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Preface 

The state organisation responsible for coordinating the hydropower 
electricity system in Norway (“Samkjøringen”) contacted me in 1990 
about the advanced plan for deregulating the electricity system, separating 
generation, transmission, and distribution and introducing a wholesale 
market for electricity. It was felt that insights about the fundamental nature 
of running an electricity system based on hydropower was somewhat lack-
ing within the team of academic economists engaged to write background 
reports by the Oil and Energy ministry responsible for driving the reform 
of the electricity system.  
    When talking to engineers I was fascinated by the world of electricity, 
with its physical laws and weird concepts such as reactive power and electric 
phase angles. Externalities of hydraulic interdependence between river-
based power stations and highly fluctuating loss and congestion externalities 
involved in a meshed transmission network had to be recognised. Further-
more, capturing all these elements required advanced mathematical methods 
of dynamic programming in a stochastic environment. My conclusion was 
that a market design that neglected these aspects did it at its own peril.  
I predicted volatile prices coming out of a competition between producers 
facing zero short-run variable costs and problems with investments coming 
forth sufficiently from a social perspective. However, I can safely say that 
my report had no impact whatsoever on the Norwegian electricity reform of 
1991, that must be regarded, not the least by me, as being highly successful.  
    The main result of my report was that I became fascinated with hydro-
power economics and started to lecture on the topic at my department of 
economics at University of Oslo. However, I had difficulties finding texts 
that were suitable for economists. The field is well developed within 
engineering, but aspects of economics of hydropower were not so easy  
to come by. My great inspiration has been two papers by Hveding (1967, 
1968). He was an engineer and general director of the electricity regulation 
body in Norway (NVE), and followed up the great tradition of engineers at 
Electricité de France (EDF) of writing exciting stuff that economists could 
also appreciate. 
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    The Nordic Council research project Energy and Society, headed by 
Torstein Bye, gave me opportunities several times over the years to present 
my ideas at Nordic workshops, and made it possible to develop these ideas 
on an extended visit to Iceland. 
    It is the generous support by Norway’s biggest hydropower producer, 
Statkraft that finally made it possible for me to develop my material into  
a book. Statkraft bought me free from my teaching and administrative 
obligation at my department for half a year. I especially thank Geir Holler 
for his trust in me, he also took my course in natural resources when  
I developed the hydropower theme, and Kjell Berger for providing me with 
data and reading parts of the manuscript and offering sobering comments. 
    I will also like to thank Tor Arnt Johnsen at NVE for encouraging me to 
carry out the project and helping me initially seeking finance. My colleague 
Atle Seierstad generously used his time to advise me on the use of 
mathematics, and I owe Kjell Arne Brekke warm thanks for enlightening 
me on uncertainty. Torstein Bye, Stein-Erik Fleten, Richard Green, Petter 
Vegard Hansen and Lennart Hjalmarsson have read parts of the manuscript 
and offered valuable comments. They are in no way responsible for 
remaining deficiencies.  
    I was fortunate to become a visiting fellow at International Centre for 
Economic Research (ICER) in Torino, which provided me with the perfect 
environment to write a book during spring 2006. I will like to thank 
Alessandra Calosso at ICER for excellent assistance, not the least in times 
of crisis, such as breakdown of my PC hard disk. 
    When Springer provided me with a 25-page manual on how to construct 
the special layout for the book, I knew I was in serious trouble with 
managing the last hurdle. Fortunately Marius Østli came to my rescue and 
did an excellent job of converting my manuscript in Word into the 
Springer layout standard. In addition he has provided solid support making 
the finishing touches to the manuscript.  
    Last, but not least, I want to thank Marisa for her support, inspiration, 
and understanding. 
 
Finn R. Førsund 
Torino, 20 June 2007  
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Preface second edition 

Two new chapters have been added; a chapter on phasing in intermittent 
energy (run-of-the-river, solar and wind) in a hydro-dominated electricity-
generation system, and pumped-storage hydroelectricity. The chapters  
deal with topics of great interest in recent years, and are based on my 
participation in the research programme at CREE - Oslo Centre for 
Research on Environmentally Friendly Energy. The model workhorse of 
the analyses is the dynamic model of generating hydroelectricity when 
reservoir capacity is available. In addition some of the chapters in the first 
edition have been thoroughly revised and improved, especially Chapter 3, 
Chapter 4 and Chapter 9. Empirical illustrations are updated. I thank Kjell 
Berger, Statkraft, for providing me with Nord Pool data. 

I am very grateful to the students following my lectures on topics from 
the book in the spring of 2012. Atypical for Norwegian student they posed 

in dialogues on themes of the 
of the end product. Of course, 

Master student Trond Christian Vigtel helped me overcoming problems 
with layout and use of Excel figures and did the final sewing together of 
the chapters including making the indices. A contribution from Keilhau’s 
Memorial Fund made it possible to engage Trond for the final task. 

I dedicate this book to my friend and lifelong collaborator Lennart 
Hjalmarsson that had a fatal accident in his beloved forest in February 
2012. We met for the last time at the ASSA meeting in Chicago January 
that year where I presented a paper built on our last joint paper Førsund 
and Hjalmarsson (2011), and I received inspiring comments from him. 
 
Finn R. Førsund 
Oslo, 23 May 2014  
 
 

many interesting questions and we engaged 
book that was very fruitful for the quality 
I am responsible for any remaining shortcomings. 
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Chapter 1. Introduction 

Background 

Domestic pricing of hydropower was for many years an area of direct 
political control in Norway. After the parliament restricted both domestic 
and foreign private ownership of waterfalls for hydropower development 
soon after Norway became an independent country again in 1905, the 
public sector has been the dominant provider of electricity, at present 
owning almost 90% of the hydropower capacity. At the municipal level, 
providing electricity for general purpose consumption, the pricing policy 
was based on average cost pricing, while the state-owned power stations, 
feeding the national grid, delivered power mainly to energy-intensive 
industries like aluminium, ferro alloys, and pulp and paper to very 
favourable prices. Greenhouse activities are also favourably treated as part 
of the protective agricultural policy pursued by Norway. The cheap 
electricity was a main localisation factor for primary aluminium industry 
because all other raw materials, like aluminium oxide, are imported, and 
although part of the technology was developed in Norway (the Søderberg 
anode), the technology is now international. The cheap electricity policy 
may have been appropriate when considering electricity supply in autarky, 
although a statement from an influential former prime minister (educated 
as an economist) may cast some doubt on the quality of the social cost-
benefit analysis behind the policy that had widespread political acceptance: 

 
If one wants cheap electricity one must build so much capacity that there is 
enough electricity at the price one wants (Willoch, 1985). 

 
Deregulation of the electricity industry came on the political agenda in 
many countries around the world in the late 1980s and early 1990s. The 
creation of a wholesale market as a day-ahead last price auction in England 
in 1990 (Newbery, 2005) started a process toward similar deregulation in 
Europe that is still taking place. Besides the political aspect of a policy of 
privatisation there was an economic rationale of competition driving down 

© Springer Science+Business Media New York 2015
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2      Chapter 1. Introduction 

production costs and price. Production took place in numerous units that in 
principle could compete, although transmission was an area of natural 
monopoly. 
    Norway followed up England’s type of deregulation by setting up a 
similar competitive wholesale market in 1991. However, while the 
production in England was based on 63 conventional coal-based thermal 
units and 12 nuclear plants organised into only three companies (plus a 
modest pumped-storage capacity) (Newbery, 2005), the production in 
Norway was based on hydropower supplied by over 600 plants. The 
operation and management of these plants had mainly been seen as tasks 
for engineers only. Within the national grid the electricity regulator (NVE) 
used system analysis to coordinate the management of the reservoirs of 

                                                      
1 See the discussion by leading economists in NOU (1979). 

water for the total system in such a way that in principle total demand  
was satisfied in the cheapest way, observing the requirement of supply by 
municipal hydropower plants. The electricity regulator was also responsible 
for watching over the energy balance and keeping the politicians informed 
and for planning capacity expansion. 
    Economists in Norway had for many years been critical both of the 
political pricing policy of electricity in Norway, resulting in prices varying 
both regionally and between different user groups, and of the criteria used 
for expanding capacity resulting in too rapid expansion and without 
environmental considerations taken properly into account.1 The period of 
expanding the hydropower capacity had in fact come to an end due to a 
lack of reasonably profitable hydropower projects without a strong opposi-
tion from environmental interest groups when deregulation came on the 
political agenda. The transition from central coordination and control to a 
market-based wholesale competition between producers went remarkably 
smoothly. It is also remarkable that the introduction of a market took place 
with almost 90% of the production capacity being publicly owned (35% 
state and 55% municipal ownership). However, it is not easy to find 
evidence of cost reductions on the production side that was used as one  
of the arguments for introducing a market in generation. Hydropower is in 
fact run with negligible variable costs. The people employed and the 
maintenance costs can be regarded as fixed costs independent of variations 
in production, but related more to the production capacity. In view of the 
promise of reducing generating costs it is remarkable that the only study  
I know about costs has been done as a master’s thesis by one of my 
students (Lien, 2006). The study found a modest decrease in fixed costs 
over time since deregulation and a systematic substitution of permanent 
employees by outsourcing.  
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    One result of the market reform is that prices to households and the 
general commercial sector have for the most part evened out between 
regions. Consumers have a free choice of supplier and can switch without 
costs. The prices have also been on a rather low level internationally. 
However, this is due mainly to the excess capacity in the system before 
deregulation, and prices have increased somewhat. However, the consumer 
price variability is rather high due to cold winters and dry years. The 
power-intensive industries managed to hang on to their cheap electricity 
contracts forced upon the state power company by the politicians. The 
contracts expired from 2005 to 2011.  
    The intention of the new electricity regime was that market actors 
themselves should undertake investment in new capacity. However, so far 
the investments have been negligible. This is probably mainly a reflection 
of the extent of over-investment previously, but also the benefit of 
extending the market using existing capacity more efficiently.  
    One remarkable achievement of the market reform on the wholesale side 
is that Norway pioneered trade over borders and in fact created the first 
integrated international market, Nord Pool, in electricity together with 
Sweden in 1996. Later Finland and Denmark joined Nord Pool, and 
Estonia most lately in 2010. Although the technical possibilities for trade 
of electricity with neighbouring countries like Sweden and Denmark had 
been there for a long time before deregulation, Norwegian politicians 
followed a principle of not allowing trade with “firm power,” i.e., the 
amount of hydropower electricity one would expect to produce in 9 out of 
10 years.2 But bilateral trade in “occasional power,” i.e., power in years 
with unexpectedly high rainfall, was developed with Sweden and Denmark 
over many years, especially for use in industrial boilers that could easily 
switch between primary energy sources. These trades were a forerunner of 
the Nord Pool market developed in the 1990s. International trade now 
takes place between many European countries on a bilateral basis,  
e.g., France-England, France-Italy (Italy is importing about 20% of its 
electricity), etc. The energy policy of the European Union is encouraging a 
gradual expansion of cross-border trading and integration of national 
electricity markets (Jamasb and Pollitt, 2005). 

                                                      
2 In NOU (1979) it was argued that the opportunity cost of Norwegian 

hydropower was the price that could be obtained on the export market, 
presumably much more than the Norwegian power-intensive industry was 
enjoying. Notice that this argument was used over a decade before the self-
sufficiency policy was abandoned. 
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The purpose of this book 

About 16% of the electricity in the world is generated by hydropower 
(OECD/IEA, 2012) and 35 countries depend on hydropower for over 50% 
of their electricity generation (in 2009). Norway’s electricity production is 
based 95-99% (depending on year) on hydropower. Other countries that 
also have a high share of hydropower are Brazil (80%), Iceland (88%), 
New Zealand (65%), Austria (70%), Canada (62%) and Sweden (42%). 
The United States has an 8% share of hydropower, but is the fourth biggest 
producer (in 2010). The other top producers are China, Brazil, Canada, 
Russia, India and then Norway as the sixth biggest producer worldwide. 
But we should also pay attention to the regional importance of 
hydropower. In some western US states hydropower is more important, as 
is also the case for, e.g., the province of Quebec in Canada. Because of this 
worldwide use of hydropower it is important to understand how to operate 
hydropower and the interaction of hydropower with other producing 
technologies of electricity.  
    The main purpose of this book is to provide qualitative economic 
analyses of how to utilise stored water in a hydropower system, i.e., 
problems of current management with fixed generating capacities. This 
problem is a dynamic one because water used today to generate electric 
power may alternatively be used tomorrow. Understanding and evaluating 
today’s deregulation requires a sufficient background in the theory of 
optimal use of hydro and thermal power by economists, engineers, and 
regulators involved in managing the electricity system.  
    The problem of optimal investment is not addressed in this book. This is 
in itself a major undertaking. However, in order to solve this problem 
successfully the management problem of optimal use of stored water, 
given the production capacity, must also be solved simultaneously. 
    Hydropower is a field within engineering. But, as remarked by Edwards 
(2003) in the motivation for his book on the subject, economic analyses are 
found scattered around in journal articles and are not satisfactorily treated 
in a book addressed to economists. However, the need for a comprehensive 
text still exists, one reason being that Edwards (2003) focuses exclusively 
on small-scale systems of power stations located along rivers run by a local 
authority, and has a considerably more limited scope than the present book. 
    The economics of hydro production with reservoir was discussed early 
in the operations research and economics literature (Little, 1955; Koopmans, 
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1957; Morlat, 19643), but the topic is a typical engineering one (a well-
known textbook is Wood and Wollenberg, 1984). In Norway a national 
central coordination system for hydropower production was established 
after World War II based on an understanding of how the total system was 
to be operated (see Hveding (1967, 1968).4 This approach has been refined 
and developed into a central model tool called EMPS for Norway and later 
the Nord Pool area by SINTEF Energy5, Norway, over many years, 
originating in Hveding (1968) (Johannesen and Flatabø, 1989; Haugstad  
et al., 1990; Gjelsvik et al., 1992; Wangensteen, 2007). The model is a 
large-scale simulation model for the Nordic electricity system. This model 
can generate price and quantity developments on a detailed level. The 
highly simplified approach taken in this book is based on the approach 
used in Førsund (1994) (for related model concepts see also Bushnell, 
2003; Crampes and Moreaux, 2001; Johnsen, 2001; von der Fehr and 
Sandsbråten, 1997; and Scott and Read, 1996). A comprehensive literature 
review is not offered, and only papers of importance for developing the 
analyses in this book are referred to. 
    The main inspiration for the present book has been the articles by 
Hveding (1967); (1968), as will be evident by the references in the relevant 
chapters. The distinctive feature of this book is to provide a social planning 

The dynamic nature of hydropower production, the high number of units 
involved, and the inherent stochastic nature of key variables like inflow of 
water make optimisation problems quite difficult technically to solve. In 
the engineering literature, based on the Bellman (1957) approach to 
dynamic programming, sophisticated stochastic dynamic programming 
models are used and solution algorithms developed for real-life data and 
numerical solutions provided. I will try to use a much more simplified 
mathematical approach suited to obtain qualitative conclusions. As to the 
choice of theoretical modelling, standard nonlinear programming models 
for discrete time are used and the Kuhn – Tucker conditions employed 
                                                      

3 In France there were early studies from the 1940s and 1950s, especially by 
people connected to Electricité de France; see the references in Morlat. See also 
review of French contributions in the Introduction in Nelson (1964), and for 
translations into English of other French papers.  

4 Hveding was the general director of the electricity regulator, the Norwegian 
Water and Energy Directorate (NVE) from 1968 to 1975.  

5 According to Wolfgang et al. (2009) EMPS is the acronym for EFI’s Multi-
area Power-market Simulator. SINTEF Energy Research was created as a merger 
between EFI (Elektrisitetsforsyningens forskningsinstitutt) and SINTEF Energy in 
1998. 

perspective on optimal use of water, which is a prerequisite for under-
standing and evaluating the newly established electricity markets.  
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extensively for qualitative interpretations. This choice of modelling cannot 
be better motivated than expressed by the following quotes from Baumol 
(1972):6 

 
….economists have used them [the Kuhn – Tucker conditions] primarily to deal 
with more general qualitative problems. That is, the conditions can be used to 
derive general conclusions about the nature of the solutions, … (p. 165). 
….the Kuhn – Tucker conditions may perhaps constitute the most powerful 

….It is therefore a manifestation of the very great power of the Kuhn – Tucker 
analysis that it does permit us to arrive at general qualitative conclusions about 
the behavior of the solutions to nonnumerical problems (pp. 165-166). 

 
    In order to strengthen the understanding of the basic nature of the 
solution to the dynamic hydropower problem, graphical illustrations are 
developed and used extensively. Two periods often suffice to capture the 
main understanding of a dynamic problem, and it is therefore possible to 
illustrate such an understanding. A special graphical presentation, termed a 
bathtub diagram, is developed. 
    The plan of the book is the following: the rest of Chapter 1 very briefly 
covers the nature of electricity involving the concepts power and energy 
and the instantaneous equilibrium between supply and demand. Load-
duration curves for different time units for Norway are used to illustrate 
concepts like peak and base load. The nature of hydropower production is 
introduced using a production function and presenting the fundamental 
water dynamics of the reservoir constraints. The environmental problems 
associated with hydropower are briefly summarised.  
    Chapter 2 presents the basic hydropower model without a reservoir 
constraint. Electricity consumption is evaluated by utility functions. Water 
is treated as a natural resource in finite supply within the planning horizon, 
and the Hotelling rule for pricing of a finite natural resource is derived also 
in the case of discounting. The case of several user groups of water is 
treated and the equality of (socially weighted) marginal utilities between 
groups and over time is established. 
    Chapter 3 introduces the typical constraints faced by a hydropower 
system. The generator capacities are aggregated into a single system with a 
single reservoir and analysed within a given horizon of multiple periods.  
A social planning model with a reservoir constraint that may become 
binding, showing the fundamental dynamics involved, is introduced, and 
                                                      

6 I am indebted to my friend Professor Mikulas Luptacik for bringing these 
quotes to my attention. 

single weapon provided to economics theory by mathematical programming  
(p. 165). 
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economic interpretation of first-order conditions performed. The bathtub 
diagram is used to show two consecutive periods together. Emphasis is put 
on events that will lead to a change in the optimal price of electricity. The 
events are threat of overflow of the reservoir and emptying the reservoir. 
Further extensions are introducing upper limits on the production (or 
power) capacity, and introduction of run-of-the-river hydropower without 
storage. The implications for optimal hydro management and prices are 
derived.  
    Chapter 4 models multiple generators and reservoirs within a multiple-
period planning horizon. It is shown that the optimal use of multiple 
generators and reservoirs can facilitate considering aggregation of 
generators into one unit and reservoirs into one reservoir, greatly 
simplifying the derivation of the optimal solution. There is no unique 
solution for individual generators except that the individual reservoirs 
should fill up the reservoir to the limit in the same period and should be 
emptied in the same period. The aggregation result is called Hveding’s 
conjecture. However, the conjecture holds only for specifying reservoir 
limits. When introducing also production (power) limits, the optimal 
solution for individual units becomes more complicated and an 
aggregation into a single system will only serve as an approximation. 
Optimality conditions involving hydraulically coupled generators are 
derived and consequences of environmental constraints explored. 
    Chapter 5 introduces thermal generators together with hydropower. The 
assumptions leading to merit-order aggregation of a short-run aggregate 
supply function are given. A special bathtub diagram is developed for a 
graphical presentation of the mix of hydropower and thermal capacity. For 
periods with the same price the same amount of thermal capacity is used, 
while hydropower use follows variation in demand. The mix of hydro-
thermal capacity as peak load and base load is discussed. The introduction 
of start-up costs of thermal generators leading to the optimisation of use of 
thermal units is demonstrated. 
    Chapter 6 extends the analysis to trade between countries in the case  
of fixed foreign prices. The conditions under which foreign prices will  
be adopted as domestic prices are investigated. The consequences of 
constraints on transmission between countries are explored, and the case of 
trade between a hydro country and a thermal country with endogenous 
prices is studied. Both the impacts of only a total water (energy) constraint 
and a reservoir constraint are investigated. 

Intermittent energy is introduced in Chapter 7. In addition to run-of-the-
river hydropower dealt with in Chapter 3 wind power and solar power are 
included and modelled in the same way as run-of-the-river power. Because 
intermittent energy is not controllable (except deciding to waste it) it is 



8      Chapter 1. Introduction 

assumed for simplicity that the electricity generated is always utilised. An 
interesting question is then how hydropower with storage and thermal 
generation have to adjust their production levels in order to accommodate 
the exogenous fluctuations in intermittent power. This has consequences 
for price fluctuations and profitability. 

A crucial question when utilising intermittent energy is how to store it. 
Apart from technical options like batteries, compressed air, and producing 
hydrogen and heat, an option is to use pumped-storage hydroelectricity. 
An idea especially suitable for large-scale storage that has been floated in 
European media is that the reservoirs of hydropower plants in Norway and 
Sweden can serve as “battery” storage for Europe. Pumped storage is 
studied in Chapter 8 in combination with thermal power and intermittent 
power. Of special interest is the investigation of trade between a country 
with both hydropower with reservoirs and pumped storage and a country 
with intermittent power. 

Chapter 9 introduces uncertainty. The implications of stochastic inflows 
for modelling and conclusions for pricing are explored with regard to 
qualitative features of the optimal social solution. The basic outcome of 
optimisation is a decision rule to be followed as time evolves. An 
important qualitative result is that prices may vary over periods even if the 
expected prices ex ante may all be the same. The simple reason is that the 
successively realised inflows may deviate from the expected levels, 
making continuous adjustment of prices as time evolves toward a planning 
horizon the optimal policy.  

A transmission network is introduced in Chapter 10 by using a highly 
simplified way to model loss and congestion in the network. The external 
effects of creating losses are brought out. Congestion of lines is 
introduced, but without modelling loop-flow effects. The general 
conclusions confirm the findings in Schweppe et al. (1988) of specific 
nodal prices both for generating and consumer nodes. The use of hydro 
reservoirs is influenced both across and over time by transmission. 
    Chapter 11 deals with market power. A monopolist may spill water in 
order to contract production in the classical way, but the general new 
feature in the hydropower context is the shifting of water away from 
relatively inelastic demand periods to use in relatively elastic demand 
periods when there is no spilling and the same total production is 
maintained. The consequences of trade, mix of hydro and thermal capacity, 
and a competitive fringe with thermal capacity are studied.  
    Some concluding comments are offered in Chapter 12 concerning 
lessons learned and the light they can shed on actual electricity markets 
and policies. It is important to realise that the theoretical modelling is 
based on formulating demand functions in real time. This is very seldom 
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the case in practical market or planning-based systems. This fact, together 
with the externalities caused by hydrological coupling and generation of 
transmission losses and congestion of transmission lines, casts some doubt 
on the practice of appealing to the welfare theorems concerning optimality 
properties of market systems when using theoretical model solutions not 
taking these phenomena into consideration. Although investment problems 
have not been addressed, the values of shadow prices on various capacity 
constraints may serve as indications of the profitability of marginally 
increasing the capacities. In equilibrium, both with respect to operations 
and capacities, it should not be profitable with marginal increases of 
capacities. 

Electricity 

Electricity is one of the key goods in a modern economy. The nature of 
electricity is such that supply and demand must be in a continuous physical 
equilibrium. The system breaks down in a relatively short time if demand 
exceeds supply and vice versa. A system failure may lead to grave 
economic consequences if the blackout lasts too long. The largest blackout 
in terms of number of people affected, 600 - 700 million, occurred in 
India in 2012 and lasted for two days. Other large blackouts occurred in 
Northeast US and Canada in 1965 affecting 30 million and in 2003 
affecting 55 million. In Europe, Italy and neighbouring countries 
Switzerland, Austria, Slovenia and Croatia also had a blackout in 2003 
affecting 55 million. Power outage of shorter duration have led to more 
inconvenience than serious economic damage, but the more amusing 
effects of more babies being born 9 months later reported in the press in 
New York after the 1965 blackout seems not to be correct.  
    The spatial configuration of supply and demand is important for 
understanding the electricity system. A transmission network for transport 
of electricity connects generators and consumers. There is energy loss in 
the form of heat in the network. Physical laws govern the flows through 
the networks and the energy losses. Electricity delivered to general 
consumers is characterised by voltage (220-240 volts in Europe, 110-120 
volts in the United States) and frequency measured in Hertz (50 ± 0.1 in 
Europe, 60 in the United States) for alternate current. Electricity is 
measured as power (MW), i.e., instantaneous energy, and energy (MWh), 
i.e., the amount of electricity during a time period (the integral of the 
power over the time period in question). A central operator that secures 
equilibrium in continuous time usually runs the system. The equilibrium is 
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then in power. This operator should be independent of suppliers and 
consumers, and may also be responsible for running the transmission 
network. Normal operating procedure is to take demand as given and 
adjust supply.  
    The economic notion of a price adjusting in order for demand to equal 
supply within a time period, e.g., the demand and supply for apples during 
a market day, is therefore not immediately applicable to electricity markets. 
However, the assumption that demand responds to price should still be 
useful, although one has to be more careful about distinguishing between 
short and long run and whether pricing is in real time or applies ex post. 

Demand for electricity 

The time period used in a study of the electricity system is of crucial 
importance for the detail by which the system is modelled. In continuous 
time the demand is for power, and energy will be the integral over the time 
periods chosen. If time is discrete it is usually assumed that the power is 
constant over the chosen time period. The demand can then be expressed 
either for power or energy.  

In order to understand the variation in demand for electricity it is useful 
to consider the various uses as set out in Figure 1.1. Household demand is  
 

other  
Figure 1.1. Household shares of electricity consumption in percent. 

Norway 2006.  
Source: Dalen and L  arsen 2009). (
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In industrial use, in addition to light, hot water, and office heating, there 
are machinery, process heat, and electrolytic processes. An interesting 
category is industrial boilers that can be run on alternative energy sources 
including electricity and that can be switched from one source to another 
in a relatively short time. 

Assuming a time resolution of one hour we can portray the short-run 
demand by looking at the variation in energy use hour by hour during a 
day. The use varies over the day, with the lowest energy consumption 
during the night and typically a peak at breakfast time and the start of the 
working day, and again a peak around suppertime on winter weekdays.  

Figure 1.2 illustrates the power use in Norway for four different days: a 
summer and a winter weekday and summer and winter Sundays in July and 
January 2011, respectively. On Sundays the peak demand starts later and on a 
lower level than weekdays and consumption is somewhat more stable.7 

The difference in levels between summer and winter days is consider-
able and is due mainly to residential heating. It is also more energy 
consuming to heat water in the winter. The peak in the morning is due to 
space heating being turned up in wintertime, switching on lights, taking 
showers, cooking tea, coffee, etc. in dwellings, and then the same for offices 
(except showering). The afternoon power increase stems from turning up 
the room heating again in wintertime, switching on lights, TV, etc. and 
cooking meals. The difference between a weekday and a Sunday in 
January is probably mainly due to most offices and light industries being 

are 0.81 and 0.80 for winter and summer weekdays, respectively, and 0.89  
 

                                                      
7 The daily load curves for a summer and a winter day (no dates are given) 

reported in Green and Newbery (1992), Figure 1, p. 935, show the dominant peak 
to be around suppertime for the winter day and breakfast for the summer day. 
When comparing with Norway the use of natural gas in English households 
should be borne in mind.  

for light, hot water, cooking, running various appliances like TV, refrigera 
tors, washing machines, etc., and space heating. The last use represents 
20% of household electricity use in Norway. This share varies with the 
winter temperature and was 31% in 2001. The household shares of electri- 
city are found in Dalen and Larsen (2009) by conducting conditional 
demand analysis (CDA) based on 1005 Norwegian households for 2006. 
The group “Other” comprises cookers, motorcar engine heaters, sauna, 
TV, etc. The category most easily substituted by other energy sources is 
space heating. About 38% of dwellings also have other systems like oil 
burners, paraffin heaters, wood stoves, etc.  

closed on Sundays. The ratio between night-time lows and daytime highs 
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XFigure 1.2. Daily load curves. Norway 2011.8 

Source: Nord Pool. 
 
and 0.82 winter and summer Sundays. The lowest night time use comes 
later on a Sunday than on a weekday, especially in the summer. Winter 
weekdays have typically two peaks, breakfast and dinner, while the 
consumption peak is around dinnertime on Sundays. 

Although the system operator may take daily demand profiles as given 
in the short run, for economists it is natural to assume that demand is not 
totally physically given, i.e., based on “needs,” but that demand will also 
depend on price.  

To see the need for power capacity it is common to look at hourly 
consumption for one year and sort the 8760 hours according to the highest 
consumption first and then in decreasing order. Such a curve is termed the 
load-duration curve. The hours with the highest energy consumption 
constitute the peak load, and the hours with the lowest consumption show 
the base load. In between we have the shoulder. The transmission network 
and generating stations have power capacity limits that must be able  
to meet peak load demand. Figure 1.3 illustrates the load-duration  
curve for Norway in 2012.9 The load curve is declining rather evenly with no  

                                                      
8 Since the load is for one hour it is measured in MWh in Norwegian statistics 

although load is a power concept. 
9 In continuous time the load should be measured in MW. The reason for 

measuring load in energy units, MWh, and not power units (MW) in Figure 1.3 is 
given in the previous footnote. 
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Figure 1.3. The load-duration curve for Norway 2012. 

Source: Nord Pool. 
XXXXXX 
pronounced segments except at the very start and end, so peak, shoulder, 
and base load periods must be defined on an ad hoc basis. Should only the 
highest load be termed peak and the lowest load base, or, in view of the 
variability of these levels over years, some intervals of extreme loads be 
included? The lowest consumption is 8845 MWh in the hour from five to 
six o’clock in the morning July 27. This can be defined as base load. Some 
heavy industrial users of electricity have continuous operation most of the 
year and close down only for periodical maintenance. The highest 
consumption is for mornings and afternoons winter days in the months 
December to March. There were 609 hours with a demand above 20,000 
MWh representing 15% of the yearly consumption of 128 TWh in 2012. 
The highest demand was for December 5 from eight to nine o’clock in the 
morning with 23443 MWh. The total capacity is about 30172 MW (start of 
2012). The location of hours and dates corresponds to what we saw in 
Figure 1.2. Peak load is 166% higher than base load within a yearly period. 

Hydropower 

Electricity generators can use water, fossil fuels, bio fuels, nuclear fuels, 
wind, and geothermal energy as primary energy sources to run the turbines 
producing electricity. Hydropower is based on water driving the turbines. 
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The primary energy is provided by gravity and the height the water falls 
down on to the turbine. The potential energy of the stored water is the 
product of the mass of the water, the gravity factor (g = 9.81) and the head 
defined as the difference between the dam level and the tailwater level. 
Hydropower can be based on unregulated river flows, or dams with limited 
storage capacity above the natural flow, and on water drawn from 
reservoirs that may contain up to several years’ worth of inflow. The total 
storage capacity in Norway is about 70% of average yearly inflow 
(excluding minimum storage requirements).  
    The potential for electricity of one unit of water (a cubic meter) is 
associated with the height from the dam level to the turbine level. The 
reservoir level will change downwards somewhat when water is released 
and thus influence electricity production. Electricity production is also 
influenced by how the tailwater is transported away from the turbine, 
allowing new water to enter. The turbine is constructed for an optimal flow 
of water. Lower or higher inflow of water may reduce electricity output 
per unit of water somewhat. We will return to these issues shortly. 
    The key economic question in hydropower production is the time 
pattern of use of water in the reservoir given the production capacity for 
each time period. With enough storage capacity the water used today can 
alternatively be used tomorrow. The analysis of hydropower is therefore 
essentially a dynamic one. This is in contrast with a fossil fuel (e.g., coal-
fired) generator. Assuming that the market for the primary energy source 
functions smoothly, running a conventional thermal generator is not a 
dynamic problem, but is a problem solved period by period, disregarding 
adjustment cost going from a “cold” state of not producing electricity to a 
“hot” state producing and back again (see Chapter 5). In a detailed analysis 
with fine time resolution the start-up and closing-down costs of thermal 
units will give rise to dynamic problems, but of a considerably more 
limited nature than for hydropower.10  
    We are going to use discrete time. This is the case for all practical 
applications of the type of model we are analysing. From a technical point 
of view it allows us to use standard mathematics of non-linear 
programming. The variables are going to be of two types, flow and stock. 
Stock variables must be dated, e.g., either at the start or at the end of a 
period. The flow variables will be interpreted as magnitudes related to 
realisation during a period.  

                                                      
10 If the current price falls below the variable cost of operating a thermal unit it 

may still pay to keep it running if the price increases again and the loss is less than 
the adjustment costs; see Chapter 5. 
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    The variables we are going to use are the amount in the reservoir, Rt, 
inflow of water, wt, electricity production from regulated hydro, et

H, 
unregulated river, et

R, wind power, et
W, solar power, et

S and thermal 
capacities, et

Th, respectively. Flow variables in lowercase letters are 
understood to refer to the period indexed t, while stock variables in capital 
letters refer to the end of the period, i.e., water inflow wt takes place during 
period t, while the content of the reservoir Rt refers to the water at the end 
of period t. Release of water, rt, during period t is converted to electricity 
(et

H) measured in MWh, reflecting the vertical height from the centre of 
gravity of the dam and to the turbines. The vertical height from the upper 
level of the dam to the outlet of water from the turbine is called the gross 
head of the reservoir (net head takes into consideration losses due to 
frictions within tunnels (5%) and the efficiency of turbines (4-5%), 
electricity generators and systems (2%), tailwater (1-2%), amounting to 
12-14% loss of potential energy.  
    The transformation of water into electricity for a plant with a reservoir 
can be captured in the simplest way by the production function: 

( , ), 0, 0
t t

H
t t t t r he f r h f f    , (1.1)

where rt is the release of water from the reservoir during time period t and 
ht is the gross head. The vertical height of a waterfall is in Norwegian 
statistics measured from the intake to the turbines and to the release of the 
tailwater. However, the height from the intake to the level of the dam is 
also influencing the energy potential of the water. Topology and the 
constructed wall of the dam give the height so it may be included in the 
functional form. Then the production function can be given the simple 
form: 

1H
t te r

a
  (1.2)

where a is the fabrication coefficient (Frisch, 1965), or unit requirement or 
input coefficient for water; i.e., how many cubic meters (m3) of water are 
needed to produce one MWh of electricity. [In the engineering literature 
on hydropower 1/a is called the production coefficient (Goor et al., 2011).] 
If the power station does not have a reservoir, i.e., if it is based on a river 
flow, then the inflow variable wt is substituted for the release of water in 
(1.1) or (1.2).  
    Neither real capital nor other current inputs like labour and materials are 
entered in the production function. The role of capital is to provide a 
capacity to produce electricity; therefore is can be suppressed in an 
analysis of managing the given capacity. The power capacity expressed  
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in MW will give an upper limit He on the energy (MWh) that can be 
produced. The limit is decided either by the maximal water flow of the 
feeding pipe, the turbine capacity or the transmission capacity from  
the plant. Usually it is the installed turbine capacity that binds. The 
relationship between the energy production during a period and the power 
capacity can be interpreted as the number of hours during the period that 
the full power capacity has been utilised, this is called full load hours and 
characterises the utilisation of the power capacity. [A relative measure 
based on the share of full load hours may be called a capacity factor.] 
Technology is typically embodied in the capital structure. Turbines 
represent a quite mature technology and the pace of technical change is 
now rather slow. The fabrication coefficient will reflect the embodied 
technology of feeding tunnels and turbines, and the engineering design  
of optimal water release on to the turbines. We will disregard detailed 
engineering information about the variation of energy conversion 
efficiency according to utilisation of a turbine; ranging for 80% for a low 
utilisation to 95-96% maximally, and then a reduction again if more water 
is let on to the turbine. 
    The nature of the costs is important for optimal management of current 
operations. Given that capacities are present and fixed, only variable costs 
should influence current operations. However, our specification (1.1) does 
not show any input other than water, and the water is not bought on a 
market. Empirical information indicates that traditional variable costs, i.e., 
costs that vary with the level of output, can be neglected as insignificant. 
People are employed to overlook the processes and will be there in the 
same numbers although the output may fluctuate. Maintenance is mainly a 
function of size of capital structure and not the current output level. 
[However, wear and tear of turbines depends on the number of start-ups.] 
We will therefore assume that there are zero current costs. This is a very 
realistic assumption for hydropower. Water represents the only variable 
cost in the form of an opportunity cost as mentioned on p. 4, i.e., the cost 
today is the benefit obtained by using water tomorrow. 
    The reduced electricity conversion efficiency due to a reduced height 
(head) the water falls as the reservoir is drawn down is disregarded. For 
the Norwegian system, with relatively few river stations and high 
differences in elevations between dams and turbine stations of most of the 
dams (the average height is above 200 meters), this is an acceptable 
simplification at our level of aggregation11. In more technically-oriented 
                                                      

11 The head of e.g. the High Aswan Dam power station varies from 70 m. at 
maximum storage to 40 m. at minimum storage and is significant for the variation 
in production (Goor et al., 2011). 
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analyses it may be specified that the coefficient varies with the utilisation 
of the reservoir (and also with the release of water due to the construction 
of the turbine giving maximal energy productivity at a certain water flow, 
as mentioned above). A more detailed analysis taking variable head into 
consideration for a time period may therefore use an average expression 
for the fabrication coefficient: 

1( , ), , 0, 0, 1,..,
2

t t
t t t t

tt

R R a a
a a r R R t T

rR
    

      
 

  (1.3)

where tR is the average content of the reservoir during period t. Increasing 
the release may have either a positive or negative effect on the fabrication 
coefficient depending on how the release deviates from the optimal design 
intake of the turbine. An increasing average content of the dam during 
period t will decrease the fabrication coefficient and increase electricity 
output at the margin.  
    In the production-function specification (1.2) we have opened up for 
waste of released water. However, in the following we assume that the 
production function holds with equality and then there is a one to one 
correspondence between water measured in m3 and water measured in 
MWh. 
    The dynamics of water management is based on the filling and emptying 
of the reservoir12: 

1 , 1,..,t t t tR R w r t T     (1.4)

The amount of water in the reservoir at the end of period t is equal or less 
than the amount of water at the end of period t – 1 (equal to the reservoir 
content at the start of period t) plus the inflow during period t subtracted 
the release of water from the reservoir during period t. Evaporation from 
the reservoir is not accounted for. This is quite reasonable for a northern 
country like Norway, but may be dealt with in the definition of inflow. In 
order to save on variables, overflow is not specified as a separate variable. 
Strict inequality means that there is overflow. 
    Since maximal head is obtained when the reservoir is full and not 
influenced by overflow we can in general substitute for water stocks in 
(1.3) as if equality holds in (1.4): 
                                                      

12 If the stock variable is dated at the start of the periods (1.4) will read: Rt+1 = 
Rt + wt – rt + st, t = 1,…,T, where st is the overflow during period t. The stock 
variable at the beginning of period  t +1 as a function of variables dated t may be a 
more common way of writing the equation of motion for dynamic systems 
(Sydsæter et al., 2005). 
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1
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Keeping inflows constant, the change in release is driving both the running 
operational efficiency and the changing head effect. Since the last derivative 
on the right-hand side is negative, increasing the release contributes to a 
lower electricity production at the margin through the head effect. 
    The annual profile of inflows (wt) and releases (rt) in energy units for 
the Norwegian hydropower system are shown weekly for a typical year 
2003 in Figure 1.4. The water flows are converted to energy units by 
division with the average fabrication coefficient for the Norwegian hydro 
system. The inflows are low in the winter weeks, with frost from about the 
end of October to end of April. In that period production is higher than 
inflow and this condition lasts until the beginning of August, when all the 
snow usually has melted in the mountains. Production is greater than 
inflows in weeks 1 to 16 in Figure 1.4. In the autumn there is rainfall with 
positive build-up of reservoirs, with weeks 32 and 36 as exceptions in 
2003. From week 39 (first week of November) to the end of the year the 
inflows fall short of the production. The role of the dams is to permit a 
transfer of water from the late spring, summer, and early autumn weeks to 
the late autumn and winter weeks. The peak of the snow melting in 2003 
was in the beginning of June (week 23). The snow melting during a few 
spring and summer weeks in Norway fills the reservoirs with about two 
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Figure 1.4. Weekly inflow and production of hydropower in Norway 2003. 
Source: OED: Fakta 2005 
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thirds of the yearly total. The week with the lowest production, week 29 
(the last week in July), has 49 % of the production of the maximal week 1 
(the first week of January). The variation in inflow is much more pro-
nounced, with the lowest inflow in week 1 being 2% of the highest inflow 
in week 23 (beginning of June). The production of electricity expressed by 
(1.2) and the water dynamics of (1.4) are valid for any length of the time 
period. In studies of optimal management of stored water for electricity 
production the period concept may be as crude as two aggregate periods of 
a year (summer and winter seasons based on difference in inflow and/or 
release profile), and anything from months, weeks, days, and down to 
hours. A realistic modelling (e.g., the Norwegian total system model; see 
Haugstad et al., 1990; Gjelsvik et al., 1992; Wangensteen, 2007) may use a 
week as a period unit and involve a horizon of three to five years.  

Environmental concerns 

Hydropower is often termed green energy because its production does not 
generate harmful emissions such as regional pollutants like SO2 and NOx 
or a global pollutant like CO2. However, although there may be also 
current environmental problems with hydropower, the main environmental 
problem is the exploitation of hydropower sites as such. Reservoirs  
are often artificially created, flooding former natural environments or 
inhabited areas, although in Norway many reservoirs are based on natural 
lakes in remote mountain areas. Furthermore, water is drained from lakes 
and watercourses and transferred through tunnels over large distances, and 
finally there are the pipelines from the reservoir to the turbines that often 
are visible, but they may also go inside mountains in tunnels. Thus hydro-
power systems “consume” the natural environment itself. The waterfalls, 
lakes and rivers that tourists enjoyed are not there anymore. There may 
also be current environmental problems due to the change in the reservoir 
level and the amount of water downstream. Changing reservoir levels may 
create problems for aquatic life, as may also changing levels of release of 
water downstream, in addition to problems for agriculture in changing the 
microclimate in the areas of the previously natural rivers and streams. 
    The conflict between environmental groups and the authorities wanting 
to exploit waterfalls finally led to a political solution in Norway with 
compilation of a list of waterfalls that will not be exploited adopted by the 
parliament in the mid-1980s. The protected waterfalls amount to about 

waterfalls represent an increase in  yearly production of 26%. 
[Both figures refer to the situation at the start of 2012; see OED (2013).] 

60% of remaining hydro resources to be exploited. The unprotected 
average
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The basic hydropower model 

Some studies of hydropower at a high level of aggregation disregard the 
storage process and specify directly the available water within, e.g.,  
a yearly weather cycle. The assumptions are then that there is no spill of 
water or binding upper reservoir constraint, and no emptying of the 
reservoir until the terminal period. The modelling can then be simplified 
by disregarding the water-accumulation relation (1.4). Another way for 
this specification to make sense in our framework would be for all the 
water to be present in the first period. The time profile of inflows should 
be such that the bulk of inflow comes in one period and then there is a 
natural seasonal precipitation cycle with little inflow until one year later. 
The snow, melting during a few spring and summer weeks, fills the 
reservoirs with about two thirds of the yearly total in Norway. This is 
illustrated in Figure 1.4 in Chapter 1. The inflow is low in other periods 
except for autumn rains. However, there are huge variations up to ± 30% 
from year to year in the pattern of inflow. 
    In the case of all water being present in the first period, utilisation of 
water within a horizon can be regarded as a problem of managing a 
resource of finite amount, just like extraction of non-renewable resources 
like oil. 
    As can be seen from Figure 1.4 the validity of the assumption of inflow 
in only one period depends on the length of the time period. The time 
periods can be arranged such that inflow occurs in the first period. The 
basic model is then obtained by assuming that there is inflow only in the 
first period, and furthermore we assume that the production of electricity is 
efficient, i.e., we have equality in the production function (1.2). Finally 
there is unlimited transferability of water to the other periods of the given 
total amount of water available after the first period. The sum of all 
releases must then equal the inflow in period 1. Using the production 
function (1.2) yields: 
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The horizon, T, is assumed to cover a seasonal cycle (one year) from 
spring to spring. In the first line of equation (2.1) water is measured in m3, 
while in the second line of (2.1) water is measured in kWh by using the 
fabrication coefficient from (1.2) as deflator. Although the variable, W, 
representing total available inflow, is measured in energy units, kWh, we 
will still call W water. By assuming no wasting of water as a factor of 
production in producing electricity, the conversion from water to electricity 
does not have to be modelled as a separate relationship, but production 
substituted for the releases as in (2.1).  
    We will investigate the resource use problem as a standard social 
planning problem. The energy consumption in each period is evaluated by 
utility functions, which can be thought of as either valid for a representative 
consumer or constituting a welfare function. Simplifying further, there is 
no discounting. The horizon is at any rate usually too short for discounting 
to be of practical significance (however, Norway has a large proportion of 
multi-year reservoirs, implying that a rather long horizon, usually three to 
five years, is warranted). The period utility functions representing the social 
value of electricity consumption are: 

( ) , ( ) 0 , ( ) 0 , 1,..,H H H
t t t t t tU e U e U e t T     (2.2)

The utility functions have the standard property of concavity. The marginal 
utility Ut' measured in monetary units, is defined as the marginal willing-
ness to pay, pt, i.e., defining the demand function (on price form) for 
electricity: 

( ) ( )H H
t t t tU e p e   (2.3)

The marginal willingness to pay for electricity is also referred to as the 
social price (pt) of electricity or price for short below. We will assume that 
this demand function has normal properties, e.g., decreasing in quantity 
corresponding to the assumption about the curvature of the utility function. 
In light of the brief discussion in Chapter 1 about the sensitivity of demand 
for electricity to current price, the time period considered should not be too 
short.  
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    The social optimisation problem can be formulated as follows: 
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
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 (2.4)

The horizon ends at T and there is no amount of water handed over to 
period T + 1. This assumption may be acceptable if the number of periods 
T corresponds with almost emptying the reservoir levels due to typical 
seasonal variation in inflows. (Introducing a lower constraint on water 
handed over and/or specifying a scrap-value function will be followed up 
in Chapter 3). The endogenous variables are the electricity production 
(corresponding uniquely to water use) in each period. To find a solution  
to the optimisation problem above, we will use a standard nonlinear pro-
gramming approach (see Sydsæter et al., 1999, 2005).  
    The Lagrangian function for problem (2.4) is: 

1 1
( ) ( )

T T
H H

t t t
t t

L U e e W
 

    , (2.5)

where  is the Lagrangian parameter. Necessary first-order conditions for 
this problem, where all the variables are non-negative, are: 

1

( ) 0 ( 0 for 0), 1,..,

0 ( 0 for )

H H
t t tH
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t
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U e e t T
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




      


  
 (2.6)

The endogenous variables are et
H, λ (t = 1,…,T), T + 1 variables in all, and 

exogenous variables are ,W T , two in all. The number of equations is the T 
first-order conditions in (2.6) and the resource constraint from (2.4), 
yielding as many endogenous variables as equations. We are conducting a 
qualitative analysis assuming that a unique solution to problem (2.4) exists.  
A sufficient condition for a solution to problem (2.4) is that the Lagrangian 
(2.5) is concave, which is satisfied under our assumptions. Therefore we 
focus our attention on interpreting the first-order conditions (2.6). 
    From the Kuhn – Tucker conditions (2.6) we know that the marginal 
utility of electricity consumption is equal to the shadow price on the 
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resource constraint if we have an interior solution for the energy 
consumption for period t, i.e., et

H > 0. The shadow price on the resource 
constraint is zero if the constraint is not binding. The general interpretation 
of a shadow price on a constraint is that it shows the change in the 
objective function of a marginal change of the constraint. In our case the 
shadow price shows the increase in the sum of utilities over all periods of a 
marginal increase in stored water, W.  
    In such a highly stylised model as above it is reasonable to assume that 
there is positive consumption of electricity in each period and that 
consumption is not satiated, i.e., that marginal utility is positive in all 
periods. It then follows that the shadow price on the resource constraint 
must be positive. The typical conclusion in this basic model with a given 
amount of resources is that the marginal utility of electricity is constant 
and equal for all periods: 

( ) for all 1,..,H
t tU e t T    (2.7)

As mentioned above when measuring utility in money, marginal utility 
may be interpreted as the demand function for electricity on price form. 
The result of the basic model can then be equivalently stated as the price of 
electricity being the same for all periods. This is Hotelling’s rule for the 
resource price for our model. We do not discount, and by arbitrage of the 
water asset the social price must be the same for all periods. If prices were 
different, then, by the assumption of unlimited transferability of water 
between the periods, transferring water to high-price periods will increase 
welfare until the prices are equalised in the optimal solution. The shadow 
price on the water resource constraint measures the increase in the sum of 
utilities of a marginal increase in the resource, and due to perfect transfer-
ability between periods there is only one shadow price. 
    The typical solution for both periods is illustrated in Figure 2.1 in the 
case of two periods via a bathtub diagram. The two marginal-willingness-
to-pay-functions are measured along the left- and right-hand vertical axes 
for period 1 and period 2, respectively. Total available electrical energy in 
kWh for the two periods corresponds to the horizontal length of the 
bathtub. The economic interpretation of the solution to the allocation 
problem is that electricity should be allocated between the periods in such 
a way that the shadow price of electricity (i.e., the increase in the objective 
function of a marginal increase in the given amount of total energy) is 
equal to the marginal utility of energy in each period, and thus the 
marginal utilities become equal. In Figure 2.1, if period 1 is summer and 
period 2 winter, the marginal utility should be equal. Although the marginal 
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Figure 2.1. Bathtub illustration of optimal allocation of  

electricity between two periods. 

Water as a non-renewable resource: Hotelling revisited 

In the problem (2.4) above water appears as if it is a non-renewable 
resource with a known initial deposit like oil or minerals since the horizon 
ends at T. The Hotelling rule for a change in the price of a non-renewable 
resource is usually stated as requiring the resource price to increase with 
the discount rate. We introduce discounting in our model to show how the 
familiar form of the Hotelling rule can be derived. Denoting the discount 
factor βt we have the following optimisation problem: 

1
max ( )

T
H

t t t
t

U e 

  

2
He  

2 2( )HU e  
1 1( )HU e  

Period 2 Period 1 

Total available electricity, “water” 

1U   2U   

1 1U p    2 2U p  

1
He  

utility of energy consumption may be higher in winter than in summer for 
the same level of consumption, marginal utility in the winter should not 
become greater than in summer in the optimal solution. The consumption 
in the winter may be substantially higher than in the summer, just as we 
saw in Figure 1.2 in Chapter 1 for summer and winter days and in Figure 1.4 
for weekly periods. The solution for the shadow price is such that all avail-
able water is just used up for electricity production. 
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(2.8)

The discount factor is in discrete time specified as 
( 1)(1 ) , 1,..,t

t r t T     , (2.9)

where r is the rate of discount, assumed to be the same for all periods. The 
utilities are discounted to period 1, so the discount factor for this period is 
1. Notice that the discount rate must correspond to the period length in 
question, e.g., if a yearly rate is 5%, then if the time period is a week, 
using the rule for compound interest rate, the weekly discount rate is  
r = 0.0009 and β2 = 0.999. 
    The first-order conditions are straightforward extensions of (2.6): 
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 (2.10)

The discounted marginal utilities shall be set equal for all periods and 
equal to the shadow price on the water resource constraint. The shadow 
price now measures the change in the discounted sum of utilities of a 
marginal change in the amount of the resource. 
    The growth rate in marginal utility is found by first using the first-order 
condition (2.10) for period t and t + 1 substituting for the discount factor 
from (2.9): 

1 1 1

1 1
1
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 (2.11)

The growth rate in marginal utility from period t to period t + 1 is then: 

1 1( ) ( ) ( )(1 ) ( )
( ) ( )

H H H H
t t t t t t t t

H H
t t t t

U e U e U e r U e
r

U e U e
      

 
 

 (2.12)

The growth rate is the rate of discount, just as the Hotelling rule tells us 
about the resource price. Remembering that the marginal utilities by 
definition (2.3) are interpreted as prices, we have established the Hotelling 
rule: 
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1 1( ) ( )
( )

H H
t t t t

H
t t

p e p e
r

p e
  

  (2.13)

    In light of the results of the previous section it should be emphasised 
that without discounting the fundamental insight of the Hotelling rule for 
the asset equilibrium, at least for time spans of restricted length, is not 
really the price growth, but the level of the prices. Empirical investigations 
of resource price development that only check the rate of growth are not so 
interesting unless the optimal level of prices is checked, too. 
    An illustration of the consequence of discounting is set out in Figure 2.2 
for two periods. The optimal situations without discounting from Figure 2.1 
are shown by the dotted lines. The discount factor is one in period 1. In 
period 2 the discount factor means that the discounted demand curve 
constitutes a downward vertical shift of the demand curve with the distance 

1
2 2 2 2 2 2 2 2 2( ) ( ) ( )(1 (1 ) ) ( )

1
H H H H r

U e U e U e r U e
r

        


 (2.14)

This curve is shown as the solid curve in Figure 2.2 for period 2. For 
period 1 the marginal utility and the price are equal to the shadow price on 
the total water resource. The allocation of electricity in the two periods is 
determined by the intersection of the demand curve for period 1 and the 
shifted demand curve for period 2. We see that discounting implies that 
XXXX 
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Figure 2.2. Bathtub illustration of the Hotelling rule with discounting. 
Situation without discounting shown by thin dotted lines. 
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more is consumed in the first period and less in the second compared with 
a situation without discounting. The shadow price on the water resource is 
lower with discounting. This reflects the fact that discounting means more 
of the resource is preferred to be consumed earlier, and to realise this, 
prices in earlier periods must be decreased. The price for period 2 is found 
by going up to the period 2 demand curve. The period 2 price is higher 
than the period 1 price in accordance with the Hotelling rule. 
    An interesting economic question is how the endogenous variables 
change in response to changes in exogenous variables. The consequence of 
a change in the rate of discount can be found by differentiating the 
discount factor (2.9) with respect to the rate of discount: 

( 1)(1 ) ( 1)(1 ) 0 ( 2,.., )
t

tt r
t r t T

r r

  
  

      
 

 (2.15)

The reduction in the discount factor (increase in the rate of discount) 
means that future periods count less in the objective function in the 
optimisation problem (2.8). The effect is illustrated in Figure 2.3, based on 
Figure 2.2. The dotted lines represent the situation before an increase in 
the rate of discount and the solid lines the situation after the increase. The 
dotted demand curve for period 2 reflects the value of the discount factor 
before the change and the solid demand curve reflects the value of the dis-
count factor after the change. With less emphasis on the future more will 
be consumed in the first period. The price then has to go down in the first 
XXXX 
X 

 
Figure 2.3. An increase in the rate of discount. 
Situation before change shown by dotted lines. 
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X 

 
Figure 2.4. An increase in the amount of the resource. 
Situation before increase shown by thin dotted lines. 

 
period, and the price is increased in the second period to match the decease 
in the availability of electricity. There is a downward vertical shift in the 
discounted demand curve for period 2, as is also evident from the 
expression (2.14) for the distance between the marginal-willingness-to-pay 
curve and the discounted curve for period 2. 
    An increase in the availability of water can in the two-period case be 
illustrated by letting the bathtub wall for period 2 shift outwards to the 
right in Figure 2.2 as done in Figure 2.4. The dotted curves illustrate  
the situation in Figure 2.2 before the change in the availability of water, 
while the two solid demand curves for period 2 represent the situation after 
the increase in the resource. The shadow price on the resource decreases, as 
do both period prices. Consumption in each period correspondingly increases.  

Several user groups 

In the model the water is used to (costless) produce electricity. But we may 
also consider preferences for water directly by substituting the release rt 
for electricity in the utility functions. Water resources are also of interest 
for activities other than producing electricity. An interesting problem is 
then how to allocate water if there is competing interest for the water 
resource. Broad water use groups may be households, industry, agriculture 
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and hydropower. In the case of drinking water for households the interest 
may lie in the utility of different groups of households, for instance 
representing different income groups or living within specific locations. As 
to farmers, industry and hydropower plants, it may be more appropriate to 
operate with profit functions. However, we will use utility functions for 
water user groups without being more specific. The G groups are indexed 
with a superscript g: 

( ) , 0, 0, 1,.., , 1,..,g g g g
t t t tU r U U g G t T      (2.16)

The release of water, rt
g, to each group is drawn from a common reservoir. 

Utility function can vary over time periods because households’ utility of 
water may vary with outdoor temperature and for agriculture utility may 
vary with growth season. Industry demand may be more neutral as to time 
periods. 
    We will still use the reservoir model (1.4) in Chapter 1, and either 
assume that all inflows of water occur in the first period or that the upper 
constraint on the reservoir is never binding and that the reservoir is not 
emptied until the terminal period. The water constraint can be aggregated 
into a single one and expressed analogously to (2.1): 

1 1

T G
g

t
t g

r W
 

  (2.17)

Both the total water resource W and the release rt
g from the reservoir are 

now measured directly in m3. The user groups draw water from the same 
source. The priority given to different user groups is taken care of by 
specifying a social benefit or welfare function, B(.), constant over time for 
simplicity, in the utilities of the user groups. This benefit function has the 
traditional properties from welfare theory, i.e., it is increasing at a 
decreasing rate in all the utilities. The social planning problem can then be 
formulated as: 
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It is straightforward to introduce discounting in the model using discount 
factors such as t in the previous section. 
    The Lagrangian is: 

1 1

1 1 1

( ( ),.., ( )) ( )
T T G

G G g
t t t t t

t t g

L B U r U r r W
  

     (2.19)

The necessary first-order conditions are: 
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 (2.20)

The shadow price, λ, on the water constraint may now properly be termed 
the water value since it measures the change in the objective function of a 
marginal increase in the amount of water measured in m3. Assuming that 
water is to be consumed for each group in each period we have that the 
discounted socially weighted marginal utilities of water consumption 
should all be equal between different user groups and equal over time,1 and 
equal to the water value. The water value is the crucial equilibrating 
variable telling us that the socially weighted value of the marginal utility 
of drinking water should be set equal to the socially weighted value of 
marginal utility of irrigation water, equal to the socially weighted marginal 
utility of industry consumption and equal to the socially weighted marginal 
utility of hydropower water use. 
    If the distributional objective expressed by the benefit function is 
dropped, e.g., by specifying the benefit function as a pure summation of 
utilities, and in addition assuming that utilities are measured in money, 
then a total demand function (on price form) can be formed by adding 
(horizontally) the individual demands. Each group’s marginal willingness 
to pay is now measured in the same unit, money: 

1 1 1
( ) ( ) ( ) ,

G G G
g g g g g
t t t t t t t t t

g g g

U r D r D r p r r
  

        (2.21)

    An optimal allocation of water between groups for a time period can be 
illustrated as in Figure 2.5, specifying three groups. The group demand 
curves derived from the marginal utilities measured in money are drawn as 
straight lines sloping downwards starting at finite levels at zero consumption 
xxxxxxxxxxxx 
                                                      

1 If a discount factor is used, then the socially weighted marginal utilities will 
change correspondingly over time. 
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Figure 2.5. Aggregation of individual demand curves. 
Equilibrium water shares for period t. 

of water. The individual group allocations are found by the intersections of 
the demand curves with the common horizontal shadow price line of the 
water resource. The levels are indicated by 1, 2, and 3 on the horizontal 
axis. If the shadow price is higher than the choke price, then no water is 
allocated to this group. The aggregated total demand curve is Dt(rt) and the 
total consumption is indicated by the point M. 
    As to the time allocation problem we could use the bathtub construction 
for two periods and extend Figure 2.5 to a figure like 2.1. The point of 
intersection of the aggregate demand curves will coincide with the value of 
the horizontal line for the shadow value of water. The social prices will  
be equal for each group for all time periods. The quantities allocated to the 
groups may vary with the time period, but the social price remains the 
same. (If discounting is introduced we get the same change in focus to 
discounted prices being equal as in the previous section.) 
    The allocation over time is illustrated in a bathtub diagram in Figure 2.6 
for two periods. The allocation between the two periods is given by the 
intersection of the total demand curves and shown by the point M on the 
horizontal total water axis. The equilibrium price is given by λ and is equal 
both across user groups and periods. The three groups get the allocation of 
water in period 1 indicated by the vertical dotted lines marked 1, 2, and 3. 
The demand structure, keeping roughly the order of period 1, is such that 
group 1 now does not get any water in period 2. The willingness to pay is 
not high enough. This may be the case of irrigation water in the rainy season 
xxxxxxxxxxxxxxxxx 
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Figure 2.6. Allocation across groups and over time. 

Groups 2 and 3 get the allocations indicated by the vertical dotted lines for 
period 2. Notice that the price is the same even if one period is a drought 
period and the other is a rainy season. Without uncertainty the water that is 
collected during the first period is always shared in such a way that the 
price is the same over time. 
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The variation of prices  

The analysis in Chapter 2 concluded that the price should be the same for 
all time periods. However, even a superficial knowledge of electricity 
markets with a significant presence of hydropower tells us that electricity 
prices vary over seasons and even days. The hourly prices for the four 
winter - summer days, used in Figure 1.2 in Chapter 1 to show the electri-
city demand, are shown in Figure 3.1. The price levels of the winter days 
are, as expected, higher than for the summer days and somewhat more 
even during night time for the winter day shown. All days show lower 
prices during night hours. This difference is especially pronounced for the 
two summer days where the night hours have much lower prices until eight in  

 
Figure 3.1. Hourly price variation for four days in Norway 2011.  

Source: Nord Pool. 
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the morning. The weekday and Sunday prices then become almost the 
same in the afternoon and evening. The lowest price from five to six in the 
morning correspond to the lowest consumption shown in Figure 1.2 may 
be due to run-of-the river dominating production. The winter days days 
have almost the same shape of the price curves, while the summer Sunday 
and weekday differ considerably more.  
    To get an impression of the variability of prices over a year the hourly 
prices are sorted in decreasing order in Figure 3.2 to make a price-duration 
curve. There are two turning points or knuckles of the curve. The highest 
price of 225 EUR/MWh was February 2 from five to six o’clock in the 
afternoon. Then the price falls to about 45 EUR/MWh at the first knuckle 
point, or with 80%. Most of the high prices are for morning hours between 
seven and ten o’clock and also some afternoon hours. There are 540 hours 
in the interval 225-45 EUR/MWh, or 6% of the total 8760 hours. In 
between the first and second knuckle point the price falls with 38%. The 
price range 17-5 EUR/MWh covers the steep right-hand part past the 
second right-hand knuckle. For some hours the prices are quite lower than 
the median price of 31 EUR/MWh. This part encompasses 844 hours, or 
9.6% of the total hours. The lowest price is for July 23 from four to five 
o’clock at night. The typical hour for the majority of the low price range is, 
in fact, during the night in the month of July. 

 

 
Figure 3.2. Price-duration curve Norway 2012. 

Source: Nord Pool  
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that generate considerable price variations if our model is to be of help to 
understand actual electricity markets. 

Constraints in hydropower modelling 

In Chapter 2 any constraints on the reservoirs were suppressed and only a 
limit on the total available water was used. However, there are many 
constraints on how to operate a reservoir and a hydropower plant. The 
relevance of the restrictions will vary somewhat with the length of period 
chosen for the model, from the more aggregate of two periods within a 
year to hourly resolution. The relevance of the constraints also depends on 
whether single or multiple plant models are adopted. The main types of 
constraints are shown in Table 3.1. 
    A fundamental constraint is that a maximal amount of water can be 
stored. This constraint is valid for any level of time resolution, but especially 
important to include within a longer time horizon. This constraint will 
have a crucial importance for how the dam can be operated. There is a 
maximal physical upper limit, but due to, e.g., environmental concerns the 
limit may vary with period and be below the absolute physical limit for 
some periods. 
    Environmental concerns are even more relevant for the lower limit and 
may impose constraints on how much the dam can be emptied. Empty 
XXXXXXX 

Table 3.1. Constraints in the hydropower model. 

Variable Constraint type and variable Expression 
tR : reservoir at end of t Max reservoir: tR  t tR R  

 Environmental concerns,  
min reservoir: tR  

 
t tR R  

H
te : hydropower during t Max power capacity: He  

 

H H
te e  

 Max transmission 
capacity: H

te  
 

H H
t te e  

tr : release of water during t Water flows, environment: 
tr = min, tr = max 

 
t t tr r r   

 Ramping, environment:  
ramping up: u

tr   
ramping down: d

tr  

 
1

u
t t tr r r   

1
d

t t tr r r    

    In the perspective of these data we should come up with mechanisms  
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dams create eyesores in the landscape, and can create bad smells from 
rotting organic material along the exposed shores. Fish may have problems 
surviving or spawning at both too low and too high water levels. The 
environmental lower constraint may depend on the time period, because 
the environmental problems may vary with season. In Norway, where the 
dams are covered by ice in the winter season, the lower level may be less 
than in the summer. 

The capacity of a power station may be constrained by the installed 
turbines or the diameter of the pipe from the reservoir to the turbines. Such 
a constraint has no subscript for time period. The power concept will 
follow the period definition. For example, if the period length is 1 hour the 
power constraint is measured in MWh, by using the maximal MW rating 
for one hour. Using only energy as our variable the power constraint is the 
same as a production constraint.  

In aggregated analyses it is common not to specify the transmission 
system. But a constraint on transmission out from the plant can be 
represented the same way as for power capacity constraint, except that a 
time index may be used on the constraint to indicate that transmission 
capacity within some limits is an endogenous variable governed by 
physical laws of electrical flows in a multilink grid system between input 
and output nodes. The loss may also vary with temperature: resistance is 
higher in hot weather than in cold weather. However, this effect is rather 
insignificant. The lion’s share of loss variation is due to variation in the 
flow through the lines. We will return to the specification of a network in 
Chapter 10. 
    There may be environmental concerns about the size of the release, rt, 
from a reservoir. If the release occurs into a river system there may be 
concerns both about the lower and the higher amount of water that should 
be released due to impacts on the environment downstream. Impacts on 
fishing and recreational activity and pressure from tourism may be 
relevant. Erosion of riverbanks and temperature change for agricultural 
activity nearby may also count. Then there is concern about navigation and 
flood control. Upper and lower restrictions on releases may be introduced 
to mitigate these environmental effects. 
    All the effects may also be present when releases change. When 
ramping up in period t we have rt > rt-1 and when ramping down we have rt-

1 > rt, so upper constraints may be introduced both on ramping up, rt
u, and 

ramping down, rt
d. These constraints are most relevant for shorter time 

periods. 
    The constraints introduced for environmental reasons may reduce the 
amount of current environmental problems to a minimum, or below a level 
where net benefits of further constraints are negative according to a 
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majority view. We will therefore not treat environmental concerns expli-
citly when studying the hydropower management problem. As mentioned 
in Chapter 1, the most severe environmental damages arises constructing 
the physical hydropower system, and not in the operational phase. 

Optimal management with reservoir constraint 

In order to study optimal management of the hydro system, an objective 
function has to be specified. In the older literature on hydropower referred 
to in Chapter 1 and in engineering literature (Wood and Wollenberg, 1984) 
the social objective function is often expressed as minimising the total 
costs of supplying a given amount of electricity within a horizon. In 
economics a standard objective function in empirical studies is to 
maximise consumer plus producer surplus with the consumed (equal to the 
produced) quantities as endogenous variables. The consumption side is 
conveniently summarised by using demand functions1 [defined in (2.3) in 
Chapter 2 on inverse form] and the supply side by using variable cost 
functions. This is a partial equilibrium approach because no interaction 
with the rest of the economy is modelled. In the case of hydropower with 
zero operating costs the social surplus is simplified to the area under the 
consumer demand function. [This gross surplus may be decomposed into 
the consumer surplus and the producer surplus using the optimal price.]  

1 0

Objective function : ( )
H
teT

t
t z

p z dz
 
   (3.1)

    We assume that there are no external costs involved in producing or 
consuming the hydropower. It is assumed that costs that do not depend on 
the current output level, but can be avoided if the plant is shut down, do 
not lead to the plant being shut down by the social planner. Such cost 
terms can therefore be disregarded in the objective function since the 
optimal solution for running the plant is independent of these cost terms. 
The use of a demand function relating the period consumption to the same 
period price is subject to the qualifications mentioned in Chapter 1.  
A technical assumption needed on the demand functions is that there is a 
finite choke price yielding zero demand. Otherwise demand is assumed to 
decrease in price in the standard way in economics. These assumptions are 
all standard when employing the consumer-surplus concept. Discounting is 
                                                      

1 Notice from Chapter 2 that the demand functions may also be interpreted as 
representing utility or preference functions. 
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not introduced for convenience since the horizon is usually so short that 
the effect will be negligible as pointed out in Chapter 2, but will be 
straightforward to include, as shown there. 
    Assuming no waste of water in the production of electricity, the 
reservoir dynamics is: 

1 1

1

H
t t t t t t t

Ht t t
t

R R w r R w ae

R R w
e

a a a

 



      

  
 (3.2)

In the last line of (3.2) all the water variables measured originally in cubic 
meters (m3) of water are converted to energy units, MWh, by dividing 
through with the fabrication coefficient, a. It will be convenient to express 
all units in MWh in the rest of the book. However, for notational 
convenience we will drop explicitly showing the conversion from water 
units to energy units by suppressing the fabrication coefficient a, and still 
refer to the variables originally measured in water units as “water.” 
    The social planning problem can then be expressed in the following 
way: 

1 0

1

max ( )

subject to

, 0 , 1,..,
, , , given, free

H
teT

t
t z

H
t t t t

t

H
t t

t o T

p z dz

R R w e

R R

R e t T

T w R R R

 

  



 

 

 (3.3)

In order to simplify, the reservoir limits are assumed to be independent of 
period, and the lower level is normalised to zero (i.e., the upper level used 
in (3.3) is the physical upper level subtracted the lower level; t tR R R  ). 
If the lower limit is explicitly modelled then the shadow price on this 
constraint will tell us the benefit of making the constraint less severe. This 
information may be useful if there is any discussion or doubt as to the 
chosen minimum level. 
    We disregard for the time being all other constraints in Table 3.1. An 
important consequence is that there is full manoeuvrability of the system in 
the sense that a reservoir can be emptied within a period. No scrap-value 
function for water in the reservoir or minimum level in the last period is 
introduced so far, so the amount at the end of period T is free.  
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The optimisation problem (3.3) is a discrete time dynamic programming 
problem, and special solution procedures have been developed for this 
class of problems (Bellman, 1957; Sydsæter et al., 2005). The variables in 
the model (3.3) may be divided into state variables and control variables. 
The former corresponds to the level of water in the reservoir, Rt, and the 
latter to the production et

H. The objective function (3.1) inserted the 
optimal solution is called the value function, V(R), that can be written as  
a function of the state variable. The state variable in problem (3.3) is a 
function of the control variable due to the water accumulation equation in 
(3.3), thus the value function can be expressed as a function only of the 
optimal R. The idea of the solution procedure in dynamic programming is 
to decompose the problem into sub-problems that are easier to solve. 
Consider a time period s as one of the periods 1,…,T – 1. Then Bellman’s 
principle of optimality states that the problem of finding the value function 
for s can be written as the sum of the optimal solution for period s and the 
objective function inserted the optimal solutions for the rest of the periods 
s + 1,...,T.  

The latter function is then the value function for period s + 1, yielding 
the dynamic programming equations (the name Bellman Equation is 
usually reserved for a problem with infinite horizon): 

[0, ]
10 0

( ) max [ ( ) ( ) ]
H H
s t

H

e eT

s s te R
t sz z

V R p z dz p z dz


  

     (3.4)

In addition the restrictions in (3.3) have to be obeyed. 
However, because of the special structure of the problem we shall treat 

it as a standard nonlinear programming problem and use the Kuhn – 
Tucker conditions for discussing qualitative characterisations of the 
optimal solution.  
    The Lagrangian function for problem (3.3) is: 
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1
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 (3.5)

Endogenous variables are et
H, Rt, λt, γt (t = 1,…,T), and there are 4T 

variables in all. Necessary first-order conditions are: 
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 (3.6)

The number of equations is the 2T first-order conditions in (3.6) and 2T 
reservoir constraints from (3.5), so there are as many equations as 
endogenous variables. As in Chapter 2 we will just assume that the first-
order conditions are valid for the optimal solution without going deeper 
into the mathematics.  
    Now, our general objective is that the model should tell us something 
qualitatively about optimal production and consumption of electricity that 
has real-world interest. We will then limit the number of possible optimal 
solutions by making reasonable assumptions. One such assumption is that 
positive production is required in all periods, yielding the conditions: 

( ) , 1,..,H
t t tp e t T   (3.7)

The shadow price λt of the stored water may be termed the water value.2 It 
shows in general the change in the value of the objective function, 
evaluated at an optimal solution, of a marginal change in the constraint. In 
our case the water value in period t shows the value in terms of an increase 
in gross consumer surplus of a marginal increase either in the transfer of 
water from period t – 1 or an increase in the inflow in period t. Using the 
envelope theorem we have  

1 0
( )

H
teT

tt z
t

t t

p z dz L

w w
 

 
 

 
   (3.8)

In the engineering literature the expression system lambda is used for the 
marginal generation cost of the electricity system. The water value t as an 
opportunity cost is just this system lambda. 

In the optimal solution with positive production in period t the water 
value is equal to the optimal price. Note that by assuming (3.7) we have 
not ruled out the possibility that the water value is zero. The water value 
                                                      

2 But remember that in our simplified model water is measured in energy units, 
MWh. We should really measure water in m3 to use the expression. This can 
easily be done by multiplying through with the fabrication coefficient a. 
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for period t expresses the value of using water in the next period t + 1 
through the second equation in (3.6). This is the essential dynamic 
equation for the system. There are only two successive periods involved in 
the equation of motion. This means that a sequence of two-period 
diagrams may capture the main features of the general solution. We will 
use the development of shadow prices to give insights into the qualitative 
characteristics of an optimal solution.  

The shadow price t on the upper reservoir constraint measures the 
benefit in period t of increasing the reservoir limit in that period. A general 
increase in the reservoir level, however, gives rise to a greater benefit. 
Using the envelope theorem yields: 

1 0

1

( )
H
teT

T
tt z

t
t

p z dz L

R R
 



 
 

 
    (3.9)

An increase of the reservoir size creates a benefit in every period with a 
binding reservoir constraint.  

Introducing terminal conditions 

Recognising that “life continues” after the horizon T it is logical to put a 
terminal condition on the reservoir level for period T. This can be done by 
introducing a new constraint imposing a minimum level, RT, or by 
introducing a scrap value term in the objective function. The constraint 
added to the constraints in (3.3) is: 

T
TR R  (3.10)

The objective function with a scrap value function becomes: 

1 0

( ) ( )
H
teT

t T
t z

p z dz S R
 

   (3.11)

The form of the scrap-value function may be one of a constant marginal 
value, S', or it may be a concave function with an extreme value on the 
interior of the interval [0, R ]. 
    It seems reasonable to assume that the minimum level RT lies 
somewhere between zero and the upper reservoir constraint. The first-
order conditions involving the constraint (3.10) become 
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 (3.12a)

where ω is the shadow price on the terminal constraint in (3.10) (having 
the term –ω(– RT + RT) in the Lagrangian). Using the scrap value function 
instead yields the following condition for the terminal period T, replacing 
the one stated in (3.12a): 

( ) 0 ( 0 for 0)T T T T
T

L
S R R

R
       


 (3.12b)

    In the case of a minimum level of the reservoir as a constraint in the last 
period we have that the condition in (3.12a) holds with equality, and 
furthermore that the shadow price on the upper reservoir constraint is zero. 
Leaving more to the future than the minimum reservoir RT implies a zero 
value of the shadow price ω, but this can be optimal only if the price in the 
terminal period becomes zero according to the condition (3.7). Then 
demand for electricity must be satiated in the terminal period, but we have 
ruled out this possibility above. Therefore the terminal condition is binding 
and we assume in the regular case that the shadow price is positive, 
yielding a positive terminal water value. 
    In the case of using the scrap-value function the regular case will be that 
the reservoir level is between zero and the maximal reservoir level, imply-
ing that the shadow price on the upper reservoir constraint is zero, yielding 
equality between the terminal water value and the marginal evaluation for 
future use of the terminal reservoir level according to (3.12b). 
    Introducing the minimum level RT will influence the magnitude of the 
water value of the terminal period. Instead of adding RT-1 to the inflow wT 
and then consuming the whole amount in period T, (RT-1 – RT) is now 
added to the inflow. The range of possible values for the terminal water 
value is shifted upwards since the maximal production is reduced by the 
amount set aside for the period after the terminal one. The minimum value 
of the reservoir handed to the terminal period may now have to be positive 
in order to fulfil the terminal constraint. We must have min RT-1 ≥ RT – wT. 
    Using the scrap-value function water at the disposal for consumption in 
the terminal period is wT + RT-1 – RT

*, where RT
* is the optimal amount left 

for future use. We get the same type of upward shift of the possible values 
of the terminal water value as for the case of a minimum level condition. 
    As we have seen above, introducing a positive minimum terminal value 
of the reservoir level or a scrap-value function does not change the story 
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about the formation of optimal prices in principle. Therefore, for ease, we 
will not use such specifications in this book.  

The bathtub diagram for two periods 

The conditions (3.6) tell us that there are two events that are crucial for the 
development of prices and shadow prices: the reservoir running empty and 
the reservoir running full. Focussing just on two periods can bring this out. 
The bathtub diagram used in Chapter 2 can now be extended to include a 
reservoir limit. In the two-period case, assuming that zero spilling is 
optimal, adding together the two water-storage equations in (3.3) we have  

1 2 1 2
H H

oe e R w w     (3.13)

The maximal electricity produced is equal to the available water from 
period 0t   and the inflows in periods 1 and 2. The solution for two periods 
can be illustrated in a bathtub diagram, Figure 3.3, extending Figure 2.1 in 
Chapter 2, showing the total available water as the floor of the bathtub, and 
the demand curves anchored on each wall. The maximal storage is now 
introduced. Inflow plus the initial water Ro  in period 1 is AC, and inflow in  
 
 XXX 
X 

 
Figure 3.3. Two-period bathtub diagram with a  

non-binding reservoir constraint. 

p1 

λ1 

M D C BA 
R

1
He  

1
He  

1 1( )Hp e  2 2( )Hp e  

Period 2 Period 1 

λ2 

Total available water 
     1 2oR w w   

p2 

2
He  

2
He  



46      Chapter 3. Hydropower with Constraints 

period 2 is CD. The maximal storage is BC. The storage is measured from 
C toward the axis for period 1 because the decision of how much water to 
transfer to period 2 is made in period 1. The intersection of the demand 
curves determines the common price for the two periods, equal to the 
common shadow price on stored water, in accordance with the first-order 
conditions. The point M on the bathtub floor shows the distribution of 
electricity production on the two periods. The optimal transfer illustrates 
the case when the reservoir limit is not reached, but there is scarcity in 
period 2 since all available water, MC + CD, in that period is used up. 
Therefore the amount AM is consumed in period 1 and MC is saved and 
transferred to period 2. The total amount available for both periods is used 
up and gives rise to a positive price for both periods, assuming no satiation 
of demand. The amount consumed in period 1 leaves less than the maximal 
possible amount to period 2. The intersection of the demand curves takes 
place within the vertical lines from B and C, indicating the maximal 
storable amount. Since water consumed in period 1 is at the expense of 
potential consumption in period 2 the water values become the same and 
equal to the price for both periods. We have from (3.6) that λ1 = λ2 since  
γ1 = 0 because 1R R , and then from (3.7) we have 1 1 2 2,p p   . 
    Expanding the availability of water marginally by expanding one of the 
inflows will create a value equal to the shadow price on the corresponding 
water accumulation constraint. 

The demand curves may also intersect to the left of the broken vertical 
reservoir capacity line from B as illustrated in Figure 3.4. The optimal  
 

 
Figure 3.4. Social optimum with reservoir constraint binding. 
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allocation is now to store the maximal amount BC in period 1 because the 
water value is higher in the second period, and consume what cannot be 
stored, AB, in period 1. Due to the assumption of non-satiation of demand 
it cannot be optimal with any spill in period 1. From the first-order 
conditions (3.6) water value and hence the price is zero when having spill. 
The water value is now higher in the second period. In the second period 
the reservoir, containing BC from the first period and an inflow of CD 
coming in the period, is emptied. We go from a period of threat of over-
flow to a period with scarcity. Using (3.6) for R1 > 0 we have that λ1 = λ2 – γ1. 
The shadow price on the reservoir constraint, γ1, is the difference between 
the water values as indicated in the figure. If the reservoir could be 
marginally expanded the extra economic value created is the difference 
between the period prices. (The shadow price on the constraint is the 
change in the objective function when R  is marginally changed.)  

Notice that the water allocation will be the same for a wide range of 
period 1 demand curves keeping the same period 2 curve, or vice versa. 
The period 1 curve can be shifted down to passing through B and shifted 
up to passing through the level for the period 2 water value, as indicated by 
the dotted lines as alternative demand curves. The price difference between 
the periods may correspondingly vary considerably. A binding reservoir 
constraint implies that the value of the objective function becomes smaller. 
Using the unconstrained solution as a benchmark, indicated by the vertical 
dotted line from B' to the intersection of the demand curves, the marked 
triangle is the reduction in total consumer plus producer surplus due to the 
limited size of the reservoir.  
    The bathtub diagram may be used for just two periods as in Figures 3.3 
and 3.4, but it may also be used within a multiperiod analysis for two 
consecutive periods. The two-period nature of the dynamics of the system 
makes it possible to illustrate a sequence of optimal solutions using two-
period bathtub diagrams. Connecting figures like Figures 3.3 and 3.4, we 
must remember that the inflow AC in the first period now also contains 
what is stored in the period preceding the one we are studying. In the 
second period we will now see what is left for the next period.  

The generation of price changes 

We return to the multiperiod problem for a comprehensive investigation of 
possible developments of the optimal price over time. The first-order 
conditions (3.6) are the key to see feasible price patterns. For an interior 
solution we have pt(et

H) = λt and λt = λt+1. As long as the reservoir keeps 
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within full or empty the price will remain constant. There may be several 
periods with constant but different prices. Let Tj be a set of consecutive 
periods with the same price pj, and let there be J such subsets sorted along 
the time axis. The change of price level between sets may then be 
generated in two typical ways. If the last period in set Tj-1 has a binding 
upper reservoir, all the period in set Tj will have a higher price; pj-1 < pj. 
This is seen from the second condition in (3.6) holding with equality with 
a positive shadow price on the upper constraint. If the reservoir of last 
period in the set Tj becomes empty then the price level in the set Tj+1 
becomes lower; pj > pj+1. This is seen from the second condition typically 
holding with inequality (the reservoir is empty) in (3.6) with a zero shadow 
price on the upper constraint. The events of binding upper reservoir and 
emptying the reservoir may be changed around, and both types of events 
may take place at each end of a subset of periods. 

The terminal period 

Let us spell out a feasible development of the price in more detail. 
According to Bellman’s principle for solving dynamic programming 
problems with discrete time, we start searching for the optimal solution by 
solving the optimisation problem for the last period and then work our way 
successively backwards toward the first period.  
    Although our problem (3.3) is not set up in the standard way for a 
dynamic programming problem, the recursive structure of the first-order 
condition for the shadow prices in (3.6) implies that we can solve for the 
structure of prices and shadow prices by starting with the last period and 
then work our way backwards. The optimality conditions, using assump-
tion (3.6) for the end period T, are: 
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 (3.14)

    Our horizon ends at T, so the water value for the period T + 1 does not 
exist (i.e., is set to zero). For period T we have two possibilities as to the 
utilisation of the water in the reservoir: either it is emptied, RT = 0, or some 
water is remaining, RT > 0. Since the water has no value from T + 1 on, the 
latter situation can be optimal only if the marginal utility of electricity 
becomes zero before the bottom of the reservoir is reached. We will adopt 
the alternative that the marginal utilities of electricity remains positive to 
the last drop even if a maximal storage of water is transferred to the 
terminal period: 
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1( max ) ( ) 0T T T T Tp w R p w R     (3.15)

    This means that we will have a situation of scarcity in the last period T 
with pT(eT

H) = λT > 0. Scarcity in an economic sense means that there is a 
positive willingness to pay for one more unit at the margin (i.e., a small 
decrease in price would have induced more consumption if more of the 
good was available). In our situation we also get physical scarcity in the 
sense that all available water is used up. Scarcity gives economic value to 
the water in the last period. Since we cannot have a situation of physical 
scarcity at the same time as the upper limit on the reservoir is reached, the 
shadow price γT on the upper constraint is zero [follows from the last 
complementary slackness condition in (3.6)]. The second relation in (3.14) 
then implies λT ≥ 0. This does not give us any new information as to the 
water value in period T (the shadow price may be zero although the 
expression in the water storage constraint is zero, as is our situation in 
period T), but by our assumption (3.14) of no satiation in period T the 
value is positive.  
    Moving backwards to period T – 1 the shadow-price equation from (3.6) 
reads 

1 1 10 ( 0 for 0)T T T TR           (3.16)

    If we, quite reasonably in a multiperiod setting, disregard the possibility 
that a full reservoir will be handed over to the terminal period, then γT-1 
will be zero. (In a two-period model it may be more probable that a full 
reservoir is handed over to period 2, as shown in Figure 3.4). If we assume 
that the reservoir will not be emptied in period T – 1 then the equation 
holds with equality, and we have that the shadow price on water in period 
T – 1 will be equal to the shadow price in the terminal period T. 
    The situation of scarcity in one period (period 2) is already illustrated in 
Figure 3.3. Relabeling period 1 and 2 period T and T – 1 there is scarcity in 
period T. Since the reservoir level in period T – 1 is by assumption at a 
level between zero and the upper limit, the price and the water values will 
be the same for period T and T – 1. Scarcity in period T sets the price for 
both periods. The water available for period T – 1, AC, is now made up of 
the reservoir inherited from period T – 2, RT-2, and the inflow in period  
T – 1. In Figure 3.3, MC = RT-1 is transferred to the terminal period T, 
where MD, consisting of the transfer and the inflow in period T, is 
consumed.  
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Neither overflow nor scarcity 

Moving backwards in time we will assume that after period T – 1 we have 
periods with neither threat of overflow nor emptying of reservoirs. From 
the necessary conditions (3.6) we then know that the terminal period price 
pT will prevail for all these periods. The way such periods can be 
illustrated is shown in Figure 3.5. AC is made up of inflows in period u 
plus what is remaining in the reservoir from period u – 1. CD is the inflow 
in period u + 1 and BC is the reservoir capacity. Using sufficiently fine 
time resolution, the storage capacity may be far greater than the 
consumption for two consecutive periods. The yearly storage capacity of 
the Norwegian hydro system of two thirds of average inflow means that 
production of electricity in, e.g., two consecutive average weeks may be 
much less in each period than the reservoir capacity. Therefore it will be 
many periods in which the capacity indicated by BC in Figure 3.5 will 
have B to the left of the bathtub wall. This situation implies that it is 
impossible to run into a period with overflow or threat of overflow. With 
the price level pT given from the future this will be the price both in period 
u and u + 1. The amount of water consumed in period u is AM and found 
by the intersection of the period u demand curve and the horizontal price 
line pT. The amount indicated by MC will be saved in period u for use in 
period u + 1. In period u + 1 the inflow CD is used up and also an 
additional amount, as found by the intersection of the demand curve for 
period u + 1 and the price line pT as indicated in Figure 3.5, implying that  
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

 

 
Figure 3.5. Neither threat of overflow nor scarcity. 

M D C A H
ue  1

H
ue   

H
ue  1

H
ue 

( )H
u up e  

1 1( )H
u up e   

Period u+1 Period u 

λu+1=pT 

Water to period u+2 

pu+1 

λu=pT 

min
Tp  

pu 

B 



The generation of price changes      51 

the reservoir is somewhat run down during period u + 1. The amount of 
water saved for period u + 2 is indicated in the figure as the gap between 
consumption in period u and u + 1. If the demand curve for period u + 1 is 
shifted to the right as indicated by the broken demand curve the 
consumption would be less than the inflow CD and the reservoir would be 
built up during period u + 1. 
    The optimal price cannot be lower than the price indicated by the 
intersection of the demand curves by the dotted horizontal line pT

min for the 
figure to function. At this price level all available water will be used up in 
the two periods. The equilibrium price must be lower than the lowest 
choke price for period u in the figure, since we have assumed that there is 
positive consumption of electricity in all periods. 

Scarcity in a period other than the terminal 

We will now investigate what happens if the reservoir is emptied in other 
periods than the last one, i.e., we study a period t + 1 < u, and assume that 
the reservoir is emptied in that period, and furthermore assume that the 
price has been constant equal to pT since the terminal period. Using 
conditions (3.6) and (3.7) we have for period t + 1: 
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 (3.17)

The link with our optimal path story is that λt+2 = λT = pT. By assumption 
there is no threat of overflow in period t + 1 implying γt+1 = 0. Further-
more, by assumption we have that Rt+1 = 0. We assume strictly positive 
prices for all periods. Combining conditions and assumptions yields: 
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 (3.18)

The typical situation would be to have strict inequality in the two 
condition: λt+1 > λT and pt+1 > pT. We can use Figure 3.5 as an illustration 
(setting t = u) assuming now that 0 < pT < pT

min. This price from the future 
is too low to influence the consumption of electricity in periods t and t + 
1.The water allocation on the two periods is found by the intersection of 
the demand curves indicated by a vertical dotted line down from the 
intersection point to the bathtub floor. The price will be the same in the 
two periods as indicated by the dotted horizontal line through the inter-
section point of the two demand curves, actually the price pT

min. All the 
available water will be used up in period t + 1 since the water value in 
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period t + 1 is higher than pT. We note that the price in periods before this 
second scarcity period t + 1 will be higher than the price during the periods 
with neither overflow nor scarcity for the periods t + 2, …, T, assuming 
neither overflow nor scarcity going backwards in time from t + 1. 

Threat of overflow  

1
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 (3.19)

The link with our optimal path story is that λs+1 = λt (= λt+1) > 0 where  
t > s + 2. We have by assumption that Rs, es

H > 0. These conditions yield: 
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 (3.20)

The second equality in (3.19) follows from the Kuhn – Tucker condition in 
(3.6) when there is a positive amount of water in the reservoir. [The 
shadow price on water λs is zero if there is actual overflow; this follows 
from the third condition (complementary slackness) in (3.6).] If there is no 
spillage, as in our case with maximal manoeuvrability and the water is just 
maintained at the maximal level, the water value λs will typically be 
positive. In any case the water value λs is typically smaller than the water 
value λs+1 for the next period because the shadow price on the upper 
reservoir constraint is typically positive.  
    To illustrate the possibility of overflow the total available water in a 
period must be greater than the reservoir storage capacity. In Figure 3.6 
overflow threatens in period s if the price from period t + 1 is followed. 
The price for period s has to be lowered in order to avoid spilling, and the 
maximal reservoir filling BC is then saved to the next period s + 1, and AB 
is consumed in period s. In period s + 1 the price from the future, pt+1, 
prevails, and somewhat more than the inflow CD is consumed, as indicated 
in the figure. This implies that the reservoir is run down in period s + 1 and 
somewhat less water than the full reservoir is left for period s + 2, as 
indicated in the figure.  
 

The last case we will investigate is threat of overflow (reservoir completely 
filled but not running over) for a period s < t, where t + 1 is the first 
scarcity period after s going forward in time. Using condition (3.6) we 
have the general conditions for period s: 
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X  
Figure 3.6. Threat of overflow. 

    In period s the shadow price on the reservoir constraint is the difference 
between the price in period s and the price in period s + 1 that is equal to 
the price pt+1 given from the future. We may notice that for threat of 
overflow to occur in period s the price from the future cannot be lower 
than the price in period s necessary to generate enough demand, AB, to 
avoid spilling. A higher price from the future will still result in the same 
price for period s. This means that when we have an episode of threat of 
overflow the price from the future has no impact on the equilibrium price 
in the period with the threat of overflow. The link with future prices is 
broken. The management policy for periods in between the start and the 
period with threat of overflow does not have to take into consideration 
events beyond the period with the threat of overflow. However, the period 
with threat of overflow is endogenously determined in the planning 
problem, so the total problem has to be solved simultaneously. 
    There can be two consecutive periods with threat of overflow. If we 
consider the price from the future to be pt+1

max indicated in the figure then 
the inflow in period s + 1 is just used up and the maximal reservoir filling 
is passed on to period s + 2. For higher future price than this level the price 
in period s + 1 cannot become higher without causing overflow. We would 
then also have a threat of overflow in period s + 1 and a difference 
between the price in period s + 2 and the price pt+1 from the future equal to 
the shadow price on the reservoir capacity constraint in period s + 1. Each 
period of threat of overflow will have its own price, thus a series of threat 
of overflow periods can generate a sequence of price changes. 
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Output constraints 

The load-duration curve shown in Figure 1.3 in Chapter 1 for Norway 
illustrates that power capacity may become a limiting factor even at an 
aggregated level. In 2012 the hour with the highest demand left a 
comfortable reserve margin of 22%. However, the margin has been lower. 
When the transmission system is not explicitly modelled and power and 
energy are not distinguished, then an upper constraint on the production 
during one period covers all these events at the aggregated level. We will 
call the constraint the production constraint in the following. It is stated as: 

, 1,..,H H
te e t T   (3.21)

where He is without a time subscript since it is treated as a technical 
constraint. Sufficient power capacity means that 

max , 1,..,H
tx e t T   (3.22)

where xt
max is the highest power demand, found close to the left axis of the 

load-duration curve in Figure 1.3 in Chapter 1. (We continue measuring 
the variables in (3.22) in MWh below.) 
    Inserting the production constraint (3.21) into the social planning 
problem (3.3) yields: 
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(3.23)

The Lagrangian for the problem is: 
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Endogenous variables are et
H, Rt, λt, γt, ρt (t = 1,…,T), and there are 5T 

variables in all. The necessary first-order conditions are:  
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(3.25)

There are 2T conditions in (3.25) and 3T more equations in (3.24), 5T in 
all. The manoeuvring of the system due to the production constraint now 
becomes an issue. Without the production constraint the system is 
perfectly manoeuvrable. But if there is too much inflow to the reservoir in 
a situation with a high level of reservoir filling, the production constraint 
may prevent enough water to be processed to avoid overflow. If the 
production constraint is effective then the water value is less than the 
optimal price according to the first condition in (3.25). The condition holds 
with equality, and constraining the processing of water implies that less is 
used than optimal without the constraint. The price will therefore have to 
rise. This is illustrated in Figure 3.7 for period m that is now assumed to be 
the high-demand period. The production constraint is dimensioned in such 
a way that the optimal amount of water AM without the constraint in 
period m cannot be processed, but a lower amount AB’. The amount B’D 
is transferred to period m + 1. 
    Regarding the two periods in Figure 3.7 as a window for periods m and 
m + 1 of a solution for T periods the price from the future may be pm+2 
analogous to pt+1 in Figure 3.6. The consumption in period m + 1 will then 
be M’D and the amount B’M’ transferred to period m + 2. By backwards 
induction and our general assumption of non-satiation of consumption, and 
specific assumption that the production constraint is not binding in period 
m + 1, we have that pm+1(em+1

H) = λm+1> 0. In period m we have assumed 
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XX  

 
Figure 3.7. Production constraint binding in period m. 

that the production constraint becomes binding, i.e., ρm ≥ 0. The water-
value dynamics does not involve this shadow price explicitly and yields λm 
= λm+1 because the second condition in (3.25) holds with equality. The 
price in period m will then typically become higher than the water value; 
pm = λm + ρm . Then the price in period m will become higher than the price 
for the future due to the binding output constraint. Moving backwards to 
period m – 1 we assume that the reservoir level has been between empty 
and full so the water values remain the same. Then the price in period m – 1 
will be the same again as the price pm+2 from the future. 

The illustration shows us an important qualitative feature of the solution 
regarding prices and water values. Because of the production constraint 
there is now a potential difference between shadow value of stored water 
and value of processed water. A binding production constraint leads to a 
difference between the value of water as stored water and as water being 
processed. The shadow-price dynamics in (3.25) only involve shadow 
prices related to the value of stored water, while the optimal price may 
now change between periods owing to the production constraint becoming 
binding and the condition of equality between supply and demand. One 
more cause of differences between the optimal prices has been identified. 

There are two situations that can lead to the production constraint 
becoming binding: preventing overflow and trying to satisfy demand in a 
high demand period. The level of total demand will in general influence 
positively the occurrence of a binding production constraint. This may 
happen in peak load periods and be an additional reason for high prices. 
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The manoeuvrability of the system now depends on the minimum 
number of periods, to, it takes to empty the reservoir; 

min such thato Ht t t e R  , (3.26)

Preventing overflow has to be planned for several periods before the 
actual threat of overflow if inflows are higher than the production capacity 
for some periods before the threat of overflow. The management task is to 
create enough space in the reservoir to contain the inflows without spilling 
water. Manoeuvrability, meaning the ability to run down the reservoir level, 
is present only for periods when production can exceed inflow: et

H > wt.  
A certain combination of inflow patterns and production restrictions may 
lead to a locking-in of water. This may happen if overflow is physically 
inevitable, as is the case if, starting with an empty reservoir; the inflows 
are such that the reservoir flows over in a later period although full 
production capacity has been used in all periods. Let the starting period be 
t' and the first overflow period be t. The formal definition of a system 
lock-in situation is:  
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Processing the maximal amount of water in all periods is not enough to 
prevent overflow. 

Run-of-the-river electricity generation 

In most hydro systems power is also generated without having reservoirs 
that are relevant for the time unit of the analysis. This may be rivers, where 
what flows in must be produced continuously or else the water is lost. In 
Norway power from plants without storage possibilities constitutes about 
30% of yearly production. We can distinguish between unregulated inflows 
and regulated inflows. The former inflows will mainly generate electricity 
by run-of-the-river hydro plants. However, some unregulated water is also 
processed by plants with reservoirs, but the water is flowing down to the 
generators directly and not via any reservoir. We will for convenience call 
the units of unregulated hydropower for run-of-the-river plants.  

where to and t are integers. The higher this number is the less manoeuvrability. 
If the most favourable price regime lasts a number of periods less than to, 
either a full reservoir does not have to be accumulated before the high 
price periods, or it will be some water left in the reservoir after the high 
price regime.  
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The production function for such a plant is the same as for a hydropower 
plant with a reservoir, i.e. the production function (1.2) is valid. But now 
the release of water is not open to choice (except to reduce the release), but 
given by the inflow: 

1R R
t te w

a
  (3.28a)

Here et
R is the electricity produced in period t by run-of-the-river, wt

R is the 
unregulated inflow, and a is the fabrication coefficient of the run-of-the-
river plant. The coefficient is typically much lower than the coefficient for 
plants with reservoirs. The output is restricted by the installed capacity.  
    The distribution of the types of inflow is illustrated in Figure 3.8. 
Contribution from run-of-the-river plants is smallest during winter month 
and at its largest in the peak filling month of reservoirs. 

 

The amount of inflow that can be utilised depends on the installed 
power capacity. If the inflow is higher than what the turbine capacity can 
process the excess water will flow past the turbines. The water that can be 
utilised has the variation [0, ]R R

tw wÎ where the maximal inflow corresponds 
to utilising all the installed power capacity. We get a corresponding upper  
  

 
 
 

Figure 3.8. Estimated unregulated and regulated hydropower 2010. 
Source: NOU 2012:9, p.27. 
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restriction on the energy production of a run-of-the-river plant; .Re Another 
expression for the production function that will be useful can then use this 
limit: 

, [0,1]R R R R
t t te a e a   (3.28b)

The coefficient at
R is the share of the period the capacity Re (measured in 

MWh) is fully utilised and is called the capacity coefficient.  
We will assume that the river production function holds with equality 

and that the electricity generated by the river power is not subject to 
optimisation, but taken as exogenously given. Furthermore, we assume 
zero operating costs depending on current output. 

The social planning problem including run-of-the-river power 
generation is: 
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(3.29) 

Energy is now supplied both based on using reservoirs and run-of-the-river 
so the energy balance is entered as a new constraint (the first one in 
(3.29)). The energy from run-of-the-river plants only appear in the energy 
balance equation. [For ease of notation we do not indicate the upper restric-
tion on the run-of-the river energy production discussed in connection with 
(3.29) above.]  
    Since the energy balance has to hold with equality we can for simplicity 
substitute for consumption xt in the optimisation problem, yielding the  
following Lagrangian: 
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    The necessary first-order conditions are exactly of the same form as 
(3.6) for problem (3.3). Our standard assumption is that electricity is 
produced every period (but now it may be more realistic that demand for 
electricity may be satiated if river flow are excessive). If hydropower from 
reservoirs is used, then the price is equal to the water value. If we assume 
that hydro from reservoirs is produced every period, then demand for 
electricity is not satiated and we have the same situation as described by 
(3.7) with (et

H + et
R ) as the argument in the demand function. 

This may be illustrated in a bathtub diagram by extending the “walls” 
with the run-of-the-river and shifting the demand schedules accordingly, as 
shown in Figure 3.9, which is an adaptation of Figure 3.3, in the case of a 
river flow in both periods. The river flow is added to the controllable 
hydro to the left and to the right of the old walls of the bathtub drawn as 
broken vertical lines. The demand curve for period t now has to be anchored 
on the river-extended wall marked with the solid vertical line to the left  
of the broken vertical line from A, and the demand curve for period t + 1 is 

 
X 

     
Figure 3.9. Run-of-the-river. 

Controllable hydro only indicated by dotted lines. 
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anchored to the vertical line to the right of D. There are horizontal shifts of 
the demand curves (from the broken lines to the solid ones) equal to the 
river flow for both periods. The river flow in period t + 1 is smaller than 
the river flow in period t. The part of the demands satisfied using 
controllable hydro are the residual demand curves. Neither before nor after 
adding the river flows is a maximal storage in period t needed in the 
example. The river flow in period t + 1 is smaller than in period t, but the 
amount of stored water transferred to period t + 1 in order to keep water 
values equal is somewhat smaller, resulting in a greater increase in 
consumption in period t than in period t + 1. This can be seen by the slight 
shift to the right of point M (from storable hydro only to storable plus river 
flow) on the horizontal axis showing the distribution on the two periods. 
This is due to the fact that the demand curve for period t is more elastic 
than for period t + 1. This means that when the price decreases the 
consumption will increase relatively more in period t. The river flows add 
to the total production so the common price for the two periods has to 
decrease. Other configurations are easy to accommodate in the bathtub 
diagram. 
    Uncontrollable river flows may cause extra variation in prices 
downwards in periods where these flows are substantial and demand low. 
Recalling the first-order condition for electricity produced by regulated 
hydropower we have: 
XXXXXXXXXXXXXXXXXXXXXXX 

( ) 0 ( 0 if 0), 1,..,H R H
t t t t tp e e e t T       (3.31)

Having two types of hydropower opens up for a new possibility of not 
using power based on reservoirs for a period, but only relying on run-of-
the-river power. For controllable hydropower not to be used, i.e., et

H = 0, 
we must have: 

( ) 0, 1,..,R
t t tp e t T    (3.32)

If the water value is higher than the optimal price we get using only 
unregulated flows, then storable water is saved for later periods. A crucial 
condition for this to be possible is that there is room for storing all the 
inflow in the period. The current price is determined by inserting the actual 
run-of-the-river electricity production based on the river flow in the 
demand function; pt = pt (et

R). The price may even be driven down to zero.  
    We can illustrate this occurrence in Figure 3.10. The hydro bathtub for 
hydropower with reservoirs for two periods t and t + 1 is indicated by the 
bottom line from A to D, and by walls erected from these points shown by 
broken lines. Period t price is measured along the left-hand wall of the 
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bathtub, and period t + 1 price along the right- hand wall. The water 
resource available for period t, made up of water inherited from the period 
before period t and the inflow during period t, is AC, and the inflow in 
period t + 1 is CD. The storage capacity for water is given by BC, and the 
walls erected from these two points illustrate the reservoir capacity. Note 
that the storage capacity is greater than the available water in period t, and 
the vertical line marking the left wall of the reservoir erected from B is 
therefore to the left of the hydro bathtub wall erected from A.  
    For period t the production possibilities are extended to the left of the 
wall of the reservoir-based hydro bathtub with the amount of run-of-the-
river generation A’A in period t, and to the right with DD’ for period t + 1. 
We have assumed that there is considerably more run-of-the-river energy 
available in period t than in period t + 1. 
    The demand curve for electricity for period t is anchored on the left-
hand total water resource wall erected from point A’, and electricity 
consumption is measured from left to right. The demand curve for period t 
+ 1 is anchored on the right-hand total water resource wall erected from 
point D’ and electricity consumption is measured from right to left. Both 
de- mand curves are drawn linear for ease of illustration. Period t is a low-
demand period and period t + 1 is a high-demand period.  

The two-period window in Figure 3.10 is extended to a multi-period 
setting with one more period at each end by entering prices for period t – 1 
and t + 2 assumed to be the optimal prices. The price in period t + 2 is  
 

Figure 3.10. No use of reservoirs in period t. 
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coming from the future (this is how Bellman’s backward induction works) 
and is assumed to be part of a set of periods Tj with equal prices. 
    We assume stored water to be used in period t – 1, t + 1 and t + 2, but 
not in period t. This may be part of an optimal solution because if a 
constant price level is to be realised including the period with the abundant 
run-of-the-river resource this may not be feasible: the abundant river flow 
may imply so low price and so much use of water over all the periods in 
question that maximal filling of the reservoir at the optimal future period is 
not possible. The price level in the period with abundant river flow will 
then be determined independently of the price level for the other periods 
within the set of periods we are studying. From (3.6) we have the 
connection between the water values in period t – 1 and t; 1t t   . Further-
more, we have ( )R

t t tp e  and 1t t   , implying that 1 1t t tp p p   . As a 
typical case the price with abundant river flow is lower than the price in 
the period before and in the period after, and these latter prices are equal. 
The optimal price in period t must balance demand and available supply 
from run-of-the-river, illustrated by the intersection of the period t demand 
curve and the reservoir-based hydro wall erected from point A.  

The multi-period nature of Figure 3.10 is also shown by the transfer of 
water between periods. All available reservoir water AC in period t is 
transferred to period t + 1, while the amount AM is transferred from period 
t + 1 to t + 2. We have a “battery” effect of saving water in the period with 
abundant run-of-the-river power, and then using this water to the benefit of 
reducing the price in the other periods of the two distinct sub-periods 
encompassing t – 1 and t + 1 with the same price.  

Summing up causes of price variability of a hydro system 

Running out of water and threat of overflow are the basic price-
determining events. In our model formulation (3.3) this is captured by 
shadow prices on constraints becoming positive. When a constraint on 
output capacity is introduced as in problem (3.23) there may be a price 
increase for the period with a binding constraint. Introducing use of 
unregulated water by run-of-the-river plants we may have a price reduction 
in periods when it is not optimal to use water stored in reservoirs.  
    A possible sequence of events is set out in Table 3.2 corresponding to 
the cases we have investigated above. The corresponding optimality 
conditions are entered. For simplicity a yearly cycle is assumed. The 
starting period is a late spring period with the lowest reservoir level and 
the start of the filling period for the reservoirs. The terminal period takes 
us back to spring again.  
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    Starting backwards the terminal period T is a scarcity period by 
assumption. Then there follows some periods (t = u + 2,…,T – 1) with 
neither scarcity nor threat of overflow episodes covered by Figure 3.5. The 
price remains constant equal to 3. Then a scarcity period (u + 1) is 
encountered and the price will jump up in this period, and continue to stay 
at this level 2 when moving backwards in time provided we again have 
periods of neither scarcity or threat of overflow. A period m is entered 
within this set of periods with the constraint on output binding. This period 
gets a higher price than 2, but the water value remains the same. If several 
scarcity periods occur without being interrupted by periods of threat of 
overflow, then the price is highest before the first incident of physical 
scarcity and the price is reduced successively each time a scarcity period is 
passed. 
    Continuing backwards in time a period s with threat of overflow is 
entered. The history after a period with threat of overflow does not count 
for the price formation in period leading up to the threat of overflow 
incident. Future influences on prices today are cancelled out by an incident 
of threat of overflow. Such an episode is illustrated in Figure 3.6 in period 
s some periods after the second scarcity episode in period t + 1 (moving 
backwards). The price level of the scarcity period threatens with overflow, 
and to avoid this, the price for period s has to be lowered and equal the 
water value 1. The shadow price on the upper capacity constraint of the 
reservoir is switched on. If the periods, going backwards on the time axis, 
again return to neither scarcity nor threat of overflow this lower price 
remains the price until the starting period. However, we have entered an 
episode in period v where run-of-the-river power is so abundant as to result 
in the reservoir not being used in this period. The price will therefore 
decrease in this period, but the water value remains the same, 1.3  
    If the optimal path of hydropower production and reservoir levels 
involves an interwoven pattern of scarcity periods and periods with threat 
of overflow, the price may cycle from higher values in periods after a 
threat of overflow episode to the next scarcity period and to a lower price 
after a scarcity period and until the next threat of overflow period. After a 
threat of overflow episode the connection to future prices going forward in  
 

                                                      
3 As stated in connection with the interpretation of the shadow prices used for 

setting up the Lagrangian function for the optimisation problem (3.3) the water 
value for period v reflects the increase in the objective function of a marginal 
increase in the reservoir in period v. But now the extra water is not used in period 
v, but for instance in the period after v when it is optimal to draw water from the 
reservoir again. 
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Table 3.2. Possible optimal price regimes. 
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time is completely broken. A succession of scarcity periods imply a 
building up of the price, being highest for the first scarcity period coming 
from the left on the time axis and then falling off after each scarcity period 
is passed until the last one. In this way our simple model may be able to 
generate a changing price pattern more in correspondence with what we 
observe.  
    The typical relation at the aggregate level between inflow and 
production in Norway was shown in Figure 1.4 in Chapter 1. From a 
management point of view, the acute problems arise at the end of the 
drawdown of the winter period and the filling up again during snow 
melting. In a few weeks the situation may change quickly from scarcity to 
threat of overflow for some hydropower plants. Unregulated inflows are 
also maximal in the spring/summer with melting of snow. There may also 
be such episodes due to autumn rain as seen as smaller inflow peaks in 
Figure 1.4. However, at an aggregate level a typical yearly inflow cycle 
may generate only two major changes in the price regime. The price 
regimes portrayed in Table 3.2 is indicated for a yearly cycle and 
corresponding to start sometime during spring with a low reservoir level 
and then first facing threat of overflow at the peak of snow melting. There 
may be a second period of threat of overflow during autumn rains not 
indicated in the figure. The scarcity period may be in the next spring. 
Reservoirs will be drawn down during the winter and finally there may be 
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no reason to hold back in early spring when temperature has risen and 
thawing has set in, but just to use up the water. The demand after the 
scarcity period must then be less than the immediate inflow (since the 
reservoir has been emptied) at the price charged, which is set reflecting  
the scarcity in the terminal period when the final emptying of the reservoir 
takes place. This price may be low, and even lower than the price we 
started with one year earlier. But this situation is a little artificial and 
created by our assumption of not looking beyond the planning horizon to 
the next snow melting. If the planning period is set to, e.g., two years the 
first spring encountered may still end with a scarcity period because room 
must be made available in the reservoirs for the coming snow melting. The 
price after the scarcity period will then prevail until the period with threat 
of overflow. 
    At the aggregated level the production constraint may become binding 
in high-demand periods. This will lead to an extra increase in the price in 
the high-demand periods. With reference to Table 3.2 such an occurrence 
could be placed within the time interval before the first scarcity period. 
    Variability in electricity from river flows may explain price variations 
both when the reservoir constraint is not binding and when either the 
regulated hydro system run up against constraints, or when the supply 
from the unregulated sources are so abundant that no hydropower is to be 
used, like night time during periods with snow melting or heavy rainfall. 
Unregulated power may then especially explain short-term variation in 
prices hour by hour. Unregulated electricity will be used before stored 
water is produced, but running up against upper limits on reservoirs 
necessitates a higher current production and lower prices, thus contributing 
to price variation. 

Determining quantities 

In the previous section we only studied possible solutions for the prices. 
Addressing the determination of quantities it should, of course, be 
recognised that a solution is simultaneous in prices and quantities. We 
focus on quantities in this section only in order to obtain qualitative 
characterisations. As a simplifying assumption we will disregard run-of-
the-river power. 
    The development of the water in the reservoirs is keenly watched by the 
participants in the electricity market. The weekly developments of the 
aggregated reservoir level relative to the maximal level for Norway for 
2005 together with the minimum and maximum relative levels for the 
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period 1990-2005 are illustrated in Figure 3.11. The relative level changed 
from the lowest of 32% in week 16 (last week of April) to 92% in week 45 
(second week of November). For the last weeks of the year the reservoir 
levels follow closely the maximum, and for all weeks the relative reservoir 
levels were comfortably above the minimum average for 1990-2005. The 
problematic period of scarcity is late April spring weeks with a minimum 
filling for the 15-year period of 17%. From August to November it is 
normal that the reservoirs fill up again to meet the winter demand, so in 
this period the problem is to manage without overflow. It will turn out 
below that the reservoir fillings have a crucial role to play on the quantity 
side. 
    Following again the principle of backwards induction we have that the 
solution for the production (production is always equal to consumption; for 
ease we will talk about production) in the terminal period is equal to the 
available water. Since the terminal value of the reservoir is free in the 
model (3.3) we assume that the reservoir will be emptied. The assumption 
of no satiation of demand is maintained. The following conditional 
solutions for production and prices are then obtained: 
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Figure 3.11. The weakly relative filling of the reservoirs. Norway year 2005.  

Source: Nord Pool  
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 (3.33)

The solutions are conditional on the transfer of reservoir 1
ˆ

TR  from period 
T – 1 to T. 
    Figure 3.12 shows that the range of water in the reservoir delivered from 
period T – 1 is 1(0, max ) (0, )TR R  , resulting in a range of ( ,T Tw w R ) 
for electricity production, and (OB, OA) for the shadow price T on stored 
water. The optimal solutions (3.32) for electricity and shadow price on 
water depend on the amount of stored water transferred from period T – 1. 
The dotted lines indicate a possible (feasible) optimal solution. 

In period T – 1, ,H
T Te   are known given 1

ˆ
TR  . The discussion of 

possible outcomes will be based on the events portrayed in Table 3.2. The 
reservoir level is then assumed to take an interior value for period T – 1. 
This assumption implies, using (3.6): 

1 10T T T       (3.34)
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Figure 3.12. Backwards induction. Optimality in period T. 
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Figure 3.13 illustrates a feasible optimal solution for period T – 1 
contingent upon the possible solution for period T. The situation in the  
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Transferring the maximal amount to the next period yields the lowest 
production level in a period, and transferring zero yields the highest 
possible production level. Concerning the lower limit for electricity 
production in period t it should be noted that since electricity is non-
negative, we have to exclude the possibility of a negative value if the 
available water is less than the maximal reservoir amount. It may happen 
in general in many periods that the available water is less than the reservoir 
limit, since the reservoir limit is without a period subscript and the same 
for all periods, and this limit will become relatively larger and larger 
compared with inflows as the period length is decreased. A reservoir limit 
of, e.g., 70% of the normal yearly inflow means that the inflow for an 
average week is less than 3% of the reservoir capacity, or put another way: 
for an average week the reservoir level at the end of the previous week 

 
X 

Figure 3.13. Feasible solution for period T – 1 
contingent on a solution for period T. 
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figure is such that more water is transferred from period T – 2 to T – 1 than 
from period T – 1 to period T, i.e., consumption exceeds the inflow and the 
reservoir is run down in period T – 1. A building up of the reservoir in 
period T – 1 would imply that consumption is less than the inflow, and that 
more water is transferred to period T than was received from the end of 
period T – 2. The feasible solutions for the production levels will in 
general be in the interval  
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    The shadow price on water for period T – 1, determined by the water 
shadow price for period T, determines the electricity production via the 
demand function for period T – 1: 

1 1 1

1 1 1
1 1 1 1 1 1
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 (3.36)

where pT-1
-1 is the inverse demand function. When the electricity 

production in period T – 1 is determined we also have the solution for the 
transfer of water from period T – 2 to period T – 1 as a function of the 
transfer from period T – 1 to T, using the water accumulation equation and 
inserting (3.36): 

1
2 1 1 1 1 1 1 1

ˆ ˆ ˆ( ( ))T T T T T T T T T TR R w e R w p p R w
               (3.37)

    We can go backwards in this way right to period t + 1 substituting 
successively from the equation of motion of the reservoir level. The 
solution for production in each period under the assumption ˆ0 iR R    
(i = t + 2,…,T – 1) as a function on the chosen level of reservoir filling at 
the end of period T – 1 is: 

1 1 1
1

ˆ( ) ( ) ( ( )), 2,.., 1,H
i i i i T i T T Te p p p p R w i t T T   

        (3.38)

    Concerning the reservoir level handed over to the next period the 
systematic substitution of the solution for the previous reservoir level as in 
(3.37) can be expressed in a general way by summing up available water in 
all the periods involved and the use of water: 

1
2 2
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T T

H
t i i

i t i t

R w e
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    (3.39)

The level of the reservoir, 1
ˆ

tR  , in period t + 1 is chosen from the feasible 
values. But assuming that there is a period of scarcity in t + 1 we know that 
nothing will be transferred to period t + 2, i.e., 1

ˆ 0tR   . We also know that 

must represent a filling of more than 97% for more than the reservoir 
content to be available. When the available water in a period exceeds the 
reservoir limit we cannot have a corner solution of transferring the total 
amount available to the next period, but must have an interior solution or 
the corner solution of transferring zero. When having the maximal transfer 
from a period to the next as a corner solution we will therefore have the 
situation that the available water in a period receiving a full reservoir 
necessarily exceeds the reservoir limit if the realised inflow is positive. 
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RT = 0. Inserting this information into (3.39) and using the conditional 
solution (3.38) for production levels for the periods t + 2,…,T – 1,T yields: 
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(3.40)

The solution (3.38) is used deriving the last expression above. This 
equation is only a function of the unknown level of transfer 1

ˆ
TR   from 

period T – 1 to T and involves all inflows and all demand functions for the 
periods in question. Once we have this solution all the period production 
levels can be calculated from (3.38). 
    Moving backwards in time from t + 1 we have again periods with 
neither scarcity nor threat of overflow until period s, thus repeating the 
type of solutions above, but now with the transfer of water from period t to 
t + 1 as unknown: 
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Proceeding according to (3.38) updating (3.39) yields: 
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Since we have assumed a threat of overflow in period s we know the 
transfer from period s to s + 1 is the maximal. Equation (3.40) can then be 
written: 
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In this equation the only unknown is ˆ
tR so we can solve for this reservoir 

level. The solutions for the other reservoir levels for the periods s + 1,...,t  
can then be found as above updating (3.40).4 
    From period s – 1 backwards to the starting period we have again 
neither scarcity nor threat of overflow. The strategic unknown is now the 
                                                      

4 In the case of having a period m where output is constrained we know the 
level of the period price just using the demand function with the constrained 
output as argument. 
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reservoir transfer from period s – 1 to s. Repeating the reasoning above the 
solution for this level is found by solving for 1

ˆ
sR  from the following 

equation, remembering that Ro is known: 
1 1
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    The key role of the level of the reservoirs through time for backward 
induction may be one reason for the interest in the profession in diagrams 
for reservoir developments. Another reason may be more practical: it is 
change in reservoir levels or reaching certain levels that trigger actions as 
to amounts of release of water. 



Chapter 4. Multiple Producers 

Model with reservoir constraints 

The reader may feel that assuming one hydro plant with one reservoir is 
limiting the realism of the model since there are over 700 hydropower 
plants in Norway, and a majority of them have reservoirs, 830 in all. We 
will therefore study the implications of several producers for the optimal 
allocation of water. We maintain the same assumptions as in Chapter 3 and 
regard only the upper constraint on the reservoirs in this section, but 
introduce more restrictions subsequently. Each plant is assigned one 
reservoir. A transmission system is not specified, and the plants operate 
independently, i.e., there are no “hydraulic couplings” as there will be 
between plants along the same river system. We will return to the former 
issue in Chapter 10 and the latter issue in this chapter. An important 
consequence of disregarding power, production or transmission constraints 
for any plant is that a plant can empty its reservoir during a single period. 
This can be defined as perfect manoeuvrability of the reservoirs. But we do 
not assume that inflows can be channelled to any reservoir. The inflows 
are reservoir or plant specific. The plants have in general different 
fabrication coefficients in their production functions (1.2) in Chapter 1, 
and the water-accumulation equation of the type (1.4) for each plant is 
deflated by the plant-specific fabrication coefficient, assuming no waste of 
water in production. We express formally all variables in MWh, although 
we will talk about water. 
    The planning problem is the same as (3.3) in Chapter 3, but now a 
subscript (j) for plant has to be introduced. A fixed number of N plants  
is assumed. We will also need a relationship connecting the amount 
consumed to the total amount produced. This is popularly termed the 
energy balance. The total amount consumed is xt: 
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Electricity is a homogeneous good so it does not matter to the consumer 
who supplies the electricity. Plant supplies are just added together. The 
energy balance has to hold with equality due to the requirement of 
continuous physical equilibrium between production and consumption.  
    As in previous chapters the different consumer groups are represented 
by a single aggregated demand function in total consumption for a period. 
The social planning problem, specifying reservoir constraints only (the 
implicit assumption is that no other constraints become binding), is: 
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(4.2)

1

1 0

, 1
1 1

1 1

( )

( )

( )

N H
jtj

e
T

t
t z

T N
H

jt jt j t jt jt
t j

T N

jt jt j
t j

L p z dz

R R w e

R R







 


 

 




   

 

 





 (4.3)

When operating with individual plants the shadow prices on the water 
accumulation constraints and the upper reservoir constraints are plant 
specific in the problem formulation. The necessary first-order conditions are: 

               

The variables in the individual water accumulation equations are still 
measured in energy units (MWh), but plant-specific fabrication coefficients, 
aj ( j = 1,..,N), are now used for the conversions from water to energy. In 
order to simplify, substituting for total consumption from the energy balance 
into the objective function yields the Lagrangian: 
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(4.4)

    Counting number of variables and independent equations in the system 
(4.3) - (4.4) there are 4TN endogenous variables (ejt

H, Rjt, λjt, γjt), including 
2NT individual plant level outputs and reservoir levels, and 2NT shadow 
prices, TN + N exogenous variables ( ,jt jw R ), and the number of equations 
is 4TN. However, as we shall see the structure of the conditions is such 
that we will not get unique solutions for all individual plant variables in 
general. 
    In order to simplify making qualitative interpretations possible, we 
assume that electricity is consumed in all periods to positive prices; xt > 0, 
pt(xt) > 0 (t = 1,…,T), implying that in each period at least one plant must 
have positive production of electricity. The first condition of (4.4) shows 
that a plant-specific water value may differ from the optimal price if the 
plant has zero production: λjt ≥ pt(xt) for ejt

H = 0. Furthermore, a plant’s 
water value becomes zero if overflow occurs according to the complementary 
slackness condition. These are the two possibilities of plant water values 
deviating from the optimal price. However, overflow is obviously not 
optimal in our model as long as each plant has perfect manoeuvrability. 
    Since electricity is a homogeneous good, the optimal price is independent 
of which plant that supplies the consumers. The existence of a common 
period price, and the optimality requirement that this price is equal to the 
individual plant water values if the plants are producing, is of crucial 
importance for understanding the optimal behaviour of the system. If a 
plant is to be used, the water value in the periods in which it is used has to 
be equal to the optimal price for the periods in question. Furthermore, 
other plants having positive production in the same periods must then also 
face the common prices. The counting rule stated above does not work 
because the TN equations in the first condition of (4.4) are not independent. 
    The nature of indeterminacy is illustrated in Figure 4.1 for a period t. 
The optimal price is pt equal to the water values λjt for the units having 
positive production in period t. Typically this is all the units. The total 
potential supply of water of these units is OB (the scale is distorted to fit 
the figure), so the supply curve is horizontal. [The meaning of the dotted lines 
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X 
Figure 4.1. The nature of the optimal solution.  
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to the right in the figure will be  later.] Due to perfect 
manoeuvrability the potential supply is the water stored in the reservoirs of 
the units with water values equal to the optimal period price. The demand 
function is pt(xt). At the optimal price the demand determines the total 
production from the plants, OA, is as indicated in the figure. However, the 
contribution from each plant does not matter for the optimal solution. 
Typically the optimal total amount utilised in a period is less than the 
available water. By assumption there is enough storage space to carry the 
unused water forward to the future. 

As to the shadow price on the reservoir constraint, it measures in general 
the increase in the objective function of a marginal increase in the reser-
voir of plant j. The shadow price on the upper reservoir constraint becomes 
zero if the constraint is not binding. If there is a threat of overflow in a 
period t the dynamic shadow-price equation in (4.4) holds with equality 
(Rjt > 0). Assuming the inflow is positive in the period t + 1 after the threat 
of overflow production also has to be positive in this period to avoid 
spilling. Then the water value becomes equal to the price. But this is the 
same situation for all plants since the optimal prices are common. If there 
is a price difference between the periods there cannot be a plant-specific 
shadow value on the reservoir constraint in period t with a threat of overflow: 

, 1 1 , 1
1 1

( ) ( )
N N

H H
jt j t jt t k t t kt t

k k

p e p e     
 

       (4.5)

Therefore the shadow-price dynamics, as stated in the second equation in 
(4.4), will be valid only for common values for all plants for the water 
values and the shadow prices on the upper reservoir constraints. Again, we 

explained
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do not have TN independent equations. We can only obtain unique 
solutions for the aggregate production in any period, but not solutions for 
the allocation of this production on individual plants. 
    We can see this by using the backwards-induction principle. Assuming 
that demand is not satiated and that all reservoirs are emptied in the 
terminal period T due to the free terminal condition, we get: 

0 0 ( ) 0jT jT T Tp x        (4.6)

The equality follows from the assumption that the market price is positive 
due to non-satiation and holds if unit j is producing electricity in the last 
period (at least using the inflows wjT). But the condition above is not 
specific to plant j, but applies to all plants that produce in period T. In the 
optimal solution all plants are assigned the same water value in the last 
period and the total production of electricity is , 11

( )N

k T kTk
R w

 . All 
water in the reservoirs carried over to period T is used up together with the 
inflows in the last period. Thus, the optimal price in period T is conditional 
on the total transfer of water from period T – 1 to T. But it is only the total 
amount of water handed over from period T – 1 to T that can be 
determined in our model and not the individual contributions from each 
plant in general.  
    For period T – 1 the process is repeated. Without overflow at any plant 
or any plant emptying its reservoir all plants are again facing the same 
water values according to the second equation in (4.4) and the price must 
be the same as for period T and common to all plants. We can go 
backwards to period 1 and get the same result. We can determine the total 
quantities for output and sum of water handed over from period to period 
by backwards induction as done in Chapter 3. 
    The other price-changing event in Chapter 3 was that the reservoir was 
emptied. From (4.4) we then have , 1jt j t   . But for a price change to be 
universal we then have that the inequality holds for all units because we 
have 1 , 11 1

( ) ( )N NH H
t kt t k tk k

p e p e  
  . 

    However, we have to check further how the system price can change 
and what happens when there are corner solutions for individual reservoirs 
and plants.   
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Hveding’s conjecture 

In Chapter 3 episodes leading to price changes were investigated. Threat of 
overflow and emptying the reservoir were the price-determining events 
considering reservoir constraints only. In a multiplant model interesting 
questions are if, and how, this pattern is repeated. Specifically, may one 
plant have an overflow while none of the others have, and may one plant 
empty its reservoir and none of the others? 
    We will investigate the situation of overflow first. Actual overflow 
means that the water value is zero according to the complementary 
slackness condition in the third line of (4.4). Since the price is positive, by 
definition it cannot be optimal to have overflow for a plant alone. In fact, 
we cannot have overflow for any plant in the optimal plan since this is 
pure waste and we operate with perfect manoeuvrability of reservoirs and 
non-satiation of demand.  

The next step is to investigate the case of threat of overflow for a single 
reservoir in period t, but no actual spilling of water. This situation means 
that , 1

H
jt j t jt jt jR R w e R    . It would be rather arbitrary that it is optimal 

to keep this balance without drawing some water in period t, i.e., ejt
H > 0. 

Producing implies λjt = pt(xt) > 0. We then have from the shadow-price 
dynamics of (4.4): – λjt + λj,t+1 – γjt = 0. Since there is a positive amount of 
water in the reservoir at the end of period t the dynamic equation for the 
shadow prices for plant j holds with equality. We will furthermore assume 
that the reservoir is below its limit in period t + 1, and that period t and t + 1 
belong to a set of periods with equal prices. But the water values for period 
t and t + 1 must then be equal since the prices are equal by assumption. 
This means that if plant j is to face threat of overflow in period t, but not in 
period t + 1, then the shadow price on the reservoir constraint, γjt, has to be 
zero. The conclusion is that, if we look at the physical situation of a 
reservoir, it is possible to have a threat of overflow at one reservoir only. 
But then the shadow price on the reservoir constraint must be zero. This is 
a possibility according to the Kuhn – Tucker condition, but this situation 
has not been the typical case so far in our models. This implies that the 
social objective function is not influenced by a situation of threat of 
overflow at one plant only in the interior of time intervals with the same 
optimal price. It may seem a rather arbitrary situation to have a threat of 
overflow and a zero shadow price at the same time. Seen from the shadow-
price side the picture is simpler: isolated periods of threat of overflow for a 
single plant with a zero shadow price cannot be identified in the optimal 
solution, but they do not matter for the value of the social objective 
function. During an interval of equal optimal prices the contribution of 
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water to satisfy total demand may come from plants running a full reservoir 
(without spilling). However, these plants are not rewarded particularly for 
doing this. The water values remain equal to the optimal price. [Notice that 
if a plant within an interval with the same optimal price is run with a full 
reservoir for several consecutive periods, then the current inflow cannot be 
stored and the plant becomes similar to a run-of-the-river plant.] 

We may have more than one plant running a full reservoir at the end of 
the same period. But as long as there are plants that operate below their 
reservoir constraints there is enough flexibility on the supply side to realise 
the total optimal output within this set of same-price periods.  

Following the time cycle indicated in Table 3.2 sooner or later there 
comes a period (s) when lack of reservoir capacity in the system generates 
an optimal price increase. The situation may be triggered by a combination 
of coming to periods of higher demands and lower inflows. As much water 
as possible must be transferred to the set of periods with a higher price in 
order to make the price hike as small as possible. Then the shadow value 
on the reservoir constraint for a plant becomes positive in the period 
immediately preceding a price increase. After all the objective function 
must be positively influenced by an increase in the reservoir capacity .jR   

Let us now assume that ps(xs) < ps+1(xs+1). Since producing plants’ water 
values are all equal to the optimal price for the same period such a price 
difference is possible only if all plants producing in both periods face a 
threat of overflow in period s. If all the plants face a threat of overflow in 
period s, but none in period s + 1, we have the situation described in 
Chapter 3 for the aggregated system. All the plants face the same price for 
each period, implying the water values are equalised across plants, ps(xs) = 
λjs, ps+1(xs+1) = λj,s+1, j = 1,…,N. According to (4.4) we then have γjs = 
ps+1(xs+1) – ps(xs), i.e. a common values for all plants since the price 
difference is independent of plant index. The shadow prices of the plant 
reservoir constraints are all equal for plants reaching the constraints (see 
(4.5)). It cannot be optimal for one plant not to deliver a full reservoir to 
the first period (s + 1) with a higher price, because if this was the case the 
objective function can be improved if the plant transfers more water to the 
first period with higher price.  

We will assume so far that it is physically possible to bring up to full 
level all reservoirs in the same period. We must then have in period s that 

js jR R  for all j. The management problem is that 
1

N

jj
R

 is too small to 

keep the same price in high-demand periods as in low-demand ones. More 
water has to be used in period s or earlier than would be optimal without 
the reservoir constraints. 



80      Chapter 4. Multiple Producers 

The other extreme situation is that plant j empties its reservoir in period 
t + 1, but not the other plants. Let us assume the relevant situation is that 
the prices are equal for two periods, t + 1 and t + 2. The first condition in 
(4.4) yields λj,t+1 = pt+1(xt+1) since plant j has positive production. The 
second condition in (4.4) now yields (– λj,t+1 + λj,t+2) ≤ 0, Rj,t+1 = 0 since the 
shadow price on the reservoir constraint in period t + 1 is zero. Assuming 
strict inequality we have for plant j that it is required that pt+1(xt+1) > 
pt+2(xt+2), while the condition for the other plants yields pt+2(xt+2) = 
pt+1(xt+1). But this is a contradiction. The water values for a plant for two 
successive periods must be equal even if the reservoir is emptied as long as 
the optimal prices remain the same.  

To check if one plant may not empty its reservoir in a period u + 1 while 
all the other plants do, let us assume that the optimal price for period u + 1 
is higher than for u + 2 in accordance with the example in Table 3.2 in 
Chapter 3. The water values for this plant must then be equal for the period 
u + 1 and u + 2 for the social planner not to empty the reservoir for this 
plant also. But this leads to a contradiction. If a plant has water left at the 
end of period u + 1 then the value of the objective function can be 
improved by producing the remaining water in the high-price period u + 1. 
Thus this constellation cannot be a part of an optimal plan. 
    We conclude that in the regular case with a fall in the price from period 
u + 1 to u + 2 all reservoirs have to be emptied at the end of the same 
period for the plan to be optimal. But it may be part of an optimal plan for 
plants to empty their reservoirs before others. This latter case requires that 
the water value for plant j remains the same for the two periods in question; 
implying that the value of the social objective function may remain the 
same. We have a similar dichotomy as for the case of overflow above: the 
shadow prices tell a simple story of no economic impact of scarcity as long 
as the water values remain equal across plants and across time, while 
concerning the physical situation a plant may empty its reservoir before 
others, but then this should not influence the value of the social objective 
function for an optimal plan. Notice that emptying the reservoir within the 
interior of periods with the same price does not imply that the plant will 
not empty its reservoir again when all plants are required to do so.  
    If all the plants face an episode of going empty in period u + 1, but in 
the immediate preceding or following periods they are in between scarcity 
and upper reservoir limits, we have the situation described in Chapter 3 for 
the aggregated system. All the plants face the same price for each period 
since they are producing, implying the water values are equalised across 
plants. The shadow price on the reservoir constraint in period u + 1 is then 
zero (Rj,u+1 = 0). We then have (– λj,u+1 + λj,u+2) ≤ 0. Adopting strict 
inequality as the regular case we must have pu+1(xu+1) > pu+2(xu+2) according 
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to the two first conditions in (4.4). It would therefore be arbitrary for all 
the water values to become equal for the two time periods.  
    The reasoning above leads to the following result for the multiplant 
model (4.2) under the maintained assumptions: 

 
Hveding’s conjecture: In the case of many independent hydropower 
plants with one limited reservoir each, assuming perfect manoeuvrability 
of reservoirs, but plant-specific inflows, the plants can be regarded as a 
single aggregate plant and the reservoirs can be regarded as a single 
aggregate reservoir when finding the social optimal solution for operating 
the hydropower system. 

 
The consequences of the conjecture are in Hveding’s words:  

 
…no single reservoir is overflowing before all reservoirs are filled up, and … 
no single reservoir is empty before all are empty (Hveding, 1968, p. 131). 

 

price. When reservoir constraints are binding for other periods we noted 
that their shadow prices were zero. The individual reservoirs may then all 
be utilised in the same fashion, as if there is only one reservoir, with the 
qualifications elaborated upon above. This is a result of important practical 
value since it may simplify greatly the modelling effort. The results about 
price movement studied in Chapter 3 for one plant and one reservoir with 
constraints are all valid also for the multiplant case. The assumption of 
plant-specific inflows is crucial for the possible difference between 
movement of aggregate prices and individual water values. Without this 
assumption Hveding’s conjecture would be rather straightforward, but 
would not serve as fruitfully as a benchmark for the management of 
individual plants. 
    As mentioned above, the necessary conditions (4.4) for a solution to the 
model (4.2) do not determine the individual water release profiles of the 
plants. What we can say about individual profiles is that plants should, if 
possible, be brought up to full reservoirs in the same period and brought to 
empty conditions in the same period. Aggregation to meet market demand 
in between price-changing periods may involve varying contributions from 
the plants. The plant reservoirs may have different characteristics as to 
patterns of seasonal inflow and storage capacities both absolute and 
relative, although they are perfectly manoeuvrable. The possibility of such 
differences is allowed under our assumptions.  

    It is straightforward to aggregate all reservoirs as long as water has the 
same shadow price, and this also holds for aggregating reservoir con-
straints when they apply in the same period and have the same shadow 
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    Hveding’s conjecture does not say necessarily that all plants must face 
the reservoir constraints always at the same time. But for aggregation to be 
perfect all plants have to hit the upper reservoir constraint in the period 
before a price increase, and all plants have to empty their reservoirs in the 
period before a price decrease.     
    Hveding’s conjecture justifies using a single plant-single reservoir 
model, but the conjecture does not give us a detailed plan for how to 
operate individual plants in a complex system. Specifically, the plants 
should not be required to fill up the reservoirs and draw them down on a 
strict equal-percentage basis, although this may serve as a simplifying 
benchmark if the relationship between inflow and reservoir capacity is not 
too different. 
    Optimal management of the system implies that price differences are 
kept at a minimum. Our social planner sees to this, although we can only 
indicate qualitatively what optimal utilisation of individual plants may 
entail. The interesting and intriguing story is whether a decentralised 
market can find the optimal patterns of individual plant use. It is important 
to understand that a well-functioning market in a technical sense is not 
automatically mimicking a social optimal solution of the type following 
from solving the model (4.2). We return to this issue in Chapter 12. 

 

Extensions of the model and Hveding’s conjecture 

Hveding himself pointed to situations that may lead to the properties of the 
aggregated multi-plant system not being fulfilled. We will have a look at 
such properties.  
    The basic model was extended in Chapter 3 introducing the constraints 
in Table 3.1. These extensions will now be implemented in the multiplant 
model. An interesting question is to what extent Hveding’s conjecture has 
to be qualified. We first will discuss the consequences of a plant not being 
run during a time period. This is a possibility in the model (4.2) with many 
plants. 

Plants not producing during a period  

Let us assume that we start our periods in a period with a relatively low 
optimal price following the structure of a yearly cycle used in Table 3.2. 
Some plants may have rates of inflows relatively small compared to the 
size of the reservoirs implying that it may take a long time to fill them up. 
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It may be part of an optimal plan for such reservoirs to still accumulate 
water while others keep full reservoirs when the price increases as in 
period s + 1. A plant should accumulate water to meet the highest price 
periods that will be common to all plants. A plant with good storage 
possibilities should then be left to accumulate water compared with a plant 
with little storage possibility. In the running up to the highest price period 
plants with lower storage possibilities will therefore contribute more to the 
current production. With multiple plants we have to check the conditions 
for a plant (j) not to produce in a period but just accumulating water in the 
reservoir. The first-order condition in (4.4) then reads: 

1
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A plant will not produce electricity during a period if the water value is 
typically greater than the optimal price. A fundamental requirement is that 
there is free storage capacity in period t. A further requirement is that it is 
feasible for the plant to store water until a high-price regime is reached. If 
the reservoir runs full at the end of period t and the price is the same in 
period t as in period t + 1, then this plant’s water value is equal to the 
common price for both periods so there is no point of not producing 
anything in period t. The value of the objective function will not change 
due to such a redistribution of output from period t to period t + 1, 
assuming that the optimal total amounts for the periods are produced. 
Anyway, all plants cannot accumulate inflows in a period; there must be 
sufficient production to meet the optimal total consumption in each period.  

Plants with good storage possibilities may at the extreme produce only 
in the peak period with the highest price (remember that per assumption 
plants can process all stored water in a single period). For such plants the 
water value is typically higher than the current period (t) price and equal to 
the price the first period the plant starts to produce. Thus, the pattern of use 
of individual plants may differ. The plants that fill up again more rapidly 
may be required to run down their reservoirs correspondingly more 
frequently to accommodate demand variations. We know from Chapter 3 
that if overflow threatens, as it may during periods leading up to reservoirs 
becoming full, then the price level will typically remain lower than the 
eventual peak price level for many periods. In order to be ready for the 
peak price period, plants may be run at levels of maximal storage capacity 
during these lower price periods. Then current inflows have to be 
processed as run-of-the-river plants. [A plant cannot produce more over 
some periods than the sum of inflows during the periods plus the amount 
of water in the reservoir at the start of the first period.] 
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    But in the optimal plan we may also have plants that have not reached 
the reservoir constraint in the last period (s) before a price increase even if 
they have accumulated water from the start. We have to investigate this 
possibility. Let us start with checking if one plant may accumulate water 
while all the other plants have filled up their reservoirs. Let us now first 
assume that the prices are the same for period t and t + 1. We know that 
zero production in period t implies that λjt ≥ pt(xt), and that the shadow 
price on the upper reservoir constraint is zero since the reservoir is still not 
full by assumption. But then we get from the shadow-price dynamic 
equation that (– λjt + λjt+1) = 0. Such an accumulation episode is possible 
only if the water values are equal for the two periods. If plant j is 
producing in period t + 1, the water value of the plant will equal the price. 
This implies that the water value in period t when the plant is not 
producing cannot be higher than the price assumed to be the same for 
period t and t + 1. Again this case was not the typical case in our previous 
models. Pure accumulation may take place in some plants and not others 
due to the balancing of total demand and total supply period for period. 
    Assume that we have a price increase from period s to period s + 1. 
Accumulation may continue in a period s + 1 with a higher price for more 
periods until water is processed. But we must have that the optimal price in 
the period production starts again determine all the shadow prices back in 
time. A plausible situation may be that a plant with a huge enough 
reservoir (or the inflow is small compared with the size of the reservoir) 
may not physically be able to reach the reservoir constraint in period s, i.e., 

1
.s

jt jo jt
w R R


   This may be the case for a few reservoirs designed to 

take years to fill up and serving as insurance against especially dry years; 
multiyear reservoirs. The first period such a reservoir will be used will 
then determine the water value in all previous periods right back to the 
start. Remember that the model is deterministic. Whether such a plant will 
used in period s + 1 then depends on whether there will be a future period 
with an even higher price than that in period s + 1 within the horizon T 
such that the plant can continue accumulating without meeting the 
reservoir constraint. In this case there will be no production in period s + 1. 
However, if there is no such period within the planning horizon a 
multiperiod reservoir will be drawn down sooner or later even though it 
has never been filled up completely. As pointed out above, the reservoir 
may come on and off more than one time, but this demands that the prices 
for the periods the plant is producing must be the same. 

The conclusion is that in the multiplant model an increase in price from 
period s to period s + 1 typically requires that plants that physically cannot 
reach the reservoir limit in period s, have no production in period s, i.e., 
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they are accumulating water. The equilibrium between supply and demand 
determines how many plants are involved in pure accumulation. 

Hveding’s conjecture does not work perfectly for plants that just 
accumulate water for one or several periods. The water values of such 
plants when not in use do not match the water values of all other plants in 
use for these periods.  

The existence of accumulating plants is illustrated in Figure 4.1 by the 
dotted horizontal line to the right that has a higher water value than the 
price in period t. 

Run-of-the-river electricity generation 

As pointed out in Chapter 3 hydropower usually also involve run-of-the-
river plants. Let us assume that there are NR run-of-the river plants each 
having the production function appearing in (3.28b) with plant-specific 
coefficients ait

R that are called capacity coefficients defined as the share of 
time the plants are run at full capacity: 

, [0,1], 1,...,R R R R R
it it i ite a e a i N    (4.8)

These can be aggregated by summation yielding the production function:  
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The energy output and the power capacities weighted by the production 
coefficients are summed over the NR river plants. The maximal power 
capacity is utilised when all individual plants reach the upper limit in the 
same period, i.e., equality holds in (4.9). 
    As in Chapter 3 we assume that energy from the run-of-the-river plants 
is must-take and not subject to optimisation. It is then the sum of output 
from the river plants that enter the demand functions in addition to the sum 
from regulated plants in the first-order conditions: 
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Because only aggregated production of river plants enter the first-order 
conditions Hveding’s conjecture still holds. But because the regulated 
production is now satisfying the residual demand, the existence of such 
run-by-the-river hydropower plants may cause extra adjustment problems 
for the regulated plants trying to accommodate must-take power and thus 
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contributes to cases of deviations from the assumption of equal shadow 
prices for plants for the same period that Hveding’s conjecture rests on. 

As in Chapter 3 we have to investigate the use of hydropower plants 
with reservoirs when we also have plants based on unregulated water in 
the system. The first-order condition for hydro plant j with reservoir 
becomes:  
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The discussion of the implications of the water value being typically 
greater than the optimal price replicates much of the discussion in the 
section above. However, a new consideration with the existence of run-of-
the-river plants is that there may be periods where no plants with 
reservoirs are used. If it is optimal for a plant (j) not to produce in a period 
(t), it may also be so for all the other plants that have enough storage 
capacity, or can manoeuvre during periods leading up to t to get enough. If 
a plant should have too much in its reservoir at the end of period t – 1 to be 
able to store the inflow wjt in period t then the utilisation of the plant may 
be adjusted upwards if necessary during several periods leading up to 
period t to enable storing the inflow in period t. 
    The situation of no plants with reservoir being used may happen when 
the supply of energy from run-of-the-river plants is so high that demand 
can be satisfied only from this source. Typically the price in such a period 
will be lower than the price in the period before. The situation may 
continue for several periods (the period length may for instance be one 
hour). An option for a plant that cannot meet the demand on storage space 
over several periods is to use up a sufficient amount of water in its reservoir 
before period t (but notice that this may not be physically possible).  

Our discussion indicates that Hveding’s conjecture may still hold 
having also run-of-the-river plants, but the extra adjustment required by 
plants with reservoir must not lead to deviating shadow prices for the same 
time period. 

Output constraints 

Hveding’s conjecture may not hold strictly if more of the constraints 
entered in Table 3.1 in Chapter 3 are introduced. The constraints may be so 
demanding to fulfil, especially with a fine time resolution, that some 
reservoirs may experience overflow and some may be emptied before 
others. This has to be investigated more closely, starting with production 
constraints.  
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    In order to satisfy the energy demand at the rate shown by the left-hand 
part of the load-duration curve in Figure 1.3 in Chapter 1, the system must 
have sufficient power capacity. When we do not model explicitly the 
transmission system and do not distinguish between power and energy, 
then an upper constraint on the production during one period for each plant 
covers all these events. [For a finer time resolution when these latter 
constraints can be identified only one of the constraints will in general be 
binding at the same time.] The constraint for each plant is: 

, 1,.., , 1,..,H H
jt je e j N t T    (4.12)

where H
je is the upper power, energy production or transmission constraint 

for plant j (expressed in MWh). In Chapter 3 such a constraint was used 
for the whole system. However, each plant faces this constraint making the 
model more realistic when including it. Sufficient system power capacity 
now means that 

max

1

, 1,..,
N

H
t j

j

x e t T


   (4.13)

where xt
max is the highest power demand, found close to the left axis of the 

load-duration curve in Figure 1.3 in Chapter 1. However, locking-in of 
water at individual reservoirs, as mentioned in Chapter 3 for the whole 
system, may imply that individual plant capacities cannot simply be added 
as in (4.13) when calculating the system production capacity. The system 
capacity may be smaller. We will return to this topic below. 
    Extending model (4.2) with output constraints leaving out run-of-the-
river plants the social planning problem is: 
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The fourth constraint above is the new one on the upper level of 
production. It is reasonable to assume that this limit is independent of the 
period since it is a technical constraint. Constraining the rate of production 
means that it may take more than one period to empty the reservoir when it 
is full. This plant-specific number of periods, tj

o, is simply given by the 
minimum integer number equal or greater than / H

j jR e and is a straight-
forward generalisation of (3.26): 

min such that , 1,..,o H
j j j j jt t t e R j N   , (4.15)

where tj, tj
o are integers. To run a model without an upper restriction on 

production as in the previous section is the same as assuming that tj
o =1. 

This plant-specific minimum emptying time give information about the 
manoeuvrability of the plant: maximal manoeuvrability is obtained when 
tj

o = 1, and then manoeuvrability decreases as minimum emptying time 
increases. A plant-specific manoeuvrability index, Mj, may be defined as 
the inverse of the minimum emptying time giving the most flexible 
situation, index value 1, and increasing inflexibility toward index value 
zero: 

1 / , (0,1], 1,..,o
j j jM t M j N    (4.16)

The value of the manoeuvrability index will tell the planner when care has 
to be exercised as to how much water should be accumulated before high-
price periods. A low value of Mj may imply that there is plenty of water 
left when the high-price periods are over if the start of this period is met 
with a full reservoir. This may be a problem for two reasons: periods with 
seasonally higher inflows may be approaching and a low level of the 
reservoir is necessary in order to contain the inflows in the reservoir, and 
prices may be lower after the high-price periods than before. In the latter 
case more water should then have been used before the high-price periods. 
Plants with high values of the index should accumulate maximally in front 
of high-price periods. Since the model is deterministic, the necessary 
information for optimal management is available to the planner. 
    Substituting for total consumption from the energy balance in the 
objective function in (4.14), the Lagrangian is: 
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The necessary first-order conditions are: 
 

    The individual reservoirs differ in capacity and inflow characteristics, 
and the stations differ in production (power) capacity relative to size of 
reservoir and inflow characteristics. Therefore the manoeuvring of the 
stations and the reservoirs may differ. The manoeuvring would be to avoid 
spilling water, since doing this will typically serve the objective of 
maximising consumer plus producer surplus. 
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(4.18)

    We will only discuss solutions when the production constraint is binding, 
since a non-binding constraint was covered in the previous section.  
    The optimal price is common to all units, but when production 
constraints are binding the individual water values may no longer be the 
same across plants in the optimal solution. The water value becomes plant 
specific and is less than the period’s optimal price, according to the first 
condition in (4.18). The condition must hold with equality since production is 
positive. As in Chapter 3, when studying the aggregated production 
constraint, there is a separation between determination of water values and 
determination of optimal period prices that all plants face in common.  
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    We will look at two possibilities concerning two consecutive prices 
when one or more output constraints are active in the first period, but none 
in the second period (following the time index usage in Table 3.2), assuming 
that all reservoirs are between empty and full for the two periods: 

 
i) pt = pt+1 
ii) pm > pm+1 

 
Let us partition the plants into a set N1 producing below the output limit 
and a set N2 having active output constraints in period t and having the 
number of plants in the two groups adding up to N. From (4.18) we then 
have for a constrained unit: 

1 2

2( ) ,H H
t it i jt jt

i N i N

p e e j N 
 

      (4.19)

In the case of only one unit having a constrained output level (N2 = 1) this 
plant may be operated at full production capacity in order to avoid 
overflow in a future period. We remember that the allocation of production 
on the individual plants is indeterminate. It may then be the case that the 
same total level of production is still the optimal total amount. The extra 
output needed from the N – 1 plants in period t can be recouped in later 
periods from the plant constrained in period t, provided there is room 
under the upper limit. In such a case the prices remain equal and equal to a 
common water value, and the shadow price on the output constraint 
becomes zero. The logic is that since the prices are the same, there is no 
increase in the objective function for the aggregated system of relaxing the 
constraint in the first period for a single plant. More electricity can be 
obtained from plants not being constrained. 

In general we can separate the issue of the value of the shadow price on 
the output constraint from the issue of whether an output constraint 
influences the optimal solution for prices. As long as there is at least one 
plant that is operated below capacity it is possible to reallocate water in 
period t in such a way that the shadow prices on the output constraint all 
becomes zero by producing marginally below the capacity limit. But as 
long as the shadow prices are zero there is no change in the value of the 
objective function. 
    We assume perfect system manoeuvrability through the existence of a 
(congestion-free) grid connecting all the producers and consumers, while 
the plants have a limit on their individual manoeuvrability due to the upper 
constraint on production. 
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Increasing the number of plants having active output constraints makes 
it more difficult to maintain the same aggregated solution as optimal. The 
level of total demand will in general influence positively the number of 
upper constraints on reservoirs that would become binding since more 
water in the aggregate is needed. Notice that as long as at least one plant is 
below its maximal production redistribution of production will imply zero 
shadow prices according to the complementary condition in (4.18). The 
price then remains equal to the water values. 

The extreme case is that we have such a high demand that all units are 
output constrained. Then all the shadow prices typically become positive. 
The optimal solution will now change. Constraining the amount of water 
that can be processed implies that more is kept in the reservoir in period m 
than optimal without the constraints present. The new optimal solution will 
imply a higher price in the constrained peak period, and higher than both 
the period before and after, assuming that the reservoir constraints are not 
all binding in the periods in question. [Of course, there may be changes in 
several other periods too.] According to the dynamic shadow-price 
equation in (4.18), assuming no threat of overflow neither in the current 
period nor in the next, the water values in the current period is equal to the 
water values in the next period. This implies that all the shadow prices on 
capacities are equal:  
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The water values are less than the current price in period m since more 
water cannot be processed in the current period even if the reservoir 
amount is marginally increased (through increased transfer from the 
previous period or increased inflow). Assuming a non-binding production 
constraint for our plants in the next period implies that for this 
constellation to be part of an optimal plan, the optimal price in the next 
period must be smaller than the current price in period m. This is 
illustrated in Figure 3.7 in Chapter 3 for the aggregated system. 

It may be the case that all the production constraints are binding for 
several periods. Assuming that the reservoir constraints are not binding for 
these periods, we have that the water value will be the same for these 
periods, and equal to the optimal price in the first period with a non-
binding production constraint. This price must then be lower than all the 
prices for the preceding periods with binding production constraints for the 
shadow prices on these constraints to become positive. 



92      Chapter 4. Multiple Producers 

    In the case of the reservoir constraints not being binding for the relevant 
periods a price increase may be generated when all production constraints 
are binding for the same period. The number of binding production 
constraints may be said to be demand-driven. It is only if demand should 
be so high, perhaps due to unusually cold weather on a winter day, that the 
total system capacity may become so strained that all production 
constraints are reached. 
    As in the aggregated case in Chapter 3 there are two situations that can 
lead to production constraints becoming binding: preventing overflow and 
trying to satisfy demand in a high price period. The manoeuvrability of a 
plant now depends on the number of periods, tj, it takes to empty the 
reservoir; the higher this number the less manoeuvrability according to the 
plant-specific manoeuvrability index, Mj. If the high-price regime lasts a 
number of periods less than tj

o, either the plant does not have to 
accumulate a full reservoir before the price periods, or it will have some 
water left in the reservoir after the high price regime. The impact of a 
production constraint on a multiyear reservoir may be to stop pure 
accumulation sooner and start producing if the production constraint 
prevents all available water to be processed in the high-price period. 
    Preventing overflow has to be planned for several periods before the 
actual threat of overflow if inflows are higher than the production capacity 
for some periods before the threat of overflow. The management task is to 
create enough space in the reservoir to contain the inflows without spilling 
water. Manoeuvrability implies the ability to run down the reservoir level, 
and is present only for periods when production can exceed inflow; 

H
j jte w . This is the condition for the ability to sustain a constant level in 

the reservoir. Any reservoir level, e.g., the full level, is sustainable within a 
time period t to t if maxH

j jte w for t(t to t). This is the condition for 
a potential to prevent overflow at plant j. 
   If there is a series of high inflow periods spilling may be physically 
impossible to avoid if emptying the reservoir at the start of the time 
periods with high inflow and using the maximal production capacity every 
period, is insufficient to “swallow” all the incoming water. Analogous to 
the aggregated system case of (3.27) we have an unavoidable lock-in 
situation for plant j when: 

0, ( 1)
t

H
jt jt j j

t t

R w t t e R





       , (4.21)

where t is the start of the high-inflow periods and t is the first period with 
overflow for plant j. Notice that for some periods between t and t the 
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maximal production may be greater than the inflows, but this situation 
does not remain long enough for the reservoir level to be reduced 
sufficiently to prevent overflow at t. This may be the situation for a plant 
during the period of snow melting or autumn rain illustrated in Figure 1.4 
in Chapter 1. Lock-in situations can occur only at the disaggregated plant 
level, and for an aggregated system studied in Chapter 3 the aggregation of 
lock-ins is problematic in the sense that no information relevant for actions 
is revealed. For management purposes it will be of interest to inspect 
periods of high inflows (remember that we have assumed perfect 
knowledge about inflows, i.e., no uncertainty occurs) and to calculate the 
maximum level of the reservoir preceding the high inflow periods in order 
to prevent overflow: 

max [ ( '' ' 1) ]
t

H
jt j jt j

t t

R R w t t e





      (4.22)

The lowest possible level of Rjt
max is zero. [If (4.21) should hold this level 

would become be negative.] The calculation in (4.22) may also be done for 
different constellations of the time periods t' and t'' for a fine-tuning of the 
necessary manoeuvring actions. 
    Consider we have a development where the situation described in (4.21) 
holds. Assume that it is actually optimal to have an empty reservoir at the 
end of period t'. The water values for the time periods in such a series as 
part of the optimal plan will all be the same from t' + 1 to t'', and equal to 
zero, assuming overflow in period t'' only. The water value will become 
positive again in the period t'' + 1 when the reservoir can be reduced below 
or to the maximal level since by assumption the inflow is less than the 
maximal production level in this (and subsequent) periods.  
    The programming model assigns the extreme value of zero to the 
shadow price on stored water during the periods from t' to t'', while the 
output is actually sold to the positive prices of the periods. From the model 
point of view this is logical, because the accumulation of water ends up 
with overflow and zero value is assigned to this flow. A marginal increase 
in accumulation of water has zero value since the reservoir cannot become 
more than full. A zero water value is just a “go” signal for using as much 
water as possible from this plant. From a practical point of view the plant 
creates value in every period of manoeuvring producing at maximal output 
rate evaluated at the going price. According to (4.18) the shadow price on 
the production constraint is equal to the optimal price for each period. A 
marginal increase in the constraint is evaluated to the current optimal 
price. The distinction between shadow value of water as reservoir and 
shadow value of water being processed is made quite clear.  
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    The example above indicates that there is a potential problem with 
Hveding’s conjecture when the manoeuvrability is not maximal for all 
plants. Using the test (4.21) above one point is that we may have one 
reservoir overflowing in period t'' – 1 because it is unavoidable due to 
circumstances described by (4.21); there is a lock-in. Otherwise optimal 
system management will try to avoid a single reservoir overflowing before 
the others, but the plant-specific manoeuvrability indices are no longer 
uniformly 1, and the distribution of the manoeuvrability index, coupled 
with the distribution of plant production constraints, may block the 
possibility of all plants reaching full reservoirs at the same time. The same 
reasons hold for emptying reservoirs at the same time being an optimal 
policy. If (4.21) holds then it may be optimal to empty a reservoir before 
other reservoirs are emptied in order to minimise the spilling.  
    If spilling can be avoided, i.e., the situation (4.21) above is not valid, 
then running one or more periods at maximal output may suffice to avoid 
overflow. The exact timing of such full production periods will be 
determined by the overriding objective of maximising consumer plus 
producer surplus. A decreasing (increasing) price toward the critical 
overflow period will tend to start early (late) with the manoeuvring, as well 
as increasing (decreasing) inflows. But the fact that overflow may be 
avoided may not be the same as to say that Hveding’s conjecture holds. It 
may be that overflow is prevented by some reservoirs being emptied 
before the others, e.g., manoeuvring is done to accommodate a peak inflow 
situation when the snow melts. The new crucial aspect of production 
constraints is that water values may become plant-specific. To treat the 
system as an aggregated system as the Hveding conjecture invites will then 
create inaccuracies and lead to loss of objective-function value. But for a 
group of plants with more or less equal production and reservoir 
characteristics never experiencing individual water values it will still be 
the case that Hveding’s conjecture is a good approximation to optimal 
management. 

Environmental restrictions 

As pointed out in the comments to Table 3.1 in Chapter 3 of the constraint 
taxonomy for hydropower plants, there may be constraints on both maximal 
and minimal releases to a continuing watercourse due to considerations of 
impacts on down-stream activities. Too little water may affect fish and other 
aquatic life forms while too much water may cause erosion. Timber floating 
may be an activity of the past, but boating and activities on riverbanks may 
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be affected. One special activity being influenced is another hydropower 
plant downstream. This issue will be addressed in the next section. The 
nature of environmental constraints is such that the time period may be 
rather disaggregated to not only hours but to even smaller units. 
    Now, maintaining the assumption of no waste of water at the production 
stage of electricity, production can be substituted for release of water. The 
model (4.14) then already covers the upper constraint. The only change we 
may want to make is to introduce a period-dependent upper level as shown 
in Table 3.1 for water release. Substituting actual production for releases 
for plant j yields the following constraints concerning releases and ramping: 
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The total release and ramping-up and -down restrictions for period t for 
plant j are expressed by , , ,H H ru rd

jt jt jt jte e e e  respectively, where superscript ru 
stands for ramping up and rd for ramping down, corresponding with the 
expressions in Table 3.1 in Chapter 3. These restrictions depend on time, 
since environmental impacts may vary with both period of the day and 
season. A production constraint independent of time as in (4.14) is not 
specified for ease. The planning problem becomes:  
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(4.26)

Substituting for total consumption from the energy balance the corresponding 
Lagrangian function is: 

The shadow prices for the restriction for releases, and ramping up and down 
are , , , .ru rd

jt jt jt jt    When deriving the necessary first-order conditions for 
period t we must remember that the release of water during period t also 
appears in the ramping restrictions in period t + 1: 
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The shadow prices for the release and ramping constraints show up in the 
first condition for the optimal adjustment of production for unit j for period 
t. The condition must hold with equality since water release is constrained 
to be positive. Upper and lower production and ramping constraints cannot 
both be binding at the same time, so in the first condition in (4.26) not 
more than three of the shadow prices concerning total release and ramping 
can be positive at the same time.  

However, we should observe the connection between production and 
ramping constraints. Combining the ramping-up constraint and the upper 
production constraint we have: 

  , 1 ,H ru H H H
jt jt j t jt jte e e e e    (4.27)

This means that only one of the constraints can become binding, 
determined by which of the expressions , 1( ) andru H H

jt j t jte e e is the greatest. 
In a similar way, combining the ramping-down constraint and the lower 
production constraint we have: 

, 1 ,H H rd H H
jt j t jt jt jte e e e e    (4.28)

Again, only one of the constraints can become binding, determined by 
which of the expressions , 1( ) andH rd H

j t jt jte e e   is the greatest. 
    As expanded upon in the case of an upper production constraint 
previously, we have a situation with optimal prices and water values not 
necessarily coinciding. It is only shadow prices concerning the water in the 
reservoirs that appear in the dynamic equation in (4.26). The shadow prices 
on the environmental constraints do not enter the dynamic equation, but 
influences the price formation through interactions with the demand side. 
    If the lower-release restriction that is new compared with conditions 
(4.18) is binding, but no other constraint, then we have that the water value 
for plant j will potentially be higher than the optimal price for the same 
period. More water is processed than what would be optimal without the 
restriction. To see whether it is feasible to have water value higher than the 
price as part of an optimal plan must be checked. There are three optimal 
price regimes to investigate for two time periods t and t + 1 where the 
binding is in period t: 
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i)  pt = pt+1 
ii)  pt > pt+1 
iii)  pt < pt+1 

 
    Assume first that the prices for the periods t and t + 1 are the same. 
According to the dynamic shadow-price condition in (4.26) the water 
values become the same, provided that the shadow price on the reservoir 
constraint in period t is zero. This will be the case if there is no threat of 
overflow in period t. Assuming that the minimum-flow condition is not 
binding in period t + 1, it is not possible for the water value in period t to 
be higher than the price, i.e., the shadow price on the minimum drawing of 
water is zero. It is not logical to have a threat of overflow in period t since 
it is the minimum water-use constraint that is binding. This implies that 
decreasing the minimum water constraint for plant j will not influence the 
value of the objective function in the optimal management plan. 
    Now assume that the price in period t is higher than the price in period  
t + 1, maintaining that the minimum water constraint is not binding in the 
latter period. Then the water value in period t should be lower than the 
price in period t, which is a contradiction of the assumption. Such a 
constellation of prices must then be ruled out.  

The last case of a lower price in period t than t + 1 is the case consistent 
with how forced use of water may interact with demand in the price 
formation. The water value in period t + 1 is, by assumption of no binding 
environmental constraint in the period, equal to the optimal price, which 
again is equal to the water value in period t via the reservoir-related 
shadow-price dynamics in (4.26). The water value is then greater than the 
price in period t, allowing for a positive shadow price of the minimum-
water constraint in the period so the first condition in (4.26) can be 
fulfilled with equality. Under our assumption we have that  
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The shadow price on the minimum water constraint is independent of the 
plant index. This means that if it is optimal with a price difference between 
period t and t + 1 then the constraints for all the plants must be binding. If 
this is the case the aggregate model will also have this solution introducing 
a minimum production constraint. Hveding’s conjecture holds in this 
situation, but it may seem a special situation.  
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The social evaluation of production in period t is lower than the water 
value because the reference for the water value is the value the stored 
water in period t can create when used in period t + 1. The positive value 
of the shadow price on the minimum-water constraint is not dictated by the 
minimum water-flow constraint as such, but by the difference between the 
current price and the price prevailing when more water than the minimum 
amount is processed. The difference between the price and the water value 
is not a reward for processing a minimum amount of water, but expresses 
the extra value of the water reaped if waiting with processing it to a later 
period when the optimal price will be higher. 
    The situation that the price in period t is lower than the price in period  
t + 1 is the typical case for accumulating water to be used in higher-price 
periods, especially for multiyear reservoirs as mentioned previously in the 
chapter. In the pure accumulation case the water values during intervals 
with no production became equal to the optimal price in the first period 
resuming production. Now we have production in all periods due to the 
minimum water-flow requirement, but this fact does not influence the 
water-value dynamics. The water values during periods with keeping the 
minimum production become equal to the water value, i.e., the optimal 
price, in the first period when the minimum water use is exceeded, 
assuming the reservoir not to be full in this period, and the minimum-water 
constraint not being binding. A minimum water-flow will slow the 
accumulation of water in plants with multiyear reservoir capacities.  
    The water value in period t may in general be higher than the price in 
period t if there is no threat of overflow in period t, which is quite logical if 
the minimum water-flow constraint is binding.  
    Concerning ramping constraints the discussion of shadow prices with 
negative signs in the first condition in (4.26) will follow the discussion of 
the shadow price on the upper production constraint, and discussion of 
shadow prices with positive signs will follow the discussion of the shadow 
price on the lower production constraint. Ramping constraints are, of 
course, not relevant for plants keeping constant production. If it is assumed 
that production constraints dominate according to the relevant condition 
contained in (4.27) and (4.28), ramping constraints for period t are super-
fluous, or if the ramping constraints dominate the discussion of production 
constraints is superfluous. However, a unique feature is that ramping con-
straints for the next period t + 1 enters the decision about production today. 
This interconnectedness of production levels and ramping constraints in 
different periods complicate the simultaneous solution to the dynamic multi-
period planning problem. 
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Hydraulically coupled hydropower 

For hydropower stations located along the same river, the release from 
upstream reservoirs ends up as inflows to downstream stations.1 This kind 
of coupling naturally reduces manoeuvrability of the system. One extreme 
situation is that downstream dams are fed only by upstream releases. The 
time lags involved in the couplings depend on the length of the time 
period. Choosing, e.g., one hour as a time period creates a lag structure of 
many periods being involved, while choosing a month may result in no 
lags at all. Focussing on hydraulically coupled stations only and assuming 
no lag (lags can straightforwardly introduced), the water balance equation 
for plant j may be written: 
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    The hydropower stations are sorted in ascending order going down-
stream, i.e., j = 0 is the most upstream station, NC the last station 
downstream, and (NC + 1) is the number of coupled stations, including the 
most upstream one. The reservoir accumulation equation for the first plant 
on the river is Rot ≤ Ro,t-1 + wot

H – eot
H. The assumption of no waste of water 

at the generation stage is maintained, making release equal to production. 
The inflow to plant j originates as a release at plant j – 1. It is straight-
forward to include additional current inflows independent of release from 
an upstream reservoir.  
    Introducing a group of coupled stations to the model (4.14) for 
independent plants the planning problem reads: 

                                                      
1 The situation is treated in Wood and Wollenberg (1984), but not in the detail 

attempted here. 

Concerning Hveding’s conjecture when both upper and lower production 
constraints and/or ramping constraints are present, the more constraints 
there are the more the manoeuvrability is reduced and the greater possibility 
for locking-in of water, and creating plant-specific water values, making 
the conjecture invalid. Simple summation of reservoirs and upper capacities 
may become too misleading in the face of such environmental constraints 
as introduced above. 
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The number of independent stations is now NI and coupled stations NC + 1, 
adding up to N plants. Power from the coupled stations is included in the 
energy balance. For convenience the index j is used also when pointing to 
a plant within the total group of plants in the last restrictions in common 
for both groups (dealing with the first plant on the river then requires 
special attention). 
    The Lagrangian function for the problem is, substituting for total 
consumption and setting ej-1,t

H = 0 for j = 0:  
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We are only interested in the necessary first-order conditions for the 
coupled stations since the conditions for independent plants have been 
dealt with previously: 
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The conditions for the independent stations remain the same as in (4.18). 
Notice that outputs from all independent plants also are added to form total 
supply in the demand function. There is only a need to consider two 
consecutive plants downstream at a time. The first condition in (4.33) 
shows the only change in the first-order conditions for coupled plants: the 
water value for the next downstream plant is added to the optimal price 
showing the value of processing water at plant j for time period t. Having 
the released water utilised one more time increases the water value of the 
upstream plant relative to the current optimal price. Assuming that all 
coupled plants are producing and that we have interior solutions for all of 
them implies that the water value for the last plant, NC, is equal to the 
optimal price for the period in question: 

0 1
( )

C I

C

N N
H H

t jt it N t
j i

p e e 
 

    (4.34)

For the next plant NC – 1 upstream the water value is, using (4.34): 
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For plant j the water value then becomes: 
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The water values upstream become greater than the optimal price because 
the same water can be utilised several times downstream. If there are time 
lags involved in the appearance of inflows downstream, the appropriate 
dating of the optimal prices will be reflected in the sum over prices in 
(4.36). 
    The question is how this situation will influence the optimal utilisation 
of the reservoirs. If upstream releases are the only inflows downstream, 
pure accumulation of water from the first period in the first plant means 
that production also stops at all down-stream plants assuming for 
convenience that the initial levels of the reservoirs are all zero. The water 
value at plant j = 0 must be higher (or equal to) NCpt for this to be optimal. 
The first reaction may be that this is highly improbable and the plant 
should never accumulate all inflows. But the situation of the coupled plant 
is really not different than for an independent plant, because any future 
optimal price will be inflated with the same factor when forming the water 
value. The shadow prices of coupled plants are not independent of the 
optimal price, but expressed as multiples. The shadow-price dynamics will 
be the same as for independent plants. The general storage philosophy will 
be the same for coupled plants; maximal water should be transferred to 
high-price periods. If there is not enough water to go around the first 
reservoir should be full and then in the natural priority order downstream. 
    It seems problematic for Hveding’s conjecture to work when there are 
hydraulic couplings between plants. The management problems with 
hydraulic couplings are the difficulties posed for the manoeuvring of the 
system as regards keeping within the reservoir constraints when there are 
production restrictions. A downstream plant not only has to know the 
release of the next upstream plant to determine its own release in order to 
avoid spilling, but spilling may be unavoidable if the downstream plant 
hits its production constraint. In the case of production constraints along 
the river this task becomes quite involved. Coupled plants can therefore 
not be treated as independent plants when working out an optimal 
management plan. This has a direct implication for the possibility of 
realising a social optimal plan using a decentralised market. 



Chapter 5. Mix of Thermal and Hydropower Plants 

Norway is unique in having almost only hydropower plants generating all 
the electricity. But other countries that rely to a high degree on hydro must 
have other forms of generating plants in a mix that varies from country to 
country. Norway participates in the international wholesale electricity 
market Nord Pool together with Denmark, Finland, and Sweden, where in 
2003 the hydro share was 46%, conventional thermal was 28%, nuclear 
power 24% (increasing when a new Finnish reactor is planned to come on 
stream in 2016, seven years behind the original schedule), and wind power 
2%. It is therefore of interest to include other forms of generation and to 
study how the running of such capacities interacts with the operation of 
hydropower plants. We will focus on the class of generators termed thermal 
plants. As mentioned in Chapter 1, the operational problem of hydropower 
plants with reservoirs is essentially a dynamic problem, while the running 
of thermal plants will mainly be a static problem. Hydro plants are usually 
energy constrained, while thermal plants are power-constrained. Thus the 
interaction may be of a special type.  
    The load curve for a yearly period is illustrated in Figure 1.3 in Chapter 1. 
With a mix of plants attention can be paid to the load curve when 
constructing thermal capacity. The design and choice of technology and 
scale can influence the relationship between fixed costs, overwhelmingly 
consisting of capital cost, and variable costs. It may be part of a cost-
efficient choice, considering both investment and operating costs, to use 
capacity with low investment cost per MW of total capacity, but with 
higher variable costs for peak periods. Similarly, capacity with low 
variable cost but higher investment costs may be cost-efficient as base 
load. The role as to peak load or base load use taken by various forms of 
generating capacities will be of special interest when hydro is involved. 

Thermal plants 

Thermal plants use fossil fuels as energy source, like coal, oil, gas, and 
wood, either to heat up water and using steam to run turbines, or directly 

© Springer Science+Business Media New York 2015

F.R. Førsund, Hydropower Economics, International Series in Operations

Research & Management Science 217, DOI 10.1007/978-1-4899-7519-5_5

105



106      Chapter 5. Mix of Thermal and Hydropower Plants 

steam for production purposes, like the pulp and paper industry, the steam 
may be used also to generate electricity as a joint product. There are other 
forms of co-generation, like at district heating plants. It is usual to include 
nuclear power plants among thermal plants. The heat created by the reactor 
is used to make steam that drives the turbines.  
    The environmental problems created by running thermal plants are 
widespread and serious, both on a regional scale and a global scale. Acid 
rain causes damage to vegetation of various types from forests to crops, to 
aquatic life, especially fish populations, corrosion on surfaces of buildings 
and respiratory health problems. The active components in the emissions 
are sulphur, nitrogen, and particles, all stemming from the primary energy 
input mainly through combustion. Global warming problems are mainly 
created by emissions of carbon dioxide. Nuclear power plants create 
insignificant emissions in normal running. The problems are long-run ones 
of creation of nuclear waste and the probability of operational accidents. 
Although the probability may be extremely low, the damage may also be 
extremely high as we saw after the Chernobyl and Fukushima accidents. 
    The short-run production function for thermal plants (may be exclusive 
of nuclear plants) may in a simple way be expressed by: 
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 (5.1)

Here eit
Th is production of electricity from thermal plant i, of a total of M 

plants, using primary energy input vector Eis,t, and labour input Lit. Both 
inputs have positive marginal productivities, but the labour input may have 
a zero marginal productivity impact if labour has the role of overseeing 
processes rather than doing activities directly related to the rate of 
production. The energy input indexed s may often be a single primary 
energy like coal, etc., or it may be a vector of several types at the same 
time. The emission vector, zip,t, is created as a by-product of the production 
of electricity, and is a function of the same inputs as for electricity. The 
pollutant index p may run over sulphur, nitrogen, particles, etc. The uses of 
the primary energy inputs give rise to one or several pollutants. These 
forms of production relations are termed factorially determined multi-
output production in Frisch (1965) (see Førsund (2009) for a utilisation of 
this model within environmental economics).  

 

such as combustion technologies developed for gas. In industries using 
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    Capital is not shown as a factor of production in (5.1), but incorporated 
in the functional form since capital is given in the short run. We do not 
bother to introduce capacity limits on production here, but return to this 
when introducing the corresponding cost function. The technologies may 
depend on time, as indicated by the time subscripts on the production 
functions. If technology is disembodied technical change may occur 
smoothly over time. In the case of embodied technical change investments 
are needed to influence the technology of the short-run functions (Johansen, 
1972; Førsund and Hjalmarsson, 1987). 
    Abatement possibilities are not specified explicitly, but we may expand 
labour to be of two categories, production workers and abatement workers, 
and thus model abatement, assuming ∂gip,t/∂Lit < 0 for abatement workers 
and zero marginal productivity in the g(.) function for production workers, 
and correspondingly, in the production function for electricity the marginal 
productivity for abatement workers is zero, while it is positive for 
production workers. The choice of a production technology f(.) may dictate 
the emission technology g(.), e.g., in such a way that a more expensive 
technology to run implies an emission technology generating less 
emissions for a given amount of primary energy, thus the choice of 
technology is also an abatement decision. 
    To serve our purpose of studying the interaction with hydro, the other 
forms of generation are not studied in detail. Furthermore, we will not 
pursue the emission theme, but just point out how the emissions can be 
taken into consideration generating electricity from different types of 
generators.  
    We will use short-run variable cost functions as functions of electricity 
output with given explicit capacity limits in the short run. The cost function 
is derived in the standard way of minimising outlays on variable inputs for 
a given level of electricity output, and subject to environmental regulation: 
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where qis,t is the price of primary energy input s and ωit the unit labour 
cost. Environmental aspects may be taken care of by imposing an upper 
level of emissions ,ip tz from each plant as done in (5.2), and/or by introduc-
ing technology standards (not shown explicitly). The standard assumptions 
from economic cost analysis will be entertained, although a more detailed 
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insight may reveal deviations from textbook assumptions of smooth 
convex functions. A special feature of start-up costs will be discussed 
briefly later. What is of especial interest is that start-up, and also closedown 
costs, make the detailed running of thermal plants a dynamic problem. 
    Building on the solution of problem (5.2), a plant-specific variable cost 
function for the generation of electricity based on thermal energy sources 
is introduced. Each plant has an upper capacity, Th

ite , for generation that 
can be changed only by investments. The concept of a given capacity is 
not necessarily uniquely defined in practice, but here it will mean the 
capacity at a normal operating situation of the station, i.e., it may be 
possible to squeeze more out of the plant in the short run, but up to a level 
that is not sustainable without breakdowns in a longer perspective.  
    For simplicity the cost functions are not dated, but the cost function may 
in the real world change between periods in the relatively short run due to 
changing primary fuel prices. Fuels may be more expensive in a high-
demand season, or be subject to a price drift over time, and technology 
may also change over time due to technical change, or due to a change in 
environmental policy, e.g., changing the upper levels on emissions speci-
fied in (5.2). For simplicity we keep factor prices and technology constant: 
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In contrast to these standard economic textbook assumptions, a plant may 
be designed to have the smallest average, and maybe also marginal, cost at 
close to full capacity utilisation; i.e., marginal cost, as well as average 
variable cost, is decreasing up to normal capacity. This shape of the 
variable cost function may explain why a conventional thermal unit may 
be closed down when its capacity utilisation rate drops below 40% as is 
often stated by engineers. Such possibilities are disregarded here and a 
standard assumption of increasing marginal cost will be entertained. We 
disregard, for the time being, also costs of ramping up or down plants, and 
especially going from a cold to a spinning state. A plant in a spinning state 
is producing below the capacity, maybe down to zero, but the production 
can increase fairly fast.  
    The case of linear, but different cost functions is illustrated in Figure 5.1. 
The arrows marked 1, 2, and 3 represent three total variable cost functions 
with different marginal costs. The base-load cost function 1 is the cheapest 
to run per unit of output, then comes the shoulder capacity 2 and last the 
most expensive peak-load capacity 3. (Remember that investment costs  
per unit of maximal capacity Th

ie are not shown.) The capacity limits of  

the three technologies are indicated on the horizontal axis. Running each 
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Figure 5.1. Linear total variable cost functions. 
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The corresponding Lagrangian function (converting the problem to one of 
maximisation to ease the comparison with the set-up in Sydsæter et al., 
2005), is  
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activity in a cost-efficient way results in the region of possible cost output 
combinations for the three units shown by the faceted “diamond” ABCDA 
going counter-clockwise. Obviously the curve ABCD describes the least-
cost way of using the capacities, and the maximum output is defined  
as 
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    The least cost combination of thermal plants, satisfying a total generating 
requirement of et

Th for each period, is found by solving the following 
problem: 
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 (5.5)

The necessary first-order conditions are: 
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    A concave objective function and convex constraints in (5.5) are 
sufficient conditions for a maximum. Notice that the more realistic 
functional forms for short-run cost functions mentioned above would 
violate the concavity of the objective function. (However, in the case of 
falling marginal cost curves there may be a unique solution running all but 
one plant at maximal capacity if the marginal cost curves do not intersect.) 
A plant will not be used in period t if the marginal cost is greater than the 
shadow price on the total production requirement. Since it is not used, the 
shadow price on its capacity constraint is zero, according to the last 
complementary slackness condition in (5.6). Plants in use will face the 
same marginal costs as long as the shadow prices on the capacity 
constraints remain zero. At total production requirement, just exhausting 
the capacity of a plant, the shadow price on the capacity constraint 
typically becomes positive. The marginal cost of this plant is then the 
difference between the shadow price on the total production requirement 
constraint and the shadow price on the capacity constraint. A marginal 
increase in the production requirement necessitates the use of a more 
expensive unit, while an expansion of the capacity of the constraining unit 
keep us at this unit’s level of marginal cost. For plants in use rearranging 
the first condition in (5.6) yields: 

( ) ( )Th Th
i i i i i tc e c e          (5.7)

where the index i' belongs to fully utilised plants and i'' to partially utilised 
plants. For each level of total generation we get a set of plants producing 
positive output and a set being idle, according to the marginal cost levels. 
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If the range of variation in the marginal costs for each plant is sufficiently 
small so that no interval is overlapping, all but one plant will be utilised to 
full capacity, and there will be a single marginal unit partially utilised. The 
most expensive plant in use will then as a rule produce below the capacity 
limit, while all other plants in use are fully utilised. A merit-order ranking 
in this situation means that the cost function for the thermal sector can be 
arranged starting with the unit with the lowest marginal cost (i.e., highest 
shadow price on the capacity constraint) at full capacity up to the marginal 
unit. 

    We can perform a merit order ranking of the active units according  
to average variable costs at full capacity utilisation. This ranking will  
xxx  

 
Figure 5.2. Marginal costs and merit order. 
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    This situation may be illustrated as in Figure 5.2 based on the linear 
total variable cost functions portrayed in Figure 5.1. The marginal costs 
functions are straight lines, and the locations of base, shoulder and peak 
load are indicated by the numbering 1, 2, and 3. The capacities are 
indicated on the horizontal axis. In addition to the individual short-run 
marginal cost curves, a step-curve denoted AA'BB'CD is shown, corres-
ponding to the total piecewise linear cost curve ABCD in Figure 5.1. This 
is the supply curve of the thermal sector. Two levels of total production  
are shown, one level coinciding with the capacity limit of plant 1, and a 
second level indicated by the vertical broken line on the horizontal axis. In 
the first situation the production capacity of plant 1 is just exhausted, so 
the marginal cost of plant 1 is equal to the difference between the shadow 
price on the production requirement constraint and the capacity constraint. 
In the second situation the marginal cost of plant 3 is equal to the shadow 
price on the production requirement constraint.  
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correspond to the general supply curve of the thermal sector in the situation 
of variable and falling marginal costs up to the capacity limit under the 
assumption that the intervals for the marginal costs curves do not overlap. 
In other more complex cases the supply curve may be unique to each total 
output requirement in the sense that a merit order ranking may change the 
set and order of plants from one total level to another. In the situation of 
linear variable cost curves, applying the optimal conditions leads to the total 
variable cost curve ABCD being the least cost solution to problem (5.4).  
    If a merit-order ranking of individual thermal plants is unique we may 
then aggregate over individual plants by using this ranking as the sector’s 

1
( ), ' 0, '' 0,

N
Th Th Th Th

t t t it
i

c c e c c e e e


      (5.8)

represented by (5.8). In order to represent the realistic situation that the 
marginal costs of the least expensive plant is positive, as in Figures 5.1 and 
5.2, we will assume that c'(0) > 0. The various types of capacities may then 
be defined by delimitating relevant parts of the marginal cost curve, as 
illustrated in Figure 5.3 based on smoothing the step-curve in Figure 5.2 
by fitting a marginal cost curve c'c'.  
    The merit-order ranking leading to the aggregate supply curve for thermal 
capacity may be regarded as the analogue to Hveding’s conjecture for 
aggregating individual hydropower plants. 

 
Figure 5.3. Aggregation of marginal cost curves. 
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supply curve. It may formally be approximated by postulating a relation-
ship between total output and total costs: 

In the case of linear variable cost functions the sequence of individual 
cost curves can be simplified or approximated by a smooth function 
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    The emissions from thermal generation are expressed in (5.2). 
Environmental policy may influence the merit-order ranking. One way of 
seeing this is to introduce emissions in problem (5.4). In order to simplify 
we only look at one type of emission and connect its level to the output 
level at a plant. The least-cost combination of plants with a total emission 
constraint is then found by solving the following problem: 
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 (5.9)

The single type of emission is zit, and an environmental objective, tz , is 
introduced for the sector. The objective may vary with period, e.g., 
emission constraints being lower in winter time than summer time, or vice 
versa depending on climatic conditions, occurrence of air inversions, etc. 
The emission from each plant is connected to the production level by 

( ), 0, 1,..,Th
it it it itz g e g i M    (5.10)

which represents a simplification of the Frisch (1965) multi-output 
production model in (5.2). Substituting for emissions using (5.10) the 
Lagrangian function is: 
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The necessary first-order conditions are: 
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    Looking at plant in use the first condition in (5.12) can be written, 
analogously with (5.7): 

( ) ( )Th Th
i t i i t i i t i tc e g c e g                 (5.13)

Both plants that are fully used and partially used get an additional cost 
term reflecting the environmental policy, assuming that the environmental 
constraint is binding with a positive shadow price. This term is dependent 
on the individual unit, and therefore this term will in general influence the 
merit-order ranking and may result in a different ranking than the one 
depending only on production costs. 

Optimal solution of mixed hydro and thermal capacity 

In the case of an aggregate hydro sector we introduce thermal capacity 
modelled by the aggregate variable cost relation (5.8). The basic hydro 
model (2.4) in Chapter 2 without constraints on reservoirs, but only a 
constraint on total availability of water, is adopted. However, as stated in 
Chapter 2, this does not mean that we have to assume all inflows arriving 
in the first period. We saw in Chapter 3 in the case of specifying the 
reservoir accumulation dynamics and introducing a reservoir constraint, 
that if the upper and lower constraints are never reached, then the price 
will be the same for all periods. This means that under such circumstances 
we can specify a total water constraint and drop to show the reservoir 
accumulation equation and upper reservoir constraint. The general 
objective function (3.1) is used maximising consumer plus producer 
surplus as in problem (3.3) in Chapter 3. We assume that it does not matter 
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, 1,..,H Th
t t tx e e t T    (5.14)

When setting up the consumer plus producer surplus the cost function for 
the thermal sector must now be deducted when expressing this surplus.   
    The optimisation problem faced by a system planner is: 
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Inserting the energy balance the Lagrangian function is: 
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The necessary conditions are: 
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how electricity is generated, i.e., the willingness to pay is the same for the 
two types of generation (no “green” preferences). The energy balance  
in consumption xt and total production describing the physical electric 
equilibrium is then: 
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    Assuming that electricity must be produced in all periods we must then 
in each period either activate hydro or thermal, or both. Thermal will not 
be used for periods when 

'(0)c   (5.18)

If the marginal cost curve starts at values greater than the water value, then 
thermal is not used. According to the last complementary slackness 
condition in (5.12) θt = 0 when etTh = 0.  
    Combining the conditions in (5.17) hydro will not be used in periods 
when 

( ) '( )Th
t t t tp x c e      (5.19)

The shadow price on thermal capacity is positive only if the capacity is 
exhausted. If the optimal price is less than the water value then the water is 
saved to a period with a higher price. For a small enough share of hydro 
capacity of total capacity it may happen that hydro is used only in one 
period, the period with the highest price. Hydro may then become the 
typical peak-capacity power.  
    For periods where both hydro and thermal is used we have: 

( ) ( )Th
t t t tp x c e     (5.20)

In a situation with no period with a binding reservoir constraint and 
assuming that hydro will be used in every period the price will be constant 
for all periods. 
    Regarding the concepts base load and peak load it has been argued in 
Norway that investments should be made in thermal capacity to serve as 
peak load. On the other hand, a standard argument for a mixed hydro and 
thermal system is that hydro should be used as peak load because of its 
flexibility. Our analysis shows that without binding reservoir constraints, 
thermal capacity may be regarded as base load because it will be used at 
constant capacity (up to and including the maximal capacity) for all periods 
when hydro is also used, while the use of hydro will follow any shift of the 
demand over the periods. For periods that hydro is not in use the optimal 
price level must then be lower than the water value, implying that less 
thermal capacity will be used in such periods. In such a setting thermal 
capacity appears as base-load capacity and hydro as peak-load capacity.  



Optimal solution of mixed hydro and thermal capacity      117 

 

 
Figure 5.4. Hydro and thermal. Social optimum. 

But such delimitation is rather crude when we operate with aggregate 
capacities. The concepts of peak and base load are more fruitfully applied 
at a disaggregated level showing individual generators.  
   An illustration for one period of the use of the two technologies is shown 
in Figure 5.4. The marginal cost curve, c'c', for thermal capacity starts at C 
and ends at the full capacity value, The . Assuming  to be the water value, 
the optimal solution for the optimal price is at level B equal to the shadow 
price of water, and a thermal contribution of Bb = eTh and a hydro 
contribution of bB' = eH. If we assume that the figure is representing just 
one of many periods it is meaningful to introduce two alternative water 
values by the dotted horizontal lines at levels C and A. For water values 
from levels A to A' the full capacity of thermal units will be utilised. For 
water values higher than at level A' only thermal capacity will be used. 
(Since we have the amount of water W to use up this situation cannot apply 
to all periods.) For water values lower than at level C no thermal capacity 
will be used. In a multi-period setting with identical demand functions and 
average availability of water being bB' the one period solution shown in 
the figure will be repeated each period.  
    For two periods we may expand the bathtub diagram to illustrate the 
allocation of the two types of power on the two periods. In Figure 5.5 the 
length of the bathtub AD is extended (analogous to the procedure in Figure 3.9 
in Chapter 3) at each end with the thermal capacity. Dotted lines indicate 
the situation without thermal capacity. The demand curves after introduction 
of thermal capacity are anchored at the solid thermal “walls,” i.e., horizontal 
shifts to the left, respectively right, for period 1 and 2. The marginal cost  
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Figure 5.5. Energy bathtub with thermal-extended walls of the hydro bathtub. 
Solution with pure hydro shown by dotted lines. 

curve of thermal capacity is anchored at the broken hydro wall at c'(0) to 
the left for period 1 and to the right for period 2. We assume the same cost 
curve for the two periods. The short vertical line at the end of the cost 
curves indicates the capacity limit. Using the result (5.20), we have that the 
thermal extension of the bathtub is equal at each end; with A'A in period 1 
and DD' in period 2 and A'A = DD'. The equilibrium allocation is at point 
M, resulting in an allocation of A'A thermal and AM hydro in period 1, and 
MD hydro and DD' thermal in period 2 to the same optimal price, p1 = p2. 
In our example the allocation with thermal capacity results in less hydro 
used in period 2 when thermal capacity is also available, indicated by the 
allocation points M' and M for the situation without and with thermal 
capacity, respectively. The reason is that the demand in period 2 is more 
inelastic than for period 1. When introducing equal supply of thermal 
electricity in both periods in addition to hydro, the demand in period 1 
increases more than the demand in period 2, because the demand in period 
1 is more elastic than in period 2, leading to a decreased share of hydro in 
period 2. Changing the allocation on the two periods from M' to M we 
have that, since the shadow price for water and thereby the price becomes 
lower, the total electricity consumption increases in both periods.  
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Introducing a reservoir constraint 

Introducing a reservoir constraint into problem (5.15) yields the following 
optimisation problem: 

1 0

1

max [ ( ) ( )]

subject to

, , , 0, 1,..,

, , , , given, free

txT
Th

t t
t z

H Th
t t t

H
t t t t

t

Th Th
t

H Th
t t t t

Th
t o T

p z dz c e

x e e

R R w e

R R

e e

x e e R t T

T w R R e R

 





 

  





 

 

 (5.21)

The total hydro supply condition in (5.15) is replaced by the second and 
third condition in (5.21) showing the dynamics of water storage and the 
upper constraint on total storage. A constraint on hydro production 
capacity is not introduced here, but will be in the next section. 
    Inserting the energy balance the Lagrangian function is: 
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 (5.22)

The necessary first-order conditions are: 

( ) 0 ( 0 for 0)

( ) '( ) 0 ( 0 for 0)

H Th H
t t t t tH

t

H Th Th Th
t t t t t tTh

t

L
p e e e

e

L
p e e c e e

e






     




      



 



120      Chapter 5. Mix of Thermal and Hydropower Plants 

1

1

0 ( 0 for 0)

0 ( 0 for )
0 ( 0 for )

0 ( 0 for ) , 1,..,

t t t t
t

H
t t t t t

t t

Th Th
t t

L
R

R

R R w e

R R

e e t T

  












      



    

  

   

 
(5.23)

Regarding combining hydro and thermal we will now have as a general 
rule that the water value is period specific in the first condition, implying 
that thermal capacity may vary between periods when both hydro and 
thermal capacities are used. From the second condition in (5.23) we have 
that the use of thermal capacity, when it is positive, but less than full 
capacity, is determined by equalisation of marginal costs and optimal 
price. The optimal price is equal to the water value for the period in 
question if hydro is used also. When the price varies due to threats of 
overflow and reservoir constraints being binding, as expanded upon in 
Chapter 3, then the use of thermal will vary with more capacity being used 
the higher the price, and thus a peak-load role follows also for thermal. 
    A possible situation is illustrated in Figure 5.6. The figure is built up in 
the same way as Figure 5.5. The total hydro capacity is AD with inflow 
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Figure 5.6. Thermal and hydro with reservoir constraint.  
Solution with pure hydro shown by thin dotted lines. 
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AC in period 1 and CD in period 2 and storage capacity is BC. The demand 
curves within the hydro bathtub without thermal capacity are indicated by 
thin dotted lines. The configuration of the demand curves is such that 
maximal water is transferred to period 2, and the price difference between 
the periods is considerable with hydro only, as indicated by the thin dotted 
horizontal hypothetical price lines to the hydro walls from the intersection 
points with the dotted demand curves and the vertical broken line erected 
in B. After introducing thermal capacity the maximal amount is still stored 
in period 1 for use in period 2. This means that the water allocation is 
unchanged between the periods. Since thermal capacity is not utilised to its 
maximum in any of the two periods the period water value should be set 
equal to the marginal thermal costs. This implies that less thermal capacity, 
A'A, is used in period 1 with the lowest water value, and more thermal 
capacity, DD', is taken into use in the second period. We can say that the 
thermal capacity in period 1 is base load, and that the increase in output in 
period 2 is peak load. The price difference after introducing thermal 
capacity is considerably smaller (and, of course, both period prices are 
lower due to increased electricity supply). Other possible configurations of 
the optimal social solution in the multiperiod case may follow the 
discussion in Chapter 3. 

Optimal mix of hydro and thermal plants 

The previous section has been based on aggregated supply both from 
hydropower and thermal plants. But discussing the issue of peak load and 
base load is a little crude based on aggregate supply for hydro and thermal 
plants. Whether capacity serves peak or base load is a question characterising 
individual plants. We will investigate this topic by combining the multi-
plant hydropower model of Chapter 4 with individual thermal plants.  
In addition to reservoir constraints, production constraints will also be 
specified for the hydropower plants, paralleling the treatment of thermal 
capacities. 
    The planning problem becomes: 
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(5.24)

The first constraint is the energy balance adding up supply both from 
hydro and thermal plants. As mentioned in Chapters 3 and 4, the two last 
production constraints in (5.24) may also be interpreted as power 
constraints. This is a more common practice for thermal plants. As noted 
earlier, the equivalence between production and power constraints here is 
due to the basic assumption of using power at a constant rate during the 
length of time period chosen.  
    Following our procedure of substituting for total consumption from the 
energy balance the Lagrangian for problem (5.24) becomes: 
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The first-order necessary conditions are: 
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As mentioned before, the thermal cost functions must be well behaved, and 
start-up costs disregarded for standard sufficiency conditions of concavity 
to apply.  
    The qualitative discussion of management of single hydropower plants 
in Chapter 4 is valid also for combined hydro and thermal plants. The 
water values may become plant specific and optimal prices may change 
between periods, not only due to the dynamics of reservoir-related shadow 
prices, but also due to the interaction between production, including 
production from thermal plants, and aggregate demand. The management 
of thermal plants naturally does not involve explicitly the dynamic 
equation of the movement of reservoir-related shadow prices as shown in 
the second condition in (5.26). The running of thermal plants follows 
straightforwardly from the third condition in (5.26). Plants should not 
produce in periods where marginal cost at zero production exceeds the 
period price: 

1 1
( ) (0), 1,..,

N M
H Th

t jt kt i
j k

p e e c t T
 

     (5.27)

Since the price is of crucial importance for whether a plant is operated or 
not, it would be tempting to associate peak load plants with high prices and 
base load plants with low prices. Let us first have a look at how prices co-
vary with load. Figure 5.7 shows the development of hourly prices for 
Norway in 2012 when the hours are sorted from left to right according to 
the load curve Figure 1.3 in Chapter 1. It is a tendency for prices to be 
higher at peak load and get smaller toward the shoulder and base load part 
of the load curve, although the variation along the curve of the average 
level is large. The typical variation between hours on the shoulder in the 
middle of the hours is about 10 EUR/MWh or a variation of 30%. This 
may be a surprisingly high variation of prices, but the hours may represent 
XXXXXXXXXXX 
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Figure 5.7. Hourly prices along the load-duration curve shown in Figure 1.3.  

Norway 2012. 
 
any time of the year and day. However, there is a tendency for price spikes 
to occur along the first half of the distribution of the highest load, and price 
troughs to occur along the latter half of the load-curve distribution. The 
highest price spike represents the 100 highest load, and of the 10 highest 
prices seven prices are in the morning hours between 0700 and 0900 hours, 
and three prices are between 1700 and 1800 hours in the afternoon. All the 
high-price incidents occur in wintertime. July hours dominate the low 
prices during night-time. It is probably due to the impact of unregulated 
hydropower (see Figure 3.8 in Chapter 3). 
    Base-load plants are by a strict definition utilised in all periods. 
Considering thermal plants the third condition in (5.26) tells us that for 
base plants u being fully utilised and v being partly utilised in period t we 
have: 
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Here B is the set of base load plants in period t. If a plant, u, is utilised to 
its production capacity Th

ue  in period t, then the capacity shadow price 
typically becomes positive. Another plant, v, may not reach its capacity in 
period t and its shadow price therefore remains zero. Both types face the 
same optimal price for period t. The sets of thermal plants fulfilling one of 
the two situations in period t is Ut and Vt and the total set of base load 



Optimal mix of hydro and thermal plants      125 

plants in period t is Bt. Thermal plants fulfilling one of the two conditions 
in (5.28) (either being utilised below or at the capacity limit) for all time 
periods will be defined as base-load plants. A looser definition of base-
load plants would be to focus on the share of time during a year that a 
plant delivers at the different segments of the load curve. A lower limit for 
inclusion in the category base load can be 50%. The water value may 
become so low that no thermal plants are operated all the time. Nuclear 
plants may be operated even in periods with water values lower than 
marginal costs because of high start-up and closing-down costs. Nuclear 
plants are therefore always run as base plants and are down only for 
scheduled (or unscheduled) service. 
    Peak-load thermal plants obey the same conditions (5.28) when they are 
operated. By definition base load plants are also run at peak-load periods. 
What distinguishes peak-load plants is that they are idle in other hours. 
Peak periods occur as only a certain fraction of total yearly hours. To 
classify a plant as a peak plant we have to delimit peak periods. We could 
go for a fraction of the periods with highest load, say, 20%, or we could 
use a fraction the period demand is over base load. If the set of peak-load 
hours is PT, then plants are defined as peak load when the following 
conditions are fulfilled: 
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 (5.29)

As for base load this definition could be weakened by allowing a peak 
plant to operate outside peak-load hours, but demand that the fraction of 
yearly output produced in peak periods should be, e.g., above 50%.  
    Shoulder load could be defined in a similar way as done in (5.29) for 
peak-load, but this category is usually not so much in focus, so this is left 
to the reader. 
    Figure 5.2 in the first section of the chapter illustrated the role of 
marginal costs in defining base and peak load plants. In the second section 
Figure 5.5 illustrated that more thermal capacity is used the higher the 
price. By operating with individual plants the location of them along an 
aggregated supply curve can be identified and the classification of base 
and peak load plants be made operational.  
    Since the key characteristic of hydropower plants is that they do not 
have variable costs, classifications into base and peak load may not be so 
interesting. The water values for hydro base loads plants do not have to be 
equal to the marginal costs of base load thermal plants, but the shadow 
prices on production capacities and water must adjust such that the 
respective sums add up to the optimal price for each period. Combining the 
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first and the third condition in (5.26) assuming positive amounts of both 
hydro and thermal yields: 

( ) , , , 1,...,Th
jt jt i it it tc e p i j B t T        , (5.30)

where the index j denotes hydro plants and index i thermal ones. While 
thermal marginal costs are technically given at the capacity limits the 
water values are determined in the process of finding the optimal solution 
to the planning problem. The management principle for hydropower 
plants, as expanded upon in Chapter 4, is to save as much water as possible 
to high price periods in order to maximise value creation. Hydro plants 
will not be used if the water value is higher than the current price. Then 
water will be accumulated for use in later higher-price periods taking 
production and reservoir constraints into due consideration. Plants with 
smaller storage capacities and/or more abundant inflows will tend to be 
producing in more periods than plants with large storage capacities. The 
reservoirs of these latter plants will typically be utilised during high-price 
periods. This is the role of plants in Norway with capacity to store several 
years with average inflows. But such plants may also produce in other 
periods due to performing the balancing act between inflows, reservoir and 
production capacity. 

A dynamic thermal problem 

As mentioned earlier, there are in practice adjustment costs associated with 
thermal plants. Structures and water must be warmed up and steam 
pressure built up before electricity production can take place if starting 
from a cold state. A start-up from a cold state may use other more costly 
energy-rich fuels than the ones used in a producing mode. A thermal 
station is in a spinning state when it is ready to produce, but still does not 
do so. This state also entails a cost, mainly in the form of burning of 
primary energy. We should also be aware of the fact that it may be 
technical problems with starting from spinning and produce just a marginal 
amount of electricity. Engineering information indicates that a plant has to 
be taken straight into a certain amount of the share of maximal output, 
maybe 1/4. (This may also be due to a concave marginal cost function.) 
When turning off a plant this operation in itself may entail some energy or 
labour cost, but most of the cost consists of loss of heat from warm 
structures and water. It will take some time before a plant is back to a cold 
state. Managing the plant taking these events into consideration implies 
that a dynamic problem must be solved. It does not seem to be so 
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meaningful to pose these adjustment problems for the aggregate supply as 
captured by the cost function (5.8). It may be more relevant to face the 
problem at a plant level. But this also depends on the length of time period 
considered, hours within a day, days, weeks, etc. 
    We will develop a very simple example based on linear total cost 
functions as shown in Figure 5.2. Three plants are involved, representing 
peak, shoulder and base capacity. We will study these plants as if they 
operate in a “market,” i.e., the period prices within a complex system also 
including hydropower generation come out as solutions to a social 
planning problem. Furthermore, the operation of these three plants does 
not influence the optimal price values. Three periods only are considered 
and the period price fluctuates between two values. The periods may be 
thought of as daytime and night-time. Figure 3.3 in Chapter 3 showed that 
the main variation in prices is between daytime and night-time levels. The 
problem is set up in such a way that it is a question only about whether to 
close down the peak load capacity in period 2 (night time) or not. It is clear 
that base and shoulder capacity should be run at full capacity for all the 
three periods. The start-up costs of the period before the first period are 
neglected. The situation is portrayed in Figure 5.8. The step-curve b1b2b3 is 
the supply curve and the capacities of each technology are indicated on the 
horizontal axis. The price fluctuates from the value of the upper price line 
in period 1 (day-time) to the value of the lower price line in period 2 (night 
time) and back again in period 3. The adopted cost functions (5.3) are: 
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where ai is the start-up cost of plant i incurred if the plant is switched off in 
a period and wants to start up again in the next (or a later) period. It is 
assumed that stopping at the end of period 1 and starting up at the 
beginning of period 3 is technically feasible. The time variations of the 
heat loss and spinning-state costs are neglected. The peak load plant 3 
incurs an operating loss in period 2 if it is running equal to the lower 
marked area in the figure. The start-up cost if the plant is shut down is the 
area a3 marked as the sum of the two dotted areas in the figure. The partial 
management problem for the social planner is to inspect the best action of 
either temporarily shutting down plant 3 in period 2 and then start it up for 
period 3, or to let the plant run in period 2 and incur a loss, but to avoid 
facing start-up costs in period 3. Notice that the close-down decision and 
the start-up decision must be taken simultaneously. The optimal decision 
depends on the size of the start-up costs and the profit in period 3 under the 
alternatives. If the start-up cost is greater than the loss incurred by having 
the plant running in period 2, then it cannot be optimal to shut it down in 
period 2 and start it up again in period 3. But the condition to keep it 
running is that the profit made in period 3 is greater than the loss incurred 
in period 2. The conditions for choosing to run plant 3 with a loss in period 
2, and then continue to run it in period 3 are: 

3 2 3 3

2 3
3 3 3 2 3 2 3 3

,

( ) 2 0
2

Tha p b e

p p
p b b p p p b b

 


        

 (5.32)

The expression on the right-hand side of the first condition is the absolute 
value of the operating loss and is the lower marked rectangle in Figure 5.8. 
The condition is clearly fulfilled in the figure. The second condition 
requires that it is profitable to run the unit in period 3, i.e., the operating 
surplus in period 3 must be able to absorb the loss in period 2. This is 
fulfilled if the average price of the two periods is higher than the marginal 
cost, which is the case in the figure.  
    If the start-up cost is less than the operating loss in period 2, then the 
plant should be closed down in period 2 (i.e., not be running) and started 
up again in period 3, provided the operating surplus can also absorb the 
start-up costs: 

3 2 3 3 3 3 3 3, ( ) 0Th Tha p b e p b e a      (5.33)

If the number of periods is increased, if a plant is stopped, then it may be 
reactivated the first period the price is higher than marginal costs, although 
the whole start-up cost does not need to be recouped in this period if there 
are enough successive periods with positive quasi-rent to recover the start-
up cost.  
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    It may well be that so many thermal plants are involved in adjustments 
described above that the optimal prices may be influenced in the planning 
problem. In the case the planner finds that plants should produce although 
they are incurring losses, the equilibrium price will be influenced 
downwards, and in the case of closing down temporarily there may be an 
upward pressure on prices in succeeding periods until the (generalised) 
second condition in (5.33) is met.  
    If the time period definition is not too aggregated spinning costs are 
typically lower than start-up costs. However, if the optimal decision is to 
close down the peak plant without considering spinning, then spinning will 
not be an alternative if the plant can be started up immediately in the next 
period. If this assumption is changed the situation may become different. It 
may be realistic that it takes some time to plan and prepare for activating a 
plant from a cold state. If this fact should be modelled depends on the 
length of the time period in question. Let us assume that it takes two 
periods to start up again from a cold state, but that starting to produce from 
spinning is immediate, per definition. Then if we look at more periods than 
three as in the example above, and furthermore assume that prices after the 
second period, where there is an operational loss, allows operational 
surplus, then spinning in the second period may become optimal. Closing 
down the plant implies that the positive quasi-rent in the third period is 
lost, since it takes two periods to reopen the plant. The condition for 
spinning is: 
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Here s3 is the spinning costs of plant 3. If periods after period 4 are all 
surplus periods, then they cancel out in the calculation above. If spinning 
costs are lower than start-up costs, then in this situation spinning will 
always be preferred. If we change the assumption of positive operating 
surplus in period 3, but maintain positive surplus in period 4 and later 
periods, then the condition for spinning being optimal is: 
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    It can now happen that is more profitable to close down a plant rather 
than keeping it spinning, depending on whether the spinning cost is more 
than half the start-up cost. It is straightforward to introduce other assump-
tions about the length of the start-up lag and profile of the operating 
surplus. 



Chapter 6. Trade 

We can think about physical trade in electricity at two levels of aggregation: 
between countries and between regions within a country. Starting with the 
latter level the models with individual plants in Chapter 4 are examples. 
However, the trade flows were not specified there. This is not so conveniently 
done operating without an explicit transmission system. A transmission 
system is introduced in Chapter 10. In order to study trade between two 
countries a single interconnector only will be assumed. The aggregate treat-
ment of the hydropower sector can then be maintained and the analysis can 
be conducted without specifying transmission and still bring out some 
main points.  
    As pointed out in Chapter 1, isolating a country from trade in electricity 
creates a country-specific price that may influence the structure of industry 
and, e.g., choice of space-heating technology. This has been the case for 
Norway developing a huge metal smelting industry after World War II, 
also in an international context, and basing a significant share of space 
heating on direct use of electricity. It is therefore of interest to study what 
happens with the price formation at home when borders are opened up for 
trade in electricity. There is a common international market, Nord Pool, 
between the Nordic countries since 1996, and international trade now takes 
place between many European countries on a bilateral basis, e.g., France – 
England, France – Italy (Italy imports about 20% of its electricity), etc. 
The energy policy of the European Union is encouraging a gradual expansion 
of cross-border trading and integration of electricity markets (Jamasb and 
Pollit, 2005).  

Unconstrained trade 

Introducing trade means that we introduce a second good, money, into our 
model country in addition to electricity. We will simplify by just adding 
(subtracting) the export (import) in money to (from) the area under the 
demand curve for electricity, implying that in the background we assume 
utility functions separable in electricity and money (an aggregate for all 
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other goods). We will start by assuming only hydropower in the home 
country. The objective function will then be the sum over the periods of 
consumer and producer surplus, which in our case for electricity will be 
the gross area under the demand curve since we have assumed zero pro-
duction cost (only water value counts), and for money there is just the 
amount: positive for exports and negative for import. Our model is partial, 
so we have no constraint on the balance of trade in electricity. It may well 
be an optimal solution to import for more than we earn in export provided 
the increase in the area under the demand curves more than compensates 
for an eventual deficit on the electricity trade. We are not concerned about 
balance of trade for the total economy that may be implicitly assumed in 
the background. 
    The country energy balance now involves export and import: 

, 1,..,H XI
t t tx e e t T    (6.1)

The variable et
XI is net export or import and is positive if we have export 

and negative if we have import. We assume that in one period we can only 
have either export or import, or both can be zero. There is no restriction to 
have balance of trade in electricity, as mentioned above. 
    The social planning problem studied first is how to manage hydropower 
resources when a country has access to unlimited trade in electricity to 
given prices, and reservoir limits and other constraints on transmission and 
production are disregarded: 
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The transmission system is still not shown explicitly. It is assumed that 
there is enough transmission capacity for the trade volumes in question. 
We could assume a certain fixed cost per unit transmitted, but this will not 
change our analysis, so we will assume that the import price is equal to the 
export price. These prices are given and not influenced by actions of our 
country. In the last section models are developed in which export/import 
prices are endogenously determined. 
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    Substituting for total consumption from the energy balance in the 
objective function, the Lagrangian becomes: 
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The necessary first-order conditions are: 
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 (6.4)

It is quite reasonable to assume that electricity is provided to our country 
in every period; xt > 0 for all t = 1,…,T. This means that in export periods 
hydro is also used for home consumption and the first condition in (6.4) 
holds with equality. The second condition holds as an equality since there 
is no restriction on the sign of et

XI. The condition states that the 
export/import prices will be completely adopted as domestic prices. With 
no restriction on transmission or storage of water an important conclusion 
for prices is immediately that the foreign price regime will be adopted as 
the home country price regime. 
    Now, since the shadow price on water is without period subscript we 
can have only one export period if we make the assumption that all the 
export/import prices are different. The shadow price on water is, via the 
second condition in (6.4), set equal to this maximum price: 

 1,..,max XI
t T tp   (6.5)

But notice that we do not necessarily use hydropower in all periods. If the 
price in the home market is less than the shadow price λ on water, no water 
shall be used for hydropower production in that period; we just import. 
Without any constraint on the possibility to store water the model is thus 
rather extreme because we will only export in one period, the period with 
the highest export price, and import in all other remaining T – 1 periods to 
the going import price.  
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    The total export will be: 
1

* * * * *, ( )XI XI
t t t t te W x x p p    (6.6)

where t* is the period with the maximal export price defined in (6.5).  
    An illustration is provided for two periods employing the energy bathtub 
presented in Figure 6.1. The social management problem is how to use the 
given water within the two periods when there are unlimited import and 
export possibilities to given prices. The autarky solution is indicated by the 
prices, p1

AU = p2
AU as shown by the horizontal thin dotted lines in accordance 

with the results of model (2.4) in Chapter 2. The allocation point on the 
electricity bathtub floor is AAU. The period 2 trading price is set higher than 
the period 1 price, so according to our general results above no water is 
used in period 1, but all in period 2. In period 1 the demand for electricity 
is satisfied by import determined by the intersection of the horizontal 
trading price line p1

XI and the demand curve for period 1, bringing us to 
point C on the electricity axis. The total import is AC. In period 2 all the 
water is processed and allocated between export and home consumption 
according to the intersection between the horizontal trade price line p2

XI 
and the demand curve for period 2, bringing us to point B on the electricity 
bathtub floor. Export is AB and home consumption BD. The water value 
becomes equal to the trading price in period 2. Compared with the autarky 
XXXXXX 
X 

 
Figure 6.1. Unlimited trade. Autarky indicated by dotted lines. 
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solution, more electricity is consumed in period 1 and less in period 2. By 
comparing areas we should be able to see that the objective function has a 
higher value after trade. [Remember that the social manager can always 
choose to disregard trade.] Resources that are used in the economy for 
import and are obtained by exports are all measured in the same unit of 
money. But there may be some distributional issues hidden behind the 
aggregate results. We cannot know if the consumers facing higher prices 
and lower electricity consumption in period 2 are the same that benefits 
from low price and high consumption in period 1. The distribution of the 
export income, import expenditure, and financing of an eventual deficit of 
the electricity trade will also enter the picture. 
    Trade may be only of practical interest together with constraints on the 
volume of trade and/or the possibility to store water. Both modifications 
will be introduced in the next sections. 

Reservoir constraint 

The feature of only one export period and all other periods being import 
periods may seem too extreme. By introducing a reservoir constraint the 
unconstrained trade may get a more normal pattern. Replacing the total 
water constraint in (6.2) with the reservoir accumulation equation and the 
reservoir constraint the planning problem becomes: 
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(6.7)

The corresponding Lagrangian, substituting for total consumption from the 
energy balance in the objective function, is: 
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The first-order conditions are: 
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(6.9)

As in the case of a total water constraint, the home country will adopt  
the trade prices, seen from the second condition. The new feature of 
introducing a reservoir constraint is that limits on using water for export 
will reduce transfers from import to export periods. The water values may 
become different. If the reservoir condition allows it there may be import 
periods without use of water. 
    The situation is illustrated in the two-period case in Figure 6.2. The 
available water in period 1 is AC and the broken vertical lines from B and 
C indicate the reservoir capacity BC. In the autarky situation indicated by 
thin dotted lines the prices become equal for the two periods (p1

AU = p2
AU) 

and the reservoir capacity is not fully utilised. With the chosen trade prices 
the full reservoir capacity is now used to transfer water to the highest price 
period 2. In that period export takes place. Domestic consumption is 
competing with exports resulting in B'D being consumed at home and BB' 
exported. Period 1 with the lowest trade price becomes the import period, 
and the intersection of the price line and the demand curve for period 1 
determines the total consumption, AC'. But not all is imported, only BC'. 
There is an amount of water AB that is locked in due to the limited 
transferability, and has to be consumed at home. The water values become 
different with the lowest value in period 1 with forced consumption of 
hydropower. The difference between the water values is shown in the 
figure and is the shadow price on the reservoir constraint. 
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Figure 6.2. Unlimited trade with reservoir constraint. 

Autarky indicated by dotted lines. 
 
    There may now be several export periods in the general multi-period 
case. In the case of the trade prices being equal in Figure 6.2 and equal to 
the highest price, period 1 will become the export period and nothing will 
be imported. The amount of export in period 1 is determined by the 
intersection of the broken continuation of the price line to the left and the 
demand curve for period 1. The amount AA' will be consumed at home and 
A'B' exported. The amount B'C will be transferred to period 2, where B'D 
will be consumed at home and nothing exported. The export price will be 
the home price for both periods and is equal to the common water value. 

Constraints on trade 

We now introduce an upper constraint on the volume of export/import. 
This constraint may take care of the capacities of the interconnection to the 
external market. Returning to the total water constraint, the social planning 
problem becomes: 
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The constraint on trade can be split up into export and import. Since 
import by convention is negative a minus sign is put in front of the trade 
limit XIe when import is constrained.  
    The corresponding Lagrangian substituting for total consumption from 
the energy balance in the objective function is: 
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where αt is the shadow price on the export constraint, et
XI ≥ 0, and βt is the 

shadow price on the import constraint, et
XI ≤ 0. 

    The first-order conditions are: 
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We assume as before that consumption of electricity is positive in all 
periods; xt > 0 for all t = 1,…,T. If there is export then et

H > 0 and the first 
equation in (6.12) holds with equality. The second equation holds with 
equality since export/import can be both positive and negative. Only one 
of the shadow prices on maximal trade can be positive in the same period 
(both can be zero). We have that if both shadow prices are zero (import/ 
export constraints are not binding), then the home price is equal to the 
export/import price. But as opposed to the case without a restriction on the 
trade volume there is now no automatic adoption of the export/import 
prices domestically. 
    Let us again assume that all the export/import prices are different. Then 
there can only be one export period for which the upper trade constraint is 
not binding. The reason is that the shadow value on water has no time 
subscripts, and since the export prices are different we will have a con-
tradiction with more than one such export period. Let us call the period for 
a marginal export period. There may be several export periods when the 
export constraint is binding. If the constraint on export is binding, then we 
may have that the export price is higher than the home price because we 
have in general from (6.12): 

( ) ( 0)XI XI
t t t t tp x p e      (6.13)

A positive shadow price on the export constraint implies a lower home 
price than the export price.  
    For import periods we see from the first condition in (6.12) that we may 
have et

H = 0 if the home price is less than the shadow price on water for 
zero hydro production. We have in general for import periods 

( ) ( 0)XI XI
t t t t tp x p e    (6.14)

If we are at the upper constraint for import with a positive shadow price βt 
then the home price will typically be higher than the import price. Hydro 
can be used in import periods only if the transmission constraint is binding 
and the shadow price on the constraint is positive. The reason is that use of 
hydro with import below the trade constraint implies equality in the first 
condition in (6.12), and since import prices are different we will again 
have a contradiction. If we have an import period without a binding import 
constraint, the first condition in (6.12) tells us that the shadow price on 
water is higher than the home price, since there is zero hydropower 
production, and we then have from (6.14) that the home price adapts to the 
varying import price since the shadow value on the import constraint is 
zero. The number of import periods is determined residually when the 
number of export periods is determined. 
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    A feasible optimal solution is illustrated in the two-period case in Figure 
6.3. The hydro bathtub is extended on the left-hand side from the old hydro 
wall, indicated with a vertical dotted line, with the import in period 1, 
resulting in the new solid wall as the left-hand axis. By design this is the 
full capacity import. The shadow price β1 on the import constraint in 
period 1 is indicated as the difference between the import price in period 1 
and the home price. The difference between the sales value of the import 
and the import cost may be called the congestion rent and is equal to the 
product of the import capacity and the shadow price on the import 
constraint 1

XIe indicated by the marked rectangle. 
    In addition to import some hydro will also be used in period 1. The 
common shadow price on water is set equal to the highest trade price, 
occurring in period 2. In this period we have that the export is less than the 
transmission capacity. The home price is therefore equal to the export 
price in this period. Period 1 home price will also be the same because the 
opportunity value of water in period 1 is to export in period 2 since there is 
capacity to do so.  
    Disregarding limit on trade, we get the same result as in Figure 6.2 by 
using the dotted demand curve for period 1, anchored on the dotted left-
hand hydro wall, and finding the intersection with the price line for the 
import price in period 1 (outside the right-hand bathtub wall). The import 
XXXXXXXXXXXXX 

 
Figure 6.3. Limit on transmission capacity for trade.  

Autarky indicated by dotted lines. 
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would then be more than the total available hydro, and no hydro would 
now be used in period 1. In period 2 the same quantity of hydro would be 
consumed at home (x2 = e2

H – e2
XI), but the export is extended with the 

amount of hydro used in the import period 1 with transmission constraint 
binding (e2

XI
|no restr. = e1

H + e2
XI). Remember that we have no requirement of 

trade balance in electricity.  
    Compared with the autarky solution we have that both trade prices are 
lower than the common autarky price indicated by the horizontal dotted 
line pAU in the figure. As to the allocation of water, the dotted vertical 
allocation line indicates that in autarky slightly more than home 
consumption of water in the import period plus the export in period 2 will 
now be consumed in period 1, resulting in somewhat less consumption of 
electricity than with trade. The consumption in period 2 under trade is just 
a little less than under autarky. What we see when restricted trade is 
introduced is that the difference in trade prices is utilised in order to shift 
water previously used in period 1 to export in period 2, or said in another 
way, utilising the cheapest trade-price period to import and save water, and 
then export in the high-price period. In the process home prices fall, 
indicating higher home consumption in both periods. The consumption is 
especially higher in period 1, not only because it is the import period, but 
also because the demand is more price elastic in period 1. 
    Returning to the general multiperiod case, many different trade patterns 
may emerge. Let us simplify by sorting the export/import prices in descend-
ing order and assuming that they are all different so we have a unique 
ranking. With no constraints on the volume of trade we found that export 
will take place in only one period, the maximal price period, and there will 
be import in all the other periods. We will also now have export in the 
highest export price period, but if it is assumed that the transmission 
constraint will become binding in this period with the highest price, then 
there will be export in at least one more period, depending on the relation-
ship between the total amount of water, water used in export and import 
periods, and the constraint on trade, XIe . In the single export period when 
the constraint will typically not be binding (the case of all export periods 
hitting the constraint is quite arbitrary) the price for this period is the 
lowest among the set of prices for export periods. This price, pt*

XImin in 
period t*, will then determine the shadow price λ on water. This is the 
marginal export period.  
    As mentioned above (6.14), if water is used in an import period, it 
means that the import constraint is binding, and that at the import price in 
question, there is a positive residual home demand that can be satisfied 
only by using water. Since the alternative use of water is to increase export 
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in the marginal export period, this implies that the home price in an import 
period with the transmission constraint binding must be equal to the water 
value and equal to the export price in the marginal export period. 
Conditional on knowing pt*

XImin the set of periods with both imports and 
use of hydro at home can be defined: 

*

min
*0, 0 0, 0 0

{ : ( ) }XI H XI H XI
t t t t t

H imp XI XI
t t t te e e e e

T t p p p 
    

      (6.15)

The optimal shadow price on water λ must satisfy the condition that the 
total available water, W, is just used up on home consumption and exports 
[see (6.18) below]. 
    The set of periods with imports only and no use of water at home is 
defined by: 

0, 0 0, 0
{ : }XI H XI H

t t t t
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Conditional on knowing pt*
XImin the set of periods with exports can be 

defined by: 
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   (6.17)

We have that the set of all T periods is the sum imp H imp exT T T  . The 
number of export periods, tex (an integer number), is found by looking at 
the balance of water supply and demand consisting of export and home 
consumption over all periods: 
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We have that t* is the single export period when export is not hitting the 
upper constraint, TH+imp is the set of import periods when hydro is also 
used, and Tex is the set of export periods. The tex numbers of highest prices 
will belong to the export periods, and the rest of the prices will belong to 
import periods. In the tex – 1 number of periods with the highest prices the 
transmission constraint will be binding and typically the shadow price αt is 
positive, driving a wedge between the lower home price and the export 
prices. As remarked above all the home prices for export periods and 
periods with both hydro and import [(6.15)] are equal, so the shadow 
prices on the transmission constraint will all be different. In the period 
with the price ranked as number tex the export constraint is not binding and 
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then the home price and the export price are equal and equal to the shadow 
price λ on water. In the (T – tex) periods with the prices lower than pt*

XImin 
we will have import and no use of hydro when the transmission constraint 
is not binding and use of hydro in addition when the transmission 
constraint is binding with positive shadow price. 

Reservoir constraints 

The most realistic case is to have a restriction both on interconnector 
capacity and on the reservoir in the home country. The resulting trade 
pattern would then conform better with what we observe. Introducing a 
reservoir in (6.10) the social optimisation problem becomes: 
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The two restrictions after the energy balance substitute for the single total 
water constraint in problem (6.10).  
    Substituting for consumption from the energy balance into the objective 
function the Lagrangian function is: 
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(6.20)
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The necessary first-order conditions are: 
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(6.21)

The change from the previous case without reservoir restriction is that the 
water values are now period specific, and that we have an explicit equation 
of motion for the reservoir-related shadow prices. Two consecutive water 
values are connected through the value of the shadow price on the 
reservoir constraint, as seen from the third condition in (6.21).  
    The reduced possibility of storing water may influence the strategy of 
importing and saving water for a higher price period. The possibility of 
overflow may restrict economically import of electricity since the water 
value may be driven down to zero in order to prevent overflow. In export 
periods the home price may be driven further up because there is a limit on 
the transfer of water from the previous period. If the reservoir constraint 
does not become binding we are back to the conditions in (6.12) for the 
situation without a reservoir constraint. 
    A bathtub illustration for two periods is provided in Figure 6.4. Since by 
design the foreign trade price is lowest in period 1 this period will be the 
import period. The figure is based on Figure 6.2. Inflow to the reservoir in 
period 1 is AC and in period 2 CD. The size of the reservoir is BC, 
indicated by R , and the vertical broken lines from B and C represent the 
reservoir. The reservoir is introduced from C to the left to B because our 
dynamic problem for two periods is how much water to leave to period 2. 
The dotted left-hand wall of the hydro bathtub erected from A is extended 
to the left for period 1 indicated by the solid vertical axis line representing 
XXXXXXXXXXXXX 
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Figure 6.4. Reservoir and transmission limits.  
Autarky indicated by dotted lines. 

the import extension of the bathtub. In our case the full import capacity 
will be utilised. The full export capacity will also be used, and this 
capacity is indicated by the first solid line to the left of the right-hand 
hydro wall and to the right of point C. The way the figure is constructed 
trade is not extending the hydro bathtub wall in an export period to the 
right, but because export is at the expense of home consumption the new 
wall is erected to the left. 
    To show the change from autarky with water as the only resource and 
with a constrained reservoir to a situation with trade with a restriction, the 
final layout of the figure is the result of two stages for the two periods’ 
curves. In the first autarky stage the demand curves indicated by dotted 
lines are anchored to the hydropower walls up from A and D (shown 
explicitly only for period 1). The dotted price and quantity allocation lines 
indicate the equilibrium situation for prices and allocation of electricity in 
autarky. The reservoir is not utilised to the upper constraint and the water 
values are equal and equal to the common optimal price pAU. We then 
move on to the second stage with trade. For the import period we have that 
the whole capacity should be utilised. The demand curve for period 1 is 
shifted horizontally to the left and anchored on the import wall along the 
left-hand axis. Water AB will be used in period 1, and the import is 
maximal at XIe . The second optimality condition of (6.21) tells us that 
the optimal price, consistent with the sum of hydropower and import, is 
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higher than the import price by the shadow price β1 on the import capacity 
constraint. The maximal amount of water, BC = R , is transferred to period 2. 
    Checking period 2 there is enough water to utilise the export capacity 
fully (all the available water (BD – XIe ) will not be demanded for home 
consumption if the home price is set at the export price). The vertical solid 
line to the left of the right-hand hydropower wall then indicates the 
reduced availability for hydropower at home, and the demand curve is 
shifted horizontally with the distance of the export constraint to the left 
and anchored to this new wall (the actual anchoring point is not shown in 
the figure). The home price is found by the intersection of the demand 
curve and the hydropower wall for period 2 erected at B. According to the 
second optimality condition in (6.21) for export the home price is equal to 
the export price minus the shadow value on the export constraint. Since the 
export capacity is fully utilised the shadow price α2 is positive and 
indicated as the difference between the export price and the home price for 
period 2 in the figure. The first condition in (6.21) tells us that the home 
price is equal to the water value. 
    The reservoir capacity has become constrained in the case with trade 
compared with autarky. The shadow price 1 on the reservoir capacity is 
found from the dynamic third condition in (6.21) and does in the figure 
indicate the difference between the two periods’ water values.  
    Comparing the solution without trade and with restricted trade it is 
interesting to note that a situation where the reservoir is not used to its 
capacity and the period prices are equal, is turned into a situation where 
the reservoir is utilised maximally and the period prices are different. But 
the prices are not equal to the import- and export prices since both import 
and export is constrained, but lie between these two prices. The price in the 
import period becomes lower than the autarky price and the price in the 
export period becomes higher. The straightforward implication is then that 
electricity consumption in the home market in the import period 1 is higher 
than in the autarky solution, and the consumption is lower in the export 
period 2. The maximal amount is not transferred from period 1 to period 2 
for the reason of enjoying higher consumption in period 2, but to give 
room for maximal export and earn money. Since trade volumes are equal 
the electricity trade is run at a surplus. Buying cheap and selling high is a 
classical principle for profitable trades. There is a congestion rent on the 
interconnector capacity in both periods indicated by the marked areas. 
    In the multiperiod case the strategy for reservoir accumulation and the 
possibility of processing maximal water and converting this into profitable 
export can result in a complicated pattern of import, accumulation of 
water, and releases for export earnings. The size of the reservoir compared 



Trade between countries Hydro and Thermal      147 

with the maximal volume of exports will play a decisive role. The reservoirs 
can be managed without overflow because there is no production (or power) 
restriction regarding home consumption, but the transmission constraint 
controls how much can be earned in high export price periods. Instead of 
having all water available for any period now, the accumulation of water 
by either holding back home consumption or by using import for home 
consumption instead of water is a more complicated strategy to follow. 
    Qualitatively the delimitation into the sets of export periods, import 
periods, and use of both hydro and import at home carries over from the 
previous section. The shadow-price dynamics expressed by the third 
condition in (6.21) does not influence qualitatively the classification of 
periods, but will, of course, influence the magnitudes involved. The trade 
prices will be the home prices whenever the trade restrictions do not bind. 

Trade between countries Hydro and Thermal 

So far we have operated with only a hydro economy. We will naturally 
term this country Hydro. We will now look at another country having only 
thermal capacity and it will be termed Thermal. The autarky situation and 
trade to fixed prices have been worked through for Hydro in the sections 
above, and we will now have a look at Thermal.  

Trade with exogenous prices for a thermal economy 

The properties of the capacity of Thermal and the aggregate merit-order 
variable cost function are described in Chapter 5. We will adopt problem 
(6.2) using the variable cost function (5.8) in Chapter 5 for aggregated 
thermal capacity. Looking at unrestricted trade, facing exogenous trading 
prices the social optimisation problem is: 
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The symbols used for trade variables and their interpretations are the same 
as in the first section. 
    Eliminating the variable home consumption by substituting from the 
energy balance, the Lagrangian function is written: 
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The necessary first-order conditions are: 
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First of all we note that the problem (6.22) is not a dynamic one under our 
assumptions. Each period can be solved in isolation, provided there are no 
restrictions on trade balance for a certain number of periods, e.g., for the 
time horizon T.  
    The second condition above tells us that with unrestricted trade the 
home price will always be set equal to the trade price of electricity. We 
assume that electricity is consumed in every period. If the marginal cost at 
zero output is higher than the trade price, nothing is produced at home and 
total consumption is imported. In export periods the first condition must 
hold with equality since power is generated in Thermal. If thermal capacity 
is fully utilised the shadow price on the capacity is switched on and added 
to the marginal cost. 
    The situation for two periods may be illustrated as in Figure 6.5 using 
two quadrants. Period 1 consumption is measured to the left of the central 
price- and marginal cost axis erected vertically from the origin O. Period 2 
consumption is measured to the right. The marginal cost functions are 
identical and are drawn as straight lines upwards to the left and right from 
the common anchoring point at c'(0) on the central axis. The short vertical 
lines at the end of the marginal cost curves indicate the limited capacity. 
XXXXXXXXXXXXXX 
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Figure 6.5. Thermal country and unconstrained trade. 

Autarky indicated by dotted lines. 

The demand curves are also straight lines for ease of exposition. Period 1 
demand is made more elastic with a considerably lower choke price, 
resulting in a lower autarky price and quantity than the autarky situation 
for period 2. Period 1 may be called summer and period 2 winter. 
Introducing unlimited trade to the trade prices shown in the figure, with 
trade price for summer being lower than the autarky price (price line is 
shown by the dotted line) and vice versa for winter, it is optimal to import 
in summer the amount AB indicated in the left quadrant, but to export the 
amount CD in winter as shown in the right quadrant. Home production is 
undertaken only if it is cheaper than import, and export is undertaken if the 
trade price is higher than the autarky price. The figure illustrates that it 
may become profitable to expand the use of capacity in export periods 
right up to the capacity limit. In accordance with the first condition in 
(6.24) the shadow price on the capacity constraint, 2, is the difference 
between the trade price (equal to the home price) and the marginal cost at 
full capacity utilisation. The trading prices will be adapted as the home 
prices for Thermal. A production capacity constraint does not change this 
feature. 
    For the country Hydro, constraining the volume of trade in electricity 
provided some additional insights, but for Thermal it does not seem 
necessary because the thermal capacity is constrained in each period. The 
extreme result for Hydro without restriction on trade is due to the 
possibility of accumulating water over several periods and processing 
everything in the highest price period.  
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Trading with endogenous prices 

So far we have operated with exogenous trade prices. But within an 
international market like the Nordic Nord Pool market equilibrium prices 
will be formed according to demand and supply. A stylised model with 
trade between the countries Hydro and Thermal will be explored. The 
opening up of trade between the neighbours Norway and Denmark has 
already been mentioned. Norway has a hydro share of 99%, and Denmark 
has a thermal share of 87% (2003). In a common market between Hydro 
and Thermal the production capacity of Thermal is given, and so is either 
the total amount of water within the planning horizon or reservoir capacity 
for Hydro. We will assume that Hydro and Thermal cooperate and are 
interested in a joint social solution. Value terms are expressed in the same 
money. Furthermore, any redistribution issues may be dealt with by side 
payments outside the electricity market. 
    In the electricity market with just the two countries, trade in electricity 
must balance in the sense that export from one country is the other 
county’s import (and vice versa). The energy balance for each country can 
then be written: 
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The quantities of electricity consumed in each country and exported, 
respectively imported, are now identified by country sub- and superscripts, 
“H” and “Th” for Hydro and Thermal, respectively. The superscript “XI” 
denotes export or import. When one country exports the other country 
cannot, but must import the identical volume (and vice versa).  
    The cooperative planning problem is first set up for the simplest case 
with a given amount of water at disposal (corresponding to assuming that 
the reservoir constraint will not become binding), and given thermal 
production capacity: 
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There is no restriction on the amount traded, but due to the way trade is set 
up for the two countries the traded amounts are non-negative.  
    In order to keep our problem as simple as possible, the country 
consumptions are substituted from the energy balances in the objective 
function when formulating the Lagrangian function: 
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The necessary first-order conditions are: 
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Only conditions for export from a country (second and fourth) are entered 
because import is then determined residually. As the first step in a 
qualitative analysis of the optimal solution we assume that electricity is 
consumed in both countries in all periods. This implies that either hydro or 
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thermal power has to be produced in every period. If Hydro is to export 
and Thermal import then the second constraint holds as an equality and the 
fourth constraint as an inequality with zero Thermal export, and vice versa. 
Whenever Hydro is exporting to Thermal the first condition in (6.28) 
implies that the market price in Hydro is equal to the shadow price on 
water. The second condition simply states the equilibrium condition that 
the domestic prices must be equal, and according to the first condition 
equal to the shadow price on water.  
    Thermal power is produced for home consumption in Thermal provided 
the marginal cost at zero production is less than the equilibrium price. The 
shadow price on the thermal capacity constraint is switched on if capacity 
is exhausted. If Thermal is exporting the third condition in (6.28) holds 
with equality and the second condition as an inequality with zero exports 
of hydropower. 
    Since the shadow price of water has a single value the equilibrium 
prices for all periods, where the situation described above is valid, become 
the same. If the shadow price of water should be higher than the home 
price in Hydro, then Hydro has to import from Thermal. This means that 
Thermal becomes the exporting country. The fourth condition tells us that 
the prices in the two countries must again be equal. Water is saved in such 
low price periods and used in the periods having a common, higher 
equilibrium price. When water is not used and Hydro is the importing 
country, equilibrium prices may vary. If water is used when Hydro is an 
importing country we are back to the regime with one single equilibrium 
price equal to the shadow price on water. 
    A two-period energy bathtub diagram may illustrate a possible optimal 
solution. Figure 6.6 is based on combining Figure 5.5 from Chapter 5 and 
Figure 6.5. The thin dotted lines all belong to the autarky situation marked 
in the figure with Hydro in the middle and Thermal as extensions at both 
sides. To the left and to the right of the hydro bathtub with floor AB and 
thin, solid wall-lines up from these points, the demand and supply curves 
for Thermal are entered for period 1 and 2, respectively. For period 1 on 
the left-hand side, demand and supply for Thermal is read from right to 
left, while the curves are read from left to right for period 2 on the right-
hand side of the Hydro bathtub, as indicated in the figure. The marginal 
cost function is the same for both periods. The outer solid axes lines indicate 
the extensions of the hydro walls by full thermal capacity. The autarky 
price and quantity situation is indicated by thin dotted curves, while the 
curves relevant for the cooperative trade solution are drawn as solid lines. 
    To understand the figure better we may start with the autarky situation. 
The point M on the bathtub floor indicates the allocation of water on the 
XXXXXXXXXXXXX 
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Figure 6.6. Trade between countries Hydro and Thermal.  
Autarky indicated by dotted lines. 

two periods for Hydro. The prices are the same for both periods and 
determined by the intersection of the dotted demand curves. The common 
price is equal to the autarky shadow value of water. For Thermal the 
demand curves differ in such a way that while not all capacity is utilised in 
period 1, the whole capacity is used in period 2, resulting in the shadow 
price on the capacity constraint becoming positive. The period price 
becomes higher than marginal cost, as indicated in the figure on the right. 
This leads to a considerably higher electricity price in period 2 than in 
period 1 for Thermal in autarky, as also exhibited in Figure 6.5.  
    Now, introducing trade without restrictions on volumes the equilibrium 
solution is indicated by solidly drawn price and quantity lines. Since water 
is used in both periods in Hydro the prices for the periods become equal 
(remember that we have assumed the reservoir capacity limit not to 
become active). Furthermore, because the thermal capacity now is not 
exhausted in period 2 prices both across periods and countries become 
equal and equal to the shadow price on water, in accordance with the 
discussion of (6.28). The equilibrium price leads to Thermal exporting 
electricity in period 1 since the equilibrium price is higher than the autarky 
price. This export is then import to Hydro, and means that the wall erected 
from A gets a horizontal shift to the left to the vertical, broken line erected 
from A' with the amount of import. More electricity becomes available in 
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Hydro. The demand curve for period 1 also gets a similar horizontal shift 
and becomes anchored on the extended wall indicated by the broken 
vertical line erected from A'.  
    In period 2 Thermal reduces its production and gets reserve capacity 
again by substituting with imports from Hydro. The imports more than 
compensate for the reduction in thermal production. Since the export is at 
the expense of consumption in Hydro the solid bathtub wall originally 
erected from B gets a horizontal shift to the left with the length equal to the 
export. Less water is available for consumption in Hydro. The demand 
curve for period 2 gets a corresponding, horizontal shift to the left and is 
now anchored on the broken wall erected from B'.  
    Comparing autarky with trade we see that Thermal gets a higher price 
and a smaller volume in period 1 with trade, but the opposite is the case in 
period 2. Both the price reduction and volume increase are substantial. For 
Hydro somewhat less is consumed for the two periods seen together, 
leading to an increase in the price level in the trade regime. The allocation 
point on the bathtub floor A'B' is M'. Notice that Hydro consumes, maybe 
surprisingly, less also in the import period. Water is stored in period 1 to 
be exported in period 2. 
    The extreme results with unrestricted trade that we saw for Hydro in the 
previous section studying the country in isolation are no longer the case. 
The fact that the prices are formed as equilibrium prices is enough to yield 
results that are plausible. However, we saw that Thermal gets an import in 
period 2 resulting in total consumption by far exceeding total production 
capacity in Thermal. It may be unrealistic that the transmission system in 
Thermal has a capacity to handle much higher volumes than it can generate 
itself. In addition it is of interest to see if a constraint on the reservoir 
induces other results concerning prices and quantities. 

Trade with constraints on reservoir and trade volumes 

Introducing constraints on reservoir and volume of trade the objective 
function (6.23) for the cooperative optimisation problem becomes: 
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(6.29)

The two restrictions involving the reservoir do substitute for the total water 
constraint in (6.26). In addition to the restrictions on trade we could also 
consider restriction on hydropower production and on country transmissions, 
especially relevant for Thermal since we saw that consumption became 
higher than production capacity due to trade in Figure 6.5. Production is 
already constrained there. It is straightforward to introduce such constraints. 
We leave to the reader to introduce them, since it becomes too complicated 
to make a visually pleasing figure illustrating all constraints if they are to 
bind. As to transmission-capacity constraint it has to be linked to the 
consumption in Thermal, Th Th

tx x , and similarly for Hydro. However, as in 
earlier chapters internal transmission capacity is disregarded and we focus 
on interconnector capacity between the countries.  
    Substituting for country consumptions from the energy balances in the 
objective function, the Lagrangian is: 
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The first-order necessary conditions are: 
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Whenever reservoir constraints are involved we get a time-specific water 
value as shown in the first condition in (6.31), and an equation of motion 
for the reservoir shadow prices, here the third condition. If hydropower is 
produced the first condition holds with equality, and the period price in 
Hydro is equal to the water value. Furthermore, if hydropower is exported 
we have from the second condition that the optimal prices in the countries 
must be the common equilibrium price as long as the export capacity is not 
constrained, because according to the complementary slackness condition, 
the shadow price is zero. If hydropower export is zero, then the shadow 
price on the export-of-hydropower constraint is still zero. According to the 
second condition in (6.31) the prices in Hydro and Thermal may then 
differ, with thermal price being less than or equal to the hydropower price. 
The question is if such a difference can be part of an optimal solution in 
our model. With a lower thermal price the objective function could be 
increased by transferring a unit of thermal production to Hydro, i.e., 
exporting thermal power. But looking at the fifth condition for thermal 
export when it is positive, we have that the prices again have to be equal.  
    If the capacity constraint in Thermal is not binding, then the common 
equilibrium price that was established to be equal the equilibrium price, is 
also equal to the marginal production cost in Thermal.  
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    If trade constraints are binding, both export and import will be binding 
for the same period. The second and fifth conditions in (6.31) tell us that in 
such a situation it may be optimal to have different prices between the 
countries. The price will be lower in the country that is export-constrained 
than in the country that is import-constrained. An active export constraint 
forces the country to use more electricity at home, and to realise this, the 
price has to decrease. For an importing country the home price has to 
increase as a response to being rationed on imports. 
    Combining Figures 6.4 and 6.6, the impact of a reservoir constraint can 
be illustrated for two periods as in Figure 6.7. Hydro is described by a 
hydro bathtub in the middle extended by thermal capacity on each side. 
The bathtub floor is AD, and available water in period 1 is AC and CD in 
period 2. The amount BC can be stored in period 1 and transferred to 
period 2.  

The dotted demand curves and the hydro bathtub walls with solid 
vertical lines erected from A and D show the autarky solution for Hydro. 
The autarky solution for Thermal is similar to the solution shown in Figure 
6.5. The country-specific equilibrium in price and quantities are indicated 
by the dotted lines. We have that for Hydro the autarky prices are equal  
for the periods. The reservoir capacity BC is not fully utilised in Hydro 
transferring water from period 1 to period 2 to obtain the social autarky  
 

X  
 

Figure 6.7. Trade between Hydro and Thermal with a reservoir constraint.  
Autarky indicated by dotted lines. 
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solution. The period 1 price for Thermal is lower than in Hydro, while the 
period 2 price is higher. The capacity in Thermal is constrained in period 
2, and a shadow price is switched on to keep demand within the limits set 
by autarky supply at maximal capacity. 
    Opening up for trade we have a common equilibrium price forming for 
period 1 just as explained for Figure 6.6. The bathtub wall for period 1 for 
Hydro gets a horizontal shift to the left, indicated by the dotted vertical 
line erected from A', equal to the import to Hydro in period 1. The 
equilibrium price is just slightly lower than the autarky price. What is 
remarkable is that the water use is changed markedly between the two 
periods compared with autarky. Now a full reservoir BC is transferred to 
period 2. Since the equilibrium price is slightly lower in period 1 with 
trade the total electricity consumption is also a little greater. But notice that 
the use of water in period 1 goes down. 
    The autarky price for Thermal in period 2 suggested export possibilities 
for Hydro since the Hydro autarky price was considerably lower. A 
maximal amount in the reservoir is now saved for use in period 2. The 
common equilibrium price in period 2 is found after shifting, for Hydro, 
the demand curve and bathtub wall from the right-hand bathtub wall 
erected from D to the left, indicated by the dotted vertical line from D', 
with the horizontal shift being equal to the export of hydropower to 
Thermal. Then the price is determined by the intersection of the shifted 
demand curve and the broken line erected from B representing the 
maximal reservoir and the start of water available for period 2. The 
difference in prices between the two periods is expressed by the shadow 
price 1 on the upper reservoir constraint. The price in period 2 in Thermal 
does not decrease sufficiently for spare generating capacity to develop. 
The capacity is still constrained, but the shadow price on this constraint is 
considerably less, indicating a long-term benefit for Thermal since 
building out more capacity may be postponed. For Hydro we note that the 
equilibrium price is higher than the autarky price, leading to lower 
electricity consumption with trade, i.e., less water is used at home due to 
export. 
    The trade benefits Thermal in period 2 with lower price and higher 
consumption compared with autarky. In period 1 the pattern is reversed. 
Since the trades are almost equal Thermal gets a deficit on the electricity 
trade, and Hydro a corresponding surplus since the equilibrium price is 
lower when Thermal exports than when it imports, and vice versa for 
Hydro. 
    We dropped the constraints on production and internal country trans-
mission capacity in the model above. We can use Figure 6.7 to indicate 
possible influences of such constraints when they are binding. If Thermal 
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    The day trade between Norway and Denmark is often mentioned as an 
example of gains by trade when hydropower with storage is coupled with a 
thermal system. Norway can import thermal power in the night time and 
accumulate water in the reservoirs when demand in both countries is low 
(see Figure 1.2 in Chapter 1 for demand variation over 24 hours in 
Norway) and only the most cost-efficient thermal plants are generating 
power, and then export hydropower in daytime and save Denmark for 
taking into use the least cost efficient thermal plants. If we think about one 
hour as the period definition in model (6.26), Figure 6.6 may illustrate this 
development of trade over day and night. If period 1 represents night time 
and period 2 daytime, then we just have export from Thermal during the 
night and import to Hydro, accumulating more water than in autarky, and 
the reverse in daytime: export of hydro and import to Thermal. The two 
flows are about equal, but the flows may, of course, differ in real life. 
Since more capacity is used in Thermal in night time the marginal cost is 
pushed up, but there is no reduction in marginal costs during daytime in 
Thermal because in our example the capacity is also exhausted in that 
period. The capacity utilisation increases in Thermal. 

has a domestic transmission network constraint that does not allow the full 
consumption in period 2 as shown, then the constraint will force a lower 
consumption, lower import, and a higher price in period 2. The prices will 
now differ between the countries in period 2. Hydro will export less. The 
motivation for storing maximal water in period 1 is weakened and the 
constraint may lead to the reservoir storage not being completely filled. 
The implication is that Hydro may consume more water in both periods; 
the equilibrium price in period 1 will decrease and reduce the export from 
Thermal and increase consumption. 
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In order to move away from a carbon-based generation of electricity many 
countries are pursuing a policy of increasing the share of renewable 
energy. EU has introduced its 20-20-20 plan of 20% increase in energy 
efficiency, 20% reduction of CO2 emissions, and 20% share of renewable 
energy by 2020. To follow up the EU renewable energy directive Norway 
and Sweden signed an agreement in 2010 of a substantial increase in the 
construction of renewable power for electricity generation in Scandinavia 
in the next 10 years. The renewable power consists of wind power, small-
scale hydropower without reservoirs and generators using biofuel. The 
planned expansion in Norway and Sweden in yearly growth terms is about 
the double of the yearly increase in electricity consumption the last years, 
having implications both for the general price level and its variability. 

The Nordic countries Norway, Sweden, Denmark and Finland, operate a 
common wholesale market for electricity with Nord Pool as the market 
place. Estonia joined the spot market in 2010. There are several generating 
technologies in use; hydropower in Sweden and Norway, nuclear power in 
Sweden and Finland, and coal-fired generation in Finland and Denmark, 
and the latter country also has a substantial share of wind power (27.1% in 
2012, source: European Wind Energy Association). There is also a 
significant capacity for combined heat and power production in Sweden, 
Finland and Denmark. 

Some renewables - wind power, solar and small-scale hydro power - are 
intermittent and uncontrollable (except for the option to waste) and there-
fore need other generating technologies to undertake the necessary adjust-
ment of supply in order to keep the continuous balance between demand 
and supply. Denmark with a substantial share of wind power has benefitted 
from participating in the common Nordic electricity market using its 
hydropower in Norway and Sweden as a back-up for its wind generation, 
thus not having to invest in that much back-up of coal-fired generators 
within Denmark itself. The new wind capacity in the other countries will 
compete with Danish wind power in using the Nordic system as back-up.  

There are interconnectors between the Nordic countries and a country 
like Germany that has invested substantially in wind and solar power 
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technologies. An idea that has been floated in the media is that the 
hydropower of Norway and Sweden can serve as a battery for Europe. 
Norway has the largest reservoir capacity of Europe with 84.3 TWh and 
Sweden has 33.8 TWh (in 2012, source: NVE). The idea is that abundant 
wind power in Europe can be stored in the reservoirs of the hydro system 
and re-exported when wind power is scarce.  

In order to study the battery effect it is necessary to know how introduc-
tion of large-scale intermittent power will influence the price variability in 
countries connected electrically when hydropower with sizeable reservoirs 
is available in one or more countries. There are two general approaches to 
study impacts of the introduction of intermittent energy, one being to carry 
out statistical studies and simulation studies based on actual data and the 
other to use theoretical models to understand structural relations behind the 
generation of data. The purpose of this chapter is to investigate in theory 
consequences of introducing large-scale intermittent power by using a 
theoretical dynamic model covering the main technologies used for 
generating electricity in not only the Nordic area, but in several countries. 
An assumption is that hydropower has a dominating share of electricity 
production. We can then gain some qualitative insights into the effects on 
the electricity system in the Nordic electricity area and other countries that 
may be helpful for formulating energy policy.  

The EMPS model (mentioned in Chapter 1) is a large-scale simulation 
model for the Nordic electricity system, developed by SINTEF Energy, 
Norway, over many years, originating in Hveding (1967), (1968). This 
model can generate price and quantity developments on a detailed level. It 
has recently been used to simulate consequences of the introduction of 
wind power in the Nordic area (Warland et al., 2011). In Førsund et al. 
(2008) the consequences for the use of hydro power when expanding wind 
in a Northern region of Norway is explored using the same model. 

For a general user a large, detailed simulation models will be a black 
box regarding understanding of what is behind the results generated. We 
will extend the models presented in Chapters 3 and 5 to cover also 
intermittent energy like wind power and solar power that will capture the 
essential mechanisms of a large-scale system model while remaining as 
compact as possible. We will try to derive qualitative insights into main 
consequences of increasing the share of intermittent power using Kuhn –
Tucker conditions.  

We will only consider utilisation of capacities and we will not look into 
investment issues, like whether the investment in renewables is socially 
profitable. We will also leave out the important issues of investment in 
transmission network to accommodate all the new renewable generation 

already, and has expansion plans for much more investment in these 



or far from major consumption nodes so necessary transmission investments 
may be substantial. It may also be the case that the new lines may be 
environmentally controversial projects as such, spoiling and disfiguring 
pristine landscapes.  

An important simplification in this chapter is that uncertainty is not 
considered. Since a characteristic feature of intermittent energy is uncertainty 
about availability this is obviously a weakness. The approach taken is to 
assume availability of the expected intermittent energy for each period, 
and then use the resulting utilisation of generation resources as a bench-
mark when exploring consequences of variability by assuming varying 
values of intermittent energy as certain events. The exercise will then have 
the character of a sensitivity analysis. 

Intermittent energy 

Renewable energy besides hydropower consists of wind power, solar 
power, geothermal power, wave power and thermal power based on 
biofuel. Intermittent power cannot be controlled (other than wasting it) and 
has substantial variations in the short run although being more stable on a 
yearly basis. The main forms of intermittent power are run-of-the-river 
hydropower, already covered in Chapter 3, wind power and solar power. 

Wind energy  

The first windmill producing electricity was set up in Scotland in 1887 by 
a Scottish academic using a cloth-sailed wind turbine set up in the garden 
of his holiday cottage. The electricity it produced was charged to 
accumulators used to lighten up the cottage (Price, 2005). Thus, windmills 
producing electricity is an old invention. 
    Modern windmill production is usually located in extensive windmill 
parks to reap economies of scale in construction and connecting the mills 
to the grid, and maintenance. Due to resistance to location of windmills 
(“not in my back yard”) and concerns about spoiling of pristine landscapes 

(Førsund, 2007). The best wind resources are often found in remote areas 

A further simplification is to regard the countries involved as a single unit 
and not study trade flows, thus excluding the issue of hydropower functioning 
as a battery through international trade. However, key characteristics of the 
battery property will be revealed also within our single unit model. 
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and owls along the coast of Norway windmill parks are now also located 
off shore in shallow enough water to be standing on the bottom. There are 
experiments using floating windmills, but weather conditions and costs are 
serious obstacles. Already offshore windmills are about three times more 
expensive to construct as land-based mills. 
    Wind is air in motion and constitutes kinetic energy. The sun together 
with the rotation of the earth, causes wind by heating up the earth in an 
uneven fashion over time and space creating air flows from high pressure 
areas to low pressure ones. Kinetic wind energy E can be expressed as: 

2 2 31 1 1( )
2 2 2

E mv Avt v At v     (7.1) 

Here m is the mass of air passing per unit of time, v is the wind speed, A 
is the area (i.e. the area of the circle the rotors cover) the wind is passing 
through (erected vertically to the wind direction), ρ is the density of the air 
and t is the time. The volume of air passing through A is Avt and Avtρ is 
the mass m. The theoretical wind energy is proportional to third power of 
the wind speed. However, this is a potential and should not be confused 
with the energy actually produced by a wind mill (there is a theoretical 
limit of 59.3% (Betz’ law) and then there are mechanical losses resulting 
in a utilisation in the range of 30-45%). 

The production function for wind energy can be expressed in the same 
way as was done in (3.28b) for run-of-the-river energy in Chapter 3: 

, [0,1]W W W W
t t te a e a   (7.2) 

Here et
W is the wind energy in MWh. In order to generate electricity a 

power capacity in MW has to be installed. The coefficient at
W is the wind 

capacity factor measured as the share of the time within a period the 
installed power is used at its maximal capacity (the relative version of the 
full load hours used for hydropower, see Chapter 1). In (7.2) We is the 
maximal energy produced using the installed power capacity for the entire 
period. The capacity factor depends on the wind conditions during period t 
and the efficiency of the windmill in converting the kinetic energy 
expressed by (7.1). Wind mills usually need a wind blowing over 4 m/s to 
produce, and then production picks up until it levels off at about 12-13 m/s 
with standard gears, and finally the wind mill has to stop production if the 
wind blows too hard, above about 25 m/s. Wind mills may also increase 
production in a more continuous fashion up to the maximal output. Large 
wind mills may need a higher lower speed to start producing while they 
may produce more at stronger winds. 

and creating problems for migratory birds and valuable species like eagles 
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Solar energy  

Solar energy converts sunlight into electricity in two main ways; directly 
using solar cells (photovoltaics), or indirectly using concentrated solar 
power using adjustable directional mirrors to heat up water to steam in a 
centrally placed tower and then driving a steam turbine to produce 
electricity.  

The first solar cells were constructed already in the 1880s (Fritts, 1883). 
There is a rapid technical change going on as to photovoltaics improving 
the utilisation of the sun energy and reducing costs. Photovoltaics is 
especially useful for creating distributed electricity by being put on 
rooftops or integrated in housing panels. Photovoltaics can be the best 
solution for holiday homes with little use during a year and so remotely 
located as to represent serious distribution costs of receiving electricity 
from the grid. 

The production function for solar power can be expressed in the same 
way as for wind power: 

, [0,1]S S S S
t t te a e a   (7.3) 

Here et
S is electricity in MWh generated by solar power, at

S is the capacity 
factor showing the fraction of full utilisation of installed power, and Se is 
the maximal energy production. Solar power can, of course, only be 
converted to electricity when there is daylight, so if our period length is 
more than the daytime hours the maximal capacity factor must be less than 
1. The intensity of the sun power varies with the cloud cover and fog, and 
also the angle of the incoming rays to the earth. 

The model framework  

For simplicity we will lump together all thermal technologies into one sector 
(see Chapter 5) [in Førsund and Hjalmarsson (2011) it is distinguished 
between conventional thermal and nuclear power]. The three intermittent 
technologies; run-of-the-river, wind power and solar power, just represented 
by the production levels are lumped together to intermittent power  
et

I (= et
R+et

W+et
S) so there are three technologies in the model; hydropower 

with reservoir, thermal generators and intermittent generation.1 Individual 

                                                      
1 In order to focus on the basic relationships between intermittent power on one 

hand and hydro and thermal on the other combined heat and power is not included 
due to the special structure of this generation with heat and electricity as joint 
products and being managed according to heat demand in the heating season. 
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hydro plants and storage capacities may be added together, under certain 
conditions, according to Hveding’s conjecture (see Chapter 4).  

The social planning problem with three main technologies and an 
aggregate consumer sector represented is: 
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(7.4)

We assume that we have equality signs in all the three intermittent 
production functions (3.28b), (7.2) and (7.3), and that all exogenously 
given available energy is used, thus there is no adjustment of intermittent 
energy and it appears in the demand function only. Hydropower and inter-
mittent generation are assumed quite realistically to have zero current  
cost that varies with output; e.g., labour overseeing the operations and 
maintenance costs are assumed to be dimensioned to given capacities and 
do not vary with fluctuations in output. Such fixed costs and capital costs 
are as before in earlier chapters neglected in the analysis since we are only 
looking at the problem of optimal management of existing capacities, 
assuming that it is profitable to supply electricity when neglecting sunk 
capital costs and other costs not varying with output.  

The thermal cost function comprises all thermal technologies including 
nuclear. By assumption there are no changes in primary energy prices 
between the periods and no technical change. The variable current costs 
constitute primary fuel costs that depend on the output level. The fixed 
cost part is not included in the cost functions. As explained in Chapter 5 
the aggregate cost function is constructed as a merit-order function 
according to marginal cost and it is assumed that we have a unique ranking 
of capacities. This represents a simplification. Start-up costs and close-
down costs are not specified. It is straightforward to make a step function 
over different technologies if a unique merit order holds. The total output 
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of the thermal sector is capacity-constrained as seen by the fourth 
condition in (7.4). 

We do not include the upper capacities of intermittent energy explicitly. 
The problem (7.4) is a combination of model (3.28b) where now inter-
mittent energy substitute for run-of-the river power extended with thermal 
energy modelled in (5.15). The hydropower relations are explained in 
Chapter 3. 

The Lagrangian function, substituting for total consumption of electri-
city, is 
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As mentioned above intermittent generation is assumed not to be subject 
to optimisation, but to be utilised within the feasible capacity. [In principle 
potential output may be curtailed (using pitch control of the rotor blades or 
shutting down some turbines of a wind farm), but intermittent energy may 
be given priority, e.g., in Germany wasting is not permitted.] 

The necessary first-order conditions are 
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 (7.6)

Qualitative insights are based on interpreting these first-order conditions. 
The shadow prices are all discussed before in Chapters 3 and 5. 
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Qualitative results  

We start out from the basic assumption that there is a unique optimal 
solution to problem (7.4) characterised by the first-order conditions (7.6). 
Furthermore, we adopt the reasonable assumptions that electricity delivered 
to the consumers is positive in every period, and that demand for electri-
city is never satiated. The last assumption implies a positive optimal price 
for all periods. Intermittent energy is assumed to be used in full when 
available to zero production-dependent cost. Thus, intermittent energy will 
influence the solutions for how to use all the other types of technologies 
through appearing in the demand functions only.  

Interior solutions 

Let us first look at interior solutions. An interior solution means that the 
first three conditions in (7.6) hold with equality. The third first-order 
condition then reads  

1 0t t      (7.7)

As long as the reservoir level stays in between full and empty, the water 
value remains constant and the shadow price on the reservoir capacity is 
zero according to the complementary slackness conditions. The optimal 
price may therefore be the same over several periods. Following the 
notation introduced in Chapter 3 a set of consecutive periods with interior 
solutions for water having the same price pj is termed Tj, and we have J 
such sets of periods within the planning horizon T.  
    The connection between the optimal price, water value and marginal 
cost of thermal is: 

( ) ( ) , , 1,...,H Th I Th
t t t t t t j jp e e e c e p t T j J         (7.8)

An interior solution means that all the technologies typically supply 
positive amounts. The optimal price equals water value equals marginal 
thermal cost and is common for all the periods jt T . This is the arbitrage 
principle at work: our water value measures the value of increasing the 
amount of water in the reservoir marginally, and the alternative cost of 
using the water in a period t is the highest value of that water used in a 
future period, which in equilibrium is just the common price of the set. 
Notice that the result of a common price holds for as many consecutive 
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periods as (7.7) holds when water is used in all periods. Water within the 
set Tj cannot be used in another period after the last period in the set Tj 
with a lower price without violating the arbitrage principles, and is blocked 
to be used in a later period with a higher price due to the upper reservoir 
constraints becoming binding. We return to the consequence of the 
arbitrage principle below. 

The marginal thermal cost is equal to the common price implying an 
equal utilisation of thermal generation in all periods within a set of periods 
with the same price. This implies that if thermal capacity is constrained in 
one period it has to be constrained for all the periods within a set Tj:  

( ) ( ) ,H Th I Th
t t t t j j jp e e e c e p t T         (7.9)

As long as the price stays constant the shadow price on the thermal 
capacity is typically positive and the same for all periods, and the maximal 
amount of energy is produced in each period.  

It is not optimal to use thermal at all if 

( ) (0) 0H I
t t tp e e c    (7.10)

As a general property we may well have c’(0) > 0.2 The condition (7.10) 
can then be fulfilled with inequality at the same time as we have a positive 
price of electricity.  

We see from (7.7) that total optimal consumption xt in each period 
within a set Tj with the same price pj, varies between periods if the demand 
function varies, 1( ), t t j jx p p t T , where 1(.)

tp is the demand function on 
quantity form. Because thermal output is locked to the same level due to 
the common price pj, then hydro power has to accommodate both the 
variation in the intermittent energy and the variation in demand between 
periods.  

The size of the swing for two consecutive periods t and t +1 within a set 
Tj  with equal price pj is, using (7.8): 

1 1 1( ) ( ) , , 1,...,
hydroswing demand change intermittent change

H H I I
t t t t t t je e x x e e t T j J            

(7.11)

                                                      
2 This is not the same as start-up costs. A more detailed modelling of thermal 

generation may be necessary to get a technology description more correct in an 
engineering sense. In addition to start-up costs the marginal cost may start at a 
high level and decrease in output up to maximal capacity (see Chapter 5). Such 
non-convexities may create problems for finding a unique solution.  

Qualitative results      
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The first term on the right-hand side is the demand change between the 
periods and the second term is the change in the intermittent power. If we 
look at a constant demand the maximal down-swing in hydro occurs when 
intermittent power is maximal in period t + 1, 1

I I
te e  ( Ie is now inter-

preted as the maximal energy production achieved when all three types of 
intermittent power reaches their maximal value at the same time), and with 
no intermittent power in period t, 0I

te  , resulting in the negative adjust-
ment .Ie  This reduction in the use of hydropower is only possible if  
the downswing can be accommodated within the remaining reservoir 
capacity; .I

tR R e   The maximal upswing in hydropower occurs if the 
intermittent energy changes from the maximal level in period t to zero in 
period t + 1, resulting in the positive adjustment .Ie  For this upswing to be 
realised it must be enough water in the reservoir; .I

tR e  Changes in optimal 
consumption can either dampen or increase the swing in hydropower. 
Going from night time to daytime demand normally increases, and vice 
versa from day to night.  

A conclusion about the impact of variation in intermittent energy is that 
for periods when hydro power is used, but no hydro constraints are 
binding, then this variation has no explicit qualitative price implications.3 
But the number of consecutive periods with equal price may be influenced 
by variations in intermittent energy. 

The number of sets Tj the price stays constant and the number of periods 
within the set Tj are endogenous in the model. A conjecture may be that the 
number of period sets may increase and the length of a number of periods 
within a set may be reduced due to the variation in intermittent energy. 
The reasons are that when hydropower acts as a swing producer both the 
upper and lower constraints of the reservoir may more often become 
binding and generate price changes, as discussed in the next section.  

Price changes  

As stated in Chapter 3 it was pointed out already in Hveding (1968) for a 
pure stylised hydro system that a price only changes if a reservoir constraint 
becomes binding (reservoir empty or full). In our case with several 
generating technologies this is still the case for the system price when 
                                                      

3 Of course, the absolute price level within a set of periods Tj is another matter, 
and this level will be influenced in principle in the simultaneous solution by the 
amount of intermittent energy. 
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hydro is used as is seen from the third condition in (7.6) giving the relation 
between water values over time. In our aggregate model the reservoir can 
by assumption be emptied within a single period, implying that it can, 
under our assumption of non-satiation of demand, never be optimal to have 
overflow. If overflow threatens in a period, then the shadow price on the 
reservoir constraints will typically become positive (however, note that 
zero is a formal possibility4). This means that the water value for the 
period when overflow threatens will typically be smaller than for the next 
period: 

1t t t     (7.12)

The period prices going backwards in time from period t become equal 
to the period water values, assuming the reservoir is in between empty and 
full. Assuming positive prices implies that the shadow price on the 
reservoir constraint in period t must typically be smaller than the water 
value in period t + 1. The arbitrage principle is “blocked” between periods 
t and t + 1 due to the upper reservoir constraint becoming binding. 

If it should be optimal to empty the reservoir at the end of a period, then 
the shadow price on the upper reservoir constraint is zero and we have 
from the third condition in (7.6) that the water value in the period when the 
reservoir is emptied will typically be greater than the water value in the 
next period: 

1t t    (7.13)

The same relation holds between the optimal prices. The reason the 
reservoir is emptied is simply that the water is worth more in the current 
period than in the next. 

Note that reaching the upper constraint of the thermal capacity for a 
period does not generate a system price change by itself. We have from 
(7.9) that this is not optimal if hydro is in use without reservoir constraints 
binding. 

A price collapse  

An interesting situation arises if it is optimal not to use any stored water in 
a period. The condition for this to take place is: 

                                                      
4 In the following we will refer to typical results and suppress in the discussion 

the often arbitrary possibilities in this type of aggregate system-wide model. 

Qualitative results      
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( )Th I
t t t tp e e    (7.14)

When hydro is not used in a period water value is typically greater than 
the price. For this situation to be optimal there has to be room for more 
water to be stored in the reservoir. The water value for the current period t 
will be equal to the water value for the first future period when water will 
be used again.  
    Figure 7.1 provides an illustration. As time resolution we may think of 
period t as night time and period t + 1 as the following daytime. The hydro 
bathtub for two periods t and t + 1 is indicated by the bottom line from  
A to D, and by walls erected from these points. Period t price is measured 
along the left-hand wall of the bathtub, and period t + 1 price along the 
right- hand wall. The water resource available for period t, made up of 
water inherited from the period before period t and the inflow during 
period t, is AC, and the inflow in period t + 1 is CD. The storage capacity 
for water is given by BC, and the walls erected from these two points 
illustrate the reservoir capacity. Note that the storage capacity is greater 
than the available water in period t, and the vertical line marking the left 
wall of the reservoir erected from B is therefore to the left of the hydro 
bathtub wall erected from A.  
    For period t the production possibilities are extended to the left of the 
wall of the hydro bathtub, due to the intermittent and thermal power, 
indicated with marginal cost curves for intermittent energy following the 
floor of the extended bathtub since the variable cost is zero, starting from 
the left-hand hydro bathtub wall at A and following the horizontal axis to 
  

  
Figure 7.1. Energy bathtub for periods t and t + 1. 
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the left to a, and then comes the marginal cost curve for thermal capacities 
from a and to the left indicated by “Thermal”. The marginal cost curve is 
for simplicity made linear in the figure. [It could be made as a step curve, 
as is common in applied studies]. The marginal cost curve has standard 
slope implying increasing marginal cost.  

Now, the extension of the hydro bathtub including the two other 
technologies for period t + 1 on the right-hand side is a mirror image of the 
marginal cost curves for period t, starting with the marginal cost curve  
for intermittent from D along the horizontal axis to the right to d and 
continuing with the thermal marginal cost curve. We have assumed that 
there is considerably more intermittent power available in period t than in 
period t + 1.  

The demand curve for electricity for period t is anchored on the left-
hand energy wall erected from point d', and electricity consumption is 
measured from left to right. The demand curve for period t + 1 is anchored 
on the right-hand energy wall erected from point d' (the anchoring is not 
shown explicitly) and electricity consumption is measured from right to 
left. Both demand curves are drawn linear for ease of illustration. Period t 
is a low-demand period and period t + 1 is a high-demand period. 

The optimal solution to the management problem implies that the place-
ment of the outer walls of the extended energy bathtub is endogenously 
determined (see Chapter 5). For ease of exposition, we erect the two walls 
such that we get illustrations consistent with the optimal underlying model 
solution (7.6) of a nature we want to discuss.  

The two-period window in Figure 7.1 is extended to a multi-period 
setting with one more period at each end by entering prices for period t – 1 
and t + 2 assumed to be the optimal prices. The price in period t + 2 is 
coming from the future (this is how Bellman’s backward induction works) 
and is assumed to be part of a set of periods Tj with equal prices.  

We assume water to be used in period t – 1, t + 1 and t + 2, but not in 
period t. This may be part of an optimal solution because if a constant 
price level is to be realised including the period with the abundant 
intermittent energy this may not be feasible: the abundance may imply so 
low price and so much use of water over all the periods in question that 
maximal filling of the reservoir at the optimal future period is not possible. 
The price level in the period with abundance of intermittent will then be 
determined independently of the price level for the other periods within the 
set of periods we are studying. From (7.7) we have the connection between 
the water values in period t – 1 and t; 1  t t . Furthermore, we have 

( )  Th I
t t t tp e e and 1  t t , implying that 1 1  t t tp p p . As a typical 

case the price with abundant wind is lower than the price in the period 

Qualitative results      
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before and in the period after, and these latter prices are equal. The optimal 
price in period t must balance demand and available supply from wind and 
thermal, illustrated by the intersection of the period t demand curve and the 
hydro wall erected from point A.  

The amount of thermal power is shown by the intersection of the 
marginal cost curve for thermal and the energy bathtub wall up from point 
a’. If thermal is in use in the wind-rich period the price will be equal to 
thermal marginal cost as seen from the second first-order condition in (7.6) 
(with et

H = 0). A higher amount of thermal will be used in period t + 1 
shown by the intersection of the marginal cost curve and the energy 
bathtub wall up from point d’, and the same amount will be used in period 
t – 1 as indicated by the vertical dotted line down from the intersection of 
the marginal cost line and the price line for pt-1 in Figure 1. [The actual 
placement of the marginal cost curve in period t – 1 will be different.] Due 
to the lower electricity price a smaller thermal capacity will be used in 
period t than in the periods before and after. Therefore the thermal capacity 
will not be constrained in such a situation. It may be the case that the price 
becomes so low that thermal is not used at all. This will happen if the price 
is lower than marginal cost at zero output, ( ) (0)I

t tp e c . By assumption 
demand for electricity is not satiated so we have a positive price even 
without using thermal.  

The fall in the price in the intermittent-abundant period when it is not 
optimal to use water creates a “dip” in the common price, so in case this is 
the only occurrence of abundant intermittent energy the set Tj is divided 
into three sub periods. 

The multi-period nature of Figure 7.1 is also shown by the transfer of 
water between periods. All available water in period t is transferred to 
period t + 1, while the amount AM is transferred from period t + 1 to t + 2. 
We have a “battery” effect of saving water in the period with abundant 
wind, and then using this water to the benefit of reducing the price in the 
other periods of the two distinct sub-periods encompassing t – 1 and t + 1 
with the same price.5  

If periods t – 1 and t + 1 are daytime hours and t night-time hours a 
prediction of the theoretical model is that there may be sub periods with a 
common price for daytime hours, but that prices for night-time hours may 
both be lower and vary between hours. We can have sequences of daytime 

                                                      
5 Notice that due to assuming certainty the abundant intermittent energy makes 

it possible to increase the use of water and thereby reduce the price level both 
before and after the event. The situation is crucially different in the case of 
uncertainty of the available intermittent energy when we can only look forward. 
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and night-time hours lasting many periods where the daytime price stays 
constant, but the night-time prices may differ. 

Some qualitative implications  

Combining (7.8), (7.12) and (7.13) we have in the case with thermal power 
and intermittent power together with hydro power we get the same result 
as in Chapter 3 stated for hydro power only: each period set Tj with a 
common price will end with a time period where either the upper reservoir 
constraint is binding or the lower constraint is reached. But an exception is 
now created by the price hole. If there are price holes in the interior of the 
price set, then the price for the periods when reservoir water is not used 
will typically be lower than the common price for the periods when water 
from reservoirs is being used. The results follow directly from (7.12) or 
(7.13) having to hold for the last time period in the set Tj ending a constant 
price regime. In the case of no use of reservoir water the result follows 
from the condition (7.14) for no use of hydro and the arbitrage principle 
for optimal use of hydro. Looking at a group of periods with both positive 
use of water and no use of water we must have all the water values being 
the same due to the arbitrage principle. When no water is used the price is 
determined by intersection of demand and the marginal cost curve of 
thermal or determined by the exogenous amount of intermittent energy 
inserted in the demand function if no use of thermal is optimal. 

The development of price  

Before studying of the impact of variation in intermittent power we will 
discuss the general possibilities of the development of the prices with all 
three technologies. There are three main possibilities: i) the price is the 
same for all periods t = 1,…,T (J = 1), ii) there are two price regimes  
(J = 2) and iii) there are more than two price regimes (J > 2). 

If only one cycle is specified we should start with a period with 
accumulation of water for the dynamic analysis to be of interest. In case of 
multiple cycles it does not matter how we start and we can identify a 
seasonal pattern within the planning horizon of the chosen start period and 
terminal period. 

The first case of all prices being equal is only possible if there is 
sufficient reservoir capacity to distribute water in such a way that the 
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optimal price becomes constant over time. The level of this price is then 
determined according to the backwards induction principle as the price that 
is optimal looking at the optimisation problem (7.4) for period T. From 
(7.6) we have the crucial first-order condition for the terminal period 

1 0 ( 0 for 0)T T T TR         (7.15)

Because the horizon ends with T and we have no terminal condition on 
the amount of water left in the reservoir it will be emptied at the end of T, 
RT = 0. This means that the shadow price on the upper constraint of the 
reservoir,T , must be zero resulting in the condition (7.15) reading 0 T . 
We have assumed a positive price for every period. The absolute level of 
the price is found by the simultaneous solution of (7.4). Looking at the first 
condition in (7.6) we see that the amount of intermittent power in all the 
periods will impact the absolute solution for the price. 

The second case of two price regimes follows from the upper reservoir 
constraint becoming binding once. A standard example is a two period 
model with a summer period and a winter period. Calibrating the periods 
so that the summer period comes first, then the price jumps up at the start 
of the first period in period group j = 2 after the constraint becomes 
binding in the last period of period group j = 1 following (7.12). 
    The most interesting case empirically is the third case of multiple 
price periods. An illustration of a feasible optimal price path is set out in 
Figure 7.2. The qualitative results obtained in the section “Qualitative 
results” are used. [The time intervals in the figure are just indications and 
are not spaced according to a common scale.] The time periods from t = 1 
to t have a common price level except for one period with a marked price 
dip. Such a period is explained by (7.13) and illustrated and discussed in 
connection with Figure 7.1. The price profile will be a step curve in our 
type of model. 

When studying possibilities of price changes due to variation in the 
intermittent power we should note that the optimal development of price is 
found by backward induction, so in any period we have to know the price 
“coming from the future”. Going backwards in time from the terminal period 
the two main price-changing situations for periods when water is used is 
that the reservoir is emptied in another period and that the reservoir constraint 
becomes binding in another period. To be more specific of the price-path 
profile illustrated in Figure 7.2 we have to give some structure to the 
development of the period demand functions. For simplicity we will look 
at a yearly cycle and place the terminal period in a period with empirically 
the lowest yearly reservoir levels and low demand. In Scandinavia this will  
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Figure 7.2. A feasible optimal price path for a full yearly cycle 

 
be late spring – early summer. To end up with an empty reservoir in the 
terminal period would most likely imply a gradual reduction of the 
reservoir during some periods before the terminal period, but it is also 
possible that the reservoir becomes empty in a period some distance from 
the terminal period. It seems unreasonable that the reservoir can become 
full before the next to last period before the terminal period. We will 
therefore assume that the first event as to a corner solution of the reservoir 
level going backwards in time is another emptying of the reservoir. We 
then have from (7.13) that the price for this period typically will be greater 
than the price in the terminal period and then greater than all prices in the 
periods from the terminal period and backwards to the second emptying of 
the reservoir. If the reservoir stays empty in all periods in between we may 
have monotonic increase in the price backwards in time until we reach the 
time period in question. The hydropower system then functions as a run-
of-the-river plant. 

After finishing with periods emptying the reservoir going backwards in 
time we will assume that we come to a period with the upper constraint on 
the reservoir becoming active. After all, a normal situation in a hydro-
dominated system is that the reservoir capacity is not sufficient for the 
prices becoming equal for all time periods. In Scandinavia the low-demand 
season is the spring/summer season, and the high-demand season is the 
winter season. The main filling of the reservoirs following the general 
thawing and melting of snow during late spring and summer coincides with 
the low-demand season, while the periods with low inflows corresponds 
with the high-demand winter season due to heating of buildings and 
shorter daylight days. Because less water than needed to keep prices flat 

Time 
1 t t + 1 T – 1 T 

Price 
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during the whole year can be transferred to the high-demand season a full 
reservoir should be realised in order for the subsequent high-price periods 
to have as low common price as possible. We have from (7.12) that the 
price in the periods before and including the period when the upper 
constraint on the reservoir becomes binding is typically lower than in the 
periods after. In the periods when the reservoir level is building up we 
obviously must have the inflow of water on the average being greater than 
the release of water on to the turbines. In the period when the reservoir 
constraint becomes binding this must especially be the case. For the other 
periods the reservoir level does not necessarily increase in a monotonic 
fashion. Entering a new higher price regime after the period with a binding 
reservoir constraint the release of water will on the average be greater than 
the inflows and must be that in the period when the reservoir becomes 
empty. 

With the calibration mentioned above, starting with period 1 as a low-
demand period and a low reservoir filling, going forward in time the price 
will increase after the first period reaching the upper limit. There may be 
several episodes of constraining the capacity leading to a gradual increase 
in price culminating in a period group where the maximal peak price is 
reached. But before that a possible episode of a dip in the price due to 
abundance of intermittent energy is illustrated. After the periods with a 
common peak price a more or less gradual reduction in the price will be 
encountered each time the lower constraint of the reservoir is reached, 
ending in the terminal period when the reservoir is always emptied. 

The period group with the highest price level of the yearly cycle may be 
characterised by thermal capacity becoming constrained. This will then 
provide the window of opportunity for marginal peak capacity to generate 
revenue. 

Sensitivity analysis  

When investigating the influence of intermittent energy on prices and price 
variations there is the question of the difference between prices before and 
after introduction of intermittent energy, and the question of the impact of 
changes of the profile of intermittent energy after the capacity of 
intermittent energy has been established. As to the former question, 
considering all periods under the horizon together, introduction of 
intermittent energy will result in a lower average price, higher average 
electricity consumption and reduced average production of thermal power. 
This follows from the fact that the total available hydropower is the same 
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before and after the introduction of intermittent energy, thus the supply of 
electricity increases. Therefore, the average price must decrease and such a 
price decrease implies a decrease in average production from the thermal 
sector. Obviously, the average consumption of electricity increases, so the 
increase in intermittent energy must be greater than the decrease in thermal 
generation. 
    As to the latter question increase of intermittent generation in periods 
with high utilisation of thermal generation results in greater price reduction 
than the reduction in price caused by the same increase of intermittent 
generation in periods with low utilisation of thermal. Assuming increasing 
marginal costs of thermal generation the result follows from the supply of 
electricity from thermal generation being more inelastic than the supply at 
a lower level of utilisation. 
    Periods without use of water getting an increase in intermittent 
generation will have lower prices than when hydropower is used. This 
result follows from the fact that the water value in a period when 
hydropower is not used will be greater than the price in the period and 
equal to the water value in a later period when hydropower is used. In this 
period the water value will be equal to the price. 

The volatility of price may be measured by the difference between 
minimum and maximum value within a period or by the standard 
deviation. The period length will crucially influence the measures. The 
second result above indicates that the difference between high price and 
low price may decrease, but we cannot say for sure because the minimum 
price when hydropower is not used may become very low. But due to the 
increased use of hydropower as a swing producer as shown by (7.11) there 
will be increased movement of reservoir levels up and down and increased 
variability of water flows below the generating plant. 

Under reasonable assumptions we can state the following conjecture: 

Price conjecture: Looking at periods when hydropower is used, if there  
is intermittent energy available in these periods the prices will not 
increase, but will in most periods decrease. 
 
The problem here giving a more definite statement is that the pattern of 

using water over periods may change due to the introduction of inter-
mittent energy. Prices may stay constant in some periods. 

Let us first consider the consequence of the intermittent power 
increasing in a period leading up to the first period when the reservoir 
constraint becoming binding, moving forward in time. One possible case is 
that the optimal period for the reservoir to become full does not change.  
A reason for this is that a full reservoir is realised in a specific period in 

The development of price      
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order to use as much water as possible in subsequent periods with high 
demand, and that the price level or use of water in the periods leading up 
to the period with a full reservoir are completely disconnected from the 
pricing and water usage in the periods after. The common price of the 
periods leading up to a full reservoir must then necessarily go down in a 
situation with more intermittent power. Notice that more intermittent 
energy in just one period will have price consequences for all periods 
between the start period and the period with a full reservoir. Because 
thermal power has the same capacity utilisation for all these periods 
leading up to a full reservoir determined by the price, it follows that the 
capacity utilisation goes down, implying reduced profit for the thermal 
sector. Hydropower will also generate less profit, but because the variable 
current costs are zero it is not the question of withdrawing capacity as may 
be the case for the thermal sector. The total amount of water processed in 
the periods leading up to a full reservoir is not influenced by a variation in 
the intermittent power as long as the period with a full reservoir is the 
same. In periods with no use of water due to abundant intermittent energy 
thermal power absorbs the full impact of the price reduction, but this 
impact of a reduced price is also distributed over all periods leading up to a 
full reservoir and not only in the specific period when intermittent power is 
actually increased. [The role of hydro as a swing producer discussed in 
section “Qualitative results” was based on the assumption of a constant 
price.]  

Increased intermittent power may influence the optimal choice of the 
period to have a full reservoir. Postponing the period may result in being 
able to keep a lower price during the high-price period after reaching a full 
reservoir. However, the distribution of inflow and demand functions must 
exhibit a special pattern to make this possible, so this is an empirical 
question. 

Because more electricity is available it is physically possible to fill the 
reservoir earlier. But this is in general also possible without increased 
intermittent power. The decisive point is the choice of the high-price 
periods determined by how to use a full reservoir optimally over the 
subsequent periods. More intermittent power in the periods before the 
constraint becomes binding does not influence the size of the full reservoir. 
It may be difficult to see that the optimal choice of the period when 
reaching a full reservoir can change due to increased intermittent power in 
a period leading up to a full reservoir. 

A special situation may occur if the intermittent power becomes so 
abundant in a period that water will not be used at all, as illustrated in 
Figure 7.1. For such a period (7.14) holds. This may be part of an optimal 
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period with the abundant intermittent power this may not be feasible, i.e. 
the common price level has to be so low that a full reservoir to meet high-
price periods cannot be realised. Increasing intermittent generation in a 
period may lead to creating a dip in the price series as explained in 
connection with Figure 7.1 in section “Qualitative results” and illustrated 
in Figure 7.2. 

It may be possible that we will have a smoother transition from the 
periods with accumulating reservoir and the high-demand periods with a 
running-down of the reservoir. The first period with a full reservoir may be 
followed by another period of a full reservoir, either the consecutive period 
or some periods later. Several periods with a full reservoir may form a 
transition from a low-price period to a high-price period. For each time we 
have a period with a full reservoir going forward in time the price will 
typically increase according to (7.12).  

Having a period with abundant intermittent may influence the sequence 
and number of periods with a full reservoir because with more intermittent 
power the reservoir can become full more rapidly. 

In the case of realising a lower intermittent power the conclusion about 
the influence on price will be in the opposite direction of what is described 
above. Of course, less intermittent power cannot lead to a period without 
use of water if that did not happen in the reference scenario.  

If more abundant intermittent power happens in a high-price period after 
the last period with a full reservoir the price level will decrease in the case 
of the first period with empty reservoir, going forward in time, remains the 
same. Reduced peak prices will reduce the profitability of peak-load 
thermal capacity, as well as reducing the profitability of hydropower. Due 
to these periods being high-demand periods we will not expect so abundant 
intermittent power that a period with no use of water will occur, but this is 
an empirical question. 

It may be optimal with several periods of empty reservoir going forward 
in time. We may have a development over time with falling demand [due 
to increase in temperature and more daytime light] and increasing inflows 

The abundance of intermittent energy is bad news for thermal generation 
because the price is especially low in that period; while no water is used so 
hydro generators do not suffer from this low-price period. However, hydro 
will also suffer lower prices in general. If water is not used in a period due 
to abundant intermittent power then the common price level for the other 
periods leading up to the period with a full reservoir will become lower 
because there is more water to be used in these other periods.  

solution because if a constant price level is to be realised including the 

The development of price      
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[due to melting of snow].6 If there are several periods following each other 
with empty reservoir we have the case of a run-of-the-river generation. 
Each time the reservoir get emptied the price will fall going forward in 
time. If the horizon is just one yearly cycle we will end up with an empty 
reservoir in the terminal period. The period in between the terminal period 
and the next period with empty reservoir going backwards in time will be 
the period group with the lowest price.7  

 More intermittent power in one of the periods with falling prices will in 
general have price-reducing effects if the sequence of periods with empty 
reservoir does not change, but may also influence this sequence, leading to 
more incidents of lower constraint being reached and in this way 
decreasing the average price. 

If we consider the case of the optimal solution being implemented by a 
competitive market [a discussion is undertaken in Chapter 12] variations in 
intermittent power may cause both the number of periods with the same 
price to become shorter and the price level to change. In the case of more 
energy being available in one of the periods in a group of periods with the 
same price the price level will decrease in all periods if the periods within 
the group stay the same. This will reduce the profitability of thermal 
generators. The opposite will occur if intermittent power gets a reduction. 
If the price level before the increase in intermittent energy is relatively low 
a new period with a price dip and no use of water may occur. 

The profitability of thermal is most affected by the new price patterns 
following introduction of intermittent power because thermal may have to 
produce relatively more in low-price periods. If thermal capacity is 
withdrawn this will have the consequence of increasing the price in high-
price periods, but not the price in low-price periods if close-down is within 
reasonable limits.  

The possibility of no use of water in a period is caused by sufficient 
intermittent power and thermal producing at a price lower than the price 
realised in a future period, and assuming that water can be stored to be 
used in that future period. This possibility will increase relatively the 
profitability of hydropower, but reduce the profitability both of thermal 
and intermittent power. This is the battery effect.  

                                                      
6 In a longer perspective than a yearly cycle it is also a question of providing 

enough room in the reservoir for all the snow melting to be captured. 
7 Having a longer horizon the price cannot increase again until after the first 

period with a full reservoir, going forward in time, because this price can at most 
be equal to the price before the last period with empty reservoir. But a second 
period with a full reservoir can give a higher price in the periods after. 
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Background 

World-wide efforts to reduce emissions of climate gasses have led many 
countries to pursue a policy of increasing the share of renewable energy in 
order to move away from a carbon-based generation of electricity. Renew-
ables, like wind power, solar and small-scale hydro power, are intermittent 
and uncontrollable and therefore needs other generating technologies to 
undertake the necessary adjustment of supply in order to keep the continuous 
balance between demand and supply (see Chapter 7). A crucial question is 
the ability to store intermittent energy. There are several technical options, 
like batteries, compressed air, producing hydrogen and heat. An idea 
especially suitable for large-scale storage that has been floated in European 
media is that the reservoirs of hydropower plants in Norway and Sweden 
can serve as battery storage for Europe. The idea is that surplus wind power 
can be absorbed by the hydro system simply by reducing the current use of 
stored water, and then exporting back when wind power is scarce.  
    The recent decision to close down nuclear plants in Germany has led to 
an increased emphasis on ambitious plans for investing in renewables like 
wind and solar in Germany. These plans have been accompanied not only 
with a German interest in Scandinavian reservoirs, but also in introducing 
pumped storage in hydro-rich countries like Norway (SRU, 2010). Pumped 
storage increases the amount of stored water over a yearly period, and 
hence increases the ability of hydro reservoirs to serve as a battery for 
countries producing a high share of intermittent energy.  
    The standard pumped storage consists of a source of water (river, lake) 
at the location of the generator and a purpose-built reservoir at a higher 
altitude without any natural inflow. Water can be pumped up to the reser-
voir and then released on to the turbines to generate electricity. The world-
wide capacity installed so far is rather limited and mostly made for supply 
adjustment of the daily cycle. However, equipping existing hydropower  
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plants with turbines that can be converted to pumps means that huge 
reservoirs already in place can be used, and seasonal demand cycles can 
then also be met (Warland et al., 2011). 
    The topic of pumped-storage hydroelectricity is traditionally an engineer-
ing one, with numerous papers in technical journals on the topic. Economists 
have not shown that much interest. However, because less energy is 
created than the energy it takes to pump up water, there is an economic 
problem at the heart of pumped storage. The fundamental requirement for 
pumped storage being an economic proposition is that there must be a 
price difference between periods of sufficient magnitude so the loss is 
overcome by the difference in price, and in addition there is the cost of the 
investment in pumped storage to be covered.  

Thermal generation and pumped storage  

As pointed out in Crampes and Moreaux (2010) an early economics paper 
on pumped storage is Jackson (1973). The motivation for studying pumped 
storage there was that the generation of electricity was done by nuclear 
power, and this technology should be run as base load both for technical 
and economic reasons. Therefore, daily cycles in demand can better be met 
by pumped storage. Crampes and Moreaux study the use of pumped 
storage together with thermal electricity generation within a region 
(country) without external links. This model will be the point of departure. 
The problem of investment in capacity is not studied (Horsley and Wrobel, 
2002). A two-period model is used as in the two first references above. To 
extend the analysis to multiple periods is not so straightforward. The 
reasons for this will be commented upon in the next section. 
    A detailed specification of various thermal technologies will not be 
pursued. The costs of running thermal capacity, ct, is expressed by an 
aggregate cost function 

( ) ( 0, 0, ), 1,2Th Th Th
t t t t tc c e c c e e t       (8.1) 

The output of thermal electricity during a period t is et
Th measured in an 

energy unit (MWh), and The is the upper capacity limit. It is assumed that 
this cost function reflects a unique merit order of using the individual 
generators and that there are no connections between costs between periods, 
i.e. start-up and close-down costs are ignored. The technology is stationary 
over the periods, and the costs of primary fuels stay constant (see Chapter 5). 

The production function for the pumped storage is a traditional hydro 
power production function (see Chapter 1) depending on the head (level 
difference between the reservoir and the generator) and the amount of 
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water released onto the turbine. The amount of water instantaneously 
released is either restricted by the capacity of the pipes or by installed 
turbine capacity. The total amount of water in the reservoir has an upper 
limit. Considering only two periods (e.g. two seasons within a year) it is 
common to assume that the reservoir can be completely filled in the first 
period and emptied in the next period. With a finer time resolution this 
may no longer be a tenable assumption. Furthermore, it is assumed that in 
the period when water is pumped up into the reservoir no electricity is 
produced by hydro. 
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(8.2)

  
The first two conditions state the energy balances. The electricity used for 
pumping is e1

P and the hydroelectricity generated is e2
P. The conditions 

have to hold with equality since there must be balance between supply and 
demand in continuous time for a well-behaved electricity system. The third 
condition links the amount of electricity used for pumping in the first 
period to the amount of hydro electricity generated in the second period. 
Because we only have one period when water can be released after pump-
ing up, all water, if there is any pumping-up in period 1, will be produced 
in a single period; period 2. [In a multi-period setting the economic point 
is, of course, the control of the period when to release the pumped water 
                                                      

1 In Crampes and Moreaux (2010) utility functions are used (as in Chapter 2).  
Measuring marginal utility in money, demand functions represent marginal utility 
functions, so to compare results prices can be substituted for marginal utilities in 
Crampes and Moreaux (2010). 

Demand functions on inverse form for electricity is used to evaluate 
consumption of electricity1 as in Chapter 3. The social planner’s optimisation 
problem is:                        
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going for the highest difference, see the next section.] Pumped storage 
consumes more electricity than it generates, as indicated by the restriction 
on the parameter; µ > 1. A value of the round-trip efficiency of 0.87-0.77 
gives a µ between 1.15-1.30. [See the Electricity Storage Association, 
http:// energystorage.org/.] The pumping operation faces three constraints; 
the capacity of the pump itself, the capacity of the pipe for the water trans-
port up to the reservoir, and the capacity of the reservoir of the system. We 
will assume that only one constraint can cover these possibilities and con-
strain the water (in energy units) to be stored by the upper limit .Pe The 
amount of water pumped up is e1

P/µ and the water to be stored is e2
P and 

these are equal. The next two conditions state the capacity limits of the 
thermal production system, and then we have the non-negativity conditions. 

The availability of the pumped storage facility makes the optimisation 
problem (8.2) in general a dynamic problem. Prices and quantities for both 
periods must be solved simultaneously. 

In order to simplify the derivation of the first-order conditions we sub-
stitute from the energy balances inserting the expressions for the consump-
tion variables, and eliminate the electricity for pumping as a separate 
variable when forming the Lagrangian for the optimisation problem (8.2):2  
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(8.3)

The necessary first-order conditions are: 
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2 In Crampes and Moreaux (2010) the hydro production in period 2 is chosen as 

the variable to substitute. The qualitative conclusions will, of course, be the same. 
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We will make the reasonable assumption that electricity is produced in 
both periods. Assuming no satiation of demand implies then that prices are 
positive. The expression μp1 is the price in period 1 marked up with the 
factor showing the amount of electricity needed in period 1 to produce  
a unit of electricity in period 2. We will call this expression the loss-
corrected price.  
    The third condition in (8.4) for use of the pumped storage facility tells us: 

i) When the price in period 2 is strictly less than the loss-corrected 
price in period 1 then pumped storage is not used: 

2 1 2 0Pp p e    
The general condition for not using the pumped storage facility by 
pumping up water in period 1 and producing hydroelectricity in period 2 
(pumping up water in period 1 and not using it in period 2 obviously 
cannot be part of an optimal solution) is that µp1 – p2 ≥ 0. According to the 
complementary slackness condition for the Lagrangian parameter we have 
that γ P = 0 since we do not generate hydroelectricity in period 2. The 
typical condition is that the loss-corrected price in period 1 is greater than 
the price in period 2. The optimal price difference, p2 – p1, is not big 
enough to warrant using the pumped storage facility.  

ii) When the price in period 2 is equal to the loss-corrected price in 
period 1 we have that the pumped storage facility typically will be 
used to some extent; we have an interior solution  

2 1 20 P Pp p e e     
We have that γ P = 0 because the capacity is not constrained. 

iii) When the price in period 2 is greater than the loss-corrected price 
in period 1 we have that the pumped storage facility is used to its 
full capacity: 

2 1 2 1
Pp p p p       

We have typically γ P > 0 when the capacity constraint is binding. 
    If hydroelectricity is produced in the second period then it may seem 
that it is formally not necessary that thermal is utilised in period 2. But for 
thermal not to be utilised in the second period we must have p2 ≤ c’(0). 
However, this creates a contradiction because we must have c’(0) < p1 in 
the first period because thermal capacity is used, and for production of 
hydro to be optimal in period 2 we must have p1 – p2 < 0. After all, pumped 
storage is used just to increase electricity consumption in period 2. We 
must therefore produce electricity both from thermal generators and 
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pumped storage. The price in period 2 is lower with the use of pumped 
storage than without. Therefore less thermal capacity is used than without 
pumped-storage hydroelectricity. 

Notice that without using the pumped storage facility there is no 
connection between the periods. The optimal solution for each period is 
found solving static optimisation problems for each period separately.  

Assuming an interior solution and a use of the pumped storage facility 
we have from the first-order conditions  
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(8.5) 

The optimal prices are equal to the marginal cost of thermal in each period, 
and the loss-corrected price in the pumping period is equal to the price in 
the second period when the water is processed. The relationship between 
the optimal prices implies an analogous relationship between the marginal 
costs in the two periods; 1 2( ) ( )Th Thc e c e   . This implies that thermal 
generation must be higher in period 2 than in period 1, confirming the fact 
that thermal generation will be used in period 2 (cf. the discussion above). 
Equality of the prices between periods or equality of marginal costs of 
thermal generation will never be optimal in an interior solution.  

If the constraint on thermal capacity is binding a shadow price is added. 
This may occur in the peak period, and most unlikely in the off-peak 
period, remembering that the price in the peak period when hydro is used 
must be higher than in the previous pumping-up period. [However, it is 
technically possible to have binding thermal capacity constraints in both 
periods. The shadow prices on the thermal capacity will then differ 
between the periods because the marginal cost at full capacity utilization is 
the same in both periods, but the price in period 1 must be smaller than the 
price in period 2.] 

In the case that the reservoir is constrained a shadow price will be 
switched on in the last first-order condition in (8.4). This implies a greater 
gap between the prices of the two periods than in the unconstrained case, 
as also shown in point iii) above: 

2 1 1( 1) Pp p p       (8.6) 
If more storage capacity would have been available more water would be 
pumped up into the reservoir in the first period and more hydro would be 
produced in the second period thus reducing the price gap due to an 
increased price in the first period and a reduced price in the second. 
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The optimal interior solution (8.5) is illustrated in Figure 8.1 using two 
quadrants.3 Period 1-consumption is measured to the left of the central 
price- and marginal cost axis erected vertically from the origin O. Period 
2-consumption is measured to the right. The marginal cost functions are 
identical and are drawn as straight lines upwards to the left and right from 
the common anchoring point at c'(0) on the central axis. The short vertical 
lines at the end of the marginal cost curves indicate the limited capacity.  

The demand curves are also straight lines for ease of exposition. The 
capacity limit of the hydro reservoir is not shown in order not to overload 
the illustration, but can be introduced as a vertical line to the left of μe2

P. 
The situation with only using thermal generation is shown with dotted 
demand curves. Period 1 demand is made more elastic with a considerably 
lower choke price, resulting in a lower price and quantity than the situation 
for period 2, [coordinates (p1i, e1i

Th) and (p2i, e2i
Th) respectively, marked by 

subscript i for independent system as in Crampes and Moreaux (2010)] 
indicated by the thin horizontal and vertical dotted lines. Without loss of 
generality period 2 is the high-demand period (peak) and period 1 the low- 
demand period (off-peak). Period 1 may be called summer and period 2 
winter, or night and day if a finer time resolution is used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
Figure 8.1. Optimal use of thermal power and pumped storage 

 

                                                      
3 The illustration is different from the illustrations found in Crampes and 

Moreaux (2010). 
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    In the case of the pumped-storage facility being used the necessary 
generation of thermal electricity, µe2

P, for pumping up water in order to 
produce e2

P units of hydroelectricity in period 2 is shown in the period 1 
quadrant. The difference µe2

P – e2
P = (µ – 1)e2

P is the physical loss of 
electricity incurred in the transformation of thermal electricity into hydro-
generated electricity. The demand curve for general consumption is shifted 
to the left and is now anchored on the vertical line up from µe2

P on the left-
hand horizontal axis. The intersection of the shifted demand curve, drawn 
with a solid line, and the marginal cost curve, results in the consumption 
price p1 and the quantity e1

Th. The demand curve for period 2 is also shifted 
to the left, due to the energy axis for period 2 shifting to the left to the 
vertical up from the point e2

P and drawn solid. We get the price-quantity 
combination (p2, e2

P + e2
Th). As a check that the first-order condition for 

optimality in (8.5) is obeyed the relative difference between electricity 
needed in period 1 to produce the illustrated amount of hydro in period 2 
should be the same as the relative difference between the optimal prices, 
and equal to the relative difference between marginal costs of thermal 
generation in the two periods. This is roughly the case in the illustration. 
    In the illustration the consumption of electricity decreases in the first 
period when electricity is used to pump up water and total thermal pro-
duction is increased, but consumption increases in the second period when 
the water is processed, although the thermal production is contracted due 
to the lower price. All these changes are general features if it is optimal to 
use the pumped storage, and follow from diverting thermal electricity in 
the first period to pump water, and the addition of hydro production in the 
second period.  
    The consumer plus producer surplus is clearly going down in period 1 
from the isolated thermal case to using pumped storage, illustrated by the 
larger surplus triangle in the former case than in the latter case. In period 2 
the consumer price is reduced and the quantity increased so the consumer 
surplus is clearly greater in the case of using pumped storage than in the 
isolated thermal case, but it is a little more difficult to see what happens 
with the change in costs. In the illustration the reduction in thermal costs in 
period 2 seems to be about the same as the generation costs incurred in 
period 1 due to pumping up water. In any case we know that the social 
benefit has increased if the figure is an illustration of the optimal solution. 
The loss of social benefit in period 1 must typically be more than 
outweighed by the increased social benefit in period 2. If this is not the 
case pumped storage will not be used in an optimal solution.  
    Summing up the results, we have that pumped-storage hydroelectricity 
reduces the difference in price between the two periods by increasing the 
price in the low-price period and decreasing the price in the high-price 
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period. But it is never optimal to have these prices equal. The price 
difference in an interior solution implies that the loss of electricity due to 
the pumping activity is just offset by the price difference at the margin. 
The value of the electricity used for pumping in the low-price period is 
more than compensated by the gain of hydroelectricity in the high-price 
period. 

Generalising to many periods  

The optimisation problem (8.1) may be generalised to many periods, T, in 
the following way: 
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(8.7)

We assume that pumping up takes place in period t, and that the water is 
released onto the turbines in period t + j, where the index j may take on 
values making the production period be any period from t + 1 to the last 
period T, i.e., j = 1,…,T – t. Our approach is to find qualitative 
characterisations of an optimal solution and not to provide an algorithm for 
actually finding a solution. The Lagrangian can be set up in the following 
way: 
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If it is optimal with pumping in a period t it must also be optimal with 
producing in a later period t + j. We only enter these periods as pumping 
and production periods, respectively. Many other combinations may be 
optimal, but to see the qualitative nature of a necessary condition it should 
be enough to study these two periods. As a first order condition for periods 
with no pumping and a period of pumping and a period of producing 
electricity we have analogously to the conditions in (8.4): 
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(8.9) 

For periods s without pumping and production we have the rule of price 
equal to the marginal cost. The same rule is valid for the period with 
pumping and production, respectively, but the argument in the demand 
function now includes the pumping electricity and the generated hydro-
electricity, respectively. The last condition for pumping and production 
can be discussed in the same way as after (8.4); for pumping/production to 
be optimal the loss-corrected price in the pumping period must at least be 
equal to the price in the production period. 

There may be several periods with pumping-up, and several periods 
with production of hydroelectricity. If we keep the simplifying assumption 
that the pumping reservoir takes one period to fill up we have in principle 
to inspect all pairwise combinations of pumping-up periods and periods 
producing hydroelectricity that fulfills the fourth condition in (8.9) that the 
loss-adjusted price in the pumping-up period is greater or equal to the price 
in the later period of producing hydroelectricity. A complication is that 
after a pumping-up period the water has to be produced before a new 
pumping-up period can take place and the same goes for periods producing 
hydroelectricity. This restriction of at least one period in between each of 
these activities must be entered. A special algorithm is needed to find the 
optimal number of active periods and the exact timing.  

If it should take more than a period to fill the reservoir the situation 
becomes more complicated. Depending on the capacity of the reservoir 
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relative to the definition of a period length (the number of periods it takes 
to fill the reservoir will of course differ between a period length of one 
hour and one day or week) the building-up of water in the reservoir may 
take a number of pumping-up periods. It may also take more than one 
period to empty the reservoir. It is not so obvious how one should go about 
to find a solution to the optimisation problem with these extensions.  

Intermittent power and pumped storage 

The case of only having intermittent energy (e.g. wind and solar power) 
may be realistic for isolated regions like islands where links to the central 
grid of the country in question are too expensive (Bueno and Carta, 2006). 
The use of pumped storage can be analysed using the model in the previous 
section substituting thermal generation for intermittent generation, et

I:  
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The modelling of intermittent energy follows Chapter 7. It is assumed 

that there are no variable costs producing the intermittent energy et
I. 

Furthermore, we assume that available production is always used. Sub-
stituting from the energy balances for consumption we are left with only 
one energy decision variable; the amount of electricity to produce by 
pumped storage in the second period. The Lagrangian function for the 
optimisation problem (8.10) is  
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The necessary first-order conditions are 
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The amounts of exogenous intermittent energy appear in the demand 

functions and have an influence on the solution via these. The interior 
solution with γ P = 0 is: 

1 1 2 2 2 2( ) ( )I P I Pp e e p e e     (8.13) 
Knowing the demand functions and the intermittent generations this 

equation can be solved for pumped hydro in the second period and then the 
prices follow. If a sufficient price difference between period 1 and 2 
cannot be realised, i.e. the cost-adjusted price in period 1 is greater than 
the price in period 2, pumped storage will not be used. Another corner 
solution is that the reservoir for pumped water will be filled up. Then, as in 
the case for thermal power in the previous section, a positive shadow price 
on the reservoir constraint adds to the required price difference.  

The optimal interior solution (8.13) is illustrated in Figure 8.2 using two 
quadrants, following Figure 8.1. The demand curves for the situation 
without using the pumped-storage facility are the dotted lines yielding the 
period prices p1i and p2i, where sub-index i indicates no use of pumped 
storage. 

When pumped storage is used, the given intermittent energy for period 1 
is split between consumption in period 1 and the use for pumping, 2 .Pe The  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.2. Optimal use of intermittent energy and pumped storage 
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axis for the residual consumption demand is moved correspondingly to the 
left up from 2 .Pe The residual demand curve is shown by the solid line, and 
the price in period 1 must increase to p1. In period 2 the hydroelectricity 
e2

P is added to the intermittent energy e2
I resulting in the energy axis for 

period 2 moving to the left from O to the line up from e2
P. The 

corresponding shift of the demand curve to the left is shown by the solid 
line. The price is lowered to p2. Given that the pumped storage is used 
without constraining the reservoir the relative difference between the 
period prices should correspond to the cost mark-up factor µ. 

Hydropower and pumped storage with trade  
to exogenous prices 

To discuss the issue of hydropower in some countries serving as a battery 
for other countries with a high share of intermittent energy we need a 
model encompassing trade in electricity (see Chapter 6). As a start we will 
assume that the electricity production in a hydro-rich country, or more 
precisely the volume of the trade, is not big enough to influence the price 
in countries the hydro-rich country trade with, implying that the hydro 
country can take the trading prices as given. The loss of electricity due to 
the transport between the countries is disregarded for simplicity. The 
capacity of the interconnectors plays an important role setting the limit for 
the amounts that can be traded. We stick to the format of two periods, and 
open for the possibility that the hydro country has the option to enhance 
the reservoir’s capacity to produce electricity in the second period by 
pumped storage.  

The hydro sector will be modelled as an aggregate sector with only a 
constraint on the total storage capacity of water as in Chapter 3. We 
assume the pumping facility (e.g. equipped with a reversible turbine) is 
integrated within the existing system and is using the existing reservoir for 
the hydro system. The social planner’s optimisation problem is: 
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Hydropower and pumped storage with trade to exogenous prices
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Income from exports is added to the social surplus in the objective 

function and expenses of import subtracted. A balance in trade of electri-
city is not imposed. The first two relations in the constraint set are the 
energy balances. New variables are the (net) traded amounts et

XI (t = 1,2). 
When electricity is imported it is negative, while export is positive. The 
corresponding exogenous prices are pt

XI (t = 1,2). As in the previous models 
capacity for pumping is limited to .Pe  Because the existing reservoir for the 
hydro system is used it is logical to connect the constraint to the ability to 
pump water up. However, due to the third relation in (8.14) we can still 
express the constraint by constraining the production of hydroelectricity 
from the pumping facility in the second period. 

In the water accumulating relation for period 1 pumping-up means that 
water is added to the inflow to the reservoir. In period 2 we assume that all 
water pumped up in period 1 is processed. The reservoir storage capacity is 
not influenced by the pump storage capacity, but pumping means that the 
inflow to the reservoir in the first period increases.  

The Lagrangian function for the problem (8.14) is: 
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The two last expressions identify whether the export or the import is 
constrained in a period. Obviously both cannot be constrained at the same 
time. 

The first-order conditions are: 
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Only one of the trade constraints can be binding at the same time; either 
there is import or export. There may also be zero trade. For this to occur 
the autarky prices must be equal to the trading prices.  

Pumping can only occur in period 1 and then pumped water is used in 
period 2. If pumping then period 1 must be an import period and no water 
is used. The reason is that water is only used if there is a lock-in of water 
in period 1 and consequently the reservoir is then filled up and no pumping 
will take place. Pumping uses more electricity than what can be regained, 
i.e., the amount of water used to produce the electricity for pumping is 
greater than the water actually added to the reservoir. If there is room in 
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the reservoir no water will be used in period 1 if there is pumping because 
it will be optimal to transfer all water in the reservoir to the next period 
with a higher price. As said above the reservoir cannot be filled up 
completely due to pumping because more water is used for pumping 
electricity than water being pumped up. In the case of threat of overflow a 
typically positive shadow price  1 is switched on and hydro will be used in 
period 1 in order to prevent overflow. This hydro will be priced to the 
import price.  

For pumping to be profitable we must have that the price in period 1 is 
less than the price in period 2. From the first and third condition in (8.16) 
we have:  

1 1 2 2 1 2 1, ,p p         
 

(8.17) 

We must have strict inequality in the first expression. As reasoned above it 
cannot be optimal with pumping if the reservoir constraint becomes 
binding so we have from the second condition in (8.16): 

1 2 1 2 1 20P Pp p p p               (8.18) 
The shadow price on pumping capacity is the change in the objective 

function of a marginal increase in the pumping capacity. The maximal gain 
without any net loss in electricity caused by pumping is the price in period 
2 so the difference on the right-hand side is positive. 

 The connections between domestic prices and trade prices assuming 
import in period 1 and export in period 2 follows from the fourth condition 
in (8.16):  

1 1 1 2 2 2,    XI XIp p p p  (8.19) 
Putting together (8.18) and the last one yields:  

1 1 2 2( ) ( )XI XI Pp p        (8.20) 
We then have the following inequality between the domestic prices 

expressed by the trade prices and shadow prices on transmission capacity 
assuming an interior solution for pumped storage:  

1 1 2 2 1 1 2 2
1( ) ( ) ( ) ( )XI XI XI XIp p p p   


        (8.21) 

Period 1 price must be sufficiently smaller than period 2 price. With an 
interior solution for pumped-storage hydroelectricity (8.21) shows the role 
of the constraints on the interconnector for the question of whether using 
the pumping facility is optimal or not. Because the shadow price on the 
interconnector capacity is added to the import price to form the domestic 
price in period 1 and subtracted from the export price in period 2 
constraining the interconnector works against the condition for using the 
pumping facility. 
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An interior solution for trade but corner solution for pumping capacity 
yields: 

1 2
XI XI Pp p    (8.22) 

The relations between the exogenous trading prices must then satisfy 

1 2 1 2
1 ( )XI XI P XI XI Pp p p p 


      (8.23) 

If the loss-corrected domestic price in period 1 is greater than the price 
in period 2 subtracted the shadow price on the pumped-storage hydro-
electricity this capacity cannot be fully utilised. Furthermore, if the loss-
corrected domestic price is greater than the price in period 2 the pumping 
facility will not be used and with a binding constraint on pumping capacity 
the price difference must not only compensate for the net loss of electricity 
when pumping (μ > 1), but the difference will be larger and reflect the 
shadow price on the pumping capacity. If the reservoir constraint is the 
limiting one the shadow price on the pumping capacity is replaced with the 
shadow price on the upper reservoir constraint. 

Trade between countries Hydro and Intermittent with 
endogenous prices 

Two countries are introduced, one country, Hydro, using only hydropower 
to generate electricity and the other, Intermittent, only using intermittent 
energy. The Hydro country has pumped-storage facility. We may think 
about Norway as the hydropower country and Germany as the intermittent 
country. For the latter country this is in accordance with long-term plans 
for carbon-free generation of electricity (SRU, 2010). The variables for the 
countries are marked with super- and subscripts H and I respectively. 
When two trading countries cooperate the imports and exports in money 
terms cancel out in the objective function. It is assumed that no income-
distributional issues are linked to the trade in electricity in the model. 

The optimisation problem for the cooperative problem is  
2
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(8.24) 
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The modelling of trade follows Chapter 6. Intermittent energy is intro-
duced above (see also Chapter 7). Because one country’s export is the 
other country’s import we only need to consider export variables from the 
two countries in the model. The two first constraints are the energy 
balances for the hydro country, and then the two next conditions specify 
the pumping facility. The hydro generation with water storage and upper 
limit on water storage is covered by the next three constraints. The energy 
balances for the intermittent country then follows together with the 
production function for the intermittent power. Lastly the upper constraints 
on the export variables due to the interconnector between the two countries 
are specified. 

Simplifying by eliminating the variable for electricity for pumping in 
the first period, e1

P, and the consumption in the two countries in both 
periods, the Lagrangian for the optimisation problem (8.24) is 
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Intermittent energy is assumed to be given exogenously and not subject to 
optimisation.  

The first-order conditions are  
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(8.26)

  
There are two questions to investigate; should trade take place between 

the two countries, and should pumped storage be used? To answer the first 
question the autarky situation for the two countries should be established. 
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Starting with the former, the three first conditions in (8.26) together with 
the first four complementary slackness conditions for the Lagrangian 
parameters, define the autarky solution for Hydro.  

It will not be optimal to use pumped storage in Hydro under autarky. 
The general condition for pumped storage to be used is that there is a 
sufficient difference between the period prices. But prices can only diverge 
if the constraint on reservoir capacity is binding. But because pumping-up 
always need more electricity than generated when releasing the pumped-up 
water we cannot activate this constraint by pumping. 

As in the section above “Intermittent power and pumped storage” we 
assume that intermittent energy is just accepted as Nature provides it. The 
prices in autarky are then determined by insertion in the demand functions; 

( ) ( 1,2)I
It It tp p e t  . 

If the period autarky prices are the same for the two countries there is no 
benefit doing trade. If a country has a higher (lower) price for a period it 
will have an incentive to import (export) if trade possibilities open up. An 
illustration is provided in Figure 8.3. In Panel a the hydro bathtub for two 
periods is placed in the middle with AC the available water in period 1 and 
CD the inflow in period 2 and extended by supply of intermittent on each 
side with A’A to the left in period 1 and DD’ to the right in period 2. The 
reservoir capacity is assumed greater than AC. The demand curves are 
entered for each country for each period. [Cf. Chapter 6 and the model for 
endogenous trade between the countries Hydro and Thermal.] The autarky 
price in Intermittent is smaller than the autarky price in Hydro for period 1. 
Hydro has the same price for period 2, and the autarky price in Intermittent 
for period 2 is higher than the price in Hydro.  

However, the trade pattern that emerges is a general equilibrium 
solution that may be quite involved due to the dynamic nature of the 
hydropower and pumped storage and also depending on the pattern of 
autarky prices. 

In Panel b the cooperative trade model is illustrated based on the 
situation in Panel a. We see from the last two conditions in (8.26) that 
export will not take place from Hydro to Intermittent if pHt ≥ pIt and 
Intermittent will not export to Hydro if pHt ≤ pIt. Without binding 
interconnector constraints the condition for trade is equality of the prices 
between countries for each period. This is the case in Panel b. But if the 
prices for a period are the same in autarky, then there will be no trade. 
Trade requires that the autarky prices for a period differ, as in Panel a. 
Trade with binding interconnector constraints implies that the price in the 
exporting country typically is less than the price in the importing country. 
[We return to this below.]  
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Panel a. Autarky 

 
 

       
Panel b. Cooperative trade 

 
Figure 8.3. Autarky and trade between Hydro and Intermittent 

 
Pumping-up can only occur in period 1 and if it does, then the pumped 

water will be used in period 2. If pumping-up then period 1 must be an 
import period and no water is used by technical assumption if the hydro 
system is fully converted to pumped storage. [We come back to the case of 
pumped storage being a separate facility below.] However, as pointed out 
in the previous section it cannot be optimal to use hydro and import at the 
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same time if the reservoir is not constrained. Only a full reservoir can be 
the reason for using hydro, i.e., there is then a threat of overflow in period 
1, but pumping will then be wasteful, as stated in the previous section. In 
the case of available reservoir capacity in period 1 only import will be 
optimal to use if the price in period 2 is higher or equal. In Panel b we 
have that Intermittent exports in period 1 the amount FA and Hydro uses 
FG for general consumption and GA for pumping. The total amount of 
electricity available for Hydro in period 1 is FC. The residual demand for 
general consumption results in the same price as the price in Intermittent. 
Compared with autarky in Panel a the consumption in Intermittent in 
period 1 is reduced to less than a half and the price has consequently 
increased, while the opposite is the case for Hydro. 

In Hydro water is pumped up in period 1, creating a larger reservoir to 
hand over to period 2. No water is used in period 1. Of the total available 
water Hydro exports HD and consumes AH plus the water being pumped 
up, e2

P. The increased availability of electricity reduces considerably the 
price for Intermittent, but the price increases slightly in Hydro in the 
illustration. 

The illustrations are in accordance with the first-order conditions (8.26). 
From the first condition we have when hydro is not used in period 1: 

 1 1 2 2 1,H Hp p      (8.27) 
For pumped storage to be used we have to assume strict inequality in the 
first expression. The price in Hydro in the pumping-up period 1 must be 
lower than the water value for period 1. The water values are equal across 
periods and equal to the price in Hydro in period 2. 

The relationship between the prices in the two countries Hydro and 
Intermittent follows from the two last first-order conditions. In the case of 
the interconnector constraint being binding in both periods (the shadow 
prices on the interconnector constraint on exports cannot both be positive 
for the same period) the country that is exporting the constraint holds with 
equality and for the country that is importing the constraint holds with  
an inequality. The impact of a constrained interconnector is of special 
interest. Using pumped storage implies that Hydro is importing in period 1 
and exporting in period 2. This means that, because export from Hydro in 
period 1 is zero, the active condition is:  

1 1 1 1 10H I I H Ip p p p      (8.28) 
The shadow price on Hydro’s export constraint is zero. The price in Hydro 
is typically greater than the price in Intermittent in period 1 when the 
export from Intermittent to Hydro is constrained. 

In period 2 the situation is reversed and we have:  
2 2 2 2 20H I H H Ip p p p       (8.29) 
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The shadow price on the binding export constraint is typically positive. 
The price in Hydro is typically lower than the price in Intermittent because 
the export from Hydro is now constrained. Using (8.27) and the results 
above we have that 

2 1 2 1 1 2and ,H H H I I Ip p p p p p     (8.30) 
the last two strict inequalities being typical results. 

The condition for using pumped storage is  
1 2 1 2 1 20P P

H H H Hp p p p               (8.31) 
The water values cancel out according to (8.27). The loss-corrected price 
in Hydro in period 1 must be less than the price in Hydro in period 2. A 
sufficient price difference between the two periods may be created without 
the interconnector being constrained due to the effect of using no water in 
period 1. If the pumping-up capacity is constrained an even larger price 
difference is required due to the positive shadow price on pumping 
capacity. 

If import to Hydro is constrained in the first period this means that the 
price in Hydro will increase compared with the unconstrained case; Hydro 
wants to import more than what is feasible. There will still be a price 
difference in Hydro between the two periods if no use of water in period 1 
remains optimal, but it will be smaller than in a situation with unconstrained 
import. If import to Hydro is not constrained in period 1 but export from 
Hydro is constrained in the second period, then the price in Hydro in 
period 2 will be lower than in the unconstrained case; Hydro would have 
liked to exported more, but now more electricity has to be consumed at 
home instead. The price difference will become smaller between the two 
periods. If the interconnector is constrained in both periods, then the price 
difference shrinks “at both ends” compared with the unconstrained case. 

A possibility that has to be investigated is that the pumped-storage 
facility is built as a separate unit with its own reservoir. We will then have 
two hydro units producing electricity, but the pumped-storage unit will 
need electricity to run the pumps in period 1, and will then fill up its own 
reservoir and produce in period 2. The question is then the conditions for 
using the separate facility. The maximal storage of the pumping facility 
will add to the reservoir storage, but the maximal amount of water 
available for use in period 2 is the same, assuming that the conversion of a 
unit of water is the same for the pumped storage. [Since this may not be 
the typical case we could adjust the capacity of the facility’s reservoir to 
coincide with the amount in the model with the system reservoir being the 
reservoir for the facility.] 

If pumped storage is a separate facility then if hydro is used in period 1 
at the same time as we have imports and pumping-up, this must imply that 
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the import price must be equal to the price in period 1 in Hydro. But 
pumping can only be optimal if the price in period 2 is higher than in 
period 1. This is only possible if the reservoir for hydro is constrained in 
period 1, but this contradicts using hydro in period 1. So with endogenous 
prices it is necessary to have no use of water in Hydro in the pumping-up 
period. [We can straightforwardly establish this formally by taking the 
water available in period 2 in the system reservoir out in the problem 
(8.24) and treating the pumping facility as a separate unit.] 

In the case of trading opportunities in electricity between countries, one 
with only hydro power with reservoirs and the other with only intermittent, 
a new element of the constraint on the interconnector between countries 
enters the picture. The main result with endogenous trading prices is that if 
the interconnector becomes constrained this works against the requirement 
of a sufficient price difference between the pumping period and the 
production period. Large-scale expansion of interconnectors between 
countries with different technologies promotes trade, and also makes the 
use of pumped storage more favourable. The necessary price difference 
between the periods for pumping to take place is due to no water being 
used in the hydro-dominated country when importing from the intermittent-
dominated country. However, for this to take place a sufficient reservoir 
capacity has to be assumed. 

 



Chapter 9. Uncertainty  

The general problem 

A very basic feature of hydropower operation that has been neglected so 
far is that inflows to the reservoirs are stochastic variables. Weather is 
predicted, but as we all know with varying accuracy. The problems this 
creates for hydropower management are quite obvious. A decision about 
use of water, i.e., production in the current period and transferring water to 
the next period, has to be made in the current period while the inflows of 
the future periods up to the horizon are known only by their predictions. 
The best we can do in the current period is to formulate an optimal plan  
by maximising the expectation of the sum of consumer plus producer 
surpluses. The demand functions themselves may also be influenced by the 
weather. It is obvious that the need for both space heating and cooling 
depends on the outside temperature. But the temperature must also be 
regarded as a stochastic variable. Further real-life stochastic events in the 
case of a complete electricity system with transmission lines and thermal 
capacities are transmission capacity being reduced due to transformer 
accidents, storms blowing down trees on lines, breaking of lines due to 
icing, etc., and thermal capacities going down due to accidents. Considering 
windmills the output depends crucially on the wind speed that is stochastic, 
and solar power depends on the sunshine strength. 
    The problem for finding optimal solutions of the hydro management 
problem created by uncertainty was recognised early in the literature 
(Little, 1955; Koopmans, 1957; Gessford and Karlin, 1958; Morlat, 19641). 
In Norway a special solution strategy termed the expected water-value 
approach was introduced in Hveding (1967); (1968) based on Stage and 
Larsson (1961). In the more specialised engineering literature an early 
contribution was Pereira (1989). 
    Reformulating the most realistic model based on a set of hydropower plants 
with one reservoir each and upper constraints on reservoirs and production 
capacities, model (4.14) in Chapter 4, yields the social planning problem 
                                                      

1 Morlat noted that he built his uncertainty analysis on Massé (1946). 
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 (9.1)

Parameters of the demand functions pt(xt) (t = 1,…,T) are stochastic 
variables. We may assume that their probability distributions are known, 
and that these distributions vary with the period t. Since inflows are 
stochastic, so are the reservoir levels in the case of no threat of overflow 
and so are the production levels of each plant, ejt

H (j = 1,…,N), because 
they depend on the reservoir level of current and past periods. For a 
realistic dimension of the problem, i.e., of the order of 3TN, with T in the 
case of using a week as a period being in the order of 52 to 260 (five years) 
and N being over 700 in the case of Norway, this is not a trivial problem  
to solve. But taking care of the constraints in (9.1) by formulating a 
Lagrangian function as in (4.14) is no longer an appropriate procedure. 
The qualitative nature of the solution cannot be worked out starting with 
first-order conditions for a time period t < T. Stochastic variables appear in 
all conditions for periods t + 1 to T, and the Lagrangian parameters them-
selves will become stochastic variables. The only way of establishing the 
nature of the solution is to use Bellman’s principle of backwards induction. 
    In the engineering literature problems like (9.1) are solved numerically 
using discrete-time stochastic dynamic programming formulations (Wallace 
and Fleten, 2002). Solution algorithms have been developed over the last 
decades in the engineering literature approximating optimal solutions 
(Pereira, 1989; Pereira and Pinto, 1985, 1991). However, even with modern 
computers the number of possible combinations of realisations of stochastic 
variables in real-life large-scale problems has been too much to allow 
global numerical optimal solutions to be found. Recently approaches 
xxxxxxxxxxxxxxxxxx 
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Figure 9.1. Event tree. Possible realisations of inflows. 

based on dual stochastic dynamic programming seem to be promising. 
However, the solutions are not analytic, but have to be calculated 
numerically. 
    To see the futility in trying to solve the problem (9.1) starting with  
the first year we will consider inflows only as stochastic. The possible 
realisations of inflows can be illustrated with a familiar event tree diagram 
as shown in Figure 9.1, showing only two alternatives for ease of exposi-
tion for the inflow values that may differ over the periods. Starting out 
from a certain inflow in period t = 1 the potential inflows for the other 
periods branch out and the actual development of inflows can follow quite 
different patterns over time, assuming that inflows in one period is 
independent of the inflow in the previous period. It is not feasible to solve 
the problem starting from the first period, but the approach of Bellman 
(1957) has to be followed, starting with the terminal period. 
    We will only be concerned with qualitative conclusions we can find 
about the nature of the optimal management solution and will therefore 
consider very simplified settings (Hansen, 2009). 

A simplified two-period approach 

In order to have a simple model, demand is assumed to be deterministic 
and only inflows to be stochastic. Furthermore, only the reservoir 
constraint will be introduced; the production constraint is dropped. Only an 
aggregated system consisting formally of one plant and one reservoir will 
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be considered. We assume that the inflows have known distributions that 
are period specific. Simplifying further to just two periods and assuming 
that the inflow for the current period is known, the decision problem 
evaluated in period 1 under uncertainty becomes: 

1 2

1 2
1 2,

0 0
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 (9.2)

Using Bellman’s backwards induction principle the deterministic problem 
in the terminal period 2 is: 
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 (9.3)

This problem is stated in Chapter 3, (3.3) for T periods. We will there-
fore show the first-order conditions without specifying the Lagrangian as 
in (3.5) but state the first-order conditions directly: 
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 (9.4)

It is optimal to emptying the reservoir in the terminal period so the shadow 
price on the reservoir constraint is zero and by assumption the price (and 
then also the water value) is positive. The first-order condition becomes 
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2 2 2 1 2 2 1 2 1 2( ) ( ) ( ) 0H H
op e p R w p R w w e          (9.5)

The second expression shows that the solution for the output and the price 
is conditional on the amount of water R1 transferred from period 1 to 
period 2. 
    Moving backwards to period 1 both the inflow and the hydro power in 
period 2 is stochastic, and so is the price in period 2.  
    The third expression in (9.5) allows us to express the production in 
period 2 as a function of only one stochastic variable, the inflow in period 
2, and deterministic variables from period 1. Simplifying the constraints in 
(9.3) yields the problem:  
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     

   (9.6)

Concerning the lower limit for electricity production in period 1 in the 
second line in (9.6) it should be noted that because electricity is non-
negative, we have to exclude the possibility of a negative value if the 
available water is less than the maximal reservoir amount, as is the case for 
the dry period that will be shown in Figure 9.3 below. The transfer  
of water from period 1 to period 2 is in general the smallest amount of  
R1 = Ro + w1 – e1

H ≥ 0 and 1 .R R  For an interior solution we must have 
e1

H = Ro + w1 – R1 > 0 and e2
H = R1 + w2 = Ro + w1 – e1

H + w2. Corner 
solutions are when R1 = 0 and R1 = R . Under our general assumption  
of non-satiation in every period it is quite intuitive that it cannot be 
optimal with overflow. The objective function for period 1 is increasing in 
electricity consumption. Appealing to realism we assume that there is 
positive electricity production in every period, i.e., e1

H > 0. This implies 
that p1(e1

H) > 0. In a situation with threat of overflow we then have that 
1 1
H

oe R w R   , i.e., the maximal amount that can be consumed in period 
1 is consumed. There is no waste in the period. 
    When the maximal amount is transferred to period 2 it follows that the 
price in period 1 must be the highest that can be realised given the inflows 
and initial reservoir amount because the price is decreasing in increasing 
consumption: 

max
1 1 1( )op p R w R    (9.7)
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The other corner solution happens when it is optimal that the minimum 
amount of zero is transferred, and then we have the minimal price that can 
be realised in period 1: 

min
1 1 1( )op p R w   (9.8)

In period 1 it is known that in period 2 all available water will always be 
utilised since there is no requirement on the terminal value, and by 
assumption the marginal utility of electricity remains positive even for the 
maximal possible amount of water in period 2, i.e., R , plus maximal 
amount of inflow that can occur in the known probability distribution for 
inflow in period 2. Therefore it is known in period 1 that it cannot be 
possible with threat of overflow in period 2.  

A bathtub diagram, Figure 9.2, can be used to illustrate the situation. 
Production in period 1 is measured from the left-hand vertical axis and 
production in period 2 from the right-hand axis in the usual way. Seen 
from period 1 the placement of the right-hand axis is stochastic. Two 
extreme realisations from the distribution of inflow in period 2 are 
indicated; w2

min and w2
max. The minimum amount may be zero. In period 1 

the amount AC ( 1oR w  ) is available for production and for transfer to 
period 2. The size of the reservoir is measured from the point of the 
available water from right to left and is CB with the reservoir limits 
indicated by the vertical broken lines from B and C. The inflows in period 
2 are in the figure measured from C to the right, i.e., the minimum amount 

 

      
Figure 9.2. Stochastic inflows in period 2. 
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    The minimal optimal choice of consumption of electricity in period 1 is 
the level corresponding to AB, making the consumption in period 2 always 
equal to what is handed over from period 1 and the inflow in period 2;  
e2

H = Ro + w1 + w2 – e1
H. If the maximal amount of water is handed over, 

we have 1 1
H

oR R w e    and the former equality still holds. The optimal 
choice of e1

H is restricted to the interval AC in the figure. X 
In the general case it may happen in many periods that the available 

water is less than the reservoir limit, because the reservoir limit is without 
a period subscript and the same for all periods, and this limit will become 
relatively larger and larger compared with inflows as the period length is 
decreased. A reservoir limit of 70% of the normal yearly inflow, as is the 
case for Norway, means that the inflow for an average week is less than 
3% of the reservoir capacity, or put it another way: for an average week 
the reservoir level at the end of the previous week must represent a filling 
of more than 97% for more than the reservoir content to be available. 
When the available water in a period falls short of the reservoir limit we 
cannot have a corner solution of transferring the total amount available to 
the next period, but must have an interior solution or the corner solution of 
transferring zero (corresponding to the illustration for the dry period in 
Figure 9.3 below). When having the maximal transfer from a period to the 
next as a corner solution we will therefore have the situation that the 
available water in a period receiving a full reservoir necessarily exceeds 
the reservoir limit if the realised inflow is positive. 
    The first-order condition for determining the optimal value of 
consumption in period 1 for an interior solution is: 

 1 1 2 1 2 1( ) ( ) 0H H
op e E p R w w e      (9.9)

For values of consumption in the interior of the interval specified in (9.6) 
the price in period 1 is set equal to the expected price in period 2. The 
consumption e1

H in period 1 is in principle determined implicitly from the 
equation. Specifying a distribution function for the probability of inflows 
would permit a solution for the consumption in the first period to be found, 
e.g., by numerical methods. 
    In practical applications the distribution for the inflow is discretised, 

sufficiently high number of inflow outcomes (measured as total inflow 

using information about past inflows for the time period in question.  
In Norway there are data going back to 1931. The frequencies of a 

of inflow is in the diagram Cw2
min and the maximum Cw2

max. The demand 
function for period 2 shifts horizontally according to the realisation of the 
inflow and the curves corresponding to the minimal and maximal inflows 
are marked “min” and “max.”  
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within suitable intervals) can be calculated as the average numbers for  
80+ years, including the levels of w2

min and w2
max.2 The expected price in 

period 2 can then be expressed as: 

 2 2 2 1 1
1

( ) ( )
K

H H
i o i

i

E p e p R w w e


     (9.10)

where i is the non-negative frequency for the inflow in the interval i and K 
is the total number of intervals. This expression can be used when solving 
(9.8) for the production level of period 1, specifying also the demand 
functions. Knowing the production level in period 1 the transfer of water 
R1 to period 2 is readily provided by the water accumulation equation  
R1 = Ro + w1 – e1

H.  
    A standard property of the demand function is that it is convex, as we 
have assumed throughout the book. It then follows from Jensen’s 
inequality that 

   2 1 2 1 2 1 2 1( ) ( )H H
o oE p R w w e p R w E w e        (9.11)

Equality holds if the demand function is linear. The price in period 1 
should in general be set higher than the price formed for period 2 by using 
the expected inflow in the demand function for period 2, given the optimal 
consumption in period 1 and amount of water transferred to period 2 from 
period 1. Although we cannot, strictly speaking, compare the solution for 
uncertainty with the deterministic case treated in Chapter 3, using the 
expected amount of inflow is often used as a benchmark. Convexity of the 
demand function implies that the possibility of realising low inflows and 
correspondingly high prices in period 2, results in less consumption in 
period 1 and a greater transfer of water to period 2 than a naïve prediction 
of the price in period 2, by applying the expected inflows in period 2 in the 
demand function, would yield. The effect of convexity of the demand 
function is to create a relatively higher increase in price if the realisation of 
inflow in period 2 should turn out to be low than the relative decrease in 
price if the realisation turns out to be high. Compared with the benchmark 
of equal prices (in the case of the reservoir constraint not being binding), 
the social planner strives to make the prices as equal as possible in the face 
of uncertainty. In order to correct for the tendency for the ex post 
difference to be higher for less water than plenty of water, production is 
reduced in period 1. 

                                                      
2 The extreme values of the distribution may be estimated using approaches for 

extreme-value estimation. 
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    We have assumed risk neutrality on behalf of the social planner. 
Uncertainty has an unavoidable social cost. This cost is exposed by the 
difference between the period prices when we have moved to period 2. 
Introducing risk aversion would probably reinforce the effect convexity of 

    If the risk of extreme events increases in the sense of mean-preserving 
spread (Rothchild and Stiglitz, 1970) it follows directly from that paper 
that E{p2(Ro + w1 + w2 – e1

H)} increases when the demand function is 
convex. This implies that the price in period 1 is set higher for increased 
uncertainty, in the sense of mean preserving spread, about the inflows in 
period 2. 
    Corner solutions for consumption in period 1 appear when the condition 
(9.8) yields values of consumption in period 1 outside the admissible 
interval. In (9.8) the upper limit for the price in period 1 is calculated for 
consumption hitting the lower limit. Similarly we get a lower limit for the 
price in period 1 when hitting the upper limit for consumption in period 1. 
The complete solution of problem (9.6) then follows from the conditions: 
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 (9.12)

The determination of the transfer from period 1 to period 2 follows directly 
from using the water accumulation equation. 
    The optimal choice of consumption in period 1 is illustrated in Figure 9.3. 
Only the decision to be made in period 1 is shown. The left-hand vertical 
axis measures the price in period 1 and the horizontal axis measures the 
available water in period 1. Three situations for period 1 are portrayed; a 
dry period having only the amount ACD at disposal, a normal period 
having ACN at disposal, and a wet period having ACW at disposal. In the 
dry period less water is at disposal than the capacity of the reservoir. The 
right- hand axes are erected at the end points of the available water in each 
of the periods. The same reservoir capacity for each situation is indicated 
by CDBD, CNBN and CWBW, respectively, measured from right to left from 
the end point of available water of the three alternatives. The broken lines 
are erected from the B-points. The curves labelled D, N and W show how 
the expected price expressed in (9.12) in period 2 varies with the amount 
transferred from period 1 to period 2 for the three different situations as to 

the demand function gives, since periods with exceptionally high electri-
city prices are known to cause political stress.  
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X 

 
Figure 9.3. Optimal consumption in period 1. 

water availability in period 1. The potential amount transferred varies from 
the maximal ACD, BNCN and BWCW, respectively, from the intersections of 
the curves and the vertical lines erected from A, BN and BW, respectively, to 
zero at the intersections with the vertical lines erected from CD, CN and CW. 
[The curves end at the respective right-hand axes at a lower value than the 
choke price for period 1 for the convenience of the illustration, and this 
does not reflect a general feature.] 
    When period 1 is a dry period the value of the expected price in period 2 
is lower than the minimum equilibrium price in period 1 corresponding to 
all available water being consumed in period 1. It is then not optimal with 
any transfer of water to period 2, in accordance with the last condition in 
(9.12). When period 1 is a normal period then some of the available water 
in period 1 is transferred to period 2 (but not as much as the maximal 
reservoir), and this interior solution implies that the price in period 1 is set 
equal to the expected price in period 2, in accordance with the first 
condition in (9.12). When period 1 is a wet period, even transferring the 
whole reservoir to period 2 is not enough to make the price in period 1 as 
high as the expected price in period 2, in accordance with the second 
condition in (9.12).  
    In addition to consider different patterns of inflows in period 1, it may 
also be of interest to only consider one type of inflow regime in period 1, 
but to consider alternative probability distributions for period 2. This will  
be especially useful for generalising to many periods. Three different dis-
tributions for the inflow in period 2 is considered in Figure 9.4 for period 1, 
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Figure 9.4. Optimal price and consumption in period 1.  
Stochastic inflow in period 2 follows three different distributions. 

    Considering the dry-period scenario first, the intersection of the demand 
curve for period 1 and the expected period 2 price curve is to the left of the 
limit of the reservoir. This implies that we have a corner solution for  
the transfer from period 1 to period 2: expecting a dry period in period 2 
the maximal amount R  is transferred from period 1 to period 2. In order to 
obtain this transfer without overflow in period 1 the price p1

D has to be 
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Period 1p1 

termed dry period (D), normal period (N), and wet period (W), respectively. 
The expectations shown in the figure are made conditional upon the three 
different distributions for the inflow in period 2 using D, N, and W as 
symbols. The width of the figure corresponds to the available water for 
period 1; that is what was in the reservoir at the start of period 1 and the 
inflow in period 1, both known quantities. AC measures the available water, 
and BC shows the size of the reservoir. Demand in period 1 is measured 
from the left-hand axis. The expected price in period 2 for the three different 
distributions as function of the amount of water transferred from period  
1 to period 2, is measured from the right-hand vertical axis to the left, 
starting with zero water transferred and then decreasing as more and more 
water is transferred. A dry period in period 2 means that this curve must 
give higher values for the expected price as a function of transferred water 
than is the case for both a normal period and a wet period, the latter 
yielding the lowest-placed curve in the figure. This follows directly from 
the different expectations about inflows in period 2. 
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charged. The expected price  2 2( )E p R w D in period 2 is higher than 

this price;  2 2 1( ) DE p R w D p  , in accordance with the first corner 
solution in (9.12). 
    Adopting the normal expectation about the inflow in period 2 takes us to 
the case of the expected price curve for period 2 labelled N in the figure. 
The intersection of the demand curve for period 1 and the curve for the 
expected price in period 2 is within the reservoir capacity. This implies 
that we have an interior solution for electricity consumption in period 1, 
yielding the price in period 1 equal to the expected price in period 2 in 
accordance with (9.12), E{p2(R1 + w2)|N} = p1

N. 
    Expecting period 2 to be wet the bottom curve labelled W for the 
expected price in period 2 is valid. This curve does not intersect with the 
demand curve for period 1. The implication is that we have a corner 
solution with no transfer of water from period 1 to period 2. The price in 
period 1 is set at p1

W implying all available water is demanded in period 1. 
The expected price in period 2 is E{p2(w2)|W}, and we have E{p2(w2)|W} < 
p1

W, in accordance with the second corner solution in (9.12). 

 

    When time passes and we move on to period 2 the optimal decision for 
consumption in period 2 is to consume all available water and empty the 
reservoir. The actual inflow may then not be as expected when the decision 
for transfer of water from period 1 to period 2 had to be made. The dis-
tribution of possible ex post outcomes is illustrated in Figure 9.5. The 
range of actual realisations of the inflow in period 2 is between the minimal 
inflow and the maximal, generating the gap between actual realised optimal 
period-2 prices, corresponding to the maximal gap between inflows. The 
expected price for period 2, standing in period 1, is written p1 = E1 {p2} 
in the figure. We know from Chapter 3 that periods with scarcity and 
periods with threat of overflow are price-determining events. In the two-
period model there is scarcity in period 2. This is reflected in the decision 
rules for consumption in period 1 formulated in (9.12). But as seen from 
Figure 9.5 the actual realisation of the level of scarcity in period 2 can 
generate a wide distribution of the realised period 2 price. An important 
conclusion is then that deviations between expectations and realisations  
of inflows may generate differences in price over time. Uncertainty 
contributes independently to price variation. In the deterministic case  
in Chapter 3 the prices in period 1 and period 2 should be equal in the case 
of the reservoir constraint not becoming binding in period 1. Due to 
uncertainty the prices will now as a typical rule differ. This reflects the 
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X 

 
X 

Figure 9.5. Possible price range when in period 2. 

the fact that a decision about use of water today must be based on expected 
inflows tomorrow, and that it would be arbitrary that the expectation is 
realised exactly. 

Generalisation to T periods 

Some main features of the situation with uncertain inflows were revealed 
using just two periods, but not all. We will need to consider at least three 
periods to see some complications working out an optimal solution 
standing in the starting period, and then we may as well try to characterise 
the solution for T periods. We will not try to give a complete account of 
how to establish a solution in the general case, but indicate the main steps. 
The purpose is just to establish that uncertainty can generate price 
variation that would not be there in the deterministic case. 
    Following the principle of backwards induction to ensure a consistent 
optimal plan in a dynamic world, we start with the terminal period T. Due 
to the terminal condition that the reservoir level at the end of period T is 
free, the reservoir is emptied under the assumption of demand not being 
satiated, i.e., RT = 0. When we are in period T the inflow is known, and RT-1 
is known from the past, so we simply get:  

1 1, ( ) 0H
T T T T T T Te R w p p R w      , (9.13)
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as discussed in Chapter 3. The amount transferred from period T – 1 is in 
the interval [0, ]R . If the amount transferred is zero, then it is possible that 
the realised inflow in period T is zero if this value is permitted by the 
probability distribution. This occurrence implies that the choke price, 
assumed finite, is realised.  
    Moving to period T – 1 the inflow in period T is then stochastic. The 
price in period T will therefore be an expected price. The solution for the 
price- and production level in period T – 1 follows directly from adapting 
(9.12), using the period index T – 1 instead of 1: 
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 (9.14)

    The production level in period T – 1 is found implicitly by substituting 
for RT-1, using the water accumulation equation, in the second equation in 
(9.14) in order to bring in 1

H
Te   as a variable: 

   1 1 1 2 1 1( ) ( ) ( )H H
T T T T T T T T T Tp e E p R w E p R w e w            (9.15)

The production level will be a function of the non-stochastic variables RT-2, 
assumed known from the past, wT-1 known in the current period, and the 
stochastic variable wT. Having the solution for the production level the 
amount transferred to the next period is determined by using the water 
accumulation equation again: 

*
1 2 1 1

H
T T T TR R w e       (9.16)

where *
1

H
Te   is the solution for electricity production from (9.15). Notice 

that both the price in period T – 1 and the production level are functions of 
the amount of water handed over from period T – 2. The two corner 
solutions for water transferred from period T – 1 to T under our 
assumptions yield the optimal level of production in period T – 1 directly 
from (9.14), and the levels are also functions of the water transferred from 
period T – 2.  
    If we focus on the price levels in period T – 1 and T and remember the 
one-to-one correspondence between water values and optimal prices, the 
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first expectation expression in (9.15) gives us the price in period T – 1 
equal to the expected water value of period T, conditional on the transfer 
of water from period T – 1 to T: 

 1 1T T Tp E p R   (9.17)

Going through admissible values for the amount of transferred water 
(including corner solution values) the right-hand expression gives us all 
the possible expected values of the water value in period T, calibrated for a 
given value of RT-2. Such a function may be termed the expected water- 
value table corresponding to a concept used in the literature (Hveding, 
1967, 1968). The information given by such a “table” may be utilised 
determining the actual quantities and prices as time evolves from the start 
of the planning period. This table was actually used in the two-period case 
shown in Figures 9.3 and 9.4. We will return to this point below.  
    Moving to period T – 2, following the same type of substitutions as 
above, we have 
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 (9.18)

This equation can be solved for the production level of period T – 2, given 
a value of the transfer from period T – 3 to period T – 2. A new feature 
seen for period T – 2 is that the amount of water transferred from period T 
– 1 to T is also appearing. For period T – 1 we knew that RT = 0. The value 
for RT-1 is determined in the previous round for period T – 1 together with 
the production level for that period [see (9.16)] as a function of RT-2, wT-1 
and the stochastic variable wT. The corner solutions follow as in (9.14), 
updating the time index, using the two extreme values for the amount 
transferred to period T – 1. The solution for the current period T – 2 
involves the solution for the previous period T. We can also say that the 
expectation of the solution for period T is contained in the expected water 
value. 
    When forming the expected water value table for use in period T – 2 we 
now have the new feature that the amount of water transferred from period 
T – 1 to T enters the expression for the amount produced in period T – 2. 
The expected price in period T – 1 is then conditional both on the transfer 
of water from period T – 2 to T – 1, and the transfer of water from previous 
period T – 1 to T. The transfer of water from period T – 1 to T is a 
stochastic variable. It is natural to express the water-value table updating 
(9.17) one period, where the expectation of RT-1 is now included in the 
expectation operation:  
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The expected water-value table for period T – 1 is now calibrated for a 
value of the water transferred from period T – 3. 
    Following the general substitution principle the conditions determining 
the price and quantities for period t are: 
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 (9.20)

The output level et
H is implicitly determined for the reservoir level in 

period t substituting in the second expression in the first condition in (9.19) 
for the transfer of water from period t to t + 1: 
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Here the value of Rt+1 is determined in the previous round in period t + 1 
as a function of Rt-1, the stochastic variables wt+1 and wt+2, and Rt+1, also 
being a stochastic variable. 
    It may be informative to carry out substitutions in (9.21) to bring out the 
point that the solution for the production level for period t depends on the 
solutions for all later-period quantities. Using the water-accumulation 
equation yields: 
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    The expected water-value table relevant for period t is, generalising 
(9.19): E{pt+1|Rt} = E{pt+1|Rt-1 + wt – et

H}. The expectation-operation is 
carried out with respect to all the stochastic variables appearing in (9.22), 
thus showing the dependence on the earlier (going backwards) solutions 
for the production levels. The expected water-value table used in period t 
is calibrated on the transfer of water from period t – 1 to t.  
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    We have that the arguments in the pt+1-function involve the water 
transferred from period t – 1 to t, the total inflows from t to T and the water 
use from t to T, excluding what is used in period t + 1, summing up to the 
use of water in period t + 1.  
    In order to solve for prices and quantities, standing in the planning 
period t = 1, we have to find both the expected value for the transfer of 
water to the period we are considering and the expected value of the water 
transferred from the period after the period we are considering. The latter 
involve the solutions for all production levels from two periods after the 
one we are considering right to the terminal period. All the demand 
functions are then involved also. This is the challenge to the algorithm that 
has to be set up to solve the problem numerically.  
    Going backwards to the start t = 1 of the planning period we get a 
solution for the use of water in period 1 and the transfer to period 2 as 
functions of Ro and w1, both of which are known in period 1. But as noticed 
above we need to use the expected price for period 2. The expectation 
involves the transfer of water from period 2 to period 3 being solved 
backwards for the terminal period T and right to period 3 involving 
substitution using the dynamic water accumulation equation as shown in 
(9.22). It should be noted that the solution for a period depends on future 
stochastic variables, thus the solutions for remaining periods will not be 
revised as time passes (assuming stochastic independence between periods). 
No new information concerning the solutions for the remaining periods is 
revealed by the passing of time. 
    Moving forward in real time it will be arbitrary that the expected price 
formed at the start in period 1 is realised in later periods, i.e., we will 
generally have pt+1 ≠ E{pt+1|Rt} when we have moved to period t + 1. The 
actual realisations of the inflows and the deviations from the whole 
expected time path will generate fluctuations in the price level. The 
mechanism can be illustrated in Figure 9.6. In period t the available water 
is AC (= Rt-1 + wt). The size of the reservoir is BC. The expected water 
value table to be used in period t is E{pt+1|Rt} and the price for period t is 
set following the intersection of the demand curve for period t and the 
curve representing the variation in expected water values with the amount 
of water transferred from period t to period t + 1. This curve has been 
calibrated according to the historic value for Rt-1 that may deviate from the 
expected value in the optimal plan. When looking forward, being in period 
t – 1, a greater inflow (or a greater transfer from t – 1 to t) represented by 
A'C was expected. [Notice that the point C is kept fixed, it is the point A 
that is moved.] The de-xx mand curve was expected to be anchored at the 
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X 

Figure 9.6. The actual adjustment when real time has moved to period t. 

    With more water available in period t than expected the effects will be 
opposite (the interpretation of AC and A'C in the figure can be switched). 
The available water in period t may become so abundant as to result in a 
corner solution of transferring the maximal amount of the whole reservoir 
to period t + 1. It should be noticed that these results are general because 
the expected water value curve remains fixed, anchored at the wall erected 
from C, and is by construction in the same position independent of the 
realisation of available water.  
    Standing in the starting period 1 and looking forward at the expected 
price path this path reflect corner solutions according to (9.20) and in 
general may mimic the price structure discussed in Chapter 3. However, as 
we move forward in real time the corner solutions may not appear in the 
expected periods. The same mechanism as discussed above may also lead 
to deviations between the expected corner solution periods and the actual 
corner solutions taking place. We see from Figure 9.6 that an expected 
episode with threat of overflow may be postponed if the realised available 
water in the expected period with a full reservoir is less than expected. The 

A'                  A                           B        Mt|t-1  Mt                  C 

pt 

( )H
t tp e  

Period t 

pt|t-1 
pt 

1{ | }t tE p R

dotted wall from A', and the expected price for period t formed at period  
t – 1 is indicated in the figure as pt|t-1. The production in period t was 
expected to be A'Mt|t-1 and the transfer to period t + 1 expected to be Mt|t-

1C. The actual price for period t set in the same period is higher than the 
expectation formed in the previous period, resulting in a lower production 
in period t, but also a lower transfer, MtC, to period t + 1. With a sufficient 
deficit in available water we may get a corner solution with zero transfer of 
water to the next period t + 1.  
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actual period with threat of overflow may come earlier if more water than 
expected is available in periods leading up to the expected period with a 
full reservoir, since more water will then be transferred to the next period. 

Hydro and intermittent 

The analysis of hydro with reservoirs and intermittent energy in Chapter 7 
was based on certain inflows and availability of intermittent energy. In the 
model (9.2) of stochastic inflows and demand we now introduce also 
stochastic intermittent energy. We keep the two-period model assuming 
that the variables inflow and intermittent energy are known in period 1, but 
both stochastic in period 2. The optimisation problem of the social planner 
is (see also (3.29) in Chapter 3 substituting run-of-the-river with inter-
mittent energy): 

The intermittent energy et
I now enters the energy balance. The capacity 

factor at is a stochastic variable and therefore the intermittent energy is 
also a stochastic variable. 
    Using backwards induction the optimisation problem for the terminal 
period 2, assuming both inflow and intermittent energy to be known, is 
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Substituting consumption with the two sources of electricity the first-order 
conditions are derived as in (9.4) (see also Chapters 3 and 7), not showing 
the Lagrangian function for convenience 
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It is optimal to emptying the reservoir so the shadow price on the reservoir 
constraint is zero and by assumption the price (and then also the water 
value) is positive. The first-order condition becomes 

2 2 2 2 1 2 2 2( ) ( ) 0H I oIp e e p R w e        (9.26)

A superscript “o” is used in the intermittent energy variable to indicate that 
it is the realised amount in period 2. The second expression where 
hydropower output is substituted with water transferred from period 1 to 
period 2 and period 2 inflow, shows that both output in period 2 and the 
price in period 2 are functions of the water transferred from period 1.  

Moving backwards to period 1 both the inflow and the intermittent 
energy in period 2 are stochastic, and then so is the price in period 2. Using 
the water accumulation equations a relationship between hydro output in 
period 2 and 1 can be found; 2 1 2 1 2 1

H H
oe R w R w w e= + = + + - . Using this 

relationship the optimisation problem can be expressed as  
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The intermittent energy in period 1 is by assumption known and this is 
indicated with the superscript “o”. The first-order condition for determining 
the optimal value of consumption in period 1 for an interior solution is: 

 
 

1 1 1 2 1 2 1 2

1 1 1 2

( ) ( ) 0

for max(0, ), , [0, ]

H oI H I
o

H I I
o o

p e e E p R w w e e

e R w R R w e e

      

    
 (9.28)

This equation can in principle be solved for e1
H and then R1 can be 

determined. The new stochastic variable e2
I in addition to the inflow of 

water in period 2 makes taking the expectation more complicated, but 
qualitatively there is nothing new. Following (9.12) the corner solutions are 
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             (9.29)

The expected value of intermittent energy in period 2 will now influence 
the decision about optimal amount of water to transfer to period 2. 
Obviously, the possible variation between expected price in period 2 and 
realised price when we arrive in period 2 can now vary considerably more 
from the expected price. In addition to deviation due to realised inflow in 
period 2 (see Figure 9.5) we now have the range of realisations of the 
intermittent energy between minimum and maximum values in period 2.  
    As discussed in Chapter 7 the intermittent energy is not controlled by 
the social planner and the energy is just added to the hydro power. Using 
linear demand function in Figure 9.7 and assuming for simplicity that 
water inflow and intermittent energy are independently distributed (wind 
and solar energy may be independently distributed from inflows, but run-
of- the-river energy is correlated with inflows, see Figure 3.8 in Chapter 3) 
the expected inflow and intermittent energy, respectively, will appear in 
the demand function in the last term in the first line of (9.29). 
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Figure 9.7. Hydro and intermittent in period 1. 

Hydro and thermal 

Keeping fuel prices involved with thermal production deterministic, it may 
still be of interest to study whether there are any consequences for the 
combined utilisation of hydro and thermal when assuming stochastic 
inflows. Only the simplest situation of two periods is considered. Thermal 
capacity is represented by an aggregated convex cost function in total 
output based on merit-order ranking, based on marginal costs of individual 
generators, as explained in Chapter 5. The thermal cost function in period 
2 is assumed to be equal to the function in period 1 and known with 
certainty. A generalisation would be to consider future fuel prices to be 
stochastic. The problem with hydro and thermal capacities for two periods 
can be set up as follows when inflow is stochastic in the second period:  
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Applying Bellman’s backwards principle model (5.21) in Chapter 5 can be 
used for the terminal period 2: 
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The first-order conditions corresponding to (5.23) in Chapter 5 are: 
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(9.32)

For simplicity we consider an interior solution for the thermal output (θ2 = 0). 
Because all water is used up in the terminal period the shadow price on the 
reservoir upper constraint 2 is zero. We have assumed positive prices for 
both periods so we end up with the implicit solution for thermal production 
in period 2, combining the first two equations in (9.32), substituting for 
e2

H, and assuming an interior solution for thermal output: 

2 1 2 2 2( ) ( )Th Thp R w e c e    (9.33)

The solution is conditional on the transfer R1 of water from period 1 to 
period 2; e2

Th = e2
Th (R1). Using the water accumulation equation R1 = Ro + 

w1 – e1
H we may alternatively express thermal output in period 2 as a 

function of hydro output in period ; e2
Th = e2

Th (e1
H). Differentiating the 

condition (9.33) keeping w2 fixed and remembering the standard assumptions 
of falling demand in quantity and increasing marginal cost yields 
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The absolute value of the right-hand side in the last two expressions is less 
than one. Stored water and thermal production is measured in the same 
energy unit (MWh) and one unit increase in transfer of water then reduces 
thermal output with less than one unit, or increase in hydro output in 
period 1 with one unit increases thermal output in period 2 with less than 
one unit. 

Going backwards to period 1 we know that the marginal cost of thermal 
in period 2 is set equal to the price in period 2. But seen from period 1 this 
price is stochastic due to the stochastic inflow in period 2, therefore 
making a decision in period 1 about how much water to transfer to period 
2, thermal output in period 2 becomes stochastic.  

Moving to period 1 the social planner must take relation (9.33) into 
account when solving the problem in period 1. Thermal output in period 2 
can be substituted by using (9.33) yielding the following optimisation 
problem in the variables to be determined in period 1: 
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    The first-order conditions for interior solutions are: 
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We have two equations in two unknowns; e1
H and e1

Th (or R1 and e1
Th using 

e1
H = Ro + w1 – R1). For thermal output in period 1 the optimality rule is to 
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set price equal to marginal cost. For hydro output in period 1 we have that 
the price is set equal to a somewhat involved expression in expectations 
for the next period: 
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The expectation of the price in period 2 is to be taken of a weighted 
expression in the price of period 2 and the marginal thermal cost. The sum 
of weights is one, so the expectation is taken of an average of the two 
terms. The weight for the price is positive according to the reasoning 
below (9.31). The complicated form reflects the adjustment of thermal 
production in period 2 due to the relationship between this production and 
the production of hydro in period 1, or equivalently as we have shown 
above, the amount of water transferred from period 1 to period 2. To relate 
the expectation expression in (9.34) to the “expected water-value table”  
in previous sections we may write the right-hand side of (9.37) as

2 1 2 1{ | , ( )}ThE p R e R . 
    Figure 9.8 provides an illustration of the solution to the choices in 
period 1 of hydro and thermal production, and the amount of water to be 
transferred to period 2. The known amount of water is AC, and the reser- 
voir capacity is BC. The marginal cost function for the thermal capacity is 
shown by the curve marked c', anchored at the hydro wall up from A, and 
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Figure 9.8. Hydro and thermal. 
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measured from right to left. The thermal wall is erected from A'. The 
placement of the wall is endogenous. The demand function is anchored on 
the thermal wall. The expectation-function is anchored on the hydro wall 
on the right-hand side of the figure for a zero value of the transfer from 
period 1 to period 2, and intersects the reservoir capacity curve represented 
by the broken line from B at maximal transfer. Due to the interaction effect 
with thermal capacity, the slope of the expectation curve should be less 
steep than the slope of the comparable curve in the case of hydropower 
only in the previous section, assuming that total electricity amounts 
involved are the same. Equilibrium is found as the intersection of the 
demand curve and the expectation curve. The price for period 1 will 
determine the amount of thermal capacity, A'A, taken into use as the 
intersection of the equilibrium price in the figure and the marginal cost 
curve. The point M, corresponding to the intersection of the demand- and 
conditional expectations curve, shows the allocation of water on 
consumption in period 1, AM, and transfer to period 2, MC.  
    There may be corner solutions for the thermal capacity in period 1 if  
the conditional expected price becomes lower than c'(0) or higher than 

( ).Thc e  The corner solutions for hydro corresponds to the solutions in 
(9.12), but thermal capacity has also to be introduced, with its upper 
constraint. 
    When moving to period 2 the water inflow becomes known, and the use 
of thermal in period 2 is decided as in (9.33) (see also Chapter 5) with 
equalisation of marginal cost and price in period 2. The situation is 
illustrated in Figure 9.8. The available water, AC (= R1 + w2), is utilised 
together with the thermal capacity such that the amount A'A is used, 
according to equalisation of price and marginal cost. If in period 2 the 
realised inflow becomes greater than expected, the conditional expected 
price in period 2, indicated as the horizontal dotted line p1 = E{p2R1, 
e2

Th(R1)} in the figure, should be higher than the realised price. Expected 
available water in period 2 was AC' and expected use of thermal capacity 
A''A, as indicated by the dotted lines. The expected placement of the 
demand curve is correspondingly shown by the broken line as a shift to the 
left of the demand curve. The opposite movement in utilisation of thermal 
capacity dampens the deviation of price from the expected. For the same 
amounts of electricity in the two periods the possible price differences in 
the case of hydropower only, shown in Figure 9.5, should be greater than 
in the case with thermal, as can be indicated elaborating the limits of the 
inflow distribution in Figure 9.9. 
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Figure 9.9. Hydro and thermal in period 2. 

Concluding comments 

The presence of uncertainty provides the final reasons for price variation 
of electricity over time in a hydropower system. In addition to emptying 
the reservoir and entering a situation with threat of overflow, uncertainty 
about future inflows will independently create price variations in the social 
planning solution. Although the problems we set up were quite simple, we 
saw that to obtain solutions may be a complex task, and has to be done 
numerically for real-life applications. 
    One simplification was to specify only one hydropower plant with a 
single reservoir of a limited size. Extending the uncertainty analysis to 
multiple plants with one reservoir each, and introducing constraints on the 
upper production (or power) capacities, and environmental constraints as 
given in Table 3.1 in Chapter 3, will complicate the analysis considerably. 
We saw in Chapter 4 that although the social prices are the same for all 
plants for each period the manoeuvring to avoid overflow is an individual 
plant task and will now involve the plant-specific uncertainty about 
inflows. The individual manoeuvring plans must be based on expectations 
about the future inflows and the social prices, but moving forward in real 
time not only creates a deviation between the real time price and the 
expected one, but also implies that each individual plan based on 
expectations will be subject to adjustments as time evolves. The individual 
changes then give feedback to the actual price formation within the social 
planning context. 
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    With uncertainty it would be expected that some overflow would occur. 
Manoeuvring such that overflow never occurs has a cost that must be 
weighed against the loss of water when overflow happens. Naturally, ex 
ante the probability of overflow must come into consideration. Morlat 
(1964) formulated the planning problem under uncertainty analogously to 
the Hveding conjecture in Chapter 4 about manoeuvring of individual 
plants that may be termed Morlat’s conjecture: 
 

Morlat’s conjecture: Individual reservoirs should be manoeuvred in 
such a way that the probability of overflow is the same for all reservoirs 
(Morlat, 1964, p. 172). 

 
Morlat did not address the situation of emptying the reservoirs, but since 
the situation is symmetric, it is tempting to suggest that the continuation of 
Morlat’s conjecture would be to state that the manoeuvrings of the 
reservoirs should also lead to the reservoirs having the same probability of 
being emptied. However, we will leave this complicated topic here and not 
attempt to develop a formal analysis. 



Chapter 10. Transmission 

So far the transmission system has not been modelled, although it is a 
physical necessity to have a network. The main reason was that the 
existence of a network does not play an explicit role for the dynamics of 
the hydropower system. Assuming network capacities to be given, the flow 
of electricity is continuous and does not influence the nature of the dynamic 
equations driving an optimal plan over periods. However, network effects 
may influence the quantitative solutions in a way that is different for  
a hydropower system than systems with, e.g., thermal generation. It may 
also be interesting to consider transmission regarding the spatial structure 
of pricing of electricity based on hydro generation, since hydro can be 
almost instantaneously switched on and off with modest costs. Hydropower 
may therefore be the most suitable generating technology for applying 
spatial pricing. One key question is whether transmission as a service 
should be priced separately by a social planner, and whether such trans-
mission costs may influence the time profiles of utilising reservoirs. There 
is also the issue of impact of limited capacities on network lines and the 
price structure. We will investigate changes in our model analyses implied 
by networks, and especially look for impacts on use of hydropower. 
    Making transmission explicit we have as a basic unavoidable feature 
that some electricity is lost in the network because that the current of 
electricity through conductors creates heat. The average loss is in the range 
of 2-3% in high-voltage transmission in national or regional grids, and 5-
15% in low-voltage distribution networks supplying the residential sector 
and other low-voltage customers (220-240 volts in Europe, 110-120 volts 
in the United States). However, these losses are average values, and 
marginal values may be considerably higher (in general loss is a function 
of the square of the energy flow). 
    Transmission is governed by physical laws like Ohm’s law and 
Kirchhoff’s laws securing lowest possible loss in a network system of 
generating nodes and consuming nodes,1 given what is put in and what is 
                                                      

1 According to Bohn et al. (1984) this version of Kirchhoff’s laws works for 
direct current, although they have not been able to prove it for alternating current; 
however, it is a useful way to think about electricity flows. 
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taken out. Changing spatial supply and consumption configurations may 
change the loss and consumption for given total supply. Complicated 
physical laws (at least for economists) are involved. Based on concepts 
like electrical angles and reactive power, patterns of flows may change 
rapidly and total energy delivered both be reduced and even increased by 
more than the increase in input. Pursuing this takes us outside the scope of 
the present book, so we will only point to such effects and model 
transmission in a way that make some of these effects possible to unfold 
[see Schweppe et al. (1988) for extensive elaborations based on physical 
laws and the restatement in Hsu (1997) of the main points of transmission 
modelling there]. 

Engineering approach to transmission in economics 

The transmission of electricity is a classical example in economics of an 
engineering production function (Førsund, 1999). According to Vernon L. 
Smith the problem of finding the cost efficient way of setting up a 
transmission line between a node with electricity generation and a node 
with consumption was first analysed by Lord Kelvin (William Thomson) 
in 1881 (Thomson, 1881). The two-node model is illustrated in Figure 10.1. 
    The basic laws governing electrical flows used by Smith (1961, pp.  
24-30) deriving the engineering production function for transmission are 
the following: 
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(10.1)

where the definitions of the variables are: 

Po 
Pi 
PL 

I 
R 

Vo 
cos φ 

φ 

= the consumption of power in kW 
= the generation of power in kW 
= the loss in kW 
= current in amps 
= resistance of the line in ohms 
= fixed voltage at the consumer node 
= power factor of the consumer’s load 
= lag between voltage and current variation in an alternating-

current circuit. 
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X 

 
Figure 10.1. A network with one generating node  

and one consumption node 
X 
    The first equation states the conservation of energy, i.e., that the power 
received by the consumer is the difference between the generation of 
power and the loss in the line due to resistance. The second equation is 
Ohm’s law and the third equation expresses the definitional connection 
between power, voltage, and current. 
    Ohm’s resistance is related to the length of the line, 2L, (L is the length 
between the generating node and the consumer node) the specific 
resistance of the type of metal used, ρ, and the cross-sectional area, A, of 
the cable: 

2L
R

A


  (10.2)

Substituting from the last line in (10.1) and from (10.2) into the first 
equation in (10.1) yields: 
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Introducing the weight of the cable, K, we have that K = 2dLA, where d is 
the specific weight of the metal used.  
    Finally, Smith (1961) derived the following long-run transformation 
function on implicit form between electricity received, renamed x (kW), as 
output and electricity generated, renamed e (kW), and weight of the 
conductor, K, as inputs by multiplying the terms in (10.3) with K:  
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We have used the standard convention that partial derivatives of the 
transformation function with respect to inputs are negative, and that the 
partial derivative with respect to output is positive. The constant k sums up 
the engineering information necessary for the parameterisation of the 

Generating node Consumption node 

Electricity flow 
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production function. The constant k will depend on the type of metal 
chosen for the conductor through specific weight and resistance. The 
difference (e – x) is the power lost due to resistance. 
    We have used energy and not power as the dimension of our variables 
previously. It is straightforward in principle to convert the power variables 
in (10.4) into energy during the time period in question by either inte-
grating over continuous time within the period, or using discrete time and 
the average loads within each time interval and multiplying. For short 
enough time periods an assumption of constant power in continuous time 
may be used as an approximation. 
    In order to facilitate the exhibition of substitution- and scale properties 
the transformation function (10.4) can be solved explicitly (not done in 
Smith, 1961) for output as function of inputs and parameters: 

1
2( , ) (1 4 ) 1

2
K ke

x f e K
k K

 
    

 
 (10.5)

The marginal productivity of e is positive and decreasing: 
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 (10.6)

This long-run production function exhibits constant returns to scale in 
electricity input and weight of conductor; multiplying e and K with a scalar 
quantity yields that the output is also multiplied with this quantity.  
    The ex ante rate of substitution between the weight of the conductor and 
energy generated at the production node can most easily be worked out 
using the implicit form (10.4): 

0dK K
MRS

de e x
   


 (10.7)

The sign is correct since the denominator must be positive. Reducing the 
weight of a conductor of a specific metal increases the energy needed to be 
generated in order for the consumers to receive a certain amount of 
electricity at a given voltage.  
    When an input in a production function that exhibits constant returns to 
scale is kept fixed, we know that for the remaining variable inputs the 
returns to scale must be less than one. In the short run when the conductor 
is capital in place and fixed, the production function (10.5) exhibits 
diminishing returns to the remaining inputs, i.e., the electricity input. This 
can be worked out using the marginal productivity of electricity input in 
(10.6). There is diseconomy of scale in the short run. Keeping the physical 
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conductor constant, increasing injection at the generation node with 1% 
increases the energy reaching the consumer node with less than 1%. 
    The flow of electricity through the line obviously has an upper physical 
limit that we do not model using the production function (10.5). There is a 
design limit to the amount of current the line can carry without being 
damaged by the heat created due to resistance. 
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The given output level xo is assumed to be below the capacity of the line. 
Substituting for energy input using the last equation above, and setting the 
partial derivative of the resulting cost expression with respect to K equal to 
zero, yields the condition for the weight of a specific choice of conductor: 
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where the transformation function is used in the last line, and the last 
expression follows from Ohm’s law (the superscript for the given output 
level is dropped). For simplicity, following the original discussion, direct 
current is considered (or the perfect condition of an AC-system of φ = 0 is 
assumed). We see that loss I2R is proportional to the square of the current. 
For a specific type of conductor the diameter or weight should be chosen 
such that the current value of the loss created by transmission is equal to 
the annualised cost of the conductor measured by weight. Inspecting a set 
of feasible conductors, the type of metal implying the lowest cost of loss, 
given (10.9), should be chosen. 

    The problem stated by Lord Kelvin in 1881 was to find the conductor 
(represented by the area of the cross-section) minimising costs. Rephrasing 
the problem as one of minimising annualised costs, using the transformation 
function (10.4) and introducing pe as the fixed price of electricity input 
(this price may be linked to marginal generating costs), pK as the fixed 
price per unit of weight (for a given length) of the conductor and r for the 
capital annualisation factor (equal to the rate of discount for an infinite 
length of life of the conductor), the formal problem is: 
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Modelling transmission for simple cases 

In order to capture the essence of the transmission activity, i.e., the spatial 
aspect, multiple generating plants must be specified. It is usual to call 
points in a network where generation and consumption take place, for 
nodes (or buses). There may be one or more generators within a node, and 
one or more types of end-consumer (households, firms, agriculture, etc.). 
In a hydropower system the location of generation is determined by natural 
conditions, and the overlap between generation nodes and consumer nodes 
may not be that great. When transmission is introduced a new endogenous 
variable is also necessarily introduced; the loss incurred by heat created in 
the conductors when electricity flows through the networks. As mentioned 
introductory it will be of specific interest in this book with the focus on 
hydropower whether introducing transmission brings in new dimensions as 
to the utilisation of hydropower plants, both across space within the same 
period, and over time.  

Two nodes and two periods 

We will start by first specifying only one consumer node with an aggregate 
demand function and one generation node, as portrayed in Figure 10.1, in 
order to bring out the basic new features when transmission is introduced. 
The generation of electricity is done using hydropower. The question is 
whether the introduction of transmission will have any impact on how 
hydropower is utilised over time. Only two periods will be considered first 
in order to keep the analysis as simple as possible, thus making it possible 
to adapt a bathtub diagram for illustration. 
    The new features to include in the model of the type studied in Chapter 
3 concerns the energy balance telling us that energy consumption is equal 

    The production function (10.5) is too simple to portray real transmission, 
and leave out, e.g., economies obtained by reducing losses by transmitting 
electricity at high voltage. At each end of our stylised transmission there 
are transformers bringing the voltage up for transmission and bringing it 
down again at consumer nodes to the appropriate voltage for consumers. 
The practicalities of weighing high voltage and accompanying smaller loss 
against need for transforming the voltage result in a level of transmission 
networks of highest voltage for the national grid, then a level of less 
voltage at regional networks and a level of lowest voltage for distribution 
networks within consumption nodes. 
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to energy generated subtracted the loss on the line between the generator 
and the consumer, as in the first equation in (10.1). Using our standard 
symbols for consumption and production, and introducing et

L for loss, the 
energy balance is 

, 1,..,L H
t t tx e e t T    (10.10)

Our variables are now measured as in earlier chapters in energy units 
(kWh). In order to capture the physical laws expressed by the two last 
equations in (10.1) we just state that the loss (in kWh) created within a 
period is a function of the energy received at the consumption node, 
keeping in mind the transformation from power concepts to energy 
concepts as explained in the previous section: 
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We only need that the first- and second-order derivatives are positive for 
qualitative analyses, but more specific expressions may be worked out 
using Ohm’s law as shown in (10.1). The signing is based on Ohm’s law. 
    Capacity limits on lines are important for how a transmission system 
behaves. We will assume a unique relationship between the physical limit 
on how much heat, created due to resistance, a line can safely be exposed 
to, and the limit on energy delivered to the consumer node. This is in line 
with our earlier discussion of going from power variables in kW to energy 
variables in kWh. In our analysis a situation with a binding line constraint 
is called congestion. However, in reality the situation is not so “zero – 
one”, since it takes some time before excessive heat makes permanent 
damage to a line, making the line sag or eventually break. 
    In order to focus on the aspects of transmission we will only use the 
reservoir constraints and not introduce the other constraints listed in Table 3.1 
in Chapter 3. The social planning problem for one generating node, one 
consumer node, transmission between the nodes, and two time periods can 
then be set up as follows: 
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The first two restrictions concern the reservoir dynamics and capacity 
constraint. The third equality restriction is the energy balance for period t 
expressing that consumption and loss add up to generation. Loss on a line 
is created in a complex way physically, but here it boils down to the loss 
being a function of the amount of consumption. The restriction on how 
much power the line can carry within safety standards is also related to the 
consumption, remembering that the underlying assumption of using energy 
as a variable for a time period is that the power level is constant in 
continuous time within the interval. 
    Eliminating the loss variable, the Lagrangian for the highly stylised 
problem is: 
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The Lagrangian parameter τt for the energy balance is free in sign because 
the energy balance must hold with equality. 
    The necessary first-order conditions are: 
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We will assume that electricity is consumed and produced in both periods 
so the first two first-order conditions hold with equality. The second 
condition tells us that the shadow price on the energy balance is equal to or 
less than the non-negative shadow price on the water accumulation con-
straint; the water value. In the case of overflow the water value becomes 
zero, and then so will the shadow price on the energy-balance constraint 
when production is positive. The optimal price will then also become zero 
unless the upper constraint on the line is reached.  
    It may be the case that line capacity is so restricted that not all available 
water can be utilised. For this to happen the line constraint must be binding 
in both periods. The optimal price is then determined only by the shadow 
price on the line capacity, since the water values will be equal to the 
shadow price on the energy constraint and equal to zero. Water is left in 
the reservoir at the end of period 2. The transmission constraint leads to a 
lock-in of water. 
    However, it seems more reasonable to assume that the line is dimensioned 
in such a way that water is not lost. The condition is that the sum of 
available water over the two periods is less than twice the upper capacity 
on the line; Ro + w1 + w2 < 2 x . Assuming interior solutions the water value 
is positive and then the shadow price on the energy balance is equal to the 
period’s water value. The optimal price for a period is in this case positive 
and composed of the shadow price on water plus the value of the marginal 
loss generated. The loss is valued using the common water value and shadow 
price on the energy-balance constraint. The water value represents marginal 
production cost in the form of an opportunity cost. The water value will 
vary between the time periods if the reservoir constraint becomes binding. 
    The difference between the optimal price at the consumer node and the 
water value at the production node is made up of the marginal loss and 
congestion terms: 
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In the case of congestion the shadow price on the line capacity constraint is 
added to the loss term. The optimal price will be greater than the water 
value when there are losses and/or congestion. 
    The optimal prices may now become different between the two periods 
due to the loss and congestion terms: 
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The relative size of the loss and congestion terms of the two periods will 
determine which period price is the highest. Since we have just one line 
only one congestion term may be positive in (10.16a) for the period with 
the highest consumption. 
    The third equation in (10.14) is the equation of motion for the water 
values. Transmission-related variables are not explicitly appearing, but we 
will study how transmission can influence the running of hydropower for 
the two periods. Let us first assume that the upper reservoir constraint will 
not be reached in the first period, and that the reservoir is emptied in the 
last period, and that the optimal price remains positive. The dynamics of 
the water-related shadow prices then tell us that the water value will be the 
same for the two periods. This implies that the shadow price on the energy 
balance will also be the same for both periods and equal to the common 
water value. Equations (10.15a) and (10.16a) can then be rewritten 
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    A bathtub diagram may illustrate the situation, first dropping congestion 
effects for simplicity. In Figure 10.2 the demand in period 1 is lower than 
the demand in period 2 for all price levels. The demand curves and the 
curves (pt(xt) – λ∂et

L/∂xt), t =1,2, are assumed to be linear, i.e., the change 
in the marginal loss is assumed to be constant for the latter curve.  

This is, in fact, in accordance with Ohm’s law saying that the marginal 
loss is twice the average loss. The bathtub floor is the total available water, 
Ro + w1 + w2. The amount AC is available in the first period, and the inflow 
in period 2 is CD. However, the erection of the bathtub walls must now 
reflect the losses created in the two periods, so the walls start on the inside 
of the availability line on both sides. The placement of the walls is deter-
mined endogenously as a solution to the model (10.12) above. The optimal  
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Figure 10.2. Impact of network loss on optimal prices 

 
solution is found, using (10.15b), at the intersection of the curves (pt(xt) – 
λ∂et

L/∂xt) for the two time periods determining the level of the common 
water value.2 The reservoir capacity is BC, and we see that the reservoir 
capacity is not constrained in the optimal solution. The optimal prices are 
found by going up to the respective demand curves. AM is consumed in 
the first period, MC is transferred from period 1 to period 2, and MD is 
consumed in period 2. As long as the demand curves differ between the 
two periods the price will be higher for the period with the highest demand 
due to the greater loss generated. The optimal price is higher in the high-
demand period in order to discourage consumption in the high-demand 
period when losses are also considered in the optimisation. This happens 
although the water value is the same for both periods. We have found a 
new reason for price differences in a pure hydropower system. 
    The losses are illustrated in an ad hoc way as AA and DD with DD > 
AA. However, the value of the losses can be identified in the figure as 
shown by the shaded triangles. 
    In the case of a binding reservoir constraint the situation is qualitatively 
different. It turns out that the difference between the optimal prices is now 
determined by the reservoir constraint as analysed in Chapter 3. However, 
the absolute effects are influenced by the losses created. Figure 10.3 
illustrates the situation. The reservoir constraint is binding imposing a limit 
                                                      

2 In Figures 10.2, 10.3 and 10.4 the partial derivative /L
t te x  is written L

te ' .  
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on the transfer of water to period 2. From the third condition in (10.14) we 
have that the shadow price on the reservoir constraint in the first period 
becomes positive. The water values will therefore differ, with 2  = 1 + 1. 
    When calculating the value of the loss in (10.15a) the calculation price 
for period 2 is then greater than the calculation price for period 1. This is 
reflected in the relative size of the gap between the demand curves and the 
marginal loss curves in the figure. The allocation of water between the 
periods is now determined by the size of the reservoir since a full reservoir 
is transferred to period 2. But notice that since the bathtub walls are 
endogenously erected transmission losses are indirectly influencing the 
absolute allocation. In fact, restricting the amount that can be trans-ferred 
to period 2 will increase the use of water in period 1 and decrease it in 
period 2, leading to somewhat smaller total losses, assuming that the 
consumption in period 2 is greater than consumption in period 1. This is 
indicated by the relative size of the losses in the figure. The loss in period 
2 is still greater than the loss in period 1. 
    The consumer prices are determined by the intersections between the 
demand curves and the vertical broken line for the reservoir capacity from 
B. But the difference between the prices is no longer the shadow price on 
the reservoir constraint as in Chapter 3, but is expressed by (10.16a). 
Eliminating the water value for period 1, we see that the price difference is 
an expression involving differences of marginal losses for the two periods, 
evaluated using the water value for period 2, and the evaluation of the 
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marginal loss in period 1, using the shadow price on the reservoir capacity 
constraint: 

2 1
2 2 1 1 2 2 1 2 2 1

2 1

2 1 1
2 1

2 1 1

( ) ( ) ( ( ) ( )

( ) (1 )

L L

L L L

e e
p x p x

x x

e e e

x x x
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   

  

 (10.17)

    Notice that congestion terms are not present in (10.17). It is easy to see 
from the figure that since both the reservoir constraint and the line 
constraint restrict the amount of electricity that can be consumed in period 
2, both will not in general be binding at the same time. If the line capacity 
should be binding we do not have to consider the reservoir constraint. 
    The impact of congestion together with losses is illustrated in Figure 
10.4. Consumption is somewhat higher in period 2 than period 1 and 
constraining the capacity x of the line by design of the figure. Congestion 
in period 2 shifts the curve expressing the difference between the optimal 
price and the loss term uniformly downwards with the size of the shadow 
price on the line capacity, as indicated by the two broken curves below the 
demand curve for period 2. The optimal value of the water value is found 
as the intersection of the demand curve for period 1 subtracted the value of 
the marginal loss and the demand curve for period 2 subtracting both the 
xxxxx 

              
 

Figure 10.4. Impact of network loss and congestion on optimal prices 
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value of the marginal loss and the shadow price on the line-capacity 
constraint. Since less electricity is consumed in period 2 the loss is now 
less in this period, as indicated in the figure. The increased consumption in 
period 1 increases the loss in this period, but the increase must be less than 
the decrease in period 2, leading to a higher total consumption. But this 
does not increase the value of the social objective function, on the 
contrary; we will have a reduction. The reason is that the composition of 
electricity consumption between the two periods has moved in the wrong 
direction, as indicated by the increased price difference between the price 
in the high-demand period 2 and the low demand period 1. The price 
difference is given by (10.16b) with the shadow price for congestion in 
period 2 positive and for period 1 zero. 

Three nodes and two periods 

Let us now extend the model (10.12) to having two generating nodes, but 
each node with a separate transmission line to the single consumer node. 
One hydropower producer with a reservoir is assumed to operate at each 
node. Figure 10.5 provides an illustration. This is an example of the 
simplest radial network. Furthermore, we assume that one line has greater 
resistance than the other [in terms of Ohm’s R introduced in (10.1) and 
defined in (10.2)]. This means that a given amount of electricity received 
at the consumer node generates a greater loss in one line than the other. 
(The example is due to Wangensteen, 2007.)  
 
 
 

 
 

Figure 10.5. Two generation nodes and one consumption node.  
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    The optimisation problem is the following: 
2

1 0

, 1

2

1

2

max ( )

subject to

( )

, , , , 0

, , , given, free, 1,2 , 1,2

tx

t
t z

H
jt j t jt jt

jt j

L H
jt jt jt

t jt
j

L L
jt jt jt

jt j

H L
jt t jt jt jt

jt jo j j j

p z dz

R R w e

R R

x e e

x x

e e x

x x

R x x e e

w R R x R j t

 





  



 









 

 


 (10.18)

Simplifying by substituting for total consumption and loss in each period 
the Lagrangian is: 

2

12

1 0

2 2

, 1
1 1

2 2

1 1

2 2

1 1

2 2

1 1

( )

( )

( )

( ( ) )

( )



 


 

 

 

 




   

 

  

 

 









jtj
x

t
t z

H
jt jt j t jt jt

t j

jt jt j
t j

L H
jt jt jt jt jt

t j

jt jt j
t j

L p z dz

R R w e

R R

x e x e

x x









 (10.19)

The necessary first-order conditions are: 
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(10.20)

The shadow prices τjt on the energy balance for each line are free in sign. 
We will assume that positive amounts of electricity are consumed in each 
period. At least one power station must then produce in each period. In 
fact, both plants will produce in period 2 since this is the terminal period, 
and we assume no satiation of consumption. For a station producing the 
first condition in (10.20) holds with equality. This must then also be the 
case for the second condition. For a power plant not producing in a period 
the sum of the shadow price on the energy balance, the marginal value of 
the loss in the transmission to the consumer, and the shadow price for 
congestion is greater than (or equal to) the optimal price for the consumer. 
The second condition tells us that for a plant not producing the water value 
exceeds (or is equal to) the shadow price on the energy balance.  
    If both plants produce in both periods we have from the second 
condition that the water value for a plant for a period must become equal 
to the shadow price on the energy balance in question for the period. The 
shadow prices on the energy balances become positive the way we have 
set up the optimisation problem. The shadow prices are in general both 
time-specific and plant-specific. The water values are also in general time- 
and plant-specific. Concerning the latter, we have, from the equation of 
motion of the shadow prices concerning the reservoirs, that in the case of 
no threat of overflow (threat of overflow can at most be relevant for period 1), 
the water value and the energy-balance shadow price for a plant are 
constant over the periods. However, both types of shadow prices are still 
different between plants.  
    Inserting the water values the first-order conditions become: 

( ) (1 ) , 1,2 , 1,2
 
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The common water value over time for a plant is written j. The consumer 
price is equal to the sum of the water value, the value of the marginal loss, 



Modelling transmission for simple cases      251 

and the shadow price on the line capacity. The loss is evaluated using the 
water value in question and not the consumer price. This condition is a 
generalisation of condition (10.15b) in the case of one plant only to two 
plants. (A further generalisation to N plants is immediate.) The difference 
between the consumer price and the water value for a plant for each time 
period is the sum of the loss and the congestion term for the line in 
question. The water values must be less than the consumer price if either 
the marginal loss or the shadow prices on congestion are positive.  
    Since the consumer price is independent of plant the implication of 
(10.21a) for the relationship between the loss and congestion terms for the 
plants for the same time period is: 

The sum of loss-adjusted water values and shadow value of congestion 
must be equal for the plants for each time period. 
    The value of the sum of the two terms will in general be different 
between two periods when demand varies, implying a variation of the 
optimal price. The marginal loss term will be higher in the high-demand 
period than the low-demand period by definition, because marginal loss 
increases with energy delivered. We then have that both plants will 
produce more in the high-demand period than they do in the low-demand 
period.  
    Occurrence of congestion cannot change this situation in general. We 
will maintain the assumption in the previous section that line constraints 
do not lead to locking in of water; Rjo + w j1 + w j2 < 2 jx (j = 1,2). It is 
therefore the case that if congestion occurs on a line, it will be in the high-
demand period because production at both plants are higher. But the value 
of the marginal loss generated by the restricted component of consumption 
will still be higher than in the low-demand period, and in addition the 
positive congestion term adds to the cost of the loss. The total effect is that 
the optimal price in the high-demand period is higher than the price in the 
low-demand period. 
    The difference between the optimal consumer prices for the two time 
periods is found by using (10.21a) and is equal to the difference in value of 
marginal loss and congestion term: 
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    Let us first study the total impact on the water use on the periods caused 
by transmission losses and assume no congestion. If period 1 is the low- 
demand period and period 2 the high-demand one, at least one plants must 
produce more in the high-demand period. But then both plants must 
produce more according to condition (10.22). Furthermore, the higher 
price in period 2 seen from (10.22) means that more is consumed in period 
1 and less in period 2 compared with a situation without transmission 
losses. We have the same shift of water use from the high-demand period 
to the low-demand period as in the previous section with one plant. 
    Concerning the use of water at the plant level let us assume that the 
marginal loss on line 1 is greater than the marginal loss on line 2 for the 
same amount of energy delivered at the consumption node. From Ohm’s 
law we have that the second derivative of the loss function is positive [and 
approximately constant, cf. (10.1)]. The optimality condition (10.21b) 
demands equality of the loss-adjusted water values for each time period. If 
we assume that plant 1 has a greater total water inflow than plant 2, then it 
is reasonable to assume that marginal loss will be greater for plant 1 than 
plant 2 for both periods, and, consequently the water value for plant 1 will 
be lower than for plant 2. In fact, the difference in marginal loss values 
must be of the same sign for both periods, as can be seen from (10.21b). 
    In order to maintain the equality between loss-adjusted water values, 
remembering that plant-specific water values are constant over time, plant 
1 must have a different relative profile of water use between the periods 
than plant 2. Because the marginal loss increases more rapidly for plant 1 
than for plant 2 the increase in the use of water in period 2 will be 
relatively less for plant 1 than for plant 2. This means that relatively more 
water is used in period 1 by plant 1 and less by plant 2. The equality of 
loss-adjusted water values for each period is obtained by adjusting the 
relative use of water for each plant between the periods in the fashion 
described. According to (10.22) the value of the difference between the 
marginal losses must be the same for each plant. By processing relatively 
more water in the low-demand period in the plant with the line with the 
highest Ohm’s resistance and relatively less in the high-demand period, 
and vice versa for the plant with a line with less resistance, the total loss 
over both periods is reduced compared with a policy of uniform regulation 
of water use.3  
                                                      

3 These effects are shown numerically in a somewhat simpler model in       
Wangensteen (2007), assuming equal total inflows for the two plants. 

This relationship is a generalisation of (10.16b). The additional information 
is that the differences between the sum of the marginal loss term and 
congestion term for each plant are equal. 
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    However, the situation described above may be reversed if it is the case 
that the plant connected through the high-resistance line has less total 
water to process. If the level effect of resistance is dominated by the 
volume effect regarding losses, then the relative adjustment for the plants 
is reversed. It is still the case that relatively more electricity is consumed in 
the low-demand period and relatively less in the high-demand period 
compared with a situation without losses. 
    Considering congestion, the congestion terms may be regarded as 
constants in (10.21b). If congestion occurs, it will be in the high-demand 
period. The relative adjustment of production will qualitatively be the 
same as above, independent of the value of the congestion effect, but the 
absolute adjustment will be influenced. It seems reasonable that one line 
only will be congested in period 2. Assuming that the low-resistance line is 
congested in the high-demand period, but not the high-congestion line (μ12 
= 0, μ22 > 0) leads to a relatively smaller difference in the production 
between the two plants. The relative difference becomes greater if the 
high-resistance line is congested, but not the low-resistance line. 
 

A general transmission model 

We will now expand the model to encompass N generation nodes, M 
consumption nodes and S network links. For convenience we label generating 
nodes the same way as individual generators have been labelled in Chapter 
4, but we do not look at individual generators within the same node. We 
look at aggregated demand for each consumption node. Consumption 
nodes may coincide with supply nodes, but for simplicity we use separate 
indices for consumer and producer nodes without specifying if some nodes 
coincide. Ideally, we would have liked to specify functions that accurately 
reflect the underlying physical and engineering properties of electricity. 
However, as mentioned before, this task is complex and will take us too far 
outside a traditional economic approach. The purpose of the modelling 
effort here is to maintain a model structure familiar to economists, but still 
reflecting main features of physical and engineering properties. It will not 
be shown explicitly how the various links within the transmission network 
are connected. The network implicitly behind the scene is in general 
exhibiting loop-flows, implying that it is not possible to direct electricity 
along specific lines. We will capture the physical network implicitly through 
the generation of losses on each line. These losses are related to generation 
at all generation nodes and consumption at all consumption nodes. 
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    Keeping our variables in energy units we define the net flow, bst, on a 
line. We then assume that the generation at each node and the consumption 
at each node will influence net flow on lines: 

1 1( ,.., , ,.., )
1,.., , 1,..,

H H
st st t Mt t Ntb b x x e e

t T s S



 
 (10.23)

    The partial derivatives of this flow relationship may be both positive and 
negative, and, of course, zero. The equation captures the pervasive electric 
externalities in a general network; “everything depends on everything.” 
    The losses are then created on each line as a function of the net flow on 
the line: 
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Loss is increasing in line flow. It would be fine if the network could be 
modelled in a point-to-point way expressing how much electricity is lost in 
the transport of electricity from a generating node j to a consumer node, i. 
But loss incurred may be quite impractical to calculate in such a way and 
also difficult. We therefore stick to a general way of capturing the loss 
incurred on each line by injections and withdrawals.  
    In principle electrical equilibrium at all nodes should be modelled: 
consumption at each node must be equal to the net flow coming in, but we 
do not identify net flows by nodes. We therefore cannot show the 
equilibrium at each node. In order to do that we need to specify links into 
each consumption node and how much electricity that is delivered to the 
node at the end of each link into the node. The characterisation of power 
flow over each line is instead implicitly embedded in the energy-balance 
equation for the total system. 
    Congestion is also a pervasive phenomenon in a network model. A 
congested line somewhere may create repercussions throughout the total 
network. This may be brought out in the simplest possible illustration of a 
loop-flow possibility using the popular three nodes example; two generation 
nodes and one consumption node. Adding a link between the two generation 
nodes in Figure 10.5 we get the ubiquitous triangular model shown in 
Figure 10.6. The current can either flow directly from a generation node to 
the consumption node, or flow the other way through the other generation 
node to the consumption node. The loop-flows are created by the possibility 
of the flows from the generator nodes to take two different ways to the 
consumption node. Kirchhoff’s laws tell us that the power between any 
XXXXXXXXXXXXX 



A general transmission model      255 

X 

 
X 

Figure 10.6. Two generation nodes and 
one consumer node with loop-flows. 

 
two nodes is necessarily distributed across all parallel paths. The 
distribution on the loops is according to relative resistance on the lines. 
The size of the flow going directly from a generation node to the consumer 
node, compared with the flow going the other way through the other 
generation node, is in proportion to the resistances on these loops. But the 
really intriguing consequence of the physical laws is that if a flow 
restriction on a line is reached, then this will determine the maximal flows 
on the other loop-lines, too. Consider an upper limit on the line between 
the two generators in Figure 10.6. Then the maximal flow on the direct 
link between the generation node and the consumption node will be 
determined by the relative resistances multiplied with the capacity on the 
link between the generators, even though the capacity on the direct link 
may be larger. 
    However, it will take us too far into electrical engineering to try to 
capture loop-flow externalities. We will model line capacities as given, 
and then let all injections and all withdrawals influence the flow on lines:  
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This formulation cannot capture the loop-flow congestion externalities 
illustrated by Figure 10.6, because a binding constraint on a line there may 
reduce feasible upper levels on other lines below their physical limits. 
    Another source of transmission constraint in addition to the thermal 
aspect is the voltage. Reactive power occurs on an alternating current 
network creating restrictions and also voltage stability problems. A complete 
analysis of the network requires modelling both real and reactive power. 
However, we will not attempt to include such issues here.  

Electricity flow 
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    The general social planning problem with a transmission network can 
then be formulated: 
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Inserting for loss the Lagrangian is: 
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The necessary first-order conditions are: 
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The shadow price τt on the energy balance is free in sign. Looking at the 
number of endogenous variables and equations, the endogenous variables 
may in principle be determined, but due to the somewhat unclear proper-
ties of the line-flow function the sufficiency conditions may be violated, 
indicating that there may be problems with attaining a unique optimum.  
    We will assume that there is positive consumption at each consumer 
node, implying that the first condition holds with equality. The social 
consumer price at node i can then be expressed as 
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    The first term on the right-hand side is the shadow price on the energy 
balance. This is the opportunity cost of the unit increase in consumption at 
node i. The second term on the right-hand side is expressing the marginal 
losses on all the S lines created due to the marginal increase in consump-
tion at node i evaluated using the shadow price on the energy balance. 
Given an increase of the flow on line s the loss is increasing, but flows on 
lines may go up as well as down when consumption at node i increases 
marginally. Therefore the total expression for loss may be positive as well 
as negative. This is also the case for the expression for congestion. How-
ever, the congestion term cannot be negative for all consumer nodes if one 
of the constraints is binding. We would expect as a normal result that the 
majority of the expressions are positive. One must be careful not to con-
fuse a characterisation of the optimal solution with some line constraints 
being binding. A consumer node located in, e.g., a locked-in export region 
may have a negative congestion term, but the shadow price on a congested 
link out of the region may still remain positive. The consumption in the 
export region will increase compared with an unconstrained case due to a 
lower consumer price, and the congestion is thereby not relieved to the 
extent that the shadow price on the link becomes zero. 
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    The shadow price on the energy balance is free in sign since the energy 
balance is an equality constraint. We should find the shadow price positive 
the way we have set up the problem. If the loss decreases more than the 
unit increase in consumption at a node, then it might seem possible that  
the optimal price becomes negative if the loss term outweighs the sum of 
the shadow price on the energy balance and the congestion term. The 
consumers at the node would then be paid to use more electricity. How-
ever, since the shadow price on the energy constraint is common for all 
consumer and generating nodes it seems rather impossible that all the 
nodes are characterised by having negative losses. We will therefore adopt 
the assumption that the shadow price on the energy-balance constraint is 
positive. It is still possible for a consumption node to have a negative 
optimal price. 
    In the case of no losses being created and no binding line capacity 
constraints, the social consumer price equals the shadow price on the 
energy balance constraint as in the corresponding models of the previous 
chapters.  
    Assuming that there is positive generation at node j the water value 
becomes 
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The water value equals the shadow price on the energy balance subtracted 
system losses created at the margin due to the unit injection, valued at the 
shadow price of the energy balance, and the shadow-valued congestion 
costs. If both the loss and the congestion terms are positive the water value 
becomes smaller than the shadow price on the energy balance. The water 
value must be non-negative. We see from the second condition in (10.28) 
that if the water value remains larger than the difference between the 
shadow price on the energy balance and the sum of loss and congestion 
terms for all feasible values of production, then production is set to zero in 
this period. As was the case for a consumption node the loss term may now 
also be negative, making the stored water at the generation node more 
valuable. This may be the case of a generation node being the closest to a 
large consumer node. The congestion term may also be negative contributing 
to an increase in the water value. This may be the case for a generating 
unit within an import-restricted region.  
    If losses and congestion are zero the water value becomes equal to the 
shadow price on the energy balance, implying as in the models of Chapter 
4 that the water values are all the same and equal to the common water 
value of active generators.  
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    The role of a comprehensive loss and congestion social pricing can be 
seen by inspecting the pair-wise differences between prices at consumer 
nodes, prices at generating nodes, and prices between a consumer and a 
generating node. The difference between social consumer prices at two 
nodes i and u is found using (10.29): 
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A higher loss and a higher congestion at one node compared with another 
contributes to the former node having the highest social consumer price. 
Consumers located at a node generating higher losses and congestion at the 
margin should get incentives to scale back consumption. The general case 
is that all optimal prices are different. The optimal prices between pairs of 
consumption nodes will only become equal if the loss and congestion 
effects at the margin are identical. 
    In an analogous way the difference in water values between a pair of 
generating nodes j and v can be found using (10.30): 
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The generation node with highest sum of total loss and congestion at the 
margin will have the lowest water value. Generation at such nodes become 
cheaper in terms of opportunity cost of water. 
    The difference between the nodal optimal price at a consumer node i 
and the water value of a generating node j is found by combining (10.29) 
and (10.30): 
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The difference is the sum of the two loss terms evaluated using the shadow 
price of the energy balance and the two congestion terms, evaluated by the 
shadow prices of the line capacity constraints. When the loss and congestion 
terms are positive the optimal price is greater than the water value for all 
relevant pairs of consumer and generating nodes.  

Separation into zones 

Congestion may lead to separation of a system covered by a grid into 
zones that become independent as to price formation. An example is 
provided in Figure 10.7. The generating nodes are indicated with small 
circles and the consumption nodes with large circles. The meshed grid 
pattern just indicates that there are several ways for the electricity to flow 
from production nodes to consumption nodes, i.e., loop flows may occur. 
Size of generation and demand, or capacities of links are not indicated in 
the figure. The network falls in two parts; the southern and the northern parts,  
XXXXXXXX 

 

 
Figure 10.7. A general transmission network. Generating nodes are represented  

by small circles, consumption nodes are represented by large circles. 

Consumption nodesGenerating nodes 

South zone  

North zone  
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and there is only a single link between these two parts. This is the case 
between the North and the South Island of New Zealand, and almost the 
case between North and South Norway. This connecting link may be 
congested for certain configurations of supply and demand in the total 
network. Usually there are critical links with restricted capacity that cause 
congestion. But these links may change with demand and supply con-
figurations. Notice that with loop-flows we may have congestion occurring 
without resulting in separate zones. Such separation was assumed in 
Chapter 6 when looking at two countries, and separate prices resulted 
when the link between the countries was congested with the importing 
country having the highest prices. 
    When a grid is separated by congestion the determination of optimal 
prices, water values, and other shadow prices will take place insulated 
from events in the other parts. Equations (10.29) - (10.33) will all be zone-
specific. The externalities exhibited will only contain elements related to 
generation and consumption nodes within the zone and to links within  
the zones, forming subsets of the general sets of the consumption and 
generating nodes and lines. 

Network impact on utilisation of hydropower  

The nodal price structure due to loss and congestion externalities as 
revealed above is general and valid for various types of generators. The 
water value applying to a generator node represents marginal generation 
cost for hydropower. It is shown by (10.30) and (10.32) that water values 
are in general different. What is special for hydropower is the dynamics of 
the shadow prices of water and reservoir limits as revealed in the third 
condition in (10.28). As long as reservoir levels stay in between empty and 
full the water value remains constant. The three elements shadow price on 
the energy balance, value of total marginal losses, and congestion may 
change from period to period, but the water value remains the same. 
    The simple examples of two and three nodes revealed that the pattern of 
use of reservoirs is influenced by transmission. Less water will be used in 
high-demand periods due to the increased losses incurred. Differential 
losses on lines will also influence the relative use of hydropower plants 
connected to consumer nodes with different resistances, e.g., due to 
different geographical distances. In our example reservoirs connected 
through lines with less resistance will be used relatively more extensively 
in high-demand periods than low-demand periods, and vice versa for 
reservoirs connected through lines that have relative higher resistance. 
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    Comparing the nature of the optimal solution with transmission to the 
ones without in Chapter 4 we no longer obtain uniform water values in the 
system, but generating-node specific water values. Furthermore, the prices 
at consumer nodes become in general different. The differences in water 
values and in consumer prices all stem from the way losses are incurred in 
the system and effects of congestion. Congestion is even more important 
than we have modelled due to loop-flow effects. This is the background for 
proposals of spot-pricing (Bohn et al., 1984; Schweppe et al., 1988).4 An 
important implication for the social planning solution is that Hveding’s 
conjecture cannot be invoked to aggregate the system. The spatial 
distribution of dispatch of generators within a period must take losses into 
consideration, created simultaneously by the spatial distribution of 
demand. The utilisation profile of reservoirs over time will be influenced 
by spatial variation in losses. When consideration of overflow necessitates 
a specific manoeuvring of a reservoir, the creation of loss connected to the 
utilisation profile will also enter the picture. 
    However, it should be evident from our analysis and the physical 
electrical realities that, even for a social planner, it would be quite an 
involved operation in practice in real time to mirror the physical system 
completely by fully implementing the spatial structure of optimal prices at 
consumer nodes and individual water values at generating nodes that takes 
incurred losses and congestion fully into consideration. The transaction 
costs in the form of gathering information, processing it, and sending 
instructions to generators may involve costs that are higher than the social 
benefit of spatial pricing. The way the electricity flow from one generating 
node is distributed on consumption nodes varies continuously over time 
and with the changes in the configurations of consumption and generation, 
thus creating “electrical externalities” of losses and congestion involving 
loop-flow effects in the network system. It may be impractical, or too 
costly, to internalise the full extent of externalities. 
    Our analysis can provide an understanding of assumptions that have to 
be made in order for equal water values to be faced by producers, and 
equal optimal prices by consumers. The general condition is uniformity of 
marginal loss effects and congestion impact over generation and consump-
tion nodes. Then prices are equal and water values are equal, and there is a 
constant mark-up factor between water values and consumer prices. But 
this approximation may be too crude to follow in practice. Losses and trans-
mission constraints in looped networks are likely to generate significant  
 
                                                      

4 According to Bohn et al. (1984) spot-pricing was first proposed in Vickrey 
(1971) as “responsive pricing.” 
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interaction effects across different parts of the system and lead to a optimal 
price structure of different nodal prices and water values. The analysis 
above may shed some light on design of spatial pricing and benefits to be 
reaped (Green, 2007). 



Chapter 11. Market Power 

The deregulation of the electricity power production system in many 
countries since the early 1990s has stimulated interest in the possibilities of 
producers behaving strategically. The classical implication of use of market 
power that production is reduced compared with perfect competition also 
holds for electricity markets being supplied by conventional thermal 
power. Typical base-load plants like nuclear power plants do not have the 
same physical opportunities because of long and expensive start-up and 
close-down times. Systems with a significant contribution from hydro 
power with storage of water have not been studied so much. However, 
hydropower plays a significant part in many countries. As pointed out in 
Chapter 1 about 16% of the world’s electricity is produced by hydro power, 
and about 20% of countries in the world depend on hydropower for more 
than 50% of their electricity generation (OECD/IEA, 2012). Hydropower 
with water storage has features that set it apart from other generating 
technologies concerning possibilities of exercising market power. The 
almost costless instantaneous change in hydro generation within the power 
capacities makes it perfect for strategic actions in competition with thermal 
generators, with both costs and time lags involved in changing production 
levels of the latter. In countries with day-ahead spot markets hydro pro-
ducers interact daily and they all know that operating output-depending 
costs are zero, the opportunity cost is represented by future expected 
market prices, and they may hold quite similar expectations. This may 
facilitate collusion. In the case of hydropower, production can be reduced 
only by using less water. This may lead to spillage of water when reservoirs 
are limited and inflows positive. Spilling water has the same logic as 
burning coffee beans to support the coffee price of a cartel, but it is also 
easily as observable and may be met with regulatory action. Spilling water 
is obviously not part of a social solution (if technically avoidable), as 
demonstrated in earlier chapters. One reason for concern about potential 
market power abuse of hydro producers is that it may be used without any 
spilling of water and not so easy to detect by regulators, because market 
power is typically exercised by a reallocation of release of water between 
periods compared with what would be the socially desired release pattern. 
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costs does not work for hydropower because variable cost is virtually zero. 
The relevant variable cost is the opportunity cost of water, but this is an 
expected variable and not directly observable.  
    Although there is some recent literature covering market power by 
hydro producers, the topic deserves a closer scrutiny and systematic 
review. Use of market power by hydro producers is covered in Ambec and 
Doucet (2003) and Crampes and Moreaux (2001) using very simplifying 
assumptions. Two periods are considered in both models and the standard 
result of a monopoly following the strategy of equalising marginal 
revenues of the periods, resulting in a reallocation of water from periods 
with relative inelastic demand to periods with relatively more elastic 
demand, is established. A constraint on the transferability of water from 
one period to the next is not considered. Borenstein et al. (2002) investigated 
the possible use of market power by hydro producers when thermal 
capacities are also present at the backdrop of the California crisis. The 
formal model is the same as the model in Bushnell (2003) dealing with 
strategic scheduling of the hydro producer with different assumptions 
about the behaviour of the thermal producers. When a monopolist controls 
thermal capacities, the equalisation of the marginal-revenues rule over the 
periods is confirmed.  

Monopoly 

In order to expose the strategies of a monopolist we start with the simplest 
possible case and then increase the complexities later. As a starting point 
we assume that all hydro producers are part of a monopoly and simplify 
further by considering the monopolist as a single production unit (i.e., the 
coordination problems shown in Chapter 4 and summed up as Hveding’s 
conjecture are solved by the monopolist). We assume that the monopolist 
knows the period demand functions just like the social planner. The 
optimisation problem of the monopolist in the basic case of a single water 
availability constraint is: 
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Measuring existence of market power by comparing price and marginal 
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The function pt(et
H) is the demand function on price form for period t with 

standard properties. 
    The Lagrangian for problem (11.1) is: 
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The necessary first-order conditions are: 
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Assuming that the monopolist will produce electricity in all periods the 
conditions may be written: 
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    In the expression for the marginal revenue of increasing production we 
have introduced the demand flexibility, /H

t t t tp e p   (the inverse of the 
demand elasticity), which is negative. The condition is that the marginal 
revenues, expressed as flexibility-corrected prices, should be equal for all 
the periods and equal to the shadow price on stored water. As in the 
textbook monopoly case the absolute value of the demand flexibilities 
(demand elasticities) must be less (greater) than, or equal to, one for a 
unique solution to exist. The short-run demand may in general be on the 
inelastic side, so the condition on the price elasticities is not necessarily so 
innocent. Prices may become quite high in order for the monopolist to be 
able to push demand to the elastic part of the demand function, and in the 
case of inelastic demand with vertical demand curve the monopoly 
solution characterised by (11.3) does not exist. Equality of marginal 
revenues between periods implies that the period with the relatively most 
elastic demand at the optimal quantity of electricity, i.e., the smallest 
absolute value of the demand flexibility t

 , obtains the smallest market 
price. From (11.4) we have: 
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    The benchmark social planning case uses consumer and producer surplus,
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   , as objective function while the monopolist only considers 

producer surplus,
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solution (11.3) or (11.4) and the social solution is that the flexibility-
corrected price is substituted for the price. Compared with the solution in 
the social planning case the monopolist can only obtain higher profit than 
by using the common optimal price (marginal willingness to pay in the 
condition (2.6) in Chapter 2) if the demand functions differ over periods. If 
the demand functions are identical for the periods it follows from (11.3) 
that the flexibility-corrected prices become equal, and therefore the prices 
will be equal and equal to the common price in the social solution, 
provided that there is no spilling. With spilling the monopoly prices will be 
equal, but higher than the social prices for identical demand functions. 
However, the shadow value on the water resource becomes less than this 
price, reflecting that a monopolist considers the marginal revenue as the 
opportunity cost of using water. This difference may have implications in a 
dynamic setting of investment in new capacity. A monopoly will tend to 
expand less facing, e.g., positive shifts in demand. 
    If water is left unused we have from (11.3) that the shadow price of 
water is zero. Since the shadow price of water is a scalar this implies that 
the flexibility-corrected prices must be equal to zero for all periods and 
hence the price flexibilities equal to 1. 

An illustration in the case of two periods, with the same linear demand 
curves as in Figure 2.1 and the same total water resource, is provided in 
Figure 11.1. The broken lines are the marginal revenue curves. The length 
AD of the floor of the bathtub indicates the available water. We have that 
in the illustration the marginal revenue curves intersect at a positive value, 
i.e., it will not be optimal for the monopolist to leave any water unused. 
This value is the shadow value on water. But this result depends on the 
form of the demand functions. If we have unused water as an optimal 
solution, then the shadow water value is zero. Going vertically up to the 
demand curves from the intersection point of the marginal revenue curves 
gives us the monopoly prices for the two periods. 

In Figure 11.1 the social solution is indicated by the thin dotted 
horizontal line p1

Sp2
S and the corresponding water allocation by the point MS. 

The shadow value of water is smaller in the monopoly case than in the 
social optimal case. If all water is to be used we must have in general that 
at least one monopoly price is lower than the social price. [Notice that this is 
not sufficient for all water to be used.] In this case, for the quantity corres-
ponding to the lowest monopoly price the marginal revenue must be lower 
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Figure 11.1. The basic monopoly case. 
Social solution shown by thin dotted lines. 

 
than the social price for the period in question and consequently the 
common shadow value on water in the monopoly case must in general be 
smaller than the shadow value in the social planning case. If water remains 
unused we have that the shadow value of water is zero, according to the 
complementary slackness condition in (11.3). 
    An important general result is that in the case of monopoly the market 
prices become different for the periods, in contrast to the constant price in 
the social optimal solution indicated by the dotted horizontal line p1

S p2
S. 

For the period with the most inelastic demand, period 2, the price becomes 
higher than the social optimal price, and for the most elastic period, period 
1, the price becomes smaller, in accordance with (11.5). Thus we have a 
general shifting in the utilisation of water from periods with relative 
inelastic demand to periods with relative elastic demand. The water 
allocation in Figure 11.1 moves from point MS in the social case to MM in 
the monopoly case. Although the total electricity supply over the two 
periods is the same as in the social case, the monopolist increases his profit 
by selling more in the most elastic period, and then partially reducing his 
revenue indicated by the marked area (p1

S – p1
M)AMM on the sales in period 

1, but recouping more than this in increased revenue in period 2, indicated 
by the marked area (p2

M – p2
S)MMD. 
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    The monopolist will leave water unused if it is optimal to set marginal 
revenues equal to zero. Note that since we have only one shadow price on 
the water resource, if marginal revenue is to be zero in one period the 
marginal revenues have to be zero in all the other periods, too, when water 
is used in all periods. By changing the slope of the demand curves in 
Figure 11.1 slightly this case is illustrated in Figure 11.2. The marginal 
revenue curves do not intersect within the bathtub, and becomes zero at M1 
and M2 respectively for the two periods. Period 1 has the relatively most 
elastic demand and more electricity is sold than in the social solution, 
reducing the monopoly price below the social price, as indicated by the 
position of the horizontal dotted line for the social case. The available 
water is not fully utilised; the amount M1

MM2
M is left unprocessed. The 

monopoly price is far above the social price in period 2. 
    Since unused water is easy to observe it may be of interest to see what 
the monopoly solution will be if a condition of full use of the available 
water is made. Technically this means that the water resource constraint is 
made into an equality constraint so the sign on the shadow price λ in (11.2) 
is not restricted anymore and the last condition in (11.3) is dropped. 
Marginal revenues should still be equal and equal to the water shadow 
price. Using the same demand functions and total water availability as in 
Figure 11.2 the solution with the water constraint as an equality constraint 
means that the marginal revenues become negative, and more water is used 
XXXXXXXXXXXXX 
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Figure 11.2. Unused water in the monopoly case. 

Social solution shown by thin dotted lines. 
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in both periods, resulting in lower prices in both periods and still unequal 
prices, as shown in Figure 11.3. 

Monopoly and trade 

A hydro region with a regional monopoly may engage in electricity trade 
with neighbouring regions. Let us call a region for a country for ease. We 
will look at a situation where the monopolist controls both import and 
export, but takes the import/export prices as given. Unlimited trade will be 
assumed. Although this is unrealistic it will serve as a benchmark for 
introducing restrictions on the interconnector capacity later. Extending 
model (11.4) we have the monopoly profit maximisation problem adding 
export revenues or subtracting import outlays from the home profit 
function: 
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Figure 11.3. Monopoly with full resource-use constraint. 

Solution without constraint shown by dotted thin lines 
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We assume that the amount of electricity consumed locally is positive in 
all periods (i.e., xt > 0) and that the export/import prices are all different. 
The second condition in (11.8) holds with equality because the export/ 
import variable is not constrained in sign. Because there is an export 
opportunity to positive price water will not be wasted by the monopolist 
and the shadow price on water will be positive. If hydro is used in an import 
period then the first condition in (11.8) holds with equality, implying that 
the flexibility-corrected home market price, (1 )t tp   , is equal to the 
shadow price on water. The second condition tells us that the flexibility-
corrected price is always equal to the import price. But since the export/ 
import prices are different the shadow price on water can be determined 
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Here pt
XI is the export/import price (prices are equal and transmission cost 

is disregarded) and et
XI is export if positive and import if negative. The first 

restriction in (11.6) is the energy balance; the consumption xt at home may 
be supplied by locally produced hydro or by imports. Inserting the energy 
balance that holds as an equality constraint yields the Lagrangian: 
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The necessary first-order conditions are: 

only by one flexibility-corrected price. We know that in an export period 
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we must also use hydro at home because of the assumption of positive 
consumption at home of electricity in all periods. Therefore in an export 
period the flexibility-corrected price is also equal to the shadow price on 
water. Because of lack of any restriction on trade it is the highest export price 
period that will become the only export period, and in all other periods 
there will be imports and no use of hydro at home (i.e., no electricity will 
be produced using water at home). This means that in import periods the 
flexibility-corrected price is less than the shadow price on water.  

An illustration is provided in Figure 11.4. Because the import price by 
construction is lowest in period 1 this period will be the import period. The 
amount of import is determined by the intersection of the marginal revenue 
curve and the import price line. The home market price will be higher  
than the import price in the standard way of a monopoly. Import may be 
regarded as an alternative way to using hydro to “produce” electricity 
(marginal revenue is set equal to the marginal production cost; the import 
price). In the export period the use at home of hydro is determined by the 
intersection of the marginal revenue curve and the export price line. Export 
is residually determined as the rest of the available water. The shadow price 
of water is equal to the export price. Comparing the monopoly solution 
with the socially optimal solution, the latter is indicated by the vertical 
dotted lines from the intersection of period 1 demand curve with the  
 XXXXXXXX          

 
Figure 11.4. Monopoly and trade without restrictions. 

Social solution shown by vertical dotted lines. 
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import price for this period, and the intersection of period 2 demand curve 
with the export price for this period. The import and export periods will be 
the same. The shadow price on water will be the same in the two solutions, 
but import will be considerably reduced in the monopoly case, resulting in 
a higher home price than the import price. In the export period the 
monopoly will export more water and restrict correspondingly the use of 
water for electricity production at home, resulting in a home price higher 
than the export price. The monopolist is playing price discrimination 
between two markets. 
    Constraining the amount traded due to limited interconnector capacity 
makes for a more realistic situation. The monopoly profit maximisation 
problem in the case of restrictions on trade is: 
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The restriction on trade can be expressed by one restriction on export and 
another on imports, remembering that import is negative and export 
positive. Inserting the energy balance that holds as an equality constraint 
yields the Lagrangian: 
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Here αt is the Lagrangian parameter for export and βt the Lagrangian 
parameter for import. 

 



Monopoly and trade      275 

    The necessary first-order conditions are: 
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(11.11)

We maintain the assumptions that the amount of electricity consumed at 
home, xt, is positive in all periods and that the export/import prices are all 
different. Looking at the second condition, because we have either import 
or export in a period, the shadow prices on the upper and lower constraint 
cannot both be positive at the same time, but they may both be zero if the 
constraints are not binding. 
    We have by assumption that in an export period we must also use hydro 
at home. Therefore in an export period the flexibility-corrected price is 
also equal to the shadow price on water. The second condition in (11.11) 
tells us that the flexibility-corrected price is equal to the export price minus 
the shadow price on the export constraint. It will be arbitrary if export in 
each period of export is exactly equal to the constraint. In general there 
will therefore be a period when the export possibility is not fully utilised. 
We will call this period the marginal export period (see Chapter 6). But in 
this period the shadow price on water is equal to the export price. Denoting 
the period when the marginal export period occurs for t* we have: 

* * * * *(1 ) XI XI
t t t t tp p p        (11.12)

But the shadow price on the water resource is a scalar. It is therefore the 
marginal export period that determines this shadow price. For all the 
export periods with a binding constraint the shadow prices on the upper 
constraint come in positive, satisfying the second equality in (11.11) for a 
general t belonging to the export periods (i.e., the periods when the export 
price is higher than the price for the marginal export period). The shadow 
prices are determined such that the difference between export price and the 
corresponding shadow price is constant and equal to the shadow price on 
water. 
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    If hydro is used in an import period then the first condition in (11.11) 
holds with equality, implying that the flexibility-corrected home market 
price (1 )t tp    is equal to the shadow price on water. The second condition 
tells us that the flexibility-corrected price is always equal to the import 
price plus the shadow price on the upper constraint on import, yielding: 

(1 ) XI
t t t tp p       (11.13)

But by assumption pt*
XI > pt

XI for all periods being import periods. This 
means that hydro cannot be used in the home market in import periods 
unless the total import capacity is used. If hydro is not used in import 
periods the flexibility-corrected price is in a regular case lower than the 
shadow value on water and the import price is lower than the shadow value 
of water. 
    An illustration is provided in Figure 11.5. Because the import price is 
lowest in period 1, this period will be the import period. The original 
bathtub wall on the right-hand side is drawn with solid line, and on the 
left-hand side with a broken line. Both import and export capacities will be 
fully utilised. Because the import/export price is lowest in period 1, this 
will be the import period. The import capacity is added to the broken hydro 
wall to the left and marked with the solid vertical line. The demand and 
marginal revenue curves are anchored on the “import wall” on the left. In 
the export period 2 the hydro wall on the right-hand side relevant for home 
xxxx  

 
Figure 11.5. Monopoly and trade with constraints. 

Social solution shown by thin dotted lines. 
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consumption is shifted to the left with the length of the export constraint, 
marked with the broken, vertical line to the left of the right-hand hydro 
wall. This amount will be exported. The demand and marginal revenue 
curves relevant for the home country in period 2 are anchored on the 
broken, vertical wall. The flexibility-corrected prices are equal and equal 
to the shadow price on water. The home price becomes higher than the 
export price in the export period, and the home price becomes higher than 
the import price in the import period. The connection between the shadow 
price on water, the import/export prices, and the shadow prices on the 
trade constraints are shown in the figure. 
    Comparing with the social solution we have that both import and export 
trade capacity will be fully utilised, but that the home price will be equal 
for the two periods indicated by the dotted horizontal line through the 
point of intersection between the demand curves for the two periods. The 
monopolist will use more water at home in the relatively more price-elastic 
demand period 1 and accept a lower price than for the social solution (but 
higher than the import price), but then having less water left for the 
relatively inelastic period he will realise a higher price than both the social 
price and the export price. 

Monopoly with reservoir constraints 

Limited transferability of water between periods is the most realistic 
situation for hydropower. An upper limit on the reservoir will be introduced 
together with an accompanying water-accumulation equation. The mono-
poly problem is now based on the model (3.3) in Chapter 3 without trade 
possibilities. The profit maximisation problem is: 
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The Lagrangian is: 
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The necessary first-order conditions are: 
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    Assuming electricity is always supplied and introducing the demand 
flexibility, /H

t t t tp e p  , the first-order conditions read: 

1

( ) ( ) ( )(1 ) 0
( 0 for 0), 1,..,

H H H H
t t t t t t t t t t

t t t t

p e e p e p e

R t T

  
  

      
      


 (11.17)

Comparing with the solution (3.6) of the social planning problem, the 
marginal revenue is substituted for the marginal willingness to pay (the 
price). The flexibility-corrected price is set equal to the water value, but 
the water values are period-specific, so marginal revenue may now differ 
over time. The second condition in (11.16) or (11.17), showing the dynamics 
of the water value, is qualitatively the same as in the social planning case. 
The discussion of the development of the water value is therefore 
qualitatively parallel to the social optimum case. By backward induction 
we can find the path of development for the water value. A general feature 
is that if the reservoir neither is threatened with overflow nor runs empty, 
the water value will remain constant and equal to the value in the terminal 
period. But in the monopoly case the market prices may fluctuate from 
period to period depending on changing demand functions. 
    In the social planning case discussed in Chapter 3 a quite reasonable 
assumption of non-satiation of electricity led to the terminal water value 
being positive in the case of free terminal reservoir level. In the monopoly 
case this assumption does not help us in general to determine the terminal 
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value of the water value. To assume that the flexibility-corrected price for 
the terminal period will always be positive is a stronger assumption than 
assuming a positive price, or non-satiation. Such an assumption would 
imply that the monopolist will want to use up all available water in the 
terminal period.  
    The case of the terminal water value becoming zero does not create any 
formal problem. For a start it means that some water may be unused in the 
terminal period. If the upper reservoir constraint is not binding in the 
preceding period T – 1 the water value will also be zero in this period, 
implying that the flexibility-corrected price is zero and water may be 
added to the reservoir handed to the terminal period. The water value can 
become positive only if there is a period where it is optimal to use up all 
available water. If this period is t, then we have from (11.17) that λt ≥ λt+1 = 0. 
The regular case will be that the water value for period t becomes positive. 
In the opposite case of a full reservoir in a period where all the later 
periods have zero water values, the water value cannot become less than 
zero. The shadow price on the upper constraint is in this case zero. Nothing 
is gained by expanding the reservoir limit marginally. 
    Introducing a lower limit on the terminal reservoir level or a scrap-value 
function as in (3.10) in the terminal period does not change the possibility 
of starting with a zero terminal water value when doing backwards 
induction. In the case of a lower positive constraint the monopolist may 
find it optimal to hand over more than this to the future, thus implying a 
zero shadow price on the terminal level. Using a scrap-value function, 
S(RT), following (3.12b), the condition for the terminal period becomes: 

( ) 0T T TS R       (11.18)

However, we cannot now exclude the possibility that the monopolist finds 
it optimal to deliver the maximal amount to the future in order to contract 
water usage within his planning period and even have overflow. The 
shadow price on the reservoir constraint becomes positive, because with a 
bigger reservoir more can be handed to the future contributing positively to 
the objective function. But the shadow price then becomes equal to the 
marginal value of the reservoir handed over, implying that the terminal 
water value in (11.18) is zero. In order to make sure to have a positive 
water value in the terminal period we have to assume that the marginal 
scrap value is higher than the shadow price on the reservoir constraint, 
implying no overflow. If the reservoir is not full in period T – 1 the 
terminal water value will also be the water value for the preceding period. 
The discussion of possible water value developments will now parallel the 
discussion in Chapter 3 with flexibility-corrected prices substituting for 
social prices. 
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    The general strategy of the monopolist of shifting water use from 
relatively inelastic demand periods to relatively elastic ones will also 
prevail in the case of a reservoir constraint. Let us first assume that the 
monopolist will not find it profitable to spill any water, i.e., that the 
marginal revenues stay positive. The constraint on the reservoir capacity 
will in general lead to the monopoly prices being closer to the prices in the 
social solution if the constraint is binding in the latter case. If it is optimal 
for a monopolist to have the upper constraint on the reservoir binding in a 
period, then this means that he must charge the market price given by the 
intersection of the demand curve and the vertical reservoir constraint in 
order to sell the available water. If the same amount of water is available 
as in the social case then the monopoly price must be equal to the price in 
the social optimum. The shadow value of water must adjust downwards for 
this to be possible. The monopolist follows the general strategy of using 
more water in elastic periods and having less water for the more inelastic 
periods. How this strategy interacts with storing more or less water than in 
the social planning case is connected to whether the reservoir build-up 
periods and the draw-down periods coincide with relatively elastic or 
inelastic periods. If build-up periods coincide with relatively elastic demand 
periods there will be a tendency to reduce the number of periods with bind-
ing reservoir constraint. Maximal storing may become more seldom the 
optimal strategy for a monopolist.  
    In the two-period illustration in Figure 11.6 the available water, 
including inflow and initial filling, in period 1 is AC and the inflow in 
period 2 is CD. The reservoir capacity is BC. The build-up period is period 
1 with the most elastic demand. The reservoir constraint is not binding  
in the monopoly case, but was binding in the social optimal solution, as 
indicated by the dotted horizontal price lines intersecting the vertical 
reservoir constraint from B, and we have no spillage. The allocation point 
for water is moved from B in the social case to MM in the monopoly case. 
We note that the monopoly price in period 1 with the relatively most 
elastic demand becomes lower than the social optimal price with a binding 
reservoir constraint, and the monopoly price in period 2 with relatively 
inelastic demand becomes higher than in the social optimal case. This is 
the general effect of shifting of water from periods with relative inelastic 
demand to periods with relatively elastic demand in the case of market 
power. The areas representing reduced income in period 1 and increased 
income in period 2 can easily be identified in Figure 11.6. Notice that the 
price differences are now quite reduced compared with the case of no 
reservoir constraint. 
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Figure 11.6. Monopoly with reservoir constraint. 
Social solution shown by horizontal dotted lines. 

    It is often assumed that high demand periods, e.g., peak periods, are the 
periods with relatively most inelastic demand (Borenstein et al., 2002). 
However, this is an empirical question and should not be assumed without 
further investigations. Also in peak-demand periods there are substitution 
possibilities for consumers as pointed out in Chapter 1. In a summer period 
without both heating and cooling the substitution possibilities are much 
more restricted than in wintertime with several heating options, so it may 
as well be such periods that have the most inelastic demand as peak demand 
periods. The monopolist is utilising differences in demand elasticities and 
not differences in absolute demand. 
    A monopolist will experience a binding reservoir constraint as in the 
social case illustrated in Figure 11.6 if the intersection of marginal revenue 
curves is to the left of the vertical from B representing the reservoir 
constraint (the demand curves have to be slightly redrawn to obtain this 
case). In this case, if the monopolist tries to shift more water from inelastic 
periods to elastic periods, he will not maximise profits. In a two-period 
case with the same availability of water in the first period with the binding 
reservoir constraint the monopolist cannot do better than adopt the social 
solution although the demand in period 1 is more elastic.  
    Spilling of water can take place only in a period when the reservoir is 
filled up to the limit. The spilling then occurs if marginal revenue becomes 
zero before all available water in addition to the full reservoir is processed. 
Figure 11.7 illustrates such a case for the build-up period 1 having a less 
elastic demand than the draw-down period 2. The symbols have otherwise 
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Figure 11.7. Monopoly with reservoir constraint and spill. 

Social solution shown by dotted horizontal line. 

identical interpretations with Figure 11.6. The marginal revenue becomes 
zero before all available water AB in addition to a full reservoir BC is 
processed, resulting in a spillage in period 1. The water value becomes 
zero according to the second condition in (11.17). The monopoly price is 
markedly increased compared with the social planning price, indicated by 
the thin horizontal dotted line from the intersection point between the 
demand curve for period 1 and the thick vertical broken line from B being 
the reservoir wall. However, because the marginal revenue curve for period 
2 is hitting the reservoir wall at a positive value the monopolist will utilise 
all available water in period 2, implying he has to charge the same price as 
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Regulation of spillage with reservoir constraints  

Regulation can be introduced within this model the same way as done in 
the subsection above on monopoly. The optimisation problem of the mono-
polist with reservoir constraints and regulation preventing overflow is: 
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The regulation is shown by imposing equality in the first constraint. 
The Lagrangian function for the problem is: 
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The necessary first-order conditions are: 
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Due to imposing the equality constraint as the regulation against spill the 
Lagrangian parameters t are unconstrained in sign. Using Figure 11.7 as 
the point of departure we will in general have a negative value of the water 
value for the period when the regulation becomes binding because the 
monopolist left alone would stop at zero marginal revenue. The monopolist 
is forced to use water driving down his marginal revenue to negative values,  
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Figure 11.8. Monopoly with regulation to prevent spill. 
 

 

Monopoly with trade and reservoir constraints 

We will now combine trade and restriction on the reservoir. The monopoly 
optimisation problem in the case of restrictions both on trade and reservoir is: 
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so the water value becomes negative. Figure 11.7 will be changed accordingly 
as demonstrated in Figure 11.8. The water value for period 1 is determined 
by the intersection of the extended marginal revenue and the downward 
extension of the full-reservoir line from B. The water value is negative  
in period 1 because the monopolist loses profit by producing more. The 
period price and the use of water become identical with the prices and 
quantities in the social solution.  
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Inserting the energy balance that holds as an equality constraint yields the 
Lagrangian: 
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The necessary first-order conditions are: 
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    The change from the case of trade without reservoir restriction is that 
the water values are now period specific. Two consecutive water values 
are connected through the value of the shadow price on the reservoir con-
straint, as seen from the third condition in (11.24). The possibility of 
overflow may restrict import of electricity because water is used until the 
mar- ginal revenue becomes zero if that is necessary to avoid overflow. In 
export periods home price may be driven further up because there is a limit 
on the transfer from the previous period. If the reservoir constraint does not 
become binding we are back to the solution without a reservoir constraint. 
    A bathtub illustration for two periods is provided in Figure 11.9, which 
is based on Figure 11.5. Because the import price is lowest in period 1 this 
period will again be the import period. Available water including inflow to 
the reservoir in period 1 is AC and inflow in period 2 is CD. The size of the 
reservoir is BC, indicated by R , and the broken, vertical lines from B and 
C represent the reservoir. The reservoir is introduced from C to the left to 
B because our problem for two periods is how much water to leave to 
period 2. The import constraint, indicated by the solidly drawn energy wall, is 
placed to the left of the hydropower wall, drawn with a broken line from A. 
In our case the full import capacity will not be utilised. But the full export 
capacity will be used, and this capacity is indicated by the first thick, 
dotted line to the left of the right-hand hydro wall drawn with a solid line.  
    The final layout of the figure may be thought of as the result of two 
stages, where only the last stage is drawn, for the two periods’ curves. In 
the first stage the demand and marginal revenue curves are anchored to the 
hydropower walls erected from A and D. The optimality conditions for the 
import period tell us that the marginal revenue curve should pass through 
the intersection between the import price line and the hydro wall from B. 
The demand and marginal revenue curves are then shifted horizontally to 
the left to allow this, and the stopping point is where the import wall is 
erected. If more import is tried the marginal revenue will become smaller 
than the import price. At least water AB has to be used home in period 1, 
and the market price matching this amount is higher than the import price. 
Therefore import is introduced until the marginal revenue is equal to the 
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Figure 11.9. Monopoly, trade, and reservoir constraints. 
Social solution shown by thin dotted lines. 

import price. Recall the analogy between imports and another technology 
for producing electricity. The final market price is found the usual way of 
moving vertically up to the demand curve. Because the import capacity is 
not fully utilised the shadow price 1 on this capacity is zero. The water 
value becomes equal to the import price for this period. The maximal 
amount of water BC is transferred to period 2. Checking period 2, there is 
in the first stage enough water to utilise the export capacity fully. The 
thick, vertical dotted line to the left of the hydropower wall then indicates 
the reduced availability for hydropower at home, and the demand and 
marginal revenue curve are shifted horizontally to the left and anchored to 
the new wall. The intersection of the vertical water storage wall from B 
and the marginal revenue curve for period 2 then gives the water value for 
period 2. The home price is found by the intersection of the hydropower 
storage line and the demand curve. The shadow price γ1 on the reservoir 
capacity is the difference between the two periods’ water values and is 
indicated in the figure. Since the export capacity is fully utilised its shadow 
price α2 is positive and indicated as the difference between the export price 
and the water value for period 2. 
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    Entering thin dotted lines for the solution of the social-planning case 
facilitates a comparison with the monopoly case. The import and export 
periods remain the same. The import capacity will now be fully utilised, so 
the demand curve for period 1 will be anchored at this import-extended 
wall, illustrated by the thin dotted vertical line to the left of the bathtub 
wall in the monopoly case. In addition, all water that cannot be transferred 
to period 2 will be used at home in the import period, resulting in slightly 
more use of water in the social case in period 1 and a slightly lower price 
than in the monopoly case. In period 2 the full export capacity will not be 
used because using it will leave so little water to be consumed at home that 
the market price will increase above the exogenous export price. Only such 
an amount will be exported that lead to the same price at home as the 
export price. The demand curve for period 2 must therefore pass through 
the intersection point of the export price line and the broken storage wall 
erected from B. The demand curve is anchored (not shown in the figure)  
at the thin vertical dotted line to the right of the monopoly anchoring 
indicating the reduced optimal export in the social case. In our illustration 
monopoly leads to a shift away from imports and over to exports. Because 
import is reduced the monopoly price is (slightly) higher in the import 
period. Because the same total amount of water is transferred to period 2 in 
the monopoly case the increased export leads to a (markedly) higher 
domestic price and a reduced consumption. The export period has the 
relatively most inelastic demand. 

Monopoly with hydro and thermal plants 

Hydro is in most countries combined with thermal capacity. Let us first 
assume that a monopolist has full control over both hydro and thermal 
capacity. The thermal capacity is aggregated into a sector capacity by using 
an aggregate merit-order cost function as explained in Chapter 5. We will 
investigate how the monopolist utilises the two types of electricity tech-
nologies compared with the social solution. We assume that the monopolist 
is free to reduce production et

Th from the thermal units as he sees in his 
interest. The simplest restriction on hydro production of a total available 
amount of water is used. Thermal capacity is restricted to The . The demand 
functions are pt(xt), where xt is the electricity demand supplied both by hydro 
and thermal capacity. The optimisation problem, adapted from (5.15) is: 
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Substituting for total energy the Lagrangian is 
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The necessary conditions are: 
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Concentrating on periods where both hydro and thermal are used, the 
general result is that marginal revenue substitutes for the marginal 
willingness to pay in the social optimal solution: 

( )(1 ) ( )Th
t t t t tp x c e       (11.28)
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Figure 11.10. Monopoly. Hydro and thermal capacity. 

The monopoly solution for a period is illustrated in Figure 11.10. If  
the monopolist’s water value is OB in a period, total energy supplied is 
indicated by the intersection of the horizontal water value line BB' and the 
marginal revenue curve, yielding quantity OeH and monopoly price pM. 
Both thermal and hydro capacity will be used according to the marginal 
revenue condition (11.28). The thermal capacity will be OeTh, determined 
by the intersection between the marginal cost curve and the water value 
line BB' at b, and the hydro capacity (OeH – OeTh). The thermal capacity is 
not exhausted, so the shadow price on thermal capacity is zero. 

For two periods we may again use the bathtub diagram to illustrate the 
allocation of the two types of power on the two periods. In Figure 11.11 
the length of the hydro bathtub, AD, is extended at each end with the 
thermal capacity. The thermal marginal cost functions are anchored at the 
hydro walls and extending to the left out to the capacity limit indicated by 
a short vertical line for period 1 and to the right for period 2, as explained 
in Chapter 6. Using the result (11.28), with the shadow price on the 
thermal capacity constraint being zero, we have that the thermal extension 
of the bathtub is equal at each end; with aA in period 1 and Dd in period 2 
and aA = Dd. The equilibrium allocation is at point M, resulting in an 
allocation of aA thermal and AD hydro in period 1, and MD hydro and Dd 
thermal in period 2. Although all available water may be used in both 
periods as is the case in Figure 11.11, the monopolist will reduce the use of 
thermal capacity. This may be seen recalling that the water value in the 
monopoly case will always be lower than the optimal social price. Since  
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Figure 11.11. Two periods and monopoly with hydro and thermal capacity. 

the monopolist equates his water value with the marginal cost of thermal 
capacity, the result follows. 
    Introducing a reservoir constraint as in Figure 11.6 will not change the 
solution for the case of an intersection of the marginal revenue curves within 
the area delimited with the lines from B and C in that figure showing  
the storage possibilities. A monopolist will equate the water value with the 
marginal cost of thermal, and not the market price. Compared with the 
social-planning solution the use of thermal capacity may be reduced in all 
periods and will be base load unless a hydro reservoir constraint is binding. 
For such periods thermal capacity will also be used as peak. 

Dominant firm with a competitive fringe 

A pure monopoly in the electricity market is not so common. There may 
be a dominating firm in terms of market share, but there will often be 
many smaller firms acting as price takers in the market. The existence of 
such a competitive fringe reduces the possibility of using market power 
because the fringe firms will supply according to the market price. For 
simplicity we will model the dominant firm by using the hydro model (11.1) 
without a reservoir constraint, but with a total water constraint, and model 
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the competitive fringe by introducing a thermal sector represented by a 
cost function, as in the previous section, but without imposing a capacity 
constraint for the time being.  
    The optimisation problem for the dominating hydro producer is: 
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The third constraint in (11.29) represents the behaviour of the competitive 
fringe. It supplies according to the price-taking profit maximising condition 
of equating market price with marginal costs. We can most conveniently 
proceed in the standard textbook way by using the third condition to derive 
the relationship between the supply of the fringe and the dominant pro-
ducer’s supply of hydroelectricity. If the hydro producer supplies more the 
market price cet. par. goes down, but then the fringe contracts its output, 
assuming that the marginal cost is increasing. Differentiating 
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    Equation (11.30) defines implicitly the fringe output as a function of the 
output of the dominant firm. The relationship can be expressed by 

( ), 0 ( 1,.., )Th H
t t t te f e f t T    (11.32)

Using the energy balance and the relationship between fringe output and 
output of the dominating firm yields a more compact problem than (11.29) 
with the Lagrangian as 
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The first-order conditions are: 
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The last bracketed term, (1 + det
Th/det

H), on the right-hand side of the first 
condition in (11.34) is positive, but less than 1, resulting in the conditional 
marginal revenue becoming less than the price. Using (11.31) yields: 
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The marginal revenue of the dominant firm is now reflecting the behaviour 
of the fringe. We have that the value of the conditional marginal revenue is 
closer to the market price for a given total quantity (but still below this value) 
compared with the expression for monopoly marginal revenue. Rearranging 
the first-order condition in (11.34) yields the following expression for the 
conditional marginal revenue: 

(1 ) , 1,..,
t

H Th
Ht t

t t t t tp c H Th H
t t t

e de
MR p p e t T

e e de
 

   


  (11.36)

The conditional marginal revenue function is closer to the demand function 
than the monopolist’s marginal revenue function because of two factors: 
the market share of the dominant firm is less than 1 in the first expression 
in (11.36) reducing the impact of the demand flexibility, and the second 
expression involving the quantity reaction of the fringe is positive. 
    When the dominant firm is producing (11.34) tells us that the marginal 
revenues conditional upon the behaviour of the fringe shall all be equal 
and equal to the shadow price on water. It seems reasonable to assume that 
the dominant firm produces in all periods. Zero production implies that the 
shadow value of water is greater than the marginal cost of the fringe 
providing the whole market quantity. We will disregard this possibility. 
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    An illustration in the two-period case is provided by Figure 11.12. The 
broken lines below the demand curves are the conditional marginal 
revenue curves. The optimal solution is characterised by these conditional 
marginal revenues being equal and equal to the shadow price of water. The 
use of the fringe thermal capacity is governed by the equality of the market 
price and the marginal cost. The demand and conditional marginal revenue 
curves are anchored on the thermal walls, being endogenously determined, 
extending the energy bathtub like the case in Figure 11.11. The thermal 
cost functions start from the hydro bathtub walls. The use of thermal capa-
city, aA, in the relatively elastic period 1 is smaller than the use Dd in the 
more inelastic period 2. The market prices differ and the price is highest in 
the more inelastic period. Thus the existence of a fringe leads the dominant 
firm to use more thermal capacity in the high price period than in the low 
price period, in contrast to the monopoly case with both hydro and thermal. If 
the relatively inelastic period is the peak period this means that thermal is 
now serving as peak capacity and not only as base load as in the monopoly 
case. In the illustration more hydro, AM, is used in period 1 than in period 2, 
using MD. Compared with the monopoly case the impact of the fringe is 
clearly to make the prices become more equal. A larger fringe capacity 
will be used in the more inelastic period, forcing the market price down. 
This reduces the effectiveness of shifting water from period 2 to period 1. 
 

 

 
Figure 11.12. Dominant hydro and a thermal fringe. 
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Using more water in period 1 is actually more effective cet. par. for the 
dominant firm in the sense that the necessary price decrease is cushioned 
because the fringe will contract its output. However, the fringe activates 
more capacity in the high price period; thus the existence of a fringe leads 
to less market power being exercised. 
    A constraint on the thermal capacity of the fringe will be an advantage 
for the dominant hydro firm if the constraint becomes binding. The first-
order profit-maximising conditions for the price-taking fringe in the case 
of a capacity constraint are: 
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The capacity constraint is The and its shadow price θt. The capacity 
restriction implies the following response of the fringe: 
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In the case of ( )t tp x p the first-order condition (11.34) for the dominant 
firm becomes 
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assuming that the dominating firm is producing. The conditional marginal 
revenue function shifts further away from the demand function. But since 
the demand flexibility is multiplied with the market share of the dominating 
firm this implies that the conditional marginal revenue function does not 
shift down as far as to the monopoly marginal revenue function. 
    In the two-period case the situation can be illustrated as in Figure 11.13, 
building upon Figure 11.12. Total hydro resource is BD. The capacity of 
the thermal fringe is indicated by the small vertical line at the end of the 
marginal cost curve outside the thermal wall in period 1. The thermal 
capacity constraint is binding in period 2, but not in period 1. The demand 
and marginal revenue curves for period 2 are now anchored on the thermal 
wall dictated by the capacity constraint. The shift to the marginal revenue 
curve defined in (11.39) valid when the fringe output is constrained, is 
shown by the greater distance between the demand and the marginal revenue 
curve. The opposite direction of shifts for the demand and revenue curves 
implies an increase in period 2 price. Total supply is Md, the fringe 
XXXXXXXXXXXXXXXX 
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Figure 11.13. Dominant firm and constraint on the fringe output. 

supplies its maximal capacity Dd, and the dominant firm supplies MD. In 
period 1 the thermal capacity is not fully utilised and the conditional 
marginal revenue curve follows from (11.34) and lies relative closer to  
the demand curve as in Figure 11.12. The fringe supplies aA, less than  
its capacity, and the dominant firm supplies AM. When allocating water 
between the two periods the dominant hydro firm strikes a balance 
between marginal income from the two periods, taking into consideration 
the lack of quantity response from the fringe in period 2 with full capacity 
utilisation and the contracting response in period 1 if more water is shifted 
to this period. The shadow price θ2 on the thermal capacity constraint in 
period 2 is shown in the figure and is the difference between the market 
price and the marginal cost at full capacity. Thus it measures the revenue 
to the fringe of expanding capacity marginally. The size of the capacity 
shadow price is also an indication for the dominant firm of the advantage 
enjoyed due to the fringe being capacity constrained. 
    Hydro producers can also constitute a fringe. However, the behaviour of 
the fringe can lead to analytical problems finding an optimal solution to 
the profit maximising problem of the dominating firm. Assuming that the 
fringe has at its disposal an amount of water corresponding to WF and has 
enough reservoir capacity to be perfectly flexible as to in which period to 
use the water, the fringe will use all its water in the period with the highest 
price. Although it is a fringe and therefore WF may be considerably smaller 
than WD, where WD is the dominant firm’s water resource, it can still have 
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a considerable market share if all its water is used just in one period. It 
may happen that for a relatively large fringe water resource the solution is 
forced to be the social optimal solution with equal price for all periods.  
    Introducing reservoir constraints for the fringe may introduce some 
market power for the dominant firm. But it is then also logical to introduce 
a reservoir constraint for the dominant firm. We will not develop such an 
analysis further, but just mention that in Norway the reservoir capacity is 
quite concentrated on a small number of firms. Small hydropower firms 
tend to have relatively less reservoir capacity, thus opening up for the 
possibility of a group of dominating firms to exercise some market power. 

Oligopolistic markets 

It may easily become difficult to analyse oligopolistic markets involving 
hydro producers analytically. The basic problem is that such analyses have 
to be dynamic due to the basic dynamic nature of optimal adjustments of 
hydro producers with reservoir capacity. As shown in Garcia et al. (2001) 
and Kelman et al. (2001), oligopoly models involving hydro producers 
require solving differential games. Even a Cournot duopoly involving a 
hydro firm and a thermal firm may become intractable without assuming 
special functional forms for the demand and cost functions considering 
only two periods (Crampes and Moreaux, 2001). Since there is zero 
variable cost in the hydro case Bertrand competition of moving prices is of 
special interest. A hydro producer can more easily drive down the price in 
the short run and force thermal capacity out and use water in order to 
create more scarcity in later periods. We do not attempt to develop such 
analyses here. 

Monopoly and uncertainty 

We want to investigate whether uncertainty about future inflows will 
change the way a monopolist finds it profitable to shift the water from 
relatively inelastic demand periods to relatively elastic periods that we 
have investigated under full certainty. The model is as simple as possible 
with two periods and total amount of water as the constraint, following 
model (11.1). The inflow is known in period 1, and we investigate the case 
that the upper reservoir constraint will never be binding. The inflow in the 
second period is stochastic seen from period 1. The total available water in 
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period 2, W – e1
H, is therefore stochastic. The profit-maximising problem 

of the monopolist is: 
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 (11.40)

An additional formal requirement in the model is that all variables are non-
negative. Since the water-accumulation equation is not explicitly modelled, 
any spilling of water will appear as being done in the second period. Our 
model formulation is as if all water is also available in period 1. Water 
accumulation has to be shown explicitly to identify spilling in period 1. 
    Inserting the total available water in the expression for expected profit in 
period 2 the maximisation problem becomes: 

 1 1 1 2 1 1max ( ) ( ) ( )H H H Hp e e E p W e W e        (11.41)

The necessary first-order condition is: 
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In the second equality the (negative) price flexibilities are introduced, defined 
as / ( 1,2).H

t t t tp e p t    As is standard for the monopoly problem to 
make economic sense, we must have , ( ) 0H H

t t te p e  , (1 ) 0( 1,2)t t   , 
as discussed earlier. The first-order condition requires that the marginal 
revenue, or flexibility-corrected price, in period 1 must be equal to the 
expected marginal revenue (flexibility-corrected price) in period 2. 
Knowing the probability distribution for W the solution for production in 
the first period can be found implicitly from (11.42).  
    Shifting of water between periods now takes place based on comparing 
a known flexibility with an expected one. As in the deterministic case 
compared with the social allocation of water the monopolist will use more 
water in a relatively elastic demand period and less in a period with relatively 
inelastic demand. But the economic success of the shifting policy is only 
seen ex post in period 2 when a value of the available water is realised.  
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    Spilling will be expected if the optimality condition in (11.42) turns out 
to require the marginal revenues to be equal to zero: 

 1 1 1 1 2 1 2 1( )(1 ( )) ( )(1 ( )) 0H H H Hp e e E p W e W e         (11.43)

This condition implies that the demand flexibility in period 1 has the 
absolute value of 1, and that this also holds in an expected sense for period 2. 
When moving to period 2 the amount of water available becomes known, 
and spilling may or may not be optimal depending on the realisation of the 
inflow of water.  
    In the social planning case with uncertainty we used Jensen’s inequality 
to show that the expected price in period 2 was higher than inserting the 
expected consumption for period 2 in the demand function [see (9.12)] if 
the demand function was convex. Furthermore, the Rothchild and Stiglitz 
(1970) result for mean-preserving spread was invoked to show that less 
water is used in period 1 the higher the probability of extreme events if the 
demand function is convex. Comparing the case of uncertainty with the 
deterministic case for the monopolist, we have that the same holds pro-
vided that the marginal revenue function is convex. But this property does 
not follow from convexity of the demand function. We see from (11.42) 
that the third derivative of the demand function is involved in determining 
whether the marginal revenue function is convex.1 Assuming convexity, 
the higher the probability of extreme events the higher value of the 
expected flexibility-corrected price in period 2, and the more water should 
then be used in period 1. This leads to two interesting observations. First, 
since the flexibilities are functions of the amount of electricity involved, 
there may be a reversal of the period that has the highest (or lowest) 
demand flexibility. Second, less water will be used in period 1, irrespective 
of whether this period has the relatively most or least elastic demand, the 
higher the uncertainty in a mean-preserving spread sense. The economic 
rationale for this is that convexity of the marginal revenue function means 
that the greatest difference between the marginal revenues will occur if less 
water is realised in period 2. The loss for the monopolist of not “hitting the 
target” of equality of the marginal revenues is greater the greater the 
differences between the marginal revenues turn out to be ex post. 
 

                                                      
1 Consequences of convex marginal revenue function are investigated in     

Hansen (2009) using explicit parameterisation of variance. It is pointed out that a 
concave marginal revenue function leads to the opposite conclusion. This is, of 
course, also valid for the present analysis. 
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    As regards exercising market power an interesting question is if 
uncertainty contributes to market power being more or less felt, i.e., does 
the monopoly solution under uncertainty deviate more from the social 
planning solution under uncertainty than is the case under no uncertainty? 
It is not easy to give a qualitative answer. We saw that in the case of 
uncertainty both in the social planning case and for a monopolist the first 
period production will be reduced, compared with a situation in which the 
expected available water is inserted in the demand function. The mono-
polist will still practice shifting of water. In the second period the best a 
monopolist can do is to either process all water or spill some water. In the 
case of no spilling the monopolist will then charge exactly the same price 
as the social planner, having the same amount of water at his disposal in 
period 2. Such a situation then seems to imply that uncertainty reduces the 
scope for market power. To determine whether the welfare loss measured 
in consumer surplus terms is smaller or greater for the two periods taken 
together seems to require empirical information about demand functions 
and the probability function for inflows. 
 



Chapter 12. Summary and Conclusions 

Main drivers of price change 

The key theme of the book has been what causes electricity prices to 
change over time in a hydropower-dominated electricity sector. Regarding 
water as a limited natural resource, the conclusion for the price structure 
over time, established in Chapter 2, was that the price should be the same 
for all periods, in accordance with asset pricing arbitrage à la Hotelling. 
[Introducing discounting, as would be appropriate for a longer horizon 
than for the hydropower management problem, would bring in the discount 
rate in the usual way as Hotelling’s rule is expressed, as the growth rate for 
the electricity price. However, this long-run change is not the type of price 
change we are talking about here for electricity.] The, maybe surprising, 
finding in Chapter 2 is that variation in demand over time should not 
influence the price. The price in, e.g., low-demand summer periods should 
be the same as the price in high-demand winter periods.  
    The assumption driving the result about constant price over time, 
although demand may fluctuate both over the day and over seasons, was 
that the reservoir limits would never be binding. But in the real world it is 
generally too costly to have this required reservoir capacity in a hydro-
power system. Basic events leading to price changes are therefore that a 
reservoir becomes full or that it is emptied. The way these events may lead 
to fluctuating prices are extensively analysed in Chapter 3, assuming full 
certainty and knowledge about future inflows and demand. 
    However, the number of price changes seemed still to be much less than 
observed. Introducing restricted generation capacity yielded less mano-
euvrability and a break between social price and water value for periods 
with binding constraint. Together with a reservoir constraint this lead to 
increased variability when both types of constraints become active. Facing 
restricted production capacity forced a pattern of use of water that avoided 
overflow of the reservoirs, thereby reducing the price in periods with non-
binding production constraints. 
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    Not all hydropower resources are regulated using reservoirs. Run-of-the-
river power may cause extra price variability if reservoirs cannot fully 
absorb the fluctuation in power availability. Norway and Sweden has 
introduced a system for green certificates as incentives for significant 
expansion of this source of electricity in a 10 year period to 2020 leading 
to increased price variability.  
    A hydropower system usually consists of many power stations and 
reservoirs with different characteristics as to inflows and relative reservoir 
capacity. One would believe that such heterogeneity could add to price 
variability, but in Chapter 4 the remarkable conjecture of Hveding is 
established telling us that aggregating individual generation capacities to 
just one plant and reservoirs to one reservoir is appropriate, provided only 
individual reservoir constraints are specified. However, the conjecture 
does not hold introducing individual production constraints. Manoeuvring 
of individual generators in order to avoid overflow may then influence 
prices. There is again a divergence between social prices and water values, 
and prices may also shift due to demand effects. This may also be the case 
when considering hydrological couplings between plants. Additional con-
straints with price impacts, especially relevant for short time periods, are 
environmental constraints regulating water flows and changes in them.  
    The role of interplay between hydropower capacity and other types of 
electricity-generating capacity, like thermal capacity, for prices is treated in 
Chapter 5. The statement that marginal cost of thermal capacity is determin-
ing prices in a mixed hydro- and thermal system is often heard. However, in 
the model analysis the prices are equilibrium prices and cannot be attributed 
to a specific technology. Hydropower will not be used in periods when the 
water value is higher than marginal cost of thermal capacity, while thermal 
capacity will not be used in periods when the water value is lower than 
even the marginal cost at zero thermal output. When both technologies are 
in use water value is equal to marginal thermal cost (with an addition of a 
shadow price on thermal capacity if the latter is exhausted). Having thermal 
capacity may cause less price variation than in a pure hydro system. 
    Trade in electricity across national borders is increasingly taking place 
in Europe. In Chapter 6 the consequences of trade for the price structure in 
a country were analysed. Taking one country as a point of departure and 
regarding trade prices as exogenously given, resulted in the trade prices 
being adopted fully as the prices of the country, when no constraints on 
interconnector capacity is assumed. A limit on the reservoir capacity did 
not change the adoption of the trade prices as home prices, just limited the 
profitability of trade. But restrictions on interconnector capacity lead to 
price variability within the range of trade prices when interconnector 
capacity is constrained. 
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    In addition to run-of-the-river hydropower dealt with in Chapter 3 wind 
power and solar power are included and modelled in the same way as run-of-
the-river power intermittent energy is introduced in Chapter 7. An interesting 
question was how hydropower with storage and thermal generation have  
to adjust their production levels in order to accommodate the exogenous 
fluctuations in intermittent power. This had consequences for price fluctua-
tions by increasing them and reducing profitability for thermal and hydro 
with reservoirs. 

A crucial question when utilising intermittent energy is how to store it. 
Apart from technical options like batteries, compressed air, and producing 
hydrogen and heat, an option is to use pumped-storage hydroelectricity. 
Pumped storage was studied in Chapter 8 in combination with thermal 
power and intermittent power. Of special interest was the investigation of 
trade between a country with both hydropower with reservoirs and pumped 
storage and a country with intermittent power. Pumped storage was only 
profitable if the price gap between the pumping period and the production 
period was sufficient to cover the round-trip loss of energy (and capital 
cost if an investment is considered).  

Uncertainty is a fundamental aspect of hydropower due to the stochastic 
nature of inflows. In Norway the variability of inflows on a yearly basis may 
be ± 25 TWh around an average production of 125 TWh, corresponding to 
a 90 percent confidence interval for inflows. A dry year thus constitutes 
quite a stress on the system. In Chapter 9 the qualitative impact on electri-
city prices of dealing with uncertainty was studied within a highly simplified 
framework. The key decision rule of the social planner facing uncertainty 
is basing the decision on use of stored water in the current period on the 
expected price in the next period. The expectation is based on how much 
water will be transferred to the next period from the current. Expected 
water values in the next period are formed as a function of the level of the 
transfer. Such a table is used when deciding production and amount of 
transfer to the next period in the current period. When moving forward in 
time expectations will in general not be realised. The optimal reaction to 
such events is to reduce production in periods with less inflow than 
expected previously, and increase production in periods that turn out to 
have more inflow than expected. Thus, the existence of uncertainty leads 
to a fluctuation in prices unrelated to reservoir constraints and volume of 
demand. Introducing stochastic intermittent energy increased the potential 
volatility. Considering hydro and thermal the uncertainty of future prices 
made future thermal outputs stochastic. However, price changes may then 
be dampened by the output of thermal being adjusted to marginal cost.  
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    The introduction of a network serving the transmission of electricity 
from generators to consumers has an impact on the profile of utilisation of 
stored water and then on the prices. Proper modelling to reflect physical 
and engineering realities of electricity flowing through networks is a 
challenging task, and outside the scope of the book. The necessary spatial 
element of a network was captured by specifying consumption- and 
production nodes, and implicitly having lines connecting these nodes in a 
general meshed network, but without modelling loop-flows. Loss was 
expressed for each of the lines as a function of the flow on the line, and the 
flow was expressed as a function of all injections at generating nodes and 
all withdrawals at consumption nodes. This modelling opened up for 
pervasive network externalities of a change in the spatial configuration of 
demand over time to influence, in principle, all losses along lines and the 
spatial distribution of generation. Congestion was modelled as upper con-
straints on the flow on lines, but without including loop-flow effects. The 
conclusion from the literature, that spatial node pricing is necessary for an 
optimal solution emerged. Implementing social spatial pricing not only 
necessarily led to price variation within a period, but also to impacts on the 
pattern over time on utilisation of water, generating further price changes. 
    It is basic knowledge that use of market power can increase prices. In 
the special case of hydropower monopoly prices will vary between periods 
due to differences in elasticity of demand, as studied in Chapter 11. The 
same amount of electricity may be produced within the horizon if spilling 
is not optimal, but the water use will typically be shifted from periods with 
relatively inelastic demand to periods with relative elastic demand, thus 
increasing the variability of prices. Spilling may lead to increased prices in 
all periods, but is easy to detect and to be prohibited by a regulator. 

Competitive electricity markets 

In Chapter 4 we investigated the consequence for social planning of many 
hydropower producers, and found, considering reservoir constraints only, 
that the system could be treated as one aggregate unit (Hveding’s con-
jecture). We now assume that we are studying one among several suppliers 
selling electricity in a spot market for every period. There is no uncertainty, 
so the period price pt is known. Given the capacity of each producer and 
the size of his reservoir he will in the situation of no (active) constraint on 
his reservoir obviously choose to deliver all his electricity in the period  
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with the highest price in order to maximise profits. Therefore, in order to 
have positive total supply in all periods, a necessary condition is that prices 
must be equal for all periods in market equilibrium. The allocation over 
periods is then completely demand driven, and since producers are indifferent 
about when to produce some additional rule has to be introduced in order 
to distribute supply according to demand in each period. 
    In the more realistic case of reservoir and production constraints the 
situation becomes more complex. Adapting model (4.14) for one producer 
the constraint set is the same as in the social planning case for one producer 
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The electricity production each period and the reservoir filling are the 
decision variables for the producer. Comparing the social planning 
problem (4.14) and the profit maximising problem (12.1) of a producer we 
note that the objective functions are different, and that the market balance 
equation is dropped from the constraint set. 

The Lagrangian for the problem is:  
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except that the energy balance does not enter the probl
cer. The profit maximisation problem of a producer 
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For notational ease we have used the same symbols for shadow prices as in 
the social planning case with a single producer. The shadow prices are 
plant specific. The necessary conditions are: 
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(12.3)

Let us assume that there is a positive market price in every period. The 
producer will not supply any electricity if his water value is higher than the 
market price [subtracted the shadow price on the production capacity 
constraint, but this shadow price is zero when production is zero according 
to the last condition in (12.3)]. For the periods he will supply a positive 
amount the market price minus the shadow price on the production capa-
city constraint has to be equal to his water value. This means that if the 
production constraint is binding, then the water value is typically lower 
than the market price. The producer is forced to use less water than what 
he wants, resulting in a forced accumulation of water or a smaller draw 
down than wanted. The opportunity cost of water is therefore lower than 
the market price.  
    In general the producer will strive to sell all his energy in the period 
with the highest price, but he may be prevented from doing this by the 
upper constraint on his production capacity and by threat of overflow due 
to the reservoir constraint. When overflow threatens his water value will 
be adjusted downwards for that period compared with the next period, 
according to the second condition in (12.3). He is willing to sell at a lower 
price now than a higher price in a later period to prevent overflow. But  
to the right price he may sell in an even earlier period and prevent an 
overflow situation happening. Further reasoning of a hydropower producer 
determining when to process his water will follow the more elaborate 
discussion of the model (4.14) set out in Chapter 4. 
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    Comparing the private conditions (12.3) with the social conditions 
(4.18) the conditions have the same form. The only formal difference is 
that exogenous market prices have replaced period demand functions. If 
the prices faced by the producers are the same as in the social solution, and 
provided the planning horizon is the same for all plants and equal to the 
social planning horizon, then a competitive market may sustain the social 
solution. This is in accordance with the textbook welfare theorems in eco-
nomics. But notice that we have not shown how such prices may be formed 
in private markets. A well functioning electricity market keeping a con-
tinuous electric equilibrium does not imply automatically that the market is 
also optimal in a social sense.  
    There are at least three problems when appealing to the welfare theorems 
for the type of model we are analysing. One problem is external effects 
created by hydrological coupled producers studied in Chapter 4. A second 
problem is the external effects created in a meshed network concerning 
losses and congestion discussed in Chapter 10. A third problem is created 
in the case of uncertainty. Each firm has to solve a stochastic dynamic 
problem, adding price uncertainty to uncertainty about own inflows. We 
will not treat this problem formally along the lines developed in Chapter 
10, but just point out the problems created if firms operate with different 
price expectations. The policy of each firm will be to adjust production and 
reservoir level in the current period as time evolves according to the 
relevant expected price-and water value in the next period. With different 
price expectations such adaptation may create greater volatility of prices 
than in the social case. The firms may follow different ways of forming 
and updating price expectations. It is not obvious that there is a learning 
process leading to rational expectations since the market price is influenced 
by the total inflow that may be realised by many different local distributions 
of inflows. It is a question of what kind of information each firm has about 
other firms’ inflow and forecasting skills. 
    Another problem is a possible difference in time horizon of firms. Firms 
with small reservoir capacity will have a shorter time horizon than firms 
with huge reservoir capacity. This does not necessarily lead to a deviation 
from the social planning solution, but may create special coordination 
problems that the market does not solve. 

Market designs 

The book has tried to establish a theoretical understanding of hydropower 
economics without addressing the problem of implementing a specific 
market structure. Starting with the deregulation in England in 1990 many 
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different market designs have emerged (see Jamasb and Pollitt (2005) for 
an overview of changes within the European Union and Stoft (2002) for 
general considerations of market design and information about the United 
States). A typical feature of a market is that the wholesale market is of a 
day-ahead type and based on clearing hour by hour between supply and 
demand. In order to balance supply and demand in real time there may be a 
real-time market organised in advance, but the system operator may also 
regulate supply according to other preset arrangements with generators. 
Wholesale markets have by and large functioned smoothly. However, 
studies into the optimality of such markets in view of the social planning 
solution, as developed in this book, are hard to come by. National com-
petition authorities have been focussing on use of market power (see, e.g., 
Report from the Nordic competition authorities, 2003), but mostly based 
on the distribution of market shares, which may not be the most relevant in 
the case of hydropower. 
    Problems with wholesale markets are that a greater share of trades 
usually occurs on a bilateral basis outside the market, and that the final 
consumers like households and general business are not in the market in 
real time. Concerning the former bilateral contracts actually may reduce 
problems of market power, but the question is how relevant the equili-
brium price for a limited part of the market is. However, generators with 
bilateral contracts may profitably buy from the wholesale market if the 
market price is lower than the contract price, and save its own resources 
for periods with the opposite price relation, and big enough consumers 
may also buy from the wholesale market (using traders) if the price is 
lower on the wholesale market (provided there is no clause forcing the 
amount to be taken from the generator). Thus the end effect may be that 
wholesale market price is representative for the equilibrium price of the 
total volume. Consumers are represented by utilities or traders, and do not, 
as a rule, have real-time contracts, but price contracts of different types 
based on some form of ex post adjustment of prices. The models developed 
in the book are all based on demand functions in real time, so there is a 
problem matching theoretical insights with actual market forms. There 
have been very limited experiments with real-time pricing, partly because 
measuring electricity consumption in real time is costly. In Norway the 
plan is that by January 1 2019 smart meters should be installed for all 
consumers, thus facilitating better use of the price mechanism. The events 
in California 2000-2001 underlined the big problems that can arise if 
consumers’ price is completely decoupled from the current wholesale price 
(Joskow and Kahn, 2002).  
 



Market designs      309 

    There is no special provision in deregulation designs for the case of 
hydraulically coupled hydropower stations. From Chapter 4 we saw that 
the most pressing coordination problem occurs when the release from an 
upstream plant exceeds the production capacity of the first downstream 
plant, and this plant is balancing a full reservoir. In a deregulated market one 
would expect cooperation to develop, and may be mergers of coupled plants. 

The types of externalities receiving the greatest attention are the 
generation of loss and congestion in a network. In the economics literature 
emphasis has been put on potentials for use of market power playing  
on transmission constraints and price mark-ups on the import side of a 
binding constraint and price mark-downs on the export side (Hogan, 1992, 
1997; Cardell et al., 1997; Bushnell, 1999). The latter price implications 
were also demonstrated in Chapter 6 on trade with electricity. Potential 
magnitudes of loss in different market systems as to incentives to deal with 
the loss externality in a network with loop-flows have been calculated in 
Green (2007) for England and Wales for 1996. The benchmark is a system 
with complete nodal pricing, as treated in Chapter 10, but there the physical 
network was not shown, thus treating transmission constraints without 
modelling loop-flow effects properly. As pointed out in Chapter 10 a lot of 
information is necessary in order for a central planner to manage a spatial 
pricing system in real time, and transaction costs have to be considered. 
However, Green (2007) comes up with impressive welfare gains if a nodal 
price system can be implemented. As he points out Chile, New Zealand 
and some regions in the United States, where PJM (Pennsylvania, New 
Jersey, Maryland) is the most well known, have such pricing schemes in 
place. When designing a nodal price system crucial decision involve the 
time unit and the role of prices as ex post device to settle account, and  
as ex ante information to generators and consumers. The PJM exchange 
calculates prices every five minutes for several hundred nodes. However, 
when it takes a conventional coal-fired thermal generator several hours 
both to begin producing from a cold start, at a considerable cost, and to 
reduce output, one may wonder about the feasibility of reacting to the price 
information. New Zealand has considerable hydropower, and a rather 
linear structure of the network not so dominated by loop-flows due to 
topology and location of main generators and consumer nodes. This may 
make it easier to implement nodal pricing as ex ante incentives.  

The phasing-in of a large share of intermittent energy in a hydro-
dominated system may put the latter under stress because the hydro system 
has to be the main swing producer securing equilibrium between supply 
and demand in the market. The design of the market may have to take into 
consideration this balancing problem in a more definite way than currently 
done.  
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    Stochastic inflows were treated only within an aggregated model in 
Chapter 9. In the competitive wholesale market of Nord Pool several 
hundred independent hydro plants within the Norwegian part each has to 
form expectation not only about own inflows, but also about future market 
prices. A potential source of mismatch between the social solution and a 
market system is the ability to form best possible expectations. A central 
system operator would be most favourably placed to form expectations. 
The system model developed for the period of centralised coordination of 
the Norwegian system (Hveding, 1967-1968) has been further developed 
and extended to cover the Nord Pool area (Wangensteen, 2007); more or 
less containing the key features analysed in the book, and is used by both 
the regulator and by large generating companies to predict future prices. In 
addition, the need to hedge against uncertainty has lead to the development 
of futures markets at Nord Pool. The prices paid now for power deliveries 
weeks, months, and years ahead tell the market participants about price 
expectations held by market participants. These prices are, of course, 
public information. 

Investments 

The production capacities of generators, capacities of reservoirs, and 
capacity of the transmission network have all been assumed constant for 
the dynamic management problems we have addressed. Carrying out 
analysing optimal social investment in capacities of various types is a huge 
task outside the scope of this book. But calculation of the shadow prices 
corresponding to the given capacities will give an indication of at least the 
direction of desirable investment.  
    The shadow price on a reservoir constraint tells us the increase in the 
objective function of marginally increasing the reservoir capacity. This 
may be possible by either better utilisation of the present amount of water 
by reducing friction inside tunnels, increasing the size of the reservoir, or 
by increasing the catchments of water into previously untouched sources. 
The costs of such investments can be calculated. The point is now that the 
benefit side of a marginal investment is the sum of the positive shadow 
prices within the horizon. It may not be feasible to carry out a marginal 
investment, but this simple cost-benefit calculation gives an indication of 
whether it is interesting to carry out investment analyses. In a system 
characterised by optimal amount of capacity there should be equality 
between benefit and costs at the margin, provided sufficient flexibility of 
dimensioning the investment project. 
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    Whether production capacity should be increased can be investigated by 
a similar comparison of the sum of positive shadow prices and the cost of 
investment. If the turbine capacity is the limiting factor the investment 
project is not so large, but if the water-feeding capacity through tunnels 
from reservoirs has to be increased, this is a more major undertaking. 
    Shadow prices on the environmental constraints introduced in Chapter 4 
can serve as a basis for discussing the rationale of the constraints. Environ-
mental costs (or benefit of current regulation) should be quantified and 
compared with the shadow value of marginally relaxing the constraints. 
The result of such calculations may work both ways as to which way to 
change. If water-flows downstream of power plants are based on the need 
to transport timber in the timber-floating season, this does not make much 
sense years after lorries have taken over such transports. On the other 
hand, demand for river-based recreation of various types, or willingness to 
pay for unspoiled ecosystems of rivers, may have increased considerably 
(see Johansson and Kriström, 2011). 
    Investments in networks are of special theoretical interest because of the 
loss and congestion externalities present, as expanded upon in Chapter 10. 
It is rather obvious that investment in lines for given production will  
not only reduce loss, but will then necessarily contribute to increased 
consumption. The analogy is with the best investment of a waterworks 
may be to reduce leakages instead of expanding to new water sources. 
Within the framework in Chapter 10, using individual thermal constraints 
for lines and not modelling loop-flows, the numerical values of the shadow 
prices of binding line constraints may give some useful information for 
investment decisions.  
    An additional benefit of “over-investing” in transmission capacity is the 
effect on reducing the possibility of using market power by creating 
isolated electricity areas manipulating congestion of lines. 
    Shift in demand over time for electricity necessitates investments both 
in generating capacity and in transmission capacity. Phasing in wind power 
may require substantial investments in the grid. These investments cannot 
be carried out in isolation, but owing to loss and congestion externalities 
have to be considered simultaneously in order to achieve optimal social 
return on the investments.  
    Returning to deregulation of electricity markets the Nord Pool area has 
experienced a markedly lack of investments of both types the last 
decennium. This may be due to earlier over-investments, but may also 
reflect uncertainties involved, and private investors still waiting for a high 
enough trigger price of electricity so the option value of investments also 
gets covered. The role of the incentive effects of the market design seems 
to be an interesting topic for future research. 
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