
P1: IML/SBA P2: IML/SBA QC: IML/SBA T1: IML

Riegelman-FM Riegelman-1490G Riegelman-v9.cls September 1, 2004 22:56

Studying a Study and Testing a Test

How to Read the Medical Evidence

Fifth Edition

Richard K. Riegelman, m.d., m.p.h., phh.d.
Professor of Epidemiology-Biostatistics, Medicine, and Health Policy

and Founding Dean
The George Washington University

School of Public Health and Health Services
Washington, D.C.

i



P1: IML/SBA P2: IML/SBA QC: IML/SBA T1: IML

Riegelman-FM Riegelman-1490G Riegelman-v9.cls September 1, 2004 22:56

Acquisitions Editor: Danette Somers
Managing Editor:Michelle M. LaPlante
Project Manager: Bridgett Dougherty
Senior Manufacturing Manager: Ben Rivera
Marketing Manager: Kathy Neely
Cover Designer: Holly McLaughlin
Compositor: TechBooks
Printer: Edwards Brothers

C© 2005 by Richard K. Riegelman
Published by Lippincott Williams &Wilkins
530 Walnut Street
Philadelphia, PA 19106 USA
LWW.com

All rights reserved. This book is protected by copyright. No part of this book may be
reproduced in any form or by any means, including photocopying, or utilized by any
information storage and retrieval system without written permission from the copyright
owner, except for brief quotations embodied in critical articles and reviews. Materials
appearing in this book prepared by individuals as part of their officia duties as U.S.
government employees are not covered by the above-mentioned copyright.

Printed in the USA

Library of Congress Cataloging-in-Publication Data

<COMP: set CIP here>
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responsible for errors or omissions or for any consequences from application of the
information in this book and make no warranty, expressed or implied, with respect to the
currency, completeness, or accuracy of the contents of the publication. Application of this
information in a particular situation remains the professional responsibility of the
practitioner.

The authors, editors, and publisher have exerted every effort to ensure that drug selection
and dosage set forth in this text are in accordance with current recommendations and
practice at the time of publication. However, in view of ongoing research, changes in
government regulations, and the constant fl w of information relating to drug therapy and
drug reactions, the reader is urged to check the package insert for each drug for any change
in indications and dosage and for added warnings and precautions. This is particularly
important when the recommended agent is a new or infrequently employed drug.

Some drugs and medical devices presented in this publication have Food and Drug
Administration (FDA) clearance for limited use in restricted research settings. It is the
responsibility of the health care provider to ascertain the FDA status of each drug or
device planned for use in their clinical practice.
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Preface

Putting Progress Into Practice
The practice of medicine is changing at unprecedented speed. Today’s reason-
able assumption is outdated by tomorrow’s evidence. A deluge of data faces
us as we confront the onslaught of health research literature. How is the busy
student, resident or practitioner to deal with this dilemma? Eff ciently reading
the research evidence is the key to successfully putting progress into practice.
The 5th edition of Studying a Study and Testing a Test: How to Read

the Medical Evidence opens up the door to the practice of evidence-based
medicine. For the f rst time, this new edition provides a unifying structure,
the M.A.A.R.I.E. framework, for reading the full range of research articles
encountered by students, residents and practitioners of medicine and public
health. The M.A.A.R.I.E. framework is the key to the step-by-step questions-
to-ask approach to eff ciently reading the medical evidence.
The Studying a Study OnlineWeb site is an integral part of the 5th edition.

It can be found on the web at www.StudyingaStudy.com. This Web site pro-
vides practice using the M.A.A.R.I.E. framework, interactive f aw-catching
exercises, the f owchart of statistics and examples of how to read real journal
articles. The book and the Web site together are designed to be useful to the
individual reader, residents’ Journal Club, as well as students and faculty in a
wide variety of clinical and public health disciplines.
Popular features fromprevious editions have been expanded in the 5th edition

and updates added. A new section called A Guide to the Guidelines examines
evidence-based recommendations for practitioners. New f aw-catching exer-
cises appear throughout the book. The f owchart of statistics has been updated
and more examples added.
The Studying a Study and Testing a Test approach to reading the health

research literature aims to help students, residents, and practitioners practice
evidence-based medicine built upon a strong foundation of research evidence.
The aim is to help you eff ciently review journal articles and feel conf dent in
your ability to f nd the f aws that so often occur. It is important, however, to
remember that every f aw is not fatal. The goal is to recognize the limitations
of research and take them into account as you put the evidence into practice.
One f nal warning before you proceed. Reading the health research literature

can be habit forming. You may even f nd it enjoyable.

v

http://www.StudyingaStudy.com
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1 Introduction and
Flaw-Catching Exercise

The traditional course in reading the health literature consists of “Here’s The New
England Journal of Medicine. Read it!” This approach is analogous to learning to
swim by the total immersion method. Some persons can learn to swim this way,
of course, but a few drown, and many learn to fear the water.
In contrast to the method of total immersion, you are about to embark on a

step-by-step, active-participation approach to reading the medical evidence. With
the tools that you will learn, you will soon be able to read a journal article criti-
cally and efficientl . Considerable emphasis is placed on the errors that can occur
in the various kinds of studies, but try to remember that not every fl w is fa-
tal. The goal of literature reading is to recognize the limitations of a study and
then put them into perspective. This is essential before putting the results into
practice.
To make your job easier we use a common framework to organize our review

of each of the types of investigations. Before developing and illustrating the com-
ponents of the framework, however, let us begin with a fl w-catching exercise. A
fl w-catching exercise is a simulated journal article containing an array of errors
in each of the components of the framework. Read the following fl w-catching
exercise and then try to answer the accompanying questions.

Cries Syndrome: Caused by Television or Just Bad Taste?
A medical condition known as Cries syndrome has been described as occurring
among children 7 to 9 years old. The condition is characterized by episodes of
uninterrupted crying lasting at least an hour per day for 3 consecutive days. The
diagnosis also includes symptoms of sore throat, runny nose, and fever which
precedes the onset of the crying and are severe enough to keep the child out of
school.
Investigators identifie 100 children with Cries syndrome. For each Cries syn-

drome child a classmate was chosen for comparison from among those who did
not miss school. The study was conducted more than one month after the onset of
symptoms. The investigators examined 20 variables, which included all the fac-
tors they could think of as being potentially associated with Cries syndrome. They
collected data on all medication use, number of spankings, hours of television
viewing, and number of hours at home, as well as 16 other variables.
Using pictures, they asked the children to identify the medications they had

taken while they had Cries syndrome. Their classmates without Cries syndrome
were also asked to use the pictures to identify medications taken during the same
time period. The investigators then asked each child to classify each medica-
tion taken as a good-tasting or bad-tasting medication. The data on spankings

1
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2 Ch. 1. Introduction and Flaw-Catching Exercise

were obtained from the primary caregiver. The investigators found the following
data:

Percentage of children who reported taking bad-tasting medication
Cries syndrome: 90%
Controls: 10%
Average number of spankings per day
Cries syndrome: 1
Controls: 2
Average number of television viewing hours per day
Cries syndrome: 8 (range 5 to 12)
Controls: 2 (range 0 to 4)

Among the 20 variables, analyzed one at a time, the above were the only ones
that were statistically signif cant using the usual statistical methods. The p values
were 0.05 except for the hours of television, which had a P-value of 0.001. The
investigators drew the following conclusions:

1. Bad-tasting medication is a contributory cause of Cries syndrome because it
was strongly associated with Cries syndrome.

2. Spanking protects children from Cries syndrome because the controls had an
increased frequency of being spanked.

3. Television viewing at least 4 hours per day is required for the development
of Cries syndrome because all children with Cries syndrome and none of the
controls watched television more than 4 hours per day during the period under
investigation.

4. Because Cries syndrome patients were 9 times as likely to take bad-tasting
medication, the investigators concluded that removing bad-tasting medication
from the market would eliminate almost 90% of Cries syndrome cases among
children like those in this investigation.

5. In addition, regular spanking of all children 7 to 9 years old should be widely
used as a method of preventing Cries syndrome.

Now to get an idea of what you will be learning in the “Studying a Study” section,
see if you can answer the following questions:

1. What type of investigation is this?
2. What is the study hypothesis?
3. Is the control group correctly assigned?
4. Are reporting and/or recall biases likely to be present in this study?
5. Does the method of data collection raise issues of precision and accuracy?
6. Is the estimate of the strength of the relationship performed correctly?
7. Is statistical signif cance testing performed correctly?
8. Is an adjustment procedure needed?
9. Is an association established between the use of bad-tasting medicine and Cries

syndrome?
10. Is it established that the spankings occurred prior to the development of Cries

syndrome?
11. Is it established that altering the frequency of spankings will alter the frequency

of Cries syndrome?
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Ch. 1. Introduction and Flaw-Catching Exercise 3

12. Is it established that television viewing of at least 4 hours per day is a necessary
cause of Cries syndrome?

13. Can the investigators conclude that removing bad-tasting medication from the
market would reduce the frequency of Cries syndrome by almost 90% among
children similar to those in the study?

14. Can the investigators conclude that regular spanking of all children 7 to 9 years
old should be widely used as a method of preventing Cries syndrome?

To see how you have done, go to the Studying a Study Online Web site at
www.StudyingaStudy.com.
This is a good time to locate and bookmark this Web site since it provides

additional active participation exercises that will help you gain hands-on practice
in using the skills that you will learn throughout this book.

http://www.StudyingaStudy.com
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2 Types of Studies and the
M.A.A.R.I.E. Framework

Three basic types of investigations are found in the health research literature:
case-control studies, cohort studies, and randomized clinical trials. Each type of
investigation attempts to address a define question or hypothesis by comparing
one or more study groups with one or more control groups.1
An organizing framework can be used to evaluate each type of investigation.

The framework is divided into six components:
� Method
� Assignment
� Assessment
� Results
� Interpretation
� Extrapolation

We call this the M.A.A.R.I.E. framework, an acronym using the firs letter of
each component: Method, Assignment, Assessment, Results, Interpretation, and
Extrapolation. Figure 2.1 outlines the application of the framework to a research
study.

Method
Method issues are common to all types of health research. They require the investi-
gators to clarify exactly what they are attempting to achieve by definin what they
will investigate, who they will investigate, and how many they will investigate.
Each of the six components in the M.A.A.R.I.E. framework can be divided into
three specifi issues. For method, the issues and key questions are as follows:
� Study hypothesis:What is the study question being investigated?
� Studypopulation:What population is being investigated including the inclusion
and exclusion criteria for the subjects in the investigation?
� Sample size and statistical power: How many individuals are included in the
study and in the control groups? Are the numbers adequate to demonstrate
statistical significanc if the study hypothesis is true?

1 The investigations discussed in this “Studying a Study” section are sometimes called analytical
studies. Analytical studies compare study groups with control groups. However, investigations do not
always have control groups.Descriptive studies obtain data on a group of individualswithout comparing
them to another group. Sometimes descriptive studies may use data external to the investigation to
compare a group in the investigation with other groups or to the same group at an earlier period of
time. These comparison groups are sometimes called historical controls. These types of investigations
will be discussed in the “Rating a Rate” section later in this book. In special situations, descriptive
studies may also be called case-series, descriptive epidemiology studies, or natural history studies.
You will also encounter mixed types of studies such as population-based case-control studies, nested
case-control studies, and natural experiments.

7
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8 Section I. Studying a Study

Study's
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Conclusions
for other
Individuals,
groups and
populations

Study
group

Control
group

Study
sample

Outcome

Outcome

Comparison

Method Assignment Assessment Results Interpretation Extrapolation

Conclusions
for the study
participants

Figure 2.1. M.A.A.R.I.E. framework for studying a study.

Before investigators can decidewhich and howmany individuals to include in an
investigation, they need to def ne the study hypothesis. Then they can focus on the
question ofwhich individuals or population should be included in the investigation.
Health research is not generally conducted by including everyone in the population
of interest. Rather, health research is generally performed using only a subgroup,
or sample, of all individuals who could in theory be included. For all types of health
research, choosing whom to include and how many to include in an investigation
are basic method issues. Thus,Method, the f rst component of the M.A.A.R.I.E.
framework, def nes the study question and sets the rules for obtaining the study
and control samples. The M.A.A.R.I.E. framework continues with the following
additional components:

Assignment: Selection of participants for study and control groups
Assessment:Measurement of outcomesor endpoint in the study and control groups
Results: Comparison of the outcome in the study and control groups
Interpretation:Meaning of the results for those included in the investigation
Extrapolation:Meaning for those not included in the investigation

To illustrate the application of theM.A.A.R.I.E. framework to case-control studies,
cohort, and randomized clinical trials, let us outline the essential features of each
type of study. We will then see how we can apply each type to the question of
the potential risk of stroke with birth control pill use. The implications of the
components of the M.A.A.R.I.E. framework differ slightly according to the type
of investigation, as we discuss in this chapter.
We discuss each type of investigation by assuming that there is one study group

and one control group. However, in all types of studies more than one study group
and more than one control group can be included.

Applying the M.A.A.R.I.E. Framework
Case-Control Study

The unique feature of case-control studies of disease is that they begin by iden-
tifying individuals who have developed or failed to develop the disease being
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Method Assignment Assessment Results Interpretation Extrapolation

Figure 2.2. Application of the M.A.A.R.I.E. framework to a case-control study.

investigated. After identifying those with and without the disease, they look back
in time to determine the characteristics of individuals before the onset of disease.
In case-control studies, the cases are the individuals who have developed the dis-
ease, and the controls are the individuals who have not developed the disease. To
use a case-control study to examine the relationship between birth control pill use
and stroke, an investigator would proceed as follows:

Assignment: Select a study group of women who have had a stroke (cases)
and a group of otherwise similar women who have not had a stroke (controls).
Because the development of the disease has occurred without the investigator’s
intervention, this process is called observed assignment.
Assessment: Determine whether each woman in the case or study group and

in the control group previously took birth control pills. The previous presence or
absence of use of birth control pills is the outcome in a case-control study.
Results: Calculate the chances that the group of women with a stroke had used

birth control pills versus the chances that the group of women without stroke had
used birth control pills.
Interpretation: Draw conclusions about the meaning of birth control pill use

for women included in the investigation
Extrapolation:Draw conclusions about themeaning of birth control pill use for

categories of women not like those included in the investigation, such as women
on newer low-dose birth control pills.

Figure 2.2 illustrates the application of the M.A.A.R.I.E. framework to this inves-
tigation.

Cohort Study
Cohort studies of disease differ from case-control studies in that they begin by iden-
tifying individuals for study and control groups before the investigator is aware of
whether they have developed the disease. A cohort is a group of individuals who
share a common experience. A cohort study begins by identifying a cohort that
possesses the characteristics under study as well as a cohort that does not possess
those characteristics. Then the frequency of developing the disease in each of the
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10 Section I. Studying a Study

cohorts is obtained and compared. To use a cohort study to examine the relation-
ship between birth control pill use and stroke, an investigator might proceed as
follows:

Assignment: Select a study group of women who are using birth control pills
and an otherwise similar control group of women who have never used birth
control pills. Because the use of birth control pills is observed to occur without the
investigator’s intervention, this process is also called observed assignment.
Assessment: Determine who in the study group and the control group develops

strokes. As opposed to a case-control study, the outcome for a cohort study is the
subsequent presence or absence of a stroke.
Results: Calculate the chances of developing a stroke for women using birth

control pills versus women not using birth control pills.
Interpretation: Draw conclusions about the meaning of birth control pill use

for women included in the study.
Extrapolation: Draw conclusions about the meaning of birth control pill use

for women not included in the study, such as women on newer low-dose birth
control pills.

Figure 2.3 illustrates the application of the M.A.A.R.I.E. framework to a cohort
study.

Randomized Clinical Trial
Randomized clinical trials are also called controlled clinical trials. As in cohort
studies, individuals are assigned to study and control groups before determining
who develops the disease. The unique feature of randomized clinical trials, how-
ever, is the process for assigning individuals to study and control groups. In a
randomized clinical trial, participants are randomized either to a study group or to
a control group.
Randomization means that chance is used to assign a person to either the study

or control group. This is done so that any one individual has a known, but not
necessarily equal, probability of being assigned to the study group or the control

Study's
population

Study
sample

Study group:
birth control
pill users

Occurrence 
of stroke

Control group:
birth control 
pill non-users

Occurrence 
of stroke

Chances 
of stroke
in the study
group vs.
the control 
group

Conclusions
for birth
control pill use
for women in
the study

Conclusions
for birth
control pill
use for
women NOT
in the study

Method Assignment Assessment Results Interpretation Extrapolation

Figure 2.3. Application of the M.A.A.R.I.E. framework to a cohort study.
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Figure 2.4. Application of the M.A.A.R.I.E. framework to a randomized clinical trial.

group. Ideally the study participants as well as the investigators are not aware of
which participants are inwhich group.Double-blind assignment ormaskingmeans
that neither the participant nor the investigators know whether the participant has
been assigned to the study group or the control group.
To use a randomized clinical trial to examine the relationship between birth

control pill use and stroke, an investigator might proceed as follows:

Assignment:Using randomization, women are assigned in a double-blind fash-
ion to a study group that will be prescribed birth control pills or to a control group
that will not be prescribed birth control pills.
Assessment: Observe these women to determine who subsequently develops

stroke. As in a cohort study, in a randomized clinical trial the outcome is the
presence or absence of stroke.
Results:Calculate the chances that women using birth control pills will develop

a stroke versus women not using birth control pills.
Interpretation: Draw conclusions about the meaning of birth control pill use

for women included in the study.
Extrapolation: Draw conclusions about the meaning of birth control pill use

for women not included in the study, such as women on new low-dose birth control
pills.

Figure 2.4 illustrates the application of the M.A.A.R.I.E. framework to a random-
ized trial.

Analysis of the Basic Study Types
The basic components and key questions we’ve outlined are common to the three
basic types of investigations, the case-control, cohort, and randomized clinical
trial. Each type, however, has its own strengths, weaknesses, and role to play in
health research.
Case-control studies have the distinct advantage of being useful for studying

rare conditions or diseases. If a condition is rare, case-control studies can detect
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12 Section I. Studying a Study

differences between groups using far fewer individuals than other study designs.
Often,much less time is needed to perform a case-control study because the disease
has already developed. This method also allows investigators to simultaneously
explore multiple characteristics or exposures that are potentially associated with
a disease. One could examine, for instance, the many variables that are possibly
associated with colon cancer, including diet, surgery, ulcerative colitis, polyps,
alcohol, cigarettes, family history.
Case-control studies are often capable of showing that a potential “cause” and a

disease or other outcome occur together more often than expected by chance alone.
Thus case-control studies are useful as initial investigations designed to establish
the existence of an association. Because case-control studies are able to examine
rare diseases and rare outcomes, they can be used to investigate rare but serious
side effects of treatment.
A special type of case-control study is called a cross-sectional study. A cross-

sectional study, like a case-control study, starts with people with and without a
condition. In a cross-sectional study the investigator determines whether each
individual currently has the risk factor. That is, the condition and the risk factor
are measured at the same point in time. Cross-sectional studies can be very useful
to investigate conditions such as a genetic relationship, where we can be quite
conf dent that a gene that is currently present was also present in the past.
The major objection to case-control studies is that they are prone to errors and

biases that will be explained in the following chapters.
Cohort studies have the major advantage of demonstrating with greater assur-

ance that a particular characteristic preceded a particular outcome being studied.
As we will see, this is a critical distinction when assessing a cause-and-effect re-
lationship. Concurrent cohort studies or perspective cohort studies, which follow
patients forward over long periods of time, are expensive and time consuming. It
is possible, however, to perform a cohort study without such a lengthy follow-up
period. If reliable data on the presence or absence of the study characteristic are
available from an earlier time, these data can be used to perform a nonconcurrent
cohort study, often called a retrospective cohort or database study. In a noncon-
current or retrospective cohort study, the assignment of individuals to groups is
made on the basis of these past data. However, the groups are identif ed without
the investigator being aware of the whether or not the participants developed the
outcomes being assessed. After assignment has occurred, the investigator can then
look at the data on disease occurrence.
For instance, if low-density lipoprotein (LDL) readings from a group of adults

were available from 15 years before the current study began, those with and those
without elevated LDL readings could be examined to assess the subsequent de-
velopment of coronary artery disease, strokes, or other consequences of elevated
LDL readings that might have occurred. The critical element, which characterizes
all cohort studies, is the identif cation of individuals for study and control groups
without knowledge of whether the disease or condition under investigation has
developed.
Cohort studies can be used to delineate various consequences that may be pro-

duced by a single risk factor. For instance, researchers can simultaneously study the
relationship between hypertension and stroke, myocardial infarction, heart failure,
and renal disease. Cohort studies can produce more in-depth understanding of the
effect of an etiologic factor on multiple outcomes.
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Both case-control and cohort studies are observational studies; that is, they
observe the assignment of individuals rather than impose the characteristics or
interventions.
Randomized clinical trials are distinguished from observational studies by the

randomization of individuals to study and control groups. Randomization helps
to ensure that the study characteristic, and not some underlying predisposition,
produces the study results. Randomized clinical trials are often used to study
interventions that aim to prevent, cure, or palliate disease. They are capable of
establishing whether an intervention has efficac , that is whether it works under
study conditions. When properly performed, randomized clinical trials are able to
demonstrate all three def nitive criteria for contributory cause or eff cacy: associ-
ation, prior association, and altering the cause alters the effect. The strengths and
weaknesses of randomized clinical trials are explored in depth in chapter 9.
As we have seen, there are three key questions to ask pertaining to the method

component of the M.A.A.R.I.E. framework. There are also three key questions to
ask regarding each of the other components. These questions are brief y outlined
in the following sections. These 15 questions along with the three questions from
the method component make up the what we might call the Questions to Ask when
Studying a Study. These questions form the basis for the M.A.A.R.I.E. framework
and can serve as a checklist when reading journal articles. We will examine the
questions in greater detail in the chapters that follow.

Assignment
The assignment component asks the following three questions about the charac-
teristics of the study and control groups:

� Process of Assignment: What method is being used to identify and assign
individuals to study and control groups, i.e., observed or randomization?
� Confounding Variables: Are there differences between the study and control
groups, other than the characteristic under investigation, that may affect the
outcome of the investigation?
� Masking (or blinding): Are the participants and/or the investigators aware of
the participants’ assignment to a particular study or control group?

Assessment
The process of assessment asks three basic questions about the quality of how the
investigation’s outcomes were measured:

� Appropriate measurement: Does the measurement of an outcome address the
study question?
� Accurate precise and measurement: Is the measurement of an outcome an
accurate and precise measure of the phenomenon that the investigation seeks to
measure?
� Complete and unaffected by observation: Is the follow-up of participants
nearly 100% complete and is it affected by the participants’ or the investigators’
knowledge of the study group or control group assignment?
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Results
The results component quantitatively compares the measures of outcome obtained
in the study group and in the control group. It requires us to ask the following three
basic questions:

� Estimation:What is the magnitude or strength of the association or relationship
observed in the investigation?
� Inference:What statistical techniques are used to perform statistical signif cance
testing?
� Adjustment:What statistical techniques are used to take into account or control
for differences between the study group and control group that may affect the
results?

Interpretation
The interpretation component asks us to draw conclusions regarding the subjects
in the investigation. Initially, it asks us to draw conclusions about cause-and-
effect relationships, or what we will call contributory cause when we are talking
about the etiology of a disease, or eff cacy when we are asking whether an in-
tervention works to improve outcome. We also ask whether the intervention pro-
duces harms and whether it works especially well or not well at all for subgroups,
i.e., those with special characteristics. The three basic questions for interpretation
are:

� Contributory cause or efficacy Does the factor being investigated alter the
probability that the disease will occur (contributing cause) or work to reduce the
probability of an undesirable outcome (eff cacy)?
� Harms and interactions: Are adverse effects or interactions that affect the
meaning of the results identif ed?
� Subgroups: Are the outcomes observed in subgroups within the investigation
different from the outcomes observed in the overall investigation?

Extrapolation
Extrapolation of health research studies asks how we can go beyond the data and
the participants in a particular investigation to draw conclusions about individuals,
groups, and populations that are not specif cally included in the investigation.
These groups may be your patients, your institution, or your community. These
three key questions address extrapolation:

� To similar individuals, groups, or populations: Do the investigators extra-
polate or extend the conclusions to individuals, groups, or populations that are
similar to those who participated in the investigation?
� Beyond the data: Do the investigators extrapolate by extending the conditions
beyond the dose, duration, or other characteristics of the investigation?
� To other populations:Do the investigators extrapolate to populations or settings
that are quite different from those in the investigation?
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The 6 components and 18 questions of theM.A.A.R.I.E. framework form the basis
of the Studying a Study approach to reading the research literature. To see how this
approach can be applied to reading actual journal articles please go to the Studying
a Study Online Web site at www.StudyingaStudy.com.
Now let us take a more in-depth look at the M.A.A.R.I.E. framework by exam-

ining each of its 6 components and 18 questions.

http://www.StudyingaStudy.com
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3 Method

Investigations begin by identifying a study hypothesis as well as study and control
samples to investigate a specifi question in a define population. Remember, the
three key questions of method are:
� Study hypothesis:What is the study question being investigated?
� Study population:What population is being investigated and what are the in-
clusion and exclusion criteria for the subjects in the investigation?
� Sample size and statistical power: How many individuals are included in the
study and in the control groups? Are the numbers adequate to demonstrate
statistical significanc if the study hypothesis is true?

Now let us examine these questions one at a time.

Study Hypothesis
The study’s hypothesis, or study question, provides the starting point from which
an investigation is organized. It define the purpose of the investigation. Thus a
study hypothesis is essential for all investigations that compare study and control
groups. When reading the health research literature, therefore, the firs question
to ask is: What is the study hypothesis? Investigators should explicitly defin a
hypothesis. The hypothesis may be an association between a characteristic known
as a risk factor1 (e.g., birth control pills) and a disease (e.g., stroke), or between
an intervention (e.g., reduction in blood pressure) and an improvement in outcome
(e.g., reduced frequency of strokes).
It is often important to distinguish between what the investigators would ideally

like to study and what they have in fact actually studied. Investigators may want
to study the end-organ effects of hypertension, for example, but the inability to
perform renal biopsies and cerebral angiograms may force them to carefully study
retinal changes. Researchers maywish to investigate the long-term effects of a new
drug to prevent osteoporosis, but time, money, and the desire to publish may limit
their investigation to its short-term effects on bone metabolism and bone density.
To conduct an investigation, it is important to have a specifi study hypothesis

rather than a general relationship in mind. Consider the following example:

An investigator wishes to study the relationship between hypertension and vascular
damage. The investigator hypothesizes that the end-organ damage is associated with
hypertension.

This hypothesis is not specifi enough to study. A more specifi one might be that
an increased degree of narrowing of the retinal arteries, as measured on retinal

1 The term “risk factor” will be used to imply only the existence of an association. A risk factor may
also be referred to as a risk marker. At times the term risk factor is used in the literature to imply not
only an association but a prior association—that is, the risk factor precedes the outcome in time. When
this is the situation, the term determinant may be used.

16
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photographs after 3 years of observation, will be associated with an increased
level of diastolic blood pressure compared as measured by three blood pressure
measurements at the beginning and at the end of the study. This provides a specif c
study question that can be addressed by an investigation.
Failure to clarify the hypothesis being tested makes it diff cult for the researcher

to choose the study design and the reader to assess its appropriateness. For instance,
imagine the following situation:

An investigator wishes to demonstrate that birth control pills are a contributory cause
of strokes. The investigator conducts a case-control study using very carefulmethods.
The results demonstrate a strong relationship between birth control pills and strokes.
The investigator concludes that birth control pills are a contributory cause of stroke.

This investigator has failed to recognize that the use of a case-control study im-
plies that the investigator is interested in demonstrating that birth control pills
are associated with strokes rather than demonstrating that birth control pills are a
contributory cause of strokes.

Study Population
The population being studied must be def ned before beginning an investigation.
This requires the investigators to def ne the characteristics of individuals who will
be selected for the study group and control group. The study’s populations may or
may not represent the population of interest. The population of interest is called
the target population. The target population is the large group of individuals to
whomwewish to apply the results of the investigation. It is important to appreciate
whether the study’s population actually ref ects the target population, as illustrated
in the next example:

A vaccine designed for high risk premature infants in intensive care units was inves-
tigated among healthy newborns. The healthy newborns were shown to have a strong
antibody response to the vaccine and a high degree of clinical protection.

No matter how well designed this investigation, it’s implications for high risk pre-
mature infants in the intensive care use will be limited. When the target population
for an intervention, whether for prevention or cure, is known, it is important that
the study’s population ref ect the target population.
In order to def ne the study population, investigators def ne what are called

inclusion criteria and exclusion criteria. Inclusion criteria must be present for an
individual to be eligible to participate in an investigation. Even if the inclusion
criteria are met, presence of exclusion criteria means that the individual is not
eligible for the investigation. Let us see why inclusion and exclusion criteria are
needed by looking at the next example:

An investigator wanted to study the effect of a new therapy for breast cancer. He
selected all available breast cancer patients and found that the treatment, on average,
resulted in no improvement in outcome. Later research revealed that the therapy
provided a substantial improvement in outcome for women with Stage III breast
cancer. The therapy, however, was shown to have no benef t if women with breast
cancer had undergone previous radiation therapy.

If this investigation had been conducted by requiring Stage III breast cancer as
inclusion criteria and previous radiation therapy as an exclusion criteria, the results
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would have been very different. Inclusion criteria serve to identify the types of
individuals who should be included in the investigation. Exclusion criteria serve
to remove individuals from eligibility because of special circumstances that may
complicate their treatment or make interpretation more diff cult.
Inclusion and exclusion criteria def ne the characteristics of those being studied.

In addition, they narrow the group to which the results can be directly applied. For
instance, if women diagnosed with Stage II breast cancer are not included in the
study, it is not clear whether the results of the study apply to them.

Sample Size and Statistical Power
Having identif ed the study hypothesis and population, the reader of the health
research literature should focus on the sample size of individuals selected for
study and control groups. The question to ask is:

� Is there an adequate number of participants to demonstrate statistical signif cance
if the study hypothesis is true?

The answer to this question is given by the statistical power of an investigation.
Statistical power is the probability of demonstrating statistical signif cance if the
study hypothesis is true. Research articles often identify the type II error rather
than statistical power. Type II error is the complement of the statistical power. In
other words, type II error is the probability of failing to demonstrate statistical
signif cance if the study hypothesis is true.
Thus, if the type II error is 10%, the statistical power is 90%; if the type II error

is 20%, the statistical power is 80%. Well-designed investigations should include
enough individuals in the study and control groups to provide at least an 80%
statistical power, or 80% probability of demonstrating statistical signif cance if
the study hypothesis is true.
As we will see when we further discuss sample size in Chapter 9, statistical

power depends on a series of assumptions. In addition, the number of individuals
required to obtain the same statistical power is very different in case-control studies
compared to cohort studies or randomized clinical trials. Failure to appreciate this
distinction can lead to the following inconclusive cohort study:

Investigators wished to study whether birth control pills are associated with the rare
occurrence of strokes in young women. The researchers monitored 2,000 women on
birth control pills and 2,000 women on other forms of birth control for 10 years.
After spending millions of dollars in follow-up, they found two cases of stroke
among the pill users and one case among the non–pill-users. The differences were
not statistically signif cant.

In case-control studies of birth control pills and stroke, we are interested in deter-
mining whether the use of birth control pills is greater among those with stroke.
Birth control pill use may be an overwhelmingly common characteristic of young
women who have experienced a stroke. If so, the sample size required to conduct
a case-control study may be quite small, perhaps 100 or less in each group.
On the other hand, when conducting a cohort study or randomized clinical trial,

even if there is a very strong relationship between birth control pill use and stroke,
it may be necessary to follow a large number of women who are taking and are
not taking birth control pills to demonstrate a statistically signif cant relationship
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between birth control pills and strokes. When the occurrence of an outcome such
as stroke is rare, say considerably less than 1%, many thousands of women may be
required for the study and control groups in cohort and randomized clinical trials
to provide an adequate statistical power to demonstrate statistical signif cance,
even if the study hypothesis is true. In Chapter 9, we explore in more depth the
implications of sample size.
Thus, the method component of the M.A.A.R.I.E. framework requires that we

consider the study’s hypothesis, the study’s population being investigated, and
the adequacy of the sample size. Equipped with an understanding of these key
method questions, we are ready to turn our attention to the next component of our
M.A.A.R.I.E. framework, assignment.
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4 Assignment

The second component of the M.A.A.R.I.E. framework is assignment, the selec-
tion of participants for the study and control groups. Regardless of the type of
investigation, there are three basic assignment issues:
� Process:What method is being used to assign participants to study and control
groups?
� Confounding variables:Are there differences between the study and the control
groups, other than the factor being investigated, that may affect the outcome of
the investigation?
� Masking:Are the participants and/or the investigators aware of the participants’
assignment to a particular study or control group?

Process
Case-control and cohort studies are both known as observational studies. In an
observational study, no intervention is attempted, and thus no attempt is made to
alter the course of a disease. The investigators observe the course of the disease
among groups with and without the characteristics being studied.
In Chapter 2, we used the example of birth control pill use and strokes, and

learned that the type of assignment performed in case-control and cohort studies is
called observed assignment. This term implies that the researcher simply identifie
individuals who meet the inclusion and exclusion criteria to become participants
in an investigation.
The goal in creating study and control groups is to select participants for each

of these groups who are as similar as possible, except for the presence or absence
of the characteristic being investigated. Sometimes this goal is not achieved in a
particular study because of a fl wed method of observed assignment that creates
what is called a selection bias.

Selection Bias
Few terms are less clearly understood or more loosely used than the word “bias.”
Bias is not the same as prejudice. It does not imply a prejudgment before the facts
are known. Bias occurs when investigators unintentionally introduce factors into
the investigation that influenc the outcome of the study. Differences between the
study and control groups result in a selection bias if these specifi differences affect
the outcome under investigation. The elements of selection bias are illustrated in
the following hypothetical study:1

A case-control study of premenopausal breast cancer compared the past use of birth
control pills among 500 women who have breast cancer to the past use of the pill

1 In reviewing this hypothetical case and others in this book, the reader should assume that all omitted
portions of the study were properly performed.

20
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among 500 age-matchedwomen admitted to the hospital for hypertension or diabetes.
Investigators found that 40% of the women with breast cancer had used birth control
pills during the preceding f ve years, whereas only 5% of those with hypertension or
diabetes in the control group had used the pill. The authors concluded that a strong
association existed between the use of birth control pills and the development of
premenopausal breast cancer.

To determine whether a selection bias may have existed when patients were as-
signed to the control group, we must f rst ask whether the women in the control
group were similar to the women in the study group except that they did not have
breast cancer. The answer is no. The women in the control group were quite dif-
ferent from the women in the study group because they had been admitted to the
hospital for hypertension or diabetes. One must then ask whether this unique char-
acteristic (hypertension or diabetes) was likely to have affected the results under
investigation—that is, use of birth control pills.
The answer is yes. Because birth control pills are widely known to increase

blood pressure and blood sugar, clinicians generally do not and should not pre-
scribe birth control pills to women with hypertension or diabetes. Thus, the unique
health characteristics of these women in the control group contributed to a lower
use of birth control pills. This investigation’s method of assignment, therefore,
created a selection bias; the groups differed in a way that made a difference in
outcome.
Selection bias can also occur in a cohort study, as illustrated in the following

example:

The effect of cigarette smoking on the development of myocardial infarctions was
studied by selecting 10,000 middle-aged cigarette smokers and 10,000 middle-aged
cigar smokers who have never smoked cigarettes. Both groups were observed for
10 years. The investigators found that the cigarette smokers had a rate of new my-
ocardial infarction of 4 per 100 over 10 years, whereas the cigar smokers had a rate
of newmyocardial infarction of 7 per 100 over 10 years. The results were statistically
signif cant. The investigators concluded that cigarette smokers have a lower risk of
myocardial infarctions than cigar smokers.

Despite the statistical signif cance of this difference, the conclusion conf icts with
the results of many other studies. Let us see if selection bias could have contributed
to this.
The f rst question is whether the study and control groups differ. The answer is

yes, becausemen constitute the vastmajority of cigar smokers, whereasmanymore
women smoke cigarettes than cigars. To establish the potential for a selection bias,
wemust also ask whether this difference could affect the outcome beingmeasured.
Again, the answer is yes. Middle-aged men have a higher risk of myocardial
infarction. Thus, both elements of selection bias are present. The study and control
groups differ with regard to a particular factor that could affect the outcome being
measured.

Confounding Variables
Even when a study is properly designed so that selection bias is unlikely, ran-
dom error due to chance alone may produce study and control groups that differ
according to certain characteristics that might affect the results of the investiga-
tion. When these differences in characteristics affect outcome, we refer to them
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as confounding variables. Thus, a selection bias is a special type of confounding
variable, which results from bias in the way the study group or control group sub-
jects are selected. Remember, even in the absence of selection bias, differences in
study group and control group characteristics can result by chance, i.e., random
error. It is important to compare the study group and the control group subjects to
determine whether they differ in ways that are likely to affect the outcome of the
investigation even when there is no evidence of selection bias.
Most research articles include a table, usually the f rst table in the article, that

identif es the characteristics that the investigators know about the study group and
control group. This allows the researcher and the reader to compare the groups
to determine whether large or important differences have been identif ed. These
differences may be the result of bias or chance. In either situation, they need to
be recognized and subsequently taken into account or adjusted for as part of the
analysis of results.2

Matching and Pairing
Onemethod for circumventing the problemof selection bias is tomatch individuals
who are similar with respect to characteristics that might affect the study’s results.
For instance, if age is related to the probability of being a member of either
the study group or the control group, and if age is also related to the outcome
being measured, then the investigator may match for age. For instance, for every
65-year-old in the control group, investigators could choose one 65-year-old for the
study group, and similarly with 30-year-olds, 40-year-olds, and so on. If properly
performed, the process of matching guarantees that the distribution of ages in each
group is the same.
Matching is not limited to making the groups uniform for age. It may be used

for any characteristic related to the probability of experiencing the outcome under
study. For example, if one were planning a cohort study addressing the relationship
between birth control pills and breast cancer, family history of premenopausal
breast cancer would be an important characteristic to consider for matching.
A disadvantage of matching groups is that the investigators cannot study the

effect that the “matching characteristic” has on the outcome being measured. For
instance, if they match for age and family history of premenopausal breast cancer,
they lose the ability to study how age or family history affects the development of
breast cancer. Furthermore, they lose the ability to study factors that are closely
associated with the matched factor. This pitfall of matching is illustrated in the
following example:

One hundred patients with adult-onset diabetes were compared with 100 nondiabetic
adults to study factors associatedwith adult-onset diabetes. The groupswerematched
to ensure a similar weight distribution in the two groups. The authors also found that
the total calories consumed in each of the two groups was nearly identical, and
concluded that the number of calories consumed was not related to the possibility of
developing adult-onset diabetes.

2Note that the reader can evaluate only those characteristics the investigator identif es. Thus the reader
should ask whether there are additional characteristics that would have been important to compare.
The investigators can only adjust for difference that they identify. However, randomization, especially
when the sample size is large, is capable of neutralizing differences the investigator does not recognize.
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The authors of the study, having matched the patients by weight, then attempted to
study the differences in calories consumed. Because there is a strong association
between weight and calories consumed, it is not surprising that the authors found
no difference in consumption of calories between the two groups matched for
weight. This type of error is called overmatching.
The type of matching used in the diabetes example is called group matching.

Group matching seeks an equal distribution of matched characteristics in each
group. A second type of matching is known as pairing (a term usedwhen one study
group and one control group are included in an investigation). Pairing involves
identifying one individual in the study group who can be compared with one
individual in the control group. Pairing of individuals using one or a small number
of characteristics can be a very effective way to avoid selection bias.
Pairing is a useful technique for preventing selection bias, but it needs to be

used cautiously. While it may in theory be desirable to use a large number of
characteristics, this may make identif cation of a control individual to pair with a
study individual much more diff cult, as illustrated in the next example:

A case-control study was conducted of the relationship between lung cancer and
exposure to a drug.The investigators attempted to pair the caseswith controlsmatched
for pack-year of cigarette smoking and exposure to environmental factors such as
radon, age, and gender—all factors that were believed to be related to the chances of
developing lung cancer. Unfortunately, the investigators were not able to complete
the investigation because they could not identify controls that fulf lled these criteria.

Thus, for practical reasons it is important to limit matching to very impor-
tant characteristics that will not prevent identif cation of subjects to use as
controls.
This problem can sometimes be circumvented by using a study subject as his

or her own control in what is called a cross-over study. In a cross-over study the
same individuals are compared with themselves, for instance, while on and off
medication. When properly performed, cross-over studies allow an investigator to
use the same individuals in the study group and control group, and to then pair
their results, thus keeping many factors constant.3
Cross-over studies must be used with great care, however, or they can produce

misleading results, as the following hypothetical study illustrates:

A study of the benef t of a new nonnarcotic medication for postoperative pain relief
was performed by giving 100 patients the medication on postoperative day 1 and a
placebo on day 2. For each patient, the degree of pain was measured using a well-
established pain scale. The investigators found no difference between levels of pain
on and off the medication.

When evaluating a cross-over study, one must recognize the potential for an effect
of time and a carry-over effect of treatment. Pain is expected to decrease with time
after surgery, so it is not accurate to compare the degree of pain on day 1 with the
degree of pain on day 2.
Furthermore, one must be careful to assess whether there may be a carry-over

effect in which the medication from day 1 continues to be active on day 2. Thus,

3All types of pairing allow the use of statistical signif cance tests, which increase the probability
of demonstrating statistical signif cance for a particular size study group. Statistical signif cance tests
used with pairing are called matched tests.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-04 Riegelman-1490G Riegelman-v9.cls August 20, 2004 18:58

24 Section I. Studying a Study

the absence of benef t in this cross-over trial should not imply that pain medication
on day 1 after surgery is no more effective than a placebo on day 2.
Matching and pairing are two methods for preventing confounding variables

that can be helpful techniques when properly used. It is important to recognize
that they are not the only techniques available to address the issues of confounding
variables. One can think of inclusion and exclusion criteria as another technique
for ensuring that the study and control groups are similar. In addition, adjustment
of data as part of the results component can be combined with matching or pairing
to take into account the impact of confounding variables that are present.

Masking
Masking, or blinding, attempts to remove one source of bias by preventing each
study participant and the investigators from knowing whether any one individual
was assigned to a study group or to a control group.
The term masking is considered a more accurate ref ection of the actual process

and is currently considered the technically correct term, although the term blinding
is still commonly used.
When masking is successful, we can be conf dent that knowledge of group

assignment did not inf uence the outcomes that were measured. Masking of study
subjects is a desirable technique that may be used in a randomized clinical trial.
However, it is not usually feasible in either case-control or cohort investigations. In
case-control studies, the patients have already experienced the outcome. In cohort
investigations, the patients have already experienced the factors being investigated.
Thus in both case-control and cohort investigations, it is important to consider
whether the knowledge regarding the assignment inf uenced the measurement of
the outcome. We will address this question of assessment in the next chapter.
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5 Assessment

Assessment is the measurement of outcomes in the study group and in the control
group. To understand the meaning of measuring outcomes, we need to remember
that in case-control studies outcomes represent the presence or absence of previous
characteristics or risk factors such as use of birth control pills or cigarette smoking.
In cohort studies and randomized clinical trials, outcomes refer to the consequences
of risk factors such as thrombophlebitis or lung cancer.Because the term“outcome”
is sometimes thought of as meaning the consequences of risk factors, the term
endpoint is also used to more clearly indicate the measurement being assessed in a
case-control study as well as a cohort study or a randomized clinical trial. Thus the
assessment process may be thought of as the process of measuring the outcome or
endpoint in the study and control groups.
To assess the results of an investigation, researchers must defin the outcome

or endpoint they intend to measure. The measurement of the outcome or endpoint
can be considered valid when it fulfill the following criteria:1

Appropriate: The measurement of the outcome addresses the study’s question.
Accurate: On average, it has the same numerical value as the phenomenon being
investigated. That is, it is free of systematic error or bias.

Precise: Produces nearly identical results when repeated under the same condi-
tions. It has minimum variation as a result of the effects of chance. That is, there
is minimum random error.

In addition, the implementationof themeasurement should not introduce additional
potential biases. The implementation should be as follows:

� Complete: The outcomes or endpoints of all participants have been measured.
� Unaffected by the process: Neither the participants’ nor the investigators’
knowledge of the study group or control group assignment affects the mea-
surement of outcome. Also, the process of observation itself doesn’t affect the
outcome.

Let us look at the meaning and implications of each of these criteria

1 The term “valid” unfortunately is used somewhat differently in different field of investigation.
The generic meaning of the term is that the measurement measures what it purports to measure.
The concepts used here aims to incorporate the biological or social meaning of the term as well
as the epidemiological and statistical concepts used in measurement. That is, “appropriate” implies that
the measurement of outcomes measures a phenomenon that is closely correlated with the underlying
biological or social phenomenon. “Accuracy and precision (or reproducibility)” correspond to the
desired characteristics of statistical estimates and confidenc intervals. “Complete and unaffected by
the process of observation” indicates the absence of important systematic biases that may affect the
accuracy and/or precision. Much of the confusion over the meaning of validity stems from different
methods used to establish these criteria in different disciplines. Terms like internal, external, face,
content, construct, and criterion validity may be thought of as reflectin different standards for judging
whether these criteria are achieved.

25



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-05 Riegelman-1490G Riegelman-v9.cls August 25, 2004 0:32

26 Section I. Studying a Study

Appropriate Measure of Outcome
To understand the importance of the appropriateness of a measure of outcome,
let us f rst consider an example of how the use of an inappropriate measure of
outcome can invalidate a study’s conclusions.

An investigator attempted to study whether users of brand A or brand B spermi-
cide had a lower probability of developing tubal infections secondary to chlamydia.
The investigator identif ed 100 women using each brand of spermicide, monitored
these women, and performed annual cervical cultures for chlamydia for 5 years. The
investigator found that women using brand A spermicide had 11/2 times as many
positive cultures for chlamydia. The investigator concluded that brand B spermicide
is associated with a lower rate of tubal infections.

Chlamydia cultures from the cervix do little to establish the presence or absence
of tubal infection. The study may help to establish a higher frequency of chlamy-
dia infection. However, if the intent is to study the relative frequency of tubal
infection, the investigator has not chosen an appropriate outcome measurement.
Investigators frequently are forced to measure an outcome that is not exactly the
outcome they would like to measure. When this occurs, it is important to estab-
lish that the phenomenon being measured is appropriate to the question being
investigated.
Increasingly, investigations seek to utilize outcomes that represent early ev-

idence of the outcome of interest rather than wait until clear-cut or clinically
important outcomes occur months or years later. For instance, when investigating
coronary artery disease as an outcome, we’d rather detect the disease at the asymp-
tomatic phase using testing rather than wait until there is clinical or ECG evidence
of disease. Despite the desirability of using these early or surrogate outcomes, we
need to be conf dent that these outcomes are closely related to the outcome of ulti-
mate interest. As we will see in chapter 9 on randomized clinical trials, sometimes
this is not so easy.

Accurate and Precise Measures of Outcome
Next, we look at what we mean by accurate and precise measures of outcome.2
Precision is also referred to as reliability and as reproducibility. It is helpful to
think of accuracy and precision as the two criteria for perfect performance. We
can think of perfect performance as hitting the bull’s-eye of a target on every shot.
In order to be accurate on average, the bullet does not need to hit the bull’s-eye
every time. That is, it may be a little high one time and a little low the next time,
but if these shots center around the bull’s-eye, then the measurement is said to be
accurate.
Precision, on the other hand, implies that the bullet always hits the same spot.

Always in the same spot, however, may end up being on one side or other of the
bull’s-eye. Thus an ideal measurement is both accurate and precise. An accurate
and precise measurement, by def nition, hits the bull’s-eye every time.
Measurement of outcome may lack either precision, accuracy, or both. When

measurements lack precision and vary widely frommeasurement to measurement,
we say they are not reproducible. Assuming this is due to chance, we call this

2 Precision can also be viewed as narrowconf dence intervals or the absence of substantial uncertainty.
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random error. When a measurement is always off target in the same direction, we
call this systematic error or assessment bias.
A large number of reasons for assessment bias have been identif ed. 3 It is helpful

to think of these biases as the consequences of obtaining data from different types
of sources of information. Thus, together they may be called information biases.
Information for measuring outcome may come from three basic sources:

1. The memory of study participants
2. The use of data from their previous records
3. Measurements by the study investigator

Informationobtained from thememoryof study individuals is subject to two special
types of assessment bias—recall bias and reporting bias.Recall bias implies defects
in memory, specif cally defects in which one group is more likely to recall events
than other groups. Reporting bias occurs when one group is more likely than the
other to report what they remember. Consider the following example of how recall
bias can occur:

In a case-control study of the cause of spina bif da, 100 mothers of infants born
with the disease and 100 mothers of infants born without the disease were studied.
Among the mothers of spina bif da infants, 50% reported having had a sore throat
during pregnancy versus 5% of the mothers whose infants did not develop spina
bif da. The investigators concluded that they had shown an association between sore
throats during pregnancy and spina bif da.

Before accepting the conclusions of the study, one must ask whether recall bias
could explain its f ndings. One can argue that mothers who experienced the trauma
of having an infant with spina bif da are likely to search their memory more
intensively and to remember events not usually recalled by other women.
Thus, recall bias is more likely to occur when the subsequent events are trau-

matic, thereby causing subjectively remembered and frequently occuring events to
be recalled that under normal circumstances would be forgotten.We cannot be cer-
tain that recall bias affected this case’s outcome measurements, but the conditions
are present in which recall bias occurs. Therefore, the result of this case-control
study may be ascribed, at least in part, to recall bias. The presence of recall bias
casts doubts on the alleged association between sore throats and the occurrence of
spina bif da.
Reporting bias as well as recall bias may operate to impair the accuracy of the

outcome measurement, as illustrated in the following example:

A case-control study of the relationship between gonorrhea and multiple sexual part-
ners was conducted. One hundredwomenwhowere newly diagnosedwith gonorrhea
were compared with 100 women in the same clinic who were found to be free of
gonorrhea. The women who were diagnosed with gonorrhea were informed that the
serious consequences of the disease could be prevented only by locating and treat-
ing their sexual partners. Both groups of women were asked about the number of
sexual partners they had during the preceding 2 months. The group of women with
gonorrhea reported an average of four times as many sexual partners as the group of

3 The proliferation of names for biases that occur in specif c setting can be avoided by using the
structure of M.A.A.R.I.E. to divide bias into two types, bias in assignment and bias in assessment.
Selection bias is the fundamental bias of assignment, and assessment bias is the fundamental bias in
assessment. The specif c types of bias discussed here, such as recall, reporting, and instrument, can be
seen as specif c types of assessment bias.
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women without gonorrhea. The investigators concluded that on average women with
gonorrhea have four times as many sexual partners as women without gonorrhea.

The women with gonorrhea in this study may have felt a greater obligation, hence
less hesitation, to report their sexual partners than did the women without the
disease. Reporting bias is more likely to occur when the information sought is
personal or sensitive and one group is under greater pressure to report.
Thus, it is possible that women with gonorrhea may simply have been more

thorough in reporting their sexual partners rather than actually having had more
contacts. Reporting bias in addition to recall error may impair the accuracy of
assessment in case-control studies because the participants in a case-control study
are already aware of the occurrence or absence of the disease being studied.
When measurements are conducted or interpreted by the investigator, human

factors can produce inaccuracies in measurement as a result of both assessment
bias and chance. These errors can occur when two investigators perform the same
measurements (interobserver error) or when the same individual performs the
measurements more than once (intraobserver error).
Assessment bias may also occur as a result of inaccurate measurement by the

testing instruments in all types of studies, as illustrated in the following example:

The gastrointestinal side effects of two nonsteroidal antiinf ammatory drugs for
arthritis were assessed using an upper gastrointestinal (GI) X-ray. The investiga-
tor found no evidence that either drug was associated with gastritis.

The investigator did not recognize that an upper GI X-ray is a very poor instrument
for measuring gastritis. Even if a drug caused gastritis, upper GI x-ray examination
would not be adequate to identify its presence. Thus, any conclusion based on this
measurement is likely to be inaccurate even if it reproducibly measures the wrong
outcome.4
Whenever the measurement of outcome depends on subjective interpretation of

data, the possibility of assessment bias exists. It is possible, however, to recognize
and correct for this fundamental principle of human psychology. Human beings,
including investigators, see what they want to see or expect to see. Correcting
bias is accomplished by keeping the investigator, who makes the measurement
of outcome, from knowing an individual’s group assignment. Masked assessment
can be used in case-control and cohort studies as well as in randomized clinical
trials. Failure to use masked assessment can lead to the following type of bias:

In a study of the use of nonsteroidal antiinf ammatory drugs (NSAIDs), the investiga-
tors, whowere the patients’ attending physicians, questioned all patients to determine
whether one of the NSAIDs was associated with more symptoms that could indicate
gastritis. After questioning all patients about their symptoms, they determined that
there was no difference in the occurrence of gastritis. They reported that the two
drugs produced the same frequency of occurrence of gastritis symptoms.

In this study, the investigators making the assessment of outcome were aware of
what the patients were receiving; thus, they were not masked. In addition, they
were assessing the patients’ subjective symptoms such as nausea, stomach pain, or
indigestion in deciding whether gastritis was present. This is the setting in which
masking is most critical. Even if the patients were unaware of which medication

4When gross instrument error occurs, as in this example, the measurement of outcome also can be
considered inappropriate.
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they were taking, the investigators’ assessment may be biased. If the assessment
conformed with their own hypothesis, their results are especially open to question.
This does not imply fraud, only the natural tendency of human beings to see
what they expect or want to see. The investigators’ conclusions may be true, but
their less-than-perfect techniques make it diff cult or impossible to accept their
conclusion.
Thus, masking in the process of assessment is important to eliminate this source

of assessment bias.
Even in the absence of bias, chance can affect the outcome. Measurements of

outcome may misclassify patients as having an outcome such as thrombophlebitis
when they do not, or not having thrombophlebitis when they truly do. This type of
misclassif cationwhen due to chance is known as non-differential misclassificatio
or classificatio error. When a measurement is made which frequently misclas-
sif es the outcomes, it is important to examine the consequences that occur, as
illustrated in the next example:

A cohort study tested for diabetes among those with and without a risk factor. The
test used was known to have poor reproducibility. The investigators found that the
association between the risk factor and the development of diabetes, while in the
same direction as other investigations, was much weaker than expected.

The investigators may have diagnosed diabetes when it was not present or failed
to diagnosis it when it was present. Assuming this applies to both the study group
and the control group, we have an example of misclassif cation due to chance,
or classif cation error. The consequences of classif cation error are to reduce the
magnitude of the association below that which would be found in the absence of
misclassif cation due to chance. Thus it is not surprising in this investigation that
the association was in the same direction, but much weaker, than found in other
studies.

Complete and Unaffected by the Process
Whenever follow-up of patients is incomplete, the possibility exists that those
not included in the f nal assessment had a different frequency of the outcome
than those included. The following example illustrates an error resulting from
incomplete assessment:

A cohort study of human immunodef ciency virus (HIV)-positive patients compared
the natural history of the disease among asymptomatic patients with a CD4 count
of 100 to 200 with a group of asymptomatic patients with a CD4 count of 200
to 400. The investigators were able to obtain follow-up with 50% of those with
the lower CD4 counts and 60% of those with the higher CD4 counts. The in-
vestigators found no difference between the groups and concluded that the CD4
count is not a risk factor for developing acquired immunodef ciency syndrome
(AIDS).

It can be argued that in this investigation, some of the patients who could not be
followed-up were not available because they were dead. If this were the case, the
results of the study might have been dramatically altered with complete follow-up.
Incomplete follow-up can distort the conclusions of an investigation.
Follow-up does not necessarily mean that patients are actually examined

or even that they have continued to be a part of an investigation. At times
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follow-upmay be achieved by searching public records such as death certif cates or
by obtaining information from relatives or friends based on the participant’s agree-
ment to this type of follow-up when they entered the investigation. Using this
meaning of follow-up, a high-quality investigation today should achieve nearly
100% follow-up.
Incomplete follow-up does not necessarilymean the patients were lost to follow-

up as in the previous example. They may have been monitored with unequal
intensity, as the next example illustrates:

A cohort study of the side effects of birth control pills was conducted by comparing
1,000 young women taking the pill with 1,000 young women using other forms of
birth control. Data were collected from the records of their private physicians over
a 1-year period. Pill-users were scheduled for three follow-up visits during the year;
non-pill-users were asked to return if they had problems. Among users of the pill,
75 women reported having headaches, 90 reported fatigue, and 60 reported depres-
sion. Among non-pill-users, 25 patients reported having headaches, 30 reported fa-
tigue, and 20 reported depression. The average pill-user made three visits to her
physician during the year versus one visit for the non-pill-user. The investigator
concluded that use of the pill is associated with increased frequency of headaches,
fatigue, and depression.

The problem of unequal intensity of observation of the two groups may have
invalidated the results. The fact that pill-users, and not non-pill-users, were sched-
uled for visits to their physician may account for the more frequent recordings of
headaches, fatigue, and depression. With more thorough observation, commonly
occurring subjective symptoms are more likely to be recorded.
Even if a study’s endpoint meets the diff cult criteria of appropriate, accurate,

precise, and complete assessment, one more area of concern exists. Investigators
intend to measure events as they would have occurred had no one been watching.
Unfortunately, the very process of conducting a studymay involve the introduction
of an observer into the events beingmeasured. Thus, the reviewermust askwhether
the process of observation altered the outcome, as illustrated in the following
example:

A cohort study was conducted of the relationship between obesity and menstrual
regularity. One thousand obese women with menstrual irregularities who had joined
a diet group were compared with 1,000 obese women with the same pattern of
menstrual irregularities who were not enrolled in a diet group. The women were
compared to evaluate the effects of weight loss on menstrual irregularities. Those in
the diet group had exactly the same frequency of return to regular menstrual cycles
as the nondiet group controls.

It is possible that the nondiet-group patients lost weight just like the diet-group
patients because they were being observed as part of the study. Whenever it is pos-
sible for subjects to switch groups or alter their behavior, the effects of observation
may affect an investigation. This is most likely to occur when the individuals in the
control group are aware of the adverse consequences of their current behavior and
feel pressured to change because they are being observed. This can occur only in a
concurrent or prospective cohort study or in a randomized clinical trial, since these
types of investigation are begun before any of the participants have developed the
outcome.
We have now examined the criteria for a validmeasurement of outcome—that is,

the measurement should be appropriate, accurate, and precise, as well as complete
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and unaffected by the process of observation. We have examined the meaning of
each of these criteria and have looked at problems that prevent a measurement
from fulf lling these criteria. Now we are ready to use the fourth component of the
M.A.A.R.I.E. framework, the results component, to compare the measurements
obtained in the study group and in the control group.
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6 Results

The fourth component of the M.A.A.R.I.E. framework is the results or analysis
section. Like the previous components, results require us to address three key
questions:

� Estimation:What is the magnitude or strength of the association or relationship
observed in the investigation?
� Inference:What statistical techniques are used to perform statistical significanc
testing?
� Adjustment:What statistical techniques are used to take into account or control
for difference between the study and control groups that may affect the results?

Estimation: Strength of Relationship
When measuring the strength of a relationship using data from samples, we are
attempting to use that information to estimate the strength of the relationship
within a larger group called a population. Thus, biostatisticians often refer to any
measurement of the strength of a relationship as an estimate or point estimate. The
data from the samples are said to estimate the population’s effect size,which is the
magnitude of the association or the difference in the larger population. First,wewill
look at the basic measure of the strength of an association that is most frequently
used in cohort studies. Then we turn to the basic measure used in case-control
studies. Let us assume that we are studying the association between birth control
pills and thrombophlebitis. We want to measure the strength of the association to
determine how the use of birth control pills affects the risk for thrombophlebitis.
Therefore, we must firs clarify the concept of risk.
When used quantitatively, risk implies the probability of developing a condition

over a specifie period of time. Risk equals the number of individuals who de-
velop the condition divided by the total number of individuals who were possible
candidates to develop the condition at the beginning of the period. In assessing
the 10-year risk of developing thrombophlebitis, we would divide the number of
women taking birth control pills who developed thrombophlebitis over a 10-year
period by the total number of women in the study group who were taking birth
control pills.
A further calculation is necessary to measure the relative degree of association

between thrombophlebitis for womenwho are on birth control pills compared with
women who are not on birth control pills. One such measure is known as relative
risk. Relative risk is the probability of thrombophlebitis if birth control pills are
used divided by the probability if birth control pills are not used. It is define as
follows:

Relative risk = Probability of developing thrombophlebitis if birth control pills are used

Probability of developing thrombophlebitis if birth control pills are not used

32
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Generally,

Relative risk = Probability of the outcome if the risk factor is present
Probability of the outcome if the risk factor is absent

Let us illustrate how the risk and relative risk are calculated using a hypothetical
example:

For 10 years, an investigator monitored 1,000 young women taking birth control pills
and 1,000 young women who were nonusers. He found that 30 of the women on birth
control pills developed thrombophlebitis over the 10-year period, whereas only 3 of
the nonusers developed thrombophlebitis over the same time period. He presented
his data using what is called a 2 × 2 table:

Thrombophlebitis No Thrombophlebitis

Birth control pills a = 30 b = 970 a+ b = 1,000

No birth control pills c = 3 d = 997 c+ d = 1,000

The 10-year risk of developing thrombophlebitis on birth control pills equals the
number of women on the pill who develop thrombophlebitis divided by the total
number of women on the pill. Thus, the risk of developing thrombophlebitis for
women on birth control pills is equal to:

a
a+ b

= 30
1,000

= 0.030

Likewise, the 10-year risk of developing thrombophlebitis for women not on the
pill equals the number of women not on the pill who develop thrombophlebitis
divided by the total number of women not on the pill. Thus, the risk of developing
thrombophlebitis for women not on the pill is equal to:

c
c+ d

= 3
1,000

= 0.003

The relative risk equals the ratio of these two risks:

Relative risk = a/a+ b
c/c+ d

= 0.030
0.003

= 10

A relative risk of 1 implies that the use of birth control pills does not increase
the risk of thrombophlebitis. This relative risk of 10 implies that, on the average,
women on the pill have a risk of thrombophlebitis 10 times that of women not on
the pill.1
Now let us look at how we measure the strength of association for case-control

studies by looking at a study of the association between birth control pills and
thrombophlebitis.

An investigator selected 100 young women with thrombophlebitis and 100 young
women without thrombophlebitis. She carefully obtained the history of prior use of
birth control pills. She found that 90 of the 100 women with thrombophlebitis were

1Relative risks may also be presented with the group at lower risk in the numerator. These two forms
of the relative risks are merely the reciprocal of each other. Thus, the risk of thrombophlebitis for
those not taking birth control pills divided by the risk for those taking birth control pills would be
0.003/0.030 = 0.1 or 1/10.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-06 Riegelman-1490G Riegelman-v9.cls August 20, 2004 19:13

34 Section I. Studying a Study

using birth control pills compared with 45 of the women without thrombophlebitis.
She presented her data using the following 2×2 table:

Thrombophlebitis No Thrombophlebitis

Birth control pills a = 90 b = 45

No birth control pills c = 10 d = 55

a+ c = 100 b+ d = 100

Notice that in case-control studies the investigator can choose the total number
of patients in each group (those with and without thrombophlebitis). She could
have chosen to select 200 patients with thrombophlebitis and 100 patients without
thrombophlebitis, or a number of other combinations.
Thus, the actual numbers in each vertical column, the cases and the controls,

can be altered at will by the investigator. In other words, in a case-control study the
number of individuals who have and do not have the disease does not necessarily
ref ect the actual frequency of thosewith andwithout the disease. Since the number
of cases relative to the number of controls is determined by the investigator, it is
improper to add the boxes in the case-control 2×2 table horizontally (as we did in
the preceding cohort study) and calculate relative risk.
Thus we need to use a measurement that is not altered by the relative numbers

in the study and control groups. This measurement is known as the odds ratio.
Odds ratios are often of similar magnitude as the relative risk. When this is

the situation, it can be used as an approximation of relative risk. This is often
the situation when the disease or condition under investigation occurs relatively
infrequently.
To understand what we mean by an odds ratio, we f rst need to appreciate what

we mean by odds, and how odds differs from risk. Risk is a probability in which
the numerator contains the number of times the event, such as thrombophlebitis,
occurs over a specif ed period of time. The denominator of a risk or probability
contains the number of times the event could have occurred. Odds, like proba-
bility, contain the number of times the event occurred in the numerator. How-
ever, in the denominator odds contain only the number of times the event did not
occur.
The difference between odds and probability may be appreciated by thinking of

the chance of drawing an ace from a deck of 52 cards. The probability of drawing
an ace is the number of times an ace can be drawn divided by the total number of
cards, or 4 of 52, or 1 of 13. Odds, on the other hand, are the number of times an
ace can be drawn divided by the number of times it cannot be drawn, or 4 to 48,
or 1 to 12. Thus, the odds are slightly different from the probability, but when the
event or the disease under study is rare, the odds are a good approximation of the
probability.
The odds ratio is the odds of having the risk factor if the condition is present

divided by the odds of having the risk factor if the condition is not present. The
odds of being on the pill if thrombophlebitis is present are equal to:

a
c

= 90
10

= 9
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Likewise, the odds of being on the pill for women who do not develop throm-
bophlebitis are measured by dividing the number of women who do not have
thrombophlebitis and are using the pill by the number of women who do not
have thrombophlebitis and are not on the pill. Thus, the odds of being on the pill
if thrombophlebitis is not present are equal to:

b
d

= 45
55

= 0.82

Like the calculation of relative risk, one can develop a measure of the relative
odds of being on the pill if thrombophlebitis is present versus being on the pill if
thrombophlebitis is not present. This measure of the strength of association is the
odds ratio. Thus,

Odds ratio = Odds of being on the pill if thrombophlebitis is present
Odds of being on the pill if thrombophlebitis is not present

= a/c
b/d

= 9
0.82

= 11

An odds ratio of 1, parallel with our interpretation of relative risk, implies the odds
are the same for being on the pill if thrombophlebitis is present and for being on the
pill if thrombophlebitis is absent. Our odds ratio of 11 means that the odds of being
on birth control pills are increased 11-fold for women with thrombophlebitis.
The odds ratio is the basic measure of the degree of association for case-control

studies. It is a useful measurement of the strength of the association. In addition,
as long as the disease (thrombophlebitis) is rare, the odds ratio is approximately
equal to the relative risk.
It is possible to look at the odds ratio in reverse, as one would do in a cohort

study, and come up with the same result. For instance,

Odds ratio = Odds of developing thrombophlebitis if pill is used
Odds of developing thrombophlebitis if pill is not used

The odds ratio then equals:

a/b
c/d

= 11

Notice that this is actually the same formula for the odds ratio as the one shown
previously, i.e., both can be expressed as ad divided by bc. This convenient property
allows one to calculate an odds ratio from a cohort or randomized clinical trial
instead of calculating the relative risk. This makes it easier to compare the results
of a case-control study with those of a cohort study or randomized clinical trial.
Thus, relative risk and odds ratio are the fundamental measures we use to quan-

titate the strength of an association between a risk factor and a disease. A special
type of odds ratio (or relative risk) is calculated when pairing is used to conduct an
investigation. Remember, there are two basic approaches to dealing with potential
confounding variables. Investigators can match as part of the assignment process,
and they can adjust as part of the analysis. When the type of matching known as
pairing is used to ensure identical distribution of potential confounding variables
between study and control groups, a special type of odds ratio should be used to
estimate the strength of the association.
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As an example, let us suppose in a case-control study that each pair includes one
case with thrombophlebitis and one control without thrombophlebitis. The odds
ratio then compares the odds of using and not using birth control pills by comparing
the half of the pair with thrombophlebitis to the half without thrombophlebitis.

Assume that a case-control study of birth control pills and thrombophlebitis was
conducted using 100 pairs of patients with thrombophlebitis and controls without
thrombophlebitis. The cases and controls were paired so that eachmember of the pair
was the same age and parity (number of children). The results of a paired case-control
study are presented using the following 2×2 table:2

Controls using Controls not using
birth control pills birth control pills

Cases using birth control pills 30 50

Cases not using birth control pills 5 15

The odds ratio in a paired case-control study uses only the pairs in which the
exposure (e.g., the use of birth control pills) is different between the case and
control members of a pair. The pairs in which the cases with thrombophlebitis and
the controls without thrombophlebitis differ in their use of birth control pills are
known as discordant pairs.
The odds ratio is calculated using discordant pairs as follows:

Number of pairs with cases using birth control pills
and controls not using birth control pills

Number of pairs with controls using birth control pills
= 50

5
= 10

and cases not using birth control pills

This odds ratio is interpreted the same way as an odds ratio calculated from
unpaired studies.3 Pairing can also be used in cohort studies and randomized
clinical trials.

Inference: Statistical Significanc Testing
or Hypothesis Testing

Most investigations are conducted on only a sample of a larger group of individuals
who could have been included in the study. Researchers, therefore, are frequently
confronted with the question of whether they would achieve similar results if the
entire population was included in the study, or whether chance selection may have
produced unusual results in their particular sample.

2 The table for a paired case-control study tells us about what happens to a pair instead of what
happens to each person. Thus, the frequencies in this paired 2×2 table add up to 100 (the number of
pairs) instead of 200 (the number of persons in the study).

3 Pairing, however, has an advantage of greater statistical power. Everything else being equal, statis-
tical signif cance can be established using smaller numbers of study and control group patients. Also
note that there is a special type of case-control study called a population-based case-control study
in which the ratio of cases to controls ref ects the ratio found in a larger population. In that special
situation it is possible to calculate a relative risk from a case-control study.
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Unfortunately, there is no direct method for answering this question. Instead,
investigators are forced to test their study hypothesis using a circuitous method of
proof by elimination. This method is known as statistical significanc testing or
hypothesis testing.
Statistical signif cance testing, in its most common form, quantitates the prob-

ability of obtaining the observed data (or a more extreme result supporting the
study hypothesis) if no differences between groups exist in the larger population.
Statistical signif cance testing assumes that individuals used in an investigation
are representative or randomly selected from a larger group or population. This
use of the term random is confusing because statistical signif cance testing is used
in studies in which the individuals are not randomly selected. This apparent con-
tradiction can be reconciled if one assumes that the larger population consists of
all individuals with the same characteristics as those required for entry into the
investigation. Thus, statistical signif cance tests actually address questions about
larger populations made up of individuals just like those used in the investigation.
Statistical signif cance testing aims to draw conclusions or inferences about a pop-
ulation by studying samples of that population. Therefore, biostatisticians often
refer to statistical signif cance testing as inference.

Statistical Significanc Testing Procedures
Statistical signif cance testing, which is also called hypothesis testing, assumes that
only two types of relationships exist. Either differences between groups within the
study population exist or they do not exist.Whenwe conduct statistical signif cance
tests on study data, we assume at the beginning that no such differences exist
in the population. The role of statistical signif cance testing is to evaluate the
results obtained from the samples to determine whether these results would be so
unusual—if no difference exists in the larger population—thatwe can conclude that
a difference does exist in the large population. Notice that the issue is whether or
not a difference or association exists. Statistical signif cance testing itself says little
or nothing about the size or importance of the potential difference or association.
Statistical signif cance testing begins with a study hypothesis stating that a dif-

ference exists in the larger population. In performing statistical signif cance tests,
it is assumed initially that the study hypothesis is false, and a null hypothesis
is formulated stating that no difference exists in the larger population. Statistical
methods are then used to calculate the probability of obtaining the observed results
in the study sample, or more extreme results, if no difference actually exists in the
larger population.
When only a small probability exists that the observed results would occur in

samples if the null hypothesis were true, then investigators can reject the null hy-
pothesis. In rejecting the null hypothesis, the investigators accept, by elimination,
the existence of their only other alternative—the existence of a difference between
groups in the larger population. Biostatisticians often refer to the study hypothesis
as the alternative hypothesis because it is the alternative to the null hypothesis.
The specif c steps in statistical signif cance testing are as follows:

1. State study hypothesis
2. Formulate null hypothesis
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3. Decide statistical signif cance cutoff level
4. Collect data
5. Apply statistical signif cance test
6. Reject or fail to reject the null hypothesis

STATE STUDY HYPOTHESIS

Before collecting the data, the investigators state in a study hypothesis that a
difference exists between the study group and the control group in the larger
population.

FORMULATE NULL HYPOTHESIS

The investigators then assume that no true difference exists between the study
group and the control group in the larger population.

DECIDE STATISTICAL SIGNIFICANCE CUTOFF LEVEL

The investigators determine what level of probability will be considered small
enough to reject the null hypothesis. In the vast majority of health research studies,
a 5% chance or less of occurrence is considered unlikely enough to allow the
investigators to reject the null hypothesis. However, we are generally left with
some possibility that chance alone has produced an unusual set of data. Thus, a
null hypothesis which is in fact true will be rejected in favor of the study hypothesis
as much as 5% of the time.4

COLLECT DATA

The data may be collected using a study design such as case-control, cohort, or
randomized clinical trial.

APPLY STATISTICAL SIGNIFICANCE TEST

If differences between the study and control groups exist, the investigators deter-
mine the probability that these differences would occur if no true difference exists
in the larger population from which both the study and control group individuals
in the samples have been selected. This probability is known as the P-value.
In other words, they calculate the probability that the observed data or more

extreme data would occur if the null hypothesis of no difference were true. To do
so, the investigators must choose from a variety of statistical signif cance tests.
Because each type of test is appropriate to a specif c type of data, investigators
must take care to choose the proper test, as we discuss in Section VI, Selecting a
Statistic.
To understand how a statistical signif cance test uses P-values, let’s consider an

example that uses small numbers to allow easy calculation.

4 Investigators also need to decide whether to use a one-tailed or two-tailed statistical signif cance
test. A two-tailed test implies that the investigator is willing to accept data that deviate in either direction
from the null hypothesis. A one-tailed test implies that the investigator is only willing to accept data
that deviate in the direction of the study hypothesis. We will assume a two-tailed test unless otherwise
indicated.
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Assume that an investigator wants to study the question: “Are there an equal number
of males and females born in the United States?” The investigator f rst hypothe-
sizes that more males than females are born in the United States; a null hypothesis
that an equal number of males and females are born in the United States is then
formulated. Then, the investigator decides the statistical signif cance cutoff level,
which is usually set at 5%, or P = 0.05. Next, the investigator samples four birth
certif cates and f nds that there are four males and zero females in the sample of
births.

Let us now calculate the probability of obtaining four males and zero females if
the null hypothesis of equal numbers of males and females is true:

Probability of one male 0.50 or 50%
Probability of two males in a row 0.25 or 25%
Probability of three males in a row 0.125 or 12.5%
Probability of four males in a row 0.0625 or 6.25%

Thus, there is a 6.25%chance of obtaining fourmales in a row even if an equal num-
ber of males and females are born in the United States.5 Thus, the P-value equals
0.0625. AllP-values tell us the same basic information. They tell us the probability
of producing the observed data, assuming that the null hypothesis is true. Techni-
cally they are said to measure the probability of obtaining the observed data, or
more extreme data, if no true difference between groups actually exist in the larger
population.

REJECT OR FAIL TO REJECT THE NULL HYPOTHESIS

Having obtained a P-value, the investigators proceed to reject or fail to reject the
null hypothesis. If the P-value is 0.05 or less, i.e., the probability of the results
occurring by chance is less than or equal to 0.05, then the investigators can reject
the null hypothesis.
In this situation the probability is small that chance alone could produce the dif-

ferences in outcome if the null hypothesis is true. By elimination, the investigators
can then accept the study hypothesis that a true difference exists in the outcome
between study and control groups in the larger population.
What if the probability of occurrence by chance is greater than 0.05—that is,

the P-value is greater than 0.05 as in the preceding example? The investigators
then are unable to reject the null hypothesis. This does not mean that the null
hypothesis, that no true difference exists in the larger population, is true. It merely
indicates that the probability of obtaining the observed results is too great to
reject the null hypothesis and thereby accept by elimination the study hypothesis.
When the P-value is greater than 0.05, we say that the investigation has failed to
reject the null hypothesis. The burden of proof, therefore, is on the investigators
to show that the data obtained in the samples are very unlikely before rejecting
the null hypothesis in favor of the study hypothesis. The following example shows
how the signif cance testing procedure operates in practice.

5A one-tailed statistical signif cance test has been used. The births have been assumed to be inde-
pendent of each other in calculating probabilities. To simplify the calculations, an example has been
chosen in which no more extreme possibility exists.
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An investigatorwanted to test the hypothesis that there is a difference in the frequency
of mouth cancer among those who chew tobacco and those who do not chew tobacco.
She formulated a null hypothesis stating that mouth cancer occurs with no greater
frequency among those who chew tobacco than among those who do not chew
tobacco. She then decided that she would reject the null hypothesis if she obtained
data that would occur only 5% or less of the time if the null hypothesis was true.
She next collected data from a sample of the general population of those who chew
tobacco and those who do not chew tobacco. Using the proper statistical signif cance
test, she found that if no difference existed between those who chew tobacco and
those who do not chew tobacco in the general population, then data as extreme or
more extreme than her data would be observed by chance only 3% of the time—i.e.,
a P-value of 0.03. She concluded that because her data were quite unlikely to occur
if there were no difference between the study group and the control group, she would
reject the null hypothesis. The investigator thus accepted by elimination the study
hypothesis that a difference in the frequency of mouth cancer exists between those
who chew tobacco and those who do not chew tobacco.

When a statistically signif cant difference between groups is obtained, we say there
is an association between the study group and the characteristic being studied.
That is, there is an association between chewing tobacco and mouth cancer. By
association we mean that the two occur together more frequently than is expected
by chance alone. Remember that we have def ned small as a 5% chance or less that
the observed results would have occurred if no true difference exists in the larger
population.
The 5% f guremay be too large if important decisions depend on the results. The

5% f gure is based on some convenient statistical properties; however, it is not a
magic number. It is possible to def ne small as 1%, 0.1%, or any other probability.
Remember, however, that no matter what level is chosen, there will always be
some probability of rejecting the null hypothesis when no true difference exists
in the larger population. Statistical signif cance tests can measure this probability,
but they cannot eliminate it.
Table 6.1 reviews and summarizes the steps for performing a statistical signif -

cance test.

Table 6.1. How a statistical significanc test works
State study hypothesis Develop the study question: A difference exists between

groups in a population.
Formulate null hypothesis Reverse the hypothesis: No difference exists between

groups in the population.
Decide statistical

significanc cutoff level
Equal to or less than 5% unless otherwise indicated and

justifie
Collect data Collect data from samples of the larger population.
Apply statistical significanc

test
Determine the probability of obtaining the observed data

or more extreme data if the null hypothesis were true
(i.e., choose and apply the correct statistical
significanc test).

Reject or fail to reject the
null hypothesis

Reject the null hypothesis and accept by elimination the
study hypothesis if the statistical significanc cutoff
level is reached (P-value equal to or less than 0.05);
fail to reject the null hypothesis if the observed data
have more than a 5% probability of occurring by
chance if there is no difference between groups in the
larger population (P-value greater than 0.05).
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Errors in Statistical Signif cance Testing
Several types of errors commonly occur in using statistical signif cance tests:

� Failure to state one hypothesis before conducting the study—the multiple com-
parison problem
� Failure to draw correct conclusions from the results of statistical signif cance
tests by not considering the potential for a Type I error
� Failure to draw correct conclusions from the results of statistical signif cance
tests by not considering the potential for a Type II error

Multiple Comparison Problem
The multiple comparison problem occurs when an investigator attempts to investi-
gate multiple hypotheses in the same investigation or attempts to analyze the data
without f rst creating a hypothesis.
The following example illustrates the consequences of failing to state the hy-

pothesis before conducting the study:

An investigator carefully selected 100 individuals known to have long-standing hy-
pertension and 100 individuals of the same age known to be free of hypertension.
He compared them using a list of 100 characteristics to determine how the two
groups differed. Of the 100 characteristics studied, two were found to be statisti-
cally signif cant at the 0.05 level using standard statistical methods: (1) Hyperten-
sives generally have more letters in their last name than nonhypertensives, and (2)
hypertensives generally are born during the f rst 3 1/2 days of the week, whereas
nonhypertensives are usually born during the last 3 1/2 days of the week. The author
concluded that although these differences had not been foreseen, longer names and
birth during the f rst half of the week are different between groups with and without
hypertension.

This example illustrates the importance of stating the hypothesis beforehand.
Whenever a large number of characteristics are used to make a large number
of comparisons, it is likely by chance alone that some of them will be statistically
signif cant. It can be misleading to apply the usual levels of statistical signif cance
unless the hypothesis has been stated before collecting and analyzing the data. If
differences are looked for without formulating one study hypothesis or only after
collecting and analyzing the data, much stricter criteria should be applied than the
usual 5% probability.
The multiple comparison problem can also occur when investigators analyze

the data two or more times. When multiple hypotheses are being examined or the
data is being analyzed multiple times, a suggested rule of thumb for the reader of
the health literature is to divide the observed P-value by the number of hypotheses
being tested for statistical signif cance or the number of times the data is analyzed.
The resulting P-value can then be used to reject or fail to reject the null hypothesis.
For instance, imagine that an investigation examined f ve hypotheses at the same
time. To reach a P-value that would have the same meaning as P = 0.05 for one
hypothesis, the P-value must be equal to 0.01. That is:

0.05
Number of comparison

= 0.05
5

= 0.01
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This P-value of 0.01 should be interpreted just like a P-value of 0.05 if one study
hypothesis was stated before beginning the study.6,7

Type I Errors
Some errors are inherent in the method of statistical signif cance testing. A fun-
damental concept of statistical signif cance testing is the possibility that a null
hypothesis will be falsely rejected and a study hypothesis will be falsely accepted
by elimination. This is known as a Type I error.
In traditional statistical signif cance testing, there is as much as a 5% chance

of incorrectly accepting by elimination a study hypothesis even when no true
difference exists in the larger population from which the study samples were
obtained. The level of Type I error that is built into the design of an investigation
before it is conducted is known as the alpha level. Statistical signif cance testing
does not eliminate uncertainty; it aims to measure the uncertainty that exists.
Careful readers of studies are, therefore, able to appreciate the degree of doubt
that exists and can decide for themselves whether they are willing to tolerate that
degree of uncertainty.
Let us see how failure to appreciate the possibility of a Type I error can lead to

misinterpreted study results.

The author of a review article evaluated 20 well-conducted studies that examined
the relationship between breastfeeding and breast cancer. Nineteen of the studies
found no difference in the frequency of breast cancer between breastfeeding and
formula-feeding. One study found a difference in which the breastfeeding group had
an increase in breast cancer. The results of this one investigation were statistically
signif cant at the 0.05 level. The author of the review article concluded that because
the study suggested that breastfeeding is associated with an increased risk of breast
cancer, breastfeeding should be discouraged.

When 20 well-conducted studies are performed to test a study hypothesis that is
not true for the larger population, a substantial possibility exists that one of the
studies may show an association at the 0.05 level simply by chance. Remember
the meaning of statistical signif cance with a P-value of 0.05: It implies that the

6 This method, called Bonferroni’s correction, is a useful approximation for small numbers of vari-
ables. As the number of comparisons increasesmuch above 5, the requiredP-value tends to be too small
before statistical signif cance can be declared. This approach reduces the statistical power of a study to
demonstrate statistical signif cance for any one variable. Thus, many biostatisticians argue it is better
to use the multivariable method, which will be discussed in Section VI, Selecting a Statistic. Also note
that when a hypothesis is indicated prior to collecting the data, most, if not all, of the variables used
in the investigation are collected for purposes of adjustment for potential confounding variables. Thus
when analyzing data in this situation, one is not dealing with multiple comparisons. Other methods are
used to correct for multiple analyses of the data. The correction needed for multiple analyses is not as
large as the correction needed for multiple hypotheses.

7 Remember that statistical signif cance testing or hypothesis testing is a method of drawing infer-
ences in a world in which we must decide between the study hypothesis and the null hypothesis based
only on the data within the study. It is possible, however, to look at inference as a process that incor-
porates some probability that the hypothesis is true. In this process, the investigator must estimate this
probability before the study begins. This might be done on the basis of the results of previous studies
or other medical knowledge. When this prior probability is obtained, statistical methods are available
to estimate the probability that the hypothesis is true after the results of the study are obtained. This
Bayesian process is parallel to the use of diagnostic testing, which we discuss in Section II, Testing a
Test. An advantage of the Bayesian approach is that P-values need not be adjusted to account for the
number of variables.
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results have a 5% probability, or a chance of 1 in 20, of occurring by chance alone
when no difference exists in the larger population.
Thus, 1 study in 20 that shows a difference should not be regarded as evidence

for a difference in the larger population. It is important to keep in mind the possi-
bility that no difference may exist even when statistically signif cant results have
been demonstrated. If the only study showing a relationship had been accepted
without further questioning, breastfeeding might have been discouraged without
considering its many benef ts.

Type II Errors
A Type II error says that failure to reject the null hypothesis does not necessar-
ily mean that no true difference exists in the larger population. Remember that
statistical signif cance testing directly addresses only the null hypothesis. The pro-
cess of statistical signif cance testing allows one to reject or fail to reject that null
hypothesis. It does not allow one to prove a null hypothesis. Failure to reject a
null hypothesis merely implies that the evidence is not strong enough to reject the
assumption that no difference exists in the larger population.
A Type II error occurs when we are prevented from demonstrating a statistically

signif cant difference even when a difference actually exists in the larger popula-
tion. This happens when chance produces an unusual set of data that fails to show
a difference, even though one actually exists in the larger population. Efforts to
perform statistical signif cance testing always carry with them the possibility of
error.
Investigators may make the problem far worse by using samples that are smaller

than recommended based on careful study design. Thus, the chance of making a
Type II error increases as the sample’s size decreases.
Statistical techniques are available for estimating the probability that a study of a

particular size could demonstrate a statistically signif cant difference if a difference
of a specif ed size actually exists in the larger population. These techniquesmeasure
the statistical power of the study. The statistical power of a study is its probability
of demonstrating statistical signif cance. Thus, statistical power equals one minus
the Type II error. In many studies the probability is quite large that one will
fail to show a statistically signif cant difference when a true difference actually
exists. No arbitrary number indicates how great a Type II error one should tolerate.
However, well-designed studies often aim for a Type II error between 10% and
20%. A Type II error of 10% is often the goal, with a 20% Type II error being the
maximum tolerated consistent with good study design. Without actually stating it,
investigators who use relatively small samples may be accepting a 30%, 40%, or
even greater probability that they will fail to demonstrate a statistically signif cant
difference when a true difference exists in the larger population. The size of the
Type II error tolerated in the design of an investigation is known as the beta level.
Table 6.2 summarizes and compares Type I and II errors.
The following example shows the effect of sample size on the ability to demon-

strate statistically signif cant differences between groups:

A study of the adverse effects of cigarettes on health was undertaken by monitoring
100 cigarette smokers and 100 similar nonsmokers for 20 years. During the 20 years,
5 smokers developed lung cancer, whereas none of the nonsmokers were aff icted.
During the same time period, 10 smokers and 9 nonsmokers developed myocardial
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Table 6.2. Inherent errors of statistical signif cance testing
Type I Error Type II Error

Def nition Rejection of null hypothesis when
no true difference exists in the
larger population

Failure to reject the null hypothesis
when a true difference exists in
the larger population

Source Random error Random error and/or sample size
that is too small to allow
adequate statistical power

Frequency of
occurrence

Alpha level prior to conducting the
investigation indicates the
probability of a Type 1 error that
will be tolerated. After results are
obtained, the P-value indicates
the probability of a Type I error.

Beta level prior to conducting the
investigation indicates the
probability of a Type II error that
will be tolerated. If the sample
size is small, the probability of a
Type II error can be very large,
i.e., 50% or greater.

infarction. The results for lung cancer were statistically signif cant, but the results
for myocardial infarction were not. The authors concluded that a difference in lung
cancer frequency between smokers and nonsmokers had been demonstrated, and
a difference between smokers and nonsmokers for myocardial infarction had been
refuted.

When true differences between groups are very large, as they are between smokers
and nonsmokers in relation to lung cancer, only a relatively small sample may be
required to demonstrate statistical signif cance. When there are true but smaller
differences, it requires greater numbers to demonstrate a statistically signif cant
difference.
This study would not refute a difference in the probabilities of myocardial

infarction in cigarette smokers and nonsmokers. It is very likely that the number
of individuals included were too few to give the study enough statistical power
to demonstrate the statistical signif cance of a difference. A study with limited
statistical power to demonstrate a difference also has limited power to refute a
difference.
When the size of an investigation is very large, just the opposite issue may

arise. It may be possible to demonstrate statistical signif cance even if the size or
magnitude of the association is very small. Image the following results.

Investigators monitored 100,000 middle-age men for 10 years to determine which
factors were associated with coronary artery disease. They hypothesized beforehand
that uric acid might be a factor in predicting the disease. The investigators found that
men who developed coronary artery disease had a uric acid measure of 7.8 mg/dL,
whereas men who did not develop the disease had an average uric acid measure of
7.7 mg/dL. The difference was statistically signif cant with a P-value of 0.05. The
authors concluded that because a statistically signif cant difference had been found,
the results would be clinically useful.

Because the difference in this investigation is statistically signif cant, it is most
likely real in the larger population. However, it is so small that it probably is not
clinically important. The large number of men being observed allowed investiga-
tors to obtain a statistically signif cant result for a very small difference between
groups.
However, the small size of the difference makes it unlikely that uric acid mea-

surements could be clinically useful in predictingwhowill develop coronary artery
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disease. The small difference does not help the clinician to differentiate those who
will develop coronary artery disease from those who will not. In fact, when the
test is performed in the clinical laboratory, this small difference is probably less
than the size of the laboratory error in measuring uric acid.
In earlier chapters, we learned that statistical signif cance testing tells us very

little about the size of a difference or the strength of an association; that is the
role of estimation. Thus, it is important to ask not only whether a difference or
association is statistically signif cant, but whether it is large or substantial enough
to be clinically useful. The world is full of myriad differences between individuals
and between groups. Many of these, however, are not great enough to allow us
to usefully separate individuals into groups for purposes of disease prevention,
diagnosis, and therapy.8

Conf dence Intervals
Statistical signif cance testing does not directly provide us with information about
the strength of an observed association. It is attractive to use amethod that provides
a summary measure (often called a point estimate) of the strength of an association
and that also permits us to take chance into account using a statistical signif cance
test.
The calculation of conf dence intervals is such a method. Conf dence intervals

combine information from samples about the strength of an observed association
with information about the effects of chance on the likelihood of obtaining the ob-
served results. It is possible to calculate the conf dence interval for any percentage
conf dence. However, the 95% conf dence interval is the most commonly used. It
allows us to be 95% conf dent that the larger population’s difference or association
lies within the conf dence interval.
Conf dence intervals are often calculated for odds ratios and relative risks. The

calculation of these intervals can be complex. The reader of the literature, however,
may see an expression for relative risk such as “10 (95% conf dence interval, 8,12)”
or sometime just “10 (8,12),” which expresses the observed relative risk (lower
conf dence limit, upper conf dence limit) The term conf dence limit is used to
indicate the upper or lower extent of a conf dence interval.
Imagine a study in which the relative risk for birth control pills and throm-

bophlebitis was 10 (8,12). How would you interpret this conf dence interval? The
10 indicates the relative risk observed in the sample. The conf dence interval around
this relative risk allows us to say with 95% conf dence that the relative risk in the
larger population is between 8 and 12. Because the lower conf dence limit is 8, far
greater than 1, this allows us to be quite conf dent that a substantial relative risk is
present not only in our sample, but in the larger population from which our sample
was obtained.
These expressions of conf dence limits, in addition to providing additional in-

formation on the size of the estimates of relative risks or odds ratios, have another
advantage for the health literature reader: They allowus to rapidly drawconclusions

8 It is sometimes necessary to distinguish between statistically signif cant, substantial, and clinically
important differences. At times, statistically signif cant and large or substantial differences between
groups are not useful for decision making. For example, we may decide medically or socially to treat
individuals the same regardless of large differences in factors such as intelligence, height, or age.
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about the statistical signif cance of the observed data. When using 95% conf dence
intervals, we can quickly concludewhether or not the observed data are statistically
signif cant with a P-value less than or equal to 0.05.
This calculation is particularly straightforward for relative risk and odds ratio.

For these, 1 represents the point at which the probabilities or odds of disease are
the same, whether or not the risk factor or intervention is present. Thus, a relative
risk or odds ratio of 1 is actually an expression of the null hypothesis, which says
the probability or odds of disease are the same whether the risk factor is present
or absent.
Thus, if the 95% conf dence interval around the observed relative risk does not

extend below 1, we can conclude that the relative risk is statistically signif cant
with a P-value less than or equal to 0.05. The same principles are true for odds
ratios. Let us look at a series of relative risks and 95% conf dence intervals for
studies on birth control pill and thrombophletitis:

A. 4 (0.9, 7.1)
B. 4 (2, 6)
C. 8 (1, 15)
D. 8 (6, 10)

The number to the left of the parenthesis is the relative risk, which is obtained
from the data in the investigation. The numbers within the parentheses are the
lower and upper limits of the 95% conf dence interval. The 95% conf dence limits
on relative risk in B and D do not include 1. In C they include 1 but do not extend
below 1.
Thus, B, C, and D are statistically signif cant with a P-value less than or equal to

0.05. Example A is not statistically signif cant because its lower conf dence limit
extends below 1.
When the observed relative risk (or odds ratio) is greater than 1 (e.g., 4 or

8), we need to look at the lower conf dence limit to see whether it extends
below 1.9,10

In example A, the 95% conf dence interval for the relative risk extends below 1.
This implies that it is possible that birth control pills actually reduce the risk and
thus leaves us with enough uncertainty regarding birth control pills and throm-
bophlebitis that we cannot declare statistical signif cance. In examples B, C, and
D, we can have 95% or more conf dence that birth-control pills are associated
with an increase in the probability of thrombophlebitis, and thus we can declare
statistical signif cance.
As a reader of the literature, you will increasingly f nd the observed value and

the conf dence limits included in the results section. This is helpful because it

9 For odds ratios, the formula for the conf dence interval is the observed value plus or minus 1.96
times the square root of (1/a+1/b+1/c+1/d), where a,b,c,d are the values in the 2×2 table.

10When the observed odds ratio is less than 1 (e.g., 0.8), we need to look at the upper 95% conf dence
limit to see whether it extends above 1.When the 95% conf dence interval extends beyond 1 from either
direction, the results are not statistically signif cant. By tradition, when the 95% conf dence interval
reaches, but does not extend beyond 1, the results are considered statistically signif cant. Thus, a
P-value of .05 is considered statistically signif cant. Note that to avoid confusion, all the conf dence
intervals illustrated have been symmetrical around the observed value. Often conf dence intervals are
not symmetrical.
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allows you to gain a “gestalt,” or a feel, for the data. It allows you to draw your
own conclusion about the importance of the size or strength of the point estimate.
Finally, if you want to convert to the traditional statistical signif cance testing
format for hypothesis testing, you can often make an approximate calculation to
determine whether the results are statistically signif cant with a P-value of 0.05 or
less.11
Thus conf dence intervals can help us answer the f rst two questions of statistics:

the estimation of the magnitude of the effect and inference or statistical signif -
cance.

Adjustment: Addressing the Effect of Confounding Variables
Aswe discussed in chapter 4, confounding variables can result from either random
error or bias. Chance may produce random error. Unlike bias, the effect of chance
is unpredictable. It may either favor or oppose the study hypothesis in a way that
cannot be predicted beforehand.
Bias, on the other hand, implies a systematic effect on the data in one particular

direction that predictably favors or opposes the study hypothesis. Bias results from
the way the patients were assigned or assessed.
Bias and chance may each produce differences between study and control

groups, resulting in study and control groups that differ in ways that can affect the
outcome of the study.
In Chapter 4, we also noted that the investigator is obligated to compare the

characteristics of individuals in the study group with those in the control group to
determine whether they differ in known ways. If the groups differ, even without
being statistically signif cant, the investigator must consider whether these differ-
ences could have affected the results. Characteristics that differ between groups
and that may affect the results of the study are potential confounding variables.
These potential confounding variables may result either from selection bias or
from differences between the study and control groups produced by random er-
ror. If a potential confounding variable is detected, the investigator is obligated
to consider this in the analysis of results using a process we call adjustment of
data.12
In the most straightforward form of adjustment, known as stratif cation, the

investigator may separate into groups those who possessed specif c levels of the
confounding variable. Members of the study group and the control group with
the same level of confounding variable are then compared to see whether an asso-
ciation between exposure and disease exists. For instance, if gender is a potential
confounding variable, the investigator might subdivide the study group and the
control group into men and women, and then compare study group versus control

11 Conf dence intervals around differences can also be calculated. When comparing the conf dence
intervals between two groups, however, it is important to recognize that statistical signif cance is
addressed by asking whether the conf dence intervals of each group overlap the value in the other
group. A common misconception holds that the conf dence intervals themselves cannot overlap.

12Many biostatisticians encourage the use of adjustment, even when the differences are small or the
importance of differences is not apparent. This has become common if not routine with the availability
of sophisticated computer software. Also note that multiple variable methods allow for use of data that
can include large numbers of potential categories rather than being restricted to data like gender or race
that has two or a limited number of potential categories.
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group men and study group versus control group women to determine whether
differences exist when the groups of the same gender are compared. Statistical
techniques known as multivariable methods are available for adjusting one or
more variables at a time, as we discuss in Section VI, “Selecting a Statistic.” Fail-
ure to recognize and adjust for a confounding variable can result in serious errors,
as illustrated in the following example:

An investigator studied the relationship between coffee consumption and lung cancer
by monitoring 500 heavy coffee drinkers and 500 coffee abstainers for 10 years. In
this cohort study, the risk for lung cancer in heavy coffee drinkers was 2 times that
of coffee abstainers. The author concluded that coffee, along with cigarettes, was
established as a risk factor in the development of lung cancer.

Coffee consumption may look like it is related to lung cancer but this apparent
association is most likely the result of the fact that coffee drinking is associated
with cigarette smoking. Assume that smoking cigarettes is not only a contributing
cause of lung cancer but is associated with coffee consumption. Thus when we
try to investigate the relationship between coffee consumption and lung cancer,
cigarette smoking is a confounding variable. That is, cigarette smoking must be
taken into account through the process known as adjustment.
Figure 6.1 depicts the relationship between coffee drinking, cigarette smoking,

and lung cancer. In adjusting for cigarette smoking, the investigator could di-
vide coffee drinkers into cigarette smokers and nonsmokers and do the same with
the coffee abstainers. The investigator would then compare nonsmoking coffee
drinkers with nonsmoking coffee abstainers to determine whether the relationship
between coffee drinking and lung cancer still holds true. Only after determining
that eliminating the impact of cigarette smoking does not eliminate the relation-
ship between coffee drinking and lung cancer can the author conclude that coffee
drinking is associated with the development of lung cancer.
The process of adjustment may be combined with the use of matching or pairing

in an effort to prevent and take into account confounding variables. Much of the
more sophisticated uses of statistical methods relates to effort to take into account
confounding variables, as we will see in Section VI, “Selecting a Statistic.” For

Figure 6.1. Relationship among contributory cause, confounding variable, and noncausal
association.
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now, we have learned that the key issues of analysis of results relate to estimating
the magnitude of the effect, performing statistical signif cance testing, and taking
into account confounding variables through the process known as adjustment.
Now we are ready to use what we have learned in the results component of the
M.A.A.R.I.E. framework to interpret the meaning of the results for those who
participated in the investigation.
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7 Interpretation

Interpretation asks us to address questions about the meaning of the investigation’s
results for those who have participated in the investigation. There are three types
of questions that can be addressed by interpretation.
� Contributory cause or effica y: Does the factor(s) being investigated alter the
probability that the disease will occur (contributory cause) or work to reduce the
probability of an undesirable outcome (effica y)?
� Harms and Interactions:Are adverse effects or interaction that affect themeaning
of the results identified
� Subgroups: Are the outcomes observed in subgroups within the investigation
different from those observed in the overall investigation?

Questions of contributory cause or effica y are the firs questions that are addressed
by interpretation, and at times may be the only questions. Questions of adverse
outcomes and questions about subgroups may only be important when there is
evidence for contributory cause or effica y. Therefore we will take a close look
at the issues of contributory cause and effica y and then outline key concepts for
understanding adverse outcomes and subgroups.

Contributary Cause or Efficac
In chapter 2, we introduced a definitio of cause and effect termed contributory
cause. This same definitio is used to establish effica y. To definit vely establish
the existence of a contributory cause or effica y, all three of the following criteria
must be fulfilled

1. Association: Does the investigation establish a statistically significan associa-
tion which provides convincing evidence that those with the “cause” also have
an increased probability of experiencing the “effect”?

2. Prior association: Does the investigation establish that the “cause” precedes
the “effect”?

3. Altering the cause alters the effect:Does the investigation establish that alter-
ing or modifying the frequency or severity of the “cause” alters the frequency
or severity of the disease or other “effect”?

Association
Establishing the firs criterion of contributory cause, association, requires that we
examine the magnitude and the statistical significanc of the relationship estab-
lished in the analysis of results. To establish the existence of an association, we
expect a statistically significan relationship.
Remember, statistical significanc testing is designed to help us assess the role

of chance when we observe a difference or an association in any of the forms of
investigation that we have examined. Thus, the evidence provided in the results

50
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section is the basis for determining that an association exists between those with
the factor and those with the outcome under investigation. This is what we mean
by an association, or what is sometimes called an association at the individual
level.1

Prior Association and Cause-Effect Link
To establish the second and third criteria, we must rely on more than statistical
analysis. It may appear simple to establish that a cause precedes a disease, but let
us look at two hypothetical studies in which the authors may have been fooled into
believing that they had established cause preceding effect.

Two investigators conducted a case-control study to determinewhether antacids were
taken by patients with myocardial infarction (MI) the week preceding an MI. They
were looking for causes of the condition. MI patients were compared with patients
admitted for elective surgery. The authors found that the MI patients were 10 times
more likely to have taken antacids as the controls were during the week preceding
admission. The authors concluded that taking antacids is associated with subsequent
MIs.

The authors believed that they established not only the f rst criterion of causation
(an association at the individual level) but also the second criterion (that the cause
precedes the effect).
But did they? If individuals have angina before MIs, they may misinterpret

the pain and try to alleviate it by self-medicating with antacids. Therefore, the
medication is taken to treat the disease and does not truly precede the disease.
This study failed to establish that the cause precedes the effect because it did not
clarify whether the disease led the patients to take the medication or whether the
medication precipitated the disease. This example illustrates what is called reverse
causality. It illustrated the potential diff culty encountered in separating cause and
effect in case-control studies. Case-control studies, however, may be capable of
providing convincing evidence that the cause precedes the effect. This occurs when
there is good documentation of previous characteristics that are not affected by
knowledge of occurrence of the disease.
Cohort studies often have an advantage in establishing that the possible cause

occurs before the effect. The following example, however, illustrates that even in
cohort studies we may encounter reverse causality.

A group of 1,000 patients who had stopped smoking cigarettes within the last year
were compared with 1,000 current cigarette smokers matched for total pack-years
of smoking. The two groups were monitored for 6 months to determine with what
frequency they developed lung cancer. The study showed that 5% of the study group
who had stopped smoking cigarettes were diagnosed with lung cancer as opposed to
only 0.1% of the currently smoking controls. The authors concluded that stopping
cigarette smoking was associated with the subsequent development of lung cancer.
Therefore, they advised current smokers to continue smoking.

1Note that in the context of contributory cause and eff cacy, association implies individual associ-
ation. That is, those with the factor or risk factor under investigation are those with the increased or
decreased probability of experiencing the outcome. As will be discussed in the Rating a Rate section,
associations may exist at the group or population level that do not necessarily exist at the individual
level.
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The cessation of cigarette smoking appears to occur before the development of
lung cancer, but what if smokers stop smoking because of symptoms produced by
lung cancer? If this was true, then lung cancer stops smoking, and not vice versa.
Thus, one must be careful in accepting that the hypothesized cause precedes the
effect. The ability of cohort studies to establish that the cause precedes the effect
is enhanced when the time lapse between cause and effect relative to the natural
history of the disease is longer than in this example. Short time intervals still leave
open the possibility that the presumed cause has been inf uenced by the presumed
effect instead of the reverse.

Altering the Cause Alters the Effect
Even if one has f rmly established that the possible cause precedes the effect, to
completely fulf ll the criteria for contributory cause, it is necessary to establish
that altering the cause alters the probability of the effect.2 This criterion can be
established by performing an intervention study in which the investigator alters the
cause and determines whether this subsequently contributes to altering the proba-
bility of the effect. Ideally, this criterion is fulf lled by performing a randomized
clinical trial. Randomized clinical trials may not be ethical or practical thus we
need to examine other ways to establish cause and effect.
When contributory cause cannot be def nitively established using a randomized

clinical trial, we may need to make our best judgments about the existence of a
cause-and-effect relationship. For this situation a series of ancillary, adjunct, or
supportive criteria for contributory cause have been developed. These include the
following:

1. Strength of association. A strong association between the risk factor and the
disease as measured, for example, by a large relative risk.

2. Consistency of association. Consistency is present when investigations per-
formed in different settings on different types of patients produce similar re-
sults.

3. Biological plausibility. Biological plausibility implies that a known biological
mechanism is capable of explaining the relationship between the cause and the
effect. The biological plausibility of the relationship is evaluated on the basis
of clinical or basic science principles and knowledge. For instance, hyperten-
sion is a biologically plausible contributory cause of strokes, coronary artery
disease, and renal disease because the mechanism for damage is known and
the type of damage is consistent with that mechanism. On the other hand, data

2 It is important to recognize that contributory cause is an empirical def nition. It does not require
an understanding of the intermediate mechanism by which the contributory cause triggers the effect.
Historically, numerous instances have occurred in which actions based on a demonstration of contrib-
utory cause reduced disease despite the absence of a scientif c understanding of how the result actually
occurred. Puerperal fever was controlled through hand washing before the bacterial agents were recog-
nized. Malaria was controlled by swamp clearance before its mosquito transmission was recognized.
Scurvy was prevented by citrus fruit before the British ever heard of vitamin C. Once we understand
more about the direct mechanisms that produce disease, we are able to distinguish between indirect
and direct contributory causes. What we call a direct cause of disease depends on the current state of
knowledge and understanding of disease mechanism. Thus, over time, many direct causes may come
to be regarded as indirect causes. In addition, it is important to distinguish these terms from the legal
concept of proximal cause. Proximal cause refers to actions that could prevent a particular outcome
and should not be confused with the def nition of causation used here.
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suggesting a relationship between hypertension and cancer would not be bio-
logically plausible, at least on the basis of current knowledge.
Biological plausibility also implies that the timing andmagnitude of the cause

are compatible with the occurrence of the effect. For instance, we assume that
severe, long-standing hypertension is more likely to be a contributory cause
of congestive heart failure or renal disease than mild hypertension of short
duration.

4. A dose-response relationship. A dose-response relationship implies that
changes in levels of exposure to the risk factor are associated with changes
in the frequency of disease in a consistent direction.

Data that support each of these four criteria help bolster the argument that a factor
is actually a contributory cause. When these criteria are fulf lled, it reduces the
likelihood that the observed association is due to chance or bias. The criteria,
however, do not def nitively establish the existence of a contributory cause.
None of these four criteria for contributory cause are essential. A risk factor

with a modest but real association may in fact be one of a series of contributory
causes for a disease. Consistency is not essential because it is possible for a risk
factor to operate in one community but not in another. This may occur because
of the existence in one community of other prerequisite conditions. Biological
plausibility assumes that we understand the relevant biological processes. Finally,
a dose-response relationship, although frequent in biological relationships, is not
required for a cause-and-effect relationship. Even when it is present, it usually
only exists over a limited range of values. For cigarettes and lung cancer, one
or two cigarettes per day may not measurably increase the probability of lung
cancer, and the difference between three and four packs per day may not be de-
tectable. Dose response relationships may be confusing, as illustrated in the next
example:

An investigator conducted a cohort study of the association between radiation and
thyroid cancer. He found that low-dose radiation had a relative risk of 5 of being
associated with thyroid cancer. He found that at moderate levels of radiation, the
relative risk was 10, but at high levels, the relative risk was 1. The investigator
concluded that radiation could not cause thyroid cancer because no dose-response
relationship of more cancer with more radiation was demonstrated.

The relative risk of 10 is an impressive association between radiation and thyroid
cancer. This should not be dismissed merely because the relative risk is diminished
at higher doses. It is possible that low-dose andmoderate-dose radiation contributes
to thyroid cancer, whereas large doses of radiation actually kill cells and thus do
not contribute to thyroid cancer.
For many biological relationships, a little exposure may have little measurable

effect. At higher doses, the effect may increase rapidly with increases in dose. At
still higher doses, there may be little increase in effect. Thus, the presence of a
dose-response relationshipmay depend onwhich part of the curve is being studied.
When a relationship suggests that one specif c agent produced one and only one
specif c outcome, the evidence for causation is also strengthened.
These ancillary, adjunct, or supportive criteria for judging contributory cause are

just that: They do not in and of themselves settle the issue. If present, theymay help
support the argument for contributory cause. These criteria helps in understanding
issues raised in a controversy and the limitations of the data.
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Other Concepts of Causation
The concept of contributory cause has been very useful in studying disease cau-
sation. Contributory cause, however, is not the only concept of causation that has
been used in clinical medicine. In the nineteenth century, Robert Koch developed
a series of conditions that must be met before a microorganism can be considered
the cause of a disease. The conditions, known as Koch’s postulates,3 include a
requirement that the organism is always found with the disease. This condition is
often called necessary cause.
Necessary cause goes beyond the requirementswe have outlined for establishing

contributory cause. Historically, this was very useful in the study of infectious
disease when a single agent was responsible for a single disease. However, if the
concept of necessary cause is applied to the study of chronic diseases, it is nearly
impossible to prove a causal relationship. For instance, even though cigarettes have
been well established as a contributory cause of lung cancer, cigarette smoking
is not a necessary condition for developing lung cancer; not everyone with lung
cancer has smoked cigarettes.
Under the rules of strict logic, causation also requires a second condition known

as sufficien cause. This condition says that if the cause is present, the disease will
also be present. In our cigarette and lung cancer example, suff cient cause would
imply that if cigarette smoking is present, lung cancer will always follow.
Even in the area of infectious disease, cause and effect may not be straightfor-

ward; for instance, mononucleosis is a well-established clinical illness for which
the Epstein-Barr virus has been shown to be a contributory cause. However, other
viruses such as cytomegalovirus also have been shown to cause mononucleosis. In
addition, evidence may show that Epstein-Barr has been present in a patient with-
out ever causing mononucleosis, or it may manifest itself by being a contributory
cause of other diseases, such as Burkitt’s lymphoma. Thus, despite the fact that
the Epstein-Barr virus has been established as a contributory cause of mononu-
cleosis, it is neither a necessary nor a suff cient cause of this syndrome. If we
require necessary and suff cient cause before concluding that a cause-and-effect
relationship exists, we will be able to document very few, if any, cause-and-effect
relationships in clinical medicine or public health. The next example illustrates the
consequences of strictly applying necessary cause to health studies:

In a study of the risk factors for coronary artery disease, investigators identif ed 100
individuals from a population of 10,000 MI patients who experienced MIs despite
normal blood pressure, normal LDL andHDL cholesterol, regular exercise, no smok-
ing, and no family history of coronary artery disease. The authors concluded that they
had demonstrated hypertension, high LDH and low HDL cholesterol, lack of exer-
cise, smoking, and family history were not the causes of coronary artery disease
because not every MI patient possessed a risk factor.

The authors of this study were using the concept of necessary cause as a concept of
causation. Instead of necessary cause, however, let us assume that all these factors

3Koch’s postulates have been too strict for use in infectious disease causation as well. A mod-
if ed version referred to by the National Institutes of Health as Modern Koch’s Postulates require:
(a) Epidemiological association: The suspected cause must be strongly associated with the disease;
(b) Isolation: The suspected pathogen can be isolated and propagated outside the host; and (c) Transmis-
sion pathogenesis: Transfer of the suspected pathogen to an uninfected host, man or animal, produces
the disease in that host. See www:niaid.nih.gov/factsheets/evidhiv.htm (May 20, 2004).
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had been shown to fulf ll the criteria for contributory cause of coronary artery
disease. Contributory cause, unlike necessary cause, does not require that everyone
who is free of the cause will be free of the effect. The failure of known contributory
causes to be present in all cases of disease emphasizes the limitations of our
current knowledge about all the contributory causes of coronary artery disease
and encourages further investigations into additional risk factors. It illustrates the
limitations of our current state of knowledge, since if all the contributory causes
were known, then everyone with disease would possess at least one such factor.
Thus, evenwhen a contributory cause has been established, itwill not necessarily

be present in each and every case.
In summary, contributory cause is a useful def nition of causation. It requires a

demonstration that: The cause and the effect occur together in an individual more
often than expected by chance alone; the presumed cause precedes the effect; and
altering the cause alters the effect in some individuals. It does not require that all
people who are free of the contributory cause will be free of the effect. It does not
require that all people who possess the contributory cause will develop the effect.
In other words, a contributory cause may be neither necessary nor suff cient, but it
must be contributory. Its presence must increase the probability of the occurrence
of disease and its reduction must reduce the probability of the disease.4

Harms and Interactions
Complete interpretation of the results requires us to look beyond contributory
cause or eff cacy to examine not only the benef ts of an intervention but also its
potential harms. The approach used for judging the importance of potential harms
is different from the approach used for potential benef ts or eff cacy. As we have
seen, investigations are often specif cally designed with the aim of demonstrating
statistically signif cant results for the primary endpoint. Unless safety is itself the
primary endpoint, most investigations will not be capable of demonstrating the sta-
tistical signif cance of adverse effect observed in an investigation. The importance
of understanding this principle is illustrated in the next example.

An investigation found that a new treatment for thrombophlebitis had eff cacy inmore
rapidly resolving clots than conventional treatment. Pulmonary emboli occurred in
a slightly greater percentage of those receiving the new treatment. The investigators
concluded that this side effectwas not important since the resultswere not statistically
signif cant.

Despite the small numbers and absence of statistical signif cance, this f nding may
be very important. We cannot ignore increases in side effect merely because they
are not statistically signif cant, since most investigations do not have the statistical
power to allow us to use statistical signif cance testing for adverse effects.

4 The concept of contributory cause is very useful because it is directly linked to the demonstration
that interventions may alter the outcome. It should not be concluded that a contributory cause that
has been demonstrated is the only contributory cause, or that the intervention that has been investi-
gated is necessarily the best possible or even the best available intervention. Multiple factors may be
demonstrated to be contributory causes and multiple interventions may alter the cause and thereby
alter the effect. The demonstration of specif c contributory causes may camouf age the larger social
determinants of cause-and-effect relationships, such as poverty, pollution, or climate change. These
have been called the causes of causes.
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In addition to interpretations of benef ts and harms of interventions, we may
be able to learn about the interactions between factors that produce outcome.
Interactions between treatments such as drugs is an important part of the evaluation
of harms in clinical practice. Let us extend our previous example to illustrate this
point.

The data on patients receiving the new treatment and experiencing pulmonary emboli
were examined. It was found that these patients had especially rapid dissolution of
their clots. The authors concluded that there may be an interaction between the
speed of clot breakdown and the probability of pulmonary emboli. They argued that
this relationship makes biological sense, and stress the potential harm of this new
treatment.

The authors correctly focused on the potential interaction. They relate this in-
teraction to what is known about the biology and wisely are cautious about the use
of this new treatment.5
Despite the importance of interactions, statistical methods for identifying and

integrating interactions into data analysis are limited. Formal statistical methods
usually require statistical signif cance before labeling the relationship between
two factor as interaction. Because of the low statistical power for identifying
interaction, the absence of statistical interaction should not be equated with the
absence of biological interaction.6
At times the impact of interactions are so great that they can be demonstrated

to be statistically signif cant. In these situations they are added as an additional
factor or variable along with the confounding variables. When interactions are
found to be statistically signif cant, it is important to focus on their interpretation,
as illustrated in the next example.

Cigarette smoking is found on average to have a relative risk of 10 for lung cancer.
Exposure to environmental factors including asbestos, uranium, and radon are found
on average to have a relative risk of 3 for lung cancer. When cigarette exposure and
environmental exposure were both present, the average relative risk was found to
be 30.

This is a type of interaction known as multiplicative interaction. Mulitiplicative
interaction implies that the risks multiply rather than add together. If the risks
added together, we would expect an average relative risk of 13 when both cigarette
exposure and environmental exposure is present. This is an important f nding,
since it suggests that addressing either of the factors will have a much greater than
expected impact on the chances of developing lung cancer.

5At times the distinction is made between statistical and biological interaction. This is an example
of biological interaction. Despite the biological interaction discussed here, it is unlikely that statistical
interaction would be demonstrated. Statistical interaction, even when present, may depend on the scale
of measurement used—that is, it may exist for ratios such as relative risk and not exist for differences.

6 It has been argued that use of a P-value of 0.05 is not appropriate for statistical signif cance tests
of interaction because of the low power of the tests. In addition, an argument exists that interaction
should not be subject to statistical signif cance testing at all. Note that we do not subject confounding
variables to statistical signif cance tests. However, interactions are very common, and if we introduce
a large number of interaction terms into a regression analysis, its statistical power to demonstrate
statistical signif cance for the primary relationship is reduced. Perhaps this is the reason that there is
great resistance to raising the acceptable P-value for def ning interaction or for eliminating the use of
statistical signif cance testing for interaction.
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Subgroups
In addition to examining the contributory cause or eff cacy and the side effects
and interactions, investigators often examine the meaning of the investigation for
subgroups of individuals with special characteristics.
Examination of subgroups, or subgroup analysis, is an important and error-

prone component of interpretation. Ideally we would like to examine subgroups
especially when an intervention has been shown to have eff cacy. For instance,
we’d like to know whether a treatment with eff cacy works best for mild vs. severe
disease, young vs. old, males vs. females, etc. Knowing the results for each of these
subgroups and many others would assist us in applying the results in practice.
Despite the potential usefulness of subgroup analysis, it must be done carefully

because there are so many potential subgroups. If all of the potential subgroups
are analyzed, we are faced with what we have called the multiple comparison
problem—look at enough groups and some of them will inevitably be statistically
signif cant if we use the standard statistical methods.
Anumber ofmethods exist for circumventing this problem.One approach argues

that subgroup analysis should not be done unless the results obtained using the
entire study have demonstrated statistical signif cance. In this approach multiple
subgroups may be examined, but we need to take into account the number of
subgroups examined.
Another approach argues that before the investigation begins a limited number of

potentially important subgroups can be identif ed for later subgroup analysis. These
might include those with more severe disease or those receiving more intensive
treatment. The investigator then would examine these subgroups regardless of the
results for the overall investigation. Both of these approaches can be used with
caution. However, it is important not to examine subgroups to try to give meaning
to an investigation when no overall statistically signif cant results are found, as
illustrated in the following example.

An investigation of a new treatment for lung cancer found no statistically signif cant
difference between the new treatment and the conventional treatment. However, after
examining a large number of subgroups, the investigators found that those who had
left-side primary lesions had a statistically signif cant improvement in longevity.

As with multiple comparisons in general, when we look at multiple subgroups we
will often eventually f nd one or more that is statistically signif cant. Without an
overall f nding of statistical signif cance and without an initial hypothesis that left-
side primary lesions will respond better, we need to be very cautious in interpreting
the results.
Now we have examined the meaning of the results for those in the investigation.

However, our job in not quite done. When reading research, we are interested not
only in the meaning for those in the investigation but for those we will encounter in
practice. These may be individual patients, at-risk groups, or populations in com-
munities. Thus the last component of the M.A.A.R.I.E. asks us to draw conclusion
about those who are not included in the investigation.
That is the role of extrapolation, as we will see in the next chapter.
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8 Extrapolation

In the preceding chapters, we illustrated the errors that can be made in the firs
fi e component of the M.A.A.R.I.E. framework: method, assignment to study and
control groups, assessment of outcome, analysis of results, interpretation of study
results. Having completed this process, the investigator next asks what this all
means for individuals not included in the study and for situations not directly
addressed by the study. In conducting extrapolation, the reader must ask how the
investigators applied the results to:

� Individuals, groups, or populations who are similar to the average participant in
the investigation
� Situations that go beyond the range of the study’s data
� Populations or settings that differ from those in the investigation

This is not the investigators’ job alone. In fact, they are not in the best position to
perform extrapolation. The investigators often want their study’s conclusions to
have the broadest possible implications. But they cannot know the characteristics
of the individuals, institutions, or communities to whom the reader wishes to apply
the study’s conclusions. Thus, the reader needs to be the expert on extrapolation.
Let us start by seeing howwe can use the outcomedata of a study to extrapolate to

similar individuals, similar groups at risk, and similar populations or communities.
We will then explore extrapolation beyond the data and to different populations
and settings.

Extrapolation to Similar Individuals, Groups, or Populations
The most cautious form of extrapolation asks the investigator to extend the con-
clusions to individuals, at-risk groups, and populations that are similar to those
included in the investigation. This process can usually proceed using a quantitative
approach without the need for subjective judgments on the part of the investigator.
In this form of extrapolation, one way we may be interested in extrapolating

study results is to assess their overall meaning for an individual who is similar
to the average individual included in the investigation. In doing this, we assume
that the study’s finding are as applicable to other very similar individuals who
possess the risk factor being studied as it was for the individuals who were actually
included in the investigation.
Many case-control and cohort studies estimate the odds ratio or relative risk

associated with the development of the disease if a risk factor is present compared
with when it is not present. The odds ratio and relative risk tell us the strength
of the relationship between the risk factor and the disease. If a cause-and-effect
relationship is present and the effect of the risk factor is completely reversible,
the relative risks tell us important information regarding the individual patient. On
average, a relative risk of 10 means the individual patient has a 10 times higher

58
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risk of developing the disease over a specif ed period of time if the risk factor is
present than he or she does if the risk factor is not present.1
Relative risk does not, however, tell us the absolute magnitude of the risk of

developing the disease if the risk factor is present compared with when it is not
present. A relative risk of 10 may indicate an increase in risk from 1 per 1,000,000
for those without the risk factor to 1 per 100,000 for those with the risk factor.
Alternatively, a relative risk of 10 may indicate an increase in risk from 1 per 100
for those without the risk factor to 1 per 10 among those with the risk factor. Thus,
despite the same relative risk, what is called the absolute risk for individuals can
be very different.
Failure to understand the concept of absolute risk can lead to the following type

of extrapolation error:

A patient has read that the relative risk of death from leukemia is increased four times
with use of a new chemotherapy for Stage III breast cancer; the relative risk of dying
from Stage III breast cancer without chemotherapy is 3. She therefore argues that
the chemotherapy is not worth the risk.

The absolute risk of dying from Stage III breast cancer, however, is far greater
than the risk of death from future leukemia. The infrequent and later occurrence
of leukemia means that even in the presence of a risk factor that increases the risk
fourfold, the absolute risk of dying from leukemia is still very small compared
with the very high risk of dying from breast cancer.
Thus, the absolute risk strongly favors the benef ts of treatment despite the

small probability of harm. The patient in this example has failed to understand the
important difference between relative risk and absolute risk. Thus, it is desirable to
have information on both the relative risk and absolute risk when extrapolating the
results of a study to a particular individual or when comparing one risk to another.
When extrapolating to individuals, it is essential to appreciate that the data from

an investigation address issues of averages. Imagine that an intervention is found
to have eff cacy in an investigation that includes participants with diastolic blood
pressure ranging from 90 to 120 mm Hg with an average of 100 mm Hg. The
extrapolation to similar individuals should initially address the implications for
those similar to the average person in the study, i.e., those with a diastolic blood
pressure of 100 mm Hg. Those between 90 and 100 mm Hg might be regarded as
a subgroup. There are most likely only a small number of participants in the study
with a diastolic blood pressure of 90 mm Hg. Extrapolating results to individuals
with a diastolic blood pressure of 90 mmHg can dramatically increase the number
of individuals towhom the results apply, even if there is no evidence that the benef t
results from treating individuals with a diastolic blood pressure of 90 mm Hg.
Failure to focus on the average can lead to the following extrapolation error:

An investigationwas conducted on a newmedication that lowers serumhomocysteine
levels. Approximately half the population have a level of serum homocysteine of
10µmol/L or greater. Patients whose only risk factor for coronary artery disease was

1How well estimates of relative risk apply to an individual is actually determined by how similar the
individuals included in the study are to the individual to whomwewish to apply the results. Application
of results to an individual assumes that the study sample is composed entirely of persons exactly like
that individual. It is not enough that only some persons like that individual are included in the study
sample. Thus prediction for one individual based on group investigations is even more diff cult than
prediction for the average person.
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a high serum homocysteine level ranging from 10 to 30 µmol/L, with an average
of 15 µmol/L, were included in the investigation. Five hundred individuals were
included in the study group and in the control group, including ten individuals with
a homocysteine level between 10 and 11 µmol/L. The investigation demonstrated a
clinically important and statistically signif cant reduction in coronary artery disease
among the study group compared to the control group. The investigators concluded
that all adults in the United States with a serum homocysteine level of 10 µmol/L or
greater should be considered candidates for the new medication.

The investigators imply that approximately half of all American adults should be
considered for this new medication. They drew this conclusion because they fo-
cused on the full range of values (10 to 30 µmol/L) included in the investigation
rather than the average of 15 µmol/L. This was especially dangerous since there
were so few individuals included with a serum homocysteine level near the lower
end of the range. Thus, unless there is convincing data from those with a homo-
cysteine level of 10 µmol/L, extrapolation should address the average individual
in the investigation.

Extrapolation to At-Risk Groups
Relative risk and absolute risk are often used to make estimates about individual
patients. Sometimes, however, we are more interested in the average impact that a
risk factormay have on groups of individualswith the risk factor or on a community
of individuals with and without the risk factor.
When assessing the impact of a risk factor on a group of individuals, we

use a concept known as attributable risk percentage.2 Calculation of attributable
risk percentage does not require the existence of a cause-and-effect relationship.
However, when a contributory cause exists, attributable risk percentage tells us
the percentage of a disease that may potentially be eliminated from individu-
als who have the risk factor if the effects of that risk factor can be completely
removed.3
Attributable risk percentage is def ned as follows:

Probability of disease Probability of disease
if risk factor present − if risk factor absent × 100 %

Probability of disease if risk factor present

Attributable risk percentage can be easily calculated from relative risk using the
following formula when the relative risk is greater than 1:

Attributable risk percentage = Relative Risk − 1
Relative Risk

× 100%

The following table uses this formula to convert relative risk to attributable risk
percentage:

2Attributable risk percentage has also been called attributable fraction (exposed), etiologic fraction
(exposed), attributable proportion (exposed), percentage risk reduction, and protective eff cacy rate.

3 This interpretation of attributable risk percentage requires that the effects of the risk factor can be
immediately and completely removed.
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Relative risk Attributable risk percentage

1 0
2 50%
4 75%

10 90%
20 95%

Notice that even a relative risk of 2 may produce as much as a 50% reduction in
the disease among those with the risk factor.4
Failure to understand this concept may lead to the following extrapolation error:

A large, well-designed cohort study was conducted on men who exercised regularly
versus men, matched for risk factors for coronary artery disease, who did not exercise
regularly. The study found that those who did not exercise regularly had a relative
risk of 1.5 of developing coronary artery disease. The investigators concluded that
even if this was true, the relative risk was too small to be of any practical importance.

Despite the fact that the relative risk is only 1.5, notice that it converts into a
substantial attributable risk percentage:

Attributable risk percentage = 1.5 − 1
1.5

× 100% = 33%

This means that among men who do not exercise regularly, one-third of their risk
of coronary artery disease could potentially be eliminated if the effect of their
lack of exercise could be eliminated. This may affect a large number of individuals
because coronary artery disease is a frequently occurring disease and lack of regular
exercise is a frequently occurring risk factor.
An alternative way of expressing this information, which is applicable to cohort

studies and controlled clinical trials, is known as the number needed to treat. The
number needed to treat indicates how many patients similar to the average study
participant must be treated, as the average study group patient was, to obtain one
less bad outcome or one more good outcome.4 It is calculated as follows:

Number needed to treat = 1

Probability of the Probability of the
adverse outcome in − adverse outcome in
the control group the study group

Imagine that an investigation demonstrated a reduction of coronary artery disease
over 5 years from 20 per 1,000 in a control group to 10 per 1,000 in the study
group. The number needed to treat for 5 years to produce one less case of coronary
artery disease would be calculated as follows:

Number needed to treat = 1
20/1,000 − 10/1,000

= 1
10/1,000

= 100

4A relative risk less than 1 can be converted and expressed as a relative risk greater than 1 by using
the reciprocal—i.e., a relative risk of 0.5 can also be expressed as a relative risk of 2. However, using
the reciprocal of a relative risk less than 1 alters the meaning since the factor in the numerator is now the
factor that increases the risk. It is confusing to compare relative risks greater than 1 with relative risks
less than 1 since relative risks greater than 1 do not have an upper limit while relative risks less than 1
cannot be less than 0. Thus there are advantages of expressing all relative risks as greater than 1.
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The number needed to treat of 100 indicates that 100 individuals like the average
participant in the study needs to be treated for 5 years to produce one less case of
coronary artery disease.5

Extrapolation to Populations or Communities
When extrapolating the results of a study to a community or population of individ-
uals with and without a risk factor, we need to use another measure of risk known
as the population attributable risk percentage (PAR).6
If a cause-and-effect relationship is present, the population attributable risk

percentage tells us the percentage of the risk in a population that can potentially
be eliminated.7 To calculate the PAR percentage, we must know more than the
relative risk (expressed as greater than 1). It requires that we know or be able to
estimate the proportion of individuals in the population who possess the risk factor
(b from 0 to 1). If we know the relative risk and the proportion of individuals in
the population with the risk factor (b), we can calculate PAR percentage using the
following formula:8

Population attributable risk percentage (PAR%)

= b (Relative risk − 1)
b (Relative risk − 1) + 1

×100%

This formula allows us to relate relative risk, proportion of the population with the
risk factor (b), and PAR percentage as follows:

Relative risk b PAR% (Approximate)

2 0.01 1%
4 0.01 3%

10 0.01 8%
20 0.01 16%

2 0.10 9%
4 0.10 23%

10 0.10 46%
20 0.10 65%

2 0.50 33%
4 0.50 60%

10 0.50 82%
20 0.50 90%

2 1.00 50%
4 1.00 75%

10 1.00 90%
20 1.00 95%

Notice that if the risk factor is uncommon in the population (e.g., 1% or b= 0.01),
the relative riskmust be substantial before thePARpercentagebecomes impressive.
On the other hand, if the risk factor is common (e.g., 50% or b= 0.50), even a small

5 The number needed to treat may be less than 0. Negative numbers indicate that the control group
patients, on average, had a better outcome. Thus, a negative number needed to treat indicates howmany
patients must be treated to produce an additional bad outcome.

6 Population attributable risk percentage has also been called attributable fraction (population), at-
tributable proportion (population), and etiologic fraction (population).

7 This interpretation of PAR percentage like attributable risk percentage requires that a cause-and-
effect relationship is present and that the consequences of the cause are immediately and completely
reversible. PARs from two or more causes may add to more than 100%. This is also the situation for
PAR%.

8When the odds ratio is a good approximation of relative risk, it may be used to calculate population
attributable risk.
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relative risk means the potential community impact may be substantial. When the
prevalence of the risk factor is 1, or 100% (i.e., when everyone has the risk factor),
notice that the PAR percentage equals the attributable risk percentage. This is
expected because attributable risk percentage uses a study group of individuals
who all have the risk factor.
Failure to understand the concept of population attributable risk percentage can

lead to the following extrapolation error:

Investigators report that a hereditary form of high cholesterol occurs in 1 per 100,000
Americans. They also report that those with this form of hyperlipidemia have a
relative risk of 20 for developing coronary artery disease. The authors concluded
that a cure for this form of hyperlipidemia would have a substantial impact on the
national problem of coronary artery disease.

Using the data and our formula for population attributable risk percentage, we f nd
that elimination of coronary artery disease secondary to this formof hyperlipidemia
produces a population attributable risk percentage of about one f ftieth of 1%.Thus,
the fact that this type of hyperlipidemia is so rare a risk factor for a common disease
means that eliminating its impact cannot be expected to have a substantial impact
on the overall occurrence of coronary artery disease.
When calculating the population attributable risk percentage, we often need to

bring in data on the prevalence of the risk factor in the population from other
studies. At times, however, an investigation may itself ref ect the prevalence of a
risk factor. This type of investigation is said to be population based. A population-
based investigation allows us to calculate all of our measures using data produced
by the investigation itself without relying on outside data.9

Extrapolation beyond the Range of the Data
Extrapolation to new situations or different types of individuals is even more dif-
f cult and is often the most challenging step when reading research. It is diff cult
because the investigator and the reviewers are usually not able to adequately ad-
dress the issues of interest to a particular reader. It is up to you, the reader. The
investigator does not know your community or your patients. Despite the diff culty
with extrapolating research data, it is impossible to be a health practitioner without
extrapolation from the research. Often, we must go beyond the data on the basis
of reasonable assumptions. If one is unwilling to do any extrapolation, then one is
limited to applying research results to individuals who are nearly identical to the
average participant in an investigation.
Despite the necessity of extrapolating research data, it is important to recognize

the types of errors that can occur if the extrapolation is not carefully performed.
When extrapolating to different groups or different situations, two basic types of
errors can occur—those due to extrapolations beyond the data, and those that occur
as a result of the difference between the study population and the target population,
which is the group to whom we wish to apply the results.
In research studies, individuals are usually exposed to the factors thought to be

associated with the outcome for only a limited amount of time at a limited range
of exposure. The investigators may be studying a factor such as hypertension that

9When the investigation is population based, it is possible to calculate all the key measures directly
from the 2×2 table. This includes incidence with and without the risk factor, relative risk, attributable
risk percentage, number needed to treat, prevalence of the risk factor, and population attributable risk
percentage.
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results in a stroke, or a therapeutic agent such as an antibiotic that has eff cacy for
treating an infection. In either case, the interpretation must be limited to the range
andduration of hypertension experienced by the subjects or the dosage andduration
of the antibiotic used in the study. When the investigators draw conclusions that
extrapolate beyond the dose or duration of exposure experienced by the study
subjects, they frequently are making unwarranted assumptions. They may assume
that longer exposure continues to produce the same effect experienced by the
study subjects. The following example illustrates a potential error resulting from
extrapolating beyond the range of the data:

A new antihypertensive agent was tested on 100 patients with hard-to-control hy-
pertension. In all 100 patients with hard-to-control hypertension, the agent lowered
diastolic blood pressure from 120 to 110 mm Hg at dosages of 1 mg/kg, and from
110 to 100 mm Hg at dosages of 2 mg/kg. The authors concluded that this agent
would be able to lower diastolic blood pressure from 100 to 90 mm Hg at doses of
3 mg/kg.

It is possible that clinical evidence would document the new agent’s eff cacy at
3 mg/kg. Such documentation, however, awaits empirical evidence. Many antihy-
pertensive agents have been shown to reach maximum effectiveness at a certain
dosage and do not increase their effectiveness at higher dosages. To conclude that
higher dosages produce greater effects without experimental evidence is to make
a linear extrapolation beyond the range of the data.
Another type of error associated with extrapolation beyond the range of the data

concerns potential side effects experienced at increased duration, as illustrated by
the following hypothetical example:

A 1-year study of the effects of administering daily estrogen to 100 menopausal
women found that the drug relieved hot f ashes and reduced the rate of osteoporosis
as opposed to age-matched women given placebos who experienced no symptom
relief. The authors found no adverse effects from the estrogens and concluded that
estrogens are safe and effective. Therefore, they recommended that estrogens be
administered long term to women, beginning at the onset of menopause.

The authors have extrapolated the data on using estrogens from a 1-year period
of follow-up to long-term administration. No evidence is presented to show that
if 1 year of administration is safe, so is long-term, continuous administration of
estrogen. It is not likely that any long-term adverse effects would show up in a
1-year study. Thus, the authors have made potentially dangerous extrapolations by
going beyond the range of their data.
Linear extrapolation may sometimes be necessary in clinical and public health

practice, but we must recognize that linear extrapolation has taken place so we
can be on the lookout for new data that may undermine the assumptions and thus
challenge the conclusion obtained by linear extrapolation.10

10 Extrapolation beyond the data also includes prediction of future events. Prognosis is a special
form of prediction in that one is trying to predict the future events for a single individual. Prediction
of average outcome is really a special case of extrapolation beyond the data when the data is extended
beyond the time period of the investigation. The types of assumptions, however, that need to bemade for
prediction of future events are often very strenuous. We usually need to assume that current trends will
continue, which is an assumption that is rarely fulf lled. Prognosis for specif c individuals is especially
diff cult when based on group data, since there is far more variation among individuals than for the
average outcome. However, when making predictions about the future of one particular individual, an
extremely valuable source of data may be available. An individual’s past response, be it to surgery,
grief, or opportunity, is often the best available predictor of their future response, often far better than
can be obtained using data from groups of individuals.
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Extrapolation to Different Populations or Settings
When extrapolating to a target population, it is important to consider how that group
differs from the study’s population sampled in the investigation. The following
scenario illustrates howdifferences between countries, for instance, can complicate
extrapolation from one country to another:

In a study involving Japan and the United States, 20% of the Japanese participants
were found to have hypertension and 60% smoked cigarettes, both known contribu-
tory causes of coronary artery disease in the United States. Among U.S. participants,
10% had hypertension and 30% smoked cigarettes. Studies in Japan did not demon-
strate an association between hypertension or cigarettes and coronary artery disease,
whereas similar studies in the United States demonstrated a statistically signif cant
association. The authors concluded that hypertension and cigarette smoking must
protect the Japanese from myocardial infarctions.

The authors have extrapolated from one culture to a very different culture. Other
explanations for the observed data are possible. If U.S. participants frequently
possess another risk factor, such as high LDL cholesterol, which until recently has
been rare in Japan, this factor may override cigarette smoking and hypertension
and help to produce the high rate of myocardial infarctions in the U.S. population.
Extrapolation within countries can also be diff cult when differences exist be-

tween the group that was investigated and the target population to which one wants
to apply the f ndings, as illustrated in the next example:

A study of the preventive effect of treating borderline tuberculosis (TB) skin tests
(6–10mm)with a year of isoniazidwas conducted amongAlaskanNativeAmericans.
The population had a frequency of borderline skin tests of 2 per 1,000. The study was
conducted by giving isoniazid to 200 Alaskan Native Americans with borderline skin
tests and placebos to 200 others with the same borderline condition. Twenty cases
of active TB occurred among the placebo patients and only one among the patients
given isoniazid. The results were statistically signif cant at the 0.01 level. A health
off cial from the state of Virginia, where borderline skin tests occur in 300 per 1,000
skin tests, was impressed with these results. He advocated that all patients in Virginia
who had borderline skin tests be treated with isoniazid for 1 year.

In extrapolating to the population of Virginia, the health off cial assumed that
borderline skin tests mean the same thing for Alaskan Native Americans as for
Virginians. Other data suggest, however, that many borderline skin tests in Virginia
are not due to TB exposure. They are frequently caused by an atypical mycobac-
teria that carries a much more benign prognosis and does not reliably respond to
isoniazid. By not appreciating this factor in the residents of Virginia, the health
off cial may be submitting many individuals to useless and potentially harmful
therapy.
Extrapolation of study results is always a diff cult but extremely important part

of reading the health research literature. Extrapolation involves f rst asking what
the resultsmean for people like the average individual included in the investigation.
Thus, one must begin by looking closely at the types of patients and settings in
which the investigation was conducted. This enables the reader to consider what
the results mean for similar at-risk groups and f nally communities or populations
of individuals with and without the characteristics under study.
Often, the reader wants to go one step further and extend the extrapolation

to individuals and situations that are different from those in the study. This
extrapolation beyond the data must take into account the differences between
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the types of individuals included in the investigation and the target group. Recog-
nizing the assumptions we make in extrapolation forces us to keep our eyes open
for new information that challenges these assumptions and potentially invalidates
our conclusions.
We have now examined how to apply the M.A.A.R.I.E. framework to the three

basic study designs: case-control, cohort, and randomized clinical trial. Now we
turn our attention to applying this framework to the special characteristics of
randomized clinical trials and then to nonconcurrent or retrospective cohort studies.
Finally, we will use the M.A.A.R.I.E. framework to examine efforts to combine
data from studies, which is known as meta-analysis.
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Randomized clinical trials are now widely considered the gold standard by which
we judge the effica y of therapy. The U.S. Food and Drug Administration (FDA)
requires them for drug approval;1 the National Institutes of Health (NIH) rewards
them with funding; the journals encourage them by publication; and increasingly,
practitioners read them and apply their results. When feasible and ethical, ran-
domized clinical trials are a standard part of health research. Thus, it is critically
important to appreciate what these trials can tell us, what can go wrong, and what
questions they cannot address.
Randomized clinical trials today are usually conducted using an elaborate set

of rules and procedures. The details for conducting the study also need to be
define in what is called the study’s protocol. Prior to beginning a randomized
clinical trial, the investigation must be reviewed by an Investigational Review
Board (IRB) to evaluate the quality of the study design, the ethics of conducting
the study, and the safeguards provided for patients, including a review of the
informed consent statement that potential participants will be asked to sign. The
IRB is asking whether it is reasonable for a potential participant to be asked to
participate. Once approved by the IRB, those who are asked to participate in the
study must be informed and provide their informed consent.2 The reporting of
randomized clinical trials has become relatively uniform over the last few years
largely due to the publication of the CONSORT statement (Consolidated Standards
of Reporting Trials).3
CONSORT states that randomized clinical trials are to be published using a

template showing the fl w of participants. Figure 9.1 is the recommended template
for reporting the data from randomized clinical trials. The terms used are parallel
to the firs four components of the M.A.A.R.I.E. framework.
� Enrollment = Method
� Allocation = Assignment
� Follow-up = Assessment
� Analysis = Results

Let us use theM.A.A.R.I.E. framework to examine the unique features of random-
ized clinical trials.

1 The United States Food and Drug Administration generally requires convincing results from two
independently conducted, well-designed randomized clinical trials for approval of a new drug. These
investigations may be conducted in the United States or abroad.

2An additional review under the Health Insurance Portability and Accountability Act (HIPAA)
regulations is also now required to ensure the confidentialit of study data.

3 For the complete CONSORT statement and its revisions and detailed explanations, see
www.consort-statement.org (May 20, 2004).
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Lost to follow up (n = ...) 
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Discontinued intervention
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Analysed (n = ...)

Excluded from analysis
(give reasons) (n = ...)

Figure 9.1. Revised template of the CONSORT diagram showing the f ow of par-
ticipants through each stage of a randomized trial. (Adapted from Consort Statement
www.consort-statement.org (May 20, 2004)).

Method
Randomized clinical trials generally are used to establish the eff cacy of treatment.
Thus their study hypothesis usually indicates that on average those in the study
group will have a better outcome than those in the control group.
Randomized clinical trials are capable of demonstrating all three criteria of

contributory cause. When applied to a treatment, the term efficac is used instead
of contributory cause. Efficac means that in the study group being investigated, the
therapy increased the probability of a desirable outcome. Eff cacy, however, needs
to be distinguished from effectiveness.Effectiveness implies that the therapyworks
under usual conditions of practice as opposed to the conditions of an investigation.

http://www.consort-statement.org
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Randomized clinical trials usually have a very specif c study hypothesis since
they seek to determine whether the therapy works when given according to a
def ned dosage schedule, by a def ned route of administration, and to a def ned
type of patient.4
Thus randomized clinical trials are expected to have a detailed protocol, in-

cluding specif c inclusion and exclusion criteria. All participants are expected
to fulf ll these criteria. All those who are assessed for eligibility usually do not
end up being participants in the investigation. They may not meet the inclusion
criteria, they may refuse to participate, or there may be other reasons. Thus the
CONSORT statement’s template begins by identifying the number assessed for
eligibility and then indicates the number who were excluded and the reasons for
their exclusion.
Randomized clinical trials are not suitable for the initial investigation of a new

treatment. When used as part of the drug approval process, randomized clinical
trials are traditionally referred to as phase III trials. As def ned by the FDA, phase
I trials refer to the initial efforts to administer the treatment to human beings. They
aim to establish a dosage regimen and to evaluate potential toxicities. They provide
only a preliminary look at the potential eff cacy of the therapy. Phase I trials aim
to establish the indications and regimen for administering the new therapy and
to determine whether the new therapy warrants further study. Phase II trials are
usually small-scale controlled or uncontrolled trials that aim to establish whether
full-scale randomized clinical trials should be conducted.
The FDA has traditionally required two independently conducted randomized

clinical trials before reviewing a drug for approval for one particular indication.
Onceon themarket, cliniciansmayuse the drug for other indicationswhich is called
off-label prescribing. Ideally, a randomized clinical, or phase III, trial should be
performed before the drug is widely used for new indications.5 For new drugs that
do not have market approval, this is relatively easy. However, for many procedures
and drugs that have been previously marketed and used for other indications, the
treatment may have been widely used before randomized clinical trials could be
implemented. This is a problem, because once the treatment has been widely used,
physicians and often patients have developed f rm ideas about the value of the
therapy. In that case, they may not believe it is ethical to enter into a randomized
clinical trial or to continue participation if they discover that the patient has been
assigned to the control group.
Once the time is considered right for a randomized clinical trial, the next question

is whether it is feasible to perform one. To answer this, the investigator must def ne
the question being asked in a randomized clinical trial.
Most randomized clinical trials aim to determine whether the new or experi-

mental therapy results in a better outcome than a placebo or standard therapy. To
determine whether a trial is feasible, investigators need to estimate the necessary
sample size. They must estimate how many patients are required to have a reason-
able chance of demonstrating a statistically signif cant difference between the new

4 It is possible to perform a randomized clinical trial to assess the effectiveness of therapy by using
a representative sample of the types of patients to be treated with the therapy and the usual methods
that are being used clinically.

5 Also note that the FDA’s procedures are undergoing change, with a goal of selectively introducing
new treatments into practice earlier.
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therapy and the placebo or standard therapy. The required sample size depends on
the following factors:6

1. Size of the Type I error that the investigators will tolerate. This is the
probability of demonstrating a statistically signif cant difference in samples
when no true difference exists between treatments in the larger population. The
alpha level for the Type I error is usually set at 5%.

2. Size of the Type II error that the investigators will tolerate. This is the prob-
ability of failing to demonstrate a statistically signif cant difference in study
samples when a true difference of a selected magnitude actually exists between
treatments. As we discussed previously, investigators should aim for Type II er-
ror (or beta level) of 10% and accept no more than 20%. A Type II error of 20%
indicates an 80% statistical power, since the statistical power plus the Type II
error add up to 100%. The 80% statistical power implies 80% probability of be-
ing able to demonstrate a statistically signif cant difference between the samples
if a true difference of the estimated size actually exists in the larger populations.

3. Percentage of individuals in the control group who are expected to expe-
rience the adverse outcome (death or other undesired outcomes) under
study. Often this can be estimated from previous studies.

4. Improvement in outcomewithin the study group that the investigators seek
to demonstrate as statistically significant Despite the desire to demonstrate
statistical signif cance for even small real changes, the investigators need to
decide the minimum size of a difference that would be considered clinically
important. The smaller this difference between study group and control group
therapy that one expects, the larger the sample size required.7

Let us take a look at the way these factors affect the required sample size.
Table 9.1 provides general guidelines for sample size for different levels of these
factors.
Table 9.1 assumes one study group and one control group of equal size. It also

assumes that the investigators are interested in the study results whether the results
are in the direction of the study treatment or in the opposite direction. Statisticians
refer to statistical signif cance tests that consider data favoring deviations from the
null hypothesis in either direction as two-tailed tests. Table 9.1 assumes a Type I
error of 5%.
Let us take a look at the meaning of these numbers for different types of studies:

Imagine that an investigator wishes to conduct a randomized clinical trial on a treat-
ment designed to reduce the 1-year risk of death from adenocarcinoma of the ovary.

6 This is all the information that is required for an either/or variable. When calculating sample size
for variables with multiple possible outcomes, one must also estimate the standard deviation of the
variable.

7 The frequency of the outcome under investigation may be estimated from past studies, especially
for the control group. It is often more diff cult to estimate the expected frequency in the study group.
Overly optimistic estimates of the results of the new therapy will result in sample size estimates that are
too small to demonstrate statistical signif cance. The treatment used in the control group may inf uence
the estimated frequency of the outcome in the control group. Use of a placebo may have advantages
from the perspective of sample size since it may result in a lower rate of desired outcomes in the
control group and thus reduce the number of participants needed. Today the standards for an ethical
study require that a placebo not be used if other treatements are available that have greater eff cacy than
a placebo. One of the consequences of this policy is to increase the sample size needed for randomized
clinical trials.
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Assume that the 1-year risk of death using standard therapy is 40%. The investigator
expected to be able to reduce the 1-year risk of death to 20% using a new treatment.
He believes, however, that the treatment could possibly increase rather than reduce
the risk of death. If he is willing to tolerate a 20% probability of failing to obtain
statistically signif cant results, even if a true difference of this magnitude exists in
the larger populations, howmany patients are required in the study group and control
group?

To answer this question, we can use Table 9.1 as follows:
Locate the 20% probability of an adverse outcome (death) in the study group

on the horizontal axis.
Next, locate the 40% probability of an adverse outcome in the control group on

the vertical axis. These intersect at 117, 90, and 49. The correct number is the one
that lines up with the 20% Type II error. The answer is at least 90.
Thus, 90 women with advanced adenocarcinoma in the study group and 90 in

the control group are needed to have a 20% probability of failing to demonstrate
statistical signif cance if the true 1-year risk of death is actually 40% using the
standard treatment and 20% using the new therapy. Notice that the sample size
required for a Type II error of 10% is 117. Thus, a compromise sample size of
about 100 in each group would be reasonable for this study.
Also notice that the table includes the numbers required for a 50% Type II error,

an error that should not be tolerated. Here 49, i.e., about 50 participants, in each
group would produce a 50% Type II error.
Thus a sample size of 100 is an approximate estimate of the number of individu-

als needed in each group when the probability of an adverse outcome is substantial
and the investigators hope to be able to reduce it in half with the new treatment
while keeping the size of the Type II error less than 20%.

Table 9.1. Sample size requirement for controlled clinical trialsa

Probability of adverse
outcome in the study groupAdverse outcome in

the control group Type II error 1% 5% 10% 20%

10% 3,696 851 207 72
2% 20% 2,511 652 161 56

50% 1,327 351 90 38

10% 154 619 — 285
10% 20% 120 473 — 218

50% 69 251 — 117

10% 62 112 285 —
20% 20% 49 87 218 —

50% 29 49 117 —

10% 25 33 48 117
40% 20% 20 26 37 90

50% 12 16 22 49

10% 13 16 20 34
60% 20% 11 13 16 27

50% 78 10 16
aAll sample sizes obtained from this table assume a 5% Type I error.
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Now let us contrast this situation with one in which the probability of an adverse
outcome is much lower even without intervention:

An investigator wishes to study the effect of a new treatment on the probability
of neonatal sepsis secondary to delayed presentation of premature rupture of the
membranes. We assume that the probability of neonatal sepsis using standard treat-
ment is 10%, and the study group therapy aims to reduce the probability of neonatal
sepsis to 5%, although it is possible that the new therapy will increase the risk of
death.

Using the chart as before, we located 619, 473, and 251. Thus, we see that 619
individuals are needed for the study group and 619 individuals are needed for the
control group to limit to 10% the probability of making a Type II error as is the aim
for well designed studies. If we were willing to tolerate a 20% Type II error, 473
individuals would be required in each group. Thus approximately 500 individuals
each in the study and the control groups is required to be able to demonstrate
statistical signif cance when the true difference between adverse outcomes in the
larger population is 10% versus 5%.
The neonatal sepsis example is typical of the problems we study in clinical

practice. It demonstrates why large sample sizes are required in most randomized
clinical trials before they are likely to demonstrate statistical signif cance. Thus,
it is not usually feasible to investigate small improvements in therapy using a
randomized clinical trial.
Let us go one step further and seewhat happens to the required sample size when

a randomized clinical trial is performed on a preventive intervention in which the
adverse outcome is uncommon even in the absence of prevention:

Imagine that a new drug for preventing adverse outcomes of pregnancy in women
with hypertension before pregnancy is expected to reduce the probability of adverse
pregnancy outcomes from 2% to 1%, although the new therapy could possibly in-
crease the risk of adverse outcomes.

FromTable 9.1, we can see that at least 2,511 individuals are required in each group
even if the investigator is willing to tolerate a 20% Type II error. These enormous
numbers point out the diff culty in performing randomized clinical trials when one
wishes to apply preventive therapy, especially when the risk of adverse outcomes
is already quite low.8
Evenwhen a randomized clinical trial is feasible, it may not be ethical to perform

one. These trials are not considered ethical if they require individuals to submit to
substantial risks without a realistic expectation of a substantial benef t. In general,
investigations that use a placebo when standard therapy has been shown to have
eff cacy are not considered ethical. A randomized clinical trial may be conducted
using standard therapy in the control group, but this may require an increase in
the sample size. Thus, despite the advantages of randomized trials in def ning the
eff cacy of a therapy, they are not always feasible or ethical.

8 These sample sizes are designed for the primary endpoint,which should be an endpoint expected to
occur relatively frequently and to be biologically important. However, it may not be the most important
endpoint of interest. For instance, in a study of coronary artery disease, a myocardial infarction may be
a primary endpoint. Other endpoints that have even more clinical importance but occur less frequently,
such as disability or death, are often measured as secondary endpoints. In general, primary but not
secondary endpoints are used for calculating sample size.
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In summary, the method component of randomized clinical trial usually hypoth-
esizes the eff cacy of an intervention; it has very specif c inclusion and exclusion
criteria; and its sample size is calculated to provide at least 80% statistical power
to demonstrate statistical signif cance.

Assignment
Participants in a randomized clinical trial are not usually selected at random from
a larger population. Usually, they are volunteers who meet a series of inclusion
and exclusion criteria def ned by the investigators.
To become a participant, an eligible individual must provide what we have

called informed consent. Informed consent is more than a signed legal document.
It requires that potential participants be provided an explanation of the potential
benef ts and known harms as well as the processes that will occur. Participants
must be told that they have the right to withdraw from the study at any time for
any reason. They do not have a right to know their treatment group assignment
while in the study and may not be eligible to receive compensation through the
investigation for adverse side effects of therapy.
Individuals entered into randomized clinical trials are often a relatively homo-

geneous group because they share inclusion and exclusion criteria. They are not
usually representative of all those with the disease or all those for whom the ther-
apy is intended (i.e., the target population). In addition, they often do not have the
type of complicating factors encountered in practice. That is, they usually do not
have multiple disease and multiple simultaneous therapies, and they usually do
not have compromised ability to metabolize drugs as a result of renal or hepatic
disease. Thus, it is important to distinguish between the study population and the
target population.
Randomized clinical trials usually have a table that indicates the characteristics

of thosewhowere included as participants in the investigation. They should also in-
dicate the characteristics of those assessed for eligibility following the CONSORT
format. This table usually provides useful information for better understanding the
characteristics of the study group and the control group and how they may differ
from the target population.
Once an individual becomes a participant in the investigation, they may not im-

mediately undergo randomization. Investigators may follow patients before ran-
domizing them to a study or a control group. They may do this to determine
whether they are likely to take the treatment, return for follow-up, or in other ways
be compliant with the protocol of the investigation. Investigators may use what is
called a run-in period to exclude patients who do not take prescribed medication,
do not return for follow-up, or demonstrate other evidence that they are not likely
to follow the study protocol. Because this is an increasingly frequent procedure,
it is important to recognize that randomized clinical trials often use patients who
are especially likely to adhere to treatment.
The randomization of patients to study and control groups is the hallmark of ran-

domized clinical trials. An important feature of randomization is called allocation
concealment. Allocation concealment implies that those assigning participants to
groups are not aware of which group the next participant will be assigned to until
the moment of assignment. That is, randomization implies unpredictability. The
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process of allocation concealment is intended to preserve unpredictability. This
prevents the person making the assignment from consciously or unconsciously
inf uencing the assignment process. That is, it prevents selection bias.
Randomization implies that any one individual has a predetermined probability

of being assigned to each particular study group and control group. This may
mean an equal probability of being assigned to one study and one control group
or different probabilities of being assigned to each of several study and control
groups. The proportion of the participants intended for each study and control
group is called the allocation ratio.
Randomization is a powerful tool for eliminating selection bias in the assignment

of individuals to study and control groups. In large studies, it greatly reduces the
possibility that the effects of treatment are due to the type of individuals receiving
the study and control therapies. It is important to distinguish between randomiza-
tion, which is an essential part of a randomized clinical trial, and random sampling,
which is not usually a part of a randomized clinical trial. Random sampling im-
plies that the individuals who are selected for a study are selected by chance from a
larger group or population. Thus, random sampling is a method aimed at obtaining
a representative sample, one that, on average, ref ects the characteristics of a larger
group.
Randomization, on the other hand, says nothing about the characteristics of a

larger population from which the individuals in the investigation are obtained. It
refers to the mechanism by which individuals are assigned to study and control
groups once they become participants in the investigation. The following hypothet-
ical study illustrates the difference between random sampling and randomization:

An investigator wishes to assess the eff cacy of a new drug known as Surf-ez. Surf-
ez is designed to help improve surf ng ability. To assess the value of Surf-ez, the
investigator performs a randomized clinical trial among a group of volunteer cham-
pionship surfers in Hawaii. After randomizing half the group to Surf-ez and half
the group to a placebo, the investigators measure the surf ng ability of all surfers
using a standard scoring system. The scorers do not know whether a particular
surfer used Surf-ez or a placebo. Those taking Surf-ez have a statistically signif-
icant and substantial improvement compared with the placebo group. On the ba-
sis of the study results, the authors recommend Surf-ez as a learning aid for all
surfers.

By using randomization, this randomized clinical trial has demonstrated the eff -
cacy of Surf-ez among these championship surfers. Because its study and control
groups were hardly a random sample of surfers, however, we must be very careful
in drawing conclusions or extrapolating about the effects of Surf-ez as a learning
aid for all surfers.9
Randomization does not eliminate the possibility that study and control groups

will differ according to factors that affect prognosis (confounding variables).
Known prognostic factorsmust still bemeasured and are often found to be different
in study and control groups as a result of chance alone, especially in small studies.
If differences between groups exist, these must be taken into account through an

9Care must be taken even in extrapolating to championship surfers because we have not randomly
sampled all championship surfers. This limitation occurs in most randomized clinical trials, which
select their patients from a particular hospital or clinical site.
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adjustment process as part of the analysis.10 Many characteristics affecting prog-
nosis, however, are not known. In larger studies randomization tends to balance the
multitude of characteristics that could possibly affect outcome, even those that are
unknown to the investigator. Without randomization, the investigator would need
to take into account all known and potential differences between groups. Because it
is diff cult, if not impossible, to consider everything, randomization helps balance
the groups, especially for large studies.11
Masking or blinding of study subjects and investigators is a goal of assignment in

a randomized clinical trial. Singlemasking implies that the participants are unaware
of their group assignments; double masking implies that neither the patient nor the
investigator is aware of the group assignment. The impact of not masking occurs
in the assessment process.

Assessment
Assessment in randomized clinical trials, as in other types of investigations, re-
quires us to carefully examine the outcome measures being used. Errors in assess-
ing the outcome or endpoint of a randomized clinical trial may occur when the
patient or the individual making the assessment is aware of which treatment is
being administered. This is especially likely when the outcome or endpoint being
measured is subjective or may be inf uenced by knowledge of the treatment group,
as illustrated in the following hypothetical study:

A randomized clinical trial of a new breast cancer surgery compared the degree of
arm edema and arm strength among patients receiving the new procedure versus the
traditional procedure. The patients were aware of which procedure they underwent.
Arm edema and arm strength were the endpoints assessed by the patients and sur-
geons. The study found that those receiving the new procedure had less arm edema
and more arm strength than those undergoing the traditional mastectomy.

In this study, the fact that the patients and the surgeons who performed the pro-
cedure and assessed the outcome knew which patients received which procedure
may have affected the objectivity of the way strength and edema were measured
and reported. This effect may have been minimized but not totally eliminated if
arm strength and edema were assessed with a standardized scoring system by in-
dividuals who did not know which patients received which therapy. This system
of masked assessment and objective scoring would not entirely remove the impact
of patients and surgeons knowing which surgery was performed. It is still possible
that patients receiving the new procedure worked harder and actually increased

10Many biostatisticians would recommend using a multivariable analysis technique such as re-
gression analysis even when no substantial difference exists between groups. Multivariable analysis
then permits adjustment for interaction. Interaction occurs, for instance, when both groups contain an
identical age and sex distribution, but one group contains predominantly young women and the other
contains predominantly young men. Multivariable analysis then allows one to separate out the inter-
acting effects of age and sex.

11 Randomization as def ned by the CONSORT statement may be divided into simple randomiza-
tion and restricted randomization. Simple randomization implies that each participant has a known
probability of receiving each treatment before one is assigned. Restricted randomization describes any
procedure used to achieve balance between the group either in terms of size or characteristics. Blocking
may be used to ensure that the groups are of approximately the same size. Stratif cation may be used
to ensure balance based on characteristics.
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their strength and reduced their edema. This could occur, for instance, if the sur-
geon performing the new surgery stressed postoperative exercises or providedmore
physical therapy for those receiving the new therapy.
In practice, masking is often impractical or unsuccessful. Randomized clinical

trials without masking are called open or open-label trials. Surgical therapy cannot
easily be masked. The taste or side effects of medications are often a giveaway to
the patient or clinician. The need to titrate a dose to achieve a desired effect often
makes it more diff cult to mask the clinician and in some cases the patient. Strict
adherence to masking helps to ensure the objectivity of the assessment process.
It helps to remove the possibility that differences in compliance, follow-up, and
assessment of outcome will be affected by awareness of the treatment received.
Evenwhen objective assessment, excellent compliance, and complete follow-up

can be ensured, masking is still desirable because it helps control for the placebo
effect. The placebo effect is a powerful biological process that can bring about
a wide variety of objective as well as subjective biological effects. The placebo
effect extends far beyond pain control. A substantial percentage of patients who
believe they are receiving effective therapy obtain objective therapeutic benef ts.
When effective masking is not a part of a randomized clinical trial, it leaves open
the possibility that the observed benef t in the study subject is actually the result
of the placebo therapy.
Thus, when masking is not feasible, doubt about the accuracy of the outcome

measures usually persists. This uncertainty can be reduced but not eliminated by
using objective measures of endpoints, careful monitoring of compliance, and
complete follow-up of patients.
In addition to attempting masking, the investigators are encouraged by the

CONSORT statement to make an effort to determine whether masking was ac-
tually successful. This may be done by simply asking participants which treatment
they believe they received and comparing their response to their actual treatment.
An assessment of outcome requires measures of outcome that are appropriate,

precise and accurate, complete, and unaffected by the process of observation. The
requirements are as important in a randomized clinical trial as in case-control and
cohort studies, as we discussed in Chapter 5.
There are some special consideration that apply to randomized clinical trials.

Investigators often wish to use outcomemeasures or endpoints that occur in a short
period of time rather than waiting for more clinically important but longer-term
outcomes, such as death or blindness. Increasingly, changes in laboratory tests are
substituted for clinical endpoints. We call these surrogate endpoints or surrogate
markers. Surrogate endpoints can be very useful if the test is an early indicator of
subsequent outcome. If that is not the situation, however, the surrogate endpoint can
be an inappropriate measure of outcome, as suggested in the following scenario:

Researchers note that individuals with severe coronary artery disease often have
multiple premature ventricular contractions and experience sudden death, often be-
lieved to be caused by arrhythmias. They note that a new drug may be able to reduce
premature ventricular contractions. Thus, they conduct a randomized clinical trial
that demonstrates the new drug has eff cacy in reducing the frequency of premature
ventricular contraction in patients with severe coronary artery disease. Later evidence
indicates that despite the reduction in arrhythmias, those with severe coronary artery
disease taking the drug have an increased frequency of death compared with similar
untreated patients.
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The investigator has assumed that reducing the frequency of premature ventricular
contraction in the short run is strongly associated with a better outcome in the
longer run. This may not always be the situation, as has been demonstrated with
treatment for premature ventricular contractions in this type of setting. The fact that
treatment seems like a logical method for reducing deaths caused by arrhythmia
mayhave allowed investigators to accept a surrogate endpoint. Theywere assuming
without evidence that reduction in arrhythmia would be strongly associated with
the endpoint of interest, which was death in this case.
An additional problem can occur when individuals are lost to follow-up before

the study is completed. Even moderate loss to follow-up can be disastrous for a
study. Those lost may move to a pleasant climate because of failing health, drop
out because of drug toxicity, or fail to return because of the burdens of complying
with one of the treatment protocols.
Well-conducted studies take elaborate precautions to minimize the loss to

follow-up. In some cases, follow-up may be completed by a telephone or mail
questionnaire. A search of death records should be conducted in an effort to f nd
participants who cannot be located. When outcome data cannot be obtained, re-
sulting in loss to follow-up despite these precautions, it is important to determine,
as much as possible, the initial characteristics of patients subsequently lost to
follow-up. This is done in an attempt to determine whether those lost are likely to
be different from those who remain. If those lost to follow-up have an especially
poor prognosis, little may be gained by analyzing the data regarding only those
who remain, as suggested by the following hypothetical study:

In a study of the effects of a new alcohol treatment program, 100 patients were
randomized to the new program, and 100 patients were randomized to conventional
treatment. The investigators visited the homes of all patients at 9 p.m. on a Saturday
and drew blood from all available patients to measure alcohol levels. Of the new
treatment group, 30 patients were at home, and one-third of these had alcohol in their
blood. Among the conventionally treated patients, 33 were at home, and two-thirds
of these had alcohol in their blood. The results were statistically signif cant, and the
investigators concluded that the new treatment reduced alcohol consumption.

Whenever loss to follow-up occurs, it is important to ask what happened to those
lost participants. In this study, if those lost to follow-up were out drinking, the
results based on those at home would be especially misleading. This is important
even if loss to follow-up occurs equally in the study and control groups.
One method for dealing with loss to follow-up is to assume the worst regarding

the lost participants. For instance, the investigator could assume that the partici-
pants not at home were out drinking. It is then possible to redo the analysis and
compare the outcome in the study and control groups to determine whether the
differences are still statistically signif cant. When the loss to follow-up is great,
this procedure usually indicates no substantial or statistically signif cant difference
between the study and control groups. However, for smaller loss to follow-up, a
statistically signif cant difference may remain. When statistically signif cant dif-
ferences between groups remain after assuming the worst case for those lost to
follow-up, the reader can be quite conf dent that loss to follow-up does not explain
the observed differences.
In an ideal randomized clinical trial, all individuals would be treated according

to the study protocol and monitored over time. Their outcome would be assessed
from their time of entry until the end of the study. In reality, assessment is rarely
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so perfect or complete. Patients often receive treatment that deviates from the
predef nedprotocol. Investigators often label these individuals asprotocol deviants.
Deviating from the protocol, as opposed to loss to follow-up, implies that data on
subsequent outcomes were obtained.

Results
In a randomized clinical trial it is important to consider what to do with the out-
comes from the protocol deviants. Let us see how this might occur by looking at
the following hypothetical study:

In a randomized clinical trial of surgery versus angioplasty for single-vessel coronary
artery disease, 100 patients were randomized to surgery and 100 to angioplasty.
Before receiving angioplasty, 30 of the patients deviated from the protocol and had
surgery. The investigators decided to remove those who deviated from the protocol
from the analysis of results.

It is likely that many of the patients who deviated from the protocol and underwent
surgery were the ones doing poorly. If that is the situation, then eliminating those
who deviated from the protocol from the analysis would leave us with a group of
individuals doing especially well.
Because of the potential bias, it is generally recommended that deviants from

the study protocol remain in the investigation and be subsequently analyzed as if
they had remained in the group to which they were originally randomized. This
is known as analysis according to intention-to-treat. By retaining the protocol
deviants, the study question, however, is changed slightly. The study now asks
whether prescribing the study therapy produced a better outcome than prescribing
the standard therapy recognizing that patients may not actually take prescribed
treatments. This allows the investigator to better address the effectiveness of the
therapy as actually used in clinical practice.
Investigators may perform additional calculations excluding those who devi-

ate from the protocol. These analyses are called as-treated analysis. While these
analyses may be useful, especially if the intention-to-treat analysis is statistically
signif cant, it is not considered proper methodology to use only an as-treated anal-
ysis. Deviations from the protocol are relatively common in randomized clinical
trials because it is considered unethical to prevent deviations when the attending
physician believes that continued adherence is contraindicated by the patient’s
condition or when the patient no longer wishes to follow the recommended proto-
col. Thus, in evaluating a randomized clinical trial, the reader should understand
the degree of protocol adherence and determine how the investigators handled the
data regarding those who deviated from the protocol.
Two other analysis questions face the investigator in a randomized clinical trial:

when to analyze the data and how to analyze the data.
The seemingly simple question of when to analyze the data of a randomized

clinical trial has provoked considerable methodological and ethical controversy.
Themore times one looks at the data, the more likely one is to f nd a point when the
P-value reaches the 0.05 level of statistical signif cance using standard statistical
techniques.
When to analyze is an ethical problem because one would like to establish that

a true difference exists at the earliest possible moment. This is desirable to avoid
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subjecting patients to therapy that has less benef t. In addition, it is desirable that
other patients receive a benef cial therapy at the earliest possible time.
A number of statistical methods called sequential methods have been developed

to attempt to deal with these problems.Whenmultiple times for analysis of data are
planned, these sequential statistical techniques are available to take into account
the multiple analyses.

Life Tables
Another issue that arises in randomized clinical trials is the method for presenting
data. Life tables or longitudinal life tables are the most commonly used method
for presenting data in randomized clinical trials.12
Let us begin by discussing why life tables are often, but not always, necessary in

randomized clinical trials. Then we will discuss the assumptions underlying their
use and demonstrate how they should be interpreted.
In most randomized clinical trials, individuals are entered into the study and

randomized over a period of time as they present for care. In addition, because
of late entry or loss to follow-up, individuals are actually monitored for various
periods of time after entry. Therefore, many of the patients included in a study are
not followed for the full duration of the study.
If all individuals were monitored for the desired length of observation, the

probability of death in a study group or a control group can be calculated simply
as the number of those dead at the end divided by the number of those initially
enrolled in the group. All individuals, however, are not usually monitored for the
same length of time. Life tables provide a method for using the data from those
individuals who have been included in a study for only a portion of the possible
study duration.13 Thus, life tables allow the investigator to use all the data that they
have so painstakingly collected.
The life-table method is built on the important assumption that those who were

in the investigation for shorter periods would have had the same subsequent ex-
perience as those who were actually followed for longer periods of time. In other
words, the short-termers would have the same results as the long-termers if they
were actually followed long term.
This critical assumption may not hold true if the short-termers are individuals

with a better or worse prognosis than the long-termers. This can occur if the entry
requirements for the investigation are relaxed during the course of a study. Let us
see how this might occur by looking at the next hypothetical study:

A new hormonal treatment designed to treat infertility secondary to severe en-
dometriosis was compared with standard therapy in a randomized clinical trial. After
initial diff culty recruiting patients and initial failures to get pregnant among the
study patients, one woman in the study group became pregnant. News of her delivery
became front-page news. Subsequent patients recruited for the study were found to

12 Life-table methods can also be used in cohort studies thus they are often called longitudinal
life-tables. Longitudinal life-tables should be distinguished from cross-school life table that we will
encounter in Chapter 25. In this discussion, the adverse effect under study is referred to as death.
However, life tables can be used for other effects, such as permanent loss of vision or the occurrence
of pregnancy after infertility therapy.

13Variations of this type of life table are known as a Kaplan-Meier or Cutler-Ederer life table. Note
that this type of life table assumes the endpoint can occur only once. Thus, it is not appropriate for
studies of diseases such as strep throat, which may recur.
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have much less severe endometriosis, but the investigators willingly accepted those
patients and combined their data with data from their original group of patients.

As this study demonstrates, the same eligibility criteria may not be maintained
throughout the investigation. It is tempting to relax the inclusion and exclusion
criteria if only severely ill patients are entered into an investigation at the beginning.
As the therapy becomes better known in the community, at a particular institution,
or in the literature, a tendency may occur for clinicians to refer, or patients to
self-refer, the less severely ill.
In this case, the short-term study participants are likely to have less severe

illness and thus have better outcomes than the long-termers. This problem can be
minimized if the investigators clearly def ne and carefully adhere to a protocol that
def nes the type of patients who are eligible for the study on the basis of inclusion
and exclusion criteria related to prognosis.
Loss to follow-up may also result in differences between the short-termers and

the long-termers. This is likely if loss to follow-up occurs preferentially among
those who are not doing well or who have adverse reactions to treatment. We have
already discussed the importance of loss to follow-up and stressed the need to
assess whether those lost are similar to those who remain.
Life-table data are usually presented as a survival plot. This is a graph in which

the percentage survival is plotted on the vertical axis, ranging from 100% at the
top of the axis to 0% at the bottom. Thus, at the beginning of the investigation,
both study and control groups start at the 100% mark at the top of the vertical
axis. Life-table data may represent outcomes other than death, such as recurrence
or blindness.14 The horizontal axis depicts the time of follow-up. Time is counted
for each individual beginning with their entry into the study. Thus, time zero is not
the time in which the investigation began.
Survival plots should also include the number of individuals who have been

monitored for each time interval. These should be presented separately for the
study and the control groups. Thus, a typical life table comparing the 5-year data
on study and control groups might be examined graphically in a survival plot like
Fig. 9.2. The top row of numbers represents the number of study group subjects
monitored through the corresponding length of time since their entry into the study,
and the bottom row represents the same for control group subjects. The survival
plot can be used directly to estimate the percentage death or survival at, for instance,
5 years; this probability of survival is known as the 5-year actuarial survival. For
instance, in Fig. 9.2, the 5-year actuarial survival read directly from the graph is
approximately 60% for the study group and 40% for the control group.
Life tables are often tested for statistical signif cance using the log rank or

Mantel-Haenszel statistical signif cance tests. For these tests, the null hypothesis
states that no difference exists between the overall life table results for the study
and control groups. Notice that the statistical signif cance tests do not address
the question of which treatment achieves better results at 5 years. In performing
these tests, one combines data from each interval in time, using a method called
weighting to take into account the number of individuals being observed during

14Alternatively, a graphic presentation of life tables may display the percentage who experience the
adverse effect and start at the 0% point on the bottom of the vertical axis. When assessing a desirable
outcome, such as pregnancy in an infertility study, a life table may also begin at 0%, indicating no
pregnancies.
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Figure 9.2. A typical study and control group survival plot demonstrating plateau effect,
which typically occurs at the right end of life-table plots.

that time interval. Thus, these methods combine data from different time intervals
to produce an overall statistical signif cance test. The combination of data from
multiple intervals means that the statistical signif cance test asks this question: If
no true difference exists between the overall effects of the study group and control
group treatments, what is the probability of obtaining the observed ormore extreme
results?
In other words, if a statistically signif cant improvement in a study group has

been demonstrated on the basis of life-table data, it is very likely that a similar group
of individuals receiving the therapy will experience at least some improvement
compared with the control group therapy.
As we have seen, life tables can be used directly to obtain estimates of the mag-

nitude of difference in outcome between treatments. Inference can be performed
using a statistical signif cance test that addresses the overall differences. In addition
(as we will discuss in Section VI, Selecting a Statistic) adjustment for potential
confounding variables may be incorporated into the life-table analysis using a
technique known as Cox regression or proportional hazards regression. Thus, life
tables can address all three basic questions of statistics: estimation, inference, and
adjustment.

Interpretation
As we saw in Chapter 2, randomized clinical trials have the potential to demon-
strate all three criteria need to def nitively establish contributory cause or eff cacy.
However, data from life tables are prone to a number of misinterpretations. When
displaying life-table data, it is important to display the number of individuals
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being monitored at each interval of time in the study group and in the control
group. Usually only a small number are monitored for the complete duration
of a study. For instance, in Fig. 9.2 only 10 individuals in the study group and
5 individuals in the control group are monitored for 5 years. This is not surprising
because considerable time is often required to start up a study, and those individ-
uals monitored for the longest time were usually recruited during the f rst year of
the study.
A 5-year probability of survival can be calculated even when only one patient

has been observed for 5 years. Thus, one should not rely too greatly on the specif c
1-year, 5-year, or any other probability of survival observed unless a substantial
number of individuals is actually observed for the full length of the study.
In interpreting randomized clinical trial results, it is important to understand the

limitations in the reliability of the estimates obtained from the life-table. Failure
to recognize this uncertainty can result in the following type of misinterpretation:

A clinician looking at the life-table curves in Fig. 9.2 concluded that 5-year survival
with the study treatment is 60% versus 40% for the control group. After extensive use
of the same treatment on similar patients, he was surprised that the study treatment
actually produced a 55%survival versus a 50%survival among control grouppatients.

If the clinician had recognized that life-table curves do not reliably predict exact
5-year survival, he would not have been surprised about his experience.
Knowledge of the procedures and assumptions underlying life tables also helps

in understanding their interpretation. Many survival plots have a f at or plateau
phase for long time periods at the right-hand end of the plot. These may be misin-
terpreted as indicating a cure once an individual reaches the f at or plateau area of
the survival plot. Actually, this plateau phase usually results because few individu-
als are monitored for the entire duration of the study. Among those few individuals
who are observed for longer periods, the deaths are likely to be fewer and more
widely spaced. Because the survival curve moves lower when an outcome such as
death occur, a plateau is likely when fewer deaths are possible. Thus, an under-
standing of this plateau effect is important in interpreting a life table. We should
not interpret the plateau as demonstrating a cure unless large numbers of patients
have been observed for long periods of time.
In addition to the dangers of relying too heavily on the 5-year probability of

survival derived from life-table data and of misinterpreting the plateau, it is im-
portant to fully appreciate the interpretation of a statistically signif cant difference
between survival plots, as illustrated in the next example:

In the study depicted in Fig. 9.2, a statistically signif cant difference occurred in
outcome between the study and control groups on the basis of the 5-year follow-
up. The study was subsequently extended for 1 more year, resulting in the survival
plot depicted in Fig. 9.3, in which the 6-year actuarial survival was identical in the
study and control groups. On the basis of the 6-year data, the authors stated that the
5-year actuarial study was mistaken in drawing the conclusion that the study therapy
prolonged survival.

Remember that a statistically signif cant difference in survival implies that patients
receiving one treatment do better than patients receiving another treatment when
taking into account each group’s entire experience. Patients in one group may do
better only early in the course, midway through, or at the end. Patients who re-
ceived the better overall treatment may actually do worse early in the treatment
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Figure 9.3. Survival plots may meet after extended periods of follow-up. The difference
between the overall plots may still be statistically signif cant.

because of surgical complications, or at a later point in time as secondary compli-
cations develop among those who survive.
Thus, when conducting a study, it is important to know enough about the natural

history of a disease and the life expectancy of the individuals in the investigation
to choose a meaningful time period for follow-up. Differences in outcomes are
unlikely if the time period is too short, such as one that ends before an extended
period of therapy is completed.
Similarly, follow-up periods that are too longmay not allow the study to demon-

strate statistically signif cant differences if the risks of other diseases overwhelm
the shorter-term benef ts. For instance, a study that assesses only the 20-year out-
come among 65-year-olds given a treatment for coronary artery disease might
show little difference at 20 years even if differences occur at 5 and 10 years.
We have repeatedly emphasized the distinction between a statistically signif cant

association and a cause-and-effect relationship. In randomized clinical trials, we
use the same criteria to establish that a treatment has eff cacy,meaning that it works
for those in the investigation. Eff cacy or a cause-and-effect relationship requires
the existence of an association. Second, it requires a demonstration that the cause
precedes the effect. Third, it requires that altering the cause alters the effect. One of
the practical and intellectually satisfying aspects of randomized clinical trials is that
they incorporate methods for helping to establish all three criteria for contributory
cause and thus can establish the eff cacy of a therapy as follows:

1. The investigators are able to produce study and control groups that are compa-
rable except for the effects of the treatment being given. Thus, when substantial
and statistically signif cant differences in outcome occur, the investigator can
usually conclude that these differences are associated with the treatment itself.

2. By randomizing individuals to study and control groups at the beginning of the
study, the investigators can provide strong evidence that the treatment precedes
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the effect and is, therefore, a prior association, fulf lling the second criterion of
contributory cause.

3. By providing a treatment that alters the disease process and comparing the study
and control groups’ outcomes, the investigators can provide evidence that the
treatment itself (the “cause”) is actually altering the outcome (the “effect”), thus
fulf lling the third and f nal criterion for contributory cause.

Randomized clinical trials, therefore, can help to establish the existence of an
association between treatment and outcome, can establish the existence of a prior
association, and can demonstrate that altering the treatment alters the outcome.
These are the three criteria necessary for establishing that the new treatment is the
cause of the improved outcome. These criteria establish the eff cacy of treatment.
However, even after establishing that a treatment has eff cacy, we need to ask what
it is about the intervention that is working. The eff cacy may not result from the
intervention the investigator intended to study, as suggested in the following study:

A randomized clinical trial of a new postoperative recovery program for posthys-
terectomy care was performed by randomizing 100 postsurgery women to a standard
ward and 100 postsurgery women to a special care ward equipped with experimental
beds and postoperative exercise equipment and staffed by extra nurses. Women on
the special care ward were discharged with an average length of stay of only 7 days
compared with 12 days for women randomized to the regular ward. The results were
statistically signif cant. The investigators concluded that the experimental beds and
a postoperative exercise program resulted in a substantially reduced length of stay.

This investigation established that the intervention had eff cacy: It worked to pro-
duce more rapid recovery and thus to reduce length of stay. However, it is still
not clear what actually worked. Before concluding that the experimental beds and
postoperative exercise made the difference, do not forget that extra nurses were
also provided. The availability of the extra nurses may have been the cause of the
early discharge rather than the beds and exercise. In an unmasked or open study
such as this one, it is possible that the effect of observation itself helped to bring
about the observed effect.
The interpretation of safety data on adverse effects, side effects, or harms is

an important part of randomized clinical trials, along with its emphasis on eff -
cacy. Randomized clinical trials should display the frequency of adverse effects in
both the study and control groups. The number of individuals who experience the
adverse effects in the study and control groups is usually small. Statistical signif-
icance testing is not usually performed because the statistical power is low. That
is, the results would not usually be statistically signif cant even when they have
clinical importance. Failure to appreciate this approach to adverse effects may lead
to the following interpretation problem:

A randomized clinical trial of a hair-growth medication was conducted by randomiz-
ing 100 severely balding men to the newmedicine and 100 severely balding men to a
placebo. Ninety percent of the men randomized to the medication experienced sub-
stantial return of hair versus none in the placebo group. The results were statistically
signif cant. Among the medication group, f ve experienced elevated liver function
tests and one acquired clinical hepatitis. Among the placebo group, three experienced
elevated liver function tests and none acquired clinical hepatitis. The investigators
concluded that the therapy had eff cacy and the increase in adverse effects was due
to chance since it was not statistically signif cant.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-09 Riegelman-1490G Riegelman-v9.cls August 30, 2004 9:18

Ch. 9. Randomized Clinical Trials 85

It is very tempting to dismiss the occurrence of side effects as due to chance,
especially when there is no statistical signif cance testing and the side effect occurs
in both groups.Unfortunately, this is often the situation in randomized clinical trials
because of their limited size. This investigation can only provide a suggestion that
the new medication is associated with liver function abnormalities. The presence
of other causes for liver disease in both study and control groups must be kept
in mind. In conducting this investigation, it would be very important to further
investigate the cause of the elevated liver function tests to rule out other common
causes, such as viral infections. In addition, the response of the liver function
abnormalities to discontinuation of the treatments would provide some help in
determining whether altering the potential cause alters the effect.
Demonstrating cause-and-effect relationships for adverse effects is very diff -

cult. One approach relies on the consequences of starting and stopping treatment
in a single individual. This type of investigation has been called an n-of-1 study.
In an n-of-1 study, each patient serves as his or her own control. The treatment is
administered to one individual who develops a side effect such as a rash, then the
therapy is discontinued and the patient is observed to see whether and when the
presumed side effect resolves. The f nal step is to readminister the treatment to see
whether the side effect occurs again.
This approach incorporates the concepts of association, prior association, and

altering the cause alters the effect to help establish a cause-and-effect relationship.
The potential danger to individual patients has limited the use of this technique.
Data on adverse effects are often limited to establishing the frequency of the side

effect in study and control groups without expecting def nitive data establishing
statistical signif cance or contributory cause. These less def nitive data, however,
cannot be simply dismissed as being due to chance. Because of the small numbers
and the resulting low statistical power, it is often necessary to assume that an
increase in the adverse events is caused by the study treatment. Thus, the approach
to safety and eff cacy is very different.
With randomized clinical trials, as with other types of investigations, questions

of subgroups are often of great interest. In randomized clinical trials, tests of
interaction are often performed that ask whether there is evidence that the effect of
treatment differs from one subgroup to another. When interaction is present, close
examination of the subgroups can provide important information, as illustrated in
the next example.

A randomized clinical trial of a new cancer treatment for Stage III or IV breast cancer
found a modest but statistically signif cant improvement in outcome. A statistical
test for interaction found interaction between the stages and the treatment to be
statistically signif cant. The investigator then examined the data for Stage III and
Stage IV separately and found substantial improvement for those who received the
treatment duringStage III and slightly poorer average outcome for thosewho received
the treatment during Stage IV.

Thus, at times interaction and the close examination of subgroups can add
important clinical information to the interpretation of randomized clinical
trials.15

15Unfortunately, the size of most randomized clinical trial provides only low statistical power for
demonstrating interactions.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-09 Riegelman-1490G Riegelman-v9.cls August 30, 2004 9:18

86 Section I. Studying a Study

Extrapolation
An effort to extrapolate the results of an investigation should begin by reexamining
the characteristics of the study’s population. The strict inclusion and exclusion
criteria established in the protocol to ensure uniformity in a randomized clinical
trial often become a limitation when extrapolating to those not included in the
investigation.
Patients included in many randomized clinical trials are chosen because they

are the type of patients most likely to respond to the treatment. In addition, consid-
erations of time, geography, investigator convenience, and patient compliance are
usually of paramount importance in selecting a particular group of patients for an
investigation. Pregnant patients, the elderly, the very young, and those with mild
disease are usually not included in randomized clinical trials unless the therapy
is specif cally designed for their use. In addition to these inclusion and exclusion
criteria that are under the control of the investigator, other factors may lead to a
unique group of patient who become participants in a randomized clinical trial.
Every medical center population has its own referral patterns, location, and socio-
economic patterns. A patient population referred to the Mayo Clinic may be quite
different from one drawn to a local county hospital. Primary-care health main-
tenance organization (HMO) outpatients may be very different from the hospital
subspecialty clinic outpatients. These characteristics, which may be beyond the
investigator’s control, can affect the types of patients included in a way that may
affect the results of the study.
The fact that the group of patients included in randomized clinical trials is

different from a group of patients whom cliniciansmight treat with the new therapy
often creates diff culty in extrapolating the conclusions to patients seen in clinical
practice. If the individuals in the investigation are not representative of the target
population, extrapolation requires additional assumptions. This does not invalidate
the result of a randomized clinical trial; however, it does mean the clinician must
use care and good judgment when adapting the results to clinical practice.
Thus, despite the power and importance of randomized clinical trials, the pro-

cess of extrapolation is still largely speculative. The reader needs to examine the
nature of the study institutions and the study patients before applying the study
results. Practitioners need to determine whether their own setting and patients are
comparable to those in the study. If they are not, the differences may limit the
ability to extrapolate from the study.
Patients and study centers involved in an investigation may be different from

the usual clinical setting in many ways. For instance:

� Patients in an investigation are likely to be carefully followed up and very com-
pliant. Compliance and close follow-up may be critical to the success of the
therapy.
� Patients in the study may have worse prognoses than the usual patients seen in
clinical practice. For this reason, the side effects of the therapy may be worth
the risk in the study patients, but the same may not be true for patients seen in
another clinical setting.
� The study centers may have special skills, equipment, or experience that maxi-
mize the success of the new therapy. This may not be true when the therapy is
used by clinicians without experience with those techniques.
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Despite a clear demonstration of a successful therapy using a randomized clinical
trial, clinicians must be careful to account for these types of differences in extra-
polating to patients in their own practices. Randomized clinical trials are capable
of establishing the eff cacy of treatment performed on a carefully selected group of
patients treated under the ideal conditions of an experimental study. They must
be used carefully when trying to assess the effectiveness of treatment for clinical
care. Thus, well-motivated and conscientious clinicians providing usual care with
usual facilities probably cannot always match the results obtained in randomized
clinical trials.
Randomized clinical trials, at their best, are capable only of establishing the

benef t of treatment under current conditions. Not infrequently, however, the in-
troduction of a new treatment can itself alter current conditions and produce sec-
ondary or dynamic effects. Randomized clinical trials have a limited ability to
assess the secondary effects of treatment. This is especially true for those effects
that are more likely to occur when the therapy is widely applied in clinical practice.
Consider the following hypothetical study:

A new drug called Herp-Ex was shown to have eff cacy in a randomized clinical trial.
It was shown to reduce the frequency of attacks when used in patients with severe
recurrent herpes genitalis. It did not, however, cure the infection. The investigators
were impressed with the results of the study and advocated use of Herp-Ex for all
individuals with herpes genitalis.

If Herp-Ex is approved for clinical use, several effects may occur that may not have
been expected on the basis of a randomized clinical trial. First, the drug would
most likely be widely used, extending its use beyond the indications in the original
trial. Patients with mild attacks or who present with f rst episodes would most
likely also receive the therapy. This often occurs because once a drug is approved,
clinicians have a right to prescribe it for other indications. The eff cacy shown for
recurrent severe attacks of herpes genitalis may not translate into effectiveness for
uses that extend beyond the original indications. Second, the widespread use of
Herp-Ex may result in strains of herpes that are resistant to the drug. Thus, long-
term eff cacy may not match the short-term results. Finally, the widespread use of
Herp-Ex and short-term success may reduce the sexual precautions taken by those
with recurrent herpes genitalis. Thus, over time the number of cases of herpes
genitalis may actually increase despite, or because of, the short-term eff cacy of
Herp-Ex.
Randomized clinical trials are a fundamental tool for assessing the eff cacy of

therapy. When carefully used, they serve as a basis for extrapolations about the
effectiveness of therapy in clinical practice. Randomized clinical trials, however,
are not specif cally designed to assess the safety of therapy.
Safety of therapy is more diff cult to extrapolate than eff cacy. Patients, in prac-

tice, may be on complicated treatments for multiple diseases or may have reduced
renal or hepatic function, which results in exclusion from the randomized clinical
trial. Thus, side effects may be more common in practice than in the randomized
clinical trial. A special problem exists for rare but serious side effects. The heart
of the problem stems from the large number of individuals who need to receive
the treatment before rare but serious side effects are likely to be observed.
The number of exposures required to ensure a 95% probability of observing at

least one episode of a rare side effect is summarized in the rule of three. According
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to this rule, to achieve a 95% chance of observing at least one case of penicillin
anaphylaxis, which occurs on average about 1 time per 10,000, one needs to treat
30,000 individuals. If the investigator wishes to be 95% certain to observe at least
one case of irreversible aplastic anemia from chloramphenicol, which occurs about
1 time per 50,000 uses, the investigator would need to treat 150,000 patients with
chloramphenicol. In general terms, the rule of three states that to be 95% sure we
will observe at least one case of a rare side effect, we need to treat approximately
three times the number of individuals that is expected to produce one case of a
side effect.16
It is possible to use the rule of three in reverse to draw safety conclusions from a

randomized clinical trial when there is no evidence in the investigation of rare but
serious side effects. Imagine that 3,000 patients have received the new treatment
and there is no evidence of a rare but serious side effect such as anaphylaxis. Then
we can be 95% conf dent that if anaphylaxis occurs, its frequency of occurrence,
on average, is no more than 1 per 1,000 uses. Most randomized clinical trials use
fewer than 3,000 individuals in each group. If only 300 receive the newmedication
and no anaphylaxis is observed, then we can conclude with 95% conf dence that
if anaphylaxis occurs, its frequency of occurrence, on average, is no more than 1
per 100 uses. This may not be a very reassuring conclusion.
These numbers demonstrate that randomized clinical trials cannot be expected to

detectmany rare but important side effects. To dealwith this dilemma,we often rely
on animal testing. High doses of the drug are usually administered to a variety of
animal species on the assumption that toxic, teratogenic, and carcinogenic effects
of the drug will be observed in at least one of the animal species tested. This
approach has been helpful but has not entirely solved the problem.
Long-term consequences of widely applied preventive treatments may be even

morediff cult to detect.Diethylstilbestrol (DES)wasused formanyyears to prevent
spontaneous abortions. It took decades before investigators noted greatly increased
incidence of vaginal carcinomaamong teenagegirlswhosemothers had takenDES.
It is only in clinical practice that a great number of patients are likely to receive

the therapy. Therefore, in clinical practice we are likely to observe these rare
but serious side effects. Alert clinicians and clinical investigators have been the
mainstay of our current postmarketing surveillance. We currently do not have a
fully developed systematic approach for detecting rare but serious side effects
once a drug is released for clinical use. The FDA still relies heavily on the reports
received from clinicians through what is called a spontaneous reporting system.
Thus, clinicians must remember that FDA approval should not be equated with
complete safety or even with clearly def ned and well-understood risks.
Randomized clinical trials are central to our current system for evaluating the

eff cacy of drugs and procedures. They represent a major advance. However, as
practitioners reading the health literature, we must understand their strengths and
limitations.Wemust be prepared to drawour ownconclusions about the application
of the results to our ownpatients, institution, or community.Wemust also recognize
that randomized clinical trials can provide only limited data on the safety and
effectiveness of the therapy being investigated.

16 These numbers assume there is no spontaneous or background incidence of these side effects. If
these diseases occur from other causes, the numbers needed are even greater.
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10 Database Research: Retrospective
Cohort Studies

The immense growth in computer capacity and the rapid acceleration of data col-
lection in the health care system in recent years have expanded potential approaches
to health research. Long-term databases collected for research or other purposes
such as billing are potentially available for research. In addition, it is now possible
for investigators to use databases collected for the primary purpose of ongoing
clinical care.1
Data that are collected as long-term research databases or collected in the course

of health care can be used to conduct case-control studies.2 More often they are
used to conduct cohort studies. The type of cohort study done on an existing
database is called a retrospective cohort study or a nonconcurrent cohort study.
Sometimes, this type of research is called outcomes research since it is often used
to evaluate the effectiveness as well as the safety of interventions.
Remember that a cohort study is define by the fact that study and control groups

are identifie or observed before determining the investigation’s outcome. Thus,
at the time the investigators determine the assignment to study and control groups,
they are not aware of the individual’s endpoint or outcome.
In preceding chapters, we discussed cohort studies in which individuals are ob-

served over time to determine their outcomes. We call this a concurrent cohort
study or prospective cohort study because individuals are monitored concurrently
or prospectively over time. In concurrent or prospective cohort studies, the treat-
ment an individual received, or their observed assignment, is ideally identifie at
the time they firs receive the treatment. For example, we might observe one group
of patients who underwent surgery, the study group, and another group of patients
who received medical treatment, the control group, in 2000. Then the study and
the control groups would be observed over time to determine their outcome. The
surgical and the medical patients might be monitored to assess their outcome from
immediately after they were identifie in 2000 until 2005.
With the availability of computerized databases on patients recorded during

the course of their health care, it is possible to conduct a second type of cohort
study, the nonconcurrent or retrospective cohort study. In this type of cohort study,
it is not necessary to identify the treatment individuals received at one point in
time and then to monitor them over time to determine the outcomes. In retro-
spective cohort studies, the information on treatment that an individual received
in 2000 can be obtained from a database in 2005. By the time an investigation is

1HIPAA regulations have restricted the use of data that can be traced back to the individual, which
has made it more difficul to use data that was not developed for research purposes.

2 Case-control studies in which the cases and controls are identifie from a database created for
a cohort study or a randomized clinical trial are often called a nested case-control study. When the
database used is representative of a population, the case-control study is called A population-based
case-control study.

89
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Study and control groups identified;
follow-up begun

Assessment
of outcome

20052000

Figure 10.1. Time sequence of a concurrent or prospective cohort study.

begun in 2005, for instance, the assessment of outcome is already recorded in the
computer database. To conduct a retrospective cohort study, the investigators could
proceed as follows:

In February 2005, investigators begin a study. The investigators search the database
for all patients who underwent surgery and for all patients who received medical
treatment for recurrent otitis media in 2000. Those who underwent surgery become
the study group and those who received medication become the control group. After
performing this observed assignment, the investigators search the database to deter-
mine the outcomes that occurred from the time of the assignment to study and control
groups through January 2005.

A retrospective cohort study is still a cohort study because the study and control
groups are assigned before the investigators become aware of the individuals’
outcomes. It is not legitimate for the investigators to search the database for the
outcomes until they have completed the assignment process, even though these
outcomes have already occurred by the time the investigation is begun in February
2005.
Figures 10.1 and 10.2 demonstrate the conduct of concurrent (prospective) and

nonconcurrent (retrospective) cohort studies. Both types of studies may be used
to investigate either the cause of disease or the benef ts and harms of therapy.
Increasingly, retrospective cohort studies are being used to study the outcome
of therapies, their effectiveness and safety. When the data comes from actual
clinical practice, it can often complement the information that can be obtained
from randomized clinical trials. That is, information from randomized clinical
trials and information based on collection of data in the course of clinical practice
can be used together to provide a fuller picture than can be obtained from either
one alone.
Thus are a variety of potential uses of database research, including:

� Investigating potential improvements in outcomes that are expected to be too
small to warrant a randomized clinical trial.
� Providing evidence for “altering the cause alters the effect,” the third criteria of
contributory cause, when randomized clinical trials are not ethical or practical.

2000 2005

Study and control groups identified
by characteristics from 2000;
outcome assessed in 2005

Figure 10.2. Time sequence of a nonconcurrent or retrospective cohort study.
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� Investigating the impact of a therapy in a practice setting to establish effectiveness
after eff cacy has been established by randomized clinical trials.
� Investigating issues of safety after a new therapy has been approved for clinical
use based on short term and/or relative small randomized clinical trials.

In this chapter, we will discuss costs, resource use, and other administrative issues
that cannot be adequately addressed in randomized clinical trials. We will use the
M.A.A.R.I.E. framework to examine retrospective cohort studies. We will look at
how the information they provide is often different from and often complements
the information obtained from randomized clinical trials. We will also examine
the limitation of these types of investigations.

Method
The study’s population chosen for retrospective cohort studies differ from ran-
domized clinical trials in two important respects. First, randomized clinical trials
are designed to include a homogeneous group of individuals who meet clearly de-
f ned inclusion and exclusion criteria. The study and control groups often are not
designed to ref ect the target population. That is, patients in a randomized clinical
trial are not generally selected to ref ect the entire spectrum of patients who would
receive the treatment if applied in clinical practice.
Retrospective cohort studies that are conducted on the basis of data fromongoing

clinical care are quite different from randomized clinical trials. By def nition, they
include those individuals who have received the treatment in clinical practice.
Thus, everything else being equal, the result of a retrospective cohort study is a
better ref ection of the result that we could expect for patients in clinical practice.
Thus retrospective cohort studies can often produce important information on the
effectiveness and safety of the treatment as actually used in practice. Failure to
appreciate this distinction can lead to the following type of error:

A randomized clinical trial of nasal polyp surgery for individuals with recurrent
sinusitis, aspirin allergy, and asthma demonstrated the eff cacy of surgery. A retro-
spective cohort study using a database fromongoing clinical carewas also conducted.
It identif ed all patients who had undergone the same type of nasal polyp surgery and
a comparable control group who had not undergone the surgery. The retrospective
cohort study did not demonstrate effectiveness. Reviewers of these studies relied
on the randomized clinical trial exclusively because of its inherently superior study
design.

The randomized clinical trial and the retrospective cohort study address differ-
ent questions and investigate different populations. Randomized clinical trials are
the gold standard for determining eff cacy for a specif c indication. Eff cacy for
one clear-cut, narrowly def ned indication for treatment such as the patient with
recurrent sinusitis, aspirin allergy, and asthma may tell us very little about the out-
comes the therapy produces when applied to a broader target population in clinical
practice. The outcomes of a therapy for a target population in clinical practice
def nes its effectiveness. Eff cacy is def ned by the results of a randomized clinical
trial.
Thus, the results of a retrospective cohort study, everything else being equal,

may add to or complement the result of a randomized clinical trial by providing
information on effectiveness in clinical practice.
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Databases from clinical practice can be especially useful for investigating safety
issues. As we have seen, patients in randomized clinical trials are often carefully
chosen because they have only one or a limited number of diseases and are taking
few, if any,medications other than the treatment being investigated.Once approved,
these same treatments are often prescribed to patients with multiple diseases who
are taking multiple medications. Thus data from clinical practice can be more
dependable in detecting side effects due to interactions between treatments and
between the treatment and other diseases. The ability of database research to detect
these types of adverse effects is illustrated in the next example.

A randomized clinical trial of a new medication for treatment of type 2 diabetes was
used on newly diagnoses type 2 diabetics without other disease and who were not
taking other medication. The treatment was very successful and no severe side effects
were found. When approved and used in practice, the treatment was found to worsen
kidney function among diabetics who were also being treated for hypertension with
a wide range of antihypertensive medications.

The interaction between medications can easily be missed in randomized clinical
trials when patients are only taking one medication for one disease. This type of
side effects can often be detected using databases that more fully ref ect clinical
experience with the medication.
In addition to the advantages of investigating a study population of patients

derived from clinical practice, retrospective cohort studies may include data on
a much larger number of patients than randomized clinical trials. The number
of patients included in randomized clinical trials is limited by time, money, and
availability of patients. The sample sizes chosen, in fact, are often designed to be
the smallest number that will provide acceptable statistical power (i.e., the largest
acceptable Type II error, usually 10% to 20%) in addressing eff cacy using what is
called the primary endpoint. As discussed in the preceding chapter on randomized
clinical trials, these numbers usually vary from less than 100 in both the study
group and the control group to several thousand in each group.
The sample size in retrospective cohort studies is limited mainly by the avail-

ability of patient data in the database. Thousands or even millions of patients may
be included. Thus, the potential sample size for retrospective cohort studies may
dwarf that of randomized clinical trials. This difference in sample sizes may have
important implications, as illustrated in the next example:

A randomized clinical trial was conducted comparing removal of colon polyps versus
observation. The study and control groups each included 500 patients. The investiga-
tion demonstrated a small but not statistically signif cant reduction in the subsequent
rate of colon cancer. A retrospective cohort study using 10,000 patients who had
polyp removal and 10,000 patients who underwent observation demonstrates a small
difference in the subsequent rate of colon cancer, but the P-value was 0.00001 and
the conf dence limits were very narrow.

This type of discrepancy between the results of a randomized clinical trial and those
of a retrospective cohort study is expected. If the retrospective cohort study is able
to avoid the biases to which it is susceptible, we would expect the retrospective
cohort study to have a far greater statistical power. That is, it would have a much
greater chance of demonstrating statistical signif cance if a true difference exists
in the population being sampled.
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The advantages of large numbers are not limited to questions of effectiveness.
Large numbers also allow us to address questions of safety, especially issues of rare
but serious side effects. As we saw in our look at randomized clinical trials, the rule
of three indicates that when a rare but serious side effect occurs on average once in
10,000 uses, we need to observe 30,000 exposures before we can be 95% certain
that we will see at least one episode of the side effect. Numbers of this magnitude
are rarely available in randomized clinical trials, but they may be available through
database research. Thus, for small but real differences, everything else being equal,
retrospective cohort studies often have amuch greater probability of demonstrating
statistical signif cance.

Assignment
When discussing retrospective cohort studies and comparing them with random-
ized clinical trials, we have repeatedly used the phrase “everything else being
equal.” “Everything else” is not usually equal when we compare these two types
of studies because retrospective cohort studies are susceptible to a variety of po-
tential biases. These potential biases are most dramatic in the area of assignment.
Randomized clinical trials by def nition use randomization for their assignment

process. The process of randomization is the hallmark of a randomized clinical
trial. Remember that the process of randomization is designed to take into account
not only the factors that are known to affect outcome but also those factors that
have an effect on outcome we do not anticipate.
In retrospective cohort studies, assignment of patients to study and control

groups is based on clinicians’ treatment of patients. Clinicians try to tailor the
treatment to the patient. When clinicians are successful in tailoring treatment to
individuals, selection biases are created. Selection bias occurs, for instance, when
clinicians assign patients with different prognoses to different treatments. In fact,
we can regard the job of clinical care as one of creating biases by tailoring the
treatment to the patient. The job of the clinician, then, is to create selection biases,
and the job of the researcher is to untangle these selection biases. Selection bias
created in database research has been called case-mix bias. Let us see how this
type of confounding variable may inf uence the results:

A randomized clinical trial of a smoking-cessation drug demonstrated a small, sta-
tistically signif cant reduction in smoking among those randomized to the drug. A
large, retrospective cohort study identif ed those prescribed the drug and compared
success in quitting among smokers who were prescribed the drug versus smokers
who were not prescribed the drug. The investigation demonstrated a much larger
reduction in smoking among those prescribed the drug.

The patients prescribed the drug in the retrospective cohort study may have been
thosewhowere especiallymotivated to stop smoking. Cliniciansmay have tailored
their treatment by perhaps giving more intensive treatment to the patients they
thought would benef t the most. This is a natural and often desirable tendency
in clinical care. However, from the researcher’s perspective, selecting motivated
patients to receive the treatment results in the type of confounding variable we have
called selection bias. This is the situation, since those who receive the treatment
are the same individuals who are especially likely to quit smoking.
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Recognizing the confounding variables created by the process of clinical care is
important so these confounding variable can be taken into account in the analysis.3
Randomized clinical trials are often precluded by ethical issues and practical

issues. Once it is suspected that a treatment benef ts patients, clinicians and patients
will often be unwilling to randomize patients to receive or not to receive the
treatment. Thus, a retrospective cohort studymay be the best available study design
even when a randomized clinical trial would, in theory, be preferable.
In addition to randomized assignment, an ideal randomized clinical trial is also

double-masked. That is, neither the patient nor the investigator is aware of the
treatment being received. However, as we saw in Chapter 9, double-masked stud-
ies are often either unethical, impractical, or unsuccessful. Patient masking is
not possible in a retrospective cohort study of a database from ongoing clinical
care. In addition, the clinician who prescribes the treatment is not masked. Thus,
for both randomized clinical trials and retrospective studies, we often need to
ask what the implications are of a lack of masking. To do this, we usually need
to examine how the method of assignment affects the results of the assessment
process.

Assessment
The process of follow-up and assessment in well-conducted randomized clinical
trials and retrospective cohort studies is very different. In a randomized clinical
trial, patients in the study group and the control group are followed up at predeter-
mined intervals, which are the same for the two groups. The same data are collected
on individuals in each group at the predetermined follow-up intervals. The goal
of randomized clinical trials is to investigate eff cacy. The length of follow-up is
usually determined by the minimum length of time needed to establish eff cacy.
Thus randomized clinical trials are often short-term trials designed to establish
short-term eff cacy. Longer-term eff cacy may not be well studied in randomized
clinical trials. In addition, side effects that take longer periods to develop may be
missed entirely by randomized clinical trials but detected by retrospective cohort
studies, as illustrated in the next example.

The new diabetic medication was tested for six months to determine whether it
could reduce and maintain a reduction in hyperglycemia. The drug was found to
have eff cacy and to satisfy the safety requirements for approval. When used in
practice, however, it was found that despite its continued eff cacy, after 6 months it
was associated with a frequency of severe liver disease far above that expected on
the basis of the 6-month study.

As illustrated in this example, retrospective cohort studies may help to extend the
results of randomized clinical trials over longer periods of time and may help to
detect longer-term safety problems that randomized clinical trials are not capable
of identifying.
The process of follow-up and assessment in a retrospective cohort study is very

different because it occurs as part of the course of health care. Data are collected
if and when the patient returns for care. This return visit may be initiated by
the clinician or the patient. Thus, the frequency of data collection, the type of

3Unfortunately, databases obtained from clinical care may lack the data needed to measure some
important variables that should ideally be taken into account in the analysis.
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data, and even the accuracy of the data collected are likely to be quite different
in randomized clinical trials and retrospective cohort studies. These differences in
follow-up may actually make it more diff cult to detect certain types of side effects
of treatment, as illustrated in the next example:

A randomized clinical trial comparing surgery versus medication for benign prostate
hypertrophy found that surgery produces far more retrograde ejaculation and im-
potence than medication. A retrospective cohort study using records from ongoing
medical care found no difference in these adverse effects, as recorded in the patients’
charts.

Unless patients are specif cally asked or tested for these side effects, they may not
recognize them or report them to clinicians. Thus, in retrospective cohort studies,
the type of outcome measure that can be reliably used may be much more limited
than in a randomized clinical trial, in which these side effects can be assessed in
the same way for each group at the same time intervals.

Results
In randomized clinical trials, as we saw in Chapter 9 analysis is conducted us-
ing the principle of intention-to-treat. Thus, individuals are analyzed according to
their assignment group even if they deviated from the protocol and never actually
received the treatment. Remember that this is done so individuals with good prog-
nosis are not disproportionately represented among those who are left after many
participants with a poorer prognosis drop out of the study.
It is possible to aim for a comparable technique in retrospective cohort studies

by making the assignment to groups, on the basis of the prescribed treatment and
analyzing patients in their original groups including those who do not continue on
the treatment. However, this may not be successful in database research because
the only patients who appear in the database may be those who actually take the
treatment and obtain follow-up, as illustrated in the next example:

Radiation therapy for a specif c type of metastatic brain cancer was studied using
a retrospective cohort study. Radiation required premedication and could be started
only after a month of pretreatment. The database recorded only patients who received
the treatment and those who did not. Among those receiving the radiation therapy,
survival was two months longer on average. The results were statistically signif cant.
The investigators concluded that the retrospective cohort study had demonstrated the
short-term effectiveness of radiation therapy.

The fact that the radiation therapy could not be undertaken for at least a month after
it was prescribed may mean that those with the worst prognosis had already died
or become too ill to receive the radiation therapy. Thus, the retrospective cohort
study may have examined a study group with a better prognosis than the control
group, indicating the groups may not actually have been analyzed using a method
analogous to the intention-to-treat method.
In randomized clinical trials, adjustment is used as a way to account for the

known prognostic factors that, despite randomization, differ between the study
and control groups. Randomization itself often results in known prognostic factors
being similar in the study and control groups. In addition, randomization has the
aim to produce similarity even for unknown prognostic factors. Adjustment is still
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used in a randomized clinical trial; however, its role is only to take into account
the differences that occur despite randomization.
In a retrospective cohort study, adjustment has a much larger role. It attempts to

recognize and take into account all the differences between the study and control
groups that may affect the outcome beingmeasured. Adequate adjustment requires
recognizing all potential confounding variables and taking them into account in the
adjustment process, even though differences between groups are not substantial or
statistically signif cant.4

Interpretation
As a type of cohort study, retrospective cohort studies are best designed to demon-
strate that the treatment is associated with an improved outcome and that the
treatment precedes the outcome. Even when this is successful, however, we are
often left with some doubt as to the third criterion of contributory cause, or eff cacy,
of therapy: altering the “cause” alters the “effect.”
A special type of retrospective cohort study, however, may help to establish

that altering the cause alters the effect. This type of investigation recognizes that
a change has occurred in one group over a period of time but not in another
comparable group. The probability of a particular outcome before and after the
change in each group is then calculated to determine whether the outcome was
altered in the group that experienced the change. This type of investigation has
been called a natural experiment since we are observing changes that occur in the
natural course of events, not due to an investigator’s intervention. Let us see how
a natural experiment may enable us to draw the conclusion that altering the cause
alters the effect:

Cigarettes were smoked with nearly equal frequency among male physicians and
attorneys in the 1960s, and they had a similar probability of developing lung cancer.
During the 1970s, a large proportion of male physicians quit smoking cigarettes,
whereas a smaller proportion of male attorneys quit smoking cigarettes. The investi-
gators observed that both male physicians and male attorneys who stopped smoking
had a reduction in their probability of developing lung cancer and that the probability
of developing lung cancer among male physicians in subsequent years was far lower
than among male attorneys.

A randomized clinical trial of cigarette smoking would have been the ideal method
for establishing that altering the cause alters the effect. This type of natural exper-
iment is the next best method. It is often, as in this situation, the only ethical and
feasible method for establishing this cause-and-effect relationship.
After analysis of the results and interpretation are completed using all the in-

dividuals included in either a randomized clinical trial or a retrospective cohort
study, the investigators are often interested in examining the meaning of the re-
sults for special groups included in the study. This process is referred to as sub-
group analysis.5 The large numbers of patients included in a retrospective cohort
study may allow the investigators to subdivide the study group and control group
into smaller subgroups and examine the therapy’s effectiveness for these groups.

4Adjustment may also aim to consider the interactions that occur between confounding variables.
5 Subgroup analysis, in general, should only be conducted after obtaining statistically signif cant

results using all the data. In addition it should only be conducted to examine relationships hypothesized
prior to collecting the data.
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Because of the larger numbers, the data from the retrospective cohort studies’ sub-
groups may be more reliable than those from subgroups derived from randomized
clinical trials. This may have important implications, as illustrated in the next
example:

A randomized clinical trial of one-vessel coronary artery disease demonstrated that
angiography had greater eff cacy, on average, than drug treatment. Subgroup analysis
performed by creating groups that differed in their extent of myocardium served by
the vessel, age of the patients, and gender of the patient was not able to demonstrate
statistically signif cant differences between these groups. A large retrospective cohort
study demonstrated overall effectiveness of angiography, but also demonstrated that
this effectiveness was limited to younger men and to patients with a lesion supplying
a large area of myocardium.

This type of result illustrates the principle that the larger number of patients who
may be available in a retrospective cohort study enables the study to better address
issues among subgroups than even most well-designed, randomized clinical trials.
This use of randomized clinical trials and retrospective cohort studies demonstrates
the potential to use the results of one type of study to supplement the results of the
other.

Extrapolation
Extrapolation of the results of a randomized clinical trial always requires making
assumptions about the population that will receive the treatment (i.e., the target
population). Remember that randomized clinical trials are usually conducted using
homogeneous patients. That is, they often exclude patient who are not on multiple
treatments, who do not have liver or kidney disease complicating their manage-
ment, and who often do not have other diseases. In addition, special precautions
may be used in randomized clinical trials to exclude patients who have special
characteristics, such as those who are not likely to follow up or who are likely
to become pregnant. Thus, the patients included in randomized clinical trials are
often quite different from those included in retrospective cohort studies. Therefore,
the results of a randomized clinical trial and those of a retrospective cohort study
may look very different, even when the new therapy is administered using the same
implementation procedures, as illustrated in the next example:

A randomized clinical trial of a new method of home dialysis for newly diagnosed
renal failure patients demonstrated substantial improvement in outcome compared
with outpatient hemodialysis. The new dialysis method was then made available
using the same implementation procedures to all dialysis patients throughout the
country in two stages. During the f rst stage, all those using the new technique were
compared with all those using standard outpatient hemodialysis in a retrospective
cohort study. The investigators found no difference in outcome between the new
home dialysis method and standard outpatient hemodialysis.

A randomized clinical trial on a small homogeneous group of new dialysis pa-
tients may show very different results compared with a retrospective cohort study
involving a larger number of more heterogeneous patients. For instance, patients
who are accustomed to outpatient hemodialysis may have diff culty switching to
the new treatment. Patients with more complications or long-standing outpatient
hemodialysis may not do as well on the new therapy.
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Thus, we cannot necessarily expect that the results of a randomized clinical
trial and those of a retrospective cohort study will be the same even when both
are well designed and the therapy is administered using the same implementation
procedures. It is still likely that for carefully selected patients, like those in the ran-
domized clinical trial, the new method of home dialysis is better than the standard
therapy.
As we discussed, randomized clinical trials are limited to assessing outcomes or

endpoints at one point in time. They actually represent a snapshot view of the ther-
apy’s effects. After they are introduced into practice, dynamic effects may occur
that may alter the longer-term effectiveness of the therapy. Resistance may occur;
the treatment may be used for new indications, producing more or less effective-
ness; or patient behavior may change, altering the effectiveness of treatment.
Retrospective cohort studies may be more successful in detecting these changes

in effectiveness that occur over time.The large number of patients in a databasemay
allow the investigator to compare the outcomes that occurred when the treatment
was prescribed in different years. Alternatively, the degree of effectiveness can be
followed over extended periods, and an assessment can be made of the persistence
of a benef t. This advantage of retrospective cohort studies is illustrated in the next
example:

A new high-energy treatment for kidney stones has been demonstrated in a random-
ized clinical trial to have eff cacy in the treatment of obstruction of a ureter compared
with surgery when patients are observed for 3 years. A retrospective cohort study
was performed on obstruction of a ureter caused by kidney stones treated with the
new technique and followed for up to 10 years. The results demonstrated less eff cacy
for the new treatment compared with surgery. Those undergoing surgery actually did
better after 3 years.

These two results may both be true. They may complement each other. This could
be the case if the new treatment increases the rate of recurrence of kidney stones.
The relatively short-term follow-up that is usually possible in randomized clinical
trials leaves an important role for retrospective cohort studies using databases
obtained from ongoing clinical care in the longer-term assessment of safety and
eff cacy.
Remember that randomized clinical trials are the gold standard for assessing

eff cacy, but they have severe limitations when assessing effectiveness for the
target population, when assessing the occurrence of rare but serious side effects,
and when examining the longer-term results of the treatment. Retrospective cohort
studies can complement randomized clinical trials and compensate for some or all
of these def ciencies.
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Thus far, we have examined the three basic types of investigation in the health
research literature which are designed to compare study and control groups: case-
control studies, cohort studies, and randomized clinical trials. Each study type
can be used to address the same relationship such as the relationship between
strokes and birth control pills that we illustrated in Chapter 2. These investigations
often provide consistent results. At times, however, studies published in the health
research literature seem to conflic with one another, making it difficul to provide
definit ve answers to important study questions.
It is often desirable to be able to combine data obtained in a variety of investi-

gations and to use all the information to address a study question. Meta-analysis
is a collection of methods for combining information from different investigations
in order to reach conclusions or address questions that were not possible on the
basis of a single investigation.
Meta-analysis aims to produce its conclusion by combining data from two or

more existing investigations. Traditionally, this process of research synthesis has
been the review article’s role. In recent years, it has been increasingly recognized
that the informal and subjective process of literature review has not always pro-
duced accurate conclusions. Let us examine one extreme example indicating why
this might occur.

Assume that we are interested in examining a recent innovation in the treatment of
coronary artery disease known as transthoracic laser coronaryplasty (TLC). TLC is
designed to treat coronary artery disease through the chestwall without using invasive
techniques. The firs two studies of TLC produced the following results:

Study 1

Die Live Total

TLC 230 50 280
Control 530 210 740

Relative risk = 230/280
530/740

= 0.821
0.716

= 1.15

Odds ratio = 230/50
530/210

= 4.60
2.52

= 1.83

Risk difference = 0.716− 0.821 = −0.105

Number needed to treat = 1
0.716− 0.821

= −9.5

99
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Study 2

Die Live Total

TLC 190 405 595
Control 50 210 260

Relative risk = 190/595
50/260

= 0.319
0.192

= 1.66

Odds ratio = 190/405
50/210

= 0.469
0.238

= 1.97

Risk difference = 0.192− 0.319 = −0.127

Number needed to treat = 1
0.192− 0.319

= −7.9

Investigators were discouraged and feared that this new procedure would not have a
bright future. Before relegating this technique to history, however, they decided to
combine the results of the two studies and see what happened. Combining the data
from the two studies produced the results shown below.

Notice that the differences in outcomes now favor TLC as measured by the odds
ratio, the relative risk, or the number needed to treat almost as strongly as the single
studies argued against the eff cacy of TLC. Thus, combining studies may produce
some surprising results.1
This process set into motion a widespread effort to evaluate the use of TLC

in a variety of settings and for a variety of indications worldwide. Most studies
focused on single-vessel coronary artery disease as assessed by new noninvasive
procedures. Over the next several years, dozens of studies resulted in apparently
conf icting results. Thus, it was considered important to conduct a full-scale meta-
analysis evaluating the effects of TLC on single-vessel coronary artery disease.

Combined Studies 1 and 2

Die Live Total

TLC 420 455 875

Control 580 420 1,000

Relative risk = 420/875
580/420

= 0.480
0.580

= 8.827

Odds ratio = 420/875
580/420

= 0.923
1.381

= 0.668

Risk difference = 0.580− 0.480 = −0.10
Number needed to treat = 1

0.580− 0.480
= 10

1This is known as Simpson’s Paradox. It is a very unusual situation illustrated here because of its
dramatic impact. Its occurence requires large differences between the numbers of study and control
group participants in the two studies.
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Method
The process of combining information using meta-analysis can be best understood
if we regard each of the studies included in the analysis as parallel to one study
site in amultiple-site investigation. In amultiple-site investigation, the investigator
combines the data from multiple sites to draw conclusions or interpretations. In
meta-analysis, the investigator combines information frommultiple studies to draw
conclusions or interpretations. This parallel structure allows us to learn aboutmeta-
analysis using the M.A.A.R.I.E. framework.

As with our other uses of the M.A.A.R.I.E. framework, we start by def ning the
study question or study hypothesis. Meta-analysis can be used to accomplish a
variety of purposes. It may begin by def ning a hypothesis related to the specif c
purpose for conducting the meta-analysis. Meta-analysis might be used to accom-
plish any of the following purposes:
� Establish statistical signif cance when studies are conf icting
� Establish the best possible estimate of the magnitude of the effect
� Evaluate harms or safety when small numbers of side effects are observed in
studies
� Examine subgroups when the numbers in individual studies are not large enough

As with our other types of investigations, the investigators ideally begin with a
study hypothesis and proceed to test that hypothesis and draw inferences. When
they do this for a therapy, for instance, they may hypothesize that the treatment
has been shown to have eff cacy.
The studies that should be included in a meta-analysis depend on the purpose of

the analysis. Thus, the study hypothesis of themeta-analysis helps to determine the
inclusion and exclusion criteria that should be used in identifying relevant studies.
The following example shows how the hypothesis can help to determine which
studies to include:

In preparation for a meta-analysis, researchers searched the world’s literature and
obtained the following 25 studies of TLC for single-vessel coronary artery disease.
These investigations had characteristics which allowed them to be grouped into the
following types of studies:

A. Five studies of men with single-vessel disease treated initially with coronary
bypass surgery versus medication versus TLC

B. Five studies of men and women treated initially with TLC versus bypass surgery
C. Five studies of men and women treated initially with TLC versus medication
D. Five studies of men treated with TLC versus medication after previous bypass

surgery
E. Five studies of women treated with repeat TLC versus medication after previous

TLC

If the meta-analysis is designed to test a hypothesis, then the studies to be included
are chosen because they address issues relevant to the hypothesis. For instance, if
the investigator wanted to test the hypothesis that men do better than women when
TLC is used to treat single-vessel coronary artery disease, then studies B and C
should be used in the meta-analysis. These investigations include comparisons of
the outcomes in both men and women.
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If the investigators were interested in testing the hypothesis that initial TLC is
better than surgery for single-vessel coronary artery disease, then studies A and
B should be used in the meta-analysis because these studies compare TLC versus
surgery as the initial therapy. Alternatively, if the researcher hypothesized that
medication was the best treatment for single-vessel coronary artery disease, then
studies A, C, D, and E would be used. In general, the studies that are used are
determined by purpose of the investigation as def ned by the study hypothesis of
the meta-analysis.
Despite the many similarities between meta-analysis and a multi-site investiga-

tion, there is one important difference. In original research, in theory the investi-
gator may def ne the study question, then f nd settings and study participants that
are suited to addressing the question, and determine the desired sample size. In
meta-analysis, the questions we may ask are often limited by the availability of
previous studies. Thus, the study population and the sample size are largely outside
the investigator’s control.
To try to circumvent this problem, meta-analysis researchers often def ne a

question or issue broadly and begin by identifying all investigations related to that
issue. When this is done, the investigators are conducting an exploratory meta-
analysis as opposed to a hypothesis-driven meta-analysis.
In conducting an exploratory meta-analysis of TLC, for instance, the investiga-

tor might initially include all 25 studies just mentioned. Thus, the meta-analysis
researcher would def ne the study group as consisting of those who received
TLC, and the control group would consist of all the individuals receiving other
therapy.
This process of using all available studies without a specif c hypothesis is par-

allel to the process of conducting a conventional investigation without def ning
a study hypothesis. This type of exploratory meta-analysis can be useful, but
must be conducted carefully and interpreted differently from hypothesis-driven
meta-analysis. Despite the potential dangers of combining studies with very dif-
ferent characteristics, the limited number of available studies makes it impor-
tant for meta-analysis to include techniques for combining very different types of
studies.
Meta-analysis attempts to turn the diversity of studies into an advantage. Com-

bining studies with different characteristics may allow us to harness the benef t
of diversity. By including apples and oranges, we can ask whether it makes a
difference if a fruit is an apple or an orange, or whether it is enough that it is a fruit.
The approach for harnessing the benef t of diversity is discussed later. For now,

we must recognize that there are actually two types of meta-analysis, hypothesis-
based and exploratory.
It is important to remember that the fundamental difference between meta-

analysis andother types of investigations is that the data have alreadybeen collected
and the researcher’s choice is limited to including or excluding an existing study
from the meta-analysis. Thus, the sample size in meta-analysis is limited by the
existence of relevant studies.
Other types of investigations usually start by def ning the question to be inves-

tigated. This question determines the types of individuals who should be included
in the investigation. Similarly, the question to be addressed by a meta-analysis
determines the types of studies that should be included in the meta-analysis. Thus,
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in hypothesis-driven meta-analysis, the f rst question we need to ask is whether a
particular study is relevant to the meta-analysis’s hypothesis.

Assignment
Process of Assignment

Once the study question is def ned, the investigators can determinewhich studies to
include in ameta-analysis. This identif cationof studies to include is the assignment
process, requires us to ask: Have all the relevant studies been identif ed?2
Identifying all relevant studies is an essential step in the assignment process of

a meta-analysis. It is important that the investigator describe the method used to
search for research reports, including enough detail to allow subsequent investiga-
tors to obtain all the identif ed literature.3 This can even include unpublished data.
Doctoral dissertations, abstracts, grant reports, and registries of studies are other
possible ways to locate previous research.

Confounding Variable: Publication Bias
Anextensive search for research reports as part of the assignment process in ameta-
analysis is important due to the potential for a special type of selection bias known
as publication bias. Publication bias occurs when there is a systematic tendency
to publish studies with positive results and to not publish studies that suggest no
differences in outcome. Small investigations are frequently not submitted or are
rejected for publication. The next example illustrates publication bias:

After identifying the studies available through a computerized search of published
articles, the TLC meta-analysis researchers identif ed 20 studies of the relationship
between TLC and single-vessel coronary artery disease. There was a wide variation
in the sample sizes of the studies and in the outcomes, as shown in Table 11.1.

One technique that can be used to assess the presence and extent of possible publi-
cation bias is known as the funnel diagram. The funnel diagram can be understand
by examining Table 11.1 and Fig. 11.1.
The funnel diagram is based on the principle that smaller studies, by chance

alone, are expected to produce results with greater variation. A funnel diagram
that does not suggest the presence of publication bias should look like a funnel,
with larger variation in results among smaller studies. Cases in which the lower
side of the funnel is incomplete, as in Fig. 11.1A, suggest that some studies are
missing.4
Now imagine that the TLCmeta-analysis researchers searched further and came

up with f ve additional studies. They redrew their funnel diagram plotting the

2 Efforts are underway to ensure registration of all randomized clinical trials thus preventing the
withholding of negative results.

3 In performing this search, it is important to avoid double counting. Studies originally presented as
abstracts, for instance, will often subsequently appear as original articles. Including the same data two
or more times jeopardizes the accuracy of the results of a meta-analysis by violating the assumption
that the data obtained in each of the studies are independent of the other studies.

4 Note that the scale for the odds ratio is def ned so that it is equally spaced above and below 1.
Thus a study with an odds ratio less than 1 is converted to its reciprocal and then plotted below the
horizontal line, for instance study numbers 5, 16 and 19 are converted from 0.5 to their reciprocal 2
and then plotted.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-11 Riegelman-1490G Riegelman-v9.cls August 30, 2004 15:9

104 Section I. Studying a Study

Table 11.1. Data from 20 studies of transthoracic laser coronaryplasty
Study number Odds ratio Sample size (each group)

1 4.0 20
2 3.0 20
3 2.0 20
4 1.0 20
5 0.5 20
6 3.5 40
7 2.5 40
8 1.5 40
9 2.5 60

10 1.5 60
11 1.0 60
12 1.5 80
13 1.0 80
14 1.5 100
15 1.0 100
16 0.5 100
17 1.5 120
18 1.0 120
19 0.5 120
20 1.0 140

additional studies and obtained Fig. 11.1B. From this funnel diagram, which has
a more complete funnel appearance, they concluded there was no longer evidence
of publication bias and they had likely obtained all or most of the relevant studies.
Even after extensive searching, it is possible that investigations will be missed.

This does not preclude proceeding with a meta-analysis. It is possible, as we will
see, to take into account this potential publication bias as part of the analysis.
Another important part of the assignment process in a meta-analysis is to deter-

mine whether there are differences in the quality of studies that justify excluding
low-quality studies from the meta-analysis.
There are two potential approaches to this issue. It has been argued that study

types with the potential for systematic biases should be excluded from a meta-
analysis. For this reason, some meta-analysis researchers have favored the
exclusion of all studies except randomized clinical trials, arguing that this type
of study is the least likely to produce results that have a systematic bias in one
direction or the other.
If randomized clinical trials and other types of studies are available, however,

an alternative approach is to include all types of studies, at least initially. All inves-
tigations are then evaluated to determine their quality. Quality scores are usually
obtained by two readers of the research report, each using the same standardized
scoring system without knowledge of the other reader’s score or the authors’ iden-
tities. Then it is possible to compare the results of high-quality studies with those
of low-quality studies to determine if the results, on average, are similar. Let us ex-
amine what might happen when we combine high-quality and low-quality studies:

A meta-analysis of the strength of the relationship between TLC and the outcome
of single-vessel coronary artery disease included all known studies, including case-
control, cohort, and randomized clinical trials. The investigators had two readers score
each investigation using the same standardized scoring system without knowledge
of the other reader’s score or the authors’ identities. The outcomes on average for the
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Figure 11.1. A: Funnel diagram of 20 studies of transthoracic laser coronaryplasty.
B: Funnel diagram after adding f ve additional studies.

low-quality studies were approximately equal to those for the high-quality studies.
Thus, the investigators decided to retain all studies in their meta-analysis.

A variety of other potential confounding variables can affect the outcome. As
with conventional investigations, it is important that the investigator recognize
these characteristics in order to take them into account. The usual approach is to
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recognize the differences as part of the assignment process and take them into
account as part of the analysis.
For instance, in the TLC studies, we should know whether some studies used

only older patients, more severely ill patients, or those with other characteristics or
prognostic factors that often result in a poorer outcome in coronary artery disease.
In addition, we would want to knowwhether there were important variations in the
treatment given, such as different TLC techniques or different adjunct therapy, such
as duration of anticoagulation. Thus, in the assignment process in a meta-analysis,
we need data on the degree of uniformity of the patients and of the procedures
used.

Masking
Masking of assignment in meta-analysis has a somewhat different meaning than
in other types of investigations. In one sense, the meta-analysis relies on the meth-
ods used in the individual studies to mask the participants and investigators. In
meta-analysis, masking of assignment can also be achieved by preventing the in-
vestigators from being biased by knowledge of the results, the authors, or other
characteristics of an investigation when determining whether a particular investi-
gation should be included in the meta-analysis. More than one individual may be
asked to judge whether an investigation meets the predef ned criteria for inclusion
in the meta-analysis.

Assessment
In conventional investigations, whether they are case-control, cohort, or random-
ized clinical trials, the investigators def ne the techniques used to measure the out-
come and collect the data to assess the outcome. In meta-analysis, the researcher
is usually limited to the techniques used by the primary investigator for assessing
the study outcome.
Themeta-analysis is also limitedby the extent of data presented and the statistical

methods used in the original article. However, it is increasingly possible to go back
and obtain the original data. Some journals are beginning to ask investigators who
submit research articles to make available a complete data set from their study
for later review by other investigators or for use in a meta-analysis. In the future,
this may allow meta-analysis researchers to reexamine and redef ne the various
studies’ outcomes so that each investigation uses the same measurement.

Precision and Accuracy
Currently, the meta-analysis researcher usually must live with what is available in
existing articles. Because of the differences in the def nitions and measurements of
outcomes in different studies, the researcher performing a meta-analysis is faced
with a series of unique issues. First, the meta-analysis researcher must determine
which outcome to use in comparing studies. This may pose a serious problem, as
illustrated in the next example:

In the studies of TLC, the following outcome measures were assessed. Ten studies
used time until a positive stress test, time until evidence of occlusion on noninvasive
angiography, and time until myocardial infarction as the outcomes. Ten other studies
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used only time until a positive stress test as their measure of outcome. Five studies
used time until a positive stress test and evidence of occlusion on noninvasive angiog-
raphy as their measures of outcome. As a result of the different outcome measure-
ments used, the researcher concluded that a meta-analysis could not be performed.

The need to use precise and accurate measures of outcomes do pose major issues
in meta-analysis.
The researcher may be interested in an accurate and early measure of outcome,

which, in this case, may be a positive noninvasive angiography indicating closure
of the treated vessel. Despite the desirability of using this outcome measure, if it is
used to assess outcome, 10 of the 25 studies would need to be excluded. Thus, the
researcher performing this meta-analysis may be forced to use time until a positive
stress test as the measure of outcome if he wishes to include all the studies.
Even after determining that the measure of outcome will be time until a positive

stress test, the meta-analysis researcher’s problems are not solved, as shown in the
following example:

The 25 studies def ne a positive stress test in several different ways. Some require
greater duration and extent of ST depression on ECG than others. The meta-analysis
researcher decides to use only studies that use the same def nition of a positive stress
test. Unfortunately, only 12 studies can be included in the meta-analysis.

It is important to f nd a common endpoint for a meta-analysis, but it is not essential
that the endpoint be def ned in the same way in all the studies. This is a common
problem that is not generally dealt with by excluding studies. Rather, all studies
with data on follow-up stress testing are included. The results of studies that use
a common def nition of a positive stress test can then be compared with studies
that use other def nitions. If the results are similar, regardless of the def nition of
a positive stress test, then all the studies can be combined in one analysis using
their own def nitions of a positive stress test. If there are substantial differences
that depend on the def nition of a positive stress test, then separate analyses can
be performed for studies that used different def nitions.

Completeness and Effect of Observation
The completeness of the investigations included in a meta-analysis depends on the
completeness of the particular studies chosen for inclusion. The effect of obser-
vation also depends on the particular type and characteristics of the investigations
that are included. Because of the large number of factors that can inf uence the
quality of the assessment process, it is tempting for the meta-analysis investi-
gator to eliminate studies that do not meet quality standards. As we have seen,
some meta-analyses are conducted using only studies that meet predef ned quality
standards. Other meta-analysis researchers attempt to achieve this end by includ-
ing only randomized clinical trials, presuming that they constitute the preferred
type of investigation. While these are accepted approaches, others argue that both
high- and low-quality studies should be included and that an analysis should be
conducted to determine if they produce similar or different results.

Results
The goals of analysis of results in meta-analysis are the same as those in other
types of clinical investigations. We are interested in the following:
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� Estimation. Estimating the strength of an association or the magnitude of a
difference. This is often called effect size in meta-analysis
� Inference. Performing statistical signif cance testing to draw inferences about
the population on the basis of the data in the sample
� Adjustment. Adjusting for potential confounding variables to determine
whether they affect the strength or statistical signif cance of the association
or difference

Estimation
The strength of an association in meta-analysis can be estimated by using any of
the estimation measures used in conventional studies. Most meta-analyses in the
health literature use odds ratios, differences in probabilities, or number needed to
treat. Odds ratios are often used because they can be calculated for case-control
studies, cohort studies, and randomized clinical trials.5
When the number of patients in each group and the number who experience a

particular outcome in each group are reported, it may be possible to convert one
outcome measurement to another. At times, there are not enough data presented
in an article to convert one estimation technique to another. Thus, it is not always
possible to produce a useful estimation, even though several relevant studies are
available in the literature.6

Inference
Even when different estimation techniques prevent calculation of an overall esti-
mation of the strength of the association or the size of the difference, it is usually
possible to perform an overall statistical signif cance test. As long as the type of
statistical signif cance test used, the number of patients in each of the groups, and
the p value are available, it is possible to combine the results and produce an overall
statistical signif cance test.
When we combine a large number of studies and perform statistical signif cance

testing, the results may be statistically signif cant even when the individual studies
are not statistically signif cant. Remember from our previous discussion that when
the number of patients is large, it is possible to demonstrate statistical signif cance
even for small differences that have little or no clinical importance. Thus, in meta-
analysis, it is especially important to distinguish between statistically signif cant
and clinically important.
Statistical signif cance testing in meta-analysis can use two types of techniques,

often called f xed effects model and random effects models. Fixed effect models
assume that all the studies come from one large population and only differ by
chance. Random effects models assume that there are differences between the
study populations that made a difference in outcome. It is easier to demonstrate
statistical signif cance using a f xed effect model. That is, f xed effect models have
greater statistical power. However, it is useful in meta-analysis to perform both

5Continuous dependent variables such as weight or diastolic blood pressure can also be used in
meta-analysis, though they require different techniques. These techniques are more frequently used in
the social science literature and rarely appear in the medicine and public health literature.

6 The increasing availability of the actual data from studies may make it easier to combine data from
different studies that use different estimation techniques.
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types of statistical signif cance tests. If their results are nearly identical, one can
be conf dence about combining the different studies.

Adjustment
When there is a difference between the results of a random effects and a f xed
effects statistical signif cance test, it suggests that there are differences between
the studies’ populations that make a difference in their outcomes. This is a form
of confounding variable.
Adjustment in meta-analysis, like adjustment in the other types of studies we

have examined, is designed to take into account potential confounding variables. In
meta-analysis, adjustment also has additional goals. Adjustment aims to determine
whether it is legitimate to combine the results of different types of studies. It
also examines the effects of including investigations with particular characteristics
in the combined results. Thus the process of adjustment allows us to determine
whether including studies with different characteristics, such as different types of
patients or different approaches to treatment, affects the results. Looking at the
impacts of those types of factors is what we mean by harnessing the benef ts of
diversity.
To combine investigations, we need to establish that the results are what we call

homogeneous. This concept is illustrated in the following example:

Assume that the randomized clinical trials and cohort studies of TLC for single-vessel
coronary artery disease in Table 11.2 were identif ed for a meta-analysis. Look at
the graph in Fig. 11.2, which compares the results of the study and control groups in
these studies with respect to their outcome measure.

The two curves in Fig. 11.2 are constructed by connecting the points repre-
sented by randomized clinical trials with one another, and the points represented

Table 11.2. Studies of transthoracic laser coronaryplasty in
randomized clinical trials and cohort studies

Study number Adverse outcomes Study type

1 5/100 ST RCT
10/100 C

2 80/1,000 ST RCT
100/1,000 C

3 25/100 ST RCT
20/100 C

4 2/100 ST RCT
10/100 C

5 40/1,000 ST RCT
120/1,000 C RCT

6 5/100 ST RCT
20/100 C RCT

7 10/100 ST Cohort
10/100 C Cohort

8 20/100 ST Cohort
20/100 C

9 30/1,000 ST Cohort
90/1,000 C

10 60/1,000 ST Cohort
150/1,000 C

ST, study; C, control; RCT, randomized clinical trial.
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Cohort

Figure 11.2. Homogeneity demonstrated by the inability to separate randomized clinical
trials (RCT) from retrospective cohort studies.

by retrospective cohort studies with one another. They demonstrate a homoge-
neous effect because the curves overlap to a large extent. A homogeneous effect
allows the meta-analysis investigator to combine the two types of studies into one
analysis.
Table 11.3 and Fig. 11.3, on the other hand, show that when studies including

patients with more severe illness are compared with studies including patients
with less severe illness, the outcome measures are not homogeneous. The curve
connecting the studies of patients with a high severity of illness can be separated
from the curve connecting studies of patients with a low severity of illness. Studies

Table 11.3. Studies of transthoracic laser coronaryplasty with high
and low severity of illness

Study number Adverse outcomes Severity of illness

1 5/100 ST Low
10/100 C

2 80/1,000 ST Low
100/1,000 C

3 25/100 ST Low
20/100 C

4 2/100 ST High
10/100 C

5 40/1,000 ST High
120/1,000 C

6 5/100 ST High
20/100 C

7 10/100 ST Low
10/100 C

8 20/100 ST Low
20/100 C

9 30/1,000 ST High
90/1,000 C

10 60/1,000 ST High
150/1,000 C

ST, study group; C, control group
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Figure 11.3. Lack of homogeneity demonstrated by the ability to separate low and high
severity of illness.

of more severe illness in general tend to have a high proportion of bad outcomes in
the control group. This lack of homogeneity implies that separate analyses should
be conducted, with one analysis for studies of patients with low severity of illness
and a separate analysis for studies of patients with high severity of illness. The
results of these meta-analyses may demonstrate that TLC is has greater eff cacy
for patients with a high severity of illness.7

Interpretation
In a meta-analysis the investigator often tries to determine whether contributory
cause or eff cacy has been demonstrated. As with other types of investigation, the
interpretation begins by asking whether the def nitive criteria of (a) association,
(b) prior association, and (c) altering the cause alters the effect been fulf lled?
In establishing associations usingmeta-analysis, it is important to recognize that

meta-analysis aims to increase the sample size by combining studies. This has the
potential advantage of increasing the statistical power. Increases in statistical power
improve the probability of demonstrating statistical signif cance. Thus, even small
but real differences may be demonstrated to be statistically signif cant, although
they may not have clinical importance.
The ability of a meta-analysis to establish the criteria of prior association and

altering the cause alters the effect often depends on the type and quality of the
individual investigations included in the meta-analysis. When randomized clinical
trials are included, these have the potential for def nitively establishing all three
criteria.
The large number of individuals included in a meta-analysis may give it ad-

vantages in accomplishing the other goals of interpretation—that is, looking at

7 The degree of overlap in the curves needed to label the effect as homogeneous is subjective. This
is an inherent limitation of the graph technique. Statistical signif cance testing is also available to
examine the homogeneity of studies. These statistical signif cance tests, such as the Q-statistic, have
low statistical power. However, a P-value <0.1 is often used to justify use of a f xed-effect model.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-11 Riegelman-1490G Riegelman-v9.cls August 30, 2004 15:9

112 Section I. Studying a Study

adverse effects and at subgroups. The greater number of individuals that may be
included in a meta-analysis allows us to interpret the data on safety or harms with
greater reliability. The rule of three in reverse is still a useful tool for helping us
to interpret the implications of the absence of an adverse effect. Thus, if a meta-
analysis includes 30,000 patients and there is no evidence of anaphylaxis, we can
be 95% conf dent that if anaphylaxis occurs, its true frequency is less than 1 per
10,000.
When there is an increase in frequency of side effects among those in the treat-

ment group, combining the data from many investigations may enable the inves-
tigators to draw conclusion about the frequency of side effect in the study groups
compared to the control groups.
In meta-analysis as opposed to other types of investigations, we do not need to

wait until statistically signif cance is established using all of the data before we
can examine subgroups.8 When the analysis of results suggests the presence of
heterogeneity, the meta-analysis researcher can examine the individual investiga-
tions to see what can be learned about subgroups, as illustrated in the following
example.

A meta-analysis of the eff cacy of a treatment for Alzheimer’s disease suggested
heterogeneity according to the severity of the disease and the extent of family support.
The studies suggested that the treatment had the greatest eff cacywhenused on groups
with early disease who had the highest level of family support. This data was used
as the basis for planning a randomized clinical trial using only patients with early
Alzheimer’s disease who had high levels of family support.

This example illustrated the way the meta-analysis can be interpreted and used
as the basis for drawing conclusions. Even when conclusions about statistical
signif cance are not possible, the interpretation may be useful in planning future
studies.
The large numbers of subjects included in a meta-analysis is an advantage when

examining subgroups.
For instance, if an exploratorymeta-analysis ofTLCused all 25 available studies,

the investigator might be able to examine subgroups such as men versus women
and repeat TLC versus initial TLC, especially if differences between these groups
were hypothesized at the beginning of the investigation. If the data were available,
the investigator might also examine a subgroup such as types of anticoagulation
used to examine the hypothesis that this factor makes a difference. Unfortunately,
data are often not presented in a way that allows the investigator to combine the
subgroups from different investigations. Aswith other types of investigations, even
when the data are available, it is important to perform a limited number of subgroup
analyses on the basis of predetermined study questions.
In the process of interpretation for meta-analysis, the investigators may want to

consider removing outliers. Outliers are studies that produce results that are very
different from the majority of studies. It is very tempting to merely exclude all
outliers from an analysis, but this should be done only if there is very good reason.
Often, in fact, additional information can be obtained by looking carefully at the

8Remember that at times, a small number of subgroups identif ed at the beginning of an investigation
can be examined even in the absence of a demonstration of statistical signif cance using the overall
data.
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outliers as part of the interpretation and asking why the results are different. This
is demonstrated in the next example:

Among the 25 studies of TLC, one demonstrated that the results of TLC were sub-
stantially worse than those associated with medication or surgery. This study was
performed at the beginning of the TLC era, using obsolete procedures and no antico-
agulation. A second outlier demonstrated that the best results for TLC were achieved
using the newest technique at a medical center that has the largest volume and longest
experience with TLC.

Here, the exceptions help to prove the rule that TLC is an effective treatment. At
other times, outliers may challenge the conclusion, producing new hypotheses for
further investigations. In general, outliers should not be excluded from a meta-
analysis. If one outlier is excluded, the others should also be excluded. Here,
examination of these two studies supports the eff cacy of TLC.
Finally, when interpreting the results of a study, we need to reexamine the

issue of publication bias. Publication bias is so important in meta-analysis that
we often examine its potential impact as part of the interpretation. In doing so,
we can estimate the number of studies showing no effect that would need to be
missing from the meta-analysis in order for the results to no longer be statistically
signif cant.9 This number of studies is called the fail-safe n. The following example
illustrates how to interpret the fail-safe n:

Ameta-analysis of TLC for single-vessel coronary artery disease using all 25 studies
has a fail-safe n of 100. Thus, the authors concluded that publication bias is very
unlikely to affect the meta-analysis results.

It is unlikely that there exists 100 completed but unpublished studies that on
average showed no difference between TLC and standard therapy. This degree
of publication bias is unlikely to occur. Thus, we can be reasonably conf dent
that if publication bias exists, it does not explain or have a dramatic effect on the
conclusions.

Extrapolation
To Similar Populations

Meta-analysis is capable of providing an estimate of the average strength of an
association i.e., the effect size. It can also help us with statistical signif cance
testing, allowing us to infer eff cacy in the larger population from which the study
samples were obtained. Average strength of an association can be very useful when
making extrapolations designed for groups of individuals. However, when trying
to make decisions for a particular patient, the results of a meta-analysis may not be
as useful as examining the results of a particularly relevant study, as demonstrated
in the next example:

A patient at the medical center with the longest experience using TLC, the newest
techniques, and the largest volume is being considered for TLC. The results of
the meta-analysis comparing TLC with other therapies for this type of high-risk
patient indicate very little difference. However, the data from this medical center

9 The investigator actually calculates the fail-safe n assuming that themissing studies are, on average,
the same size as the studies included in the meta-analysis, and that the studies, on average, show no
effect (i.e., they have a zero difference or a ratio of 1).
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unequivocally support the use of TLC for this type of high-risk patient at this medical
center.

Data available from the same institution based on similar patients are often more
informative than using the average strength of an association obtained from ameta-
analysis. Thus, despite the important role that meta-analysis can play in research
and clinical care, it does not automatically produce the most useful results for a
particular patient.

Beyond the Data
Issues of extrapolation are not limited to how well the therapy works. Issues of
harm or safety also need consideration and require extrapolation beyond the data.
The large number of patients that are often included in ameta-analysis can produce
more reliable extrapolation about harms or safety of therapies. The assessment of
safety, however, is still limited to the duration, dosage, and types of outcomes
assessed by the studies included in the meta-analysis, as illustrated in the next
hypothetical example:

The meta-analysis of TLC demonstrated eff cacy of TLC for single-vessel coronary
artery disease. It also demonstrated short-termharms similar tomedication or surgery.
More than a decade after the widespread use of TLC began, it was recognized that
late effects on the coronary artery made it more likely to suddenly close, producing
a higher incidence of late myocardial infarction.

Studies can only draw conclusions about what they measure. The ability to as-
sess long-term consequences requires long-term follow-up. Long-term safety or
effectiveness considerations are no better assessed by meta-analysis than by con-
ventional studies.

To Other Populations
Extrapolating results from a meta-analysis to practice poses the same dangerous
consequences as with other types of investigations. When extrapolating to pop-
ulations that are not included in the meta-analysis, it is important to recognize
and make explicit the assumptions that are being made. For instance, imagine the
following situation:

A large, well-conducted meta-analysis of TLC concluded that TLC was safe and
effective and better than standard treatment for single-vessel coronary artery disease.
The authors concluded that TLC should be used for treatment of coronary artery
disease in two- and three-vessel disease. Subsequent studies demonstrated the su-
periority of TLC for single-vessel disease but found that the extensive exposure to
laser treatment needed for two- and three-vessel disease was associated with side
effects not previously recognized when using TLC to treat single-vessel coronary
artery disease.

Whenever an extrapolation is made to new situations, it must be assumed that the
new circumstances will not be associated with new side effects. In this example,
this assumption was not correct. Thus, regardless of the type of investigation, the
reader of the health research literaturemust be aware of the dangers of extrapolation
to new populations and situations.
Meta-analysis has gained an important role in health research. It has helped to

halt continued study of issues for which there are already adequate data. It has
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helped us gain more accurate measures for the magnitude of effects and the degree
of safety of therapies. By harnessing the benef ts of diversity, meta-analysis has
also helped us better understand what factors affect the outcomes of a therapy.
Despite themany advantages ofmeta-analysis, it requires the same type of atten-

tion to quality study design that is required for other types of research. In addition,
because it relies on the existing literature, meta-analysis incorporates special tech-
niques and is often limited in what it attempts to do and what conclusions it can
draw.
The classic literature review article has been dramatically restructured by the

introduction ofmeta-analysis. If we are to obtain themaximum amount of informa-
tion from the existing literature, the principles ofmeta-analysismust be understood
and applied.
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12 Questions to Ask and
Flaw-Catching Exercises

Questions to Ask when Studying a Study
Throughout this “Studying a Study” section, we have examined the use of the
M.A.A.R.I.E. framework to organize our review of research articles, including
case-control studies, cohort studies, and randomized clinical trial, as well as
meta-analyses. For all of these types of investigations we found that the same
basic questions needed to be addressed. Now we are ready to organize these ques-
tions into a set of Questions to Ask when Studying a Study.
These Questions to Ask can be used as a checklist when reading the health

research literature. For additional practice using the M.A.A.R.I.E. framework,
please go to the Studying a Study Online Web site at www.StudyingaStudy.com.
The following are the Questions to Ask when Studying a Study:

Method: The purpose and population for the investigation

1. Study hypothesis:What is the study question being investigated?
2. Study population: What population is being investigated and what are the

inclusion and exclusion criteria for the subjects of the investigation?
3. Sample size and statistical power: How many individuals are included in the

study and in the control groups and what is the statistical power?

Assignment: Selection of participants for the study and control groups

1. Process:What method is used to identify and assign participants to study and
control groups?

2. Confounding variables: Are there differences between study and control
groups, other than the factor being investigated, that may affect the outcome of
the investigation?

3. Masking or blinding: Are the participants and/or the investigators aware of
the participants’ assignment to a particular study or control group?

Assessment: Measurement of outcomes or endpoints in the study and control
groups

1. Appropriate: Does the measurement of outcomes address the study’s ques-
tion?

2. Accurate and precise: Is themeasurement of outcomes an accurate and precise
measure of the phenomenon that the investigators seek to assess?

3. Complete and unaffected by observation: Is the follow-up of participants
nearly 100% complete and is it affected by the participants’ or the investigators’
knowledge of the study group or control group assignment?

116
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Results: Comparison of outcomes in the study and control groups

1. Estimation: What is the magnitude or strength of the association or relation-
ship?

2. Inference:What statistical technique(s) are used to perform statistical signif -
cance testing?

3. Adjustment: What statistical technique(s) are used to take into account or
control for potential confounding variables?

Interpretation:Meaning of the results for those included in the investigation

1. Contributory cause or efficacy Does the factor being investigated alter the
probability that the disease will occur (contributory cause) or work to reduce
the probability of undesirable outcomes (eff cacy)?

2. Harms and Interactions: Are adverse effects and/or interactions that affect
the meaning of the results identif ed?

3. Subgroups: Are the outcomes observed in subgroups within the investigation
different from outcomes observed in the overall investigation?

Extrapolation:Meaning for those not included in the investigation

1. To similar individuals, groups, or populations: Do the investigators extra-
polate or extend the conclusions to individuals, groups, or populations that are
similar to those who participated in the investigation?

2. Beyond the data:Do the investigators extrapolate by extending the conclusions
beyond the dose, duration or other characteristics of the investigation?

3. To other populations: Do the investigators extrapolate to populations or set-
tings that are quite different from those in the investigation?

As we have seen, the use of the M.A.A.R.I.E. framework and the meaning of
these questions varies by the type of investigation. To see this process in action,
including modif cations of the Questions to Ask for each type of investigation,
please go to the Studying a Study Online Web site at www.StudyingaStudy.com.
The Web site includes interactive exercises and practice using the checklist to
read actual journal articles.

Flaw-Catching Exercises
The following hypothetical studies illustrate the potential errors that can occur in
each component of the M.A.A.R.I.E. framework. These f aw-catching exercises
are designed to test your ability to apply the framework in order to study a study
critically. Examples of case-control, concurrent and retrospective cohort studies,
randomized clinical trials, and meta-analysis are presented. A sample critique
organized using the M.A.A.R.I.E. framework follows and points out important
errors that occur.
Flaw-catching is a useful skill applicable to reading real research articles. While

real investigations hopefully don’t have as many f aws as are combined in the
exercises that follow, f aws are inevitable. Flaw-catching is not an end in itself. It
is important to recognize that not every f aw is fatal. The jobof the reader of research
is to recognize the f aws and then ask:Howdo they affect themeaningof the results?
For additional interactive f aw-catching exercises, please go to the Studying a

Study Online Web site at www.StudyingaStudy.com.

http://www.StudyingaStudy.com
http://www.StudyingaStudy.com
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Case-Control Study
FLAW-CATCHING EXERCISE NO. 1: FACTORS ASSOCIATEDWITH
CONGENITAL HEART DISEASE

A case-control study was undertaken to study the factors associated with the de-
velopment of congenital heart disease (CHD). Two hundred women with f rst-
trimester spontaneous abortions in which congenital heart abnormalities were
found in the fetus on pathologic examination were used as the study group. The
control group included 200 women with f rst-trimester voluntarily induced abor-
tions in which no congenital heart defects were found.
An attempt was made to interview each of the 400 women within 1 month after

her abortion to determine which factors in the pregnancy may have led to CHD.
One hundred variables were studied. The interviewers gained the participation of
120 of the 200 study group women who experienced spontaneous abortions and
80 of the 200 control group women who underwent induced abortions. The other
women refused to participate in the study.
The investigators found the following differences betweenwomenwhose fetuses

had CHD and those whose fetuses were not affected:

1. Women with CHD fetuses were three times more likely to have used antinausea
medications during pregnancy than were women whose fetuses did not have
CHD. The difference was statistically signif cant.

2. There was no difference in the use of tranquilizers between the study group and
control group.

3. The women with CHD fetuses drank an average of 3.7 cups of coffee per day,
whereas women whose fetuses did not have CHD drank an average of 3.5 cups
of coffee per day. The differences were statistically signif cant.

4. Among the other 97 variables studied, the authors found that women with
CHD fetuses were twice as likely to have blond hair and be taller than 5 ft.
6 in. Both differences were statistically signif cant using the usual statistical
methods.

The authors drew the following conclusions:

1. Antinauseamedications causeCHDbecause they aremore often usedbywomen
whose fetuses have CHD.

2. Tranquilizers are safe for use in pregnancy because they were not associated
with an increased risk of CHD.

3. Because coffee drinking increases the risk of CHD, coffee drinking should be
eliminated completely during pregnancy, which would largely eliminate the
risk of CHD.

4. Despite the fact that no one had hypothesized height and hair color as risk
factors for CHD, these were proved to be important predictors of CHD.

CRITIQUE: EXERCISE NO. 1

Method
The investigators have not clarif ed the aims of their study. Are they interested in
specif c types of CHD? Congenital heart disease consists of a variety of conditions
involving valves, septum, and blood vessels. By lumping all conditions underCHD,
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the investigators are assuming that a common cause exists for all these conditions.
In addition, the specif c hypotheses being tested are not clarif ed in this study. The
groups chosen consist of a study group that underwent spontaneous abortions and
a control group that underwent voluntarily induced abortions. These groups can be
expected to differ in a variety ofways. Itwould have been preferable to choosemore
comparable groups of women, for instance, those who had induced abortions with
and without CHD or those who had spontaneous abortions with and without CHD.
With this study design, remember that the population of women consisted only

of those with abortions. This implies that the investigator must be cautious in
drawing conclusions about live births. In addition the study group included only
CHD that was severe enough to cause early spontaneous abortion. Although this
may provide important information, the factors causing CHD severe enough to
abort fetuses may be different from the factors causing CHD in full-term infants.

Assignment
To determine whether a selection bias exists, we f rst consider whether the study
group and control group differ in some respect. Second, we ask whether these
differences could have affected the results. The experiences of women having vol-
untarily induced abortions versus those having spontaneous abortions are likely
to be different in many ways. The women probably also have different attitudes
about their pregnancies, which may affect their use of medications during preg-
nancy. Such differences between the study group and control group could affect
the outcomes, so selection bias may well be present.

Assessment
The high rate of subjects lost to follow-up because they refused to participate
suggests the possibility that those who were lost to follow-up had different charac-
teristics than those who participated in the study. A high rate of loss to follow-up
weakens the conclusions that can be drawn from any observed differences. Recall
bias by participants is possible, particularly when a traumatic event has occurred
in a case-control study. In addition, participants were asked to recall events such
as coffee consumption and medication use that are frequently occurring and sub-
jectively remembered events. This suggests that the conditions are right for recall
error. The accuracy of retrospective reporting of medication use, for instance, may
be inf uenced by the emotions caused by losing the fetus among those women
who experienced an unexpected spontaneous abortion. The consequence may be
a closer scrutiny of the memory, leading to a more thorough recall of medication
use among those who had a spontaneous abortion.

Results, Interpretation, and Extrapolation
The investigators’ four conclusions may contain the following f aws:

1. Even if one assumes that the relationship between antinausea medications and
CHD was properly derived, no cause-and-effect relationship has been shown.
Case-control studies cannot def nitively settle the question of which factor is
the cause and which is the effect. It is possible that women with CHD fetuses
have more nausea and, therefore, take more antinausea medications. Before a
contributory cause is def nitively established, investigators must show that the
postulated cause precedes the effect and that altering the cause alters the effect.
The authors of this study have made an interpretation that is not warranted by
the data.
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2. The absence of a difference between groups in terms of tranquilizer use does not
necessarily ensure the safety of these drugs. The samples may be too small—
that is, they have a low statistical power to determine the association between
tranquilizer use and CHD. The rule of three tells us that we should not expect
to observe rare but serious side effects in small studies. Even if there is no
association between tranquilizers and CHD, this does not ensure the absence of
other adverse effects on the fetus that make tranquilizers unsafe for use during
pregnancy. The investigators have, therefore, extrapolated too far beyond the
data.

3. The difference between the average amount of coffee consumed bywomenwith
a CHD fetus compared with the amount consumed by women without a CHD
fetus is statistically signif cant, but it is not large. A statistically signif cant result
is one with a low probability of occurring by chance if no true differences exist
in the larger populations from which the sample data were drawn. However, it
is clinically unlikely that such a small reduction in coffee consumption would
have a substantial effect on the risk of CHD. Statistical signif cance must be
distinguished from clinical importance and from contributory cause. Coffee
drinking may have an effect, but with such small differences, one must be
careful not to conclude too much.

4. By testing 100 variables, it is not surprising that the authors found associations
that were statistically signif cant by chance alone. When using many variables,
one cannot use the usual level of statistical signif cance to reject the null hypoth-
esis of no association. The usual 5% level assumes one hypothesis is developed
before the study. Because it was not anticipated that height and hair color would
be associated with CHD, these differences are likely to be the results of chance.
Thus, the authors cannot safely conclude that height and hair color are risk
factors for CHD.

Concurrent Cohort Study
FLAW-CATCHING EXERCISE NO. 2: A STUDY OF SCREENING IN
THE MILITARY

During their f rst year in the military service, 100,000 18-year-old male privates
were offered the opportunity to voluntarily participate in a yearly health mainte-
nance examination that included history, physical examination, and multiple lab-
oratory tests. The f rst year, 50,000 participated and 50,000 failed to participate.
The 50,000 participants were selected as a study group, and the 50,000 nonpar-
ticipants were selected as a control group. The f rst-year participants were then
offered yearly health maintenance examinations during each year of their military
service.
On discharge from the military, each of the 50,000 study group members and

each of the 50,000 control groupmemberswere given an extensive history, physical
examination, and laboratory evaluation to determine whether the yearly health
maintenance visits had made any difference in the health and lifestyle of the
participants.
The investigators obtained the following information:

1. On the basis of self-reporting, participants had half the frequency of alcohol
consumption as nonparticipants.
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2. Participants had twice as many examinations and twice as many diagnosed
illnesses during military service as did nonparticipants.

3. Participants had advanced an average of twice asmany ranks as nonparticipants.
4. No statistically signif cant differences in the rate of myocardial infarction (MI)

occurred between the groups.
5. No differences were found between the groups in the frequency of development

of testicular cancer or Hodgkin’s disease, the two most common cancers in
young men.

The authors then drew the following conclusions:

1. For frequencyof alcohol consumption, since the relative risk is 2, the attributable
risk percentage is 50%. Thus yearly examinations can reduce the frequency of
alcoholism in the entire military by half.

2. Because participants had twice as many examinations and twice as many diag-
nosed illnesses during their military service, their illnesses were diagnosed at
an earlier stage in the disease process, when therapy is more benef cial.

3. Because participants had twice the military advancement of nonparticipants,
the screening program must have contributed to the quality of their work.

4. Because the groups did not differ in the rate of MI, screening and intervention
for coronary risk factors should not be included in a future health maintenance
screening program.

5. Because testicular cancer and Hodgkin’s disease occurred with equal frequency
in both groups, future health maintenance examinations should not include
efforts to diagnose these conditions.

CRITIQUE: EXERCISE NO. 2

Method
This is a concurrent cohort study because assignment is observed and study and
control groups are then followed up over time with subsequent assessment of an
outcome. The investigators have stated only a general goal of studying the value
of an annual health maintenance examination in the military. They do not identify
the target population to which they wish to apply their results. They do not state
specif c hypotheses or clearly identify their specif c study questions.
If the investigators’ goalwas to study the effects of an annual healthmaintenance

examination, they have not accomplished this goal because no evidence exists that
f rst-year participants actually took part in subsequent examinations.
Furthermore, the authors’ choice of a population to be investigatedmay not have

been appropriate. The study selected youngmenwho already had been screened for
chronic illness by virtue of passing the entry physical for military service. Being
a young and healthy group, they may not have been an appropriate population
for testing the usefulness of health maintenance for other older or higher-risk
populations in which the frequency of pathologic conditions would be expected to
be much higher.

Assignment
Individuals in this study were self-selected; that is, they decided for themselves
whether or not to participate. The participants, therefore, can be considered
volunteers. The researchers presented no evidence to indicate whether those who
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elected to participate differed in any way from those who elected not to participate.
It is likely that participants had health habits and health risks that were different
from those of the nonparticipants. These differences may well have contributed to
the observed differences in the outcome. Because no baseline evaluation is avail-
able on the control group, it is not known whether or how they differed from the
study group. Thus, it is not known whether the study group and control group were
comparable.
The individuals in both the study and control groups were self-assigned on the

basis of their participation in the f rst year of the health maintenance examinations.
Because the examinations were conducted on a yearly basis, those who initially
participated may not have continued to participate.

Assessment
Without a clear hypothesis, it is not possible to determine if the assessment is
appropriate. Problems with precision and accuracy as well as reporting errors
are likely when conf dential and subjectively remembered measures such as al-
cohol consumption are used. Assessment of outcome was conducted only on
those who were discharged from the military; thus, it was not complete. Those
who remained in the military service would not have been included. Individu-
als who had died during military service would not have been included among
those assessed at discharge. The individuals who had died from disease may have
been the most important in terms of assessing the potential benef ts gained by
screening.
Individuals participating in multiple health maintenance examinations were un-

der much more intensive observation than the nonparticipants. The unequal inten-
sity of observation may have resulted in the greater number of illnesses diagnosed
during their military service. Nonparticipants may have had the same number of
conditions, without all of them resulting in a recorded diagnosis. The absence of
masked assignment and masked assessment may have affected the measurement
of outcomes.

Results, Interpretation, and Extrapolation
The f ve conclusions made by the investigators may contain the following f aws:

1. Participants had a lower rate of alcohol consumption than nonparticipants, per-
haps due to differences between the groups before entry into the study. If heavy
drinkers were less likely to participate in the health screening, then the examina-
tions would only appear to have altered the frequency of alcohol consumption.
Comparative baseline data on alcohol consumption and other variables and ad-
justment for these differences were lacking in the analysis. Potential assessment
errors draw into question the validity of the measurement of outcome. Even if
none of these potential errors existed, there is no evidence in the study that the
examinations themselves were the causative factor in producing a lower rate of
alcohol consumption. Extrapolating to the military in general went well beyond
the range of the data.

2. The greater intensity of observation of participants compared with nonpartici-
pants may explain the greater number of diagnoses. This greater number does
not in and of itself ensure that the diseases were detected at an earlier stage or
that their treatment benef ts the patients.
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3. If a higher level of motivation is associated both with participation in the study
and advancement in the military, then motivation would be a confounding vari-
able due to selection bias. Without the use of randomization or adjustment for
this potentially confounding variable, no conclusion can be reached about the
relationship between participation status and advancement.

4. Many of the participants with anMImay have died and thuswere excluded from
the assessment. In addition, one would expect a very low rate of MI in a young
population. Even with the large numbers included in this study, the sample may
not have been large enough to observe small differences between the groups.
There is no evidence that despite the screening thosewho participated had either
more recognized risk factors or more risk factors altered. Even if they had more
altered risk factors, the effects of these alterations may not become apparent
until years after the participants have left the military. Therefore, this study was
incapable of answering the question of whether screening for risk factors for
coronary artery disease alters prognosis.

5. The absence of differences in the frequency of testicular cancer and Hodgkin’s
disease cannot be assessed on the basis of those discharged alive. The frequen-
cies of developing these diseases were identical, but this says little about the
success or failure of the examination program. A cancer screening program
aims to pick up disease at an early stage; it does not aim to prevent disease.
Thus, the frequency of cancer cannot be used to evaluate the success or failure
of a screening program. Therefore, one would expect nearly identical frequency
of Hodgkin’s disease and testicular cancer. The stage of illness at diagnosis and
the prognosis for those who developed either of the conditions would be more
appropriate measures for evaluating the success of the screening program. No
such data are presented here; thus, no interpretation can be made.

Retrospective Cohort Study
FLAW-CATCHING EXERCISE NO. 3: CESAREAN VERSUS VAGINAL
DELIVERY AFTER PREVIOUS CESAREAN

A large database was available to study all births that occurred after a previ-
ous cesarean section delivery. The investigators hypothesized that repeat cesarean
section delivery would result in improved pregnancy outcomes compared to vagi-
nal delivery during the next birth. During the time period of the study, it was up to
individual physicians and individual patients to decide whether to perform repeat
cesarean section or vaginal delivery.
Of 20,000 repeat cesarean section deliveries available in the database, 10,000

were included in the investigation. These repeat cesarean section deliveries were
included because complete data were available on delivery, hospital course, and
child’s health and development at age 12 months. The vaginal deliveries included
all 10,000 deliveries after a previous cesarean section that were available in
the database even if the child did not return for a developmental assessment at
12 months.
Data from study and control group deliveries were collected on parity (number

of children), mother’s age, and mother’s socioeconomic status. Outcomemeasures
included the number of stillbirths, Apgar score for live births, mother’s and child’s
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length of hospital stay, child’s health and developmental status at 12 months, and
mother’s health outcomes.
The paritywas nearly identical between the groups; however, the repeat cesarean

section group had an average age of 34 years versus an average age of 28 years for
the vaginal delivery group. The repeat cesarean section patients were f ve times
more likely to be in the top half of the socioeconomic scale.
There were 60 stillbirths in the repeat cesarean section delivery group versus 6 in

the vaginal delivery group. Apgar scores for the repeat cesarean section deliveries
were a mean of 8 compared with a mean of 7.8 for the vaginal deliveries. The
length of hospital stay in the repeat cesarean section group was 5 days longer, on
average, than the vaginal delivery group. The developmental indices at 12 months
of children born by cesarean section were 1% better on average than children
in the vaginal delivery group. All these differences were statistically signif cant.
There were 100 cases of thrombophlebitis and one death among the women who
underwent repeat cesarean section, and 10 cases of thrombophlebitis and one death
among the women in the vaginal delivery group.
The authors drew the following conclusions:

1. Although this was not a randomized clinical trial, the large number of deliveries
and the nearly identical parity ensure that the two groups were similar.

2. The relative risk is 10 and the attributable risk percentage is 90% for stillbirth
among repeat cesarean section deliveries comparedwith vaginal deliveries. This
implies that 90% of the stillbirths are caused by repeat cesarean section delivery
and could be eliminated by vaginal delivery.

3. The difference in length of stay was expected because of the need to recover
from surgery and was, therefore, not a relevant f nding.

4. The increase in Apgar score and developmental scores at 12 months among
repeat cesarean section deliveries was caused by the repeat cesarean section
delivery.

5. Because the number of maternal deaths is equal in the two groups, the harms
to the mothers do not need to be considered in making recommendations.

6. The authors concluded that repeat cesarean section deliveries result in better
Apgar scores and improved child development at 12 months. This more than
compensates for the increased thrombophlebitis and the longer lengthof hospital
stay.

The authors recommended repeat cesarean section for all women who had previ-
ously delivered by cesarean section.

CRITIQUE: EXERCISE NO. 3

Method
This investigation is designed to be a large, retrospective cohort study. It intended to
compare the results of a subsequent delivery vaginally or by repeat cesarean section
after a previous cesarean section delivery. The investigation is a retrospective
cohort study because the investigators started by identifying a study group with
delivery by repeat cesarean section and a control group with delivery vaginally.
This assignment occur before the investigators were aware of the outcomes.
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The two groups are intended to be the same except for the method of delivery.
This goal is diff cult to achieve in the best of circumstances in a retrospective cohort
study. However, the choice of method for identifying the study and control groups
in this investigation has compounded this problem. The repeat cesarean section
deliveries are a subgroup of all repeat cesarean section deliveries, chosen because
of the availability of complete data. The vaginal deliveries include all available
patients. When groups selected because they have complete data are compared
with groups with incomplete data, we expect to f nd differences in the patient
characteristics which may affect the outcomes being assessed.
In addition, the process of study design requires identifying a study population

by def ning inclusion and exclusion criteria for study and control group patients.
This may not have been fully performed in this investigation because we do not
know whether patients with more than one previous cesarean section delivery
were included.

Assignment
The major problem with cohort studies is the need to recognize and address clini-
cians’ tendency to tailor the therapy to their perceptions of what individual patients
need. This often clinically benef cial tendency can create selection bias,whichmust
be recognized and taken into account in research studies.
For instance, imagine that clinicians are willing to perform a vaginal delivery

in women who have had a previous cesarean section only if the women were pro-
gressing very well in their deliveries. This would create a strong selection bias
favoring the outcomes of vaginal delivery. In addition, it is possible that clinicians
may only be willing to perform vaginal delivery on women in their 20s. This could
explain the younger age of the women undergoing vaginal deliveries. This differ-
ence between groups may produce a selection bias if women in their 20s not
only have a greater chance of having a vaginal delivery but also have a bet-
ter outcome regardless of the form of deliveries. Thus the difference in average
age needs to be recognized and taken into account or adjusted for as part of the
analysis.
The investigators do record a number of baseline patient characteristics that

are useful for comparison. However, the characteristics that are not recorded may
affect the results. For instance, there are no data on the duration of pregnancy before
delivery by either method. It is possible that repeat cesarean section deliveries
were used predominantly for premature, or alternatively, for delayed delivery.
These deliveries may be for pregnancies that were developing complications and
required intervention. If this was the case, it would create a selection bias that
would greatly affect the results by making stillbirths far more likely in the repeat
cesarean section group.

Assessment
The investigators did not assess the perinatal deaths that occur in either group.
This may be an endpoint that would ref ect an important clinical outcome.
Retrospective cohort studies, like this one, may assess patients on the basis of

data collected in the course of ongoing medical care. This leads to the potential for
bias because those who return for follow-up may not be an accurate ref ection of
all those entered into the study.We know that the repeat cesarean section deliveries
were all followed up to assess child development at 12months, whereas the vaginal
deliveries did not have complete follow-up. If the vaginal deliveries that returned
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for follow-up child development assessment had a worse outcome than those who
failed to return, this difference could explain the small difference in results between
the two groups.
The assessment process did not fully take into account adverse maternal effects

of the cesarean section. To the extent that thrombophlebitis represents an adverse
and costly effect, for instance, the authors did not recognize its importance and
acted as though the only important adverse maternal effect was death.

Results
The investigators do not distinguish between differences in outcome that are large
or substantial verus ones that are small and perhaps clinically of little or no im-
portance. When the sample sizes are as large as in this investigation, many small
differences may be statistically signif cant. These differences, however, are not
likely to be clinically important.
The small difference in Apgar scores or the differences in child development at

12months, for instance, are not likely to represent a clinically important difference.
The use of multiple outcome measures requires additional caution.
Some of the differences are large enough to be of clinical importance, such

as large differences in numbers of stillbirths, length of stay, and frequency of
thrombophlebitis. The investigators, however, did not consider the possibility that
these differenceswere the result of confounding variables that require adjustment.

Interpretation
The authors drew six conclusions that may contain the following f aws:

1. Similar parity and the large number of deliveries do not ensure that the two
groupswere similar. The failure to adjust for differences in the study and control
groups for potential confounding variables, such as age and socioeconomic
status, may have altered the results.

2. The relative risk is 10 for stillbirths because there were 60 stillbirths per 10,000
deliveries in the repeat cesarean section group compared with 6 per 10,000
deliveries in the vaginal delivery group. From this, the investigators correctly
derived an attributable risk percentage of 90%.However, the relative risk and the
attributable risk percentage can be calculated even in the absence of a cause-and-
effect relationship. If repeat cesarean sections are performed when premature
delivery is threatened, then stillbirths may cause repeat cesarean sections and
not the other way around. That is, this could be an example of reverse causality.
Attributable risk percentages can only be used to imply the potential to reduce
the risk or to remove a percentage of the bad outcome if contributory cause has
been demonstrated.

3. The length of stay is a relevant outcome even if it is completely expected on
the basis of the type of delivery. The costs and harms associated with extended
hospitalization are relevant to the decision whether or not to deliver by repeat
cesarean section. This is true even if its impact is completely predictable.

4. It is not clear that the cesarean section delivery causes the slight increase in
Apgar scores or the slightly improved development score at 12 months. These
may have been the result of selective follow-up, differences in socioeconomic
status, or multiple outcome measures.
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5. The potential harms to the mother should not be limited to death. Death is
typically a rare occurrence. More frequent events such as thrombophlebitis are
important outcome measures. Thrombophlebitis produces considerable mor-
bidity and cost in addition to any deaths that may result.

6. The conclusion that the benef ts of repeat cesarean section outweigh the harms
assumes that both the benef ts and the harms are real. There is considerable
doubt concerning the benef ts. Even if the investigation’s outcomes are valid,
this is not the only possible conclusion. The small benef tsmay be viewed as less
important than the substantial increase in the length of stay and the probability
of developing thrombophlebitis.

Extrapolation
The uncertainties about the eff cacy of repeat cesarean section among the women
in the study make extrapolation even to other women like those in the in-
vestigation diff cult. It is especially dangerous to make recommendations for
a target population of all women who have undergone previous cesarean sec-
tion. Even if the data established the benef ts of cesarean section, including a
modest increase in Apgar score and 12-month child development, these bene-
f ts would still need to be balanced against the potential harms of greatly in-
creased thrombophlebitis risk and extended hospital stays before recommending
cesarean section deliveries for allwomenwhohad previously delivered by cesarean
section.

Randomized Clinical Trial
FLAW-CATCHING EXERCISE NO. 4: BLOOD SAFE—A NEW TREATMENT
TO PREVENT AIDS

An investigator believed he discovered an improved method for preventing human
immunodef ciency virus (HIV) infection through blood transfusions. His method
required treating all transfusion recipients with a new drug called Blood Safe. At
the time of his discovery, the rate of HIV transmission via blood transfusions was
1 per 100,000 transfusions.
Having gained approval to study this drug in humans, the investigator set out

to design a randomized clinical trial for the initial use of the drug. He designed
a study in which a random sample of all blood transfusion recipients in a ma-
jor metropolitan area was asked whether they wished to receive the drug within
2 weeks after their blood transfusion.
The study enrolled 1,000 study group individuals who accepted the therapy.

An additional 1,000 individuals who refused Blood Safe were used as the control
group. Control group individuals had received an average of 1.5 blood transfusions
comparedwith 3 for the average individual receiving Blood Safe. The investigators
were able to obtain a follow-up HIV blood test on 60% of those receiving Blood
Safe and 60% of those who refused approximately 1 month after their date of
receiving a blood transfusion.
Those performing the follow-up blood testing were not aware of whether the

patient did or did not receive Blood Safe. The investigator found that one patient
in the study group was HIV-antibody-positive within 1 month after treatment with
Blood Safe. In the control group, two individuals were HIV-antibody-positive.
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The investigator did not f nd any evidence of side effects caused by Blood Safe
during the 1-month follow-up period. The investigator concluded that the study
established that Blood Safe was effective and safe. He advised administration of
Blood Safe to all blood transfusion recipients.

CRITIQUE: EXERCISE NO. 4

Method
The investigator intended to conduct a randomized clinical trial to test the hypothe-
sis that Blood Safe has eff cacy in preventing HIV infection via blood transfusions.
Randomized clinical trials are best suited to assessing the eff cacy of a therapy

once a def ned dose and method of administration have been developed during ini-
tial studies on humans. They are not well suited to the initial human investigations.
The absence of HIV testing before entry into the study is a major error in def ning
the population because we cannot be sure that the HIV-antibody-positive patients
converted from HIV negative to HIV positive after their blood transfusion.
The risk of HIV from blood transfusions at the time of the study was 1 per

100,000 transfusions, a very low risk. Randomized clinical trials that aim to re-
duce an already low risk require a very large number of individuals. Millions of
individuals would be required to properly conduct a randomized clinical trial when
the probability of occurrence of the disease is 1 per 100,000. A study of the size
here does not have adequate statistical power—that is, it has a very large Type II
error. In other words, this study would not be able to demonstrate statistical signif-
icance for this therapy even if Blood Safe were capable of substantially reducing
the incidence of AIDS from blood transfusions, for instance, from 1 per 100,000
to 1 per 1,000,000.

Assignment
The investigator identif ed a random sample of patients comparable to those who
might receive an effective therapy. Random sampling is not a requirement of
randomized clinical trials, but it does make extrapolation to those in the target or
the intended population who are not included in the trial more reliable.
However, the investigator did not randomize patients to the study and control

groups. The control group consisted of those who refused administration of Blood
Safe.Thus, despite the investigators intention to conduct a randomized clinical trial,
they did not conduct randomization, the essential feature of a randomized clinical
trial. The control group consisted of those who refused to participate. Thus the
control group may be different from those who agreed to participate in a number
of ways related to the potential for acquiring HIV infection. Randomization is
considered a critical characteristic of a randomized clinical trial. Therefore, this
study is not truly a randomized clinical trial. In addition, the assignment process
was defective because: (a) The investigators made only limited efforts to establish
the initial or baseline characteristics of their study and control groups; (b) they
indicated that the studygroup received an average of 3 blood transfusions compared
to 1.5 for the control group. This is an important difference because it may well be
related to the risk of developing HIV infections. Once the investigators recognized
this potential confounding variable, even if it were due to chance, it is expected
that they would take it into account as part of the analysis of results. Finally, (c)
the investigators did not mask the participants.
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Assessment
It is important to remember that the study is actually measuring HIV status after
the blood transfusion rather than conversion from HIV negative to HIV positive.
This could be considered an inappropriate measure because the important issue
is conversion. Those who assessed the outcome of this study were not aware of
whether the patient had received Blood Safe. This masked assessment helps to
prevent bias in the assessment process. The lack of masking in the assignment
process, however, means that patients were aware of whether they received Blood
Safe. This may have affected the precision or accuracy of assessment outcome; for
instance, those who received Blood Safe may have believed they were protected
from acquiring HIV infection.
The investigators assessed HIV-antibody status 1 month after the patients re-

ceived a transfusion. This is too early to accurately assess whether an individual
actually will convert to an HIV-antibody-positive status.
The large number of study and control patients who were lost to follow-up is

an important assessment problem even though the percentages lost were equal in
both groups. When the number of adverse outcomes is low, those lost to follow-
up become especially important. Those lost to follow-up may disproportionately
experience side effects or develop symptoms.

Results
The investigator did not report statistical signif cance testing or conf dence in-
tervals. The investigator in this study would not have been able to demonstrate
statistical signif cance. This is not surprising because a single additional case of
HIV infection would havemade the outcome in the study and control groups equal.
The conf dence interval in this study would be very wide, indicating that the

results of this study are compatible with no difference or even a difference in the
opposite direction.
As discussed under “Assignment,” the higher number of blood transfusions

among those who received Blood Safe is a confounding variable that should have
been taken into account through an adjustment as part of the analysis of results.

Interpretation
The previous method, assignment, assessment, and results f aws means that the
study must be interpreted with great care.
Although not performed in the study, the result of statistical signif cance testing

and conf dence intervals imply that the difference in HIV infections between the
study and control groups could be due to chance.
The probability of developing an HIV infection from blood transfusion in the

absence of administration of Blood Safe is so small that other means of acquiring
the HIV infection may be much more likely. Therefore, any difference between a
study group and a control group cannot automatically be attributable to Blood Safe.
The difference may be due to other risk factors for AIDS or even in HIV status
before the study. No data are presented that deal with these factors, which may
be far more important risk factors than blood transfusions. Thus the investigation
clearly does not achieve its goal of establishing all three criteria of eff cacy through
use of a well-designed randomized trial.
In terms of safety, the size of the investigation was too small to provide con-

vincing evidence of safety. Remember that the rule of three in reverse indicates
that if 1,000 individuals receive a treatment and there are no observed side effects,
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we can only say that if side effects exist, it is likely that they will occur no more
often than once per 333 times on average. While this may provide some assurance
of safety, rare but serious side effects may still occur even under the conditions of
the investigation.

Extrapolation
Even if Blood Safewas shown to have eff cacy in preventing transfusion-associated
HIV infections, one could not draw conclusions about its effectiveness or safety
in practice from this study.
Randomized clinical trials can draw conclusions about the eff cacy of therapy

under the ideal conditions of an investigation. Effectiveness implies that the therapy
has benef t under the usual conditions of clinical practice.
Using Blood Safe in clinical practice would imply administering Blood Safe to

very large numbers of individuals. Thus, rare but serious side effects are important.
Despite the absence of side effects among those who received Blood Safe in this
study, theymay still occur. Practice conditions, inwhich patientsmay havemultiple
diseases or be taking multiple medications, lends itself to many more side effects
than are usually observed in research studies.

Meta-analysis
FLAW-CATCHING EXERCISE NO. 5: MAGNESIUM CHANNEL BLOCKERS
AND CORONARY ARTERY DISEASE

Ameta-analysis was conducted to determine whether a class of medications called
magnesium channel blockers used for the treatment of hypertension is associated
at high dose with an increased frequency of coronary artery disease.
A total of 50 studies including 25,000 patients prescribed magnesium channel

blockers were identif ed by searching for all articles published in the leading peer-
reviewed journals. The authors initially sought to use only randomized clinical
trials, believing that these would provide the highest quality data. Because of
the inability to identify a suff cient number of randomized clinical trials, case-
control and cohort studies were also used. Studies were used in the meta-analysis
regardless of the specif cmagnesiumchannel blocker used by the study group or the
antihypertensivemedication used by the control group as long as the outcomebeing
assessed was coronary artery disease. A funnel diagram revealed an incomplete
funnel with missing small studies that were negative.
The studies examined the frequency of coronary artery disease regardless of

the def nition of coronary artery disease used in the studies. Graphic and statis-
tical methods were used to evaluate homogeneity. Separate meta-analyses were
conducted only when the results of a statistical signif cance test indicated that
there was heterogeneity. Separate meta-analyses were conducted for high-dose
verses low-dose treatment. Short- and long-acting medications were separable by
graphical analysis, but the differences were not statistically signif cant.
Overall, the meta-analysis demonstrated an odds ratio of 1.5 for coronary artery

disease comparing all patients on magnesium channel blockers with those on other
types of antihypertensive medications. The results were not statistically signif cant
even after two outlier studies were removed. For those on high-dose treatment, the
odds ratio for coronary artery disease was 2.0; it was 1.2 for low-dose treatment.
The authors drew the following conclusions:
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1. This meta-analysis included all appropriate investigations.
2. The methods used to search for relevant investigations were ideal.
3. The def nition of coronary artery disease as assessed by each article was the

only way to perform this meta-analysis.
4. As performed here, separatemeta-analyses are appropriate onlywhen statistical

signif cance tests indicate that there is heterogeneity.
5. The fact that the results of the meta-analysis were not statistically signif cant

implies that magnesium channel blockers does not cause coronary artery dis-
ease.

6. This meta-analysis establishes that magnesium channel blockers should not be
removed from the market.

CRITIQUE: EXERCISE NO. 5

Method
This was a hypothesis-driven meta-analysis designed to test the hypothesis that
magnesium channel blockers used at high dose for the treatment of hypertension
are associated with coronary artery disease. In a hypothesis-driven meta-analysis,
articles may be selected to meet the specif c features of the hypothesis. The authors
attempted to use only randomized clinical trials and exclude other types of inves-
tigations. This is a common approach, but an alternative approach is to include all
types of investigations, as was eventually done in this investigation. When there is
a question of the quality of the investigations included in a meta-analysis, it may
be possible to compare the results of different types of studies.
The large numbers of patients included in this meta-analysis means that it may

be possible to examine rare side effects. However, since serious side effects are
rare, we cannot always expect to be able to establish statistical signif cance.

Assignment
This meta-analysis included only studies published in leading peer-reviewed jour-
nals. Thus, other published articles and unpublished research was excluded. Even
if the authors argue that leading peer-review articles are the hallmark of qual-
ity, they should search for all relevant articles before deciding which to use. The
incomplete funnel with missing small studies with negative results suggests the
existence of publication bias.

Assessment
When there are a variety of ways to def ne the outcome under investigation, the
authors must decide how to measure it. At times, it may be desirable to use the
outcome as measured by each investigation in the meta-analysis, even if each
investigation measures the outcome differently as was done in this investigation.
However, it is desirable to determine if the results depend on the way the outcome
is def ned. Thus, it is often desirable to use more than one measure of outcome
and to determine if the results are different depending on the def nition used. If
the results do not depend on how the outcome is measured, then it is reasonable to
use an outcome measure that allows the meta-analysis to use the largest number
of relevant studies. Using the measure employed by each study as done here
accomplishes this goal of increasing the number of usable studies.
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Results
Using statistical signif cance testing to assess homogeneity has become a com-
mon practice in meta-analysis. However, when the number of investigations is
relatively small, these tests have limited statistical power to demonstrate statis-
tical signif cance. Graphical measures, on the other hand, give a better sense of
the relationship between the results of the investigations. When doubt exists, it
is preferable to perform separate meta-analysis using homogeneous groupings
of studies. For instance, in this example it might have also been important to
perform a meta-analysis separately for short-acting and long-acting magnesium
channel blockers. It is permissible to perform separate analyses if there is graphical
evidence that the results are heterogeneous even if heterogeneity cannot be estab-
lished by a statistical signif cance test. Differences between short-acting and long-
acting magnesium channel blockers might have helped to def ne the nature of the
relationship.

Interpretation
This investigation focus on unusual harms rather than on eff cacy or effectiveness.
Statistically signif cant results are possible for side effects in a large meta-analysis
but should not be expected even in a largemeta-analysis. Aswith any investigation,
it is important to look at the magnitude of the effect and not just at whether it is
statistically signif cant.
Outliers should be included in a meta-analysis of the overall data. Close ex-

amination of outliers as part of the interpretation is often useful in gaining new
insights. While the investigators examined the results with and without inclusion
of the outliers, they failed to closely look at the outlier studies themselves to see
what they could learn.
An incomplete funnel diagram suggests publication bias.When publication bias

exists, it can be helpful to calculate a fail-safe n.
Themost impressive f nding here is the existence of a dose-response relationship

suggesting that use of a high-dose magnesium channel blocker is associated with
an increased risk of developing coronary artery disease. While this dose-response
relationship is not in and of itself enough to establish a cause-and-effect relation-
ship, it does fulf lls one of the ancillary criteria. While this meta-analysis does not
def nitively demonstrate the existence of even an association between magnesium
channel blocker and coronary artery disease, it does provide additional supportive
evidence.

Extrapolation
If removal from themarket requiresmeeting the criteria of cause and effect it would
be diff cult to meet these criteria even using meta-analysis. Meta-analysis may
provide a more complete picture of the benef t and the harms allowing judgments
on benef ts vs. harms based on the available data. Assuming an association exists,
assumptions still must bemade in order to compare the relative benef ts and harms.
To address this, one needs to ask such questions as:Are there other equally effective
alternatives? Can the harm be eliminated by limiting the dose or duration? Are
there other important indications for magnesium channel blockers?
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Summary
Having critiqued the f aw-catching exercises in this chapter, youmay feel that there
are too many errors in research to draw useful conclusions. Of course, most health
research studies have far fewer errors than the hypothetical exercises presented
here. However, it may help you to remember that a certain number of errors are
unavoidable and that identifying errors is not the same as invalidating research.
The practice of clinical medicine and public health requires that practitioners

act on probabilities. A critical reading of the health research literature helps the
practitioner to def ne these probabilities more accurately. The art of reading the
literature is based on the ability to draw useful conclusions from uncertain data.
Learning to detect errors not only helps the practitioner to recognize the limitations
of a particular study, but also helps to temper the tendency to automatically put
the newest research results immediately into practice.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-12 Riegelman-1490G Riegelman-v9.cls August 30, 2004 9:25

134



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-13 Riegelman-1490G Riegelman-v9.cls August 20, 2004 20:3

II
Testing a Test

135



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-13 Riegelman-1490G Riegelman-v9.cls August 20, 2004 20:3

136



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-13 Riegelman-1490G Riegelman-v9.cls August 20, 2004 20:3
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Using the information obtained from tests to make decisions has become an in-
tegral part of the practice of medicine and public health. Thus it is not surprising
that studies designed to measure the information provided by diagnostic tests is
an increasingly important form of investigation. We will examine these types of
investigations in the Testing a Test section by using the M.A.A.R.I.E. approach
to look at method, assignment, assessment, results, interpretation, and extrapola-
tion. Let us begin by taking a look at method and asking the question, what is the
purpose of testing? The application of the M.A.A.R.I.E. framework to research on
tests is illustrated in Fig. 13.1.

Purpose of Testing
Testing can be seen as the collection of information that provides the basis for
decision making. When looked at this way, much of what is done in medicine
can be regarded as testing, from the history and physical examination to trials
of treatment. Not all purposes of testing are currently subject to the same degree
of scrutiny; therefore, it is helpful to begin by categorizing the basic purposes of
testing.
The use of testing to assist in ormake the diagnosis of disease is often considered

synonymous with testing. When testing is used as part of diagnosis, it assumes a
preliminary step, that of making an educated guess as to the probability of disease
prior to performance of the test. As we will see, the probability of the disease
after the test results are known is very much affected by what is called the pretest
probability or the prior probability of the disease. The pretest probability of the
disease is the best estimate, or “guestimate,” of the probability of disease before
obtaining the results of the test.
The pretest probability of disease is derived from four basic types of inputs.

To understand the sources of these four types of inputs imagine the following
individuals:
A 23-year-old woman
A 65-year-old male diabetic
The firs type of input is derived from the frequency of disease in populations or

groups of individuals similar to a particular patient. This is called the prevalence of
the disease. Prevalence indicates how common or probable the disease is in a par-
ticular population as define by demographics and the presence of other diseases.
These two patient profile represent very different probabilities of coronary

artery disease. The 23-year-old woman has a very low pretest probability of clin-
ically important coronary artery disease, well under 1%. The 65-year-old male
diabetic, on the other hand, has a considerably higher pretest probability of clin-
ically important coronary artery disease, most likely more than 20% by virtue of
his gender, age, and diagnosis of diabetes, regardless of any other risk factors or
symptoms.

137
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Figure 13.1. M.A.A.R.I.E. framework for investigations of tests.

Thus, what we know about the frequency of coronary artery disease in particular
populations, including the inf uence of demographic factors such as age andgender,
and the impact of other diseases such as diabetes provides the starting point for
establishing a pretest probability of the disease.
The second input into the pretest probability is the risk factor exposure of the

individual. Let us imagine the following pattern of risk factors in our 23-year-old
woman and 65-year-old man.
The 23-year-old woman with a strong family history of early coronary artery

disease exercises regularly, does not smoke cigarettes, and has a blood pressure of
110/70 and an LDL level of 100.
The 65-year-old male diabetic has no known family history of early coronary

artery disease but does not exercise regularly, is 30% over his ideal body weight,
has smoked 1 pack of cigarettes per day for 45 years, and has a blood pressure of
150/95 and an LDL level of 160.
Nowwe knowmuchmore about the pretest probability of disease. This informa-

tion from risk factors may modestly increase the probability that the 23-year-old
woman has clinically important coronary artery disease, while the presence of
multiple risk factors raises the pretest probability for the 65-year-old man, most
likely to the range of 40–60% or more.
Notice that the pretest probability itself often utilizes the results of previous

testing. Here, the blood pressure obtained on physical examination as well as LDL
level from laboratory testing are used to develop a pretest probability of disease.
Thus, one important purpose of testing is to help establish a pretest probability
prior to performance of another test.
The third input into the pretest probability is the pattern of symptoms presented

by the patient. Imagine the following in our patients:
The 23-year-old woman experiences chest pains radiating to her left arm when

she exercises strenuously.
The 65-year-old man with diabetes has not experienced chest pains or pressure,

including when walking slowly, which is his most strenuous form of exercise.
This information substantially raises the probability that the 23-year-old woman

has clinically important coronary artery disease but has little effect on the probabil-
ity for the 65-year-old man. Despite the presence of symptoms in the 23-year-old
woman, she still is far less likely to have clinically important coronary artery
disease than the 65-year-old man.
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Imagine that our 23-year-old woman and our 65-year-old man each undergo
exercise stress testing. The use of exercise stress testing on the 23-year-old woman
in this settingmay be called a diagnostic test because it is conducted in the presence
of symptoms. The same test conducted on the 65-year-old man would be called a
screening test, implying that it was conducted as part of a diagnostic process but
on a patient who was asymptomatic, that is, free of symptoms of coronary artery
disease.1
Now imagine the results of the exercise stress testing.
The 65-year-old man has an exercise test with strongly positive electrocardio-

graphic evidence of coronary artery disease. The results of the exercise stress test
for the 65-year-old man greatly increases the probability of coronary artery dis-
ease. Testing would generally not stop here. In fact, the results of the test would
be used to revise the probability of disease prior to more def nitive testing, such as
a coronary arteriogram.
Thus, the results of a test such as a screening test may be used to estimate the

pretest probability prior to conducting another test such as the coronary arteri-
ogram. Use of a prior screening test is a fourth source of data that may contribute
to our estimation of the pretest probability of a disease.
Imagine the results of a coronary arteriogram were as follows:
Coronary artery narrowing was present in all major vessels, with one vessel

having over 90% narrowing. On the basis of the coronary arteriogram, one-vessel
angioplasty is recommended.
This coronary arteriogram has been used as a def nitive diagnostic test. That is,

it is being used to def nitively def ne the presence or absence of the disease. Notice,
however, that the coronary arteriogram also serves as the basis for evaluating the
severity of the disease as well as the assisting in planning the therapy. These two
purposes of testing might be called testing for severity and testing for planning
therapy.
Now let us return to our 23-year-old woman.
When she exercised strenuously on a treadmill during her stress test, she repro-

duced her chest pain. The pain occured at the time she was experiencing an episode
of atrial f brillation without electocardiographic evidence of ischemia. Her atrial
f brillation was subsequently controlled through medication. A follow-up exercise
stress test was negative during strenuous exercise and she did not experience any
chest pain or discomfort.
This test was very helpful because it reproduced the patient’s symptoms and

allowed a correlation between the symptoms and the f nding on the test. The results
helped to reduce the probability of coronary artery disease, but more importantly,
they provided what can be called a test for causation.
Testing to correlate symptoms and diseases is becoming an important form of

testing. The use of the follow-up test not only conf rms the diagnosis but serves as
a test of the success of the treatment. This example illustrates one additional use
of testing that we will call monitoring the results of treatment.

1 Note that a patient may have symptoms and still be asymptomatic from the perspective of the
disease for which the screening test is being conducted. Also note that the term “screening” is also used
to imply that testing is being conducted in the presence of symptoms to provide information on which
of a number of conditions might be causing the condition such, as drug screening in the presence of
symptoms suggestive of drug abuse. This use of the term “screening” can be confusing and should be
distinguished from a screening test as used here.
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The examples of these two patients demonstrates most of the basic uses of
testing. Note that one test such as an exercise stress test or a coronary arteriogram
may be used for more than one of the following purposes.
� Testing for risk factors for disease
� Screening test: testing patients without symptoms for a particular disease
� Diagnostic testing: testing patient with symptoms for a particular disease
� Def nitive testing: testing to def ne the presence or absence of a disease in a
patient with previous positive test results on a screening or diagnostic test
� Testing for causation: testing to establish the relationship between symptoms
and disease
� Testing for severity of the disease
� Testing for planning treatment
� Testing to monitor the results of treatment

Thus testing can be used for a wide variety of purposes.2 The multiple uses of
testing can cause confusion when reading the results of a research article. Most of
the time research articles on tests address screening tests or diagnostic tests—that
is, testing for diagnosis on individuals who are either asymptomatic (screening) or
symptomatic (diagnostic testing) for a particular disease.
The research articles thatwewill focus on in the “Testing aTest” section examine

diagnostic and screening tests. Tests for other purposes are not often subjected to the
same degree of evaluation that are increasingly required for adoption of diagnostic
and screening tests.3
In order to identify the test that is being evaluated, the term index test is used.

Thus the f rst question to ask when reading an investigation on tests is: What is the
purpose for investigating the index test?
Until recently, research on diagnostic and screening tests has not been published

in a consistent format, often leaving the reader with many unanswered and unan-
swerable questions. Recently, a set of standard and comprehensive methods for
reporting investigations of diagnostic tests known as STARD (Standards for Re-
porting Diagnostic Accuracy) have been adopted bymany journals.4 These criteria
have been incorporated into the components of the M.A.A.R.I.E. framework for
Testing a Test.

Study Population
In examining the study population, we need to ask: Were the participants sim-
ilar to the population for which the test is intended i.e., the target population?

2 There are other possible uses of testing, including environmental testing to determine possible
exposure to a risk factor and testing to provide a baseline for subsequent diagnostic testing. Environ-
mental testing will not be discussed here. Baseline testing can be considered a method for substituting
individual data for population data.

3 Tests of prognosis, for instance, have traditionally only required biological plausibility. Increasingly,
methods known as prediction rules are being used to evaluate the ability of tests to predict the future for
individuals. Prediction rules differ from other types of evaluations of testing in that they require good
calibration as a measure of outcome, not just good performance. Calibration is a measurement of how
well the test performs not only for the average participant in an investigation but also for those that
have characteristics far removed from the average. Use of tests for monitoring safety and effectiveness
are not usually expected to be rigorously evaluated.

4 STARD Initiative: checklist and f owchart, f rst off cial version, January 2003, www.consort-
statement.org/stardstatement.htm (May 20, 2004).

http://www.consort-statement.org/stardstatement.htm
http://www.consort-statement.org/stardstatement.htm
http://www.consort-statement.org/stardstatement.htm
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The investigation’s setting as well as specif c inclusion and exclusion criteria
provide the basis for understanding the population from which the participants
come. Ideally, the participants should ref ect the range of severity and other char-
acteristics of the disease that are expected when the test is used on its target
population.
Let us see what can happen when the participants used for evaluation of a test

are quite different from the people for which the test is intended.

A test is intended to be used to make an early diagnosis of myocardial infarction. It
was evaluated on patientswho presentedwith chest pain in a cardiologist’s off ce. The
patients were included even if they had a previous myocardial infarction. The results
of the test indicated excellent diagnostic performance in early diagnosis ofmyocardial
infarction. When the same test was used in emergency rooms on all patients with
chest pain compatible with myocardial infarction, the test did not perform nearly as
well.

The patients being followed by cardiologists are likely to have had a previous
myocardial infarction.These patients are at high risk of a recurrent episode. Patients
presenting in the ER are most likely at lower risk of MI. Therefore, it is important
the we consider whether the setting for the test and the indications for the test
are the same in the target population in the ER as they are in the investigation’s
setting in a cardiologist’s off ce. If the intent is to use the test on ER patients, it is
important that the investigation be conducted in ERs or a similar setting.
In order to describe the participants, the STARD criteria expects that investi-

gators will indicate their inclusion and exclusion criteria. In addition, as we will
see in the Assignment chapter, considerable detail is expected on the process of
patient recruitment that along with the inclusion and exclusion criteria ultimately
determine whether the participants are representative of the target population for
whom the index test is intended.

Sample Size and Statistical Power
Participants in an investigation of diagnostic accuracy undergo the test under eval-
uation, i.e., the index test, as well as a second test. This second test is the best
available or agreed-upon method for def nitively diagnosing the presence or ab-
sence of the disease. This def nitive test is called the reference standard or the gold
standard. As we will see, the data for evaluating tests comes from comparing the
results of the index test and the reference standard test.
We need to ask: How may participants need to undergo the index test and the

reference standard test to provide adequate statistical power? That is, what is the
expected sample size?
It may be surprising to learn that sample size for evaluating diagnostic and

screening tests have not been agreed upon. The STARD recommendations do not
make specif c recommendation for the number of participants.5

5Despite the absence of clear-cut recommendations for the number of participants, as wewill discuss
in the Results chapter, investigators are now expected to report the conf dence intervals around their
results. This has the effect of encouraging larger sample sizes. Often investigators will utilize a sample
in which half of the patients have the disease as def ned by the reference standard test and half have
been shown to be free of the disease according to the reference standard test. This approach is attractive
because it helps minimize the total size of the sample that needs to be included in the investigation.
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Despite the absence of specif c recommendations for sample size, some general
guidelines are useful. For diagnostic tests in which the pretest probability is moder-
ately high, 100 to 200 participants are usually adequate. When we are dealing with
screening tests with a low pretest probability of disease, 1,000 or more participants
are often required to adequately evaluate an index test.6
Now we have addressed the basic issues of the method component. We have

focused on the purpose of the testing, the study population, and the sample size.
Now we can take a look at the Assignment chapter and examine the characteristics
of the participants and the conduct of tests.

6 The issue of statistical power in evaluating diagnostic tests is different from hypothesis-testing
investigations since there is no hypothesis that the index test differs from the reference standard test.
The clinically relevant question is, what is the conf dence interval around the measurement of results
such as the sensitivity and specif city?Hypothesis testingmaybe relevantwhen tests are being compared
to one another. In this situation large numbers of participants are often required in order to produce
substantial statistical power to demonstrate statistically signif cant difference between the performance
of two tests. Sample size for case-control studies might be used as a guide for sample size in evaluating
diagnostic tests. The use of from 100 to several hundred patients with and also without the disease can
serve as general guidelines for appropriate sample size for investigations of diagnostic tests, especially
when the pretest probability of the disease among those who receive the test are in the range of 50%.
The evaluation of screening tests require a considerably larger sample size. Their sample size often
parallels that of cohort studies or randomized clinical trials.
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The assignment process in investigations of diagnostic tests describes the recruit-
ment of patients, how they were assigned to comparison groups, and how the index
test and the reference standard test were conducted.

Recruitment
It is important that the investigators report and the reader understand how the
participants included in the testing sample was recruited. Recruitment is the pro-
cess of identifying individuals who fulfil the inclusion and exclusion criteria and
turning them into study participants. Recruitment can occur through a variety of
mechanisms, from advertising to inviting all eligible patients coming to an ER to
become participants. The mechanism used may affect the types of individuals who
become participants, as illustrated in the next example.

One investigator conducted a study of a new test for cardiac output by recruiting
patients in a tertiary care (referral) hospitalwhohad ahistoryofmyocardial infarction.
A second investigator studied the new test by recruiting participants from a retirement
community. The performance of the test was very different in these two populations
despite the fact that all participants in both studies fulfille the inclusion and exclusion
criteria.

Patients recruited in a tertiary care hospital may differ from those recruited in a
retirement community in subtle and not so subtle ways. Even when efforts are
made to take into account the severity of disease, these two studies are likely to
include very different types of participants. It may be useful to investigate the new
test on different types of populations, but we should not be surprised to fin quite
different results.
According to the STARD recommendations, the investigator needs to indicate

the beginning and end dates of recruitment as well as the setting(s) and location(s)
where the datawere collected. The clinical and demographic characteristics such as
age, sex, spectrum of presenting symptoms, and other conditions and treatments
need to be reported. The reader should be especially interested in whether the
participants’ severity of disease is likely to be similar to that of the target
population.

Assignment Process
Investigations need to report themethod of assignment of participants. Participants
may be assigned in three basic ways:

1. Recruit all patients from a particular setting who fulfil entry and exclusion
criteria, such as having specifi signs or symptoms, before they have had either
the index test or the reference standard test.

143
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2. Identify individuals with the disease and without the disease as def ned by the
results of the reference standard test. Those who are identif ed are then recruited
to subsequently undergo the index test.

3. Identify individuals who have already undergone the index test and who then
are recruited to subsequently undergo the reference standard test.

The f rst of these methods is considered the best way to assign participants. It helps
ensure that the participants are representative of all those who fulf ll the inclusion
and exclusion criteria.Methods number 2 and 3 are also used and can each produce
errors in investigations.
When using method 2, we need to ask whether those chosen ref ect the full

spectrum of the disease that we are interested in. It is tempting for the investigator
using this approach to include only those with clear-cut disease and those in good
health. When those in the gray area, such as those with other diseases of the same
organ system, are included, the results may be very different, as illustrated in the
next example.

An investigation of a new test for prostate cancer began by identifying those with
prostate cancer and age-matched men who had no evidence of prostate cancer ac-
cording to the reference standard test and no evidence of other prostate disease. Those
with and without prostate cancer then received the new test. The investigator found
that the new test was as good as the reference standard test. When used in practice,
the new test did not perform as well because it was often positive for those with
moderate to severe benign prostate hypertrophy.

This failure to include those with other diseases that might also be positive on the
test is called spectrum bias.
Method 3 is also prone to bias. When participants are identif ed based on having

already undergone the index test, there is the possibility for what is called verifica
tion bias. Let us see how verif cation bias can occur and its potential consequences
in the next example.

A new test for coronary artery disease was evaluated by obtaining data on all patients
who underwent the new test andwere then recruited to undergo the reference standard
coronary arteriogram. Only a small percentage of those who underwent the new
test were willing to volunteer to undergo the invasive reference standard test. The
new test performed extremely well against the coronary arteriogram. When another
investigator evaluated the new test by obtaining the new test and also a coronary
arteriogram on all those who were eligible for an investigation, the new test did not
perform well.

In this example, only those who already had undergone the new test and agreed to
undergo the reference standard test are included in the investigation. Those who
underwent the new test but not the reference standard test may not volunteer for a
variety of reasons. For instance, theymay have had such an unequivocally negative
test that they did not want to accept the potential harm of the coronary arteriogram.
Alternatively, they may have had such a positive test that it was decided to act on
the basis of the results of the patients’ condition and the new test.
Thus, whenever patient are assigned based on having already had either the

index test or the reference standard test, there is the potential for bias. Ideally,
participants are recruited who meet inclusion and exclusion criteria and have not
undergone either the index test or the reference standard test. That is method
number 1.
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Even when method number 1 is used, the STARD criteria require reporting the
number of eligible individuals who are excluded and the reasons for exclusion. Let
us see how exclusion of patients might affect an investigation in the next scenario.

Investigators offer a new test along with a reference standard test to all patients who
presented with hematuria. The test requires transurethral insertion of a f beroptic
scope. Most of the patients who agreed to the test had gross hematuria, while most of
thosewhomet the inclusion and exclusion criteria but refused the test hadmicroscopic
hematuria. The test performed very well among those recruited for the investigation.
However, when used in practice, the test failed to detect the types of pathology often
associated with microscopic hematuria.

When an investigation is conducted on only a subset of the intended population of
participants, it should not come as a surprise when its performance on the patients
like those excluded from the investigation is not as good as on the types of patients
included. Thus, it is important to understand not only the inclusion and exclusion
criteria but to appreciate the types of participants that were actually included in
the investigation.

Eligible Patients
n =

Excluded Patients
Reasons n =

Inconclusive

Reference standard Reference standard

Negative
n =

Positive
n =

Index test
n =

Missing
n =

Missing
n =

Missing
n =

Reference standard

Figure 14.1. Flow chart for displaying recruitment process and excluded patients plus index
and reference standard tests andmissing patients. (Adapted fromSTARD Initiative checklist
and f ow diagram. www.consort-statement.org/stardstatement.htm (May 20, 2004).

http://www.consort-statement.org/stardstatement.htm
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Because of the importance of understanding the characteristics of participants,
the STARD criteria strongly encourage investigators to include a f owchart which
indicates the characteristics of not only the participants but also indicates the
reasons for exclusion of thosewhomet the eligibility criteria. Figure 14.1 illustrates
the type of f owchart that should be included in a journal article to provide data on
recruitment as well as any participants missing from the reference standard test.
Investigations of tests may be conducted by comparing one index test to a

reference standard. Alternatively, an investigationmay compare two or more index
tests. When comparing two or more tests we need to ask how the participants were
assigned to groups.
As with the types of investigations we examined in the Studying a Study section,

it is possible to assign participants to study and control groups by observing their
condition, or it is possible for an investigator to intervene and assign the patients
using a process of randomization. When ethical and practical, randomization is a
better method because it helps ensure that the participants in each group will be
similar. This can have important implications for the results, as illustrated in the
next example.

Two methods for detection of coronary artery disease were compared to the same
reference standard test. One method required invasive testing and the other required
only blood tests. The patients’ physicians advised each patient on which group to
enter. The investigation found that the invasive test performed better.

The investigators have observed the assignment rather than use a process of ran-
domization. Thus we can regard this as a special type of cohort study that investi-
gates a test. It is likely that those who received the blood tests were different than
those who chose the more invasive test. For instance, one group may have had
more advanced or more clear-cut disease. These differences may affect the results
of the test.

Conduct of Tests
The technical details of the conduct of the index test and the reference standard
test need to be described in suff cient detail, or citations provided, to allow for
replication of the investigation. According to the STARD criteria, these details
should include:
� Technical specif cations ofmaterials andmethods used, including how andwhen
measurements were taken
� The training and expertise of individuals conducting and reading the test

In addition, the investigator needs to provide information on the reference stan-
dard test indicating the rationale for its use to establish a def nitive diagnosis. The
selection of the reference standard testmay not be straightforward. In order to com-
pare the results of the reference standard testwith the index test, the reference stand-
ard test needs to def nitively diagnose those with and those without the disease.
To accomplish this goal, invasive tests such as biopsies may need to be used.

Determining the best reference standard test can itself be an important issue, since
to paraphrase Will Rogers, nothing is certain except biopsy and autopsy, and
even these may miss the diagnosis. Let us see the type of problem that may be
encountered in selecting an appropriate reference standard test in the next example.
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One hundred individuals who were admitted to a hospital with diagnostic Q waves
on their electrocardiograms (ECGs) and who died within 1 hour of admission were
autopsied for evidence of myocardial infarction (MI). The autopsy was used as the
reference standard test for MI. Autopsy revealed evidence of MI in only 10 patients.
The authors concluded that the ECGwas not a useful method ofmaking the diagnosis
of an MI. They insisted on the reference standard test of pathologic diagnosis.

The usefulness of all index tests is determined by comparison to a reference stan-
dard test that has previously been shown by experience to def nitively diagnose
the disease under study. Autopsy diagnoses may be used as the reference standard
test. However, even an autopsy may be a less-than-perfect measure of disease, as
illustrated in this example, because the pathologic criteria for MI may take con-
siderable time to develop. It is possible that the diagnostic Q waves on an ECG
are a better ref ection of a MI than pathologic changes at autopsy. The investigator
should be sure that the reference standard test selected has, in fact, been shown to
be the def nitive standard for diagnosis.
Two specif c relationships between the conduct of the index test and the reference

standard test should be examined:

1. Were the investigators masked as to the results of the other test?
2. Were there any interventions that occurred between the conduct of the index

test and the reference standard test?

Those who conduct the index test and the reference standard test should ideally
be masked as to the results of the other test. That is, neither those who conduct nor
read either test should be aware of the outcomes of the other test. Let us see how
this expectation might be violated in the next example.

A gastroenterologist was investigating a new test for gastric cancer. He properly
identif ed and recruited the participants. He then conducted the new test during the
course of an endoscopy. He compared the results of the new test to the results of the
endoscopy, using the endoscopy as the reference standard test.

Though convenient, having the endoscopist perform and read both the reference
standard test and the index test does not result in masking. The investigator here
is aware of the results of the endoscopy when obtaining and reading the results
of the new test. To avoid this problem would have required two investigators to
participate in the endoscopy process, one performing the endoscopy itself and the
other performing and reading the new test, each without knowledge of the other’s
f ndings.
In addition to reporting whether masking occurred, the STARD criteria expect

the investigators to indicate the time interval between the tests and whether any
treatment was administered between conducting the tests. The following example
illustrates how intervening time and treatment might affect the results.

An investigator properly identif ed and recruited patients to investigate a new test for
asthma. Participants were initially administered the new test. Two weeks later, after
having receiving whatever treatments were provided by their attending physicians,
they underwent a reference standard test. The new test did not perform as well as
expected when compared to the reference standard test.

Ideally, the index test and the reference standard test should be performed within
a brief period of time. The administration of treatment between the two tests may
make itmore diff cult for the subsequent test to detect the disease. This is especially
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important in a disease such as asthma, where the treatment can hide the existence
of the disease even when tested by a reference standard test.
Thus the process of assignment requires the investigator and the reader to look

closely at how the individuals were recruited and assigned to receive the index
and reference standard tests and how these tests were conducted. Once this is
accomplished, the next step is to look at the measurements made as part of the
assessment process.
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The assessment process in studies of testing, like the assessment process in other
types of investigations, addresses the issues of measurement. When performing
the measurements, we usually aim to establish whether the diagnostic test is pos-
itive or negative. Thus we firs need to examine how positives and negatives are
defined

Definitio of Positives and Negatives
The STARD criteria expect the investigators to report the definitio and rationale
for definin positive and negative test results. As we will see, there are a several
methods that may be used to defin positive and negative results for the index test.
When the test claims to either detect or fail to detect a condition, definin

positives and negativesmay be quite straightforward, such aswhen a test is positive
or negative for growth of an organism or presence of a drug.1
However, this in not the situation when tests provide numerical data such as the

prostate-specifi antigen test, pulmonary function testing, or even such basic tests
as the hemoglobin level. The investigators then need to defin what they mean by
a positive and a negative. This often requires the use of cutoff lines or cutoff points
that separate negative from positive measurements.
In order to utilize a test that produces quantitative results, the authors need to

report the procedure used to establish these cutoff lines. Often this entails devel-
opment of what is called the reference interval or range of normal. The reference
interval often divides test results into below the reference interval, within the ref-
erence interval, and above the reference interval.2
Most clinical laboratory results are reported using the concept of a reference

interval. Laboratory reports often express this reference interval as, for example,
30± 10 or 60± 40.
The firs reference interval should be interpreted as 20 to 40 and the second as

10 to 100. 3

1 Even for tests that appear to have only positive and negative results, there may be levels below
which the test is define as negative and above which the test is define as positive. This may by due to
the presence of cross-reacting substances that may naturally be present, because the test is not reliable
below a certain level, etc.

2 Here we will proceed under the assumption that a negative test result is a result that is within the
reference interval and a positive result is one that is above the reference interval. Low levels on a
test may or may not be of importance, depending on the nature of the test and of the disease. When
low levels are associated with a disease, the same basic principles apply for definin a positive and a
negative test.

3 It is important to distinguish the method for presenting reference intervals from the method
used to present confidenc intervals. Data may at times be presented as an observed value plus
and minus the standard error, e.g., 30± 10. In this situation the confidenc interval is approximately
30± 2 (10) or 10 to 50. To avoid this confusion, it is recommended that confidenc intervals be
presented as follows: 30 (95% confidenc intervals 10, 50) where 30 represents the observed value,
10 represents the lower 95% confidenc limit and 50 represents the upper 95% confidenc limit.

149
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Let us take a look at how a reference interval is obtained using the traditional
approach. Then we will examine the limitations of this approach and outline other
methods that are increasingly being used to def ne positives and negatives.
The reference interval values may be developed using the following steps:

1. The investigator locates a particular group of individuals who are believed to be
free of the disease for which the test is being conducted. This group is known
as the reference sample group, but for clarity we will call it the disease-free
group. These individuals are frequently students, hospital employees, or other
easily accessible volunteers. Usually they are merely assumed to be free of the
disease, although at times they may undergo extensive testing to ensure they do
not have the disease that the test attempts to diagnose.

2. The investigator then performs the test of interest, i.e., the index test, on all the
individuals in the disease-free group and plots their test measurements.

3. The investigator then calculates a reference interval that includes the central
95% of the disease-free group. Strictly speaking, the reference interval includes
the mean (average) measurement plus or minus the measurements within two
standard deviations from the mean. Unless there is a reason to do otherwise,4
the investigator chooses the central part of the range so that 2.5% of disease-
free individuals have measurements above the reference interval and 2.5% of
disease-free individuals have measurements below the reference interval.

To illustrate the development the reference interval, imagine that investigators have
measured the heights of 100 male medical students and found numerical values
that looked like those in Fig. 15.1.
The investigators would then def ne a reference interval that includes 95 of the

100 male medical students. Unless they had a reason to do otherwise, they would
use the middle part of the range so that the reference interval for this “disease-free
group” would be from 60 to 78 inches.
Let us look f rst at the implications of those principles for calculating the ref-

erence interval and illustrate the errors that can result from failure to understand
these implications.
� By def nition, 5% of a group without disease will have a measurement on a
particular test that lies outside the reference interval.

As suggested by our reference interval for male medical students, individuals
outside this rangemaynot have any disease; theymay simply be healthy individuals
who are outside the reference interval. Thus, outside the reference interval and
disease are by no means synonymous. The more tests that are performed, the more
individuals there will be who do not have a disease but whose numerical values
are outside the reference interval on at least one test.
Taking this proposition to its extreme, onemight conclude that a “normal” person

is anyone who has not been investigated suff ciently. Despite the absurdity of this
proposition, it emphasizes the importance of understanding that the def nition of
the reference interval often intentionally places 5% of those without the disease

4One reason to do otherwise is when the distribution of the test measurements is not symmetrical. An
alternative in this situation is to perform a transformation such as a logarithmic transformation which
may produce a symmetrically distribution. Use of the central 95% or the mean +/− two standard
deviations may then still be a useful approach. At times, levels beyond one end of the reference
interval, often the lower end, may also be included in the def nition of negative. For instance low levels
of uric acid or cholesterol are not considered to be outside the reference level.When this is the situation,
the 5% outside the reference interval may refer entirely to those with levels above the cut-off point of
the reference interval.
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Figure 15.1. Heights of 100 male medical students used to derive a reference interval.

outside the reference interval. Thus, the phrase “outside normal limits” or “outside
the reference interval” must not be equated with disease, and outside the reference
interval should not be labeled “abnormal.”
Let us see how the impact of violating this principle in the next example.

In a series of 1,000 consecutive health maintenance examinations, a series of 12
laboratory tests was done on each patient even though no abnormalities were found
on a history or physical examination. Five percent of the tests were outside the
reference interval, a total of 600 tests. The authors concluded that these test results
fully justif ed doing the 12-test panel on all health maintenance examinations.

A reference interval, by def nition, usually includes only 95% of those who are
believed to be free of the condition. If a test is applied to 1,000 individuals who are
free of a condition, on average 5%, or 50 individuals, will have test results outside
the reference interval. If 12 tests are applied to 1,000 individuals without evidence
of disease, then on average 5%of 12,000 tests will be outside the reference interval.
Five percent of 12,000 equals 600 tests.
Thus, even if these 1,000 individuals were completely free of disease, one could

expect on average 600 test results that are outside the reference interval. Thesemay
merely ref ect the method of determining the reference interval. Remember that
test results outside the reference interval do not necessarily indicate disease and do
not by themselves justify doing multiple laboratory tests on all health maintenance
examinations.5

5 In considering the implications of test results, it is important to realize that all levels outside the
reference interval do not carry the same meaning. Numerical values well beyond the limit of the
reference interval may be much more likely to be caused by disease than numerical values that are near
the borderlines of the reference interval. Test results nearer the limits of the reference interval are more
likely to be due to variation of the test or to biologic variation. For instance, if the upper limit of male
hematocrit is 52, then a value of 60 is more likely to be associated with disease than a value of 53.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-15 Riegelman-1490G Riegelman-v9.cls August 25, 2004 0:24

152 Section II. Testing a Test

� The reference interval used needs to be derived from individuals like those on
whom it is being used.

In general, the reference interval is calculated using one particular disease-free
group. Therefore, when applying the reference interval to a particular individual,
we need to ask whether a particular individual has a reason be different from those
in the disease-free group.
For instance, if male medical students are used to obtain a reference interval

for height, this reference interval may not be applied to women. One might even
have to be careful applying it to older individuals or perhaps even students not in
medical school. The type of problem that can result from using an inappropriate
reference interval is illustrated in the next example.

A group of 100 male medical students was used to establish the reference interval
for granulocyte counts. The reference interval was chosen so that 95 of the 100
granulocyte counts were included in the range of normal. The reference interval
for granulocyte count was determined to be 2,000 to 5,000. When asked about an
elderly black man with a granulocyte count of 1,900, the authors concluded that this
patient was clearly outside the reference interval and needed to be further evaluated
to identify the cause of the low granulocyte count.

It is unlikely that there are many elderly black men among the group of medical
students used to establish the reference interval. In fact, elderly black men have
a different reference interval for granulocyte count than elderly white men. Thus,
the reference interval established for the medical students may not have ref ected
the reference interval applicable to this elderly black man. This gentleman was
well within the range of normal for an individual of his age, race, and sex. Because
elderly black men are known to have a lower reference interval for granulocyte
counts, this must be taken into account when interpreting the test results.
� Changes within the reference interval may be pathologic.

Because the reference interval includes a wide variation in numerical values,
an individual’s measurement may change considerably and still be within the
reference interval. For instance, the reference interval for the liver enzyme AST is
8 to 20 U/L, the range of normal serum potassiummay vary from 3.5 to 5.4 mEq/L,
and the reference interval for serum uric acid may vary from 2.5 to 8.0 mg/dL.
It is important not only to consider whether an individual’s measurement lies

within the reference interval but also whether the individual’s test result has
changed over time. The concept of a reference interval is most useful when no
historic data are available for the individual. When previous results are available,
however, they should be taken into account, as illustrated in the next example.

Among 1,000 asymptomatic Americans with no known renal disease and with no
abnormalities showing on urinalysis, the reference interval for serum creatinine was
found to be 0.7 to 1.4 mg/dL. A 70-year-old woman was admitted to the hospital
with a serum creatinine of 0.8 mg/dL and was treated with gentamicin. On discharge,
she was found to have a creatinine value of 1.3 mg/dL. Her physician concluded that
because her creatinine was within the reference interval on admission as well as on
discharge, she could not have had renal damage secondary to gentamicin.

The presence of a result within the reference interval does not ensure the absence
of disease. Each individual has a disease-free measurement that may be higher
or lower than the average measurement for individuals without disease. In this
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example, the patient increased her serumcreatinine over 60%but still fellwithin the
reference interval. The change in the creatininemeasurement suggests a pathologic
process occurred. It is likely that the gentamicin produced renal damage. When
historic information is available, it is important to include it in evaluating a test
result. Changes within the range of normal may be a sign of disease.6

� The reference interval must not be confused with the desirable range of test
results.

The reference interval is an empirical measurement of the way things are among a
group of individuals currently believed to be free of the disease. It is possible that
large segments of the community may have test results that are higher (or lower)
than ideal and may be predisposed to develop a disease in the future, even though
the results are within the reference interval. For instance, imagine the following
example.

The central 95% of total serum cholesterol level is determined among 100 American
men aged 20 to 80 years who reported no evidence of coronary artery disease. The
reference interval was found to be 200 to 300 mg/dL. A 45-year-old American man
was found to have total serum cholesterol of 250 mg/dL. His physician informed him
that because his cholesterol was within the traditionally def ned reference interval,
he did not have to worry about the consequences of high cholesterol.

Remember that the reference interval is calculated using data collected from a
group currently believed to be free of the disease. It is possible that the disease-
free group consists of many individuals whose results on the test are higher (or
lower) than desirable. A result within the central 95% does not ensure that an
individual will remain free of the disease.
Thus the reference interval def nes the way things are, not the way they should

be. American men as a group have higher than desirable cholesterol levels. Thus,
an individual with a cholesterol of 280 mg/dL may well suffer the consequences
of high cholesterol. When research data strongly suggests a range of desirable
numerical values for a test, it is permissible to substitute the desirable range for the
usual reference interval. This is now standard procedure for serum cholesterol. 7
As this example illustrates, the reference interval approach to def ning negative

and positive is not the only approach. The use of the reference interval assumes that
we do not knowwhat an individual’s level should be, and therefore we need to rely
on the test level as determined for otherswhoare believed to be free of the condition.
These limitations of the reference interval suggest other methods for def ning a

negative and a positive result. At times each of these may be useful clinically:

� Use of a different range of normal for different ages, gender, race or other
characteristics
6 This example also ref ects the fact that older individuals have a different serum creatinine reference

interval than young individuals, and women have a different creatinine reference interval than men
because serum creatinine ref ects the quantity of muscle mass. This example also suggest that previous
levels for a test may also indicate the desirable level for an individual. This is the rationale for estab-
lishing and using baseline levels that establish an individual’s level prior to the onset of a condition or
disease.

7We can use evidence based on subsequent outcomes to def ne the reference interval. This approach
requires long-term follow-up rather than comparing the results of the index test to the reference standard
test. Thus, it is often not a practical approach to def ning positive and negative results.
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� Use of an individual’s own baseline level on the test at a time when they are
believed to be free of the disease—i.e., an individual’s own desirable level
� Use of a desirable interval based on long-term follow-up of individuals with
varying levels

For research purposes, another approach is increasingly being used. Using this
approach, no def nition of a positive or negative is used during the assessment
component. The def nition of positive and negative is established only after com-
paring themeasurements obtained using the index test to the results of the reference
standard test. In this approach a positive result and negative is later def ning after
f rst determining the cutoff point at which the index test’s performance is the best.
We will examine this approach in the next chapter.

Precision
In addition to establishing whether the measurement obtained from an index test
is positive or negative, we also need to ask whether the test is precise. Precision, or
reproducibility, implies that the results are nearly identical when repeated under the
same conditions. Let us see how failure to repeat the test under the same conditions
can mislead us, as illustrated in the following example.

The precision and accuracy of a test of serum cortisol levels were evaluated by
selecting 100 study subjects and drawing two blood samples from each individual.
The f rst test was obtained at 6 a.m. and a second at noon. The authors found that, on
average, an individual’s second test result was twice the level found in the f rst test.
They concluded that the large variation indicated that the test was not precise.

Precision, or reproducibility, implies the test produces nearly the same results
when conducted under the same conditions. In this example, the investigators did
not repeat the test under the same conditions. Throughout the day and night, a
physiologic cycle occurs in individuals’ cortisol levels in which they are lowest in
the early morning. By drawing blood at 6 a.m. and again at noon, the investigators
were testing at different points in this cycle. Even if the test itself was completely
reproducible, the different conditions of the subjects would produce variation in
the test results.
Studies that examines the reproducibility require that the test be read or inter-

preted twice. A reproducible test should produce nearly identical results when read
by two readers or observers, or by the same observerwhen they are unaware of their
own reading on the f rst attempt. This is called interobserver and intraobserver
reproducibility.
Interobserver reproducibility is evaluated by have two investigators record their

test results without knowing the results of the other investigator. Intraobserver error
is evaluated by having the same investigator obtain results twice. The second read-
ing occurs without the observer knowing their ownmeasurement on the initial test.
Let us see how these conditions may be violated when evaluating precision, as

illustrated in the next example.

An investigator studying the reproducibility or precision of urinalysis asked an expe-
rienced laboratory technician to read a urinalysis sediment, to leave the slide in place,
and then to repeat the reading in 5 minutes. The investigator found that the reading
performed under the same conditions produced perfectly reproducible results.
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In this example, the technician knew the results of the f rst test and was likely to
have been inf uenced by the f rst reading when reexamining the urine 5 minutes
later. Determining that a test’s results are reproducible requires that the second
measurement be performed without knowing the results of the f rst measurement.
Whenever an observer’s assessment is needed to obtain the results of a test,

there is potential for interobserver and intraobserver variations. Two radiologists
frequently read the same x-ray f lm differently (i.e., interobserver variation). An
intern may interpret an electrocardiogram differently in the morning than he or
she did when reading the same test performed in the middle of the night (i.e.,
intraobserver variation).
Reproducibility of test measurements ensure us that the measurements obtained

can be relied on to be the same if and when the test is repeated. Reproducibility
is sometimes called reliability because when it is present, we can rely on the
measurement obtained from using the test once.
Reproducibility of an index test can be expressed quantitatively.8 The STARD

criteria do not require a quantitative assessment of reproducibility. However the
STARD criteria does require reporting the methods used and the estimates of
reproducibility obtained if these were conducted.9

Completeness
When participants are recruited based on inclusion and exclusion criteria, the aim
is for all patients to undergo both the index test and the reference standard test. It is
possible that participants may undergo one of the tests, usually the index test, and
then fail to have the other test. This is a form of loss to follow-up that, like other
forms of loss to follow-up, can bias an investigation if those lost to follow-up are
different from those who remain.10
Thus, at a minimum the investigators are expected to report the number and

characteristics of those who are lost to follow-up. This is usually done as part of
the overall f owchart of participation.
In addition to the issue of completeness, test results may at times be inconclu-

sive or indeterminant. For instance, lung scans as a test for pulmonary embolism

8Notice that the question of precision is generally related to the index test and not to the reference
standard test. Even though reference standard tests may not be completely reproducible, they are
assumed to have perfect precision as well as perfect accuracy.

9Kappa scores are a widely used measurement of agreement between results of tests. Kappa scores
vary from 0 to 100%, but it is important to recognize that a Kappa score of 50% or .5 represents
only chance agreement. A statistic called Phi has been proposed as an alternative to Kappa. Phi =
[(

√
Odds ratio 2 ) −1)] / [(√Odds ratio 2 ) +1)]. When the odds ratio is greater than 1, Phi=(Odds

ratio−1) / (Odds ratio+1 ). Phi can vary from+1 to−1, with 0 indicating only chance agreement. Thus
the magnitude of Phi as opposed to Kappa directly indicates the extent of agreement. It may be argued
that Phi could also serve as a measurement of test performance instead of discriminant ability. This
would allow use of the odds ratio to relate the measurements for reproducibility (or extent agreement),
the performance of a test, and the estimate of the effect size.

10 The reason for the absence of a test result may not be known and the measurement may be referred
to as missing. When results are missing, it is tempting to assume that the measurements are on average
the same as those for other similar participants. When this is done we say that the data is interpolated.
Interpolation is a general term implying that data is f lled in, usually between two points that are actually
measured, as opposed to extrapolation that implies that data is extended beyond the points actually
measured. The form of interpolation referred to here makes the assumption that missing data is missing
by chance and therefore the measurement would have been on average the same as the data on those we
were not missing. This assumption may often turn out to be incorrect. Thus when using interpolation,
is it often important to also analyze the data by excluding participants with missing data.
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are often reported as three potential outcomes: low probability or negative, high
probability or positive, and intermediate probability or inconclusive.
A test may also be indeterminant because it was not possible to successfully

complete the test for technical reasons; failure of the patient to be willing or able
to fully cooperate; or a variety of other reasons.
When a large percentage of the results are indeterminant or inconclusive, this

may greatly affect the value of the test, as illustrated in the next example

A new index test for acute aortic rupture was shown to produce results very similar to
the reference standard when it is positive and also when it is negative. However, over
50% of the time the test could not be completed because of its technical complexity.
In addition 10% of the patients died while waiting for the results.

Tests that have a substantial number of indeterminant valuesmay not be as useful as
they f rst appear.As illustrated in this example, it is important not only to understand
the probability of indeterminant results but also the reasons that they occur. If the
results take considerable time, they may not be helpful for an emergency condition
such as ruptured aortic aneurysm even if they are eventually shown to be just as
good as the reference standard test.
We have now examined how the index test is measured and are ready to see how

these measurements can be compared to the reference standard test. We are ready
to move on to the results component of the M.A.A.R.I.E. framework.
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Estimates: Sensitivity, Specificit , and Discriminant Ability
The results component of the M.A.A.R.I.E. framework asks us to compare the in-
dex test and the reference standard test, and to produce summary measurements of
their performance. The basic measurement that are used to perform this important
job are called sensitivity and specificit . A single summary measurement can be
produced by combining sensitivity and specificit to produce what is called dis-
criminant ability. These are the estimates used in reporting the results of an investi-
gation of tests. Let us see howwe calculate sensitivity, specificit , and discriminant
ability.
Sensitivity measures the proportion or percentage of the participants with the

disease as define by the reference standard test that are correctly identifie by
the index test. In other words, it measures how sensitive the test is in detect-
ing the disease. It may be helpful to think of sensitivity as positive in disease
(PID).
Specificit measures the proportion or percentage of the participants who are

free of the disease as define by the reference standard test that are correctly labeled
free of the disease by the index test. In other words, it measures the ability of the
test to detect the absence of the disease. Specificit can be thought of as a negative
in health (NIH).
To calculate sensitivity and specificit , the investigator must:

1. Classify each participant as being disease positive or disease negative according
to the results of the reference standard test.

2. Classify each participant as positive or negative according to the index test.
3. Relate the results of the reference standard test to the index test, often using the

following 2×2 table:

Reference Standard Positive
= Disease

Reference Standard Negative = Free
of the Disease

Index Test
Positive

A = Number of participants
with the disease and index
test positive =

B = Number of participant
without the disease and index
test positive =

True Positives False Positives
Index Test
Negative

C = Number of participants
with the disease and index
test negative =

D = Number of participants
without the disease and index
test negative =

False Negative True Negative

A + C = Total with the
disease

B + D = Total Free of the Disease

157
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Sensitivity = Percentage of the participants with the disease as def ned
by the reference standard test who are correctly identif ed by the index test =
A/(A + C) × 100% = True Positives/(True Positive + False Negatives) × 100%

Specif city = Percentage of the participants who are free of the disease as def ned
by the reference standard test who are correctly labeled free of the disease by
the index test = D/(B + D) × 100% = True Negatives/(True Negatives + False
Positives) × 100%

To illustrate this procedure using numbers, imagine that a new test is performed on
500 participants who have the disease according to the reference standard test and
500 participants who are free of the disease according to the reference standard
test. We can now set up the 2×2 table as follows:1

Reference Standard Reference Standard Negative =
Positive = Disease Free of the Disease

Index Test Positive 400=True Positives 50=False Positives
Index Test Negative 100=False Negatives 450=True Negatives

500 500

Sensitivity = 400/500× 100% = 80%

Specif city = 450/500× 100% = 90%

A sensitivity of 80% and a specif city of 90% are in the range of many tests used
clinically to diagnose disease.2
Notice that the sensitivity and specif city are always def ned in comparison to

the reference standard test. That is, the best that they can be do is produce the same
results as the reference standard test. When there is a disagreement between the
index test and the reference standard test, the index test is considered wrong and
the reference standard test is considered correct.
What happens if the new test is actually better than the reference standard test? If

the new test is safer, cheaper, or more convenient than the reference standard test, it
may come to be used in clinical practice even if its performance is less than perfect.
Clinical experience may eventually demonstrate the new test’s superior perfor-
mance, even allowing the new test to be used as the reference standard test. In the
meantime, the best the test can do is tomatch the established reference standard test.

Discriminant Ability
As we have seen, sensitivity and specif city are our basic measures of how well
the index test discriminates between those with the disease and those who are free
of the disease.

1Notice that the index test being evaluated has been applied to a group of participants in whom 500
have the disease and 500 are free of the disease as def ned by the reference standard test. This division of
50%with the disease and 50% free of the disease is a common distribution used for an investigation of a
new test and provides the greatest statistical power. Notice, however, that is does not represent the popu-
lation’s prevalence of the disease except in the unusual circumstance in which the prevalence is 50%.

2 The principles stressed here are most important when the sensitivity and specif city are in this
range. When tests have a sensitivity and specif city close to 100%, issues such as Bayes’ theorem and
the relative importance of false positive and false negative take on less importance. However, issues
such as safety, cost, and patient acceptance may then take on additional importance.
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Sensitivity and specif city together provide us with the information we need to
judge the performance of the index test relative to the reference standard test. Ide-
ally, however, we would like to have one number that summarizes the performance
of the test. Fortunately, there is a simple means to combine the sensitivity and the
specif city to obtain a single measurement of what is called the discriminant ability
of a test. Discriminant ability is the average of the sensitivity plus the specif city:

Discriminant Ability = (Sensitivity+ Specif city)/2

Thus in our example, the sensitivity equals 80% and the specif city equals 90%
and the discriminant ability is calculated as follows:

(80%+ 90%)/2 = 85%

How do we interpret discriminant ability? The discriminant ability tells us how
much information the index test provides compared to the reference standard
test, which by def nition provides perfect information. That is, we assume that
the reference standard test does a perfect job of separating positive and negative
results. Perfect discriminant ability is therefore 100%. That only occurs when both
the sensitivity and the specif city are 100%.
Discriminant ability provides a means to understand the information content of

a test. To understand this use of discriminant ability, let us take a look at what we
call a receiver operator characteristics curve, or ROC curve. The ROC curve axes
are illustrated in Fig.16.1.
The ROC curve compares the sensitivity on the y-axis to 100%− specif city (or

the false positive rate) on the x-axis. Notice that for the ROC curve, a perfect test
lies at the left upper corner where the sensitivity and specif city are both 100%.
Thus the ROC curve allows us to compare the performance of a particular index
test to this perfect test that lies in the left upper corner of the ROC curve.
The diagonal line that crosses from the lower left to the upper right of the ROC

curve in Fig. 16.1 indicates the zero information line. That is, the combination of
sensitivity and specif city that provides no additional information. If the discrimi-
nant ability is 50%, mere guessing or f ipping a coin would do just as well as the
index test.
Now let us plot our sensitivity of 80% and our specif city of 90% on the ROC

curve. Figure 16.2 plots this test. It also has lines from this test to the left lower
and right upper corners of the ROC curve. The area under these lines turns out to
be the discriminant ability,3 that is, the (sensitivity+specif city)/2.
Here, the discriminant ability is 85%. To understand the discriminant ability,

it is important to recognize that the information provided by the index test is the
difference between the discriminant ability and the diagonal no-information line.4
Failure to appreciate this principle can lead to the following type of error.

A new test has been shown to have a sensitivity of 60% and a specif city of 40%. The
authors of the investigation conclude that while these results are less than ideal, they
still indicate the new test has a discriminate ability of 50% and can therefore provide
50% of the information necessary for diagnosis. They thus advise routine use of the
test.

3 To convince yourself of this relationship draw lines connecting the ‘dot’ to the left lower and right
upper corners. Then using geometry, calculate the area under these lines. The sum of these areas equals
the discriminant ability.

4 One way to think of the meaning of a discriminant ability of 85% is to think of the potential
information obtainable from a test as 50%. Thus the discriminant ability of 85% provides 35% of the
maximum 50%, or 70% of the perfect information provided by the reference standard test.
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Figure 16.1. Receiver operator characteristics (ROC) curve, x-axis and y-axis.

The authors are correct that the discriminant ability equals 50%, since 40% plus
60% divided by 2 equals 50%. However, a discriminant ability of 50% indicates
that the test provides no additional information beyond what could be obtained by
chance—that is, by guessing. Thus when drawing conclusions about the discrim-
inant ability, the area under the ROC curve, we need to compare this summary
measurement to 50%, not to 0%.
As we have seen, discriminant ability and the ROC curve tells us how well an

index test performs. Discriminant ability can also be helpful in determining the
best cutoff points to use to def ne positive and negative for the index test. The aim
is to set cutoff points that maximize the performance of the index test.
Remember that in the assessment chapterwe stressed the need to def ne a positive

and a negative result and indicated that other approaches are available other than
the reference interval approach. One increasingly common approach is to wait to
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Figure 16.2. ROC curve demonstrating use to plot and calculate discriminant ability for
test with 80% sensitivity and 90% specif city.

choose the cutoff points for positive and negative until after the measurements of
both the index test and reference standard test are known.
To select the best cutoff points to def ne negatives and positives, the investigator

chooses the cutoff points in which the discriminant ability will be maximized.5
Thus, to determine cut-off point, the investigators may take the following steps:

1. Choose several sets of potential cutoff points.
2. Calculate the sensitivity and specif city for each set of potential cutoff points.
3. Calculate the discriminant ability for each set of potential cutoff points.
4. Choose the set of cutoff points that produces the greatest discriminant ability.

5Determining the maximum discriminant ability is the same as f nding the point on the ROC curve
that maximizes the area under the curve. Thus this method may also be referred to as maximizing the
area under the ROC curve.
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Thus we have now seen that sensitivity, specif city, and their average (their dis-
criminant ability) are the most common measures of a test’s performance. Once
these measures are obtained, we need to examine how the results may have been
affected by chance.

Inference
When drawing inferences from the results of an investigation of a test, we are
interested in whether the results that we observed are likely to hold true in larger
populations like those from which the sample was obtained. To address this ques-
tion the, STARDcriteria recommends that investigations of tests report not only the
sensitivity and specif city but also the conf dence intervals around the sensitivity
and specif city.
Thus, the investigations will increasingly report a sensitivity and specif city

and also their 95% conf dence intervals. These conf dence intervals, like those
we encountered in the Studying a Study section, tell us how much conf dence we
should place on the results observed in our samples. They let us know that the true
values in the population from which the samples were obtained may be higher or
lower than the observed values.
It is important to recognize that one factor affecting the conf dence interval is the

number of participants included in the investigation. Everything else being equal,
the larger the number of participants, the narrower the conf dence interval. Large
investigations will tend to have narrow conf dence limits and will encourage us to
place more conf dence in the precision of their results.
Ideally conf dence intervals for tests are converted into statistical signif cance

levels. However, we do not expect to be able to conclude that one test’s sensitivity
or specif city is statistically signif cant compared to another. Thus, for tests, the
question we ask is, what is the 95% conf dence interval around the sensitivity and
the specif city?

Diagnostic Ability
In investigations of testing, like other types of investigation,we need to askwhether
there are other factors that need to be taken into account or adjusted for as part of the
analysis of the results.Whenwe discussed themeasurement of discriminant ability,
we assumed that a false negative and a false positive were equally undesirable.
That is, we gave equal weight or importance to false negatives and false positives.6
False negative results and false positive results may not always be of equal

importance. There are a variety of reasons why a false negative and a false positive
may not be of equal importance, for instance:
� A false negative may or may not result in harm to the patient, depending on
whether the diseasemay be detected later before there are adverse consequences.
� A false positive may or may not result in harm to the patient, depending on the
probability of harm due to further testing and/or from treatment begun on the
basis of the false positive test.

6Discriminant ability assumes that false positives and false negatives are of equal importance. Thus,
when maximizing discriminant ability to set the cutoff points, one is assuming that false positives are
equal to false negatives.
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To better understand what we mean by the relative importance of false negative
and false positive results, we can examine testing for glaucoma and ask: What
factors inf uence the importance of false negative and false positive results?
� Factors that may inf uence the importance of false negative results for glaucoma
include: Vision loss from glaucoma is largely irreversible and may develop
before it is apparent to the patient. Treatment is generally safe but not completely
effective in preventing progressive visual loss. Repeat routine testing may still
detect the glaucoma in time for treatment to prevent substantial visual loss.
� Factors that inf uence the importance of false positive tests include: Follow-up
of initial positive results requires multiple tests and follow-up visits that may
create patient anxieties and costs. Follow-up tests pose little danger of harm to
the patient.

Thus for glaucoma testing, let us assume that you came to the conclusion that a
false negative is worse than a false positive. Let us see how this conclusion can
inf uence the use of tests, as illustrated in the next example.

Test A for glaucoma has a sensitivity of 70% and a specif city of 90%, giving it
a discriminant ability of 80%. Test B for glaucoma had a sensitivity of 80% and a
specif city of 80%giving it the same discriminant ability. The investigators concluded
that these two tests were interchangeable in terms of diagnostic ability.

These two tests are interchangeable in termof discriminant ability since each has an
80% discriminant ability. However, diagnostic ability requires us to also consider
the relative importance of false negatives and false positives.
Ifwe regard a false negative asworse than a false positive,wewould prefer TestB

since it has a higher sensitivity and thus fewer false negatives. This preference
for Test B would result in more false positive. However, since false negatives are
consideredworse than false positives, we should bewilling to tolerate the increased
number of false positives.7
When more than one index test is being compared to a reference standard,

it is important to determine whether the index tests generally have the same or
different false positives and false negatives. This will be important when we look
at strategies for combining tests.
We have examined the results component of the M.A.A.R.I.E. framework and

have found that sensitivity, specif city, and their average (discriminant ability) are
the measures used to judge the information obtained from an index test. We have
found that conf dence intervals rather than statistical signif cance tests are used
to report test results. We have seen that a false positive and a false negative may
not be of equal importance. In addition a patient may have a false positive or false
negative result on one test but not the another. Now we are ready to go on to the
interpretation of the results in the next chapter.

7No attempt is made here to quantitate the relative importance of false positives and false negatives.
While possible, this process is rarely seen in the research literature. The impact of different weights
on false positives and false negatives usually has its impact on the cutoff point between positives and
negatives. The trade-off between false negatives and false positives is also affected by the number of
false negatives and the number of false negatives that will occur. This in turn is affected by the pretest
probability of the disease.
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Sensitivity, specificit , and discriminant ability have been chosen as measures
because they are inherent characteristics of a test that should be the same when
the test is applied to a group of patients in whom the disease is rare or to a group
of patients in whom the disease is frequent. That is, they provide measures of a
test’s performance that should be the same regardless of the pretest probability
of a disease—the probability of the disease before the test is performed. Ideally,
this allows researchers in Boston, Bombay, or Beijing to apply the same test and
interpret the results of testing despite their very different populations.
Interpretation asks us to do more than ask howmuch information is provided by

a test or which test provides the most information. It asks us to use the information
to address the following questions:
� Ruling in and ruling out disease: Interpretation asks us to compare two or more
index tests to determine which performs the best for ruling in and ruling out a
disease.
� Posttest chances of disease, or Bayes’ theorem: Interpretation asks us to combine
information from what we have called the pretest probability of disease with
the information from the test to draw conclusions about the chances of disease
after information from the test is included.
� Clinical performance: Interpretation also asks us to take into account safety,
costs, and patient acceptance when drawing conclusions about the use of a test.

Ruling In and Ruling Out Disease
As we have seen, the ROC curve is very useful for graphing sensitivity and speci-
ficit and visualizing discriminant ability. In addition, ROC curves can be used
to visualize which test does the best to rule in and rule out a disease. Figure 17.1
illustrates how we can use the ROC curve to answer these questions. Figure 17.1
indicates with a black dot the sensitivity and false positive rate (1-specificity of a
test to which other tests are being compared. The performance of a second test can
be compared to this test by graphing the second test’s results on the same ROC
curve. The second test may be located in one of four locations labeled on Fig. 17.1.
These have the following meaning:
� Superior discriminant ability—the second test is better for ruling in and also
ruling out the disease
� Inferior discriminant ability—the second test is worse for ruling in and also
ruling out the disease
� Superior for ruling out—the second test is better for ruling out but worse for
ruling in the disease
� Superior for ruling in—the second test is better for ruling in but worse for ruling
out the disease

Let us look at an example of how we can use the ROC curve.

164
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Figure 17.1. Use of ROC curve to decide which test is better for ruling in and ruling out a
disease. If a test’s sensitivity and false positive rate are represented by the black dot, then
test results for other tests can be compared based on where they fall on the ROC curve.

Let us assume that two tests have the same discriminant ability. Test Yellow has a
sensitivity of 90% and a specif city of 70%. Test Blue has a sensitivity of 85% and
a specif city of 75%. Everything else being equal, which test is better to rule in the
disease? Which test is better to rule out the disease?

Figure 17.2 illustrates how we can use the ROC curve. Since test Yellow is up and
to the right of Test Blue, it falls within the area designated as “superior for ruling
out” in Fig. 17.1. This indicates that Test Yellow is better for ruling out the disease
but that Test Blue is better for ruling in the disease.
It is tempting from this example to conclude that the better test to rule in the

disease is the test with the greatest specif city and the better test to rule out the
disease is the test with the greatest sensitivity. While this is often true, there are
exceptions, as illustrated by the following example:

Let us imagine that test Red has a sensitivity of 80% and a specif city of 70% while
test Green has a sensitivity of 85% and a specif city of 50%. Everything else being
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Figure 17.2. Use of ROC curve to demonstrate that Test Yellow is superior for ruling out
the disease and Test Blue is superior for ruling in the disease.

equal, which test is the better test to rule in the disease? Which test is the better test
to rule out the disease?

Figure 17.3 illustrates that Test Red is actually better both for ruling in and slightly
better for ruling out the disease.1 This is the solution since Test Green falls within
the “inferior discriminant ability” area of Fig. 17.1.

1 This example illustrates that likelihood ratios rather than either sensitivity or specif city alone are
the best way to compare tests in order to determine which test is best for ruling in and which test is best
for ruling out the disease. This may produce results that are not intuitive. Imagine for instance that Test
#1 has a sensitivity of 80% and a specif city of 70%. Test #2 has a sensitivity of 85% and a specif city
of 50%. Test # 1 has the largest likelihood ratio of a positive test and the smallest likelihood ratio of a
negative test. Thus test #1 should be used both to rule in and rule out the disease, everything else being
equal. It is important to remember, however, that this conclusion also assumes that other factors that
affect our choice of test, such as cost, safety and patient acceptance, are equal. As we will see, this is
rarely the situation.
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Figure 17.3. Use of ROC curve to demonstrate that a test with lower sensitivity may at
times be better for ruling out a disease. Since Test Green falls within the area “inferior
discriminant ability” area of Fig. 17.1 Test Red is better for ruling in and also ruling out the
disease compared to Test Green.

Posttest Chances of Disease: Bayes’ Theorem
Wehave looked at how the pretest probability of a disease can be estimated based on
demographic anddisease factors, risk factors, and the symptompattern. To interpret
the results of a test, this pretest probability of disease need to be combined with
the information that is obtained from a test using what is called Bayes’ Theorem.
Bayes’ theorem is a very usefulmethod for combining information on the pretest

chances of the disease with information from the test of interest, i.e., the index
test. There are several formulae that express Bayes’ theorem, but one which is
particularly helpful for understanding the relationship between pretest and posttest
chances of the disease is the likelihood ratio form of Bayes’ Theorem. Therefore,
we need to understand what we mean by likelihood ratios.
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Likelihood ratios can be calculated from sensitivity and specif city. Likelihood
ratios can be used instead of ROC curves to directly compare two or more index
tests to determine which one is the best to use to rule in and to rule out a disease.
In addition, we can use likelihood ratio to understand the relationship between
pretest probabilities, sensitivity and specif city, and the resulting probability of the
disease after obtaining a positive or negative result.
Let us use our example of a 80% sensitivity and a 90% specif city to appreciate

the calculation and use of likelihood ratios. First let us def ne the likelihood ratios.

Likelihood ratio of a positive test (LR+) =
Probability of a positive index test if reference
standard test indicates disease
Probability of a positive index test if reference
standard test indicates free of the disease

Often it is easier to calculate LR(+) using this formulae expressed as sensitivity
and specif city

LR (+) = sensitivity/(1− specif city) = sensitivity/false positive rate

Thus for a test with a sensitivity of 80% and a specif city of 90%,

LR (+) = sensitivity/(1− specif city) = 80%/(100%− 90%) = 8

Likelihood ratio of a negative test (LR−) =
Probability of a negative index test if reference
standard test indicates disease
Probability of a negative index test if reference
standard test indicates free of the disease

Often it is easier to calculate LR (–) using this formulae expressed as sensitivity
and specif city

LR (−) = (1− sensitivity)/specif city

Thus for a test with a sensitivity of 80% and a specif city of 90%,

LR (−) = (1− sensitivity)/specif city = (100%− 80%)/90% = 0.22

How can we interpret these likelihood ratios? Likelihood ratio tell us the chances
that an index test will be correct compared to the chances that it will be incorrect.
For a likelihood ratio of a positive test (LR+), we are comparing the chances
that a positive index test indicates disease to the chances that it indicates that an
individual is free of the disease. A likelihood ratio of a positive test can vary from
1 to inf nity, and larger is better.
A likelihood ratio of a negative test (LR−) tells us the chances that an index

test will be incorrect compared to the chances it will be correct. For a likelihood
ratio of a negative test, we are comparing the chances that a negative index test
indicates diseases to the chances that it indicates that an individual is free of the
disease. A likelihood ratio of a negative test can vary from 1 to 0, and smaller is
better.
The likelihood ratios help us understand which test is best for ruling in and for

ruling out disease.
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� Everything else being equal, the testwith the greatest likelihood ratio of a positive
test is the best test to use to rule in the disease.
� Everything else being equal, the test with the smallest likelihood ratio of a
negative test is the best test to use to rule out the disease.

Perhaps the most important use of likelihood ratios, however, is that they make
clear the relationship between pretest probability and posttest probability. If the
pretest probability of disease is known or can be estimated, Bayes’ theorem allows
us to calculate the posttest probabilities of a disease after obtaining the results of a
test. These posttest probabilities of disease are often called the predictive values.
The predictive value of a positive test indicates the probability that the disease is
present after obtaining a positive result on the index test. The predictive value of
a negative test indicates the probability that the disease is absent after obtaining a
negative result on the indexed test. Thus 1 minus predictive value of a negative test
tells us the probability that the disease will be present after obtaining a negative
result on the test.
One way to appreciate this relationship is to examine the likelihood ratio form

of Bayes’ Theorem.2

Posttest odds that the disease is present if the test is positive
= (Odds that the disease is present before the test)

×(Likelihood ratio of a positive test)
Similarly,

Posttest odds that the disease is present if the test is negative
= (Odds that the disease is present before the test)

×(Likelihood ratio of a negative test)
Thus if we know or can estimate the odds that disease is present before conducting
a test and we also know the likelihood ratios of the test, we can directly determine
the odds of disease after the results of the test are known. We obtain the odds of di-
sease after the results are knownbymultiplying thepretest odds times the likelihood
ratio of either a negative or a positive test depending on the results of the test.
While this may be helpful in understanding the relationship between the chances

of disease before and after knowing the results of a test, most people think in
probabilities, not in odds. Fortunately, Bayes’ theorem also allow us to start with
pretest probabilities and, using the datawehave obtained on the index test, calculate
the predictive values of a positive and a negative test.
The predictive values of a positive test tell us the probability that the disease is

present if the index test is positive. The predictive value of a negative test tells us
the probability that the disease is absent if the index test is negative.
Table 17.1 indicates the predictive value of a positive test and the predictive value

of a negative test when using a test with a sensitivity of 80% and a specif city of
90% and applying this test to populations with a range of pretest probabilities from
1% to 90%. The table shows how the pretest probabilities relate to the predictive

2 For instance if the probability of the disease is 50%, the odds are 1:1. For our test, a likelihood
ratio of a positive test is 8. Thus the posttest odds = ( pretest odds ) (LR+) = 1 × 8 = 8. That is, if the
pretest odds are 1:1 or 1, the posttest odds are 8:1 or 8. A posttest odds of 8 is the same as a posttest
probability of approximately 89% Similarly, if the probability of the disease is 50%, i.e., odds are 1,
and the likelihood ratio of a negative test is 0.22, then the posttest odds are 0.22, or a probability of
approximately 18%.
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Table 17.1. Relationship of pretest probability of the disease to posttest
probability for a test with a sensitivity of 80% and a specificit of 90%.

Posttest probability of the disease Posttest probability of being free of the
Pretest if test positive, i.e., predictive disease if test negative, i.e., predictive

probability value of a positive test value of a negative test

1% 7.5% 99.8%
10% 47.1% 97.6%
50% 88.9% 81.8%
90% 98.6% 33.3%

value of a positive and also the predictive value of a negative test when we use a
test with a sensitivity of 80% and a specif city of 90%—that is, a test with an 85%
discriminant ability. This table demonstrates the dramatic impact that the pretest
probability can and often does have on the predictive values (posttest probabilities)
of disease.3
Let us return to the examples of a 23-year-old woman and a 65-year-old man we

encountered as we began the Testing a Test section. As we illustrated there, ruling
in and ruling out disease requires more than the results of a test. It requires us to
make our best estimates or guesses regarding the probability of disease before the
test is conducted.
Now let us demonstrate with numbers the impact of pretest probability on the

probability of disease after the results of a tests are known, or what we have called
the posttest probability or the predictive value of the test.
Let us again look at our 65-year-old man and our 23-year-old woman. We will

assume that a stress test has a sensitivity of 80% and a specif city of 90%.
� A 23-year-old female athlete with a chest pain and a family history of coronary
artery disease; assume her pretest probability of coronary artery disease is 1%
and her stress test is positive.
� A 65-year-old man with chest pain and multiple risk factors for coronary artery
disease; assume his pretest probability of coronary artery disease is 50% and his
stress test is negative.

Note that these stress test results are reversed from the test result illustrated at
the beginning of Testing a Test. Let us see how these new results affect the posttest
probabilities or predictive values. Looking at Table 17.1 we f nd that
� The 23 year old women with a pretest probability of coronary artery disease of
1% and a positive stress test has a predictive value of a positive test or a posttest
probability of coronary artery disease of only 7.5%
� The 65 year old man with a pretest probability of coronary artery disease of 50%
and a negative test has a predictive value of a negative test or a posttest probability
of not having coronary artery disease of 81.8%. That is, he has approximately
an 18% probability of having coronary artery disease.

3Note that the predictive value of a positive test and the predictive value of a negative test can be
calculated from a 2×2 table if the number of individuals with and without the disease in the population
are ref ected in the 2×2 table. In this situation the predictive value of a positive test equals the number
of true positives divided by the sum of the number of true positives plus the number of false positives.
The predictive value of a negative test can be calculated as the number of true negatives divided by
the sum of the number of true negatives plus the number of false negatives. The predictive value of
a positive test indicates the probability that the disease is present according to the reference standard
test if the index test is positive. The predictive value of a negative test indicates the probability that the
disease is absent according to the reference standard test if the index test is negative.
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Thus the 23 year old woman with a positive stress test actually has a lower prob-
ability of having coronary artery disease (7.5%) than the 65 year old man with a
negative stress test (18%). Thus for many clinical tests, it is essential to focus not
only on the test results, but on the pretest probability of the disease.

Clinical Acceptance
As we have seen, the likelihood ratios and the pretest probabilities of disease are
the key issues in applying a test. However, they are not the only issues. Additional
issues such as safety, cost, and patient acceptance often are important, especially
when we are asked to choose between tests. Data from an investigation may be
helpful in answering questions such as:
� The type and frequency of adverse effects of the test
� The frequency with which additional tests are required if the test is positive or
negative, and thus some appreciation of the costs
� An estimate of the degree of patient adherence to the protocol as a measure of
patient acceptance

Aspart of the interpretation of the test,we should be asking these types of questions.
For instance, patients in the investigation may not return or complete the test,
suggesting a low level of acceptance. Depending on the nature of the test, this may
be due to inconvenience, discomfort, or the intrusive nature of the test.
The cost of the test is generally covered by the investigation itself and is not

generally a factor in whether or not the patient participates. However, cost may
affect the use of the test in clinical practice. Thus it is helpful if the investigator
reports data on the resources required, including professional time to conduct and
interpret the test. This provides useful information for extrapolating to the use of
the test in clinical practice.
Data on safety needs to be reported, indicating side effects of the test in enough

detail to enable the reader to understand the nature and timing of the adverse events.
The following example illustrates how the issues of safety, cost, and patient

acceptance may inf uence the interpretation of which test to use.

Two tests for gallstones were being compared. Test A has a slightly greater LR(+)
and a slightly lower LR(−) indicating that Test A is slightly better for ruling in
gallstones and also ruling out gallstones. However, Test A was more expensive, had
more side effects, and resulted in more discomfort to the patient. The researchers
recommended that TestAbe used onlywhen the patient’s clinical condition suggested
that the condition was life threatening.

The researchers’ recommendation takes into account differences in cost, side ef-
fects and discomfort. Use of tests is often determined as much by their cost, safety,
and patient acceptance as they are by small differences in their ability to rule in or
rule out a disease.4 This is especially true when the disease is not considered to be
life threatening.
Now that we have gathered as much information as possible about the meaning

of the test for those in the study’s population, we need to go on to ask the most
important question: How should the test be used for those who were not included
in the investigation? This is the process of extrapolation.

4 It is often not clear how to combine consideration of cost, safety, and patient acceptance, i.e., how
much importance or weight to place on each one. There is no standard formulae and these factors are
often considered using subjective judgments.
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Extrapolation of diagnostic test results, like extrapolation in other types of in-
vestigations, is the process of going beyond conclusions for participants in the
investigation to draw conclusion about those who are not in the investigation. Ex-
trapolation asks questions about the use of the test in other settings such as in
clinical practice.

To Target Population
The aim of most investigations of tests is to draw conclusions about the use of
the test in practice. That is, groups of patients in practice are the usual target
population for the investigation. When asking questions about usefulness of the
test in the target populations, we need to ask:

� Do the conditions for the use of the test in practice differ in ways that is likely to
affect its discriminant ability—i.e., can we expect the sensitivity and specificit
to be the same as under investigational conditions?
� Is a strategy proposed for combining the test with other tests?

Extrapolation of test results, like extrapolation of other types of investigations,
asks us to examine the assumptions that underlie the conclusions that we have
drawn for the participants in the investigation. A key assumption for tests is that
their discriminant ability will remain the same when the test is applied to new
populations with lesser or greater prevalence of the disease. That is, we usually
assume that the sensitivity and specificit of a test is the same regardless of the
setting in which it is used.
Fortunately, this assumption does generally hold up. However, when applying a

test to a population with a very different severity of disease, its discriminant ability
may not be the same, as illustrated in the next example.

Urine cytologywas assessed as amethod for diagnosing bladder cancer by comparing
those with advanced bladder cancer and those without bladder cancer. The test was
shown to have very high discriminant ability. When used in practice, the test did not
perform well, missing most of the patients with bladder cancer that was still in the
early stages where treatment was effective.

Extrapolation requires that we step back and take a look at the assumptions that
were made in investigating the test. If the test was applied to a clinical population
that substantially differs from the study’s population, its performance in practice
may be disappointing. Thus the most cautious extrapolation is to clinical popula-
tions and clinical situations that are very similar to the ones used in the investiga-
tion.
In practice, tests often need to be combined. That is, there needs to be a testing

strategy. Thus, as part of extrapolation, investigators often propose approaches to
combining tests even when the combinations have not been directly studied.

172
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Because of the importance of combining tests, we will take up this issue again
in the next chapter, on screening. Combining tests, however, is not limited to
screening. Often two or more tests are needed for diagnosis even in the presence
of symptoms.
Often the best way to combine tests is to use one test and then use a second test

only if the f rst test is positive. Everything else being equal, we often f rst use the
test with the greatest likelihood ratio of a positive test. This results in fewer second
tests being conducted. When using test #1 followed by test #2, Bayes’ theorem
may allow us to calculate the posttest probability (or odds) of the disease if both
tests are positive. We do this by assuming that the posttest probability (or odds)
after obtaining the results of the f rst test can then be used as the pretest probability
(or odds) for test #2. Using the odds ratio from Bayes’ theorem we can express
this relationship as follows:

(Pretest Odds)(LR+ of test #1)(LR+ of test #2)

= Posttest odds of disease if both tests positive

Thus it is very tempting to calculate the posttest odds or probability after ob-
taining two positive tests.1
Unless this strategy for combining tests is actually examined as part of the

investigation, its use is really an extrapolation. At times, the use of the posttest
probability of test #1 as the pretest probability of test #2will produce less favorable
than expected results, as illustrated in the next example.

Two tests for cervical cancer were found to each have a high discriminant ability. Test
#1 was performed f rst and test # 2 was performed only if the f rst test was positive.
The investigators used Bayes’ theorem to calculate the probability of cervical cancer.
The investigators where surprised at the large number of patients who were positive
on both tests but did not turn out to have cervical cancer.

It is possible that test # 1 and test #2 produce false positives for the same types
of disease. Perhaps the presence of inf ammation produces false positives for both
tests. When this is the situation the posttest probability of one test cannot be used
as the pretest probability of the second test. If this is true, then combining them
one after another will produce disappointing results.2
The issue of how to combine tests is an especially diff cult part of the extrap-

olation process. In the next chapter, on screening, we will look at the advantages
and disadvantages of different strategies for combining tests.

Beyond the Data
Recommendations for the use of tests in practice often require making additional
assumptions. As with extrapolation of the results of other types of investigations,
we often need to extrapolate beyond the data and to other settings or populations.

1Notice that this formula implies that if two tests will both be performed, it does not matter which
test is performed f rst.

2Whenever we combine tests, we are making an assumption about how the information provided
by one test relates to the information provided by the other test. Often we assume that the information
provided by one test does not depend on the results of the other test. This is called the independence
assumption. In order to use the posttest probability of one test as the pretest probability of the next test,
the independence assumption must be fulf lled.
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The timing of tests and the frequency of use are typical issues that often require
extrapolation beyond the data. Issues of frequency of use are a key issue for
screening programs, but also are relevant to follow-up of a diagnosis.
Conclusions about frequency of follow-up testing are often extrapolations be-

yond the data since they are not made on the basis of actual patient follow-up.
Conclusions regarding frequency of follow-up testing are often made on the basis
of current understanding of the course of a disease, aswell as the available interven-
tions.When these underlying assumptions change, it is important to be aware of the
need to reconsider the frequency of follow-up, as illustrated in the next example.

Testing for prostate cancer recurrence was advised every 6 months for 5 years based
on clinical experience indicating that recurrence was generally slowly occurring and
rarely if ever occurred after 5 years. A new, very successful treatment for early
recurrence was developed, leading to the conclusion that more frequent follow-up
was needed during year 1 and 2.

Thus the use of tests in clinical practice is subject to change over time, depending
on the available treatment options. Testing always needs to be seen as a means to
an end. When the options for treatment change, we often need to reconsider the
use of testing.

To Other Settings or Populations
Extrapolations to other settings or populations can be obvious, such as when we
apply the results obtained in one country to a countrywith a very different spectrum
of disease. It can be more subtle as illustrated in the next example.

A test for acute cholecystitis was recently developed and its diagnostic performance
evaluated in a carefully conducted study of a spectrum of patients with symptoms
compatible with cholecystitis. Patients in the investigation received the new test
within 24 hours of the initial presentation with symptoms. The new test was found to
improve upon the diagnosis of acute cholecystitis compared to other standard tests.
To make the test practical clinically, the authors recommended using the test within
72 hours after the patient’s initial onset of symptoms compatible with cholecystitis.

The investigators recommendations indicate an approach to implementation that
is different than the one they investigated. The participants were tested within
24 hours of the onset of symptoms. When extrapolating to clinical practice, they
have recommended that the test be performed within 72 hours of onset of symp-
toms. While this may be a necessary accommodation to the realities of clinical
practice, it is important to recognize that the population being tested may now be
very different. In making this extrapolation, the investigators are assuming that
delay in testing will not affect the performance. This assumption may or may not
hold true.
Extending the time period for referral beyond that in the investigationmay affect

both the types of patients that are referred and the performance of the test. The time
extensionmay lead to a farmorewidespreaduseof a test, and theperformanceof the
test may not meet expectations. With testing, as with other types of investigations,
extrapolation often puts us out on a limb and leaves us in limbo.
We have now examined the application of the M.A.A.R.I.E. framework to an

investigation of testing. Now let us turn our attention to an important use of testing,
that of screening for disease in the absence of symptoms.
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Criteria for Successful Screening
Screening is a special form of testing that aims to detect specifi diseases in
asymptomatic individuals.1
The goal of screening for a disease is to identify asymptomatic individuals who

have the disease in order to intervene to improve outcome.
Before considering screening for a disease, the following criteria ideally should

be fulfilled

1. Substantial morbidity and mortality: The disease or condition often leads to
death or disability.

2. Early detection improves outcome: Early detection is possible and improves
outcome.

3. Screening is feasible: A high-risk group can be identifie and tested using a
testing strategy with good diagnostic performance.

4. Screening is acceptable and efficient The testing strategy has acceptable harms,
costs, and patient acceptance—i.e., one with good clinical performance.

Let us see how we can use these criteria to evaluate the use of screening tests.

Substantial Morbidity and Mortality
The importance of selecting diseases for screening which produce substantial
morbidity and mortality is the key starting point for screening. Morbidity may
include disabilities such as blindness or strokes, or extended period of costly health
care such as kidney dialysis or treatment for coronary artery disease. Despite
the importance of identifying conditions for screening that produce substantial
morbidly and/or mortality, this condition may be ignored, as illustrated in the
following example:

Screening for sickle-cell trait was widely used among newborn black infants. The
screening detected large numbers of infants with sickle-cell trait whose parents were
informed that they carried a potentially dangerous gene.

Despite the considerable morbidity and mortality caused by sickle-cell anemia,
harm from the trait has not been shown to produce substantial morbidity or

1Asymptomatic implies that the individual does not have symptoms of the disease for which the
screening test is being used. Theymayhave other diseases and/or other symptoms. The term“screening”
may be used with other somewhat different meanings. Tests may be used in the presence of symptoms
when the clinician wishes to test for a variety of physiological measurements or a range of possible
diseases. Screening may also refer to a panel of tests designed to differentiate the cause of a clinical
pattern, such as drug screening in the presence of clinical manifestations of intoxication. Screening
for asymptomatic disease should also be distinguished from case finding Case findin usually refers
to identificatio of an individual with an infectious disease with the intention of locating and treating
their contacts or cases.

175
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mortality. A common condition that poses little short-term or long-term harm
to individuals is not a good candidate for screening.

Early Detection Improves Outcome
The evidence that supports the ability to detect disease at an early stage often
comes from studies that compare the stage of disease among individuals diagnosed
through screening versus those whose disease was diagnosed in the usual course of
health care. The probabilities of detecting disease in early stages through screening
and through the usual course of health care are calculated and then compared. If
there is a higher probability of detecting early disease with screening, the results
suggest early detection is possible through screening.
Early detection, however, is not necessarily the same as detecting disease that

will go on to cause morbidity or mortality. It is possible that the disease detected
by screening may never become clinically important, as illustrated in the next
example:

A new test is able to detect thyroid cancer in 40% of all men older than 80 years. Can-
cers detected in these men using the new test are generally found to be microscopic
foci that are at an earlier stage than thyroid cancers diagnosed during the course of
health care. The investigators are enthusiastic about the possibility of early detection
of thyroid cancer and argue that this test is likely to be useful in early detection.

The ability to detect cancer early is not the same as the ability to detect cancers that
are likely to go on to become clinically important. Patients may die with thyroid
cancer rather than die from thyroid cancer. The goal of early detection is not just
to identify cancer early, but also to identify those cases that need effective therapy
to prevent progression to clinically important disease.
In addition, screening should not be recommended unless an intervention is

available that can alter the outcome of patients detected by screening. Thus, unless
there is therapy, or other effective interventions, that are more effective when used
early in the disease, there is generally no reason to conduct screening for disease.2
Thus, the ability to detect disease at an early stage is not enough to fulf ll this
second criteria for screening. Treatment must be available and more be effective
when used during the asymptomatic phase.
The benef t of screening is ideally demonstrated using a randomized clinical

trial that randomizes patients to a screening group and a usual medical care control
group.3
Often, however, it is not possible to perform randomized clinical trials with

long-term follow-up. Thus, we often rely on studies that compare the outcome of
groups that have been screened with that of groups that have not been screened by

2At times screening may be worthwhile for other reasons. It may be worthwhile to detect infectious
disease in order to prevent spread even if no effective treatment is available.

3 Even when using a randomized clinical trial, it is necessary to follow up those diagnosed with
the disease. They should be monitored not just until they are diagnosed, but until they have had an
opportunity to develop the adverse outcome we hope to prevent. That is because a randomized clinical
trial that demonstrates improvement in early outcome is not always suff cient. The outcome in the
screened group should remain better than groups undergoing the usual course of care, even years after
the disease is detected.
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conducting cohort studies. These studies may provide important data that suggest
the ability of screening to successfully improve outcome.
Cohort studies of screening, however, are also susceptible to misleading results

due to lead-time bias. This bias results from comparing the time from diagnosis to
an outcome, such as death, between those diagnosed through screening and those
diagnosed in the usual course of medical care. The potential for lead-time bias is
illustrated in the next example:

An x-ray screening program to detect lung cancer among smokers was performed
among a group of smokers who were asked to participate. Their outcomes were
compared with the outcomes of individuals in a control group whose lung cancer
was diagnosed in the usual course of medical care. The study and control groups’
individuals were matched for age and number of pack-years of cigarette smoking.
The screened group had a greatly improved survival 1 year after their diagnosis of
lung cancer compared with the survival 1 year after diagnosis among the unscreened
control group.

Even if the treatment for lung cancer has no effect, we would expect the results
for the screened group to be better. By detecting the disease earlier, screening has
moved back the time of diagnosis. As illustrated in Fig. 19.1, unfortunately, it has
not moved forward the time of death. The increase in time between diagnosis and
death may be entirely due to lead-time bias, the early detection without improved
prognosis.When using a cohort study to investigate screening, it is often necessary
to make an adjustment to take into account the anticipated time between diagnosis
by screening and diagnosis after the appearance of symptoms.
There is a second reason why comparing screened and unscreened populations

using a cohort study to assess their outcome may not produce convincing evidence
of an improved outcome among those screened. This is known as length bias.
As illustrated in Fig. 19.2, length bias occurs when there are two or more types
of disease, such as slow-growing and rapidly growing cancer. When screening
is performed initially, most cases that are detected will be slow growers. This is
because slow growers remain in the presymptomatic stage for a longer period of
time and thus constitute the majority of cases of cancer detected by screening.
Fast growers, on the other hand, remain in the presymptomatic stage for a shorter

Figure 19.1. Lead-time bias inwhich earlier diagnosis by screening does not alter outcome.
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Figure 19.2. Length bias demonstrating whymore slowly progressive cases of disease may
be detected by screening. Solid lines indicate preclinical phase; dotted lines, clinical phase;
circles, death or other endpoint.

period of time and constitute a smaller proportion of cases of cancer detected by
screening.4
For diseases or conditions that cause substantial morbidity or mortality, and

early detection improves outcome, we would ideally like to be able to provide
screening to detect asymptomatic disease. However, before this can be advocated,
two additional criteria should be fulf lled: Screening is feasible and screening is
acceptable and eff cient.

Screening Is Feasible
Need for a High-risk Group and More than One Test

As we have seen, Bayes’ theorem tells us that the pretest probability of a disease
usually has a very strong relationship to the probability of disease after the results
of the test are obtained. Thus we need a screening strategy that allows us to identify
a group at high risk of the disease and a testing approach that has good diagnostic
performance.
When performing screening, we are usually testing presymptomatic individuals.

Thus, we cannot rely on their symptoms to help us estimate the pretest probability
of disease. Instead, we need to rely on the prevalence of the disease itself and the
presence of risk factors to help us identify groups with adequately high pretest
probabilities of disease.
Without being able to identify individuals who have one or more risk factors

for the disease, we would often be starting with a very low pretest probability.
In Chapter 17 we illustrated the posttest probabilities or predictive values when
using a test with 80% sensitivity and 90% specif city on a population with 1%,
10%, 50%, and 90% probability of the disease before conducting the test. The 1%
example was used to illustrate a common pretest probability when risk factors for
a common disease are present in a population to be screened. In this situation, it
was evident that one test alone would not be adequate for diagnosis.

4 Length bias is less of an issue in randomized clinical trials if we can assume that the study and
control groups have the same proportion of slow growers and rapid growers. Length bias assumes
that disease that slowly progresses in the presymptomatic stage will remain slowly progressive once
it enters the symptomatic phase. Length bias can be taken into account by studying groups that have
previously undergone screening, thus removing from the group most of the long-standing cases of the
disease.
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When the pretest probability is considerably lower, screening is even more
diff cult. This is the situation even when a test with high sensitivity and high
specif city is used, as illustrated in the next example:

Suppose that the pretest probability of a disease is 1 per 1,000. Assume that we have
available an excellent test with 99% sensitivity and 98% specif city. Using this test
on a population of 100,000 with a pretest probability of disease of 1 per 1,000. This
is illustrated in the following 2×2 chart.

Disease (+) Disease (−) Total

Test (+) 99 = True Positive 1,998 = False Positive 2,097
Test(−) 1 = False Negative 97,902 = True Negative 97,903
Total 100 99,900

The prevalence or pretest probability of disease is ref ected by the 100 with the
disease compared to the 99,900 without the disease.
The predictive value of a positive test can be calculated directly from this 2×2

table as follows:

Predictive value of a positive test=True positives/(true positives+ false positives)

99/2,097 = .047 = 4.7%

Notice that even after we have obtained a positive test, the probability of disease
is still less than 5%. Thus, even when screening with an excellent test, it is usu-
ally important that we apply our tests to groups of individuals who have pretest
probabilities of disease considerably greater than 1 per 1,000.
We can often identify risk factors for disease that allow us to characterize a

group of individuals who have an adequately high pretest probability of disease.
Age is the most common risk factor because many diseases predominantly occur
among particular age groups, such as premature infants or those older than 60 years.
Other risk factors may be identif ed by such criteria as sexual history, past illness
(e.g., ulcerative colitis), occupational exposure (e.g., lead), family history (e.g.,
premenopausal breast cancer), and ethnicity or race (e.g., sickle cell anemia).
Even if a high-risk group can be identif ed with perhaps a 1% pretest probability

of disease, it is still usually necessary to use at least two tests to diagnose the
disease. If we apply our excellent test with 99% sensitivity and 98% specif city to
a group of 10,000 with a 1% pretest probability of a disease, the predictive value
of a positive test is obtained as follows:

Disease (+) Disease (−) Total

Test (+) 99 198 297

Test(−) 1 9,702 9,703
Total 100 9,900

The posttest probability of the disease after obtaining a positive test, i.e., the
predictive value of a positive test, is:

99/297 = 0.33 = 33%



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-19 Riegelman-1490G Riegelman-v9.cls August 20, 2004 19:53

180 Section II. Testing a Test

The posttest probability or predictive value of a positive test is still less than 50%.
This probability is certainly not adequate to make a diagnosis. Thus, in screening
the use of a second test is nearly inevitable, because evenwith an excellent test,most
of the initial positives are actually false positives. Therefore, we need to consider
the implications of using more than one test or combining tests to develop a testing
strategy.

Strategies for Combining Tests
There are two basic strategies for combining two tests. Using the f rst strategy, we
label the results positive if the f rst test is positive and if a second test administered
after the f rst is also positive. This strategy that we discussed in Chapter 18, may
be called positive-if-BOTH-positive. With the second strategy for combining two
tests, we label the results positive if either (or both) of the test results are positive.
This strategy may be called positive-if-ONE-positive.
With the positive-if-both-positive strategy, we usually administer the second test

only to the individuals who are positive on the f rst test. The advantage of this strat-
egy is that it requires second tests on only a small percentage of individuals. Thus,
when feasible, the positive-if-both-positive strategy is often the most desirable.
With this strategy, a group that has been identif edwith two consecutive positives

generally has a very high probability of disease. This is because the posttest prob-
ability of disease after performing the f rst test is used as the pretest probability of
disease for the second test. When we combine two tests using the positive-if-both-
positive strategy, we usually make an important assumption. We usually assume
that they are not prone to detect or to miss the same types of cases of disease. We
call this the independence assumption. The independence assumption is violated
when two tests are actually measuring the same phenomenon and, therefore, the
tests tend to have the same types of false-negative and false-positive results. If
the independence assumption does not hold true, then the posttest probability of
disease after obtaining two positives will often be less impressive than expected,
as illustrated in the next example:

A testing strategy for gastric cancer included an upper gastrointestinal (GI) x-ray
f lm performed f rst. A technician then performed an endoscopy without biopsy if
the upper GI test result was positive. The investigators expected that those with two
positive results would have a very high probability of gastric cancer and the patient
could then undergo biopsy by a gastroenterologist. The results of the study, however,
demonstrated that this strategy was little better than using either test alone.

These results are not surprising, because the results of upper GI x-ray examination
and endoscopy provide nearly the same type of information. They both rely on
the gross anatomy. Thus, the results of the two tests are not independent, and
individuals with two positive results will have a less than expected probability of
having gastric cancer.5
One of themore confusing issues in screening using the positive-if-both-positive

strategy is which test to use f rst. A common misconception is to use the test with
the greater sensitivity f rst. Everything else being equal, the better test to use f rst

5 In general, tests that rely on different mechanisms of disease detection—such as exercise stress
testing, thallium stress testing, and catheterization—will produce results that are more independent of
each other than tests that rely on the same type of data such as gross anatomy.
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is the one with the greatest likelihood ratio of a positive test. As we discussed and
illustrated in Chapter 18, the test with the greatest sensitivity is not always the test
with the greatest likelihood ratio of a positive test.
In practice, the issue of which test to use f rst is quite complicated because it

also requires taking into account the relative importance of false-positive and false-
negative results, safety of the tests, costs, and patient acceptance of the tests. That
is, it requires consideration of diagnostic performance and clinical performance.
A biopsy or angiography may be the best test to use f rst, for instance, but their
side effects, costs, or lack of patient acceptance may limit their use to conf rmation
of other positive tests.
The positive-if-one-positive strategy may be implemented by having all indi-

viduals initially undergo both tests. For instance, when screening for colon cancer,
testing stool for blood as well as using a f exible sigmoidoscopy is an example of
a positive-if-one-positive strategy. This strategy is most useful when the two tests
tend to detect different types of disease. For instance, f exible sigmoidoscopy is
better for detecting left-sided colon cancers, whereas stool blood testing is better
for right-sided colon cancer. The positive-if-one-positive strategy, however, is only
useful when the tests detect different types of disease. If the tests detect the same
type of disease, using two tests may merely increase the cost without increasing
the diagnostic performance, as illustrated in the next example.

Mammography and sonography are being studied to determinewhether a strategy that
uses both of these tests on all women older than 50 yearswill improve the outcomes of
breast cancer. It was found that mammography detected 90% of the cancers, whereas
sonography detected 60% of the cancers. The investigators expected to be able to
detect nearly all breast cancers using both tests. They were disappointed when the
results showed that performing the two tests did little better than usingmammography
alone.

If both mammography and sonography detect the same type of breast cancer, then
administration of both tests will produce results that are no better but more costly
than administration of mammography alone.6

Screening is Acceptable and Efficien
Before a feasible testing strategy can be put into practice for general use, it is
important to consider whether it is acceptable. Issues of acceptance may relate to
the patient’s willingness to undergo the procedure. Colon cancer screening, for
instance, faces problems with patient acceptance even though it has been shown
to be fulf ll other criteria. Issues of patient acceptance may be overcome as proce-
dures become routine and as clinical skills increase. The acceptance of screening,
however, also needs to take into account potential harms and costs.
The harms due to screening include side effects of the procedures that may

range from colon perforation from sigmoidoscopy or colonoscopy to the anxiety
produced by false positive results. The consequences of false positives need to be
considered, as illustrated in the next example.

6 The positive-if-both-positive strategy has been called serial or consecutive positive testing. The
positive-if-one-positive strategy has been called parallel or alternative positive testing. These terms
may be confusing because most screening strategies ultimately require a subsequent conf rmatory test.
For instance, colon cancer screening thatmay be called parallel screeningwill ultimately require biopsy.
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A screening test to identify patients with a high probability of a stroke was shown
to successfully identify high-risk patients. The follow-up testing that was needed,
however, produced a substantial number of side effects.

Thus the harms of screening need to be evaluated in light of the full diagnostic
work-up for positive results, not merely based on the harms due to the screening
procedure itself.
In addition to considerations of safety and patient acceptance, issues of cost

need to be taken into account. That is, a screening program need to be eff cient in
terms of use of resources.
An important element in the overall cost of a screening strategy is the frequency

of screening. The frequency of screening is an important issue examined in the
health research literature. Screening frequency can greatly inf uence the cost of
screening large groups of patients. The longer the interval between screenings, the
more people can be screened using the same resources.
Screening a group at one time and then rescreening them a second time can be

expected to produce very different results. The f rst time a group is screened, it
is possible to detect disease that has been present for an extended period of time
as well as disease that has developed recently. If there is a long presymptomatic
stage, the initial screening may detect a large number of individuals with the
disease. Once these individuals are treated, subsequent testing will only detect
cases of the disease that have developed during the intervening period. Thus, we
would generally expect subsequent screening to identify a much smaller number
of individuals with the disease. Failure to appreciate this principle may result in
the following error:

An initial screening program for gonorrhea in women conducted in the only women’s
health clinic in one community resulted in a 5% frequency of gonorrhea. The screen-
ing was continued for every patient visiting the clinic. Over the next several years,
the percentage of cultures that were positive fell dramatically. The investigators con-
cluded that the probability of developing gonorrhea had dropped dramatically in the
community.

The reduction in the frequency of positive cultures may not ref ect what is really
happening in the community. Rather, it may predominantly ref ect the fact that
repeat testing only detects the newly developed cases of a disease rather than
detecting new as well as long-standing cases.7 Most of the long-standing cases
have been detected and hopefully successfully treated after the f rst screening.
The recommended time interval between tests must also be considered in deter-

mining the frequency of screening. Ideally, the longer the presymptomatic stage,
the less frequently screening needs to be performed. However, determining the
frequency of screening based exclusively on knowledge of the natural history of a
disease may not be a very reliable method, as illustrated in the next example:

One reviewer who evaluated the results of the Papanicolaou (PAP) smear concluded
that PAP smears should be done every 6 months to be sure that all new cases of
disease are detected at an early stage. Another reviewer recommended screening

7 This is different from length bias because it occurs even if all disease had the same natural history.
Notice that the f rst time screening is performed in a population, the number of cases of disease ref ects
the prevalence of the condition. If screening is repeated at a later time, the number of cases ref ects the
incidence of the disease since the previous screening (plus the missed cases).
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patients every 5 years, arguing that cervical cancer is very slow growing and thus
requires no more frequent screening.

Many screening tests depend on the adequacy of the sample obtained. In clinical
practice, the PAP smear may not perform as well as in clinical studies because the
sampling technique used in practice may inadequately sample the endocervical
junction where cervical cancer is believed to originate. If this happens and the
recommended interval is 5 years, then it can be 10 years ormore before an adequate
sample is obtained. Thus, in addition to the natural history of the disease, it is also
important to consider the realities of testing in a clinical setting when evaluating
the frequency of screening.
An additional factor affecting the frequency of screening, and thus the costs, re-

lates to the types of individuals who seek screening tests in clinical practice. When
screening depends on patients to initiate a visit, there are often two types of pa-
tients: Those who are screened repeatedly and those who rarely receive screening.
This may result in self-selection bias. Repeating screening tests at frequent inter-
vals leads to rapidly diminishing returns. Ensuring that those who rarely receive
screening are included among those screened may produce far greater benef ts.
The trade-offs are illustrated in the next example:

An organizer for a pediatric lead screening programneeded to choose between testing
patients every time they came in for follow-up and conducting home visits. Home vis-
its would allow one test for every child, even those who never made an appointment.
The investigators found to their surprise that they could identify far more individuals
with elevated lead levels by conducting home testing in which they tested every child
once.

Often those who fail to seek care are the ones who need screening themost. Factors
that increase the risk of disease may be closely linked to factors that keep patients
from seeking care. Social and economic factors often result in this self-selection
bias.
Screening for asymptomatic disease has become an important preventive inter-

vention in clinical practice. Its success, however, depends on being able to fulf ll
four key criteria: substantial morbidity and mortality, early detection improves
outcome, feasible screening strategy with good diagnostic performance, and ac-
ceptable testing strategy with good clinical performance.
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20 Questions to Ask and
Flaw-Catching Exercises

Questions to Ask when Testing a Test
These Questions to Ask can be used as a checklist when reading research articles
on diagnostic testing. For practice using the M.A.A.R.I.E. framework, please go
to the Studying a Study Online Web site at www.StudyingaStudy.com.

The following are the Questions to Ask when Testing a Test.
Method: The investigation’s purpose and population

1. Purpose: What is the intended purpose of the investigation?
2. Study population: What are the inclusion and exclusion criteria?
3. Sample size: What is the sample size?

Assignment: The participants and the tests

1. Recruitment: How are the participants recruited?
2. Assignment process: Does the assignment process avoid spectrum and verifi

cation bias?
3. Conduct of tests: How are the index test and reference standard tests con-

ducted?

Assessment: Measurement of the outcomes for the index test(s) and reference
standard test

1. Definitio of positives and negatives: How are a positive and a negative result
define for the index test(s)?

2. Precision: How precise (reproducible) are the index test(s)?
3. Completeness: How complete and unequivocal are the test results?

Results: Performance of the index test(s) compared to the reference standard

1. Estimates: sensitivity, specificit , and discriminant ability: How well do
the index test(s) perform among those with and without the disease as define
by the reference standard?

2. Inference: What are the confidenc intervals around the estimate?
3. Diagnostic ability: How well do the test(s) perform taking into account the

relative importance and characteristics of those with false positives and false
negatives?

Interpretation: Conclusions for the participants in the investigation

1. Ruling in and ruling out disease: Which index test performs better for ruling
in and for ruling out a disease?

184
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2. Posttest chances of disease (Bayes’ theorem): How well do the test(s) per-
form in diagnosing disease when pretest probability of the disease is taken into
account?

3. Clinical acceptance: Is there data on patient acceptance, cost, or safety that
needs to be taken into account when deciding whether or when to use the
test(s)?

Extrapolation: Conclusions for those not included in the investigation

1. To target population: What strategy is advised for use of the index test(s),
and are the test(s) expected to perform as well on groups in practice?

2. Beyond the data: Have the investigators gone beyond the data to draw con-
clusions on the timing of tests or the frequency of use, etc.?

3. Other settings or populations: Have the investigators indicated how the index
test(s) should be implemented in other settings or populations?

Flaw-Catching Exercises
The following f aw-catching exercises are designed to illustrate the type of errors
that can occur when evaluating diagnostic and screening tests. Each exercise draws
conclusions. Read each exercise and see if you can identify the f aws in the con-
clusions as well as issues that they handled well.

Flaw-Catching Exercise No. 1: Diagnostic Performance of Tests
Theusefulness of a new test for thrombophlebitis is being evaluated. The traditional
reference standard test for thrombophlebitis has been the venogram, with which
the new test is being compared. Investigators f rst obtained a reference interval for
the new test by performing the new test on 100 laboratory technicians without a
history of thrombophlebitis. They set the reference interval range to include the
central 95% of the laboratory technicians’ values on the new tests. Values above
the reference interval were def ned as positive.
To assess the precision (reproducibility) of the new test, the new test is performed

on 100 consecutive patients with positive venograms. The investigators found that
98% of the patients diagnosed as having thrombophlebitis had a positive test result.
The investigators then repeated the test on the same group of patients. They again
found that it was positive in 98% of the 100 patients. From this, they concluded
that the new test was 100% precise (reproducible).
Having demonstrated the precision of the new test, the authors proceeded to

study its diagnostic performance.
The participants were carefully chosen to fulf ll inclusion and exclusion criteria.

The authors performed the new test and the reference standard test (venogram) on
all participants. They conducted the new test and the reference standard test using
the best available assessment procedures.
Next they evaluated the results. The investigation included 1,000 patients with

unilateral leg pain, of whom 500 had positive venograms and 500 had negative
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venograms. The investigators classif ed individuals as positive or negative by the
reference standard test and by the new test, and presented their data as follows:

New Test Positive Venogram Negative Venogram

Positive 450 100

Negative 50 400
500 500

The investigators def ned sensitivity as the proportion of individuals with the dis-
ease, as def ned by the reference standard test, who have a positive new test. Thus,

Sensitivity = 450
500

= 0.90 = 90%

The investigators def ned specif city as the proportion of individuals without the
disease, as def ned by the reference standard test, who have a negative new test.
Thus,

Specificit = 400
500

= 0.80 = 80%

The investigators calculated the posttest probability of disease (the predictive value
of a positive test) for their study participants. They def ned this value as the pro-
portion of persons with a positive new test that actually have the condition as
measured by the reference standard test. Thus,

Predictive value of a positive test = 450
550

= 0.818 = 81.8%

From these results, the investigators drew the following conclusions:

1. The reference interval used here is the only way to def ne a positive result and
a negative result.

2. The new test is completely precise (reproducible).
3. The diagnostic ability of the test is 85% since the sensitivity is 90% and the

specif city is 80%.
4. Because of the careful measurements used in this investigation, one can be

conf dent that the sensitivity is actually 90% and the specif city is actually 80%.
5. The new test has a lower sensitivity and specif city than the venogram; thus, it

is an inherently inferior test and should not be used unless the venogram is not
available.

6. When applied to a new group of patients, such as a group with bilateral leg pain,
a positive new test can be expected to have a predictive value of a positive test
equal to 81.8%.

Critique: Exercise No. 1
Let us evaluate each of the conclusions reached by the investigators:

1. Obtaining a reference interval by utilizing a group of individuals who are be-
lieved to be free of the disease, such as laboratory technicians, is not the only
or necessarily the best way to def ne positive and negative results. It is also
possible to set the positives and the negatives by examining a series of potential
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cutoff points to determine which one performs the best. This can be done by
selecting the cutoff point that maximized the discriminant ability. This is the
same as maximizing the area under the ROC curve.

2. If a test is performed several times on the same individuals under the same
conditions, the results for each individual should be nearly identical if the test is
100%precise (reproducible). The authors stated that the total number of positive
tests was identical when the test was repeated. They did not, however, indicate
whether the same individuals were positive when the test was repeated. If the
same individuals were not positive, the test could not be considered completely
precise.

3. The investigators did a good job of performing both the index and reference
standard test on all participants thus avoiding spectrum and verif cation bias.
However, the investigators have confused the concept of discriminant ability
with the concept of diagnostic performance. Diagnostic performance, in addi-
tion to taking into account sensitivity and specif city, also takes into account
the relative importance of false positives and false negatives. Discriminant abil-
ity assumes that a false positive and a false negative are of equal importance.
Most likely we would not regard a false negative and a false positive for throm-
bophlebitis to be of equal importance; thus we need to careful not to equate
discriminant ability and diagnostic performance.

4. Regardless of the care and proper procedures used in an investigation, the mea-
surements obtained from sampleswill never provide results that perfectly ref ect
the larger population fromwhich they are obtained. The larger the investigation,
the smaller the error; however, there will always be an inherent sampling error
due to chance. This error should be reported as a 95% conf dence interval. This
investigation did not report the 95% conf dence interval.

5. A reference standard test is the measure of a disease against which new or
unproved tests are compared, but the reference standard test traditionally used
may not be an ideal measure of the disease it is designed to diagnose. It is
possible for a new test to be a more useful measure of the disease than the
accepted reference standard test.When comparing the sensitivity and specif city
of new tests with that of the reference standard test, we must keep in mind that
disagreement between the tests may result from a reference standard test that
is less than perfect rather than the inadequacy of the new test.
When the authors concluded that the new test had lower sensitivity and

specif city than the venogram, they were making the usual assumption that
the venogram had 100% sensitivity and 100% specif city. When we make this
assumption, there is no way for the new test to have a higher sensitivity or
specif city than the reference standard test. However, it is important not to
conclude that the new test is a less useful measure of thrombophlebitis. If
the new test is safer, cheaper, or more convenient than the venogram, it may
useful in practice. Clinical experience may eventually even demonstrate that
the new test is a better predictor of the consequences of thrombophlebitis than
the venogram is, allowing the new test to be used as the reference standard test.
In the meantime, the best the test can do is to match the established reference
standard test, assuming it has 100% sensitivity and 100% specif city and a
discriminant ability of 100%.

6. The authors have used the correct def nitions of the sensitivity, specif city, and
predictive value of a positive test for their study participants. As they stated, the
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predictive value of a positive test (the posttest probability) is the proportion of
those with a positive new test who actually have the condition as measured by
the reference standard test. In this study group, the chance of thrombophlebitis
(pretest probability) is 50% (500 with thrombophlebitis, 500 without); thus,
the predictive value of a positive test is 450 true positives divided by 550 total
positives, or 81.8%.
The predictive value of a positive test, however, is different in different groups

of patients, depending on the pretest probability of the disease in the group being
tested.One cannot extrapolate a predictive value derived in one group of patients
directly to another group with a different pretest probability of the condition.
One would expect a group of patients with unilateral leg pain to have a different
pretest probability of thrombophlebitis than a group of patients with bilateral
leg pain.
Because the probability of thrombophlebitis in a patient who presents with

bilateral leg pain is much lower than 50%, the posttest probability of disease
even after a positive test would be much lower than 81.8%.

Flaw-Catching Exercise No. 2: Screening for Disease
Prostate cancer is known to be a disease with substantial morbidity and mortality
among elderly men. A newly discovered test, known as better screening antigen
(BSA), was found to distinguish between men with clear-cut prostate cancer and
men without any evidence of prostate cancer.
When BSA was used as a screening test, elevated levels were followed by

biopsy. Biopsy has traditionally been used as the reference standard test. It has
been shown to have both a specif city and a sensitivity of nearly 100% for prostate
cancer when used to follow up prostate nodules found on rectal examination. In
the initial studies, among men 60 years and older, there were only a few mildly
elevated BSA readings, which were identif ed as false positives on biopsy.
When the BSA was used in screening, the cases detected by screening were

diagnosed at an earlier stage of disease compared with those diagnosed in the
usual course of clinical care. The prostate cancer was almost always localized to
the prostate, compared with the cases diagnosed in the usual course of clinical care
in which a substantial number had spread beyond the prostate.
A systematic review of the literature on prostate cancer was conducted. The

reviewers drew the following conclusions:

1. Based on the morbidity and mortality of prostate cancer and the ability of BSA
to distinguish between those with and without prostate cancer, the criteria for
an ideal screening test has been fulf lled.

2. Those individuals who were diagnosed through screening for prostate cancer
on the basis of an elevated BSA and a positive biopsy were found to live longer
from the time of diagnosis than those diagnosed in the usual course of health
care. The reviewers concluded that early detection improves outcome.

3. The sensitivity and specif city obtained by comparing those with clear-cut
prostate cancer to those without any evidence of prostate cancer can be ex-
pected to be the same when the test is applied in practice to patients with a full
spectrum of prostate disease.
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4. Because of the successful efforts at screening among men 60 years and older,
BSA screening should be used among all men 50 and older since the disease
may be present in the 50s.

5. Previous investigators had suggested that age and size of the prostate should be
considered when determining the cut-off point for a positive test and a negative
test, but reviewers concluded that it is essential to have the same cut-off point
for all patients.

6. Prostate biopsy did not perform as well as expected as a reference standard test.
When conducted following an elevated BSA, it did not perform as well as it
had after a nodule is detected on rectal examination. The investigators could
not understand this, since they argued that biopsy is the reference standard test
and by def nition is always correct.

7. In order to identify patients with a positive biopsy for cancer who should re-
quire aggressive treatment, investigators recommended a test known as the
Grusome score. The Grusome score was advocated as a test to separate aggres-
sive from less-aggressive cancers. However, the reviewers argued that before
this test can be used, it needs to be evaluated using the same procedures as other
tests.

8. After diagnosis of prostate cancer, levels above zero were found to indicate
remaining disease. Progressive increases in BSA over time were strongly as-
sociated with spread of prostate cancer. The investigators rejected this use of
the BSA, arguing that a test used for screening cannot also be used for another
purpose.

Critique: Exercise No. 2
Let us examine each of the conclusions reached by the reviewers.

1. Substantial morbidity and mortality and the ability to detect the disease at an
early stage are important when considering screening. However, they do not
in and of themselves justify screening. It is key that early detection improved
outcome and that screening is feasible and acceptable.

2. The fact that a group who received screening lived longer from the time of di-
agnosis is encouraging. However, it is possible that the earlier time of diagnosis
merely extended the time between diagnosis and death rather than extending
the life span. When this occurs, it is known as lead-time bias.

3. The initial efforts to evaluate a screening test were conducted comparing those
with clear-cut prostate cancer to those without any evidence of prostate disease.
There are a spectrum of types of patients who were not represented in these
studies butwhowould receive the test if used in practice. This includesmenwith
earlier stages of prostate cancer and men with other diseases of the prostate.
When a full spectrum of potential patients is not used in evaluating a test, the
possibility of spectrum bias exists. When spectrum bias occurs, the sensitivity
and specif city observed in practice is often lower than that obtained in the
investigations. Note that sensitivity and specif city can only be expected to be
constant from population to population when the same spectrum of disease is
present in each population.

4. Even if BSA screening has been successful among those 60 years and older, we
need to be careful in applying the results to those under 60. The disease may
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behave very differently among those under 60. In addition it is likely that there
is lower prevalence (pretest probability) among those in their 50s. Screening
may be either more or less successful amongmen under 60. Thus it is important
that conclusions on men under 60 be drawn from data on men under 60.

5. The reference interval (range of normal) for BSAmay be affected by the age of
the individual and the size of their prostate. If these considerations are not taken
into account, there may be a substantial increase in the false positives among
older men with larger prostates. Adjusting the reference interval, especially for
clear-cut factors such as age, is often a useful means of developing an improved
reference interval.

6. Useof a biopsy as a reference standard test implies that the locationof the disease
can be clearly identif ed and tissue obtained for biopsy. When a prostate nodule
is present and it is biopsied, these conditions are fulf lled. However, when using
a blood test, the issue of identifying the location to biopsy is a problem. Thus
we should not be surprised that biopsy, even multiple biopsies, is not as reliable
a reference standard test after a positive BSA as it is after detection of a prostate
nodule on rectal examination.

7. Tests used in preparation for treatment, such as the Grusome score, are seldom
evaluated using the same criteria as those used for screening and diagnosis.
While full evaluation may be desirable, it is not often practical prior to use in
practice. Tests for aggressiveness of disease have often been used successfully
in determining the approach to treatment. These are often based primarily on
an understanding of the biology and the progression of the disease.

8. The same tests may be used for multiple purposes. Therefore, it is important
to identify the purpose for which a test is used. A test may perform better for
one purpose than another. A test may perform better for prognosis than it does
for diagnosis. For instance, when the prostate has been fully removed, the level
of the BSA may be expected to fall to zero. Subsequent increases may be a
particularly good indicator of the progression of the disease.

The Testing a Test section aims to illustrate how research investigations can be
used to measure the performance of tests used for diagnosis and screening. As we
have seen, the M.A.A.R.I.E. framework can be used to organize a review of an
investigation of a test. The use of testing relies heavily on knowledge of the rates
of disease. Thus, let us turn our attention to the next section Rating a Rate.
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Rates of disease are often the subject of investigations.When rates are obtained and
used for comparison, the investigations can be reviewed using our M.A.A.R.I.E.
framework. Figure 21.1 illustrates the application of the M.A.A.R.I.E. framework
to investigations that compare rates.

Method
Purpose

When examining an investigation of rates, as with the other types of investigations,
the firs question to ask is: What is the purpose of the investigation—i.e., what is
the question being asked?
The types of investigations of rates that we will examine do more that calculate

rates, they compare rates. Thus the types of questions that will be asked relate to the
comparison of rates between different population or changes in rates at different
times in the same population.
Specifi purposes for investigating rates may include the following:
� Studies of etiology often begin with a hypothesis derived from observing a
difference or change in rates of disease. For instance:

An investigator found that countries with a high consumption of olive oil had a
lower rate of death due to coronary artery disease compared to countries with a low
consumption of olive oil. On the basis of this study he hypothesized an association at
the individual level between consumption of olive oil and lower probability of death
due to coronary artery disease.

� Testing relies on rates to estimate the pretest probability before knowing the
patient’s symptoms. For instance:

An investigator found that the rate of developing coronary artery disease increases
with age among men and women, with the rate among women trailing men by
approximately 10 years. He used this as the starting point for estimating the risk of
coronary artery disease in a 65-year-old man and a 23-year-old woman.

� Prediction of the future often rests on rates of development of disease and the
subsequent rates of death or disability. For instance:

Among those with a previous myocardial infarction, the rate of death fell steadily
from 100 per 1,000 per year to 70 per 1,000 per year between 1975 and 2005. The
investigators predicted that the rate would be approximately 65 per 1,000 per year
by 2010.

� Effica y may be suggested by looking at rates before and after an intervention.
For instance:

The rate of developing Reye’s syndrome was 0.5 per 100,000 children under
12 years old per year during the 1960s and 1970s when aspirin was promoted for

193
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Figure 21.1. M.A.A.R.I.E. framework for investigations comparing rates.

use by children. The rate fell to 0.1 per 100,000 children under 12 years old per year
after aspirin was widely considered contraindicated for young children.

Rates are often used to record the occurrence of risk factors for disease, the occur-
rence of disease, and the outcomes of disease, such as death or disability. When
rates are used merely to record, we call the results descriptive studies. Descrip-
tive statistics focus on calculating rates. Descriptive studies, unlike other types of
investigations, do not aim to compare one group to another or one period of time
to another. In contrast, studies that compare rates are called analytical studies.
The types of investigations that lead to immediately useable hypotheses or con-

clusions usually require comparisons. That is, when looking at studies of rates
of disease, we are usually interested in the comparing rates between groups or
populations, or comparing the rates from one time period to another. Thus, we will
focus our attention on investigations that compare rates.

Types of Rates
In classifying rates, the most important distinction is between proportions and
true rates.1 A proportion is an expression of probability in which the numerator is
derived from the denominator. That is, the numerator is a subset of the denominator,
as illustrated in the following example.

An investigatormeasured the number of cases of lupus erythematosus in a community
and f nds 100 cases. She calculated the number of cases of lupus per 100,000 people
living in the community of 1 million people and concludes that there are 10 cases of
lupus per 100,000 people.

This proportion is known as prevalence. Prevalence measures the probability that
a disease is present at a particular point in time. That is, a prevalence of 10 per
100,000 represents a probability of 1 per 10,000, or 0.0001, or 0.01%.

1At times the term rate is used in this section as a generic term to indicate any fraction with a
numerator and a denominator. A fraction may consist of a numerator that measures one phenomenon
and a denominator that measures a different phenomenon. For example, in perinatal mortality rates,
the numerator consists of the number of stillbirths in a population and the denominator is the number
of live births during the same time period. This special type of fraction can be confusing because it
is often referred to merely as a ratio. A better term might be unrelated ratio. This type of ratio does
not have any predef ned limits. In other words, theoretically, it can vary from 0 to inf nity since the
numerator and the denominator do not depend on each other.
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Another important proportion that is a probability is known as a case fatal-
ity. Case fatality is a measure of prognosis. Case fatality indicates the probability
of dying from the disease once the diagnosis is made. Thus the numerator con-
tains the number of deaths while the denominator contains the number of cases
diagnosed.
Strictly speaking, a rate, orwhatwemight call a true rate, satisf es the conditions

of a proportion but also includes a period of time.That is, in a true rate the numerator
includes the occurrence of events over a period of time, often over a 1-year period,
as illustrated in the next example.

The lupus erythematosus investigator now identif es all new cases that develop in the
community during 2005. She f nds 5 cases per 100,000 people in 2005 and concludes
that the rate is 5 per 100,000 per year.

This measurement is known as an incidence rate. It measures the probability of the
occurrence of an event such as the diagnosis of lupus over the period of a year. Like
prevalence, the incidence rate has a numerator that comes from the denominator
and therefore measures a probability. Unlike proportions that measure the situation
at one point in time, rates measure the occurrence of events over time.
Another important rate is known as the mortality rate. Mortality rates measure

the incidence of death per 100,000 people per year. Thus, they are true rates and
indicate the probability of death in a population over the course of a year.2
Three rates together are needed to capture a composite picture of a disease.3

They describe the epidemiology of the disease.

� Incidence rate: the rate of development of the disease over a period of 1 year
� Prevalence: the probability of having the disease at one point in time
� Case fatality: the probability of dying once the disease has developed

These three rates aim to measure three distinct points in the progression of the
disease over a period of time. Together, they aim to capture a point-in-time pho-
tograph of a moving target. We will come back to these rates in Chapter 24 on the
interpretation of rates when we will ask: What is the underlying reasons for the
changes or differences in rates?

Study Population
Identifying the study’s population requires us to ask about characteristics of the
population fromwhich the data was obtained as well as the procedure for obtaining
the data. Together, these issues can be thought of as understanding the source of
the data.

2 Combination measurements can be used and can cause confusion. For instance, the proportionate
mortality ratio (PMR) which tells us the relative importance of one disease compared to another often
in one particular age group. It can cause confusion if we try to use it as a probability. For instance, the
fact that people older than 65 have a lower proportionate mortality ratio from trauma does not imply
that the elderly have a lower probability of dying from trauma. Becausemanymore deaths occur among
people older than 65 years, even small PMR dying from trauma may represent a mortality rate from
trauma among the elderly that exceeds the young.

3Anothermeasurement thatmay be used is called period prevalence. Period prevalence is the number
of cases that occur during a time period divided by the average size of the population. Period prevalence
incorporates measures of incidence as well as prevalence. Thus, at times it may be a better ref ection of
the impact of a disease or condition that either one alone. Prevalence may also be referred to as point
prevalence to distinguish it from period prevalence.
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Rates may be obtained using a variety of sources of data:
� Complete data from the total population
� Incomplete data from the total population
� A representative sample of the total population
� A non-representative sample of the total population

Complete or nearly complete data in most countries is diff cult to obtain. Often
only a short list of types of data are available that includes births and deaths. In
addition, census data from the entire population is usually obtained on a regular
basis, often every 10 years. These are the basic sources of complete population
data that are used to obtain rates.
Mortality rates for the entire population and infant mortality rates that measure

the rate of deaths during the f rst year of life per 1,000 live births are usually
calculated from complete population data. Many rates, however, rely on less-
complete forms of data, data derived from representative samples designed to
ref ect the larger population or non-representative samples that do not necessarily
ref ect the larger population.
Most data is less complete than births and deaths. Many infectious diseases and

a limited number of other conditions are collected by what is called reportable
diseases. Reportable diseases are diseases or conditions that are expected to be
reported to a governmental organization, often the local health department. This
reporting is usually off cially the responsibility of the clinician making the diagno-
sis. At times, reportable diseases may be identif ed on the basis of laboratory tests
and reported by the laboratory itself. As we will see in chapter 22 on assessment,
reporting by clinicians is often far from complete and is often non-representative.
That is, it does not ref ect the rates in the larger population. This has important
implications for this method of data collection.
Rates may be obtained by randomly sampling the entire population to produce

a subset or sample that is large enough and representative enough of the entire
population to produce accurate estimates of rates in the entire population. Sampling
may be done by giving each individual the same probability of being included in
the sample. This is called simple random sampling. Alternatively, what is called
stratifie random samplingmay be performed. This approach ensures that enough
members of subgroups such as minority populations are included in a sample to
allow accurate estimate of rates for these groups.4
Rates may be collected utilizing special sites sometimes called sentinel sites.

Sentinel sites are settings such as emergency departments or ambulatory care
clinics that, while not representative of the entire population, often are the sites
where the f rst cases of a condition present for care. Sentinel sites are used for
detection of inf uenza early in the epidemic cycle and to monitor for expected and
unexpected cases compatible with bioterrorism. The use of sentinel sites implies
comprehensive data collection for particular conditions at carefully selected sites.
Thus, there are a number of sources of data for rates that may be used.

It is important, however, to recognize that rates can also be calculated using

4A number of national surveys are conducted using stratif ed random sampling. In the United States
household surveys have been conducted on a regular basis and provide a wide range of data on health
behaviors, risk factors, and use of health care services. In addition, these types of surveys are being
used to assess the health status or degree of disability that exists at different ages and among subgroups
of the total population.
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easily available data that may produce misleading results, as illustrated in the next
example.

Data on myocardial infarction was readily available from 2 of 20 hospitals in a large
metropolitan area. Using data on myocardial infarction from a county hospital, an
investigator estimated that the community’s rate ofmyocardial infarctionwas 150 per
100,000 per year. An investigator using data from a private hospital in the same
community estimated that the rate was 155 per 100,000 per year. Because the rates
were so similar, a reviewer concluded that the rate in the communitymust be between
150 and 155 per 100,000 per year.

Neither of these investigations obtain a random or representative sample of the
community. The data ref ect only myocardial infarctions that make it to these
hospitals. The data comes from two hospitals in which the data is convenient for
the investigators to obtain. It is possible that myocardial infarction patients or
ambulance drivers either selectively chose one of these hospitals or selectively
avoided them.
Use of this type of data is called a convenience sample. If data on all hospitals or

a representative sample of hospitals was available, the rates might have been very
different. When rates are derived from convenience samples, they usually cannot
be used to represent a larger community or population.
Convenience samples may be the only available data. Though they cannot be

relied on to ref ect the larger population rates, repeat use of convenience sam-
ples from the same source may be useful in detecting changes, especially if the
conditions for data collection remain the same. For instance, changes in rates of
myocardial infarction in this community might be monitored by changes that are
occurring in these two hospitals.
Thus, the f rst step in examining an investigation of rates is to ask, what is the

purpose? what is being measured? and, where does the data come from?

Assignment
The process of assignment for rates requires us to examine the def nitions of each
of the components of rates. That is, the numerator, the denominator, and the period
of time.

Numerator
As we have seen, rates may be measured for a variety of purposes. We can use
rates to measure diseases, condition such as injuries, or administrative occurrences
such as hospital admissions. Because of the wide variety of uses of rates, the term
event is used to indicate the recognition of the condition or diagnosis that appears
in the numerator of a rate.
To better understand what issues arise when def ning the events that appear

in the numerator, let us imagine that we are interested in comparing the rates
of death and severe injury from automobiles and trucks. In order to make this
comparison, we need to def ne exactly what we mean by death and severe injury
in the numerator, as well as exactly what we mean by an automobile and a truck.
While these distinctions may seem obvious, consider the following:

� Are the categories adequately distinct? What is a truck? Does it include sports
utility vehicles (SUVs)?
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� What is the def nition of an outcome? For instance, how do we def ne a severe
injury?
� Can an outcome be clearly attributable to one particular category? For instance,
how is a death measured if a truck hits a car and kills the driver of the car? Is the
death a car-or a truck-related death?

Thus, it is important to understand how the numerator of a rate is def ned.

Denominator
The denominator of a rate may be def ned in a number of ways as well. The choice
of the denominator depends on the question being asked. For instance, imagine
the following possible denominators:
� 100,000 people
� 100,000 vehicles
� 1 million miles

Each of these denominators asks us to address a different question andmay produce
a different answer, as illustrated in the next example.

An investigation that used 100,000 people in the denominator concluded that auto-
mobiles had a higher death rate than commercial trucks. An investigation that used
100,000 vehicles in the denominator concluded that trucks had the higher death rate.
An investigation that used 1 million miles driven in the denominator concluded that
the rates for cars and trucks were similar.

The fact that there are far more automobiles than commercial trucks may in and
of itself explain why there are more deaths due to automobiles. On the other
hand, truck drivers may drive far more miles per vehicle than automobile drivers.
This could explain the increased rate of deaths from trucks per 100,000 vehicles.
The rate per 1 million miles driven may ref ect both the numbers of vehicles and
extent of their use.

Time
A true rate as opposed to a proportion or probability explicitly includes a unit of
time as part of the measurement. The most common unit of time is a one-year
calendar period, i.e., 2003, 2004, etc. At times, rates of disease may be expressed
at rates per week, per month, or a variety of other time periods.
Sometimes, the people in the denominator of the rate will not be followed for the

full time period. This is often the case in studies that follow individuals for varying
periods of time. Thus, rates may also be expressed using what is called person-
years. A person-year represents one individual followed for one year. However, a
person-year can be made up of two persons followed for 6 months, four persons
followed for 3 months, or any other combination. In addition, one person followed
for 2 years would result in 2 person-years.
It is important to recognize the distinction between population-at-risk and

person-years in a rate, as illustrated in the next example.

An investigation found that the rate of developing gastroenteritis on cruise ships was
3,600/100,000 passengers. Another investigation found that the ratewas 100/100,000
person-years. A reviewer examining these studies concluded that these were dramat-
ically different results.
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The results of these two studies are actually quite compatible if we assume that
most passengers spend only a short period of time on board a cruise ship, perhaps
10 days. If the average of passenger spent 10 days on a cruise ship, then it would
take over 36 passengers to produce one person-year. Thus, the results of these two
investigations are very compatible, differing only in the unit of measurement of
time.
In examining the assignment process,we have taken a look at how the numerator,

the denominator, and the unit of time are def ned. Understanding these def nitions
is key to appreciating what the rate is attempting to measure. The process of
obtaining the measurement depends on how the investigator has def ned the rate,
as we will see in the next chapter on assessment.
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Assessment is the process of measurement. With rates, we are interested in how
the numerator and the denominator are measured.

Measuring the Numerator and the Denominator
Let us begin examining assessment by looking at the numerator and asking how
cases such as diagnosis of a disease or other events such as disability are actually
measured. The identificatio of cases may reflec actual diagnoses made in the lab-
oratory or by definit ve criteria used in clinical practice. Alternatively, definition
of disease for purposes such as early detection of an epidemic may use definition
of disease that are less definit ve, as illustrated in the following example:

In order to monitor the rates of herpes genitalis in a community, the frequency of
positive cultures obtained by all the laboratories in the community was used. A
second study of patients in doctors’ office found a rate three times as high using a
definitio of herpes genitalis that relied on clinical finding and patient reports.

The method for measuring an event may greatly affect its rate. Often the goal is not
to be completely accurate or completely precise, but rather to use a measurement
that can be conveniently followed over time as a technique for identifying changes
in the rate of development of a disease or in its prognosis once it occurs.
Measuring the denominator often requires the availability of data that is col-

lected for other purposes. Census data is often the source of population data for
national rates or those of smaller geographic units. Rates of disease often distin-
guish between the total population and what is called the at-risk population. For
instance, what should be the denominator for the probability of becoming preg-
nant? All females? Females of child-bearing age? Females of child-bearing age
who have not had a hysterectomy?
Regardless of the ideal denominator, investigators often need to be pragmatic

and defin the denominator based on the availability of reliable data. Definin a
denominator that reflect womenof childbearing age requires definin childbearing
age and obtaining data on the female population in this age group, an achievable
goal. Measuring women of childbearing age using census data may be a pragmatic
choice. It is an improvement over using all women even though it does not meet
the goal of using only women who have not had a hysterectomy.
Often the entire population will be substituted for those who are actually at risk

of a condition, especially when it is believed to be a close approximation of those
at risk, as illustrated in the next example.

The incidence of blindness is estimated by sampling the entire population to estimate
the total number of new cases of blindness per year. The total population was used
as the denominator.

Use of the total population as the denominator assumes that everyone is at risk.
This distinction often makes little difference when only a small percentage of

200
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the population already has the condition and thus are not at risk of experiencing
it. That is, only a small percentage of the population is blind, so using the total
population represents a quite good estimate of those at risk of blindness. Contrast
this, however, to the following example.

The incidence of visual impairment requiring correction for reading was estimated
by sampling the population to estimate the number of new cases per year. The total
population was used as the denominator.

Here, the use of the total population as the at-risk-population has a major impact
on the rate since a substantial portion of the total population already has visual
impairment requiring correction for reading. The use of the total population may
result in underestimating the probability that those at risk will develop visual
impairment.
Because the choice of denominator is often based on pragmatic considerations,

it is important that the reader of the research examine not onlywhat the investigator
intended to measure in the denominator, such as the at-risk group for pregnancy,
but also what they actually measured.

Derivation of Rates
At times, rates such as mortality rates can be obtained using complete population
data. Complete population data may be available on births, causes of death, and
the size and composition of the population.
However, the three rates that capture a composite picture of the rate of a disease—

incidence rate, prevalence, and case fatality—cannot generally be obtained from
complete population data. Often they need to be derived from other available data
or estimated from incomplete data or samples of the population of interest.
In order to understand how these rates can at times be derived from other rates,

we need to examine the approximate relationship that exist between them.
Prevalence and incidence rates are related to each other approximately as

follows:

Prevalence = Incidence rate× Average duration of the disease

Or

Incidence = Prevalence/Average duration

Thus, if prevalence is known based on an investigation conducted at one point in
time and the average duration of a disease can be estimated, then it is possible
to derive an estimate of the incidence rate for a disease, as illustrated in the next
example.

The prevalence of sickle cell anemia obtained using a representative sample of the
population is estimated to be 300per 100,000. The duration of the disease as estimated
based on a representative sample is 30 years. From these data the incidence rate is
estimated to be 10 per 100,000 per year.

Here, the estimate of the incidence of the disease is obtained by dividing the
prevalence by the average duration of the disease. Alternatively, if the incidence
rate and the average duration of disease can be estimated, it is possible to derive
the prevalence of the disease.
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At times the estimates are not really derived from data but represent the best
guesses of experts, as indicated in the next example.

The incidence of bipolar disorder is estimated by an investigation that carefully sam-
pled the prevalence of the disease in a representative sample of the total population.
They then estimated the incidence of the disease based on the clinical observations
that once, present the disease is of lifelong duration.

This example illustrates that duration of disease is often estimated based on
clinical impressions or knowledge of the course of a disease rather than actual
measurements. Even if the prevalence can be accurately estimated using a sample,
the assumption that bipolar disorder is a lifelong disease may not hold true.
The incidence rate is related to the mortality rate as follows:

Mortality rate = Incidence rate× case fatality

Thus, if the mortality rate is known, it is possible to estimate either the incidence
rate or case fatality if the other one can be estimated, as illustrated in the following
example:

The mortality rate from sickle cell anemia is found to be 4 per 100,000 per year. The
previous estimate of incidence rate of 10 per 100,000 per year was used to calculate
the case fatality. The case fatality as derived was 40%.

Deriving rates rather than measuring them directly can lead to problems of accu-
racy and precision. Estimates of incidence ref ect a particular time period, while
mortality rates ref ect a later time period. Thus, the measures used here assume
that nothing is changing, which is rarely the situation. In addition, case fatalities
for conditions such as sickle cell anemia depend heavily on what is considered the
cause of death. For instance if a sickle cell patient dies of a stroke, is that def ned
as due to sickle cell anemia or due to a stroke?
Deriving rates rather than measuring them directly may be necessary and useful

in some situations. It is important to recognize, however, that derived rates are
prone to problems of accuracy and precision.1

Completeness
As we have seen, rates may be derived from incomplete data sources. This is often
the situation because our calculation of rates often relies on reported rates, which
may be less than complete and less than representative of the entire population of
interest. That is, they may be a biased sample of the entire population.
When rates are obtained from data on reportable diseases—a convenience

sample—it is especially susceptible to be being both incomplete and non-
representative, as suggested by the following example.

Incidence rates of AIDS were obtained from physicians’ reports. When these reports
were reviewed, it was concluded that most of the reports occurred when requested

1Note that the relationship between incidence andprevalence is actuallymore complex that suggested
by the simple formula prevalence= incidence× average duration. First, this formula assumes that the
incidence rate and the average duration are stable over time. It also fails to recognize that duration of
disease depends on the age of onset and the average life expectancy of those who develop the disease.
In addition, the calculation may divide one estimate by another and thus is subject to greater error than
would be the situation when only one estimate is being made.
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by patients who wished to qualify for disability coverage or where the physician did
not feel the disclosure would violate the patient’s privacy.

The diagnosis of AIDS cannot be made exclusively on the basis of laboratory tests.
It requires that the clinician put together the data. Thus, data on the frequency
of AIDS may be both incomplete and unrepresentative. Whenever a judgment
is required about whom to report, incomplete and biased data is likely to result.
Reported data on AIDS is likely to introduce a bias that makes the types of patients
reported unrepresentative of all patients with the disease.
Reporting of disease is a legal expectation protecting the clinician or laboratory

that reports the disease from allegations of violations of privacy. Nonetheless, or
perhaps because there are usually no consequences for not reporting, the data on
reportable diseases is usually incomplete and unrepresentative of all the cases that
occur.
In summary, the assessment process focuses on how rates are actuallymeasured.

It requires that we examine both the measurement of events in the numerator
and measurement of the at-risk population in the denominator. It also requires
that we recognize that the unit of time may be measured per year or per person-
year, producing results that appear to differ. Rates may be derived by combining
data collection with estimates made on the basis of expert opinion or general
knowledge of the course of a disease. The relationship between incidence and
prevalence and the relationship between mortality and case fatality should be
used cautiously to derive rates. Finally, rates are often derived from incomplete
or unrepresentative samples. It is important to recognize the potential for both
inaccuracies and imprecision that can results from this approach to estimating
rates.
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Estimation: Measurement of the Difference
The results component of an investigation of rates involves the comparison of
rates to obtain a measurement of the differences. These comparisons may examine
differences between rates for two populations such as two countries or between
subgroups of the same country such as blacks vs. whites. Alternatively, the com-
parisons may focus on changes within the same population over time.
Thus, we need to examine how the rates measured as part of the assessment

process might be combined to produce comparative measurements. Often rates
are compared by subtracting one rate from another and calculating the difference
between the rates, such as the difference between an incidence rate of 10/1,000
per year and an incidence rate of 5/1,000 per year. However, it is also possible
to compare rates by dividing one rate by another. This combination measurement
known as a rate ratio is illustrated in the next example.

The investigator of lupus erythematosus noted that females have an incidence rate
of 16 per 100,000 per year while males have an incidence rate of 4 per 100,000 per
year. She calculated a ratio of these rates and concluded that females have four times
the rate of developing lupus erythematosus.

The rate ratio is a ratio of rates, that is, one rate divided by another rate. Since the
units of population and time cancel out in the ratio, we are left with a measurement
without units. Rate ratios, like relative risks, tell us the relative probability of events
in one population compared to another.
However, we need to distinguish rate ratio from relative risk because the rate

ratio can be calculated even when it is not known whether or not those individuals
with the risk factors are the ones with the increased rates of the disease. Let us
review how the rate ratio is used to compare populations and their limitations using
the following scenario.

Fish consumption in the population of Italy was shown to be three times that of a
population of Italians who hadmigrated to the United States. Coronary artery disease
in Italy was one-third that among the Italian immigrants to the United States. The
authors concluded that eating fis decreases the probability of developing coronary
artery disease.

While this relationship may be true, it is not demonstrated using this data alone.
There is no evidence that those who eat fis are the ones with a lower chance of
developing coronary artery disease or that those who do not each fis are the ones
at greater risk. This population comparison produces a group association but it
cannot establish an association at the individual level.
In general, when we speak of a rate ratio, we do not necessarily have data on the

relationships between individual risk factors and the outcomes being measures.
As we discussed in the “Studying a Study” section, this is called a population
comparison. When we speak of relative risk, we usually imply that we have data

204
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on the relationship at an individual level. Thus, in this example a relative riskwould
imply that we have established an individual association between increased f sh
consumption and reduced coronary artery disease.1

Inference: Statistical Significanc Testing
When rates are obtained using data on an entire population, statistical signif cance
testing is not needed. This is true since the aim of statistical signif cance testing
is to draw conclusion about the larger population from the data obtained from a
smaller sample of the population. When data from the total population is used, we
already have the answer for the total population.2
Often, however,weuse samples to obtain rates, andweare interested in statistical

signif cance testing and conf dence intervals.Let us take a look at what we need to
know about sampling when drawing inferences.
Even when properly performed, the process of sampling is not perfect. To ap-

preciate the process and the inherent error introduced by sampling, one must
understand the basic principle that underlies sampling techniques. This principle
states that if many random samples are obtained, estimates calculated from data
from those samples on the average will be the same as the measurement in the
original population.3 Each sample may differ from the original population either
by having a higher or a lower measurement. For example, the following f gure
shows an original population proportion of 10 per 1,000:

X

7/1,000 8/1,000 9/1,000 10/1,000 11/1,000 12/1,000 13/1,000

If samples of 1,000 persons were taken from this original population, the propor-
tions might look like this:

X
X X X

X X X X X
X X X X X X X

7/1,000 8/1,000 9/1,000 10/1,000 11/1,000 12/1,000 13/1,000

Notice that whereas some of the proportions obtained in particular samples are
equal to the proportion in the original population, many of them are either higher
or lower. Because samples are accurate only on the average, a single sample is
said to possess an inherent sampling error. The spread of the numerical values
obtained from many samples can be summarized in a measurement known as the

1At times a relative risk will be called a rate ratio since it is in fact a ratio of rates when there is a
unit of time. It is possible to regard a relative risk as a special case of a rate ratio in which a risk factor
can be individually related to an outcome.

2 It has been argued that even when the entire population is used to obtain a rate, the use of statistical
signif cance testing is important. This argument contends that even a rate based on the total population
over a period of a year ref ects only that particular time period rather than an average rate over an
extended period of time.

3 This is called the central limit theorem.
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standard error. Thus, the standard error measures the size of the sampling error.
Failure to appreciate the existence of sampling error can lead to the following type
of misinterpretation:

Anational organization attempted to estimate the prevalenceofStreptococcus carriers
by culturing a random sample of 0.1% of all schoolchildren in the nation. To verify
their results, the same organization used a second random sample of 0.1% of the
nation’s schoolchildren and conducted a second survey using an identical protocol.
The f rst survey revealed a prevalence of 15 per 1,000 positive strep cultures; the
second survey revealed a prevalence of 10 per 1,000. The authors concluded that the
inconsistent results were impossible because they had used the same methodology.

The authors failed to take into account the fact that sampling has an inherent error.
This sampling error may explain the differences observed in the two samples. This
example merely points out that two identically obtained samples may produce
different results on the basis of chance alone. Remember that large numbers of
random samples, on the average, produce measurements that are identical with
the true numerical value for the population, but any two samples may vary widely
from one another and from the true numerical value in the larger population.
A second important principle in understanding sampling is that the more in-

dividuals who are included in a sample, the more likely a particular sample’s
measurement will closely approximate the numerical value in the larger popu-
lation. Thus, it is the size of the sample that largely determines how close the
sample’s measurement is likely to be to the value in the larger population. This is
not surprising because when everyone in the population is included in the sample,
the sample’s measurement is guaranteed to equal the population’s value.
Let us look more closely at this principle. An important factor affecting the size

of the sampling error is the size of the sample. Increasing the size of the sample
decreases the effects of chance on the results. That is, it will reduce the random
error and thus increase precision. Therefore, with a larger sample, the estimate
obtained from the sample can be expected to be closer to the population’s value.
The relationship between the sample size and precision is not one-to-one; it is

a square root function. As the sample gets larger, diminishing returns set in, and
small or moderate increases in sample size may add little to the precision of the
estimate. Investigators, therefore, attempt to balance the need for precision against
the f nancial costs of increasing the sample size. The consequence of using small
sample sizes is that the sample estimates may vary widely from one sample to
another and from the true numerical value in the larger population. The following
example illustrates the need to take into account the effects of the sample size on
the results of sampling:

An investigator who sampled 0.01% of the nation’s death certif cates found that
the mortality rate from pancreatic cancer was 50 per 100,000 per year. A second
investigator who sampled 1% of the nation’s death certif cates concluded that the
true mortality rate for the nation was 80 per 100,000 per year. To settle this dispute,
the second investigator identif ed all deaths from pancreatic cancer in the country.
He obtained a rate of 79 per 100,000 per year. The second investigator concluded
that the f rst investigator had performed his study fraudulently.

The f rst study used a sample size only one hundredth as large as the second study;
therefore, it is likely that the sampling error of the f rst study was much larger. The
fact that the second larger sample turned out to be closer to the population’s value
is most likely due to its larger size rather than to fraud.
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Differences in rates or changes in rates over time obtained from samples can
be compared to determine if the differences are statistically signif cant.4 This may
be done using statistical signif cance testing or using conf dence intervals.5 It is
important to remember, however, that the degree to which a sample represents
or ref ects a larger population is often a more important factor than the statistical
signif cance of the difference.

Adjustment: Standardization
When using rates to compare the probability of developing a disease, it is important
to consider whether the populations differ by a factor that is already known to affect
the chance of developing the disease. This consideration is the same as adjusting for
confounding variables, as discussed previously in the “Studying a Study” section.
Adjustment may be needed when rates are derived using an entire population or
samples of the population.
In performing an investigation comparing rates, the investigator may already

know that factors such as age or gender affect the rate of developing a particular
disease and is interested in other reasons for changes or differences. The investiga-
tor should then adjust for age or gender in the comparison of rates. When adjusting
rates, a form of adjustment called standardization is often used.
Standardization for age is frequently performed. For instance, assume an inves-

tigator is interested in the incidence rate of lung cancer. Because age is a known risk
factor for lung cancer, little is gained by discovering that a retirement community
has a higher incidence rate of lung cancer than the rest of the community. Likewise,
if one industry has a younger workforce than a second industry, it is misleading to
compare the lung cancer incidence rate in the two industries directly, especially if
one wishes to draw conclusions about the safety of working conditions.
To circumvent this problem, rates of disease can be standardized. Age is the

most common factor used for standardization, but we can adjust for any factor
that differs between groups and is known to affect the probability of developing
the disease. For instance, to compare the rates of hypertension in two groups in
order to study the importance of the mineral content of drinking water, one might
standardize for race because blacks are known to have a higher rate of hypertension.
The principle used in standardizing rates is the same as that used to adjust

for the differences in study groups discussed in the “Studying a Study” section.
Investigators compare rates among individuals who are similar in age or any other
factor that is being adjusted. Before illustrating the method used for adjustment,
let us see how misleading results can occur if standardization is not performed.

The incidence rate of pancreatic cancer in the United States was compared with
the incidence rate in Mexico. The rate in the United States was found to be three
times as high as the rate in Mexico per 100,000 per year. The authors concluded that

4 Statistical signif cance testing for comparing rates usewhat is called the Poisson distribution instead
of the bell shaped Gaussian distribution. The Poisson distribution allows us to obtain conf dence
intervals directly from the number of observed events. The 95% conf dence interval for a count “C”
equals C +/− 1.96

√
C. Thus if 16 events are observed, the 95% conf dence interval is approximately

8 to 24.
5When using conf dence intervals to determine whether a difference between rates (or other differ-

ences) is statistically signif cant, one determines whether either of the 95% conf dence intervals overlap
the observed rate in the other group. If there is overlap, the differences are not statistically signif cant.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-23 Riegelman-1490G Riegelman-v9.cls August 20, 2004 21:42

208 Section III. Rating a Rate

U.S. residents have a rate of pancreatic cancer three times as high as the rate among
Mexicans, assuming that the accuracy of diagnosis was equal in the two countries.

This interpretation of this study is superf cially correct; if the data are accurate,
the risk of pancreatic cancer is higher in the United States. However, pancreatic
cancer is known to occur more often in older persons. It may be that the younger
average age of the Mexican population accounts for the difference in rates of
pancreatic cancer. This may be an important issue if we are examining the cause
of pancreatic cancer. If the age distribution does not explain these differences, the
investigators may have detected an important unexpected difference that requires
further explanation. Thus, the authors should standardize their data for age and see
whether the differences persist.
Now let us see how standardization is performed. Standardization of rates is

often performed by comparing a special sample that is being studied to the general
population. In performing this type of standardization, we often use what is called
the indirect method. This method compares the observed number of events, such
as deaths in the sample of interest, to the number that would have been expected
if the study sample had the same age distribution as the general population. When
death is the outcome of interest, the indirect method produces a ratio known as the
standardized mortality ratio.

Standardized mortality ratio = Observed number of deaths
Expected number of deaths

The standardized mortality ratio is a useful means of comparing a sample from
a population of interest to the general population. The special population under
study, however, is not expected to have the same mortality rate as the general
population.
For instance, when comparing a group of employed individuals to the general

population, it is important to remember that employment often requires that indi-
viduals be relatively healthy. The need to take into account this employment effect
is illustrated in the next example:

A study of new workers at a chemical plant found a standardized mortality ratio of
1 for all causes of death. The investigator concluded that because the standardized
mortality ratio was 1, the chemical plant was free of health risks to the workers.

When interpreting this study, it is important to remember that new workers are
often healthier than persons in the general population. This phenomenon is so
common that it has been called the healthy worker effect. Thus, we would expect
them to have a somewhat lower mortality rate than the general population, or a
standardized mortality ratio of less than 1. The standardized mortality ratio of 1
may actually suggest increased hazards to these generally healthy workers.6
When two groups from a population are under study or when changes over

time in a population are being assessed, it is possible and desirable to use what
is called the direct method of standardization. The direct method works as fol-
lows: Suppose investigators wish to compare the incidence of bladder cancer in
two large industries. The bladder cancer data for the two industries are shown in

6 Standardized morbidity ratios can also be calculated. The magnitude of the standardized morbidity
ratio depends on the particular general population used. Thus, when two standardized morbidity ratios
are standardized to different populations or to the same population in different years, they cannot be
directly compared.
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Table 23.1. Comparison of incidence rates of bladder cancer
Number of cases Incidence rate of

Number of of bladder cancer bladder cancer in
Age individuals per year each age groupa

Industry A
20–30 20,000 0 0 per 100,000
30–40 20,000 10 50 per 100,000
40–50 30,000 20 67 per 100,000
50–60 20,000 80 400 per 100,000
60–70 10,000 90 900 per 100,000
Total 100,000 200 200 per 100,000

Industry B
20–30 10,000 0 0 per 100,000
30–40 10,000 4 40 per 100,000
40–50 20,000 6 30 per 100,000
50–60 50,000 140 280 per 100,000
60–70 10,000 50 500 per 100,000
Total 100,000 200 200 per 100,000

aThe incidence rate is obtained from the number of cases and the number of individuals in
the age group. The incidence rates cannot be added down the column.

Table 23.1. Notice that the overall rates for both samples are 200 per 100,000
workers per year. Also, notice that the rates for each age group in industry A are
as high or higher than in industry B.
Because of the lower rates for each age group in industry B, it may at f rst

seem surprising that the overall incidences are the same. However, looking at the
number of individuals in each age group, it becomes apparent that industry A has
a much younger workforce than industry B. Industry B has 60,000 workers from
ages 50 to 70 years; industry A has only 30,000 workers in these age groups.
Because bladder cancer is known to increase with age, the younger age of industry
A’s workforce reduces the overall rates in industry A. Thus, it is misleading to
look only at the overall rates because industry B’s overall rate is increased by its
older age structure. This is especially true if we are asking about the safety of the
industry environment itself.
To avoid this problem, the authors must standardize the rates to adjust for the

differences in age and thereby compare the rates more fairly. To accomplish stan-
dardization, each sample is subdivided to indicate the number of individuals, the
number of cases of the disease, and the incidence rate in each age group. When
data are divided into groups using a characteristic such as age, each age group is
known as a stratum. This is also shown in Table 23.1.
The authors then must attempt to determine how many cases of bladder cancer

would have occurred in industry A if the age distribution was the same as in
industry B. The steps in this process are as follows:7

1. Startingwith the 20- to 30-year-old age group, the authors take the rate of cancer
for that group in industry A and multiply it by the number of individuals in the
corresponding age group in industry B. This produces the number of cases that

7 The method illustrated is not necessarily the only or best method to use for standardization. For
statistical purposes, it is common to weight the strata by the inverse of the variance of the estimate in
each strata as is done in the Mantel-Haenzel method.
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Table 23.2. Method of age standardization
Number of cases
that would occur Number of cases
in industry A if it of bladder cancer

Incidence rate of Number of had the same age that actually
Age bladder cancer in individuals in distribution as occurred in

Group industry A industry B industry Ba industry B

20–30 0/100,000 10,000 0 0
30–40 50/100,000 10,000 5 4
40–50 67/100,000 20,000 13 6
50–60 400/100,000 50,000 200 140
60–70 900/100,000 10,000 90 50
Total 100,000 308 200

aThis column is calculated by multiplying the previous two columns.

would have occurred in industry A if it had the same number of individuals in
that age group as industry B.

2. The authors then perform this calculation for each age group and calculate
the total number of cases from the different age groups. This produces a total
number of cases that would have occurred if industry A had the same overall
age distribution as industry B.

3. The authors now have standardized the rates for age and can directly compare
the number of cases that occurred in industry B with the number of cases that
would have occurred in industry A if industry A had the same age distribution
as industry B. The authors have now age-adjusted industry A to industry B’s
age distribution.8

Let us apply these procedures to the bladder cancer data shown in Table 23.2.
If the age distribution was the same as industry B, 308 cases of bladder cancer

would have occurred in industry A, but only 200 actually occurred in industry B.
These f gures are better measures for comparing the workers’ risk of developing
bladder cancer in each industry than are the unadjusted incident rates. The adjusted
numbers accentuate the fact that, despite the equality of the overall rates, industry
A has a rate as high or higher in each age group. Therefore, to make fair com-
parisons between populations that differ by age and where age is known to affect
the incidence rate of developing a disease, it is necessary to age-standardize the
samples. If additional factors are also known to affect the rates, the same process
can be applied to standardize for these factors.9

8 It is also possible to age-adjust the opposite way, thus age-adjusting industry B to industry A’s age
distribution. The general conclusion would be the same; however, the estimates would be different.

9 Notice, however, that in performing standardization, the calculations give special emphasis to the
largest strata. Thus, if there has been a substantial change in only one stratum, especially a small
stratum, this effort can easily be lost in the process of standardization. In addition, progress may be
made by delaying death. When death from a particular cause is moved from a younger to an older age
group, this effect is not recognized by the process of standardization. As we will see, this impact of
extending life without curing can be captured by measuring life expectancy.
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Interpretation
Real versus Artifactual

As we learned in Chapter 21 incidence rates, prevalence and case-fatality together
allow us to obtain a composite picture of a disease, to describe the disease in terms
of rates. When interputing rates we often wish to go beyond describing the disease
to learning about changes or differences in the rates. The differences in ratesmay be
the result of real changes in the incidence, prevalence, or prognosis of the disease it-
self, or they may reflec changes in the method by which the particular disease
is assessed. Artifactual differences imply that, despite the fact that a difference
exists, it does not reflec changes in the disease but merely in the way the disease
is measured, sought, or defined
Artifactual differences result from three basic sources:

1. Changes in the ability to recognize the disease. These represent changes in the
measurement of the disease.

2. Changes in the efforts to recognize the disease. These may represent efforts to
recognize the disease at an earlier stage, changes in reporting requirements, or
new incentives to search for the disease.

3. Changes in the definitio of the disease. These represent changes in the criteria
used to defin the disease.

The following example illustrates the firs type of artifactual change, the effect of
a change in the ability to recognize a disease:

Because of an improvement in technology, a study of the prevalence of mitral valve
prolapsewas performed. A complete survey of the charts at amajor university cardiac
clinic found that in 1975 only 1 per 1,000 patients had a diagnosis of mitral valve
prolapse, whereas in 2005, 80 per 1,000 patients had mitral valve prolapse included
in their diagnoses. The authors concluded that the condition was increasing to an
astounding prevalence.

Between 1975 and 2005, the use of echocardiography greatly increased the ability
to document mitral valve prolapse. In addition, the growing recognition of the
frequency of this condition led to a much better understanding of how to recognize
it by physical examination. It is not surprising, then, that a much larger proportion
of cardiac clinic patients were known to have mitral valve prolapse in 2005 com-
pared with 1975. It is possible that if equal understanding and equal technology
were available in 1975, the prevalence would have been nearly identical. This ex-
ample demonstrates that artifactual changes may explain large differences in the
prevalence of a disease even when a complete review of all cases is used.
Changes in the efforts to recognize a disease may occur when the available

treatment improves, as illustrated in the next example:

211
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A new treatment for migraine headache is approved for use and widely advertised
in the medical journals and in major newspapers. The number of patients presenting
for care with migraine headaches doubles in the year after approval of the new drug.
These patients meet all the criteria for a diagnosis of migraine.

This apparent doubling of the prevalence of migraine is most likely due to the
increased proportion of individuals with migraine headache who present for care
after becoming aware of the new treatment. A high proportion of individuals with
many self-limited or nonprogressive diseases do not seek health care. Changes in
the types of patients who seek care can produce dramatic but artifactual changes
in the rates.
The following example illustrates how the def nition of a disease may change

over time and thus produce an artifactual difference in the apparent rate:

The incidence rate of AIDS increased every year between 1981 and 1990. In one
year during the early 1990s, there was a sudden, dramatic increase in the reported
rate. One investigator interpreted this sudden increase as a sign that the epidemic had
suddenly entered a new phase. It was later recognized that no sudden change had
occurred.

The dramatic increase may have been due to a change in the Centers for Disease
Control and Prevention’s def nition of AIDS, which meant that more individuals
with HIV infection fell within the def nition of AIDS.When sudden changes in the
incidence rate of a disease occurs, one must suspect artifactual differences, such as
changes in the def nition of a disease. In this case, one suspects that an artifactual
change was superimposed on long-term changes, which is called a secular or
temporal trend.

Reasons for Changes or Differences
The interpretation of rates ask us to examine which rate is actually changing and
why—that is, we aim to understand the underlying reasons for changes. First,
we will examine how the changes in rates may ref ect changes in the disease
dynamics. To do this we ask how the changes may affect the rates that describe the
epidemiology of the disease—i.e., the incidence rate, prevalence, and case fatality.
Artifactual differences in rates imply that the true incidence, prevalence, or case

fatality has not been altered even though superf cially a change appears to have
occurred. Real changes, however, imply that the rates have changed. We f rst must
ask whether any of the sources of artifactual differences are operating. If they are
not operating or are not large enough to explain the differences, one can assume
that real differences exist. Having concluded that real changes have occurred, we
need to ask why they occured. Do they ref ect a change in incidence, prevalence,
or case fatality, or a combination of these measurements?
The f rst step in understanding the meaning of real changes in rates is to under-

stand which of the rates is experiencing the primary change. Then we can better
appreciate the effects of the primary change on the other rates of disease, as in the
following cases:

1. The case fatality for Hodgkin’s disease has dramatically decreased in recent
years. Individuals are considered to have the disease until they demonstrate
evidence of cure in long-term follow-up. Thus, the prevalence of Hodgkin’s
disease has increased. The incidence has remained stable; therefore, the
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mortality rates, which ref ect the incidence rates multiplied by the case fatality,
have fallen.

2. Lung cancer incidence rates for women have increased dramatically over re-
cent decades. The case fatality has remained very high, withmost patients dying
within months of diagnosis. Thus, the mortality rates have also increased dra-
matically. The prevalence has always been low; however, with the increased
incidence rate of disease and modest improvements in treatment that increase
the average duration, the prevalence has increased.

We might diagram these results as follows:

Mortality Case Incidence
Rates Fatality Rates Prevalence

Hodgkin’s ↓ ↓↓↓ → ↑↑
disease
Lung cancer for women ↑↑ → ↑↑ ↑

These confusing patterns make sense when one recognizes that the primary change
in Hodgkin’s disease has been the decreased case fatality, whereas the primary
change in lung cancer has been the increased incidence rate.
In addition to understanding the type of change in rates that is occurring, it is

often helpful to examine the underlying reason for the changes. Understanding the
underlying reasons for change is key to anticipating future trends.
A real change in rates may have any of the following meanings: (a) the change

mayherald future changes in the samedirection; (b) itmay ref ect predictable cycles
or epidemics; or (c) it may be the result of unpredictable f uctuations representing
an unusual frequency of events.
In Fig. 24.1, if investigators note the increase that occurred between 1996 and

1998, they maymeasure the changes between 1998 and 2001 and would again f nd
an increase. It is important, however, that investigators realize that this real change
between 1996 and 2001 may be part of the natural or epidemic cycle of disease.
These increases do not necessarily imply that increases can be expected in future
years, as seen by the subsequent decline in rates.
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Figure 24.1. Predictable cycles or epidemics in the yearly incidence of a disease.
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Figure 24.2. Unpredictable or chance variations in the yearly incidence of a disease.

As opposed to this predictable cycle of disease, there may be an unpredictable,
random variation in the rate of disease from year to year, as illustrated in Fig. 24.2.
In this situation, if investigators select a year when the rate was higher and compare
itwith the next year,when by chance alone the ratewas lower, theymaybelieve they
are documenting important changes when, in fact, they are merely discovering the
statistical principle of regression to the mean. Regression to the mean, or return
to the average, states that unusual values are by def nition rare events, and the
chances are against a repetition of a rare event twice in a row. In fact, by chance
alone the next measurement is likely to be nearer the mean.
Subsequent values may be less extreme because of random f uctuation of events

or because of biological, social, psychological, or economic adaptive forces that
react to the unusual rate. Thus, both chance and reactive forces tend to move the
subsequent rate toward the mean. For instance, if one were studying how much
an individual eats per meal, it is likely that the meal following a particularly
indulgent one would be smaller than usual. Let us see how this principle may
operate in a study of rates that produced real differences, but differences that need
to be carefully interpreted.

After a tragic accident killed several men in a factory, an accident prevention program
was initiated. Investigators found that the incidence rate of accidents at the time of
the tragedy was unusually high: 10 per 1,000 worker-days. The rate fell to 2 per
1,000 worker-days after the program was established. The investigators concluded
that the accident prevention program was an enormous success.

The investigators have shown that a real change took place. They have not, however,
shown that it was the accident prevention program that caused the change. It is
possible that the 10 per 1, 000 worker-day rate was unusually high and by chance
alone returned to amore usual rate of 2 per 1,000worker-days. Evenmore likely, the
fatal accidentmay have frightened theworkers into takingmore safety precautions.
The authors started with an unusually high accident rate, and then a tragedy

occurred that may have produced adaptive changes in behavior, which resulted
in the rate dropping back toward the average. It is premature to conclude that
the accident prevention program would help other groups, or even this group, if
it was instituted at another time. Thus, the principle of regression to the mean
and adaptive changes may be the sources of real change in rates observed in this
example.
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It is common for an investigation or an intervention to be initiated because of a
suspicion that the rate of a disease is increasing. Thus, it is important to recognize
the phenomenon of regression to the mean and adaptive changes because they may
start operating whenever short-term changes in rates are observed.
Another source of real differences that affects prediction of future events is

known as the cohort effect. A cohort is a group of individuals who share a common
experience or exposure. If one or several cohorts in a population have had an
exposure or experience that makes them particularly susceptible to disease at a
future point in time, then the possibility of a cohort effect exists. The rates for a
particular age group, which include the susceptible cohort, may be temporarily
increased. This temporary increase is known as the cohort effect. When a cohort
effect is present, one can expect the rates for this particular age group to fall again
as time passes and the susceptible cohort moves beyond this particular age group.
The importance of appreciating the cohort effect is illustrated in the following
example:

An investigator was studying the incidence rate of thyroid cancer. Concern existed
that past pediatric head and neck radiation, frequently used in the 1950s and into the
1960s, was a contributor to thyroid cancers. Using proper methods, the authors found
that the incidence rate of thyroid cancer among 30- to 40-year-olds in 1970was 50 per
100,000 person-years; in 1980 it was 100 per 100,000 person-years; and in 1990 it
was 150 per 100,000 person-years. The authors concluded that by 2000, the rates
would pass the 200 per 100,000 person-years mark. The authors were surprised to
f nd that the incidence rate in 2000 was less than 150 per 100,000 person-years and
continued to decline over the next 5 years.

The authors have established that actual changes were occurring in the incidence
rates of thyroid cancer in the 30- to 40-year-old age group. The source of these
changes may be a cohort effect. The cohort of individuals who were radiated
carried an increased probability of thyroid cancer. By 2005, all individuals in the
30- to 40-year age group would have been born after pediatric head and neck
radiation had ceased to be used. Thus, it is not surprising to observe a decline in
the incidence rate of thyroid cancer in 30- to 40-year-olds rather than a continued
rise. The concept of a cohort effect not only helps predict the expected future rates,
but it also helps to support the theory that past radiation increased the incidence
rate of thyroid cancer.
Another type of real change might be thought of as exhausting the denominator.

Exhausting the denominator implies that the real change that is occurring relates
to the size of the at-risk group. At times, the incidence rate may fall because the
true population at risk that makes up the denominator has become smaller.1
Let us see how exhaustion of the denominator might occur and its implications

in the next example.

The incidence of HIV infection among those with hemophilia during the early years
of the epidemic was extremely high due to the use of blood produced from many
donors. Within a few years of after the beginning of the epidemic, the incidence of
new HIV infection among hemophiliacs fell dramatically. Investigators could not
explain this phenomenon because it occurred sooner than could be explained by
improvements in technology.

1 It can be argued that exhausting the denominator is really an artifactual change because the at-risk
population has been used as the denominator. It is classif ed as a real change because it ref ects a real
decrease in the incidence of disease as experienced by the overall population, as is the situation with
the other real changes discussed here.
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It is possible that the occurrence of HIV infection among those with hemophilia
was so rapid that the majority of those with hemophilia developed HIV infection.
Once that occurred, the number at risk may have been very small, resulting in very
few new cases of HIV among those with hemophilia.
What are the future implications of this fall in incidence rate? It is possible

that the number of HIV-negative patients with hemophilia will increase over time.
Once that occurs, there is the possibility that the incidence rate of HIV infection
could again increase in the absence of measures to protect them from blood-borne
infection.

Subgroups
Rates of disease are often obtained from large populations. When this is the sit-
uation, it may be possible to examine subgroups within the population. Changes
in subgroups may be the same or different from the population as a whole. This
information may be very useful in understanding the process that is occurring and
providing insights into the underlying reasons for changes, which is the ultimate
goal of examining rates.
Let us look at two examples of how changes in subgroups in the same direction

and in the opposite direction can assist in the process of interpretation.

The mortality rate from cystic f brosis decreased among those 0 to 20 years old while
it increased among those 20 to 30. The authors concluded that this may ref ect the
improvement in care received by younger patients. Even though they are not cured,
their deaths may be delayed.

The investigators recognize that rates alone cannot def nitively demonstrate the
reason for these changes.Nonetheless, combiningwhat is known about the changes
that have occurredwithin the 0 to 20 age group and the 20 to 30 age group allows the
investigators to cautiously draw a conclusion when data from subgroups changes
in the opposite direction.
Let us look at changes in the same direction among subgroups in the following

example.

An investigator examined the rate of child car seat use in communities with no inter-
ventions and communities with laws requiring car seat use. Overall, the communities
with laws requiring child car seat use had a higher rate of use than those with no
interventions. The investigators then divided the communities into subgroups by so-
cioeconomic level and geography. They found that the difference between car seat
use was nearly the same regardless of socioeconomic level or the size of the commu-
nity. The authors concluded that the consistency of the data supports the contention
that the impact of car seat laws is not dependent on socioeconomic status or size of
the community.

While it is important to avoid drawing cause-and-effect conclusions from rates, as
illustrated here, rates for subgroups can reinforce the conclusions obtained from the
population as a whole. When rates for subgroups all change in the same direction,
the impact of consistency often strengthens the conclusions.

Extrapolation
The results and interpretation of rates is often designed to allow investigators to go
beyond the data to draw conclusion that are useful in further research, in drawing



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-24 Riegelman-1490G Riegelman-v9.cls August 30, 2004 15:12

Ch. 24. Interpretation and Extrapolation 217

conclusions about other populations, or in going beyond the data to predict the
future. Let us look at the three basic types of extrapolation of rates that occur.

Hypothesis Generation
While comparing rates cannot establish cause-and-effect relationships, compar-
isons of rates in groups is often performed to generate hypotheses about the cause
of disease. In these situations the investigators’ interest is not limited to the popu-
lation being studied. They are often trying to gain ideas or generate hypotheses that
are widely applicable. Often the hypotheses generated by investigations of rates
must subsequently be evaluated using the types of investigations of individuals
that we examined in the “Studying a Study” section.
Investigators, as we saw previously, might note differences in rates of coronary

artery disease mortality among North American Italians and Italians living in
Italy. From what they know about the diets, they might hypothesize an association
between f sh consumption and reduced coronary artery mortality even though they
do not have data on the diets of individuals.
By comparing the rates of disease and adjusting for known risk factors, it is

possible to establish that a factor is increased in one group and the probability of
a disease is also increased in the same group. This allows us to establish group
associations. A group association means that in a particular group, the factor and
the disease are both present at an increased rate. Note that a group association does
not necessarily mean that those individuals with the factor are the same individuals
as those with the disease.
Establishing the existence of a group association may lay the groundwork for

subsequent studies that establish an association at the individual level and eventu-
ally a cause-and-effect relationship, such as in the case of cholesterol and coronary
artery disease.
When using group data, investigators frequently have little information about

the individuals who comprise the group. Thus, when comparing rates to develop
a hypothesis for further study at the individual level, investigators must be careful
not to imply an association among individuals when only a group association has
been established. This type of error, known as an ecological fallacy or population
fallacy,2 is illustrated in the following example:

A study demonstrated that the rate of drowning in Florida is four times higher than
in Illinois. The study data also demonstrated that in Florida, ice cream is consumed
at a rate four times that of Illinois. The authors concluded that eating ice cream is
associated with drowning.

To establish an individual association, the authors must f rst demonstrate that
those who eat more ice cream are the ones who are more likely to drown. Relying
on group f gures alone does not provide any information about the existence of
an association at the individual level. It may not be people who eat more ice
cream who drown. The greater consumption of ice cream may merely ref ect the
confounding variable known as warm weather, which increases both ice cream
consumption and drowning. These authors committed a population fallacy. The

2The term population fallacy will be used because the term “ecological” is increasingly being used
to indicate interaction between factors. In addition, ecological is a term that may not convey clear
meaning.
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establishment of an individual association between eating ice cream and drowning
requires a demonstration that the relationship holds on an individual level.
When using rates in groups to develop hypotheses, it must be recognized that

the use of group rates establishes group association and not individual association.
Failure to appreciate the distinction between group association and individual
association may lead to a population fallacy.

To Other Populations
Rates derived from one population during one particular time period may be used
as the basis for decision-making in other, often quite different, populations. Thus,
when extrapolating rates, as in extrapolating the conclusions of other types of
investigations,we need to ask about the assumptions that are implicitly or explicitly
being made.
Let us examine some of the many applications of rates to other populations.

Studies of the prevalence of a disease have direct application to diagnosis and
screening. As we have seen, the prevalence of a disease serves as the starting
point for estimating the pretest probability. When no symptoms are present, as in
screening, the prevalence of disease in particular groups or populations may be all
we have to go on to establish the pretest probability.
Thus we need to be careful when extrapolating rates from one population to

another, as illustrated in the next example.

An investigation of the prevalence of breast cancer in the United States among those
50 years and older revealed a prevalence of approximately 1%. This prevalence was
used to approximate the pretest probability in order to evaluate performance of a new
test. The calculations proved quite accurate for women in the United States and in
Europe, but when the test was applied in Japan, it did not perform well.

The prevalence of breast cancer in Japan may be lower than in the United States
and Europe. We need to be careful in applying rates from one population to an-
other. Rates may be used to draw conclusions about prognosis, effectiveness of
interventions, safety of intervention, and a variety of other uses. It is important to
recognize that whenever conclusions are drawn from rates obtained in one popu-
lation and applied to another, we are making assumptions that may not hold true
in the population to which they are applied.

Prediction
The most diff cult form of extrapolation is prediction of the future. Unlike hypoth-
esis generation and application from one population to another, with prediction
of the future we cannot check up on our assumptions about the future except by
waiting for the future to arrive.
As we saw in the “Studying a Study” section, many extrapolations about the

future merely extend current trends, making a linear (straight-line) assumption.
The linear assumption assumes that current trends will continue. This assumption
is rarely true, at least over extended periods of time.
Despite the diff culties extrapolating to the future, in the interpretation com-

ponent we identif ed three phenomenon that can help us try to extrapolate to the
future: regression to the mean, cohort effects, and exhausting the denominator.
Each of these can help us make educated guesses about the future rate of events.
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When looking at interpretation, we asked whether any of these phenomenon are
likely to be present. Each of these phenomenon suggest that changes that we have
observed in the recent past may not be a good ref ection of what may happen in
the not-too-distant future.
A common measurement derived from mortality rates is often used to predict

the future. This measurement, called life expectancy, is so widely used and so
commonly misinterpreted that it deserved special attention. Thus, let us move on
to Chapter 25 to examine life expectancy.
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As we have seen, rates and their ratios are the fundamental tools for comparing the
health of populations. They can be used to compare the health of a population in
one year with that of another. In addition, they can be used to compare the health
of one population, such as a nation, with the health of another population. Thus
they have been called measures of population health.
The fundamental population health measurement tool for comparing mortality

is called life expectancy. We can think of it as an overall summary measure of the
mortality experience of a population during a single time period, usually one year.
Life expectancy, unlike the other rates we have discussed so far, has the ability

to take into account prolongations in life that still result in death. Thus it has
similarities to the use of life-tables we discussed in Chapter 9. This makes life
expectancy very useful, since many of the improvements in health care do not cure
disease but rather prolong life.
To understand what we mean by life expectancy, we need to appreciate that it is

a summary measurement that combines the probabilities of death—the mortality
rates—for each year of age in a population for a particular year, such as 2005.
Approximations of these mortality rates are available if a nation has two forms of
data: (a) adequate data from death records in a particular year indicating the age
of the individuals who died; (b) data from a census or other source estimating the
number of individuals at each year of age at a point in time during the year.1
The number of deaths at a particular age divided by the total number of indi-

viduals of the same age in the population tells us the mortality rate at each year of
age. This age specifi mortality rate is the key to the calculation of life expectancy.
Life expectancy calculations usually also include data on gender and racial groups.
Separate life expectancies can then be calculated for each gender and racial group.
Life expectancy is calculated using what are called cross-sectional or current

life tables. These tables represent a snapshot view at one point in time. They
are different from the life tables discussed in Chapter 9, which follow study and
control groups over a period of time. Life tables that monitor patients over time are
called longitudinal or cohort life tables to distinguish them from cross-sectional
life tables, for which data come from the same year. Unfortunately, both types are
often called life tables.2
The calculation of life expectancy requires us to visualize the existence of an

imaginary population. This population is called a stationary population. It consists

1 Ideally, the number of individuals is available from the beginning of the time interval because this
number would indicate the total number of individuals who are at risk for death during the subsequent
year. Approximations based on census data from other years are often substituted. Notice that the cause
of death is not important for calculating life expectancy.

2 Together, these two life tables can provide complementary information on life expectancy. Cross-
sectional life tables provide information on life expectancy that is related to age, gender, and race,
the basic demographic data. Longitudinal life tables often provide information on life expectancy
associated with a specifi disease. These data together may be used to estimate the life expectancy for
individuals of a particular age, gender, and race with a particular disease.
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Figure 25.1. Survival curve. Life expectancy can be calculated from the area under the
curve.

of 100,000 individuals born alive in the year under consideration. These individuals
are assumed to live out their lives in this population, leaving only because of death.
No one is allowed to move in or out of this imaginary population. These 100,000
individuals are assumed to experience the probabilities of death observed for each
age group during the year in which data are obtained.
In calculating 2005 life expectancies, we are assuming that these 100,000 live

births will live out their lives experiencing the probabilities of death of each of the
life table’s component age groups in 2005. Thus, for these people it will always
be 2005 in term of their probabilities of death.
Thus, in our stationary population in 2005, the 0- to 1-year age group experience

the year 2005’s probability of death for the 0- to1-year age group. In 2006, the
1- to 2-year-olds will experience the probability of death of the 1- to 2-year-olds
in 2005. Similarly, in 2007, the 2- to 3-year-olds will experience the probability of
death of the 2- to 3-year-olds in 2005, and so on. In fact, in 2085 the life expectancy
calculation assumes that the 80-year-old will still be experiencing the probability
of death of 80-year-olds in 2005.
It is possible to plot a survival curve indicating the number of individualswho are

alive at the beginning of each year of age, starting with our stationary population
of 100,000 live births. Figure 25.1 displays such a survival plot.3

3 Information for a survival curve can be obtained by multiplying the probability of death at each
age by the number of individuals who are still alive at the beginning of the time period. Thus, if 0.01,
or 1%, of individuals have died during the f rst year, then 99,000 enter the second year of life. If the
probability of death during the second year of life is 0.001, or .1%, then 99 individuals die during the
second year, leaving 98,901 individuals entering the third year of life.
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The life expectancy can be calculated using the area under the survival curve.
Life expectancy often refers to life expectancy at birth. However, life expectancy
can be calculated at any age. These are calculated5 using the area under the curve
starting at the age of interest. Thus, if wewere trying to estimate the life expectancy
at age 65, we would use the area under the survival curve for ages 65 years and
older.
The term “life expectancy” sounds like it should allow us to predict the future.

However, the calculation of life expectancy assumes that everything in the future
will remain the same; all individuals will remain in the same population; and
the mortality rates will not change. This is unrealistic because the one predictable
thing in life is the permanence of change. Thus, we must be careful in using life
expectancy to predict the future, just as we need to recognize that all probabili-
ties calculated on the basis of current data may not hold true in the future. The
implications for prediction are illustrated in this example:

The life expectancy at birth in a developing nation was carefully obtained and cal-
culated to be 45 years in 1975. Over the course of the next 30 years, using life
expectancy to predict survival, the probabilities of death f rst indicated a survival
much better than expected and then indicated a subsequent decline over expected
survival. The authors concluded that life expectancy measures have no value even if
the data on which they are based are accurate.

Even if the data were accurately obtained, we would not expect it to predict the
future perfectly. Perhaps the decline in infant mortality from diarrheal disease
reduced the probabilities of death during the 1970s and 1980s. Then perhaps the
AIDS epidemic took a high toll during the subsequent years. Life expectancy
measures are not designed to predict the future. They are useful for comparing one
population with another in one particular year, such as 2005. They are also useful
for comparing the same population in different years (e.g., 2000 vs. 2005).
When life expectancy is calculated for different gender and racial groups, life

expectancy measures are useful for comparing these different groups within the
same population. The presence of differences in life expectancy, that is differ-
ences in population health, may be due to a variety of causes. Poorer quality of
preventive or curative health services is one possible reason for these differences.
They may also be due to genetics, environmental or preventive interventions at the
population level.
As we have seen, when we speak of life expectancy we usually mean the life

expectancy at birth. Life expectancy at birth is the average number of years of

4Notice that the median age at death, or the age at which half the population has died, can be read
directly off of the survival curve. This can be done by drawing a horizontal line from 50,000 to the
curve and then a vertical line down to age on the x-axis. This median age at death is not the same as
life expectancy. The median age at death will generally be greater than the life expectancy because life
expectancy is an average and thus is greatly affected by deaths that occur at an early age.

5 Calculations are performed by starting with the stationary population of 100,000 and multiplying
by the probability of death for the f rst time interval (usually the f rst year of life). Subtracting this
number from 100,000 produces the number living at the beginning of the next age interval, that is, at
age 1 year. This process is continued through each of the age intervals, producing a number living at the
beginning of each age interval. Knowing the length of the age interval and the number of individuals
alive at the beginning of the age interval, we can estimate the number of years of life spent in each
age interval. We then add together the number of years spent in an age interval and all subsequent age
intervals and divide this total by the number of individuals who enter that age interval. This allows us
to calculate the life expectancy at any age we choose.
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Table 25.1. Life expectancy for males in a
developed country

Age (yr) Life expectancy (yr)

0 75
20 57
40 38
65 15
75 10
80 6
90 4

remaining life for an individual born into our imaginary stationary population. Life
expectancy at birth is not the only life expectancy that is usually available. Life
expectancy at the beginning of any age can be calculated. For instance, examine
Table 25.1, which might provide the life expectancies for males in a developed
country.
Notice that the life expectancy at birth is 75 years. At age 65 years, the life

expectancy is 15 years. If we add 15 years to the life expectancy at age 65 we get
80 years,which is greater than the 75 year life expectancy at birthThis phenomenon
occurs because those who reach a particular age, such as 65 years, have already
survived the potential for death at an earlier age. Whether they are biologically
better survivors or just lucky, they will have a longer life expectancy than at the
time of their birth when they face potential mortality during each year of life.
Failure to appreciate this phenomenon can lead to the following misinterpretation:

A conference on preventive health care for 80-year-olds proposed a series of pre-
ventive intervention for all 80-year-olds in a nation with a life expectancy of 78
years. The national health system refused to consider paying for these preventive
procedures, arguing that the individuals had already exceeded their life expectancy.

Remember, life expectancy for groups of individuals who survive to a particular
age is greater than the life expectancy at birth. The life expectancy at an ad-
vanced age may be surprisingly long. For instance, note that in Table 25.1 the life
expectancy at age 80 is 6 years and at 90 it is 4 years. Life expectancy is not 0 until
the last person dies. Thus it is not possible to outlive your life expectancy.6
Using life expectancy to make recommendations for a particular individual is

even more difficul than using life expectancy to make recommendations for the
average member of a group, as illustrated in the next situation:

A healthy 80-year-old man is considering elective surgery. Recognizing that the
average life expectancy for 80-year-old men is 6 years, the physicians recommend
against the surgery.

The ability to predict the length of survival for an individual healthy 80-year-old
man has very little to do with the average life expectancy of 80-year-old men. The
life expectancy at 80 years for men takes into account all 80-year-oldmen, whether
they are healthy or have life-threatening disease. Because of the high proportion of

6 Life expectancy at age 80 years may be a better predictor of the future for the average 80-year-old
than life expectancy at a far younger age. This is the case because changes in the probability of death
over a small number of years are usually modest compared with changes over a longer period of time.
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illness among 80-year-old men, those who are healthy constitute a very different
group. Averaging the healthy and the sick together produces a life expectancy that
may greatly underestimate the survival of the healthy individual.
In general, life expectancy is an average that combines data from the healthy and

those with disease, including life-threatening disease. The greater the proportion
of those with life-threatening disease, the less useful the life expectancy will be
for making recommendations for the healthy individual.
The high probability of life-threatening diseases among the elderly can lead

to another misinterpretation of life expectancy data. Reduction in one important
cause of death among the elderly will not necessarily have a dramatic effect on
life expectancy, as illustrated in the next hypothetical example:

A new cure for lung cancer has nearly eliminated this frequent cause of death among
elderlymen. The investigators had expected a dramatic increase in the life expectancy
among elderly men. To their surprise, they found only a modest increase.

Unfortunately, among the elderly there are a number of competing causes of death.
When one cause is reduced or eliminated, the other causes have the potential
to increase in frequency. Other cancers or heart disease may become causes of
replacement mortality. That is, they may increase and thus reduce the expected
impact of eliminating one important cause of death. Thus, we must recognize the
inherent limitation of life expectancy when dealing with the elderly.7
Life expectancy is an average. Using averages to summarize the health status of

a population has one additional feature that needs to be recognized. Let us review
how averages are calculated. For instance, imagine that we want to calculate an
average for the following numbers: 2, 21, 24, 26, 27. We would f rst add together
all the numbers and obtain 100. Then we would divide by the number of data
elements, that is, by 5. Thus, the average here is 100/5, or 20.
Notice that the average is below all the numbers except 2. The inclusion of 2 has

pulled the average down. This is generally the case with averages. They are heavily
affected by the extreme values, especially when the extremes are far removed from
the other values.
When calculating life expectancies, a parallel phenomenon occurs. The life

expectancy at birth is most heavily inf uenced by what happens early in life. Thus,
the inf uence on life expectancy of saving a healthy child is far greater than the
inf uence of saving a healthy adult or a healthy 80-year-old. The implications of
this phenomenon are illustrated in the next example:

Reviewing the experience of a rapidly developing country, investigators noted that the
nation rapidly gained years of life expectancy at birth when it controlled infectious
diseases of the young. When it turned its attention to the diseases of the elderly and

7On the other hand, life expectancy overestimates survival for those with disease. To accurately
incorporate the impact of disease on life expectancy,we need to combine life expectancymeasures using
data based on age, gender, and race with life expectancy data based on disease-specif c survival. One
such approximation is known as the declining exponential approximation of life expectancy (DEALE).
DEALE assumes that the life expectancy at a particular age is equal to 1 divided by the sum of the
probability of survival on the basis of age, race, and gender (obtained from a cross-sectional life table)
plus the probability of survival as a result of disease (obtained from a longitudinal life table). The
DEALE assumes that the impact of a disease is the same regardless of a person’s age. If this is not
the situation, the DEALE will not be an accurate estimate of life expectancy. A new estimate called
the GAME, independent gamma (GA) and mixed-exponential (ME) distribution, is a more accurate
measurement of life expectancy. It combines survival curves based on agewith those based on a specif c
disease.
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made rapid strides in controlling these diseases, therewasmuch less impact on the life
expectancy at birth. This contradiction could not be explained by the investigators,
who concluded that life expectancy was a meaningless measure.

Life expectancy at birth is strongly inf uenced by mortality rates among the young.
This is the situation because saving a healthy child adds a large number of years to
life, whereas saving a healthy adult or elderly person adds a much smaller number
of years of life. Because life expectancy at birth ref ects the average number of
remaining years of life, it will be greatly inf uenced by the progress made among
the young. To observe the impact on the elderly, it is necessary to calculate the life
expectancy at older ages and see how they change from year to year.
Increases in life expectancy resulting from treatment of chronic disease or pre-

vention of disease in adults may not appear to make a major impact. Increases of
a few months in life expectancy from major advances in treatment may not seem
very impressive. This is especially true if these months are viewed as occurring
only at the end of life. In fact, a common misinterpretation of life expectancy data
is to conclude that the extension of life expectancy implies that a brief period will
be added on at the end of life. The impact of this misinterpretation may be seen in
the following example:

Coronary artery bypass surgery was shown to increase life expectancy by 6 months.
A reviewer of this literature concluded that adding 6 months on at the end of life is
not worth the other impacts of surgery.

First, the extension of life expectancy described here takes into account the fact
that surgery does have immediate hazards, whichmay produce immediate death. In
addition, the benef ts of extended life do not merely get tacked on at the end of life.
They are not distributed equally to everyone who undergoes bypass surgery. The
benef ts actually affect a modest percentage of those undergoing surgery. These
patients are the ones who do not die in the months and years immediately after the
surgery but who would otherwise die.
Thus, it is important when interpreting what seems like a short extension in

life expectancy, for instance 6 months, to recognize that in this situation, it is
actually an impressive gain in life expectancy. Its impact on some individuals may
be dramatic and immediate, even though it may have little or no impact for many
others. It should not be interpreted as adding 6 month on at the end of the average
person’s life.
There is one f nal limitation when interpreting life expectancy. Life expectancy

has been used as the primary method for comparing the health status of one pop-
ulation to another, as well as to make comparisons within the same population.
When used this way, it is susceptible to the misinterpretation illustrated in the next
example.

A country’s life expectancy at birth was determined to be 80 years in 2005. Over the
next 5 years the country experienced a major epidemic of disease that left a large
segment of the population with severe disabilities. The life expectancy calculated in
2010, however, was the same as that in 2005. The reviewers of this data concluded
that since the life expectancy was the same, the health status of the population had
not changed.

These results are not surprising if we recognize that life expectancy only takes
into account the impact of death and does not incorporate the impact of disability.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-25 Riegelman-1490G Riegelman-v9.cls August 20, 2004 20:12

226 Section III. Rating a Rate

Thus, life expectancy should not be regarded as an ideal measurement of health
status of a population.
Traditionally, data have not generally been available to incorporate morbidity

or disabilities and their impact on the quality of health. Increasingly, population
health measures are being used that incorporate the quality of health along with
the length of life or longevity.
One new population health measure that takes into account the disabilities that

occurs in a population and combines it with the mortality is called the Health Ad-
justed Life Expectancy, or HALE. HALE is increasingly being used as a substitute
for life expectancy when comparing the health of populations.8 The measurement
of HALE requires knowledge of the average impact of disability in each age group.
HALE can be interpreted as life expectancy that takes into account the impact of
disabilities.9
In summary, life expectancy is a useful population health measure that summa-

rizes the probabilities of death at different ages in a population. It is useful for
comparing one population with another for the same year or for comparing how
the same population changes from one year to another year. When data on gender
and racial groups are available, life expectancy can be useful for comparing the
mortality of these groups within a population.
It is important to remember, however, that life expectancy is not a good pre-

dictor of future survival. It combines survival for healthy and sick individuals,
and it is strongly inf uenced by the mortality of the young. Thus, we need to be
very careful when using life expectancy calculations to predict the future, to make
recommendations for the healthy, and to apply these calculations to individuals.
Finally, life expectancy does not take into account the impact of disabilities, New
measurements such as the Health Adjusted Life Expectancy, or HALE, are begin-
ning to be a useful measurement of a population’s health status that incorporates
the impact of disability as well as death.

8 The Health Adjusted Life Expectancy has previously been referred to as the Disability Adjusted
Life Expectancy, or DALE. This caused confusion with Disability Adjusted Life Years or DALYs.
DALYs aim to address the impact of specif c diseases or conditions by comparing one population to
the current best-performing population in terms of mortality and morbidity.

9 Life expectancy is increasingly being combined with measures of the quality of health for decision-
making investigations as well as for comparing populations. As we will see, the measurement most
commonly used in decision-making aims to include both the impact of mortality as ref ected in life
expectancy as well as disability. This measurement is known as Quality Adjusted Life Years or QALYs.
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26 Questions to Ask and
Flaw-Catching Exercises

Questions to Ask: Rating a Rate
The following Questions to Ask can serve as a checklist when reading a journal
article that compares rates. To see how these questions can be applied see the
Studying a Study Online Web site at www.StudyingaStudy.com.

Method: Investigation’s purpose and study population

1. Purpose:What is the purpose for investigating rates?
2. Types of rates:What rates does the investigation intend to measure?
3. Study population:What is the study’s population?

Assignment: Definin the rates

1. Numerator: How are the events in the numerator defined
2. Denominator: How is the population in the denominator defined
3. Time: Is a unit of time being incorporated to produce a true rate?

Assessment:Measuring the rates

1. Numerator and denominator: How are the numerator and the denominator
measured?

2. Derivation: Are rates derived from other measurements instead of being di-
rectly measured?

3. Completeness: Is the measurement complete, and if not, are the data represen-
tative of the larger population?

Results: Comparing rates

1. Estimation:What measurements are used to compare rates?
2. Inference:Are statistical significanc testing and/or confidenc intervals used?
3. Adjustment: Is adjustment for confounding variables performed?

Interpretation: Conclusions for populations included in the investigation

1. Real vs. artifactual: Are the changes or differences artifactual or real?
2. Reasons for changes or differences: Are conclusion drawn about underlying

reasons for the changes or differences?
3. Subgroups: Are subgroups examined?

Extrapolation: Conclusions for populations not included in the investigation

1. Hypothesis generation:Are rates used to generate a hypothesis for populations
similar to those in the investigation?

2. To other populations:Are rates obtained in one population applied to another?
3. Prediction: Is prediction of future rates attempted?

227
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Flaw-Catching Exercises
The following f aw-catching exercises are designed to give you practice in applying
the principles of Rating a Rate to hypothetical research articles. The f aw-catching
exercises include a variety of errors. Read each exercise. Then write a critique
pointing out the types of errors committed by the investigators. A sample critique
is provided for each exercise.

Flaw-Catching Exercise No. 1: Rates of Cancer—Is
It Progress?

A study of progress in survival after diagnosis of cancer in the United States
compared the rates in 1975 with the rates in 2005 to assess changes. Data on
incidence rates and mortality rates of cancer were collected. Incidence data were
obtained from an intensive search of hospital records on a random sample of 1%
of the nation’s hospitals. Data on mortality rates were obtained from a complete
review of all the death certif cates in the nation. Case fatality was derived from the
following formula for long-term changes:

Mortality rate = Incidence rate of disease× Case fatality

The data from these studies are summarized in Table 26.1. The investigators found
that the overall age-adjusted mortality rates had not change very much. Looking
more closely at the data, the researchers reviewed randomized clinical trials on
cancers that caused nearly all of the cancer deaths among people 20 years and
older. They found that among people with incurable cancers, the trials showed a
3-year increase in life expectancy should be obtainable when applying new thera-
pies developed since 1975.
Finally, the researchers calculated the proportion of all deaths that are due to

cancer—that is, the proportionate mortality ratio. They found that the proportion-
ate mortality ratio for cancer overall had increased from 22% to 24%.
The researchers confessed complete confusion, saying that it was possible to

make any of the following arguments:

1. There has been substantial progress on the basis of the decreasedmortality rates
for people younger than 20 years, decreased case fatality for all age groups, and
the increased survival rates in randomized clinical trials among those 20 years
and older.

2. The situation is getting worse on the basis of the increased incidence rates
among people older than 20 years. The increased cancer mortality rates among
those older than 65 years and the increased proportionatemortality ratio support
a worsening of the situation.

3. No change has occurred on the basis of the nearly constant overall age-adjusted
mortality rates.

Table 26.1. Changes in cancer rates from 1975 to 2005
Age (yr) Incidence rate Case fatality Mortality rate

0–19 No change 20% decrease 20% decrease
20–65 1% increase 1% decrease No change
65+ 15% increase 10% decrease 5% increase
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The investigators throw up their hands and ask you, the readers, to explain how
the data could support such inconsistent results.

Critique: Exercise No. 1
These rates are all compatible. They ref ect different ways to look at and to argue
about rates. Incidence rates ref ect the rate atwhich newcases of the disease develop
over a period of time. Case fatality ref ects the probability of dying over a period
of time if the disease develops. Thus, incidence rates and case fatality measure two
very different phenomena. Incidence rates primarily ref ect the underlying causes
of disease. They may be artifactually changed by interventions that alter the effort
to detect disease, the ability to detect disease, or the def nition of disease. Primary
prevention efforts, such as smoking cessation, may alter the underlying incidence.
In general, however, incidence rates do not ref ect the usual therapeutic efforts
that are part of clinical care. Case fatality, on the other hand, is a measure of how
successful therapy is at curing disease.
When an intervention successfully prolongs life but does not cure a disease,

this intervention has little or no effect on the long-term mortality or the case
fatality. Thus, the 3-year increase in life expectancy among people with incurable
cancers is compatible with themoremodest decrease in case fatality. The increased
proportionate mortality ratio tells us very little about the progress in survival after
diagnosis of cancer over those years. It does suggest, however, that mortality from
other diseases is becoming less frequent compared with cancers. Proportionate
mortality ratios are useful measures of the relative frequency of various causes of
death. The increase in the proportionate mortality ratio suggests that deaths from
cancer are becoming more common relative to deaths from other causes.
This exercise demonstrates how it is possible to argue for quite different con-

clusions from the same data. The argument presented by the researchers ref ects
different concepts about what is meant by progress. Is progress a reduced inci-
dence of new disease? Is progress an increased cure rate for diagnosed disease?
Alternatively, is progress a prolongation of life for people with disease?

Flaw-Catching Exercise No. 2: Life Expectancy in Econotiger and
Developed Country

A developing country known as Econotiger compared its life expectancy with
its own previous life expectancy and those of Developed Country. It found the
following years of life expectancy:

At birth At 65 years At 80 years

Econotiger
1985 50 15 5
2005 72 15 5

Developed Country
1985 72 15 5
2005 75 18 5

The investigator drew the following conclusions:

1. A child born in Econotiger in 1985 will, on average, live until 2035 because the
life expectancy in Econotiger in 1985 was 50 years.
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2. The dramatic improvement in life expectancy at birth experienced in Econotiger
will result in a longer life expectancy at birth in Econotiger than in Developed
Country sometime during the twenty-f rst century.

3. The 1985 Econotiger life expectancy of 15 years at age 65 cannot be accurate
because the life expectancy at birth is only 50 in 1985.

4. The increase from 15 to 18 years in life expectancy at age 65 years in Developed
Country represents a very modest improvement.

5. The identical life expectancies at age 80 in both countries in both years suggest
that once an individual has lived to 80 years, life expectancy is 5 years regardless
of whether their health is good or poor.

6. Life expectancy is the only way to measure and compare the improvement in
population health because it is a measure that incorporates prolongations of life,
even in the absence of cure.

Critique: Exercise No. 2
Life expectancy calculations require only accurate measurement of the number
of individuals in each age group in a population and the number of individuals
who die in that age group in the year being considered. Thus, life expectancy is a
usefulmeasure for comparing the same country over time andmaking comparisons
between countries. However, life expectancy has a number of limitations and
potential misinterpretations, some of which are illustrated in the six conclusions
that were drawn from the previous data.

1. Life expectancy is not usually a useful measure for predicting the future. Life
expectancy provides a snapshot view of the experience of each age group in a
particular year. To use life expectancy to predict the future, we need to assume
that nothing will change in the future. It is clear that many things are changing
in Econotiger. Individuals born there in 1985 will not actually experience the
probabilities of death at each age that were present in Econotiger in 1985.
Rather, they will experience the reduced probabilities of death that are present
in the subsequent years. Thus, the life expectancy at birth in 1985 of 50 years is
a particularly poor predictor of how long the average person born in Econotiger
in 1985 will actually live.

2. In general, extensions in life expectancy at birth are most dramatically achieved
by controlling infectious diseases of infants and children. By saving the life of
an otherwise healthy infant or child, a large number of years of life expectancy
is gained. Once these gains are obtained, further progress, as measured by
life expectancy at birth, is often more diff cult to achieve. Improvement in
longevity for the elderly may represent important progress, but it has only a
modest effect on the life expectancy at birth. This progress is better ref ected in
the life expectancy at age 65 years. The data suggest that Developed Country
has experienced this type of progress between 1985 and 2005. If Econotiger
experiences this same progress in subsequent years, it would cause the life
expectancy at birth to change very little.

3. The life expectancy at 65 in Econotiger is 15 years in both 1985 and 2005. This
might be surprising because the life expectancy at birth is only 50 years in 1985
and 72 years in 2005. Once individuals have survived to a particular age, such as
65 years, they have managed to avoided a number of potential causes of death.
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Thus, upon reaching an age such as 65, their expected life span will be greater
than the life span expected at birth. Remember, individuals never outlive their
life expectancy because life expectancy increases with age. Even in a country
where the life expectancy is only 50 years, some individuals will live to age
65 years and beyond. Their life expectancy is dependent on the probabilities of
death at more advanced ages. These probabilities of death in a developed and
a developing country may be quite similar even if the life expectancies at birth
are dramatically different.

4. In Developed Country, an improvement in life expectancy at age 65 of 3 years
between 1985 and 2005 represents an impressive increase of 20%. The data
suggest that the entire increase in life expectancy at birth that occurred in
Developed Country is the result of the improved probabilities of death in people
older than 65 years.

5. Life expectancy at advanced ages, such as 80 years, must be interpreted care-
fully. Life expectancy at all ages comprises the life expectancy of both the
healthy and the diseased. At advanced ages, however, the proportion of people
with potential life-threatening disease is much greater than at younger ages.
The smaller group of healthy individuals at an advanced age may have a much
better prognosis than the larger number with potential life threatening disease.
Thus, life expectancy should not be used to predict longevity for the healthy
elderly.

6. Life expectancy does have the advantage of ref ecting advances that prolong life
rather than cure disease. Despite the usefulness of life expectancy in comparing
a country’s progress over time and making comparisons between countries,
it also has important limitations. Life expectancy does not take into account
improvements in the quality of life that are not also ref ected in the length of
life. Many of the benef ts of health care are improvements only in the quality of
life. Efforts to improve vision, mental health, and mobility, for instance, are not
often ref ected in increased life expectancy. Newer measures such as the Health
Adjusted Life Expectancy (HALE) aim to incorporate the quality of health as
well as the length of life. That is, they aim to include the impact of disability
as well as death.

Summary
Rates are the basic measurement for describing disease. They can also help us
generate hypotheses about causation, help us establish the pretest probability of
disease, andwith great caution, predict the short term future.Changes or differences
in rates may be real or artifactual. Real changes or differences may be the result
of a cohort effect, regression to mean, or depletion of the denominator. As we will
see in the next section, rates are also central to the process of quantitative decision
making.
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27 Introduction and Method

Introduction: Considering Costs and Evaluating Effectiveness
Decision-making in medicine and public health has traditionally relied on subjec-
tive judgments, expert opinions, and non-quantitative decision-making. Today, we
increasingly rely on quantitativemethods. Potential interventions, from prevention
to palliation, are subjected to measurements of outcome that take into account the
desirable outcomes (benefits) the undesirable outcomes (harms) and the financia
costs. Thus, decision-making has become the art and science of balancing the ben-
efit and harms, and considering the costs. Benefits harms, and costs have become
the measures of medicine.
Why has this change occurred? In balancing benefit and harms and con-

sidering costs, it has become increasingly clear that qualitative and subjective
decision-making is affected by inherent limitations in howour brains process infor-
mation.1
Not being computers, we have limited ability to store and manipulate infor-

mation, and can be biased in how we structure our decision-making processes.
These might be classifie as limitations in data handling and limitations in data
framing.
Data-handling limitations relate to our limited ability to simultaneously con-

sider and utilize large quantities of information. To address these limitations, we
often use simplifie approaches or rules of thumb called heuristics to assist in
our decision-making. For many activities, including such complicated activities
as diagnosis, these rules of thumb work remarkably well. However, when simul-
taneously examining and selecting between the available options for intervention
that incorporate data on benefits harms, and costs, our simplifying rules of thumb
often reveal their limitations.2

1Our current understanding of the subjective process of decision-making is due in large part to the
work of Amos Tversky and Daniel Kahneman, as reflecte in their prospect theory of decision-making.
For a useful overview of this theory and the relationship of quantitative and subjective decision-making,
see H. Hastie and R.M. Dawes, Rational Choice in an Uncertain World: The Psychology of Judgment
and Decision Making (Thousand Oaks, Calif.: Sage Publications), 2001.

2Our limitations in data handling include at least three elements: (a) limited ability to handle more
than two options at a time; (b) limited ability to objectively judge the probability of rare events such as
death or side effects; (c) limited ability to combine data such as two or more probabilities. Our limited
ability to handle data thus often leads us to overly simplify the complexities of decision-making. For
instance, when faced with three or more options, we often reduce them to two-at-a-time comparisons,
leaving out options or giving an advantage to an option that does not need to compete in the early
rounds. When a side effect is rare but serious, such as death, we often either dismiss it as too unlikely
to matter or focus on it as an especially important outcome. One-step procedures such as surgery may
be viewed as more desirable than multiple-step procedures that may have multiple complications and
side effects.

235
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Limitations in data framing imply that we can be inf uenced in our selection of
the preferred option by the way the question is posed or the alternatives presented.3
The impacts of framing often result from the fact that there aremany versions of the
truth, and we are remarkably prone to being inf uenced by the way the truth is told.
Quantitative decision-making aims to overcome these limitations by using quan-

titative measurements rather than qualitative conclusions and by objectively com-
bining thesemeasurements rather than subjectively drawing conclusions. There are
a number of potential advantages of quantitative decision-making over subjective,
non-quantitative decision making, including:

� The ability to simultaneously compare three or more options
� The potential to objectively consider events with low probability
� The ability to explicitly statewhich factors are being taken into account inmaking
a decision
� The ability to identify the reasons for disagreements
� The ability to identify the factors which have the most inf uence on the preferred
option

For these and other reasons, quantitative decision-making is growing in importance
in medicine and public health. As we will see, quantitative decision-making often
has advantages in objectively structuring decision-making and identifying areas
that are critical to selecting between options. We will also see, however, that quan-
titative decision-making also has inherent limitations that we need to recognize
when reading the rapidly growing decision-making research literature.
Decision-making investigations may be used as the basis for making recom-

mendations. However, as we will see in Section V, “A Guide to the Guidelines,”
recommendation or guidelines usually require additional considerations beyond
those that can be quantitatively considered in a decision-making investigation.
The process of quantitative decision-making research can be quite complex.

Nonetheless, the investigations that quantitatively examine decision-making can be
reviewed using theM.A.A.R.I.E. framework. Figure 27.1 illustrates the application
of the M.A.A.R.I.E. framework to decision-making investigations.
A decision-making investigation often requires the investigator to do the

following:

1. Model the decision: This requires def ning the alternatives that are being
considered and the paths that eventually lead to potential outcomes. Decision-
making investigations require the researcher to identify which options are
being compared and what outcomes are being considered.

2. Incorporate probabilities: The investigator must determine which probabili-
ties to use for measuring the favorable and unfavorable outcomes. These proba-
bilities may come from the research literature, but theymay need to be “guessti-
mated” based on expert opinion.

3 Framing effects our tendency to (a) compare new options to a “reference point” which may ref ect
past or envisioned states of health rather than an objective assessment of the status quo; (b) favor
alternatives that are framed optimistically such as percent survival rather than pessimistically such
as percent mortality; (c) favor options expressed with certainty as opposed to those expressed with
ambivalence. Thus, options for intervention that are presented optimistically as percent survival and
that may return patients to their past state of good health may be especially valued by clinicians and
patients. When uncertainty is minimized by expressions such as “in my hands” or “in my experience,”
the bias toward action may be especially strong.
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Figure 27.1. Application of M.A.A.R.I.E. framework to decision-making investigations.

3. Incorporate utilities: A measurement of the degree of preferences for each
of the favorable and unfavorable outcomes is required. As we will see, these
preferences are measured using what are called utilities.

4. Incorporate costs:As the cost of health care has increased along with the num-
ber of available options, researchers are also increasingly expected to measure
and compare the f nancial consequences of each option being considered.

Thus, the health research literature now includes more than investigations that
measure the probability of good outcomes or benef ts and bad side effects or
harms. Increasingly, decision-making investigations aim to measure or quantify
the entire process of decision-making. These decision-making investigations aim
to model the decision-making process, to measure each of the components, and
at times to offer recommendations or guidelines based on the research. Decision-
making investigations now appear inmost major medical, management, and public
health journals.
In examining decision-making investigations, wewill focus on two hypothetical

examples.
The f rst example examines three alternatives for treating single-vessel coronary

artery disease. Conventional treatment is a combination of medications, angio-
plasty, and surgery. There are also two new treatments. One treatment is called
transthoracic laser coronaryplasty (TLC). The other is a new drug called Car-
diomagic. We will be looking at how we can compare these alternatives to decide
which is the most effective for treatment and which is the most cost-effective.
The second example examines options for approaching a disease that we will

call Paresis A. We will examine the following situation:

Paresis A is a common contagious disease of childhood that is usually self-limited.
However, a small percentage of children who experience the illness develop paraly-
sis, and a few develop life-threatening complications. Long-term paralysis and late
complications can occur. The conventional treatment for Paresis A has been only
supportive treatment which we will call a do-nothing approach. Recently, an expen-
sive vaccination has become available to prevent Paresis A. We will discuss how we
can compare the results of the vaccine to the do-nothing approach.

These types of decision-making investigations require a wide variety of infor-
mation drawn from multiple sources. Thus, they can be very confusing to read
and understand. However, decision-making investigations, like the other types of
studies that we have examined, can be understood by using the M.A.A.R.I.E.
framework.
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Method
Study Question and Study Type

Decision-making investigations differ from other types of investigations that we
have examined because they generally do not begin by stating a study hypothesis.
Rather, they begin by def ning a study question and then identifying the options that
will be considered to address the study question. Thus, the investigator does not
begin by hypothesizing which option is best. Rather, the investigator’s study ques-
tion should be to fairly identify and compare the options using predef ned criteria.
Avariety of studyquestions can be addressed bydecision-making investigations.

The specif c type of decision-making investigation used should depend on the
question being addressed.
Let us begin by outlining the common types of decision-making investigations.

Then it should be possible for you to determine whether the study type is appro-
priate to the study question.
Decision-making investigations can be divided into two general types. The f rst

type includes efforts to consider benef ts and harms—that is, favorable and unfa-
vorable health effects. This type of investigation is often called adecision analysis.4
The second type of decision-making investigation is called cost-effectiveness

analysis. Cost-effectiveness analysis will be used as a general term that includes
all types of decision-making investigations that consider costs and relate them to
a measure of favorable and adverse outcomes.5
Both decision analysis and cost-effectiveness analyses can be subdivided

into several different types of investigations, depending on the factors that are
considered.

DECISION ANALYSIS

One type of decision analysis in the literature is an outcomes profil .6
Table 27.1 shows the favorable and unfavorable outcomes with TLC and Car-

diomagic. This prof le provides considerable data that may be helpful in making
decisions. However, it does not in and of itself lead to preference for one option
over another. The outcome prof le actually raises a series of questions that need
to be considered in making decisions that can be incorporated into more complex
investigations.

4 The term “decision analysis” is often used even more generically to refer to all decision-making
investigations that use a quantitative approach to decision-making under conditions of uncertainty.
In this context, all investigation types discussed here, including those that incorporate costs, can be
considered decision analyses. In addition, the term “decision analysis” has been used more narrowly
than we use it here to imply the use of a decision tree as the method for modeling the options being
considered.

5As we discuss later in this chapter, the term “cost-effectiveness” is also used to describe one
particular type of decision-making investigation in which the investigator is interested in comparing
different alternatives for obtaining the same outcome. In this special type of investigation, the results are
stated as additional costs per additional outcome. The term “effectiveness” as used in cost-effectiveness
has a somewhat different meaning than when used in the “Studying a Study” section of this book.
Effectiveness in the context of cost-effectiveness combines the favorable and adverse outcomes. When
we viewed outcomes previously, we regarded effectiveness as including only favorable outcomes.
Considerations of adverse outcomes or safety were discussed separately. Thus, in decision-making
investigations, we should regard the term “effectiveness” as implying net effectiveness.

6 The term “balance sheet” has been used to describe this type of investigation; however, this term
may be misleading. This is an accounting term that refers to assets and liabilities measured in monetary
terms such as dollars. The type of analysis being considered here does not imply the use of costs, and
it is often not possible to directly compare the favorable outcomes with the adverse outcomes.
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Table 27.1. Favorable and unfavorable outcomes with TLC
and Cardiomagic

TLC outcomes: Cardiomagic outcomes:

Successful 96% Successful 80%
Unsuccessful 3.9% Unsuccessful 19.8%
Death 0.1% Blindness 0.2%

Let us examine Table 27.1 to see what information is provided and what is left
out. First, note that the outcomes profil provides estimates of the probability of
favorable and adverse outcomes. In an outcomes profile however, the timing of
the events are not necessarily made explicit. In addition, in an outcomes profil
there is no attempt to combine or summarize the impact of favorable and adverse
outcomes or long-term and short-term impacts. This process is left to the reader.
An outcomes profil does not really provide a conclusion and may not allow us to
determine which is the best alternative. Therefore, we may consider an outcomes
profil to be a preliminary, partial, or incomplete decision-making investigation.
An outcomes profil may provide enough information to make a decision if it

is clear that both the harms and the benefit of a therapy such as TLC are more
favorable than the harms and benefit of Cardiomagic. It is important to recognize,
however, that the outcomes of TLC and Cardiomagic are not directly comparable.
Looking at the adverse effects of these two treatments requires us to compare two
outcomes: death and blindness. These have very different implications. We may
need to quantitate the importance of outcomes such as death and blindness and
incorporate these measurements into a decision-making investigation if we wish to
compare TLC and Cardiomagic. In decision-making investigations, incorporating
the relative importance of an event is accomplished by measuring utility.7
A utility is designed to measure the preference of a decision-maker for a partic-

ular health outcome or state of health. As we will see in Chapter 29 on assessment,
there are a variety of methods for measuring utilities and considerable controversy
about which is best. Regardless of the method chosen, the aim is to measure util-
ities on the same scale as probabilities. By doing so, it is possible to combine
probabilities and utilities.
Thus, our goal is to measure the utilities of blindness and death on the same

numerical scale. In addition, our goal is to combine the measurements of utilities
that we obtain for blindness and death with the probabilities that they will occur.
Remember that probabilities are measured using a scale of 0 to 1, which is

often converted to percentages from 0% to 100%. On this scale, there are no
measurements greater than 1 or less than 0. The utility scale generally define 0
as death and 1 as full health or an individual’s state of health in the absence of
manifestations of disease or other health-related conditions.
Once utility and probability are measured on the same scale, the probability

can be multiplied by the utility to produce what is called an expected utility. We
can consider expected utility to be the probability of an outcome that takes into
account its value or utility. The calculation of expected utilities is an essential step
in performing a decision-making investigation that attempts to compare options

7At times, outcomes profile may be adequate for decision-making when one option is clearly better
than the other, regardless of the utility that is placed on each outcome. In decision-making investigations,
when one alternative is clearly more favorable than another, the alternative with the better outcomes is
said to be dominant.
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and draw conclusions. Thus, an investigation that measures utilities and combines
them with probabilities is called an expected utility decision analysis.
The possibility that death may occur raises an additional factor to consider in a

decision-making investigation. At times, wemaywant to consider the expected life
span lost as the result of death. We have already encountered the measurement of
life expectancy, which despite its limitation is our standard measurement of aver-
age life-span. For cases in which we hope to return an individual to his or her state
of full health, we can use life expectancymeasures, as derived from the age or aver-
age age of the individuals being treated, to estimate average remaining life span.8
Life expectancy can be incorporated into decision-making investigations along

with utilities.When this is done, the investigation usually produces a measurement
called Quality Adjusted Life Years (QALYs).9
Decision analyses that use QALYs to take into account life expectancy as well as

utilities represent what many experts consider a fully developed decision analysis.
We will call this form of decision analysis a Quality Adjusted Life Years decision
analysis (QALY decision analysis).
We have now def ned three types of decision analyses:

1. Outcomes prof les: This type of investigation merely states the probabilities of
the known favorable and adverse outcomes from each of the alternatives being
considered.

2. Expected utility decision analyses: This type of investigation combines the
probabilities and utilities of each favorable and each adverse outcome and sum-
marizes the results as overall expected utilities. Thus, expected utility decision
analyses, as opposed to outcomes prof les, summarize the outcomes of each
alternative and allow them to be directly compared.

3. QALY decision analyses: Like expected utility decision analyses, these allow
direct comparison of alternatives, taking into account the favorable and adverse
outcomes. However, QALY decision analyses go beyond expected utility in that
they incorporate life expectancy.

COST-EFFECTIVENESS ANALYSIS

Cost-effectiveness analyses, in contrast to decision analyses, incorporate costs
as well as considerations of favorable and adverse outcomes. Cost-effectiveness
analyses, like decision analyses, can be divided into several types.

8 If the investigator is dealing with a women’s disease, then life expectancy by age and gender should
be used. Similarly, if the author is dealing with a disease generally limited to blacks, such as sickle
cell anemia, use of life expectancy by age and race would be appropriate. As discussed in the next
chapter, the relevant life expectancy is not always the life expectancy derived from population data. For
diseases that substantially reduce life expectancy, the appropriate life-expectancy measures take into
account life expectancy for a particular disease as well as life expectancy def ned by age and possibly
gender and race.

9 QALY is the standard but not the only method for incorporating utilities and life expectancy.
A method known as Health Adjusted Life Expectancy or HALE is gaining recognition for combine
life expectancy and quality of life measures at the population level. HALE is gaining acceptance for
cost-effectiveness analysis in public health, for instance when comparing population-wide investments.
However,HALEcannot be usedwhen examining the impact of a particular disease or condition.Another
measure known as Disability Adjusted Life Years or DALY is useful when comparing different reasons
for mortality and morbidity, but does not provide the basis for comparing the impact of different
interventions for the same disease or condition. Thus QALY is the routine measure used in a fully
developed decision analysis or cost-effectiveness analysis.
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Table 27.2. Possible data from a cost-consequence
analysis for Paresis A

Paresis A vaccine
Outcomes: Successful immunization 97%

Unsuccessful immunization 2.9%
Complications 0.1%

Costs: $50 per use

As with outcomes profiles cost-effectiveness analysis may simply measure or
describe the various costs as well as the probabilities of the potential outcomes.
The reader then needs to combine these outcomes to reach conclusions. This
type of investigation is called a cost-consequence analysis. The data from a cost-
consequence analysis might look like that in Table 27.2.
Cost-consequence analyses are really partial analyses because they do not gener-

ally allow us to directly compare two ormore alternatives. To compare alternatives,
the investigators need to bring in outside data or judgments.
A second type of cost-effectiveness analysis has unfortunately been called a

cost-effectiveness analysis. Using this term to describe a specifi type of cost-
effectiveness analysis can be very confusing. To minimize confusion, we will call
this type of analysis a cost-and-effectiveness study.
A cost-and-effectiveness study looks at the costs required to produce an addi-

tional unit of desired outcome. For instance, imagine the following situation with
Paresis A:

The cost of the new Paresis A vaccine including the total costs of providing the
vaccine and treating any complications is $15,000 per case of Paresis A prevented.

This type of investigation compares the cost per additional desired outcome. It
does not ask about the importance of the outcome or the life expectancy of the
people treated. That is, cost-and-effectiveness studies do not consider utility or
life expectancy. This type of cost-effectiveness analysis can be used to compare
any outcomes, such as disease prevented or correct diagnosis, as well as lives
saved. However, most comparisons of intervention options produce more than one
outcome, most of which require consideration of utilities and life expectancy.10
Thus, a full cost-effectiveness analysis incorporates considerations of utility and

life expectancy as well as cost. This type of cost-effectiveness analysis is called a
cost-utility analysis or a cost-effectiveness analysis using QALY as the measure of
effectiveness. Let us see what we mean by a cost-utility analysis:

Paresis A vaccine was found to reduce the cost by $2,000 per quality-adjusted life
year saved when it was compared with the conventional approach. The investigation
took into account the utility of the outcomes as well as the life expectancy of people
who experienced favorable and adverse outcomes.

This form of cost-effectiveness analysis represents a fully developed analysis. It
allows us to compare any alternative, taking into account all the relevant costs
and health outcomes including the probability and utility of favorable and adverse

10At times, the key issue for an analysis is the relative costs. The effectiveness of two options
may be comparable and the investigation is directed only at considering costs. This type of cost-and-
effectiveness study is called a cost analysis.
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outcomes as well as the life expectancy. Cost-utility analyses are increasingly
considered the method of choice for most decision-making in health care. They
allow us to directly compare alternatives and determine the costs relative to the
health consequences.

COST-BENEFIT ANALYSIS

At times, however, the question posed in an analysis does not relate to comparing
the costs and health consequences of an intervention. Decision-making may at
times require looking at trade-offs between money spent on health and money
spent on other important outcomes such as environmental protection, economic
growth, or education. To make these types of comparisons, it is necessary to
translate effectiveness as well as costs into monetary terms.
The form of analysis that converts effectiveness as well as costs into monetary

terms is known as a cost-benef t analysis.11 Let us examine how a cost-benef t
analysis of might look:

An analysis was conducted to compare the economic costs and consequences of
providing insurance coverage for paralysis vaccine compared with the alternative
of providing college scholarships. The analysis assumes that one QALY could be
converted to $50,000. The investigation found that coverage of paralysis provided $2
in benef ts for every $1 in cost. The alternative of paying for college tuition provided
$3 of benef t for every $1 of costs. Thus, paying for college tuition was considered
the better alternative.

Note that cost-benef t analyses must make the conversion of QALY into dollars.
This is a big step, and there is no agreement on the value of a year of life. Thus,
this type of analysis remains controversial. Fortunately, it is not often necessary to
directly compare health expenditures with other uses of money. Therefore, cost-
benef t analyses are not frequently seen in the health research literature.
We will not examine cost-benef t analyses. However, the conversion from a

cost-utility study to a cost-benef t study is mechanically simple even though it
represents a major intellectual leap. The key is determining the proper monetary
value to place on a year of life. Once the monetary conversion of QALYs to dollars
or other currency is agreed upon, that monetary f guremerely replaces each QALY.
Thus, decision-making investigations can be classif ed as follows:

Decision Analysis
Outcomes prof le: Probabilities of favorable and unfavorable outcomes
Expected utility decision analysis: Probabilities and utilities of favorable and un-
favorable outcomes

Quality adjusted life year (QALY) decision analysis : Probabilities, life expectancy,
and utilities of each outcome

Cost Effectiveness
Cost-consequence analysis: Costs and probability of favorable and unfavorable
outcomes
11 The term “benef t” is also used to imply a favorable outcome. In the context of cost-benef t anal-

ysis, benef t means net effectiveness measured in monetary units. Net effectiveness implies favorable
outcomes minus unfavorable outcomes.
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Cost-and-effectiveness study: Costs to produce an additional unit of desired out-
come such as lives saved

Cost-utility analysis: Costs compared to a unit of outcome that incorporates utilities
and life expectancy

Cost-Benefi Analysis
Costs compared with health outcomes that are converted to a monetary value

Target Population
As with all investigations, it is important to def ne the target population, the pop-
ulation to which the results will be applied. This is important because it tells us
three things:

1. What type of individuals are being included and excluded
2. What type of sources can be used to provide the necessary data
3. What types of extrapolations to similar populationswill be possible if the results

favor one of the alternatives

The population that is the target of the decision-making study ideally should guide
the investigator to the type of data to use. Unfortunately, data may not be available
from the target population. To understand the implications of the choice of data,
let us return to our coronary artery disease example and ask which population’s
data should be used to address the following study question:

We are evaluating the costs and effectiveness of three types of treatments for single-
vessel coronary artery disease: conventional treatment, i.e., a combination of medi-
cations, angioplasty, and surgery.

When obtaining data to address the effectiveness or cost-effectiveness of the three
alternative treatments, it is important that the data come from individuals with
single-vessel coronary artery disease. These treatments may also be used on pa-
tients with more extensive disease. Such individuals are likely to be older and have
other related arterial disease. Thus, data derived from a population of patients with
severe coronary artery disease would not be the type of data that should be used in
addressing the study question. Now let us look at our other hypothetical situation:

We are evaluating the costs and effectiveness of a new vaccine for Paresis A, a
common contagious disease of childhood that is usually self-limited but can produce
short- and long-term complications.

When obtaining data to address the costs and effectiveness of this vaccine, the data
should be obtained from a population like the one onwhich it will be used. It would
not be useful to obtain data from a population of severely ill children, especially
if they had a high frequency of complications and required large expenditures if
they did develop complications. Likewise, it would not be useful to obtain data
from a population in which a high level of natural immunity already existed and
therefore the fully developed disease was rarely experienced.
Thus, when examining a decision-making investigation, the reader must ask,

“From what population (or populations) was the data obtained?” and “Is the pop-
ulation appropriate to the study question?”
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Perspective
To evaluate whether appropriate data were included in an investigation, it is im-
portant to consider the study perspective. Perspective asks about how broadly we
should look when measuring the effectiveness and the costs of an alternative. Let
us examine some of the possible perspectives by returning to the use of Paresis A
vaccine. We could view the costs and effectiveness of the vaccine from at least the
following perspectives:
� The patient who receives the vaccine and pays out of pocket
� The insurance company that pays for the vaccine as well as the short-term costs
of treating Paresis A
� The government insurance system that pays for the care for individuals who
develop Paresis A
� The society that, through one payment mechanism or another, receives the ef-
fectiveness and pays the costs of the administration of the vaccine and of the
disease

The f rst three perspectives can be viewed as user perspectives. They ref ect differ-
ent ways for recipients or payers to view the costs and effectiveness of the vaccine.
In theory, an investigation could be conducted from the perspective of the user of
the investigation.
The fourth perspective is a social perspective. A social perspective implies that

we are interested in the impact of the effectiveness and the costs regardless of who
obtains the benef ts, who suffers the harms, or who pays the costs. The choice
of perspective guides the investigator in determining what should be included or
excluded in the measurement of benef ts, harms, and costs. Therefore, we can look
at perspective as parallel to the inclusion and exclusion criteria used in other types
of investigations.12
In general, decision-making investigations should use the social perspective.

Other perspectives may also be used for additional analyses. There are two ba-
sic reasons for using the social perspective. First, it is the only perspective that
never counts an adverse outcome for one individual as a favorable outcome for an-
other individual. Similarly, the social perspective is the only perspective that never
counts a f nancial lose to one individual as a f nancial gain for another individual.
Thus, social perspective is the only perspective that considers all the favorable and
adverse outcomes and all the costs regardless of where they fall in society.
The perspective chosen should apply equally to the benef ts, the harms, and

the costs. If different perspectives are used for each, we cannot fairly compare or
summarize the relationship between net effectiveness and costs. Use of the social
perspective thus considers all the favorable and adverse outcomes regardless of
who they affect and all the costs regardless of who pays the bills. Using the social
perspective allows us to compare net effectiveness and costs in a consistent manner
and to compare the results of one investigation with another.
As is often the case in study design, we do allow investigators to have it both

ways. It is legitimate to conduct a decision-making investigation from the per-
spective of a potential user. If this is done, however, it is recommended that the

12 The perspective of the decision-making investigation should be distinguished from the identity of
the decision-maker. For instance, a clinician may make a recommendation by attempting to view the
situation from the perspective of an individual patient, an institution, or even society as a whole.
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investigation begin with a presentation from the social perspective. The social
perspective is usually considered the ideal perspective for conducting a cost-
effectiveness analysis. When a cost-effectiveness analysis is conducted from other
perspectives, the results are often compared with the results obtained using the
social perspective. The use of the social perspective in cost-effectiveness analysis
has been called the reference case.13
It is also important to recognize thatmany readers of a cost-effectiveness analysis

do not look at the issue from a social perspective but rather from one or more user
perspectives. Ideally, the data is presented in such away that it is possible for readers
who want to take a user perspective to selectively use the data to reach their own
conclusions. Recognizing the perspective used in an investigation is especially
important when we try to extrapolate the results to individuals or situations not
included in the study.
In summary, when reading a decision-making investigation, we f rst need to

address the three basic questions of study design14:
� What is the study question, and is an appropriate study type being used to address
the study question?
� What is the target population?
� What is the study perspective?

Having addressed these questions, we can turn our attention to assignment and see
what we mean by a decision-making model. In the next chapters in this section,
we examine net effectiveness using probabilities, utilities, and life expectancy, and
we consider costs as well as net effectiveness from the social perspective.

13 Throughout Section IV the basic principles addressed are derived from M. Gold et al., Cost-
Effectiveness in Health and Medicine (New York: Oxford University Press), 1996.

14 In decision-making investigations we do not need to consider sample size since we are not col-
lecting original data.
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28 Assignment

Options
The process of assignment in a decision-making investigation involves modeling,
diagramming, or otherwise structuring the decision options. The selection of the
options to consider is under the investigator’s control. As the reader, it is very
important to review which options have been selected and, conversely, which
potential options have not been included.
First, let us examine what we mean by modeling the decision-making process.

To conduct a decision-making investigation, the investigator needs to proposewhat
is called a decision-making model. A decision-making model outlines the steps the
investigator will follow in the decision-making and the fina outcomes that occur.
By fina outcomes, we mean the outcomes that may occur at the completion of the
decision option.1 With TLC and Cardiomagic, the decision-making model may be
described as follows:

TLC and Cardiomagic will be compared. TLC or Cardiomagic may be chosen,
but not both. The outcomes of TLC are successful, unsuccessful, and death. No
other therapy may be used if TLC is unsuccessful. Alternatively, Cardiomagic
may be chosen. The outcomes of Cardiomagic are successful, unsuccessful, and
blindness. If Cardiomagic is unsuccessful, surgery will be performed. The out-
comes of surgery are successful, unsuccessful, and death. No other intervention will
occur.

A common method for diagramming the decision-making process is a decision
tree. A decision tree graphically depicts the decision options and the choices
that must be made to implement each option. The decision tree also depicts the
events that occur through a chance process, outside the control of the decision-
maker.2
Let us use our example of TLC and Cardiomagic to demonstrate the essential

components of a decision tree.
Figure 28.1 represents a decision tree outlining the choice between TLC and

Cardiomagic for patients with symptomatic single-vessel coronary artery disease.
Note the following: First, there are two and only two options to choose from, TLC
and Cardiomagic. The choices of TLC and Cardiomagic are the decision options.
Second, note that there is a square connecting the two decision options. This square
is called a decision node. A decision node is connected with each of the decision
options using a vertical line. The decision-maker must choose one of the available

1 The term “fina outcome” is not in common usage. It is being used here to distinguish the outcomes
at the right end of the decision tree from intermediate outcomes. In decision analysis the outcomes at
the right-hand side of the decision tree are the outcomes of interest. Thus, death is death and full health
is full health regardless of the process of getting there. Decision analysis focuses on fina outcomes not
the process of getting there.

2 The term decision-maker intentionally evades the question of who is making the decision. Thus, at
times the decision-maker may be a clinician, a patient, an administrator, etc.
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Figure 28.1. A decision tree outlining the choice between TLC and
Cardiomagic for patients with symptomatic single-vessel coronary
artery disease.

decision options. Once the choice of option is made, the decision tree depicts the
subsequent course of events.3
In the decision tree for TLC depicted in Fig. 28.2, we see only events that

subsequently occur by chance.
For TLC, one of three f nal outcomes occur: successful, unsuccessful, or death.

Any individual can experience only one of these outcomes; that is, the outcomes
are considered mutually exclusive.4
These three f nal outcomes are connected by a chance node. Chance nodes

are represented by a darkened dot or circle. The “successful” and “death” f nal
outcomes each brings us to the end of the TLC portion of the decision tree.
Figure 28.3 displays the option to use TLC and also the option to use Car-

diomagic. Cardiomagic, unlike TLC, may be followed by surgery if it is unsuc-
cessful. Thus, in the Cardiomagic alternative, there are two chance nodes. The f rst
ref ects the fact that the outcome can be successful, unsuccessful, or blindness. The

Figure 28.2. Decision tree for TLC
depicting three branches of the deci-
sion tree indicating events that occur
by chance.

3 Choice nodes may again appear later in a decision tree, implying that the decision-maker will need
to make a subsequent decision as part of implementing a specif c option.

4 The mutually exclusive assumption may at times make the decision tree less than a true ref ection
of reality. In reality, any individual can experience both an unsuccessful procedure and an adverse
effect. An outcome in which more than one outcome occurs can be included as an additional potential
outcome. Often, combined outcomes are not included. Fortunately, at least from the social perspective,
the unusual occurrence of more than one outcome often has little overall effect on the recommendations
derived from the analysis. However, for the individual experiencing both an unsuccessful procedure
and an adverse event, this is a particularly poor outcome.
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Figure 28.3. Decision tree displaying the options of using either TLC or Cardiomagic.

second chance node shows that the surgery following unsuccessful Cardiomagic
will be successful, unsuccessful, or will result in death.

Relevant Options and Realistic Outcomes
Now let us see what our decision tree has and has not achieved. When looking at a
decision tree, we need to ask whether the options being considered are relevant to
the study question. We also need to ask whether the outcomes are realistic—that
is, do they include the f nal outcomes that are important in practice.
When looking at a decision tree, the f rst question to ask is: “Were the relevant

options considered?” Notice that there is no option to use conventional treatment
such as surgery, angioplasty, or medications. Furthermore, observing the natural
course of events without intervening is not included as an option. Whether or
not these options should be included in a decision tree depends on the question
being asked and the current state of knowledge. The choice between TLC and
Cardiomagic may be appropriate if one of these must be selected for a particular
group of individuals or both of these have been clearly shown to be superior to the
other available options. When another option is considered, it should generally be
included in a decision tree.
The other key question to ask in examining a decision tree is: “Does the decision

process include the f nal outcomes that are important in practice. That is, do they
ref ect realistic decision-making?” This question is more complicated than it f rst
appears since all decision trees simplify the real decision-making process.Decision
trees generally leave out unusual events, especially if they are not directly related to
the therapy. For instance, a procedure that requires hospitalizationmay result in side
effects unrelated to the therapy itself. Hospitalization may increase the chances
of developing hospital-acquired pneumonia or experiencing a medication error,
yet a decision tree is not generally expected to incorporate these types of events.
In addition, aswe have already seen, a decision tree often skips potential options.

For instance in the decision tree for our example, it was not permitted to stop after
unsuccessful Cardiomagic treatment results. The greater the number of chance
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nodes, the more data that are needed to complete the decision tree. Thus, these
types of simplif cation are usually necessary and acceptable to make the decision-
making model manageable.
The idealway to construct a decision tree is to think of all possible f nal outcomes

of the options being considered and to display a decision tree that ref ects all of
these possible outcomes. This process will usually produce a large number of
unusual outcomes and a number of similar outcomes. The researcher then combines
outcomes that are similar and decides whether certain outcomes are so unusual
or so inconsequential that they can be deleted from the decision tree. This very
common practice is referred to as pruning the decision tree.5

Timing of Events
The timing of occurrence of potential outcomes is an important consideration in
structuring the options in a decision-making investigation.6 Some events occur
immediately, and others may take years to occur. Some events may occur only
once, while others may recur in the near or distant future. Whether or not to
include events that occur in the future depends on the study’s time horizon.7
The time horizon is the follow-up period that determines which outcomes are

included in the model. The time horizon tells us how far into the future to look
for favorable or unfavorable outcomes. The investigation may be interested only
in short-term outcomes, such as hospital mortality, long-term outcomes such as
late recurrences, or even consequences for the next generation. Notice that the
TLC decision tree that we used only considers the immediate outcomes. However,
what if TLC could damage the coronary arteries and increase the probability of
late complications? If this is the case, a decision tree for TLC with a longer time
horizon would need additional chance nodes displaying additional outcomes.
Ideally, the time horizon should extend throughout the life of the individuals

who receive the intervention option. When shorter time horizons are used, the
reader should ask: “Was the time horizon long enough to include all important
favorable or adverse outcomes?”
The choice of appropriate time horizon may itself be quite complex. With ge-

netic interventions, the appropriate time horizon may extend to future generations.
The time horizon may also be important in determining the proper structure of
a decision tree, including which complications to consider. For instance, if the
time horizon is extended long enough, the disease may recur; that is, the treated
coronary artery may experience restenosis or disease may develop in additional

5 In addition, the reader must ask the bigger questions of whether the approach used in outlining the
decision tree is a realistic ref ection of clinical or public health decision-making. Remember that the
decision tree used here implied that the choice was between TLC and Cardiomagic. However, if there is
an alternative to use Cardiomagic f rst, and if it is not successful to use TLC, then the decision tree
does not ref ect realistic decision-making.

6When examining a decision tree and considering the options it is also important to identify the time
frame of the analysis. The time frame is the period during the course of the disease when it is possible
to use the intervention. Here, TLC and Cardiomagic are being used at the time when single-vessel
coronary artery disease has become symptomatic. If the time frame of the analysis had extended to an
earlier period in the course of the disease before symptoms had developed, it may have been possible
to select preventive interventions. Thus, the choice of time frame can be very important in selecting
decision options.

7 The time horizon is also called the analysis horizon. “Time horizon” is used here because the issue
is the time period that is considered in structuring the decision model.
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arteries. It is possible to construct more complicated decision trees incorporating
recurrences and applying techniques known as Markov analysis to incorporate
recurrent events into decision trees. Markov analysis allows the development of
complex models in which one individual can potentially move back and forth
through stages of disease over extended periods of time.
The assignment process in decision-making investigations can be thought of as

structuring the decision-making model. An important technique for displaying or
diagramming a decision model is a decision tree.8 Having created the decision-
making model, the next step in the process is to look at how the data in the model
were obtained.This issue is addressed in the assessment process,which is discussed
in the next chapter.

8Decision trees are not the only technique that can be used to diagram a decision-making investiga-
tions. Inf uence diagrams can be used. These display the relationships between events and the factors
believed to be relevant to decisions. Inf uence diagrams may be combined with decision trees, which
may make complex decision trees, easier to display and understand.
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29 Assessment

The assessment process in decision-making investigations requires the investiga-
tor to obtain information from a variety of sources and to plug these pieces of
information into a decision-making model that adequately describes the decision-
making process. To better understand this process, let us see what need to be done
to complete our decision tree on TLC and Cardiomagic.
A decision tree is a particularly attractive technique for diagramming decision-

making because it allows the investigator to incorporate not only probabilities, but
also utilities, life expectancies, and even costs. We will look at howwe incorporate
these measurements, beginning with probabilities.

Probabilities
So farwehave looked at the components ofmethod and assignment. In our coronary
artery disease example, we have described the choices to be considered (TLC and
Cardiomagic) and the meaning of decision nodes and chance nodes. Assume that
TLC and Cardiomagic are the appropriate choices to consider and that TLC and
Cardiomagic cannot be used together. Let us refer again to our decision tree before
we proceed to look at what is needed to complete the decision tree. Figure 29.1
includes the probabilities of each potential outcome of TLC and Cardiomagic.
Notice that the three potential outcomes of TLC are successful (0.96), unsuccessful
(0.039), and death (0.001). The probabilities total 1 for each option. Figure 29.1
also outlines the potential outcomes and probabilities for Cardiomagic: successful
(0.80), unsuccessful (0.198), and blindness (0.002). Calculating the probabilities
of the fina outcome for Cardiomagic requires us to combine probabilities. We will
see how to do this a little later in this chapter.
If possible, probabilities should be obtained from studies found in the research

literature. Often, however, these estimates are not available and educated guesses
must be used instead.When educated guesses are used to obtain probabilities, they
may be referred to as subjective probabilities.1
When using subjective probabilities, it is important to recognize that it is very

difficul to accurately estimate probabilities, especiallywhen the probability is very
high (99% or more) or very low (1% or less). Thus, this problem often arises with
estimates of the probability of adverse effects. In these situations, it is a common
practice to either overestimate the probability, magnifying the chances of death for
instance, or to underestimate the probability and therefore ignore the possibility
of a rare side effect such as blindness or death.
The reader of decision-making literature needs to closely examine how the

probabilities of rare but serious events were measured. When they are based on

1Underestimating and overestimating the probability of events are even greater problems in the
types of nonquantitative decision-making that is used for most decisions. One advantage of quantitative
techniques, such as decision trees, is that they force the investigator to be explicit about which outcomes
are being included and the probabilities that are attached to each outcome.
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Successful
Probabilities

0.9600
(0.96)

(0.039)

(0.001)

(0.80)

(0.198)

(0.002)

(0.04)

(0.26)

(0.70)

0.0390

0.0010

0.8000

0.1386

0.0515

0.0079
0.0020

Successful

UnsuccessfulTLC

UnsuccessfulCardiomagic Surgery unsuccessful

Surgery successful

Death
Blindness

Death

Figure 29.1. Decision tree including the probabilities of each potential outcome.

educated guesses or subjective judgments, these probabilities are especially prone
to errors that need to be taken into account in the analysis.2

Utilities
It is possible to directly compare the successful and unsuccessful outcomes of TLC
and Cardiomagic using probabilities alone. However, it is not possible to directly
compare the consequences of death and blindness using only probabilities. Thus, to
complete the decision tree, it is also necessary to include a measure of the relative
value or importance of death and blindness. This is performed using utilities.
Figure 29.2 includes utilities for all the f nal outcomes. Success is given a utility

of 1, which implies that the individual returns to full health. Death is given a utility
of 0, which represents the lowest possible utility. Blindness is given a utility of 0.5,
which implies that it is considered to be halfway between full health and death.We
will examinemethods formeasuring these utilities and their implications in greater
detail later in this chapter. For now, we examine how utilities are incorporated into
the decision tree.
When utilities are used in a decision-making investigation, they must be mea-

sured on the same 0-to-1 scale as probabilities.3 Using the same scale allows us
to combine probabilities with utilities. This is performed by multiplying probabil-
ities and utilities to obtain expected utilities. Expected utility can be viewed as a

2Overall probabilities are calculated based on the independence assumption. This assumption implies
that the probability of success at surgery is not inf uencedbywhether or notCardiomagicwas successful.
At times, the independence assumption may not hold in decision-making situations. It is possible that
a factor that led to failure of Cardiomagic also inf uences the probability of unsuccessful surgery.

3 The question often arises as to who should be asked to assess utility. Should the investigator ask
people who are already blind and have thus gained experience with blindness, or should we ask those
whomay become blind as a result of choosing the alternative to use Cardiomagic? The literature tells us
that people who have already experienced a condition tend to score it with a slightly higher utility than
those who have not experienced the condition. That is, people who have experienced blindness tend to
adapt to its limitation and don’t f nd it quite as bad as those confronted with potential blindness. The
difference, however is not great and studies of utilities may use either people who have experienced or
those who have not experienced the condition to obtain measures of utility.
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Successful
(0.96)

0.9600 1 0.9600

0.0010 0 0

0.0390 0.8 0.0312

0.8000 1 0.8000

0.1386 1 0.1386

0.0079 0 0
0.0020 0.5

0.0515 0.8 0.0412

0.9912

(0.039)

(0.001)

(0.80)

(0.70)

(0.26)

(0.04)

(0.198)

(0.002)

Probabilities Utility Expected
Utility

Successful

Cardiomagic

TLC

Blindness

Unsuccessful

Unsuccessful Surgery unsuccessful

Surgery successful

Death

Death

0.0010
0.9808

Figure 29.2. Decision tree displaying utilities for all outcomes.

probability that takes into account the utility of the outcome. In expected-utility
decision analysis, the expected utilities are compared. Let us see how the expected
utilities would be calculated for TLC and Cardiomagic by looking at Fig. 29.2.
The expected utilities of each outcome are obtained by a process known as

folding back the decision tree. With this process, we calculate the probability of
each of the f nal outcomes that may occur in the decision process. Once the prob-
ability of each f nal outcome is calculated, we multiply the probability by the
utility of that outcome. For the Cardiomagic option in our example, the following
outcomes may occur: (1) successful; (2) unsuccessful then successful surgery;
(3) unsuccessful then unsuccessful surgery; (4) unsuccessful then death from
surgery; (5) blindness.
Outcomes 2, 3, and 4 require combining two probabilities to obtain the probabil-

ity of the f nal outcome. For instance, the probability for unsuccessful Cardiomagic
followed by successful surgery is obtained by multiplying the probability of being
unsuccessful with Cardiomagic (0.198) by the probability of experiencing suc-
cessful surgery (0.70). This equals 0.1386, which is the probability of the f nal
outcome.
Figure 29.2 displays the probabilities and utilities of the f nal outcome. These

probabilities are multiplied times their utility to produce the expected utilities for
each potential f nal outcome of TLC and Cardiomagic, the two decision options.
One more step must be completed before we can directly compare the f nal

outcomes of the TLC and Cardiomagic options. This step summarizes each of
the options by adding together the expected utilities relevant to each option. This
process is known as averaging out the expected utilities. In averaging out the
expected utilities for TLC and Cardiomagic, we would perform the following
calculations:

TLC expected utilities = 0.9600+ 0.0312+ 0 = 0.9912

Cardiomagic expected utilities = 0.8000+ 0.1386+ 0.0412+ 0+ 0.0010
= 0.9808
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Now we have folded back and averaged out to calculate overall expected utilities.
For an expected-utility decision analysis, these numbers represent the last step.
They ref ect a completed decision tree. This decision tree leads us to the conclusion
that TLC is a better choice than Cardiomagic since it has a greater overall expected
utility.
As we have already discussed, utilities need to be measured on a scale of 0 to

1, the same scale used to assess probabilities. Utilities, unlike probabilities, are
inherently subjective; they depend on how they are viewed by each individual.
Each individual measures utilities differently. Thus, there is no right utility.
What, then, are we measuring when we attempt to measure utilities? When

decision-making investigations are conducted from the social perspective, the in-
vestigator is attempting to measure the average utility for individuals who are po-
tentially affected by the outcome. Let us see what wemean in the case of blindness.
There are several techniques used to measure utilities, each of which measures a

slightly different phenomenon. Currently, there is no consensus on which is best.4
The most straightforward method for measuring utilities is called the rating scale
method. Using the rating scale method, individuals indicate their own utility for
blindness using a linear scale from 0 to 1, as seen in the following example:

Imagine your quality of life if youbecamepermanently and completely blind. Indicate
on the following scale the relative worth of blindness. Notice that the scale extends
from 0, which stands for immediate death, to 1, which stands for your state of full
health.

0
Death

1
Full

Health

How did you score the utility for blindness?
When the scores of individuals are averaged, the utility of blindness is usually

approximately 0.50. However, there is great variability from individual to individ-
ual. Perhaps you scored permanent and complete blindness as carrying a utility as
high as 0.80 or as low as 0.20. This type of variability is not unusual. In addition, it
is not always obvious why one individual perceives a condition as carrying a high
utility and another perceives it as carrying a low utility. At times, an individual’s
profession, age, or current state of activity may explain how they rate a condition’s
utility. More often, however, a large difference exists between similar individuals

4 The technique demonstrated for directly scoring utilities on a scale of 0 to 1 is known as the rating
scale approach. There are a growing number of other methods for scoring utilities. The time trade-off
and reference gamble methods are commonly used. There is considerable controversy over the best
method to use. None of the currently available methods is ideal. The time trade-off method asks the
decision-maker to determine the percentage of their remaining life span that they would trade off for a
return to full health (a utility of 1). It incorporates considerations of life expectancy and discounting.
The reference gamble methods ask the rater to choose between a secure outcome at a specif c utility
and a gamble that will bring them to either full health (a utility of 1) or alternately will produce death
(a utility of 0). Reference gamble methods thus incorporate risk-taking into the measurement. The
rating scale measurement has the advantages that it can be used to measure the quality of health at
one point in time without incorporating issues of life-expectancy, discounting for time, or risk-taking
attitude.
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without obvious explanation. Usually the best way to estimate a condition’s utility
is to ask the individual.
Estimates of average utility are often quite similar from population to population

but greatly differ from individual to individual within a population. Thus, it is
important to recognize thatwide andunpredictable variation in utilities fromperson
to person often exists and must be taken into account if the decision analysis is
used for individual decision making.
The 0 to 1 scale used to measure utility creates issues at both ends of the scale.

At the upper end, 1 is considered full health for the individual. For many medical
conditions, it is impossible to bring an individual to full health. This is especially
so for those with severe disabilities. Thus, when comparing an intervention de-
signed for disabled people with one designed for people who can potentially be
brought to full health, the disabled are at a disadvantage in terms of the extent of
improvement that is possible as measured by utilities. An intervention may have
a greater potential for improving the utility score among the potentially healthy
compared with the disabled. To understand why this may be the case, consider the
use of Cardiomagic in the following situation:

Cardiomagic is being evaluated for use in otherwise healthy middle-aged men com-
pared with its use in middle-aged men on dialysis. Despite its comparable proba-
bilities of success, no success, and blindness, the procedure was found to produce
greater expected utility when used on otherwise healthy individuals.

When dialysis patients return to their previous state of health, they do not return
to a utility of 1. Rather, they return to the state of health for a dialysis patient who
is doing well. This explains the greater expected utility when Cardiomagic is used
on otherwise healthy individuals. When dialysis patients return to their previous
state of health, their utility may only increase to approximately 0.6 compared
to a previously healthy individual whose health may return to a utility of 1. As
suggested by this example, decision-making investigations have been criticized as
having a bias against the disabled.
There are also problems at the other end of the scale. In most decision-making

investigations, 0 is def ned as death. Considerable research and everyday expe-
rience tell us that, for many individuals, there are conditions worse than death.
Prolonged vegetative states, severe mental incapacity, and intractable pain are typ-
ically viewed as having a utility worse than death. To use a scale that is the same
as the one used for probabilities, it is not possible to incorporate negative utili-
ties. It is possible to set immediate death as greater than 0 and to set 0 as a state
worse than death. Despite the possibility of using this scale, it is rarely seen in the
decision-making literature.5

Life Expectancy
The questions addressed so far may be the only issues addressed in a decision-
making investigation. If so, the investigation is an expected-utility decision

5There is an additional problem inherent in the utility scale. The utility scale is linear—that is, the
difference between 0.00 and 0.01 is the same as the difference between 0.50 and 0.51 or between 0.80
and 0.81. However, 0.00 is death and 0.01 implies continued life. Life and death are not measured on a
continuous scale; they are discrete either/or conditions. Thus, it is important to recognize that the scale
used to measure utilities cannot truly ref ect the true situation, especially at the lower end of the scale.
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Table 29.1. Quality adjusted life years (QALYs) for TLC and Cardiomagic
Probability Utility Life expectancy QALYs

TLC
Successful 0.9600 1 18 17.28
Unsuccessful 0.0390 0.8 5 0.16
Death 0.0010 0 0 0
Total QALYs 17.44
Cardiomagic
Successful 0.8000 1 18 14.40
Successful after surgery 0.1386 1 18 2.49
Unsuccessful after surgery 0.0515 0.8 5 0.21
Death after surgery 0.0079 0 0 0
Blindness 0.0020 0.5 18 0.02
Total QALYs 17.12

analysis. That is, it considers only the probability of favorable and unfavorable
outcomes and the utilities attached to these f nal outcomes.
When a decision analysis incorporates life expectancy measures, the results are

usually presented using quality adjusted life years (QALYs) as the measurement of
effectiveness. Let us see how we can incorporate life expectancy into the decision-
making process using the following data:6

In examining the options, assume that the average individual being considered for
treatment is 62 years old. Further assume that if the treatment is successful, they will
return to having an average life expectancy of 18 years. If unsuccessful, assume that
they will have a life expectancy of 5 years. Death produces a life expectancy of 0.

To see how these life-expectancy measures can be incorporated into the decision
analysis process let us take a look at Table 29.1
The QALYs for each f nal outcome are obtained by multiplying the probability

of each f nal outcome, the utility of each f nal outcome, and the life expectancy
of the average individual who experiences the f nal outcome. Adding the QALYs
together, we can average out and obtain the following results:

TLC = 17.44QALYs

Cardiomagic = 17.12QALYs

Once again, we can conclude that TLC is a better choice.
The measurements used to obtain life expectancy for a decision analysis can be

very complex. The life-expectancymeasurements derived from cross-sectional life
table that we examined previously are designed as an average for all individuals
of the same age and, sometimes, of the same gender or race. This type of life
expectancy is not designed to take into account the consequences on life span of a
specif c disease that is being treated. Life expectancy derived from cross-sectional

6 This approach to lining up life-expectancy measures along with utilities and probabilities as the
outcomes of a decision tree is rarely used in the literature. It does, however, illustrate key issues. It also
points out the need to def ne what is included in a utility. If life expectancy is included as a separate
measure, utilities should not incorporate consideration of longevity. Unfortunately, this distinction is
not always made in the literature.
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or population data overestimates survival for those with disease. To accurately
incorporate the impact of disease on life-expectancy, we need to combine life-
expectancy measures using data based on age, gender, and race with data based
on disease-specif c survival.7
The implications of reduced life expectancy for those with disease is illustrated

in the following example:

A decision-making investigation is being conducted to determine whether use of
TLC or Cardiomagic is better for dialysis patients with coronary artery diseasewhose
average age is 50. The average 50-year-old is assumed to have a life expectancy of
30 years.

The average 50-year-old may have a life expectancy of 30 years based on a pop-
ulation’s life-table data, but those on dialysis may have a much shorter life ex-
pectancy regardless of the success or failure of treatment of their coronary artery
disease. Thus, the life expectancy that must be incorporated into each outcome of
a decision tree is the life expectancy of the average individual on dialysis. That
is, if we are dealing with dialysis patients, the relevant life expectancy may be
10 years instead of 30.
The impact of life expectancy is evenmore dramatic when the goal is to compare

two very different treatments—one aimed at young people and the other aimed at
an older population. For instance, consider the following:

QALYdecision analysis examined the favorable andunfavorable outcomesof treating
single-vessel coronary artery diseasewith TLCorCardiomagic in individuals with an
average age of 62. It compared these results with the prevention of Paresis A by using
a vaccine in children. The prevention of Paresis Awas shown to produce considerably
more QALYs than the treatment of single-vessel coronary artery disease.

When comparing a treatment or a preventive intervention that is applied to very
different age groups, it is important to recognize that a successful intervention
among children results in a far greater improvement in life expectancy than an
equally successful intervention among 62-year-olds. Thus, many more QALYs
result from successful efforts to prevent Paresis A in children compared with
treatment of coronary artery disease among 62-year-olds. Decision-making inves-
tigations that incorporate life expectancy, i.e., when usingQALYs, tend to favor the
young. This tendency may or may not be justif able, but the reader must recognize
this tendency, especially when comparing different types of treatments aimed at
different age groups.

7One such approximation is known as theDeclining Exponential Approximation of Life Expectancy
(DEALE). DEALE assumes that the life expectancy at a particular age is equal to 1 divided by the sum
of the probability of survival on the basis of age, race, and gender (obtained from a cross-sectional life
table) plus the probability of survival as a result of disease (obtained from a longitudinal life table).
The use of DEALE would imply that the reduction in life expectancy due to the need for dialysis is
the same regardless of whether the patient is 65 or 35 years old. That is, the need for dialysis might
shorten average life span by 10 years. A recent, more accurate approximation is known as GAME
(GamaMixed-Exponential Estimate). GAME takes into account the often observed declining motality
from a disease over time. DEALE assume that the impact of the disease continues without decline
over time, thus resulting in an underestimation of life expectancy. (W.B. van den Hout, “The GAME
Estimate of Reduced Life Expectancy,” Medical Decision Making 24(2004):80–88.)
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Costs
Costs are not generally incorporated directly into a decision tree. Rather the de-
cision tree is used to calculate the effectiveness, and costs are then compared to
effectiveness.8
To appreciate the costs that must be considered in a cost-effectiveness analysis,

let us return to our example of Paresis A:

Paresis A is a common contagious disease of childhood that is usually self-limited.
However, a small percentage of children who experience the illness develop the com-
plication of permanent paralysis, and a few develop life-threatening complications.
Long-term paralysis and late complications can occur. The conventional treatment
for Paresis A has been only supportive treatment, which we will call a do-nothing
approach. Recently, an expensive vaccination designed to prevent Paresis A became
available. A rare complication of the vaccine is development of a form of paralysis
that is similar but usually less severe than the disease itself.

We will see how we can compare the costs of the vaccine with the do-nothing
approach. When assessing the costs of an intervention, it is necessary to consider
the types of cost discussed in the next three sections.9

Short-Term Health Care Costs
Health care costs include the cost of delivering the service and treating the short-
term complications. For the conventional treatment of symptoms and complica-
tions, the costs include visits for health care and the cost of providing hospital-
ization and treatment. For Paresis A vaccine, this would include the costs of the
vaccine and the associated costs of delivering the vaccine, as well as costs of
treating the short-term complications that develop as a result of administering the
vaccine. It would also include the costs of care and complications for those who
developed paralysis despite use of the vaccine.
In general, short term can be thought of as costs that occur within a year of

treatment.

Short-Term Nonhealth Care Cost
Nonhealth care costs include the time and expense to access care by the patient, as
well as for anyone else whomust provide paid or unpaid services. These especially
include the costs of providing care outside the medical system, even when this care
is provided by family members without charge.

8Occasionally, costs are directly incorporated into a decision tree as an outcome measure. When
this is done, the outcome is called expected value rather than expected utility.

9 These categories attempt to present the concepts incorporated into the recommendations of Gold,
et al. The separation of short-term and future health care costs is presented to clarify an important
distinction for the reader. The use of one year for short term implies that no discounting for harms,
benef ts, or costs is needed. The omission of the use of the term “direct” is an attempt to avoid confusion
with other uses of this term, such as the use of “direct” and “indirect” to indicate program cost and
institutional costs respectively. Both of these costs are included in the concept of direct as used in cost-
effectiveness analysis. Note that this section does not attempt to def ne the methods used for actually
measuring costs. The accuracy of the measurement of costs is an important issue, but one that is beyond
the scope of this section. However, it is important to distinguish between costs and prices. Costs aim to
measure resource use, as opposed to prices that are affected by additional factors, especially in health
care.
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For the conventional approach, there are no costs of obtaining the vaccine, but
there will be considerable costs of taking care of the illness and the short-term
complications.
For Paresis A vaccine, these costs include the time required from the parent

or other caregiver to obtain the vaccine and time required to care for short-term
complications of the vaccine or the disease if the vaccine is not successful.

Long-Term Health Care Costs
Long-term health care costs can theoretically be separated into costs that are and
are not related to the disease or the treatment. The related costs of caring for long-
term consequences of the disease or its treatment should be included in a cost-
effectiveness analysis. In general, unrelated long-term health care and nonhealth
care costs are not included.10
For conventional treatment, the long-term health care costs include the long-

term cost of caring for those who experience the disease and survive the short-term
life-threatening effects.
For Paresis A vaccine, related long-term health care costs include the costs

of providing ongoing care for all those who experience the complications of the
vaccine and the costs of long-term treatment of those who experience the disease
despite receiving the vaccine. Long term can be thought of as beginning 1 year
after the treatment and continuing for the lifetime of the individual.
In this chapter, we have looked at what each of the variables needed to complete

a decision-making investigation attempts to measure. Probabilities, utilities, life
expectancy, and costs are included in the assessment. Depending on the question
being addressed and the type of investigation being conducted, the investigator
may need to obtain the best available measurements of probabilities, utilities, life
expectancies, and costs. These are called base-case estimates. When doubt exists
about the accuracy of the base-case estimates, the investigator may need to make
educated guesses of what are called realistic high and realistic low values. These
provide a means of quantitatively incorporating uncertainty into the decision-
making process.
In the next chapter on results, we examine how the results are presented and

look at how the realistic high and realistic low estimates can used to incorporate
uncertainty into the decision-making investigation.

10Unrelated costs include the cost of treating other diseases that occur unrelated to the disease being
treated. For a condition like Paresis A, these costs should be approximately the same for the vaccine
and the conventional treatment. At the discretion of the investigator, these may be included for any
added years of life. Gold recommends that the costs of treating unrelated disease be included during
the years of life that would have been lived without the intervention and either included or excluded for
the additional years of life. In addition, Gold’s recommendations allow either inclusion or exclusion
of nonmedical future costs, such as food and shelter. We will assume that these are excluded, as is
increasingly the practice in most cost-effectiveness analyses. If long-term nonhealth care costs are
included, an otherwise successful intervention may be viewed as very expensive because it requires
society to provide support for the additional years of life. The exclusion of these costs implies a social
decision to consider the value of a year outside the work force to be just as valuable as a year in the
work force.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-30 Riegelman-1490G Riegelman-v9.cls August 25, 2004 0:5

30 Results

The results component of the M.A.A.R.I.E. framework for decision-making in-
vestigations asks us to address the issues of estimation, inference, and adjustment.
The aim of estimation is to provide the best possible estimation of the strength of
the relationship. Inference produces what we will call a sensitivity analysis that is
parallel to confidenc intervals in other types of investigations. Adjustment aims to
take into account the key differences between the timing of events using a process
called discounting.
Let us look more closely at what we mean by estimation, inference, and adjust-

ment in a decision-making investigation.

Estimation
Estimation is a summarymeasurement that results from an investigation. Each type
of decision-making investigation produces one or more summary measurements.
The measurement is different, however, if we are dealing with an expected-utility
decision analysis, a QALY decision analysis, a cost-and-effectiveness analysis, or
a cost-utility analysis.
The differences between the summary measurements used in different decision-

making investigations depend largely on the factors that are used to measure the
outcomes. Probabilities alone may be used, or life expectancy may be incorpo-
rated. Cost may be used, or the investigation may focus exclusively on effective-
ness.
To see what we mean by these different estimates, let us return to our TLC and

Cardiomagic example.
Figure 30.1 reproduces the previous decision tree for TLC and Cardiomagic

incorporating probabilities and utilities of each fina outcome. The summary
measurement for this decision-making investigation is the difference in expected
utility:

0.9912− 0.9808 = 0.0104

This measurement may have little intuitive meaning in and of itself. However,
what we will call a quality-adjusted number needed to treat can be calculated as 1
divided by this difference between the expected utilities. Here, the quality-adjusted
number needed to treat equals the following:

1÷ 0.0104 ≈ 96

260
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Figure 30.1. A decision tree incorporating probabilities and utilities for each outcome of
TLC and Cardiomagic.

This quality-adjusted number needed to treat tells us that on average, 96 individuals
need to be treated with TLC instead of Cardiomagic to produce one additional life
at full health.1
Now let us look at the summary measurement that can be used when a decision-

making investigation produces results measured in QALYs. The data from the
QALY decision analysis we discussed in chapter 29 is presented in Table 30.1.

Table 30.1. Quality adjusted life years (QALYs) for TLC and Cardiomagic
Probability Utility Life expectancy QALYs

TLC
Successful 0.9600 1 18 17.28
Unsuccessful 0.0390 0.8 5 0.16
Death 0.0010 0 0 0
Total QALYs 17.44

Cardiomagic
Successful 0.8000 1 18 14.40
Successful after surgery 0.1386 1 18 2.49
Unsuccessful after surgery 0.5150 0.8 5 0.21
Death after surgery 0.0079 0 0 0
Blindness 0.0020 0.5 18 0.02
Total QALYs 17.12

1 The quality-adjusted number needed to treat is being interpreted as the number of individuals who
need to be treated with TLC as opposed to Cardiomagic to obtain one additional life at full health that
would otherwise have resulted in an outcomewith a utility of 0 (death) if treatedwith Cardiomagic. That
is how many individuals, who would have otherwise died, need to be treated to obtain the equivalent
of one life saved at full health. As with all uses of expected utility, the meaning of the results assumes
that we are willing to add together changes in utility from different individuals. Thus, we are assuming
that preventing two cases of blindness, which provide two individuals an increase in utility from 0.5
to 1, is worth the same as providing full health at a utility of 1 compared with death at a utility of 0 for
one individual.
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This data allows us to easily present the difference in QALYs per use by sub-
tracting the 17.12 QALYs for Cardiomagic from the 17.44 QALYs for TLC:

17.44− 17.12 = 0.32

Again, this may not have very much meaning in and of itself. In parallel to the
measurement of expected utilities, we can calculate a quality-adjusted number
needed to treat as follows:

1÷ 0.32 ≈ 3

Thus, on average, an additional QALY results from treating approximately three
patients with TLC instead of Cardiomagic. The quality-adjusted number needed
to treat to produce an additional life or alternatively an addition QALY are thus
useful summary measures for effectiveness. They tell us the number of individuals
who need to receive the intervention of interest, as compared to the alternative, to
produce one additional life or alternatively one additional life year at full health.

Cost-Effectiveness Measures
In contrast to the measures of effectiveness, the estimates for cost-utility analyses
are presented in two ways that need to be understood and distinguished. Table
30.2 shows us the QALYs produced by TLC and Cardiomagic and also the costs
of TLCandCardiomagic. The table also shows this data for conventional treatment.
These data allow us to calculate two types of summary measures. One is the cost-
effectiveness ratio. The other is known as the incremental cost-effectiveness ratio.2
Let us examine the data for the decision using the three alternatives for single-

vessel coronary artery disease (Table 30.2).
The cost-effectiveness ratios for the decision alternatives for single-vessel coro-

nary artery disease would be calculated as follows:

Cost-effectiveness ratio of TLC = $116,600÷ 17.44QALYs = $6,686/QALY

Cost-effectiveness ratio of Cardiomagic = $50,000÷ 17.12QALYs = $2,920/QALY

Cost-effectiveness ratios measure the average cost of an option divided by the
average health outcome if that option is used. The comparison being used in a
cost-effectiveness ratio is sometimes called the do-nothing option. The do-nothing
option implies that there is an option that has no cost and produces no benef t. Thus
it might be called a zero-cost zero-effectiveness option. Cost-effectiveness ra-
tios allow us to compare options for intervention for different diseases or con-
ditions because all options are compared to the same do-nothing or zero-cost
zero-effectiveness option.3
Incremental cost-effectiveness ratios, as opposed to cost-effectiveness ratios,

make what is often a more relevant comparison between two options. That is,
they ask about the additional cost to obtain additional effectiveness. Incremental

2 The special type of cost-effectiveness analysis called a cost-and-effectiveness study can also
use cost-effectiveness and incremental cost-effectiveness ratios. However, for these studies, the cost-
effectiveness ratio is cost per outcome, such as cost per life saved or cost per diagnosis made. The
incremental cost-effectiveness ratio then measures the additional cost required to achieve an additional
outcome such as a life saved or diagnosis made.

3 The costs are comparedwith the do-nothing or zero-cost zero-effectiveness optionwhich is assumed
to have zero cost and zero effectiveness even when that is not a realistic possibility. For instance, even
when there is no intervention, there may be costs such as custodial care.
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Table 30.2. Cost and QALYs of the TLC, Cardiomagic, and
conventional treatment

Cost QALYs

TLC $116,600 17.44
Cardiomagic $50,000 17.12
Conventional treatment $20,000 15

Cost-effectiveness Ratios
TLC, $116,600/17.44 = $6,686/QALY
Cardiomagic, $50,000/17.12 = $2,920/QALY
Conventional treatment, $20,000/15 = $1,333/QALY

cost-effectiveness ratios compare the option of interest with the conventional treat-
ment, that is, the current standard treatment. Thus, incremental cost-effectiveness
ratios are the preferred comparison when we are asking about the best option to
address one particular disease or condition.
Using the data from Table 30.2, let us look at the incremental cost-effectiveness

ratios comparing TLC to conventional treatment and Cardiomagic compared to
conventional treatment.

TLC vs. Conventional treatment

= $116,600− $20,000
17.44QALYs− 15QALYs

= $96,600
2.44QALYs

= $39,590/QALY

Cardiomagic vs. Conventional treatment

= $50,000− $20,000
17.12QALYs− 15QALYs

= $30,000
2.12QALYs

= $14,151/QALY

Notice that the incremental cost-effectiveness ratios aremuch greater than the cost-
effectiveness ratios. This is the usual situation and reflect the different questions
addressed by these two types of ratios. The cost-effectiveness ratio asks about the
average cost of obtaining an outcome such as a QALY. This cost is really being
compared with the do-nothing option that is assume to have zero costs and zero
effectiveness.
Incremental cost-effectiveness ratios, on the other hand, are usually comparing

a new intervention with the existing conventional intervention. To the extent that
the conventional intervention already has a reasonable degree of effectiveness, it
should not be surprising that there are substantial costs per additional unit of effec-
tiveness (i.e., per QALY). Thus, it is important to recognize that the incremental
cost-effectiveness ratio is asking about the additional cost per additional unit of
effectiveness measured as QALYs.4
Which ratio to use depends on the question being asked. Usually the ques-

tion has to do with a choice between alternative treatments. In this situation the
incremental cost-effectiveness ratio is the most informative. In fact, incremental
cost-effectiveness ratios are now expected as part of a cost-effectiveness analysis.
In general, comparing each new treatment to conventional treatment is the most
helpful means of comparing different interventions for the same condition.

4 Incremental cost-effectiveness ratios may at times also be used to compare two new treatments,
such as TLC versus Cardiomagic. When this form of comparison is made, however, we need to be
aware of what is being compared; otherwise, considerable confusion can result.
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Inference: Sensitivity Analysis
In Section I, “Studying a Study,” we showed how conf dence intervals can be
used to perform inference. A similar approach, called sensitivity analysis, is used
in decision-making investigations. Sensitivity analysis is a general term used to
describe a series ofmethods for isolating factors in a decision-making investigation
and determining the inf uence each factor has on the results of the investigation. The
analyses we have looked at so far use measures that are called base-case estimates.
Base-case estimates represent the best available data or the investigators’ best
guess at the true value for the factor. Sensitivity analyses are an effort to examine
the consequences if the base-case estimate does not turn out to be accurate. Thus,
investigators often try to def ne a realistic high value and a realistic low value that
ref ect the potential range of values. Together we can think of these as parallel to
the 95% conf dence interval. This interval has been referred to as the credibility
interval.
Sensitivity analyses are often classif ed as one-way or multiple-way sensitivity

analysis. In one-way sensitivity analysis, one factor at a time is examined to deter-
mine whether varying its level within the credibility interval alters the conclusions
of the investigation.
Let us look at how a one-way sensitivity analysis might be performed:5
Table 30.3 summarizes the results of a one-way sensitivity analysis that varys

measures of the utility of blindness for the comparison of TLC and Cardiomagic.
For this one-way sensitivity analysis, a high and a low estimate are used in addition
to the base-case estimate that was used in the original analysis. The high estimate
is designed to ref ect the upper end of what is felt to be a realistic range of possible
values, while the low estimate is designed to ref ect the lower end of this realistic
range.
When looking at the results of a one-way sensitivity analysis, we are interested

in determining whether the relationships between the decision options change
when the high or the low estimate is substituted for the base-case estimate. If using
the realistic high or realistic low estimate for a factor such as cost, probability,
or utility alters our preference for one option over another, then we say that the
recommendation is sensitive to a particular factor. For instance, in constructing
the decision tree for Cardiomagic, we used a base-case utility for blindness of 0.5.
Now look at what happens in Table 30.3 if we alter the utility of blindness from a
high of 0.8 to a low of 0.2. This change has very little impact on the expected utility,

Table 30.3. Cardiomagic vs. conventional therapy: one-way sensitivity
analysis for utility of blindness

Incremental Incremental Incremental cost-
cost (base-line) QALYs effectiveness ratio

Blindness utility 0.8 (high) $30,000 2.13 $14,085
Blindness utility 0.5 (base-case) $30,000 2.12 $14,151
Blindness utility 0.2 (low) $30,000 2.11 $14,218

5Other one-way sensitivity techniques are used for special purposes.One is threshold analysis, which
varies key factors to determine the level of these factors that would alter the conclusions obtained from
a particular decision-making investigation. Threshold analyses aim to determine the toss-up points or
thresholds at which a different recommendation would be made.
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Table 30.4. Cardiomagic vs. conventional therapy: one-way sensitivity
analysis for costs
Incremental Incremental Incremental cost-

cost QALYs (base-line) effectiveness ratio

Cardiomagic cost high $60,000 2.12 $28,302/QALY
Cardiomagic cost base-case $30,000 2.12 $14,151/QALY
Cardiomagic cost low $20,000 2.12 $9,434/QALY

and the recommendation to use Cardiomagic is not affected.When a decision is not
affected by changes in a factor within its realistic range, we say that the decision
is not sensitive to the factor.
Table 30.4 shows a one-way sensitivity analysis for Cardiomagic and cost.

Notice that the impact of the realistic high and realistic low cost estimates on the
incremental cost-effectiveness ratio is substantial. However, even the use of the
high estimate produces an incremental cost-effectiveness ratio of $28,302/QALY,
which is well below the $39,590/QALY incremental cost-effectiveness ratio for
TLC. Thus, despite the substantial change in cost per QALY, the conclusion that
Cardiomagic is more cost effective than TLC is not sensitive to the estimates of
cost.
It is important to look at key factors one at time and examine how their realistic

high and low values may inf uence a recommendation. However, these one-way
sensitivity analyses underestimate the uncertainty that exists, because in practice,
variation in more than one factor is at work at the same time. Thus, it is often
important for the investigators to perform a multiple-way sensitivity analysis,
altering two or more factors simultaneously.
An extreme but commonly used and easy to understand form of multiple-way

sensitivity analysis is called the best case/worst case analysis. Best case/worst
case analysis ref ects the investigators’ attempt to create scenarios in which two or
more key factors are favorable within a realistic range (best case) or unfavorable
within a realistic range (worst case). These scenarios are not designed to ref ect the
very worst or very best possible outcomes, but rather the extremes of the realistic
range.6
Table 30.5 shows how a best case/worst case analysis might look for the incre-

mental cost-effectiveness ratios of TLC compared with conventional treatment.
Two important factors, the probability of success and the cost, are initially set at
the most favorable realistic estimates and then both are set at the least favorable
realistic estimates.
When the probability of success and the cost for TLC are set at their most

favorable realistic level (best case), the incremental cost-effectiveness ratio is
$31,202/QALY. This best-case situation for TLC can then be compared to the
base-case estimate for Cardiomagic. This best-case situation for TLC is still far

6 The best case/worst case sensitivity analysis is often considered too demanding an approach because
it is unlikely that uncertainties in multiple key variables will act in the same direction. Other forms
of multiple-way sensitivity analyses are increasingly being used to calculate the conf dence intervals
or credibility intervals. A number of complicated mathematical approaches are used to obtain these
estimates. The best known is theMonte Carlo Simulation which aims to establish credibility intervals
by randomly selecting levels of each of the key variables using computer simulations. By performing
a large number of these simulations, a distribution of results can be obtained and used to calculate a
credibility interval.
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Table 30.5. Cost effectiveness of TLC vs. conventional treatment:
best case/worse case analysis

Incremental Incremental cost-
cost effectiveness ratio

TLC best case success = 98% $85,000 $31,202/QALY
TLC base case success = 96% $96,600 $40,000/QALY
TLC worst case success = 90% $120,000 –$500,000/QALY

greater than the $14,151/QALYbase-case estimate for Cardiomagic. This provides
convincing evidence that Cardiomagic is more cost effective than TLC, and this
conclusion is not sensitive to the cost of TLC or its effectiveness within the realistic
ranges.7
When the probability of success and the cost ofTLCare set at their least favorable

realistic level (worst case), the incremental cost-effectiveness ratio is −$500,000.
This negative number implies that, given these unfavorable assumptions, TLC is
now less cost effective than conventional treatment. If these unfavorable assump-
tions are true, then by spending $500,000 onTLC,we are reducing the effectiveness
by 1 QALY compared with using conventional treatment. Thus, our multiple-way
sensitivity analysis has raised some degree of uncertainty as to whether TLC is
actually a better treatment than conventional therapy.

Adjustment and Discounting
In general, adjustment is performed to take into account differences in alternatives
that can affect the results. In decision-making investigations the timingof events is a
very important factor that needs to be taken into account as part of the adjustment.
Timing of events is important for both decision analysis and cost-effectiveness
analysis.
To understand the impact of the timing of events, let us take another look at TLC.

Recall that using the base-case estimate, TLC has been found to be more effec-
tive in treating single-vessel coronary artery disease compared with conventional
treatment. It produces a substantially greater probability of favorable short-term
outcomes despite its slight increase in adverse outcomes.
Short-term net effectiveness in comparison with conventional treatment still

leaves open questions regarding TLC’s impact on favorable outcomes in the long
term, as well as possible long-term adverse outcomes. Assume that the following
information is now available:

More than a decade after the widespread use of TLC began, it was recognized that
late effects on the coronary artery made it more likely to close, producing a higher
incidence of late myocardial infarction.

In most decision-making situations, not all events occur at the same time. The
impacts of treatment may be immediate or delayed for many years. Even in the
absence of an intervention, a diseasemay not have an impact until many years later.

7 The comparison should generally be made between the credibility limit and the base-case estimate
of the other option in parallel to the way that conf dence intervals are used to determine statistical
signif cance. Overlap of credibility intervals, like overlap of conf dence intervals, often occurs and is
not the criteria used to determine either statistical signif cance or sensitivity to a factor.
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Note that people who experience the late effect on the coronary artery have still
received the advantage of the favorable short-term outcome. That is, on average,
they have lived longer.
The most common and accepted method for taking into account the conse-

quences of the timing of events is discounting.8 Discounting considers the fact
that the benef ts, harms, and costs that occur in the future are given less impor-
tance than those that occur immediately. The concept of discounting comes from
economics and is most easily understood in terms of costs. However, it is important
to recognize that discounting or taking into account the timing of events needs to
be conducted for costs, benef ts, and harms. An adverse outcome in the distant
future is not as bad as an adverse outcome that occurs in the immediate future.
Similarly, a favorable outcome in the distant future is not valued as highly as a fa-
vorable outcome that occurs in the immediate future. For instance, with Paresis A
vaccine, the favorable outcome of prevention of paralysis does not necessarily
occur immediately. A case of Paresis A prevented may occur a number of years in
the future.
The concept of discounting can be understood by recognizing that most people

prefer to receive $100 today rather than $100 a year from now. This is the situation
even if the payoff a year from now takes inf ation into account. That is, most people
prefer $100 now to receiving $100 plus a guaranteed adjustment for inf ation a year
from now. As economists see it, if you receive $100 today, you generally can invest
the money and, on average, receive a real rate of return. The real rate of return
means that 1 year fromnow, youwill havemore than $100 even after the adjustment
for inf ation.
Looked at the other way, most people would prefer to pay $100 a year from

now rather than today. A dollar paid in the future is not as costly as a dollar paid
today. In fact, when performing discounting, the investigator is really calculating
the amount of money that needs to be invested today to pay bills that are not due
until a future time. The amount of money that needs to be invested today is called
the discounted present value or present value. To calculate the discounted present
value, the investigator needs to choose what is called a discount rate. Choosing
a 3% annual discount rate implies that approximately $97 need to be put aside
and invested today to ensure the availability of an inf ation-adjusted $100 a year
from now. If the discount rate is 5%, only about $95 needs to be put aside today
to ensure the availability of an inf ation-adjusted $100 a year from now.9
What is the proper discount rate? Economists generally agree that costs should

be discounted to ref ect the real rate of return, which is the rate that can be expected
on average from investing money after taking into account the impact of inf ation.
There the agreement ceases because the real rate of return is neither constant nor

8 The two basic approaches to taking into account the effects of timing are discounting and incorpo-
rating the timing of events into utilities.Most experts consider discounting of costs, favorable outcomes,
and adverse outcomes to be the proper approach for decision analysis and also for cost-effectiveness
analysis. In decision analysis, however, timing of events may at times be incorporated into utilities.
Note that decision trees are structured to ref ect the sequence of events, but they do not tell much about
the time intervals between events. Long-term consequences are not necessarily distinguished from
short-term consequences in a decision tree. Unless explicit discounting occurs, outcomes are usually
dealt with as if they occur simultaneously. That is, a discount rate of 0% is used or the impact of timing
is incorporated into the measurement of utilities.

9 Note that if the discount rate is 0%, then $100 needs to be put aside to ensure the availability of
$100 a year from now. Thus, if discounting is not performed, the investigator is really assuming a
discount rate of 0%.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-30 Riegelman-1490G Riegelman-v9.cls August 25, 2004 0:5

268 Section IV. Considering Costs and Evaluating Effectiveness

predictable. However, the accepted range of discount rates is between 3% and 5%.
A 3% discount rate is recommended when performing a sensitivity analysis. A
second analysis to determine the consequences of using a 5% realistically high
and a 1% realistically low discount rate can also be performed.
The discount rate for favorable and adverse effects should generally be the same

as the discount rate used for costs. If different rates are used, the following situation
can occur:

In discounting costs, favorable outcomes, and adverse outcomes for Paresis A vac-
cine, costs were discounted at 5% but favorable outcomes were discounted at 3%.
The authors concluded that since interventions that could be implemented in the
future were much less expensive, it is desirable to wait to implement a Paresis A
vaccine campaign.

Discounting costs at a greater discount rate than favorable outcomes always en-
courages delay. If costs are discounted at a greater rate than favorable outcomes,
then every year, it looks desirable to wait until the next year because in future years
it will cost less to produce a favorable outcome. Thus, regardless of the discount
rate that is used, it is important to discount cost, favorable outcomes, and adverse
outcomes at the same discount rate. It is not enough just to discount costs. It is
generally accepted that favorable and adverse outcomes also need to be discounted,
and at the same discount rate as costs.
We have now examined the results that are produced through a decision-making

investigation. Let us now turn our attention to the interpretation component of the
M.A.A.R.I.E. framework.
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31 Interpretation

Cost-Effectiveness Ratios
As with other types of investigations, interpretation is designed to evaluate the
implications of the results for the types of individuals who are included in the
investigation. With decision-making investigations, no individual or group is actu-
ally included in the investigations. Rather, the investigator usually creates a model
designed to simulate the situation facing particular types of individuals. Thus, the
interpretation of a decision-making investigation should address the investigation’s
implications for the types of individuals for which the investigation was designed.
Often, the most important and confusing interpretation in a decision-making in-

vestigation is the meaning of the cost-effectiveness ratios. Let us take a close look
at how we interpret these ratios for the types of studies on single-vessel coronary
artery disease and Paresis A vaccine that we have already examined. Since we are
comparing interventions directed against two different conditions, we need to use
the cost-effectiveness ratios when making comparisons. That is, we need to com-
pare each of our options to the do-nothing or the zero cost-zero effectiveness option.
As we have seen, the cost-effective ratios of the three options for treating single-

vessel coronary artery disease are obtained as follows:

TLC: $116, 600÷ 17.44QALYs
Cardiomagic: $50, 000÷ 17.12QALYs

Conventional treatment: $20, 000÷ 15QALYs

In Chapter 27 we found that Paresis A vaccine reduced the cost by $2,000 per
QALY compared to the do-nothing option—the only available alternative. Thus

Paresis A vaccine: −$2,000÷ 1QALY

To compare the Paresis A cost-effectiveness ratio to the TLC cost-effectiveness
ratio, we need to calculate the cost of 17.44 QALYs as follows:

Paresis A vaccine: −$34,888 to produce 17.44QALYs

To examine the implications of these cost-effectiveness ratios, their components
can be plotted on a cost-QALYs graph. Figure 31.1 is a cost-QALYs graph. Notice
that it contains four areas, or quadrants, labeled A, B, C, and D. The zero point for
the graph is the do-nothing or zero cost-zero effectiveness option with which all
other options are compared. Figure 31.2 plots the cost-effectiveness ratios for the
options to treat single vessel coronary artery disease and to prevent Paresis A.
Use of a cost-QALYs graph allows visual comparison between options for the

same condition and/or different conditions using cost-effectiveness ratios. Each of
the four quadrants has a different implication.QuadrantD,where ParesisA vaccine
is located, is the ideal quadrant. Here, there is increased effectiveness as measured

269
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Do Nothing
Zero cost/Zero effectiveness

Figure 31.1. A cost–QALYs
graph.

by QALYs and reduced cost as measured in dollars. The cost-effectiveness
ratio in quadrant D is thus negative. When an option is located in quadrant D,
it is cost-saving/effectiveness-increasing. This is a special situation where we can
unequivocally say that the results are cost-effective.
At times, this situation is called cost savings. Use of this term results in con-

siderable confusion because, as we shall see, cost savings can also result when
the number of QALYs are reduced. This is the situation when the results are in
quadrant C, in which there is a cost reduction accompanied by an effectiveness
reduction as measured by reduced QALYs. Quadrant C is more accurately labeled
cost-reducing/effectiveness-reducing.
When interpreting decision options that fall into quadrant C, it is important to

recognize that they may be labeled cost-effective if the decision-maker concludes
that a relatively small reduction in QALYs is worth the substantial reduction in
cost. At times, it may be reasonable to substantially reduce costs even though ef-
fectiveness is also reduced. However, calling this approach cost-effective obscures
what is happening. It is better to label this cost-reducing/effectiveness-reducing and

Costs

$60,000

$40,000

$20,000

$100,000

$80,000

−$40,000

$120,000

Zero-cost−zero-effectiveness

QALYs

Cardiomagic

Conventional

Paresis A vaccine

17.44

TLC

Figure 31.2. Cost-QALYs graph depicting cost effectiveness ratios. This graphs allows
comparison between options for the same condition or for different conditions. Note that
cost-effectiveness rather than incremental cost-effectiveness ratio are used.
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then to separately determine whether the reduction in cost justif es the reduction
in effectiveness.
Quadrant A is also a clear-cut result. In this quadrant, the costs are increased and

the effectiveness is decreased. Therefore, neither costs nor effectiveness support a
decision option that falls in quadrant A, and such options should be labeled as not
cost-effective.
Most alternatives being considered by QALY cost-effectiveness studies end up

in quadrant B. These decision alternatives increase both cost and effectiveness.
When an alternative is located in quadrant B, it is very important to determine the
magnitude of the cost-effectiveness ratio and to be sure their meaning is clear.
When treatments are located in quadrant B, where both costs and effectiveness

are increased, we are faced with the diff cult questions of where to draw the line.
When determining where to draw the line, it is important that we compare the
options to conventional treatment, not to the do-nothing option. Thus incremental
cost-effectiveness ratios rather than cost-effective ratios should be used.
Let us review the data we have obtained on incremental cost-effectiveness ratios

for TLC and Cardiomagic:

The incremental cost-effectiveness ratios for TLC compared with conventional treat-
ment is approximately $40,000 per QALY and the incremental cost-effectiveness
ratio for Cardiomagic compared with conventional treatment is approximately
$14,000 per QALY. Should either or both of these options be considered cost-
effective?

The answer depends on how cost-effectiveness is def ned. Considerable contro-
versy exists regarding themethods for interpreting these results and decidingwhich
treatments should be labeled cost-effective. A variety of methods have been used
to try to categorize the results of incremental cost-effectiveness ratios to be able to
establish a level which is considered cost-effective. This has been very controver-
sial because determining what dollar f gure to use to draw a line requires placing
a monetary value on a QALY.1
Today, there is a general consensus that the question really is what can a society

afford, not what is a QALY worth. Often the per capita gross domestic product
(GDP) is used as an approximation ofwhat a society can afford to pay for aQALY.2

1One method used to place a monetary value on a QALY is the human capital approach, which
attempts to convert a QALY into a dollar value based on recipient’s ability to contribute economically.
This approach has been criticized because it only includes activities that result in f nancial payments
and thus undervalues those who work without monetary payments, the retired, and low-wage groups.
Efforts have been made to use what economists call a willingness-to-pay approach. These approaches
are attractive to economists but have been very diff cult to implement, and special situations such as
legal cases may distort the data. Two other approaches with less theoretical foundations are also used.
Past practice with drawing lines and refusing to pay may be used as evidence of where a society is
willing to draw the line. A simple approach that takes into account the ability to pay is to use the
per capita income, or the per capita gross domestic product of the nation in which the investigation is
conducted or to which the results will be applied.

2 Acceptable and unacceptable ranges depend heavily on a society’s ability to pay. The per capita
gross domestic product is one method for helping to def ne this range. The $14,000 f gure is clearly
within the per capita income for North America and most of Europe and Japan. However, the $40,000/
QALY may not be considered cost-effective even in many developed countries. In addition, neither of
these options would be considered cost-effective in a developing country with a per capita income of
$3,000. However, in nations with low per capita incomes, the costs may also be substantially lower.
When a def nitive value is set on a QALY, the investigation is really a cost-benef t analysis because
equating a QALYwith a set monetary f gure allows all outcomes to be converted to dollars. Remember
that the essential difference between cost-effectiveness analysis and cost-benef t analysis is that in
cost-benef t analysis, outcomes and costs are both measured in monetary units.
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In the United States the following general approach is often used.

1. Incremental cost-effectiveness ratios of less than $50,000/QALY are generally
considered cost-effective.

2. Incremental cost-effectiveness ratios of $50,000 to $100,000 are considered
borderline cost-effective.

3. Incremental cost-effectiveness ratios of $100,000 or greater are generally con-
sidered not cost-effective.

This approach makes it clear that the approximately $14,000 incremental cost
per QALY for Cardiomagic is considered cost-effective in the United States. The
incremental cost of approximately $40,000 per QALY for TLC would also be
considered cost-effective in the United States as long as conventional therapy is
used as the comparison option.
However, if Cardiomagic becomes accepted as standard or conventional treat-

ment the use of TLC looks very different.
Let us calculate the incremental cost-effectiveness ratio comparing TLC with

Cardiomagic:

TLC vs. Cardiomagic = ($116,600− $50,000)/(17.44− 17.12 QALYs)
= $66,600/0.32QALYs ≈ $208,000/QALY

This large incremental cost-effectiveness ratio tells us that to produce an ad-
ditional QALY using TLC instead of Cardiomagic costs over $200,000 per
QALY.
What are the implications when an intervention falls clearly outside the range

of cost-effectiveness from the social perspective? First, it is important to note that
when an intervention is clearly outside the cost-effectiveness range, it may still be
more effective than the alternatives. In fact, TLC has been found to be slightlymore
effective than Cardiomagic, producing 17.44 QALYs per use compared with 17.12
QALYs for Cardiomagic. These additional QALYs, however, are very expensive
to achieve.3
It is important to recognize that an intervention that has been declared not cost-

effective from a social perspective may look quite different from an individual
perspective. An individual who has the personal resources or adequate insurance
coverage may well favor the use of TLC rather than Cardiomagic despite the
extremely high cost per extra QALY.

Subgroups: Distributional Effects
We have already seen that cost-effectiveness analysis may be viewed as being
biased in favor of the young over the old. In addition, we have seen that a bias exists
in cost-effectiveness analysis towards the healthy as opposed to the permanently
and severely disabled. In particular situations, there may be additional tendencies
to favor one group over another. To understand these impacts, it is important to

3 The fact that a country cannot afford to generally provide everyone in need with an expensive
service does not preclude a society from paying for its use under specif c circumstances or for unique
group(s) of patients. Ideally these are justif ed as being subgroups who obtain substantial benef t. A
number of political, economic, and even research rationales may be made for heavily subsidizing a
limited number of expensive services.
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examine the results of a decision-making investigation to determine what types of
individuals receive the favorable outcomes and what types experience the adverse
outcomes. In addition, it is important to focus on the types of individuals who bear
the f nancial costs. This is parallel to looking at subgroups.
The process of interpreting the results of a decision-making investigation is

not limited to interpreting the summary measures such as incremental cost-
effectiveness ratios. Summary measures, by def nition, are averages. They are
designed to summarize the average results. Average results do not tell the whole
story for two fundamental reasons. First, the average does not in and of itself say
much about what types of individuals experience the favorable outcomes and what
types experience the adverse outcomes or must pay the additional costs. Examin-
ing the types of individuals who experience the favorable and adverse outcomes
in decision-making investigations is known as examining the distributional effects
of the intervention.
To illustrate the distributional effects, let us return to the Paresis A example and

consider an aspect of the vaccine that we have not focused on previously. That is,
which type of individual experienced the favorable and the adverse outcomes of
the vaccine.
The favorable outcome of the Paresis A vaccine is the prevention of paralysis.

The adverse outcome is the rare occurrence of a Paresis A like illness among
children of parents who have voluntarily had their children vaccinated.
It is unfortunate whenever anyone experiences the adverse outcomes of an in-

tervention. However, when children (or their parents) voluntarily agree to accept
the treatment after they are made aware of known adverse effects, they are ac-
cepting the adverse outcomes as part of the treatment. However, that is not the
situation if the treatment is not accepted voluntarily. Imagine that the following
new information is available on the impact of the Paresis A vaccine:

It has been found that the virus contained in the vaccine can spread to other children.
Children exposed to their vaccinated peers are often protected, while a few chil-
dren unknowingly exposed to vaccinated children may experience the Paresis A-like
illness.

Thus, the impact of the adverse effects of the vaccine may fall on persons who
never voluntarily agreed to receive the vaccine. Some may argue that submitting
individuals to harm without their (or their parents’) agreement is not an acceptable
approach even if it results, on average, in improved outcomes at reduced costs.
Regardless of how you view this controversy, it is important to recognize the
distributional effects.4

Meaning from Other Perspectives
As we have seen, the initial analysis in a decision-making investigation should be
performed from the social perspective. That is, we need to consider the harms,

4Distributional effects often raise issues of social justice related to the impact on groups in society
who have a lower socioeconomic status or are otherwise disadvantaged. Disproportionate negative
impacts on groups who are already at a social disadvantage are often seen as violating principles of
social justice.
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benef ts, and costs regardless of who experiences the benef ts or harms and regard-
less of who pays for the costs.
However, in addition to conducting a decision-making investigation from a

social perspective, it may also be presented from the perspective of particular
users of the investigation. These users may be insurance companies who pay the
bills over the short run; government insurance systems that pay the bills over the
longer run; or hospitals, health systems, or groups of professionals that receive
payment for providing services.
When an analysis is conducted from a user perspective, it may not include all of

the benef ts, harms, and costs that should be considered from the social perspective.
This can lead to potentially conf icting interpretations, as illustrated in the next
example:

A decision-making investigation conducted from the social perspective found
that TLC cost approximately $40,000/QALY and Cardiomagic cost approximately
$14,000/QALY. The data was then examined from the perspective of a hospital sys-
tem and an insurance company. The hospital system received payment for the TLC
procedure and favored use of TLC. The insurance company was not responsible
for the cost of medications and its f ndings strongly favored use of the medication
Cardiomagic.

In addition to the focus on reimbursement, providers of care are also concernedwith
their costs of providing services.Costs from the social perspective are very different
from costs from a provider’s perspective, as illustrated in the next example:

A reviewer of TLC, Cardiomagic, and the Paresis A vaccine literature looked at the
relative costs and effectiveness from the social perspective. He concluded that for
the same expenditure of funds, more QALYs could be obtained by providing all
children with Paresis A vaccine and reducing the use of TLC. A hospital administra-
tor whose hospital performed large number of TLC procedures argued in response
that from the hospital’s perspective, if TLC procedures were reduced in half, it
would only serve to substantially increase the cost of performing the remaining TLC
procedures.

The provider or institutional perspective is ref ected in the approach of the hospital
administrator. From his perspective, costs are seen quite differently than from the
social perspective. For instance, institutions have f xed costs, such as equipment,
that remain regardless of how many TLC procedures they perform. The social and
institutional perspectives may both be true as seen from different points of view.5
These examples indicate the limitations of cost-effectiveness analysis when

conducted from specif c user perspectives. Decision-making investigations are de-
signed for the social perspective and should be interpreted primarily from the
social perspective. That is, cost-effectiveness analysis is most useful for set-
ting policies that apply to large numbers of institutions or a large population.
Most users are interested primarily in their own reimbursements or costs. Thus,

5 In addition, institutions may have personnel costs that can’t be reduced for lower volume because
they need the equipment to be staffed regardless of volumeof services. In addition, change itself involves
economic (and psychological) costs. Institutions may have special concerns regarding the effect that
the change will have on its reputation, cash f ow, or other local effects. The social perspective views all
costs and outcomes as averages for the future and does not take any of these factors into account. Thus,
any one institution looking at a cost-effectiveness study will not necessarily agree that the conclusions
drawn from the social perspective apply to them.
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cost-effectiveness analysis may be presented from user perspectives, but the results
should be interpreted with great caution.6
In this chapter, we have examined how the results of a decision-making inves-

tigation can be applied to the type of individual included in the decision-making
model. Finally, as with other types of investigations, we turn our attention to efforts
to extrapolate the data.

6Note that the government perspective and the social perspective are not the same. If a government
provides insurance coverage, it may have a payer perspective. When comprehensive lifetime benef ts
are provided, including Social Security, that provide living expenses for the elderly, the tendency is even
to go beyond the social perspective to try to include the additional living expenses for the additional
years of life. Inclusion of these costs has been controversial, but they are not generally included from
the social perspective. Payer perspectives may also be inf uenced by the special characteristics of the
subgroup of individuals for whom they are responsible. Insurance companies that cover generally
healthy individuals may look at recommendations quite differently than an insurance plan that covers
the general population or individuals who have advanced disease.
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32 Extrapolation

In decision-making investigations, as in other types of studies, we need to consider
the impact of extrapolation to similar populations, beyond the data, and to other
populations. We firs need to consider the impact of extrapolating the results to all
individuals who are similar to those included in the investigation.

To Similar Populations
Decision-making investigation may form the basis for the development of recom-
mendations for practice. The development and use of practice guidelines is the
focus of the next section, “A Guide to the Guidelines.” Before decision-making
investigations can serve as the basis for practice recommendations or guidelines,
we need to examine their implications for those who are similar to the populations
in the investigations.
Let us assume that a decision-making investigation has indicated that additional

QALYs can be obtained at a cost that is considered cost-effective. If we want to
extrapolate these results to a similar population in a practice setting, we need to
consider the impact that will occur in practice.
First, it is important to address the meaning of effectiveness. The QALYs gained

are not gained equally by all individuals who undergo the treatment. Some will
experience a major positive outcome, some will experience no change, and some
will experience only an adverse effect.
An appreciation of the impact of QALYs gained helps to avoid the following

common but incorrect extrapolation of the results of a cost-effectiveness study:

A reviewer of the cost-effectiveness literature noted that the effectiveness of Car-
diomagic was 17.12 QALYs per use compared with 15 QALYs per use for con-
ventional therapy. The reviewer concluded that this was a quite small difference,
especially because the impact occurs by adding years at the end of life.

The additional 2.1 QALYs gained per use are actually quite impressive. Few in-
terventions provide this large an increase in QALYs. Cardiomagic is being used
to treat single-vessel coronary artery disease, a condition that can be immediately
fatal in middle-aged patients. For those who experience the benefit the impact is
immediate and substantial. That is, when it is effective, it can be expected to pro-
long the life of younger individuals, as well as extend the longevity of the elderly.
Thus QALYs gained should not be viewed as added on only at the end of life.
In addition, to understand the impact of a decision-making study on a target

population similar to the one included in the investigation, it is also important to
appreciate the overall or aggregate effects. When extrapolating to a target popula-
tion that has similar characteristics to the population used to construct the decision
tree, the investigators are interested in the aggregate effect. The aggregate effect
will often depend on the size of the target population.

276



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-32 Riegelman-1490G Riegelman-v9.cls August 20, 2004 18:15

Ch. 32. Extrapolation 277

In decision analysis using QALYs, for instance, aggregate effectiveness may
be reported as the total number of QALYs that would result if the intervention
was applied to all individuals in a particular population who are similar to those
included in the investigation.
Let us see the potential aggregate population impact by comparing the results

of TLC and Paresis A vaccine in the next example:
A reviewer of the Cardiomagic and Paresis A vaccine cost-effectiveness literature
noted that Cardiomagic provides on average 2.5 additional QALYs per use, while
Paresis A vaccine provides far less than 1 QALY per use. Nevertheless, he noted that
in the United States, using Cardiomagic for all patients with single-vessel coronary
artery diseasewill provide 1.5millionQALYscomparedwith conventional treatment.
Because of the large number of children who are susceptible to Paresis A and the
large number of QALYs gained per case prevented, using the Paresis A vaccine for
all children will provide 4 million QALYs. Therefore, he concluded that Paresis A
vaccine is more effective than Cardiomagic.

Care must be taken when using measures of aggregate effectiveness to compare
different types of interventions such as Paresis A vaccine and treatment of single-
vessel coronary artery disease, that are applied to two very different target popu-
lations. In parallel to attributable risk percentage, cost-effectiveness ratios address
the impact on a group with the condition. Aggregate population impact addresses
a different question than the cost-effectiveness ratios. Aggregate population im-
pact like population attributable risk, asks questions that depend on the particular
composition and size of a target population. Aggregate population impact does not
compare one procedure or approach with another. Rather, it compares the impact
of the procedure plus the characteristics and size of the target population. This
approach may be useful at times for making population-based decisions, but it
requires additional data and additional assumptions that are not part of the results
of cost-effectiveness analysis. Thus, as with other types of investigations, we need
to distinguish between the impacts at the individual, at-risk group, and population
levels.

Beyond the Data
Extrapolation often requires that we extend the results to situations for which we
do not have data. We have called this extrapolation beyond the data. An investi-
gator may conduct this form of extrapolation using linear extrapolation. That is,
the investigator may assume that more effort to implement an intervention will
produce additional QALYs in direct proportion to the increased effort. This linear
assumption may not hold true, especially when extending beyond the range of the
data.
Cost, for instance, may not increase in a linear fashion as volume increases.

The costs of increasing the scale or volume of services provided are referred to
as marginal costs. Let us see what we mean by marginal costs in the following
example:1

1 The term marginal costs is sometimes equated with incremental costs. The two terms are not
consistently used in the literature. However, it is important to distinguish between two very different
concepts. Incremental cost addresses the question of the additional costs that occur when comparing
one option to another under the conditions being modeled. Marginal cost relates to the changes in
cost that occur when the conditions of practice are used rather than the conditions modeled in the
investigation. Specif cally, the conditions of practice often include a larger scale of operation that the
one assumed in the decision-making investigation.
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As Paresis A vaccine programs were implemented, it was found that the cost per
vaccine delivered fell initially as the program grew and could more eff ciently use
personnel and publicize the program using mass media. However, as the program
continued to expand, costs per vaccine delivered began to rise again as extra efforts
were needed to identify and to obtain access to themost diff cult-to-reach individuals.

Economists refer to economies and diseconomies of scale. The initial reduced cost
per vaccine delivered is an example of an economy of scale, whereas the eventual
increase in cost per vaccine delivered is an example of a diseconomy of scale.

To Other Populations
Extrapolation to populationswith different characteristics can lead to verymislead-
ing results. Let us f rst look at the potential for problems when we extrapolate the
results of a decision-making investigation to a new population, nation, or culture.

Paresis A vaccine was introduced into the rural areas of a developing country where
a dependable source of electricity for refrigerating the vaccine could not always be
assured. In this setting, the results of the intervention were very different in that the
cost was considerably reduced, but so was the effectiveness. Once the problems with
handling the vaccine were addressed, the intervention was found to cost only $1,500
per QALY. Unfortunately, this was consideredmore than the developing nation could
afford to pay.

This example illustrates many of the problems with extrapolating from one popu-
lation to another. The costs of labor and of delivering services may be much less in
a developing country. However, if special training or equipment is needed for ef-
fectiveness, then effectiveness may also be reduced. Even if the cost-effectiveness
ratios are substantially lower in a developing nation, the nation may not be able to
afford the treatment. Thus, it is a very diff cult task to extrapolate cost-effectiveness
data and results from one society to another.
Extrapolation to groups with different characteristics can also produce mislead-

ing conclusions. For instance, imagine the following extrapolation of the TLC and
Cardiomagic results:

The successful use of Cardiomagic for single-vessel coronary artery disease was
so convincing that the results were widely extrapolated to recommend use of Car-
diomagic for patients with severe coronary artery disease in two or more vessels.
The favorable outcomes were not as great and the adverse outcomes were greatly
increased when Cardiomagic was applied to this new group of individuals.

It is not surprising that the outcomes will be different when an intervention is
applied to groups with more severe or different types of disease. Therefore, just
as in other types of investigations, it is very important in decision-making inves-
tigations to carefully examine the types of individuals who are included in the
options being compared. Extrapolation to other groups carries assumptions that
may not hold true among the new group of individuals to whom the results are
extrapolated.
Finally, it is important to remember that cost-effectiveness investigations, like

all studies, are conducted assuming a set of current alternatives and data. The
alternatives may change rapidly, and unfortunately, cost-effectiveness analyses
may sometimes be considered out-of-date by the time they are completed.
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Despite the potential problems and diff culties in conducting decision-making
investigations, it is important to recognize the contributions that these types of in-
vestigations make to clinical care and public health. The requirements to measure
and express results quantitatively can improve communication. Decision-making
investigations require the investigator to apply numbers to vague terms such as
“rare” and “common,” and “likely” and “unlikely.” The need to explicitly de-
f ne the decision-making process means that consequences must be def ned and
uncertainties recognized. Uncertainty always exists in decision-making. Formal
decision-making investigations help us to measure and to determine the impact of
uncertainty.
The decision-making literature is an important part of the movement toward

evidence-based decision-making in health care and public health.Decision-making
investigations require the investigator to spell out in great detail the available
evidence and the assumptions that have been made in f lling the holes where
evidence is not available. In decision-making investigations, the investigator must
be able to respond to demands to show the evidence and justify the assumptions.
The forms of decision-making investigations that incorporate costs have added

an entire new dimension to the health research literature. Previously, clinical and
public health decision-making relied almost exclusively on issues of benef ts and
harm, i.e., favorable and adverse outcomes. Technological advances in recent years
have opened up so many therapeutic and preventive alternatives that no society
can afford to do everything. Cost-effectiveness studies, despite their many limita-
tions, often present the best available method for systematically choosing between
the available options. For this reason, cost-effectiveness studies are now widely
published in the health research literature.
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33 Questions to Ask and
Flaw-Catching Exercises

Questions to Ask: Considering Costs
and Evaluating Effectiveness

The following Questions to Ask can serve as a checklist when reading a decision-
making investigation. To see how these questions can be applied see the Studying
a Study Online Web site at www.StudyingaStudy.com.

Method: Investigation’s purpose and target population

1. Study question and study type: What is the study question and the type of
decision-making investigation?

2. Target population: What is the target population to which the investigator
wishes to apply the results?

3. Perspective: From what perspective is the investigation being conducted?

Assignment: Options and outcomes being investigated

1. Options:What options are being evaluated?
2. Relevant options and realistic outcomes: How are the options modeled? Are

the options relevant to the study questions and do they include realistic out-
comes?

3. Timing of events: Is the timing of events properly incorporated into the decision
process?

Assessment:Measurement of outcomes

1. Probabilities and utilities:How are the probabilities and the utilities obtained,
and are they accurate and precise?

2. Life expectancy: Are life expectancies used and if so, were they appropriate
to the study question?

3. Costs: How are the costs obtained, and do they accurately and precisely reflec
the social perspective?

Results: Comparison of outcomes

1. Estimation: Is the summary measurement appropriately expressed, e.g.,
QALYs, incremental cost-effectiveness, etc?

2. Inference: Is an appropriate sensitivity analysis conducted?
3. Adjustment: Is an appropriate method of discounting for present value used?

Interpretation: Conclusions for the target population

1. Cost-effectiveness ratios: Are the estimates such as cost-effectiveness ratios
correctly interpreted?

2. Subgroups: Are the distributional effects on subgroups examined?

280

http://www.StudyingaStudy.com
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3. Meaning from other perspectives: What are the implications from perspec-
tives other than the social perspective?

Extrapolation: Conclusions for other populations

1. To similar populations: Is the meaning for the average individual as well as
the aggregate population impact addressed?

2. Beyond the data: If extrapolation beyond the data was conducted, is only a
linear extrapolation used and are marginal effects of the scale of operation
considered?

3. To other populations: If extrapolation to other populations is conducted, are
differences from the target population of the investigation considered?

Flaw-Catching Exercises
The following Flaw-Catching Exercises are designed to give you practice using
theM.A.A.R.I.E. framework for decision-making investigations. Read the exercise
then take a look at critique that follows. See if you can answer each question before
reading the answer that follows.

Flaw-Catching Exercise No. 1: Pulverizer—Evaluating Its
Costs and Effectiveness as a Treatment for Kidney Stones

Anevaluationof the costs and effectiveness of Pulverizer, a newly approvedmethod
for treatment of calcium-containing kidney stones for otherwise healthy individ-
uals, was investigated. Pulverizer has been shown to have a high probability of
breaking apart f rst kidney stones of 2 cm or less and allowing them to pass down
the ureter. Immediate side effects are minimal, but there is a concern that the use
of Pulverizer increases the probability of recurrence of kidney stones over the
following decade.
An investigator decided to compare the use of Pulverizer with the conventional

method in a decision-making investigation. The standard or conventional method
consists of treating symptoms and observing the natural course of kidney stones
and intervening only if the stone does not pass. Surgery, which includes an average
of 4 days in the hospital, is performed only if the stones do not pass after a week.
In the decision option to use Pulverizer, this treatment was assumed to have

a 95% chance of success and a 5% chance of failure. If Pulverizer fails, it is
immediately followed by surgery, which is assumed to have a 99.5% success
rate and a 0.5% chance of death. Pulverizer is assumed to be used at the time
of diagnosis, thus avoiding hospitalization and returning the patient to work an
average of a week earlier.
The alternative to use, standard treatment, is assumed to require an average of

4 days in the hospital, during which 80% of the stones pass. Surgery is performed
on individuals whose stones do not pass in a week or who develop complications.
Surgery is assumed to have a 99.5% success rate but to result in death in 0.5% of
the patients. Under the above assumptions and assuming that successful treatment
with either option returns the patients to full health, the two treatments were found
to be equally effective.
The costs considered for Pulverizer are the cost of treatment, surgery, and sub-

sequent hospitalization. The costs considered for conventional treatment are the
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Figure 33.1. Decision tree used in Pulverizer investigation.

costs of hospitalization, surgery, and subsequent hospitalization.Costs are included
regardless of who pays the bills.
The conventional treatment was found to cost $15,000 per successful outcome,

whereas Pulverizerwas found to cost $10,000per successful outcome.A sensitivity
analysis taking into account the length of hospitalization required for the conven-
tional treatment found that if hospitalization could be shortened from an average of
4 days to an average of 2 days, the cost per successful outcome would be identical.
The investigators concluded that since both methods cost less than $50,000 per

use, they were both cost-effective based on the current criteria in the United States.
However, Pulverizer was more cost-effective. They concluded that Pulverizer was
the best treatment available and should be tried on all stones at the time of diagnosis.
Figure 33.1 displays the decision tree used in this investigation. Figure 33.2

includes the probabilities and utilities, and calculates the expected utilities.

Figure 33.2. Decision tree for Pulverizer investigation including probabilities, utilities, and
expected utilities.
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Critique: Exercise No. 1
METHOD
� What type of decision-making investigation is being conducted?

The results of this investigation are measured in costs per successful outcome.
This approach makes the assumption that the two treatments are equally effec-
tive. When the results are expressed as cost per successful outcome, it is called
a cost-and-effectiveness study, as opposed to a cost-consequence study or a cost-
utility study. In a cost-consequence study, the outcomes aremerely described rather
than combined. A cost-utility investigation expresses the outcomes incorporating
utilities and often incorporating life-expectancy measures, and therefore express-
ing the results as QALYs.
� What is the study question and what target population does it address?

The investigators were trying to evaluate the relative cost and effectiveness of
Pulverizer versus conventional therapy for treatment of initial, calcium-containing
kidney stones of 2 cm or less in otherwise healthy individuals. Pulverizer is used
at the time of diagnosis. Recognition of the study question directs the investigator
to the type of population that should be used to collect the necessary data for the
decision-making investigation. In this case, the data should ref ect effectiveness
and costs for healthy individuals with initial kidney stones of moderate size and
should not consider stones not containing calcium.
� From what perspective is the investigation being conducted?

The investigators do not explicitly state the perspective being used in this investi-
gation. However, the fact that costs are calculated regardless of who pays the bills
implies that the investigation is appropriately conducted from the social perspec-
tive.

ASSIGNMENT
� What options are being considered? Are any options for using Pulverizer
omitted?

The decision options chosen include only use of Pulverizer or the conventional
combination of treatment of symptom relief and surgery for stones that do not
pass. Other options are not considered. For instance, there is no mention of the
alternative to use Pulverizer as a substitute for surgery after stones fail to pass.
� Is the time horizon appropriate?

The investigation only considers effectiveness and costs during the duration of
the initial stone episode. The investigators do not consider the possibility of recur-
rences. Analysis of recurrence could be handled in a number of ways, including use
of a Markov process that allows the investigators to vary the probability, timing,
and cost of recurrences.

ASSESSMENT
� What utilities are being used in calculating effectiveness?
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The investigators explicitly state the utilities they are using, with successful out-
come equal to 1 and death equal to 0. As is often the situation, the investigators
do not distinguish utilities for different routes to the favorable or the unfavorable
outcomes. Thus, decision-making investigators are accused of considering only
outcomes not the process of getting there.
� Is the assessment of costs complete?

The measurement of costs is incomplete. To include all the appropriate costs from
the social perspective requires consideration of nonmedical expenses, such as the
cost of accessing care, aswell as the future costs, such as treatment of recurrences.

RESULTS
� What is the quality-adjusted number needed to treat for this investigation?

The overall expected utility for Pulverizer is 0.99975 compared with 0.99900 for
the conventional treatment, as shown in Fig. 33.2. The quality-adjusted number
needed to treat is equal to:

1/(0.99975− 0.99900) = 1/0.00075 = 1,333

This quality-adjusted number needed to treat tells us that, on average, over 1,000
individuals need to be treated using Pulverizer rather than conventional therapy to
produce one additional favorable outcome—that is, full recovery rather than death.
This represents a large number needed to treat, but it indicates that the investigators
should not have assumed the two treatments were equally effective.
� What type of sensitivity analysis is being conducted?

The investigators conducted a sensitivity analysis for cost by varying the number
of days of hospitalization needed for the conventional treatment. This sensitivity
analysis varied one factor at a time and thus is an example of a one-way sensitivity
analysis. The investigators used this analysis to conclude that if the hospitalization
could be shortened to 2 days, the cost per successful outcome would be identical.
When an investigator uses a sensitivity analysis to determine the toss-up point,
the sensitivity analysis is called a threshold analysis. The fact that decreasing
hospital days to less than 2 could reduce the costs of conventional treatment below
that of Pulverizer implies that the recommendations are sensitive to the length of
hospitalization.
� Is discounting performed to take into account the timing of events?

The investigators act as if all the outcomes of interest occur in the immediate future.
The investigators do not consider future events such as recurrence. Here, as with
many decision-making investigations, it is important to consider the occurrence
and timing of future events. If recurrences were included in the decision-making
investigation, it would be important to discount the costs as well as the harms and
benef ts of the treatment of the recurrence.

INTERPRETATION
� Does this investigation establish that Pulverizer is cost-effective for treatment of
f rst kidney stones of 2 cm or less in otherwise healthy individuals?
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Whenever the results of a one-way sensitivity analysis suggest that the recom-
mended option is sensitive to a modest change in a variable, such as length of
hospitalization, the investigators need to be especially careful in interpreting the
results. In addition, the results of this investigation are expressed as cost per suc-
cessful treatment. By indicating that the costs per case were less than $50,000,
the investigators are interpreting the results the same way they would if the re-
sults were expressed as incremental cost per QALY. Incremental cost per QALY
would have required the results to explicitly incorporate life expectancies as well
as utilities and compare Pulverizer with conventional treatment.

EXTRAPOLATION
� What assumptions need to be made to conclude that Pulverizer should be tried
on all stones?

This extrapolation would require the investigators to extrapolate from otherwise
healthy individuals with kidney stones of 2 cm or less to all patients with kidney
stones. This extrapolation assumes that Pulverizer has the same probability of
favorable outcomes, probability of adverse outcomes, and costs when applied to
patients with larger stones, noncalcium stones, and to those additional conditions
that may complicate treatment. Since Pulverizer is being investigated for patients
with stones of 2 cm or less, it may already be known that Pulverizer’s effect on
larger stones is different than its effect on these smaller stones.

Flaw-Catching Exercise No. 2: GREAT Dialysis
versus Hemodialysis

A new dialysis method known as GREAT dialysis (Gradient Re-Entry Abdominal
Thoracic dialysis) is being evaluated to compare its cost and effectiveness with
hemodialysis, which is the conventional treatment for adult patients. The cost and
effectiveness are being evaluated based on use of the treatments for the lifetime
of the average adult dialysis patient who requires dialysis beginning at an age of
60 years.
Both methods of dialysis are assumed to be paid for by a comprehensive health

care system that pays for approved methods of dialysis as long as the patient lives.
The system is part of a government health care insurance system that covers the
cost of all necessary medical care but requires patients and families to cover the
costs of access to care and other nonmedical costs of care. The investigation aims
to include all alternatives that could provide favorable outcomes to patients while
controlling the costs of the health insurance system.
Hemodialysis requires twice-weekly outpatient dialysis treatment that lasts

an average of 3 hours. Hemodialysis results in hospitalization, on average, for
1 week per year as a result of complications. Based on extensive experience with
hemodialysis, the life expectancy of the average person undergoing hemodialysis
is estimated to be 10 years, with death occurring at the same rate throughout the
follow-up period.
GREAT dialysis is a new method in which a dialysis device is implanted in

the abdomen and thorax, and provides dialysis which is as good as the kidney’s
own dialysis for an average of 10 years. On average, surgery is assumed to be
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required every 10 years for replacement, with an average of 1 replacement per
patient. There are no known side effects of GREAT dialysis except the 3% chance
of death that results from the initial surgery and the 1% chance of death that results
from the replacement surgery. Since GREAT dialysis is believed to function as
well as the patient’s own kidney, the life expectancy of the average person using
GREAT dialysis is estimated at 20 years, except for those who die at surgery.
However, since GREAT dialysis is a relatively new procedure, a low estimate of
10 years life expectancy was also made.
Utilities for hemodialysis have been established by asking hospitalized dialysis

patients to rate the quality of their health. The average utility was 0.5, and this was
used as the base-case utility for hemodialysis patients. Ninety-f ve percent of the
patients had a utility between 0.9 and 0.3. These were used as the realistic high and
realistic low estimates of utility. The utility for GREAT dialysis was set at 1 since,
if successful, GREAT dialysis returns patients to their former states of health.
The costs of hemodialysis include yearly medical care costs of the procedure

and the 1week of hospitalization. The costs of GREATdialysis include themedical
care costs of the device and the surgery plus follow-up care for the initial implant
and for one replacement. Future costs of hemodialysis and GREAT dialysis were
discounted at 3%.
The investigators found that the incremental cost-effectiveness ratio of GREAT

dialysis was –$2,000 per QALY compared with hemodialysis, ref ecting increased
QALYs and decreased costs. After performing one-way sensitivity analyses for
utilities and life expectancy, a best case/worst case sensitivity analysis was con-
ducted to see the impact of assuming that the utility of hemodialysis was 0.9 or
alternatively 0.3, and the life expectancy of GREAT dialysis was 10 years instead
of 20. The best case/worst case sensitivity analysis found that the incremental
cost-effectiveness ratio for GREAT dialysis compared with hemodialysis varied
from –$5,000 per QALY (best-case) to +$1,000 per QALY (worst case).
The investigators concluded that GREAT dialysis could save the system several

billion dollars per year.
Based upon the sensitivity analysis, they also concluded that GREAT dialysis

may increase costs as ref ected in the worst case assumptions and therefore rec-
ommended that it not be included as a covered service. A reviewer of this article
agreed that GREAT dialysis may cost more based on its use in this investigation,
but argued that it should be covered since once implemented on a large scale, the
costs would be lower. In addition, the reviewer suggested that GREAT dialysis
should be used on all dialysis patients, including children.

Critique: Exercise No. 2
METHOD
� What type of decision-making investigation is being conducted?

The results of this investigation are expressed as incremental cost per QALY. Thus,
the investigators were conducting a cost-utility study, or what we have called a
cost-effectiveness analysis using QALYs.

� What is the study question and what target population does it address?
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The investigation is addressing the costs and effectiveness of GREAT dialysis
compared with hemodialysis for a population of adult patients who already need
dialysis. Thus, the target population is the average adult who needs dialysis.
� From what perspective is the investigation being conducted?

As indicated by the investigators, both methods of dialysis are assumed to be
paid for by a comprehensive health care system that pays for approved methods
of dialyses as long as the patient lives. The payer is a government health care
insurance system that covers the cost of all medical care but requires patients and
families to cover the costs of access to care and other nonmedical costs of care.
Thus, the perspective is that of a payer of comprehensive medical services and not
a social perspective. A social perspective is slightly different since it would also
include at least the short-term nonhealth care costs.

ASSIGNMENT
� What options are being evaluated?

The only options considered are GREAT dialysis and hemodialysis. Neither trans-
plantation nor a combination of treatments is considered.
� Are the options relevant and the outcomes realistic?

If hemodialysis is commonly combined with transplantation, this alternative might
have been included as well to ensure that the decision-making investigation re-
f ected realistic decision-making. Similarly, if GREAT dialysis can be and is being
combined with hemodialysis, that alternative would also be important.
� Is the time horizon appropriate?

The time horizon was the until the death of each patient. This is usually an appro-
priate time horizon for incorporating the timing of events.

ASSESSMENT

Figure 33.3 displays the decision tree used in this investigation, including the
probabilities, utilities, and life expectancies.
� Are the probabilities, utilities, and costs precise and accurate?

The probabilities used for hemodialysis are based on extensive experience. How-
ever, since GREAT dialysis is a new procedure, much greater uncertainty exists
regarding the probabilities of its outcomes. Thus, it would have been desirable to
make realistic low and high estimates for the probabilities of favorable and adverse
outcomes of GREAT dialysis. The investigators did include a low estimate for life
expectancy for GREAT dialysis and low and high realistic estimates of utility for
hemodialysis.
Asking patients undergoing the procedure to estimate their utilities is an accept-

able method of obtaining utility scores. However, the utility of hemodialysis was
estimated from inpatients undergoing dialysis. This is not the best group to use in
estimating utilities because they may be more seriously ill than the group of pa-
tients undergoing outpatient hemodialysis. In general, those making life-changing
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Figure 33.3. Decision tree used in the GREAT dialysis versus hemodialysis cost-
effectiveness investigation.

decisions like the decision to undergo dialysis envision their utility as modestly
lower than those who have already had the experience.
The investigators includedmedical care costs and future costs but did not include

the nonmedical costs required from the patient or others, such as family members,
to obtain the medical care.

RESULTS
� Are the results appropriately expressed in terms of cost-effectiveness ratios?

The investigators appropriately presented the results of effectiveness as QALYs
and calculated an incremental cost-effectiveness ratio. Since hemodialysis is con-
sidered conventional therapy, it is appropriate to compare GREAT dialysis with
hemodialysis.
� Is an appropriate sensitivity analysis conducted?

The use of a best case/worst case analysis is an acceptable method for conduct-
ing multiple-way sensitivity analysis. AMonte Carlo method could also have been
used. It allows values to be varied inmore realistic ways to produce a credibility in-
terval. Additional one-way sensitivity analyses would ideally have been presented
to indicate whether the results of GREAT dialysis are sensitive to such factors as
the cost of GREAT dialysis and the time interval prior to replacement. Both factors
may be subject to change as more experience is gained with GREAT dialysis.
� Is an appropriate method to discount for present value used?

The use of a 3% discount rate is the accepted discount rate, though the additional
use of a 5% rate is also recommended. A more serious error is the discounting
of costs without the discounting of effectiveness. Costs and effectiveness must be
discounted at the same rate. Discounting of costs without discounting of effec-
tiveness means that delaying use of a procedure is seen as desirable because each
year the costs become less while the effectiveness remains the same. This is not
realistic in the case of dialysis because delaying dialysis is usually not possible.
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Discounting for effectiveness is important in this investigation not only because
costs are discounted. GREAT dialysis carries a probability of death only during
surgical implants, whereas hemodialysis carries a probability of death through-
out the period of follow-up. This difference in the timing of the events implies
that discounting needs to be conducted to compare the effectiveness of these two
treatment alternatives.

INTERPRETATION
� Are the cost-effectiveness ratios correctly interpreted?

The investigators correctly concluded that the results of their base-case estimate
showed that GREAT dialysis is cost-saving. If this base-case estimate was per-
formed correctly, it can be used as the basis for interpreting the results of the
investigation. Thus, it would have been acceptable for the investigators to de-
clare GREAT dialysis not only cost-saving but cost-effective on the basis of the
increased QALYs and decreased costs. They would need to limit this interpre-
tation to the base-case conditions and the assumptions of this decision-making
investigation.
� What def nition is being used in this investigation to establish cost-effectiveness?

The investigators seem to be equating cost-saving and increased effectiveness
with cost-effective, and seem to require the sensitivity analysis as well as the
base-case estimates to demonstrate reduced costs and increased effectiveness.
This is too diff cult a criterion to meet. The results of the best case/worst case
sensitivity actually strengthen the argument that GREAT dialysis is cost-effective
compared with hemodialysis because even under the demanding condition of a
worst case analysis, the incremental cost per QALY is not more than +$1,000.
An increase of $1,000 for an additional QALY is considered cost-effective. Using
cost reduction and increased effectiveness as the criterion for coverage is very
demanding since new procedures that increase effectiveness while reducing costs
are rare. Much more common are new procedures that increase costs while in-
creasing effectiveness or that reduce costs while maintaining current levels of
effectiveness.

EXTRAPOLATION
� How did the investigator extrapolate to similar populations? Were aggregate
effects considered?

The investigators drew conclusions about the aggregate effects when they con-
cluded that the use of GREAT dialysis would save the system several billion
dollars per year.
� Did the reviewer extrapolate beyond the data?

The reviewer has extrapolated beyond the data. By concluding that changes in
volume will alter the costs, they are making a statement about marginal costs as
opposed to incremental costs. Marginal costs ref ect the economies of scale or
diseconomies of scale associated with the widespread use of a procedure. This
extrapolation takes the reviewer beyond the data and thus carries assumptions
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that may or may not hold true. It is possible to argue for coverage of GREAT
dialysis on the basis of the data contained within this investigation without having
to extrapolate beyond the data.
� Did the reviewer extrapolate to other populations?

By drawing conclusions about children as well as adults, the reviewer extrapolated
to another population. Children may or may not experience the same effectiveness
and the same costs as adults undergoing GREAT dialysis. Extrapolation to chil-
dren relies on a series of new assumptions that are not discussed as part of this
investigation.

Summary
Wehave seen howdecision-making investigators can quantitatively incorporate the
benef ts, harms, and costs of potential options. In doing this we have used decision
trees to help structure the analysis. Decision trees allow us to incorporate probabil-
ities, utilities, and life-expectancies to produce a measure of effectiveness known
as quality adjusted life years or QALYs. Combining costs measured in dollars with
effectiveness measured in QALYs allows us to develop summary measurements.
A fully developed analysis is called a cost-utility analysis or a cost-effective anal-
ysis using QALYs. Incremental cost-effectiveness ratios comparing new inter-
ventions to standard or conventional treatments are key to determining whether
treatments are cost-effective and which one is most cost-effective for a partic-
ular condition. Cost-effective ratio comparing options to the do-nothing or zero-
cost-zero-effectiveness option can be helpful in comparing treatments for different
conditions.
Cost-effectiveness analysis is not an end in itself. It may be a useful tool in

developing guidelines as we will see in the next section.
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34 Method

Guidelines attempt to synthesize the evidence in order to provide a wide range of
recommendations for making decisions. The availability of recommendations for
clinical practice is not new; they are as old as the teaching of medicine or even
the Hippocratic oath. What is different about today’s guidelines is the emphasis
on evidence. In fact, the type of guidelines we are talking about have been called
evidence-based guidelines or evidence-based recommendations.
When reviewing an evidence-based guideline, it is possible to use the

M.A.A.R.I.E. framework to organize our approach and to help us identify the
questions to ask. Figure 34.1 illustrates the application of theM.A.A.R.I.E. frame-
work for reviewing guidelines.

Purpose of the Guideline
Themovement to develop evidence-based guidelineswas stronglymotivated by the
findin that clinicians in similar communities often have widely different practices
for common or costly decisions. These range from if and when to do surgery to
whom to hospitalize. From these investigations it was concluded that differences
in practice not based on evidence result in unnecessary cost and unnecessary
variations in quality. Only evidence could determinewhich practiceswere best, and
only the development and acceptance of evidence-based guidelines could reduce
these variations. These are the roots of the movement to develop evidence-based
guidelines.
The original purposes for clinical guidelines were outlined by the Institute of

Medicine1 as follows:

1. Assisting clinical decision-making by patients and practitioners
2. Educating individuals or groups
3. Assessing and assuring the quality of care
4. Guiding allocation of resources for health care
5. Reducing the risk of liability for negligent care

Evidence-based guidelines were initially aimed at individual decision-making by
individual clinicians. Today, evidence-based guidelines have been developed for
the full range of clinical activity, from prevention though palliation. Perhaps as a
reflectio of the success of the evidence-based guidelines movement, today guide-
lines are being applied not only for the care of individual patients by individual
clinicians but also for institutional and population-based decision-making. Insti-
tutional guidelines such as those for reducing the risk of anesthesia, preventing
HIV infection after needle stick injury, or controlling SARS in a hospital setting
are now widely used.

1 Institute of Medicine, Summary Guidelines for Clinical Practice: From Development to Use,
National Academy Press, 1992.
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Figure 34.1. Application of M.A.A.R.I.E. framework to guidelines.

Community guidelines have become central to public health efforts to improve
population health. Community guidelines are increasingly bringing to bear the
evidence for effective intervention, such as those to control tobacco use, lead paint
exposure, and childhood obesity. Guidelines for responding to crises from bioter-
rorism to environmental contamination are now accepted as standard operating
procedures.
Thus, we begin our examination of guidelines by asking about a guideline’s goal.

What is it aiming to achieve, and at what level—the individual patient or clinician,
the institution, or the community? Let us imagine that we were examining the
following type of guideline.

Colon cancer guidelines aim to establish indications andmethods for screening those
at average risk of colon cancer. They also aim to provide guidance for the advertising
of aspirin use for prevention of colon cancer

This type of guideline aims at the individual clinical level when it addresses the
goal of screening individual patients. When it addresses the issue of advertising
of aspirin for prevention of colon cancer, it looks to the population or community
level. Both of these approaches have the goal of reducing the mortality rate from
colon cancer, but they aim to intervene in different ways. Thus, the f rst question
we need to ask when looking at a guideline is: What is its goal and how does the
guideline hope to achieve it?

Guideline’s Target Population
As with the types of studies that we have examined, it is key to understand the
target population for which the guideline is intended. Guidelines may be directed
at narrowly def ned groups or they may be directed at large numbers of individuals
def ned only by age or gender, as illustrated in the next example.

Guidelines for screening for colon cancer are developed for the average male or
female 50 years and older with or without a family history of colon cancer. They are
not designed to apply to those with diseases that predispose them to colon cancer,
such as ulcerative colitis or familial polyposis.

This description gives us a clear understanding of the target population for the
guideline. It indicates that the guideline is designed for screening, which implies
that it is aimed at asymptomatic patients. The target group is those 50 years and
older, and applies to both those with and without a family history of colon cancer.
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This is important because family history is a known risk factor for colon cancer,
and the guideline might have excluded or treated this group separately.
In addition, the description indicates that the guideline does not apply to themuch

smaller group of individuals who are at increased risk because of predisposing
diseases. It is important to appreciate from the beginning who is included and who
is excluded. Guidelines, like investigations, usually have inclusion and exclusion
criteria.

Guideline’s Perspective
The guideline movement has spawned an increasing number of “players” who are
rapidly developing guidelines, often to serve specif c or even proprietary agendas.
The vast array of guidelines and guideline developers makes it useful to classify
them to get a better idea of the perspectives of the authors. We might classify
guideline developers as follows:
� Government agencies that seek qualif ed and broadly representative individuals
for a committee or task force to independently develop evidence-based guide-
lines. In the United States such agencies as the United States Preventive Services
TaskForce (Agency forHealthcareResearch andQuality), theNational Institutes
of Health, and the Centers for Disease Control and Prevention have followed
this approach.
� Professional societies such as the American College of Surgeons, the American
College of Physicians, and many other clinically oriented professional societies
� Nonprof t patient-oriented groups such as the American Heart Association and
the American Cancer Society
� For-prof t and not-for-prof t providers of care, including Kaiser-Permanente and
national associations of health plans

Each of these organizations have their own approach, their own priorities, and at
times their own biases. Thus, it is important to appreciate the authorship of the
guideline so that the potential user can look for potential conf icts of interest that
may subtly or not so subtly inf uence the way the guideline was developed or
structured, as illustrated in the next example.

Recommendations for colon cancer screening were made by a government task
force, a society of endoscopists, and a national consumer-oriented cancer society.
The endoscopists recommendations stress the use of colonoscopy, which allows
examination of the entire colon. The consumer-oriented society stressed the use of
occult blood testing and periodic sigmoidoscopy for patients who sought screening.
The government task force recommended reaching asmany patients as possible using
a variety of options for screening.

Even assuming the best of intentions, different groups will interpret the evidence
differently. Those with experience with and interest in a technical procedure such
as colonoscopy are often inclined to recommend its use. Those who represent
consumers will often emphasize satisfying the desires of those who seek care
and minimizing the harm or discomfort for those who do. Broadly representative
groups may seek to reach large numbers of individuals, hoping to benef t as many
as possible. Those seeking to reach large number of individuals may leave open as
many options for implementation as possible to circumvent the most controversial
of issues, such as which it the best method for screening.
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There is no universally accepted approach to developing and presenting guide-
lines. Perhaps the most structured and rigorous approach in widespread use was
developed by the United States Preventive Services Task Force (USPSTF). We
will utilize their approach throughout the “Guide to the Guidelines” section.2
Having def ned the goal, the target population, and the perspective of guidelines,

we will address the questions of assignment in the next chapter.

2 “Current Methods of the U.S. Preventive Services Task Force: A Review of the Process,” Am. J.
Prev.Med. 20, suppl.3(2001):21–35. This approach is also being used by the Task Force onCommunity
Preventive Services developed by the Centers for Disease Control and Prevention.
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35 Assignment

Assignment, as we have seen, implies that we are definin the groups being com-
pared or the options being considered. Thus, assignment for guidelines implies
that we examine which options for intervention are being considered; how the
evidence is organized or structured; and what is considered relevant evidence and
how is it being combined.

Options Being Considered
Guidelines should identify the options that are being evaluated as well as potential
options that are being omitted, as illustrated in the following example.

A group of colon cancer screening guidelines compare sigmoidoscopy, colonoscopy,
and virtual colonoscopy. They do not consider double-contrast barium enema or
occult blood testing.

These guidelines are explicit about which methods they include for consideration
and which ones they omit. Often the guidelines will only indicate which options
are considered and leave to the reader the task of recognizing which options are
omitted. It is important to recognize the omissions aswell as the inclusions because
exclusion implies that the omissions are not recommended.

Structuring the Evidence
The method of organization of the evidence can take a number of forms. As we
have seen, decision-making can be organized using a decision tree that define the
options, the decisions, and the outcomes of each decision, often including utilities
of the outcomes as well as their probabilities. Use of a decision tree may at times
guide the construction of a guideline.When that is the case, the decision tree should
ideally appear in the guideline.
Often, however, other analytical frameworks and approaches are used.Aswe saw

in chapter 19 on screening, the framework for evaluating a screening procedure
should require fulfillin four criteria: substantial morbidity and mortality, early
detection improves outcome, screening is feasible, and screening is acceptable
and efficient
The evidence for evidence-based guidelines may also be presented in a less

structured format, often referred to as a systematic review. A systematic review
is an effort to collect and present the research evidence to address specifi clin-
ical or public health questions. Systemic reviews may combine quantitative and
qualitative methods, and often address a range of issues relevant to practice-based
decision-making.
Thus, an article presenting an evidence-based guideline should indicate how the

evidence is organized, as indicated in the following example:
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A systematic review of cohort and randomized clinical trials of cancer screening was
conducted to address questions of indications for screening, methods for screening,
costs of screening, and frequency of screening, as well as patient acceptance. Ameta-
analysis was used to examine whether there were differences in the effectiveness of
different screening methods.

As this example illustrates, methods of presenting the evidence may be combined.
Systematic reviews are often the starting point for collecting and presenting the
evidence. The evidence may then be structured to address key questions using
methods such as meta-analysis.1

Types of Evidence
It is key to explicitly state types of evidence being considered and how the evidence
is being combined. Together, the types of evidence and their combination allow
the reader to understand the criteria being used to decide between the options.
The types of evidence being considered are usually divided into benef ts, harms,

and f nancial costs.2 These broad categories are usually adequate to include a wide
range of important considerations. However, what is implied by each may need
further def nition. Do harms include the discomfort and anxiety of undergoing a
procedure and waiting for the results? Do costs include consideration of reim-
bursement rates? Thus, the criteria in a guideline for colon cancer screening might
look something like this:

A guideline for colon cancer screening makes recommendations based upon on the
net effectiveness—that is, effectiveness minus the potential harm of the techniques.
Issues of cost, patient acceptance, and provider reimbursement were not considered.

In addition to def ning what is meant by benef ts, harms, and costs, it is also
important to understand how they are being combined. For instance imagine the
following situation.

In evaluating the options for colon cancer screening, the potential methods were f rst
evaluated for net effectiveness—that is, their benef ts and harmswere considered. For
the two methods that demonstrated the greatest effectiveness, cost was considered to
determine which technique was recommended.

It is not unusual for developers of guidelines to separate issues of benef ts and
harms from those of costs. They may argue that there is no reason to consider
costs unless an option reaches a certain level of effectiveness. This approach has
the effect of excluding those options that have greatly reduced costs and modestly
reduced effectiveness.
As we have seen, decision analysis and cost-effectiveness analysis are formal

methods that can be used to combine considerations of benef ts, harms, and costs.
Decision analysis and cost-effectiveness analysis are built on what we have called

1 There are a number of other methods for organizing and presenting data. Together, these have
been called analytical frameworks. The Unites States Preventive Services Task Force, for example,
has developed analytical frameworks for each of its areas of focus, i.e., screening, immunization,
counseling, and chemoprevention.

2Not all considerations in decision-making relate directly to benef ts, harms, and costs. Issues of
ethics, for instance, may not directly relate to any of these outcomes. Guidelines can and should make
as explicit as possible the types of evidence that are being considered.
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expected utility. That is, when we use an expected-utility approach, we seek to
maximize the net benef ts for the average person.
Maximizing expected utility is not the only possible approach for combining

the criteria. Other approaches can include minimizing the harm, maximizing the
potential benef ts, or a commonly used compromise approach that has been called
satisficin . Satisf cing implies that decision-making aims to achieve a good enough
solution, often one that reduces the potential for major harms even if the average
benef t is reduced. Let us see how satisf cing may be implicitly used in developing
guidelines, as illustrated in the following example.

Colon cancer screening by f exible sigmoidoscopy was considered as an option to
be performed by primary care physicians. However, when using this option, if a
biopsy is needed, a repeat examination and biopsy by a gastroenterologist is strongly
recommended.

Here, the option for f exible sigmoidoscopy does not allow primary care physicians
to perform a biopsy even if this, on average, would reduce the cost or even increase
the benef t. The potential for greater harm through perforation when the procedure
is performed by those with less training and experience is presumable paramount
in def ning this option.
Thus the process of assignment is the process of def ning the options, organizing

the evidence and deciding how to decide. Once this process is complete, we can
go on to the assessment process and look at the evidence itself.
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36 Assessment

The process of assessment in examining guidelines requires us to look at the
evidence for each of the options being considered. This process uses the criteria
for making recommendations set forth in the assignment component. As part of the
assessment process we need to look at the sources of the data, how the outcomes
were measured, and how holes in the evidence were handled.

Sources of the Evidence
A guideline should identify the specifi sources of evidence. In addition it should
provide specifi information that will allow assessment of the quality of the evi-
dence. Specificall , the type of investigation, the number of participants, and the
overall quality are important. This might be illustrated as follows:

Evidence from a large randomized clinical trial has established the effectiveness
and safety of screening for colon cancer. The trial demonstrated that fecal occult
blood testing annually reduces the mortality from colon cancer for asymptomatic
individuals 50 years and over regardless of their family history. Well-designed con-
current cohort studies suggest that sigmoidoscopy every 3 to 5 years in addition to
fecal occult blood testing further reduces mortality. A large randomized clinical trial
demonstrated that virtual colonoscopy is approximately as effective as colonoscopy
in detecting polyps.

As we will see in Chapter 37 on results, the sources of the evidence will become
important issues when the guideline developers attempt to score the strength of
the evidence.

Measurement of Outcomes
The approach used to measure and incorporate harms, benefits and costs should
be outlined in guidelines, as in this example:

Harms and benefit of screening for colon cancer were measured over the lifetime
of the individual. Costs from a social perspective were taken into account only when
options had approximately the same net effectiveness and also when considering the
frequency of screening.

This guideline provides key information on how the measurements were con-
ducted. It provides the time horizon for measurement, i.e., the lifetime of the
individuals. It also indicates how costs were calculated—that is, using a social
perspective. Guidelines are expected to make available far more details. However,
these may not be readily available as part of a published article. Increasingly,
however, these details should be available on a Web site.
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Filling Holes in the Evidence
Evidence-based guidelines differ most dramatically from the traditional approach
to recommendation in theway they treat expert opinion. In the traditional approach,
experts informally reviewed the evidence and reached their own conclusions using
their own approach. In evidence-based guidelines, quantitative evidence fromwell-
conducted investigations is considered the most reliable form of evidence.
In evidence-based guidelines, expert opinion is itself considered a form of evi-

dence. In terms of quality however, expert opinion is regarded as the least depend-
able form of evidence. Thus, expert option is often used only when there are holes
in the evidence that cannot be f lled in by available investigations or other data.
Since expert opinion is itself considered a form of evidence, evidence-based

guidelines often use a systematic process for collecting and incorporating expert
opinion. Rather than selecting one particular expert, they may use a process de-
signed to determine whether there is agreement among experts. If there is little
or no agreement, guidelines may develop a realistic range of values based upon
expert opinion.
Two basic approaches to obtaining expert opinions have been called the con-

sensus conference and the Delphi approach. The consensus conference approach,
originated by the National Institutes of Health, aims to bring together face-to-face
a broad range of experts to determine whether they can agree upon a predef ned
set of questions. Every effort is made to def ne those issues in which they can
reach agreement. Using a consensus conference approach, when agreement is not
possible, the range of realistic values might be def ned.
In the Delphi approach a representative group of experts is again included.

However, in this approach the participants nevermeet each other and their identities
are not known to each other. The approach begins by having each participant
address the questions posed, followed by formal feedback of all the responses to
the participants. Each participant then may change their response or further justify
their initial opinion. The process is continued until the participants have reached
a consensus or made it clear that a range of opinions exist.
Let us see how these approaches to incorporating expert opinion might be used

in the development of evidence-based guidelines, as in the following example.

The evidence on colonoscopy’s harms in practice were not available in the litera-
ture. A majority of an expert group using a Delphi approach believed that use of
colonoscopy as an initial screening method would result in a probability of perfora-
tion of approximately 1 per 1,000 uses. Based on theDelphi approach, this best-guess
estimate of the probability of perforation along with low and high realistic estimates
were obtained.

Expert opinion here has been translated into what we previously called best-guess
and realistic high and realistic low estimates. While expert opinion is not always
converted into quantitative evidence, this example illustrates the degree to which
evidence-based recommendations regard expert opinion as a form of data that
needs to be systematically collected and presented.
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37 Results

The results component of evidence-based guidelines consists of the synthesis of
the evidence upon which recommendations can be based. Thus, when looking at
results, we will focus on the strength of the evidence, the methods for addressing
uncertainties in the evidence, and the options that were eliminated on the basis of
the evidence.

Scoring the Strength of the Evidence
The overall quality of the evidence can be judged using the following key criteria:

1. Design and conduct of the investigations that produced the evidence
2. Relevance of the investigations to the target population
3. Coherence of the evidence or the absence of gaps in the evidence

We will refer to these criteria as design/conduct, relevance, and coherence. Let us
see what is meant by each of these criteria.
The developers of guidelines need to begin by assembling the available in-

vestigations related to potential recommendations. As with a meta-analysis, it is
important that they undertake a complete search of the available evidence.
Developers of guidelines often score or grade the research evidence using a

hierarchy of research types, starting with the highest grade evidence:

� Randomized clinical trials
� Concurrent cohort studies
� Retrospective cohort studies and case-control studies

Lower grades of evidence use what is called a time series. In a time series there
is no simultaneous control group. The study group after an intervention may
be compared with its condition before the intervention, or the study group may
be compared to historical controls. One form of time series is exemplifie by the
introduction of penicillin in the 1940, in which the dramatic results compared
to previous treatment, at least in the short run, made clear the effectiveness of
penicillin.
In evidence-based guidelines the lowest grade of evidence is reserved for re-

spected authorities, descriptive studies, case reports, and even the report of expert
committees.
Meta-analyses are often graded based on the types of investigations included

in the meta-analysis. Thus a meta-analysis made up exclusively of randomized
clinical trials would be considered stronger than a meta-analysis made up of ret-
rospective cohort studies or case-control studies.
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Design and Content
It is important to recognize, however, that the type of study design alone does
not ensure the quality of the investigation. While concurrent cohort studies by
def nition lack randomization, their size and the efforts to identify and adjust
for confounding variables may make up for this inherent limitation. Likewise,
the inherent tendencies for biases in retrospective cohort studies and case-control
studies may be partially or fully overcome by good study design. Thus, the authors
of guidelines need to consider both the design and conduct of the investigations
that produce the evidence used in evidence-based guidelines. Table 37.1 outlines
the system of categorizing study design and conduct that has been used by the
United States Preventive Services Task Force when grading the evidence.
Thus, in developing evidence-based recommendations, the f rst step is to de-

termine the degree to which the key studies have study design types high in the
hierarchy of research designs and are well-conducted studies. The USPSTF refers
to this evaluation as determining aggregate internal validity. Specif cally, aggre-
gate interval validity is the degree to which the studies provide valid evidence for
the population and the setting in which it is conducted.

Table 37.1. Hierarchy of research designs
Category of
study design Type of study design Issues in conduct of the study

Category I Evidence obtained from at least
one properly randomized
clinical trial

Statistical power, success of randomi-
zation, success of masking,
completeness of follow-up, and
clinical importance of the outcomes
measured

Category II-1 Evidence obtained from
well-designed studies without
randomization (concurrent
cohort studies)

Statistical power, comparability of
study and control groups, com-
pleteness and length of follow-up,
clinical importance of outcomes
measured, adjustment for potential
confounding variables

Category II-2 Evidence obtained from
well-designed retrospective
cohort or case-control studies

Comparability of cases and controls,
biases in assessment, complete-
ness of assessment, adjustment for
potential confounding, variables,
potential for reverse causality

Category II-3 Evidence obtained from multiple
time series with vs. without
the intervention, or dramatic
results in uncontrolled
experiments (such as the
results of the introduction of
penicillin treatment in the
1940s) could also be regarded
as this type of evidence
(dramatic changes in rates).

Quality of historical comparisons—
short term before-and-after
comparisons with clear-cut outcome
measurements are more reliable.

Category III Opinions of respected
authorities based on clinical
experience, descriptive
studies, and case reports, or
reports of expert committees

Was a method used to establish a
consensus of expert opinion—i.e.,
was it representative of expert
experience?

(Adapted from Agency for Healthcare Research and Quality, U.S. Preventive Services Task
Force Guide to Clinical Preventive Services, Vol. 1, AHRQ Pub. No. 02-500.)
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Table 37.2. Factors affecting relevance of the evidence
Factor Meaning Example

Patient relevance—
biological analogy

Are there biological reasons to
believe that the results
obtained in a study will be
different in another
population?

Data on colon cancer
might be extrapolated
from men to women,
but data on coronary
artery disease might
not be.

Patient relevance—
demographic, risk, and
clinical differences

Were the populations studied
different from the populations
for which the intervention is
intended in ways that may
affect the results?

Studies on older,
severely ill patients
may not apply to
younger, generally
healthy individuals.

Intervention relevance—
relationship of the
intervention to clinical
practice

Was the intervention method
used in the investigation
similar to those routinely
available or feasible in typical
practice?

An investigation that
used special
equipment to monitor
the patients, special
incentive to increase
adherence to
treatment, or special
methods to reduce or
detect side effects may
not be directly relevant
to use in clinical
practice.

Intervention relevance—
relationship of the
investigation’s setting
to clinical practice

Were the special characteristics
of the research setting likely
to affect the results?

Were differences such as
availability of
consultants, 24-hour
coverage, or increased
attention as part of
research likely to alter
the outcome in the
usual clinical setting?

(Adapted from Agency for Healthcare Research and Quality, U.S. Preventive Services Task
Force Guide to Clinical Preventive Services Vol. 1, AHRQ Pub. No. 02-500.)

Relevance
In addition to evaluating the quality of the investigations, it is also important to
evaluate their relevance. Relevance refers to the degree to which the intervention
studied is investigated in groups or populations that are similar to the populations
of interest—that is, the target population for whom the intervention is intended.
The USPSTF calls the evaluation of relevance aggregate external validity.1
Expert opinion may be needed to evaluate relevance. However, the process

should begin by examining the evidence itself. To evaluate the relevance of an
investigation, guideline developers need to ask such questions as: Are the types of
patients studied and the methods used typical of the types of patients and methods
that are encountered in typical clinical practice? For example, primary care practice
if the intervention is designed for primary care. Table 37.2 summarizes the types
of factors that can affect the relevance of an investigation and gives an example of
each factor.

1 The United States Preventive Services Task Force is interested in the applications of preventive
services to primary care. Thus, they def ne aggregate external validity as the extent towhich the evidence
is relevant and generalizable to the population and conditions of typical primary care practice.
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Coherence
Finally, in addition to evaluating the study design/conduct and relevance of the
evidence, it is important ask what we will call coherence questions—does the
evidence f t together? Coherent evidence requires that we ask:

� Are there gaps in the evidence or does the evidence hold together as a convincing
chain demonstrating eff cacy or contributory cause?
� Has it beendemonstrated that the intervention actually improves important health
outcomes?

We have already looked at these issues when we explored the criteria for eff cacy.
Thus, high-quality evidence should provide evidence of association, prior associa-
tion, and altering the cause alters the effect. Investigations that fulf ll the supportive
or adjunct criteria we discussed in the Studying a Study section criteria may bol-
ster the arguments for eff cacy or causation when the def nitive criteria are not
established.
Ideally we want to be sure that clinically important endpoints are affected and

not just early surrogate endpoints unless these surrogate endpoint can be shown to
correlate closely with important clinical endpoints.

Grading System
Guideline developers thus need to combine considerations of design/conduct with
questions of relevance and coherence to produce an overall measurement of the
strength of the evidence. A grading system for the overall evidence has been used
by the USPSTF. It classif es the overall quality of the evidence as:

� Good
� Fair
� Poor

Table 37.3 outlines the def nition of each category of quality and themeaning of the
category. When these summary judgments regarding the quality of the evidence
are used, the reader of the guidelines needs to appreciate the types of reviews and
conclusions that should lie behind the f nal score. For instance, image the following
conclusions about the evidence:

All available evidence was formally reviewed. The authors of the guidelines con-
cluded that the quality of the evidence was good.

A conclusion of good evidence implies that a systematic effort wasmade to identify
the evidence; the evidence was derived from high quality study types; and the
investigations were well conducted. It also implies that the studies’ populations
were relevant to the guidelines, and the evidence produced a coherent conclusion
that the intervention has effectiveness in practice. Thus, behind the increasingly
common summary statement of good, fair, and poor quality lie a great deal of
careful review plus, at times, considerable amounts of subjective judgment.
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Table 37.3. Grading the overall quality of the evidence
Overall quality

of the evidence USPSTF def nition Meaning

Good quality Evidence includes consistent
results from well-designed,
well-conducted studies in
representative populations
that directly assess effects on
health outcomes.

When considering the design/conduct
of the investigations, the relevance
of the studies, and the coherence of
the evidence, a convincing case for
effectiveness in practice can be
made.

Fair quality Evidence is suff cient to
determine effects on health
outcomes, but the strength of
the evidence is limited by the
number, quality, or
consistency of the individual
studies, generalizability to
routine practice, or indirect
nature of the evidence on
health outcomes.

When considering the design/conduct
of the investigations, the relevance
of the studies, and the coherence
evidence, there are no fatal f aws or
holes in the evidence that invalidate
a conclusion of effectiveness in
practice.

Poor quality Evidence is insuff cient to
assess the effects on health
outcomes because of limited
number or power of studies,
important f aws in their design
or conduct, gaps in the chain
of evidence, or lack of
information on important
health outcomes.

When considering the design/conduct
of the investigations, the relevance
of the studies, and the coherence of
the evidence, there are fatal f aws
or holes in the evidence that
invalidate a conclusion of
effectiveness in practice.

(Adapted from Agency for Healthcare Research and Quality, U.S. Preventive Services Task
Force Guide to Clinical Preventive Services Vol. 1, AHRQ Pub. No. 02-500.)

Addressing Uncertainties
Because of the inherent limitation of the evidence and the need for subjective
opinion when grading the evidence, it is important that guideline developers make
efforts to address the uncertainties that inevitably remain.
Aswe saw in our discussion of decision analysis and cost-effectiveness analysis,

one method for addressing the remaining uncertainties is sensitivity analysis. At
times guidelines may be subjected to formal sensitivity analysis, especially when
they are built upon decision trees or other formal quantitative decision models, as
illustrated in the next example.

The net effectiveness of virtual colonoscopy is not sensitive to whether or not the
procedures were conducted every 5 or every 10 years. However, conducting virtual
colonoscopy screening more frequently than every 5 years would substantially in-
crease the costs, while conducting the screening less often than every 10 years would
substantially reduce the net effectiveness.

More often, the remaining uncertainties are addressed subjectively, as illustrated
in the next example.

The success of colonoscopy as a screening technique for colon cancer is believed
to be dependent on the availability of skilled colonoscopists who can rapidly and
reliably examine the entire colon. Estimates of the number of currently available
colonoscopists and the number that could be expected in the future based on current
reimbursement rates led to the conclusion that colonoscopy was not an option that
could be currently recommended for general use in screening.
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Behind this type of result are a series of quantitative and subjective judgments
that address the uncertainties regarding the usefulness of colonoscopy as a screen-
ing technique. This type of informal sensitivity analysis is often used to draw
conclusions despite the uncertainty that remains.

Eliminating Options
The process of examining the results ends with an effort to determine whether
any of the options being considered can be eliminated from further considera-
tion. Eliminating options, like addressing uncertainties, may be done formally or
informally.
The formal approach to elimination of options asks whether any of the options

can be eliminated by what are called dominance and extended dominance. Let us
see what we mean by dominance and extended dominance in the next example.

When cost and net effectiveness were considered, double-contrast barium enema
every 3 to 5 years was more expensive and less effective than f exible sigmoidoscopy
every 3 to 5 years. Thus, double-contrast barium enema was eliminated from fur-
ther consideration. Sigmoidoscopy every year was eliminated because it was more
expensive and no more effective than sigmoidoscopy every 3 to 5 years plus fecal
occult blood testing every year.

When one option is more effective and less expensive than another option, it is
said to be dominant. The less effective and more expensive option is dominated
by the more effective and less expensive option. Thus, the dominated option can
be eliminated from further consideration, as illustrated in the example above for
double-contrast barium enema.
Extended dominance usually implies that two options are approximately equally

effective, but one options costs more to produce the same effect. The option that
costs less is said to have extended dominance. Thus, in this example sigmoidoscopy
every 3 to 5 years has extended dominance over sigmoidoscopy every year, and
yearly sigmoidoscopy can be eliminated from further consideration.2
In summary, the results component of the M.A.A.R.I.E. framework for guide-

lines looks at the quality of the evidence, the efforts to incorporate remaining
uncertainty, and the elimination of options. The results component is the basis
for producing the evidence-based guidelines. However, before accepting these
guidelines, we need to go on to examine the components of interpretation and
extrapolation.

2 This def nition of extended dominance implies that net effectiveness is more important than cost
as an initial criteria. Only if effectiveness is approximately equal is cost then taken into account. This
ref ect the approach often used in guideline development, though it is possible to envision an approach
to extended dominance in which cost is considered f rst due to a f xed budget.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-38 Riegelman-1490G Riegelman-v9.cls August 20, 2004 18:6

38 Interpretation

Interpretation asks us to look at the meaning of the guidelines for those for whom
they are intended, the target population. To interpret the guidelines we need to
look at the system used to score the strength of the recommendation. As we will
see, this scoring system incorporates not only the quality of the evidence but the
magnitude of the potential impact. In interpreting the recommendations we also
need to look at what type of recommendation is being made and what assumptions
are required to make the recommendations.

Strength of the Recommendation
Recommendations require more than quality evidence. They require conclusions
about the magnitude of the impact on health outcomes. When the quality of the
evidence is fair or good, then it is important to also make a judgment about the
magnitude of the health benefi that can be expected for the average person for
whom the service or intervention is recommended. Thus we need to ask not only
does it work, but how well does it work? That is, does it have an important impact?
The magnitude of the effect may be classifie in quantitative terms using mea-

sures such as odds ratios or relative risk, number needed to treat or lives saved, or
quality adjusted life years. Any of these measures may be used, depending on the
circumstances.
These quantitative measures are used by the USPSTF and other guideline de-

velopers as the basis for grading the magnitude of the effects:

� substantial
� moderate
� small
� zero/negative

Unfortunately, there are no accepted rules for what fulfill each of these grades.
Thus, there is a role for subjective judgments. To better understand this process,
let us take a look at how an intervention might be classifie as substantial.
The overall grade needs to take into account both the harm and the benefi to

produce a score for the net benefi (benefi minus harm). However, in classifying
the magnitude of the effect, it is often useful to separately score the magnitude of
the benefi and the magnitude of the harm.
The benefi may be substantial from an individual perspective if it has a large

impact on an infrequent condition that poses amajor burden at the individual patient
level. PKU screening of newborn infants is an example of this type of impact.
Alternatively, the benefi may be considered substantial if it has at least a small

relative impact on a frequent condition in a substantial population. Reducing coro-
nary artery disease by increasing physical activity may be an example of this type
of impact.

308
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The magnitude of a harm may be substantial because it occurs frequently, such
as the side effects of many medications. Alternatively, it may be substantial even
when infrequent because of its life-threatening potential, such as anaphylaxis,
aplastic anemia, or life-threatening arrhythmia.
In addition, when considering the harms of an intervention, the authors of the

guideline need to def ne which harms are considered relevant. For instance, the
USPSTF def nes harms as including direct harm from the service, such as side
effects and complications. It also takes into account what it calls the indirect
harm, such as the consequences of increased follow-up testing and screening,
psychological effects, and loss of insurability.
Scoring the overall magnitude of the intervention then requires the guideline

authors to follow the basic steps we outlined in decision analysis. That is, they need
to measure the benef ts, measure the harms, and place a utility on the outcomes.
Thus, in making evidence-based recommendations it is often important to in-

corporate utilities. But whose utility? The USPSTF uses utilities ref ecting the
“general values of most people.” When these are thought to vary greatly and when
the variation is thought to affect the recommendation, then no recommendation is
made for or against routine provision of the service.
Table 38.1 summarizes the approach used by the USPSTF.
Nowwe have seen the rather complicated steps that are needed to score the qual-

ity of the evidence and strength of the recommendation. Despite the complicated
nature of the process, the net benef t may be presented using an overall grade of A,
B, C, D, or I. Just as in many educational institutions, these overall grades ref ect
scores obtained along the way as well as a bit of subjective judgment. Like grades
in courses, there is a category for incomplete, what is called “I” for insuff cient.
Table 38.2 indicates the grading categories used by the USPSTF. Notice that when
the evidence it poor, the magnitude of the net benef t is “I”.
Thus, behind the grading of the recommendation is considerable evidence as

well as judgment. Increasingly, recommendations are presented with these letter
scores, as illustrated in the next example.

A recommendation for screening for colon cancer for all those over 50 received
an overall grade of A. Several options were recommended as possible screening
methods.

Note here that it is the overall recommendation for screening that receives the
grade of A. The recommendation may go on to indicate the positive and negative
aspects of different techniques but may not necessarily grade these or recommend
one method over another.

Types of Recommendations
Classif cation of the recommendations is usually linked with specif c implications
for implementation. Recommendations may be classif ed as:1
� Standards
� Guidance
� Alternatives
1 The term “guideline” is often used instead of guidance. Since “guideline” also refers to the overall

set of recommendations its use in this context may cause confusion. The term “option” is often used
rather than “alternative.” Because “option” is used to indicate one particular intervention, it will not
also be used to indicate that more than one option may be chosen.
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Table 38.1. Criteria for making evidence-based recommendations
Criteria Definitio Comments

Quality of the evidence The overall evidence is
classifie as good, fair, or
poor using the previous
criteria to measure quality.

If the evidence is poor, there is
no need to further consider
recommendation.

The recommendation is
classifie as “I” (insufficien
evidence).

Magnitude of the benefi The magnitude of the effect
is classifie as substantial,
moderate, small, or
zero/negative.

The benefi may be substantial
from an individual
perspective if it:

• Has a large impact on an
infrequent condition that
poses a significan burden at
the individual patient level
(e.g., detection of PKU), or

• Has at least a small relative
impact on a frequent
condition in a substantial
population (e.g., reducing
coronary artery disease).

Magnitude of the harm The magnitude of the harm
judged as substantial,
moderate, small, or
zero/negative.

Harm includes:
• Direct harms are side effects

and complications.
• Indirect harms include

consequences of follow-up
testing and screening,
psychological effects, and
loss of insurability.

Net benefi Combine the magnitude of
the benefi and the
magnitude of the harm
plus the utility of the
potential outcomes.
Classify net benefi as
substantial, moderate,
small, or zero/negative

The USPSTF uses utilities
reflectin the “general values
of most people.” When these
are thought to vary greatly
and when the variation is
thought to affect
recommendation, then no
recommendation is made for
or against routine provision
of the service.

(Adapted from Agency for Healthcare Research and Quality, U.S. Preventive Services Task
Force Guide to Clinical Preventive Services Vol. 1, AHRQ Pub. no. 02-500.)

“Standards” imply that the intervention is intended for routine use when specif c
conditions are met, i.e., it is expected that it will be implemented. Clinically,
standards may be seen as indications. The implication is that a standard “must” be
implemented.2
“Guidance” implies that the decision whether or not use an intervention depends

on the presence or absence of indications plus contraindications. The implication
of guidance is that an intervention “should” be performed unless a contraindication
is present.
“Alternatives” imply that there is more than one potential intervention, none

of which can be generally recommended over the others. The choice between
intervention is made on the basis of individual preference. Thus, the implication
of alternatives is that the intervention “may” be used.

2At times, standards may imply that an implementation must not be performed.
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Table 38.2. Classificatio of recommendations
Quality of the Net benef t Net benef t Net benef t Net benef t

evidence substantial moderate small zero/negative

Good A B C D
Fair B B C D
Poor I I I I

(Adapted from Agency for Healthcare Research and Quality, U.S. Preventive Services Task
Force Guide to Clinical Preventive Services Vol. 1, AHRQ Pub. no. 02-500.)

The following example demonstrates how standards, guidance and alternatives
can be presented in a guideline.3

Screening for colon cancer is indicated for all those 50 years and over. It should
generally employ a method that effectively screens both the proximal and distal
colon and rectum. This may include yearly screening for fecal occult blood plus
f exible sigmoidoscopy every 3 to 5 years, colonoscopy every 10 years, or virtual
colonoscopy every 5 to 10 years.

This guideline incorporates standards, guidance, and alternatives. Screening is
expected for all men and women 50 years and older. This implies that screening
“must” be offered.Guidance is provided, recommending that amethodof screening
“should” be used that effectively screens both the proximal and distal colon plus the
rectum. The use of “should” implies that contraindications to a complete screening
of the colon may exist. Finally the guideline states three alternatives that “may”
be used, implying that any of these methods fulf ll the intent of the guideline.
The USPSTF has created a more formal set of levels of recommendation. These

aim to address whether or not a service should be “routinely provided.” Services
that are routinely provided may be included in “periodic health examinations” or
theymay be “delivered in other contexts such as illness visits.” Table 38.3 indicates
the implications of the grades of A, B, C, D, and I.

Underlying Assumptions
The recommendations made as part of guidelines usually require the authors to
make a number of assumptions related to the decision-making process employed
by the users of guidelines. Thus, before completing the interpretation component
we need to see if we can identify key assumptions and ask whether these are
realistic.
As we saw in our review of decision analysis and cost-effectiveness analysis,

quantitative decision-making requires the investigators tomake a series of assump-
tions, many of which aim to simplify the process and enable the investigators to
obtain the needed evidence. When the assumptions that underlie the evidence are
not realistic, we need to question the meaning or interpretation of the guideline.
While this may be the situation with any of the assumptions, two key assumptions
are frequently violated.Wewill refer to these as the discounting and the risk-taking
assumptions.

3 Standards, guidance, and alternatives can be seen as having legal and f nancial implications. The
implications of guidelines for malpractice and insurance coverage are still evolving and controversial.
However, guidelines are increasingly being linked to coverage and liability decisions.
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Table 38.3. Levels of recommendation
Levels of

Recommendation Action Justif cation Implications

A USPSTF strongly
recommends that
clinicians routinely
provide the service
to eligible patients.

Good evidence of
substantial health
benef t

This category represents
an evidence-based
recommendation to
provide the service on
a routine basis to all
those for whom it is
intended.

B USPSTF recommends
that clinicians
routinely provide
the service to
eligible patients.

The quality of the
evidence is good or
fair and the net
benef t is at least
moderate.

In this category a priority
may be placed on A
over B level services
considering
constraints of time and
resources, i.e., costs.

C The USPSTF makes
no recommendation
for or against
routine provision of
the service.

There is at least fair
evidence but the
balance of benef ts
and harms is too
close to justify a
general
recommendation.

Clinicians may choose to
offer the service on
other grounds. For
instance, an individual
patient may be
expected to gain
greater benef t than
the average patient
observed in studies, or
an individual patient’s
values or utilities are
unusual enough to
justify the service.

D The USPSTF
recommends
against routinely
providing the
service to
asymptomatic
patients.

There is at least fair
evidence that the
service is ineffective
(has zero net
benef t) or that
harms outweigh
benef ts.

This category represents
an evidence-based
recommendation not
to provide the service
on a routine basis.

I The USPSTF
concludes that the
evidence is
insuff cient to
recommend for or
against routinely
providing the
service.

The evidence is
classif ed as poor or
conf icting and the
balance of benef ts
and harms cannot
be determined.

This category implies
that an evidence-
based recommenda-
tion cannot be made
and decisions whether
or not to provide the
service must be made
on grounds other than
scientif c evidence.

(Adapted from Agency for Healthcare Research and Quality, U.S. Preventive Services Task
Force guide to clinical preventive services vol. 1, AHRQ Pub. no. 02-500.)

Discounting Assumption
As we have discussed as part of decision analysis and cost-effectiveness analysis,
most people would prefer to receive $100 today rather than one year from now.
This is true even if you are protected against inf ation (and def ation). Not only is a
dollar generally worth more today than next year, but so are the benef ts of health.
In general we’d rather pay off a $100 debt in one year rather than today, and we’d
rather delay bad outcomes or harms if we can. This process of taking time into
account is called discounting.
When formally synthesizing quantitative evidence, it is assumed that the dis-

count rate used for benef ts, harms, and cost is the same. As we have seen, the
use of different discount rates artif cially either encourages or discourages the use
of a particular intervention. For instance, if we place a higher discount rate on
benef ts than we do on harms and costs, we will encourage the immediate use of
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interventions with immediate benef ts and discourage the use of ones with delayed
benef ts.
Evidence-based studies and recommendations generally assume a 3% to 5%

discount rate per year. A 5% discount rate implies that a benef t received, a harm
suffered, or a cost paid one year from now has only 95% of the value as one that
occurs in the immediate future.
Despite the fact that evidence-based studies use a relatively lowdiscount rate and

require the use of the same discount rate for benef ts, harms, and costs, clinicians
and patients may not agree with these rules. Let us see how this might happen, and
the implications.

Image that you have a disease that results in a 20% probability of death each year for
two years. You have a choice between two options. In Option #1 you wait until the
beginning of year #2 to take the treatment. Option #2 is given now, at the beginning
of year #1. The interventions are identical except for the timing of the deaths and the
occurrence of side effects that only occur with Option #2. Look at Figure 38.1 and
choose Option #1 or Option #2.

Did you select Option #2? Many, if not most, people do. Selecting Option #2
implies that your discount rate is more than 10%, perhaps far more. That is, you
place a greater value on benef ts that occur immediately and less value on harms
that occur in the future compared to the 3% to 5% discount rate used in evidence-
based studies.

Option #1

Year #1

20% death from 0% death from

Year #2

the disease the disease

Treat

Option #2

Year #1

0% death from 20% death from

Year #2

the disease the disease

and

Treat

2% death from side effects

Figure 38.1. Comparison of two interventions.
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Thus we need to recognize that many guidelines take a longer-term view than
taken by individual patients or clinicians. Evenwhen the development of guidelines
complies with all of the recommended procedures for their development, they may
not be consistent with the priorities of the decision-makers who often place great
importance on short-term benef ts.

Risk-Taking Assumptions
In addition to assuming a uniform discount rate for benef ts, harms, and costs,
guideline development often assumes what has been called risk-neutrality. Risk
neutrality implies that decision-makers prefer the outcome that maximizes the
probability of an outcome times its utility, i.e., its expected utility. This assumption
is frequently violated because decision-makers do not seek only to maximize
expected utility, they often make decisions suggesting that they are risk-seeking
and at other times they are risk-avoiding.
Individual have their own patterns of risk-seeking and risk-avoiding; however,

for most people the desire to take or avoid risk is very dependent on the type of
situation and is thus predictable. To better understand this phenomenon, let us take
a look at two situations that begin with different utilities.

Situation A
Let us imagine that you have coronary artery disease and have a reduced quality of
life that has a utility of 0.8 compared to your previous state of full health that had
a utility of 1.0. Imagine that you are offered the following pair of options. You can
select only one of the options. Which do you prefer?

#1 Select a treatment with the following possible outcomes:
50% chance of raising the quality of your health (your utility) from 0.8 to 1.0
50% chance of reducing the quality of your health (your utility) from 0.8 to 0.6

#2 Refuse the above treatment and accept a quality of your health (your utility) of 0.8

Situation B
Let us imagine that you have coronary artery disease and have a reduced quality of
life that has a utility of 0.2 compared to your previous state of full health that had
a utility of 1.0. Imagine that you are offered the following pair of options. You can
select only one. Which do you prefer?

#1 Select a treatment with the following possible outcomes:
10% chance of raising the quality of your health (your utility) from 0.2 to 1.0
90% chance of reducing the quality of your health (your utility) from 0.2 to 0.1

#2 Refuse the above treatment and accept a quality of your health (your utility) of 0.2

Did you answer # 2 in Situation A and # 1 in Situation B? Most, but not all,
people do. To understand this exercise you need to appreciate that in terms of the
evidence, as def ned by expected utility, Option #1 and Option #2 are identical
in each situation. That is, it is a “toss-up” between these two options when only
probabilities and utilities are included, as demonstrated in Fig. 38.2 and Fig. 38.3.
Thus, the evidence does not argue for one option over the other. The choice is
really depend on your risk-taking attitude.4

4A minority of individual prefer Option #1 in both situations A and B. These individuals choose
to take a risk even when confronted with a situation in which most people are risk-avoiders. These
individuals have at times been termed risk-takers. Alternatively, a minority of individuals prefer Option
#2 in both situations A and B. These individuals choose to avoid risk even when confronted with a
situation in which most people would be risk-seekers. These individuals have at times been termed
risk-avoiders.
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Figure 38.2. Decision tree for situation A showing that Option #1 and Option #2 are a
toss-up in terms of expected utility.

Probability

0.1

0.9

1

0.1

0.2

1

0.1~~
~~ 0.2

0.1

0.2

Utility Expected
Utility

#1 Accept
treatment

#2 Refuse treatment
(1.0)

Bad outcome
(0.9)

Good outcome
(0.1)

Figure 38.3. Decision tree for situation B showing that Option #1 and Option #2 are a
toss-up in terms of expected utility.

What does it mean to choose Option #2 in SituationA andOption #1 in Situation
B? In Situation A we begin with a utility of 0.8. For many people this is a tolerable
situation and they do not want to take any chances that they may be reduced to a
lower, intolerable utility. Thus they want to guarantee continuation at a tolerable
level of health. This can be called the “guarantee effect.”
In SituationBwebeginwith a utility of 0.2. Formanypeople this is an intolerable

situation. These people are usually willing to take their chances of getting even
worse in the hopes of a major improvement in their health. When the quality of
life is bad enough, most people are willing to take their chances and “go for it.”
This risk-taking behavior can be called the “long-shot effect.”
Thus risk-seeking and risk-avoiding choices are both common, defensible, and

reasonably predictably. Risk-seeking choices are particularly prominent among
the severely ill, while risk-avoiding choices are particularly common among the
healthy or asymptomatic.
Thus, it is important to recognize that recommendations that carry even a low

probability of death or serious harm may be rejected by patients in generally good
health. An option that carries a substantial probability of death or serious harm
may be sought out by those who are seriously ill.
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We need to recognize that most recommendations are made on the assumption
of risk-neutrality, and decision-makers, be they clinicians or patients, often are
not risk-neutral when they make decisions. It is not surprising that even the most
formally constructed guidelines may not always make intuitive sense to patients
and clinicians.
In this chapter we have examined the meaning of guidelines in terms of the

strength of the recommendations, their implications for use, and the need to exam-
ine key assumptions of discounting for time and risk-taking. Now let us turn our
attention to the implementation of guidelines, their extrapolation into practice.
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Extrapolation
Implementation of guidelines in clinical or public health practice requires us to ask
how guidelines should be implemented; for what populations the guideline should
be used; and whether there is a process for updating or revising the guidelines.

Implementation in Target Population
Issues of implementation may include methods for organizing the delivery of
services, promoting the services to those most in need, documenting efforts to
offer the service, etc.
The process of implementation of guidelines may be presented as an algorithm.

Algorithms are usually constructed to provide a step-by-step decision-making
process that is displayed as a graphical fl wchart. Algorithms allow a visual display
of the decision-making process recommended in a guideline. Algorithms may be
quite complex. Regardless of the complexity, algorithms are constructed by using
a set of rules much like the rules used in the construction of decision trees.
In algorithms:
� an ellipse states or define the decision to be made
� six-sided figure incorporate questions that need to be answered
� boxes indicate an action that needs to be taken

By tradition, algorithms begin at the top and move down, indicating the ordering
of the process.
As illustrated in Fig. 39.1, algorithms usually pose an issue such as: Should this

patient be screened for colon cancer? They then ask specifi question to determine
whether a particular individual is a candidate for screening. This algorithm could
be extended to decide between the potential forms of screening and what to do if
the patient decides not to have a screening test.1
Methods for implementation also include issues that occur before or after the

issues addressed by algorithms. For instance, how should patients be sought for
screening or how should the decision be documented. Let us take a look at these
types of issues in the next hypothetical example.

Priority in screening programs for average-risk individuals should be on widely
covering the populationwith at least one screening intervention rather than repeatedly
screening the same individuals. Thus a reminder system should be implemented to
identify and remind all those 50 years and overwho have not received a recommended
colon cancer screening test to make an appointment.

1Algorithms are often used to allow delegation of implementation to those with less training or
experience. Algorithms are also used to clarify the underlying thinking process built into guidelines,
identify possibilities that are not addressedbyguidelines, or to teach the approach included in guidelines.
Algorithms are only one method for implementation of guidelines.

317
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Should this
patient be screened

for
Colon Cancer

Is patient
50 years or over?

Does the patient
have  a predisposing

disease?

Do Not
Screen

Screen

Screen

Yes

No

No

Yes

Figure 39.1. A simple algorithm that might be used to select patients for screening for
colon cancer.

Algorithms usually address what to do when confronted with an individual patient.
This implementation issue goes further. It addresseswhat should be done to identify
patients and offer them screening. This type of implementation issue implies that
organized health care delivery systems carry a responsibly that extends beyond a
responsibility for those who present for care. This broadened responsibility may
be incorporated into the methods for implementation.
At the other end of the process are issues of implementation related to documen-

tation of what has or has not been done, as illustrated in the following hypothetical
example.

Patients who are seen in primary care practice for other purposes should be advised
to undergo a screening procedure at approximately age 50. Documentation that this
advice was provided should be included in the patient’s medical record. Those who
indicate they do not wish to undergo screening should be asked to sign a release
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indicating that they have understood the recommendation and do not wish to undergo
screening.

Thus, the processes for implementing guidelines goes beyond the guidelines them-
selves. They ask us to extrapolate guidelines into practice.When extrapolating into
practice, we need to recognize that it is possible to extend the recommendations
to those who were not included in the initial target population. Thus, we need to
examine the extent towhich guidelines are extended beyond the target population.

Implementation Beyond the Target Population
When actually implementing a guideline, as with extrapolation of investigations,
it is important to consider whether the guideline is being extrapolated beyond the
target population. This may be done by extending the recommendations to those at
lower risk, perhaps younger or healthier patients, or to other countries or regions
that have different prevalence or severity of a disease, as illustrated in the next
example.

The colon cancer screening guideline developed for the United States are also recom-
mended for other developed countries with a high mortality rate from colon cancer,
but were not recommended for less-developed countries and for populations with
lower mortality rates from colon cancer.

This type of extrapolation is intentionally cautious. It is going beyond the data but
recognizing the dangers of extrapolating conclusions between societies with very
different distributions of disease and resources. A recommendation for widespread
use of colon cancer screening would have requires a long list of questionable
assumptions.

Review and Revision
As we have seen, the development of guidelines usually requires assumptions for
which there is little or no data. In addition, uncertainty is often addressed by a
subjective process such as the use of expert opinion. As time passes, evidence
may be available that addresses these assumptions. In addition, new options may
be available that have increased benef ts or decreased harms or costs. Thus, it is
important when examining a guideline to determine its publication date.
Guidelines should include a process and timetable for revision, as illustrated in

the next example.

Review of this guideline should occur after adequate evidence is available to assess
the benef ts, harms, and costs of virtual colonoscopy. The evidence of effectiveness
of colonoscopy every 10 years compared to sigmoidoscopy every 3 to 5 years plus
fecal occult blood testing every year should be reviewed in 5 years to determine
whether use of these methods continues to be recommended.

The rapid pace of change that is going on in health and health care requires that
most guidelines be formally reviewed either when specif c data is available or on
a set timetable. When a guideline is out-of-date, the reader of the guideline needs
to be very cautious in accepting its conclusions.
As we have seen, guidelines have become a key method for integrating evidence

into practice. The use of the M.A.A.R.I.E. framework can help us organize our
approach to reviewing guidelines and help us identify their uses and limitations.
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Questions to Ask: A Guide to the Guidelines
The following questions to ask can serve as a checklist when reading evidence-
based guidelines.

Method: Guideline’s purpose and target population

1. Purpose:What is the purpose of the guidelines?
2. Target population:What is the target population for whom the guidelines are

intended?
3. Perspective:What is the perspective of the authors of the guideline?

Assignment: Options and evidence being considered

1. Options:What options are being considered?
2. Structuring the evidence: How is the evidence organized? e.g., Systematic

review, meta-analysis, decision tree, etc.
3. Types of evidence:What types of evidence are being considered and how are

they being combined?

Assessment: Presenting the evidence

1. Sources of evidence:What sources of evidence are used?
2. Measurement of outcomes: How are the outcomes measured?
3. Filling holes in the evidence: How are holes in the evidence addressed? e.g.,

expert opinion, consensus, conference, Delphi method, etc.

Results: Synthesizing the evidence

1. Scoring the strength of the evidence: Is a scoring system used to grade the
strength of the evidence?

2. Addressing uncertainties: How are remaining uncertainties addressed? e.g.,
sensitivity analysis, subjective judgment, etc.

3. Eliminating options:What approach is used to eliminate options?

Interpretation:Making recommendations

1. Strength of the recommendation: Is a scoring system used to grade the
strength of the recommendation?

2. Types of recommendations:What types of recommendations are made? e.g.,
standards, guidance, alternatives, etc.

3. Underlying assumptions: What assumptions are made in the recommenda-
tions? e.g., discounting, risk-taking, etc.

Extrapolation: Implementation

1. Implementation in target population:Do the recommendations includemeth-
ods for implementation in the target population?

2. Implementation beyond the target population: Are recommendations made
for implementation beyond the target population?

3. Review and revision: Is a timetable and an approach to revision of the guide-
lines presented?
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40 Basic Principles

The “Selecting a Statistic” section presents a method for organizing and under-
standing the use statistical techniques. It is designed to provide a step-by-step
approach for selecting and interpreting commonly used statistical techniques. The
following chapters present the components of the fl wchart of statistics. The fina
chapter puts it all together in summary form and walks you through an example.
To gain practice using the fl wchart, the Studying a Study Online Web site at
www.StudyingaStudy.com provides eight exercises that illustrate the use of the
fl wchart.
A series of basic principles underlie the choice of statistical techniques. As we

have stressed, statistics have three purposes in the analysis of the results of health
research:

1. Estimation: To make estimates of the strength of relationships or the magnitude
of differences, i.e., effect size

2. Inference: To perform statistical significanc testing. These tests allow us to
draw inferences about a population from samples obtained from the same pop-
ulation, taking into account the influenc of chance.

3. Adjustment: To adjust for the influenc of confounding variables and interac-
tions on the estimates and inferences.

In the “Selecting a Statistic” section, our goal is to provide insights about how
statistics can be used to serve these purposes.
We must firs recognize that the measurements taken on individuals in an inves-

tigation are a subset or sample of a larger group of individuals who might have
been included in the investigation. This larger group is called the population.1
If we can plot the frequency with which different measurement values occur in

the population, this provides a graphic representation of the population’s distri-
bution of data. A population’s distribution of data tells us how frequently various
data values occur in the larger population from which samples are drawn for ob-
servation (Fig. 40.1). Biostatisticians use the term describe a distribution when
referring to the presentation of data on the larger population. Data in this graphic
form, however, are difficul to communicate.
Rather than describing a population distribution graphically, statistical methods

are concernedwith summarizing as simply as possible the population’s distribution
of data. Every type of distribution of data has a limited number of summary values
called parameters that are used to completely describe the particular distribution of

1 In health research, we usually think of measurements being taken on persons rather than on animals
or objects. This might lead us to themistaken impression that the statistical use of the term “population”
is the same as its use to describe a politically or geographically distinct collection of persons. Although
the term “population” in statistics might be that type of collection, it is not limited to such. Rather, a
population is define as the collection of all possible measurements (not necessarily of persons) from
which a sample is selected.

323
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Figure 40.1. A hypothetical population distribution for serum bilirubin measurements.

data. For example, to completely describe aGaussian distribution,2 two parameters
are needed—one measuring what is called location and the other measuring what
is called dispersion or spread of the data. Two examples of these parameters are the
mean3 (the distribution’s location along a continuum, ormore specif cally, its center
of gravity) and the standard deviation4 (the dispersion or spread of the distribution
as indicated by how far from the mean individual measurements occur). Figure
40.2 shows a Gaussian distribution with the mean (µ) indicated as the measure of
the distribution’s location and the standard deviation as the measure of dispersion.
To demonstrate what is meant by the location of a distribution, let us assume

that the mean serum bilirubin in the population is 1.2 mg/dL instead of 0.9 mg/dL.
Figure 40.3 shows what the Gaussian distribution of serum bilirubin would be in
this case.
Notice that the general shape of the distribution in Fig. 40.3 is unaltered by

changing the mean, but the position of the center of gravity of the distribution is
moved 0.3 mg/dL to the right.
If we changed the dispersion of the distribution in Fig. 40.2, however, the shape

of the distribution would be altered without changing its position. For example,

2 The Gaussian distribution is also known as the normal distribution. We avoid using that term
because “normal” has an alternativemeaning clinically. TheGaussian distribution is themost commonly
assumed population distribution in statistics.

3 The term average is often used as a synonym for the mean. In statistical terminology, these are not
the same thing. A mean is calculated by summing all the measurements and dividing by the number of
measurements. An average, on the other hand, is calculated by multiplying each of the measurements
by particular values, called weights, before summing them. That sum is then divided by the sum of
the weights. A mean is a special type of average in which the weight for every measurement is equal
to 1.

4 The standard deviation (σ ) is the square root of the variance (σ 2). The variance is equal to the mean
square deviation of data (χ i) from the mean (µ). Therefore, the population standard deviation is equal
to the square root of: �(χ i−µ)2σ ÷ N
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Figure 40.2. A hypothetical Gaussian distribution of serum bilirubin with a mean of
0.9 mg/dL and a standard deviation of 0.3 mg/dL. The broken lines indicate values equal
to the mean ± 1 standard deviation.

compare the distribution in Fig. 40.2 to Fig. 40.4, in which the standard deviation
has been changed from 0.3 mg/dL to 0.4 mg/dL.
We seldom are able to observe all the possible measurements in a population.

That is, we are not able to fully describe a population. Using measurements ob-
served in a sample from the larger population, however, we can calculate numerical

Serum Bilirubin (mg/dl)

0 1.801.501.200.900.600.30

Fr
eq

ue
nc

y

Figure 40.3. A hypothetical Gaussian distribution of serum bilirubin with a mean of
1.2 mg/dL and a standard deviation of 0.3 mg/dL. Comparison of this distribution with
Fig. 40.2 shows what is meant by different locations of a population’s distribution of data.
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Figure 40.4. A hypothetical Gaussian distribution of serum bilirubin with a mean of
0.9 mg/dL and a standard deviation of 0.4 mg/dL. Comparison of this distribution with
Fig. 40.2 shows what is meant by different dispersions of a population’s distribution of
data.

values to estimate the value of the larger population’s parameters. These samples’
estimates of a population’s parameters are the focus of statistical methods. In fact,
those estimates are called statistics. A single statistic used to estimate the numer-
ical value of a particular population’s parameter is known as a point estimate.
These point estimates are the statistics we use to make estimates of the strength of
relationships or magnitude of differences in the population.
As we have seen, a sample is a subset of all possible measurements from a

population. For all statistical methods, it is assumed that the sample is a randomly
chosen subset of the population from which it is drawn or obtained. Although
random subsets can be obtained in severalways, in this sectionwe consider only the
simplest (and most common), called a simple random sample. In a simple random
sample, all measurements in the population have an equal probability of being
included.5 Chance alone, then, dictates whichmeasurements are actually included.
When a population’s parameters are estimated using a sample’s statistics, chance

selection of the particular measurements to be actually included in the sample
inf uences how close the sample’s estimate is to the actual numerical values of the
population’s parameters. Unfortunately, we can never know how closely a particu-
lar statistic correctly ref ects its corresponding population’s parameter because we
would have to measure the entire population to know the actual value of the pa-
rameter. What we can determine, however, is how much the statistics are expected
to vary on the basis of chance variations among random samples. That knowledge
forms the basis of statistical inference, or statistical signif cance testing.

5 In a general sense, a random sample implies that any one individual in the population has a known
probability of being included in the sample. Here, we are limiting those known probabilities to the
condition that they are all equal to each other. Thus we are using a simple random sample.
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The framework of statistical inference was described in Section I, “Studying
a Study.” We noted that statistical signif cance testing is performed under the
assumption that the null hypothesis is true. The null hypothesis provides us with
the hypothetical value with which our observed estimates can be compared. For
instance, an odds ratio and a relative risk have a null hypothesis that their value is
1, while a difference has a null hypothesis that its value is 0.
We also noted in Section I that the bottom line in statistical signif cance testing

is the P value.6 P values are calculated from research observations or data by f rst
converting the sample’s estimate to an appropriate standard distribution. We use
standard distributions to simplify calculations because the P values corresponding
to any location in these distributions can be obtained from statistical tables. Much
of what we consider to be the methodology and mathematics of statistics is related
to converting estimates to a standard distribution in order to obtain P values.7
As we discussed in Section I, an alternative to using statistical signif cance

testing to investigate the inf uence of chance on sample estimates is to calculate an
interval estimate or conf dence interval.8 Within a conf dence interval, we have a
specif ed degree of conf dence (often 95%) that the larger population’s parameter
value is included.9 Commonly, conf dence intervals are found by algebraically
rearranging calculations used to perform statistical signif cance tests.10
When performing statistical signif cance tests or calculating conf dence inter-

vals, a one-tailed or a two-tailed procedure can be used. A two-tailed statistical
signif cance test or conf dence interval is used whenever the researcher cannot be
sure whether the population’s parameter is greater than or smaller than the value
implied by the null hypothesis. That is the usual circumstance, but occasionally
one encounters one-tailed statistical signif cance tests or conf dence intervals in
the health research literature. A one-tailed test or conf dence interval is applicable
when the investigator is willing to assume that the direction of the relationship
being studied is known and analysis is concerned only with examining the size or
strength of the relationship.
To illustrate the distinction between one- and two-tailed statistical procedures,

imagine a randomized clinical trial in which we measure diastolic blood pressure
for a group of individuals before and after treatment with an antihypertensive drug
that has previously been demonstrated to be effective. Before examining the data
resulting from the study, we might assume in our hypothesis that diastolic pressure
will decrease when patients are on the drug. In other words, we might assume that
it is impossible for the drug to cause an increase in diastolic blood pressure. With

6Recall that theP value is the probability of obtaining a sample at least as different from that indicated
by the null hypothesis as the sample actually obtained if the null hypothesis truly describes the popu-
lation. It is not, as often assumed, the probability that chance has inf uenced the sample observations.
That probability is equal to 1 (i.e., we are certain that chance has inf uenced our observations).

7 Examples of standard distributions include the standard normal, Student’s t, chi-square, and F
distributions. These distributions are discussed in later chapters.

8 This interval is sometimes referred to as conf dence limits. In statistical terminology, conf dence
limits are the numerical values that bound a conf dence interval.

9 In classic statistics, an interval estimatemeans that if we examine an inf nite number of samples of
the same size, a specif ed percentage (e.g., 95%) of the interval estimateswould include the population’s
parameter. A more modern view among statisticians is that this is tantamount to assuming there is a
specif ed chance (e.g., 95%) that the value of the population parameter is included in the interval. The
latter interpretation is usually the one of interest to the health researcher.

10When conf dence intervals are calculated from the same data as statistical signif cance testing,
they are said to be test-based.
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that assumption, statistical signif cance testing or conf dence interval calculation
can be one-tailed and the statistical power of our analysis increased. If, on the other
hand, our study hypothesis is that a new antihypertensive drug will lower diastolic
blood pressure, statistical signif cance testing or conf dence interval calculation
should be two-tailed. This is because we consider it to be possible, even though
it might be unlikely, that a new antihypertensive drug would cause an increase
in diastolic blood pressure. Notice that it is tempting for an investigator to use
a one-tailed test because it increases the statistical power. Thus, one need to be
cautious and thoroughly justify any use of one-tailed tests.

Selecting Statistical Methods
Let us take a look at the issues we need to address when selecting a statis-
tical technique or evaluating a statistical technique used in a research article.
When selecting a specif c statistical method, statisticians think about variables.
Variables represent data in the statistical method. For example, if we included
measurements of age in our research, age would be represented by one of the
variables in our statistical analysis. Once we understand what the variables are,
we must make two decisions: (a) what is the function of each variable and
(b) what type of data is represented by each of those variables. First, let us see
what we mean by the function of a variable.
Most statistical methods distinguish between two potential functions dependent

and independent variables. These are indications of the function of a variable in a
particular analysis. Usually, a collection of variables that is designed to investigate
a single study hypothesis contains only one dependent variable. That dependent
variable can be identif ed as the variable of primary interest, or the outcome, or the
endpoint of a study. Remember that in a case-control study, however, the dependent
variable is the previous characteristic that is being assessed. We generally wish
to test hypotheses or make estimates, or both, about that one dependent variable.
There may be more than one outcome in an investigation; however, we usually
analyze one outcome at a time.11
On the other hand, the collection of variables might contain no, one, or sev-

eral independent variables. The independent variables ref ect the study hypothesis
plus potential confounding variables which need to be taken into account when
hypotheses are to be tested and estimates are to be made. In addition, indepen-
dent variables may include variables that examine the interactions between two
independent variables.
To illustrate the distinction between dependent and independent variables, con-

sider a cohort study in which the relationship between smoking and the probability
of coronary artery disease is investigated. Suppose only two variables are mea-
sured on each individual: smoking (vs. not smoking) and coronary artery disease
(vs. no coronary artery disease). To analyze those data, we f rst recognize that our
primary interest is to test a hypothesis about the probability of coronary artery
disease. Thus, coronary artery disease is the dependent variable. Further, we wish

11 The use of statistical methods for adjustment and subsequent statistical signif cance testing has
traditionally been the end of the process. It is advisable however, to regard the process as a f rst step
in which the most important variables affecting an outcome are recognized. Once this is accomplished
the investigator may also include additional variables that combine two of the existing variables to
examine potential interactions between the variables. To be included, an interaction variable needs to
be statistically signif cant which is quite unusual.
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to compare the probability of coronary artery disease among smokers and non-
smokers. Hence, smoking status is the independent variable.
After identifying the one dependent variable, the number of independent vari-

ables determines the category of statistical methods that is appropriate to use.
For instance, if we are interested in estimating the probability of coronary artery
disease in a community without regard to smoking status or any other character-
istic of individuals, we would apply statistical procedures known as univariable
analyses. These procedures are applicable to a set of observations that contains
one dependent variable and no independent variables. To examine the probabil-
ity of coronary artery disease relative to smoking status, however, we would use
methods called bivariable analyses. These methods are applied to collections of
observations with one dependent variable and one independent variable. Finally,
if we were interested in the probability of coronary artery disease for individu-
als of various ages, genders, and smoking habits, we would apply multivariable
analyses.12 These methods are used for sets of observations that consist of one de-
pendent variable and more than one independent variable. Multivariable methods
are frequently used to accomplish our third goal of statistical methods: to adjust
for the inf uence of confounding variables.
Health research investigations often include several sets of variables. For ex-

ample, suppose we have conducted a randomized clinical trial in which subjects
received either drug X or a placebo and are cured or not cured of a particular dis-
ease. Because we were concerned about the inf uence of age and gender on cure
(i.e., we were concerned that age and gender differences might be confounding
variables), we included them in our research records. Therefore, our study contains
four variables: treatment (drug X or placebo), cure (yes or no), age, and gender.
The collection that includes all four variables would have cure as the variable of
interest; thus, cure would be the dependent variable. Treatment, age, and gender
would be independent variables, ref ecting our interest in examining cure relative
to the specif c treatment received and the subject’s age and gender.
Even before testing hypotheses about cure, however, we would likely be in-

terested in whether randomization achieved similar age distributions in the two
treatment groups. The collection of variables that would allow us to compare age
distributions contains age as the dependent variable and treatment group (drug
X or a placebo) as the independent variable. Here age is the variable of interest
and treatment is the condition under which we are assessing age. Thus, here the
independent and dependent variables are reversed. The decision about which is the
dependent variable and which is the independent variable depends on the question
being asked.

Types of Data
In order to select a statistical technique, we not only need to characterize the func-
tion of the variables in an analysis, wemust determine the type of data contained in

12A common error in the use of statistical terminology is to refer to procedures designed for one de-
pendent variable and more than one independent variable asmultivariate analyses. This term, however,
properly refers to procedures designed for more than one dependent variable. The use of multivariate
procedures, such as discriminate analysis, is typically rare in health research. Discriminant analysis,
however, may be used when there is only one outcome being measured but it is represented by nominal
data that must be represented by more than one nominal variable. Note that multivariate procedures
are not included in the f owchart.
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the measurement of each variable. To categorize types of data, the f rst distinction
we make is between continuous and discrete data.
Continuous data are def ned as data that provide the possibility of observing any

of an inf nite number of equally spaced numerical values between any two points
in its range of measurement. Examples of continuous data include blood pressure,
serum cholesterol, age, and weight. For each of these variables, we can choose
any two numerical values and imagine additional intermediate measurements that
would be, at least theoretically, possible to observe between those values.Wemight,
for instance, consider the ages of 35 and 36 years. We could think of different ages
between 35 and 36 that are distinguished by the number of days since a person’s
35th birthday or the number of hours or minutes since that birthday. Theoretically,
there is no limit to how f nely we can imagine time being measured. Notice,
however, that continuous data do not need to have an inf nite range of possible
values but rather an inf nite number of possible values within their range. That
range may, and usually does, have a lower and an upper boundary. Age is a good
example. The lower boundary is zero, and it is diff cult to imagine individuals
much older than 120 years.
Discrete data, on the other hand, can have only a limited number of values in their

range of measurement. Examples of discrete data include number of pregnancies,
stage of disease, and gender. For each of these variables, we can generally select
two values between which it is not possible to imagine other values. For instance,
there is no number of pregnancies between two and three pregnancies.
In practice, the distinction between continuous and discrete data is often

unclear. For one thing, no variables exist for which we can actually measure an
inf nite number of values.13 We solve this problem by recognizing that, if a great
number of measurements can be made and if the intervals between measurements
are uniform, then the measurements are nearly continuous. This, however, creates
another source of confusion in that it allows data that are theoretically discrete
to be redef ned as continuous. For example, the number of hairs on one’s scalp
is certainly discrete data: We cannot imagine observing a value between 99,999
and 100,000 hairs. Even so, the number of possible numerical values within the
entire range of the number of hairs is very great. Can we consider such a variable
to be composed of continuous data? Yes, for most purposes that would be entirely
appropriate.
Data can be def ned further by their scale of measurement. Continuous data are

measured on scales, called ratio or interval scales,14 that are def ned as having a
uniform interval between consecutive measurements. As opposed to continuous
data, some types of discrete data measurements are made on an ordinal scale.
Data on an ordinal scale have a specif c ranking or ordering, as do continuous data,
but the interval between consecutive measurements is not necessarily known or
constant. A common sort of variable measured on an ordinal scale is an ordering
of the stage of disease. We know, for instance, that stage 2 is more advanced than
stage 1, but we cannot assert that the difference between the two stages is the same
as the difference between stage 3 and stage 2.

13 For example, we might imagine but could not determine blood pressure in picometers of mercury.
So, in reality, all data are discrete.

14 The distinction between the ratio scale and the interval scale is that the former includes a true zero
value whereas the latter does not. Certain types of discrete data, such as counts, have uniform intervals
between measurements and, therefore, are measured in ratio or interval scales. Other types of discrete
data, however, are measured either on an ordinal or a nominal scale.
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If we are unable to apply any ordering to discrete data, then we say that the
data were measured on a nominal scale. Examples of characteristics composed of
nominal scale discrete data are treatment, gender, race, and eye color. Additional
data that we treat as nominal data include measurements with two categories even
though they might be considered to have an innate order because one is clearly
better than the other (e.g., alive vs. dead).
Note that the term “nominal variable” can be confusing. In its common use, a

nominal variable is a characteristic, such as gender or race, that has two or more
potential categories. Froma statistical point of view, however, one nominal variable
is limited to only two categories. Thus, race or eye color should be referred to as
nominal data that requiremore than one nominal variable for inclusion in statistical
procedures. The number of nominal variables required is equal to the number of
categories of the nominal data minus one. Thus, if we have data on gender with
two genders, we require only one nominal variable, but if we have data on race
with f ve races we require four nominal variables.
Thus, for purposes of selecting a statistical procedure or interpreting the result

of such a procedure, it is important to distinguish between three categories of
variables:

1. Continuous variables: includes continuous data, such as age, and discrete data
that contain a great number of possible values, such as number of hairs;

2. Ordinal variables: includes discrete data that can be ordered one higher than
the next and with at least three and at most a limited number of possible values,
such as stages of cancer;

3. Nominal variables: includes discrete data that cannot be ordered, such as race,
and dichotomous data that can assume only two possible values, such as dead
or alive.

The order in which those categories are listed indicates the relative amount of
information contained in each type of variable. That is, continuous variables con-
tain more information than ordinal variables, and ordinal variables contain more
information than nominal variables. Thus, continuous variables are considered to
be at a higher level than ordinal or nominal variables.
Measurements with a particular level of information can be rescaled to a lower

level. For example, age (measured in years) is a continuous variable. We could
legitimately rescale age to be an ordinal variable by def ning persons as being
children (0–18 years), young adults (19–30 years), adults (31–45 years), mature
adults (46–65 years), or elderly adults (>65 years). We could rescale age further
to be a nominal variable. For instance, we might simply divide persons into two
categories: young and old, or children and adults. We cannot, however, rescale
variables to a higher level than the one at which they were actually measured.
When we rescale measurements to a lower level, we lose information. That is,

we have less detail about a characteristic if it is measured on a nominal scale than
we do if the same characteristic was measured on an ordinal or continuous scale.
For example, we know less about a woman when we label her a mature adult than
we do when we say that she is 54 years old. If an individual is 54 years old and
we measured age on a continuous scale, we could distinguish that person’s age
from another individual who is 64 years old. However, if age was recorded on
the ordinal scale above, we could not recognize a difference in age between those
individuals.
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Loss of information, when rescaled measurements are used in statistical proce-
dures, has the consistent effect, all else being equal, of increasing the Type II error
rate. That is to say, rescaling to a lower level reduces statistical power, making it
harder to establish statistical signif cance and, thus, to reject a false null hypothe-
sis. What we gain by rescaling to a lower level is the ability to circumvent making
certain assumptions, such as uniform intervals, about the data that are required to
perform certain statistical tests. Specif c examples of tests that require and those
that circumvent such assumptions will be reviewed in greater detail in following
chapters in this section.
Thus far, we have reviewed the initial steps that must occur in selecting a sta-

tistical procedure. These steps are:

1. Identify one dependent variable and all independent variables, if present, on the
basis of the study question.

2. Determine for each variable whether it represents continuous, ordinal, or nom-
inal data.

Having completed these steps, we are ready to begin the process of selecting a
statistic.

The Flowchart
The remaining chapters of this section are arranged as branches of a f owchart
designed to facilitate selection and interpretation of statistical methods. Most sta-
tistical procedures that are frequently encountered in health research have been
included.
To begin use of the f owchart (Fig. 40.5), an investigator must f rst determine

which of a set of variables is the dependent variable. If the set contains more
than one dependent variable, an investigator can analyze the data using one of
the dependent variables at a time.15 If the set seems to contain more than one
dependent variable, the data may address more than one study hypothesis. In that
case, the relevant dependent variable and independent variables for a specif c study
hypothesis should be identif ed.

Identify one
dependent

variable

No
independent

variable

Continuous
dependent

variable

Ordinal
dependent

variable

Nominal
dependent

variable

Continuous
dependent

variable

Ordinal
dependent

variable

Nominal
dependent

variable

Continuous
dependent

variable

Ordinal
dependent

variable

Nominal
dependent

variable

One
independent

variable

More than one
independent

variable

Univariable analyses
(Chap. 41)

Bivariable analyses
(Chap. 42)

Multivariable analyses
(Chap. 43)

Figure 40.5. Flowchart to determine the chapter and division that discuss statistical proce-
dure relevant to a particular set of variables.

15Alternatively, an investigator can use multivariate procedures such as discriminant analysis or
factor analysis.
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Once a single dependent variable has been identif ed, the investigator identif es
the remaining variables as the independent variables. The investigator can use
the number of independent variables in the investigation to locate the chapter
that discusses this number of independent variables, i.e., no, one, or more than
one. Each chapter contains three major divisions. The f rst is concerned with sets
of variables in which the dependent variable is continuous. The second division
addresses ordinal dependent variables, and the third addresses nominal dependent
variables. Within each division, techniques for continuous, ordinal, and nominal
independent variables, if available, are discussed.
As a reader of the literature, it is possible for you to use the f owchart in reverse.

That is, you can identify a statistical technique or procedure used in a research
article. You can then locate this procedure at or near the end of the f owchart.
This will allow you to work backward through the f owchart to better understand
whether the technique is appropriate and what type of question it addresses.
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If a set of measurements contains one dependent variable and no independent
variables, the statistical methods used to analyze these measurements are a type
of univariable analysis. Three common uses of univariable analysis methods are
found in the health literature. The firs use is in descriptive studies (e.g., case series)
in which only one sample has been examined. For example, a researcher might
present a series of cases of a particular disease, examining various demographic
and pathophysiologic measurements on those patients.
The second common application of univariable analysis is when a sample is

drawn for inclusion in a study. For example, before randomization in a randomized
clinical trial, we might want to performmeasurements on the entire sample chosen
for study. That is, we may want to determine the mean age and percentage of
women in the group selected to be randomized before they are assigned to a study
or control group.
Usually, in descriptive studies and when examining one sample, the interest

is in point estimation and confidenc interval estimation rather than statistical
significanc testing. Tests of hypotheses are possible in the univariable setting, but
onemust specify, in the null hypothesis, a value for a population’s parameter.Often,
it is not possible to do this in a univariable analysis. For example, it is difficul to
imagine what value would be hypothesized for prevalence of hypertension among
individuals in a particular community.1
The third application of univariable analysis is one in which such a hypothesized

value is easier to imagine. That is the case in which a measurement, such as dias-
tolic blood pressure, is made twice on the same, or very similar, individuals, and
the difference between themeasurements is of interest. In that application, it is log-
ical to imagine a null hypothesis stating that the difference between measurements
is equal to zero. Thus, the difference in diastolic blood pressure measurements
is the dependent variable. Even though the difference, by its nature, is a com-
parison of groups, differences themselves are not compared between any groups.
Therefore, there is no independent variable. When comparing two measurements
of the same characteristic on the same, or very similar, individuals, we are deal-
ing with a univariable problem. Thus, in an investigation using paired data in
which the measurement on each pair constitutes one observation, the data are ana-
lyzed using univariable methods. Thus in univariable analysis the data may come
from one individual or from two individuals who are paired as part of the study
design.
In Chapter 40 we learned that the firs steps in choosing a statistical procedure

are:

1At first it may seem that a null hypothesis might state that the prevalence in a particular community
is equal to the prevalence in some other community or the prevalence estimated in another study. It
is important to keep in mind, however, that the value suggested for a population’s parameter in a null
hypothesis must be known without error. That will not be true unless all members of the comparison
community were included in the calculation of prevalence.

334
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1. Decide which variable is the dependent variable.
2. Determine how many, if any, independent variables the set of observations

contains.
3. Def ne the type of data represented by the dependent variable as being contin-

uous, ordinal, or nominal.

Nowwe are ready to use the f rst of our f owcharts. Each f owchart in the chapters
in this section begins at the top by indicating the types of variables used for the
dependent and independent variables (if any). They then indicate the estimate,
point estimate, or the measurement used to summarize the data. At the bottom of
each f owchart is the general category of statistical technique that ismost frequently
used to calculate conf dence intervals or test hypotheses by statistical signif cance
testing. A box in between indicates the name of the general category of statistical
procedures that identify the approach being used.

Continuous Dependent Variable
If we follow the f owchart in Fig. 40.5 down to univariable analyses, we can con-
tinue by using Fig. 41.1. If we are interested in a continuous dependent variable,
we are led to the mean.2 The mean is the point estimate of interest when we
have a continuous dependent variable and no independent variable. Next we note
“paired tests” enclosed in a box followed by “Student’s t test” that is underlined.
In this and subsequent components of the f owchart, boxes indicate, if applicable,
general categories of statistical methods, and underlining indicate specif c pro-
cedures that are used for statistical signif cance testing or calculating conf dence
intervals.

Continuous
dependent

variable

Mean

Paired
tests

Student's t
test

Figure 41.1. Flowchart to select a univariable statistical procedure for
a continuous dependent variable (continued from Fig. 40.5).

2 In univariable analysis of a continuous dependent variable, data are usually assumed to come from
a population with a Gaussian distribution. Therefore, the mean is commonly used to measure location.
The sample’s estimate of the population’smean is usually the estimate of primary interest. The f owchart
focuses on our interest in the mean. Dispersion of Gaussian distributions is measured by the standard
deviation or, alternatively, by the standard deviation squared, which is called the variance. Estimates of
the standard deviation and the variance or other measures of dispersion are not listed in the f owcharts.
Estimates of dispersion are usually used to take into account the role of chance in estimating the location
of the population’s distribution. They are not, by themselves, frequently estimates of primary interest.
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To calculate a conf dence interval for the mean of a sample, the Student’s t
distribution is most often used. The Student’s t distribution is a standard distri-
bution to which means of continuous dependent variables are converted to make
calculations easier.3
The Student’s t distribution allows us to derive conf dence intervals based on the

observed mean and the standard error. The standard error measures the spread or
dispersion in themean that wewould expect if all possible samples of the same size
as the one actually obtained were drawn from the population. The standard error
of a mean becomes smaller as the sample’s size grows larger. More specif cally,
the standard error is equal to the standard deviation divided by the square root of
the sample’s size. Thus, the larger the sample’s size the more closely the sample’s
mean can be expected to be to the population’s mean.
The standard error is used with the Student’s t distribution in calculating interval

estimates for means of continuous variables. The conf dence interval for a mean
is equal to the sample’s estimate of the mean ± the Student’s t value for the
desired level of conf dence multiplied by the standard error. For a 95%, two-tailed
estimate, the Student’s t value is approximately equal to 2 for sample sizes of
20 or more. By adding and subtracting a value equal to twice the standard error
to the point estimate of the mean, one can determine an approximate conf dence
interval when the sample size is 20 or greater. That is tantamount to saying, with
95% conf dence, that the population’s mean lies within the interval limited by the
sample mean ± two standard errors.4 For example, if we read in a research report
that the mean ± the standard error for serum cholesterol in a sample is equal to
150 ± 15 mg/dL, we can be 95% conf dent that the population mean lies within
the approximate interval from 120 to 180 mg/dL.
As we discussed at the beginning of this chapter, there is a special case of

a univariable analysis in which statistical signif cance testing is applicable. The
most common example is a study in which a continuous dependent variable is
measured twice in the same individual. For instance, we might measure blood
pressure before and after a patient receives an antihypertensive medication. If our
interest is not really in the actualmeasurements before and after treatment but rather
in the difference between those measurements, we have a paired design. This is
a univariable problem because the dependent variable is the difference between
measurements and no independent variable exists. By using a paired design and
having each individual serve as their own control, we have attempted to remove
the inf uence of variation between subjects in the initial, or baseline, measurement.
A Student’s t distribution is used to test hypotheses or construct conf dence

intervals for continuous data from a paired design in the same way it is used for
other univariable analyses. Although the statistical procedures used to analyze data

3 The Student’s t distribution is like the Gaussian distribution, but it requires an additional parameter
known as degrees of freedom. The purpose of degrees of freedom in the Student’s t distribution is to
ref ect the role of chance in estimation of the standard deviation. Use of the Student’s t distribution
to make interval estimates for means or for statistical signif cance testing recognizes the fact that the
standard deviation is estimated from the sample. That is, the standard deviation is not precisely known.
The degrees of freedom for a univariable sample of a continuous variable equals the sample’s size
minus one.

4Other conf dence intervals can, likewise, be estimated by considering multiples of the standard
error. More than 99% of possible sample estimates of the mean are included within the range of the
population mean ± 3 standard errors. This assumes that the population of all possible means has a
Gaussian distribution. This is in fact the case for a large number of samples. This can be demonstrated
by using the central limit theorem.
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collected in a paired design are no different from other univariable procedures, they
are often given separate treatment in introductory statistics texts. In those cases,
the procedure for examining the mean difference in data from a paired design is
called a paired or matched Student’s t test.5
The sample mean ± the standard error communicates how conf dent we can be

in our estimate of the population’s mean. Remember that the standard error is an
indicator of the dispersion of all sample means that might be obtained by sampling
the population repeatedly, each time obtaining a sample of the same size.
Rather than the samplemean ± the standard error, we often see univariable data

presented as the sample mean ± the standard deviation. The sample mean ± the
standard deviation addresses a different issue. The standard deviation estimates,
using the sample’s data, the dispersion of measurements in the larger popula-
tion. That is, the dispersion of the one particular sample’s data is the best avail-
able estimate we have available of the actual dispersion in the larger population.
Approximately 95% of the data values in a population distribution occur within
the range of the population mean ± 2 standard deviations.6
Therefore, when using univariable statistical procedures for a continuous depen-

dent variable, we may be interested in estimating the location of the population’s
mean and, thus, in the observed mean and standard error. Alternatively we may
be interested in estimating the dispersion of measurements in the population and,
thus, in the observed mean and standard deviation.

Ordinal Dependent Variable
Univariable statistical methods for ordinal dependent variables are presented in
Fig. 41.2. Unlike continuous variables, we do not assume a particular distribu-
tion of population data, such as a Gaussian distribution, for ordinal variables.
Methods used for ordinal variables are, thus, referred to as distribution-free or
nonparametric. It is important to realize, however, that these procedures are not
assumption-free. For example, we continue to assume that our sample is randomly
sampled or representative of some population of interest.
Because we are not assuming a particular distribution of the population’s data

measured on an ordinal scale, we cannot estimate the population’s parameters that
summarize the distribution. As a substitute we can identify the location of ordinal
data along a continuum. We can do that with the median. The median is the mid-
point of a collection of data, selected so that half the values are larger and half the
values are smaller than the median.7 The median will equal the mean when the

5 It is important to recognize that the matched Student’s t test is actually only applicable when pairing
is applied. The use of the term “matching” is confusing because it may also apply to the situation when
participants in an investigation are chosen to ensure balance between groups by age, gender, or other
factors. We referred to this type of matching as group matching. Paired or matched statistical methods
are not applicable when group matching has occurred.

6About two-thirds of the population data occur within the mean ± 1 standard deviation, and more
than 99% occur within the mean ± 3 standard deviations. To apply these interpretations, we assume
that the population’s data have a Gaussian distribution.

7No theoretical population distribution has the median as its measure of location, but it can be used
as an estimate of the mean of a Gaussian distribution. The median circumvents an assumption we make
when calculating the mean. That assumption is that intervals between measurements in a distribution
are known and uniform. Since the median is calculated using only the relative rank or order of the
measurements, the same median would be estimated regardless of whether or not those intervals are
known or uniform. Therefore, we can use themedian to estimate themean of a population of continuous
data.
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Ordinal
dependent

variable

Wilcoxon

Median

Signed-rank
test

Figure 41.2. Flowchart to select a univariable statistical procedure for
an ordinal dependent variable (continued from Fig. 40.5). In this and
subsequent components of the f owchart, the underlining indicates the
name of the most commonly used procedure for signif cance testing and
calculation of conf dence intervals.

population has a symmetric distribution, as illustrated in Fig. 41.3A, but not when
the distributions are asymmetrical as illustrated in Fig. 41.3 B and C.
Looking at the bottom of the f owchart in Fig. 41.2, we see Wilcoxon signed-

rank test underlined. This is the statistical signif cance test that would be used to
test the null hypothesis that the median equals zero in a univariable analysis. For
instance in an investigation of the estimated stage of disease before and after a
surgical staging procedure, the null hypotheses may be zero change in stage.

Nominal Dependent Variable
A single nominal dependent variable represents data in which a condition exists or,
by default, that it does not exist. Examples of nominal dependent variables include
dead/alive, cured/not cured, and disease/not disease. The amount of information
contained in a single nominal dependent variable is quite limited compared with
continuous dependent variables, such as age, or with ordinal dependent variables,
such as stage of disease.
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Figure 41.3. Location of the mean for (A) symmetric and (B, C) asymmetric distributions.
X indicates the location of the median.
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For each measurement or observation of a variable composed of nominal data,
we determine only the presence or absence of the condition. For example, we
might determine whether an individual in a sample has a particular disease. For a
sample consisting of more than one observation, we can estimate the frequency,
the number of times the condition occurs in the population. For instance, we
can estimate the number of persons in the population with a particular disease.
Most often, we are interested in the frequency relative to the total number of
observations. If we divide the number of times a particular condition is observed
in a sample by the total number of observations in that sample, we have calculated
the proportion of observations in the sample with the condition. A proportion
calculated from the sample’s observations is a point estimate of the proportion
of the population with the condition. An equivalent way to interpret the sample’s
proportion is that it estimates the probability of the condition occurring in the
population. Two commonly encountered proportions or probabilities in health
research are prevalence and case fatality.
Probabilities do not have a Gaussian distribution. They are assumed to have

either a binomial or Poisson distribution. A binomial distribution is generally
applicable to any probability calculated from nominal data when the observations
are independent of one another. By independent, we mean that the result of one
observation does not inf uence the result of another. The binomial distribution
is a standard distribution that can be used to calculate P values for statistical
signif cance tests and to calculate conf dence intervals.
A Poisson distribution is a special case of a binomial distribution that is used

when the nominal event, such as disease or death, is rarely observed and the
number of observations or potential events is great. The Poisson distribution is
computationally simpler than the binomial distribution. It generally provides a
good approximation of the binomial distribution when the number of individuals
observed with the condition is less than or equal to 5 and the total number of
individuals in a sample is greater than or equal to 100. Thus Poisson distribution
is commonly used for rates of disease.
Calculating conf dence intervals or performing statistical signif cance tests for

nominal dependent variables becomes feasible when the binomial and Poisson
distributions can be approximated by the Gaussian distribution. This is often
called a normal approximation,8 and it can be performed if the number of
individuals with a condition, i.e., the event, is greater than 5 and the number of
observations, i.e., the potential events, is greater than 10.

Rates
In statistical terminology, the term rate is reserved to refer to a measurement
which includes a measure of time. We have called this a true rate. It is important
to distinguish a rate from a proportion. Rates, unlike proportions, are affected by

8 In a normal approximation to a binomial or Poisson distribution, we only need to estimate the
probability of observing the event because the standard error is calculated from that probability. This is
unlike using the Gaussian distribution for continuous variables where wemust make separate estimates
of location and dispersion. As a result, it is not necessary or even appropriate to use the Student’s t
distribution to take into account, through degrees of freedom, the precision with which dispersion has
been estimated. Rather, the standard normal distribution is used. Thus, one can calculate the conf dence
interval of a proportion using a Poisson distribution if one knows only the frequency of the event. The
rule of three is a special case of this 95% conf dence interval when the frequency of the event is 0.
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the length of time that is used in measuring the events. The key to identifying a
rate or true rate is to ask whether the number of events is affected by the duration
of observation, i.e., more events occur in 2 years than 1 year. The most common
measurement of interest in health research that meets the statistical def nition of a
rate is the incidence rate.
Because diseases usually occur infrequently per unit of time, rates are often

assumed, in univariable analysis, to have a Poisson distribution. Statistical sig-
nif cance tests and determination of conf dence intervals for rates usually rely on
a normal approximation. Thus, procedures for rates are the same as those used
for probabilities, except that statistical signif cance testing and conf dence interval
determinations, if performed, use the Poisson distribution or its normal approxi-
mation.
Figure 41.4 summarizes the decisions that need to be made when choosing

which measurement to use for estimation and for statistical signif cance testing or
calculating conf dence intervals with one nominal dependent variable. To continue
down the f owchart we need to determine whether the measurement is a true
rate, i.e., it is affected by time or a proportion, i.e., it is not affected by time.
The underlined procedures at the bottom of the f owchart indicate those used for
statistical signif cance testing and calculating conf dence intervals.

Nominal
dependent

variable

Dependent
variable

affected by
time

Rate Proportion

Outcome
common

Outcome
uncommon

Proportion

Normal
approximation

to Poisson

Dependent
variable not
affected by

time

Normal
approximation

to Poisson

Normal
approximation

to binomial

Figure 41.4. Flowchart to select a univariable statistical procedure for a nominal dependent
variable (continued from Fig. 40.5).
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In bivariable analysis, we are concerned with one dependent variable and one inde-
pendent variable. In addition to determining the type of dependent variable being
considered, it is necessary, when choosing an appropriate statistical procedure, to
identify the type of data represented by the independent variable. The criteria for
classifying independent variables are the same as those previously discussed for
dependent variables, for example, nominal data such as race. If the data is repre-
sented by more than one independent variable, bivariable analysis is not used.
Methods for univariable analysis are largely concerned with calculating con-

fidenc intervals rather than statistical significanc testing. The reason for that
emphasis is that appropriate null hypotheses for univariable analyses are, except
for observations from paired samples, difficul to imagine. This limitation does
not apply to bivariable or multivariable analyses. In general, the null hypothesis
of no association between the dependent and independent variables is relevant to
bivariable analyses.

Continuous Dependent Variable
Figure 42.1 summarizes the steps in the fl wchart that are neededwhenwehave one
continuous dependent variable and one independent variable. Note that we do not
consider a continuous dependent variable associated with an ordinal independent
variable. The reason for this omission is that no statistical procedures are available
to compare a continuous dependent variable associatedwith an ordinal independent
variable without converting the continuous variable to an ordinal scale.

Nominal Independent Variable
Anominal independent variable divides dependent variable values into two groups.
For example, suppose we measured bleeding time for women who were birth con-
trol pill (BCP) users and nonusers. The dependent variable, bleeding time, is
continuous; the independent variable, BCP use/nonuse, is nominal. The nominal
independent variable divides bleeding time into a group of bleeding time measure-
ments for BCP users and for BCP nonusers. We have sampled bleeding time from
a population that contains a group of BCP users and a group of BCP nonusers.1
Twomethods of sampling independent variables are important in this example.2

The firs method is naturalistic or representative sampling. In the example of

1A universal assumption in statistics is that our observations are the result of random sampling. This
assumption applies to the dependent variable, but it is not necessarily assumed by statistical tests for
sampling of independent variables.

2 There is actually a third method of sampling independent variables. That method is similar to
purposive sampling, but instead of selecting observations that have specifi independent variable values,
the researcher randomly assigns a value, such as a dose, to each subject. This third method of sampling
is used in experimental studies. Note that the term “representative” may imply naturalistic sampling
if it refers to the independent variable and implies that the distribution of values of the independent
variable in an investigation’s sample reflect the distribution in the larger population.

341
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Figure 42.1. Flowchart to select a bivariable statistical procedure for a continuous depen-
dent variable (continued from Fig. 40.5).

bleeding time, naturalistic sampling would imply that we would randomly sample,
for example, 200 women from a large population and then determine who is a
BCP user or a BCP nonuser. If our sampling method was unbiased, the relative
frequencies of BCP users compared with BCP nonusers in our sample would be
representative of the frequency of BCP use in the population.
The second method is purposive sampling. If we used a purposive sample to

study bleeding time, we might identify 100 women who are BCP users and 100
women who are BCP nonusers, and who fulf ll the investigation’s inclusion and
exclusion criteria. Because the researcher determines the number of BCP users and
nonusers, the relative frequency of individuals with the nominal condition, birth
control pill use, is not representative of the relative frequency in the population.
Thus, the distinction between naturalistic and purposive sampling is whether

or not the distribution of the independent variable in the sample is representative
of the distribution of that variable in the population. In naturalistic sampling, it
is representative; in purposive sampling, it is not. Naturalistic sampling is often
used in cohort studies. Purposive sampling is common in case-control studies and
randomized clinical trials. As we shall see later in this chapter, the method used
to sample the independent variable affects our options for appropriate statistical
techniques or the statistical power of the technique chosen.
In bivariable analysis, such as the association between birth control pill use

and bleeding time, we are interested in a way in which we can compare bleeding
times between BCP users and nonusers. In the comparison of means, our interest is
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generally in their difference.3 For example, we may be interested in the difference
betweenmean bleeding times for BCPusers and nonusers.4 Calculating conf dence
intervals and statistical signif cance testing involving differences between means
use the Student’s t distribution, as indicated at the bottom right of Fig. 42.1.
The appropriateness of using the Student’s t distribution in statistical signif -

cance testing and calculation of conf dence intervals is not affected by the method
of sampling the independent variable. However, the statistical power of those pro-
cedures is greatest when the number of observations is the same for each category
of the independent variable. That is, we would have the greatest chance of demon-
strating statistical signif cance for a true difference in mean bleeding times among
200 women if we used purposive sampling to select 100 BCP users and 100 BCP
nonusers.

Continuous Independent Variable
We are often interested in using the measurement of a continuous independent
variable to estimate the measurement of a continuous dependent variable.5 As an
example, suppose that we are interested in evaluating the relationship between
the dosage of a hypothetical drug for treating glaucoma and intraocular pressure.
Specif cally, we would like to estimate the intraocular pressures (dependent vari-
able) we expect to be associated in the population with various dosages of the drug
(independent variable).
Some types of questions that can be addressed about estimation of the con-

tinuous dependent variable depend on how the continuous independent variable
was sampled. Regardless of whether naturalistic or purposive sampling was used,
however, we can construct a linear equation to estimate the mean value of the de-
pendent variable (Y) for each value of the independent variable (X). This is called
regression analysis or linear regression. In our example, the dependent variable
is the mean intraocular pressure, and the independent variable is the dosage of
medication. A linear equation in a population is described by two parameters: a
slope (b) and an intercept (a).

Y = a + bX

The intercept estimates the mean of the dependent variable when the independent
variable is equal to zero. Therefore, the intercept for the linear equation for in-
traocular pressure and dosage would estimate the population’s mean intraocular

3 The reason for this interest is that differences between means tend to have a Gaussian distribution,
whereas other arithmetic combinations, such as ratios of means, do not.

4 The standard error for the difference between means is calculated from estimates that combine the
variances from each of the groups being compared. To calculate the standard error for the difference
in mean bleeding times, we would combine our estimates of the variance in bleeding times among
BCP users and the variance among BCP nonusers. Specif cally, this standard error is equal to the
square root of the sum of the variances of the distributions of each group mean divided by the sum of
the sample sizes.Knowing that,we canmore fully understandwhywe cannot use univariable conf dence
intervals as a reliable surrogate for bivariable tests of inference. Comparison of univariable conf dence
intervals is equivalent to adding standard errors of two samples. That is not algebraically equivalent to
the standard error of differences between means.

5 The term predict rather than estimate is often used. We have avoided the term predict because it
implies the ability to extrapolate from independent data to dependent data even when the dependent
data is not known or is outside the range of values included in the investigation.
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pressure for individuals not receiving the drug. The slope of a linear equation tells
us the amount the mean of the dependent variable changes for each unit change
in the numerical value of the independent variable. The slope of the equation that
relates intraocular pressure to the dosage of drug estimates how much intraocular
pressure decreases for each unit increase in dosage.
If we are interested in this sort of estimation, we need to calculate two point

estimates from our sample’s observations: the intercept and the slope. To obtain
these estimates, we most often use least-squares regression. This method selects
numerical values for the slope and intercept that minimize the distances or, more
specif cally, the sum of the differences squared between the data observed in the
sample and those estimated by the linear equation.6
Rather than consider the intercept and the slope separately, however, we can

consider the linear equation as a whole as the estimate of interest. To do this, we
examine the amount of variation in the dependent variable that we are able to
explain using the linear equation divided by the amount of variation that we are
unable to explain with the linear equation.
In the example of medication to treat elevated intraocular pressure, we would

divide the variation in intraocular pressure that is explained by knowingmedication
dosage by the variation in intraocular pressure that is left unexplained. Then we
can perform statistical signif cance testing on the null hypothesis that the data
contained in the regression equation do not add to our ability to explain the value
of the dependent variable (intraocular pressure), given a value of the independent
variable (medication dosage). We use the F test to test the null hypothesis in
regression analysis, as indicated on the left side of Fig. 42.1.
In investigations such as the one examining mean intraocular pressure and

dosage of a medication to treat glaucoma, we usually assign dosages that are
not representative of all dosages that could have been selected. In other words, we
seldom can use naturalistic sampling to investigate a dose-response relationship. It
is appropriate to use linear regression methods regardless of whether a naturalistic
or a purposive sampling method is used to obtain values of the independent vari-
able. When a method of sampling, such as naturalistic sampling, is used to obtain
a sample of an independent variable that is representative of the larger population,
it is possible to use another category of statistical techniques known as correlation
analysis.
Correlation analysis might be used, for example, if we randomly sampled indi-

viduals from a population and measured both their quantity of salt intake and their
diastolic blood pressure. Here, both the independent variable (salt intake) and the
dependent variable (diastolic blood pressure) have been randomly sampled from
the population and thus are representative of all those who could have been in-
cluded. The distribution of quantities of salt intake in our naturalistic sample is
representative, on average, of the population’s distribution of salt intake.
The distinction between the dependent and the independent variables is less

important in correlation analysis than it is in other types of analyses. The same
results are obtained in correlation analysis if those functions are reversed. In our
example, it does not matter, from a statistical point of view, whether we consider

6 The differences between the observed numerical values of the dependent variables and those es-
timated by the regression equation are known as residuals. Residuals indicate how well the linear
equation estimates the dependent variable.
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diastolic blood pressure or salt intake as the dependent variable when performing
a correlation analysis.7
In correlation analysis, we measure how the dependent and independent vari-

ables’ values change together. In our example, wewouldmeasure how consistently
an increase in salt intake is associated with an increase in diastolic blood pressure.
The statistic that is calculated to ref ect how closely the two variables change
together is called their covariance. The most commonly used correlation coeff -
cient for two continuous variables is known as Pearson’s correlation coefficien .
Pearson’s correlation coeff cient is the ratio of covariance to the square root of
the product of the variances of the individual variables, and is symbolized by r.
This correlation coeff cient is a point estimate of the strength of the association
between two continuous variables. This is an important distinction between regres-
sion analysis and correlation analysis. Regression analysis can be used to estimate
dependent variable values from independent variable values but does not estimate
the strength of the relationship between those variables in the population. Correla-
tion analysis estimates the strength of the relationship in the population but cannot
be used to estimate values of the dependent variable corresponding to values of
the independent variable. Thus correlation analysis and regression analysis can
provide complementary information.
The correlation coeff cient has a range of possible values from –1 to +1. A

correlation coeff cient of zero indicates no relationship between the dependent and
independent variables. A positive correlation coeff cient indicates that as the value
of the independent variable increases, the value of the dependent variable increases.
A negative correlation coeff cient indicates that as the value of the independent
variable increases, the value of the dependent variable decreases.
Interpreting the strength of association between the dependent and independent

variables is facilitated if we square the correlation coeff cient to obtain the coef-
ficien of determination (R2). If we multiply the coeff cient of determination by
100%, it indicates the percentage of variation in the dependent variable that is ex-
plained by or attributed to the value of the independent variable.8 The coeff cient of
determination can be thought of as a measure for continuous variables parallel to
attributable risk percentage for nominal variables because it addresses how much
variability in the dependent variable can be attributed to the independent variable.
It is appropriate to use the coeff cient of determination only when the indepen-
dent variable, as well as the dependent variable, is sampled using representative
or naturalistic sampling.
One of the most common errors in interpretation of statistical analysis is to

incorrectly use the correlation coeff cient to make point estimates for a particular
population. That is, the correlation coeff cient is sometimes used even though the
independent variable’s values are not sampled by amethod that ensures, on average,
that the sample will be representative of the population. Using this approach can
create an artif cially high correlation coeff cient due to sampling only extreme
values of the independent variable.

7When performing regression analyses or correlation analyses, we make a series of assumptions.
These are referred to as random sampling of the dependent variable, homogeneity of variances or
homoscedasticity, linear relationship between dependent and independent variables, and independent
variable measured with perfect precision.

8 The term “explain” is used here because it is widely used. “Explain” should not imply a cause and
effect relationship, correlation is really a form of association.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-42 Riegelman-1490G Riegelman-v9.cls August 20, 2004 18:9

346 Section VI. Selecting a Statistic

Ordinal Dependent Variable
In Fig. 42.2, note that we do not consider an ordinal dependent variable associated
with a continuous independent variable because before we can include the data
from a continuous independent variable, it must be converted to the ordinal scale.
This is similar to the situation we discussed with a continuous dependent vari-
able in an analysis with an ordinal independent variable. No statistical procedures
are commonly used to compare an ordinal dependent variable with a continuous
independent variable without making such a conversion.

Nominal Independent Variable
As indicated in Fig. 42.2, the Mann-Whitney test is a statistical signif cance test
applicable to one nominal independent variable and an ordinal dependent variable.
It is also applicable to a continuous dependent variable converted to an ordinal
scale. This might be done to circumvent some of the assumptions of the Student’s
t test. The null hypothesis considered in a Mann-Whitney test is that the two
groups do not differ in location in the population. Because this is a nonparametric
test, no parameter of location is specif ed in the null hypothesis. The difference
between medians is indicated in parenthesis to indicate that it may be used as a
point estimate even though it is not specif ed in the null hypothesis.

Ordinal Independent Variable
If the independent variable represents ordinal or continuous data converted to an
ordinal scale,we can estimate the strength of the association between the dependent

Ordinal
dependent

variable

Ordinal
independent

variable

Nominal
independent

variable

Independent
variable from
naturalistic

or purposive
sample

Independent
variable from
naturalistic

sample

Spearman's
correlation
coefficient

(Difference between
medians)

Spearman's
test

Mann-Whitney
test

Figure 42.2. Flowchart to select a bivariable statistical procedure for an ordinal dependent
variable (continued from Fig. 40.5).
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and independent variables using a method parallel to correlation analysis. In the
case of ordinal variables, the most commonly used correlation coeff cient is Spear-
man’s correlation coeff cient. That coeff cient can be calculated without making
many of the assumptions necessary to calculate the coeff cient described for con-
tinuous variables. It is important to remember, however, that any correlation co-
eff cient must be determined from samples in which both the dependent and the
independent variables are representative of a larger population. In other words, we
must use naturalistic sampling. There is no nonparametric test that releases us from
this assumption. This considerably limits the ability to use correlation methods.
As with a correlation coeff cient calculated for two continuous variables, we

can perform statistical signif cance testing and calculation of conf dence intervals.
For Spearman’s correlation coeff cients we accomplish this using Spearman’s test.
We can also use the square of the Spearman’s correlation coeff cient to provide a
nonparametric estimate of the coeff cient of determination, the percentage of the
variation in the dependent variable that is explained by the independent variable. In
contrast to Pearson’s coeff cient of determination, Spearman’s coeff cient of deter-
mination tells us the percentage change in the dependent variable’s category rank
that can be explained by changes in the category rank of the independent variable.9

Nominal Dependent Variable
Bivariable statistical methods for nominal dependent variables are presented in
Fig. 42.3.

Nominal dependent variable

Nominal independent variable

Paired design

Dependent
variable not
affected by

time
Odds ratio,
relative risk,
or, difference
in proportions

Odds ratio,
relative risk,
or, difference
in proportions

McNemar's
test

Unpaired design

Continuous
independent

variable

Dependent
variable not
affected by

time

Slope and
intercept

Chi-square
test for trend

Nominal
approximation

Rate
difference

or ratio

Dependent
variable

affected by
time

Dependent
variable not
affected by

time

Chi-square
test, or normal
approximation,

or Mantel-
Haenszel test

or Fisher's exact

Figure 42.3. Flowchart to select a bivariable statistical procedure for a nominal dependent
variable (continued from Fig. 40.5).

9Note that if continuous data is converted to ordinal data and a Spearman’s correlation coeff cient is
calculated, it will often be larger than the corresponding Pearson’s correlation coeff cient. This is due
to the fact that correlation coeff cients for ordinal data are attempting to estimate a category of ordinal
data rather than a particular value as in the correlation coeff cient for continuous data, i.e., Pearson’s
correlation coeff cient.
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Nominal Independent Variable: Paired Design
If investigators are interested in collecting information on a nominal dependent
variable and a nominal independent variable, they have the choice of a paired or
an unpaired design. If appropriately constructed, a paired design may have more
statistical power than a corresponding unpaired design. Remember that pairing
is the special type of matching in which both the dependent and independent
variables are measured on each individual in a pair of two similar individuals, and
the observations on the pair are analyzed together. Alternatively, an individual may
serve as her own control, and data from the same individual can be used twice in
the analysis.
As indicated in Fig. 42.3, the odds ratio or relative risk are commonly used point

estimates for estimating the strength of the relationship in a paired design. To con-
duct statistical signif cance tests on pairs of data,McNemar’s test is used. Related
methods can be used to calculate conf dence intervals from paired observations.

Nominal Independent Variable: Unpaired Design
In bivariable analysis of anunpairednominal dependent variable,we f rst determine
whether the dependent variable is affected by time.Affected by time implies that an
increase in the length of observation results in a greater probability of observing the
outcome. This distinction is especially important when study subjects are observed
for different lengths of time. If the denominator variable is not affected by time, we
may use a proportion or probability and obtain either a relative risk or a difference
in proportions, or alternatively, we can calculate an odds ratio. If the dependent
variable is affected by time, we use a rate, or what we have called a true rate, and
obtain either a difference or a ratio.
From a statistical signif cance testing point of view, the choice to use a ratio

or a difference usually does not matter. In fact, in bivariable analysis, the same
statistical signif cance tests are used regardless of whether the point estimate is a
ratio or a difference. This is suggested by the fact that the null hypothesis that a
difference is equal to 0 is equivalent to the null hypothesis that a ratio is equal to 1.
When a ratio is equal to 1, the numerator must be equal to the denominator; thus,
the difference between the numerator and the denominator must be equal to 0.
In bivariable analysis of nominal independent and dependent variables from

an unpaired design, we are likely to encounter a variety of statistical signif cance
testing methods. As in univariable analysis of a nominal dependent variable, these
methods are of two general types: exact methods and normal approximations. The
exact method for bivariable proportions is the Fisher’s exact procedure.10 Two
commonly used approximation methods for proportions are the normal approx-
imation and the chi-square test.11 Rates are most often analyzed using a normal
approximation. Statistical signif cance tests and calculation of conf dence intervals
for the odds ratio are usually based on the Mantel-Haenszel test, also a normal
approximation.

10 The Fisher’s exact procedure is used when any of the frequencies predicted by the null hypothesis
for a 2×2 table are less than 5.

11Actually, the normal approximation and the chi-square procedures are equivalent in bivariable
analysis. The square root of the chi-square statistic is equal to the normal approximation statistic.
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Ordinal Independent Variable
When an investigation includes a nominal dependent variable and ordinal inde-
pendent data, the ordinal independent data needs to be converted to nominal data.
Remember that ordinal data with multiple potential categories will require more
than one nominal variable. It will require one less than the number of potential
categories of the ordinal data. Thus this type of analysis is actually a form of
multivariable analysis and will be discussed in Chapter 43.

Continuous Independent Variable
When we have a continuous independent variable that is not affected by time and
a nominal dependent variable, we are able to consider the possibility that a trend
exists for various values of the independent variable. For example, we might be
interested in examining the study hypothesis that the proportion of individuals
who develop stroke increases in a linear fashion as the diastolic blood pressure
increases versus the null hypothesis that no linear relationship exists between those
variables. This same sort of hypothesis is considered in simple linear regression
with the exception that here we have a nominal dependent variable rather than a
continuous dependent variable, as indicated on the right side of Fig. 43.3. Rather
than a simple linear regression, we perform a chi-square test for trend.12
We have now examined the commonly used statistical methods for analyzing

one dependent variable and one independent variable. Often, however, we will be
interested in more than one independent variable. In these situations, we will use
multivariable techniques, as discussed in the next chapter.13

12 Even though we have a special name for the test used to investigate the possibility of a linear trend
in a nominal dependent variable, we should realize that a chi-square test for trend is very similar to a
linear regression. In fact, the point estimates in the most commonly used methods to investigate a trend
are the slope and intercept of a linear equation that are identical to the estimates we discussed for linear
regression. Point estimation of the coeff cients in a chi-square test for trend is identical to estimation in
a simple linear regression. For inference and interval estimation, a slightly different assumption is made
that causes conf dence intervals to be a little wider and P values to be a little larger in the chi-square
test compared with linear regression. That difference decreases as the sample size increases. Also
note that here we are using a very specif c meaning of the term “trend.” Trend is often used less
rigorously to imply that the data suggests a relationship even though the results are not statistically
signif cant.

13 Note that when nominal data have more than two categories, more than one nominal variable is
required to represent the data. When nominal data are used as independent variables, multivariable
analysis, as explained in Chapter 43, is used. When more than one nominal variable is required for the
dependent variable, special multivariate techniques, such as discriminant analysis, are needed. These
techniques are beyond the scope of this book. Note, however, that the chi-square test can be used for
more than one nominal dependent variable.
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In multivariable statistics,1 we have one dependent variable and two or more inde-
pendent variables. The independent variablesmaybemeasured on the same scale or
on different scales. For example, all the independent variables may be represented
by continuous data, or alternatively, some may be represented by continuous data
and some may be represented by nominal data. When one characteristic such as
race requires more than one independent nominal variable, multivariable analysis
is also used.
Only nominal and continuous independent variables are indicated in a number

of fl wcharts that follow. In these situations, ordinal independent variables can be
included in multivariable analysis, but they must firs be converted to a nominal
scale.2
There are three general advantages to using multivariable methods to analyze

health research data. First, this approach allows investigation of the relationship be-
tween a dependent variable and an independent variablewhile controlling for or ad-
justing for the effect of other independent variables. This is the method for remov-
ing the influenc of confounding variables in the analysis of health research data.
For example, if we were interested in diastolic blood pressure of persons receiv-

ing various dosages of an antihypertensive drug, we may want to control for the
potential confounding effects of age and gender. To adjust for these potential con-
founding variables in the analysis of results, we would use multivariable analysis
with diastolic blood pressure as the dependent variable and with dosage, age, and
gender as independent variables.
Investigators thus seek to include confounding variables in their analysis of

results. In doing this, they need to carefully choose which variables to include,
because confounding variables themselves may be associated with each other. For
instance, older patients might generally receive lower doses of medication. When
two independent variables are associated and thus share information, we say that
multicollinearity is present. Often it is necessary for an investigator to include
only one of the variables that demonstrate multicollinearity. Much of the decision-
making in multivariable techniques is related to which variables to include and
which to exclude from the analysis of results.3

1Multivariable analysis is often referred to asmultivariate analyses. Truemultivariate analysis refers
to analyses in which there are more than one dependent variable. These forms of analyses are rarely
used in medicine or public health.

2Multivariable analyses also allow inclusion of interaction terms. Traditionally, interaction terms,
unlike confounding variables, need to be statistically significan before they can be entered into a
multivariable analysis. Tests for interaction generally have low statistical power. Thus, despite the
fact that interactions are common, the inclusion of interaction terms is relatively uncommon. Use of
P values greater than 0.05 have been suggested as a way of addressing this issue.

3 Some indication of the existence of shared information by independent variables can be obtained
by examining bivariable correlation coefficient for those variables, but the best method to evalu-
ate the existence of multicollinearity is to inspect regression models that include and exclude each
independent variable. If regression coefficient change substantially when a variable is included com-
pared to when it is excluded, multicollinearity exists.

350
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The second advantage of multivariable statistical methods is that theymay allow
us to perform statistical signif cance tests on several variables while maintaining
a chosen probability of making a Type I error. In other words, at times we may
use multivariable analysis to avoid the multiple comparison problem introduced
in Section I, “Studying a Study.”
To recall the multiple comparison problem, imagine that we have many inde-

pendent variables that we compare with a dependent variable using a bivariable
method such as the Student’s t test. Although in each of those bivariable tests
we permit only a 5% chance of making a Type I error, the chance that we would
commit at least one Type I error among all those comparisons would be somewhat
greater than 5%. We call the chance of making a Type I error for any particular
comparison the testwise error. The chance of making a Type I error for at least
one comparison is known as the experimentwise error. Bivariable analyses control
the testwise error rate. Many multivariable methods, on the other hand, are de-
signed to maintain a consistent experimentwise Type I error rate. That is, at times
multivariable procedures are in and of themselves capable of taking into account
multiple comparison issues.
Two types of null hypotheses are examined in most multivariable methods

of analysis that are designed to avoid the multiple comparison problem. The
f rst is known as the omnibus null hypothesis. This null hypothesis addresses
the relationship between the dependent variable and the entire collection of in-
dependent variables as a unit. A drawback of the omnibus null hypothesis is
that it does not allow investigation of relationships between the dependent vari-
able and each of the independent variables individually. This is accomplished
by the second type of null hypotheses addressed in partial tests or pairwise
tests.
A third advantage of multivariable methods is that they often allow the inves-

tigator to accomplish estimation, inference, and adjustment using one statistical
procedure. Thus, depending on the type of method, odds ratios or life tables may
be produced directly from the statistical procedures. At times, however, this may
limit the choice of point estimate that can be produced from a particular form of
analysis.
Because of these advantages of multivariable methods, they are frequently used

to analyze health research data. Let us now take a closer look at these methods and
the ways they can be interpreted.

Continuous Dependent Variable
Figure 43.1 summarizes the steps that are needed when we have one continuous
dependent variable and two or more independent variables.

Nominal Independent Variables
In bivariable analysis of a continuous dependent variable and a nominal indepen-
dent variable, the independent variable has the effect of dividing the dependent vari-
able’s values into two subgroups. In multivariable analysis, we have more than one
nominal independent variable, and thus we are able to divide dependent variable
values into more than two subgroups. The most common methods to compare
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Figure 43.1. Flowchart to select a multivariable statistical procedure for a continuous
dependent variable (continued from Fig. 40.5).

means of the dependent variable among three or more subgroups are forms of a
general statistical approach called analysis of variance (ANOVA).4
The simplest type of ANOVA is one in which nominal independent variables are

used to separate the nominal dependent data into subgroups. For example, suppose
we are interested only in the relationship between fasting blood glucose and race,
def ned as white, black, or other. “Other” is when the race is not white or black.We
now have to consider three subgroups of race (white, black, and other) for which
we determine fasting blood glucose. This type of ANOVA is known as a one-way
ANOVA.5 The omnibus null hypothesis in a one-way ANOVA is that the means
of the subgroups are all equal to one another. In our example, the omnibus null
hypothesis would be that mean fasting blood glucose for whites is the same as for
blacks and for persons of other races.
In order to use one-way ANOVA, we need to assume that it is impossible for

an individual to be included in more than one category. For example, in health
research, we perhaps artif cially usually regard races as mutually exclusive cate-
gories. For each individual, we record a single race. Thus, it is impossible, in this
context, for an individual to be considered both white and black.
Now let us imagine that we are interested in both race and gender. When we

use both race and gender, these individual characteristics are not mutually exclu-
sive. For example, an individual can be of either gender regardless of his or her
race. It is necessary, therefore, to have another way in which subgroups can be

4 It seems incongruous that a method to compare means should be called an analysis of variance.
The reason for this name is that ANOVAs examine the variation between subgroups, assuming that
the variation within each of the subgroups is the same. If the variation between subgroups exceeds the
variation within those groups, the subgroups must differ in location, measured by means.

5When only one nominal independent variable is being considered, we are comparing only two
subgroups, and the one-way ANOVA is exactly the same as a t test for bivariable analysis.
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def ned by nominal independent variables when we wish to utilize more than one
characteristic.
Commonly, the solution is to segregate those characteristics into factors. A

factor is a collection of one or more nominal independent variables that def ne
mutually exclusive, but topically related, categories or characteristics. For exam-
ple, suppose we have two independent variables def ning race and one indepen-
dent variable def ning gender in our sample of persons for whom we measure
fasting blood glucose levels. The three independent variables in this example
actually represent two separate factors: race and gender. We can def ne 6 sub-
groups among which wewish to compare mean fasting blood glucose levels: white
males, white females, black males, black females, other males, and other females.
The type of ANOVA that considers two or more factors is known as a factorial
ANOVA.
With factorial ANOVA, we can test the same sort of omnibus null hypothesis

tested in a one-way ANOVA. In our example, the null hypothesis would be that
mean level of fasting blood glucose is the same in white females as it is in white
males, black females, black males, other females, and other males. In addition, we
can test hypotheses about the equality of means of fasting blood glucose levels
between the subgroups within a given factor. That is, we can examine the separate
effect of different races on mean level of fasting blood glucose and the effect of
gender on mean level of fasting blood glucose. The statistical tests that are used to
examine the factors separately are often called tests of main effects. All these null
hypotheses in ANOVAs are tested using an F test.
The results of examining a main effect take into account possible confounding

relationships of the other factors. In our example, wewould test the null hypothesis
that the fasting blood glucose mean levels for the three race subgroups are all equal
by using an ANOVA test of the main effect of race. That test would control for
any differences in distribution of genders among the racial groups. Thus, factorial
ANOVA allows us to take advantage of the ability of multivariable analysis to
control for multiple confounding variables.6
In addition, ANOVAs also address the second advantage, dealing with the mul-

tiple comparison problem. In ANOVAs, the omnibus null hypothesis maintains
an experimentwise Type I error rate equal to α, usually 5%. It is seldom enough,
however, to know that differences exist among means within a factor without
knowing specif cally in which category the means differ. That is, it is not enough
to know that mean fasting blood glucose level differs by race without knowing the
contribution of specif c races to the difference.

6 To interpret tests of main effects, it is assumed that the factor has the same relationship with the
dependent variable regardless of the level of other factors. That is, we assume that the difference
between the fasting blood glucose means in blacks, whites, and other races is the same regardless of
whether the individual is a male or a female. This is not always the case. For example, females might
have a higher fasting blood glucose level than do males among white subjects, but females and males
might be similar or, in a greater extreme, males might have higher fasting blood glucose level than
do females among black subjects. If this sort of relationship exists between factors, we say that an
interaction exists between gender and race. In clinical and epidemiological terminology, we might
say that a synergy or effect modificatio exists between race and gender in determining fasting blood
glucose levels. In addition to testing for main effects, factorial ANOVAs can be used to test hypotheses
about interactions. Additional interaction variables for race and gender would tell us, for instance, how
much more the fasting blood glucose level differs for black women than would be expected by adding
the effect of being black to the effect of being female.
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To examine the subgroup means in greater detail, we use pair-wise tests.7 Note
that in several places in Fig. 43.1 the underlined test used for statistical signif -
cance tests of the omnibus hypothesis is followed after a comma by the statistical
signif cance test used for pair-wise comparisons. The most widely used pair-wise
test for sets of observations that include a continuous dependent variable and more
than one nominal independent variable is the Student-Newman-Keuls test. As in-
dicated in Fig. 43.1, after using the F test, this test is used for pair-wise statistical
signif cance testing for one-way and factorial ANOVA. This test allows examina-
tion of all pairs of subgroup means while maintaining an experimentwise Type I
error rate of α = 0.05. An algebraic rearrangement of the Student-Newman-Keuls
test allows us to calculate conf dence intervals for the dependent variable for each
value of the independent variables.

Continuous Independent Variables
When the independent variables in a study are represented by continuous data, we
can choose between two approaches that correspond to approaches discussed in
Chapter 42 in which we considered regression analysis and correlation analysis.
Most often, we are interested in estimating values of the dependent variable corre-
sponding to specif c independent variable values. In bivariable analysis, we used
linear regression to estimate the value of the dependent variable given the value of
the independent variable. When we have more than one continuous independent
variable, we use multiple regression analysis.8
In multiple regression, the mean of a continuous dependent variable is estimated

by a linear equation that is like the one in simple linear regression except that it
includes two or more continuous independent variables.

Y = a+ b1X1 + b2X2 + . . . + biXk

For example, suppose we are interested in estimating plasma cortisol levels based
on total white blood cell (WBC) count, body temperature, and urine production
in response to a water load. To investigate that relationship, we measure cortisol
(µg/dL), WBC count (103), temperature (◦C), and urine volume (mL) in 100 pa-
tients. Using multiple regression, we might estimate the following linear equation:

Cortisol = −36.8+ 0.8×WBC+ 1.2× temperature+ 4.7× urine volume

As in ANOVA, multiple regression allows testing of an omnibus hypothesis that
has an overall Type I error rate usually set a 5%. The null hypothesis in multiple
regression is that the entire collection of independent variables cannot be used to
estimate values of the dependent variable.AnF test is used to evaluate the statistical
signif cance of the multiple regression omnibus null hypothesis. Suppose that, in
our example, we f nd a statistically signif cant F. This implies that, if we know the

7 In ANOVA, these pair-wise tests are often called á posteriori tests. The reason for that terminology
is that some pair-wise tests, especially the older tests, require a statistically signif cant test of the
omnibus hypothesis before the pair-wise test can be used.

8Note that the use of a continuous dependent variable in regression method requires fulf llment of a
series of assumptions including Gaussian distribution of the dependent variable and homoscedasticity
or equality of the variance, i.e., equal variance of the dependent variable values in the population for
each value of the independent variable. Statistical methods called transformation may be used to help
satisfy both of these two assumptions.
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WBC count, temperature, and urine volume for a particular patient, then we can
do better than chance in estimating the value of that patient’s plasma cortisol level.
In addition to interest in the omnibus hypothesis inmultiple regression, it is most

often desirable to examine relationships between the dependent variable and spe-
cif c independent variables. Oneway inwhich those relationships are ref ected is in
the regression coeff cients associated with the independent variables. Regression
coeff cients are estimates of the bs in the regression equation. That is, they are point
estimates that can directly be used to estimate the magnitude of the relationship.
The results of multiple regression analysis allow point estimation and calculation
of conf dence intervals for those coeff cients. Unfortunatly the magnitude of the
regression coeff cients cannot be directly compared because they depend on the
units of measurement.
Calculation of conf dence intervals and statistical signif cance testing for co-

eff cients associated with specif c independent variables in multiple regression is
parallel to pairwise analyses in ANOVA. In ANOVA, however, pairwise analyses
were designed tomaintain an experimentwise Type I error rate equal to α. In multi-
ple regression, the testwise Type I error rate equals α, but the experimentwise error
rate is inf uenced by the number of independent variables being considered. Thus
multiple regression, unlike ANOVA, is susceptible to the multiple comparison
problem.
The more independent variables examined in multiple regression, the greater

the likelihood that at least one regression coeff cient will appear to be statisti-
cally signif cant even though no relationship exists between those variables in the
larger population being sampled. Therefore, in multiple regression, statistically
signif cant associations between the dependent variable and independent variables
that were not expected to be important before the data were examined should be
interpreted with some skepticism.
If all the continuous independent variables in a set of observations are the result

of naturalistic sampling from some population of interest, we might be interested
in estimating the strength of the association between the dependent variable and
the entire collection of independent variables. This is parallel to our interest in
bivariable correlation analysis. As indicated in Fig. 43.1, in multivariable analysis,
the method used to measure the degree of association is calledmultiple correlation
analysis. The result of multiple correlation analysis can be expressed as a mul-
tiple coeff cient of determination (as distinguished from its square root called the
multiple correlation coeff cient).
It is important to keep in mind that these statistics ref ect the degree of asso-

ciation between the dependent variable and the entire collection of independent
variables. For instance, suppose that in our example we obtain a multiple coef-
f cient of determination equal to 0.82. This means that 82% of the variation in
plasma cortisol among patients can be explained by knowing WBC count, tem-
perature, and urine volume. The statistically signif cant F test associated with the
test of the omnibus null hypothesis in multiple regression analysis also tests the
null hypothesis that the population’s multiple coeff cient of determination equals
zero. Conf dence intervals for coeff cients of determination can be derived from
these same calculations. These measures can be and often are calculated whenever
a multiple regression method is used. However, they may not accurately indicate
the percentage of the variation explained unless all of the independent variables
are the result of naturalistic or representation sampling.
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Nominal and Continuous Independent Variables
Often, an investigator is faced with a set of observations in which some of the
independent variables are continuous and some are nominal. For example, suppose
an investigator conducted a study designed to explain cardiac output on the basis
of energy output during exercise. Further, she expect the relationship between
cardiac output and energy output to be different for the two sexes. In this example,
the set of observations would contain cardiac output, a continuous dependent
variable; energy output, a continuous independent variable; and gender, a nominal
independent variable.
To examine a data set that contains a continuous dependent variable and a

mixture of nominal and continuous independent variables, the investigator uses
an analysis of covariance (ANCOVA). The continuous independent variables in
ANCOVA are related to the dependent variable in the same way that continuous
independent variables are related to the dependent variable in amultiple regression.
Similarly, the nominal independent variables are related to the dependent variable
in the samewaynominal independent variables are related to the dependent variable
in ANOVA. Therefore, ANCOVA is a hybrid method containing aspects of both
multiple regression and ANOVA.
With ANCOVA, the investigator deals with nominal data, such as gender, using

an indicatorordummyvariable,which is given anumerical valueof 0or 1. Indicator
variables allow us to create two regression lines that differ only by their intercept.
An indicator variable for gender would tell us how much the estimate of cardiac
output differs between males and females.

Ordinal Dependent Variable
Figure 43.2 summarizes the steps that are neededwhenwe have one ordinal depen-
dent variable and two or more independent variables. In univariable and bivariable
analyses, statistical methods are available to analyze ordinal dependent variables
and to allow an investigator to convert continuous dependent variables to an or-
dinal scale when the data does not fulf ll the assumptions necessary to use the
statistical methods designed for continuous dependent variables. This also is true
of multivariable methods for ordinal dependent variables.

Ordinal
dependent

variable

Ordinal
independent

variable

Nominal
independent

variables

Kendall
,
s

coefficient of
concordance

Mean of ranks

Chi-square
test

Kruskal-Wallis
test or Dunn,s test

Figure 43.2. Flowchart to select a multivariable statistical procedure for an ordinal depen-
dent variable (continued from Fig. 40.5).
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Ideally, we would like to have methods for ordinal dependent variables that par-
allel all the important multivariable methods for continuous dependent variables:
ANOVA, ANCOVA, and multiple regression. Unfortunately, this is not the case.
The only well-accepted multivariable procedures for ordinal dependent variables
are ones that can be used as nonparametric equivalents to certain ANOVA designs.
Thus, Fig. 43.2 is restricted to methods that can be used with nominal independent
variables or, alternatively, with ordinal independent variables. Continuous inde-
pendent variables must be converted to an ordinal or nominal scale to use these
methods.
Methods for an ordinal dependent variable may be used when the data does

not satisfy the assumptions required to utilize the data as continuous data. Let us
reconsider the previous example of fasting blood glucose levels measured among
persons of three race categories (black, white, and other) and of both genders. Our
interest was in determining the independent effects of race and gender on blood
sugar.
To analyze the data, we used a factorial ANOVA. If we were concerned about

fasting blood glucose levels satisfying the assumptions of the ANOVA,9 we could
convert the data to an ordinal scale by assigning relative ranks to fasting blood
glucose measurements. That is, the measured level of blood glucose would no
longer be used. Rather, the 100 patients would be given a blood glucose rank from
1 to 100. Then, we could apply the Kruskal-Wallis test or alternatively Dunn’s
test to those converted data. These tests are appropriate for performing statistical
signif cance testing on an ordinal dependent variable and two or more nominal
independent variables with either a one-way or factorial design. Nonparametric
procedures also are available to make pairwise comparisons among subgroups of
the dependent variable.
As indicated in Fig. 43.2, when all the independent variables are represented

by ordinal data and the dependent variable is also represented by ordinal data,
Kendall’s coeff cient of concordance can be used as a nonparametric multiple
correlation analysis. When the analysis includes both ordinal and nominal inde-
pendent variables, the ordinal variables need to be rescaled to nominal variables
and the Kruskal-Wallis test used.
When using multivariable methods designed for ordinal dependent variables to

analyze sets of observations that contain a continuous dependent variable which
the investigator has converted to an ordinal scale, we should keep in mind a po-
tential disadvantage. The nonparametric procedure has less statistical power than
does the corresponding parametric procedure. This is true for all statistical pro-
cedures performed on continuous data converted to an ordinal scale. Thus, if the
assumptions of a parametric statistical procedure are fulf lled, it is advisable to use
this parametric procedure to analyze a continuous dependent variable rather than
a parallel nonparametric procedure.

Nominal Dependent Variable
In health research, we are often interested in outcomes measured as dependent
variables such as live/die, cure/not cure, or disease/no disease measured as nom-
inal data. Further, because of the complexity of health phenomena, it is most

9 The assumptions forANOVAandANCOVAare the same as those previously labeled in the footnote
7 on regression analysis in Chapter 42.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-43 Riegelman-1490G Riegelman-v9.cls August 24, 2004 23:56

358 Section VI. Selecting a Statistic

Nominal dependent variable

Continuous and
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affected by
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Dependent
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time
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Figure 43.3. Flowchart to select a multivariable statistical procedure for a nominal depen-
dent variable (continued from Fig. 40.5).

often desirable to measure a large number of independent variables, to control for
confounding variables and to investigate the possibility of interaction or synergy
between variables. Consequently, multivariable analyses with nominal dependent
variables are frequently used in the analysis of health research data.
We have separated multivariable statistical procedures for nominal dependent

variables into two groups: those that are useful when the independent variables
are all nominal and those that are useful for a mixture of nominal and contin-
uous independent variables (Fig. 43.3). The analyses in the f rst group are re-
stricted to nominal independent variables or variables converted to a nominal
scale. The analyses in the second group, on the other hand, can be used with nom-
inal and continuous independent variables. There are no well-established methods
to include ordinal independent variables unless they are converted to a nominal
scale.

Nominal Independent Variables
Whenwe analyze a nominal dependent variable and two ormore nominal indepen-
dent variables, we are interested in measures that are the same as those of interest
in bivariable analysis of a nominal dependent variable and a nominal independent
variable. For example, we might be interested in proportions (probabilities), rates,
or odds. Inmultivariable analysis of nominal dependent and independent variables,
however, we are interested in these measures of disease occurrence while adjusting
for the other independent variables.
For example, suppose we are interested in comparing the probability or preva-

lence of asthma among coffee drinkers and subjects who do not drink coffee.
Here, prevalence of asthma is the variable of interest and, therefore is the nominal
dependent variable. Asthma (yes or no) is the nominal independent variable. We
would want to adjust for the potential confounding effect of cigarette smoking.
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To do that, we might include another nominal independent variable that identif ed
cigarette smokers versus nonsmokers.
When we have two or more independent variables in a data set and they are

all nominal, or are converted to a nominal scale, the general approach to adjust
for independent variables is often a stratif ed analysis. As described in Section I,
“Studying a Study,” stratif ed analysis methods involve separating observations
into subgroups def ned by values of the nominal independent variables thought
to be confounding variables. In our example of asthma prevalence and coffee
consumption, we would begin a stratif ed analysis by dividing our observations
into two groups: one composed of smokers and one composed of nonsmokers.
Within each subgroup we would calculate a separate estimate of the preva-

lences of asthma for coffee drinkers and nondrinkers. Those separate estimates are
known as stratum-specif c point estimates. The stratum-specif c point estimates are
combined using a particular system of weighting the stratum-specif c estimates.
That is, we would combine the information from each stratum, using a method
to determine how much impact each stratum-specif c estimate should have on the
combined estimate.10 The resulting combined estimate is considered to be an ad-
justed or standardized point estimate for all strata combined with the effects of the
confounding variable taken into account.
In the f owchart (Fig. 43.3), we have indicated two types of nominal dependent

variables: those that are and those that are not affected by time. Being affected by
time implies there are multiple times at which participants are observed to assess
outcomes and that the frequency with which an outcome is observed is inf uenced
by the duration of follow-up. In addition, different individuals are observed for
different periods of time. When a dependent variable is affected by time we say
that it is time-dependent.11
In Chapter 9 we saw that a randomized clinical trials often fulf ll these criteria

and that life-table methods are be used when individuals are followed for varying
periods of time. As we will see shortly, there is more than one way to produce a
life table.12
If the dependent variable is affected by time and the independent variables

include data containing observations from persons followed for various periods of
time, we must use special statistical procedures to take into account differences

10 The system of weighting stratum-specif c estimates is an important way in which different strat-
if ed analysis methods differ. In direct standardization, the weighting system is based on the relative
frequencies of each stratum in some reference population. The most useful weighting systems, from a
statistical point of view, are those that ref ect the precision of stratum-specif c estimates. This may be
accomplished by using the inverse of the variance as the weight.

11 The dependent variable in randomized clinical trials and concurrent cohort studies is often time
dependent, and independent variables are often obtained over varying lengths of time. Data for indepen-
dent variables are often collected over differing lengths of time due to loss to follow-up, development
of the endpoint such as death, or late entry into the study resulting in a short period of observation
when the investigation is stopped. When data is collected for a shorter length of follow-up, we say that
is has been censored, regardless of the reason.

12Dependent variables that are affected by time can cause problems in interpretation if the groups
being compared differ in their lengths of follow-up, which is often the case. These problems can
be circumvented if we consider incidence rate as the appropriate estimate for the dependent variable
because the incidence rate has a unit of time in the denominator and, thus, takes length of follow-up into
account. Unfortunately, incidence rate is a measurement that can be confusing to interpret.When length
of follow-up differs, incidence rates need to be expressed as cases per person-year. Most people f nd it
diff cult to intuitively understand what “cases per person-year” implies. By contrast, it is much easier
to understand risk. Risk is the proportion of persons who develop an outcome over a specif ed period
of time. Thus, risk measures what is called the cumulative probability of developing the outcome.
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in follow-up time. When all independent variables are nominal, the methods we
use are types of life-table analysis. The most commonly used method is called the
Kaplan-Meier life table.
These methods consider periods of follow-up time, such as 1-year intervals, as a

collection of nominal independent variables. Each 1-year interval is used to stratify
observations in the same way data are stratif ed by categories of a confounding
variable such as age group. Cumulative survival,13 which is equal to 1 minus
the cumulative probability of death, is determined by combining these adjusted
probabilities of surviving each time period.

Continuous and Nominal Independent Variables
In health research using a nominal dependent variable we are often interested in
both continuous and nominal independent variables.14
Methods of analysis that permit simultaneous investigation of continuous and

nominal independent variables and their interactions are parallel in their general
approach to multiple regression discussed earlier. The methods we use here, how-
ever, are different from multiple regression in three ways. The f rst difference, as
the Figs. 43.1 and 43.3 indicate, is that multiple regression is a method of analyz-
ing continuous dependent variables, while we are now concerned with nominal
dependent variables.
The second difference is that most of the methods for nominal dependent vari-

ables do not use the least-squares method used in multiple regression to f nd the
best f t for the data. Most often, nominal dependent variable regression coeff cients
are estimated using the maximum likelihood method.15
The third difference is perhaps the most important to health researchers inter-

preting the results of regression analysis of nominal dependent variables. Although
this type of analysis provides regression coeff cient estimates and their standard
errors, the remainder of the information resulting from the analysis is unlike that
in multiple regression. These regressions do not provide us with any estimates
parallel to correlation coeff cients. Thus, without a coeff cient of determination, it
is not possible to determine the percent of variation in the dependent variable that
is explained by the collection of independent variables.
For outcomes affected by time, the most commonly used regression method is

the Cox proportional hazards regression or Cox regression. In this approach, the
collection of independent variables and, at times, their interactions, are used to
estimate the incidence ratio16 of the nominal dependent variable,17 such as the

13 Life tables were originally designed to consider the risk of death, but they can be used to calculate
the risk of any irreversible outcome that can occur only once.

14 The stratif ed analysis approach appeals to many researchers because it appears to be simpler than
other analyses. However, this approach does have some shortcomings. Stratif ed analysis is designed
to examine the relationship between a nominal dependent variable and one nominal independent
variable while controlling for the effect of nominal confounding variables. It does not allow for a
straightforward examination of more than one independent variable, investigation of interactions or
synergy, consideration of continuous or ordinal confounding variables without converting them to a
nominal scale, or estimation of the importance of confounding variables. These are often features of
great interest to health researchers.

15 The maximum likelihood method chooses estimates for regression coeff cients to maximize the
likelihood that the data observed would have resulted from sampling a population with those coeff -
cients.

16 The term hazard is most often used as a synonym for incidence in the Cox model.
17 Actually, Cox regression predicts the natural logarithm of the ratio of the incidence adjusted for

the independent variables divided by the incidence unadjusted for those variables.
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incidence of death. Thus Cox regression can be thought of as producing adjusted
relative risks.
Algebraic combination of the coeff cients for a particular Cox regression equa-

tion can be used to estimate and plot the survival curve—that is, a life table—for a
set of independent variable values.When all the independent variables are nominal,
the Cox regression estimates survival curves that are very similar to those resulting
from Kaplan-Meier life-table analysis. However, Cox regression is able to incor-
porate continuous as well as nominal independent variables. Cox regression can
thus be used to construct the equivalent of a life table that has been adjusted for
multiple independent variables. Cox regression can in and of itself address our
three basic questions of statistics: estimation, inference, and adjustment.
In a life-table the magnitude of the difference between groups can be estimated

by using the percentage survival from the end (right side) of the survival curves.
Inference (statistical signif cance testing) can be performed comparing the sur-
vival curves taking into account all of the data. Finally, Cox regression has the
advantage of incorporating the adjustment for confounding variables. Thus, the
Cox regression is increasingly used in health research.
As indicated in Fig. 43.3, nominal dependent variables that are not affected

by time are frequently analyzed using a multivariable approach called logistic
regression. The dependent variable in logistic regression is the natural logarithm
of the odds of group membership. Thus, odds ratios are the estimate obtained from
logistic regression regardless of the type of investigation. We can, therefore, view
logistic regression as a method of adjusting odds ratios for nominal and continuous
confounding variables. Logistic regression is now widely used in health research,
thus increasing the importance of the odds ratio as a point estimate used in cohort
studies and randomized clinical trials as well as case-control studies.18
Now that we have completed our overview of univariable, bivariable, and mul-

tivariable analyses, let us put the process together in the f nal chapter and see how
we can use the combined f owchart.

18 In recent years a method known as generalized regression models are increasingly being used.
Thismethod combines logistic regressionmethods for nominal or dichotomous outcomeswithmultiple
regression methods for continuous outcomes.
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In this chapter, the entire fl wchart that is required for selecting a statistic is pre-
sented. To gain practice using each of the branches of the fl wchart, try out the eight
exercises on the Studying a Study Online Web site atwww.StudyingaStudy.com.
This summary fl wchart can be used in two ways. One way is to start at the top

as we have done previously, and begin with Fig. 44.1 and trace the fl wchart down
to discover what types of statistical procedures are appropriate for a particular
investigation. As a reader of the literature rather than a researcher you can use the
fl wchart starting at the bottom. That is, you can identify a statistical technique
used in an investigation and can work backward up the fl wchart to understand
the questions being asked by the technique and the types of data for which it is
appropriately used.
To illustrate the use of the fl wchart, we will start at the top in Fig. 44.1 and

identify one dependent variable. We then ask whether we are dealing with 0, 1,
or more than 1 independent variables. Next, we must decide the type of data
represented by the dependent variable (continuous, ordinal, or nominal). After we
make these decisions, we will encounter a figur number that will guide us to the
next fl wchart element that is applicable to our data.
Each of the subsequent fl wchart components is constructed in a similar way.

If the data contain independent variables, we will need to identify the type of data
represented by each one.1 If special restrictions or assumptions are required for a
statistical procedure, we will need to decide if the data satisfy these restrictions.
If these restriction are not fulfille or no statistical procedures are available for
the type of data represented by one or more of the variables, it is often possi-
ble to convert the variables to a lower-level scale and consult the fl wchart for
an option that is consistent with the converted variables. That is, when the re-
strictions on a statistical procedure are not fulfilled continuous variables can be
converted to ordinal variables and ordinal variables can be converted to nom-
inal variables. Remember, however, that this results in some loss of statistical
power.2
Following down the fl wchart, we come to a summary measurement or point

estimate that is useful for our data. This is followed, if applicable, by a general
classificatio of statistical procedures that are enclosed in a box.At the very bottom,
we encounter the name of the procedures that are most commonly used for both
statistical significanc testing and calculation of confidenc intervals on data sets
like the one we are examining. These are underlined.

1 Remember that for statistical purposes, a nominal variable refers to only two categories of a
characteristic. If a characteristic has k categories, k− 1 nominal variables will be needed. If more than
one nominal variable is needed to represent the independent variable, then multivariable analysis is
needed.

2 For instance, the use of correlation analysis is restricted to situations in which naturalistic sampling
has been used. Fulfillmen of the assumptions of Gaussian distribution and homoscedasticity of the
dependent variable are required for the use of continuous dependent variables. A transformation of
the data, however, may allow an investigator to fulfil these assumptions. Even though nonparametric
procedures have a lower statistical power, at times the loss of statistical power may be quite modest.

362
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(Fig. 44.2)
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One
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Figure 44.1. Master f owchart to determine which of the subsequent f owcharts are appli-
cable to a particular data set.

When using the f owchart, note the following:

1. Additional conditions that need to be satisf ed to use a type of statistical pro-
cedure are shown immediately after the type of independent variables, such as
pairing or affected by time.3

2. Terms enclosed in a box indicate a general classif cation of statistical proce-
dures.

3. When a comma alone appears between two underlined statistical signif cance
tests, the f rst test is used to evaluate the omnibus null hypothesis, whereas the
second test is used in pairwise comparisons. An “or” indicates alternative test
that may be used.

Remember that the f owchart, starting at the top, is applicable to researchers who
are interested in selecting a statistical procedure for a set of data. More often,
as readers of the health research literature, we are interested in checking that a
procedure selected by others is an appropriate one. The f owchart can be used to
assist in that process by f rst f nding the name of the selected procedure at the
bottom of the f owchart and tracing the f owchart backward to determine whether
the procedure is a logical choice for the data set being analyzed.
Let us consider an example of how to use the f owchart of statistics in Fig. 44.1

through Fig. 44.10. Together these f gures represent the overall Selecting a Statistic
f owchart presented in Chapters 40 through 43. To see how the f owchart can be
used, consider the following research study.

A randomized clinical trial of a new vitamin supplement is designed to test the
hypothesis that the new supplement will reduce the chance that the mother will
deliver a second child with spina bif da. The study was conducted by randomizing
1000 women who had previously delivered a child with spina bif da to the new

3These conditions need to be distinguished from assumptions about the data itself. Remember
that pairing is the special type of matching in which one study individual is paired with one control
individual and the pair is analyzed as a unit. Affected by time implies that an increase in the duration
of observation results in a greater probability of observing the outcome, and individuals are observed
for different lengths of time.
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Continuous
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Mean

Paired
tests

Student’s t
test

Figure 44.2. Flowchart to select a univariable statistical procedure for
a continuous dependent variable.

treatment study group and 1000 other women who had previously delivered a child
with spina bif da to the conventional treatment/control group. All women were in
their f rst trimester of pregnancy. The study and control groups were similar except
that the control group had an average age of 32 years compared to 28 years for the
study group. Maternal age is believed to be a risk factor for spina bif da. Spina bif da
was assessed at the time of birth.

To use the f owchart, we start with Fig. 44.1. The f rst step is to identify one
dependent variable. The dependent variable is the characteristic of primary interest
for which the investigation is trying to estimate a value or test a hypothesis. In this
investigation, we are testing the hypothesis that the new prenatal vitamins will
prevent spina bif da. The presence or absence of spina bif da is the dependent
variable.
Moving down the f owchart in Fig. 44.1, we come to the next question that must

be addressed: How many independent variables does this investigation include?
The independent variables represent all the other data that wewish to include in the
analysis. In this study, we need to include treatment (vitamin supplement or con-
ventional treatment) and age. Age is included because it is a potential confounding
variable. Thus, we have more than one independent variable and can move down
Fig. 44.1 to multivariable analysis. The next question will require us to select one

Ordinal
dependent

variable

(Median)

Wilcoxon
signed-rank

test
Figure 44.3. Flowchart to select a univariable statistical procedure for an
ordinal dependent variable.
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Nominal
dependent

variable

Dependent
variable

affected by
time

Rate Proportion

Outcome
common

Normal
approximation

to binomial

Proportion

Outcome
uncommon

Normal
approximation

to Poisson

Normal
approximation

to Poisson

Dependent
variable not
affected by

time

Figure 44.4. Flowchart to select a univariable statistical procedure for a nominal dependent
variable.

of the following f gures (Figs. 44.8 through 44.10) that display the remainder of
the f owchart.
The next question is “What type of dependent variable do we have?” Because

the presence or absence of spina bif da is the dependent variable, we have one
nominal dependent variable. This brings us to the end of Fig. 44.1 and leads us to
Fig. 44.10. Thus, Fig. 44.1 guides us to one of the subsequent f owcharts.

Continuous
dependent variable

Continuous
independent

 variable

Independent
variable from
naturalistic or

purposive sample

Slope and
intercept

Regression
analysis

F test

Correlation
analysis

Pearson’s
correlation coefficient

Difference
between
means

Independent
variable from
naturalistic or

purposive sample

Independent
variable from
naturalistic

sample

Nominal
independent

 variable

Student’s t
test

Student’s t
test

Figure 44.5. Flowchart to select a bivariable statistical procedure for a continuous
dependent variable.
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Ordinal
dependent

variable

Ordinal
independent

variable

Independent
variable from
naturalistic

sample

Independent
variable from
naturalistic

or purposive
sample

Spearman’s
correlation
coefficient

Spearman’s
test

Mann-Whitney
test

(Difference between
medians)

Nominal
independent

variable

Figure 44.6. Flowchart to select a bivariable statistical procedure for an ordinal dependent
variable.

Turning to Fig. 44.10, on page 368 we see all the methods we have discussed
for one nominal dependent variable. We now ask whether this investigation has
only nominal independent variables or whether it has both continuous and nom-
inal independent variables. In this investigation, the independent variables are
treatment group and age. The treatment group has only two categories; therefore,

Nominal dependent variable

Unpaired design

Nominal independent variable

Paired design

Dependent
variable not
affected by

time

Dependent
variable not
affected by

time

Dependent
variable

affected by
time

Dependent
variable not
affected by

time

Continuous
independent

variable

McNemar's
test Chi-square

test, or normal
approximation,

or Mantel-
Haenszel test

or Fisher's exact
Nominal

approximation
Chi-square

test for trend

Rate
difference

or ratio

Slope and
intercept

Odds ratio,
relative risk,
or difference

in proportions

Odds ratio,
relative risk,
or difference

in proportions

Figure 44.7. Flowchart to select a bivariable statistical procedure for a nominal dependent
variable.
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Continuous dependent variable

Nominal independent
variables

Independent 
variables

represent one
characeristic

Means

One-way
analysis of
variance

F test, Student-
Newman-Keuls

test

Factorial
analysis of
variance

Multiple
regression
analysis

Multiple
correlation
analysis

Analysis of
covariance
(ANCOVA)

Means Regression
coefficients

Regression
coefficients

Coefficient of
determination

Independent 
variables
represent

more than one
characteristic

Independent 
variables from

naturalistic
or purposive

sample

Independent 
variables from

naturalistic
or purposive

sample

Independent 
variables from

naturalistic
sample

Continuous independent
variables

Nominal and continuous
independent variables

F test, Student-
Newman-Keuls

test

F test,
partial F test

F test, F test,
partial F test

Figure 44.8. Flowchart to select a multivariable statistical procedure for a continuous
dependent variable.

it is a nominal variable. Age is a continuous variable. Thus, having both nominal
and continuous variables, we can proceed down the left side of the f owchart in
Fig. 44.10.
Now we need to decide whether the dependent variable, delivery of a child

with spina bif da, is affected by time. Being affected by time requires that there
are multiple times that participants are observed to assess outcomes. This is often
the situation in randomized clinical trials. However, here we are only assessing
outcome once at the time of birth. Thus, there is only one assessment point, and
the dependent variable is not affected by time.
This leads us to the odds ratio as our estimate of the strength of the relationship

between the treatment group and the occurrence of spina bif da. Proceeding down
the f owchart in Fig. 44.10we come to the general category of statistical techniques
known as logistic regression (enclosed in the box). The estimate of the strength of
the relationship here is the odds ratio. As indicated by the underlined chi-square
test, statistical signif cance testing and conf dence intervals are performed on the
odds ratio using a chi-square method.
Having worked through the f owchart starting at the top, we have seen the type

of investigation in which logistic regression can be used. When logistic regression

Ordinal
dependent variable

Ordinal
independent

variables

Kendall’s
coefficient of
concordance

Chi-square
test

Kruskal-Wallis
test, or Dunn’s test

Mean of ranks

Nominal
independent

variables

Figure 44.9. Flowchart to select amul-
tivariable statistical procedure for an
ordinal dependent variable.
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Nominal dependent variable

Continuous and
nominal independent variables

Dependent
variable

affected by
time

Incidence
ratio

Odds ratio

Dependent
variable not
affected by

time

Dependent
variable

affected by
time

Cumulative
probabilities

Dependent
variable not
affected by

time

Nominal
independent variables

Cox Proportional
Hazards

regression

Logistic
regression

Kaplan-Meier
Life-table
analysis

Stratified
analysis

Chi-square
test

Chi-square
test

Mantel-Haenszel
test

Mantel-Haenszel
test or

log-rank test

Odds ratio,
relative risk, or

difference in proportions

Figure 44.10. Flowchart to select a multivariable statistical procedure for a nominal
dependent variable.

is used in an investigation, we can now appreciate the conditions under which its
use is appropriate. When logistic regression is used, we expect to see a nominal
dependent variable and continuous as well as nominal independent variables. The
odds ratio will be the resulting point estimate and the outcomes will only be
measured once for each participant, i.e., they are not time-dependent. This is what
we mean by using the f owchart in reverse.
When we read in the health literature that a statistical procedure has been used,

we can look near the bottom of Figs. 44.2 through 44.10 and locate that procedure,
such as logistic regression. Then we can move up the f owchart and identify the
types of data and any special conditions that are necessary for its use.
The Selecting a Statistic f owchart is designed to be a practical guide to help

identify and understand the use of the most common statistical procedures. Used
along with the Questions to Ask in the last chapter of each section, it can help you
read the medical evidence.
Now you need some practice. It’s time to try out the exercises and jour-

nal articles included in the Studying a Study Online Web site at www.
StudyingaStudy.com. A little practice and you’ll f nd that using theM.A.A.R.I.E.
framework and Selecting a Statistic f owchart can become second nature and even
an enjoyable part of your professional practice.

http://www.StudyingaStudy.com
http://www.StudyingaStudy.com
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yAccuracy Without systematic error or bias; on average the results approximate

those of the phenomenon under study.
Actuarial Survival The actuarial survival is an estimate of life expectancy based
on a cohort or longitudinal life table. The 5-year actuarial survival estimates the
probability of surviving 5 years, and may be calculated even when there are
only a limited number of individuals actually followed for 5 years.

Adjustment Techniques used after the collection of data to take into account or
control for the effect of known or potential confounding variables and interac-
tions. (Synonym: control for, take into account, standardize)

Affected by Time Ameasurement is affected by time if an increase in the dura-
tion of observation results in a greater probability of observing the outcome, and
individuals are observed for different lengths of time. A variable that is affected
by time is said to be time-dependent.

Aggregate Impact The overall impact of an intervention on the entire population
of individuals to whom it is directed.

Aggregate External Validity As used by the United States Preventive Services
Task Force, the extent to which the evidence is relevant and generalizable to the
population and conditions of typical primary care practice.

Aggregate Internal Validity As used by the United States Preventive Services
Task Force, the degree to which the studies used to support an evidence-based
recommendation provide valid evidence for the populations and the settings in
which they were conducted.

Algorithm An explicit, often graphic presentation of the steps to be taken
in a making a decision such as diagnosis or treatment. An algorithm may
be used to present evidence-based guidelines using a standardized graphical
approach.

Allocation Concealment In a randomized clinical trial, the inability of the indi-
vidual making the assignment to predict the group to which the next individual
will be assigned.

Allocation Ratio In a randomized clinical trial the proportion of participants
intended for each study and control group.

Alternative Hypothesis In statistical significanc testing, the actual choices are
between the null hypothesis and an alternative hypothesis. The alternative hy-
pothesis states that a difference or association exists.

Analysis of Covariance (ANCOVA) Statistical procedures for analysis of data
that contain a continuous dependent variable and a mixture of nominal and
continuous independent variables.

Analysis of Variance (ANOVA) Statistical procedures for analysis of data that
contain a continuous dependent variable andmore than one nominal independent
variable. ANOVA procedures include one-way and factorial ANOVA.

Analytical Study All types of investigations that include a comparison group
within the investigation itself (e.g., case-control, cohort, and randomized clinical
trials).

Appropriate Measurement A measurement that addresses the question that an
investigation intends to study, i.e., one that is appropriate for the study question.
(Synonym: construct validity, content validity)

Artifactual Differences or Changes Differences or changes in measures of
occurrence that result from theway the disease or condition is measured, sought,
or defined
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Assessment The determination of the outcome or endpoint of the study and
control groups.

Assessment Bias A generic term referring to any type of bias in the assessment
process. Recall, report, and instrument errors are specif c types of assessment
bias.

Assignment The process by which individuals become part of a study group or
control group.

Association A relationship among two or more characteristics or other measure-
ments beyond what would be expected by chance alone. When used to establish
criterion number one of contributory cause, association implies that the two
characteristics occur in the same individual more often than expected by chance
alone. (Synonym: individual association)

At-Risk Population The population that is represented in the denominator of
most rates— that is, thosewho are at risk of developing the event beingmeasured
in the numerator. In the context of risk factors, the at-risk population may be
referred to as those with the risk factors.

Attributable Risk Percentage The percentage of the risk, among those with the
risk factor, that is associated with exposure to the risk factor. If a cause-and-
effect relationship exists, attributable risk is the percentage of a disease that can
potentially be eliminated among those with the risk factor if the effect of the
risk factor is completely eliminated. (Synonym: attributable risk, attributable risk
[exposed], etiological fraction [exposed], percentage risk reduction, protective
eff cacy ratio)

Averaging Out The process of obtaining overall expected utilities for a decision
tree by adding together the expected utilities of each of the potential outcomes
included in the decision tree.

Base-Case Estimate The estimate used in a decision-making investigation that
ref ects the investigators’ best available or best-guess estimate of the relevant
value of a particular variable. High and low estimates ref ect the extremes of the
realistic range of values around the base-case estimate.

Bayes’ Theorem A mathematical formula that can be used to calculate posttest
probabilities (or odds) based on pretest probabilities (or odds) and the sensitivity
and specif city of a test.

Bayesian An approach to statistics that takes into account the preexisting proba-
bility (or odds) of a disease or a studyhypothesiswhen analyzing and interpreting
the data in the investigation.

Bias A condition that produced results which depart from the true values in a
consistent direction. (Synonym: systematic error)

Binomial Distribution A mathematical distribution that is used to calculate
probabilities for populations composed of nominal data.

Biological Plausibility Anancillary, adjunct, or supportive criteria of cause-and-
effect which implies that the relationship is consistent with a known biological
mechanism.

Bivariable Analysis Statistical analysis in which there is one dependent variable
and one independent variable.

Blind Assessment The evaluation of the outcome for individuals without the
individual who makes the evaluation knowing whether the subjects were in the
study group or the control group. (Synonym: masked assessment)
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yBlind Assignment Occurs when individuals are assigned to a study group and a

control group without the investigator or the subjects being aware of the group
to which they are assigned.When both investigator and subjects are “blinded” or
“masked,” the study is sometimes referred to as a double-blind study. (Synonym:
masked assignment)

Calibration An estimate used in prediction rules that measures performance of
a test, risk factor, or other variable to summarize its performance not only on
the average participant but on participants whose characteristics are far from the
average.

Carry-Over Effect A phenomenon that may occur in a cross-over study when
the initial therapy continues to have an effect after it is no longer being ad-
ministered. A “wash-out” period is often used to minimize the potential for a
carry-over effect.

Case-Control Study A study that begins by identifying individuals with a dis-
ease (cases) and individuals without a disease (controls). The cases and controls
are identif ed without knowledge of an individual’s exposure or nonexposure to
factors being investigated. (Synonym: retrospective study)

Case Fatality The number of deaths due to a particular disease divided by the
number of individuals diagnosed with the disease at the beginning of the time
interval. The case fatality estimates the probability of eventually dying from the
disease.

Case-Mix Bias A form of selection bias that may be created when treatments
are selected by clinicians to f t characteristics of individual patients.

Central Limit Theorem The principle that regardless of the distribution of the
data in a population, the mean values calculated from samples tend to have
a Gaussian distribution. This tendency increases as the size of the sample
increases.

Censored Data Data is censored when collection of data is terminated at a par-
ticular point in time and it is not knownwhether or not the outcome subsequently
occurred. Data may be censored due to loss to follow-up, or termination of the
investigation.

Chance Node A darkened circle in a decision tree that indicates that once a
decision is made, there are two or more outcomes that may occur by a chance
process. These potential outcomes are displayed to the right of the chance node.

Chi-Square Distribution A standard mathematical distribution that can be used
to calculatePvalues and conf dence intervals in a variety of statistical procedures
for nominal dependent variables.

Chi-Square Test A statistical signif cance test that can be used to calculate a P
value for a nominal independent and a nominal dependent variable. The chi-
square test is one of a large number of uses of the chi-square distribution.

Chi-Square Test for Trend A statistical signif cance test that is used for a nom-
inal dependent variable and a continuous independent variable.

Coeff cient of Determination The square of a correlation coeff cient. This
statistic when appropriately used indicates the proportion of the variation in
one variable (the dependent variable) that is explained by knowing the value of
one or more other variables (the independent variables).

Cohort A group of individuals who share a common exposure, experience, or
characteristic. (See: cohort study, cohort effect)
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CohortEffect Achange in rates that can be explained by the common experience
or characteristic of a group of individuals. A cohort effect implies that current
rates should not be directly extrapolated into the future.

Cohort Study A study that begins by identifying individuals with and without
a factor being investigated. These factors are identif ed without knowledge of
which individuals have or will develop the outcome. Cohort studies may be
concurrent or retrospective.

Concurrent Cohort Study A cohort study in which an individual’s group as-
signment is determined at the time that the study begins, and the study group
and control group participants are followed forward in time to determine if the
disease occur. (Synonym: prospective cohort study)

Conf dence Interval (95%) In statistical terms, the interval of numerical values
within which one can be 95% conf dent that the value being estimated lies.
(Synonym: interval estimate)

Conf dence Limits The upper and lower extremes of the conf dence interval.
Confounding Variable A variable that is distributed differently in the study
group and control group and that affects the outcome being assessed. A con-
founding variable may be due to chance or bias. When it is due to bias in the
assignment process, the resulting error is also called a selection bias. (Synonym:
confounder)

Consensus Conference As used here, a process for determining the presence or
absence of a consensus by using face-to-face structured communication among
a representative group of experts.

Continuous Data A type of data with an unlimited number of equally spaced
potential values (e.g., diastolic blood pressure, cholesterol).

Contributory Cause Contributory cause is def nitively established when all
three of the following have been established: (a) the existence of an associ-
ation between the cause and the effect at the level of the individual; (b) the
cause precedes the effect in time; and (c) altering the cause alters the probability
of occurrence of the effect.

Control Group A group of subjects used for comparison with a study group.
Ideally, the control group is identical to the study group except that it does not
possess the characteristic or has not been exposed to the treatment under study.

Controlled Clinical Trial See: randomized clinical trial
Convenience Sample A subset from a population that is assembled because of
the ease of collecting data without regard for the degree to which the sample is
random or representative of the population of interest.

Conventional Care The current level of intervention accepted as routine or
standard care.

Correlation A statistic used for studying the strength of an association between
two variables, each of which has been sampled using a representative or natu-
ralistic method from a population of interest.

Correlation Analysis A class of statistical procedures that is used to estimate
the strength of the relationship between a continuous dependent variable and
a continuous independent variable when both the dependent variable and the
independent variable are selected by naturalistic sampling.

Correlation Coeff cient An estimate of the strength of the association between
a dependent variable and an independent variable when both are obtained using
naturalistic sampling. (e.g., Peason’s and Spearman’s correlation coeff cients.)
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study that compares the cost of achieving a common unit of effectiveness, such
as a life saved or a diagnosis made.

Cost-Benef t Analysis The type of decision-making investigation that converts
effectiveness as well as cost into monetary terms. Benef t in a cost-benef t anal-
ysis refers to net effectiveness, that is, the favorable minus the unfavorable
outcomes.

Cost-Consequence Analysis A type of cost-effectiveness analysis in which
harms, benef ts, and costs are measured or described but not directly combined
or compared.

Cost-Effective Analternative is considered cost-effective if the increase in effec-
tiveness is considered worth the increase in cost; if the decreased effectiveness
is considered worth the substantial reduction in costs; or if there is reduced cost
plus increased effectiveness.

Cost-Effectiveness Analysis A general term for the type of decision-making
investigation in which costs are considered as well as harms and benef ts.

Cost-Effectiveness Ratios The average cost per QALY obtained. The compar-
ison alternative in a cost-effectiveness ratio is not usually specif ed but should
generally be considered to be the do-nothing or zero cost–zero effectiveness
alternative.

Cost-QALY Graph A graph that includes cost on the y-axis and QALY on the
x-axis, and includes four quadrants with different interpretations related to cost-
effectiveness. The intersection of the x- and y-axes represents the do-nothing or
zero cost–zero effectiveness alternative.

Cost Savings A reduction in cost that may be accompanied by a reduction or an
increase in effectiveness.

Cost-Utility Analysis The type of cost-effectiveness analysis that measures and
combines benef ts, harms, and costs, taking into account the probabilities and
the utilities. Cost-utility investigations often use QALYs as the measure of ef-
fectiveness and thus may be called cost-effectiveness analysis using QALYs.
(Synonym: QALY cost-effectiveness study)

Covariance The statistic that is calculated to estimate how closely a dependent
and an independent variable change together.

Cox Regression See proportional hazards regression.
Credibility Intervals A term used in decision-making investigations to present
the results in a form that parallels conf dence intervals. TheMonte Carlomethod
may be used to generate credibility intervals by performing large numbers of
simulation’s using the investigation’s own decision-making model.

Cross-Over Study A type of paired design in which the same individual re-
ceives a study and a control therapy, and an outcome is assessed for each
therapy.

Cross-Sectional Study A study that identif es individuals with and without the
condition or disease under study and the characteristic or exposure of interest
at the same point in time. The independent and the dependent variables are
measured at the same point in time, and thus data can be collect from a one-time
survey. A cross-sectional studymay be regarded as a special type of case-control
study.

Cumulative Survival The estimate of survival derived for a life-table analysis
calculated by combining the probabilities from each time interval.
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Database Research Investigations done based on previously collected data.
May be used as a synonym for retrospective cohort study when a study group
and a control group are identif ed based on prior characteristics contained in a
database.

Decision Analysis As used in decision-making investigations, refers to the type
of investigations in which benef ts and harms are included but not costs. Often
used generically to refer to all quantitative decision-making.

Decision-MakingModel A diagram or written description of the steps involved
in each of the alternatives being considered in a decision-making investigation.
A decision tree is a common method of presenting the decision-making model.

Decision Node A square in a decision tree that indicates that a choice needs to
be made. (Synonym: choice node)

Decision Tree A graphic display of the decision alternatives, including the
choices that need to be made and the chance events that occur.

Declining Exponential Approximation of Life Expectancy (DEALE) A spe-
cialized life-expectancymeasure which combines survival derived for a longitu-
dinal life table and life expectancy based on age and other demographic factors
derived from a cross-sectional life table.

Delphi Method A formal method for reaching group agreement in which the
participants do not communicate directly with each other.

Diagnostic Ability A term used here to indicate that the measurement of a test’s
performance includes a weighting of false positives compared to false negatives
in addition to the discriminant ability.

Diagnostic Test A test conducted in the presence of symptomswith the intention
of identifying the presence of disease.

Discriminant Ability A measure of test performance that assumes that a false
positive and a false negative are of equal importance. May be measured by the
area under a ROC curve. (Synonym: area under ROC curve)

Dependent Variable Generally, the outcome variable of interest in any type of
research study. The outcome or endpoint that one intends to explain or estimate.

Describe a Population In statistical terminology, indicates the distribution of
the data in the larger population from which the samples are obtained.

Descriptive Study An investigation that provides data on one group of individ-
uals and does not include a comparison group, at least within the investigation
itself. (Synonym: description study, case series, time series)

Direct Cause A contributory cause that is the most directly known cause of a
disease (e.g., hepatitis B virus is the direct cause of hepatitis B infection, and
contaminated needles are an indirect cause). The direct cause is dependent on
the current state of knowledge and may change as more immediate mechanisms
are discovered.

Disability Adjusted Life Years (DALY) ) A disease- or condition-specif c mea-
sure of the number of life years lost from death and disability per population
unit (such as per 100,000 people) compared to a population with the best current
health status.

Discordant Pairs In a case-control study, the pairs of subjects in which the study
and control differ in their exposure or nonexposure to the potential risk factor.

Discounted Present Value The amount of money that needs to be invested today
to pay a bill of a particular size at a particular time in the future. (Synonym:
present value)
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count the reduced importance of benef ts, harms, and costs that occur at a later
period of time compared to those that occur immediately. The discount rate is
the annual rate used to perform discounting.

Discrete Data Data with a limited number of categories or potential values.
Discrete data may be further classif ed as either nominal or ordinal data.

Dispersion Spread of data around a measure of central tendency, such as a
mean.

Distribution Frequencies or relative frequencies of all possible values of a char-
acteristic. Population and sample distributions can be described graphically or
mathematically. One purpose of statistics is to estimate parameters of population
distributions.

Distributional Effects A term used in decision-making investigations that in-
dicates that the average results do not take into account the distributions of the
adverse and favorable outcomes among subgroups with different demographic
characteristics.

Dominance An alternative is dominant when a recommendation can be made on
the basis of probabilities alone. That is, one alternative is preferred regardless of
the utilities that are attached to particular favorable and unfavorable outcomes.
In cost effectiveness, dominance refers to the situation in which an option is
more effective and also less costly. Extended dominance then usually refers to
the situation where effectiveness is approximately equal but one option is less
costly than the other.

Do-Nothing Approach The comparison alternative in decision-making investi-
gations in which there is presumed to be zero cost and zero effectiveness.

Dose-ResponseRelationship Adose-response relationship is present if changes
in levels of an exposure are associated with changes in the frequency of the
outcome in a consistent direction. A dose-response relationship is an ancillary
or supportive criterion for contributory cause.

Ecological Fallacy The type of error that can occur when the existence of a
group association is used to imply the existence of a relationship that does not
exist at the individual level. (Synonym: population fallacy)

Economies of Scale Generally refers to reductions in cost that accompany in-
creases in the scale of production. Diseconomies of scale imply increases in cost
that accompany changes in the scale of production.

Effect An outcome that is brought about, at least in part, by an etiological factor
known as the cause, i.e., altering the probability that the cause occurs alters the
probability that the effect occurs.

Effect of Observation A type of assessment bias that results when the process
of observation alters the outcome of the study.

Effect Size Asummarymeasure of themagnitude of the difference or association
found in the sample.

Effectiveness The extent to which a treatment produces a benef cial effect when
implemented under the usual conditions of clinical care for a particular group of
patients. In the context of cost-effectiveness, effectiveness incorporates desirable
outcomes and undesirable outcomes, and may be referred to as net effective-
ness

Eff cacy The extent to which a treatment produces a benef cial effect when as-
sessed under the ideal conditions of an investigation.
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Eligibility Criteria The combined set of inclusion and exclusion criteria that
def ne those who are eligible for participation in an investigation (Synonym:
entry criteria)

Estimate A value calculated from sample observations that are used to approx-
imate a corresponding population value or parameter. Obtaining an estimate is
one of the primary goals of statistical methods. (See: point estimate)

Event An episode or diagnosis of the condition or disease that appears in the
numerator of a rate or proportion.

Evidence-Based Guideline Structured set of recommendations for clinical or
public health practice indicating specif c conditions for utilizing or not uti-
lizing interventions. Based on evidence from the research literature combined
with decision-maker preferences and expert opinion. (Synonym: evidence-based
recommendation).

Exclusion Criteria Conditions which preclude entrance of candidates into an
investigation even if they meet the inclusion criteria.

Expected Utility The results of multiplying the probability times the utility of
a particular outcome. (Synonym: quality-adjusted probability)

Expected-UtilityDecisionAnalysis The type of decision analysis that considers
probabilities and utilities but does not explicitly incorporate life expectancy.

Expected Value A measure that incorporates cost as well as benef t and harm
into a decision tree. The outcome is then measured in monetary terms.

Experimentwise Error The probability of making a Type I error for at least one
comparison in an analysis that involves more than one comparison.

Exploratory Meta-analysis A meta-analysis in which there is not a specif c
hypothesis, and all potentially relevant investigations are included.

Extended Dominance See: dominance
Extrapolation Conclusions drawn about the meaning of the study for a target
population. The target population may be similar to those included in the inves-
tigation or may include types of individuals or a range of data not represented
in the study sample.

F distribution A standard distribution that can be used to calculate P values and
conf dence intervals in ANOVA, ANCOVA, multiple regression, and multiple
correlation analysis procedures.

Factor A term used in ANOVA procedures to separate a collection of charac-
teristics that def ne mutually exclusive and topically related categories, such as
race. Statistical signif cance tests on factors are called tests of main effects in
a factorial ANOVA. Also, less formally used to represent characteristics under
investigation to determine if they are risk factors.

Fail-Safe N The number of studies which must be omitted from a meta-analysis
before the results would no longer be statistically signif cant. These additional
studies are assumed to be of the same average size as the included studies and
have, on average, an effect size of 0 for differences or 1 for ratios.

False Negative An individual whose result on a test is negative but who has the
disease or condition as determined by the reference standard.

False Positive An individual whose result on a test is positive but who does not
have the disease or condition as determined by the reference standard.

Final Outcome An outcome that occurs at the completion of a decision option.
This outcome is displayed at the right end of a decision tree.
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nominal dependent variable and one nominal independent variable when any of
the frequencies predicted by the null hypothesis are less than 5.

Fixed Costs Costs which do not vary with modest increases or decreases in the
volume of services provided. Space and personnel costs are considered examples
of f xed costs, which partly explains why institutional decision-making does not
always conform to the recommendations of cost-effectiveness analysis.

Fixed-Effect Model A type of statistical signif cance test that assumes that sub-
groups all come from the same large population. In meta-analysis, implies that
there is homogeneity across the investigations.

Folding Back the Decision Tree A process in which probabilities are multiplied
together to obtain a probability of a particular outcome known as a path proba-
bility. Calculations of path probabilities assume that the probability of each of
the outcomes that occur along the path is independent of the other probabilities
along the same path.

Funnel Diagram A graphical method for evaluating whether publication bias is
likely to be present in a meta-analysis.

Gaussian Distribution A distribution of data assumed in many statistical proce-
dures. TheGaussian distribution is a symmetrical, continuous, bell-shaped curve
with its mean value corresponding to the highest point on the curve. (Synonym:
normal distribution)

Generalized Regression Model A statistical method that combines logistic re-
gressionmethods for nominal or dichotomous outcomewithmultiple regression
methods for continuous outcomes.

Gold Standard See: reference standard
Group Association The situation in which a characteristic and a disease both
occurmore frequently in one group of individuals comparedwith another. Group
association does not necessarily imply that individuals with the characteristic
are the same ones who have the disease. (Synonym: ecological association,
ecological correlation)

Group Matching A matching procedure used during assignment in an investi-
gation that selects study and control individuals in such a way that the groups
have a nearly equal distribution of a particular variable or variables. (Synonym:
frequency matching)

Guideline In practice guidelines, the term indicates a recommendation for (or
against) an intervention except under specif ed exceptions. At times, used to in-
dicate the special type of recommendation in which indications and contraindi-
cations are included. Guidelines developed based on evidence are increasingly
referred to as evidence-based guidelines or evidence-based recommendations.

Health Adjusted Life Expectancy (HALE) Ameasurement of life expectancy
that includes a measure of the quality of health that may bemeasured as utilities.

Healthy-Worker Effect A tendency for workers in an occupation to be healthier
than the general population of individuals of the same age.

Heuristic A rule of thumb or method used in nonquantitative or subjective
decision-making that generally uses only a portion of the potentially available
data and thus simplif es the decision-making process.

Historical Control A control group from an earlier period of time that is used
to compare outcomes with a study group in an investigation.
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Homogeneous When used in the context of ameta-analysis, homogeneous refers
to investigations which can be combined into a single meta-analysis because the
study characteristics being examined do not substantially affect the outcome.

Homoscedasticity An assumption of statistical methods for a continuous depen-
dent variable implying equal variance of the dependent variable values in the
population for each value of the independent variable. (Synonym: assumption
of equal variance)

HumanCapital An approach to converting effectiveness to monetary terms that
uses the recipient’s ability to contribute to the economy.

Hypothesis-DrivenMeta-analysis Ameta-analysis in which a specif c hypoth-
esis is used as the basis for inclusion or exclusion of investigations.

Incidence Rate The rate at which new cases of disease occur per unit of time.
The incidence rate is theoretically calculated as the number of individuals who
develop the disease over a period of time divided by the total person-years of
observation. (Synonym: hazard)

Inclusion Criteria Conditions which must be met by all potential candidates for
entrance into an investigation.

Incremental Cost-effectiveness Ratio The cost of obtaining one additional
QALY using an alternative compared with the use of the conventional alter-
native.

Independence Two events or two tests are independent if the results of the f rst
do not inf uence the results of the second. (Synonym: independence assumption)

Independent Variable Variable being measured to estimate the corresponding
measurement of the dependent variable in any type of research study. Indepen-
dent variables def ne the conditions under which the dependent variable is to be
measured.

Index Test The test of interest that is being evaluation by comparison with the
reference standard test.

Indicator Variable A variable that is used to represent the value of a nominal
variable inANCOVA.An indicator variable tells us howmuch the estimate of the
continuous dependent variable differs between levels of the indicator variable.
(Synonym: dummy variable)

Indirect Cause A contributory cause that acts through a biological mechanism
that is more closely related to the disease than it is to the direct cause (e.g.,
contaminated needles are an indirect cause of hepatitis B; the hepatitis B virus
is a direct cause). (See: direct cause)

Inference In statistical terminology, inference is the logical process that occurs
during statistical signif cance testing in which conclusions concerning a popu-
lation are obtained based on data from a random sample of the population. (See:
statistical signif cance test)

Inf uence Diagram An alternative to decision trees that displays the factors that
inf uence events. Inf uence diagrams may be combined with a decision tree.

Information Bias A systematic error introduced by the process of obtaining the
investigation’s measurement of outcome.

Intention to Treat A method for data analysis in a randomized clinical trial in
which individual outcomes are analyzed according to the group to which they
have been randomized even if they never received the treatment to which they
were assigned. (Synonym: per protocol)
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ence of one variable is altered by the level of a second variable. Interaction
between variables may produce results that are more than additive or less than
additive. Biological interaction may be distinguished from statistical interac-
tion. The presence or absence of statistical interaction depends on the scale of
measurement used. (Synonym: effect modif cation, synergy)

Intercept The intercept estimates the mean of the dependent variable when the
independent variables are equal to zero.

Interobserver Variation Variation in measurement by different individuals.
Interpolation The process of implying or f lling in data values between the
points that are actually measured. As opposed to extrapolation, which implies
extending the data beyond the points actually measured.

Interpretation The drawing of conclusions about themeaning of any differences
found between the study group and the control group for those included in the
investigation.

Interval Estimate See: conf dence interval
Intraobserver Variation Variation in measurements by the same person at dif-
ferent times.

Kaplan-Meier Life Table See: life table (cohort or longitudinal)
Kendall’s Coeff cient of Concordance An estimate of the degree of correlation.
This estimate can be used when the dependent variable and all the independent
variables are ordinal.

Koch’sPostulates Aset of criteria developed for demonstrating cause-and-effect
that was extensively applied to infectious disease. Koch’s postulates include
necessary cause. What has been called modern Koch’s postulates include epi-
demiological association, isolation, and transmission pathogenesis.

Kruskal-Wallis Test A statistical signif cance test that can be used when there is
an ordinal dependent variable and two or more nominal independent variables.
Dunn’s test may be used as an alternative test.

Lead-Time Bias Overestimation of survival time due to earlier diagnosis of
disease. Actual time of death does not change when lead-time bias is present
despite the earlier time of diagnosis.

Least-Squares Regression Amethod of regression analysis that selects numer-
ical values for the slope and intercept which minimize the sum of the squared
differences between the data observed in the sample and those estimated by the
regression equation.

Length Bias The tendency of a screening test to more frequently detect individ-
uals with a slowly progressive disease compared with individuals with a rapidly
progressive disease.

LifeExpectancy The average number of years of remaining life fromaparticular
age based on the probabilities of death in each age group in one particular year.
Life expectancy assumes a stationary population and the same age specif c
probabilities of death in subsequent years, or it is not an accurate prediction of
the average number of years of remaining life.

Life Table (Cohort or Longitudinal) Amethod for organizing data that allows
examination of the experience of one or more groups of individuals over time
when some individuals are followed for longer periods of time than others.
(Synonym: Kaplan-Meier life tables)
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Life Table (Cross-Sectional or Current) A technique that uses mortality data
from one year’s experience and applies the data to a stationary population to
calculate life expectancies.

Likelihood Ratio of Negative Test A ratio of the probability of a negative test if
the disease is present to the probability of a negative test if the disease is absent.

Likelihood Ratio of Positive Test A ratio of the probability of a positive test
if the disease is present to the probability of a positive test if the disease is
absent.

Linear Extrapolation A form of extrapolation that assumes, often incorrectly,
that levels of a variable beyond the range of the datawill continue to operate in the
same manner that they operate in the investigation. Linear extrapolation is often
used to extrapolate beyond the data by extending the straight-line relationship
obtained from an investigation.

Linear Regression A form of regression analysis in which there is only one
dependent and one independent variable, and a straight-line or linear relationship
is assumed to exist between the dependent and independent variable.

Location A measure of central tendency of a distribution. Means and medians
are examples of measures of location.

Log-Rank Test A statistical signif cance test that is used in life-table analysis
(Synonym:Mantel-Haenszel test)

Logistic Regression A multivariable method used when there is a nominal de-
pendent variable and a nominal and continuous independent variable that are
not affected by time.

Main Effect A term used in factorial ANOVA to indicate statistical tests used
to examine each factor separately. May also refer to the relationship between
the independent variable and the dependent variable that ref ect the relationship
stated in the study hypothesis.

Mann-Whitney Test A statistical signif cance test that is used for an ordinal
dependent variable and a nominal independent variable.

Mantel-Haenszel Test See: log rank test
Marginal Cost The impact on costs of greatly increasing the scale of operation
of an intervention so that economies of scale and diseconomies of scale may
impact the costs. Often but not always distinguished from incremental cost,
which relates to the cost of one additional unit.

Markov Analysis A method of analysis used in decision-making investigations
to take into account recurrent events such as recurrence of previous disease or
development of a second episode of disease.

Masked See: blind assessment; blind assignment
Matched Test A type of statistical signif cance test that is used to analyze data
in which the special type of matching called pairing is used.

Matching An assignment procedure in which study and control groups are
chosen to ensure that a particular variable is the same in both groups. Pairing is
a special type of matching in which study group and control group subjects are
analyzed together.

Maximum Likelihood Regression A regression method that chooses estimates
for the regression coeff cients to maximize the likelihood that the data observed
would have resulted from sampling a population with those coeff cients.

McNemar’s Test A statistical signif cance test for paired data when there is one
nominal dependent variable and one nominal independent variable.
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added together. The “center of gravity” of a distribution of observations. A
special type of average in which all values are given the same weight.

Median The mid-point of a distribution. The median is chosen so that half the
data values occur above and half occur below the median.

Meta-analysis Aseries ofmethods for systematically combining data frommore
than one investigation to draw a conclusion which could not be drawn solely
on the basis of the single investigations. A specif c type of systematic review in
which there is a quantitative method used for combining the data from two or
more studies.

MonteCarlo Simulation Amethod used in cost-effectiveness analysis and other
applications that repeatedly samples the same population to derive a large num-
ber of samples whose distribution can be used to calculate point estimates and
conf dence or credibility ranges.

Mortality Rate A measure of the incidence of death. This rate is calculated as
the number of deaths over a period of time divided by the product of the number
of individuals times their period of follow-up.

Multicollinearity Sharing of information among independent variables. In a
regression method, the existence of multicollinearity poses an issue of which
independent variables to include in a regression equation.

Multiple Correlation Analysis Statistical methods used with one continuous
dependent variable plus nominal and continuous independent variables when
all variables are obtained by naturalistic sampling.

Multiple Regression Analysis Statistical methods used with one continuous
dependent variable and more than one continuous independent variable.

Multivariable Analysis A statistical analysis in which there is one dependent
variable and more than one independent variable.

Multivariate Analysis A statistical analysis in which there is more than one
dependent variable. Commonly but incorrectly used as a synonym for multi-
variable analysis.

Mutually Exclusive Categories are mutually exclusive if any one individual can
be included in only one category.

Natural Experiment A special type of cohort study in which the study and
control groups’ outcomes are compared with their own outcomes before and
after a change is observed in the exposure of the study group.

Naturalistic Sample A set of observations obtained from a population in such
a way that the sample distribution of independent variable values as well as
dependent variable values is representative of their distribution in the population.
(Synonym: representative sample)

Necessary Cause A characteristic is a necessary cause if its presence is required
to cause the disease.

Nested case-control study A case-control study conducted using data originally
obtained as part of a cohort study or randomized clinical trial.

Nominal Data A type of data with named categories. Nominal data may have
more than two categories that cannot be ordered (e.g., race, eye color). Nom-
inal data may have only two categories, i.e., dichotomous data, that can be
ordered one above another (e.g., dead/alive). Nominal data are represented
by more than one nominal variable if there are more than two potential
categories.
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Nonparametric Statistics Statistical procedures that do not make assumptions
about the distribution of parameters in the population being sampled. Nonpara-
metric statistical methods are not free of assumptions such as the assumption of
random sampling. They are most often used for ordinal data but may be used
for continuous data converted to an ordinal scale. (Synonym: distribution-free)

Normal Approximation A statistical method that can be used to calculate ap-
proximate probabilities for binomial andPoissondistributions using the standard
normal distribution.

Normal Distribution See: Gaussian distribution
Null Hypothesis The assertion that no association or difference between the
independent variable of interest and the dependent variables exists in the larger
population from which the study samples are obtained.

Number Needed to Treat The number of patients, similar to the study patients,
who need to be treated to obtain one fewer bad outcome or one more good
outcome compared to the control group treatment.

Observational Study An investigation in which the assignment is conducted
by observing the subjects who meet the inclusion and exclusion criteria. Case-
control and cohort studies are observational studies.

Observed Assignment Refers to the method of assignment of individuals to
study and control groups in observational studies when the investigator does not
intervene to perform the assignment.

Odds A ratio in which the numerator contains the number of times an event
occurs and the denominator contains the number of times the event does not
occur.

Odds Form of Bayes’ Theorem The formula for Bayes’ theorem that indicates
that the posttest odds of disease is equal to the pretest odds times the likelihood
ratio.

Odds Ratio A ratio measuring the strength of an association applicable to all
types of studies employing nominal data but is required for case-control and
cross-sectional studies. The odds ratio for case-control and cross-sectional stud-
ies is measured as the odds of having the risk factor if the condition is present
divided by the odds of having the risk factor if the condition is not present.

Omnibus Null Hypothesis A null hypothesis that addresses the relationship be-
tween the dependent variable and the entire collection of independent variables
as a unit.

One-Tailed Test A statistical signif cance test in which deviations from the null
hypothesis in only one direction are considered. Use of a one-tailed test implies
that the investigator does not consider a true deviation in the opposite direction
to be possible.

Open label Refers to an investigation usually of a therapeutic or preventive agent,
in which there is no attempt to blind either the participants or the investigators.

Option One alternative intervention being compared in a decision-making in-
vestigation. May also be used in practice guidelines to indicate that the evidence
does not support a clear recommendation or that inadequate data are available
to make a recommendation.

Ordinal Data A type of data with a limited number of categories and with
an inherent ordering of the categories from lowest to highest. Ordinal data,
however, say nothing about the spacing between categories (e.g., Stage 1, 2, 3,
and 4 cancer).
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investigation. In case-control studies, outcome is a prior characteristic; in con-
current cohort studies and randomized clinical trials, the outcome is a future
event which occurs subsequent to the assignment. (Synonym: endpoint)

Outcome Studies A generic term which refers to investigations of the results of
therapeutic interventions regardless of the type of investigation used.

Outcomes Prof le The type of decision analysis that measures the benef ts and
harms but does not directly compare them. (Synonym: balance sheet)

Outliers An investigation included in a meta-analysis or a subject in an investi-
gation whose results are substantially different from the vast majority of studies
or subjects, suggesting a need to examine the situation to determine why such
an extreme result has occurred.

Overmatching The error which occurs when investigators attempt to study a
factor closely related to a characteristic by which the groups have been matched
or paired.

P Value The probability of obtaining data at least as extreme as the data ob-
tained in the investigation’s sample if the null hypothesis is true. The P value is
considered the “bottom line” in statistical signif cance testing.

PairedDesign Astudy design inwhich the data are analyzed using the difference
between the measurements on the two members of a pair.

Pairing A special form of matching in which each study individual is paired
with a control group individual and their outcomes are compared. When pairing
is used, special statistical methods called matching methods should be used.
These methods may increase the statistical power of the study.

Parameter A value that summarizes the distribution of a large population. One
purpose of statistical analysis is to estimate a population’s parameter(s) from
the sample’s observations.

Partial Test A statistical signif cance test of a null hypothesis that addresses
the relationship between the dependent variable and one of the independent
variables. (Synonym: pairwise test)

Path Probability The probability of a f nal outcome in a decision-making in-
vestigation. Path probabilities are calculated by multiplying the probabilities
of each of the outcomes that follow chance nodes and that lead to a f nal
outcome.

Pearson’s Correlation Coeff cient The correlation coeff cient that may be used
when the dependent variable and the independent variable are both continuous
and both have been obtained by naturalistic sampling.

Per Treatment Analysis of data based on the actual treatment received.
(Synonym: as treated)

Period Prevalence The number of cases of a condition or disease during a
period of time. Period prevalence incorporates incidence and well as point
prevalence.

Person-Years A person-year is equivalent to one person observed for a period
of 1 year. Person-years are used as a measure of total observation time in the
denominator of a rate.

Perspective In decision-making investigations, the perspective of an investiga-
tion asks what factors should be consider when measuring the impact of the
benef ts, harms, and costs from a particular point of view. (See: social perspec-
tive, user perspective)
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Plateau Effect A f at portion of a life-table curve at the right end of the curve
that may ref ect the fact that very few individuals remain in the investigation
rather than indicating cure.

Point Estimate A single value calculated from sample observations that is used
as the estimate of the population value, or parameter.

Poisson Distribution A special case of a binomial distribution that can be used
when the nominal event, such as disease or death, is rarely observed and the
number of observations is great.

Population A large group often, but not necessarily, comprising individuals. In
statistics, one attempts to draw conclusions about a population by obtaining a
representative sample made up of individuals from the larger population.

Population-Attributable Risk Percentage The percentage of the risk in a
community, including individuals with and without a risk factor, that is as-
sociated with exposure to a risk factor. Population attributable risk does
not necessarily imply a cause-and-effect relationship. (Synonym: attributable
fraction [population], attributable proportion [population], etiological fraction
[population])

Population Based An investigation is population based if the prevalence of
the risk factor in the investigation ref ects the prevalence of the risk factor in
the larger population. A population-based case-control study is one in which the
ratio of cases to controls is representative of the ratio in the larger population.

Positive-if-All-Positive As used here, a screening strategy in which a second
test is administered to all those who have a positive result on the initial test. The
results may be labeled positive only if both tests are positive. Also called serial
or consecutive testing; however, these terms may cause confusion.

Positive-if-One-Positive Asused here, a screening strategy inwhich twoormore
tests are initially administered to all individuals and the screening is labeled as
positive if one or more tests produce positive results. Also called parallel or
alternative testing; however, these terms can cause confusion.

Power The ability of an investigation to demonstrate statistical signif cancewhen
a true association or difference of a specif ed strength exists in the population
being sampled. Power equals 1 minus the Type II error. (Synonym: statistical
power, resolving power)

Practice Guideline A set of recommendations def ning conditions for using or
not using available interventions in clinical or public health practice. Practice
guidelines may be evidence-based and referred to as evidence-based guidelines
or evidence-based recommendations.

Precise Without random error, without variability from measurement to mea-
surement of the same phenomenon. (Synonym: reproducibility, reliability)

Prediction A special form of extrapolation inwhich the investigator extrapolates
to a future point in time. May also refer to effort to develop a prognosis or to
predict the outcome for one particular individual. Prediction should not be used
as a synonym for estimation.

Predictive Value of a Negative Test The proportion of individuals with a nega-
tive test who do not have the condition or disease as measured by the reference
standard. This measure incorporates the prevalence of the condition or disease.
Clinically, the predictive value of a negative test is the probability that an in-
dividual does not have the disease if the test is negative. (Synonym: posttest
probability after a negative test)
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who actually have the condition or disease as measured by the reference stan-
dard. This measure incorporates the prevalence of the condition or disease. Clin-
ically, the predictive value of a positive test is the probability that an individual
has the disease if the test is positive. (Synonym: posttest probability after a
positive test)

Pretest Probability The probability of disease before the results of a test are
known. Pretest probability may be derived from disease prevalence and the
presence or absence of risk factors when screening for disease or may also
include the clinical symptoms with which a patient presents. The pretest prob-
ability may also be the posttest results or predictive value based on the results
from a previous test.

Prevalence The proportion of persons with a particular disease or condition at
a point in time. Prevalence can also be interpreted as the probability that an
individual selected at random from the population of interest will be someone
who has the disease or condition. (Synonym: point prevalence; also see period
prevalence)

Primary Endpoint The outcome measurement in a study which is used to cal-
culate the sample’s size. It should be a frequently occurring and biologically
important endpoint. (See: secondary endpoint)

Probability A proportion in which the numerator contains the number of times
an event occurs and the denominator includes the number of times an event
occurs plus the number of times it does not occur.

Proportion Afraction inwhich the numerator contains a subset of the individuals
contained in the denominator.

Proportional Hazards Regression A statistical procedure for a nominal depen-
dent variable and a mixture of nominal and continuous independent variables
that can be used when the dependent variable is affected by time (Synonym:Cox
regression)

Proportionate Mortality Ratio A fraction in which the numerator contains the
number of individuals who die of a particular disease over a period of time and
the denominator contains the number of individuals dying from all diseases over
the same period of time.

Prospective Study See: concurrent cohort study
Protocol Deviant An individual in a randomized clinical trial whose treatment
differs from that which the person would have received if the treatment had
followed the rules contained in the investigation’s protocol.

Proximal Cause A legal term that implies an examination of the time sequence
of cause-and-effect to determine the element in the constellation of causal factors
that was most closely related in time to the outcome.

Pruning the Decision Tree The process of reducing the complexity of a deci-
sion tree by combining outcomes and removing potential outcomes which are
considered extremely rare or inconsequential.

Publication Bias The tendency to not publish small studies that do not demon-
strate a statistically signif cant difference between groups.

Purposive Sample A set of observations obtained from a population in such a
way that the sample’s distribution of independent variable values is determined
by the researcher and not necessarily representative of their distribution in the
population.
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QALYDecision Analysis The form of decision analysis that uses QALYs as the
outcome measure.

Quality Adjusted Life Years (QALYs) A measure which incorporates proba-
bilities, utilities, and life expectancies.

Quality-AdjustedNumberNeeded toTreat Asused here, a summarymeasure-
ment that can be derived from an expected utility decision analysis that takes
into account the utilities as well as the probabilities of the outcome. Measures
the number of individuals, on average, who need to receive the better alternative
in order to obtain one additional QALY.

Random Effects Model A type of statistical signif cance test that does not as-
sume that subgroups all come from the same large population. In meta-analysis,
implies that there is heterogeneity across the investigations.

Random Error Error which is due to the workings of chance, which can either
operate in the direction of the study hypothesis or in the opposite direction.

Random Sampling Amethod of obtaining a sample that ensures that each indi-
vidual in the larger population has a known, but not necessarily equal, probability
of being selected for the sample.

Randomization A method of assignment in which individuals have a known,
but not necessarily equal, probability of being assigned to a particular study
group or control group. As distinguished from random sampling, the individuals
being randomized may or may not be representative of a large target population.
(Synonym: random assignment)

Randomized Clinical Trial An investigation in which the investigator assigns
individuals to study and control groups using a process known as randomization.
(Synonym: controlled clinical trial, experimental study)

Range The difference between the highest and lowest data values in a population
or sample.

Range of Normal See: reference interval
Rate Commonly used to indicate anymeasure of disease or outcome occurrence.
From a statistical point of view, rates or true rates, are those measures of disease
occurrence that include time in the denominator (e.g., incidence rate).

Rate Ratio A ratio of rates. The rate ratio may be used as an estimate of the
relative risk even when there is no data relating the population outcomes to
individual characteristics.

Ratio A fraction in which the numerator is not necessarily a subset of the de-
nominator, as opposed to a proportion.

Real Differences or Changes Differences or changes in the measurement of
occurrence which ref ect differences or changes in the phenomenon under study
as opposed to artifactual changes.

Real Rate of Return The rate of return that is used when discounting. It is
designed to take into account the fact that money invested rather than spent is
expected to increase in value, on average, at a rate that approximates the rate
of return for invested capital in the overall economy—that is, a rate above and
beyond inf ation.

Recall Bias An assessment bias that occurs when individuals in one study or
control group are more likely to remember past events than individuals in the
other group. Recall bias is especially likely when a case-control study involves
serious disease and the characteristics under study are commonly occurring,
subjectively remembered events.
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the discriminant ability of a test based on the area under the curve. ROC curves
can also assist in identifying a separating or cutoff line for a positive and a
negative test.

Reference Case In decision-making investigations, a reference case is the ac-
cepted method for presenting the data using the social perspective, best guess,
or baseline estimates for variables, a 3% discount rate, and a series of other
generally accepted assumptions.

Reference Interval The interval of test results obtained from a reference sample
group which ref ects the variation among those who are free of the disease.
(Synonym: range of normal)

Reference Sample Group The sample used to represent the population of in-
dividuals who are believed to be free of the disease. The characteristics of the
sample chosen may affect the reference interval derived from the reference
sample group. (Synonym: disease-free source group)

Reference Standard The criterion used to unequivocally def ne the presence
and absence of the condition or disease under study. (Synonym: gold standard)

Regression Coeff cient In a regression analysis, an estimate of the amount that
the dependent variable changes in value for each change in the corresponding
independent variable.

Regression Techniques A series of statistical methods useful for describing
the association between one dependent variable and one or more independent
variables. Regression techniques are often used to perform adjustment for con-
founding variables.

Regression to the Mean A statistical principle based on the fact that unusual
events are unlikely to recur. By chance alone, measurements subsequent to an
unusual measurement are likely to be closer to the mean.

Relative Risk A ratio of the probability of developing the outcome in a specif ed
period of time if the risk factor is present divided by the probability of developing
the outcome in that same period of time if the risk factor is not present. The
relative risk is a measure of the strength of association applicable to cohort and
randomized clinical trials. In case-control studies, the odds ratio often can be
used to approximate the relative risk.

Reportable Diseases Diseases or conditions that are expected to be reported by
clinicians and laboratories to a governmental organization, often the local health
department.

Reporting Bias An assessment bias that occurs when individuals in one study or
control group are more likely to report past events than individuals in the other
group. Reporting bias is especially likely to occur when one group is under
disproportionate pressure to report conf dential information.

Reproducibility See: precision
Residuals The difference between the observed numerical values of the depen-
dent variable and those estimated by the regression equation. Residuals indicate
how well the regression equation estimates the dependent variable.

Results The comparison of the outcome of the study and control groups. Includes
issues of estimation, inference, and adjustment.

Retrospective Cohort Study A cohort study in which an individual’s group
assignment is determined before the investigator is aware of the outcome even
though the outcome has already occurred. A retrospective cohort study uses a
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previously collected database. (Synonym: nonconcurrent cohort study, database
research)

Retrospective Study See: case-control study
Reverse Causality The situation in which the apparent “effect” is actually the
“cause.”

Risk The probability of an event occurring during a specif ed period of time.
For the risk of disease, the numerator of risk contains the number of individuals
who develop the disease during the time period; the denominator contains the
number of disease-free persons at the beginning of the time period. (Synonym:
absolute risk, cumulative probability)

Risk Factor A characteristic or factor that has been shown to be associated with
an increased probability of developing a condition or disease. A risk factor does
not necessarily imply a cause-and-effect relationship. In this book, a risk factor
implies that at least an association has been established on an individual level.
A risk factor that implies only an association may be called a risk marker, while
a risk factor that precedes the outcome may also be called a determinant.

Risk-Neutral Decision-making investigations are risk-neutral if the choice of
alternatives is governed by expected utility and is not inf uenced by the tendency
to either choose a risk-seeking or a risk-avoiding alternative.

Robust Astatistical procedure is robust if its assumptions can be violatedwithout
substantial effects on its conclusions.

Rule of Three The number of individuals who must be observed to be 95%
conf dent of observing at least one case of an adverse effect is three times the
denominator of the true probability of occurrence of the adverse effect.

Run-InPeriod Prerandomization observation of patients usually designed to en-
sure that they are appropriate candidates for entrance into a randomized clinical
trial, especially with regard to their adherence to therapy.

Sample A subset of a larger population obtained for investigation to draw con-
clusions or make estimates about the larger population.

SamplingError Anerror introduced by chance differences between the estimate
obtained in a sample and the true value in the larger population from which the
sample was drawn. Sampling error is inherent in the use of sampling methods
and its magnitude is measured by the standard error.

Satisf cing A decision-making approach in which the goal is not to maximize
expected utility but tomaximize the chances of achieving a satisfactory solution.

Screening Test Test conducted on an individual who is asymptomatic for a
particular disease as part of a testing strategy to diagnose that particular disease.

Secondary Endpoint An endpoint which is of interest and importance, such as
death, but which occurs too infrequently to use to calculate the sample’s size.

Secular Trend Long-term real changes in rates (Synonym: temporal trend)
Selection Bias A bias in assignment that occurs when the study and control
groups are chosen so that they differ from each other by one or more factors
that affect the outcome of the study. A special type of confounding variable that
results from study design rather than chance. (See: confounding variable)

Self-Selection Bias A bias related to the assignment process in screening that
may occur when volunteers are used in an investigation. The bias results from
differences between volunteers and the larger population of interest, i.e., the
target population.
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by the reference standard, who are positive by the test being studied. (Synonym:
positive-in-disease)

SensitivityAnalysis Amethod used in decision-making investigations that alters
one or more factors from their best guess or baseline estimates and examines the
impact on the results. One-way, multiple-way, best-case/worst-case sensitivity
analyses, and threshold analyses are special types of sensitivity analyses.

Sentinel Sites A sentinel site is a location such as an emergency department in
which the f rst cases of a condition are likely to be identif ed.

Sequential Analyses Methods of analysis that seek to determine whether an
investigation should continue. Sequential analysis methods may permit an in-
vestigation to be terminated at an earlier time.

Simple Random Sample A random sample in which the sample is drawn to
represent the overall larger population without stratif cation to ensure greater
representation of particular groups within the population.

Slope The regression coeff cient in linear regression analysis. The slope of a
linear equation in linear regression estimates the amount that the mean of the
dependent variable changes for each unit change in the numerical value of the
independent variable.

Social Perspective The perspective that takes into account all health-related
impacts of the benef ts, harms, and costs regardless of who experiences these
outcomes or who pays these costs. The social perspective is considered the
appropriate perspective for decision-making investigations.

Spearman’s Correlation Coeff cient A correlation coeff cient that can be ob-
tained in a bivariable analysis when the dependent variable and the independent
variable are both ordinal and are obtained through naturalistic sampling.

Specif city The proportion of thosewithout the disease or condition, asmeasured
by the reference standard, who are negative by the test being studied. (Synonym:
negative-in-health)

Spectrum Bias A bias in testing in which the participants do not ref ect the
spectrum of disease in the target population, such as not including those with
other diseases of the same organ system that may produce false negative or false
positive results.

Standard Deviation A commonly used measure of the spread or dispersion of
data. The standard deviation squared is known as the variance.

Standard Distribution Distribution for which statistical tables have been de-
veloped. Use of standard distributions, when chosen appropriately, simplify the
calculation of P values and conf dence intervals.

Standard Error The spread or dispersion of point estimates, such as the mean
obtained from all possible samples of a specif ed size. The standard error is
equal to the standard deviation divided by the square root of the sample size.
(See: sampling error)

Standardization (of a rate) Aneffort to take into account or adjust for the effects
of a factor such as age or sex on the obtained rates. (See: adjustment)

Standardized Mortality Ratio A ratio in which the numerator contains the ob-
served number of deaths and the denominator contains the number of deaths
that would be expected based on a comparison population. A standardized
mortality ratio implies that indirect standardization has been used to control



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

GB072-Glossary Riegelman-1490G Riegelman-v9.cls August 30, 2004 13:20

392 Glossary

for confounding variables. Note that the terms “standardized mortality ratio”
and “proportionate mortality ratio” are not synonymous.

Stationary Population A population often def ned as 100,000 birth that ex-
periences no entry or exit from the population except for birth or death. Of-
ten used as the population for cross-sectional life table and life expectancy
calculations.

Statistic A value calculated from sample data that is used to estimate a value or
parameter in the larger population from which the sample was obtained.

Statistical Signif cance Test A statistical technique for determining the proba-
bility that the data observed in a sample, or more extreme data, could occur by
chance if there is no true difference or association in the larger population (i.e.,
if the null hypothesis is true). (Synonym: inference, hypothesis testing)

Stratif cation In general, stratif cationmeans to divide into groups. Stratif cation
often refers to a process to control for differences in confounding variables by
making separate estimates for groups of individuals who have the same values
for the confounding variable.

Stratif ed Analysis Statistical procedures that can be used when there is a nom-
inal dependent variable and more than one nominal independent variable. Strat-
if ed analysis produces stratum-specif c point estimates.

Stratif ed Random Sampling A purposive sampling method that is designed to
over-sample rare categories of an independent variable.

Stratum When data are stratif ed or divided into groups using a characteristic
such as age, each group is known as a stratum.

Student-Newman-Keuls Test A partial statistical signif cance test for a contin-
uous dependent variable and more than one independent variable.

Student’s t Distribution A standard distribution that is used to obtain P values
and conf dence intervals for a continuous dependent variable. The Student’s t
distribution is used to obtain the Student’s t test of statistical signif cance.

StudyGroup In a cohort studyor randomized clinical trial, a groupof individuals
who possess the characteristics or who are exposed to the factors under study. In
case-control or cross-sectional study, a group of individuals who have developed
the disease or condition being investigated.

Study Hypothesis An assertion that an association or difference exists between
two or more variables in the population sampled. A study hypothesis can be
one-tailed (considering associations or differences in one direction only) or
two-tailed (not specifying the direction of the association or difference).

Study Population The population of individuals from which samples are ob-
tained for inclusion in an investigation. (Synonym: study’s population)

Subgroup Analysis Examination of the relationship between variables in sub-
groups, such as gender or age groups, obtained from the original study and
control groups.

Subjective Probabilities Probabilities that are obtained based on perceived
probabilities.

Suff cient Cause A characteristic is a suff cient cause if its presence in and of
itself will cause the disease.

Supportive Criteria When contributory cause cannot be established, additional
criteria can be used to develop a judgment regarding the existence of a contrib-
utory cause. These include strength of association, dose-response relationship,
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ancillary criteria)
Surrogate Endpoint The use of measurements such as test results instead of
clinically important outcome measures to assess the outcomes of an investiga-
tion. In order to be an appropriate measure of outcome, surrogate endpoints
requires a strong association between the surrogate endpoint and a relevant
clinical outcome.

Survival Plot A graphic display of the results of a cohort or longitudinal life
table.

Systematic Review An evaluation of research that addresses a focused question
using methods designed to reduce the possibility of bias. Systematic reviews
may use qualitative as well as quantitative methods.

Target Population The group of individuals to whom one wishes to apply the
results of an investigation. The target population may be, and often is, different
from the study population from which the sample used in an investigation is
obtained.

Test-Based Conf dence Interval Conf dence interval derived using the same
data and same basic process as that used to perform a statistical signif cance test
on a particular set of data.

Testwise Error The probability of making a Type I error for any one particular
comparison.

Threshold Analysis A special type of sensitivity analysis in which the threshold
levels are determined—that is, the levels for particular factors that alter the
conclusion of a decision-making investigation.

TimeFrame Thepoint in the course of the diseasewhen the alternatives are being
applied. When considering disease that is already fully developed, prevention
may not be an available alternative because it is not within the time frame of the
investigation.

Time Horizon The follow-up period of time used to determine which potential
outcomes that occur in the future will be included in a model for a decision-
making investigation. (Synonym: analysis horizon)

Transformation Methods used tomathematically express the data, usually from
a continuous dependent variable, in a different way that fulf lls the assumptions
of a statistical method, especially the assumptions of Gaussian distribution and
homoscedasticity.

True Negative An individual who does not have the disease or condition, as
measured by the reference standard, and has a negative test result.

True Positive An individual who has the disease or condition, as measured by
the reference standard, and has a positive test result.

Two-Tailed Test A statistical signif cance test in which deviations from the null
hypothesis in either direction are considered. Use of a two-tailed test implies
that the investigator was willing to consider deviations in either direction before
data were collected.

Type I Error An error that occurs when data demonstrate a statistically signif -
cant result when no true association or difference exists in the population. The
alpha level is the size of the Type I error which will be tolerated (usually 5%).

Type IIError Anerror that occurswhen the sample’s observations fail to demon-
strate statistical signif cance when a true association or difference actually exists
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in the population. The beta level is the size of the Type II error that will be
tolerated. (See: power)

Unbiased Lack of systematic error. See: bias
Univariable Analysis Statistical analysis in which there is one dependent vari-
able and no independent variable.

User Perspective Perspective that takes into account the impacts of benef ts,
harms, and cost as they affect a particular user of the decision-making investi-
gation. User perspectives include payer, provider, and patient perspectives.

Utility A measure of the value of a particular health state measured on a scale
of 0 to 1. Utilities are measured on the same scale as probabilities in order to
multiply utilities and probabilities in decision-making investigations. A variety
ofmethods exist formeasuring utilities, including the rating scale, time trade-off,
and reference gamble methods.

Valid Ameasurement is valid if it is appropriate for the question being addressed
and is accurate, precise, and complete. Validity implies that the measurement
measures what it intends to measure. Discipline-specif c def nitions of validity
exist that often def ne the methods used to establish validity. At times, validity
may be used as a synonym for accuracy.

Variable Generally refers to a characteristic forwhichmeasurements aremade in
a study. In strict statistical terminology, a variable is the representation of those
measurements in an analysis. Continuous or ordinal scale data are expressed
using one variable, as are nominal data with only two categories. However,
nominal data with more than two categories must be expressed using more than
one variable.

Variance Variance is the mean square deviation of data from the mean. (See:
standard deviation)

Verif cation Bias A bias in testing that may occur when participants are chosen
because they have previously undergone the index test and agree to subsequently
undergo the reference standard test.

Weighting Amethod used in adjustment to take into account the relative impor-
tance of a specif c stratum. Each stratum is given a weight prior to combining
its data.

Wilcoxon Signed-Rank Test A statistical signif cance test that can be used for
univariable analysis of an ordinal dependent variable.

Willingness to Pay An approach to converting effectiveness to monetary terms
that uses past choices made in specif c situations to estimate how much society
is willing to pay to obtain a specif c outcome.
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Absolute risk, 59–60
Accuracy
explanation of, 371
in meta-analysis, 106–107
of outcome measures, 25–29

Actual differences or changes, 371
Actuarial survival
explanation of, 371
5-year, 80

Adjustment
confounding variables and, 47–49
of data, 47
in decision-making investigations,
266–268

explanation of, 371
in meta-analysis, 108–111
in nonconcurrent cohort studies, 96
of rates, 207–210
use of, 14, 47n

Adverse effects
cause-and-effect relationships for,
85

in randomized clinical trials,
84–85

Affected by time, 371
Aggregate effects, 276–277, 371
Aggregate external validity, 304,

371
Aggregate internal validity, 303,

371
Algorithms, 317–318, 317f, 371
Allocation concealment, 73, 371
Allocation ratio, 74
Alpha level, 42
Alternative hypothesis, 37, 371
Analysis according to

intention-to-treat, 78
Analysis horizon, 249n. See also

Time horizon
Analysis of covariance (ANCOVA),

356, 357, 371
Analysis of variance (ANOVA)
explanation of, 352, 355, 371
factorial, 353, 354
one-way, 352–354

Analytical frameworks, 298n
Analytical studies, 7n, 371
Á posteriori tests, 354n

Appropriate measurement, 371
Appropriateness, 25, 26
Artifactual differences, 211–212, 371
Assessment
accurate and precise measure of
outcome in, 26–29

appropriate measure of outcome
in, 26

bias in, 27, 28, 372
in case-control studies, 9, 119
in cohort studies, 10, 94–95,
125–126

complete and unaffected by
observation, 29–31

in decision-making investigations,
251–259, 279

in evidence-based guidelines,
300–301

explanation of, 8, 25, 372
in meta-analysis, 106–107, 132
questions about, 13, 116, 184
in randomized clinical trials, 11,
75–78, 129

in rating rates, 200–203
for testing tests, 149–156

Assignment
blind or masking, 13, 24
in case-control studies, 9, 119
in cohort studies, 10, 93–94, 125
confounding variables in, 13,
21–22

in decision-making investigations,
246–250, 279

in evidence-based guidelines,
297–299

explanation of, 8, 372
matching and pairing in, 22–24
in meta-analysis, 103–106, 132
observed, 9
process of, 13, 20–21, 146
questions about, 13, 116, 184
in randomized clinical trials, 11,
73–75, 128–129

in rating rates, 197–199
for testing tests, 143–148

Association
cause-and-effect relationship and,
51–52, 54, 83–85

consistency of, 53
in contributory cause, 50–51
explanation of, 372
at individual level, 51
in meta-analysis, 111
prior, 50–52, 111
in statistical significanc tests, 40
strength of, 32–36, 53

Asymptomatic individuals, 175
At-risk populations
explanation of, 200, 372
extrapolation to, 60–61

Attributable risk percentage
explanation of, 60–61, 372
population, 62–63

Average, 324n
Averaging out, 253–254, 372

Balance sheet, 238n
Base-case estimate, 259, 269, 372
Baseline measurement, 372
Baseline testing, 140n
Bayesian, 42n, 372
Bayes’ Theorem
explanation of, 158n, 167, 372
posttest probability and, 169–171
pretest probability of, 167–171,
178

Best case/worst case analysis,
265–266

Beta level, 43
Bias
assessment, 27, 28
case-mix, 93
confounding variables from, 47
explanation of, 372
information, 27
lead-time, 177, 177f
length, 177, 178f, 178n
publication, 103–106
recall, 27, 28
reporting, 27–28
selection, 20–22, 27n
self-selection, 183
spectrum, 144
verification 144

Binomial distribution, 339, 372
Biological interaction, 56n

395
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Biological plausibility, 53, 372
Bivariable analysis
continuous dependent variables
and, 341–343

continuous independent variables
and, 343–345

explanation of, 329, 372
nominal dependent variables and,
347–349

ordinal dependent variables and,
346–347

Blind assessment, 372
Blind assignment, 373
Blinding. SeeMasking
Bonferroni’s correction, 42n

Calibration, 140n, 373
Carry-over effect, 373
Case-control studies
applying M.A.A.R.I.E. method to,
8–9, 9f

assignment in, 24
cause and effect in, 51
explanation of, 373
features of, 11–13, 20
f aw-catching exercise for,
118–120

function of, 7
hypothesis for, 17
nested, 7n, 89n
odds ratio in, 35, 36
population-based, 7n, 36n, 89n
sample size for, 18, 142n
strength of association in,
33–34

Case fatality, 195, 373
Case-mix bias, 93, 373
Case-series studies, 7n
Causality, reverse, 51
Causation
concept of, 54–55
test for, 139

Cause
contributory, 52–55
necessary, 54, 55
proximal, 52n
suff cient, 54

Cause-and-effect relationship
association and, 51–52, 54, 83
in natural experiments, 96
in randomized clinical trials,
83–85

Causes of causes, 55n
Censored data, 359n, 373
Central limit theorem, 336n, 373
Chance, 29
Chance node, 247, 373
Chance nodes, 247

Chi-square distribution, 367, 373
Chi-square test
explanation of, 348, 367, 373
for trend, 349, 373

Classif cation error, 29
Coeff cient of determination
explanation of, 345, 373
multiple, 345, 355, 373

Cohort effect, 215, 374
Cohort life tables, 220
Cohorts, 9, 215, 373
Cohort studies
applying M.A.A.R.I.E. method to,
9–10, 10f

assignment in, 24
cause and effect in, 51–52
concurrent, 12, 30, 89, 120–123
explanation of, 374
features of, 12–13, 20, 89, 90
function of, 7, 90
life tables in, 79n
nonconcurrent, 12, 89–97
number need to treat in, 61
odds ratio and, 35
sample size for, 18–19
of screening, 177
selection bias in, 21

Combining tests
likelihood ratios for, 166n, 173
strategies for, 180–181

Communities, 63–64
Community guidelines, 294
Completeness
explanation of, 155–156
in measuring rates, 202–203
in meta-analysis, 107
of outcome measures, 25, 29–31

Concurrent cohort studies. See also
Cohort studies

assessment in, 122
assignment in, 122
effects of observation in, 30
explanation of, 12, 89, 374
extrapolation in, 122–123
f aw-catching exercise for,
120–123

interpretation in, 122–123
method in, 121
results in, 122–123

Conf dence intervals
for coeff cients of determination,
355

estimates of, 336n
explanation of, 45–47, 162, 327,
374

method for presenting, 149n
use of, 207

Conf dence limits, 45–46, 327n, 374

Confounding variables
in assignment, 13, 21–22
explanation of, 22, 374
matching and pairing to prevent,
24

publication bias and, 103–106
recognition of, 93, 94
reducing effect of, 47–49

Consensus conference, 301, 374
Consistency, 53
CONSORT (Consolidated Standards

of Reporting Trials), 67, 68f, 69,
75n, 76

Continuous data, 330, 374
Continuous dependent variables,

335–337, 341–343, 351–354
Continuous independent variables,

343–345, 349, 354–356,
360–361

Contributory cause
altering cause and, 52–53
aspects of, 52–54
association and, 50–51
concept of, 55
explanation of, 374
prior association and cause-effect
link and, 51–52

Control groups, 374
Controlled clinical trials. See

Randomized clinical trials
Convenience samples, 197, 374
Conventional care, 374
Correlation, 374
Correlation analysis, 344–345, 374
Correlation coeff cient
explanation of, 374
Pearson’s, 345
Spearman’s, 347

Cost-and-effectiveness studies, 241,
262n, 375

Cost-benef t analysis, 242–243, 375
Cost-consequence analysis, 241,

241t, 375
Cost effectiveness, 271, 375
Cost-effectiveness analysis
explanation of, 238, 240–243, 258,
311, 375

social perspective in, 245, 274
using QALY, 241

Cost-effectiveness ratios
explanation of, 262–263, 375
incremental, 262–263, 271–272
interpretation of, 269–272

Cost-QALY graph, 269–271, 270f,
375

Cost savings, 270, 375
Cost-utility analysis, 241, 242, 375
Covariance, 345, 375
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Cox regression, 81. See also
Proportional hazards regression

Credibility intervals, 264, 375
Cries syndrome, 1–2
Cross-over studies, 23–24, 375
Cross-school life tables, 79n
Cross-sectional life tables, 220,

256
Cross-sectional studies, 12, 375
Cumulative probability, 359n
Cumulative survival, 360, 375
Current life tables, 220
Cutler-Ederer life tables, 79n

Database research
assessment in, 94–95
assignment in, 93–94
explanation of, 12, 89–91,
375–376

extrapolation of, 97–98
interpretation of, 96–97
method in, 91–93
results of, 95–96

Data framing, 235–236
Decision analysis
in decision-making investigations,
242, 260, 261f

expected utility, 240
explanation of, 238–240, 239t,
258, 376

quality adjusted life years, 240
Decision-making investigations
adjustment and discounting and,
266–268

assessment and, 251–259
assignment and, 246–250
cost-benef t analysis and, 242–245
cost-effectiveness analysis and,
235–237, 240–242, 258–259

cost-effectiveness ratios and,
269–272

decision analysis and, 238–240,
242

distributional effects and, 272–273
estimation and, 260–263
extrapolation and, 276–279
f aw-catching exercises for,
281–290

interpretation and, 269–274
life-expectancy and, 255–257
M.A.A.R.I.E. framework applied
to, 236–237, 236f

method and, 237–245
options and, 246–247
probabilities and, 251–252
questions for, 279–280
relevant options and realistic
outcomes and, 247–249

results and, 260–268
sensitivity analysis and, 264–266
similar populations and, 276–277
study questions and study type
and, 237–238

time horizon and, 249–250
utilities and, 252–255
varying perspectives and,
273–275

varying populations and,
278–279

Decision-making models, 246, 376
Decision nodes, 246–247, 376
Decision trees
examination of, 247–248, 315f
explanation of, 246–247, 247f, 376
folding back, 253
pruning, 249

Declining exponential approximation
of life expectancy (DEALE),
224n, 257n, 376

Degrees of freedom, 336n
Delphi method, 301, 376
Dependent variables
continuous, 335–337, 341–343,
351–354

explanation of, 328–329, 333, 376
nominal, 338–339
ordinal, 337–338

Describe a population, 323, 376
Descriptive epidemiology studies, 7n
Descriptive studies, 7n, 376
Diagnostic ability, 76, 162–163
Diagnostic tests
assignment process in
investigations of, 143–148

explanation of, 376
f aw-catching exercise for,
185–187

purpose of, 137–140
sample size for evaluating,
141–142

statistical power in evaluating,
142n

study population and, 140–141
Direct cause, 376
Disability adjusted life years

(DALY), 240n
Discordant pairs, 36, 376
Discounted present value, 267, 376
Discounting
in decision-making investigations,
267–268

in evidence-based studies,
312–314, 313f

explanation of, 267, 376
Discrete data, 330, 376
Discriminant ability

application of, 159–162, 160f,
161f

explanation of, 157, 376
Discriminant analysis, 329n
Disease adjusted life years (DALY),

377
Disease-free source group, 150
Diseconomies of scale, 278
Dispersion, 324, 335n, 377
Distribution
binomial, 339, 372
explanation of, 377
Gaussian, 207n, 324–326f, 338n,
339

normal, 324n
Poisson, 207n, 339
standard, 327
student’s t, 336, 337, 392

Distributional effects, 272–273, 377
Dominance, 306–307, 377
Do-nothing approach, 262, 377
Dose-response relationship, 53, 377
Double-blind assignment, 11
Double-blind masking, 11
Double masked studies, 75, 94
Dummy variables, 356
Dunn’s test, 357

Ecological, 377
Ecological fallacy, 217–218, 377
Economies of scale, 278, 377
Effectiveness, 68, 377
Effects
aggregate, 276–277
explanation of, 377
magnitude of, 308–309
of observation, 377
size of, 32, 377

Eff cacy
association and, 83–85
explanation of, 68, 377
in randomized clinical trials, 94

Eff ciency, 181–183
Eligibility criteria, 378
Endpoints
explanation of, 25, 378
primary, 72n
secondary, 72n
surrogate, 76

Environmental testing, 140n
Errors
classif cation, 29
misclassif cation, 29
overmatching, 23
random, 21, 22, 27, 47
systematic, 27
type II, 18

Estimates, 32, 378
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Estimation
in decision-making investigations,
260–264

explanation of, 260
questions about, 14
rate ratios and, 204–205
of strength of association, 32–36,
107, 108

Events, 378
Evidence
f lling in holes in, 301
scoring strength of, 302–306
sources of, 300
structure of, 297–298
types of, 298–299

Evidence-based guidelines
assessment for, 300–301
assignment for, 297–299
evidence-based, 279, 293, 378
explanation of, 293, 294f, 378,
379

extrapolation for, 317–319
interpretation for, 308–316
method for, 293–296
purpose of, 293–294
questions to ask for, 320
results for, 302–307

Exclusion criteria, 17, 18, 378
Exhausting the denominator,

215–216
Expected utilities
averaging out, 253–254
explanation of, 239–240, 252–253,
378

Expected utility decision analysis,
240, 255–256, 378

Expected value, 258n, 378
Experimentwise error, 351, 378
Exploratory meta-analysis, 102, 378
Extended dominance, 306–307
Extrapolation
to at-risk groups, 60–61
beyond range of data, 63–64
in case-control studies, 9, 119–120
in cohort studies, 10, 97–98, 127
in decision-making investigations,
276–280

in evidence-based guidelines,
317–319

explanation of, 8, 58, 155n, 172,
378

linear, 64, 277
in meta-analysis, 113–114, 133
to populations or communities,
62–63, 174, 278–279

questions about, 14, 117, 185
in randomized clinical trials, 11,
86–88, 130

in rating rates, 216–219
to similar individuals, groups, or
populations, 58–63, 276–277

to target populations or settings,
65–66, 97, 172–173

in testing tests, 172–174

Factorial ANOVA, 352, 353
Factors, 353, 378
Fail-safe n, 113, 378
False negatives
discriminant ability and, 162n
explanation of, 378
importance of, 163

False outcome, 379
False positives
discriminant ability and, 162n, 163
explanation of, 160f, 161f, 379
importance of, 163

F distribution, 378
Final outcomes, 246
Fisher exact procedure, 348, 379
5-year actuarial survival, 80
Fixed costs, 379
Fixed effect model, 108, 379
Flaw-catching exercises
for case-control studies, 118–120
for concurrent cohort studies,
120–123

for decision-making
investigations, 281–290

for diagnostic performance of
tests, 185–187

function of, 117
for life expectancy, 229–231
for meta-analysis, 130–133
for nonconcurrent cohort studies,
123–127

for progress in survival, 228–229
for randomized clinical trials,
127–130

for screening for disease, 188–190
Flowcharts
for bivariable analysis, 342f, 346f
for multivariable analysis, 352f,
356f, 358f

selection of statistic, 362–368,
363f–368f

for univariable analysis, 335, 335f,
338f, 340f

use of, 332–333, 332f, 335f
Folding back the decision tree, 253,

379
Follow-up
frequency of, 174
incomplete, 29–31
length of, 94
loss to, 77–78, 80

in nonconcurrent cohort studies,
94–95

Food and Drug Administration
(FDA), 67, 69, 88

Frequency, 338
F test, 354
Funnel diagram, 103, 104t, 105f,

379

GAME (gama mixed-exponential
estimate), 224n, 257n

Gaussian distribution, 207n,
324–326f, 338n, 339, 379

Gold standard. See Reference
standard

Group association, 217, 379
Group matching, 23, 379
Guidelines, 293, 294, 379. See also

Evidence-based guidelines

Harms, 84
Health adjusted life expectancy

(HALE), 226, 240n, 379
Health research. See also

Case-control studies; Cohort
studies; Randomized clinical
trials; specif c types of studies

analysis of types of, 11–13
assessment component of, 13
assignment component of, 13
exercises to catch f aws in,
117–133 (See also
Flaw-catching exercises)

extrapolation of, 14–17
HIPAA regulations and, 89n
interpretation component of, 14
methods for, 7–8
results of, 14
types of, 7

Healthy worker effect, 208, 379
Heuristics, 235, 379
Historical control, 379
Homogeneity, 109–111, 110f, 110t,

111f
Homogeneous, 380
Homoscedasticity, 380
Human capital, 271n, 380
Hypotheses
alternative, 37
comparing rates and generation of,
217–218

multiple, 41–42
null, 37–40, 42, 43, 80, 334
study, 16–17, 37, 38, 68, 101

Hypothesis-driven meta-analysis,
102, 380

Hypothesis testing. See Statistical
signif cance tests
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Incidence rates
explanation of, 195, 380
mortality rates and, 202
prevalence and, 201

Inclusion criteria, 17–18, 380
Incremental cost-effectiveness ratio,

262–263, 271–272, 380
Independence, 173n, 380
Independence assumption, 180,

252n
Independent variables
continuous, 343–345, 349,
354–356

explanation of, 328–329, 333, 380
nominal, 346, 348, 351–354

Index tests
conduct of, 146–148
explanation of, 140, 141, 380
positive or negative results for, 149
precision and, 155n

Indicator variables, 356, 380
Indirect cause, 380
Inference. See also Statistical

signif cance tests
in decision-making investigations,
264–266

explanation of, 327, 380
in meta-analysis, 108
questions about, 14
rates and, 205–207
statistical signif cance testing and,
36–47

Inf uence diagrams, 250n, 380
Information bias, 27, 380
Institute of Medicine, 293
Intention to treat
analysis according to, 78, 95
explanation of, 380

Interaction modeling, 328n, 381
Interactions
adverse outcome and, 56
explanation of, 381
multiplicative, 56
statistical vs. biological, 56n

Intercepts, 343, 381
Interobserver reproducibility, 154
Interobserver variation, 155, 381
Interpolation, 155n
Interpretation
adverse outcome and interactions
and, 56

of clinical performance, 171
of cohort studies, 96–97, 122–123,
126–127

contributory cause or eff cacy in,
50–53

of cost-effectiveness ratios,
269–272

of database research, 96–97
of decision-making investigations,
269–274, 279

of evidence-based guidelines,
308–316

explanation of, 8, 50, 381
of life tables, 81–82
of meta-analysis, 111–113,
132–133

of posttest changes of disease,
168–171

questions about, 14, 50, 117,
184–185

of randomized clinical trials, 11,
81–85, 129–130

in rating rates, 211–216
to rule in and rule out disease,
164–165, 166f

subgroups and, 57
in testing tests, 164–171

Interval estimates, 327
Interval scales, 330
Intervention, 16
Intraobserver reproducibility, 154
Intraobserver variation, 155, 381
Intrepretation
in case-control studies, 9, 119–120
in cohort studies, 10

Investigational Review Board (IRB),
67

Kaplan-Meier life tables, 79n, 360
Kappa scores, 155n
Kendall’s coeff cient of concordance,

357, 381
Koch, Robert, 54
Koch’s postulates, 54, 381
Kruskal-Wallis test, 357, 381

Lead-time bias, 177, 177f, 381
Least-squares regression, 344, 381
Length bias, 177, 178f, 178n, 381
Life expectancy
calculation of, 220–225
in decision-making investigations,
255–257

explanation of, 219, 381–382
rating rates and, 220–226,
229–231

Life tables
cross-sectional, 220, 256
explanation of, 360, 382
interpretation of, 81–82
Kaplan-Meier, 79n, 360
in randomized clinical trials,
79–81

Likelihood ratios
Bayes’ Theorem and, 167–171

combining tests using, 167–168,
173

explanation of, 168–170
of negative test, 382
of positive test, 382

Linear extrapolation, 64, 277, 382
Linear regression, 349n, 382
Location, 324, 382
Logarithmic transformation, 150n
Logistic regression, 361, 367–368,

382
Log rank test, 382
Longitudinal life tables, 79n, 220

M.A.A.R.I.E. framework. See also
specif c types of studies

analysis of study types and, 11–13
application of, 8–11
assessment component of, 13,
25–31

assignment component of, 13,
20–24

explanation of, 7, 8f
extrapolation component of,
14–15, 58–66

interpretation component of, 14,
50–57

for investigations of tests, 137,
138f

method component of, 7–8, 16–19
results component of, 14, 32–49

Main effects, 353, 382
Mann-Whitney test, 346, 382
Mantel-Haenszel chi, 348, 382
Mantel-Haenszel statistical

signif cance tests, 80
Marginal costs, 277–278, 382
Markov analysis, 250, 382
Masking
assessment, 28–29
in conducting tests, 147
double, 75
double-blind, 11
explanation of, 13, 24
in meta-analysis, 106
in randomized clinical trails, 75, 76
single, 75

Matched student’s t test, 337
Matched tests, 23t, 382
Matching, 22–24, 383
Maximum likelihood regression,

360, 383
McNemar’s test, 348, 383
Mean, 324, 339f, 383
Median, 337–338, 383
Meta-analysis
assessment of, 106–107
assignment in, 103–106



P1: KWW/KXH P2: KWW/KXH QC: KWW/GDH T1: KWW

Riegelman-Index Riegelman-1490G Riegelman-v9.cls August 30, 2004 13:11

400 Subject Index

Meta-analysis (contd.)
explanation of, 383
exploratory, 102
extrapolation of, 113–114
function of, 99–101, 114–115
hypothesis-driven, 102
interpretation of, 111–113,
132–133

method for, 100–103
results of, 107–111

Method
in decision-making investigations,
237–245, 279

elements of, 7–8
in evidence-based guidelines,
293–296

in meta-analysis, 100–103, 131
in nonconcurrent cohort studies,
91–93, 124–125

questions about, 116
in randomized clinical trials,
68–73, 128

in rating rates, 193–199, 194f
sample size and statistical power
and, 18–19

study hypothesis and, 16–17
study population and, 17–18
for testing tests, 137–142
in testing tests, 137–142

Misclassif cation errors, 29
Modern Koch’s Postulates, 54n
Monte Carlo simulation, 265n, 383
Morbidity, 175–176
Mortality, 175–176
Mortality rates
explanation of, 195, 196, 383
incidence and, 202
life expectancy and, 220

Multicollinearity, 350, 383
Multiple coeff cient of determination,

355
Multiple comparison problems,

41–42
Multiple correlation analysis, 355,

383
Multiple correlation coeff cient, 355
Multiple regression analysis, 354,

383
Multiple-way sensitivity analysis,

264
Multiplicative interactions, 56
Multi-site investigation, 102
Multivariable analysis
advantages of, 350–351
continuous dependent variables
and, 351–354

continuous independent variables
and, 354–356

explanation of, 48, 75n, 329, 383
nominal dependent variables and,
357–358

nominal independent variables
and, 358–361

ordinal dependent variables and,
356–357

Mutually exclusive, 247, 383

National Institutes of Health (NIH),
67

Natural experiments, 7n, 96, 383
Natural history studies, 7n
Naturalistic samples, 341–342, 383
Necessary cause, 54–55, 384
Negative tests
likelihood of, 168
method for def ning, 149–154
predictive value of, 169

Nested case-control studies, 7n, 89n,
384

N-of-1 study, 383
N-of-1 study, 85
Nominal data, 384
Nominal dependent variables,

338–339, 347, 348, 357–358
Nominal independent variables, 346,

348, 351–356, 358–361
Nominal scales, 331
Nonconcurrent cohort studies. See

also Cohort studies
assessment in, 94–95
assignment in, 93–94
explanation of, 12, 89–91, 384
extrapolation of, 97–98
f aw-catching exercise for,
123–127

interpretation of, 96–97
method in, 91–93
randomized clinical trials vs.,
91–98

results of, 95–96
Nondifferential misclassif cation, 29
Nonparametric statistics, 337, 384
Normal approximation, 339, 348, 384
Normal distribution, 324n
Null hypothesis
explanation of, 37, 38, 384
omnibus, 351–353
statistical signif cance testing and,
39–40, 42, 43, 80

univariable analysis and, 334
Number needed to treat, 61, 384

Observation
assessment complete and
unaffected by, 25, 29–31

unequal intensity, 30

Observational studies, 13, 20, 384.
See also Case-control studies;
Cohort studies

Observed assignment, 9, 394
Odds, 173, 384
Odds form of Bayes’ Theorem, 384
Odds ratio
conf dence intervals for, 45
explanation of, 34–36, 384

Omnibus null hypothesis, 351–353,
384

One-tailed test
explanation of, 327, 384–385
statistical signif cance, 38n, 327

One-way ANOVA, 352–354
One-way sensitivity analysis, 264
On-treatment analysis, 78
Open label, 385
Open-label trials, 76
Open trials, 76
Options
elimination of, 306–307
evaluation of, 297
explanation of, 246–247, 309n,
385

relevant, 248–249
Ordinal data, 385
Ordinal dependent variables,

337–338, 346–347, 356–357
Ordinal independent variables,

346–347
Ordinal scales, 330
Outcome measures
accurate and precise, 25–29
appropriate, 25, 26
complete and unaffected by
observation, 25, 29–31

information in guidelines for, 300
Outcomes
adverse, 56
early detection and, 176–178
explanation of, 25, 385
f nal, 246
improvement in, 16
mutually exclusive, 247
realistic, 248–249
surrogate, 26

Outcomes prof les, 238–240, 385
Outcomes studies, 89, 385. See also

Nonconcurrent cohort studies
Outiers, 112–113, 385
Overmatching, 23, 385

Paired design, 348, 385
Paired student’s t test, 337
Pairing. See alsoMatching
discordant, 36
explanation of, 23–24, 36n, 385
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odds ratios and, 35–36
Pairwise tests, 351
Parameters
explanation of, 323–324, 385
population, 326

Partial tests, 351, 385
Path probability, 385
Pearson’s correlation coeff cient,

345, 385
Period prevalence, 195n, 385
Per protocol analysis, 78
Person-years, 198, 386
Perspectives
explanation of, 244–245, 386
government, 275n
for guidelines, 295–296
social, 244, 245, 284
user, 244, 274, 284

Phase I trials, 69
Phase II trials, 69
Phase III trials, 69
Placebo effect, 76
Plateau effect, 82, 386
Point estimate, 32, 45, 326, 386
Point prevalence, 195n
Poisson distribution, 207n, 339, 386
Population-attributable risk

percentage (PAR%), 62–63, 386
Population based, 386
Population-based case-control

studies, 7n, 36n, 89n
Population fallacy, 217–218
Populations
at-risk, 60–61, 200
distribution of, 323, 324f
explanation of, 323, 386
extrapolation to, 62–63
rates derived from, 218
stationary, 220, 221
of studies, 17–18
target, 17, 65–66, 97, 172–173,
243

Positive-if-all-positive, 386
Positive-if-both-positive, 180, 181n
Positive-if-one-positive, 180, 181,

386
Positive in disease (PID), 157
Positive in health (NIH), 157
Positive tests
likelihood of, 168
method for def ning, 149–154
predictive value of, 169, 179

Posttest probability, 169
Power, 386
Practice guidelines, 279, 386
Precise, 386
Precision
in meta-analysis, 106–107

of outcome measures, 25–29
sample size and, 206
of tests, 154–155

Prediction, 218–219, 386
Prediction rules, 140n
Predictive values
explanation of, 169
of negative test, 169, 387
of positive test, 169, 179, 387

Present value, 267
Pretest probability
explanation of, 137, 170, 387
input into, 137–139
likelihood ratios and, 169
posttest vs., 170
sample size and, 142
screening and, 178–179

Prevalence
explanation of, 194, 387
incidence vs., 201
period, 195n

Primary endpoints, 72n, 387
Prior association, 50, 111
Prior probability. See Pretest

probability
Probabilities
cumulative, 359n
in decision-making investigations,
251–252

explanation of, 339, 387
odds vs., 34
posttest, 169–171
pretest, 137–139, 142, 169,
178–179

risk and, 32–34
subjective, 251

Prognosis, 64n, 140n
Proportion
explanation of, 194–195, 338–339,
387

true rates vs., 194
Proportional hazards regression, 81,

360–361, 387
Proportionate mortality ratio, 195n,

228, 387
Prospective cohort studies. See

Concurrent cohort studies
Protocol deviant, 387
Protocol deviants, 78
Proximal cause, 52n, 387
Pruning the decision tree, 249, 387
Publication bias, 103–106, 387
Purposive samples, 342, 388
P-value, 56n, 327n, 385

QALY decision analysis, 240, 277,
388

Quality adjusted life years (QALYs)

cost effectiveness and, 240, 241,
256, 256t, 257, 269–272,
276–277, 388

explanation of, 240, 256, 256t,
257, 261–263, 388

Quality-adjusted number needed to
treat, 261, 388

Questions
for decision-making
investigations, 280–281

for rating rates, 227
for reading evidence-based
guidelines, 320

for studying a study, 116–133
for testing tests, 184–185
using M.A.A.R.I.E. framework,
14, 50

Random effects models, 108, 388
Random errors
confounding variables from, 47
explanation of, 21, 22, 27, 388

Randomization
explanation of, 10–11, 93, 388
in randomized clinical trials,
74–75

restricted, 75n
simple, 75n

Randomized clinical trials
applying M.A.A.R.I.E. method to,
10–11, 11f

assessment in, 75–78, 94
assignment in, 73–75
effects of observation in, 30
eff cacy in, 94
explanation of, 388
extrapolation of, 86–88, 97
features of, 13
f aw-catching exercise for,
127–130

function of, 7, 68
interpretation of, 81–85, 129–130
life tables in, 79–81
masking in, 24
method for, 68–73, 91
nonconcurrent cohort studies vs.,
91–98

number needed to treat in, 61
observational studies vs., 13
open or open-label, 76
results of, 78–81, 95
sample size for, 18–19
sample size requirement for, 70t

Random samples
explanation of, 74, 326n
simple, 196, 326
stratif ed, 196

Range, 149, 388
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Rate ratio, 204–205, 388
Rates
assessment for rating, 200–203
assignment for rating, 196–199
derivation of, 201–202
explanation of, 340, 388
extrapolation for rating, 216–219
f aw-catching exercises for rating,
228–231

interpretation for rating, 211–216
life expectancy for rating, 220–226
method for rating, 193–199, 194f
questions for rating, 227
results for rating, 204–210
types of, 194–195

Rating scale method, 254
Ratios, 388. See also specif c ratios
Ratio scales, 330
Realistic high value, 259
Realistic low value, 259
Real rate of return, 267, 388
Recall bias, 27, 28, 388–389
Receiver-operator characteristics

curve (ROC curve)
explanation of, 159, 389
function of, 160f, 161f
to rule in and rule out disease,
164–167, 166f

Recruitment methods, 143–146, 145f
Reference case, 245, 389
Reference gamble methods, 254n
Reference intervals
for def ning positive or negative
results, 149–154, 151f

explanation of, 149–154, 389
Reference sample group, 150, 389
Reference standard
explanation of, 141, 389
precision and, 155n
selection of, 146, 147

Regression analysis, 75n, 345
Regression coeff cients, 355, 389
Regression techniques, 360–361,

367–368, 389
Regression to the mean, 214, 389
Relationships, 32–36
Relative risk, 58–62
conf dence intervals for, 45
converted to attributable risk
percentage, 60–61

explanation of, 32–33, 35, 389
observed, 46
rate ratio vs., 204–205

Reliability. See Precision
Reportable diseases, 196, 389
Reporting bias, 27–28, 389
Reproducibility. See Precision
Residuals, 344n, 389

Restricted randomization, 75n
Results
adjustment in, 47–49, 266–268
in case-control studies, 9, 119–120
in cohort studies, 10, 95–96, 126
conf dence intervals and, 162
in decision-making investigations,
260–268, 279

diagnostic ability and, 162–163
discriminant ability of, 158–162
estimation in, 32–36, 260–264
in evidence-based guidelines,
302–307, 302t

explanation of, 389
inference in, 36–47, 264–266
in meta-analysis, 107–111, 132
questions about, 14, 117, 184
in randomized clinical trials, 11,
78–81, 129

in rating rates, 204–210
sensitivity and specif city of,
157–158

in testing tests, 157–163
Retrospective cohort studies. See

Nonconcurrent cohort studies
Reverse causality, 51, 390
Risk
absolute, 59–60
avoidance of, 314–316
calculation of, 33
explanation of, 32, 34, 390
relative, 32–33, 35, 58–62,
204–205

Risk factors
explanation of, 16, 16n, 390
screening and, 178–179

Risk markers. See Risk factors
Risk neutrality, 314, 390
Risk-seeking, 314, 315
Risk-takers, 315n
Robust, 390
Rule of three, 87–88, 390
Ruling in and ruling out disease
explanation of, 164–165, 166f
likelihood ratios and, 168–169

Run-in period, 73, 390

Samples
explanation of, 323, 390
naturalistic, 341–342
principles of, 205–207
purposive, 342

Sample size
for evaluating diagnostic and
screening tests, 141–142

explanation of, 18–19, 206
factors affecting, 70
in nonconcurrent cohort studies, 92

precision and, 206
in randomized clinical trials,
69–73

Sampling error, 205–206, 390
Satisf cing, 299, 390
Screening
criteria for, 175–183, 317
explanation of, 139, 390
f aw-catching exercise for,
188–190

purpose of, 139–140
sample size and, 142
in testing tests, 175–183

Secondary endpoints, 72n, 390
Selection bias
confounding variable from,
22, 47

in database research, 93
explanation of, 20–21, 27n, 390
publication bias as, 103–106

Self-selection bias, 183, 390
Sensitivity
calculation of, 157–158
discriminant ability and, 159–162
explanation of, 390
likelihood ratios calculated from,
168

Sensitivity analysis
best case/worst case, 265
in decision-making investigations,
264–266

explanation of, 390–391
uncertainties and, 306–307

Sentinel sites, 196, 391
Sequential analysis, 79, 391
Severity, 139
Side effects, 84, 85
Simple randomization, 75n
Simple random samples, 196, 326,

391
Simulation techniques, 328n
Single masking, 75
Slope, 391
Social perspective, 244, 274, 391
Spearman’s correlation coeff cient,

347, 391
Specif city
calculation of, 157–158
discriminant ability and, 159–162
explanation of, 391
likelihood ratios calculated from,
168

Spectrum bias, 144, 391
Spontaneous reporting system, 88
Standard deviation, 324, 335n, 391
Standard distribution, 327, 391
Standard error, 205–206, 336, 337,

343n, 391
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Standardization
explanation of, 207, 391
of rates, 207–210

Standardized mortality ratio, 208,
391

STARD (standards for reporting
diagnostic accuracy) criteria,
140, 141, 144–146, 149, 162

Stationary population, 220, 221, 391
Statistical inference. See Inference
Statistical interaction, 56n
Statistical methods
bivariable analysis and, 341–349
data determination and, 329–332
f owcharts and, 332–333, 362–368
multivariable analysis and,
350–361

selection of, 328–329
univariable analysis and, 334–340

Statistical power
in evaluating diagnostic tests, 142n
explanation of, 18–19, 43, 44
statistical signif cance testing and,
84

Statistical signif cance tests. See also
Inference

conf dence intervals and, 45–47
errors in, 41–45, 44t
explanation of, 37, 51, 142n, 326,
392

of interactions, 56
life tables and, 80–81
Mantel-Haenszel, 80
in meta-analysis, 108, 109, 113
one-tailed, 38n, 327
pairing and, 23t
rates and, 205–207
steps in, 37–40
two-tailed, 38n, 70, 327

Statistics
explanation of, 326, 392
principles for selecting, 323–328

Stratif cation, 47, 392
Stratif ed analysis, 359, 360n, 392
Stratif ed random samples, 196, 392
Stratum, 209, 392
Stratum-specif c point estimates, 359
Student-Newman-Keuls test, 354,

392
Student’s t distribution, 336, 337,

392
Studies. See Health research
Study group, 392
Study hypothesis, 392
Study population
examination of, 140–141

explanation of, 195, 392
rates for, 195–197

Study questions, 237–238
Subgroups
analysis of, 57, 96, 392
examining rates in, 216
in nonconcurrent cohort studies,
96–97

in randomized clinical trials, 85
Subjective probabilities, 251, 392
Suff cient cause, 54, 392
Supportive criteria, 392
Surrogate endpoints, 76–77, 392
Surrogate outcomes, 26
Survival curves, 221, 221f, 222
Survival plots, 80, 82, 83f, 393
Systematic errors, 27
Systematic review, 297–298, 393

Target population
in decision-making investigations,
243

explanation of, 17, 393
extrapolation to, 65–66, 172–173
for guidelines, 294–295, 317–319
implementation in, 317–319

Test-based conf dence interval, 393
Tests. See also Diagnostic tests;

specif c types of tests
assessment in testing, 149–156
assignment in testing, 143–148
extrapolation in testing, 172–174
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185–190

interpretation in testing, 164–171
method in testing, 137–142
questions for testing, 184–185
results in testing, 157–163
screening in testing, 175–183

Testwise error, 351, 393
Threshold analysis, 264, 393
Time dependent, 359
Time frame
explanation of, 249n, 393
rating rates and, 198

Time horizon, 249–250, 393
Time series, 302, 393
Time trade-off, 254n
Transformation, 150n, 393
True negative, 393
True positive, 393
Two-tailed tests
explanation of, 327, 393
statistical signif cance, 38n, 70,
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Type I errors

explanation of, 44t, 353, 355, 393
size of, 69, 70
statistical signif cance testing and,
42–43

Type II errors
explanation of, 18, 44t, 393
size of, 69, 70
statistical signif cance testing and,
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Unbiased, 18, 393
Unequal intensity, 30
United States Preventive Services

Task Force (USPSTF), 296,
298n, 303, 304, 306, 309, 311,
303t, 304t, 305t, 310t, 311t, 312t

Univariable analysis
applications for, 334, 335f
continuous dependent variables
and, 335–337

explanation of, 329, 394
nominal dependent variables and,
338–339

ordinal dependent variables and,
337–338

rates and, 340
Unpaired design, 348
Unrelated ratios, 194n
User perspective, 244, 274, 394
Utilities
in decision-making investigations,
252–255

expected, 239–240, 252–253
explanation of, 237, 239, 394
rating scale method for measuring,
254

timing of events incorporated into,
267n

Validity
aggregate external, 304
aggregate internal, 303
explanation of, 25n, 394

Variables
confounding, 13, 21–22, 24, 47–49
dependent, 328–329, 333
explanation of, 328, 394
independent, 328–329, 333
indicator, 356
nominal, 331

Variance, 335n, 394
Verif cation bias, 144, 394

Weighting, 80–81, 394
Wilcoxon signed-rank test, 338, 394
Willingness to pay, 271n, 394
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