs are rendered technically efficient. In the non-AR
versions of our model and the conventional DEA model, we note that there are 3
efficient DMUs in the former versus 33 in the latter. The existence of the very large
number of efficient units (33) with the conventional model is partially due to the large
number of outputs and inputs involved, as compared to the total number of DMUs.
A somewhat more realistic set of scores arise with the conventional model in the
presence of AR constraints, where only 17 of the DMUs are efficient. Specifically,
17 of the 47 DMUs have a score of 100 % and another 8 have scores at the level of
90 % or above. Arguably, part of the problem as well is that the absence of outputs in
the various DMUs may be providing the opportunity to DMUs in any given subset
Np to negate the influence of other DMUs that are in different subsets.

11.7 Conclusions

This chapter has examined efficiency measurement in a setting where decision mak-
ing units are non-homogeneous. This environment violates the usual assumption in
DEA that DMUs are all in the same ‘business’, meaning that each DMU produces
some amount of each output in a given output bundle, albeit in differing amounts
from one DMU to the next. The problem of “missing” outputs has been addressed in
the literature, but only in the context that either the missing value exists, but is not
available to the analyst, or that the missing item is a quantity that the DMU intended
to produce (and resources were expended in an effort to do so), but for whatever
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reason none was actually created. In this case, the value assigned to that output is
legitimately taken to be zero.

Herein we argue that in many situations the output mix can differ substantially
from one DMU to another, meaning that the usual assumption of homogeneity does
not hold, and therefore the DMUs involved are not directly comparable. Substituting
zero or some other computed value when an output is missing, as a means of rendering
DMUs ‘comparable’, appears to be ad hoc, and fails to properly address the efficiency
evaluation problem in a direct way. To address this apparent gap in the DEA literature,
we present a DEA-like methodology that views the DMU as consisting of a set of
business subunits. The overall efficiency of a DMU is then taken to be a weighted
average (convex combination) of the efficiency scores for the subgroups that make
up that DMU. The methodology is applied to the efficiency evaluation problem for
a set of steel fabrication plants.

One criticism of this approach is that it presumes that the DMU can be viewed
as being the sum of its parts, meaning that economies or diseconomies of scope are
assumed to be non-existent. In cases where this assumption is violated, our approach
may fail to accurately capture the performance of the DMU. See, for example, Pulley
and Braunstein (1992). Capturing economies of scope is difficult in settings where
one does not have the benefit of observing an entity operating by itself as well as in
a mode where it is combined with other entities. In noted from the literature, data
on mergers and acquisitions can be a way in which one might reasonably examine
an entity in both states. There is also the added difficulty of separating economies of
scope from economies of scale. Is the increase in output of a given product, when a
new product is added to the mix, due to scope or simply a result of increased size of
the operation (scale)? Further research is encouraged in this area.

This chapter is based upon (i) W. Cook, R. Imanirad, J. Harrison, P. Rouse and J.
Zhu. 2013. Data Envelopment Analysis with Non-Homogeneous Decision Making
Units, Operations Research, 61(3), 666–676; with permission from the Institute
for Operations Research and the Management Sciences, 5521 Research Park Drive,
Suite 200, Catonsville, MD 21228 USA, and (ii) W. Cook, J. Harrison, P. Rouse
and J. Zhu. 2012. “Relative Efficiency Measurement: The Problem of a Missing
Output in a Subset of Decision Making Units”, European Journal of Operational
Research, 220 (1), 79–84; with permission from Elsevier.

11.8 Appendix 1: Generating the Maximal Output Groupings

The algorithm for generating the maximal output groupings is as follows:
Step 1: Define S to be an empty set.
Step 2: For each output r, derive N (r), the set of all DMU subgroups Np that

produce r. Add N (r) to S.
Step 3: For each N (r) in S, compare it with every other N (r ′) in S, and identify

all N (r ′) that have the same elements as N (r). If no such r ′ is identified, create set
Rkk=1 = {r}. Remove N (r) from S. Otherwise, create set Rkk=1 = {r} and add all r ′
to Rk. Remove N (r) and all N (r ′) from S.
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Table 11.3 Multiple sets of AR constraints across all output subgroups

i= 2 i= 3 i= 4

K= 1 7
7.5 ≤ υ2

υ1
≤ 10

5
6

7.5 ≤ υ3
υ1
≤ 9.6

5
7

7.5 ≤ υ4
υ1
≤ 11

5

K= 2 14
7.5 ≤ υ2

υ1
≤ 19

5
16
7.5 ≤ υ3

υ1
≤ 21

5
7

7.5 ≤ υ4
υ1
≤ 11

5

K= 3 14
7.5 ≤ υ2

υ1
≤ 19

5
12
7.5 ≤ υ3

υ1
≤ 15

5
7

7.5 ≤ υ4
υ1
≤ 11

5

K= 4 7
7.5 ≤ υ2

υ1
≤ 10

5
6

7.5 ≤ υ3
υ1
≤ 9.6

5
7

7.5 ≤ υ4
υ1
≤ 11

5

K= 5 9
7.5 ≤ υ2

υ1
≤ 12

5
5

7.5 ≤ υ3
υ1
≤ 9

5
7

7.5 ≤ υ4
υ1
≤ 11

5

Table 11.4 Adjustments made to the AR constraints

i= 2 i= 3 i= 4

K= 1 7
7.5 ≤ υ2

υ1
≤ 10

5
5
6 × 6

7.5 ≤ 5
6 × υ3

υ1
≤ 5

6 × 9.6
5

7
7.5 ≤ υ4

υ1
≤ 11

5

K= 2 1
2 × 14

7.5 ≤ 1
2 × υ2

υ1
≤ 1

2 × 19
5

5
16 × 16

7.5 ≤ 5
16 × υ3

υ1
≤ 5

16 × 21
5

7
7.5 ≤ υ4

υ1
≤ 11

5

K= 3 1
2 × 14

7.5 ≤ 1
2 × υ2

υ1
≤ 1

2 × 19
5

5
12 × 12

7.5 ≤ 5
12 × υ3

υ1
≤ 5

12 × 15
5

7
7.5 ≤ υ4

υ1
≤ 11

5

K= 4 7
7.5 ≤ υ2

υ1
≤ 10

5
5
6 × 6

7.5 ≤ 5
6 × υ3

υ1
≤ 5

6 × 9.6
5

7
7.5 ≤ υ4

υ1
≤ 11

5

K= 5 7
9 × 9

7.5 ≤ 7
9 × υ2

υ1
≤ 7

9 × 12
5

5
7.5 ≤ υ3

υ1
≤ 9

5
7

7.5 ≤ υ4
υ1
≤ 11

5

Table 11.5 Transformation
of multipliers i= 2 i= 3

K= 1 – υ ′3 = ( 5
6 )υ3

K= 2 υ ′2 = ( 1
2 )υ2 υ ′3 = ( 5

16 )υ3

K= 3 υ ′2 = ( 1
2 )υ2 υ ′3 = ( 5

12 )υ3

K= 4 – υ ′3 = ( 5
6 )υ3

K= 5 υ ′2 = ( 7
9 )υ2 –

11.9 Appendix 2: Generating a Single Set of AR Constraints

Given that υ1 is the numeraire against which all other multipliers are compared,
Table 11.3 displays all AR constraints across all output subgroups expressed in the
form ckiL ≤ υi/υ1 ≤ ckiU .

In order to arrive at a single set of constraints for each pair of multipliers, we
assume that Rk=1 is the base subgroup for υi=2 and Rk=5 is the base subgroup for
υi=3 against which all other sets will be compared. Table 11.4 demonstrates the
required adjustments made to the AR constraints.

Next, by making the transformations displayed in Table 11.5, the adjusted AR
constraints are derived as presented in Table 11.6.

Subsequent to adjusting the corresponding input data within each subgroup
MRkand considering

c̄iL = ck1
iL

c̄iU = min{c̄k1
iU , c̄k2

iU , . . . ..},
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Table 11.6 Adjusted AR constraints

i= 2 i= 3 i= 4

K= 1 7
7.5 ≤ υ2

υ1
≤ 10

5
5

7.5 ≤
υ′3
υ1
≤ 9.6

6
7

7.5 ≤ υ4
υ1
≤ 11

5

K= 2 7
7.5 ≤

υ′2
υ1
≤ 19

10
5

7.5 ≤
υ′3
υ1
≤ 21

16
7

7.5 ≤ υ4
υ1
≤ 11

5

K= 3 7
7.5 ≤

υ′2
υ1
≤ 19

10
5

7.5 ≤
υ′3
υ1
≤ 15

12
7

7.5 ≤ υ4
υ1
≤ 11

5

K= 4 7
7.5 ≤ υ2

υ1
≤ 10

5
5

7.5 ≤
υ′3
υ1
≤ 9.6

6
7

7.5 ≤ υ4
υ1
≤ 11

5

K= 5 7
7.5 ≤

υ′2
υ1
≤ 28

15
5

7.5 ≤ υ3
υ1
≤ 9

5
7

7.5 ≤ υ4
υ1
≤ 11

5

Table 11.7 Reduced set of AR constraints

i= 2 i= 3 i= 4
7

7.5 ≤ υ2
υ1
≤ 28

15
5

7.5 ≤ υ3
υ1
≤ 5

4
7

7.5 ≤ υ4
υ1
≤ 11

5

for each subgroup, where Rk1 is the base, all AR constraints corresponding to the
various pairs of multipliers can now be reduced to a single pair of constraints for
each pair of multipliers as displayed in Table 11.7.

11.10 Appendix 3: Tables

Table 11.8 Data on 47 plants-outputs

Outputs

Sheet steel Flat bar Pipes/ cylinders Ducts Structural
steel

Storage tanks

DMU Y1 Y2 Y3 Y4 Y5 Y6

1 70 103 100 – 60 –

2 – 125 90 123 48 133

3 50 110 105 – 170 –

4 80 80 110 – 82 –

5 – – 60 – 100 150

6 40 95 120 – 151 –

7 100 – 200 – 64 –

8 – – 180 – 104 66

9 65 150 125 – 93 –

10 40 110 70 – 79 –

11 70 117 122 – 132 –

12 – – 89 – 80 189

13 88 – 57 – 150 –
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Table 11.8 (continued)

Outputs

Sheet steel Flat bar Pipes/ cylinders Ducts Structural steel Storage tanks

DMU Y1 Y2 Y3 Y4 Y5 Y6

14 48 – 146 – 162 –

15 – – 220 – 111 73

16 99 – 89 – 56 –

17 – – 88 – 41 161

18 – 55 132 129 112 113

19 80 97 142 – 82 –

20 97 – 209 – 106 –

21 – – 55 – 157 130

22 – – 93 – 163 55

23 59 218 – 79 –

24 61 – 58 – 75 –

25 68 – 110 – 48 –

26 – – 86 – 109 69

27 – 65 166 41 183 137

28 – – 228 – 199 71

29 – – 95 – 110 54

30 50 – 77 – 89 –

31 – 138 206 68 102 74

32 36 106 167 – 130 –

33 – 84 98 45 176 69

34 – 62 120 57 58 154

35 24 135 185 – 112 –

36 – – 144 – 196 78

37 58 – 178 – 147 –

38 – 123 206 63 195 57

39 41 110 225 – 53 –

40 – – 188 – 60 127

41 70 – 140 – 150 –

42 – – 55 – 70 191

43 45 – 124 – 139 –

44 63 – 161 – 125 –

45 85 – 81 – 90 –

46 42 78 69 – 82 –

47 25 – 184 – 162 –
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Table 11.9 Data on 47 plants-inputs

Inputs

Labor Shears Presses Torches

DMU X1 X2 X3 X4

1 30 5.0 3.0 15

2 40 4.0 6.5 18

3 35 5.2 4.2 10

4 38 7.0 7.6 9

5 28 9.0 5.5 13

6 37 4.2 3.8 17

7 31 6.0 4.1 11

8 35 5.0 7.0 15

9 25 6.2 4.8 19

10 30 3.0 3.2 21

11 25 4.0 6.0 12

12 45 5.0 3.3 23

13 35 4.1 5.0 25

14 32 5.3 3.5 11

15 26 7.7 4.3 16

16 19 5.3 6.2 12

17 25 8.0 3.0 9

18 32 6.0 2.8 7

19 33 2.8 3.9 13

20 27 3.3 4.3 22

21 25 7.9 5.0 16

22 34 5.0 5.4 20

23 45 4.0 4.1 12

24 24 5.1 3.4 19

25 33 8.6 2.7 10

26 21 9.8 5.5 5

27 25 7.0 3.1 23

28 38 4.5 2.4 10

29 33 3.2 4.6 24

30 27 6.4 3.0 7

31 20 5.8 5.1 18

32 39 8.4 3.8 16
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Table 11.9 (continued)

Inputs

Labor Shears Presses Torches

DMU X1 X2 X3 X4

33 42 6.5 2.4 8

34 44 4.3 3.0 22

35 26 3.7 6.7 20

36 43 7.5 7.1 8

37 35 6.8 4.7 14

38 22 3.9 3.2 25

39 41 6.7 2.5 21

40 21 5.2 4.9 10

41 33 3.5 5.9 7

42 20 4.7 7.2 23

43 39 9.5 5.4 6

44 48 6.7 6.2 18

45 31 3.6 4.7 23

46 28 9.2 2.6 5

47 36 7.6 5.7 10

Table 11.10 αiRk Values resulting from model (11.11)—N1

DMU X1

K=1
X1

K=2
X1

K=3
X2

K=1
X2

K=2
X2

K=3
X3

K=1
X3

K=2
X3

K=3
X4

K=1
X4

K=2
X4

K=3

1 0.70 0.15 0.15 0.15 0.70 0.15 0.61 0.24 0.15 0.15 0.70 0.15

3 0.15 0.16 0.69 0.15 0.23 0.62 0.18 0.15 0.67 0.27 0.58 0.16

4 0.70 0.15 0.15 0.69 0.16 0.15 0.70 0.15 0.15 0.27 0.49 0.24

6 0.15 0.15 0.70 0.15 0.15 0.70 0.61 0.24 0.15 0.34 0.51 0.15

9 0.38 0.47 0.15 0.15 0.70 0.15 0.30 0.55 0.15 0.15 0.70 0.15

10 0.43 0.42 0.15 0.15 0.70 0.15 0.30 0.55 0.15 0.15 0.70 0.15

11 0.64 0.15 0.21 0.15 0.70 0.15 0.40 0.32 0.28 0.38 0.24 0.38

19 0.61 0.15 0.24 0.15 0.70 0.15 0.41 0.31 0.28 0.26 0.23 0.51

32 0.38 0.18 0.44 0.68 0.17 0.15 0.25 0.22 0.53 0.15 0.43 0.42

35 0.15 0.70 0.15 0.26 0.59 0.15 0.63 0.15 0.22 0.15 0.35 0.50

39 0.23 0.15 0.62 0.70 0.15 0.15 0.38 0.45 0.17 0.15 0.15 0.70

46 0.40 0.25 0.34 0.54 0.31 0.15 0.15 0.54 0.31 0.15 0.70 0.15
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Table 11.11 αiRkValues resulting from model (11.11)—N2 (X1, X2)

DMU X1

K=2
X1

K=3
X1

K=4
X1

K=5
X2

K=2
X2

K=3
X2

K=4
X2

K=5

2 0.10 0.10 0.36 0.44 0.20 0.10 0.10 0.60

18 0.10 0.10 0.58 0.22 0.10 0.60 0.10 0.20

27 0.10 0.28 0.10 0.52 0.10 0.10 0.20 0.60

31 0.60 0.20 0.10 0.10 0.60 0.20 0.10 0.10

33 0.10 0.60 0.10 0.20 0.10 0.60 0.10 0.20

34 0.10 0.10 0.20 0.60 0.10 0.10 0.20 0.60

38 0.20 0.60 0.10 0.10 0.20 0.60 0.10 0.10

Table 11.12 αiRkValues resulting from model (11.11)—N2 (X3, X4)

DMU X3

K=2
X3

K=3
X3

K=4
X3

K=5
X4

K=2
X4

K=3
X4

K=4
X4

K=5

2 0.60 0.10 0.10 0.20 0.60 0.10 0.10 0.20

18 0.10 0.60 0.20 0.10 0.44 0.36 0.10 0.10

27 0.10 0.60 0.10 0.20 0.10 0.48 0.10 0.32

31 0.60 0.20 0.10 0.10 0.39 0.41 0.10 0.10

33 0.60 0.20 0.10 0.10 0.27 0.53 0.10 0.10

34 0.38 0.17 0.10 0.34 0.18 0.26 0.10 0.46

38 0.60 0.20 0.10 0.10 0.35 0.45 0.10 0.10

Table 11.13 αiRk Values resulting from model (11.11)—N3

DMU X1

K=3
X1

K=5
X2

K=3
X2

K=5
X3

K=3
X3

K=5
X4

K=3
X4

K=5

5 0.20 0.80 0.20 0.80 0.20 0.80 0.20 0.80

8 0.80 0.20 0.61 0.39 0.20 0.80 0.80 0.20

12 0.20 0.80 0.20 0.80 0.20 0.80 0.20 0.80

15 0.80 0.20 0.34 0.66 0.46 0.54 0.80 0.20

17 0.20 0.80 0.20 0.80 0.20 0.80 0.20 0.80

21 0.80 0.20 0.20 0.80 0.20 0.80 0.20 0.80

22 0.80 0.20 0.56 0.44 0.20 0.80 0.80 0.20

26 0.80 0.20 0.20 0.80 0.20 0.80 0.80 0.20

28 0.80 0.20 0.77 0.23 0.80 0.20 0.80 0.20

29 0.80 0.20 0.20 0.80 0.20 0.80 0.80 0.20

36 0.80 0.20 0.41 0.59 0.20 0.80 0.80 0.20

40 0.80 0.20 0.25 0.75 0.80 0.20 0.63 0.37

42 0.20 0.80 0.20 0.80 0.20 0.80 0.20 0.80
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Table 11.14 αiRk Values resulting from model (11.11)—N4

DMU X1

K=1
X1

K=3
X2

K=1
X2

K=3
X3

K=1
X3

K=3
X4

K=1
X4

K=3

7 0.28 0.72 0.80 0.20 0.80 0.20 0.62 0.38

13 0.21 0.79 0.74 0.26 0.80 0.20 0.80 0.20

14 0.20 0.80 0.80 0.20 0.66 0.34 0.35 0.65

16 0.80 0.20 0.80 0.20 0.80 0.20 0.80 0.20

20 0.25 0.75 0.80 0.20 0.80 0.20 0.30 0.70

23 0.29 0.71 0.20 0.80 0.80 0.20 0.44 0.56

24 0.21 0.79 0.80 0.20 0.80 0.20 0.80 0.20

25 0.32 0.68 0.80 0.20 0.80 0.20 0.68 0.32

30 0.20 0.80 0.80 0.20 0.77 0.23 0.43 0.57

37 0.20 0.80 0.80 0.20 0.48 0.52 0.60 0.40

41 0.20 0.80 0.36 0.64 0.43 0.57 0.80 0.20

43 0.20 0.80 0.80 0.20 0.55 0.45 0.44 0.56

44 0.22 0.78 0.69 0.31 0.68 0.32 0.51 0.49

45 0.21 0.79 0.80 0.20 0.80 0.20 0.80 0.20

47 0.20 0.80 0.80 0.20 0.80 0.20 0.40 0.60
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Table 11.15 WRkj Values resulting from model (11.11)

DMU K = 1 K = 2 K = 3 K = 4 K = 5 
1 0.44408 0.39907 0.15685
3 0.16682 0.29690 0.53628
4 0.54295 0.26620 0.19085
6 0.22609 0.29794 0.47598
9 0.22350 0.62558 0.15092

10 0.26127 0.58762 0.15111
N1 11 0.37901 0.34571 0.27528

19 0.37866 0.28895 0.33240
32 0.28143 0.29423 0.42434
35 0.18438 0.54183 0.27379
39 0.24116 0.19268 0.56616
46 0.30087 0.42795 0.27118
2 0.38390 0.10349 0.19334 0.31928

18 0.18928 0.31701 0.33098 0.16272
27 0.11320 0.38099 0.10099 0.40482

N2 31 0.59282 0.25192 0.07614 0.07911
33 0.20369 0.55359 0.08866 0.15406
34 0.17234 0.16286 0.14964 0.51516
38 0.33544 0.49652 0.08301 0.08502
5 0.23014 0.76986
8 0.75205 0.24795

12 0.22075 0.77925
15 0.72507 0.27493
17 0.22210 0.77790
21 0.46861 0.53139

N3 22 0.75620 0.24380
26 0.62227 0.37773
28 0.81509 0.18491
29 0.69303 0.30697
36 0.72576 0.27424
40 0.65048 0.34952
42 0.22915 0.77085
7 0.48752 0.51248

13 0.49139 0.50861
14 0.33427 0.66573
16 0.76776 0.23224
20 0.36724 0.63276
23 0.33658 0.66342
24 0.52081 0.47919

N4 25 0.50691 0.49309
30 0.36657 0.63343
37 0.40675 0.59325
41 0.34990 0.65010
43 0.33357 0.66643
44 0.39367 0.60633
45 0.50200 0.49800
47 0.35032 0.64968
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Table 11.16 Subunit scores and overall efficiency scores

DMU K=1 K=2 K=3 K=4 K=5 Overall Score

1 0.64383 0.48974 0.96625 0.63291

2 0.49777 1.00000 0.72677 0.43337 0.57346

3 1.00000 0.83433 0.57926 0.72518

4 0.48579 0.58032 0.76521 0.56428

5 0.77758 0.24349 0.36640

6 0.55676 0.71150 0.64337 0.64409

7 0.82027 0.74042 0.77935

8 0.36178 0.31186 0.34940

9 0.91587 0.37769 1.00000 0.59189

10 0.50165 0.37760 1.00000 0.50406

11 0.63563 0.66075 1.00000 0.74462

12 0.59878 0.23637 0.31637

13 0.49416 0.63887 0.56776

14 0.57289 0.65031 0.62443

15 0.46475 0.32369 0.42597

16 0.55495 0.64928 0.57686

17 0.68029 0.32672 0.40525

18 0.83048 0.68179 0.70051 1.00000 0.76791

19 0.71655 0.67867 0.79608 0.73204

20 0.95713 0.60450 0.73400

21 0.78876 0.29359 0.52563

22 0.42537 0.24189 0.38064

23 0.53971 0.49664 0.51114

24 0.43947 0.43417 0.43693

25 0.50334 0.41704 0.46079

26 0.53215 0.30466 0.44622

27 1.00000 0.96923 0.48817 0.38550 0.68783

28 0.53566 0.51068 0.53104

29 0.35708 0.22141 0.31544

30 0.66471 0.45856 0.53413

31 0.42683 1.00000 1.00000 1.00000 0.66021

32 0.35574 0.65883 0.55675 0.53021

33 0.81774 0.65852 0.71355 0.54007 0.67758

34 0.59935 0.94789 0.43319 0.30634 0.48030
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Table 11.16 (continued)

DMU K=1 K=2 K=3 K=4 K=5 Overall Score

35 0.39096 0.55704 0.97542 0.64097

36 0.55920 0.32494 0.49495

37 0.48443 0.51519 0.50268

38 0.72317 0.84442 0.92137 0.78049 0.80470

39 0.48497 0.89472 0.59068 0.62377

40 0.50195 0.64758 0.55285

41 0.83899 0.52029 0.63181

42 0.55009 0.30872 0.36403

43 0.48226 0.46341 0.46970

44 0.42130 0.34355 0.37416

45 0.52384 0.44516 0.48466

46 0.62222 0.42030 0.73324 0.56591

47 0.24297 0.61788 0.48654

Table 11.17 Comparison of the proposed model with the conventional DEA model

DMU Conventional
DEA

Proposed model AR-conventional
DEA

AR-proposed
Model

1 1.00000 0.96259 0.85841 0.63291

2 1.00000 0.87506 0.99184 0.57346

3 1.00000 0.52688 1.00000 0.72518

4 1.00000 0.85181 0.83462 0.56428

5 0.94100 0.32943 0.92577 0.36640

6 0.93144 0.89230 0.77672 0.64409

7 1.00000 0.97524 1.00000 0.77935

8 0.74458 0.45133 0.68388 0.34940

9 1.00000 0.83791 1.00000 0.59189

10 1.00000 0.85270 0.74586 0.50406

11 1.00000 0.94815 1.00000 0.74462

12 1.00000 0.58070 0.78612 0.31637

13 0.96264 0.49230 0.82657 0.56776

14 1.00000 0.72042 0.97245 0.62443

15 0.99860 0.52936 0.92594 0.42597

16 1.00000 0.59822 1.00000 0.57686

17 1.00000 0.46034 1.00000 0.40525
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Table 11.17 (continued)

DMU Conventional
DEA

Proposed model AR-conventional
DEA

AR-proposed
Model

18 1.00000 1.00000 1.00000 0.76791

19 1.00000 1.00000 0.98835 0.73204

20 1.00000 0.64903 1.00000 0.73400

21 1.00000 0.49218 1.00000 0.52563

22 0.71282 0.41578 0.69469 0.38064

23 1.00000 0.94055 0.86776 0.51114

24 0.81586 0.32452 0.66143 0.43693

25 1.00000 0.49337 0.66097 0.46079

26 1.00000 0.52563 0.95684 0.44622

27 1.00000 0.64045 1.00000 0.68783

28 1.00000 0.60527 1.00000 0.53104

29 0.80628 0.40414 0.51204 0.31544

30 0.96842 0.75725 0.75228 0.53413

31 1.00000 0.77224 1.00000 0.66021

32 0.91397 0.78357 0.75751 0.53021

33 1.00000 0.64628 1.00000 0.67758

34 1.00000 0.60739 0.82704 0.48030

35 1.00000 0.58479 0.91254 0.64097

36 1.00000 0.63989 0.91299 0.49495

37 0.89794 0.57327 0.85628 0.50268

38 1.00000 0.92342 1.00000 0.80470

39 1.00000 1.00000 0.81284 0.62377

40 1.00000 0.85580 1.00000 0.55285

41 1.00000 0.88574 1.00000 0.63181

42 1.00000 0.40143 1.00000 0.36403

43 1.00000 0.47160 0.76886 0.46970

44 0.62889 0.44469 0.60419 0.37416

45 0.79867 0.40053 0.74383 0.48466

46 1.00000 0.74946 0.81605 0.56591

47 0.90160 0.39063 0.83234 0.48654
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Chapter 12
Efficiency Measurement in Data Envelopment
Analysis with Fuzzy Data

Chiang Kao

Abstract Conventional data envelopment analysis (DEA) requires the data to have
crisp values, which can be measured precisely. However, there are cases where data
is missing and has to be estimated, or the situation has not occurred yet and the
data has to be predicted. There are also cases where the factors are qualitative, and
thus the data cannot be measured precisely. In these cases, fuzzy numbers can be
used to represent the imprecise values, and this paper discusses the corresponding
measurement of efficiency. Based on the extension principle, two approaches are
proposed; one views the membership function of the fuzzy data vertically, and the
results are represented by membership grades. The other views it horizontally, and
the results are represented by α-cuts. The former approach is easier to understand,
yet is applicable only to very simple problems. The latter, in contrast, can be applied
to all problems, and is easier to implement. An example explains the development
and implementation of these two approaches.

Keywords Data envelopment analysis · Fuzzy data · Two-level programming ·
Extension principle

12.1 Introduction

Data envelopment analysis (DEA), developed by Charnes et al. (1978), is a technique
for measuring the relative efficiency of a set of decision making units (DMUs) that
use multiple inputs to produce multiple outputs. Due to its solid theoretical founda-
tion and persuasive measurement approach, it has been widely applied to evaluate
efficiency for real world cases (see, for example, the survey of Cook and Seiford
2009).

With DEA; the efficiency measures are very sensitive to the data. If there is
an outlier, then the efficiency measures of most DMUs will change drastically.

C. Kao (�)
Department of Industrial and Information Management,
National Cheng Kung University Tainan, Taiwan
e-mail: ckao@mail.ncku.edu.tw

© Springer Science+Business Media New York 2015 341
J. Zhu (ed.), Data Envelopment Analysis, International Series in Operations
Research & Management Science 221, DOI 10.1007/978-1-4899-7553-9_12



342 C. Kao

Therefore, a key to the success of the DEA approach is the accurate measurement of
the data. However, in addition to outliers, there are many cases where the data can-
not be measured precisely. For example, in measuring the volume of a tree, different
persons will get different measures due to the irregular shape of the tree. In other
words, there are measurement errors. Even if the data can be collected correctly and
precisely, there are still factors which limit precise measurements. For example, the
data is missing and has to be estimated (Kao and Liu 2000), or a situation has not
occurred yet, and the data has to be predicted (Kao and Liu 2004). In addition, if
the input/output factors are qualitative, which are described by linguistic terms, such
as strongly satisfactory, satisfactory, and unsatisfactory, then precise measurement
is almost impossible (Kao and Lin 2011). This property of impreciseness makes
conventional DEA models intractable.

Bellman and Zadeh (1970) introduced the notion of fuzziness to deal quantita-
tively with imprecision in the decision process, and several DEA models have been
developed based on this to handle fuzzy data (Dia 2004; Guo 2009; Jahanshahloo
et al. 2004; Kao and Liu 2000a; Leon et al. 2003; Lertworasirkul et al. 2003; Wen
and Li 2009). When data is imprecise, it is expected that the measured efficiency will
also be imprecise. Unfortunately, most of the above-mentioned studies only provide
crisp measures. Although a lot of effort has been devoted to studying DEA under
fuzzy environments, it remains less well developed than its deterministic counterpart.

In this paper we will develop two approaches to measure efficiency when the
data is fuzzy, based on the extension principle of Zadeh (1978). The measured
efficiency is a fuzzy number, and is thus more informative than crisp values for
making decisions. In the following, we will first use an example to introduce the
concept of efficiency measurement graphically when the data is fuzzy. Then, in
Sects 12.3 and 12.4, we will develop two approaches, using an example extended
from the graphical one discussed in Sect. 12.2. Finally, some discussions are made
and conclusions are drawn in Sect. 12.5.

12.2 The Problem

Let Xij , i= 1,. . ., m, and Yrj , r= 1,. . ., s, denote the ith input and rth output,
respectively, of DMU j, j= 1,. . ., n. The output-oriented model for measuring the
efficiency of DMU k, under the assumption of variable returns to scale, can be
formulated as (Banker et al. 1984):

Ek = max.
s∑

r=1

urYrk

s.t. v0 +
m∑

i=1

viXik = 1

s∑

r=1

urYrj −
(

v0 +
m∑

i=1

viXij

)
≤ 0, j = 1, . . . , n

ur , vi ≥ ε, r = 1, . . ., s, i = 1, . . .,m

v0 unrestricted in sign,

(12.1)
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where ε is a small non-Archimedean number imposed to avoid ignorance of any
factor in calculating efficiency (Charnes and Cooper 1984).

Suppose the inputs Xij and outputs Yrj are approximately known, and can be
represented by fuzzy numbers X̃ij and Ỹrj , characterized by membership functions
μX̃ij and μỸrj , respectively. The membership function has a range of [0, 1], where
larger values indicate a higher possibility of occurrence. A common fuzzy number
is trapezoidal, denoted as X̃= (a, b, c, d), whose membership function is:

μX̃(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x − a)/(b − a), a ≤ x ≤ b
1, b ≤ x ≤ c
(d − x)/(d − c), c ≤ x ≤ d

. (12.2)

For very simple problems, the membership function of the fuzzy efficiency of a
DMU, when there are fuzzy observations, can be derived analytically.

Consider four DMUs, labeled as A, B, C, and D in Fig. 12.1, where 10, 20, 30,
and 50 units of input X are applied to produce 5, (6, 7, 8, 9), 9, and 15 units of
output Y, respectively. Here only one observation, ỸB = (6, 7, 8, 9), is fuzzy, whose
membership function is:

μỸB (y) =

⎧
⎪⎪⎨

⎪⎪⎩

y − 6, 6 ≤ y ≤ 7

1, 7 ≤ y ≤ 8

9 − y, 8 ≤ y ≤ 9

. (12.3)

For y in the range of [6, 7.5], the production frontier constructed from these four
DMUs is the line segment connecting A and D. As the value of y increases from 7.5
to the upper bound 9, the frontier becomes a kinked line segment AyD. No matter
what value y is, DMUs A and D always lie on the frontier, and therefore are efficient,
with EA= ED = 1. The efficiencies of B and C, on the other hand, change with the
value of y, and are fuzzy numbers.

The efficiency of DMU B is y/7.5 for y less than or equal to 7.5. Since y has a
membership grade of (y− 6) in the range of [6, 7], (y− 6) will also be the membership
grade for the corresponding efficiency score of e= y/7.5, and it has a range of [6/7.5,
7/7.5]. Expressing the membership grade of (y− 6) by e= y/7.5, or y= 7.5e, one
has (7.5e− 6). Similarly, y has a membership grade of 1 in the range of [7, 7.5],
the efficiency score of y/7.5 (with a range of [7/7.5, 1]) thus also has a membership
grade of 1. For y in the range of [7.5, 9], it lies on the frontier and becomes efficient.
Since the membership grade for y in this range has different values, and the largest
is 1, the membership grade for an efficiency score of 1 is 1. Combining these results
together, the membership function of the fuzzy efficiency of DMU B is:

μẼB (e) =
⎧
⎨

⎩
7.5e − 6, 6/7.5 ≤ e ≤ 7/7.5

1, 7/7.5 ≤ e ≤ 1
(12.4)
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Fig. 12.1 Production frontier and efficiency measurement of the example

Figure 12.2 shows this membership function, labeled as ẼB .
For DMU C, its efficiency is e= 9/10 for y in the range of [6, 7.5], since the

frontier in this case is the line segment AD. The largest membership grade for y in
this range is 1; therefore, e= 9/10 has a membership grade of 1. For y in the range of
[7.5, 9], the target point of DMU C on the frontier is y+ (30− 20)(15−y)/(50−20),
or (15+ 2y)/3, which results in an efficiency score of e= 27/(15+ 2y). According to
Eq. (12.3), the membership grades for y in the ranges of [7.5, 8] and [8, 9] are 1 and
9− y, respectively. Therefore, the corresponding e= 27/(15+ 2y) has the same mem-
bership grades in the ranges of [27/31, 9/10] and [9/11, 27/31], respectively. Taking
the inverse function of e= 27/(15+ 2y), one obtains y= (27− 15e)/2e. The mem-
bership grade of 9− y can thus be expressed as 9− (27− 15e)/2e, or (33e− 27)/2e.
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Fig. 12.2 Membership functions of ẼB and ẼC

Altogether, the membership function of ẼC is:

μẼC (e) =
⎧
⎨

⎩
(33e − 27)/2e, 9/11 ≤ e ≤ 27/31

1, 27/31 ≤ e ≤ 9/10
(12.5)

Figure 12.2 shows this membership function, labeled as ẼC .
This example shows that when observations are fuzzy numbers, the efficiencies

are also fuzzy numbers, and the membership function of the latter can be derived
analytically from the former. Notably, although only one DMU has a fuzzy observa-
tion (DMU B in this case), other DMUs (DMU C in this case) can also have fuzzy
efficiency. Obviously, the analytical derivation is possible only for very simple cases.
When more observations are fuzzy numbers, or when more DMUs are involved, one
must rely on numerical approaches.

For simplicity of notation, suppose all observations in Model (12.1) are fuzzy
numbers. Denote the fuzzy efficiency of DMU k as Ẽk . Based on Zadeh’s extension
principle (Yager 1986; Zadeh 1978; Zimmermann 1996), the membership function
for Ẽk can be obtained via the following equation:

μẼk (e) = supx,y min{μX̃ij (xij ), μỸrj (yrj ), ∀i, j , r|e = Ek(x, y)} (12.6)

where μX̃ij and μỸrj are the membership functions of X̃ij and Ỹrj , respectively, and
Ek(x, y) is defined in Model (12.1). The right-hand side of Eq. (12.6) is a two-
level programming problem. At the second level (the inner program), one seeks the
minimum membership grade for each set of xij and yrj values which generates an
efficiency score of e. At the first level (the outer program), one finds the largest
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membership grade from those obtained from the second level program for all sets
of xij and yrj values. To find the membership function μẼk , it suffices to solve the
two-level program. In the following two sections, we will develop two approaches
to solve the two-level program.

12.3 The Membership Grade Approach

Equation (12.6) shows the relationship between the membership function of Ẽk and
those of X̃ij and Ỹrj . While its mathematical meaning is clear, it is not solvable in the
two-level form, and must be transformed into the conventional one-level program
for a solution.

Let h=min {μX̃ij (xij ),μỸrj (yrj ), ∀i, j, r|e = Ek(x, y)}, Eq. (12.6) can then be
expressed as μẼk (e) = maxx,y h. Since h is the minimum of those items inside the
brace of Eq. (12.6), it must satisfy the following conditions:

h ≤ μX̃ij (xij ), i = 1, . . .,m, j = 1, . . ., n

h ≤ μỸrj (yrj ), r = 1, . . ., s, j = 1, . . ., n
(12.7)

and the xij and yrj values used to calculate μX̃ij (xij ) and μỸrj (yrj ) in (12.7) must be
able to generate an efficiency score of e via Model (12.1). Altogether, Eq. (12.6) can
be converted to the following mathematical program:

μẼk (e) = max h

s.t. h ≤ μX̃ij (xij ), i = 1, . . .,m, j = 1, . . ., n

h ≤ μỸrj (yrj ), r = 1, . . ., s, j = 1, . . ., n

e = {max.
s∑

r=1

urYrk

s.t. v0 +
m∑

i=1

viXik = 1.

s∑

r=1

urYrj − (v0 +
m∑

i=1

viXij ) ≤ 0, j = 1, . . . ,n

ur , vi ≥ ε, r = 1, . . ., s, i = 1, . . .,m

v0 unrestricted in sign}

(12.8)

This is a special two-level program, where the second-level program is a constraint
that must be transformed into a conventional one to be solvable, as shown in the
following example.
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Consider the example discussed in the preceding section. In addition to ỸB , sup-
pose the input of DMU D is also a fuzzy number. Let it be a triangular fuzzy number
of X̃D = (46, 48, 50), whose membership function is:

μX̃D (x) =
⎧
⎨

⎩
(x − 46)/2, 46 ≤ x ≤ 48

(50 − x)/2, 48 ≤ x ≤ 50
. (12.9)

Referring to Fig. 12.1, it is interesting to note that no matter what the value of x is,
DMU D always lies on the frontier, and thus has a crisp efficiency of 1. In other
words, a DMU with fuzzy observations can have crisp efficiency score. DMU A also
has a crisp efficiency of 1, and only B and C have fuzzy efficiencies. We will use
DMU C to explain the generation of the membership function of its fuzzy efficiency.

By connecting DMU A with a value x in the domain of X̃D , the point intersecting
with the domain of ỸB is 5+10(15−5)/(x− 10), or (5x+ 50)/(x− 10). If y, in the
range of [6, 9], is greater than that value, then the frontier is the kinked line segment
Ayx; otherwise, it is the line segment Ax. In the former case, the target point of DMU C
on the frontier is y+ 10(15− y)/(x− 20), or (xy− 30y+ 150)/(x− 20), which results
in an efficiency score of 9/[(xy− 30y+ 150)/(x− 20)], or (9x− 180)/(xy−30y+ 150)
for DMU C. Its smallest and largest values are 39/49, occurring at x= 46 and
y= 9, and 0.9, occurring at x= 50 and y ≤ 7.5, respectively. The constraint that
the calculated efficiency must be equal to e in Model (12.8) can thus be expressed
as e= (9x− 180)/(xy− 30y+ 150). In the latter case, the target point on the frontier
is 5+ 20(15− 5)/(x− 10), or (5x+ 150)/(x− 10), which results in an efficiency
score of (9x− 90)/(5x+ 150) for DMU C. In this case, the constraint becomes
e= (9x− 90)/(5x+ 150).

Regarding the constraints of h ≤ μX̃ij (xij ) and h ≤ μỸrj (yrj ) in Model (12.8),
consider the trapezoidal fuzzy number defined in (12.2). One of the following three
situations must hold:

a. if a ≤ x ≤ b, then h ≤ μX̃(x) = (x − a)/(b − a)
b. if b ≤ x ≤ c, then h ≤ μX̃(x) = 1
c. if c ≤ x ≤ d, then h ≤ μX̃(x) = (d − x)/(d − c).

To describe this set of either-or constraints, three binary variables δ1, δ2, and δ3 are
introduced. The formulation is:

a. a ≤ x+M δ1, x ≤ b+M δ1, h ≤ (x− a)/(b− a)+M δ1

b. b ≤ x+M δ2, x ≤ c+M δ2, h ≤ 1+M δ2

c. c ≤ x+M δ3, x ≤ d +M δ3, h ≤ (d − x)/(d − c)+M δ3,

where M is a very large number. When δi is equal to 1, the associated constraints
are redundant, and they are active when δi is equal to 0. Therefore, a constraint
of δ1 + δ2 + δ3 = 2 ensures that only one of the three situations holds. Triangular
membership functions can be handled similarly.
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Table 12.1 Membership grades of μẼC (e) at 21 values of e

E μẼC (e) e μẼC (e) e μẼC (e)

0.800 0.0727 0.835 0.6592 0.870 1.0000

0.805 0.1604 0.840 0.7380 0.875 1.0000

0.810 0.2467 0.845 0.8158 0.880 0.8696

0.815 0.3317 0.850 0.8924 0.885 0.6557

0.820 0.4155 0.855 0.9679 0.890 0.4396

0.825 0.4979 0.860 1.0000 0.895 0.2210

0.830 0.5791 0.865 1.0000 0.900 0.0000

With these representations and transformations, Model (12.8) for calculating the
membership grade of the fuzzy efficiency of DMU C is formulated as:

μẼC (e) = max h

s.t. 6 ≤ y + 1000δ1, y ≤ 7 + 1000δ1, h ≤ (y − 6) + 1000δ1

7 ≤ y + 1000δ2, y ≤ 8 + 1000δ2, h ≤ 1 + 1000δ2

8 ≤ y + 1000δ3, y ≤ 9 + 1000δ3, h ≤ (9 − y) + 1000δ3

46 ≤ x + 1000δ4, x ≤ 48 + 1000δ4, h ≤ (x − 46)/2 + 1000δ4

48 ≤ x + 1000(1−δ4), x≤50+1000δ4, h≤ (50 − x)/2 + 1000(1 − δ4)

e = (9x − 180)/(xy − 30y + 150)

6 ≤ y, y ≤ 9, 46 ≤ x, x ≤ 50

δ1 + δ2 + δ3 = 2, δi ∈ {0,1}, i = 1, . . . ,4, (12.10)

where the large number M has been replaced with 1000. Note that the
above model is for cases of y ≥ (5x+ 50)/(x− 10). If y ≤ (5x+ 50)/(x− 10),
then e= (9x− 180)/(xy− 30y+ 150) in the above model must be replaced by
e= (9x− 90)/(5x+ 150).

By enumerating various values of e, the membership function of μẼC can be
obtained numerically. Table 12.1 shows the membership grade for 21 values of e,
from 0.8 to 0.9.They are also depicted in Fig. 12.3, with solid circles, to show the
shape of μẼC . Note that for e greater than 81/95, or 0.8526, the constraint for e in
Model (12.10) is replaced with e= (9x− 90)/(5x+ 150) to calculate the membership
grade of μẼC . If a finer graph is desired, then one simply enumerates more e values
to get more membership grades.

The key point of this approach is in expressing the efficiency score as a function
of xij and yrj in closed form. This is a very difficult task, even for the very simple
problem in the example. Moreover, the resulting model is nonlinear, which is rela-
tively difficult to solve. Therefore, it is not a practical method for solving real world
problems.
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Fig. 12.3 Membership function of ẼC constructed from two approaches

12.4 The α-cut Approach

The membership grade views the membership function vertically. The membership
function can also be viewed horizontally from the α-cut, which is defined as (X)α =
{x |μX̃(x) ≥ α}. Denote (X)Lα =min.{x |μX̃(x) ≥ α} and (X)Uα =max.{x |μX̃(x) ≥
α}, then (X)α = {x | (X)Lα ≤ x ≤ (X)Uα }. If the α-cuts at all α values are known, then
the membership function can be constructed.

According to Eq. (12.6), μẼk (e) is the minimum of μX̃ij (xij ) and μỸrj (yrj ),∀i, j, r. To satisfy μẼk (e)= α, one needs μX̃ij (xij ) ≥ α, μỸrj (yrj ) ≥ α, ∀i, j, r,
and at least one of them is equal to α, and these xij and yrj must generate an ef-
ficiency score of e= Ek(x, y). Since μX̃ij (xij ) ≥ α and μX̃ij (xij )= α have the
same domain (this also applies to μỸrj (yrj )), one only needs to check the α-cuts of

μX̃ij (xij ) and μỸrj (yrj ). Denote (Xij )α = [(Xij )Lα , (Xij )Uα ], (Yrj )α = [(Yrj )Lα , (Yrj )Uα ],

and (Ek)α = [(Ek)Lα , (Ek)Uα ] as the α-cuts of μX̃ij (xij ), μỸrj (yrj ), and μẼk (e), respec-

tively. To find the lower bound of the α-cut of μẼk (e), (Ek)Lα , it suffices to find the
smallest efficiency score for DMU k generated from the xij and yrj values in their
respective α-cuts. Equation (12.6) indicates that this efficiency score has a member-
ship grade of α. By the same token, the upper bound (Ek)Uα can be found by searching
for the maximum efficiency score. In symbols, (Ek)Lα and (Ek)Uα can be obtained via



350 C. Kao

the following models:

(Ek)
L
α = min

(Xij )Lα≤xij≤(Xij )Uα
(Yrj )Lα≤yrj≤(Yrj )Uα∀i,j ,r

Ek (x, y) (12.11a)

(Ek)
U
α = max

(Xij )Lα≤xij≤(Xij )Uα
(Yrj )Lα≤yrj≤(Yrj )Uα∀i,j ,r

Ek (x, y) (12.11b)

or in full form:

(Ek)
L
α = min

(Xij )Lα≤xij≤(Xij )Uα
(Yrj )Lα≤yrj≤(Yrj )Uα∀i,j ,r

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ek = max.
∑s
r=1 uryrk

s.t. v0 +∑m
i=1 vixik = 1

∑s
r=1 uryrj − (v0 +∑m

i=1 vixij ) ≤ 0, j = 1, ..., n

ur , vi ≥ 0, r = 1, ..., s, i = 1, ...,m

v0 unrestricted in sign

(12.12a)

(Ek)
U
α = max

(Xij )Lα≤xij≤(Xij )Uα
(Yrj )Lα≤yrj≤(Yrj )Uα∀i,j ,r

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ek = max.
∑s
r=1 uryrk

s.t. v0 +∑m
i=1 vixik = 1

∑s
r=1 uryrj − (v0 +∑m

i=1 vixij ) ≤ 0, j = 1, ..., n

ur , vi ≥ 0, r = 1, ..., s, i = 1, ...,m

v0 unrestricted in sign

(12.12b)

These two models are two-level programs, and must be transformed into the
conventional one-level ones in order to be solved.

The meaning of Model (12.12a) is that for each set of xij and yrj values given at
the first level, the second-level program calculates the corresponding efficiency, and
the first-level program determines the set of xij and yrj values which produce the
smallest efficiency score. Based on the concept of relative comparison, the smallest
efficiency occurs at the least favorable condition of DMU k, which is it uses the
largest amount of input (Xik)Uα to produce the smallest amount of output (Yrk)Lα ,
while other DMUs use the smallest amount of input (Xij )Lα to produce the largest
amount of output (Yrj )Uα . Similarly, DMU k needs the most favorable condition to
obtain the largest efficiency score, which is it uses the smallest amount of input
(Xik)Lα to produce the largest amount of output (Yrk)Uα , while other DMUs use the
largest amount of input (Xij )Uα to produce the smallest amount of output (Yrj )Lα .
Models (12.12a) and (12.12b) can thus be transformed into the following one-level
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programs:

(Ek)
L
α = max.

s∑

r=1

ur (Yrk)
L
α

s.t. v0 +
m∑

i=1

vi(Xik)
U
α = 1

s∑

r=1

ur (Yrk)
L
α − (v0 +

m∑

i=1

vi(Xik)
U
α ) ≤ 0

s∑

r=1

ur (Yrj )
U
α − (v0 +

m∑

i=1

vi(Xij )
L
α ) ≤ 0, j = 1, . . ., n, j 
= k

ur , vi ≥ ε, r = 1, . . . , s, i = 1, . . .,m

v0 unrestricted in sign,

(12.13a)

(Ek)
U
α = max.

s∑

r=1

ur (Yrk)
U
α

s.t. v0 +
m∑

i=1

vi(Xik)
L
α = 1

s∑

r=1

ur (Yrk)
U
α − (v0 +

m∑

i=1

vi(Xik)
L
α ) ≤ 0

s∑

r=1

ur (Yrj )
L
α − (v0 +

m∑

i=1

vi(Xij )
U
α ) ≤ 0, j = 1, . . ., n, j 
= k

ur , vi ≥ ε, r = 1, . . . , s, i = 1, . . .,m

v0 unrestricted in sign.

(12.13b)

By enumerating various values of α, the membership function μẼk (e) is constructed.

For the example discussed in the preceding section, the α-cuts for ỸB = (6, 7, 8, 9)
and X̃D = (46, 48, 50) are [6+ α, 9− α] and [46+ 2α, 50− 2α], respectively. Ac-
cording to Models (12.13a) and (12.13b), the programs for calculating the lower and
upper bounds of the α-cut of μẼk are:

(Ec)
L
α = max. 9u

s.t. v0 + 30v1 = 1

5u − v0 − 10v1 ≤ 0

(9 − α)u − v0 − 20v1 ≤ 0

9u − v0 − 30v1 ≤ 0

15u − v0 − (46 + 2α)v1 ≤ 0

u, v1 ≥ ε

v0 unrestricted in sign

(12.14a)
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Table 12.2 The α-cuts of μẼC (e) at eleven α values

α (EC )Lα (EC )Uα α (EC )Lα (EC )Uα

0.0 0.7959 0.9000 0.6 0.8313 0.8863

0.1 0.8016 0.8977 0.7 0.8376 0.8840

0.2 0.8073 0.8955 0.8 0.8440 0.8816

0.3 0.8131 0.8932 0.9 0.8505 0.8793

0.4 0.8191 0.8909 1.0 0.8571 0.8769

0.5 0.8251 0.8886

(Ec)
U
α = max. 9u

s.t. v0 + 30v1 = 1

5u − v0 − 10v1 ≤ 0

(6 + α)u − v0 − 20v1 ≤ 0

9u − v0 − 30v1 ≤ 0

15u − v0 − (50 − 2α)v1 ≤ 0

u, v1 ≥ ε

v0 unrestricted in sign.

(12.14b)

Table 12.2 shows the α-cuts at α= 0, 0.1,. . ., 1.0. They are also depicted on Fig. 12.3
by hollow circles. Visually, the two types of circles in Fig. 12.3 show that the mem-
bership function μẼC constructed from the two approaches, membership grade and
α-cut, is the same.

12.5 Discussion and Conclusion

In the real world, there are many cases where the data is imprecise, and can be
expressed by fuzzy numbers. This paper shows that the measured efficiencies will
be fuzzy numbers when the data is fuzzy by using a simple example. Based on
the extension principle, this paper develops two approaches, membership grade and
α-cut, to find the fuzzy efficiency of a DMU.

The membership grade approach calculates the membership grade for values in
the domain of fuzzy efficiency. By aggregating various membership grades, the mem-
bership function is constructed. Supposing every fuzzy observation has a trapezoidal
membership function, this approach needs ten constraints and three binary variables
to express the membership function. For a problem of t fuzzy observations, there
will be 10t more constraints and 3t more binary variables in the associated model.
Since the model is a nonlinear integer program, it is relatively difficult to solve. Most
disappointingly, this approach is limited to very small problems where the efficiency
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of the DMU being measured can be expressed as a function of the observations. A
direction for future research is thus to develop a better transformation method, which
is applicable to all problems.

In contrast to the membership grade approach, the α-cut approach is able to
transform the two-level program into a linear one-level program for all problems.
Moreover, the associated models of this approach are the conventional DEA ones.
No extra constraints, nor extra variables, are needed in the transformation, which
makes the solution process very easy. Therefore, it is a better approach to use.

This approach has another merit; that is, it is easy to rank the fuzzy numbers.
When several fuzzy numbers are to be ranked, a very effective method is the one
proposed by Chen and Klein (1997), which requires only three or four α-cuts of
those fuzzy numbers. Since the results of the α-cut approach are α-cuts of the fuzzy
efficiency, no further work is needed for ranking.

To make the model tractable, imprecise data in DEA studies is normally rep-
resented by the most likely values. The results, which should be imprecise, thus
become precise, and this can make decision makers over-confident. With the fuzzy
measures calculated from the models developed in this paper, the decision maker is
better informed and can make better decisions.

Finally, production systems in many cases are composed of several processes
interrelated with each other. That is, one faces a network system. If the operations
of the component processes are not taken into account when measuring efficiency,
then this produces misleading results, and many studies have examined this topic
(see, for example, the review of Castelli 2010). However, there are few papers that
discuss the case of fuzzy data, for example, the two-stage system of Kao and Liu
(2011) and the parallel system of Kao and Lin (2012). Within the context of fuzzy
data, network systems thus have ample room for exploration in future work.
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Chapter 13
Partial Input to Output Impacts in DEA:
Production Considerations and Resource
Sharing Among Business Sub-Units

Raha Imanirad, Wade D. Cook and Joe Zhu

Abstract Data envelopment analysis (DEA) is a methodology for evaluating the
relative efficiencies of peer decision-making units (DMUs), in a multiple input/output
setting. While it is generally assumed that all outputs are impacted by all inputs,
there are many situations where this may not be the case. For example, in a food
manufacturing setting, certain foods are exempt from nutrition labeling and as a result
are not influenced by labeling resources. This chapter extends the conventional DEA
methodology to allow for the measurement of technical efficiency in situations where
only partial input-to-output impacts exist. The new methodology involves viewing
the DMU as a business unit, consisting of a set of mutually exclusive subunits, each
of which can be treated in the conventional DEA sense.

Keywords DEA · Partial impacts · Business sub units

13.1 Introduction

Data Envelopment Analysis (DEA), first introduced by Charnes et al. (1978), has
gained widespread appeal as a tool for evaluating the relative efficiency of decision
making units (DMUs) in various settings. The conventional DEA model is based
on the implicit, if not explicit assumption that in a multiple input, multiple output
environment, all inputs impact all outputs. Possibly a more accurate statement is that
often the internal workings of the DMU are unknown to the analyst, or are at a level
of complexity that prohibits a more precise portrayal of performance than that given
by the basic model. However, in many situations the internal processes that define
the DMU are more clearly understood, and the assumption of all inputs impacting
all outputs should be abandoned. For example, in a hospital setting with multiple
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types of staff and activities, not all activities are influenced by all staff. Clinical staff
members, for example, do not impact many operational outputs, hence, evaluating
those outputs in terms of those particular staff inputs results in distorted efficiency
measures. We elaborate on this distortion later in the chapter.

Such partial impacts are often a reflection of the fact that in some environments
a DMU is actually a ‘business unit’ (e.g. a manufacturing facility), consisting of
several subunits, where the activity in terms of the products made and resources
consumed, differs from one subunit to another. Such a view brings to light a number
of important issues. Perhaps the most pertinent issue for management at the outset is
how to clearly define what should be considered as separate subunits. What outputs
and inputs, and in what amounts define a subunit of the overall business? With such a
definition in place, management can then move on to address the problem of resource
sharing among the identified subunits; this activity will almost certainly be driven
by the efficiencies of the various subunits in relation to the overall efficiency of the
DMU/business. This need then gives rise to how one should go about measuring
efficiency in such a setting.

In this chapter we examine the problem of evaluating efficiency in the presence
of such partial input- to-output interactions within the context of a set of steel fab-
rication plants. Section 13.2 describes this problem setting. A general methodology
is presented in Sect. 13.3 based on the idea that a DMU can be viewed as a business
unit comprised of separate subunits, and that efficiency of the DMU can be defined
as a weighted average of the efficiencies of the subunits. The methodology revolves
around the idea that resources/inputs can be partitioned or separated, and thereby
allocated to the defined subunits. We point out that some of the preliminary ideas
behind the discussion in Sects. 13.2 and 13.3 were first presented in a working paper
by Cook and Imanirad (2010). In Sect. 13.4, we further investigate the phenomenon
of partial impacts of inputs on outputs in situations where assurance region (AR)
constraints are imposed at the level of the subunit. We specifically address the issue
where multiple, often inconsistent AR constraints are imposed on the same pair of
variables. Section 13.5 deals with further considerations involving partial impacts
of inputs on outputs. In particular, we examine the case wherein AR constraints
may cross subunits, and as well we extend the methodology of Sect. 13.3 to ac-
commodate non-separable variables. Section 13.6 demonstrates the application of
the methodologies to data on a set of 20 fabrication plants. Conclusions follow in
Sect. 13.7.

13.2 Efficiency Measurement in Steel Fabrication Plants

To demonstrate the problem of efficiency measurement in DEA settings where partial
input to output interactions exist, a set of 20 steel fabrication plants is considered.
The following four product groupings are manufactured across all plants:
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Table 13.1 Input-to-output connections
Outputs

Sheet Flat Pipes/ Cylindrical

Inputs Steel Bar Cylinders Bearings

Labor X X X X

Shears X X

Presses X X

Lathes X X X

1. Sheet steel products (ladders, guards, bumpers and conveyors);
2. Flat bar products used mainly in building construction (brackets, base plates,

headers and posts);
3. Pipes and cylinders (storm drains, plumbing products, etc);
4. Cylindrical bearings (automotive and non-automotive).

Similarly plant resources are comprised of: (1) Plant labor, (2) Shearing machines,
(3) Presses, and (4) Lathes.

For the purpose of this study, the four main product lines and plant resources
constitute the outputs and inputs respectively.

Table 13.1 illustrates the interactions among these inputs and outputs. As demon-
strated in the table, not all inputs impact all outputs. For example, the usage of
the presses is not required for production of cylindrical bearings, while presses are
needed in the production of sheet steel and flat bar products. As discussed above, it is
reasonable to argue that the conventional DEA model is based on the assumption that
in a multiple input, multiple output setting, all members of an input bundle influence
the output bundle. Hence, in settings where partial input to output interactions exist,
the application of the conventional model may not be appropriate, and may distort
the profile of the efficiencies of the DMUs.

In order to address this problem, we may view each DMU as a business unit
consisting of K subunits, where each subunit k is represented by its own input/output
bundle (Ik ,Rk) so that each output in Rk is impacted by every member of Ik . As a re-
sult, each subunit k can be treated as a DMU (or sub DMU) to which the conventional
DEA models can be applied.

Considering the manufacturing setting described earlier, we number the inputs
labor, shears, presses and lathes as 1, 2, 3, and 4 respectively. Similarly, outputs
sheet steel, flat bar, pipes and bearings are numbered 1, 2, 3 and 4 respectively.
We argue that the DMU may be viewed as consisting of three subunits or bundles
(I1,R1), (I2,R2), (I3,R3), where I1 = (1, 2, 3), I2 = (1, 2, 3, 4), I3 = (1, 4) and R1

= (1),R2 = (2),R3 = (3, 4).
It is important to point out that bundles, as described herein do not necessarily

correspond to product groupings as might be designated by the company. The orga-
nization may well form product groups such as automotive, residential, industrial,
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Fig. 13.1 Resource splitting across business subunits

etc, but the members of these groups may not be impacted by the same inputs. Thus,
the bundles, as we have defined them for modeling purposes may not be obvious
groupings from the perspective of the organization, and may bear no resemblance to
company-defined bundles.

An algorithm for generating these bundles in the general case is discussed in
Sect. 13.3.1.

Further, assume that each inputxi is separable, and can be apportioned across those
subunits k in which it holds membership, in the amounts αikxi , where kαik = 1. For
example, for each DMU j, input number 2 (shears) is a member of subunits I1 and
I2, so a portion of the input needs to be allocated across I1 and I2 in some amounts
α21x2j and α22x2j respectively. Figure 13.1 demonstrates the splitting of resources
across those subunits containing those resources as members.

It is pertinent to note at this point that the conventional DEA model makes no
specific provision for resource sharing; it is assumed that the entire input set impacts
the entire output set. Thus, how a resource (input) is split across the outputs it impacts
is not a consideration in the conventional methodology. In cases where partial impacts
exist, however, as is true of the steel fabrication plants example, and where we view
the DMU as consisting of a set of subunits, it becomes necessary to examine the
sharing of inputs across the bundles that contain them as members. Thus, it becomes
natural to decide on how resources will be shared.

In the sections to follow we present a methodology for deriving appropriate
proportions α.
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13.3 Modeling Efficiency in the Presence of Partial Input to
Output Interactions

In the conventional DEA setting a set of n DMUs is to be evaluated in terms of a
set of I inputs xij and R outputs yrj . One of the models used to accomplish this is a
radial projection model such as the constant returns to scale (CRS) model (13.1).

e = max
∑

r

uryro
/∑

i

νixio

subject to
∑

r

uryrj
/∑

i

νixij ≤ 1 j = 1, . . . . . . . ., n

ur , νi ≥ 0, ∀r , i

(13.1)

In this formulation, as originally proposed by Charnes et al. (1978), ur , νi are the
decision variables and are intended to denote the prices, weights or multipliers to be
assigned to outputs yrj and inputs xij respectively.

This model was designed for efficiency settings where the entire bundle of R
outputs is influenced by the entire bundle of I inputs. In situations such as that
outlined in the previous section, however, where only partial input to output impacts
exist, model (13.1) may give a distorted view of the efficiencies of the DMUs. To
illustrate, consider the simple example of two DMUs with 2 inputs and 2 outputs as
illustrated in the table.

DMU Y1 Y2 X1 X2

1 100 1 200 2

2 1 100 1 100

As an extreme case, let us assume that Y1 is impacted only byX1 and Y2 only byX2.
In the language used above, we could consider the DMUs as possessing 2 business
units or subunits (I1,R1) = (X1,Y1) and (I2,R2) = (X2,Y2). If we apply model
(13.1) at the subunit level we would do two analyses, namely an analysis for the first
bundle and one for the second. In the first analysis we have only one input X1 and
one output Y1. Clearly DMU2 outperforms DMU1 in this subunit in the CRS context
as per model (13.1); DMU2 uses one unit of input X1 to produce one unit of output
Y1, whereas DMU1 requires 200 units of inputX1 to produce 100 units of Y1. Under
constant returns to scale in (13.1), the efficiency score for DMU1 would be 50 %,
whereas DMU2 would get a score of 100 %. DMU1 would be deemed inefficient
and DMU2 efficient. If we go through the same line of argument with the second
subunit (second analysis), the same result would happen, namely DMU1 would get
a score of 50 % while DMU2 rates at 100 %. Thus, if the overall score for each DMU
is to be some weighted average of the two subunit scores, no matter what weights
are used, DMU1 will score 50 % and DMU2 100 %.
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If one ignores the partial impact information and applies model (13.1) directly,
which means assuming both inputs impact both outputs, it would be concluded that
DMU #1 has an efficiency score of 100 %. This is arrived at by having that DMU put
all output weight on Y1 (zero weight on Y2), and all input weight onX2 (zero weight
on X1). In so doing, the conventional model applied at the full DMU level clearly
ignores the input to output impacts involved, namely that Y1 is impacted only byX1.
At the same time, DMU2 would put its output weight entirely on Y2 and X1, giving
it a score of 100 %, but violating the input to output impacts.

This illustration clearly demonstrates that the conventional model generally makes
no allowance for adhering to partial impacts that may be present.

The concept of partial input to output impacts has attracted some attention in the
literature. In earlier work by Cook and Hababou (2001) and by Cook et al. (2000),
a related scenario was presented wherein bank branches were viewed as consisting
of two components, sales and service. While the model developed therein provides
for an aggregate measure of efficiency of the overall branch, it fails to properly
connect that measure to the partial measures for the sales and service components.
The current chapter facilitates the link between these two sets of measures. The model
given here is, as well, somewhat related to the work on network DEA as proposed by
Fare and Grosskopf (1996). Their methodology is aimed primarily at describing the
internal sub-processes in the DMU, hence it may be argued that the model here is a
type of network DEA approach to efficiency. Arguably, one difference between our
methodology and that characterizing network DEA is that our definition of the overall
performance of the DMU is that it is a weighted average of the subunit efficiencies.
Network DEA provides no clear connection between the efficiency score for the
overall DMU and the scores of the sub-processes. We provide that connection in the
methodology presented here.

To capture partial interactions, as described above, let us suppose that a DMU is
viewed as a business unit comprised of K independent subunits. To derive a measure
of efficiency of the individual DMU, we propose proceeding in three steps. Step1
derives the “split” variables αik representing the portions of inputs i to be assigned
to bundles k. We point out that the situation involving inputs that are non-separable
is examined later in the paper. In step 2 each subunit k can be treated as a DMU, and
the conventional DEA model of the type (13.1) is applied, using the outputs for that
subunit and inputs given by the αikxij . Finally, in step 3 the subunit scores as derived
in step 2 are combined to give an overall score for the DMU. We discuss these three
steps in detail.

Step 1: Deriving the Split of Inputs Across Subunits It can be argued that if
efficiency scores of the K subunits of a DMU jo were available, then some weighted
average of those scores would reasonably represent the overall efficiency score of
that DMU. Below we discuss how appropriate weights might be selected. It should be
noted at the outset that splitting the DMU into subunits, and then combining subunit
level scores to get an overall score for the DMU, may not be appropriate in cases
where economies or diseconomies of scope are present. See, for example Panzar and
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Willig (1981), and Pulley and Braunstein (1992). In such an eventuality, it would be
necessary to account for such synergies before combining the subunit scores.

Since we wish to maximize the aggregate efficiency of each DMU, and given the
fact that this aggregate will be represented (as shown later) as a convex combination
of the K subunit efficiencies, using some set of weights Wkj , we must first deter-
mine an appropriate α-split of inputs. As a convention, we choose (in keeping with
model (13.1)), to apply the CRS input oriented radial projection model for any DMU
jo, shown as (13.2). We point out that one might choose alternatively to apply a
variable returns to scale (VRS) model along the lines of Banker et al. (1984), in
which case the approach taken herein can be easily adapted.

eagg = max
K∑

k=1

Wkjo

⎡

⎣
∑

r∈Rk
uryrjo

/∑

i∈Ik
viαikxijo

⎤

⎦ (13.2a)

Subject to :

K∑

k=1

Wkj

⎡

⎣
∑

r∈Rk
uryrj

∑

i∈Ik
viαikxij

⎤

⎦ ≤ 1, ∀j (13.2b)

∑

r∈Rk
uryrj

/∑

i∈Ik
viαikxij ≤ 1, ∀k, j (13.2c)

∑

k∈Li
αik = 1, ∀i (13.2d)

aik ≤ αik ≤ bik , ∀i, k (13.2e)

ur , vi ,αik ≥ ε, ∀i, k (13.2f)

In this formulation, we use the notation eagg to denote the ‘aggregate’ efficiency
score for the DMU. The weights Wkj are intended to represent the importance to
be attached to each subunit for the DMU j under consideration. It is appropriate in
many situations to represent the importance of a subunit (to the overall business) by
the proportion of inputs assigned to or consumed by that subunit. For example, a
weight of 30 % is assigned to the efficiency ratio of a subunit if 30 % of the inputs
are consumed by that subunit. Adopting this line of argument, we therefore define

Wkj =
∑

i∈Ik
viαikxij

/ K∑

k=1

⎡

⎣
∑

i∈Ik
viαikxij

⎤

⎦ (13.3)

In addition, as specified by constraints (13.2c), the variables αik should be selected in
such a way that the efficiency score pertaining to each subunit k of DMU j not exceed
unity for some values of the multipliers ur , vi . We point out that in the presence of
constraints (13.2c), constraints (13.2b) are rendered redundant, and may therefore be
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dropped from the model. Constraints (13.2d) impose the usual convexity restriction
on the αik values within each subunit k, and for each input i that applies to that
subunit. The set Li in constraints (13.2d) is defined as the set of all subunits k that
have i as a member. Finally, to place limits on the size of the α variables, constraints
(13.2e) are imposed.

By virtue of the definition of Wkj as proposed in (13.3), the objective function
(13.2a) may be written as

eo = max
K∑

k=1

∑

r∈Rk
uryrjo

/∑

i

vixijo (13.1a’)

To transform the current nonlinear structure of (13.2) to a more tractable form, we
make the change of variables zik = νiαik , and note that

∑

k∈Li
αik = 1 ⇒

∑

k∈Li
νiαik = vi ⇒

∑

k∈Li
zik = vi

Employing the standard Charnes and Cooper (1962) transformation t = 1/Σivixijo ,
and defining μr = tur , υi = tvi , γik = tzik . Problem (13.2) becomes:

eagg =
K∑

k=1

∑

r∈Rk
μryrjo (13.4a)

Subject to:
∑

i

υixijo = 1 (13.4b)

∑

r∈Rk
μryrj −

∑

i∈Ik
γikxij ≤ 0, ∀j , k (13.4c)

∑

k∈L
i

γik = υi , ∀i (13.4d)

υiaik ≤ γik ≤ υibik , (13.4e)

μr , υi , γik ≥ ε, ∀r , i, k (13.4f)

Step 2: Deriving Subunit Efficiencies From the solution of (13.4) we can derive
the resource splitting variables αik , specifically αik = γik/υi . This provides an
appropriate apportioning of inputs (αikxij ) to their respective subunits. We now wish
to evaluate the efficiencies of those subunits within the DMU. To this end, model
(13.1) is applied, but with the understanding that the “DMU” being evaluated is the
kth subunit whose outputs are the members of Rk in the amounts yrj , and whose
inputs are the members of Ik in the amounts αikxij .
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Step 3: Deriving the Overall Efficiency Scores for the DMUs The overall effi-
ciency score eove of the DMU is derived in this stage by taking a weighted average
of the k subunit scores obtained in Stage 2, using the Wkj defined in (13.3). It
should be pointed out that in computing Wkj an appropriate set of input multipli-
ers νi needs to be chosen. Furthermore, the multipliers need to be computed in an
environment where all subunits are being compared simultaneously. The aggregate
model (13.4) provides such an environment. That is, in (13.4) when DMU jo is being
evaluated, the input portion of expression (13.4c), namelyΣi∈Ik γikxijo (for j = jo),
represents the value of that DMU’s resources that are assigned to subunit k. The
total value of all resources consumed by DMU jo is given by Σi∈I υixijo , which of
course is scaled to unity as per constraint (13.4b). Hence, the weightsWkjo reduce to
Wkjo = Σi∈Ik γikxijo . Note again that this set of weights is dependent on the particular
DMU jo under investigation, to reflect the fact that the proportion of inputs allocated
to the kth subunit is at the discretion of the DMU under consideration. The following
theorem (see proof in Appendix 1) establishes that the overall efficiency score eove

for a DMU arising from Step 3 is greater than or equal to the aggregate score eagg
derived from Model (13.4)

Theorem 3.1

eove ≥ eagg
The above discussion is centered on the idea of partitioning the input-output set into
K bundles (Ik ,Rk).We now discuss the formation of these bundles.

Generating the Input/Output Bundles In a multiple input/output setting, for each
k= 1,. . . .K, let Ik and Rk represent a set of inputs and outputs respectively. We need
to first generate input/output bundles (I1,R1), (I2,R2), . . . .(Ik ,Rk) in a way that the
RKk=1 form a mutually exclusive set, and for each k, (Ik ,Rk) is maximal.

Definition 3.1 An input/output bundle (Ik ,Rk) is said to be maximal if it possesses
the following two properties:

1) Every output r inRk is influenced by every input i in Ik , and no other input outside
of Ik influences any output r in Rk; and

2) There exists no output outside of Rk whose input bundle is identical to that of Rk.

There can, however, be an input i0 in a given bundle Ik that influences an output r0
outside of Rk , but at least one i in Ik does not influence r0.

An algorithm for generating maximal bundles in a given multiple input/output
setting appears in Appendix 2.

Theorem 3.2 The generated set of maximal input/output bundles is unique.
See Appendix 1 for proof.
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13.4 AR Restrictions on Pairs of Input Variables

Since the introduction of the original DEA model, a number of extensions such as
the assurance region (AR) model of Thompson et al. (1990) have been proposed as
a means of restricting the relative sizes of multipliers. It is generally argued that in
the absence of such restrictions, the conventional DEA model may fail to deliver
acceptable results. In the present setting involving the measurement of the technical
efficiencies of a set of steel fabrication plants, the per unit costs of inputs are known,
at least within certain bounds, and therefore AR restrictions are needed to insure that
these cost bounds are adhered to.

In the conventional setting where we wish to restrict the magnitude of input
multipliers relative to one another, AR constraints might take the form: cL ≤ ν2/ν1

≤ cU or alternatively cLν1 ≤ ν2 ≤ cUν1. Thus, for example, if cL = 2 and cU = 3,
this constraint stipulates that the magnitude of the multiplier for input 2 must be at
least twice that of the multiplier for input 1, but not more than three times the size of
that multiplier. Thompson et al. (1990) go on to suggest that an appropriate format
in which to specifying AR constraint, when we wish to impose several restrictions
on pairs of multipliers, is to choose one of the multipliers as the numeraire or base
against which the other multipliers would be compared. Hence, in this case ν1 is
taken as the base against which to express the relative importance of the various
multipliers.

In this section, we re-examine the model presented in the previous section and
present a modified version of the model that allows for the imposition of multiple
multiplier restrictions in the form of AR constraints. Although our focus in this paper
is on input multipliers, the methodology given here is applicable to both input and
output multipliers.

Consider a DEA setting in which partial input-to-output interactions are present.
Based on the methodology presented in Sect. 13.3, each DMU can be viewed as a
business unit comprised of separate subunits. In this setting the imposition of AR
constraints presents challenges that do not arise in the conventional DEA situation,
with the major challenge being that of having more than one AR restriction involving
the same pair of variables. This may happen when say two inputs are part of two or
more input bundles Ik , and the relative importance of these two variables is different
in one input bundle than in another. For example, in the setting described in Sect. 13.2,
inputs 2 and 3 both appear as members of I1 and of I2. Thus, an AR restriction on the
pair in I1might take the form 2 ≤ ν3/ν2 ≤ 4, while in I2 the restriction on the same
pair might appear as 3 ≤ ν3/ν2 ≤ 9. In a bank branch setting for instance, the relative
importance attached to counter staff versus financial services staff can be different
when they are performing routine service activities versus when they perform tasks
relating to loans and investments. Thus, the need to evaluate performance at both
unit and subunit levels, calls for a methodology that can handle multiple and often
conflicting AR constraints.

Let us now assume there are multiple AR constraints imposed on each subunit
k. We will assume for the moment that no AR restrictions involve pairs of inputs
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wherein one member of the pair is in one input bundle while the other member of
the pair is in a different bundle. We examine this phenomenon later.

For notational purposes, let us denote an AR pair by (υi1 , υi2 ) meaning that a
pair of assurance region constraint of the form cL ≤ υi1/υi2 ≤ cU is to be imposed.
In addition, let ARk represent the set of all pairs (υi1 , υi2 ) corresponding to AR
constraints cL ≤ υi1/υi2 ≤ cU on pairs of multipliers υi , i ∈ Ik , k= 1,..,K.

In settings where partial input to output interactions are present, we shall assume
for the time being that AR constraints arise at the level of the subunit. That is, as
stated above, we assume for now that there are no AR constraints that cross subunits.
Further, we assume that within any subunit, all AR restrictions are stated in terms of
a single numeraire, that is one of the members of that subunit will have been chosen
as the numeraire against which other members will be compared. A difficulty that
arises is the fact that a numeraire may not exist that is common across all subunits,
and as a result, it may not be possible to express all constraints in terms of a single
numeraire. One approach to this problem is to partition all AR constraints into L
mutually exclusive sets $l so that in any $l all AR constraints can be expressed in
terms of a single numeraire. Specifically, all AR constraints in any set $l take the
form

ckiL ≤ υi/υiθl ≤ ckiU (13.5)

where υ
ι$l

denotes the numeraire in set $l . We index the upper and lower bounds
with the superscript k to signify the subunit in which the particular AR constraints
originate.

The algorithm for generating these mutually exclusive sets is discussed in
appendix 1.

It should be noted that each generated set $l is comprised of AR pairs that are
either connected to each other explicitly, through a common multiplier, or implic-
itly through an AR set involving a common multiplier. For example, consider the
following AR sets: AR1 = {(υ2, υ3)} ,AR2 = {(υ3, υ4)} ,AR3 = {(υ4, υ5)} ,AR4 =
{(υ6, υ7)}.

It can be observed thatAR1 is connected explicitly toAR2 through their common
multiplier υ3, while it is only implicitly connected to AR3 through its connection to
AR2.AR4, however, is not connected to any of the other sets, and as a result, the four
mentioned AR sets are divided into the following two mutually exclusive sets

$1 = {(υ2, υ3), (υ3, υ4), (υ4, υ5)} ,$2 = {(υ6, υ7)} .
Specifically, there are no common multipliers connecting any two AR pairs in $1

and $2.
As indicated earlier, it can turn out that for any given pair of inputs, there can

be multiple AR constraints involving that pair. Reiterating statements made earlier,
we assume that AR constraints originate from within the subunits k, prompting the
use of the superscript k in (13.5). In order to convert multiple sets of AR restrictions
(involving a given pair of input multipliers) to a single AR constraint, we focus on
one of the bounds in each case, say the lower bound ckiL. Consider the example
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given earlier, namely 2≤ υ3/υ2 ≤ 4, reflecting the relative importance of inputs 3
and 2 in subunit k= 1, while 3≤ υ3/υ2 ≤ 9 reflects the relative importance of the
two inputs from the standpoint of subunit k= 2. It is observed that the expression
3≤υ3/υ2 ≤ 9 can be replaced by 2

3 3≤ 2
3υ3/υ2 ≤ 2

3 9, hence 2≤ 2
3υ3/υ2 ≤ 6. Let us

define υ ′3 = 2
3υ3. Now in I2 the weighted version of input #3, namely υ3x3, can be

replaced by 2
3υ3( 3

2x3) or υ ′3( 3
2x3). Specifically, if we agree to scale up the data for

x3 in I2by a factor 3/2, we can then scale down the multiplier υ3 by the reciprocal
of that factor (thereby creating a new factor υ ′3). In this way, multiple lower bounds
arising from the presence of multiple AR constraints can be reduced to a single lower
bound by scaling the data in those subunits where the lower bounds are undergoing
adjustment.

To formalize these ideas, suppose that there are two AR restrictions arising from
two units k1 and k2, namely ck1

iL ≤ υi/υi$l ≤ ck1
iU and ck2

iL ≤ υi/υi$l ≤ ck2
iU , involving

multiplier υi and the associated numeraire υi$l . Further, suppose that we wish to use
the lower limit ck1

iL as the base value to which we aim to reduce all other lower limits
for AR restrictions involving these two variables. Following the logic of the above
example we note that

c
k2
iL ≤ υi/υi$l ≤ ck2

iU ⇔
c
k1
iL

c
k2
iL

c
k2
iL ≤

c
k1
iL

c
k2
iL

υi/υi$l ≤
c
k1
iL

c
k2
iL

c
k2
iU

⇔ c
k1
iL ≤

c
k1
iL

c
k2
iL

υi/υi$l ≤
c
k1
iL

c
k2
iL

c
k2
iU

If we define the transformed variable υ ′ik2
= ck1

iLυi/c
k2
iL, then in Ik2 the weighted input

υixi = υ ′ik2
(
c
k2
iL

c
k1
iL

)xi , where the lower limit (ck1
iL) on the AR restriction involving

υ ′ik2
/υi$l is the same as the lower limit involving υi/υi$l . Hence, in Ik2 we may

proceed by replacing the data for xi by the scaled data (
c
k2
iL

c
k1
iL

)xi , and replace the no-

tation υ ′ik2
by υi , where the lower limit in the AR restriction on υi relative to υi$l

(in Ik2 ) is now given by ck1
iL rather than ck2

iL. Hence, we may scale ‘down’ the lower
limit for υi in Ik2 provided we scale ‘up’ the data xi in that subunit. This exercise can
now be repeated for all other subunits k3, k4, . . . . that have AR restrictions involving
these two variables. In each case the lower limit on the ratio of the two multipliers is

c̄iL = ck1
iL. (13.6)

Along the same lines, the upper bound ck2
iU on υi/υi$l is replaced by c̄k2

iU = (
c
k1
iL

c
k2
iL

)ck2
iU .

This is again repeated for all other subunits k3, k4, . . . . Now let

c̄iU = min{c̄k1
iU .c̄

k2
iU , . . . . .} (13.7)

Expression (13.7) can now be replaced by

c̄iL ≤ υi

υiθl
≤ c̄iU (13.8)
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After the required data adjustments are made, model (13.4) with any applicable AR
restrictions can be applied to derive the split of inputs across the subunits. This
analysis is then followed by running model (13.1) for each subunit as the DMU, and
again all applicable AR constraints are imposed.

13.5 Other Considerations

The Case of Non-Separable Inputs In many instances, there can be inputs that do
not lend themselves to subdivision in the manner described above. If, for example,
in the analysis of the steel fabrication plants, one wished to include as an input a
quality measure pertaining to supplier reliability, it would appear to be unreasonable
to suggest subdividing this factor, and assigning portions of it across the various
subunits. This factor, in its entirety, is assumed to affect the outputs in each subunit
k. Generalizing, let us assume that there are Ins inputs of this non-separable type.
The efficiency ratio for a given k within DMU jo can now be expressed in the form
Σr∈Rkuryrjo/(Σi∈Ik νiαikxio+Σi∈Ins νki xio) where νki is the worth or weight assigned
to the non-separable input xio, i ∈ Ins , and represents the impact of that input on the
outputs in subunit k. Note that we are permitting this weight to be different from one
subgroup to another.

Following the logic of (13.3) we define the weight attached to the kth efficiency
ratio by

Wk =
(∑

i∈Ik
νiαikxio +

∑

i∈Ins
νki xio

)/(∑

k

⎡

⎣
∑

i∈Ik
νiαikxio +

∑

i∈Ins
νki xio

⎤

⎦ (13.9)

The optimization model for this more general case would be identical in form to
(13.4) with the exception that constraint (13.4b) and (13.4c) are replaced by

∑

i∈I
υixio +

∑

i∈Ins

(∑

k

υki

)
xio = 1 (13.4b’)

and
∑

r∈Rk
μryrj −

∑

i∈Ik
γkixij −

∑

i∈Ins
υki xij ≤ 0, ∀k, j , (13.4c’)

respectively, to account for the two types of inputs. Furthermore, constraints (13.4d)
and (13.4e) apply only to separable inputs i. Here, υki = tνki under the usual
transformation as discussed above.

Inter-Subunit Assurance Regions In the above development, it is assumed that
all AR constraints originate from within subunits. This means that when solving
the stage 2 problem for any given subunit k, only AR constraints pertaining to that
subunit, hence only multipliers for inputs contained in that subunit, are considered.
There would be no reason to consider AR restrictions external to that subunit, since
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they would relate to inputs and multipliers not relevant to k, and therefore would not
affect the solution.

In the event that an AR restriction connects an input from a subunit k to an input
from a different subunit, then an argument can be made for including the restrictions
relating to that other subunit during the evaluation of subunit k. In that regard if such
‘connecting’AR constraints are present, it is recommend that a more complete version
of (13.1), namely (13.1’) be applied. Note that we explicitly index the multipliers
(e.g. urk , νik) to denote that they are permitted to take different values from one
subunit to another. As well, we use here the notation xikj to denote the adjusted (by
αik) inputs.

e = max
∑

r∈Rko
urk0yrj0

/ ∑

i∈Iko
νikoxik0j0

subject to
∑

r∈Rk
urkyrj

/∑

i∈ik
νikxikj ≤ 1, k = 1, . . . K , j = 1, . . . n

All ARk

urk , νik ≥ 0, ∀r , i, k

(13.1’)

13.6 Application

In this section, we demonstrate the application of the models presented in the previous
sections to data on 20 steel fabrication plants as displayed in Appendix Table 13.3.
We point out this data arose from a large survey of companies in the steel fabrication
industry. The desire was to arrive at a relatively homogeneous set of companies, in the
sense that they would all be producing similar product lines. Out of 230 companies
contacted, 47 completed the questionnaire, and of those only 20 of the respondents
supplied sufficient detail to enable a full scale analysis. The primary information
collected included (1) a list of major products produced, from which Table 13.1 was
constructed, (2) the input to output impacts as displayed in Fig. 13.1, and (3) cost
estimates per quarter, from which Table 13.2 was constructed. The latter cost data
point to the need to control the input multipliers in any DEA analysis undertaken.
This requirement has been addressed through the construction of AR constraints.

The creation of AR limits in many applications is a challenge in that input multi-
pliers, for example, may not have economic meaning. In the current setting one can
directly interpret the input multipliers as per unit costs incurred during the analysis
period. In this particular case the analysis period was the last quarter of 2010, mean-
ing that υ1, υ2, υ3, υ4 represent that quarter’s per unit cost to the plant relating to
labor, shears, presses and lathes. In the case of labor (x1) a range of estimates from
$5000 to $7500 per plant employee (wages and benefits) for the quarter was pro-
vided. The reason for a range of wage rates has to do with the fact that the rate can
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Table 13.2 Input cost rates
per machine per quarter

Quarterly costs Thousands of dollars

Input k= 1 k= 2 k= 3

Labor $5–$7.5 $5–$7.5 $5–$7.5

Shears $7–$10 $14–$19

Presses $6–$9.6 $16–$21

Lathes $2–$3.5 $4–$7.4

vary from plant to plant and over time due to the mix of full time and part time
labor used, and the amount of overtime during peak demand times. There was no
implied variation in labor costs across the three bundles, k= 1,2,3. In the case of the
other three inputs, machine ‘rates’ were taken to be the estimated quarterly costs of
depreciation, routine maintenance and unforeseen breakdown costs. In the case of
the shearing machines, for example, it was estimated that the quarterly cost (depre-
ciation and maintenance) of operating one machine would generally vary between
$7000 and $10,000 per quarter in the case of output bundle k= 1, and $14,000 and
$19,000 in the case of k= 2. The difference in cost between the two product group-
ings is explained by the increased stress placed on the equipment in the production
of flat bar products versus that created in the manufacture of sheet steel products.
Table 13.2 displays the ranges of quarterly costs.

This table allows one to set AR constraints corresponding to the various pairs
of multipliers. Since labor is common to all subgroups, we have chosen it as the
numeraire for expressing all ratio constraints. As an example, since the range for
labor cost is $5–$7.5, and for shears the range is $7–$10 in the case of k= 1, we
maintain that the AR constraints linking υ2 and υ1is given by 7

7.5 ≤ υ2
υ1
≤ 10

5 ; that is,
the lower limit on the ratio of the two multipliers is defined as the ratio of the lowest
value υ2 can take, divided by the highest value υ1 can assume, etc. Summarizing, the
following are the requisite AR constraints corresponding to the supplied cost ranges
on the four inputs.

Subunit k= 1: .93 ≤ υ2
υ1
≤ 2, .8 ≤ υ3

υ1
≤ 1.92

Subunit k= 2: 1.87 ≤ υ2
υ1
≤ 3/8, 2.13 ≤ υ3

υ1
≤ 4.2, .27 ≤ υ4

υ1
≤ .7

Subunit k= 3: .53 ≤ υ4
υ1
≤ 1.48

Prior to running model (13.4) to derive the αik , it is useful to compute a set of overall
efficiency scores, using (13.1). The resulting scores appear in Table 13.4. In this
analysis we ignore the partial relationships displayed in Fig. 13.1, and note that half
of the DMUs are efficient. This provides a useful starting point for evaluating the
performance of the various plants.

Now, applying model (13.4), in the presence of the above AR restrictions, we
determine an aggregate score for each DMU (Table 13.5), and the corresponding
αik as displayed in Table 13.6. We point out that the choice of an appropriate set of
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upper and lower limits on the alpha variables, aik ≤ αik ≤ bik , as per constraints
(13.2e) presented some difficulty. While a secondary survey was conducted to get
management’s input to the issue of such limits, after establishing the input to output
bundles, there tended to be reluctance to provide accurate estimates, meaning that
no range was supplied in most cases. In the analysis herein we chose the range
0.1 ≤ αik ≤ 0.6 for input i = 1 (which has 3 subunits), and 0.4 ≤ αik ≤ 0.6 for
i = 2,3 and 4 (which each have 2 subunits).

It is worth pointing out that in the majority of the cases, the alpha values arising
from model (13.4) tended to gravitate toward their upper or lower limits. This is a
common occurrence when optimizing a linear combination of two or more quantities.
Specifically, the optimal thing to do is to force one of the quantities as small as
possible thus freeing up resources for the other. The loss in one is generally dominated
by the gain in the other, hence the highest overall efficiency for the DMU is often
obtained by making one of the quantities involved (alpha in this case) as high as
possible, with the other being as low as possible. Of course, one can impose limits
on how much resource (the alpha split) one wants to take away from one subunit and
give to another.

Theαik are then used to scale the inputs to the levelsαikxij , and model (13.1) is now
applied at the subunit level along with the necessary AR constraints for that subunit.
The resulting subunit scores appear in Table 13.8. To combine these subunit scores
to get an overall efficiency score for each DMU (Step 3), we use the subunit weights
Wkjo = Σi∈Ik γikxijo extracted from (13.4c) when the aggregate scores (Table 2)
were being derived. These weights are presented in Table 13.7. The corresponding
“Overall Scores” for the 20 plants appear as the last column in Table 13.8.

It is observed that the Wkj for any subunit k show a wide variation across the 20
DMUs. In the case of subunit k = 1, for example, this variation is from 12.7 % for
DMU #8 to 47.7 % for DMU #17. These weights are derived as part of the process of
allocating resources among the subunits of a DMU such as to maximize its aggregate
performance. No attempt is made to restrict weight variation across DMUs; the size
of the weight on any given subunit k for a DMU j, reflects the proportion of resources
that DMU is dedicating to the subunit in question.

13.7 Discussion and Conclusions

This chapter has presented a methodology for efficiency measurement of DMUs in
situations where not all inputs impact all outputs. The model is based on viewing
a DMU as a business unit comprised of a set of subunits in each of which the
conventional DEA model properly applies. The overall efficiency score of the DMU
is then derived by combining the efficiency scores of the subunits. This model is
then modified to allow for the imposition of restrictions on multipliers in form of AR
constraints.

Our approach conveys important information about the inner-workings of the
DMU, providing insights as to which parts of the ‘business unit’are operating at what
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levels of efficiency. A somewhat related type of analysis, designed to examine the
internal structure of the DMU, is network DEA, as discussed in Fare and Grosskopf
(1996), Cook et al. (2010a, 2010b). In the text herein we compare our work to
this previous literature. From a production standpoint, it is important to gain an
understanding about how the different parts of an organization are performing, and
to characterize, to the greatest extent possible, the actual input-output interactions.
Resource sharing among subunits can then be addressed.

Arguably, the most relevant information for management in regard to the oper-
ating efficiency of the business unit (the DMU) under their control is the partial
efficiencies for the set of subunits making up that business unit (Table 13.8), and the
corresponding weights displayed in Table 13.7. The subunit scores point to where
the strengths and weaknesses of the business unit lie, while the weights indicate the
proportion of resources (weighted by value) dedicated to each of those subunits. The
input oriented view of performance revolves around the idea that inefficient DMUs,
if projected to the frontier can attain a 100 % efficient status by reducing resource
consumption. In that regard some managers view the subunit efficiencies as a vehicle
for undertaking resource sharing. In simplistic terms, management may undertake
to extract resources from the less efficient subunits and move those resources to the
more efficient subunits. The role of the weights in this resource shifting exercise is
to signal whether the amount of resource involved is significant or not. Consider, for
example, the case of DMU #8. Here, the subunit scores for k= 1,2,3 are 22.7, 42
and 65.3 % respectively. One might argue that subunit #3 is approximately 3 times
as successful as subunit #1 at transforming inputs to outputs, and it would appear
that a resource shift from #1 to #3 might be advisable. However, the percentage of
DMU #8’s resources consumed by the first subunit, as per Table 13.7, is only 12.7 %,
meaning that the amount of transferrable resource is likely rather minimal, and in
fact may already be at a critically low level. If one compares the proportions of
DMU resources among all 20 of the k= 1 subunits, the proportion for the 8th DMU
is the lowest among the peers (see column k= 1 in Table 13.7). Subunit #2, however,
currently consumes 35.8 % of the DMUs resources, and a significant portion of that
may be transferrable to subunit #3.

There is no obvious formula for guiding resource transfers within a DMU. The
primary role of DEA and its offshoots has been to signal where inefficiencies lie, and it
is left to management to use efficiency scores and the related resource usage to guide
the efficiency improvement exercise. Subunit performance measures (Table 13.8)
and the related resource consumption figures (Table 13.7) provide a more in-depth
view of the inner workings of the DMU, and will hopefully facilitate more informed
decision making at the operations level.

Future work will investigate how features such as nondiscretionary variables and
qualitative data might be treated in this partial input-to-output environment. Fur-
thermore, as indicated earlier, the approach taken herein is only applicable when
one assumes economies/diseconomies of scope are not present. Future research will
examine how to model partial impacts when such a phenomenon is to be taken into
account.
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This chapter is based upon I. Imanirad, W. Cook and J. Zhu. 2013. Partial input
to output impacts in DEA: Production considerations and resource sharing among
business sub-units, Naval Research Logistics, 60(3), 190–207.

13.8 Appendix 1: Proofs of Theorems

Theorem 3.1 proof: The aggregate score (objective function value (13.4a)) is the
weighted average of the K subunit ratios of outputs to inputsΣr∈Rkμryrj /Σi∈Ik γikxij
arising from constraint (13.4c). The weightsWkjo = Σi∈Ik γikxijo are the same values
as those used in step 3 where they are applied to the maximal values of these ratios
(obtained in step 2) to arrive at eove. Since these latter subunit scores must be at least
as large as those arising out of constraints (13.4c), the result follows.

Theorem 3.2 proof: Assuming that the set of maximal bundles is not unique then
there must be at least two different sets of maximal bundles, S1 and S2. This implies
that there must be at least one input/output bundle Bk in S1 that is different from
every bundleB ′

k′ in S2. Bk andB ′
k′ may differ in terms of their respective input or/and

output sets. If the input sets Ik and I ′k′ are different, there must exist at least one input
ik such that ik ∈ Ik and ik /∈ I ′k′ . If ik influences any r ∈ Rk then bundle B ′

k′ violates
the first requirement of a maximal bundle since there exists input ik outside of I ′k′ that
influences r ∈ Rk . Otherwise, bundle Bk violates the first requirement of a maximal
bundle since ik∈ Ik does not influence any r ∈ Rk . In either case there is only one
maximal bundle.

In case of a difference between output sets Rk and R′k′ , there must be at least
one output rk such that rk∈ Rk and rk /∈ R′k′ . If the input bundle of rk is not Ik
then bundle Bk violates the first requirement of a maximal bundle since there exists
an input i∈ Ik that does not influence rk or there exists an input outside of Ik that
influences rk . Otherwise, if the input bundle of rk is equal to Ik then bundle R′k′
violates the second requirement of a maximal bundle since there exists output r
outside of R′k′ with an input bundle identical to that of R′k′ In either case there can
only be one maximal bundle. This completes the proof.

13.9 Appendix 2: Algorithms

Generating Maximal Bundles Step 1: Define S to be an empty set.
Step 2: For each output r, derive I (r), the set of all inputs i that influence r. Add

I (r) to S. Set the bundle counter as k= 1.
Step 3: For each I (r) in S, compare it with every other I (r ′) in S, and identify all

I (r ′) that have the same input elements as in I (r). If no such r’ is identified, create
bundle (Ik , Rk) using I (r) and r so that (Ik , Rk) = (I (r), r). Remove I (r) from S. Go
to Step 4. Otherwise, group outputs r and all identified r’(having the same input sets)
together to derive Rk, and create bundle (Ik , Rk) using I (r) and Rk so that (Ik , Rk)
= (I (r), Rk). Remove I (r) and all identified I (r ′) from S. Go to step 4.
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Step 4: If S is non-empty, set k= k+ 1 and go to Step 3. Otherwise, terminate
having formed the set of all bundles.

Example:
Step 1: Define the empty set S.
Step 2: Here, I (1) = (1, 2, 3), I (2) = (1, 2, 3, 4), I (3) = (1, 4), I (4) = (1, 4). S

={I(1), I(2), I(3), I(4)}. Set k = 1.
Step 3/4: For r = 1, I (1) is different from all other I (r ′). Thus, (I1,R1)

= ((1, 2, 3), (1)). Remove I(1) from S. S now becomes the reduces set {I(2), I(3),
I(4)}. Here the process takes us to Step 4 where we discover S is non-empty, the
counter k is set to 2, and we return to Step 3. This time through, I(2) is discov-
ered not to have an input set identical with that of any of the remaining members
of S, meaning that (I2,R2) = ((1, 2, 3, 4), (1)), and S is reduced further to {I(3),
I(4)}. Step 4 now sets the counter to k = 3, and on reentering Step 3, I(3) is checked
against I(4), revealing that they are the same, namely I(3)= I(4)= (1, 4). The bundle
(I3,R3) = ((1, 4), (3, 4)) is created, and these two members of S are now removed
and in Step 4 the algorithm terminates with the three identified bundles above.

Generating the Mutually Exclusive Assurance Region (AR) Sets For a given
multiple input/output setting in which partial interactions among inputs and outputs
are present, the algorithm for generating the mutually exclusive AR sets works as
follows:

Step 1: Let $l=1 be an empty set and S= AR1 ∪ AR2 ∪ . . . .ARk represent the
set of all AR pairs (υi1k , υi2k), i ∈ Ik , k= 1,..,K in a given setting.

Step 2: Let (υi1k , υi2k) be any AR pair in S. Remove (υi1k , υi2k) from S and add it
to $l .

Step 3: Compare each (υi1k , υi2k) ∈ $l with every (υ ′i1k , υ
′
i2k

) ∈ S. If there exists
a multiplier υi so that υi ∈ (υi1k , υi2k) and υi ∈ (υ ′i1k , υ

′
i2k

), remove (υ ′i1k , υ
′
i2k

) from
S and add it to $l .

Step 4: If S is not empty, create an empty set $l=l+1 and go to Step 2.
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13.10 Appendix 3: Tables

Table 13.3 Data on 20 plants

Outputs Inputs

Sheet
steel

Flat
bar

Pipes/
Cylinders

Bearings Labor Shears Presses Lathes

DMU Y1 Y2 Y3 Y4 X1 X2 X3 X4

1 70 103 100 80 30 5 5 15

2 60 125 90 90 40 4 4 18

3 50 110 105 85 35 5.2 4.2 10

4 80 80 110 90 38 7 4.6 8.5

5 56 40 60 55 28 9 5.5 12.5

6 40 95 120 110 37 4.2 3.8 14

7 100 180 200 210 31 6 4.1 11

8 25 55 180 160 35 5 5 15

9 65 150 125 145 25 6.2 4.8 19

10 40 110 70 115 30 3 3.2 21

11 70 117 122 115 25 4 4 12

12 92 135 89 64 45 5 3.3 23

13 88 47 57 109 35 4.1 6 20.5

14 48 68 146 99 32 5.3 3.4 11.2

15 79 123 220 122 26 7.7 4.3 15.6

16 99 114 89 49 19 5.3 4.2 12.4

17 97 101 88 55 25 8 3 8.8

18 55 55 132 116 32 6 2.8 6.8

19 80 97 142 168 33 2.8 3.9 13.4

20 97 68 209 122 27 3.3 4.3 21.6
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Table 13.4 Efficiency
scores—conventional DEA
model

DMU Efficiency score

1 0.71104

2 0.91729

3 0.69367

4 0.92629

5 0.48891

6 0.72387

7 1.00000

8 0.87044

9 1.00000

10 1.00000

11 0.94440

12 1.00000

13 0.78425

14 0.85418

15 1.00000

16 1.00000

17 1.00000

18 1.00000

19 1.00000

20 1.00000
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Table 13.5 Aggregate
efficiency scores DMU Aggregate score [Problem 3.4]

1 0.56593

2 0.57443

3 0.55358

4 0.47876

5 0.30023

6 0.50491

7 0.97958

8 0.49988

9 0.78207

10 0.64049

11 0.78011

12 0.59318

13 0.44862

14 0.54204

15 0.81013

16 0.85452

17 0.70308

18 0.55393

19 0.74080

20 0.78130
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Table 13.6 αik values resulting from Model (13.4)

DMU X1

K= 1
X1

K= 2
X1

K= 3
X2

K= 1
X2

K= 2
X3

K= 1
X3

K= 2
X4

K= 2
X4

K= 3

1 0.16101 0.6 0.23899 0.4 0.6 0.6 0.4 0.6 0.4

2 0.15770 0.6 0.24230 0.4 0.6 0.4 0.6 0.6 0.4

3 0.1 0.6 0.3 0.4 0.6 0.4 0.6 0.6 0.4

4 0.43178 0.1 0.46822 0.6 0.4 0.6 0.4 0.4 0.6

5 0.6 0.1 0.3 0.6 0.4 0.6 0.4 0.4 0.6

6 0.1 0.3 0.6 0.4 0.6 0.4 0.6 0.4 0.6

7 0.1 0.45220 0.44780 0.4 0.6 0.6 0.4 0.4 0.6

8 0.1 0.3 0.6 0.52476 0.47524 0.6 0.4 0.4 0.6

9 0.1 0.6 0.3 0.4 0.6 0.4 0.6 0.6 0.4

10 0.1 0.6 0.3 0.4 0.6 0.4 0.6 0.6 0.4

11 0.16101 0.6 0.23899 0.4 0.6 0.6 0.4 0.6 0.4

12 0.3 0.6 0.1 0.4 0.6 0.4 0.6 0.6 0.4

13 0.6 0.1 0.3 0.6 0.4 0.6 0.4 0.6 0.4

14 0.11586 0.28414 0.6 0.6 0.4 0.6 0.4 0.4 0.6

15 0.11586 0.28414 0.6 0.6 0.4 0.6 0.4 0.4 0.6

16 0.3 0.6 0.1 0.6 0.4 0.6 0.4 0.6 0.4

17 0.6 0.3 0.1 0.6 0.4 0.6 0.4 0.6 0.4

18 0.3 0.1 0.6 0.6 0.4 0.6 0.4 0.4 0.6

19 0.16101 0.23899 0.6 0.4 0.6 0.6 0.4 0.4 0.6

20 0.3 0.1 0.6 0.6 0.4 0.6 0.4 0.4 0.6
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Table 13.7 Wkj values
arising from model (13.4) DMU K= 1 K= 2 K= 3

1 0.19194 0.62761 0.18045

2 0.16604 0.64466 0.18931

3 0.13676 0.64520 0.21804

4 0.36738 0.31385 0.31876

5 0.46694 0.29654 0.23652

6 0.13714 0.46883 0.39403

7 0.14616 0.48707 0.36676

8 0.12775 0.35810 0.51415

9 0.12952 0.63485 0.23563

10 0.12791 0.63576 0.23633

11 0.19129 0.62702 0.18169

12 0.24474 0.63646 0.11880

13 0.46385 0.29455 0.24161

14 0.14834 0.34083 0.51083

15 0.15841 0.35727 0.48432

16 0.29551 0.57877 0.12572

17 0.47872 0.42737 0.09391

18 0.28475 0.26070 0.45455

19 0.17764 0.36293 0.45944

20 0.27453 0.26986 0.45561



13 Partial Input to Output Impacts in DEA 379

Table 13.8 Subunit scores from model (13.1) and overall efficiency scores

DMU Aggregate score
[Problem 3.4]

Score K1 Score K2 Score K3 Overall score

1 0.56593 0.68155 0.63854 0.62323 0.64403

2 0.57443 0.79875 0.88356 0.50189 0.79722

3 0.55358 0.68705 0.66773 0.85252 0.71066

4 0.47876 0.51918 1.00000 0.68551 0.72311

5 0.30023 0.31978 0.63056 0.33280 0.41502

6 0.50491 0.59198 0.69895 0.46376 0.59161

7 0.97958 1.00000 1.00000 1.00000 1.00000

8 0.49988 0.22669 0.42008 0.65347 0.51537

9 0.78207 0.82999 0.75074 0.95109 0.80821

10 0.64049 0.73777 1.00000 0.63739 0.88076

11 0.78011 0.83780 0.90663 1.00000 0.91042

12 0.59318 1.00000 0.83659 0.59033 0.84733

13 0.44862 0.59288 0.55396 0.54155 0.56901

14 0.54204 0.55415 0.60451 0.69851 0.64506

15 0.81013 0.81281 1.00000 0.81231 0.87945

16 0.85452 0.89494 0.96515 1.00000 0.94878

17 0.70308 0.84762 0.94450 1.00000 0.90334

18 0.55393 0.59430 0.92209 1.00000 0.86417

19 0.74080 1.00000 1.00000 0.65473 0.84137

20 0.78130 0.91408 1.00000 0.59135 0.79023
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Chapter 14
Super-Efficiency in Data Envelopment Analysis

Yao Chen and Juan Du

Abstract In an effort to discriminate the performance of efficient decision making
units (DMUs), the concept of super-efficiency is proposed, whose basic idea is to
eliminate the DMU under evaluation from the reference set. When applied to the
variable returns to scale (VRS) situation, the resulting super-efficiency model may
become infeasible for certain DMUs due to the convexity constraint. Infeasibility
restricts a wider use of super-efficiency DEA. Therefore, taking different viewpoints,
a significant amount of studies tackle this problem by developing various new VRS
super-efficiency models.

Keywords Data envelopment analysis (DEA) · Infeasibility · Super-efficiency ·
Variable returns to scale (VRS)

14.1 Introduction

In an effort to differentiate and rank the performance of efficient decision-making
units (DMUs), Andersen and Petersen (1993) propose the concept of super-efficiency
and develop a super-efficiency model based on constant returns to scale (CRS). The
basic idea is to eliminate the DMU under evaluation from the reference set of the
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Fig. 14.1 An illustration of radial CRS super-efficiency

envelopment models. The CRS super-efficiency model can be expressed as

min θ − ε
(

m∑

i=1

s−io +
s∑

r=1

s+ro

)

s. t.
n∑

j=1
j 
=o

λjxij + s−io = θxio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj − s+ro = yro, r = 1,2, ..., s

λj , s
−
io, s

+
ro ≥ 0, j = 1,2, ..., n, j 
= o, i = 1,2, ...,m, r = 1,2, ..., s

(14.1)

where ε > 0 is the non-Archimedean infinitesimal.
Model (14.1) is commonly referred to as a “radial CRS super-efficiency”, and

allows for an efficiency score greater than one. An efficient DMU is projected onto
the frontier constructed by the remaining DMUs and obtains an efficiency score no
less than one. Solutions to model (14.1) always exist as long as all input and output
elements are positive, i.e., xio, yro > 0 for all i and r.

We illustrate the above super-efficiency concept using Fig. 14.1, where there are
five DMUs (DMU A, B, C, D, E) with two inputs and one equal output.

In Fig. 14.1, the original efficient frontier is composed of line segments con-
necting A, B, C, and D. Thus those four points are efficient DMUs, while E is an
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inefficient one. If Andersen and Petersen’s (1993) model (14.1) is used to make fur-
ther differentiation, on DMU B for example, B is omitted from the DEA reference
set (the left-hand-side of model (14.1) and the new efficient frontier is made up by
the line segments connecting A, C, and D. B’ on line segment AC is the projected
point of DMU B on the new frontier, and its super-efficiency defined by model (14.1)
is calculated as OB’/OB, which is greater than 1. On the other hand, excluding the
inefficient DMU E from the reference set has no impact on its efficiency assessment.
Thus for DMU E, its super-efficiency measure is exactly the same with its standard
efficiency score.

Note that Andersen and Petersen’s (1993) model development is under the CRS
assumption. When the concept of super-efficiency is applied to the variable returns
to scale (VRS) case, the resulting model may become infeasible for certain DMUs
due to the convexity constraint (Seiford and Zhu 1999). By adding the convexity
constraint

∑n
j=1 λj = 1, λj ≥ 0, j = 1, . . ., n to CRS model (14.1), we obtain its

VRS version as

min θ

s.t.

n∑

j=1
j 
=o

λjxij ≤ θxio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj ≥ yro, r = 1,2, ..., s

n∑

j=1
j 
=o

λj = 1

λj ≥ 0, j = 1,2, ..., n, j 
= o

(14.2)

Model (14.2) becomes infeasible if at least for one output ro, all possible convex
combinations of this output of the remaining DMUs are less than that output of the
evaluated DMU, i.e., yroo (see Seiford and Zhu (1999)). As we will discuss later
in detail, most of the super-efficiency studies focus on addressing this infeasibility
issue in a VRS situation by developing various new super-efficiency models.

14.2 Infeasibility

Under the assumption of constant returns to scale (CRS), Zhu (1996) shows that the
super-efficiency model becomes infeasible if and only if certain zero patterns appear
in the data set. However, when the concept of super-efficiency is applied to the vari-
able returns to scale (VRS) situation, the resulting DEA model must be infeasible
for certain DMUs. Seiford and Zhu (1999) investigate necessary and sufficient con-
ditions for infeasibility of super-efficiency DEA models. They can further identify
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the position of the DMU under evaluation when infeasibility occurs, based upon the
returns to scale (RTS) classifications.

Seiford and Zhu (1999) begin the analysis with presenting the super-efficiency
(SE) DEA models under various returns to scale.

Output-based

max ϕ

s.t.
n∑

j=1
j 
=o

λjxij ≤ xio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj ≥ ϕyro, r = 1,2, ..., s

ϕ, λj ≥ 0, j = 1,2, ..., n, j 
= o

Input-based

min ρ

s.t.
n∑

j=1
j 
=o

λjxij ≤ ρxio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj ≥ yro, r = 1,2, ..., s

ρ, λj ≥ 0, j = 1,2, ..., n, j 
= o

(14.3)

For SE-CRS append nothing.

For SE-VRS append
n∑

j=1
j 
=o

λj = 1.

For SE-NIRS append
n∑

j=1
j 
=o

λj ≤ 1.

For SE-NDRS append
n∑

j=1
j 
=o

λj ≥ 1.

As pointed out by Charnes et al. (1991), the DMUs can be into four types E, E′,
F and N as follows. E is the set of extreme efficient DMUs, and E′ is the set of
efficient DMUs that are not extreme points. The DMUs in set E′ can be expressed
as linear combinations of the DMUs in set E. The DMUs in set F is frontier points
with non-zero slacks, and are usually referred to as weakly efficient. Finally, N is
the set of inefficient DMUs. Based on the above classifications, if a specific DMUo
belongs to any of E′, F or N and is eliminated from the reference set, the efficient
frontiers (constructed by the DMUs in set E) remain unchanged. Therefore, the
super-efficiency models are feasible and equivalent to the original DEA models
whenDMUo ∈ E′,ForN . Thus the infeasibility of super-efficiency only occurs for
DMUs in set E.

Thrall (1996) shows that if the SE-CRS model (or super-efficiency CRS model)
is infeasible, then DMUo ∈ E. But he fails to recognize that the output-oriented
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SE-CRS model is always feasible for the trivial solution which sets all variables
equal to zero. Zhu (1996) showed that the input-oriented SE-CRS model is infeasible
if and only if a certain pattern of zero data occurs in inputs and output metrics.
One example is DMUo has a zero value in some inputs while all the other DMUs
have positive data in those inputs, or similarly, DMUo has positive values in some
outputs while all the other DMUs are set zero to those outputs. Later Seiford and
Zhu (1999) further discuss the infeasibility of other super-efficiency DEA models
with positive data, by first proposing two propositions.

Proposition 2.1 DMUo ∈ E under the VRS model if and only ifDMUo ∈ E under
the NIRS model or NDRS model.

Proposition 2.2 Let ϕ∗ and ρ∗ represent, respectively, the optimal objectives of
the output-based and input-based super-efficiency DEA models when evaluating an
extreme efficient DMU, then

a. Either ϕ∗ < 1 or the specific output-based super-efficiency DEA model is
infeasible;

b. Eitherρ∗>1 or the specific input-based super-efficiency DEA model is infeasible.

Based on the above propositions, Seiford and Zhu (1999) investigate the necessary
and sufficient conditions for the infeasibility of various super-efficiency models.

For output-based SE-VRS model, they propose the following Theorems 2.1–2.5.

Theorem 2.1 For a specific extreme efficient DMUo = (xo, yo), the output-based
SE-VRS model is infeasible if and only if (xo, δyo) is efficient under the original
VRS model for any 0 < δ ≤ 1.

Theorem 2.2 The output-based SE-VRS model is infeasible if and only if h∗ > 1,
where h∗ is the optimal value to (14.4).

h∗ = min h

s.t.

n∑

j=1
j 
=o

λjxij ≤ hxio, i = 1,2, ...,m

n∑

j=1
j 
=o

λj = 1

λj ≥ 0, j = 1,2, ..., n, j 
= o

(14.4)

Theorem 2.3 If the output-based SE-VRS model is infeasible, then the DMU under
evaluation exhibits IRS or CRS.

Theorem 2.4 The output-based SE-NIRS model is always feasible.

Theorem 2.5 For a specific extreme efficient DMUo = (xo, yo),

a. The output-based SE-NDRS model is infeasible if and only if (xo, δyo) is efficient
under the original VRS model for any 0 < δ ≤ 1;
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b. The output-based SE-NDRS model is infeasible if and only if h∗ > 1, where h∗
is the optimal value to (14.4).

In a similar way, Seiford and Zhu (1999) explore the infeasibility issue of input-based
super-efficiency DEA models by presenting Theorems 2.6–2.10.

Theorem 2.6 For a specific extreme efficient DMUo = (xo, yo), the input-based
SE-VRS model is infeasible if and only if (χxo, yo) is efficient under the original
VRS model for any 1 ≤ χ < +∞.

Theorem 2.7 The input-based SE-VRS model is infeasible if and only if g∗ < 1,
where g∗ is the optimal value to (14.5).

g∗ = max g

s.t.

n∑

j=1
j 
=o

λjyrj ≥ gyro, r = 1,2, ..., s

n∑

j=1
j 
=o

λj = 1

λj ≥ 0, j = 1,2, ..., n, j 
= o

(14.5)

Theorem 2.8 If the input-based SE-VRS model is infeasible, then the DMU under
evaluation exhibits DRS or CRS.

Theorem 2.9 The input-based SE-NDRS model is always feasible.

Theorem 2.10 For a specific extreme efficient DMUo = (xo, yo),

a. The input-based SE-NIRS model is infeasible if and only if (χxo, yo) is efficient
under the original VRS model for any 1 ≤ χ < +∞;

b. The input-based SE-NIRS model is infeasible if and only if g∗ < 1, where g∗ is
the optimal value to (14.5).

Since IRS and DRS are not allowed in the NIRS and NDRS models respectively, the
following corollary is proposed in Seiford and Zhu (1999).

Corollary 2.1

a. IfDMUo ∈ E exhibits DRS, then all output-based super-efficiency DEA models
are feasible;

b. If DMUo ∈ E exhibits IRS, then all input-based super-efficiency DEA models
are feasible.

The above necessary and sufficient conditions for infeasibility provided by Seiford
and Zhu (1999) indicate that the use of the super-efficiency DEA models should be
restricted in some situations and the super-efficiency VRS models could be used to
estimate RTS.
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14.3 Alternative VRS Super-Efficiency Models

Infeasibility restricts a wider use of super-efficiency DEA. Recent years have seen
a significant amount studies tackling this problem by developing various new VRS
super-efficiency models.

14.3.1 Equivalent Standard Super-Efficiency Models
(Lovell and Rouse 2003)

Lovell and Rouse (2003) modify the standard radial super-efficiency models by
scaling up the concerned input vector for input-orientation, or by scaling down the
concerned output vector for output-orientation. Their idea can be presented in the
following model (14.6), where inputs for each efficient DMU are multiplied by a
scalar α > 1 sufficiently large to make the DMU inefficient via model (14.6), with
an optimal objective θ∗2 < 1.

min θ2

s.t.

n∑

j=1
j 
=o

λjxij + αxioλo ≤ αxioθ2, i = 1,2, ...,m

n∑

j=1

λjyrj ≥ yro, r = 1,2, ..., s

n∑

j=1

λj = 1

λj ≥ 0, j = 1,2, ..., n

(14.6)

As mentioned before, extreme efficient DMUs may have no feasible solution when
evaluated via the standard VRS super-efficiency program (14.2). However, as proved
by Lovell and Rouse (2003), their modified model (14.6) is guaranteed to generate
feasible solutions for all DMUs. Furthermore, they demonstrate that their model
(14.6) and the standard VRS super-efficiency model are equivalent in providing the
same optimal solutions for those DMUs that are feasible under the latter.
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Lovell and Rouse (2003) also develop the output-oriented version of model (14.6),
where outputs of each efficient DMU are multiplied by a scalar 0<β < 1 sufficiently
small to make the DMU inefficient via model (14.7), with an optimal objective
ϕ∗−1

2 < 1.

max ϕ2

s.t.

n∑

j=1

λjxij ≤ xio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj + βyroλo ≥ βyroϕ2, r = 1,2, ..., s

n∑

j=1

λj = 1

λj ≥ 0, j = 1,2, ..., n

(14.7)

The scaling parameters α and β are specified by Lovell and Rouse (2003) as α =
max(α1, . . .,αm) + 1, where αi = maxj xij /minj xij and minj xij are selected to be
positive, while β = {max(β1, . . .,βs)}−1, where βr = maxj yrj /minj yrj + 1 and
minj yrj are selected to be positive.

14.3.2 Super-Efficiency Based on Efficient Projections
(Chen 2004, 2005)

In order to overcome the infeasibility problem with respect to the conventional VRS
super-efficiency, Chen (2004, 2005) suggests characterizing the super-efficiency
through both input- and output-oriented super-efficiency models with input savings
and output surplus. The basic idea of her methods is to replace the original inefficient
observations with the efficient projections, and then the super-efficiency analysis is
performed on this revised data set.
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According to Chen (2004, 2005), the super-efficiency in terms of input savings is
characterized via model (14.8).

min θ̃ V RS−super
o

s.t.

n∑

j=1
j 
=o

λjxij ≤ θ̃ V RS−super
o xio, i = 1,2, ...,m

n∑

j=1
j 
=o

λj ŷrj ≥ ŷro = yro, r = 1,2, ..., s

n∑

j=1
j 
=o

λj = 1

λj ≥ 0, j = 1,2, ..., n, j 
= o

(14.8)

where ŷrj = φ∗j yrj and φ∗j is the optimal objective to the following output-oriented
VRS DEA model (14.9).

φ∗o = max φo

s.t.

n∑

j=1

λjxij ≤ xio, i = 1,2, . . .,m

n∑

j=1

λjyrj ≥ φoyro, r = 1,2, . . ., s

n∑

j=1

λj = 1

λj ≥ 0, j = 1,2, . . ., n

(14.9)

Applying model (14.8) is equivalent to applying the standard VRS super-efficiency
model (14.2) after all inefficient DMUs are projected onto the VRS frontier through
proportional output augmentation by model (14.9). Model (14.8) measures the pos-
sible input saving achieved by the evaluated DMU against all other DMUs’ input
levels.

Chen (2004, 2005) pointed out that model (14.8) is still possible to be infeasible,
which indicates that the evaluated DMU has the greatest input levels given the current
output levels, thus cannot be moved onto the frontier formed by the remaining DMUs
simply through input increases. In this case, let θVRS−super*

o = θ̃
V RS−super*
o = 1,

implying for a zero input super-efficiency. Based on the above analysis, Chen (2004,
2005) uses γo to represent the super-efficiency with respect to input savings.
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γo =

⎧
⎪⎪⎨

⎪⎪⎩

θ
VRS−super∗
o , if standard VRS super − efficiency model (1.42) is feasible

θ̃
VRS−super∗
o , if model (14.2) is infeasible and model (14.8) is feasible

1, if model (14.8) is infeasible

(14.10)

Chen (2004, 2005) then set up model (14.11) to describe the super-efficiency in terms
of output surplus.

max φ̃VRS−super
o

s.t.

n∑

j=1
j 
=o

λj x̂ij ≤ x̂io = xio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj ≥ φ̃VRS−super
o yro, r = 1,2, ..., s

n∑

j=1
j 
=o

λj = 1

λj ≥ 0, j = 1,2, ..., n, j 
= o

(14.11)

where x̂ij = θ∗j xij and θ∗j is the standard input-oriented VRS efficiency score for
DMUj .

Then τo is used to represent the super-efficiency with respect to output surplus.

τo =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
VRS−super∗
o , if standard output − oriented VRS super

− efficiency modelis feasible

φ̃
VRS−super∗
o , if standard output − oriented VRS super

− efficiency is infeasible

and model (14.11) is feasible

1, if model (14.11) is infeasible

(14.12)

As indicated by Chen (2004, 2005), infeasibility occurs when only input saving
or output surplus is used to characterize super-efficiency. Therefore, input super-
efficiency γo and output super-efficiency τo should be integrated into one super-
efficiency measure. One example suggested by Chen (2004, 2005) is to select wγ
and wτ such that wγ +wτ = 1 and to define So = wγ γo+wτ

1
τo

or Ŝo = wγ
1
γo
+wτ τo.

It is obvious that So ≥ 1 and Ŝo ≤ 1, and a greater So or a smaller Ŝo implies a better
super-efficiency performance.
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14.3.3 A Modified Super-Efficiency Measure (Cook et al. 2009)

Cook et al. (2009) suggest an alternative approach to address infeasibility in the VRS
super-efficiency, which provides equivalent super-efficiency scores to those obtained
from the standard VRS super-efficiency model (14.2) for feasible DMUs. When the
infeasibility occurs, their approach determines a (virtual) reference DMU formed
by the remaining DMUs and produces a score characterizing the super-efficient
status. For an efficient DMUo, consider the following model (14.13), where M is a
user-specified large positive number.

min τ +M × β

s.t.

n∑

j=1
j 
=o

λjxij ≤ (1 + τ) xio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj ≥ (1 − β) yro, r = 1,2, ..., s

n∑

j=1
j 
=o

λj = 1

β, λj ≥ 0, j = 1,2, ..., n, j 
= o

(14.13)

Unlike the standard super-efficiency models which require a specific orientation, the
approach proposed by Cook et al. (2009) moves the efficient DMU under evaluation
onto the frontier by way of projection in both input and output directions. Thus their
model illustrates the minimum movement of the concerned efficient DMU in both
directions needed to reach the frontier constructed by the remaining DMUs.

Cook et al. (2009) relate the standard VRS super-efficiency model (14.2) with
their modified model (14.13) via Theorem 3.1.

Theorem 3.1 Model (1.2) is infeasible if and only if β∗ > 0, where β∗ is the optimal
solution in model (14.13).

Theorem 3.1 implies that model (14.2) is feasible if and only if β∗ = 0, and
further 1 + τ ∗ = θ∗, where (*) denotes the optimal values in both models. This
indicates that when standard VRS super-efficiency model (14.2) is feasible, Cook
et al.’s (2009) model (14.13) is equivalent to (14.2) in that the objective values of
both models are identical.

Then a theorem concerning the optimal solution to model (14.13) is presented as

Theorem 3.2 1 > β∗ ≥ 0 and τ ∗ > −1 in model (14.13).
Theorem 3.2 shows that when infeasibility occurs to standard model (14.2),

1/(1 − β∗) > 1 and 1 + τ ∗ > 0, indicating that to have a feasible solution, DMUo
must decrease its outputs. Cook et al. (2009) further define the super-efficiency score
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as 1 + τ ∗ + 1/(1 − β∗), which consists of a component for input super-efficiency
1 + τ ∗ > 0, and a component for output super-efficiency 1/(1 − β∗) > 1.

14.3.4 Two-Stage Procedure (Lee et al. 2011) and Its One Model
Approach (Chen and Liang 2011)

Lee et al. (2011) extend the basic ideas in Chen (2005) and Cook et al. (2009), and
present a two-stage process for calculating super-efficiency scores regardless of the
feasibility of the standardVRS super-efficiency. When the standardVRS model (14.2)
is feasible, their approach yields identical super-efficiency scores to those obtained
from model (14.2). While for efficient DMUs which have no solutions via conven-
tional method, their approach produces a super-efficiency measure characterizing
input savings and output surplus.

Lee et al. (2011) have pointed out that, in an input-oriented case, the infeasibility
of super-efficiency occurs when outputs of the DMU under evaluation is outside the
production possibility set generated by the outputs of the remaining DMUs. In an
output-oriented case, this infeasibility occurs when inputs of the concerned DMU is
outside the production possibility set formed by the inputs of the remaining DMUs.

For the input-oriented VRS super-efficiency model (14.2), if an efficient DMUo
is infeasible, it may be caused by the fact thatDMUo does not exhibit input savings
but only output surplus, which characterizes the super-efficiency (Seiford and Zhu
1999; Chen 2005). Thus Lee et al. (2011) develop a linear programming problem
(14.14), which seeks to determine potential surplus in each individual output.

min
s∑

r=1

sr

s.t.

n∑

j=1
j 
=o

λjyrj + sryro ≥ yro, r = 1,2, ..., s

n∑

j=1
j 
=o

λj = 1

sr , λj ≥ 0, j = 1,2, ..., n, j 
= o, r = 1, 2, ..., s

(14.14)

Let (s∗1 , . . ., s∗s ) denote an optimal solution to model (14.14). Lee et al. (2011) present
Theorem 3.3.

Theorem 3.3 Standard VRS super-efficiency model (14.2) is feasible if and only if
s∗r = 0 for all r.

Theorem 3.3 indicates that the input-oriented VRS super-efficiency model is
infeasible if and only if there are some s∗r > 0.
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Lee et al. (2011) then propose their modified unit-invariant VRS super-efficiency
model (14.15).

min θ̂

s.t.

n∑

j=1
j 
=o

λjxij ≤ θ̂xio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj + s∗r yro ≥ yro, r = 1,2, ..., s

n∑

j=1
j 
=o

λj = 1

λj ≥ 0, j = 1,2, ..., n, j 
= o

(14.15)

where (s∗1 , . . ., s∗s ) is an optimal solution to model (14.14).
Let θ̂∗ and θ∗ be the optimal objective of model (14.15) and standard model

(14.2), respectively. Then for feasible DMUs, there is θ̂∗ = θ∗, implying that both
models yield the identical super-efficiency score. Then by showing that projection
or benchmark for the evaluated DMU is constantly on the frontier formed by the
remaining DMUs, Lee et al. (2011) prove that model (14.15) is always feasible.
They further modify the super-efficiency score obtained from model (14.15) and
define the composite super-efficiency measure as

*

θ=

⎧
⎪⎨

⎪⎩

∑
r∈R

yro
yro−s∗r yro
|R| + θ̂∗, if R 
= φ

θ̂∗, if R = φ
(14.16)

where R = {
r
∣∣s∗r > 0

}
based upon model (14.13) and |R| is the cardinality of the

set R.

As for this composite super-efficiency, Lee et al. (2011) demonstrate that
*

θ = θ̂∗ if

standardVRS super-efficiency is feasible and
*

θ > 1 if standardVRS super-efficiency
is infeasible.

For the output-oriented case, Lee et al. (2011) propose a similar method by first
solving the linear programming problem (14.17), which seeks to determine poten-
tial input savings of the concerned efficient DMUo compared against the frontier
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generated by all other DMUs.

min
m∑

i=1

ti

s.t.

n∑

j=1
j 
=o

λjxij − tixio ≤ xio, i = 1,2, ...,m

n∑

j=1
j 
=o

λj = 1

ti , λj ≥ 0, j = 1,2, ..., n, j 
= o, i = 1, 2, ...,m

(14.17)

Let (t∗1 , . . ., t∗m) denote an optimal solution to model (14.17). Lee et al. (2011) further
establish their modified output-oriented VRS super-efficiency model (14.18), which
is proved to be always feasible.

max β̂

s.t.

n∑

j=1
j 
=o

λjxij − t∗i xio ≤ xio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj ≥ β̂yro, r = 1,2, ..., s

n∑

j=1
j 
=o

λj = 1

λj ≥ 0, j = 1,2, ..., n, j 
= o

(14.18)

Based on the optimal values of model (14.18), Lee et al. (2011) define the output-
oriented composite super-efficiency measure as

1

β̆
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
i∈I

xio+t∗i xio
xio

|I | + 1

β̂∗
, if I 
= φ

1

β̂∗
, if I = φ

(14.19)

where I = {
i
∣∣t∗i > 0

}
based upon model (14.17) and |I | is the cardinality of the set

I.
Based on the study in Cook et al. (2009), Chen and Liang (2011) demonstrate

that the two-stage approach developed by Lee et al. (2011) can actually be solved
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through the following equivalent linear programming (LP) model (14.20), where M
is a user-defined large positive number

Input-orientation:

min τ +M ×
s∑

r=1

βr

s.t.

n∑

j=1
j 
=o

λjxij ≤ (1 + τ) xio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj ≥ (1 − βr) yro, r = 1,2, ..., s

n∑

j=1
j 
=o

λj = 1

βr , λj ≥ 0, j = 1,2, ..., n, j 
= o, r = 1, 2, ..., s

(14.20)

Chen and Liang (2011) have pointed out that the conventional VRS super-efficiency
model (14.2) is infeasible if and only if some β∗r > 0, and β∗r = s∗r where β∗r and s∗r
are optimal values to the above model (14.20) and Lee et al.’s (2011) model (14.14),
respectively. They further indicate that the two-stage procedure proposed in Lee et al.
(2011) is equivalent to their model (14.20), thus Lee et al.’s (2011) approach can be
equivalently solved through on single model (14.20).

Based on the optimal solution to model (14.20), the super-efficiency score can
be defined as 1 + τ ∗ + 1

s

∑s
r=1

1
1−β∗r according to Cook et al. (2009), or 1 + τ ∗ +

1
|R|

∑
r∈R

1
1−β∗r where R is the set of β∗r > 0, according to Lee et al. (2011).

Finally, the output-oriented version of model (14.20) is developed as

min γ +M ×
m∑

i=1

δi

s.t.

n∑

j=1
j 
=o

λjxij ≤ (1 + δi) xio, i = 1,2, ...,m

n∑

j=1
j 
=o

λjyrj ≥ (1 − γ ) yro, r = 1,2, ..., s

n∑

j=1
j 
=o

λj = 1

δi , λj ≥ 0, j = 1,2, ..., n, j 
= o, i = 1, 2, ...,m

(14.21)



396 Y. Chen and J. Du

Table 14.1 Data for a numerical example

DMU Input 1 Input 2 Output VRS efficiency

1 2 4 2 1

2 1.5 2 1 1

3 4 1 3 1

4 5 2 4 1

5 3 2 1 0.8125

14.3.5 DDF-Based Super-Efficiency and SBM Super-Efficiency

Based on the directional distance function (DDF) (Chambers et al. 1996), Ray
(2008) introduces the VRS Nerlove-Luenberger (N-L) measure of super-efficiency
that adjusts both input and output levels at the same proportion. Although this N-L
super-efficiency model does not pose a similar infeasibility problem with the con-
ventional VRS method, it fails in two special situations (Ray 2008). To tackle the
two exceptions, Chen et al. (2013a) select a different input-output bundle to con-
struct a new DDF from the one used in Ray (2008), based on which a modified VRS
super-efficiency is proposed. These DDF-based super-efficiency measures will be
discussed in detail later in Sect. 14.5.

Another typical group of super-efficiency measures are developed by dealing
directly with input and output slacks. These non-radial measures include SBM super-
efficiency (Tone 2002) and additive super-efficiency (Du et al. 2010), and will be
further introduced in Sect. 14.4.

14.3.6 A Numerical Example for Comparison

Consider a numerical example presented in Table 14.1, which consists of five DMUs
with two inputs and one output. Among the five DMUs, only DMU 5 is VRS inef-
ficient with an efficiency score of 0.8125, while the other four (DMUs 1, 2, 3, and
4) are all efficient. If the standard input-oriented VRS super-efficiency model (14.2)
is applied, DMU 4 has no feasible solutions. If its output-oriented version is used,
DMUs 2 and 3 become infeasible. The super-efficiency results from the standard
models are listed in columns 2 and 3 of Table 14.2, respectively.

Then those alternative approaches introduced from Sects. 14.3.1–14.3.4 are used
to address this infeasibility problem. Their results are demonstrated from columns
4 to 7, respectively. Note that the super-efficiency scores obtained from various
measures can be very different. For example, DMU 4 is infeasible according to the
standard input-oriented model (14.2), but is given the highest super-efficiency score
via both the equivalent standard model (Lovell and Rouse 2003) and the two-stage
procedure (Lee et al. 2011) or its one-model equivalence (Chen and Liang 2011).
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Table 14.2 Super-efficiency results

DMU Input-
based
standard

Output-
based
standard

Equivalent
standard
(Lovell and
Rouse 2003)

Efficient
projections
(Chen
2004, 2005)

Modified
(Cook et al.
2009)

Two-stage procedure
(Lee et al. 2011) and
its equivalence (Chen
and Liang 2011)

1 1.3333 0.7143 1.3333 1.3667 2.3333 1.3333

2 1.6 Infeasible 1.6 1.3 2.6 1.6

3 2 Infeasible 2 1.5 3 2

4 Infeasible 0.75 5 1.1667 2.1333 2.1333

However, DMU 4 is evaluated with the lowest super-efficiency based on Chen’s
(2004, 2005) projection models and Cook et al.’s (2009) modified model.

14.4 Slacks-Based Super-Efficiency

14.4.1 SBM Super-Efficiency

Tone (2001) introduces a slacks-based measure (SBM) of non-radial efficiency by
directly dealing with input and output slacks. As in the radial DEA model, it provides
with an efficiency score between zero and one, and returns unity if and only if the
DMU under evaluation is on the frontier of the production possibility set with no
input or output slacks.

Based on the SBM-efficiency definition (Tone 2001, 2002) further presents a
SBM super-efficiency measure to differentiate those SBM-efficient DMUs. For radial
DEA models, super-efficiency models are obtained simply by removing the DMU
concerned from the reference set, as in Andersen and Petersen (1993). However,
this practice cannot be directly applied to non-radial models such as the additive
DEA model (Charnes et al. 1982) or the SBM model (Tone 2001). As indicated in
Tone (2002), for non-radial or slacks based DEA models, efficient DMUs need to be
identified first to modify the relevant models.
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Suppose that DMUo is SBM-efficient. Its SBM super-efficiency is calculated as
the optimal objective function of the following problem (Tone 2002):

δ∗o = min δo =
1
m

∑m
i=1 x̄io/xio

1
s

∑s
r=1 ȳro/yro

s.t. x̄io ≥
n∑

j=1,j 
=o
λjxij , i = 1,2, . . .,m

ȳro ≤
n∑

j=1,j 
=o
λjyrj , r = 1,2, . . ., s

x̄io ≥ xio, i = 1,2, . . .,m

ȳro ≤ yro, r = 1,2, . . ., s

λj , ȳro ≥ 0, j = 1,2, . . ., n, j 
= o, r = 1,2, . . ., s

(14.22)

The form of the objective function requires positive input and output values for SBM-
efficient DMUs, i.e., xij > 0 and yrj > 0. Using the Charnes-Cooper transformation
(Charnes and Cooper 1962), fractional model (14.22) can be equivalently converted
into a linear program.

Two propositions are presented with respect to SBM super-efficiency model
(14.22) (Tone 2002).

Proposition 4.1 The SBM super-efficiency score is unit-invariant, i.e., it is inde-
pendent of the units in which inputs and outputs are measured as longas these units
are the same for every DMU.

Proposition 4.2 Let (αxio, i = 1,2, . . .,m;βyro, r = 1,2, . . ., s) with 0 < α ≤ 1
and β ≥ 1 be a DMU with reduced inputs and enlarged outputs than
(xio, i = 1,2, . . .,m; yro, r = 1,2, . . ., s). Then the SBM super-efficiency score of
(αxio,βyro) is not less than that of (xio, yro).

14.4.2 Additive Super-Efficiency

Du et al. (2010) extends the above SBM super-efficiency to the additive DEA model
(Charnes et al. 1982). Alternative slacks-based objective functions are used. Unlike
the traditional radial super-efficiency DEA, additive super-efficiency models pro-
posed by Du et al. (2010) are consistently feasible under either constant or variable
returns to scale.
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Suppose DMUo is efficient via the additive model (14.23) (Charnes et al. 1982),
which is equivalent to all zero slacks.

max
m∑

i=1

s−io +
s∑

r=1

s+ro

s.t.

n∑

j=1

λjxij + s−io = xio, i = 1,2, . . .,m

n∑

j=1

λjyrj − s+ro = yro, r = 1,2, . . ., s

λj , s
−
io, s

+
ro ≥ 0, j = 1,2, . . ., n, i = 1,2, . . .,m, r = 1,2, . . ., s

(14.23)

To obtain the super-efficiency of DMUo, Du et al. (2010) propose two additive
super-efficiency models (14.24) and (14.25) with different objectives.

α∗o = min αo =
m∑

i=1

t−io +
s∑

r=1

t+ro

s.t.

n∑

j=1,j 
=o
λjxij ≤ xio + t−io , i = 1,2, . . .,m

n∑

j=1,j 
=o
λjyrj ≥ yro − t+ro, r = 1,2, . . ., s

λj , t
−
io , t

+
ro ≥ 0, j = 1,2, . . ., n, j 
= o, i = 1,2, . . .,m, r = 1,2, . . ., s

(14.24)

β∗o = min βo = 1

m+ s

(
m∑

i=1

t−io
xio

+
s∑

r=1

t+ro
yro

)

s.t. xio + t−io ≥
n∑

j=1,j 
=o
λjxij , i = 1,2, . . .,m

yro − t+ro ≤
n∑

j=1,j 
=o
λjyrj , r = 1,2, . . ., s

λj , t
−
io , t

+
ro ≥ 0, j = 1,2, . . ., n, j 
= o, i = 1,2, . . .,m, r = 1,2, . . ., s

(14.25)

After the evaluated DMUo is removed from the reference set, the constraints and
objective function of model (14.23) are modified to get the super-efficiency models.
The constraints should be modified because inputs or outputs are supposed to be
increased or decreased to reach the frontier constructed by the remaining DMUs
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(besides DMUo). The objective is changed from maximization to minimization so
that the resulting model is bounded.

Note that the constraints of model (14.24) or (14.25) can be equally converted into
the constraints of model (14.22). In that sense, Tone’s (2002) SBM model (14.22) is
also a super-efficiency version of the additive DEA model (14.23).

Let
{
α∗o ; λ∗j (α), j = 1, 2, . . ., n, j 
= o; t−∗io (α), i = 1, 2, . . .,m; t+∗ro (α), r = 1, 2,

. . ., s
}

and
{
β∗o ; λ∗j (β), j = 1, 2, . . ., n, j 
= o; t−∗io (β), i = 1, 2, . . ., m; t+∗ro (β),

r = 1, 2, . . ., s
}

be an optimal solution to models (14.24) and (14.25), respectively.
Du et al. (2010) use the same format taken by the objective function of Tone’s (2002)

SBM super-efficiency model (14.22), and define δ̂∗o (α) = 1
m

∑m
i=1 (xio+t−∗io (α))/xio

1
s

∑s
r=1 (yro−t+∗ro (α))/yro

≥ 1

and δ̂∗o (β) = 1
m

∑m
i=1 (xio+t−∗io (β))/xio

1
s

∑s
r=1 (yro−t+∗ro (β))/yro

≥ 1 as the additive super-efficiency measures.

If the convexity constraint
∑n
j=1,j 
=o λj = 1 is added into the above super-

efficiency models, the VRS versions of SBM and additive super-efficiency measures
are obtained. Unlike the radial VRS super-efficiency DEA models, all the slacks-
based super-efficiency models (Tone 2002; Du et al. 2010) will not encounter the
no-solution problem under either constant or variable returns to scale.

Similar to the Proposition 2 in Tone (2002), Du et al. (2010) present and prove
their version of this proposition as

Proposition 4.3 Let (axio, i = 1,2, . . .,m; byro, r = 1,2, . . ., s) with 0 < a ≤ 1
and b ≥ 1 be a DMU with reduced inputs and enlarged outputs than
(xio, i = 1,2, . . .,m; yro, r = 1,2, . . ., s). Then the optimal objective from additive
super-efficiency model (14.24) or (14.25) of (axio, i = 1,2, . . .,m; byro, r = 1,2,
. . ., s) is not less than that of (xio, i = 1,2, . . .,m; yro, r = 1,2, . . ., s).

14.4.3 A Numerical Example

Table 14.3 presents data for seven DMUs with two inputs and one output (Tone
2002). DMUs C, D and E are efficient. The SBM super-efficiency scores of the
three efficient DMUs via model (14.22) (Tone 2002) are displayed in column δ∗.
Table 14.4 reports the scores of δ̂∗o (α) and δ̂∗o (β) defined by Du et al. (2010), along
with their rankings for DMUs C, D and E. It is noted that all DMUs have exactly the
same rank according to three different super-efficiency models.

14.5 DDF-Based Super-Efficiency

Chambers et al. (1996) defined the directional distance function (DDF) as

D(xik , yrk; g
x , gy) = maxβ : (xik + βgx , yrk + βgy) ∈ T (14.26)
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Table 14.3 Data and results from SBM super-efficiency model (Tone 2002)

DMU Data SBM Super-efficiency

x1 x2 y1 δ∗ Rank by δ∗ x̄∗1 x̄∗2 ȳ∗1
A 4 3 1 5

B 7 3 1 7

C 8 1 1 1.125 3 10 1 1

D 4 2 1 1.25 2 4 3 1

E 2 4 1 1.5 1 4 4 1

F 10 1 1 4

G 12 1 1 5

Table 14.4 Results from additive super-efficiency models (14.24) and (14.25)

DMU Model (14.24) Model (14.25)

α∗ δ̂∗(α) Rank by
δ̂∗(α)

t−∗1 t−∗2 t+∗1 β∗ δ̂∗(β) Rank by
δ̂∗(β)

t−∗1 t−∗2 t+∗1

A 5 5

B 7 7

C 0.125 1.1429 3 0 0 0.125 0.0417 1.1429 3 0 0 0.125

D 0.2 1.25 2 0 0 0.2 0.0667 1.25 2 0 0 0.2

E 0.5 2 1 0 0 0.5 0.1667 2 1 0 0 0.5

F 4 4

G 5 5

where (gx, gy) is a reference input-output bundle, and T represents the production pos-
sibility set (PPS) under the standard assumptions of convexity and free disposability,
i.e.,

T =
⎧
⎨

⎩ (xi , yr )| xi ≥
n∑

j=1

λjxij , i = 1, . . .,m; yr

≤
n∑

j=1

λjyrj , r = 1, . . ., s;
n∑

j=1

λj = 1, λj ≥ 0, j = 1, . . ., n

⎫
⎬

⎭.
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14.5.1 N-L Super-Efficiency

For any DMUk(xik , yrk), Ray (2008) selects (−xik , yrk) for (gx , gy), and modifies the
above PPS for super-efficiency as

Tk =

⎧
⎪⎪⎨

⎪⎪⎩
(xi , yr)| xi ≥

n∑

j=1
j 
=k

λjxij , i = 1, ...,m; yr

≤
n∑

j=1
j 
=k

λjyrj , r = 1, ..., s;
n∑

j=1
j 
=k

λj = 1, λj ≥ 0, j = 1, ..., n, j 
= k

⎫
⎪⎪⎬

⎪⎪⎭

(14.27)

Then the VRS Nerlove-Luenberger (N-L) measure of super-efficiency concerning
PPS Tk is developed by Ray (2008) as

β∗k = max βk

s.t.

n∑

j=1
j 
=k

λjxij ≤ (1 − βk) xik , i = 1, ...,m

n∑

j=1
j 
=k

λjyrj ≥ (1 + βk) yrk , r = 1, ..., s

n∑

j=1
j 
=k

λj = 1

λj ≥ 0, j = 1, ..., n, j 
= k

(14.28)

A negative optimal value of βk , or β∗k , indicates that the output bundle of DMUk
should be scaled down and its input bundle should be scaled up by the same proportion
to get an attainable input-output mix in PPS Tk . The VRS N-L super-efficiency for
DMUk under evaluation is determined as (1 − β∗k ). A smaller β∗k implies for a more
N-L super-efficient DMU.

By proportionally adjusting input and output levels in a single model, this N-L
super-efficiency model eliminates a similar infeasibility problem as in the standard
VRS super-efficiency model. Although in most cases feasible, as pointed out by
Ray (2008), this VRS N-L super-efficiency model fails in two exceptions. First, the
model becomes infeasible if at least one zero input is present in the DMU under
evaluation while all other DMUs in the reference set have positive values in that
input. In such a case, the first set of constraints in model (14.28) cannot be satisfied.
Second, for some input io, there is 2xiok <

∑n
j=1
j 
=k
λjxioj for all λj combinations
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satisfying
∑n

j=1
j 
=k
λj = 1 and λj ≥ 0, j = 1, . . ., n, j 
= k.Then βk is restricted to a

value lower than− 1, and the N-L super-efficiency score is greater than 2. The model
will yield a reference point with negative output values.

As a matter of fact, zero data are problematic in any super-efficiency models,
besides the DDF-based N-L measure. For example, Zhu (1996) shows that the super-
efficiency CRS model is infeasible if and only if certain patters appear in the data
set. Lee and Zhu (2012) claim that either the conventional or the modified VRS
super-efficiency models, such as the two-stage procedure provided by Cook et al.
(2009) with an attempt to address infeasibility, will become infeasible when zero
data are present. In order to deal with the two exceptions of the N-L super-efficiency,
especially the zero data problem, Chen et al. (2013) develop a modified VRS super-
efficiency model based on a new DDF.

14.5.2 Modified DDF-Based Super-Efficiency

To tackle the above two exceptions, Chen et al. (2013a) choose a different input-
output bundle (−axio − 1, byro + 1) for the DDF from the one used in Ray (2008),
and construct a new DDF and a modified VRS super-efficiency based on this new
DDF as (14.29) and (14.30), respectively.

D(xio, yro) = max β : ((1 − βa)xio − β, (1 + βb)yro + β) ∈ T (14.29)

max βk

s.t.

n∑

j=1
j 
=k

λjxij ≤ (1 − βka) xik − βk , i = 1, ...,m

n∑

j=1
j 
=k

λjyrj ≥ (1 + βkb) yrk + βk , r = 1, ..., s

n∑

j=1
j 
=k

λj = 1

λj ≥ 0, j = 1, ..., n, j 
= k

(14.30)

where a and b are pre-determined positive parameters. Model (14.30) is feasible
even if zero data exist in inputs. To eliminate the second infeasibility issue, Chen
et al. (2013a) develop a procedure to select proper values for parameters a and b
to prevent directional output targets (1 + βkb)yrk + βk from taking negative values.
Specifically, in the completely positive input case, a and b should satisfy

a >

(
maxr=1,...,s maxj=1,...,n

1
yrj

)
[maxi=1,...,m (maxj=1,...,n xij − minj=1,...,n xij ) + 1] − 1

mini=1,...,m minj=1,...,n xij
(14.31)
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Table 14.5 A numerical example (Seiford and Zhu 1999)

DMU Input 1
x1

Input 2
x2

Input 3
x3

Output 1
y1

Output 2
y2

1 182 237 468 5008 5303

2 74 82 148 1857 2336

3 160 195 400 4041 5001

4 183 150 339 2779 2418

5 133 155 329 3506 3602

6 106 120 138 1306 956

7 109 110 188 1515 2282

8 240 243 806 7763 9601

9 276 188 574 4577 6493

10 191 117 466 3322 4233

0 < b ≤ amini=1,...,m minj=1,...,n xij + 1

maxi=1,...,m (maxj=1,...,n xij − minj=1,...,n xij ) + 1
− max
r=1,...,s

max
j=1,...,n

1

yrj
(14.32)

While in the zero input case, a can take any positive value, and b is subjected to

0 < b ≤ 1

maxi=1,...,m (maxj=1,...,n xij − minj=1,...,n xij )
− max
r=1,...,s

max
j=1,...,n

1

yrj
(14.33)

In either case, any value combination taken from the corresponding ranges is a rea-
sonable candidate for parameters of the new DDF (14.29). Moreover, Chen et al.
(2013a) provide a referable way to determine a and b if the integer-valued param-
eters are expected. Specifically, for the completely positive input case, the smallest
integer satisfying (14.31) can be chosen as a and the greatest integer satisfying
(14.32) can be chosen as b; while for the zero input case, a is set to 1 and b is
selected as the greatest positive integer less than 1

maxi=1,...,m (maxj=1,...,n x̄ij−minj=1,...,n x̄ij ) −
maxr=1,...,s maxj=1,...,n

1
yrj

, where x̄ij are proportionally scaled-down values of xij to

make 1
maxi=1,...,m (maxj=1,...,n x̄ij−minj=1,...,n x̄ij ) − maxr=1,...,s maxj=1,...,n

1
yrj
> 1.

Next a data set presented in Table 14.5, which was previously studied in Seiford
and Zhu (1999) and Ray (2008), are used to demonstrate different results obtained
from various VRS super-efficiency models introduced in this section.

Columns 2–4 in Table 14.6 report the results calculated from the standard
VRS super-efficiency model, the N-L super-efficiency measure (14.28) (Ray 2008),
and the modified DDF-based super-efficiency model (14.30) (Chen et al. 2013a),
respectively.

The column identified as “Standard radial” presents the efficiency and super-
efficiency scores obtained from the conventional input-orientedVRS super-efficiency
model. DMUs 3, 4, 5, 7, 9 are inefficient units, while DMUs 1, 2, 6, 8, 10 are efficient.
Among these five efficient units, four (DMUs 1, 2, 6, 10) have super-efficiency
greater than one. DMU 8 does not have a feasible solution to the conventional VRS
super-efficiency problem.
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Table 14.6 Alternative
measures of VRS
super-efficiency

DMU Standard radial N-L Modified DDF

1 1.0626 1.0285 1.00559

2 1.5277 1.4430 1.05113

3 0.9765 0.9889 0.99789

4 0.7354 0.8566 0.97561

5 0.9752 0.9881 0.99776

6 1.0725 1.0725 1.00724

7 0.7852 0.8863 0.97871

8 Infeasible 1.3836 1.38354

9 0.9246 0.9581 0.99302

10 1.0602 1.0334 1.00557

Column “N-L” displays Ray’s (2008) N-L measure of super-efficiency (1 − βk)
for all ten DMUs, and column “Modified DDF” shows the results obtained from Chen
et al.’s (2013a) modified DDF-based super-efficiency model, with parameters a and
b pre-determined as 10 and 1. Similar to the N-L super-efficiency, for super-efficient
DMUs 1, 2, 6, 8, 10, their optimal values to model (14.30) are negative, making
their super-efficiency measures all exceed one. Comparing the ranking results from
various super-efficiency measures, two approaches, namely the standard radial model
and the modified DDF-based model, lead to exactly the same rank, which is DMU
8, 2, 6, 1, 10, 3, 5, 9, 7, 4 from high to low. The N-L super-efficiency measure,
however, provides a quite different rank for super-efficient units, which is DMU 2,
8, 6, 10, 1, 3, 5, 9, 7, 4 from high to low.

Lin and Chen (2014) indicate that Chen et al.’s (2013a) modified DDF-based
super-efficiency model cannot fully address the infeasibility problem in Ray (2008).
In some very special situations, Chen et al.’s (2013a) method fails to provide with
reasonable results. Lin and Chen (2014) choose a new reference input-output bundle
for the DDF and propose an alternative modified DDF-based VRS super-efficiency
model.

14.6 Integer Super-Efficiency

Conventional DEA methods assume continuous values for input and output metrics.
However, in many real managerial cases, some inputs and/or outputs can only take
integer values. Take the scientific research in a university for example. Inputs such as
the number of research staff and outputs such as the number of patents approved are
restricted to non-negative integers. As pointed out by Kuosmanen and Kazemi Matin
(2009), simply rounding the optimal solution to the nearest whole numbers can result
in misleading efficiency assessment and reference targets. Researchers including
Lozano and Villa (2006) and Kuosmanen and Kazemi Matin (2009) provides with
their respective versions of mixed integer linear programming (MILP) formulations.
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14.6.1 Integer-Valued Additive Super-Efficiency

In order to achieve a thorough differentiation of the performance among DMUs,
Du et al. (2012) extend the efficiency analysis for integer-valued data into super-
efficiency measurement by dealing directly with input and output slacks. They
propose additive integer-valued super-efficiency models, which demonstrate a
stronger discriminating power among DMUs compared with radial super-efficiency
measures.

Du et al. (2012) first add the integer requirement in an additive DEA model
(Charnes et al. 1982), and obtain the additive integer-valued model (14.34).

ρ̂∗o = max ρ̂o =
∑

iNI∈INI

s−iNIo
+

∑

rNI∈ONI

s+rNIo
+

∑

iI∈I I
s̃−iI o +

∑

rI∈OI
s̃+rI o

s.t. xiNIo − s−iNIo
=

n∑

j=1

λjxiNI j , iNI ∈ INI

yrNIo + s+rNIo
=

n∑

j=1

λjyrNI j , rNI ∈ ONI

x̃iI o ≥
n∑

j=1

λjxiI j , iI ∈ I I

xiI o − s̃−iI o = x̃iI o, iI ∈ I I

ỹrI o ≤
n∑

j=1

λjyrI j , rI ∈ OI

yrI o + s̃+rI o = ỹrI o, rI ∈ OI

n∑

j=1

λj = 1, λj ≥ 0, j = 1, . . ., n

x̃iI o, ỹrI o ∈ Z+, iI ∈ I I , rI ∈ OI

s−iNIo
, s+rNIo

, s̃−iI o, s̃
+
rI o

≥ 0, iNI ∈ INI , rNI ∈ ONI , iI ∈ I I , rI ∈ OI

(14.34)

where I I , INI ,OI andONI denote the subsets of integer-valued and real-valued inputs
and outputs, respectively. In model (14.34), x̃iI o ∈ Z+ and ỹrI o ∈ Z+ are the integer
targets for input iI and output rI of DMUo. Non-radial slacks s−iNIo

, s+rNIo
, s̃−iI o, s̃

+
rI o

represent the actual inputs that can be reduced and actual outputs that can be increased
in order to realize the best feasible target.

Based on an optimal solution to model (6.1), which is represented by{
λ∗j , j = 1, . . ., n; s−∗iNIo

, iNI ∈ INI ; s+∗rNIo
, rNI ∈ ONI ; s̃−∗iI o , iI ∈ I I ; s̃+∗rI o, rI ∈ OI

}
, Du

et al. (2012) define σ̂ ∗o = 1− 1
m

[∑
iNI∈INI s

−∗
iNI o

/xiNI o+
∑
iI ∈II s̃

−∗
iI o
/xiI o

]

1+ 1
s

[∑
rNI∈ONI s

+∗
rNI o/yrNI o+

∑
rI ∈OI s̃

+∗
rI o
/yrI o

] as the additive ef-

ficiency measure. This additive efficiency falls between zero and one, and a larger
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value represents a better performance in reaching the efficient frontier. DMUo is
called additive efficient if and only if σ̂ ∗o = 1, or equivalently, all of its optimal
slacks are zero.

SupposeDMUo is additive efficient according to model (14.34). Du et al. (2012)
propose an additive super-efficiency model designed for integer data.

α̂∗o = min α̂o =
m∑

i=1

t−io +
s∑

r=1

t+ro

s.t.

n∑

j=1,j 
=o
λjxij ≤ xio + t−io , i = 1, . . .,m

n∑

j=1,j 
=o
λjyrj ≥ yro − t+ro, r = 1, . . ., s

t−iI o, t
+
rI o

∈ Z+, iI ∈ I I , rI ∈ OI

n∑

j=1,j 
=o
λj = 1

λj , t
−
iNIo

, t+rNIo
≥ 0, j = 1, . . ., n, j 
= o, iNI ∈ INI , rNI ∈ ONI

(14.35)

Alternative objective functions can be used for model (14.35) so that the resulting
super-efficiency model is unit-invariant, for example,

β̂∗o = min β̂o = 1

m+ s

(
m∑

i=1

t−io
xio

+
s∑

r=1

t+ro
yro

)
(14.36)

It is further proved by Du et al. (2012) that their additive integer-valued VRS super-
efficiency model are consistently feasible.

Let
{
α̂∗o ; λ∗j , j = 1, . . ., n, j 
= o; t−∗io , i = 1, . . .,m; t+∗ro , r = 1, . . ., s

}
be an opti-

mal solution to model (14.35). Du et al. (2012) use δ̂∗o =
1
m

∑m
i=1 (xio+t−∗io )/xio

1
s

∑s
r=1 (yro−t+∗ro )/yro

≥ 1 to

define for the additive super-efficiency score. Note that a greater δ̂∗o implies a superior
performance compared with other efficient DMUs.

14.6.2 Additive Super-Efficiency for Undesirable
Integer-Restricted Data

Extending the work of Du et al. (2012) to integer-restricted undesirable data, Chen
et al. (2012) formulate an additive super-efficiency model.
mGR, sGR,mBR, sBR,mGI , sGI ,mBI , sBI are used to respectively represent the num-

ber of variables in the eight variable sets, which are characterized by inputs or outputs,
continuous or integer, desirable or undesirable. Specifically, the subscripts “G” and
“B” stand for “good” and “bad” inputs/outputs, respectively; the subscripts “R” and
“I” stand for “real-valued” and “integer-valued” variables, respectively. All inputs
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and outputs are assumed to be non-negative. They use the same VRS production
possibility set (PPS) with Liu et al. (2010) as:

P =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(XGR,XGI ,XBR,XBI ,YGR,YGI ,Y BR,YBI )
∣∣
(
XGI ,YGI

XBI ,YBI

)

∈ ZmGI+mBI+mGI+mBI ;
(
XGR

XGI

)
≥∑n

j=1 λj

(
XGR
j

XGI
j

)
,

(
XBR

XBI

)
≤∑n

j=1 λj

(
XBR
j

XBIj

)
;

(
YGR

YGI

)
≤∑n

j=1 λj

(
YGR
j

YGI
j

)
,

(
Y BR

YBI

)

≥∑n
j=1 λj

(
Y BR
j

Y BIj

)
;
∑n
j=1 λj = 1, λj ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14.37)

In order to simultaneously tackle the integrality and undesirable factors in one model,
Chen et al. (2012) modify the standard additive DEA model (Charnes et al. 1982)
as:

Max
1

mGR +mBR +mGI +mBI + sGR + sBR + sGI + sBI
⎛

⎜⎜⎜⎝

∑ sGR−io

xGR
io

+
∑ sBR−io

xBR
io

+
∑ sGR+ro

yGR
ro

+
∑ sBR+ro

yBR
ro

+
∑ sGI−io

xGI
io

+
∑ sBI−io

xBIio
+
∑ sGI+ro

yGI
ro

+
∑ sBI+ro

yBIro

⎞

⎟⎟⎟⎠

s.t. XGR
o − SGR−o =

n∑

j=1

λjX
GR
j ,XBR

o + SBR−o =
n∑

j=1

λjX
BR
j

YGR
o + SGR+o =

n∑

j=1

λjY
GR
j ,Y BR

o − SBR+o =
n∑

j=1

λjY
BR
j

XGI
o − SGI−o ≥

n∑

j=1

λjX
GI
j ,XBIo + SBI−o ≤

n∑

j=1

λjX
BI
j

YGI
o + SGI+o ≤

n∑

j=1

λjY
GI
j ,YBIo − SBI+o ≥

n∑

j=1

λjY
BI
j

n∑

j=1

λj = 1, λj ≥ 0, j = 1, . . ., n

SGI−o ∈ ZmGI+ , SBI−o ∈ ZmBI+ , SGI+o ∈ ZsGI+ , SBI+o ∈ ZsBI+
SGR−o , SBR−o , SGR+o , SBR+o ≥ 0

(14.38)

where slack variables SGR−o , SBR−o , SGR+o , SBR+o , SGI−o , SBI−o , SGI+o , SBI+o represent
the absolute differences between the original input/output values and their respective
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reference points. DMUo is regarded as additive efficient if and only if all optimal
slacks in model (14.38) are zero.

To further discriminate efficient DMUs, Chen et al. (2012) remove the evaluated
DMU from the reference set and modify the constraints and objective of model
(14.37) to get the unit-invariant super-efficiency model:

Min
1

mGR +mBR +mGI +mBI + sGR + sBR + sGI + sBI
⎛

⎜⎜⎜⎝

∑ tGR−io

xGR
io

+
∑ tBR−io

xBR
io

+
∑ tGR+ro

yGR
ro

+
∑ tBR+ro

yBR
ro

+
∑ tGI−io

xGI
io

+
∑ tBI−io

xBIio
+
∑ tGI+ro

yGI
ro

+
∑ tBI+ro

yBIro

⎞

⎟⎟⎟⎠

s.t. XGR
o + T GR−o ≥

n∑

j=1,j 
=o
λjX

GR
j ,XBR

o − T BR−o ≤
n∑

j=1,j 
=o
λjX

BR
j

YGR
o − T GR+o ≤

n∑

j=1,j 
=o
λjY

GR
j ,Y BR

o + T BR+o ≥
n∑

j=1,j 
=o
λjY

BR
j

XGI
o + T GI−o ≥

n∑

j=1,j 
=o
λjX

GI
j ,XBIo − T BI−o ≤

n∑

j=1,j 
=o
λjX

BI
j

YGI
o − T GI+o ≤

n∑

j=1,j 
=o
λjY

GI
j ,YBIo + T BI+o ≥

n∑

j=1,j 
=o
λjY

BI
j

n∑

j=1,j 
=o
λj = 1, λj ≥ 0, j = 1, . . ., n, j 
= o

T BR−o ≤ XBR
o , T GR+o ≤ YGR

o , T BI−o ≤ XBIo , T GI+o ≤ YGI
o

T GI−o ∈ ZmGI+ , T BI−o ∈ ZmBI+ , T GI+o ∈ ZsGI+ , T BI+o ∈ ZsBI+
T GR−o , T BR−o , T GR+o , T BR+o ≥ 0

(14.39)

VRS super-efficiency model (14.39) overcomes the infeasibility problem of the
standard VRS super-efficiency measure, by using slacks to scale up the inputs (or un-
desirable outputs) and scale down the outputs (or undesirable inputs) of the assessed
DMU. Moreover, additive super-efficiency model (14.39) helps in determining the
maximum allowable increase in each desirable input or undesirable output, as well
as the maximum allowable decrease in each desirable output or undesirable input,
given that the efficiency status of an efficient DMU stay unchanged.
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Chen et al. (2012) define

δ∗o =
1

mGR+mGI+sBR+sBI
(∑ xGR

io +tGR−∗io

xGR
io

+∑ xGI
io +tGI−∗io

xGI
io

+∑ yBR
ro +tBR+∗ro

yBR
ro

+∑ yBIro +tBI+∗ro

yBIro

)

1
sGR+sGI+mBR+mBI

(∑ yGR
ro −tGR+∗ro

yGR
ro

+∑ yGI
ro −tGI+∗ro

yGI
ro

+∑ xBR
io −tBR−∗io

xBR
io

+∑ xBIio −tBI−∗io

xBIio

)

(14.40)

as the additive super-efficiency forDMUo, where (λ∗j , j 
= o; T GI−∗io , T BI−∗io , T GI+∗ro ,

T BI+∗ro , T GR−∗io , T BR−∗io , T GR+∗ro , T BR+∗ro ) is an optimal solution to model (14.39).
Super-efficiency measure δ∗o values no less than one ( δ∗o ≥ 1), and increases mono-
tonically in both input and output slacks. Thus a greater score represents a superior
performance compared with other efficient DMUs.

14.6.3 DDF-Based Integer Super-Efficiency

In order to accommodate integer data, Chen et al. (2013b) seek to modify Ray’s
(2008) Nerlove-Luenberger (N-L) measure of super-efficiency, and find that this
DDF-based approach cannot be directly changed to incorporate integer requirement.
Actually, the DDF (directional distance function) requires that the inputs decrease at
the same rate as outputs increase to reach the DEA frontier, which becomes problem-
atic when inputs and outputs are integers under the concept of super-efficiency. To
address the above problem, Chen et al. (2013b) assume different changing rates for
inputs and outputs of the DMU under evaluation to reach the frontier constructed by
the remaining DMUs. In doing this, their DDF-based integer super-efficiency avoids
suffering from the infeasibility problem under VRS.

Suppose that part of the inputs and outputs are constrained to integer values, and
denoted the subsets of integer-valued, real-valued inputs and outputs by I I , INI , OI

and ONI , respectively. For any integer-restricted measure, its reference target with
respect to the efficient frontier is also supposed to be an integer. Therefore, the N-L
super-efficiency measure considering integer data is presented by Chen et al. (2013b)
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as

max βk

s.t. yrk + βkyrk =
n∑

j=1
j 
=k

λjyrj − s+r , r ∈ ONI

xik − βkxik =
n∑

j=1
j 
=k

λjxij + s−i , i ∈ INI

x̃ik − sIi =
n∑

j=1
j 
=k

λjxij , i ∈ I I

ỹrk + sIr =
n∑

j=1
j 
=k

λjyrj , r ∈ OI

x̃ik + s−i = xik − βkxik , i ∈ I I
ỹrk − s+r = yrk + βkyrk , r ∈ OI

x̃ik ∈ Z+, i ∈ I I
ỹrk ∈ Z+, r ∈ OI

n∑

j=1
j 
=k

λj = 1, λj ≥ 0, j = 1, . . ., n, j 
= k

s+r ≥ 0, s−i ≥ 0, r ∈ OI ∪ONI , i ∈ I I ∪ INI

sIi ≥ 0, i ∈ I I , sIr ≥ 0, r ∈ OI

βk free in sign

(14.41)

However, when the integer restriction is taken into account, it is very likely that
inputs cannot decrease at the same rate as outputs increase. This fact will lead to
erroneous results for some DMUs.

Chen et al. (2013b) settle the above problem by assigning different rates βx
and βy to inputs and outputs, respectively. If DMU k is efficient, inputs should
be augmented and outputs should be contracted, which implies βx ≤ 0 and βy ≤ 0.
On the other hand, if DMU k is inefficient, inputs should be contracted and outputs
should be augmented, which means βx ≥ 0 and βy ≤ 0. These two situations can be
incorporated by enforcingβxβy ≥ 0. Based on the above analysis, Chen et al. (2013b)
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modify model (14.41) into

max βx + βy

s.t. yrk + βyyrk =
n∑

j=1
j 
=k

λjyrj − s+r , r ∈ ONI

xik − βxxik =
n∑

j=1
j 
=k

λjxij + s−i , i ∈ INI

x̃ik − sIi =
n∑

j=1
j 
=k

λjxij , i ∈ I I

ỹrk + sIr =
n∑

j=1
j 
=k

λjyrj , r ∈ OI

x̃ik + s−i = xik − βxxik , i ∈ I I
ỹrk − s+r = yrk + βyyrk , r ∈ OI

x̃ik ∈ Z+, i ∈ I I
ỹrk ∈ Z+, r ∈ OI

n∑

j=1
j 
=k

λj = 1, λj ≥ 0, j = 1, . . ., n, j 
= k

s+r ≥ 0, s−i ≥ 0, r ∈ OI ∪ONI , i ∈ I I ∪ INI

sIi ≥ 0, i ∈ I I , sIr ≥ 0, r ∈ OI

βxβy ≥ 0

(14.42)

Note that model (14.42) is non-linear due to the constraint of βxβy ≥ 0. Chen
et al. (2013b) transform this constraint into the following set of linear constraints by
introducing two binary integer variables, w and z.

−M(1 − w) ≤ βx ≤ Mw

−Mz ≤ βy ≤ M(1 − z)

w + z = 1

w ∈ {0, 1} , z ∈ {0, 1}
where M is a sufficiently large number. Chen et al. (2013b) point out that w = 1
and z = 0 signify βx ≥ 0 and βy ≥ 0, and w = 0 and z = 1 signify βx ≤ 0 and
βy ≤ 0, respectively. Therefore, βxβy ≥ 0 could be replaced with the above set of
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linear constraints plus the two binary integer variables, and non-linear model (14.42)
becomes a mixed integer linear programming problem.

Sinceβ∗x ≤ 1 andβ∗y ≥ −1, Chen et al. (2013b) define 1−β∗x
1+β∗y as the super-efficiency

score. The higher the score is, the more efficient a DMU under evaluation is. When
a DMU under evaluation is inefficient, this score is between 0 and 1. When a DMU
under evaluation is efficient, this score is greater than 1. When β∗y = −1, the score
diverges to infinity and the super-efficiency score of infinity is allowed in Chen et al.
(2013b).

14.7 Conclusions

This chapter introduces the concept of super-efficiency and various super-efficiency
measures, especially under the assumption of VRS. Besides the infeasibility issue
which is caused by the convexity constraint in VRS models, zero data can be prob-
lematic in any super-efficiency approaches. For example, Zhu (1996) shows that the
CRS super-efficiency model becomes infeasible when an efficient DMU has zero
inputs. Lee and Zhu (2012) claim that either the conventional or the modified VRS
super-efficiency models, such as the two-stage procedures provided by Cook et al.
(2009) and Lee et al. (2011) with an attempt to address infeasibility, will become
infeasible when zero data are present. They thus extend the work of Lee et al. (2011)
to make the revised model feasible when zero data exist in inputs.
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Chapter 15
DEA Models with Undesirable Inputs,
Intermediates, and Outputs

Zhongbao Zhou and Wenbin Liu

Abstract In real applications involving the use of Data EnvelopmentAnalysis (DEA)
models, undesirable inputs and outputs have been frequently encountered and ad-
dressed, e.g., via data transformation. These studies were scattered in the literature
and often confined to some particular applications. In this paper, we present a sys-
tematic investigation concerning the building of DEA models. First, we describe the
desirability of inputs and outputs, as well as the disposability assumptions in the pres-
ence of undesirable inputs and outputs. Next we construct a number of DEA models
with different disposability assumptions and performance measures for the case of
single-stage DEA. Next, we try to systematically investigate two-stage DEA models
with undesirable inputs, intermediates and outputs. Particularly, we utilize the free-
disposal axioms to construct the production possibility sets and the corresponding
DEA models with undesirable inputs, intermediates, and outputs.

Keywords Data envelopment analysis · Two-stage systems · Undesirable vari-
ables · Extended strongly free disposability ·Weakly free disposability · Production
possibility set

15.1 Introduction

Since the introduction of DEA in 1978, it has been widely used in efficiency analysis
of many business and industry applications. Excellent literature surveys can be found
in, for instance, Seiford (1996) and Cooper et al. (2004). The best-known DEA
models are the CCR model (Charnes et al. 1978), the BCC model (Banker et al.
1984), the Additive model (Charnes et al. 1985), and the Cone Ratio model (Charnes
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et al. 1989). These DEA models were all formulated for desirable inputs and outputs;
however, there frequently exist undesirable inputs and/or outputs in real applications.

In DEA literature, extensive research already exists concerning applications with
un-desirable inputs and/or outputs. There is a useful summary in Liu et al. (2010) for
the case of single-stage DEA. Although extensive literature review is not a primary
task of this work, a portion of the existing approaches are briefly summarized as
follows:

An intuitive reaction is to apply certain transformations. Translation f (U)=
−U+β is the most widely used one (e.g., Ali and Seiford 1990; Pastor 1996; Scheel
2001; Seiford and Zhu 2002). However, it is well-known that not only ranking but
also classification may depend on β. Another widely used one is f (U)=−U, the
so-called ADD approach suggested by Koopmans (1951); the undesirable inputs or
outputs will become desirable after this transformation. However, the data may sub-
sequently become negative, and it is not straightforward to define efficiency scores
for negative data. It is useful to realize that the additive models are able to handle
negative data; these models will be discussed subsequently. The approaches based
on data-transformation may unexpectedly produce adverse results as discussed in
Liu and Sharp (1999). Nonlinear transformations, such as the multiplicative inverse:
f (U)= 1/U (e.g., Golany and Roll 1989; Lovell et al. 1995), can also be used. Being
a nonlinear transformation, this transformation’s behaviors are even more compli-
cated (Scheel 1998). Thus, how to properly select a suitable transformation is highly
case-dependent.

There also exist many approaches that can avoid data transformation. For example,
one may regard undesirable inputs as desirable outputs, or undesirable outputs as
desirable inputs; see Liu and Sharp (1999) for an initial attempt to formulate this
method. This approach is an attractive method in studying operational efficiency for
single-stage DEA due to its simplicity and elegance, although it changes the physical
input-output relationship, especially in the case of two-stage DEA. We will further
extend this approach in this work and discuss its relationship with other approaches.

Our investigation focuses on theoretical aspects of these issues. Our main idea is
to examine these aspects within the general framework proposed in Liu et al. (2010),
where the free disposability and the possible production sets are extensively used
to address undesirable variables. The principal objective of this paper is to discuss
desirability of inputs/outputs, disposability assumptions, and production possibility
sets and to construct a number of DEA models for single-stage and two-stage systems
in the presence of undesirable measures. This approach leads to a unified framework
of DEA models with undesirable measures.

15.2 Single-Stage DEA Models with Undesirable Variables

15.2.1 Desirability and Disposability

In single-stage DEA models, we normally assume that we know which variables are
desirable and which are not. In two-stage DEA models, the meanings of desirable can
be controversial or disputable. Thus here we have to formally define them. It is also
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1 Tobacco 
2 Labor 

1 Cigarette sales
2 Tax 

Cigarette 
manufacturer 

Fig. 15.1 Cigarette manufacturer example

interesting to note that desirability of variables affects its disposability. For example,
normally we can only freely dispose extra desirable inputs or outputs. Therefore we
here discuss these two concepts in the same section.

15.2.1.1 Desirability Determination

1. Desirability of outputs

Desirability of inputs and outputs has been used in an ad hoc fashion in the DEA
literature for single-stage systems. However for rigorously dealing with two-stage
DEA models with undesirable intermediates later on, it is essential to firstly clarify
the precise definition of desirability.

We believe that the desirability of outputs is often determined by the Decision
Maker (DM) in real applications. What the DM hopes to produce as much as possible
are desirable outputs and otherwise they are undesirable outputs in our framework.
Thus, the types of outputs reflect the subjective judgments of the DM. For example, in
the cigarette manufacturer example in Fig. 15.1, if the DM is cigarette manufacturers,
they will hope to sell cigarettes as many as possible while to pay tax as little as possible
in order to obtain more profits. Therefore, cigarette sales is a desirable output and
the tax is an undesirable output. However, if the DM is a government agency with
the interests of the whole nation, they will prefer smaller sales but higher tax in order
to protect public health and reduce medical expenses due to smoking. In this case,
the cigarette sale is an undesirable output and the tax is a desirable output.

2. Desirability of inputs

After determining the desirability of outputs, we argue that the desirability of inputs
should be defined according to the intrinsic production mechanisms. If the increase
of an input will not reduce the desirable outputs, then it is desirable. If its increase
will not increase the desirable outputs, then it is classified as undesirable (because the
purpose of a practical system is to obtain the desirable outputs, undesirable outputs
are not considered in determining the types of inputs). For example, a power plant
may produce waste gases at the time of producing electricity. However we cannot
classify the fuel as an undesirable input because it produces the waste gases. In the
post office example in Fig. 15.2, if the post office is the DM, the amount of correctly
delivered letters is a desirable output while the amount of wrongly delivered letters is
an undesirable output. The increase of the letters with correct addresses will increase
the amount of correctly delivered letters, so the amount of the letters with correct
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1 Letters with  
Correct Address  

2 Letters with 
Incorrect Address 

Post 
Office 

1 Correct Delivery

2 Wrong Delivery 

Fig. 15.2 Post office example

addresses is a desirable input. Similarly, we can determine that the amount of the
letters with incorrect addresses is an undesirable input.

15.2.1.2 Disposability Assumptions in DEA

Assume that there are n decision-making units (DMUs) to be evaluated. Let Xj and
Yj denote the inputs and outputs of DMUj with j= 1, 2,. . ., n. The Production
Possibility Set (PPS) is one of the building blocks of a DEA model (see Liu et al.
(2006) for the other blocks).

A PPS contains all of the realizable DMUs for identifying the best DMUs in a DEA
model, although some of the DMUs may not, in fact, exist. In the DEA theory, the
DMUs are referred to as “virtual” DMUs and are also included in the comparisons. If
a DMU (Xj ,Yj ) is found to be the “best” in the PPS using the Pareto preference then
it is considered to be efficient. In the standard DEA models several assumptions are
made on the PPS, such as convexity and no-free-lunch. The most relevant property
here is the disposability, which states as “free disposal”.

1. Extended strongly free disposability

The property of strongly free disposability holds if the absorption of any additional
amounts of inputs without any reduction in outputs is always possible. Let P be the
Production Possibility Set, the assumption can be stated:

if (X,Y ) ∈ P andW ≥ X,Z ≤ Y , then (W ,Z) ∈ P.
Let us note that such free disposal can only hold up to some extent in practice as W
cannot be infinitely large-if so eventually one will not be able to disposal it freely.
Assuming the strong disposal, convexity and the minimum span, then the standard
PPS spanned from the inputs and the outputs has the following form for desirable
inputs and outputs.

PPS =
⎧
⎨

⎩(X,Y ) : X ≥ X(λ) =
n∑

j=1

λjXj , Y≤ Y (λ) =
n∑

j=1

λjYj , λ ∈ S
⎫
⎬

⎭ (15.1)

where S = {λj ≥ 0, j = 1,2, . . . n} or S = {λj ≥ 0,
∑n
j=1 λj = 1} in the DEA

literature.
To handle undesirable inputs or outputs satisfactorily, one needs to extend the

strongly free disposability. There seems to exist several possible ways.
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Here we directly extend the above strongly free disposability via using the same
statement but with the preferences adopted for undesirable. Formally this extended
strongly free disposability can be stated as:

Let (X,Y ) = (XD ,XU ,YD ,YU ) ∈ P be desirable and undesirable inputs and
outputs respectively, if WD ≥ XD , WU ≤ XU and ZD ≤ YD , ZU ≥ YU , then
(WD ,WU ,ZD ,ZU ) ∈ P .

There are many practical situations where such free disposability can be observed.
Take a post-office for instance, letters with correct addresses are good inputs but
those with in- correct addresses are bad ones. Therefore one can produce a given
output with more good inputs and fewer bad inputs. Most electricity generators
have pollution control systems, such as equipments to reduce sulfur dioxide in their
production processes. Thus undesirable outputs like sulfur dioxide can be “freely”
increased, at least to some extent, by shutting down these pollution control systems.
Similar examples can be found in service sectors where the desirable and undesirable
outputs are numbers of served customers and received complaints respectively. If
there are plenty of customers, then the extended strongly free disposability holds
as it is possible to freely increase complaints without reducing numbers of serviced
customers. It will be seen below that many existing DEA models in fact use this type
of extended strongly free disposability to handle undesirable variables. With the
extended strongly free disposability, the corresponding PPS with convexity reads:

PPS =
⎧
⎨

⎩(XD ,XU ,YD ,YU ) : XD ≥
n∑

j=1

λjX
D
j ,XU ≤

n∑

j=1

λjX
U
j ,

YD ≤
n∑

j=1

λjY
D
j ,YU ≥

n∑

j=1

λjY
U
j ,

n∑

j=1

λj = 1, λj ≥ 0

⎫
⎬

⎭.

(15.2)

It is clear that the above PPS can be equivalently expressed via regarding the undesir-
able inputs (outputs) as desirable outputs (inputs) respectively, and then applying the
standard strongly free disposability. Therefore this conclusion provides a theoretical
foundation to the approach of exchanging undesirable variables with desirable ones,
which will be examined in more detail later on.

Below we firstly show that many existing DEA models have assumed the extended
strongly free disposability. For instance, in many cases assuming the strongly free
disposability for transferred variables is just to assume the extended strongly free
disposability for the original variables. Let us further elaborate that the model in
Seiford and Zhu (2002) actually assumed extended strongly free disposability and
used the above PPS in the original variables, where they used the transformation

Y
U

j = −YUj + W , with YUj < W . Then they assumed the standard Strong Free
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Disposability and convexity. Thus the PPS with the new variables reads:
⎧
⎨

⎩(X,Y ) : X ≥
n∑

j=1

λjXj ,Y
D ≤

n∑

j=1

λjY
D
j ,Y

U ≤
n∑

j=1

λjY
U

j ,
n∑

j=1

λj = 1, λj ≥ 0

⎫
⎬

⎭.

(15.3)

Then back to the original variables via Y
U

j = −YUj +W , the PPS reads:

⎧
⎨

⎩(X,Y ) : X ≥
n∑

j=1

λjXj ,Y
D ≤

n∑

j=1

λjY
D
j ,YU ≥

n∑

j=1

λjY
U
j ,

n∑

j=1

λj = 1, λj ≥ 0

⎫
⎬

⎭.

(15.4)

Thus one may say that this model is in fact based on the extended strongly free
disposability. Here the convexity plays a key role in deriving the equivalence of
PPS if W 
= 0. Therefore it follows that the above equivalence holds for ADD
transformation. On the other hand, if outputs are desirable but some of them are
negative, then one may first apply ADD to change them into undesirable but positive
variables, and then use extended strongly free disposability.

2. Weakly free disposability

The basic idea of weakly free disposability for outputs is that the undesirable outputs
may not be reduced alone but may be reduced with a proportional reduction of
certain desirable outputs. This idea was first developed by Shephard, where all inputs
(outputs) must be increased (decreased) with the same percentage (Shephard 1970).
This notion is different from extended strongly free disposability. Take the coal
plant, for instance: the desirable and undesirable outputs are the electricity and
carbon dioxide produced by burning coal, respectively. Weakly free disposability
implies that a fixed percent reduction in carbon dioxide is possible if accompanied
by the same percent reduction in the output of electricity provided the inputs remain
unchanged. There are many studies addressing weakly free disposability for outputs,
especially in banking and environment performance evaluation, such as Färe et al.
(2005).

One example of weakly free disposability is formally stated as: undesirable
outputs are weakly disposal

if (YD ,YU ) ∈ P (X) and 0 ≤ α ≤ 1, then (αYD ,αYU ) ∈ P (X)

It is easy to derive the weakly free disposability for inputs.
The recent research by (Kuosmanen 2005; Kuosmanen and Kazemi Matin 2011;

Podinovski and Kuosmanen 2011) argues that the correct implementation of the
weakly free disposability axiom requires the use of different abatement factors for
each observed activity. In the following sections, we will adopt the classic definition
of weakly free disposability.
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The production possibility set with weakly free disposability can be expressed as
⎧
⎨

⎩(X,YD ,YU )

∣∣∣∣∣∣

n∑

j=1

λjXj ≤ X,
n∑

j=1

λjY
D
j = αYD ,

n∑

j=1

λjY
U
j = αYU ,α ≥ 1, λj ∈ S

⎫
⎬

⎭

(15.5)

In practice, there exist hybrid situations where certain outputs are weakly free dis-
posal while other outputs are strongly free disposal (e.g., Färe and Grosskopf 2004;
Ray 2004), or some inputs are weakly free disposal and other inputs are weakly free
disposal, while all outputs are strongly free disposal.

The extended strongly free disposability and the weakly free disposability are
independent. Whether one should assume an extended strongly free disposability
or weakly free disposability in a DEA model mostly depends on the nature of
the applications it handles. Taking the service example above, for instance, if the
market has already become very competitive then it is no longer possible to increase
complaints freely; in this case, one should consider a weakly free disposability
instead. However, in this paper, unless otherwise stated, we will always assume
extended strongly free disposability.

15.2.2 DEA Models with Undesirable Inputs/Outputs for
Single-Stage Systems

1. Slacks-based DEA models

In this section we examine slacks-based DEA models. For the case with undesirable
inputs and outputs, we will assume that the inputs and output of j-th unit can be
decomposed into

X =
⎛

⎝X
DI
j

XUI
j

⎞

⎠, Yj =
⎛

⎝Y
DO
j

YUO
j

⎞

⎠,

with {DI}, {UI}, {DO}, {UO} being fixed index sets independent of j, such that
XDI
j , YDO

j are desirable inputs and outputs, andXUI
j , YUO

j are undesirable inputs and
outputs. For instance, DI= {1,2}, UI= {3,4,. . .,m}, DO= {1,2,3}, UO= {4,5,. . .,s}
so that |DI|= 2, |UI|=m−2, |DO|= 3, |UO|= s−3. For example, we assume
m= s= 5 below,

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

xDI
1

xDI
2

xUI
3

xUI
4

xUI
5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

yDO
1

yDO
2

yUO
3

yUO
4

yUO
5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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In such a case, let

X =
⎛

⎝X
DI

XUI

⎞

⎠, Y =
⎛

⎝Y
DO

YUO

⎞

⎠.

We will assume the extended strongly free disposability. Note that maximizing de-
sirable outputs (undesirable inputs) and minimizing undesirable outputs (desirable
inputs) can be achieved by maximizing the correspondent slack measurements. Next,
the Additive DEA model with measure weights reads:

max wtDI s
DI + wtUI s

UI + wtDOs
DO + wtUOs

UO,

s.t.

n∑

j=1

λjY
DO
j − sDO = YDO

0

n∑

j=1

λjY
UO
j + sUO = YUO

0

n∑

j=1

λjX
DI
j + sDI = XDI

0

n∑

j=1

λjX
UI
j − sUI = XUI

0 ,

sDI , sUI , sDO, sUO ≥ 0, λ ∈ S

(15.6)

where wDI , wUI , wDO , wUO are (strictly) positive weight vectors. Next, DMU0 is
efficient if and only if the maximum is zero.

However, the above DEA model cannot produce efficiency scores directly. For
the desirable nonnegative inputs and outputs, one can use the Tone (2001) formula:

min ρ = 1 − 1
m

∑m
i=1 s

−
i /xi0

1 + 1
s

∑s
r=1 s

+
r /yr0

.

s.t. X0 =
n∑

j=1

λjXj + s−

Y0 =
n∑

j=1

λjYj − s+

λ ∈ S, s− ≥ 0, s+ ≥ 0.

(15.7)

The model was shown to be units invariant and the scores to be between [0, 1].
Later we will see that the division of X0, Y 0 for the slacks defined as above may
need to be changed. For the case where there are undesirable variables, but they are
nonnegative, the above DEA model can be readily extended as follows:
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min ρ = 1 − 1
|DI |+|UO|

(∑
sDI
i /x

DI
i0 +∑

sUO
i /yUO

i0

)

1 − 1
|DO|+|UI |

(∑
sDO
r /yDO

r0 +∑
sUO
i /yUO

i0

)

s.t.

n∑

j=1

λjY
DO
j − sDO = YDO

0

n∑

j=1

λjY
UO
j + sUO = YUO

0 ,

n∑

j=1

λjX
DI
j + sDI = XDI

0

n∑

j=1

λjX
UI
j − sUI = XUI

0 ,

sDI , sUI , sDO, sUO ≥ 0, λ ∈ S

(15.8)

It is clear this DEA model has units invariant, and the scores are between [0, 1].
However, this model is not translation invariant. It follows from our discussions
above that regarding the undesirable inputs and outputs as desirable outputs and
inputs and then applying the strongly free disposability will lead to the same models.
If we assume the weakly free disposability instead, we can have the following model:

min ρ = 1 − 1
|DI |+|UO|

(∑
sDI
i /x

DI
i0 +∑

sUO
i /yUO

i0

)

1 + 1
|DO|+|UI |

(∑
sDO
i /yDO

i0 +∑
sUI
i /x

UI
i0

)

s.t.

n∑

j=1

λjX
DI
j + sDI = XDI

0

n∑

j=1

λjX
UI
j − sUI = XUI

0

n∑

j=1

λjY
DO
j − sDO = YDO

0

n∑

j=1

λjY
UO
j − sUO = YUO

0

n∑

j=1

YDO
j λj = αYDO

0

n∑

j=1

YUO
j λj = αYUO

0

α ≥ 1, λ ∈ S, sDI , sUI ≥ 0

(15.9)
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Where the negative data for inputs or outputs is non-trivial and deserves study, the
standard measure used above can be negative. Often people still prefer to use negative
data in some applications, see Liu and Sharp (1999) and Sharp et al. (2006) for some
discussions. Below we assume that all the inputs and outputs are desirable but can be
negative. In Silva Portela et al. (2004), the SP Range was introduced, and the Range
Directional Model was formulated as

min β

s.t.

n∑

j=1

λjXj ≤ X0 − βP−
0

n∑

j=1

λjYj ≥ Y0 + βP+
0

β ≥ 0, λ ∈ S,

(15.10)

where the SP Range is defined by

P−
0 = X0 − Zi , with Zi = min

j
xij ,P

+
0 = Wr − Y0, withWr = max

j
yrj

to handle negative data. Next, 1−β gives efficiency scores. This idea can be used
to handle negative data. In fact, one only needs to replace the X0, Y 0 in the Tone’s
formula with P−

0 , P+
0 to have the following DEA model:

min ρ = 1 − 1
m

∑m
i=1 s

−
i /p

−
i0

1 + 1
s

∑s
r=1 s

+
r /p

+
r0

s.t. X0 =
n∑

j=1

λjXj + s−

Y0 =
n∑

j=1

λjYj − s+

λ ∈ S, s− ≥ 0, s+ ≥ 0.

(15.11)

When p−i0, p+r0 are zero, the corresponding terms will be dropped from the numera-
tor/denominator, respectively. It can be shown that the above measure is in the range
[0,1] (see Liu et al. 2006). Therefore, the efficiency measure in Model (15.11) is in
the range [0,1]. It is clear that this DEA model is not only units invariant but also
translation invariant. The above model is applicable to the case where all inputs and
outputs are desirable but may be negative. Furthermore, it is clear that the general
Model (15.12) can be similarly modified so that it can handle either desirable and
undesirable or positive and negative data.
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2. DEA models with radial measurement

Now assume that all the components of inputs and outputs are positive. For the general
case we again decompose the inputs and outputs into desirable and undesirable parts:

Xj =
⎛

⎝X
DI
j

XUI
j

⎞

⎠,Yj =
⎛

⎝Y
DO
j

YUO
j

⎞

⎠,X =
⎛

⎝X
DI

XUI

⎞

⎠,Y =
⎛

⎝Y
DO

YUO

⎞

⎠

If we wish to use a single ratio to measure the radial extension or contraction for both
desirable and undesirable parts of inputs or outputs, then we may have to address
DEA models with nonlinear objective functions, such as θ+ 1/θ. However, it is
possible to measure desirable outputs and undesirable inputs with the radial measure
by assuming the extended strongly free disposability regarding the undesirable inputs
as desirable outputs. From this point of view, we can derive DEA models of radial
type for undesirable inputs and outputs, as follows:

max θ + ε (∣∣sDI
∣∣+ ∣∣sUI

∣∣+ ∣∣sDO
∣∣+ ∣∣sUO

∣∣ )

s.t.

n∑

j=1

λjY
DO
j − sDO = θYDO

0 ,
n∑

j=1

λjX
UI
j − sUI = θXUI

0 ,

n∑

j=1

λjY
UO
j + sUO = YUO

0 ,
n∑

j=1

λjX
DI
j + sDI = XDI

0 ,

sDI , sUI , sDO, sUO ≥ 0, λ ∈ S, θ ≥ 1.

(15.12)

Similarly, we can write down the following input-oriented DEA model with
undesirable inputs and/or outputs:

min θ − ε (∣∣sDI
∣∣+ ∣∣sUI

∣∣+ ∣∣sDO
∣∣+ ∣∣sUO

∣∣ ) ,

s.t.

n∑

j=1

YDO
j λj − sDO = YDO

0 ,
n∑

j=1

XUI
j λj − sUI = XUI

0

n∑

j=1

YUO
j λj + sUO = θYUO

0 ,
n∑

j=1

XDI
j λj + sDI = θXDI

0 ,

sDI , sUI , sDO, sUO ≥ 0, λ ∈ S, 0 ≤ θ ≤ 1.

(15.13)

Now we will discuss the approaches used in Seiford and Zhu (2002). In their
model, all the inputs are assumed to be desirable; however, there are undesirable

outputs. These researchers first used the output transformation Y
U

j = −YUj +w and,
subsequently, the strongly free disposability with the radial measure to derive the
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model:

max θ

s.t.

n∑

j=1

λjxij ≤ xi0, i = 1, . . .,m,

n∑

j=1

λj ȳ
U
rj ≥ θȳUr0, r = 1, . . ., l,

n∑

j=1

λjy
D
rj ≥ θyDr0, r = 1, . . ., s,

n∑

j=1

λj = 1, λj ≥ 0, j = 1, . . ., n.

(15.14)

We know that this model uses the extended strongly free disposability, as discussed
before. Often, decision-makers are more interested in the desirable outputs such that
we may wish only to explicitly measure the desirable outputs in the above model;
that is to say, we maximize the performance measure of desirable outputs (like
total electricity generated) while asking the undesirable ones (like pollution) under
control. Next, we can simply regard the undesirable outputs as desirable inputs and
then have the following DEA model:

max θ

s.t.

n∑

j=1

λjxij ≤ xi0, i = 1, . . .,m,

n∑

j=1

λjy
U
rj ≤ yUr0, r = 1, . . ., l,

n∑

j=1

λjy
D
rj ≥ θyDr0, r = 1, . . ., s,

n∑

j=1

λj = 1, λj ≥ 0, j = 1, . . ., n.

(15.15)

Model (15.15) can be obtained directly from Model (15.14) by dropping the radial
measures for the undesirable outputs.

3. DEA models with directed-distance measurement

Finally we discuss models using the directional distance. Let us still assume all the
inputs are desirable for simplicity. Using the directional distance used in Färe and
Grosskopf (2004), it is now possible to use linear measurements to measure both
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desirable and undesirable variables. For example, assuming the extended strongly
free disposability and CRS, one then has the following DEA model:

max θ

s.t.

n∑

j=1

YDO
j λj ≥ YDO

0 + θGDO,
n∑

j=1

YUO
j λj ≤ YUO

0 − θGUO,

n∑

j=1

Xjλj ≤ X0, λ ≥ 0, θ ≥ 0,

(15.16)

where GDO and GUO are selected references. Using the weakly free disposability
discussed and the subsequent PPS instead, the model becomes

max θ

s.t.

n∑

j=1

YDO
j λj ≥ YDO

0 + θGDO,
n∑

j=1

YUO
j λj = YUO

0 − θGUO,

n∑

j=1

Xjλj ≤ X0, λ ≥ 0, θ ≥ 0,

(15.17)

which replaces the inequality for undesirable outputs in Model (15.16) with the
equality.

In practice, extra assumptions, such as null-joint of desirable and undesirable
variables, may be needed (see Färe and Grosskopf (2004) for the details). If one
uses θ and 1

θ
to measure performance of the desirable and undesirable outputs,

respectively, and assumes extended strongly free disposability, then one will have
the nonlinear model in Färe et al. (1989).

15.3 Two-Stage DEA Models with Undesirable Variables

In recent years, many researchers constructed various models for evaluating the effi-
ciencies of two-stage systems. Färe (1991), Färe and Whittaker (1995), and Färe and
Grosskopf (1996) advanced the frontier model and evaluated the efficiencies of 137
dairy farms in the United States. These researchers found that the resolution of the
model is higher than the traditional DEA models. Liang et al. (2008) built a central-
ized model and leader-follower model from the perspective of game theory, in which
the system efficiency is decomposed into the product of the subsystems’ efficiencies;
they also proposed a relatively fair scheme of efficiency decomposition. Kao and
Hwang (2008) established a relational model and carefully handled the intermediate
measures. Cook et al. (2010) proved that the centralized model and relational model
are equivalent to the Frontier model. Zhou et al. (2013a) developed a Nash bargaining
game model to obtain fair efficiency decompositions for the centralized model while
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keeping the overall efficiency unchanged under this circumstance. All of these stud-
ies are multiplier models in nature. On the other hand, Färe and Grosskopf (2000)
constructed production possibility sets and, consequently, built envelopment models
for network DEA. Chen and Zhu (2004) built the production frontier for two-stage
system and developed an integration DEA model in the envelopment form. Chen and
Yan (2011) proposed three models: centralized, mixed, and decentralized production
possibility sets according to the internal operation modes of two-stage systems; they
established the corresponding DEA models in the envelopment form. Zhou et al.
(2013b) further studied the production possibility set and performance evaluation
models in supply chain DEA. Tone and Tsutsui (2009) developed a network DEA
model based on the radial WSBM measurement, which can evaluate the efficiency
of the system more reasonably because the importance of the subsystem is taken into
account. Although some multiplier models are shown to be the dual of envelopment
models, their relationships are much less clear in the contents of Network DEA (see
Chen et al. (2013) for the discussions of the advantages and disadvantages of the two
approaches).

However, most of the existing studies only consider desirable inputs and outputs
in nature. In actual production activities, undesirable inputs and undesirable outputs
may exist. There are many real applications with undesirable inputs and/or outputs.
Liu et al. (2010) investigated the existing treatment on undesirable inputs/outputs
for single-stage DEA using a free-disposability framework. Only a few studies focus
on systems with network structures and undesirable inputs/outputs. Kordrostami
and Amirteimoori (2005) considered a multistage system and took into account the
undesirable factors (which can also be intermediate measures) with a minus sign in
the computation of the virtual inputs and virtual outputs of a multiplier formulation.
Hua and Bian (2008) extended the approach to a more general network of processes,
not necessarily in series. In both papers, a multiplier DEA form is used. Fukuyama
and Weber (2010) evaluated the performance of Japanese banks using a slacks-
based network model where some final outputs are undesirable. Lozano et al. (2013)
proposed a directional distance approach to address network DEA problems where
the processes may generate not only desirable but also undesirable final outputs.
The proposed approach is applied to the problem of modeling and benchmarking
airport operations. Chen et al. (2012) used multi-activity network data envelopment
analysis to appraise the performance of incineration plants in Taiwan. The respective
efficiencies of the waste treatment and electricity generation are assessed in a unified
framework.

However, emerging applications call for more systematic investigations for two-
stage and network DEA with undesirable variables. For instance, depending on its
operating model, whether an intermediate variable is desirable or undesirable can be
questionable for a particular two-state system. Moreover, most of the existing studies
only consider the final outputs to be undesirable. The characteristics of initial inputs
and intermediate measures have not been investigated yet. As mentioned, there may
even exist inconsistencies in deciding the types of intermediate measures. In this
paper, we try to provide a more systematic investigation by following the idea of
using free-disposability, which is the key element for the theoretical study of the



15 DEA Models with Undesirable Inputs, Intermediates, and Outputs 429

X Y Z Subsystem
1 

Subsystem
2 

Fig. 15.3 Two-stage systems

DEA models with undesirable variables. Therefore, we will still use envelopment
framework in our study, although we are aware of the potential problems, such as
division efficiency, in this approach, especially in the case of variable return to scale,
see Chen et al. (2013) for more details. In this work, we build the production possibil-
ity sets and construct the corresponding envelopment DEA models with undesirable
factors.

15.3.1 Desirability of Inputs and Outputs in Two-Stage Systems

The two-stage system is shown in Fig. 15.3, where the whole system is composed
of two subsystems connected in series. All of the outputs of subsystem 1 are the
only inputs of subsystem 2. Based on the definitions of the types of inputs and
outputs in Sec. 15.2, there are two viewpoints to determine the types of initial inputs,
intermediate input-outputs, and final outputs in two-stage systems.

1. Subsystem viewpoint. According to the discussion in Sec. 15.2, at first, the types
of outputs Z and outputs Y are determined by subsystem 1 and subsystem 2,
respectively. Next, the types of inputs X and inputs Z are defined according to the
inherent operating mechanisms of subsystem 1 and subsystem 2, respectively.

2. System viewpoint. The DM of the whole system defines the types of final outputs
Y, then define the types of intermediate measures Z and initial inputs X in sequence
according to the inherent operating mechanisms of subsystem 2 and subsystem 1.

There may exist two situations while determining the types of initial inputs,
intermediate input-outputs, and final outputs.

Consistency The definitions of the types of inputs as well as the types of outputs
are the same using both ways. In the banking system example shown in Fig. 15.4, we
use the subsystem-definition approach at first. For subsystem 1, revenue and profit
are desirable outputs, non-performing loans is an undesirable output, and employee,
assets, and operating expenses are desirable inputs. For subsystem 2, market value
and earnings per share are desirable outputs, revenue volatility is an undesirable
output, revenues and profit are desirable inputs, and non-performing loans is an
undesirable input. When we adopt the system-definition approach for the whole
system, market value and earnings per share are desirable outputs, and revenue and
profit are desirable inputs in subsystem 2 and the desirable outputs in subsystem
1. Non-performing loans is an undesirable input in subsystem 2 and an undesirable
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Fig. 15.4 Banking example

output in subsystem 1. Note that the types of all indexes are the same no matter which
approach is adopted.

Inconsistency Inconsistency means that the types of input-outputs defined by the
two approaches are different. For subsystem 2, the definition of the types of inputs
and outputs will always be consistent with the types by system-definition approach
because the outputs of subsystem 2 are the final outputs of the whole system. So
the difference of the definitions only exists in subsystem 1 or the whole system. As
shown in Fig. 15.5, in the production system of power plant-fertilizer plant, SO2

emissions is an undesirable output and coal and labor are desirable inputs of power
plant when we use subsystem-definition method. Fertilizer production is a desirable
output and power generation and SO2 emissions are desirable inputs of the fertilizer
plant as well as the desirable outputs of power plants, and coal and labor are desirable
inputs of power plants when we use system-definition method. However, if we use
the sub-system approach, the definition of the type of the SO2 emissions defined
by the subsystem-definition method is different from that of the system-definition
method. The type of the SO2 emissions is defined as undesirable by subsystem 1;
however, it is defined as desirable by the overall system. Clearly there is another case
that an intermediate measure is treated as desirable by subsystem 1 while undesirable
by the whole system.

Fertilizer  
1 Coal 
2 Labor 

1 Electricity 
2 SO2Power 

Plant 
Fertilizer 
Plant 

Fig. 15.5 Power-Fertilizer plants example
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15.3.2 Production Possibility Sets of Two-Stage Systems with
Undesirable Variables

Before evaluating the efficiencies of two-stage systems, we need to establish the
rational production possibility sets. Production possibility set includes not only the
actual decision-maker units but also virtual units. Let us note that for two-stage pro-
duction processes, the disposability situations may be different for the intermediate
measures as outputs of the first stage or as inputs of the second stage. For example,
the intermediate measures could have undesirable elements (like pollutants), thereby
satisfying the weakly free disposability. However, these measures are all desirable
inputs of the second stage, thereby satisfying the strongly free disposability as the
inputs of the second stage. As another example, imagine the production of the first
stage is in a small city with plenty free spaces, and thus its outputs can be assumed to
be freely disposal. However, the second stage may be at a large city with very limited
spaces; then the inputs of the second stage (the outputs of the first stage) may not be
freely disposal. Thus, when constructing PPS for two-stage DEA models, we may
assume different disposability for the intermediate variables depending on whether
they are regarded as inputs or outputs of different stages.

Suppose that there are n DMUs to be evaluated and that for the j-th DMU,

Xj = (XDI
j

T ,XUI
j

T)
T

are the initial inputs, and XDI
j = (x1j , . . ., xmDj)

T , XUI
j =

(x1j , . . ., xmUj)
T represent the desirable and undesirable inputs of Xj , respectively.

Zj = (ZDODI
j

T ,ZUOUI
j

T ,ZUODI
j

T ,ZDOUI
j

T)
T

are the intermediate measures; that is,
the outputs of subsystem 1, as well as the only inputs of subsystem 2. ZDODI

j =
(z1j , . . ., zqDDj)

T represent the desirable outputs of subsystem 1 and the desirable
inputs of subsystem 2, ZUOUI

j = (z1j , . . ., zqUUj)
T are the undesirable outputs of

subsystem 1, and undesirable inputs of subsystem 2, and ZUODI
j = (z1j , . . ., zqUDj)

T

are the undesirable outputs of subsystem 1 and desirable inputs of subsystem 2.
ZDOUI
j = (z1j , . . ., zqDUj)

T are the desirable outputs of subsystem 1 and the unde-

sirable inputs of subsystem 2. Finally, Yj = (YDO
j

T ,YUO
j

T)
T

are the final outputs of
the whole system; YDO

j = (y1j , . . ., ysDj)
T , YUO

j = (y1j , . . ., ysU j)
T represent the

desirable and undesirable outputs, respectively.
In this work we follow the idea initiated in Färe and Grosskopf (2000), and

further extended in the work of Chen and Yan (2011) and Tone and Tsutsui (2009).
Furthermore, we combine the idea in Liu et al. (2010)to construct the PPS and
models of the network DEA when there may exist undesirable inputs, intermediate
input-outputs, and outputs.

1. Production possibility sets in the consistent case

Usually, the production possibility set of a two-stage system is defined as

P = {(X,Y ) : (X,Z) ∈ P1, (Z,Y ) ∈ P2} (15.18)
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where P1 and P2 are the production possibility set of the first and second stages,
respectively. This equation means X is used to produce Z in the first stage, and all of
the products of the first stage Z are used to produce Y in the second stage. However,
we think it is more flexible and beneficial for a systematical study to define it as:

P = {(X,Z,W ,Y ) : (X,Z) ∈ P1, (W ,Y ) ∈ P2, (Z,W ) ∈ ∧}. (15.19)

This PPS indicates that X is used to produce Z in the first stage, and W is used to
produce Y in the second stage, where Z and W satisfy some type of relationship∧.
For example, the set ∧ = {(Z,W ) : Z = W } means that all the products of the first
stage must be used by the second stages, while the ∧ = {(Z,W ) : Z ≥ W } means
that some products of the first stage may can be freely disposed at the second stages.
Set∧ = {(Z,W ) : Z = τW , τ ≥ 1}means that the products of the first stage must be
used by the second stages proportionally. Of course, some more complex situations
may be constructed according to the real production mechanisms.

The key point to construct two-stage production possibility sets with undesir-
able inputs and outputs is how to handle intermediate measures. When the types
of intermediate measures are determined consistently, for the desirable part of the
intermediate measures, the outputs of subsystem 1 should not be less than the inputs
of subsystem 2. For the undesirable part of the intermediate measures Z, the outputs
of subsystem 1 should not be greater than the inputs of subsystem 2. Therefore, we
can construct the production possibility set below.

Under the assumption of constant return to scale (CRS), if all the initial in-
puts, intermediate measures, and final outputs satisfy the extended strongly free
disposability, then the production possibility set can be expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xDI

xUI

)
,

{
zDODI

zUOUI

}
,

{
wDODI

wUOUI

}
,

(
yDO

yUO

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑

j=1

λjX
DI
j ≤ xDI ,

n∑

j=1

λjX
UI
j ≥ xUI

n∑

j=1

λjZ
DODI
j ≥ zDODI ,

n∑

j=1

λjZ
UOUI
j ≤ zUOUI

n∑

j=1

μjZ
DODI
j ≤ wDODI ,

n∑

j=1

μjZ
UOUI
j ≥ wUOUI

n∑

j=1

μj Y
DO
j ≥ yDO ,

n∑

j=1

μj Y
UO
j ≤ yUO

zDODI ≥ wDODI , wUOUI ≥ zUOUI ,

λj ,μj ≥ 0, j = 1, . . ., n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.20)

As explained in Liu et al. (2010), the extended strongly free disposability does hold
for some situations and is assumed in many existing DEA models for undesirable
variables. It is easy to find that many existing PPS with undesirable variables used in
literatures, such as (Fukuyama and Weber 2009; Fukuyama and Mirdehghan 2012;
Huang et al. 2014; Wang et al. 2014) are just special cases of (15.20) when all initial
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inputs and intermediate measures are desirable while only some final outputs are
undesirable.

The variable return to scale (VRS) is considerably more complicated to study
for the two-stage DEA, as discussed in Chen et al. (2013). Of course if both the
subsystems are VRS, then the overall system should also be VRS. However, even if
one stage is CRS and another is VRS, the overall system still should be VRS. Thus
it seems that the convexity constraints

∑n
j=1 λj = 1 and

∑n
j=1 μj = 1 are only one

possible way to impose VRS in the PPS. In this work we are not in the position
to investigate the case of VRS fully. Instead we will only consider the case where
both of the subsystems are VRS, as assumed in Tone and Tsutsui (2009), Lewis and
Sexton (2004), Azizi and Matin (2010).

Under the CRS assumption, if all the initial inputs, intermediate measures, and
final outputs satisfy the weakly free disposability, then the production possibility set
can be expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xDI

xUI

)
,

{
zDODI

zUOUI

}
,

{
wDODI

wUOUI

}
,

(
yDO

yUO

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑

j=1

λj X
DI
j = φxDI ,

n∑

j=1

λj X
UI
j = φxUI

n∑

j=1

λj Z
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j = αzDODI ,

n∑

j=1

λj Z
UOUI
j = αzUOUI

n∑

j=1

μj Z
DODI
j = βwDODI ,

n∑

j=1

μj Z
UOUI
j = βwUOUI

n∑

j=1

μj Y
DO
j = ϕyDO ,

n∑

j=1

μj Y
UO
j = ϕyUO

zDODI = τwDODI , zUOUI = τwUOUI

λj ,μj ≥ 0, j = 1, . . ., n

α ≥ 1,ϕ ≥ 1, τ ≥ 1,0 ≤ β ≤ 1,0 ≤ φ ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.21)

In this case, α,β,ϕ,φ can actually be removed, the above PPS is equivalent to:

⎧
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μj Y
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zDODI = τwDODI , zUOUI = τwUOUI

λj ,μj ≥ 0, j = 1, . . ., n

τ ≥ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15.22)
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Assuming VRS for both subsystems, if all the initial inputs, intermediate measures,
and final outputs satisfy the weakly free disposability, then the production possibility
set can be expressed as:

⎧
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λj ,μj ≥ 0, j = 1, . . ., n

α ≥ 1,ϕ ≥ 1, τ ≥ 1,0 ≤ β ≤ 1,0 ≤ φ ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15.23)

Note that α,β,ϕ,φ in (15.23) cannot be removed now. This property applies to
the models due to the convexity constraints

∑n
j=1 λj = 1 and

∑n
j=1 μj = 1. As

discussed in the literature, the weakly free disposability is mostly observed in appli-
cations in environment studies, such as production of electricity with carbon dioxide.
However, often the initial inputs (and/or outputs) are, in fact, desirable or, more
generally, satisfy the extended strongly free disposability. These cases are studied
below.

Under the CRS assumption, if initial inputs and final outputs satisfy the ex-
tended strongly free disposability, while intermediate measures satisfy the weakly
free disposability, then the production possibility set can be expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xDI

xUI

)
,

{
zDODI

zUOUI

}
,

{
wDODI

wUOUI

}
,

(
yDO

yUO

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑

j=1

λjX
DI
j ≤ xDI ,

n∑

j=1

λjX
UI
j ≥ xUI

n∑

j=1

λjZ
DODI
j = zDODI ,

n∑

j=1

λjZ
UOUI
j = zUOUI

n∑

j=1

μjZ
DODI
j = wDODI ,

n∑

j=1

μjZ
UOUI
j = wUOUI

n∑

j=1

μj Y
DO
j ≥ yDO ,

n∑

j=1

μj Y
UO
j ≤ yUO

zDODI = τwDODI , zUOUI = τwUOUI

τ ≥ 1, λj ,μj ≥ 0, j = 1, . . ., n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.24)

To our best knowledge, the PPS of this type is new in the literature, although the
PPS in (Maghbouli et al. 2014) under the CRS assumption is similar with the above
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PPS, the intensive variables in (Maghbouli et al. 2014) are the same for all initial
inputs, intermediate measures, and final outputs. The above PPS can be used in
many situations where intermediate measures follow weakly free disposability. For
example, we can use the above PPS to analyze the airport example in (Maghbouli
et al. 2014) under the CRS assumption.

Assuming VRS for both subsystems, if initial inputs and final outputs satisfy the
extended strongly free disposability, while intermediate measures satisfy the weakly
free disposability, then the production possibility set can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xDI

xUI

)
,

{
zDODI

zUOUI

}
,

{
wDODI

wUOUI

}
,

(
yDO

yUO

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑

j=1

λj X
DI
j ≤ xDI ,

n∑

j=1

λj X
UI
j ≥ xUI

n∑

j=1

λj Z
DODI
j =αzDODI ,

n∑

j=1

λj Z
UOUI
j = αzUOUI

n∑

j=1

μj Z
DODI
j = βwDODI ,

n∑

j=1

μj Z
UOUI
j = βwUOUI

n∑

j=1

μj Y
DO
j ≥ yDO ,

n∑

j=1

μj Y
UO
j ≤ yUO

zDODI = τwDODI , zUOUI = τwUOUI

n∑

j=1

λj = 1,
n∑

j=1

μj = 1

λj ,μj ≥ 0, j = 1, . . ., n

τ ≥ 1,α ≥ 1,0 ≤ β ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15.25)

Of course, other cases can be similarly discussed.

2. Production possibility sets in the inconsistent case

To our best knowledge, situations below appear frequently in real applications (such
as the power-fertilizer plant discussed in Sect. 15.3.1), but are never discussed in the
literature.

There are two additional subclasses: (i) some intermediate outputs are undesirable
for the subsystem 1, but are desirable inputs for subsystem 2;(ii) some intermediate
outputs are desirable for the subsystem 1, but are undesirable inputs for subsystem 2.
Clearly, if assuming that all these inconsistent measures satisfy the extended strongly
free disposability, then one can infer that there will exist no linkage between these
variables. For example, if Z is a desirable output of subsystem 1, then any W1< Z
is possible to produce by assuming the strongly free disposability. However, if it is
also an undesirable input for subsystem 2, then any W2<Z is a possible input. Next,
there exist no linkage between W1 and W2. Thus we should only assume weakly free
or non-free disposability for those variables. We now further discuss the following
useful cases.

Under the CRS assumption, if all the inconsistent variables satisfy non-free dis-
posability, and consistent ones satisfy the extended strongly free disposability, then
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the production possibility set can be expressed as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xDI

xUI

)
,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zDODI

zUOUI

zDOUI

zUODI

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wDODI

wUOUI

wDOUI

wUODI

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

(
yDO

yUO

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑

j=1

λj X
DI
j ≤ xDI ,

n∑

j=1

λj X
UI
j ≥ xUI ,

n∑

j=1

λj Z
DODI
j ≥ zDODI ,

n∑

j=1

λj Z
UOUI
j ≤ zUOUI ,

n∑

j=1

λj Z
DOUI
j = zDOUI ,

n∑

j=1

λj Z
UODI
j = zUODI ,

n∑

j=1

μj Z
DODI
j ≤ wDODI ,

n∑

j=1

μj Z
UOUI
j ≥ wUOUI ,

n∑

j=1

μj Z
DOUI
j = wDOUI ,

n∑

j=1

μj Z
UODI
j = wUODI ,

n∑

j=1

μj Y
DO
j ≥ yDO ,

n∑

j=1

μj Y
UO
j ≤ yUO ,

zDODI ≥ wDODI ≥ 0, wUOUI ≥ zUOUI ≥ 0,

zUODI = wUODI ≥ 0, wDOUI = zDOUI ≥ 0,

λj ,μj ≥ 0, j = 1, . . ., n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.26)

As mentioned before, the PPS of this type is the first instance of its discussion in lit-
erature. The situation does exist in reality. For example, in the above power-fertilizer
plant example, SO2emission is an inconsistent intermediate measure and electricity
is a consistent one. Consequently, we can assume strongly free disposability for
electricity, while non-free disposability for SO2 emissions.

Under the CRS assumption, if all the initial inputs and final outputs satisfy the
extended strongly free disposability and intermediate measures satisfy the weakly
free disposability, then the production possibility set can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xDI

xUI

)
,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zDODI

zUOUI

zDOUI

zUODI

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wDODI

wUOUI

wDOUI

wUODI

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

(
yDO

yUO

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑

j=1

λj X
DI
j ≤ xDI ,

n∑

j=1

λj X
UI
j ≥ xUI

n∑

j=1

λj Z
DODI
j = zDODI ,

n∑

j=1

λj Z
UODI
j = zUODI

n∑

j=1

λj Z
DOUI
j = zDOUI ,

n∑

j=1

λj Z
UOUI
j = zUOUI

n∑

j=1

μj Z
DODI
j = wDODI ,

n∑

j=1

μj Z
UODI
j = wUODI

n∑

j=1

λj Z
DOUI
j = wDOUI ,

n∑

j=1

λj Z
UOUI
j = wUOUI

n∑

j=1

μj Y
DO
j ≥ yDO ,

n∑

j=1

μj Y
UO
j ≤ yUO

zDODI = τwDODI , zUODI = τwUODI

zDOUI = τwDOUI , zUOUI = τwUOUI

τ ≥ 1

λj ,μj ≥ 0, j = 1, . . ., n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.27)
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If both subsystems are VRS, the production possibility set can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xDI

xUI

)
,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zDODI

zUOUI

zDOUI

zUODI

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wDODI

wUOUI

wDOUI

wUODI

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

(
yDO

yUO

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑

j=1

λj X
DI
j ≤ xDI ,

n∑

j=1

λj X
UI
j ≥ xUI

n∑

j=1

λj Z
DODI
j = αzDODI ,

n∑

j=1

λj Z
UODI
j = αzUODI

n∑

j=1

λj Z
DOUI
j = αzDOUI ,

n∑

j=1

λj Z
UOUI
j = αzUOUI

n∑

j=1

μj Z
DODI
j = βwDODI ,

n∑

j=1

μj Z
UODI
j = βwUODI

n∑

j=1

λj Z
DOUI
j = βwDOUI ,

n∑

j=1

λj Z
UOUI
j = βwUOUI

n∑

j=1

μj Y
DO
j ≥ yDO ,

n∑

j=1

μj Y
UO
j ≤ yUO

zDODI = τwDODI , zUODI = τwUODI

zDOUI = τwDOUI , zUOUI = τwUOUI

n∑

j=1

λj = 1,
n∑

j=1

μj = 1

λj ,μj ≥ 0, j = 1, . . ., n

τ ≥ 1,α ≥ 1,0 ≤ β ≤ 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.28)

As mentioned before, the PPS of this type is also the first instance of its discussion
in the literature.

The above production possibility sets are only some special cases. According to
the actual production mechanism in an application, we can construct the production
possibility sets, with different assumptions on returns to scale and free disposability.

15.3.3 Two-Stage DEA Models with Undesirable Variables

As summarized in Liu et al. (2010), several approaches can be used in handling
undesirable variables. One of the most frequently used of these approaches is data
transformation. We first examine this approach for the consistent case.

As in Seiford and Zhu (2002), by transforming x̄DI
ij =M − xUI

ij , ȳDO
rj =G −

yUO
rj , z̄DODI

qj =F − zUOUI
qj , where M>maxj=1,...,n(xUI

ij ), F >maxj=1,...,n(zUOUI
qj ),

G>maxj=1,...,n(yUO
rj ), the data are X̄DI

j = (x̄DI
1j , . . ., x̄DI

mj )
T , ȲDO

j = (ȳDO
1j , . . ., ȳDO

rj )T ,

Z̄DODI
j = (z̄DODI

1j , . . ., z̄DODI
tj )T .

Now assuming VRS for both subsystems, and the strongly free disposability for
initial inputs, intermediate measures, and final outputs, the following input oriented
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two-stage DEA model can be constructed:

min θ

s.t.

n∑

j=1

λjX
DI
j ≤ θXDI

0 ,
n∑

j=1

λj X̄
DI
j ≤ θX̄DI

0

n∑

j=1

λjZ
DODI
j ≥ zDODI ,

n∑

j=1

λj Z̄
DODI
j ≥ z̄DODI

n∑

j=1

μjZ
DODI
j ≤ wDODI ,

n∑

j=1

μj Z̄
DODI
j ≤ w̄DODI

n∑

j=1

μjY
DO
j ≥ YDO

0 ,
n∑

j=1

μj Ȳ
DO
j ≥ ȲDO

0

zDODI ≥ wDODI ≥ 0, z̄DODI ≥ w̄DODI ≥ 0
n∑

j=1

λj = 1,
n∑

j=1

μj = 1, λj ,μj ≥ 0j = 1, . . ., n

(15.29)

As explained in Liu et al. (2010), this approach is equivalent to the assumption of
the extended strongly free disposability. In this study, we wish to explore whether
this finding is still true for the two-stage systems.

With the transformed data, the PPS for the above two-stage DEA model with the
VRS and strongly free disposability reads:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xDI

x̄DI

)
,

{
zDODI

z̄DODI

}
,

{
wDODI

w̄DODI

}
,

(
yDO

ȳDO

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
j=1
λjX

DI
j ≤ xDI ,

n∑
j=1
λj X̄

DI
j ≤ x̄DI

n∑
j=1
λjZ

DODI
j ≥ zDODI ,

n∑
j=1
λj Z̄

DODI
j ≥ z̄DODI

n∑
j=1
μjZ

DODI
j ≤ wDODI ,

n∑
j=1
μj Z̄

DODI
j ≤ w̄DODI

n∑
j=1
μjY

DO
j ≥ yDO,

n∑
j=1
μj Ȳ

DO
j ≥ ȳDO

zDODI ≥ wDODI , z̄DODI ≥ w̄DODI ,
n∑
j=1
λj = 1,

n∑
j=1
μj = 1, λj ,μj ≥ 0 j = 1, . . ., n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15.30)

Next, due to the VRS assumption, back to the original variables the PPS now reads:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xDI

xUI

)
,

{
zDODI

zUOUI

}
,

{
wDODI

wUOUI

}
,

(
yDO

yUO

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
j=1
λjX

DI
j ≤ xDI ,

n∑
j=1
λjX

UI
j ≥ xUI

n∑
j=1
λjZ

DODI
j ≥ zDODI ,

n∑
j=1
λjZ

UOUI
j ≤ zUOUI

n∑
j=1
μjZ

DODI
j ≤ wDODI ,

n∑
j=1
μjZ

UOUI
j ≥ wUOUI

n∑
j=1
μjY

DO
j ≥ yDO,

n∑
j=1
μjY

UO
j ≤ yUO

zDODI ≥ wDODI , wUOUI ≥ zUOUI ,
n∑
j=1
λj = 1,

n∑
j=1
μj = 1, λj ,μj ≥ 0 j = 1, . . ., n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.31)

where xUI
ij = M − x̄DI

ij , yUO
rj = G− ȳDO

rj , zUOUI
qj = F − z̄DODI

qj .
This is exact (15.20) with VRS assumption for both of the subsystems. Thus,

data transformation approach is clearly justified for the consistent case. However, if
there exists inconsistency for intermediate measures, then it may be difficult to use
them. For example, assume ZUODI

j are the undesirable outputs of subsystem 1, we
then need to use data transformation; however, ZUODI

j are also the desirable inputs of
subsystem 2, and thus do not need data transformation. Thus, the data transformation
method needs special care in the case of inconsistency.

Now let us examine another commonly used approach: regard undesirable inputs
(undesirable outputs) as desirable outputs (desirable inputs). The advantage of this
method is that there is no change in production possibility set. However, this expla-
nation is not valid for a two-stage DEA model because the intensity variables λj ,μj
now are different in the two stages. Formally one can still use this idea (to maximize
bad inputs and minimize bad outputs) to have the following input orientated two-
stage DEA model, assuming the CRS and the extended strongly free disposability
for both of the subsystems:

min θ

s.t.

n∑

j=1

λjX
DI
j ≤ θXDI

0 ,
n∑

j=1

λjX
UI
j ≥ XUI

0

n∑

j=1

λjZ
DODI
j ≥ ZDODI ,

n∑

j=1

λjZ
UOUI
j ≤ ZUOUI

n∑

j=1

μjZ
DODI
j ≤ WDODI ,

n∑

j=1

μjZ
UOUI
j ≥ WUOUI

n∑

j=1

μj Y
DO
j ≥ YDO

0 ,
n∑

j=1

μj Y
UO
j ≤ θYUO

0

ZDODI ≥ WDODI ≥ 0,WUOUI ≥ ZUOUI ≥ 0

n∑

j=1

λj = 1,
n∑

j=1

μj = 1, λj ,μj ≥ 0j = 1, . . ., n

(15.32)
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Below we will build two-stage DEA models using the PPS in the section above for
the consistent case. We will only illustrate some examples.

1. Slacks-based DEA model

Using PPS (15.20) and slack measurement for input and outputs, we have the
following non-oriented two-stage DEA model:

min ρ =
1 −

∑mDI
a=1 s

DI
Xa

/
xDI
a0 +∑sUO

b=1 s
UO
Yb

/
yUO
b0 +∑qDODI

c=1 sDODI
Zc

/
zDODI
c0 +∑qUOUI

d=1 sUOUI
Wd

/
zUOUI
d0

mDI + sUO + qDODI + qUOUI

1 +
∑sDO
e=1 s

DO
Xe

/
yDO
e0 +∑mUI

f=1 s
UI
Yf

/
xUI
f 0 +

∑qDODI

g=1 sDODI
Wg

/
zDODI
g0 +∑qUOUI

h=1 sUOUI
Zh

/
zUOUI
h0

sDO +mUI + qDODI + qUOUI

s.t.

n∑

j=1

λjX
DI
j + SDI

X = XDI
0 ,

n∑

j=1

λjX
UI
j − SUI

X = XUI
0

n∑

j=1

λjZ
DODI
j − SDODI

Z = ZDODI
0 ,

n∑

j=1

λjZ
UOUI
j + SUOUI

Z = ZUOUI
0

n∑

j=1

μjZ
DODI
j + SDODI

W = ZDODI
0 ,

n∑

j=1

μjZ
UOUI
j − SUOUI

W = ZUOUI
0

n∑

j=1

μj Y
DO
j − SDO

Y = YDO
0 ,

n∑

j=1

μj Y
UO
j + SUO

Y = YUO
0

SDI
X , SUI

X , SDO
Y , SUO

Y , SDODI
Z , SUOUI

Z , SDODI
W , SUOUI

W ≥ 0;

n∑

j=1

λj = 1,
n∑

j=1

μj = 1, λj ,μj ≥ 0j = 1, . . ., n

(15.33)

2. DEA model with radial measurement

Using PPS (15.22) and radial measurement for input and outputs, we have the
following input-oriented two-stage DEA model:

min θ

n∑

j=1

λjX
DI
j = θxDI ,

n∑

j=1

λjX
UI
j = xUI

n∑

j=1

λjZ
DODI
j = zDODI ,

n∑

j=1

λjZ
UOUI
j = zUOUI

s.t.

n∑

j=1

μjZ
DODI
j = wDODI ,

n∑

j=1

μjZ
UOUI
j = wUOUI

n∑

j=1

μjY
DO
j = yDO,

n∑

j=1

μjY
UO
j = yUO

zDODI = τwDODI , zUOUI = τwUOUI

λj ,μj ≥ 0, j = 1, . . ., n

τ ≥ 1

(15.34)
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3. DEA model with directed-distance measurement

Under the assumption of PPS (15.25), and if the direction vector is specified as
g = (gD ,−gU ), we can formulate the following output-oriented DEA model to
handle undesirable variables, where the efficiency is defined as 1 − β:

max β

s.t.

n∑

j=1

λjX
DI
j ≤ xDI ,

n∑

j=1

λjX
UI
j ≥ xUI

n∑

j=1

λjZ
DODI
j = αzDODI ,

n∑

j=1

λjZ
UOUI
j = αzUOUI

n∑

j=1

μjZ
DODI
j = rwDODI ,

n∑

j=1

μjZ
UOUI
j = rwUOUI

n∑

j=1

μjY
DO
j ≥ yDO + βgD ,

n∑

j=1

μjY
UO
j ≤ yUO − βgU

zDODI = τwDODI , zUOUI = τwUOUI

n∑

j=1

λj = 1,
n∑

j=1

μj = 1

λj ,μj ≥ 0, j = 1, . . ., n

τ ≥ 1,α ≥ 1,0 ≤ r ≤ 1

(15.35)

Below we will build two-stage DEA models to address inconsistencies in interme-
diate measures.

1. Slacks-based DEA model

It is clear that the SBM model proposed by Tone (2001) can be directly used to handle
undesirable variables, even in the case of inconsistency. Without loss of generality,
we assume the VRS for both subsystems and that all of the inconsistent variables
satisfy non-free disposability, and consistent ones satisfy the extended strongly free
disposability. If all the slacks of initial inputs, intermediate measures, and final
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outputs are included, then the following hybrid model can be constructed.

min ρ =
1 −
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n∑

j=1

λj = 1,
n∑

j=1

μj = 1, λj ,μj ≥ 0j = 1, . . ., n

(15.36)

By using the Charnes-Cooper transformation, the above model can be transformed
to a linear model.

2. DEA model with radial measurement

Under the same assumption of Model (15.33), if we only want to measure the desir-
able initial inputs and desirable final outputs by adopting radial measurement, then
we can construct the following non-oriented DEA model:

min ρ = θ

φ

s.t.

n∑

j=1

λj x
DI
i1j

≤ θxDI
i10,

n∑
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≤ wDODI
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,
n∑
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μj zUOUI
d2j
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d2

, d1 = 1, . . ., qDODI , d2 = 1, . . ., qUOUI
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n∑
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(15.37)

Similarly, readers may construct DEA models to measure undesirable initial inputs
and/or final outputs.

3. DEA model with directed-distance measurement

Finally, we can adopt the directed distance approach in the inconsistency case. Under
the same assumption with model (15.33), and if the direction vector is specified as
g = (gD ,−gU ), we can formulate the following output-oriented DEA model to
handle undesirable variables, where the efficiency is defined as 1 − β:

max β

s.t.
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n∑
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n∑

j=1

μj = 1, λj ,μj ≥ 0j = 1, . . ., n

(15.38)
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15.4 Conclusions

In this paper we discuss many general approaches of DEA to handle undesirable
inputs, intermediates, and outputs. The main rule is to combine the disposability
assumptions and the performance metrics. We first discuss desirability to rigorously
define desirable variables, and then disposability to extend the standard strongly free
disposability to the cases where undesirable variables present. Then, for the single-
stage case, we show that assuming extended strongly free disposability is equivalent
to treating undesirable inputs and outputs as desirable outputs and inputs while as-
suming the standard strongly free disposability in forming the PPS. We then show
it is possible to construct possible production sets by combining different disposal
assumptions for the two-stage case. By combining these blocks with different per-
formance measurements, we are able to provide a unified presentation of several
classes of DEA models with undesirable inputs, intermediates, and outputs both for
the single-stage and two-stage cases.

Acknowledgement This research is supported by the National Natural Science Foundation of
China (No. 71371067, 71201158), Chinese Postdoctoral Science Foundation, Hunan Provincial
Foundation for Social Sciences of China (No. 09YBB073).

References

Ali A, Seiford LM (1990) Translation invariance in data envelopment analysis. Oper Res Lett
10:403–405

Azizi R, Matin RK (2010) Two-stage production systems under variable returns to scale technology:
a DEA approach. J Ind Eng 5:67–71

Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale
inefficiencies in data envelopment analysis. Manag Sci 30:1078–1092

Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur
J Oper Res 2:429–444

Charnes A, Cooper WW, Golany B, Seiford L, Stutz J (1985) Foundations of data envelopment
analysis for Pareto-Koopmans efficient empirical production functions. J Econom 30:91–107

Charnes A, Cooper WW, Wei QL, Huhng ZM (1989) Cone ratio data envelopment analysis and
multi-objective programming. Int J Syst Sci 20:1099–1118

Chen Y, Yan H (2011) Network DEA model for supply chain performance evaluation. Eur J Oper
Res 213(1):147–155

ChenY, Zhu J (2004) measuring information technology’s indirect impact on firm performance. Inf
Technol Manag 5(1):9–22

Chen P-C, Chang C-C,Yu M-M, Hsu S-H (2012) Performance measurement for incineration plants
using multi-activity network data envelopment analysis: the case of Taiwan. J Environ Manag
93:95–103

Chen Y, Cook W, Kao C, Zhu J (2013) Network DEA pitfalls: divisional efficiency and frontier
projection under general network structures. Eur J Oper Res 226:505–515

Cook WD, Liang L et al (2010) Measuring performance of two-stage network structures by DEA:
a review and future perspective. Omega 38(6):423–430

Cooper WW, Seiford LM, Thanassaulis E, Zanakis SH (2004) DEA and its uses in different
countries. Eur J Oper Res 154:337–344



15 DEA Models with Undesirable Inputs, Intermediates, and Outputs 445

Färe R (1991) Measuring Farrell efficiency for a firm with intermediate inputs. Acad Econ Pap
19:329–340

Färe R, Grosskopf S (1996). Productivity and intermediate products: a frontier approach. Econ Lett
50(1):65–70

Färe R, Grosskopf S (2000) Network DEA. Socio-Econ Plan Sci 34(1):35–49
Färe R, Grosskopf S (2004) Modelling undesirable factors in efficiency evaluation: comments. Eur

J Oper Res 157(1):242–245
Färe R, Whittaker G (1995) An intermediate input model of dairy production using complex survey

data. J Agric Econ 46(2):201–213
Färe R, Grosskopf S, Lovell CAK, Pasurka C (1989) Multilateral productivity comparisons when

some outputs are undesirable: a nonparametric approach. Rev Econ Stat 71:90–98
Färe R, Grosskopf S, Noh D-W, Weber W (2005) Characteristics of a polluting technology: theory

and practice. J Econom 126:469–492
Fukuyama H, Mirdehghan SM (2012) Identifying the efficiency status in network DEA. Eur J Oper

Res 220:85–92
Fukuyama H, Weber WL (2009)A directional slacks-based measure of technical inefficiency. Socio-

Econ Plan Sci 43:274–287
Fukuyama H, Weber WL (2010) A slacks-based inefficiency measure for a two-stage system with

bad outputs. Omega 38:398–409
Golany B, Roll Y (1989) An application procedure for DEA. Omega 17:237–250
Hua Z, Bian Y (2008) Performance measurement for network DEA with undesirable factors. Int. J.

Manage. Decis. Making 9:141–153
Huang C-w, Ho FN, Chiu Y-h (2014) Measurement of tourist hotels′ productive efficiency, occu-

pancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan.
Omega 48:49–59

Kao C, Hwang S-N (2008) Efficiency decomposition in two-stage data envelopment analysis: an
application to non-life insurance companies in Taiwan. Eur J Oper Res 185:418–429

Koopmans TC (1951)Analysis of production as an efficient combination of activities. In: Koopmans
TC (ed) Activity analysis of production and allocation, Cowles commission. Wiley, New York,
pp 33–97

Kordrostami S, Amirteimoori A (2005) Un-desirable factors in multi-component performance
measurement. Appl Math Comput 171:721–729

Kuosmanen T (2005) Weak disposability in nonparametric production analysis with undesirable
outputs. Am J Agric Econ 87:1077–1082

Kuosmanen T, Kazemi Matin R (2011) Duality of weakly disposable technology. Omega 39:504–
512

Lewis HF, Sexton TR (2004) Network DEA: efficiency analysis of organizations with complex
internal structure. Comput Oper Res 31:1365–1410

Liang L, Cook WD et al (2008) DEA models for two-stage processes: game approach and efficiency
decomposition. Nav Res Logist 55(7):643–653

Liu WB, Sharp J (1999) DEA models via goal programming. In: Westerman G (ed) Data
envelopment analysis in the public and private sector. Deutscher Universitats-Verlag, Wiesbaden

Liu WB, Sharp J, Wu ZM (2006) Preference, production and performance in data envelopment
analysis. Ann Oper Res 145:105–127

Liu WB, Meng W, Li XX, Zhang DQ (2010) DEA models with undesirable inputs and outputs. Ann
Oper Res 173:177–194

Lovell CAK, Pastor JT, Turner JA (1995) Measuring macroeconomic performance in the OECD: a
comparison of European and non-European countries. Eur J Oper Res 87:507–518

Lozano S, Gutiérrez E, Moreno P (2013) Network DEA approach to airports performance
assessment considering undesirable outputs. Appl Math Model 37(4):1665–1676

Maghbouli M, Amirteimoori A, Kordrostami S (2014) Two-stage network structures with undesir-
able outputs: a DEA based approach. Measurement 48:109–118

Pastor JT (1996) Translation invariance in data envelopment analysis. Ann Oper Res 66:93–102



446 Z. Zhou and W. Liu

Podinovski VV, Kuosmanen T (2011) Modelling weak disposability in data envelopment analysis
under relaxed convexity assumptions. Eur J Oper Res 211:577–585

Ray SC (2004) Data envelopment analysis: theory and techniques for economics and operations
research. Cambridge University, Cambridge

Scheel H (1998). Negative data and undesirable outputs in DEA. Working paper in EURO Summer
Institute

Scheel H (2001) Undesirable outputs in efficiency evaluation. Eur J Oper Res 132:400–410
Seiford LM (1996) Date envelopment analysis: evolution of the state-of-the-art (1978–1998). J

Product Anal 7:99–137
Seiford LM, Zhu J (2002) Modeling undesirable factors in efficiency evaluation. Eur J Oper Res

142:16–20
Sharp J, Meng W, Liu WB (2006) A modified slacks based measure model for data envelopment

analysis with natural negative outputs and inputs. J Oper Res Soc 58:1672–1677
Shephard RW (1970) Theory of cost and production functions. Princeton University, Princeton
Silva Portela MCA, Thanassoulis E, Simpson G (2004) Negative data in DEA: a directional distance

approach applied to bank branches. J Oper Res Soc 55:1111–1121
Tone K (2001) A slacks-based measure of efficiency in data envelopment analysis. Eur J Oper Res

130:498–509
Tone K, Tsutsui M (2009) Network DEA: a slack-based measure approach. Eur J Oper Res

197(1):243–252
Wang K, Huang W, Wu J, Liu Y-N (2014) Efficiency measures of the Chinese commercial banking

system using an additive two-stage DEA. Omega 44:5–20
Yu MM (2004) Measuring physical efficiency of domestic airports in Taiwan with undesirable

outputs and environmental factors. J Air Transp Manag 10:295–303
Zhou Z, Sun L,YangW, LiuW, Ma C (2013a)A bargaining game model for efficiency decomposition

in the centralized model of two-stage systems. Comput Ind Eng 64:103–108
Zhou ZB, Wang M, Ding H, Ma CQ, Liu WB (2013b) Further study of production possibility set

and performance evaluation model in supply chain DEA. Ann Oper Res 206:585–592



Chapter 16
Frontier Differences and the Global
Malmquist Index

Mette Asmild

Abstract This chapter reviews different ways of comparing the efficiency frontiers
for subgroups within a data set, specifically program efficiency, the metatechnol-
ogy (or technology gap) ratio and the global frontier difference index. The latter
is subsequently used to define a global Malmquist index, as well as in an alterna-
tive decomposition of the traditional Malmquist index which also considers socalled
favourability and favourability change components, indicating whether individual
observations are located in favourable positions in the production space based on the
extent of frontier shifts they observe. The various approaches are illustrated in an
empirical case of Ghanaian banks.

Keywords Frontier differences · Program efficiency · Metatechnology ratio · Tech-
nology gap ratio · Global Malmquist index · Malmquist index · Favourability index
· Favourability change index

16.1 Introduction

It is often interesting to compare subgroups of observations within a data set. The
subgroups can relate either to different time periods, typically for the same obser-
vations, or more generally to distinct groups of observations, like observations from
different countries or with different underlying characteristics, like organizational
forms. Through such comparisons it can be determined whether efficiency improves
over time, are higher in one country than in another, or under one organizational
form rather than another (e.g. investor owned firms vis-à-vis cooperatives).

An obvious approach to comparing subgroups might be to compare e.g. the av-
erage efficiency scores in the different groups. But if the efficiency scores that are
compared are all simply measured relative to a pooled frontier, then the comparison
does not distinguish between what Charnes et al. (1981) denote managerial vis-à-vis
program efficiencies, that is, there is no distinction between differences between the
group-specific frontiers and in the efficiencies relative to those frontiers. Here we
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mainly focus on the former, in order to examine whether the characteristics of one
subgroup provides better production possibilities than another, e.g. whether regula-
tory reforms have led to improved possibilities or whether the regulatory regime in
one country provides superior production possibilities to that in another. Different
ways of comparing the frontiers for subgroups of observations have been proposed
in the literature, including program efficiency, metatechnology ratios and the global
frontier difference index. The latter can furthermore be used to define the global
Malmquist index of Asmild and Tam (2007). These will all be discussed in the
remainder of this chapter.

16.2 Program Efficiency

One of the very first applications of DEA can be found in Charnes et al. (1981),
which extends the work from the seminal DEA paper by Charnes et al. (1978) by,
amongst other things, adding an empirical example. Where the 1978 paper actually
uses the problem context of efficiency assessment of schools participating in the
so-called “Follow Through” program as part of the motivation for the theoretical
approach proposed in the paper (and even briefly mentions the idea of comparing
program efficiency, as well as managerial efficiency, of subgroups of schools), the
actual empirical analysis of this is provided in the 1981 paper.

In Charnes et al. (1981), two subgroups of observations (or DMUs) are considered:
Schools participating in the Program Follow Through (PFT) experiment and those
not participating, Non-Follow Through (NFT). Managerial efficiency is defined as
the efficiency of a school relative to the frontier for its own subgroup (either PFT or
NFT), and program efficiency subsequently defined as the efficiency of the schools
relative to a (pooled) frontier constructed from the schools from both subgroups,
after all the schools have first been made managerially efficient, that is, projected
onto their group-specific frontiers.

To formalize, let xt
ij denote the consumption of input i by DMU j (in the previous,

school j), where i = 1, . . . , m indicates the m inputs considered in the efficiency
assessment, j = 1, . . . , n is the set of n observed DMUs and the superscript t denotes
that the DMU belongs to subgroup t, t = 1, . . . , T. Similarly ytrj denotes the produc-
tion of output r by DMU j, belonging to subgroup t and with r = 1, . . . , s indicating
the s outputs included in the analysis.

Determining the input oriented managerial efficiency of Charnes et al. (1981) for
DMUt’

0 under the constant returns to scale (CRS) assumption is done by solving the
following linear programming problem:

MEt’
0 = Min θ

s.t.  jλjx
t’
ij ≤ θ xt’

i0, i = 1, . . . , m

 jλjy
t’
rj ≥ yt’

r0, r = 1, . . . , s

λj ≥ 0, ∀j ∈ t’ (16.1)

In program (16.1) can be seen that if the DMU under analysis, DMU0, belongs to
subgroup t’, then it is only compared to other DMUs also belonging to subgroup t’ in
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Fig. 16.1 Illustration of managerial and program efficiencies (two inputs, fixed output)

order to assess its managerial efficiency, i.e. managerial efficiency is the efficiency
of a DMU relative to the frontier of the subgroup it belongs to.

The (input oriented) program efficiency of Charnes et al. (1981) for DMUt’
0 can

now be estimated using the following program:

PEt’
0 = Min θ

s.t.  jλjxij ≤ θ(MEt’
0xt’

i0), i = 1, . . . , m

 jλjyrj ≥ yt’
r0, r = 1, . . . , s

λj ≥ 0, ∀j (16.2)

In program (16.2) we see that the DMU under analysis is first made managerially ef-
ficient, by multiplying its input values with its (input oriented) managerial efficiency
score, after which this transformed DMU is compared to a frontier constructed from
all DMUs, that is, no longer just those belonging to its own subgroup.

It should be noted that the above is easily modified to the output orientation and/or
to the case of variable returns to scale (VRS), see e.g. Cooper et al. (2004).

This 2-stage approach of first estimating managerial efficiency and then program
efficiency is illustrated for a 2-input, fixed output case in Fig. 16.1 above.

In Fig. 16.1, the observations A, B, C & D, indicated by x’s, all belong to one
subgroup whereas the remaining observations, indicated by o’s, belong to another
subgroup. When assessing the managerial efficiency, we note that observation A
and B are managerially inefficient, whereas observation C and D are managerially
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efficient. In order to estimate program efficiency, observation A and B must first be
projected onto the frontier for their own subgroup, indicated by the dark solid line,
resulting in the transformed points A’ and B’. Those are subsequently projected onto
the pooled frontier enveloping all observations from both subgroups, indicated by the
dotted line. Thus we see that observation A is managerially inefficient but program
efficient, whereas observation B is both managerially and program inefficient.

16.3 Metafrontier Analysis and the Metatechnology Ratio

The concept of metafrontier analysis was introduced by Battese et al. (2004), albeit
within the setting of Stochastic Frontier Analysis (SFA), but the subsequent paper,
Battese et al. (2008), also considers the DEA version. The main idea of metafrontier
analysis in DEA is defining a frontier enveloping the observations from a number
of subgroups. Efficiency is then calculated relative to both the metafrontier and to
the frontier of the subgroup the observation belongs to, and the ratio of these two
efficiency scores is referred to as the metatechnology ratio (or technology gap ratio,
or best-practice gap). This ratio indicates the distance between the frontier for the
subgroup and the metafrontier, from the point of view of the observation under
analysis, and thus is exactly the same as the program efficiency score of Charnes
et al. (1981).

The metafrontier and program efficiency analyses in DEA rely on the use of a
pooled- or meta-frontier, which assumes convexity, not just within the subgroups
but also between subgroups. The latter is potentially problematic as it implies that
when efficiency is measured relative to the metafrontier, this might be done rela-
tive to a benchmark constructed from observations from different subgroups which
may make the interpretation and appropriateness of the benchmark, and resulting
efficiency score, questionable. For example, in the Charnes et al. (1981) case a
benchmark can be constructed from a combination of PFT and NFT schools, making
the understanding of what best practice is, and what an inefficient school has to do
to improve performance and reach the benchmark, somewhat unclear.

The interpretation of the metatechnology ratios (program efficiency scores) is gen-
erally along the lines of how far the frontier for the subgroup to which the observation
under analysis belongs is behind the overall best practice indicated by the pooled-
or meta-frontier, for the observation in question. These observation specific scores
are typically then used to subsequently compare the subgroups in order to facilitate
conclusions about the superiority of one subgroup’s frontier relative to another.

Providing an overall assessment of which subgroup is superior requires a
comparison of the distributions of the metatechnology ratios (program efficiency
scores) between the subgroups. These are often compared using the non-parametric
(Wilcoxon) Mann-Whitney rank statistic as suggested by Brockett and Golany (1996)
or, for more than two groups, using the Kruskal-Wallis test, see e.g. Sueyoshi and
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Aoki (2001). For a critical view of the use of these two approaches see also Simpson
(2007). Alternatively, if one subgroup first-order stochastically dominates another
(based on comparisons of the cumulative density functions of the efficiency scores)
then the overall conclusion is straightforward (see e.g. Asmild et al. 2012).

16.4 Global Frontier Difference Index

If the purpose of an analysis is to provide overall conclusions about whether one
subgroup is superior to another, then using the global frontier shift, more appropri-
ately referred to as the global frontier difference, index of Asmild and Tam (2007)
might be the solution. When the standard DEA based Malmquist index of Färe et al.
(1994) is decomposed, a frontier shift component is provided for each DMU, which
is calculated as the geometric mean of the frontier shifts associated with the DMUs
location in each of the two time periods in question. These DMU-specific frontier
shifts are then typically aggregated, using geometric means, and the resulting value
interpreted as the overall shift of the frontier, with a value larger than 1 indicating an
overall improvement of the frontier etc.

The global frontier difference index directly provides an overall measure of the
difference between two frontiers, which can be frontiers for the same observations
in two different time periods, in which case it is a global version of the standard
frontier shift component of the DEA based Malmquist index (Färe et al. 1994) or,
more generally, between any two subgroups in the data set. In the former case, the
standard frontier shift can only be calculated for observations for which data are
available for both of the time periods under analysis. The global index, however,
utilizes the locations of all the observations in the data set to estimate the global
difference, including observations from other time periods, and is furthermore not
limited to balanced panel data. As shown in Asmild and Tam (2007) this provides
a more accurate estimation of the overall shift. Furthermore, the global frontier
difference index can estimate differences between the frontiers for any two subgroups
within the data set and is thus not limited to considering shifts over time.

Formally, let the (input oriented CRS) efficiency score for DMUt
0 relative to the

frontier for subgroup t’ be denoted by θ
t,t’
0 and estimated by

θ
t,t’
0 = Min θ

s.t.  jλjx
t’
ij ≤ θxt

i0, i = 1, . . . , m

 jλjy
t’
rj ≥ yt

r0, r = 1, . . . , s

λj ≥ 0, ∀j ∈ t’ (16.3)

Next the global frontier difference index, between subgroups t’ and t”, can be
calculated as

T CG(t ′, t ′′,X,Y ) =
(∏

j θ
t ,t ′
j∏

j θ
t ,t ′′
j

)1/n

(16.4)
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Fig. 16.2 Illustration of the global frontier difference (two inputs, fixed output)

where X denotes the matrix of all the input vectors in the data set (xt
ij, i = 1, . . . , m;

j = 1, . . . , n,∀t), and Y similarly the matrix of output vectors (yt
rj, r = 1, . . . , s;

j = 1, . . . , n,∀t).
As can be seen from equation (16.4), the global frontier difference index between

t’ and t” is, in effect, calculated as the geometric mean of the efficiency scores for
all observations in the data set estimated relative to the frontier for t’ divided by the
geometric means of the efficiency scores for all observations estimated relative to the
frontier for t”. It is here worth noting that the efficiency scores for all n observations in
the data set are included in the calculation, and not just those observations belonging
to t’ and t”. Furthermore t’ and t” can denote any two subgroups in the data set,
including but not limited to different time periods.

The global frontier difference index is illustrated in Fig. 16.2 above. Figure 16.2
shows a data set with observations belonging to 3 different subgroups, and where we
want to estimate the global frontier difference index between the subgroup whose
observations are indicated by x’s and the subgroup indicated by o’s. It is here impor-
tant to note that also the observations belonging to the third subgroup (indicated by
triangles) influence the global frontier index since, for all observations, their distance
to one frontier over the distance to the other frontier factors into the calculations, as
indicated by the darker dotted lines in Fig. 16.2.

An empirical example of the use of the global frontier difference index can be
found in Paton et al. (2007), investigating the competitiveness of the UK electronics
sector.
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Table 16.1 Global frontier differences between electronics firms (SIC30) in the UK and in the US.
Source: Paton et al. (2007)

SIC30 UK-USA frontier difference % inefficient units where UK
frontier better than USA (%)

1995 1.07 76.66

1996 1.04 71.76

1997 1.04 65.60

1998 0.90 21.23

1999 1.02 50.34

2000 0.43 0.88

2001 0.66 1.57

2002 0.61 0.51

2003 0.69 0.17

2004 0.68 0.00

Table 16.1 above shows the estimated global frontier differences between the
UK and the US, within each of the years 1995–2004, where it should be noted
that electronic firms from other countries, including Japan, are also included in the
analysis and thus contribute to the estimating of the values shown. The results show
how the UK frontier is superior to that of the US in the first half of the study period,
but with this pattern changing such that it is the US frontier that is superior to the
UK frontier in the latter half of the study period. The second column in Table 16.1
also highlights the fact that the global frontier difference is an overall measure, and
even though one frontier overall is better than the other, this does not mean that the
former is consistently better, as the frontiers may intersect. Specifically we see that
in the earlier years, where the UK overall has the best frontier, many of the inefficient
observations in the data set actually project onto sections of the frontier where it is
the US frontier that is the best. We also see that for the last year of the study, the
US frontier overall is superior to that of the UK and all inefficient units are, in fact,
projected onto parts of the frontier where the US frontier is the best, which could
indicate that the UK frontier is nested within the US frontier or, in other words, that
the US frontier consistently dominates the UK frontier.

16.5 The Global Malmquist Index

The global frontier shift (or difference) index defined above is furthermore one of
the components of the global Malmquist index of Asmild and Tam (2007), noting
that this is different from the global Malmquist index proposed by Pastor and Lovell
(2005), and the subsequent modifications of the latter by e.g. Oh (2010), Tohidi
et al. (2012) and Tohidi and Razavyan (2013). The global Malmquist index of Pastor
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and Lovell (2005) is, in fact, measured relative to a metafrontier, thus assuming
convexity between all time periods in the data set (and the index for any time period
is furthermore sensitive to the inclusion of additional time periods in the overall data
set). Alternatively, the biennial index by Pastor et al. (2011), only assumes convexity
between the two time periods for which a specific Malmquist index is calculated,
though at the loss of transitivity (circularity).

That this is a global index again means that the index directly measures overall
productivity change for the set of DMUs, rather than individual measures which then
have to be aggregated subsequently in order to provide conclusions about the data
set as a whole. As this is still a Malmquist productivity change index, the frontier
difference component now relates specifically to subgroups which are different time
periods, but the frontier shift component is calculated from all observations in the
data set (not just those in the two time periods for which the shift is estimated) and
furthermore does not necessarily require balanced panels (even though the original
specification in Asmild and Tam (2007) seem to indicate so). Like the traditional
Malmquist index, the global Malmquist index comprises a (global) frontier shift
component as well as a (global) efficiency change component. The former is defined
in (16.4) above, the latter as follows:

ECG(t ′, t ′′) =
(∏

j∈t ′′ θ
t ′′,t ′′
j

)1/|t ′′|
(∏

j∈t ′ θ
t ′,t ′
j

)1/|t ′| (16.5)

where |t| denotes the cardinality of (number of observations in) subgroup t.
The global Malmquist productivity change index is now defined as the product of

the global frontier shift index (16.4) and the global efficiency change index (16.5),
i.e.

MIG(t ′, t ′′,X,Y ) = T CG(t ′, t ′′,X,Y ) x ECG(t ′, t ′′)

=
(∏

j θ
t ,t ′
j∏

j θ
t ,t ′′
j

)1/n
(∏

j∈t ′ θ
t ′,t ′
j

)1/|t ′|
(∏

j∈t ′′ θ
t ′′,t ′′
j

)1/|t ′′| (16.6)

To illustrate the global Malmquist index and its components we utilize the electricity
data set of Pastor and Lovell (2005), where 93 US electricity generating firms are
observed in each of four years (1977, 1982, 1987, 1992), all using three inputs to
generate a single output. We here, however, utilize an input oriented analysis (though
under the maintained CRS assumption this does not really matter).

Calculating the global frontier shift component and the global efficiency change
component and combining them into the global Malmquist index provides the
following results:

By looking at the global frontier shift components in the second column of Ta-
ble 16.2 above, we observe that the frontier worsened substantially between 1977
and 1982, worsened somewhat between 1982 and 1987 but then improved from 1987
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Table 16.2 Global frontier shifts, global efficiency changes and the global Malmquist index

Global frontier shift Global efficiency change Global Malmquist index

1977–1982 0.520 1.163 0.605

1982–1987 0.807 1.088 0.878

1987–1992 1.157 0.930 1.076

to 1992. The actual values can be compared to the aggregated values for the best
practice gaps in Pastor and Lovell (2005), that measure technical change and which
are 0.589, 0.977 and 1.118 respectively. The latter show how the annual frontiers are
moving relative to the metafrontier and are aggregated over the observations belong-
ing to the two time periods considered. The global frontier shift directly measures the
distances between the frontiers for the two time periods, i.e. without resorting to the
use of a metafrontier, and those distances between the two frontiers in question are
aggregated across all observations in the data set. The global efficiency changes are
(except for round-off errors in either of the software packages employed) identical
to those of Pastor and Lovell (2005), so the differences between the two versions
of the global Malmquist index (the one presented here which directly defines global
measures, and the aggregation of the observation specific values of the Pastor and
Lovell (2005) index, which are 0.685, 1.064 and 1.039 respectively) comes from the
differences in how the frontier shift is estimated.

16.6 Using the Global Frontier Shift Index in a Decomposition
of the Standard Malmquist Index

Alternatively, the global frontier shift component can be used in a decomposition of
the standard Malmquist index, considering so-called favourability components that
relate to whether individual observations observe more or less frontier shift than the
global (overall) shift (see Asmild and Ohene-Asare. 2012).

The standard Malmquist index of Färe et al. (1994) can be estimated from the
DEA scores defined in (16.3) as

MI (xt
′

0 , yt
′

0 , xt
′′

0 , yt
′′

0 ,X,Y ) =
(
θ
t ′′,t ′
0 θ

t ′′,t ′′
0

θ
t ′,t ′
0 θ

t ′,′′
0

)1/2

(16.7)

and can be decomposed into
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where

F t
′,t ′′ (xt0, yt0,X,Y

) =
(

θ
t ,t ′
0

θ
t ,t ′′
0 × TCG(t ′, t ′′,X,Y )

)
(16.9)

The first element of the decomposition in (16.8) is the standard efficiency change
component (EC) of the Malmquist index (for DMU0 between t’ and t”) and the
second element is the global frontier shift, or technical change (TC), component
defined in (16.4). What is new is the third and the fourth element (together with the
fact that this is a decomposition of the standard Malmquist index), which are the
socalled favourability index (FI) and favourability change index (FCI) respectively.
The favourability index indicates the favourability of the original location of DMU0

(xt
′

0 , yt
′

0 ), in the sense of how big a frontier shift is observed by this DMU relative to
the global shift, where an index value larger than 1 indicates that the frontier shift
from the point of view of (xt

′
0 , yt

′
0 ) is larger than the global shift etc. The favourability

change component, in turn, indicates the change in favourability obtained by DMU0

by moving from the old location (xt
′

0 , yt
′

0 ) to the new location (xt
′′

0 , yt
′′

0 ) where a value
larger than one indicates that the new location observes a larger frontier shift than
the old location.

16.7 Empirical Example: Ghanaian Banks

Finally an empirical example illustrating the use of the various concepts presented
above is provided, which utilizes the data from Asmild and Ohene-Asare (2014),
where different subgroups of Ghanaian banks are compared. The total of 21 banks
can be divided into three subgroups based on ownership: State banks (3), domestic
banks (9) and foreign banks (9). Each bank is observed in three years: 2006, 2007 and
2008. The efficiency analysis considers three inputs (fixed assets, labour and deposits)
and three outputs (loans, other earning assets and corporate social responsibility
expenses). For further discussion of the data and this modelling set-up please refer
to Asmild and Ohene-Asare (2014).

First managerial- and program efficiencies are calculated (c.f. Eq. 16.1 and 16.2)
and shown in Table 16.3 above. For simplicity and due to the small sample size,
especially within the subgroups, we for now pool the observations over time, that
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Table 16.3 Average managerial- and program efficiencies

All banks, pooled 06–08 Mean managerial efficiency Mean program efficiency

State banks 1.05 1.61

Domestic banks 1.32 1.11

Foreign banks 1.28 1.10

Table 16.4 Individual efficiency scores for state owned banks

State owned
banks, pooled
06–08

Managerial
efficiency

Program
efficiency

Efficiency relative
to meta-frontier

Ratio meta-
frontier/managerial

ADB06 1.00 1.00 1.00 1.00

GCB06 1.15 1.39 1.59 1.39

NIB06 1.12 2.01 2.26 2.01

ADB07 1.09 1.62 1.76 1.62

GCB07 1.05 1.51 1.59 1.51

NIB07 1.00 2.08 2.08 2.08

ADB08 1.00 1.54 1.54 1.54

GCB08 1.00 1.38 1.38 1.38

NIB08 1.03 1.93 1.98 1.93

MEAN 1.05 1.61 1.69 1.61

is, across the three years of the study period. The efficiency is measured as output-
oriented and assuming CRS, and the scores presented below are the output expansion
factors (≥1, with 1 indicating a technically efficient unit).

Looking at the average managerial efficiency scores in the first column of Ta-
ble 16.3 above we observe that the state banks on average are the most managerially
efficient, that is, closer to their group-specific frontier than the other two groups of
domestic and foreign banks, which both show substantially more intra-group varia-
tion. Considering next the program efficiency in the second column it is clear, that the
state owned banks are less program efficient than the other two groups of banks. In
other words, the state owned banks are generally located close to their own frontier,
but this is the worst of the frontiers. The variation within the other two groups means
that while their respective frontiers are better than that for the state owned banks, the
observations are on average further away from these frontiers.

To understand the relationship between program efficiency and the metatechnol-
ogy ratio (technology gap ratio, best-practice gap), consider the individual efficiency
scores within the subgroup of state owned banks, shown in Table 16.4 above:

In Table 16.4, the managerial efficiencies in the first column is where the efficien-
cies of the state owned banks are assessed relative to their group specific frontier,
that is, the frontier spanned by the state owned banks alone. The program efficiencies
in the second column are found by first projecting the state owned banks on to their
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Table 16.5 Efficiency scores for all observations relative to the three group frontiers

Eff. relative to state
frontier

Eff. relative to
domestic frontier

Eff. relative to foreign
frontier

Geomean 0.58 1.20 1.23

group specific frontier, i.e. eliminating the managerial efficiency, and then assessing
efficiency relative to the meta-frontier constructed from all banks in the sample. In
the third column are show the efficiency scores for the original observations relative
to the meta-frontier and in the last column are shown the metatechnology ratios,
which are the ratios of the scores relative to the meta-frontier and relative to the
group frontier, and we note how these are, in fact, identical to the program efficiency
scores.

Next consider the global frontier differences between the frontiers for the three
subgroups, with the data still pooled over time (2006–2008). First calculate the
efficiency scores for all observations but relative to the frontiers for each of the three
subgroups in turn. The geometric means of these scores are shown in Table 16.5
above.

We can then calculate the global frontier difference between e.g. the state bank
frontier and the domestic frontier as the ratio of the geometric mean of the scores
relative to the state frontier over the geometric mean of the scores relative to the
domestic bank frontier. Thus we get that:

Global frontier difference state-domestic= 0.48
Global frontier difference state-foreign= 0.47
Global frontier difference domestic-foreign= 0.97

The values above implies that the state bank frontier is around half as good as both
the domestic and the foreign bank frontiers, meaning that observations located on
the state frontier will, on average, only be around 50 % efficient relative to either
of those two frontier. The frontiers for the domestic and the foreign banks are, on
average, equally good. It should here be noted that these are mean considerations,
and there are substantial variations across the individual observations. For example,
one state owned bank is actually located on the meta-frontier, and therefore there
will be (small) segments where the state frontier is superior to the other two frontiers.
Similarly, whilst the global frontier difference between the foreign and the domestic
banks is very small (as indicated by the index value close to 1), the differences for
individual observations vary between the foreign frontier being almost twice as good
as the domestic frontier in some locations, but the domestic frontier being more than
three times as good as the foreign frontier in other locations.

In order to estimate the global Malmquist index and the favourability decom-
position of the standard Malmquist index, we need to consider changes over time.
Therefore, instead of pooling the data set over time as in the previous, we now
consider the three time periods separately.

Calculating the global Malmquist index involves calculating the global frontier
shift between the time periods (2006–2007 and 2007–2008) as well as the global
efficiency changes between, as shown in Table 16.6 above.
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Table 16.6 Global Malmquist index and its components

Global frontier shift Global efficiency change Global Malmquist index

2006–2007 1.07 0.95 1.01

2007–2008 0.94 1.04 0.97

Table 16.7 Favourability decomposition of the standard Malmquist index

2006/2007 MI EC GFS FI FCI

State banks 0.87 0.83 1.07 0.81 1.20

Domestic banks 1.12 1.01 1.07 0.92 1.13

Foreign banks 0.84 0.93 1.07 0.70 1.21

2007/2008 MI EC GFS FI FCI

State banks 1.06 1.30 0.94 0.86 1.02

Domestic banks 0.95 1.01 0.94 0.92 1.09

Foreign banks 0.94 0.99 0.94 0.94 1.07

The global frontier shifts show that the frontier, on average, improves (by 7 %)
between 2006 and 2007 but then worsens between 2007 and 2008. Conversely, the
banks are, on average falling further behind the frontier from 2006 to 2007 but then
catching up with the frontier between 2007 and 2008. This is not surprising, as
the improving frontier makes it more likely that individual observations are falling
behind and similarly that a receding frontier makes it more likely for observations
to catch up. The product of the two components provide the global Malmquist index
and we observe that, overall, the banks improve their productivity a little between
2006 and 2007 but then the productivity worsens (more) between 2007 and 2008.

Finally consider the favourability decomposition of the standard Malmquist index
(Eq. 16.8 and 16.9), where the (geometric) mean values of the various components
for each of the three subgroups are shown in Table 16.7 above.

In Table 16.7 we observe that the domestic banks on average observed productivity
improvements between 2006 and 2007, coming from an almost neutral efficiency
change, global frontier improvement and whilst being located in an unfavourable
location in 2006 (relative to where the main frontier improvement is taking place), the
observations were in 2007 located a lot more favourably (relative to the past frontier
improvement). The state and foreign bank groups both, on average, experienced
productivity decrease from 2006 to 2007, in spite of the globally improving frontier.
This was caused by being unable to keep up with the improving frontier (“negative”
efficiency change) and being located in unfavourable locations in 2006 albeit moving
to more favourable locations in 2007.
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Similarly, considering the bottom half of Table 16.7 we now see the state banks
showing productivity improvements, mainly caused by efficiency changes. Domestic
and foreign banks have productivity decreases caused by a combination of neu-
tral efficiency change, a worsening frontier and unfavourable locations in 2007
albeit moving to better locations in 2008 (relative to where the largest frontier shift
happened previously).

16.8 Conclusion

This chapter has reviewed different approaches to estimating differences between
the efficiency frontiers for different subgroups within a data set. This idea dates back
to one of the very first DEA papers and applications by Charnes et al. (1981) which
introduced the notion of program efficiency, and which was subsequently relaunched
as the as the metatechnology ratio (or technology gap ratio, or best-practice gap)
by Battese et al. (2004, 2008). Where the program efficiency scores are specific
to the individual observations and therefore have to subsequently be aggregated in
some way in order to provide conclusions about the overall differences between
the frontiers for the subgroups, the global frontier difference index by Asmild and
Tam (2007) directly provides an overall measure for the differences between any
two subgroups of observation within a data set. Furthermore, by utilizing all the
observations in the data set, and not just the ones belonging to either of the two
groups that are being compared, it also provides a more accurate estimate of the
difference between the frontiers. Additionally, if the two frontiers being compared
are for the same observations observed in different time periods, then the global
frontier difference (or shift) can be used to define a global Malmquist index, which
directly measures the overall productivity changes, rather than observation-specific
changes which subsequently have to be aggregated. And finally, the global frontier
shift index can be used in an alternative decomposition of the traditional Malmquist
index, which includes a socalled favourability index, indicating whether the original
location of the observation under analysis observed a frontier shift that is smaller or
larger than the global shift, as well as a favourability change index indicating the
change in favourability obtained by the DMU moving to its new location.

The program efficiency measure and the global frontier difference index have
interesting interpretations in terms of whether one subgroup provides superior pro-
duction possibilities to those for another subgroup. If the groups are different time
periods, then the measures assess whether or not the possibilities improve over time.
But they can also be used more generally to compare different types of observations,
and thereby for example examine whether the regulatory regime in one country pro-
vides better production possibilities than that in another country, or whether a certain
organizational form or management strategy is superior to another in terms of the
effects on the resulting production possibilities.

The use of the global frontier shift index in a decomposition of the standard
Malmquist index, including also favourability and favourability change components,
may provide a valuable tool since it facilitates potentially interesting conclusions
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about whether individual or groups of observations are located in, or moving towards,
favourable positions, relative to where the frontier is improving most. This might
be useful for e.g. policy recommendations, relating for example to which (types or
groups of) DMUs are best able to take advantage of technological improvements.
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