
International Handbooks on Information Systems

Handbook
on Project
Management and
Scheduling Vol.1

Christoph Schwindt
Jürgen Zimmermann Editors

International Handbooks on Information
Systems

Series Editors

Peter Bernus, Jacek Błażewicz, Günter J. Schmidt, Michael J. Shaw

Titles in the Series

M. Shaw, R. Blanning, T. Strader and
A. Whinston (Eds.)
Handbook on Electronic Commerce
ISBN 978-3-540-65882-1

J. Błażewicz, K. Ecker, B. Plateau and
D. Trystram (Eds.)
Handbook on Parallel and
Distributed Processing
ISBN 978-3-540-66441-3

H.H. Adelsberger, Kinshuk,
J.M. Pawlowski and D. Sampson (Eds.)
Handbook on Information Technologies
for Education and Training
ISBN 978-3-540-74154-1, 2nd Edition

C.W. Holsapple (Ed.)
Handbook on Knowledge Management 1
Knowledge Matters
ISBN 978-3-540-43527-3
Handbook on Knowledge Management 2
Knowledge Directions
ISBN 978-3-540-43848-9

J. Błażewicz, W. Kubiak, I. Morzy and
M. Rusinkiewicz (Eds.)
Handbook on Data Management in
Information Systems
ISBN 978-3-540-43893-9

P. Bernus, P. Nemes and G. Schmidt (Eds.)
Handbook on Enterprise Architecture
ISBN 978-3-540-00343-4

S. Staab and R. Studer (Eds.)
Handbook on Ontologies
ISBN 978-3-540-70999-2, 2nd Edition

S.O. Kimbrough and D.J. Wu (Eds.)
Formal Modelling in Electronic
Commerce
ISBN 978-3-540-21431-1

P. Bernus, K. Merlins and G. Schmidt (Eds.)
Handbook on Architectures
of Information Systems
ISBN 978-3-540-25472-0, 2nd Edition

S. Kirn, O. Herzog, P. Lockemann
and O. Spaniol (Eds.)
Multiagent Engineering
ISBN 978-3-540-31406-6

J. Błażewicz, K. Ecker, E. Pesch,
G. Schmidt and J. Wȩglarz (Eds.)
Handbook on Scheduling
ISBN 978-3-540-28046-0

F. Burstein and C.W. Holsapple (Eds.)
Handbook on Decision Support Systems 1
ISBN 978-3-540-48712-8

F. Burstein and C.W. Holsapple (Eds.)
Handbook on Decision Support Systems 2
ISBN 978-3-540-48715-9

D. Seese, Ch. Weinhardt and
F. Schlottmann (Eds.)
Handbook on Information Technology
in Finance
ISBN 978-3-540-49486-7

T.C. Edwin Cheng and
Tsan-Ming Choi (Eds.)
Innovative Quick Response Programs in
Logistics and Supply Chain Management
ISBN 978-3-642-04312-3

J. vom Brocke and M. Rosemann (Eds.)
Handbook on Business Process Management 1
ISBN 978-3-642-00415-5
Handbook on Business Process Management 2
ISBN 978-3-642-01981-4

T.-M. Choi and T.C. Edwin Cheng
Supply Chain Coordination under Uncertainty
ISBN 978-3-642-19256-2

C. Schwindt and J. Zimmermann (Eds.)
Handbook on Project Management
and Scheduling Vol. 1
ISBN 978-3-319-05442-1
Handbook on Project Management
and Scheduling Vol. 2
ISBN 978-3-319-05914-3

More information about this series at
http://www.springer.com/series/3795

http://www.springer.com/series/3795

Christoph Schwindt • JRurgen Zimmermann
Editors

Handbook on Project
Management and Scheduling
Vol. 1

123

Editors
Christoph Schwindt
Institute of Management and Economics
Clausthal University of Technology
Clausthal-Zellerfeld
Germany

JRurgen Zimmermann
Institute of Management and Economics
Clausthal University of Technology
Clausthal-Zellerfeld
Germany

ISBN 978-3-319-05442-1 ISBN 978-3-319-05443-8 (eBook)
DOI 10.1007/978-3-319-05443-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014957172

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

This handbook is devoted to scientific approaches to the management and schedul-
ing of projects. Due to their practical relevance, project management and scheduling
have been important subjects of inquiry since the early days of Management Science
and Operations Research and remain an active and vibrant field of study. The
handbook is meant to provide an overview of some of the most active current areas
of research. Each chapter has been written by well-recognized scholars, who have
made original contributions to their topic. The handbook covers both theoretical
concepts and a wide range of applications. For our general readers, we give a brief
introduction to elements of project management and scheduling in the first chapter,
where we also survey the contents of this book. We believe that the handbook will be
a valuable and comprehensive reference to researchers and practitioners in project
management and scheduling and hope that it might stimulate further research in this
exciting and practically important field.

Short-listing and selecting the contributions to this handbook and working with
more than one hundred authors have been a challenging and rewarding experience
for us. We are grateful to Günter Schmidt, who invited us to edit these volumes.
Our deep thanks go to all authors involved in this project, who have invested
their time and expertise in presenting their perspectives on project management
and scheduling topics. Moreover, we express our gratitude to our collaborators
Tobias Paetz, Carsten Ehrenberg, Alexander Franz, Anja Heßler, Isabel Holzberger,
Michael Krause, Stefan Kreter, Marco Schulze, Matthias Walter, and Illa Weiss, who
helped us to review the chapters and to unify the notations. Finally, we are pleased
to offer special thanks to our publisher Springer and the Senior Editor Business,
Operations Research & Information Systems Christian Rauscher for their patience
and continuing support.

Clausthal-Zellerfeld, Germany Christoph Schwindt
Jürgen Zimmermann

v

Contents

Part I The Resource-Constrained Project Scheduling Problem

1 Shifts, Types, and Generation Schemes for Project Schedules 3
Rainer Kolisch

2 Mixed-Integer Linear Programming Formulations 17
Christian Artigues, Oumar Koné, Pierre Lopez,
and Marcel Mongeau

3 Lower Bounds on the Minimum Project Duration 43
Sigrid Knust

4 Metaheuristic Methods. 57
Anurag Agarwal, Selcuk Colak, and Selcuk Erenguc

Part II The Resource-Constrained Project Scheduling Problem
with Generalized Precedence Relations

5 Lower Bounds and Exact Solution Approaches . 77
Lucio Bianco and Massimiliano Caramia

6 A Precedence Constraint Posting Approach . 113
Amedeo Cesta, Angelo Oddi, Nicola Policella, and Stephen
F. Smith

7 A Satisfiability Solving Approach . 135
Andreas Schutt, Thibaut Feydy, Peter J. Stuckey,
and Mark G. Wallace

vii

viii Contents

Part III Alternative Resource Constraints in Project Scheduling

8 Time-Varying Resource Requirements and Capacities. 163
Sönke Hartmann

9 Storage Resources . 177
Jacques Carlier and Aziz Moukrim

10 Continuous Resources . 191
Grzegorz Waligóra and Jan Wȩglarz

11 Partially Renewable Resources . 203
Ramon Alvarez-Valdes, Jose Manuel Tamarit,
and Fulgencia Villa

Part IV Preemptive Project Scheduling

12 Integer Preemption Problems . 231
Sacramento Quintanilla, Pilar Lino, Ángeles Pérez,
Francisco Ballestín, and Vicente Valls

13 Continuous Preemption Problems . 251
Christoph Schwindt and Tobias Paetz

Part V Non-Regular Objectives in Project Scheduling

14 Exact and Heuristic Methods for the
Resource-Constrained Net Present Value Problem 299
Hanyu Gu, Andreas Schutt, Peter J. Stuckey,
Mark G. Wallace, and Geoffrey Chu

15 Exact Methods for the Resource Availability Cost Problem 319
Savio B. Rodrigues and Denise S. Yamashita

16 Heuristic Methods for the Resource Availability Cost Problem 339
Vincent Van Peteghem and Mario Vanhoucke

17 Exact Methods for Resource Leveling Problems . 361
Julia Rieck and Jürgen Zimmermann

18 Heuristic Methods for Resource Leveling Problems 389
Symeon E. Christodoulou, Anastasia Michaelidou-Kamenou,
and Georgios Ellinas

Contents ix

Part VI Multi-Criteria Objectives in Project Scheduling

19 Theoretical and Practical Fundamentals . 411
Francisco Ballestín and Rosa Blanco

20 Goal Programming for Multi-Objective
Resource-Constrained Project Scheduling . 429
Belaïd Aouni, Gilles d’Avignon, and Michel Gagnon

Part VII Multi-Mode Project Scheduling Problems

21 Overview and State of the Art . 445
Marek Mika, Grzegorz Waligóra, and Jan Wȩglarz

22 The Multi-Mode Resource-Constrained Project
Scheduling Problem . 491
José Coelho and Mario Vanhoucke

23 The Multi-Mode Capital-Constrained Net Present Value
Problem . 513
Zhengwen He, Nengmin Wang, and Renjing Liu

24 The Resource-Constrained Project Scheduling Problem
with Work-Content Constraints . 533
Philipp Baumann, Cord-Ulrich Fündeling,
and Norbert Trautmann

Part VIII Project Staffing and Scheduling Problems

25 A Modeling Framework for Project Staffing
and Scheduling Problems . 547
Isabel Correia and Francisco Saldanha-da-Gama

26 Integrated Column Generation and Lagrangian
Relaxation Approach for the Multi-Skill Project
Scheduling Problem . 565
Carlos Montoya, Odile Bellenguez-Morineau, Eric Pinson,
and David Rivreau

27 Benders Decomposition Approach for Project Scheduling
with Multi-Purpose Resources . 587
Haitao Li

28 Mixed-Integer Linear Programming Formulation
and Priority-Rule Methods for a Preemptive Project
Staffing and Scheduling Problem . 603
Cheikh Dhib, Ameur Soukhal, and Emmanuel Néron

x Contents

Part IX Discrete Time-Cost Tradeoff Problems

29 The Discrete Time-Cost Tradeoff Problem with Irregular
Starting Time Costs . 621
Joseph G. Szmerekovsky and Prahalad Venkateshan

30 Generalized Discrete Time-Cost Tradeoff Problems 639
Mario Vanhoucke

Index . 659

Contents of Volume 2

Part X Multi-Project Scheduling

31 The Basic Multi-Project Scheduling Problem . 667
José Fernando Gonçalves, Jorge José de Magalhães Mendes,
and Mauricio G.C. Resende

32 Decentralized Multi-Project Scheduling . 685
Andreas Fink and Jörg Homberger

Part XI Project Portfolio Selection Problems

33 Multi-Criteria Project Portfolio Selection . 709
Ana F. Carazo

34 Project Portfolio Selection Under Skill Development 729
Walter J. Gutjahr

Part XII Stochastic Project Scheduling

35 The Stochastic Time-Constrained Net Present Value Problem 753
Wolfram Wiesemann and Daniel Kuhn

36 The Stochastic Discrete Time-Cost Tradeoff Problem
with Decision-Dependent Uncertainty. 781
Evelina Klerides and Eleni Hadjiconstantinou

37 The Stochastic Resource-Constrained Project Scheduling
Problem . 811
Maria Elena Bruni, Patrizia Beraldi, and Francesca Guerriero

xi

xii Contents of Volume 2

38 The Markovian Multi-Criteria Multi-Project
Resource-Constrained Project Scheduling Problem 837
Saeed Yaghoubi, Siamak Noori, and Amir Azaron

Part XIII Robust Project Scheduling

39 Robust Optimization for the Discrete Time-Cost Tradeoff
Problem with Cost Uncertainty . 865
Öncü Hazır, Mohamed Haouari, and Erdal Erel

40 Robust Optimization for the Resource-Constrained
Project Scheduling Problem with Duration Uncertainty 875
Christian Artigues, Roel Leus, and Fabrice Talla Nobibon

Part XIV Project Scheduling Under Interval Uncertainty
and Fuzzy Project Scheduling

41 Temporal Analysis of Projects Under Interval Uncertainty 911
Christian Artigues, Cyril Briand, and Thierry Garaix

42 The Fuzzy Time-Cost Tradeoff Problem . 929
Hua Ke and Weimin Ma

Part XV General Project Management

43 Further Research Opportunities in Project Management 945
Nicholas G. Hall

44 Project Management in Multi-Project Environments 971
Peerasit Patanakul

45 Project Management for the Development of New Products 983
Dirk Pons

46 Key Factors of Relational Partnerships in Project Management . . . 1047
Hemanta Doloi

47 Incentive Mechanisms and Their Impact on Project
Performance . 1063
Xianhai Meng

48 Drivers of Complexity in Engineering Projects . 1079
Marian Bosch-Rekveldt, Hans Bakker, Marcel Hertogh,
and Herman Mooi

Contents of Volume 2 xiii

Part XVI Project Risk Management

49 A Framework for the Modeling and Management
of Project Risks and Risk Interactions . 1105
Chao Fang and Franck Marle

50 A Reassessment of Risk Management in Software Projects 1119
Paul L. Bannerman

51 Ranking Indices for Mitigating Project Risks . 1135
Stefan Creemers, Stijn Van de Vonder, and Erik
Demeulemeester

Part XVII Project Scheduling Applications

52 Scheduling Tests in Automotive R&D Projects Using
a Genetic Algorithm . 1157
Jan-Hendrik Bartels and Jürgen Zimmermann

53 Scheduling of Production with Alternative Process Plans 1187
Roman Čapek, Přemysl Šůcha, and Zdeněk Hanzálek

54 Scheduling Computational and Transmission Tasks
in Computational Grids . 1205
Marek Mika and Grzegorz Waligóra

55 Make-or-Buy and Supplier Selection Problems
in Make-to-Order Supply Chains . 1227
Haitao Li

56 Project Scheduling for Aggregate Production Scheduling
in Make-to-Order Environments . 1249
Arianna Alfieri and Marcello Urgo

57 Pharmaceutical R&D Pipeline Planning . 1267
Matthew Colvin and Christos T. Maravelias

Part XVIII Case Studies in Project Scheduling

58 Robust Multi-Criteria Project Scheduling in Plant
Engineering and Construction . 1291
Maurizio Bevilacqua, Filippo E. Ciarapica, Giovanni
Mazzuto, and Claudia Paciarotti

59 Multi-Criteria Multi-Modal Fuzzy Project Scheduling
in Construction Industry . 1307
Jiuping Xu and Ziqiang Zeng

xiv Contents of Volume 2

Part XIX Project Management Information Systems

60 Impact of Project Management Information Systems
on Project Performance . 1339
Louis Raymond and François Bergeron

61 Project Management Information Systems
in a Multi-Project Environment . 1355
Marjolein C.J. Caniëls and Ralph J.J.M. Bakens

62 Resource-Constrained Project Scheduling with Project
Management Information Systems . 1385
Philipp Baumann and Norbert Trautmann

Index . 1401

List of Symbols

Miscellaneous

WD Equal by definition, assignment
ut End of proof
dze Smallest integer greater than or equal to z
bzc Greatest integer smaller than or equal to z
.z/C Maximum of 0 and z

Sets

; Empty set
�a; bŒ Open interval fx 2 R j a < x < bg
Œa; bŒ Half open interval fx 2 R j a � x < bg
�a; b� Half open interval fx 2 R j a < x � bg
Œa; b� Closed interval fx 2 R j a � x � bg
jAj Number of elements of finite set A
A � B A is proper subset of B
A � B A is subset of B
A n B Difference of sets A and B
A\ B Intersection of sets A and B
A[B Union of sets A and B
conv.A/ Convex hull of set A
f W A! B Mapping (function) of A into B
N Set of positive integers
NP Set of decision problems that can be solved in polynomial time by

a non-deterministic Turing machine

xv

xvi List of Symbols

O Landau’s symbol: for f; g W N ! R�0 it holds that g 2 O.f /
if there are a constant c > 0 and a positive integer n0 such that
g.n/ � c f .n/ for all n � n0

R Set of real numbers
R
n Set of n-tuples of real numbers

R�0 Set of nonnegative real numbers
Z Set of integers
Z�0 Set of nonnegative integers

Projects, Activities, and Project Networks

ıij Weight of arc .i; j /, start-to-start minimum time lag between
activities i and j

A Set of all maximal feasible antichains of the precedence order
(non-dominated feasible subsets)

A Set of all feasible antichains of the precedence order (feasible
subsets)

A 2 A Feasible antichain (feasible subset)
A .S; t/ Set of activities in execution at time t given schedule S
dij Longest path length from node i to node j in project network N
dmax

ij Maximum time lag between the starts of activities i and j
dmin

ij Minimum time lag between the starts of activities i and j

d Prescribed maximum project duration
E Arc set of directed graph G or project network N
E�i Set of arcs leading to node i
ECi Set of arcs emanating from node i
F Set of all minimal forbidden sets
F 2 F Minimal forbidden set
G D .V;E/ Directed graph with node set V and arc set E (precedence graph)
i; j Activities or events of the project
.i; j / Arc with initial node i and terminal node j
n Number of activities of the project, without project beginning 0

and project completion nC 1
N D .V;E; ı/ Project network with node set V , arc set E , and arc weights ı
pi Duration (processing time) of activity i
Pred.i/ Set of immediate predecessors of activity i in project network N
Pred.i/ Set of all immediate and transitive predecessors of activity i in

project network N
Succ.i/ Set of all immediate successors of activity i in project network N
Succ.i/ Set of all immediate and transitive successors of activity i in

project network N
TE Transitive closure of the arc set

List of Symbols xvii

V Node set of direct graph G or project network N ;
Set of activities in an activity-on-node network

V a Set of real activities in an activity-on-node network

Resources and Skills

˘k Set of periods associated with partially renewable resource k
k Single (renewable, nonrenewable, partially renewable, or storage)

resource
K D jRj Number of renewable resources
l 2 L Single skill
L D jL j Number of skills
Li D jLi j Number of skills required by activity i
L Set of skills
Li Set of skills required by activity i
Lk Set of skills that can be performed by resource k
rik Amount of resource k used by activity i
rik.t/ Amount of resource k used by activity i in the t-th period of its

execution
ril Number of resource units with skill l required by activity i
rk.S; t/ Amount of resource k used at time t given schedule S
Rk Capacity or availability of resource k
Rk.t/ Capacity of renewable resource k in period t
R Set of (discrete) renewable resources (e.g., workers)
Rl Set of workers possessing skill l
Rn Set of nonrenewable resources
Rp Set of partially renewable resources
Rs Set of storage resources
wci Work content of activity i
wlik D pi � rik Workload of renewable resource k incurred by activity i
WLk D Rk � d Workload capacity of renewable resource k

Multi-Modal Project Scheduling

m Execution mode
Mi Set of alternative execution modes for activity i
Mi D jMi j Number of modes of activity i
pim Duration of activity i in execution mode m
rikm Amount of resource k used by activity i in execution modem
x Mode assignment with xim D 1, if activity i is processed in

execution modem 2Mi

xviii List of Symbols

Staff assignment with xikl D 1, if a worker of resource k performs
activity i with skill l

Discrete Time-Cost Tradeoff

b Budget for activity processing
ci .pi / Cost for processing activity i with duration pi

(D cim with pi D pim)
cim Cost of executing activity i in modem
pim Duration of activity i in mode m

Multi-Project Problems

˛q Dummy start activity of project q
!q Dummy end activity of project q
dq Due date for completion of project q
dq Deadline for completion of project q
nq Number of real activities of project q
q 2 Q Single project
Q Set of projects
Vq Set of activities of project q

Project Scheduling Under Uncertainty and Vagueness

� Arrival rate of projects
�Oz.z/ Membership function of fuzzy set Oz
�� Probability of scenario � (

P
�2˙ �� D 1)

� 2 ˙ Single scenario
˙ Set of scenarios
˙i Set of scenarios for activity i
E. Qx/ Expected value of Qx
fQx.x/ Probability density function (pdf) of random variable Qx

(D dF
Qx

dx
.x/)

FQx.x/ Cumulative probability distribution function (cdf) of random
variable Qx (D P. Qx � x/)

Qpi Random duration of activity i
P.A/ Probability of event A
pmin
i ; pmax

i Minimum and maximum duration of activity i
Opi Fuzzy duration of activity i

var. Qx/ Variance of Qx

List of Symbols xix

Qx, Q� General random variables
x˛ ˛-quantile (FQx.x˛/ D ˛)
z (Crisp) Element from set Z
Oz General fuzzy set

Objective Functions

˛ Continuous interest rate
ˇ D e�˛ Discount rate per unit time
cFi Cash flow associated with the start or completion of activity i
cF�i > 0 Disbursement �cFi > 0 associated with activity or event i
cFCi > 0 Payment cFi > 0 associated with activity or event i
ck Cost for resource k per unit
Cmax D SnC1 Project duration (project makespan)
f .S/ Objective function value of schedule S (single-criterion problem);

Vector .f1.S/; : : : ; f�.S// of objective function values (multi-
criteria problem)

f .S; x/ Objective function value of schedule S and mode assignment x
f� Single objective function in multi-criteria project scheduling
LB Lower bound on minimum objective function value
npv Net present value of the project
PF Pareto front of multi-criteria project scheduling problem
UB Upper bound on minimum objective function value
wi Arbitrary weight of activity i

Temporal Scheduling

Ci Completion time of activity i
ECi Earliest completion time of activity i
ES Earliest schedule
ESi Earliest start time of activity i
LCi Latest completion time of activity i
LS Latest schedule
LSi Latest start time of activity i
S Schedule
Si Start time of activity i or occurrence time of event i
TFi Total float of activity i

xx List of Symbols

Models and Solution Methods

	kij Amount of resource k transferred from activity i to activity j

mut Mutation rate
�pop Population size
` Activity list .i1; i2; : : : ; in/
C Set of activities already scheduled (completed set)
D Decision set containing all activities eligible for being scheduled
SC Partial schedule of activities i 2 C
t Time period, start of period t C 1
T Last period, end of planning horizon

Computational Results

�ø
LB Average relative deviation from lower bound

�max
LB Maximum relative deviation from lower bound

�ø
opt Average relative deviation from optimum value

�max
opt Maximum relative deviation from optimum value

�ø
UB Average relative deviation from upper bound

�max
UB Maximum relative deviation from upper bound

LB0 Critical-path based lower bound on project duration
LB� Maximum lower bound
nbest Number of best solutions found
nø

iter Average number of iterations
nmax

iter Maximum number of iterations
nopt Number of optimal solutions found
OS Order strength of project network
pfeas Percentage of instances for which a feasible solution was found
pinf Percentage of instances for which the infeasibility was proven
popt Percentage of instances for which an optimal solution was found
punk Percentage of instances for which it is unknown whether there

exists a feasible solution
RF Resource factor of project
RS Resource strength of project
t limcpu CPU time limit
tøcpu Average CPU time
tmax
cpu Maximum CPU time

List of Symbols xxi

Three-Field Classification ˛ j ˇ j � for Project Scheduling
Problems1

Field ˛: Resource Environment

PS Project scheduling problem with limited (discrete) renewable
resources

PS1 Project scheduling problem without resource constraints (time-
constrained project scheduling problem)

PSc Project scheduling problem with limited continuous and discrete
renewable resources

PSf Project scheduling problem with limited renewable resources
and flexible resource requirements (problem with work-content
constraints)

PSS Project staffing and scheduling problem with multi-skilled
resources of limited workload capacity

PSS1 Project staffing and scheduling problem with limited multi-skilled
resources of unlimited workload capacity

PSp Project scheduling problem with limited partially renewable
resources

PSs Project scheduling problem with limited storage resources
PSt Project scheduling problem with limited (discrete) time-varying

renewable resources
MPSm; �; � Multi-mode project scheduling problem with m limited (discrete)

renewable resources of capacity � and � nonrenewable resources
MPS Multi-mode project scheduling problem with limited renewable

and nonrenewable resources
MPS1 Multi-mode project scheduling without resource constraints

(time-constrained project scheduling problem)

Field ˇ: Project and Activity Characteristics

The second field ˇ � fˇ1; ˇ2; : : : ; ˇ13g specifies a number of project and activity
characteristics; ı denotes the empty symbol.

ˇ1 W mult Multi-project problem
ˇ1 W ı Single-project problem
ˇ2 W prec Ordinary precedence relations between activities

1The classification is a modified version of the classification scheme introduced in Brucker P, Drexl
A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation,
classification, models, and methods. Eur J Oper Res 112:3–41.

xxii List of Symbols

ˇ2 W temp Generalized precedence relations between activities (minimum
and maximum time lags between start or completion times of
activities)

ˇ2 W feed Feeding precedence relations between activities
ˇ3 W d Prescribed deadline d for project duration
ˇ3 W ı No prescribed maximum project duration
ˇ4 W bud Limited budget for activity processing
ˇ4 W ı No limited budget for activity processing
ˇ5 W pi D sto Stochastic activity durations
ˇ5 W pi D unc Uncertain activity durations from given intervals
ˇ5 W pi D fuz Fuzzy activity durations
ˇ5 W ı Deterministic/crisp activity durations
ˇ6 W ci D sto Stochastic activity cost
ˇ6 W ci D unc Uncertain activity cost from given intervals
ˇ6 W ci D fuz Fuzzy activity cost
ˇ6 W ı Deterministic/crisp activity cost
ˇ7 W Poi Stochastic arrival of projects with identical project network

according to Poisson process
ˇ7 W ı Immediate availability of project(s)
ˇ8 W act D sto Set of activities to be executed is stochastic
ˇ8 W ı Set of activities to be executed is prescribed
ˇ9 W pmtn Preemptive problem, activities can be interrupted at any point in

time
ˇ9 W pmtn=int Preemptive problem, activities can be interrupted at integral

points in time only
ˇ9 W l-pmtn=int Preemptive problem, activities can be interrupted at integral

points in time, the numbers of interruptions per activity are
limited by given upper bounds

ˇ9 W ı Non-preemptive problem (activities cannot be interrupted)
ˇ10 W ril D 1 Each activity requires at most one resource unit with skill l for

execution
ˇ10 W ı Each activity i requires an arbitrary number of resource units with

skill l for execution
ˇ11 W cal Activities can only be processed during certain time periods

specified by activity calendars
ˇ11 W ı No activity calendars have to be taken into account
ˇ12 W sij Sequence-dependent setup/changeover times of resources be-

tween activities i and j
ˇ12 W ı No sequence-dependent changeover times
ˇ13 W nestedAlt The project network is given by a nested temporal network with

alternatives, where only a subset of the activities must be executed
ˇ13 W ı No alternative activities have to be taken into account

List of Symbols xxiii

Field �: Objective Function

f General (regular or nonregular) objective function
reg Regular objective function
mac General mode assignment cost
staff General project staffing cost (project staffing and scheduling)
rob Robustness measure
mult General multi-criteria problem
f1=f2= : : : Multi-criteria problem with objective functions f1, f2, . . .
Cmax Project duration
˙cFi ˇ

Ci Net present value of project
˙ck max rkt Total availability cost (resource investment problem)
˙ck˙r

2
kt Total squared utilization cost (resource leveling)

˙ck˙okt Total overload cost (resource leveling)
˙ck˙�rkt Total adjustment cost (resource leveling)
˙ci .pi / Total cost of activity processing (time-cost tradeoff problem)
wT Weighted project tardiness

Examples

PS j prec j Cmax Basic resource-constrained project scheduling prob-
lem (RCPSP)

PS j temp; pmtn j Cmax Preemptive resource-constrained project scheduling
problem with generalized precedence relations

MPS1 j prec; d j ˙ci .pi / Discrete time-cost tradeoff problem (deadline ver-
sion)

MPS j temp j ˙cFi ˇCi Multi-mode resource-constrained net present value
problem with generalized precedence relations

PS j prec j Cmax=˙r
2
kt Bi-criteria resource-constrained project scheduling

problem (project duration, total squared utilization
cost)

PS j prec; pi D sto j Cmax Stochastic resource-constrained project scheduling
problem

Project Management and Scheduling

Christoph Schwindt and Jürgen Zimmermann

1 Projects, Project Management, and Project Scheduling

Nowadays, projects are omnipresent. These unique and temporary undertakings
have permeated almost all spheres of life, be it work or leisure, be it business or
social activities. Most frequently, projects are encountered in private and public
enterprizes. Due to product differentiation and collapsing product life cycles, a
growing part of value adding activities in industry and services is organized as
projects. In some branches, virtually all revenues are generated through projects.
The temporary nature of projects stands in contrast with more traditional forms of
business, which consist of repetitive, permanent, or semi-permanent activities to
produce physical goods or services (Dinsmore and Cooke-Davies 2005, p. 35).

Projects share common characteristics, although they appear in many forms.
Some projects take considerable time and consume a large amount of resources,
while other projects can be completed in short time without great effort. To get
a clear understanding of the general characteristics of a project, we consider the
following two definitions of a project, which are taken from Kerzner (2013, p. 2)
and PMI (2013, p. 4).

1. “A project can be considered to be any series of activities and tasks that:

• have a specific objective to be completed within certain specifications,
• have defined start and end dates,
• have funding limits (if applicable),
• consume human and nonhuman resources (i.e., people, money, equipment),
• are multifunctional (i.e., cut across several functional lines).”

C. Schwindt (�) • J. Zimmermann
Institute of Management and Economics, Clausthal University of Technology,
Clausthal-Zellerfeld, Germany
e-mail: christoph.schwindt@tu-clausthal.de; juergen.zimmermann@tu-clausthal.de

xxv

mailto:christoph.schwindt@tu-clausthal.de
mailto:juergen.zimmermann@tu-clausthal.de

xxvi Christoph Schwindt and Jürgen Zimmermann

2. “A project is a temporary endeavor undertaken to create a unique product,
service, or result.”

According to these definitions, we understand a project as a one-time endeavor
that consists of a set of activities, whose executions take time, require resources, and
incur costs or induce cash flows. Precedence relations may exist between activities;
these relations express technical or organizational requirements with respect to the
order in which activities must be processed or with respect to their timing relative to
each other. Moreover, the scarcity of the resources allocated to the project generally
gives rise to implicit dependencies among the activities sharing the same resources,
which may necessitate the definition of additional precedence relations between
certain activities when the project is scheduled. A project is carried out by a project
team, has a deadline, i.e., is limited in time, and is associated with one or several
goals whose attainment can be monitored.

Typical examples for projects are:

• construction of a building, road, or bridge,
• development of a new product,
• reorganization in a firm,
• implementation of a new business process or software system,
• procurement and roll-out of an information system,
• design of a new pharmaceutical active ingredient, or
• conducting an election campaign.

Project management deals with the coordination of all initiating, planning,
decision, execution, monitoring, control, and closing processes in the course of
a project. In other words, it is the application of knowledge, skills, tools, and
techniques to project tasks to meet all project interests. According to the Project
Management Institute standard definition (PMI 2013, p. 8), managing a project
includes

• identifying requirements,
• establishing clearly understandable and viable objectives,
• balancing the competing demands for time, quality, scope, and cost, and
• customizing the specifications, plans, and approach to the concerns and expecta-

tions of the different stakeholders.

Consequently, successful project management means to perform the project
within time and cost estimates at the desired performance level in accordance with
the client, while utilizing the required resources effectively and efficiently.

From a project management point of view, the life cycle of a project consists
of five consecutive phases, each of which involves specific managerial tasks (cf.,
e.g., Klein 2000; Lewis 1997). At the beginning of the first phase, called project
conception, there is only a vague idea of the project at hand. By means of some
feasibility studies as well as economic and risk analyses it is decided whether
or not a project should be performed. In the project definition phase the project
objectives and the organization form of the project are specified. In addition, the

Project Management and Scheduling xxvii

Project conception
• feasibility study

• economic analysis

• risk analysis

• project selection

Project definition
• project objectives

• project organization

• operational organiza-

tion

Project planning
• structural analysis

• time, resource, and

cost estimation

• project scheduling

Project execution
• project control

• quality and configu-

ration management

Project termination
• project evaluation

• project review

Fig. 1 Project life cycle

operational organization in the form of a roadmap (milestone plan) is conceived.
In the project planning phase the project is decomposed into precedence-related
activities. Then, for each activity the duration, the required resources, and the
cost associated with the execution of that activity are estimated. Furthermore, the
precedence relations among the activities are specified. Finally, a project schedule
is determined by some appropriate planning approach (project scheduling). After
these three phases the project is ready for implementation and the project execution
phase starts. By monitoring the project progress, project management continuously
evaluates whether or not the project is performed according to the established
baseline schedule. If significant deviations are detected, the plan has to be revised
or an execution strategy defined in the planning phase is used to bring the project
back to course. Moreover, quality and configuration management are performed in
this phase (PMI 2013; Turner 2009). The final project termination phase evaluates
and documents the project execution after its completion. Figure 1 summarizes the
five phases of the project life cycle. Next, we will consider the project scheduling
part of the planning phase in more detail.

Project scheduling is mainly concerned with selecting execution modes and
fixing execution time intervals for the activities of a project. One may distinguish
between time-constrained and resource-constrained project scheduling problems,
depending on the type of constraints that are taken into account when scheduling
the project. In time-constrained problems it is supposed that the activities are to
be scheduled subject to precedence relations and that the required resources can
be provided in any desired amounts, possibly at the price of higher execution
cost or unbalanced resource usage. In the setting of a resource-constrained project
scheduling problem, the availability of resources is necessarily assumed to be
limited; consequently, in addition to the precedence relations, resource constraints
have to be taken into account. Time-cost tradeoff and resource leveling problems are
examples of time-constrained project scheduling problems. These examples show
that time-constrained problems also may include a resource allocation problem,
which consists in assigning resource units to the execution of the activities over
time.

Different types of precedence relations are investigated in this handbook.
An ordinary precedence relation establishes a predefined sequence between two
activities, the second activity not being allowed to start before the first has
been completed. Generalized precedence relations express general minimum and
maximum time lags between the start times of two activities. Feeding precedence
relations require that an activity can only start when a given minimum percentage

xxviii Christoph Schwindt and Jürgen Zimmermann

of its predecessor activity has been completed. The difference between generalized
and feeding precedence relations becomes apparent when the activity durations are
not fixed in advance or when activities can be interrupted during their execution.

Throughout this handbook, the term “resource” designates a pool of identical
resource units, and the number of resource units available is referred to as the capac-
ity or availability of the resource. In project scheduling, several kinds of resources
have been introduced to model input factors of different types. Renewable resources
represent inputs like manpower or machinery that are used, but not consumed
when performing the project. In contrast, nonrenewable resources comprise factors
like a budget or raw materials, which are consumed in the course of the project.
Renewable and nonrenewable resources can be generalized to storage resources,
which are depleted and replenished over time by the activities of the project.
Storage resources can be used to model intermediate products or the cash balance
of a project with disbursements and progress payments. Resources like electric
power or a paged virtual memory of a computer system, which can be allotted
to activities in continuously divisible amounts, are called continuous resources.
Partially renewable resources refer to unions of time intervals and can be used to
model labor requirements arising, e.g., in staff scheduling problems.

A common assumption in project scheduling is that activities must not be inter-
rupted when being processed. There exist, however, applications for which activity
splitting may be advantageous or even necessary. Examples of such applications are
the aggregate mid-term planning of project portfolios composed of subprojects or
working packages and the scheduling of projects in which certain resources cannot
be operated during scheduled downtimes. The preemptive scheduling problems
can be further differentiated according to the time points when an activity can
be interrupted or resumed. Integer preemption problems assume that an activity
can only be split into parts of integral duration, whereas continuous preemption
problems consider the general case in which activities may be interrupted and
resumed at any point in time.

An important attribute of a project scheduling problem concerns the number
of execution modes that can be selected for individual activities. The setting of
a single-modal problem premises that there is only one manner to execute an
activity or that an appropriate execution mode has been selected for each activity
before the scheduling process is started. A multi-modal problem always comprises
a mode selection problem, the number of alternative modes for an activity being
finite or infinite. Multiple execution modes allow to express resource-resource,
resource-time, and resource-cost tradeoffs, which frequently arise in practical
project scheduling applications.

With respect to the scheduling objectives, one may first distinguish between
single-criterion and multi-criteria problems. A problem of the latter type includes
several conflicting goals and its solution requires concepts of multi-criteria decision
making like goal programming or goal attainment models. Second, objective func-
tions can be classified as being regular or non-regular. Regular objective functions
are defined to be componentwise nondecreasing in the start or completion times of
the activities. Obviously, a feasible instance of a problem with a regular objective

Project Management and Scheduling xxix

function always admits a solution for which no activity can be scheduled earlier
without delaying the processing of some other activity. Since in this case, the search
for an optimal schedule can be limited to such “active” schedules, problems with
regular objective functions are generally more tractable than problems involving a
non-regular objective function.

A further attribute of project scheduling problems refers to the level of available
information. The overwhelming part of the project scheduling literature addresses
deterministic problem settings, in which it is implicitly assumed that all input data of
the problem are precisely known in advance and no disruptions will occur when the
schedule is implemented. In practice, however, projects are carried out in stochastic
and dynamic environments. Hence, it seems reasonable to account for uncertainty
when deciding on the project schedule. This observation leads to stochastic project
scheduling problems or project scheduling problems under interval uncertainty,
depending on whether or not estimates of probability distributions for the uncertain
parameters are supposed to be available. Fuzzy project scheduling problems arise in
a context in which certain input data are vague and cannot be specified on a cardinal
scale, like assessments by means of linguistic variables.

Finally, project scheduling problems may be categorized according to the
distribution of information or the number of decision makers involved. Most work
on project scheduling tacitly presumes that the projects under consideration can
be scheduled centrally under a symmetric information setting, in which there is
a single decision maker or all decision makers pursue the same goals and are
provided access to the same information. However, in a multi-project environment,
decentralized decision making may be the organization form of choice, generally
leading to an asymmetric information distribution and decision makers having their
own objectives. In this case, a central coordination mechanism is needed to resolve
conflicts and to achieve a satisfying overall project performance.

Table 1 summarizes the classification of project scheduling problems considered
in this handbook. For further reading on basic elements and more advanced concepts
of project scheduling we refer to the surveys and handbooks by Artigues et al.
(2008), Demeulemeester and Herroelen (2002), Hartmann and Briskorn (2010), and
Józefowska and Wȩglarz (2006).

2 Scope and Organization of the Handbook

Given the long history and practical relevance of project management and schedul-
ing, one might be tempted to suppose that all important issues have been addressed
and all significant problems have been solved. The large body of research papers,
however, that have appeared in the last decade and the success of international
project management and scheduling conferences prove that the field remains a very
active and attractive research area, in which major and exciting developments are
still to come.

xxx Christoph Schwindt and Jürgen Zimmermann

Table 1 Classification of project scheduling problems

Attributes Characteristics

Type of constraints Time-constrained problem

Resource-constrained problem

Type of precedence relations Ordinary precedence relations

Generalized precedence relations

Feeding precedence relations

Type of resources Renewable resources

Nonrenewable resources

Storage resources

Continuous resources

Partially renewable resources

Type of activity splitting Non-preemptive problem

Integer preemption problem

Continuous preemption problem

Number of execution modes Single-modal problem

Multi-modal problem

Number of objectives Single-criterion problem

Multi-criteria problem

Type of objective function Regular function

Non-regular function

Level of information Deterministic problem

Stochastic problem

Problem under interval uncertainty

Problem under vagueness

Distribution of information Centralized problem (symmetric distribution)

Decentralized problem (asymmetric distribution)

This handbook is a collection of 62 chapters presenting a broad survey on key
issues and recent developments in project management and scheduling. Each chap-
ter has been contributed by recognized experts in the respective domain. The two
volumes comprise contributions from seven project management and scheduling
areas, which are organized in 19 parts. The first three areas are covered by Vol. 1
of the handbook, the remaining four areas being treated in Vol. 2. The covered
topics range from basic project scheduling problems and their generalizations
through multi-project planning, project scheduling under uncertainty and vagueness,
recent developments in general project management and project risk management
to applications, case studies, and project management information systems. The
following list provides an overview of the handbook’s contents.

• Area A: Project duration problems in single-modal project scheduling

– Part I: The Resource-Constrained Project Scheduling Problem
– Part II: The Resource-Constrained Project Scheduling Problem with

Generalized Precedence Relations

Project Management and Scheduling xxxi

– Part III: Alternative Resource Constraints in Project Scheduling
– Part IV: Preemptive Project Scheduling

• Area B: Alternative objectives in single-modal project scheduling

– Part V: Non-Regular Objectives in Project Scheduling
– Part VI: Multi-Criteria Objectives in Project Scheduling

• Area C: Multi-modal project scheduling

– Part VII: Multi-Mode Project Scheduling Problems
– Part VIII: Project Staffing and Scheduling Problems
– Part IX: Discrete Time-Cost Tradeoff Problems

• Area D: Multi-project problems

– Part X: Multi-project scheduling
– Part XI: Project Portfolio Selection Problems

• Area E: Project scheduling under uncertainty and vagueness

– Part XII: Stochastic Project Scheduling
– Part XIII: Robust Project Scheduling
– Part XIV: Project Scheduling Under Interval Uncertainty and Fuzzy Project

Scheduling

• Area F: Managerial approaches

– Part XV: General Project Management
– Part XVI: Project Risk Management

• Area G: Applications, case studies, and information systems

– Part XVII: Project Scheduling Applications
– Part XVIII: Case Studies in Project Scheduling
– Part XIX: Project Management Information Systems

The parts of Areas A to E, devoted to models and methods for project schedul-
ing, follow a development from standard models and basic concepts to more
advanced issues such as multi-criteria problems, project staffing and scheduling,
decentralized decision making, or robust optimization approaches. Area F covers
research opportunities and emerging issues in project management. The chapters
of the last Area G report on project management and scheduling applications and
case studies in various domains like production scheduling, R&D planning, make-
or-buy decisions and supplier selection, scheduling in computer grids, and the
management of construction projects. Moreover, three chapters address the benefits
and capabilities of project management information systems.

Most chapters are meant to be accessible at an introductory level by readers with
a basic background in operations research and probability calculus. The intended
audience of this book includes project management professionals, graduate students

xxxii Christoph Schwindt and Jürgen Zimmermann

in management, industrial engineering, computer science, or operations research, as
well as scientists working in the fields of project management and scheduling.

3 Outline of the Handbook

Area A of this handbook is dedicated to single-modal project scheduling problems
in which the activities have to be scheduled under precedence relations and resource
constraints and the objective consists in minimizing the duration (or makespan) of
the project. In practice, these project scheduling problems have a large range of
applications, also beyond the field of proper project management. For example, pro-
duction scheduling and staff scheduling problems can be modeled as single-modal
project scheduling problems. In order to model specific practical requirements
like prescribed minimum and maximum time lags between activities, availability
of materials and storage capacities, or divisible tasks, project scheduling models
including generalized precedence relations, new types of resource constraints, or
preemptive activities have been proposed. These extensions to the basic model are
also addressed in this portion of the handbook.

Part I is concerned with the classical resource-constrained project scheduling
problem RCPSP. Solution methods for the RCPSP have been developed since the
early 1960s and this problem is still considered the standard model in project
scheduling. In Chap. 1 Rainer Kolisch reviews shifts, schedule types, and schedule-
generation schemes for the RCPSP. A shift transforms a schedule into another
schedule by displaying sets of activities. Based on the introduced shifts, different
types of schedules, e.g., semi-active and active schedules, are defined. Furthermore,
two different schedule-generation schemes are presented. The serial schedule-
generation scheme schedules the activities one by one at their respective earliest
feasible start times. The parallel schedule-generation scheme is time-oriented and
generates the schedule by iteratively adding concurrent activities in the order
of increasing activity start times. Variants of the two schemes for the resource-
constrained project scheduling problem with generalized precedence relations and
for the stochastic resource-constrained project scheduling problem are discussed as
well. Chapter 2, written by Christian Artigues, Oumasr Koné, Pierre Lopez, and
Marcel Mongeau, surveys (mixed-)integer linear programming formulations for the
RCPSP. The different formulations are divided into three categories: First, time-
indexed formulations are presented, in which time-indexed binary variables encode
the status of an activity at the respective point in time. The second category gathers
sequencing formulations including two types of variables. Continuous natural-date
variables represent the start time of the activities and binary sequencing variables are
used to model decisions with respect to the ordering of activities that compete for the
same resources. Finally, different types of event-based formulations are considered,
containing binary assignment and continuous positional-date variables. In Chap. 3
Sigrid Knust overviews models and methods for calculating lower bounds on the
minimum project duration for the RCPSP. Constructive and destructive bounds are

Project Management and Scheduling xxxiii

presented. The constructive lower bounds are based on the relaxation or Lagrangian
dualization of the resource constraints or a disjunctive relaxation allowing for activ-
ity preemption and translating precedence relations into disjunctions of activities.
Destructive lower bounds arise from disproving hypotheses on upper bounds on the
minimum objective function value. Knust reviews destructive lower bounds for the
RCPSP that are calculated using constraint propagation and a linear programming
formulation. Chapter 4 by Anurag Agarwal, Selcuk Colak, and Selcuk Erenguc
considers meta-heuristic methods for the RCPSP. Important concepts of heuristic
methods as well as 12 different meta-heuristics are presented. Amongst others,
genetic algorithms, simulated annealing methods, and ant-colony optimization are
discussed. A neuro-genetic approach is presented in more detail. This approach is a
hybrid of a neural-network based method and a genetic algorithm.

Part II deals with the resource-constrained project scheduling problem with
generalized precedence relations RCPSP/max. Generalized precedence relations
express minimum and maximum time lags between the activities and can be
used to model, e.g., release dates and deadline of activities or specified maxi-
mum makespans for the execution of subprojects. In Chap. 5 Lucio Bianco and
Massimiliano Caramia devise lower bounds and exact solution approaches for the
RCPSP/max. First, a new mathematical formulation for the resource-unconstrained
project scheduling problem is presented. Then, they propose a lower bound
for the RCPSP/max relying on the unconstrained formulation. The branch-and-
bound method is based on a mixed-integer linear programming formulation and
a Lagrangian relaxation based lower bound. The mixed-integer linear program
includes three types of time-indexed decision variables. The first two types are
binary indicator variables for the start and the completion of activities, whereas
the third type corresponds to continuous variables providing the relative progress of
individual activities at the respective points in time. Chapter 6 presents a constraint
satisfaction solving framework for the RCPSP/max. Amedeo Cesta, Angelo Oddi,
Nicola Policella, and Stephen Smith survey the state of the art in constraint-
based scheduling, before the RCPSP/max is formulated as a constraint satisfaction
problem. The main idea of their approach consists in establishing precedence
relations between activities that share the same resources in order to eliminate
all possible resource conflicts. Extended optimizing search procedures aiming at
minimizing the makespan and improving the robustness of a solution are presented.
Chapter 7, written by Andreas Schutt, Thibaut Feydy, Peter Stuckey, and Mark
Wallace, elaborates on a satisfiability solving approach for the RCPSP/max. First,
basic concepts such as finite domain propagation, boolean satisfiability solving, and
lazy clause generation are discussed. Then, a basic model for the RCPSP/max and
several expansions are described. The refinements refer to the reduction of the initial
domains of the start time variables and the identification of incompatible activities
that cannot be in progress simultaneously. The authors propose a branch-and-bound
algorithm that is based on start-time and/or conflict-driven branching strategies and
report on the results of an experimental performance analysis.

Part III focuses on resource-constrained project scheduling problems with
alternative types of resource constraints. The different generalizations of the

xxxiv Christoph Schwindt and Jürgen Zimmermann

renewable-resources concept allow for modeling various kinds of limited input
factors arising in practical applications of project scheduling models. Chapter 8,
written by Sönke Hartmann, considers the resource-constrained project scheduling
problem with time-varying resource requirements and capacities RCPSP/t. After
a formal description of the problem, relationships to other project scheduling
problems are discussed and practical applications in the field of medical research
and production scheduling are treated. The applicability of heuristics for the RCPSP
to the more general RCPSP/t is analyzed and a genetic algorithm for solving the
RCPSP/t is presented. In Chap. 9 Jacques Carlier and Aziz Moukrim consider
project scheduling problems with storage resources. In particular, the general project
scheduling problem with inventory constraints, the financing problem, and the
project scheduling problem with material-availability constraints are discussed. For
the general problem setting, in which for each storage resource the inventory level
must be maintained between a given safety stock and the storage capacity, two
exact methods from literature are reviewed. The financing problem corresponds
to the single-resource case in which the occurrence times of the project events
replenishing the storages are fixed and no upper limitation on the inventory levels
are given. This problem can be solved by a polynomial-time shifting algorithm.
Eventually, the authors explain how the general problem can be solved efficiently
when the storage capacities are relaxed and a linear order on all depleting events is
given. Chapter 10, written by Grzegorz Waligóra and Jan Wȩglarz, is concerned with
the resource-constrained project scheduling problem with discrete and continuous
resources DCRCPSP. First, the authors survey the main theoretical results that have
been achieved for the continuous resource allocation setting. Then, the DCRCPSP
with an arbitrary number of discrete resources and a single continuous resource with
convex or concave processing rate, respectively, is analyzed. For the case of concave
processing rates, a solution method based on feasible sequences of activity sets is
presented. In Chap. 11 Ramon Alvarez-Valdes, Jose Manuel Tamarit, and Fulgencia
Villa discuss the resource-constrained project scheduling problem with partially
renewable resources RCPSP/� . After the definition of the problem, the authors
review different types of requirements of real-world scheduling problems that can
be modeled using partially renewable resources and survey the existing solution
procedures for RCPSP/� . Preprocessing procedures and two heuristic approaches,
a GRASP algorithm and a scatter search method, are treated in detail.

Part IV is devoted to preemptive project scheduling problems, in which activities
can be temporarily interrupted and restarted at a later point in time. In some
applications, especially if vacation or scheduled downtimes of resources are taken
into account, the splitting of activities may be unavoidable. Chapter 12 by Sacra-
mento Quintanilla, Pilar Lino, Ángeles Pérez, Francisco Ballestín, and Vicente Valls
considers the resource-constrained project scheduling problem Maxnint_PRCPSP
under integer activity preemption and upper bounds on the number of interrup-
tions per activity. Existing procedures for the RCPSP are adapted to solve the
Maxnint_PRCPSP, and procedures tailored to the Maxnint_PRCPSP are presented.
In addition, the chapter reviews a framework for modeling different kinds of
precedence relations when activity preemption is allowed. In Chap. 13 Christoph

Project Management and Scheduling xxxv

Schwindt and Tobias Paetz first present a survey on preemptive project scheduling
problems and solution methods. Next, they propose a continuous preemption
resource-constrained project scheduling problem with generalized feeding prece-
dence relations, which includes most of the preemptive project scheduling problems
studied in the literature as special cases. Based on a reduction of the problem
to a canonical form with nonpositive completion-to-start time lags between the
activities, structural issues like feasibility conditions as well as upper bounds on
the number of activity interruptions and the number of positive schedule slices
are investigated. Moreover, a novel MILP problem formulation is devised, and
preprocessing and lower bounding techniques are presented.

Area B of the handbook is dedicated to single-modal project scheduling
problems with general objective functions, including multi-criteria problems. Non-
regular objective functions motivated by real-world applications are, e.g., the net
present value of the project, the resource availability cost, or different resource lev-
eling criteria. In practice, project managers often have to pursue several conflicting
goals. Traditionally, the respective scheduling problems have been tackled as single-
objective optimization problems, combining the multiple criteria into a single scalar
value. Recently, however, more advanced concepts of multi-criteria decision making
received increasing attention in the project scheduling literature. Based on these
concepts, project managers may generate a set of alternative and Pareto-optimal
project schedules in a single run.

Part V treats project scheduling problems with single-criteria non-regular
objective functions. These problems are generally less tractable than problems
involving a regular objective function like the project duration because the set
of potentially optimal solutions must be extended by non-minimal points of the
feasible region. The resource-constrained project scheduling problem with dis-
counted cash flows RCPSPDC is examined in Chap. 14. The sum of the discounted
cash flows associated with expenditures and progress payments defines the net
present value of the project, and the problem consists in scheduling the project
in such as way that the net present value is maximized. Hanyu Gu, Andreas
Schutt, Peter Stuckey, Mark Wallace, and Geoffrey Chu present an exact solution
procedure relying on the lazy clause generation principle. Moreover, they propose
a Lagrangian relaxation based forward-backward improvement heuristic as well as
a Lagrangian method for large problem instances. Computational results on test
instances from the literature and test cases obtained from a consulting firm provide
evidence for the performance of the algorithms. In Chap. 15 Savio Rodrigues and
Denise Yamashita present exact methods for the resource availability cost problem
RACP. The RACP addresses situations in which the allocation of a resource incurs a
cost that is proportional to the maximum number of resource units that are requested
simultaneously at some point in time during the project execution. The resource
availability cost is to be minimized subject to ordinary precedence relations between
the activities and a deadline for the project termination. An exact algorithm based
on minimum bounding procedures and heuristics for reducing the search space
are described in detail. Particular attention is given to the search strategies and
the selection of cut candidates. The authors report on computational results on

xxxvi Christoph Schwindt and Jürgen Zimmermann

a set of randomly generated test instances. Chapter 16, written by Vincent Van
Peteghem and Mario Vanhoucke, considers heuristic methods for the RACP and
the RACPT, i.e., the RACP with tardiness cost. In the RACPT setting, a due date for
the project completion is given and payments arise when the project termination is
delayed beyond this due date. Van Peteghem and Vanhoucke provide an overview of
existing meta-heuristic methods and elaborate on a new search algorithm inspired
by weed ecology. In Chap. 17 Julia Rieck and Jürgen Zimmermann address different
resource leveling problems RLP. Resource leveling is concerned with the problem of
balancing the resource requirements of a project over time. Three different resource
leveling objective functions are discussed, for which structural properties and
respective schedule classes are revisited. A tree-based branch-and-bound procedure
that takes advantage of the structural properties is presented. In addition, several
mixed-integer linear programming formulations for resource leveling problems are
given and computational experience on test sets from the literature is reported. In
Chap. 18 Symeon Christodoulou, Anastasia Michaelidou-Kamenou, and Georgios
Ellinas present a literature review on heuristic solution procedures for different
resource leveling problems. For the total squared utilization cost problem they
devise a meta-heuristic method that relies on a reformulation of the problem as
an entropy maximization problem. First, the minimum moment method for entropy
maximization is presented. This method is then adapted to the resource leveling
problem and illustrated on an example project.

Part VI covers multi-criteria project scheduling problems, placing special
emphasis on structural issues and the computation of the Pareto front. Chap-
ter 19, written by Francisco Ballestín and Rosa Blanco, addresses fundamental
issues arising in the context of multi-objective project scheduling problems. Gen-
eral aspects of multi-objective optimization and peculiarities of multi-objective
resource-constrained project scheduling are revisited, before a classification of the
most important contributions from the literature is presented. Next, theoretical
results for time- and resource-constrained multi-objective project scheduling are
discussed. In addition, the authors provide a list of recommendations that may
guide the design of heuristics for multi-objective resource-constrained project
scheduling problems. Chapter 20, contributed by Belaïd Aouni, Gilles d’Avignon,
and Michel Gagnon, examines goal programming approaches to multi-objective
project scheduling problems. After presenting a generic goal programming model,
the authors develop a goal programming formulation for the resource-constrained
project scheduling problem, including the project duration, the resource allocation
cost, and the quantity of the allocated resources as objective functions. In difference
to the classical resource allocation cost problem, the model assumes that the
availability cost refers to individual resource units and is only incurred in periods
during which the respective unit is actually used.

Area C of this handbook is devoted to multi-modal project scheduling problems,
in which for each activity several alternative execution modes may be available
for selection. Each execution mode defines one way to process the activity, and
alternative modes may differ in activity durations, cost, resource requirements, or
resource usages over time. The project scheduling problem is then complemented

Project Management and Scheduling xxxvii

by a mode selection problem, which consists in choosing one execution mode for
each activity. Multi-modal problems typically arise from tradeoffs between certain
input factors like renewable or nonrenewable resources, durations, or cost. Other
types of multi-modal problems are encountered when multi-skilled personnel has
to be assigned to activities with given skill requirements or when the resource
requirements are specified as workloads rather than by fixed durations and fixed
resource demands.

Part VII deals with multi-modal project scheduling problems in which the
activity modes represent relations between activity durations and demands for
renewable, nonrenewable, or financial resources. This problem setting allows for
modeling resource-resource and resource-time tradeoffs, which frequently arise
in practical project management. In Chap. 21 Marek Mika, Grzegorz Waligóra,
and Jan Wȩglarz provide a comprehensive overview of the state of the art in
multi-modal project scheduling. One emphasis of the survey is on the basic multi-
mode resource-constrained project duration problem MRCPSP, for which they
review mixed-integer linear programming formulations, exact and heuristic solution
methods, as well as procedures for calculating lower bounds on the minimum
project duration. Moreover, they also revisit special cases and extensions of the
basic problem as well as multi-mode problems with financial and resource-based
objectives. Chapter 22, written by José Coelho and Mario Vanhoucke, presents a
novel solution approach to the multi-mode resource-constrained project scheduling
problem MRCPSP, which solves the mode assignment problem using a satisfiability
problem solver. This approach is of particular interest since it takes advantage
of the specific capabilities of these solvers to implement learning mechanisms
and to combine a simple mode feasibility check and a scheduling step based
on a single activity list. A capital-constrained multi-mode scheduling problem is
investigated in Chap. 23 by Zhengwen He, Nengmin Wang, and Renjing Liu. The
problem consists in selecting activity modes and assigning payments to project
events in such a way that the project’s net present value is maximized and the
cash balance does not go negative at any point in time. The execution modes of the
activities represent combinations of activity durations and associated disbursements.
In Chap. 24 Philipp Baumann, Cord-Ulrich Fündeling, and Norbert Trautmann
consider a variant of the resource-constrained project scheduling problem in which
the resource usage of individual activities can be varied over time. For each activity
the total work content with respect to a distinguished resource is specified, and
the resource usages of the remaining resources are determined by the usage of
this distinguished resource. A feasible distribution of the work content over the
execution time of an activity can be interpreted as an execution mode. The authors
present a priority-rule based heuristic and a mixed-integer linear programming
formulation, which are compared on a set of benchmark instances.

Part VIII addresses different variants of project staffing and scheduling prob-
lems. In those problem settings, the execution of a project activity may require
several skills. It then becomes necessary to assign appropriate personnel to the
activities and to decide on the skills with which they contribute to each activity.
Isabel Correia and Francisco Saldanha-da-Gama develop a generic mixed-integer

xxxviii Christoph Schwindt and Jürgen Zimmermann

programming formulation for project staffing and scheduling problems, which is
presented in Chap. 25. The formulation captures various features like unary multi-
skilled resources, which contribute with at most one skill to each activity, workload
capacities of the resources, multi-unit skill requirements of the activities, and
generalized precedence relations. This framework is illustrated by providing MILP
models for two project staffing and scheduling problems discussed in the literature,
the multi-skill project scheduling problem MSPSP and the project scheduling
problem with multi-purpose resources PSMPR. In Chap. 26 Carlos Montoya, Odile
Bellenguez-Morineau, Eric Pinson, and David Rivreau present a heuristic method
for the MSPSP, which is based on integrating column generation and Lagrangian
relaxation techniques. The MSPSP consists in assigning the multi-skilled resources
to the activities so as to minimize the project duration under ordinary precedence
relations between the activities. The authors develop two master problem formula-
tions, which are heuristically solved by iteratively considering restricted versions
of the master problem defined on a pool of variables. In each iteration, new
variables with negative reduced cost are entered into the pool, which are identified
via respective pricing problems. The required dual multipliers are obtained from
solving the LP relaxation of the current restricted master problem by alternating
iterations of a subgradient procedure for the Lagrangian dual and simplex iterations.
Project staffing and scheduling problems of type PSMPR are discussed in Chap. 27.
In difference to the MSPSP, the availability of each resource is limited by a
maximum workload that can be processed in the planning horizon, and a general
staffing cost function is considered. The staffing cost depends on the assignment
of resources to skill requirements of the activities. Haitao Li devises an exact
algorithm for the general problem with convex staffing cost. The hybrid Benders
decomposition method starts from hierarchically dividing the problem into a relaxed
master problem covering the assignment decisions and a feasibility subproblem
modeling the scheduling decisions. Both levels are linked by top-down instructions
and a bottom-up feedback mechanism adding Benders cuts to the relaxed master
problem when the scheduling problem is infeasible. The feasibility of the scheduling
problem is checked using a constraint programming algorithm. In Chap. 28 Cheikh
Dhib, Ameur Soukhal, and Emmanuel Néron address a generalization of the MSPSP
in which an activity can be interpreted as a collection of concurrent subactivities
requiring a single skill each and possibly differing in durations. Moreover, it
is assumed that the subactivities must be started simultaneously, but may be
interrupted and resumed individually at integral points in time. The authors propose
a mixed-integer linear programming formulation of the problem and describe
priority-rule based solution methods, which are based on the parallel schedule-
generation scheme.

Discrete time-cost tradeoff problems, which are the subject of Part IX, represent
a type of multi-modal project scheduling problems that are frequently encountered
in practice. This type of problems occur when the processing of certain activities
can be sped up by assigning additional resources, leading to higher execution cost.
In Chap. 29 Joseph Szmerekovsky and Prahalad Venkateshan provide a literature
review on the classical discrete time-cost tradeoff problem DTCTP. Furthermore,

Project Management and Scheduling xxxix

they discuss a new integer programming formulation for a version of the DTCTP
with irregular start time costs of the activities. For the special case where the
start time costs represent the net present value of an activity, the formulation
is compared to three alternative MILP models in an extensive computational
experiment. In Chap. 30 Mario Vanhoucke studies three extensions of the DTCTP
and an electromagnetic meta-heuristic algorithm to solve these problems. The
setting of the DTCTP with time-switch constraints presupposes that activities can
only be processed in certain time periods defined by given work/rest patterns. In
addition to the direct activity costs, the objective function of the DTCTP with work
continuity constraints also includes costs for the supply of resources required by
groups of activities; this variant of the problem can be reduced to the basic DTCTP.
Finally, the DTCTP with net present value optimization is considered.

Area D of the handbook is dedicated to project planning problems involving sev-
eral individual projects. We distinguish between multi-project scheduling problems,
for which the set of projects to be scheduled is assumed given, and project portfolio
selection problems, dealing with the choice of the projects to be actually performed.
In both scenarios, there may exist dependencies between the individual projects, for
example due to precedence relations between activities of different projects or due
to the joint requirements for resources.

Part X deals with the first type of multi-project problems. When scheduling
concurrent projects, an important question concerns the distribution of information.
In the basic multi-project scheduling problem, it is assumed that all planning data are
available to a single decision maker, who may centrally schedule the entire project
portfolio. On the other hand, decentralized multi-project scheduling covers the sit-
uation in which information is distributed over different decision makers, who may
pursue individual targets. In this case, a central coordination mechanism is needed
to resolve conflicts between the individual projects. In Chap. 31 Jos Fernando
Gonçalves, Jorge Jos de Magalhes Mendes, and Mauricio Resende provide a liter-
ature overview on basic multi-project scheduling problems BMPSPS. Furthermore,
they develop a biased random-key genetic algorithm for the variant of the problem
in which a separable polynomial function in the tardiness, the earliness, and the
flow time overrun of all projects is to be minimized subject to precedence relations
and the limited availability of shared resources. The decentralized multi-project
scheduling problem DRCMPSP is addressed in Chap. 32. In their contribution,
Andreas Fink and Jörg Homberger discuss implications of the distributed character
of the problem. In addition, they provide a classification scheme of different types
of DRCMPSP, categorizing problems according to the basic problem structure, the
number of decision makers, the distribution of information, and the local and global
objectives. The chapter also contains an extensive discussion and classification of
solution approaches presented in literature, including auction and negotiation based
coordination schemes.

Part XI focuses on project portfolio selection problems. Often there are more
projects on offer than resources available to carry them out. In this case project
management has to choose the right project portfolio for execution. In Chap. 33
Ana Fernández Carazo considers multi-criteria problems in which the performance

xl Christoph Schwindt and Jürgen Zimmermann

of a portfolio is measured according to a set of conflicting goals. First she identifies
a number of key factors characterizing multi-criteria project portfolio selection
problems and discusses the different ways in which those factors have been modeled
in the literature. Based on this analysis, a proposal for a general project portfolio
selection model is developed, which synthesizes various features of previous
models. Finally, a binary nonlinear multi-criteria programming formulation of the
new model is provided. Walter Gutjahr in Chap. 34 surveys models for project
portfolio selection problems which include learning and knowledge depreciation
effects. Different types of learning curves are reviewed and it is explained how
these models have been used in the context of project staffing and scheduling
problems. For the integration of skill development into project portfolio selection
models, a mixed-integer nonlinear programming formulation is proposed. More-
over, analytical results for continuous project portfolio investment problems under
skill development are reviewed, for which it is assumed that projects can also be
partially funded.

Area E of the handbook covers the realm of project scheduling under uncertainty
and vagueness, an issue that is widely recognized as being highly relevant to
practical project management. Stochastic scheduling problems refer to decision
situations under risk, in which quantities like activity durations or activity costs
are defined as random variables with known distributions and the objective consists
in optimizing the expected value of some performance measure. A solution to such
a stochastic problem is commonly given by a policy that is applied when the project
is executed. Robust project scheduling is concerned with the problem of finding a
predictive baseline schedule that still performs well in case of disruptions or adverse
scenarios. Interval uncertainty designates a situation in which only lower and upper
bounds can be estimated with sufficient accuracy, but no probability distributions
are known. Finally, the concept of fuzzy sets allows to model situations in which
vague information, which is only available on an ordinal scale, should be taken into
account.

Part XII addresses different types of stochastic project scheduling problems.
Chapter 35, contributed by Wolfram Wiesemann and Daniel Kuhn, deals with the
stochastic time-constrained net present value problem. Both the activity durations
and the cash flows associated with the activities are supposed to be independent
random variables. Having discussed the relevance and challenges of stochastic net
present value problems, the authors review the state of the art for two variants of
the problem. If the activity durations are assumed to be exponentially distributed,
the problem can be modeled as a discrete-time Markov decision process with a
constant discount rate, for which different exact solution procedures are available.
Alternatively, activity durations and cash flows can be represented using discrete
scenarios with given probabilities. The resulting stochastic net present value
problem SNPV can be formulated as a mixed-integer linear program. Several
heuristic solution approaches from literature are outlined. In Chap. 36 Evelina
Klerides and Eleni Hadjiconstantinou examine the stochastic discrete time-cost
tradeoff problem SDTCTP. They survey the literature on static and dynamic versions
of the deadline and the budget variant of this problem. For the dynamic budget

Project Management and Scheduling xli

variant of SDTCTP it is shown that the problem can be formulated as a multi-stage
stochastic binary program with decision-dependent uncertainty. Furthermore, the
authors present effective methods for computing lower bounds and good feasible
solutions, which are respectively based on a two-stage relaxation and a static mode
selection policy. The resource-constrained project scheduling problem with random
activity durations SRCPSP is the subject of Chap. 37. Maria Elena Bruni, Patrizia
Beraldi, and Francesca Guerriero give an overview of models and methods that have
been proposed for different variants of this problem. They develop a heuristic based
on the parallel schedule-generation scheme, which in each iteration determines
the predictive completion times of the scheduled activities by solving a chance-
constrained program. The presented approach is innovative in two respects. First,
the use of joint probabilistic constraints allows to relax the traditional assumption
that the start time of an activity can be disturbed by at most one predecessor activity
at a time. Second, similar to robust project scheduling approaches, a solution to
the problem is a predictive baseline schedule that is able to absorb a large part
of possible disruptions. The objective, however, still consists, for given confidence
level, in finding a schedule with minimum makespan. Hence, the problem to be
solved can be viewed as a dual of a robust scheduling problem. The heuristic
is illustrated on a real-life construction project. Chapter 38, by Saeed Yaghoubi,
Siamak Noori, and Amir Azaron, tackles a multi-criteria multi-project scheduling
problem in which projects arrive dynamically according to a Poisson process.
Activity durations and direct costs for carrying out activities are assumed to be
independent random variables. The execution of the projects is represented as a
stochastic process in a queueing network with a maximum number of concurrent
projects, each activity being performed at a dedicated service station. The expected
values of the activity durations and the direct costs are respectively nonincreasing
and nondecreasing functions of the amount of a single resource that is assigned to
the service station. The problem consists in allocating the limited capacity of the
resource in such a way that the mean project completion time is minimized, the
utilization of the service stations is maximized, and the probability that the total
direct cost exceeds the available budget is minimum. The authors apply continuous-
time Markov processes and particle swarm optimization to solve this multi-objective
problem using a goal attainment technique.

Part XIII comprises two chapters on robust optimization approaches to project
scheduling problems under uncertainty. The basic idea of robust project scheduling
consists in establishing a predictive baseline schedule with a diminished vulnera-
bility to disturbances or adverse scenarios and good performance with respect to
some genuine scheduling objective. There are many ways in defining the robustness
of a schedule. For example, a schedule may be considered robust if it maximizes
the probability of being implementable without modifications. Alternatively, the
robustness may refer to the genuine objective instead of the feasibility; a robust
schedule then typically optimizes the worst-case performance. In difference to
stochastic project scheduling, robust project scheduling approaches do not neces-
sarily presuppose information about the probability distributions of the uncertain
input parameters of the problem. In Chap. 39 Öncü Hazır, Mohamed Haouari, and

xlii Christoph Schwindt and Jürgen Zimmermann

Erdal Erel discuss a robust discrete time-cost tradeoff problem in which for the
activity cost associated with a given mode an interval of possible realizations is
specified, but no probability distribution is assumed to be known. The authors devise
a mixed-integer programming formulation for this problem. The objective function
is defined to be the sum of all most likely activity mode costs plus the maximum
surplus cost that may be incurred if for a given number of activities, the direct
cost does not assume the most likely but the highest value. The latter number of
activities may be used to express the risk attitude of the decision maker. In addition,
six categories of time-based robustness measures are presented and a two-phase
scheduling algorithm for placing a project buffer at minimum additional cost is
outlined. Based on this algorithm, the relationship between the required budget
augmentation and the average delay in the project completion time can be analyzed.
The robust resource-constrained project scheduling problem with uncertain activity
durations is investigated in Chap. 40 by Christian Artigues, Roel Leus, and Fabrice
Talla Nobibon. Like in the preceding chapter, it is assumed that no probability
distributions are available; the sets of possible realizations of activity durations
may form intervals or finite sets. The problem is formulated as a minimax absolute-
regret model for which the objective is to find an earliest start policy that minimizes
the worst-case difference between the makespan obtained when implementing the
policy and the respective optimum ex-post makespan. An exact scenario-relaxation
algorithm and a scenario-relaxation based heuristic are presented for this problem.

Part XIV is devoted to project scheduling problems under interval uncertainty
and to fuzzy project scheduling. In Chap. 41 Christian Artigues, Cyril Briand, and
Thierry Garaix survey results and algorithms for the temporal analysis of projects
for which the uncertain activity durations are represented as intervals. The temporal
analysis computations provide minimum and maximum values for the earliest and
latest start times of the activities and the total floats. Whereas the earliest start
times can be calculated as longest path lengths like in the case of fixed activity
durations, the computation of the latest start times is less simple. Two algorithms
with polynomial time complexity are presented. Interestingly, the maximum total
float of the activities can also be computed efficiently, whereas the computation of
the minimum total floats constitutes an NP-hard problem. The chapter elaborates
on a recent branch-and-bound algorithm for the latter problem. Hua Ke and Weimin
Ma in Chap. 42 study a fuzzy version of the linear time-cost tradeoff problem in
which the normal activity durations are represented as fuzzy variables. The authors
survey literature on time-cost tradeoff problems under uncertainty and vagueness.
Using elements of credibility theory, the concepts of expected values, quantiles, and
probabilistic constraints can be translated from random to fuzzy variables. Based on
these concepts, three fuzzy time-cost tradeoff models are proposed, respectively,
providing schedules with minimum ˛-quantile of the total cost, with minimum
expected cost, and with maximum credibility of meeting the budget constraint. In
addition, a hybrid method combining fuzzy simulations and a genetic algorithm for
solving the three models is presented.

Area F addresses managerial approaches to support decision makers faced with
increasingly complex project environments. Complex challenges arise, for example,

Project Management and Scheduling xliii

when dealing with project portfolios, or when a project is performed on a client-
contractor basis and the goals of both parties must be streamlined, or when risks
arise from several sources and these risks are not independent from each other. These
and further challenges are discussed in the two parts of Area F.

Part XV is concerned with general project management issues, covering project
portfolio management, relational partnerships and incentive mechanisms, and spe-
cific challenges encountered in product development and engineering projects.
In Chap. 43 Nicholas Hall contrasts the rapid growth of project activities in
firms with the lack of trained project management professionals and research-
based project management concepts. He proposes 11 areas for future research to
reduce the gap between the great practical importance and the limited theoretical
foundations of project management in these areas. Chapter 44 by Peerasit Patanakul
addresses issues that arise in multi-project environments. These issues comprise
the assignment of project managers to projects, organizational factors that enhance
multi-project management, and alternative roles of a project management office.
New product development constitutes a classical application area of project man-
agement procedures and tools. Nevertheless, managing product innovation is still a
challenging task, due to the uncertainty associated with the development process and
the strategic importance of its success. In Chap. 45 Dirk Pons provides guidelines
from a systems engineering perspective, emphasizing on the management of human
resources in the development process. Another traditional application area of project
management is the construction industry. Construction projects involve two main
parties: the contractor and the client receiving the project deliverables provided by
the contractor. The concept of partnering tries to overcome the adversarial relation
between contractor and client, which still tends to prevail in many construction
projects. In Chap. 46 Hemanta Doloi examines key factors that are crucial for
successful partnering and draws conclusions from a survey conducted in the
Australian construction industry. Chapter 47, written by Xianhai Meng, deals with
incentive mechanisms, which are frequently used to enhance project performance,
especially in the construction industry. The author discusses different kinds of
incentives and disincentives that are related to project goals such as time, cost,
quality, and safety. A case study of a road construction project gives insight into the
practical application of incentive mechanisms. Project complexity is a prominent
cause for project failure. Hence, it is vitally important for managers to know about
sources of complexity. In Chap. 48 Marian Bosch-Rekveldta, Hans Bakker, Marcel
Hertogh, and Herman Mooi identify drivers of complexity. Based on a literature
research and six case studies analyzing the complexity of engineering projects, they
provide a framework for evaluating project complexity. The framework comprises
technical, organizational, and external sources of project complexity.

Part XVI deals with project risk management. Since the importance of projects
has grown and revenues from project work may constitute a considerable share
of a firm’s total income, managing project risk is vitally important as it helps
to identify threats and to mitigate potential damage. In Chap. 49, Chao Fang and
Franck Marle outline a framework for project risk management, which considers
not only single risks separately but also interactions between risks. The authors

xliv Christoph Schwindt and Jürgen Zimmermann

show how interactions can be captured in a matrix-based risk network and provide
a quantitative method to analyze such a network. Chapter 50 is concerned with risk
management for software projects. Paul Bannerman reviews empirical research on
the application of risk management in practice, the effectiveness of risk manage-
ment, and factors that hinder or facilitate the implementation of risk management.
He describes different perspectives on risk management in order to show the wide
range of approaches and to identify avenues for further research. An important goal
of risk management is to identify risks and to decide on the risks that should be
mitigated. This decision is frequently based on a ranking of the identified risks. In
Chap. 51 Stefan Creemers, Stijn Van de Vonder, and Erik Demeulemeester survey
the different ranking methods that were proposed in the literature. In particular, they
consider so-called ranking indices that provide a ranking of activities or risks based
on their impact on the project objectives. They show that the ranking methods may
differ in their outcome and evaluate their performance with a focus on the risk of
project delay.

The last Area G proves evidence for the relevance of concepts developed in
the preceding parts of this handbook to the practice of project management and
scheduling. The area covers different domains beyond proper project scheduling
and puts the concepts treated in the previous parts into the perspective of real-life
project management. It includes chapters on project scheduling applications, case
studies, and project management information systems.

Part XVII collects six industrial applications of resource-constrained project
scheduling, where different models and methods presented in previous chapters
are put into practice. In particular, test, production, and workflow scheduling
problems are considered. Chapter 52, written by Jan-Hendrik Bartels and Jürgen
Zimmermann, reports on the problem of scheduling destructive tests in automotive
R&D projects. The planning objective consists in minimizing the number of
required experimental vehicles. The problem is modeled as a multi-mode resource-
constrained project scheduling problem with renewable and storage resources, in
which the required stock must be built up before it can be consumed. In addition
to different variants of a priority-rule based heuristic, an activity-list based genetic
algorithm is proposed. Both heuristic approaches prove suitable for solving large-
scale practical problem instances. In Chap. 53 Roman Čapek, Přemysl Šůcha, and
Zdeněk Hanzálek describe a scheduling problem with alternative process plans,
which arises in the production of wire harnesses. In such a production process,
alternative process plans include production operations that can be performed in
different ways, using fully or semi-automated machines. A mixed-integer linear
programming model for a resource-constrained project scheduling problem with
generalized precedence relations, sequence-dependent setup times, and alternative
activities is presented. Furthermore, a heuristic schedule-construction procedure
with an unscheduling step is proposed, which can be applied to large prob-
lem instances. Chapter 54 is concerned with the scheduling of jobs with large
computational requirements in grid computing. An example of such jobs are
workflow applications, which comprise several precedence-related computation
tasks. A computer grid is a large-scale, geographically distributed, dynamically

Project Management and Scheduling xlv

reconfigurable, and scalable hardware and software infrastructure. Marek Mika
and Grzegorz Waligóra present three models for scheduling the computation and
transmission tasks in grids, differing in their assumptions with respect to the
workflow applications and computer networks. For the models with distributed
resources and sequence-dependent setup times, resource allocation and scheduling
algorithms are presented. For the model in which transmission tasks compete for
scarce network resources it is shown how a feasible resource allocation can be
determined. Chapter 55 by Haitao Li considers make-or-buy and supplier selection
problems arising in conjunction with the scheduling of operations in make-to-order
supply chains. A multi-mode resource-constrained project scheduling problem is
formulated to minimize the total supply chain cost, in which synergies and inter-
actions between sourcing and scheduling decisions are captured. The total supply
chain cost involves the total fixed cost, cost of goods sold, and total pipeline stock
cost and depends on the selected activity modes. The proposed solution algorithm
draws on the hybrid Benders decomposition framework exposed in Chap. 27. The
relaxed master problem (RMP) covers the assignment decisions, whereas the sub-
problem (SP) is concerned with the scheduling of the operations. The feasibility
of an optimal RMP solution is checked by solving the respective SP. If the SP is
feasible, an optimal solution has been found; otherwise, the algorithm identifies
some cause of infeasibility and adds respective cuts to the RMP, which is then solved
again. A numerical example is discussed to demonstrate the scope and depth of
decision-support offered by the solutions of the model for purchasing and program
managers. In Chap. 56 Arianna Alfieri and Marcello Urgo apply a project scheduling
approach to make-to-order systems for special-purpose machinery like instrumental
goods or power generation devices, in which products are assembled in the one-
of-a-kind production mode. They present a resource-constrained project scheduling
problem with feeding precedence relations and work content constraints and explain
its application to a real-world case of machining center production. In Chap. 57
Matthew Colvin and Christos Maravelias apply multi-stage stochastic programming
to the development process of new drugs. The problem consists in scheduling a set
of drugs, each of which has to undergo three trials. If one trial fails, the development
of the related drug is canceled. The required resources are limited and the objective
is to maximize the expected net present value of the project. After an introduction
to stochastic programming and endogenous observations of uncertainty, a mixed-
integer multi-stage stochastic programming model is presented. Some structural
properties of the problem are discussed and three solution methods including a
branch-and-cut algorithm are developed.

Part XVIII presents two case studies in project scheduling. In Chap. 58 Maurizio
Bevilacqua, Filippo Ciarapica, Giovanni Mazzuto, and Claudia Paciarotti combine
concepts of robust project scheduling and multi-criteria project scheduling to
tackle a construction project for an accommodation module of an oil rig in the
Danish North Sea. To guarantee an efficient use of the resources, the project
management identified the minimization of the project duration and the leveling
of the manpower resources as primary goals. Using historical data from 15 past
projects, the means and the standard deviations of the activity durations could be

xlvi Christoph Schwindt and Jürgen Zimmermann

estimated with sufficient accuracy. To obtain a robust baseline schedule for the
project, project buffers and feeding buffers were inserted in the schedule according
to the lines of Goldratt’s Critical Chain methodology. Compared to the traditional
CPM method, the presented robust goal programming approach was able to reduce
the project duration by 14 % and to improve the resource utilization by more than
40 %. In Chap. 59 Jiuping Xu and Ziqiang Zeng consider a multi-criteria version
of the discrete time-cost tradeoff problem, which is called the discrete time-cost-
environment-tradeoffproblem DTCETP. They assume that normal activity durations
are represented as triangular fuzzy numbers and that for each period there exists a
limit on the total cost incurred by the processing and crashing of activities. This cash
flow constraint can be modeled as a renewable resource whose capacity coincides
with the cost limit. The capacity is taken up according to the requirements of
alternative execution modes. In sum, the problem can be formulated as a fuzzy
multi-criteria multi-mode resource-constrained project scheduling problem. Four
objective functions are taken into account: the total project cost, the project duration,
the total crashing costs of activities, and the quantified environmental impact of the
project. Xu and Zeng develop an adaptive hybrid genetic algorithm for this problem
and describe its application to the Jinping-II hydroelectric construction project on
the Yalong River in the Sichuan-Chongqing region. Both the input data of the case
study and the computed schedule are provided. The performance of the algorithm is
evaluated based on a sensitivity analysis with respect to the objective weights and
the results obtained with two benchmark heuristics.

Project management information systems PMIS play a crucial role in the transfer
of advanced project management and scheduling techniques to professional project
management. Part XIX addresses the question of the actual contribution of PMIS
on the project performance, studies the effects of PMIS on decision making in
multi-project environments, and investigates the project scheduling capabilities of
commercial PMIS.

Based on a PMIS success model and a survey conducted among project
managers, Louis Raymond and François Bergeron in Chap. 60 empirically assess
the impact of PMIS on decision makers and project success. Their model comprises
five constructs: the quality of the PMIS, the quality of the PMIS information output,
the use of the PMIS, the individual impacts of the PMIS, and the impacts of
the PMIS on project success. Each construct is measured using several criteria.
Structural equation modeling with the partial least squares method is used to analyze
the relationships between the different dimensions and to test the validity of six
research hypotheses. The results obtained show that the use of PMIS in professional
project management significantly contributes to the efficiency and effectiveness of
individual project managers and to the overall project performance. Chapter 61
presents a related study in which Marjolein Caniëls and Ralph Bakens focus on
the role of PMIS in multi-project environments, where project managers handle
multiple concurrent but generally less complex projects. After a survey of the
literature on multi-project management and PMIS the research model is introduced,
which contains six constructs: the project overload, the information overload, the
PMIS information quality, the satisfaction with PMIS, the use of PMIS information,

Project Management and Scheduling xlvii

Table 2 Overview of project scheduling problems treated in the handbook, respective acronyms
used in the literature, and three-field notations of Brucker et al. (1999)

Chaps. Project scheduling problem Acronym Three-field notation

1 – 4 Resource-constrained project
scheduling problem

RCPSP PS j prec j Cmax
5 – 7 Resource-constrained project

scheduling problem with generalized
precedence relations

RCPSP/max PS j temp j Cmax

8 Resource-constrained project
scheduling problem with
time-varying resource requirements
and capacities

RCPSP/t PSt j prec j Cmax

9 Project scheduling problems with
storage resources

PSs j temp j Cmax
10 Discrete-continuous

resource-constrained project
scheduling problem

DCRCPSP PSc j prec j Cmax

11 Resource-constrained project
scheduling problem with partially
renewable resources

RCPSP/� PSp j prec j Cmax

12 Integer preemptive
resource-constrained project
scheduling problem with limited
number of interruptions per activity

Maxnint_
PRCPSP

PS j prec; l-pmtn=int j Cmax

13 Continuous preemptive
resource-constrained project
scheduling problem with generalized
precedence relations

PRCPSP/max PS j temp; pmtn j Cmax

14 Resource-constrained project
scheduling problem with discounted
cash flows

RCPSPDC PS j prec; d j ˙cFi ˇCi

15 Resource availability cost problem RACP PS1 j prec; d j ˙ck max rkt
16 Resource availability cost problems RACP,

RACPT
PS1 j prec; d j ˙ck max rkt ,
PS1jprecj˙ck max rkt C wT

17 Resource leveling problems RLP PS1 j temp; d j ˙ck˙r2kt ,
PS1 j temp; d j ˙ck˙okt , and
PS1 j temp; d j ˙ck˙�rkt

18 Resource leveling problem RLP PS1 j prec; d j ˙ck˙r2kt
19 Multi-objective time- and

resource-constrained project
scheduling problems

MOPSPs,
MORCPSPs

PS1 j prec j mult,
PS j precjmult

20 Multi-objective resource-constrained
project scheduling

MORCPSPs PS j prec j mult

(continued)

xlviii Christoph Schwindt and Jürgen Zimmermann

Table 2 (continued)

Chaps. Project scheduling problem Acronym Three-field notation

21 Multi-modal resource-constrained
project scheduling problems

MPS j prec j f

22 Multi-mode resource-constrained
project scheduling problem

MRCPSP MPS j prec j Cmax
23 Multi-mode capital-constrained net

present value problem
MNPV MPSs j prec j ˙cFi ˇCi

24 Project scheduling problem with
work content constraints

PSf j prec j Cmax
25 Project staffing and scheduling

problems
PSS j temp j f

26 Multi-skill project scheduling
problem

MSPSP PSS1 j prec j Cmax
27 Project scheduling with

multi-purpose resources
PSMPR PSS j temp j staff

28 Preemptive multi-skill project
scheduling problem

PSS j prec; pmtn j Cmax
29 Discrete time-cost tradeoff problem

(deadline version)
d-DTCTP MPS1 j prec; d j ˙ci .pi /

Discrete time-cost tradeoff problem
with irregular starting time costs

MPS1 j prec; d j f

30 Discrete time-cost tradeoff problem
with time-switch constraints

d-DTCTP-tsc MPS1 j prec; d ; calj˙ci .pi /

Discrete time-cost tradeoff problem
with net present value optimization

d-DTCTP-npv MPS1 j prec; d j ˙cFi ˇCi

31 Basic multi-project scheduling
problem

BMPSP PS j mult; prec j f

32 Decentralized multi-project
scheduling problem

DRCMPSP

33 Multi-criteria project portfolio
selection problem

34 Project selection, scheduling, and
staffing with learning problem

PSSSLP

35 Stochastic net present value problem SNPV PS j prec; pi D sto j ˙cFi ˇCi
36 Stochastic discrete time-cost tradeoff

problem (budget version)
b-SDTCTP MPS1 j prec; bud; pi D sto j

Cmax

37 Stochastic resource-constrained
project scheduling problem

SRCPSP PS j prec; pi D sto j Cmax
38 Markovian multi-criteria

multi-project resource-constrained
project scheduling problem

MPSm; 1; 1 j mult; prec; bud;
pi D sto; ci D sto;Poi j mult

(continued)

Project Management and Scheduling xlix

Table 2 (continued)

Chaps. Project scheduling problem Acronym Three-field notation

39 Robust discrete time-cost tradeoff
problem

MPS1 j prec; d ; ci D unc j
˙ci .pi /

40 (Absolute regret) Robust
resource-constrained project
scheduling problem

AR-RCPSP PS j prec; pi D unc j rob

41 Temporal analysis under interval
uncertainty

PS1 j prec; pi D unc j f
with f 2 fESi ; LSi ; TFig

42 Fuzzy time-cost tradeoff problem
(deadline version)

MPS1 j prec; d ; pi D fuz j
˙ci .pi /

52 Multi-mode resource-constrained
project scheduling problem with
storage resources

MPSs j temp; d j ˙ck max rkt

53 Resource-constrained project
scheduling problem with generalized
precedence relations, sequence
dependent setup times, and
alternative activities

RCPSP-APP PSjtemp; sij ; nestedAltjCmax

54 Multi-mode resource-constrained
project scheduling problems

MRCPSP MPS j prec j Cmax
55 Multi-mode resource-constrained

project scheduling problem
MPS j prec; d j mac

56 Resource constrained project
scheduling problem with feeding
precedence relations and work
content constraints

PSft j feed j Cmax

57 Stochastic net present value problem
in which the set of activities to be
executed is stochastic

PS j prec; act D stoj˙cFi ˇCi

58 Robust multi-criteria project
scheduling problem

PS j prec; pi D sto j Cmax=̇ r2kt

59 Fuzzy multi-criteria multi-mode
project scheduling problem

DTCETP MPS j prec; d; bud; pi D fuz j
mult

and the quality of decision making. Based on the results of a survey among project
managers, several hypotheses on the relationships between the constructs are tested
using the partial least square method. It turns out that project and information
overload are not negatively correlated with PMIS information quality and that
the quality and use of PMIS information are strongly related to the quality of
decision making. In the final Chap. 62, Philipp Baumann and Norbert Trautmann
experimentally assess the performance of eight popular PMIS with respect to their
project scheduling capabilities. Using the more than 1.500 KSD-30, KSD-60, and
KSD-120 instances of the resource-constrained project scheduling problem RCPSP
from the PSPLIB library, the impact of different complexity parameters and priority
rules on the resulting project durations is analyzed. The results indicate that for the
project duration criterion, the scheduling performances of the software packages

l Christoph Schwindt and Jürgen Zimmermann

differ significantly and that the option of selecting specific priority rules generally
leads to schedules of inferior quality as compared to PMIS that do not offer this
feature.

Table 2 gives an overview of the different types of project scheduling problems
treated in this book. In the literature many of those problems are commonly desig-
nated by acronyms, which are provided in the third column of the table. The last
column lists the respective designators of the (extended) three-field classification
scheme for project scheduling problems proposed by Brucker et al. (1999). The
notation introduced there and the classification scheme, which are used in different
parts of this handbook, are defined in the list of symbols, which is included in the
front matter of this book.

References

Artigues C, Demassey S, Néron E (eds) (2008) Resource-constrained project scheduling: models,
algorithms, extensions and applications. Wiley, Hoboken

Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project
scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41

Dinsmore PC, Cooke-Davies TJ (2005) Right projects done right: from business strategy to
successful project implementation. Wiley, San Francisco

Demeulemeester EL, Herroelen WS (2002) Project scheduling: a research handbook. Kluwer,
Dordrecht

Hartmann S, Briskorn D (2008) A survey of deterministic modeling approaches for project
scheduling under resource constraints. Eur J Oper Res 207:1–14

Józefowska J, Wȩglarz J (eds) (2006) Perspectives in modern project scheduling. Springer, New
York

Kerzner H (2013) Project management: a systems approach to planning, scheduling, and control-
ling. Wiley, Hoboken

Klein R (2000) Scheduling of resource-constrained projects. Kluwer, Boston
Lewis JP (1997) Fundamentals of project management. Amacom, New York
Project Management Institute, Inc. (2013) A guide to the project management body of knowledge

(PMBOK®Guide). PMI, Newtown Square
Turner JR (2009) The handbook of project-based management: leading strategic change in

organizations. McGraw-Hill, New York

Part I
The Resource-Constrained Project

Scheduling Problem

Chapter 1
Shifts, Types, and Generation Schemes
for Project Schedules

Rainer Kolisch

Abstract Schedule generation schemes are the backbone of heuristics to solve
project scheduling problems. In this chapter we introduce the two schedule genera-
tion schemes for the classical resource constrained project scheduling problem, the
serial and the parallel schedule generation scheme. We characterize them according
to the types of schedule they generate and discuss variants of the schedule generation
schemes in order to deal with extensions such as general precedence constraints and
stochastic activity durations.

Keywords Makespan minimization • Project scheduling • Resource constraints •
Schedule generation schemes

1.1 Introduction

In this chapter we discuss schedule generation schemes (SGSs) which are employed
in order to construct feasible schedules for the resource-constrained project
scheduling problem (RCPSP). Two schedule generation schemes are available
in the literature, the serial SGS and the parallel SGS. Schedule generation
schemes are generalizations of list scheduling as familiar from machine scheduling
(see Błażewicz et al. 2007). SGSs are heuristics for generating feasible project
schedules. The latter can be but are not necessarily optimal. In fact, we show that
it might not be possible to obtain an optimal schedule when employing the parallel
SGS. Schedule generation-schemes have become the backbone for the majority
of simple and more advanced heuristics to solve the RCPSP. In the remainder of
this chapter we first provide a brief introduction to the resource-constrained project
scheduling problem and to schedules in Sect. 1.2. Next, in Sect. 1.3 we discuss shifts
as a means of transforming schedules. Then, in Sect. 1.4 we define different types
of schedules. In Sect. 1.5 we describe the two schedule generation schemes and
characterize them with respect to the type of schedules they generate. Afterwards,

R. Kolisch (�)
TUM School of Management, Technische Universität München, Munich, Germany
e-mail: rainer.kolisch@tum.de

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_1

3

mailto:rainer.kolisch@tum.de

4 R. Kolisch

in Sect. 1.6 we address schedule generation schemes for the simple assembly line
balancing problem as a special case of the RCPSP and for generalizations of the
RCPSP with minimum and maximum time lags or stochastic activity durations.
Finally, in Sect. 1.7 we provide conclusions.

1.2 The Resource-Constrained Project Scheduling Problem

The RCPSP is probably the most studied optimisation problem in project
scheduling. It can be described as follows. A single project which consists of n
real activities has to be scheduled subject to precedence and renewable resource
constraints such that the time required for performing all activities, the makespan, is
minimized. The project is depicted as an activity-on-node (AoN) network with node
set V D f0; 1; : : : ; nC 1g where each node represents an activity and nodes 0 and
nC 1 are dummy activities representing the milestone “project start” and “project
finish”. A precedence constraint between two activities i and j , i; j 2 V; i ¤ j , is
represented by arc .i; j /. We consider simple finish-to-start precedence constraints
which imply that the successor activity j must not be started before the predecessor
activity is finished. N denotes the set of all arcs of a project. In order to be
processed, activity j requires rjk units of renewable resource k for every period of
its duration pj . The set of all renewable resources required to undertake the project
is R. Renewable resource k 2 R has an availability of Rk in each period. Since
other types of resources, such as nonrenewable, doubly constrained or partially
renewable resources (see Neumann et al. 2002), are not relevant for the RCPSP,
we henceforth speak only of resources, meaning renewable resources. Resource
constraints necessitate that for each resource k 2 R and each period the sum
of the resource demand of processed activities must not be greater than resource
availability Rk . The optimization problem is to define a start time for each activity
which respects precedence and resource constraints and minimizes the makespan of
the project.

A schedule S D .S0; S1; : : : ; SnC1/ defines for each activity j 2 V the start time
Sj . Assuming without loss of generality that activity 0 starts at time 0 and that the
duration of the activities are integer multiples of the period length, an activity always
starts at the beginning of a period. An activity j with duration pj which starts in
period t is processed in periods Sj C 1; : : : ; Sj C pj . We take into consideration
the resource constraints of a period t at time instant t � 1 which defines the start
of period t . In Fig. 1.1, for example, activity 1 with duration p1 D 2 and resource
demand r11 D 1 with respect to resource 1 is processed in periods 1 and 2; it starts
at time S2 D 0 and we check the availability of the capacity of periods 1 and 2 at
times 0 and 1. From a given schedule S we can derive for time instant t the set of
activities which are in progress A .S; t/ D fj 2 V j Sj C 1 � t < Sj C pj g. In
Fig. 1.1 activity 1 is in progress at time instants 0 and 1.

A schedule S is precedence feasible if Si C pi � Sj holds for each .i; j / 2 N .
A schedule S is resource feasible if for any resource k 2 R and at any point in time

1 Shifts, Types, and Generation Schemes for Project Schedules 5

r1(S t)

t
1 2 3 4

1
1

Fig. 1.1 Example of a scheduled activity

0

0

0

1

2

1

2

1

2

3

1

1

4

1

2

5

2

1

6

0

0

j

p j

r j1

R1=2

Fig. 1.2 Example instance of the RCPSP

t
1 2 3 4 5 6 7 8 9 10

1

2

3
4

1
2

5

Fig. 1.3 Feasible schedule for the example instance

t D 0; : : : ; T � 1 the capacity required by the activities in progress rk.S; t/ DP
j2A .S;t/ rjk does not exceed the available capacity Rk . T denotes an upper

bound on the project makespan. A simple upper bound for the project makespan
is
P

j2V pj . The optimization problem of the RCPSP is to find a precedence and
resource feasible schedule for the project which minimizes the makespan SnC1.
The RCPSP is well-known to be NP-hard (see Błażewicz et al. 1983). Figure 1.2
provides an example instance of the RCPSP with n D 5 real activities and j R jD 1
resource with capacity R1 D 2. Figure 1.3 is an example of a feasible schedule for
the example instance.

6 R. Kolisch

An objective function f .S/ maps a schedule S into f .S/. An objective function
f .S/ is regular if it is nondecreasing in the start time of activities, that is, if we
have two schedules S and S 0 with S 0j � Sj and S 0i D Si for i 2 V n fj g then
f .S 0/ � f .S/ holds. The project makespan SnC1 as well as the sum of the activity
start times

P
j2V Sj are well known regular objective functions.

1.3 Shifts

A shift is a movement of an activity j currently scheduled at Sj to an earlier or later
start time S 0j ¤ Sj . With a sequence of shifts we can transform schedules. We can
define the following type of shifts (see Sprecher et al. 1995).

Definition 1.1. A left shift of an activity j is an operation on a feasible schedule S
which derives a feasible schedule S 0 such that S 0j < Sj and S 0i D Si for i 2 V nfj g.
Remark. If the objective function is regular, then applying a left shift to a schedule
S always leads to a schedule S 0 which dominates S with respect to the objective
function.

Definition 1.2. A one-period left shift of an activity j is a left shift of activity j
for which Sj � S 0j D 1 holds.

Definition 1.3. A local left shift of an activity j is a left shift of activity j which
is obtainable by one or more successively applied one-period left shifts of activity j .

Remark. Each intermediate schedule derived by a local left shift is by definition
feasible.

Definition 1.4. A global left shift of an activity j is a left shift of activity j which
is not obtainable by a local left shift.

Remark. By definition, for a global left shift Sj � S 0j > 1 holds. Furthermore, at
least one of the intermediate schedules generated in the course of the global left shift
is not resource feasible.

In order to illustrate the different shifts consider the schedule in Fig. 1.4 which
can be obtained from the feasible schedule provided in Fig. 1.3 performing a
one-period left shift of activity 2, a one-period left shift of activity 3 and a local
left shift consisting of two periods of activity 6.

1.4 Schedule Types

We distinguish three schedule types: semi-active, active, and non-delay schedules.

Definition 1.5. A semi-active schedule is a feasible schedule where none of the
activities can be locally left shifted.

1 Shifts, Types, and Generation Schemes for Project Schedules 7

Fig. 1.4 Semi-active
schedule for the example
instance

r1(S t)

t
1 2 3 4 5 6 7

1

2

3
4

1 5
2

Fig. 1.5 Active and unique
optimal schedule for the
example instance

r1(S t)

t
1 2 3 4 5 6 7

1

2

3
4

1

5
2

Figure 1.4 shows a semi-active schedule for the example instance. Clearly, none
of the activities can be locally left shifted any more. The exact procedure of Sprecher
(2000) enumerates schedules based on semi-active schedules.

Definition 1.6. An active schedule is a feasible schedule where none of the
activities can be locally or globally left shifted.

Figure 1.5 provides an active schedule for the example instance which
is derived from the semi-active schedule of Fig. 1.4 by undertaking a global
three-period left shift of activity 6. Note that the two intermediate schedules
S 0 D .0; 2; 4; 0; 1; 4; 6; 2/ and S 00 D .0; 2; 4; 0; 1; 3; 5/ are not feasible and thus we
have not performed a local left shift. The resulting schedule is the unique optimal
schedule for the example instance (see Sprecher et al. 1995). Most exact solution
procedures such as the one from Demeulemeester and Herroelen (1992, 1997)
enumerate active schedules.

Before we turn to the definition of a non-delay schedule, we have to introduce
the concept of a unit-time-duration RCPSP (UTDRCPSP). Any RCPSP can be
transformed into a UTDRCPSP by splitting each activity j with duration pj into
a series of pj activities with duration 1. The unit-time-duration activities resulting
from activity j are serially ordered in the sense that there is a finish-start precedence
constraint between the first and the second, the second and the third unit-time
duration activity, and so on.

Definition 1.7. A non-delay schedule is a feasible schedule where the schedule of
the corresponding UTDRCPSP is active.

8 R. Kolisch

0

0

0

11

1

1

12

1

1

21

1

2

31

1

1

41

1

2

51

1

1

52

1

1

60

0

0

j

p j

r j1

R1=2

Fig. 1.6 UTDRCPSP of the example instance

r1(S t)

t
1 2 3 4 5 6 7

1

2

31

41

11

51

12

52

21

Fig. 1.7 Schedule of the UTDRCPSP corresponding to the active schedule of the RCPSP

We transform the example RCPSP-instance into the UTDRCPSP-instance
shown in Fig. 1.6, where activity j is transformed into unit-time-duration activities
j1,. . . ,jpj .

The schedule of the UTDRCPSP corresponding to the active and optimal
schedule of the RCPSP is given in Fig. 1.7. For this schedule we can globally
left shift activity 11 from S11 D 2 to S 011 D 0. If we transform the resulting
UTD-schedule into the schedule of the corresponding RCPSP, we obtain the
non-delay schedule presented in Fig. 1.8. Note that this non-delay schedule is not
optimal.

Theorem 1.1. Let S denote the set of schedules, FS the set of feasible schedules,
SAS the set of semi-active schedules, AS the set of active schedules, and NDS the
set of non-delay schedules, then NDS � AS � SAS � FS � S holds.

Obviously, the set of schedules with the smallest cardinality which contains a
solution with optimal regular objective function is the active set (see Sprecher et al.
1995).

1 Shifts, Types, and Generation Schemes for Project Schedules 9

r1(S t)

t
1 2 3 4 5 6 7

1

2

3

1

4

5

2

Fig. 1.8 Non-delay schedule of the example problem

1.5 Schedule Generation Schemes for the RCPSP

Schedule generation schemes (SGS) are algorithms which construct precedence and
resource feasible schedules for the RCPSP. SGSs are the backbone of heuristics for
the RCPSP. For both schemes we utilize an upper bound on the project makespan
T and latest start times LS derived from T by backward longest path calculation
(see Demeulemeester and Herroelen 2002).

1.5.1 Serial Schedule Generation Scheme

The serial schedule generation scheme performs n iterations. In each iteration one
activity is scheduled at it earliest precedence and resource feasible start time. Hence,
for a scheduled activity there are no further local or global left shifts possible. In
order to formally describe the serial SGS, we have to introduce some additional
notation. Let C� be the set of activities which have been scheduled up to iteration
�. Employing C� we can define the set of scheduled activities which are active at
time instant t as A .C�; t/ D fj 2 C� j Sj � t < Sj C pj g. Now, let QRk.t/ D
Rk �Pj2A .C�;t/

rjk be the remaining capacity of resource k at time t , taking into
account the resource demand of the activities which have been scheduled so far.
Finally, let D� be the decision set containing all activities eligible for scheduling in
iteration �. In order to be eligible, the activity itself must not have been scheduled
but all its predecessors have to be scheduled, therefore D� D fj 2 V n C� j
Pred.j / � C�g. We now can formally state the serial SGS as follows:

1: Initialization: S0 WD 0, C0 WD f0g.
2: Iteration: For � D 1 to n do
3: Update D� and QRk.t/ for all k 2 R and t D 0; : : : ; T � 1.
4: Select one j 2 D�.
5: ESj WD maxh2Pred.j /fSh C phg.

10 R. Kolisch

Table 1.1 Earliest start
times, latest start times and
slack of activities

j 1 2 3 4 5

ESj 0 2 0 1 2

LSj 4 6 3 4 5

LSj � ESj 4 4 3 3 3

Table 1.2 Iterations of the
serial SGS for the example
instance

� 1 2 3 4 5

D� f1; 3g f1; 4g f1; 5g f2; 5g f2g
j 3 4 1 5 2

6: Sj WD minft j ESj � t � LSj ; rjk � QRk.�/ for all k 2 R
and � D t; : : : ; t C pj � 1g.

7: C� WD Cg�1 [fj g.
8: SnC1 WD maxj2Pred.nC1/fSj C pj g.

Initialization in line 1 assigns start time 0 to the dummy start activity and
initializes the set of already scheduled activities with the dummy start activity.
After that, n iterations take place. In each iteration one activity of the decision
set is selected and scheduled as early as possible with respect to precedence and
resource constraints. In line 3 the decision set and the remaining capacity of the
resources are updated. Then, in line 4 one activity j from the decision set is selected
and its earliest start time ESj is calculated in line 5 as the earliest finish time of
all immediate predecessors. Note that this earliest start time is calculated taking
into account the precedence and resource feasible start times of all predecessors of
activity j . In contrast, classical forward pass calculation for determining earliest
start times ESj (see Demeulemeester and Herroelen 2002) only take precedence
constraints into account. Starting from ESj the earliest resource feasible start time
is calculated in line 6 and afterwards j is added to the set of scheduled activities in
line 7. At the end of the iteration, all n non dummy activities have been scheduled
and, in line 8, the dummy end activity is assigned the maximum finish time of its
predecessors as start time.

Let us illustrate the serial SGS by applying it to the example problem given in
Fig. 1.2 employing the minimum slack (MSLK) priority rule. Table 1.1 provides for
each activity j the precedence based early start time ESj , the precedence based
latest start time LSj calculated by backward pass calculation from the upper bound
of the project makespan T D P

j2V pj D 7 and the slack LSj � ESj . In case of
ties we select the activity with the smallest number. Table 1.2 provides the decision
set D� and the selected activity j for each iteration � D 1; : : : ; 5. The resulting
schedule is the active and optimal schedule given in Fig. 1.5.

An efficient implementation of the serial schedule generation scheme with a time
complexity of O.n2� j R j/ is provided in Kolisch and Hartmann (1999). The
implementation utilizes the fact that when searching for the earliest resource feasible
start time Sj in line 6 not every time t has to be checked. Instead, the implementation

1 Shifts, Types, and Generation Schemes for Project Schedules 11

checks resource feasibility only at the finish time of activities, thereby reducing the
time complexity from O.n � T � j R j/ to O.n2� j R j/

Kolisch (1996) has shown that the serial scheduling scheme always generates a
feasible solution if one exists and that the resulting schedule is an active schedule.
This property stems from the fact that the serial schedule generation scheme
schedules a selected activity at the earliest precedence and resource feasible time
and, hence, that no local or global left shifts are possible.

Instead of selecting an activity from the decision set based on its priority
value, a precedence feasible activity list can be employed. An activity list ` D
.j1; j2; : : : ; jn/ is determined before the start of the algorithm. Precedence feasible
means that for an activity ji in the list each immediate predecessor activity Pred.ji /
has to be before ji on the list, that is Pred.ji / � fj1; : : : ; ji�1g holds (see Hartmann
1998). An activity list ` can be obtained by recording the sequence activities are
selected when processing the serial schedule generation scheme. Also, ` can be
generated by employing a feasible schedule and sequencing the activities in the
order of increasing start times (see Debels et al. 2006). In case of equal start times,
any order of the activities in question is feasible. If we record the sequence of
the activities selected when applying the serial SGS with the MSLK priority rule
as given in Table 1.2, we obtain the activity list .3; 4; 1; 5; 2/. If we derive an
activity list based on the start times of the schedule given in Fig. 1.8, activity list
.3; 1; 4; 5; 2/ results. When employing the serial SGS with an activity list `, we do
not need decision set D� any more. Furthermore, we replace “Select one j 2 D�”
with “j D j�” in line 4 (see Kolisch and Hartmann 1999).

The serial schedule generation scheme applied to activity lists is employed by
most metaheuristics for the RCPSP (see Kolisch and Hartmann 2006). There, a
solution is encoded as an activity list and by means of a schedule generation
scheme mapped onto a feasible schedule. Along with the activity list, Kolisch and
Hartmann (1999) present different schedule representations. Debels et al. (2006)
point out that different activity list may by mapped onto the same schedule and
propose a standardized random key representation where each activity j is assigned
a not necessarily unique integer xj between 1 and n. When searching for the next
activity to be scheduled, the not yet scheduled precedence feasible activity j with
smallest xj is selected. For a given schedule a unique standardized random key
representation can be derived by assigning x values according to the start times of
the activities where activities with the same start time receive the same x value. The
standardized random key representation for the optimal schedule given in Fig. 1.5 is
x D .3; 5; 1; 2; 3/.

1.5.2 Parallel Schedule Generation Scheme

The parallel schedule generation scheme is time oriented. Each iteration � has
a unique and monotonically increasing schedule time t�. The algorithm starts as

12 R. Kolisch

many precedence and resource feasible activities as possible at t�. Due to the time
orientation, the following sets are defined as depending on t�. The set of completed
activities C� is comprised of all activities which have been scheduled such that the
finish time is less than or equal to t�, that is C� D fj 2 V j Sj C pj � t�g. The
set of active activities A� is made up of the activities which have been scheduled
and are in process at t�, that is A� WD fj 2 V j Sj � t� < Sj C pj g. The
remaining capacity of resource k at time t� is QRk.t�/ D Rk �Pj2A�

rjk . Finally,
we define the decision set D� D fj 2 V n fC� [A�g j Pred.j / � C� and rjk �
QRk.t�/ for all k 2 Rg as all not yet completed activities whose predecessors have

been completed and for whom at time t� there is enough remaining capacity in
order to be processed. We can now provide a formal description of the parallel SGS
as follows:

1: Initialization: � WD 0, t� WD 0, C0 WD ;, S0 WD 0, A0 WD f0g.
2: Iteration: While j C� [A� j� n do
3: � WD �C 1.
4: t� WD minj2A��1fSj C pj g.
5: Update C�, A�, QRk.t�/ for all k 2 R, D�.
6: While D� ¤ ; do
7: Select one j 2 D�.
8: Sj WD t�.
9: Update QRk.t�/ for all k 2 R, A�, D�.

10: SnC1 D maxh2Pred.nC1/ Sh C ph.
The initialisation in line 1 sets the schedule time t� as well as the start of the

dummy start activity to zero and assigns the dummy start activity to the active set.
Each iteration has a unique counter � and a unique schedule time t� which is the
earliest finish time of the activities in process at iteration � � 1 (see line 4). At
the new schedule time t�, the sets of completed and active activities, the remaining
capacity of the resources and the decision set are calculated in line 5. Afterwards,
in lines 6 to 9, the activities from the decision set are started in t� as long as there
is sufficient capacity. Following the start of each activity, the capacity as well as
the active set and the decision set are updated. Once all n real activities have been
scheduled, the start time of the dummy activity nC 1 is determined in line 10.

We illustrate the parallel SGS by applying it to the example problem given in
Fig. 1.2 and again employing the MSLK priority rule (see Table 1.1 for the priority
values of the activities). Table 1.3 provides the decision time t�, the decision set D�

and the selected activity j for each iteration � D 1; : : : ; 5. The resulting schedule
is the non-delay schedule given in Fig. 1.8.

Table 1.3 Iterations of the
parallel SGS for the example
instance

� 1 1 2 3 4 5

t� 0 0 1 2 3 5

D� f1; 3g f1g ; f2; 4g f2; 5g f2g
j 3 1 4 5 2

1 Shifts, Types, and Generation Schemes for Project Schedules 13

The parallel SGS can also be used with an activity list ` D .j1; j2; : : : ; jn/ (see
Hartmann 2002). In this case, in line 7 we choose the activity from the decision set
D� which is on the foremost position of `.

The parallel SGS always generates a feasible schedule if one exists, as is the
case for the serial SGS. A schedule constructed by the parallel SGS belongs to
the set of non-delay schedules (see Kolisch 1996). This property stems from the
fact that the parallel schedule generation scheme schedules at a schedule time t�
as many activities from the decision set as possible thereby checking only the
available capacity at t�. Since the set of non-delay schedules is a subset of the set
of active schedules, the cardinality of the set of non-delay schedules is smaller and
thus fewer schedules have to be implicitly or explicitly generated when searching
for a good or an optimal schedule. Experimentally it has been observed that for a
simple priority rule based heuristic which generates one schedule, independent of
the priority rule employed, the average objective function value when employing the
parallel SGS is smaller than when employing the serial SGS. Kolisch (1996) reports
an average percentage deviation from the optimal makespan when employing the
priority rules LST, LFT, MTS, MSLK, GRPW and WRUP within the parallel and
the serial schedule generation scheme on the PSPLIB instance set with n D 30

activities (see Kolisch et al. 1995) of 6.47 % compared to 9.23 %. However, when
more time is spent in order to generate and examine more schedules, the parallel
SGS suffers from the fact that the best schedule found might not be optimal. Kolisch
(1996) reports that on the PSPLIB instances with n D 30 activities, which are truly
resource-constrained, that is, for which the earliest start schedule is not feasible, the
best non-delay schedule is for 41.27 % of the instances not optimal.

Kolisch (1996) has compared the aforementioned priority rules LST, LFT, MTS,
MSLK, GRPW and WRUP in a regret-based random sampling context with sample
sizes between 10 and 100. The results indicated that, for 30 activity problems,
the serial SGS generates better solutions than the parallel SGS for sample sizes
larger than 40. For this reason the majority of the metaheuristics which generate
and evaluate up to 50,000 (not necessarily different) solutions employ the serial
SGS. Some metaheuristics such as the genetic algorithm of Hartmann (2002) or the
population-based approach of Kochetov and Stolyar (2003) employ the serial and
the parallel SGS. However, according to the study of Kolisch and Hartmann (2006),
none of the best performing metaheuristics employs only the parallel SGS.

1.6 Schedule Generation Schemes for Special Cases
and Generalizations of the RCPSP

In this section we address address schedule generation schemes for the simple
assembly line balancing problem as a special case of the RCPSP and for
generalizations of the RCPSP with minimum and maximum time lags or stochastic
activity durations.

14 R. Kolisch

The simple assembly line balancing problem (SALBP) with the objective
function to minimize the number of stations subject to a fixed cycle time per station
can be modeled as RCPSP and thus is a special case of the RCPSP (see De Reyck
and Herroelen 1997). Almost all solution procedures for SALBP employ one of two
construction schemes, station-oriented or task-assignment (see Scholl and Becker
2006). These two schemes are straight forward adaptations of the parallel and serial
SGS, respectively.

An extension of the RCPSP with simple finish-to-start precedence constraints
considers general precedence constraints with minimum and maximum time lags
(see Neumann et al. 2002). Neumann et al. (2002) extend the discussion of shifts
and schedules for the RCPSP with minimum and maximum time lags. They also
show that the problem of finding a feasible solution becomes NP-complete (see
Neumann et al. 2002, p. 38). As a consequence, the schedule generation schemes for
the RCPSP cannot be applied straight forwardly. Instead, they have to be adapted
accordingly by considering the unscheduling of activities in case of an infeasible
partial solution.

The stochastic RCPSP (SRCPSP) extends the determistic RCPSP in that the
durations of the activities are not deterministic any more but stochastic. For the
duration of each activity a known probability distribution is assumed. Due to the
fact that the activity durations are stochastic, a schedule with fixed start times
can no longer be employed. Instead, one has to resort to scheduling policies. For
each decision time t , that is whenever an activity is finished, a scheduling policy
states which activity has to be started next. This decision can only be based on
the information which has become available at the decision time t , that is the
information on completed activities and activities in progress (non-anticipativity
constraint, see Storck 2001). A scheduling policy is depicted by an activity list
giving priority to activities according to the sequence of the list. A scheduling policy
is always embedded within a policy class that defines how the list is transformed
into a schedule and is the counterpart to the schedule generation scheme for
the deterministic case. Two well known policy classes for the SRCPSP are the
resource-based and the activity-based policy class (see Ashtiani et al. 2011 for a
discussion of these two classes as well as for introducing a new class).

The resource-based policy class employs the parallel SGS together with an
activity list `. At each decision time t , not yet scheduled activities are scanned
according to the list ` if they can be started with respect to precedence and resource
constraints at t . If no further activity from the list can be started, the decision
time advances to the minimum finish time of the activities in progress. Due to the
property of the parallel SGS activity ji on the list position i can be started earlier
than activity jh on list position h < i . This holds true for the scenario given by the
example problem (see Fig. 1.2) and activity list ` D .3; 4; 5; 1; 2/ where activity 1
on list position 4 is started earlier than activities 4 and 5 on list positions 2 and 3,
respectively. In terms of activity start times, this leads to different activity sequences
depending on the scenario. It also leads to so-called Graham anomalies (Graham
1966) where for two scenarios the scenario with shorter activity durations results in

1 Shifts, Types, and Generation Schemes for Project Schedules 15

a longer project makespan. When viewed as a function, the class of resource-based
policies is thus neither monotone nor continuous (see Storck 2001).

In order to obtain a policy class which is monotone and continuous, the parallel
SGS is modified by adding for each activity a side constraint Sjh � Sji for
h < i . That is, an activity must not star earlier than any of its predecessors in
the activity list. This modified policy class is termed activity-based. Despite its
nice theoretic properties, the activity-based policy experimentally yields a longer
expected makespan when compared to the resource-based policy (see Ashtiani et al.
2011 and Fang et al. 2012).

1.7 Conclusions

In this chapter we addressed schedule generation schemes which are the backbone
of heuristics to solve project scheduling problems. We revisited the two schedule
generation schemes for the classical resource-constrained project scheduling prob-
lem, the serial and the parallel schedule generation scheme. We characterized the
two schemes according to their runtime and the types of schedule they generate.
We then showed how the two schemes are embedded in metaheuristics. Finally,
we discussed variants of the two schemes for the simple assembly line balancing
problem as a special case of the RCPSP as well as for generalizations of the RCPSP
with general precedence constraints or with stochastic activity durations.

References

Ashtiani B, Leus R, Aryanezhad M-B (2011) New competitive results for the stochastic
resource-constrained project scheduling problem: exploring the benefits of preprocessing.
J Scheduling 14:157–171

Błażewicz J, Lenstra JK, Rinnooy Kan AHG (1983) Scheduling subject to resource constraints:
classification and complexity. Discrete Appl Math 5:11–24

Błażewicz J, Ecker K, Pesch E, Schmidt G, Wȩglarz J (2007) Handbook on scheduling. Springer,
Berlin

De Reyck B, Herroelen W (1997) Assembly line balancing by resource-constrained project
scheduling: a critical appraisal. Found Comput Control Eng 22:143–167

Debels D, De Reyck B, Leus R, Vanhoucke M (2006) A hybrid scatter search/electromagnetism
meta-heuristic for project scheduling. Eur J Oper Res 169:638–653

Demeulemeester E, Herroelen W. (1992) A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem. Manage Sci 38:1803–1818

Demeulemeester E, Herroelen W (1997) New benchmark results for the resource-constrained
project scheduling problem. Manage Sci 43:1485–1492

Demeulemeester E, Herroelen W (2002) Project scheduling: a research handbook. Kluwer, Boston
Fang E, Kolisch R, Wang L, Mu C (2012) An estimation of distribution algorithm and new

computational results for the stochastic resource-constrained project scheduling problem.
Technical Report, TUM School of Management, Technische Universität München, München,
Germany

16 R. Kolisch

Graham R (1966) Bounds on multiprocessing timing anomalies. Bell Syst Tech J 45:1563–1581
Hartmann S (1998) A competitive genetic algorithm for resource-constrained project scheduling.

Nav Res Log 45:733–750
Hartmann S (2002) A self-adapting genetic algorithm for project scheduling under resource

constraints. Nav Res Log 49:433–448
Kochetov Y, Stolyar A (2003) Evolutionary local search with variable neighborhood for the

resource constrained project scheduling problem. In: Proceedings of the 3rd international
workshop of computer science and information technologies, Russia

Kolisch R (1996) Serial and parallel resource-constrained project scheduling methods revisited:
theory and computation. Eur J Oper Res 90:320–333

Kolisch R, Hartmann S (1999) Heuristic algorithms for the resource-constrained project scheduling
problem: classification and computational analysis. In: Wȩglarz J (ed) Project scheduling:
recent models, algorithms and applications. Kluwer, Boston, pp 147–178

Kolisch R, Hartmann S (2006) Experimental evaluation of heuristics for the resource-constrained
project scheduling problem: an update. Eur J Oper Res 174:23–37

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Manage Sci 41:1693–1703

Neumann K, Schwindt C, Zimmermann J (2002) Project scheduling with time windows and scarce
resources. Lecture notes in economics and mathematical systems, vol 508. Springer, Berlin

Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple
assembly line balancing. Eur J Oper Res 168:666–693

Sprecher A (2000) Solving the RCPSP efficiently at modest memory requirements. Manage Sci
46(5):710–723

Sprecher A, Kolisch R, Drexl A (1995) Semi-active, active, and non-delay schedules for the
resource-constrained project scheduling problem. Eur J Oper Res 80:94–102

Stork F (2001) Stochastic resource-constrained project scheduling. Ph.D. dissertation, Fachbereich
Mathematik, TU Berlin, Berlin, Germany

Chapter 2
Mixed-Integer Linear Programming
Formulations

Christian Artigues, Oumar Koné, Pierre Lopez, and Marcel Mongeau

Abstract In this chapter, (mixed-)integer linear programming formulations of the
resource-constrained project scheduling problem are presented. Standard formula-
tions from the literature and newly proposed formulations are classified according
to their size in function of the input data. According to this classification, compact
models (of polynomial size), pseudo-polynomial sized models, and formulations of
exponential size are presented. A theoretical and experimental comparison of these
formulations is then given. The complementarity of the formulations for different
usages is finally discussed and directions for future work, such as hybridization
with other methods, are given.

Keywords Makespan minimization • Mixed-integer linear programming formula-
tions • Project scheduling • Resource constraints

2.1 Introduction

Given an NP-hard optimization problem, such as the resource-constrained project
scheduling problem (PS j prec jCmax or RCPSP), a natural approach for operations
research practitioners is to formulate it as a mixed-integer linear programming
program (MILP), i.e., an optimization problem involving an objective function and
constraints that are all linear and continuous and integer variables. In the case where
the obtained formulation involves only integer variables, one shall refer to it as an

C. Artigues (�) • P. Lopez
CNRS, LAAS, Univ de Toulouse, Toulouse, France
e-mail: artigues@laas.fr; lopez@laas.fr

O. Koné
Laboratoire de Mathématiques et Informatique, Université Nangui Abrogoua, Abidjan,
Côte d’Ivoire
e-mail: mr.okone@gmail.com

M. Mongeau
lab MAIAA, ENAC, Toulouse, France
e-mail: marcel.mongeau@enac.fr

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_2

17

mailto:artigues@laas.fr
mailto:lopez@laas.fr
mailto:mr.okone@gmail.com
mailto:marcel.mongeau@enac.fr

18 C. Artigues et al.

integer linear program (ILP). Maturity of (integer) linear programming theory and
tremendous progress of commercial or free MILP solvers explains the appeal of
such a formulation.

Nevertheless, there can be multiple ways of formulating a combinatorial opti-
mization program as an MILP. In a problem-independent point of view, such
formulations can be distinguished according to their size (number of variables,
especially the integer ones, and constraints) and by the strength of their linear
programming (LP) relaxation (obtained by relaxing the integrality constraints on
the variables). There is a correlation between these two characteristics. Given a
combinatorial optimization problem involving n variables (such as the start times in
a scheduling problem), an extended formulation aims at introducing extra variables
so as to improve the LP relaxation. In this chapter, we will consider the compact
models (of polynomial size), formulations of pseudo-polynomial size, and extended
formulations of exponential size that have been proposed for the RCPSP.

For the RCPSP, MILP formulations are generally classified in a problem-oriented
way, according to the way time and resource-sharing characteristics are modeled.
This classification, in three categories, comes from fundamental polyhedral results
in machine scheduling (Queyranne and Schulz 1994). Time-indexed (or discrete-
time) formulations are, in general, purely integer and have the best LP relaxation at
the expense of a large size. They are presented in Sect. 2.2. Sequencing/natural-
date formulations on the one hand (Sect. 2.3) and Positional-date/assignment
formulations on the other hand (Sect. 2.4) are compact MILP that generally yield
weaker LP relaxations. Theoretical and experimental comparisons of the various
formulations are discussed in Sect. 2.5.

For the reader’s information, some of the material presented in this chapter can
also be found in previous surveys on MILP formulations for the RCPSP, especially
in the books by Klein (2000), Demeulemeester and Herroelen (2002), Artigues et al.
(2008), and Brucker and Knust (2012).

2.2 Time-Indexed Formulations

Time-indexed, also called discrete-time, integer linear programming (ILP)
formulations have been widely studied for single machine, parallel machine, and
resource-constrained scheduling problems (Christofides et al. 1987; de Sousa and
Wolsey 1997; Pritsker and Watters 1968; Pritsker et al. 1969; Queyranne and Schulz
1994; Sankaran et al. 1999). This is due to their relatively strong LP relaxations and
to their ability for being extended to various constraints and objectives.

Time-indexed formulations are ILP formulations that involve time-indexed (or
discrete-time) variables of type vit indicating a particular status of activity i at time
t (generally: started, completed or in progress).

As the number of variables is linear in function of the scheduling horizon, which
can be, for some problem instances, as large as the sum of activity durations, the
standard variant of this type of pure ILP formulations is of pseudo-polynomial size.

2 Mixed-Integer Linear Programming Formulations 19

In order to be implemented with a finite number of variables, these formulations
require an upper bound T on the makespan. In practice, for each activity, one
defines a finite set of time periods during which the activity can start. Let V D
f0; 1; : : : ; n; nC 1g denote the set of activities, where 0 and nC 1 are fictitious start
and end activities, respectively. Typically, preprocessing techniques use an upper
bound on the makespan and compute for each activity i 2 V of processing time pi ,
an earliest start time ESi , an earliest completion time ECi D ESi C pi , a latest start
time LSi , and a latest completion time LCi D LSi C pi . Assuming that .0; i/ 2 E ,
8i 2 V nf0g, and p0 D 0, ESi can be set to the length of the longest path between 0
and i in the precedence graphG.V;E/ where each “precedence edge” .i; j / 2 E is
valuated by pi . Symmetrically, LSi can be set to T minus the length of the longest
path between i and .nC 1/ in G.

We consider the scheduling horizon as a set H D f0; : : : ; T g of consecutive
integer values starting with t D 0. In the case of integer data, the set of start times
can be restricted to H .

We identify time t with the time period defined by the interval Œt; t C 1/. Hence,
by convention, we mean that an activity is in progress at time t if and only if its start
time satisfies Si � t and Si C pi � t C 1. An activity starts at time t if and only if
Si D t , and an activity completes at time t if and only if Si C pi D t .

In Sect. 2.2.1 we present the time-indexed formulations based on pulse variables.
Section 2.2.2 describes the time-indexed formulations based on step variables. In
Sect. 2.2.3, we present a time-indexed on-off formulation obtained from the former
formulations by non-singular transformations. As shown by Artigues (2013), this
formulation is stronger than the ones previously proposed in the literature and
based on the same type of variables. Section 2.2.4 features additional remarks on
the strengths of other related time-indexed formulations encountered in the project
scheduling literature.

To obtain stronger formulations, an integer Dantzig–Wolfe decomposition of
constraints can be achieved. This is the principle of the feasible-subset formula-
tion described in Sect. 2.2.5, and of the chain-decomposition-based formulation
presented in Sect. 2.2.6.

2.2.1 The Discrete-Time Formulation Based on “Pulse” Start
Variables

The more standard time-indexed formulation for the RCPSP (Christofides et al.
1987; Pritsker et al. 1969) is based on binary variable xit, 8i 2 V , 8t 2 H such that
xit D 1 if and only if activity i starts at time t . For a given activity i , all variables
xit are equal to 0, except for time t D Si ; we refer to this type of variables as pulse
variables. The basic discrete-time formulation based on pulse start variables, noted
.DT/ in the sequel, then comes as follows:

20 C. Artigues et al.

Min.
X

t2H
txnC1;t (2.1)

s. t.
X

t2H
txjt �

X

t2H
txit � pi ..i; j / 2 E/ (2.2)

X

i2V

tX

�Dt�piC1
rik xi� � Rk .t 2 H I k 2 R/ (2.3)

X

t2H
xit D 1 .i 2 V / (2.4)

xit D 0 .i 2 V I t 2 HC n fESi ; : : : ;LSi g/ (2.5)

xit 2 f0; 1g .i 2 V I t 2 fESi ; : : : ;LSi g/ (2.6)

The objective (2.1) is to minimize the makespan. Constraints (2.2) are the
precedence constraints. They indeed directly translate expression Sj � Si C
pi ;8.i; j / 2 E , observing that, according to the above-definition of the pulse
variables, one has Si D P

t2H txit. Constraints (2.3) are the resource constraints,
expressing that the sum of resource requirement of activities in progress at each
time t 2 H cannot exceed the capacity of any resource k 2 R. As start times are
integer, i is in progress at time t if and only if i starts at a time � 2 H\Œt�piC1; t �.
Constraints (2.4) state that each activity has to be started exactly once in the
scheduling horizon. Constraints (2.5) set to 0 all variables out of setHC\ŒESi ;LSi �,
where HC is defined, for ease of notation, as the extension of H by a sufficiently
large set of negative integers. Finally, constraints (2.6) define the binary pulse
decision variables.

A formulation yielding a stronger LP relaxation was proposed by Christofides
et al. (1987). It aims at replacing constraints (2.2) by the so-called disaggregated
precedence constraints (2.7):

t�piX

�D0
xi� �

tX

�D0
xj� � 0 ..i; j / 2 EI t 2 H/ (2.7)

These constraints simply model the logical relation: Sj � t) Si � t � pi .
The disaggregated discrete-time formulation based on pulse start variables, noted

(DDT), is then obtained by replacing constraints (2.2) with constraints (2.7) in
formulation (2.1–2.6). The formulation is not weaker than (DT) since constraints
(2.2) are implied by constraints (2.4) together with (2.7) for 0 � xit � 1,
8i 2 V;8t 2 H . Moreover, (DDT) features advantageous properties that will be
explained below.

2 Mixed-Integer Linear Programming Formulations 21

2.2.2 The Discrete-Time Formulation Based on Start “Step”
Variables

We consider another formulation, based now on binary variables �it such that �it D 1
if and only if activity i starts at time t or before. For a given activity i , the variables
�it such that t < Si are all equal to 0, while the variables with indices t � Si are all
equal to one. Hence, we refer to these type of variables as step variables. With these
definitions, the start time can be expressed as:

Si D
X

t2H
t.�it � �i;t�1/ (2.8)

We present only the disaggregated variant of the discrete-time formulation based on
step variables, noted (SDDT):

Min.
X

t2H
t.�nC1;t � �nC1;t�1/ (2.9)

s. t. �i;t�pi � �jt � 0 ..i; j / 2 EI t 2 H/ (2.10)
X

i2V
rik.�it � �i;t�pi / � Rk .t 2 H I k 2 R/ (2.11)

�i;LSi D 1 .i 2 V / (2.12)

�it � �i;t�1 � 0 .i 2 V I t 2 H/ (2.13)

�it D 0 .i 2 V I t 2 HC; t � ESi � 1/ (2.14)

�it 2 f0; 1g .i 2 V I t 2 fESi ; : : : ;LSi � 1g/ (2.15)

The objective (2.9) is directly obtained by replacing the start time variable by its
expression (2.8) in function of �. The disaggregated precedence constraints(2.10)
state that if an activity j is started at time t of before, i.e., if �jt D 1, then activity
i has also to be started at time t � pi or before. Resource constraints (2.11) follow
from the fact that an activity i is in progress at time t if and only if �it � �i;t�pi D 1.
Indeed, if t 2 ŒESi ;ESi C pi � 1�, we have �i;t�pi D 0 by definition, and i is in
progress at time t if and only if �it D 1. Otherwise, i is in progress at time t if and
only if it has been started at time t but not at time t�pi . Constraints (2.12) state that
each activity has to be started at or before its latest start time LSi . Constraints (2.13)
define the step function, together with constraints (2.12). Note that these constraints
also set to 1 all variables �it with t � LSi . Constraints (2.14) are just here for ease of
notation as noted above, to set to 0 all variables �it with t < ESi . Finally, constraints
(2.15) define the binary step variables.

Although it is presented as new by Klein (2000), the step formulation (in the
aggregated form) was in fact already presented by Pritsker and Watters (1968) and
theoretically studied and compared to the pulse formulation (in the disaggregated

22 C. Artigues et al.

form) by de Sousa and Wolsey (1997) and Sankaran et al. (1999). This has been
also underlined by Möhring et al. (2001). If we omit resource constraints in the
(SDDT) formulation, and if we relax integrality constraints, i.e., considering only
constraints (2.10, 2.12–2.14), and 0 � �it � 1, 8i 2 V; t 2 H , de Sousa
and Wolsey (1997) and Sankaran et al. (1999) observed that the constraint matrix
satisfies a sufficient total-unimodularity condition. It follows from this observation
that, without resource-constraints the solution of the LP relaxation of (SDDT)
is 0 � 1. So is the solution of the LP relaxation of (DDT), according to the
following remark, made by de Sousa and Wolsey (1997) and Sankaran et al.
(1999). The (SDDT) formulation can be obtained directly by applying the following
non-singular transformation to the (DDT) formulation. For all t 2 H , we have
xit D �it � �it�1. Conversely, the inverse transformation defines �it DPt

�D0 xit and
gives the (DDT) formulation from the (SDDT) formulation. Note that, in both cases,
this transformation does not change the value of the LP relaxation. An aggregated
discrete-time formulation based on step variables (SDT) could also be defined this
way. Formulations (DT) and (SDT) are also equivalent, for the same reason, but
yield weaker relaxations as fractional solutions can be obtained by solving the LP
relaxations without resource constraints (Möhring et al. 2001; Sankaran et al. 1999).

2.2.3 The Discrete-Time Formulation Based on On/Off
Variables

Any non-singular (linear) transformation can be applied on the above-defined
formulations to obtain yet another, equivalent, formulation. In this section, we
consider on/off binary variables �it where �it D 1 if activity i is in progress at time
t , and �it D 0 otherwise. According to our definition of the “in progress” status,
an activity with zero duration cannot be in progress, so we will treat activities with
zero duration separately. This on/off model is based on the following observations
on the relations between the above-defined binary variables xit, �it, and �it.

As already observed while describing the resource constraints for the (DT),
(DDT), (SDT), and (SDDT) models, if pi � 1, then an activity i 2 V is in progress
at time t 2 H if and only if �it��i;t�pi D 1 and, equivalently, if

Pt
�Dt�piC1 xi� D 1.

So, for any activity i 2 V such that pi � 1, and for any time t 2 H , we define
the non-singular transformations �it D �it � �i;t�pi and �it D Pt

�Dt�piC1 xi� .
To obtain the inverse transformation for �it, we sum all �i� for � D t � ˛pi and
˛ D 0; : : : ; bt=pic, which gives

�it D
bt=pi cX

˛D0
�i;t�˛pi (2.16)

which means that i is started at t or before if and only if it is in progress at time
t � ˛pi for some ˛ 2 N. Furthermore, as xit D �it � �it�1, we obtain the inverse

2 Mixed-Integer Linear Programming Formulations 23

transformation for xit,

xit D
bt=pi cX

˛D0
�i;t�˛pi �

b.t�1/=pi cX

˛D0
�i;t�˛pi�1 (2.17)

The start time Si is then equal to

Si D
X

t2H
t

0

@
bt=pi cX

˛D0
�i;t�˛pi �

b.t�1/=pi cX

kD0
�i;t�˛pi�1

1

A

Considering now the particular cases where pi D 0, we change the definitions
above with �it D �it. So, by definingKit D 0 if pi D 0 andKit D bt=pic otherwise,
we obtain

�it D
KitX

˛D0
�i;t�kpi and xit D

KitX

˛D0
�i;t�kpi �

Ki;t�1X

˛D0
�i;t�˛pi�1

We have thereby defined a non-singular transformation. Substituting variables xit

by variables �it in formulation (DDT), we obtain the following formulation, noted
(OODDT):

Min.
X

t2H
t.�nC1;t � �nC1;t�1/ (2.18)

s. t.

Ki;t�piX

˛D0
�i;t�.˛C1/pi �

KjtX

˛D0
�j;t�˛pj � 0 ..i; j / 2 EI t 2 H/ (2.19)

X

i2V;pi>0
rik �it � Rk .t 2 H I k 2 R/ (2.20)

Ki;LCi�	.i/X

˛D0
�i;LCi�	.i/�˛pi D 1 .i 2 V / (2.21)

KitX

˛D0
�i;t�˛pi �

Ki;t�1X

˛D0
�i;t�˛pi�1 � 0 .i 2 V I t 2 H n f0g/ (2.22)

�it D 0 .i 2 V I t 2 Z.i// (2.23)

�it 2 f0; 1g .i 2 V I t 2 U.i// (2.24)

Constraints (2.19) are the disaggregated precedence constraints, given the expres-
sion of the start time variables Si in function of the on/off variables �it. Constraints
(2.20) are the resource constraints, which have here a particularly simple expression

24 C. Artigues et al.

due to the on/off variables. Let us introduce for each activity i the convenient
notation: 	.i/ D 1 if pi � 1 and 	.i/ D 0 if pi D 0. With this convention,
constraints (2.21) state that each activity i such that pi � 1 has to be in progress
in exactly one time period among time periods t D LCi � 1, t D LCi � 1 � pi ,
t D LCi �1�2pi , For activities such that pi D 0, the constraints simply resort
to constraints (2.12), as �it D �it. Constraints (2.22) are obtained by substitution
of (2.16) within constraints (2.13) of (SDDT), or, equivalently, of (2.17) within
constraints xit � 0 from (DDT). They ensure, together with constraints (2.21)
that exactly pi consecutive variables will be switched on, i.e., in a non-preemptive
fashion (see Theorem 2.1 below). Constraints (2.23) simply set dummy variables to
0, where we define the set of zero variables: Z.i/ D HC n fESi ; : : : ;LCi � 1g
if pi � 1, and Z.i/ D ft 2 HC j t � ESi � 1g when pi D 0. Constraints
(2.24) define the on/off binary variables, where we define the set of undetermined
variables: U.i/ D fESi ; : : : ;LCi � 1g if pi � 1, and U.i/ D fESi ; : : : ;LSi � 1g
when pi D 0.

As the three formulations (OODDT), (SDDT) and (DDT) can be obtained from
each other via non-singular transformations, they are strictly equivalent and yield
the same LP relaxation. Similarly, an aggregated formulation (OODT) could be
obtained from the (SDT) and (DT) formulations.

Klein (2000) presented a variant of the on/off formulation based on the
formulation of Kaplan (1998) for the preemptive RCPSP. This formulation is
similar to (OODDT) with the following differences. No tasks with duration 0

are allowed. Precedence constraints are replaced by the constraints (2.25) below.
Non-preemption/duration constraints (2.21–2.22) are replaced by the duration
constraints (2.26) and the non-preemption constraints (2.27).

pi�jt �
t�1X

qDESi

�it � 0 ..i; j / 2 EI t 2 fESj ; : : : ;LCi � 1g/ (2.25)

LCi�1X

tDESi

�it D pi .i 2 V / (2.26)

pi .�it � �i;tC1/�
t�1X

qDt�piC1
�iq � 1 .i 2 V I t 2 fESi ; : : : ;LCi � 2g/ (2.27)

The precedence constraints (2.25) state that for an activity j to be in progress at
time t , its predecessor i must have been entirely processed during interval ŒESi ; t �.
Duration constraints (2.26) are straightforward. Non-preemption constraints (2.27)
model the fact that if an activity i completes at time t C 1, in which case the
coefficient of pi is equal to one, then the pi � 1 precedent �iq variables must be
switched on.

Demeulemeester and Herroelen (2002) present yet another variant. As explained
below, the formulation has a slight mistake in the constraints range and we provide
here a corrected version, replacing the precedence constraints (2.25) by the exclusive

2 Mixed-Integer Linear Programming Formulations 25

constraints (2.28) and (2.29) below, that are in fact stronger than Klein’s precedence
constraints. Let (KF) denote this formulation.

�jt � �i;t�pi .i 2 V I j 2 V n figI t 2 H; t � ECi � 1C pi / (2.28)

�jt �
t�piX

qDESiCpi�1
�iq .i 2 V I j 2 V n figI t 2 H; t � ECi C pi/ (2.29)

Constraints (2.28) state that, to be in progress at time t , an activity j must have
its predecessor, i , in progress at time t � pi for any t such that t � pi falls strictly
before the earliest end time of i , ECi D ESi C pi . Indeed, if i starts at t � pi or
before (which allows j to be in progress at t), then i is necessarily in progress at
time t � pi , i.e., Si � t � pi if and only if i is in progress at time t � pi . If on the
other hand, t � pi exceeds the earliest completion time of i , then constraints (2.29)
state that activity j can only be in progress at time t if its predecessor, i , starts at
t � pi or before, which means that i has to be in progress during at least one time
period between ESi C pi � 1 and t � pi .

As already mentioned, there is a slight mistake in the constraint given by
Demeulemeester and Herroelen (2002) as ESi C pi was replaced by ESj in the
range of constraints (2.28) and (2.29). In the case where ESi C pi < ESj , this can
lead to overconstraining the start time of j . Indeed, suppose two activities i and j
with .i; j / 2 E , ESi D 0, ESj D 5, and pi D 4. At time t D 8, since t � pi D 4 is
not strictly before ECi D ESi Cpi D 4, we are in the range of constraints (2.29), so
j can be in progress at time t either if i is in progress at times t 0 D 4 or t 0 D 3. If we
use ESj D 5 instead of ESi Cpi D 4 in the constraints range, then t �pi is strictly
before ESj , which falls in the range of constraints (2.28) stating that j can be in
progress at time t only if i is in progress at time t 0 D 4. This clearly overconstrains
the start time of j .

We now focus on the relative strengths of the proposed (OODDT) formulation
and the (KF) formulation. We restrict to instances where no activity has a zero
duration, otherwise (KF) cannot be used.

Theorem 2.1. Formulation (OODDT) is stronger than formulation (KF).

The proof of this theorem is given in Artigues (2013).

2.2.4 Other Equivalent or Weaker Discrete-Time Formulations

Klein (2000) introduces a variant (SDDT2) of the (SDDT) formulation by
introducing another step binary variableit D 1 if i completes at time t or after.
Observe that we have �it C it � 1 D �it for activities with non zero durations
and �it C it � 1 D xit for activities with zero duration. Using these non-singular
transformations we could obtain aggregated or disaggregated formulations based on
it variables and equivalent to the ones already presented. Klein (2000) introduces

26 C. Artigues et al.

a formulation that is not stronger but that has an advantage when durations are
decision variables. Indeed, in all formulations we presented so far, durations pi
have to be fixed parameters because they appear in the range of values for the index
of variables. Mixing �it and it allows to get rid of this drawback. We can modify
the (SDT) model by adding the following constraints, defining the variables and
establishing the link with the � variables,

LCi�1X

tDESi

�it C it � 1 D pi .i 2 V / (2.30)

i;ECi�1 D 1 .i 2 V / (2.31)

i;t�1 � i;t � 0 .i 2 V I t 2 H/ (2.32)

it D 0 .i 2 V I t 2 HC; t � LCi / (2.33)

it 2 f0; 1g .i 2 V I t 2 fECi ; : : : ;LCi � 1g/ (2.34)

and replacing resource constraints (2.11) by

X

i2V
rik.�it C it � 1/ � Rk .t 2 H I k 2 R/ (2.35)

Bianco and Caramia (2013) propose a variant of the step formulation that
involves the 0 � 1 start variable �it and another 0 � 1 variable � 0it which equals 1
if and only if activity i is completed at t or before. Even if it is not mentioned by
Bianco and Caramia (2013), we have

� 0it D �i;t�pi .i 2 V I t 2 H/ (2.36)

Another variable �it is introduced, giving the fraction of activity i that has been
performed up to time t . The following constraints are defined:

�i;tC1 � �it D 1

pi
.�it � � 0it/ .i 2 V I t 2 H/ (2.37)

� 0it � �it � �it .i 2 V I t 2 H/ (2.38)

�it � 0 .i 2 V I t 2 H/ (2.39)

Note that if we introduce constraints (2.36–2.39) in the (SDDT) model, we obtain
a strictly equivalent formulation, as it can be shown that for any feasible value of
variable �it in the LP relaxation of (SDDT), we can obtain values for variables � 0it
immediately through constraints (2.36) and for variables �it that satisfy (2.37–2.39).

The formulation (SDDT3) proposed by Bianco and Caramia (2013) finally
replaces resource constraints (2.11) by

X

i2V
rik pi.�i;tC1 � �it/ � Rk .i 2 V I t 2 H I k 2 R/ (2.40)

2 Mixed-Integer Linear Programming Formulations 27

Remarking that �i;tC1 � �it D 1
pi
.�it � � 0it/ D 1

pi
.�it � �i;t�pi /, we precisely obtain

resource constraints (2.11).
These formulations were proposed in the literature without any mention of

the relative strengths of their LP relaxations. We remark that all the mentioned
formulations are either weaker of equivalent to (DDT).

We have to acknowledge that the practical performance of a formulation, in
terms of integer solving, is not necessarily related to the LP relaxation strength.
It is well known that the weak formulation (DT) may outperform the strong
formulation (DDT) on some instances. Bianco and Caramia (2013) showed through
extensive experiments that their formulation generally outperformed (SDDT) in
terms of solution time and quality. The way constraints and/or additional redundant
variables are introduced and formulated influences the solver performance in terms
of memory usage, preprocessing, cutting plane generation, and branching. This
should not however hide the fact that, in any “new” formulation, constraints that are
equivalent, via non-singular transformations, to previously proposed ones should
be identified and distinguished from actual cutting-plane inequalities or stronger
constraints.

For cutting plane inequalities that can be added to strengthen the (DDT)
formulation, we refer to Christofides et al. (1987), de Sousa and Wolsey (1997),
Cavalcante et al. (2001), Demassey et al. (2005), and Hardin et al. (2008).

2.2.5 The Feasible-Subset Formulation

Mingozzi et al. (1998) have introduced a time-indexed formulation for the RCPSP
based on the concept of feasible subsets. A feasible subset is a set of activities that
can be in progress simultaneously without exceeding any resource availability and
that are not pairwise linked by a precedence constraint. Hence, feasible subsets
can be assimilated to the antichains of the precedence network .V;E/ that, in
addition, satisfy resource constraints. Let A denote the set of feasible subsets. The
formulation proposed by Mingozzi et al. (1998) makes use of binary on/off variable
yAt, for each feasible subset A 2 A and for each time period t , where yAt D 1 if
all activities from subset A are in progress at time t . The formulation, noted (FSS),
also involves the pulse binary variables xit’s:

Min.
X

t2H
txnC1;t (2.1)

s. t.
X

A2A i

X

t2H
yAt D pi .i 2 V; pi � 1/ (2.41)

X

A2A
yAt � 1 .t 2 H/ (2.42)

28 C. Artigues et al.

xit �
X

A2A i

.yAt � yA;t�1/ � 0 .i 2 V I t 2 H/ (2.43)

X

t2H
xit D 1 .i 2 V / (2.4)

X

t2H
txjt �

X

t2H
txit � pi ..i; j / 2 E/ (2.2)

yAt D 0 .A 2 A I t 2 HC n \i2AfESi ; : : : ;LSi g/ (2.44)

xit D 0 .i 2 V I t 2 HC n fESi ; : : : ;LSi g/ (2.5)

xit 2 f0; 1g .i 2 V I t 2 fESi ; : : : ;LSig/ (2.6)

yAt 2 f0; 1g .A 2 A I t 2 \i2AfESi ; : : : ;LSi g/ (2.45)

where A i � A is the set of all feasible subsets that contain activity i . We only
describe the constraints involving the y variables. Constraints (2.41) state that
the feasible subsets containing activity i must be in progress during exactly pi
time periods. Constraints (2.42) express that at most one feasible subset can be in
progress at each time period. Constraints (2.43) link variables x and y. Constraints
(2.44) prevent a feasible subset from being in progress outside of the time window
of one of its activities by setting the corresponding variables to 0. Constraints (2.45)
define the binary on/off variables for feasible subsets.

It must be noted that in practice the set of feasible subsets can be exponentially
large. Formally, there is a bijection between A and the following set of solutions of
a multiple knapsack problem with incompatibility constraints:

X

i2V
rik ai � Rk .k 2 R/

ai C aj � 1 ..i; j / 2 TE/
ai 2 f0; 1g .i 2 V /

where ai is a binary variable indicating whether activity i belongs to the feasible
subset and TE is the transitive closure of the precedence constraints E . With
this remark, the (FSS) formulation can be defined as an integer Dantzig–Wolfe
decomposition of the resource constraints on the (DT) formulation (Vanderbeck
2000).

It has to be remarked that since the y variables are on/off variables, we have
�it D P

A2A i
yAt for any activity i such that pi � 1. Hence, a stronger

formulation than the (FSS) formulation can be obtained by substitution of variables
�it and removal of resource constraints (2.20) in the (OODDT) formulation.
Since it is an integer Dantzig–Wolfe decomposition of (OODDT), the obtained
formulation is stronger, at the expense of an exponential increase of the number of
variables. Column-generation-based lower bounding techniques have been proposed

2 Mixed-Integer Linear Programming Formulations 29

on relaxed variants of this formulation (see Chap. 3 of this handbook and Baptiste
and Demassey 2004; Brucker and Knust 2012).

2.2.6 The Chain-Decomposition Formulation

Kimms (2001) introduced a model for resource-constrained project scheduling with
financial objectives. The model is based on the decomposition of the precedence
constraints into chains. We present here an adapted version of the formulation for
the makespan objective. Let P denote the set of considered chains. The set P is
such that each precedence constraint is included in one and only one chain, and
such that, for each chain P 2 P , any arc .i; j / 2 P corresponds to a precedence
constraint inE . The formulation (ND) below uses a binary variableˇsP equal to one
if and only if schedule s is selected for chain P . Indeed, given a chain and an upper
bound on the makespan, it is in theory possible to consider all integer schedules
SP respecting the precedence constraints of chain P . However, there is clearly an
exponential number of variables ˇsP . A binary parameter aitsP (given input data) is
equal to one if and only if activity i completes at t in schedule s of chain P . Let
CsP give the makespan of schedule s for chain P . As an activity can be involved in
more than one precedence constraint, there may be more than one chain in which
each activity appears. Let P.i/ denote the chain of smallest index (assuming that
chains are numbered arbitrarily) in which i appears. The (ND) formulation is given
as follows:

Min. Cmax (2.46)

Cmax �
X

s2SP

CsP ˇsP .P 2P/ (2.47)

X

s2SP

ˇsP D 1 .P 2P/ (2.48)

LCiX

tDECi

t

0

@
X

s2SP.i/

aitsP.i/ ˇsP.i/ �
X

s2SP

aitsP ˇsP

1

A .i 2 V I P 2P n P.i//

(2.49)

X

i2V

tCpi�1X

�Dt

X

s2SP.i/

rik ai�sP.i/ ˇsP.i/ � Rk .k 2 RI t 2 H/ (2.50)

ˇsP 2 f0; 1g .P 2PI s 2 SP / (2.51)

Constraints (2.47) state that the makespan must be larger than the length of the
schedule selected for all chains. Constraints (2.48) express that exactly one schedule
must be selected for each chain. Constraints (2.49) synchronize the chains in the

30 C. Artigues et al.

sense that the completion time of each activity must be the same in all chains in
which it appears (here, chain P.i/ is used as a reference). Constraints (2.50) are the
resource constraints.

As the number of variables is exponential, this formulation cannot be used
directly. Kimms (2001) proposed a column-generation procedure to compute an
upper bound of the net present value (NPV) maximization objective. Note that if
(FSS) can be seen as a Dantzig–Wolfe decomposition of resource constraints, (ND)
can be in a complementary manner seen as a (partial) Dantzig–Wolfe decomposition
of precedence constraints.

2.3 Sequencing and Natural-Date Formulations

Sequencing and natural-date formulations are MILP that involve at least two
categories of variables. For each activity i , a continuous natural-date variable Si
gives the start time of activity i , while for each pair of activities i 2 V; j 2 V n fig,
a binary sequencing variable zij is defined such that zij D 1 if the completion of
activity i is scheduled before starting activity j , more precisely, if Sj � Si C pi .
As remarked by Queyranne and Schulz (1994), this formulation is issued from the
earliest studies of the linear ordering polytope (where in this case activities cannot
overlap) and yielded the disjunctive MILP formulation of the job-shop scheduling
problem, studied among others by Applegate and Cook (1991). The formulation is
also conceptually equivalent to the disjunctive graph representation of the job-shop
problem (Adams et al. 1988).

Note that there are at most n.n � 1/=2 sequencing variables and n natural-date
variables, which yields a polynomial number of variables.

2.3.1 The Minimal-Forbidden-Set-Based Formulation

For the RCPSP, Alvarez-Valdés and Tamarit (1993) proposed a first formulation of
this category, only based on the sequencing variables. The formulation is based on a
dual concept of the feasible-subset concept: the minimal forbidden set. A minimal
forbidden set is a set of activities that exceed the availability of at least one resource
while any proper subset satisfies all resource constraints. There is also in general
an exponential number of minimal forbidden sets. The minimal forbidden sets of
cardinalityQ are the integer points of the following polytope:

X

i2V
biq D 1 .q D 1; : : : ;Q/ (2.52)

QX

qD1
biq � Oai .i 2 V / (2.53)

2 Mixed-Integer Linear Programming Formulations 31

X

k2R
�k � 1 (2.54)

X

i2V
rik Oai � .Rk C 1/�k .k 2 R/ (2.55)

X

i2V
Oai D Q (2.56)

X

i2V
rik. Oai � biq/ � Rk .k 2 RI q D 1; : : : ;Q/ (2.57)

Oai C Oaj � 1 ..i; j / 2 TE/ (2.58)

Oai 2 f0; 1g .i 2 V / (2.59)

biq 2 f0; 1g .i 2 V I q D 1; : : : ;Q/ (2.60)

�k 2 f0; 1g .k 2 R/ (2.61)

where Oai is the binary variable (2.59) indicating if activity i belongs to the forbidden
set, biq is a binary variable (2.60) used to ensure that each subset of the minimal
forbidden set is a feasible set and �k is a binary variable (2.61) indicating whether
the set is forbidden with respect to resource k availability. A forbidden set of
cardinalityQ has jQj inclusion-maximal subsets, each being obtained by removing
one activity. By definition of a minimal forbidden set, each such maximal subset
must be a feasible set, as stated by constraint (2.57) explained below. For a maximal
subset q, the unique activity i such that biq D 1, as stated by Constraints (2.52),
identifies the subset obtained by removing i from the forbidden set. Constraints
(2.53) ensure that the removed activity belongs to the forbidden set and that each
activity identifies at most one subset. There must be at least one resource such that
the set is forbidden and this is ensured by constraints (2.54, 2.55). The cardinality
Q of the forbidden set is enforced by constraint (2.56). Constraints (2.57) state that
each of the maximal subset q must be feasible, as the unique non zero biq subtracted
from the corresponding Oai makes the l.h.s. equal to the total resource requirement
of the subset. Constraints (2.58) prevent two activities linked by a precedence
constraint to belong to the same forbidden set. Constraints (2.59–2.61) define
the binary variables. Note that Stork and Uetz (2005) proposed an algorithm to
enumerate all minimal forbidden sets based on the equivalence of this enumeration
with the generation of all circuits of an independence system.

Let F denote the set of all minimal forbidden sets as defined above. With
this concept, Alvarez-Valdés and Tamarit (1993) propose the following formula-
tion (FS):

Min. SnC1 (2.62)

s. t. zij C zji � 1 .i; j 2 V; i < j / (2.63)

zij C zjh � zih � 1 .i; j; h 2 V; i ¤ j ¤ h/ (2.64)

32 C. Artigues et al.

zij D 1 ..i; j / 2 E/ (2.65)

Sj � Si �Mij zij � pi �Mij .i; j 2 V; i ¤ j / (2.66)
X

i;j2F;i¤j
zij � 1 .F 2 F / (2.67)

zij 2 f0; 1g .i; j 2 V; i ¤ j / (2.68)

ESi � Si � LSi .i 2 V / (2.69)

The objective is to minimize the makespan (2.62). Constraints (2.63) and (2.64)
forbid the existence of cycles of length 2 and � 3 in the sequencing decisions,
respectively. Constraints (2.65) enforce that the sequencing decisions are compatible
with the precedence constraints. Constraints (2.66) link the sequencing decisions
with the start time variables. The constant Mij must be a valid upper bound for
piCSj �Si and can be set consequently toMij D piCLSj �ESi . As underlined by
Queyranne and Schulz (1994) among others, the presence of such big-M constraints
yield poor LP relaxations. Constraints (2.67) state that for each minimal forbidden
set F 2 F , there is at least one sequencing decision that prevents all activities of
F from being in progress simultaneously. Constraints (2.68) and (2.69) define the
binary sequencing variables and the natural-date variables, respectively.

Due to the forbidden-set structure, formulation (FS) contains an exponential
number of constraints (2.67) and has, to our knowledge, never been used directly
in practice.

2.3.2 The Flow-Based Formulation

Artigues et al. (2003) introduced a formulation involving in addition, for each pair of
activities i 2 V; j 2 V nfig and for each resource k 2 R, a continuous flow variable
	kij giving the amount of resource k transferred from i to j . The flow variables allow
to get rid of the forbidden-set constraints (2.67), replacing them by the following
constraints:

	kij �min.Qrik; Qrjk/zij � 0 .i; j 2 V; i ¤ j I k 2 R/ (2.70)
X

j2V nfig
	kij D Qrik .i 2 V n fnC 1g/ (2.71)

X

i2V nfj g
	kij D Qrjk .j 2 V n f0g/ (2.72)

0 � 	kij � min.Qrik; Qrjk/ .i; j 2 V; i¤nC1; j ¤0; i¤j I k 2 R/ (2.73)

2 Mixed-Integer Linear Programming Formulations 33

Constraints (2.70) link the flow variables and the sequencing variables.
Constraints (2.71) are the outflow constraints stating that each activity i , except
activity n C 1, must send Qrik resource units to other activities, for each resource
k 2 R. Constraints (2.72) stipulate the number of units of each resource k that
must be received by each activity j . Note that we set value of the parameter Qrik to
rik if 0 < i < nC 1, and to Rk if i D 0 or i D nC 1. Constraints (2.73) define the
continuous flow variables.

The formulation (FL) is obtained by combining the objective (2.62) and
constraints (2.63–2.66, 2.68, 2.69, 2.70–2.73). It involves a polynomial number
of variables and constraints. Despite its poor LP relaxation, it is an interesting
alternative to the time-indexed formulations to solve exactly or approximately
instances of small size featuring large time horizons (Koné et al. 2011). Valid
inequalities were proposed by Demassey et al. (2005). The (FS) and (FL)
formulations are also of interest for stochastic (see Chap. 37 in the second volume
of this handbook) and robust (see Chap. 40 in the second volume of this handbook)
recourse-based approaches considering uncertain processing times. Sequencing and
flow variables can be used as scenario-independent first level variables while the
start times are the recourse variables.

2.4 Positional-Date and Assignment Formulations

Positional-date and assignment formulations (also called event-based formulations)
also involve two categories of variables. The time horizon is pre-decomposed into
a set of positions or events E . For each event e 2 E , a positional-date continuous
variable te gives the time at which event e occurs. Originally, event-based formula-
tions were proposed for machine scheduling (see Sect. 5 in Queyranne and Schulz
1994), and for batch scheduling in the process industry. In the latter category, we
refer to a survey by Mouret et al. (2011) and also to the formulations by Zapata
et al. (2008) and Kyriakidis et al. (2012) that are explicit adaptations of process
scheduling formulations of the (multi-mode) RCPSP.

Events correspond to start or end times of activities. In any left-shifted schedule
for the RCPSP, with finish-to-start precedence relations, with zero time lag, the start
time of an activity is either 0 or it coincides with the end time of some other activity.
Furthermore, it can be straightforwardly shown that the set of left-shifted (or semi-
active) schedules is dominant. Consequently, the number of events can be restricted
to the number of activities plus one. Let E D f0; 1; : : : ; ng be the index set of
the events. Event-based formulations do not require the use of dummy activities.
Consequently, the number of activities to be considered is n (instead of n C 2 for
all the preceding formulations).1 Event-based formulations, as well as (FL), have

1However, to simplify the presentation, we use set V , which includes the dummy activities, in the
formulations.

34 C. Artigues et al.

also the advantage of coping with instances containing some non-integer activity
processing times. More importantly, for instances with long-enough scheduling
horizon, event-based models involve fewer variables compared to the models
indexed by time.

Zapata et al. (2008) propose, for a multi-mode RCPSP, a first formulation
involving three categories of binary assignment variables: a pulse start variable aCie
which indicates whether activity i starts at event e, a pulse end variable a�ie , which
indicates whether activity i completes at event e and an on/off variable aie which
indicates whether activity i is in progress at event e. In fact, there is no need to
consider simultaneously all three types of variables to model the RCPSP. However,
it can be easily seen that it is not possible to model the problem with a single
pulse start variable aCie (or end variable a�ie). Indeed, knowing that an activity starts
(or ends) at event e does not automatically identify the events that overlap with
its processing window since time slots between events are variable. We propose
below a start/end formulation (involving variables aCie and a�ie) and then an on/off
formulation (involving only one type of variables, the on/off variables aie’s. We also
refer to the process-scheduling-based formulation by Kyriakidis et al. (2012) that in
fact amounts to considering both start and on/off variables.

2.4.1 The Start/End Event-Based Formulation

The start/end event-based formulation (SEE) makes use of binary variables a�ie and
aCie . It was initially proposed by Koné et al. (2011) and corrected by Artigues et al.
(2013). It also involves continuous event date variables te , e 2 E , and continuous
event resource-usage variables bek , e 2 E , k 2 R.

Min. tn (2.74)

s. t. t0 D 0 (2.75)

teC1 � te � 0 .e 2 E n fng/ (2.76)

tf � te � pi aCie C pi .1 � a�if / � 0 .i 2 V I e; f 2 E ; e < f / (2.77)
X

e2E
aCie D 1 .i 2 V / (2.78)

X

e2E
a�ie D 1 .i 2 V / (2.79)

eX

vD0
a�iv C

nX

vDe
aCiv � 1 .i 2 V I e 2 E / (2.80)

nX

e0De
a�ie0

C
e�1X

e0D0
aCje0

� 1 ..i; j / 2 EI e 2 E / (2.81)

2 Mixed-Integer Linear Programming Formulations 35

b0k �
X

i2V
rik a

C
i0 D 0 .k 2 R/ (2.82)

bek � be�1;k C
X

i2V
rik.a

�
ie � aCie / D 0 .e 2 E n f0gI k 2 R/ (2.83)

bek � Rk .e 2 E I k 2 R/ (2.84)

ESi a
C
ie � te � LSi a

C
ie C LSnC1.1 � aCie / .i 2 V I e 2 E / (2.85)

.ESi C pi/a�ie � te .i 2 V I e 2 E / (2.86)

te � .LSi C pi /a�ie C LSnC1.1 � a�ie / .i 2 V I e 2 E / (2.87)

ESnC1 � tn (2.88)

aCie ; a
�
ie 2 f0; 1g .i 2 V I e 2 E / (2.89)

te � 0 .e 2 E / (2.90)

bek � 0 .e 2 E I k 2 R/ (2.91)

The objective function (2.74) consists in minimizing the completion time tn of an
activity processed last. The single constraint (2.75) indicates that the the first event
starts at time 0, while constraints (2.76) stipulates a convention for the ordering of
the events. Inequalities (2.77) ensure that if aCie D a�if D 1, i.e., i starts at event e
and completes at event f , then tf � te C pi holds. For all other combinations of
values for aCie and a�if we have either tf � te or tf � te � pi , which are covered
by (2.76). Constraints (2.78) and (2.79) guarantee that each activity starts and ends
exactly once. Constraints (2.80) state that an activity cannot simultaneously start at
event e or after and finish at event e or before.

Constraints (2.81) ensure that the precedence constraints are respected: If a
predecessor i of j ends at event e or later, i.e., if

Pn
e0De a�ie D 1, then

Pe�1
e0D0 a

C
je0

must be zero, i.e., j cannot start before event e. Equalities (2.82) set the initial
quantities of resources k needed immediately after time 0. Equalities (2.83) describe
the recursion for calculating the bek values for the other events. More precisely, the
quantity of resource k needed immediately after time te is equal to the quantity of
resource k needed immediately after time te�1 plus the quantity of resource k needed
by the activities starting at time te minus the quantity of resource k needed by the
activities completing at time te . Constraints (2.84) limit the quantity of resource k
needed immediately after time te to the availability of resource k. Inequalities (2.85)
and (2.86) ensure that an activity cannot start neither before its earliest starting time
nor after its latest starting time. Furthermore, (2.88) says that the project cannot end
before the earliest start time of the dummy finishing activity nC 1.

The (SEE) formulation involves a polynomial number of variables and con-
straints.

36 C. Artigues et al.

2.4.2 The On/Off Event-Based Formulation

The on/off event-based formulation, noted (OOE), proposed by Koné et al. (2011)
involves the above-defined on/off binary variables, aie. It also makes use of the
continuous event date variables, te , e 2 E .

Min. Cmax (2.92)

s. t. Cmax � te C .aie � ai.e�1//pi .e 2 E n f0gI i 2 V / (2.93)

t0 D 0 (2.94)

teC1 � te .e 2 E n fng/ (2.95)

tf � te C .aie � ai;e�1 � aif C ai;f �1 � 1/pi ..e; f; i/ 2 E 2 � V; f > e ¤ 0/
(2.96)

e�1X

e0

D0

aie0 � e.1 � aie C ai;e�1// .e 2 E n f0g/ (2.97)

nX

e0

De

aie0 � .n � e C 1/.1C aie � ai;e�1/ .e 2 E n f0g/ (2.98)

X

e2E

aie � 1 .i 2 V / (2.99)

aie C
eX

e0

D0

aje0 � 1C .1 � aie/e .e 2 E I .i; j / 2 E/ (2.100)

X

i2V

rik aie � Rk .e 2 E I k 2 R/ (2.101)

ESi aie � te .e 2 E I i 2 V / (2.102)

te � LSi .aie � ai;e�1/C LSnC1.1 � .aie � ai;e�1// .e 2 E n f0gI 8i 2 V /
(2.103)

te � 0 .e 2 E / (2.104)

aie 2 f0; 1g .i 2 AI e 2 E / (2.105)

Constraints (2.93) link the makespan to the event dates: Cmax � te C pi if i is
in progress at event e but not at event e � 1, i.e., if i starts at event e. Constraints
(2.94,2.95) set the event sequencing. Constraints (2.96) link the binary optimization
variables aie to the continuous optimization variables te and ensure that, if activity
i starts immediately after event e and ends at event f , then the date of event
f is at least equal to the date of event e plus the processing time of activity i
(tf � te C pi). The validity of these constraints follows the same logic as for con-
straints (2.77). Constraints (2.97) and (2.98), called contiguity constraints, ensure

2 Mixed-Integer Linear Programming Formulations 37

non-preemption (the events after which a given activity is being processed must be
adjacent)—for a formal proof, we refer to Koné et al. (2011). Constraints (2.99)
ensure that each activity is processed at least once during the project. Constraints
(2.100) describe each precedence constraint .i; j / 2 E , modeling the expression
.aie D 1/ H) .

Pe
e0D0 aje D 0/ for each event e. Constraints (2.101) are the

resource constraints limiting the total demand of activities in progress at each event.
Constraints (2.102) and (2.103) set the start time of any activity i between its earliest
start time, ESi , and its latest start time, LSi .

The on/off event-based formulation involves also a polynomial number of
variables and constraints but only half the number of variables of the (SEE)
formulation. (OOE) would also need only n events instead of nC1 events for (SEE)
although we did not include this feature to simplify the presentation. Recently,
Koné et al. (2013) provided an on/off event-based formulation for the RCPSP with
consumption and production of resources.

2.4.3 More Event-Based Formulations

As mentioned above, event-based formulations have been significantly studied in the
process-engineering literature. Kyriakidis et al. (2012) present a MILP formulation
based on the Resource Task Network (RTN) representation of batch processes. They
decompose the time horizon into time slots of variable lengths. The concept of
time slot is equivalent to the concept of event (an event is one of the boundaries
of a time slot). Suppose we identify a time slot by its start event. The model uses
start variables aCie and a new on/off binary variable, Qaie, slightly different from Naie

presented above as Qaie indicates whether the activity is active at e � 1 and at e. In
other words, Qaie is equal to 1 for each event at which activity i is active except the
event at which i is started. Formally we have the equivalence

Qaie D Naie � aCie .i 2 V I e 2 E /

Kyriakidis et al. (2012) also use a new continuous variable for time slot duration,
�e . For an event e < jE j, the time slot duration variable equals teC1 � te.

We call this formulation (SOOE). To link the time slot duration variables to the
activity duration variables, they introduce and linearize the non-linear constraint
(2.106) below in replacement of constraints (2.77) of the (SEE) formulation and
constraints (2.96) of the (OOE) formulation.

X

e2E
.aCie C Qaie/�e D pi .i 2 V I e 2 E / (2.106)

Contiguity constraints also take the following form:

aCie C Qaie � Qai;eC1 .i 2 V I e 2 E / (2.107)

38 C. Artigues et al.

which is simpler than constraints (2.97) and (2.98) of the (OOE) formulation. These
constraints (2.107) could in turn be translated into

Naie � Nai;eC1 � aCie .i 2 V I e 2 E /

Last, an interesting unified modeling of precedence and resource constraints via
resource production and consumption constraints is used. Precedence and resource
constraints are replaced by excess resource balance and excess resource limitation
constraints similar to constraints (2.82–2.83) of the (SEE) model:

bek D be;k�1 C
X

i2Ik

�
r�ik aCie C rCik . Qai;e�1 C aCi;e�1 � Qaie/

�
.k 2 RI e 2 E /

(2.108)

Rmin
k � bek � Rmax

k .k 2 RI e 2 E / (2.109)

The set R contains the set of renewable resources and a fictitious resource for each
precedence constraint. For a renewable resource k 2 R \R, we have r�ik D rCik D
rik. Furthermore, the parameter Rmin

k is set to 0 and Rmax
k is set to Rk . A fictitious

event e D �1 such that b�1k D Rk for each resource k 2 R has to be introduced.
Constraints (2.108) are equivalent to resource balance constraints (2.83) as the factor
Qai;e�1 C aCi;e�1 � Qaie is equal to 1 if activity i ends at event e. If k 2 R n R, it
corresponds to a precedence constraints .i; j /. We then set r�jk D 1, rCik D 1=jfl 2
V j .l; j / 2 Egj, r�ik D rCjk D 0, Rmin

k D 0, Rmax
k D 1, and b�1k D 0. The successor

j , which consumes units of k at its start time will not be able to start until one
resource unit has been produced, i.e., when all its predecessors have been completed.

This model is interesting as it can be extended to more general resource models,
especially to problems involving resource production and consumption. However, it
contains twice as many binary variables as the (OOE) model.

2.5 Synthesis of Theoretical and Experimental Comparisons

As already mentioned throughout the chapter, the various ILP formulations can
be compared in terms of their relative LP relaxation strengths. Another way of
comparing the formulations is through experimental evaluation of integer solving
procedures, mostly via ILP solvers. Koné et al. (2011) performed an experimental
comparison of (DT, DDT, FL, SEE, OOE) on various benchmark instances, both in
terms of LP relaxations and integer solving.

We must first mention that, without any additional valid inequalities, the LP
relaxations of the compact formulations presented in this chapter are all very
poor. Koné et al. (2011) report that the lower bounds obtained by solving the
LP relaxations of the flow-based (FL) and event-based (SEE, OOE) formulations

2 Mixed-Integer Linear Programming Formulations 39

never exceed the critical path length in the precedence graph. For the extended
(FS) formulation, we are not aware of experiments assessing the quality of its
LP-relaxation directly except that it served as a basis for generating constraint
propagation-based cutting planes in Demassey et al. (2005), but the forbidden set
constraints were included for only minimal forbidden sets of cardinality equal to 2
or 3.

Discrete-time formulations are known to yield better LP relaxations, keeping in
mind that aggregated formulations (DT, SDT, OODT) have weaker relaxations than
disaggregated formulations (DDT, SDDT, OODDT) but involves fewer constraints.
The (FSS) extended feasible-subset-based time-indexed formulation features by
construction a better LP relaxation than the (DDT) formulation and is consequently
the strongest formulation presented in this chapter in terms of LP relaxation. As
a counterpart, it involves an exponential number of variables (see also Chap. 3
of this handbook for lower bounds based on relaxations of this formulation). No
theoretical nor experimental study has been carried out to our knowledge for the
chain-decomposition formulation (ND).

All discrete-time formulations involve a pseudo-polynomial number of variables
and constraints, which can significantly slow down the solving process, especially
for large problems and/or problems involving large time horizons. According to
Koné et al. (2011), the discrete-time formulations outperform the flow-based and
event-based formulations for integer solving on small to medium-sized instances
(from 30 to 60 activities) with small scheduling horizons. However, for instances
involving large scheduling horizons the flow-based and event-based formulations
(especially OOE) in turn outperform the discrete-time formulations for integer
solving, although the results of these ILP formulations in terms of optimality gap
is not particularly good. The instances tested were separated into two categories
with respect to resource considerations, as introduced by Baptiste and Le Pape
(2000). The first category is made of highly “disjunctive” instances, where, due
to precedence or resource constraints, an important number of activities cannot be
pairwise scheduled in parallel. The second category consists of highly “cumulative”
instances where, on the contrary, many activities can be scheduled in parallel. Koné
et al. (2011) report that the flow-based formulation tends to be better than the
event-based formulation for highly disjunctive instances, while the reverse statement
applies for highly cumulative instances.

Bianco and Caramia (2013) present an experimental comparison of the pulse
discrete-time formulation (DT), the step disaggregated discrete-time formulation
(SDDT), the forbidden-set-based formulation (FS), the feasible-subset-based for-
mulation (FSS) and their variant of the disaggregated step discrete-time formulation
(SDDT3). They show that, on the tested instances with 60, 90, and 120 activities
from the PSPLIB,2 (SDDT3) generally outperforms the other formulations in terms
of solution time and quality. For the instances with 90 or 120 activities, they report
that the (SDDT) also performs well. For the smaller instances, the (FS) and (FSS)

2www.om-db.wi.tum.de/psplib/main.html.

www.om-db.wi.tum.de/psplib/main.html

40 C. Artigues et al.

formulations, for which all variables and constraints are explicitly generated, are
competitive. However, on the larger instances, too much time is needed to load the
model. Column-generation techniques for (FSS) and cutting-plane algorithms for
(FS) could be used to improve this result.

2.6 Conclusions

We conclude by noting that recent success in solving the RCPSP was obtained
by SAT-inspired techniques or, more precisely, constraint-programming solvers
incorporating no-good learning (see, e.g., Horbach 2010; Schutt et al. 2009, 2011,
and Chap. 7 of this handbook). These methods use SAT encodings close to the time-
indexed and event-based formulations. As suggested by Artigues et al. (2013), this
can give rise to successful hybrid methods exploiting the strengths of both conflict-
based clause learning of SAT techniques and LP relaxations.

References

Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop scheduling.
Manage Sci 34(3):391–401

Alvarez-Valdés R, Tamarit JM (1993) The project scheduling polyhedron: dimension, facets and
lifting theorems. Eur J Oper Res 67:204–220

Applegate D, Cook W (1991) A computational study of the job-shop scheduling problem. ORSA
J Comput 3(2):149–156

Artigues C (2013) A note on time-indexed formulations for the resource-constrained project
scheduling problem. Technical Report 13206, LAAS, CNRS, Toulouse

Artigues C, Michelon P, Reusser S (2003) Insertion techniques for static and dynamic resource
constrained project scheduling. Eur J Oper Res 149(2):249–267

Artigues C, Demassey S, Néron E (2008) Resource-constrained project scheduling: models,
algorithms, extensions and applications. ISTE Ltd, London; Wiley, Hoboken

Artigues C, Brucker P, Knust S, Koné O, Lopez P, Mongeau M (2013) A note on “Event-based
MILP models for resource-constrained project scheduling problems”. Comp Oper Res
40(4):1060–1063

Baptiste P, Demassey S (2004) Tight LP bounds for resource constrained project scheduling.
OR Spectr 26(2):251–262

Baptiste P, Le Pape C (2000) Constraint propagation and decomposition techniques for highly
disjunctive and highly cumulative project scheduling problems. Constraints 5(1–2):119–39

Bianco L, Caramia M (2013) A new formulation for the project scheduling problem under limited
resources. Flex Serv Manuf J 25:6–24

Brucker P, Knust S (2012) Complex scheduling. Springer, Berlin
Cavalcante CCB, de Souza CC, Savelsbergh MWP, Wang Y, Wolsey LA (2001) Scheduling

projects with labor constraints. Discrete Appl Math 112(1–3):27–52
Christofides N, Alvarez-Valdés R, Tamarit J (1987) Project scheduling with resource constraints:

a branch and bound approach. Eur J Oper Res 29:262–273
de Souza CC, Wolsey LA (1997) Scheduling projects with labour constraints. Relatório Técnico

IC-P7-22. Instituto de Computação, Universidade Estadual de Campinas

2 Mixed-Integer Linear Programming Formulations 41

Demassey S, Artigues C, Michelon P (2005) Constraint propagation-based cutting planes: an
application to the resource-constrained project scheduling problem. INFORMS J Comput
17(1):52–65

Demeulemeester E, Herroelen W (2002) Project scheduling: a research handbook. Kluwer,
Dordrecht

Hardin JR, Nemhauser GL and Savelsbergh MW (2008). Strong valid inequalities for the
resource-constrained scheduling problem with uniform resource requirements. Discrete Optim
5(1):19–35

Horbach A (2010) A Boolean satisfiability approach to the resource-constrained project scheduling
problem. Ann Oper Rer 181:89–107

Kaplan LA (1998) Resource-constrained project scheduling with preemption of jobs. Unpublished
Ph.D. dissertation, University of Michigan, USA

Kimms A (2001) Mathematical programming and financial objectives for scheduling projects.
Kluwer, Dordrecht

Klein R (2000) Scheduling of resource-constrained projects. Kluwer, Dordrecht
Koné O, Artigues C, Lopez P, Mongeau M (2011) Event-based MILP models for

resource-constrained project scheduling problems. Comput Oper Res 38(1):3–13
Koné O, Artigues C, Lopez P, Mongeau M (2013) Comparison of mixed integer linear program-

ming models for the resource-constrained project scheduling problem with consumption and
production of resources. Flex Serv Manuf J 25(1–2):25–47

Kyriakidis TS, Kopanos GM, Georgiadis MC (2012) MILP formulations for single- and
multi-mode resource-constrained project scheduling problems. Comput Chem Eng 36:369–385

Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for the
resource-constrained project scheduling problem based on a new mathematical formulation.
Manage Sci 44:714–729

Möhring RH, Schulz AS, Stork F, Uetz M (2001) On project scheduling with irregular starting
time costs. Oper Res Lett 28:149–154

Mouret S, Grossmann IE, Pestiaux P (2011). Time representations and mathematical models for
process scheduling problems. Comput Chem Eng 35(6):1038–1063

Pritsker A, Watters L (1968) A zero-one programming approach to scheduling with limited
resources. The RAND Corporation, RM-5561-PR

Pritsker A, Watters L, Wolfe P (1969) Multi-project scheduling with limited resources: a zero-one
programming approach. Manage Sci 16:93–108

Queyranne M, Schulz A (1994) Polyhedral approaches to machine scheduling. Technical Report
408/1994, Technische Universität Berlin, Berlin, Germany

Sankaran JK, Bricker DL, Juang SH (1999) A strong fractional cutting-plane algorithm for
resource-constrained project scheduling. Int J Ind Eng 6(2):99–111

Schutt A, Feydy T, Stuckey PJ, Wallace MG (2009) Why cumulative decomposition is not as bad
as it sounds. In: Gent IP (ed) Proceedings of principles and practice of constraint programming:
CP 2009, Lecture notes in computer science, vol 5732. Springer, Berlin, pp 746–761

Schutt A, Feydy T, Stuckey PJ, Wallace MG (2011) Explaining the cumulative propagator.
Constraints 16(3):250–282

Stork F, Uetz M (2005) On the generation of circuits and minimal forbidden sets. Math Prog
102(1):185–203

Vanderbeck F (2000). On Dantzig-Wolfe decomposition in integer programming and ways to
perform branching in a branch-and-price algorithm. Oper Res 48(1):111–128

Zapata JC, Hodge BM, Reklaitis GV (2008) The multimode resource constrained multiproject
scheduling problem: alternative formulations. Aiche J 54(8):2111–2119

Chapter 3
Lower Bounds on the Minimum Project
Duration

Sigrid Knust

Abstract In this chapter methods to calculate lower bounds on the minimum
project duration (i.e. the makespan Cmax) of the basic resource-constrained project
scheduling problem PS j prec jCmax are presented. We distinguish between construc-
tive and destructive lower bounds.

Keywords Lower bounds • Makespan minimization • Project scheduling •
Resource constraints

3.1 Introduction

In this chapter methods to calculate lower bounds for the resource-constrained
project scheduling problem PS j prec jCmax are presented (cf. also Sect. 3.7 in
Brucker and Knust 2012). On the one hand, lower bounds are useful to estimate
the quality of heuristic solutions (if no exact solution values are available). If LB is
a lower bound for an instance and UB is the solution value given by some heuristic,
then UB � LB is an upper bound for the distance between the optimal solution
value and UB. Furthermore, UB�LB

LB is an upper bound for the relative error. On
the other hand, lower bounds are also needed in connection with exact branch-
and-bound algorithms in order to reduce the search space. Often, a trade-off between
computation times and quality exists.

In general, two types of lower bounds can be distinguished: constructive and
destructive bounds. Constructive lower bounds are usually provided by directly
solving relaxations of the problem, in which some constraints (which make the
problem hard) are relaxed. Destructive lower bounds are based on considering the
corresponding decision version (feasibility problem) of the optimization problem:
Given a threshold value T , does a feasible schedule with Cmax � T exist? If we
can prove that such a schedule does not exist, then T C 1 is a valid lower bound
value for the optimization problem supposing that all data are integral. To contradict

S. Knust (�)
Institute of Computer Science, University of Osnabrück, Osnabrück, Germany
e-mail: sknust@uos.de

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_3

43

mailto:sknust@uos.de

44 S. Knust

(destruct) a threshold value T , again relaxations may be used. If we can state
infeasibility for a relaxed problem, obviously the original problem is also infeasible.
To find the best lower bound we search for the largest T , where infeasibility can be
proved.

The remainder of this chapter is organized as follows. In Sect. 3.2 several
constructive lower bounds are described, while in Sect. 3.3 destructive lower bounds
are presented. Some conclusions can be found in Sect. 3.4.

3.2 Constructive Lower Bounds

In this section we present some constructive lower bounds which are based on
solving different relaxations of problem PS j prec jCmax.

A simple constructive lower bound is obtained if we relax all resource constraints
and only take into account the precedence constraints (i.e. consider the relaxed
problem PS1j prec jCmax). The optimal makespan of this relaxation is equal to
the length of a longest (critical) path in the activity-on-node network, which can be
calculated in O.jEj/ time. Usually, this lower bound is denoted by LB0.

This value was strengthened by Stinson et al. (1978) partially taking into account
some resource conflicts as follows. If a schedule with Cmax D LB0 exists, activity
i has to be completed before the deadline d i WD LB0 C pi � di;nC1, where di;nC1
denotes the length of a longest path from activity i to the dummy end activity nC 1
in the activity-on-node network (which is a lower bound for the length of the time
period between the completion time of i and the optimal makespan). Furthermore,
i cannot be started before its release date ri WD d0i corresponding to the length of a
longest path from the dummy start activity 0 to activity i . After having identified one
critical path P0, for each activity i not belonging to P0, let li be the maximal length
of an interval contained in Œri ; d i � in which i can be processed with the activities
from P0 simultaneously without violating the resource constraints. If li < pi holds,
no feasible schedule with Cmax D LB0 exists and in order to get a feasible schedule
the time window of activity i has to be enlarged by at least pCi WD max fpi � li ; 0g
time units. Thus,

LBS WD LB0 Cmax
i 62P0
fpCi g

defines a valid lower bound value. For each activity not in P0 we have to check,
whether the resources left by the activities from P0 are sufficient or not. This can be
done in O.n2jRj/ time.

Example 3.1. Consider the instance with n D 6 activities and two resources with
capacities R1 D 3;R2 D 1 shown in Fig. 3.1 (taken from Brucker and Knust 2012).

The critical path P0 D .0 ! 2 ! 5 ! 6 ! 7/ has the length LB0 D 7. In
Fig. 3.2 the partial schedule for all critical activities from P0 is drawn, furthermore,
the time windows for the remaining activities i 62 P0 are shown. For these activities

3 Lower Bounds on the Minimum Project Duration 45

0 2 5 6 7

1 4

3

0 2 3 2 0

3 3

1

[0 4] [3 7]

[0 0] [0 2] [2 5] [5 7] [7 7]

[2 5] i

pi

[ri di]

i 1 2 3 4 5 6

pi 3 2 1 3 3 2

ri1 2 2 0 2 1 2

ri2 1 1 1 1 0 1

ri 0 0 2 3 2 5

di 4 2 5 7 5 7

Fig. 3.1 A project with n D 6 and time windows for LB0 D 7, taken from Brucker and Knust
(2012)

0 2 5 7

R2 = 1

R1 = 3

2 6

2

5

6

1
r1 d1

3
r3 d3

4
r4 d4

Fig. 3.2 Partial schedule for P0

we have l1 D 2 since activity 1 can be processed in parallel with P0 in the interval
Œ2; 4�, l3 D 3 since 3 can be processed in the interval Œ2; 5�, and l4 D 2.

Thus, pC1 D 3 � 2 D 1, pC3 D maxf1� 3; 0g D 0, pC4 D 3 � 2 D 1, and

LBS D LB0 Cmax
i 62P0
fpCi g D 7C 1 D 8:

�

46 S. Knust

Note that in LBS only conflicts between activities from P0 and activities
i 62 P0 are taken into account, conflicts among activities i 62 P0 are not regarded.
An extension of LBS was suggested in Demeulemeester (1992) where a critical path
together with a second node-disjoint path in the network is considered and a lower
bound is determined using dynamic programming.

A simple resource-based lower bound can be determined in O.njRj/ time by
considering each resource separately. For each renewable resource k 2 R the value�

nP

iD1
rik pi=Rk

�

defines a lower bound on the optimal makespan because
nP

iD1
rik pi

cannot be greater than the availabilityRk �Cmax of resource k in the interval Œ0; Cmax�.
Thus, the maximum among all resources gives the lower bound

LB1 WD max
k2R

&
nX

iD1
rik pi=Rk

'

:

A more complicated resource-based lower bound based on Lagrangian relaxation
was proposed in Möhring et al. (2003). Here, the resource constraints are relaxed,
but violations of them are penalized in the objective function. Lower bounds based
on parallel machine scheduling problems have for example been applied in Carlier
and Néron (2000) (see also Néron et al. 2006). For this purpose, a subset of �C 1
activities is calculated which cannot all be processed simultaneously due to the
resources. Therefore, at most � activities can be in progress at the same time,
which leads to a parallel machine problem with � machines. Other constructive
lower bounds can be obtained by solving continuous relaxations of integer linear
programming formulations (cf. Chap. 2 of this handbook or Artigues et al. 2010).
Unfortunately, these relaxations often provide only poor lower bounds.

In the following we consider a relaxation of the RCPSP allowing preemption and
partially relaxing the precedence constraints proposed by Mingozzi et al. (1998)
(cf. also Chap. 2 of this handbook). This relaxation can be formulated as a linear
program where the columns correspond to so-called feasible subsets (or antichains).
Later on this formulation was also used to solve the preemptive RCPSP (see Damay
et al. 2007 and Chap. 13 of this handbook).

A feasible antichain (or feasible subset) A is a subset of activities which may be
processed simultaneously with respect to the resource constraints (i.e.

P

i2A
rik � Rk

for all k 2 R) and among the activities in A no precedence relations exist (i.e.
.i; j / … E; .j; i/ … E for all i; j 2 A). This means that the precedence relations are
partially relaxed, since instead of requiring that an activity i has to precede activity
j , it is only forbidden to schedule them simultaneously (i.e. j may also be scheduled
before i).

Unfortunately, the number of all feasible antichains is very large since it grows
exponentially with the number n of activities. In order to reduce this large number,
the set of all feasible antichains may be restricted to a smaller subset of so-called
non-dominated ones. An antichain A is called dominated if it is a proper subset

3 Lower Bounds on the Minimum Project Duration 47

A � A0 of another feasible antichain A0, otherwise it is called non-dominated. In
the following we denote the set of all non-dominated feasible antichains by A .

With each subset A 2 A we associate an incidence vector aA 2 f0; 1gn defined
by

aAi WD
�
1; if activity i 2 A
0; otherwise.

Furthermore, let zA � 0 be a variable denoting the total number of time units when
the antichain A is processed. Then the preemptive relaxation can be formulated as
the following linear program:

Min.
X

A2A
zA (3.1)

s. t.
X

A2A
aAi zA � pi .i D 1; : : : ; n/ (3.2)

zA � 0 .A 2 A / (3.3)

In (3.1) we minimize the makespan Cmax D P

A2A
zA which is equal to the sum of all

processing times of the antichains. The constraints (3.2) ensure that all activities
i are processed for at least pi time units. Here, due to the fact that only non-
dominated antichains are considered, we must allow that an activity i may be
processed longer than its processing time pi . It is easy to see that the optimal
makespan of this preemptive relaxation cannot be less than LB0 since due to the
precedence constraints all activities belonging to a critical path must be contained
in different feasible antichains.

Example 3.2. Consider the instance in Fig. 3.3 with n D 6 activities, one resource
with capacity R1 D 4 (taken from Brucker and Knust 2012). Here, the length of a
critical path is LB0 D 4.

2 4 6

2/1 1/3 1/2

3 5

2/1 2/3

1

2/2

i

pi ri1

3

2

1

2

5

3

4

1

6

R1 = 4

0 T = 5

Fig. 3.3 A project and a corresponding optimal preemptive schedule, taken from Brucker and
Knust (2012)

48 S. Knust

For this instance we have 14 feasible antichains: f1g, f1; 2g, f1; 2; 3g, f1; 3g,
f1; 6g, f2g, f2; 3g, f2; 5g, f3g, f3; 4g, f3; 6g, f4g, f5g, f6g. Among these sets five
are non-dominated: f1; 2; 3g, f1; 6g, f2; 5g, f3; 4g, f3; 6g.

An optimal preemptive schedule for the relaxation with makespan 5 is shown in
Fig. 3.3. Note that all activities i ¤ 2 are processed for exactly pi time units, only
activity 2 is processed longer for p2 C 1 D 3 time units. This schedule corresponds
to the LP solution zf1;2;3g D 1, zf1;6g D 1, zf2;5g D 2, zf3;4g D 1, zf3;6g D 0. �

Unfortunately, the number of all non-dominated feasible antichains still grows
exponentially with the number n of activities. For n D 60 we have approximately
300;000, for n D 90 even 8;000;000 columns. For this reason, in Mingozzi et al.
(1998) the dual linear program was considered and solved heuristically (which gives
weaker bounds than the original LP formulation). However, using the technique of
delayed column generation, it is not necessary to generate and store all columns.
In the following we describe a delayed column generation approach proposed by
Baar et al. (1999). In this approach, after solving the LP with the current working
set of columns to optimality, we have to look for feasible columns which are able
to improve the objective value when entering the basis. If yi .i D 1; : : : ; n/ are the
values of the dual variables associated with the current basic solution, we have to

find a feasible column a 2 f0; 1gn with
nP

iD1
yi � ai > 1, i.e. a has to satisfy

nX

iD1
yi � ai > 1 (3.4)

nX

iD1
rik � ai � Rk .k 2 R/ (3.5)

ai C aj � 1 ..i; j / 2 E/ (3.6)

ai 2 f0; 1g .i D 1; : : : ; n/ (3.7)

Conditions (3.5) and (3.6) ensure that a column a corresponds to a feasible antichain
(respecting the resource and precedence constraints). The problem of finding a

column a maximizing the value
nP

iD1
yi � ai may be regarded as a multi-dimensional

knapsack problem, which can efficiently be solved by a branch-and-bound algorithm
(for details see Baar et al. 1999). If for an optimal solution a of this knapsack

problem the condition
nP

iD1
yi � ai > 1 holds, we have found an improving column

satisfying (3.4). Otherwise, no improving column exists and the whole LP is solved
to optimality. Then the column generation process is stopped.

Unfortunately, for problems with a larger number of activities the quality of this
lower bound worsens. The reason is that the possibility of preemption allows us
to split the activities into many pieces and to put them appropriately into different
feasible antichains yielding low objective values. Therefore, in the next section we

3 Lower Bounds on the Minimum Project Duration 49

strengthen this lower bound by additionally taking into account time windows and
using a destructive approach.

3.3 Destructive Lower Bounds

In this section we present destructive lower bounds for problem PS j prec jCmax. In
order to calculate lower bounds in a destructive way, for a given threshold value T
we must prove that no feasible schedule with Cmax � T exists (cf. Klein and Scholl
1999). If infeasibility is shown, then T C 1 is a valid lower bound value. To find the
best lower bound we search for the largest T , where infeasibility can be proved. This
can be organized in incremental steps or by binary search. An incremental procedure
starts with a valid lower bound value T D LB and increases T in each step by an
appropriate value� � 1 until it is not possible to state infeasibility. When applying
binary search, in each step we consider an interval ŒL; U � in which we search for a
valid lower bound value. Initially, we start with a valid upper bound U 0 and a valid
lower bound L0. In each iteration we solve the feasibility problem for T D bUCL

2
c.

If we can prove that no feasible solution with Cmax � T exists, we increase the lower
bound L to the value T C 1 and repeat the procedure with the interval ŒT C 1; U �.
Otherwise, if we do not succeed in proving infeasibility for the threshold T , we
replace U by T and repeat the procedure in the interval ŒL; T �. The binary search
procedure terminates as soon as L � U holds after at most O.log.U 0 �L0// steps.
Then L equals the largest lower bound value which can be calculated in this way.

Several tests were proposed to detect infeasibility. Many of them are based on
time windows Œri ; d i � for the activities which can be derived from the activity-on-
node network by longest path calculations. If Œri ; d i � is a time window in which
activity i has to be processed completely for pi time units, obviously ri C pi � d i
must be satisfied (otherwise no feasible schedule exists). Furthermore, we know
that i cannot finish before time ECi D ri C pi and cannot start later than time
LSi D di � pi . Thus, if ECi > LSi holds, activity i has to be processed in the
interval ŒLSi ;ECi � in any feasible schedule (this interval is also called core time of
i). If by partially scheduling all mandatory parts of activities during their core times
a resource capacity is exceeded, obviously no feasible schedule exists.

In the so-called “disjunctive interval consistency tests” (see Dorndorf et al. 1999
or Baptiste et al. 2001) it is checked whether the capacity of certain intervals is
sufficient for sets of pairwise incompatible activities (so-called disjunctive sets). A
subset I � f1; : : : ; ng of (non-dummy) activities with jI j � 2 is called a disjunctive
set if for all i; j 2 I with i ¤ j a precedence relation .i; j / 2 E or .j; i/ 2 E exists
or if i and j cannot be processed simultaneously due to the resource constraints
(i.e. if rik C rjk > Rk for a resource k 2 R holds). For example, for a disjunctive
resource (i.e. a renewable resource k with capacity Rk D 1), all activities needing
this resource constitute a disjunctive set.

50 S. Knust

A first infeasibility test can be derived from the following result: If there is a
subset J � I with

max
�2J fd

�g �min
�2J fr

�g <
X

i2J
pi

then obviously no feasible schedule exists since all jobs from the subset J have to
be processed in the interval Œmin

�2J fr
�g;max

�2J fd
�g�, which does not have the capacity

P

i2J
pi .

Additional precedence relations and smaller time windows for activities of a
disjunctive set I may be derived from the following general result:

Theorem 3.1. Let I be a disjunctive set and J 0; J 00�J � I with J 0 [J 00 ¤ ;. If

max
�2JnJ 0

�2JnJ 00

�¤�

.d
� � r�/ <

X

i2J
pi (3.8)

holds, then in J an activity from J 0 must start first or an activity from J 00 must end
last in any feasible schedule.

Based on this theorem, the interval consistency tests shown in Table 3.1 have been
proposed (cf. Brucker and Knust 2012 or Baptiste et al. 2001). In the table also the
complexity of the best known implementation is listed.

In order to use these techniques for lower bound calculations, usually, a test is not
applied only once, but in several iterations until no more constraints can be deduced.
This process is also called constraint propagation. Due to additional precedence
relations and possibly strengthened time windows in later iterations infeasibility
may be detected for a given threshold value T .

In case that we cannot prove infeasibility by constraint propagation alone, we
may use the time windows and try to prove that no preemptive schedule with
Cmax � T exists such that all activities are processed within their time windows
and all resource constraints are respected. This can efficiently be done by using
an extension of the linear programming formulation from the previous section
proposed by Brucker and Knust (2000) where additionally time windows for the
activities are taken into account.

Table 3.1 Summary of disjunctive interval consistency tests

Test J n J 0 J n J 00 Conclusion Complexity

Input J n fig J i ! J n fig O.jI j log jI j/
Output J J n fig J n fig ! i O.jI j log jI j/
Input-or-output J n fig J n fj g i ! J n fig _ J n fj g ! j O.jI j3/
Input negation fig J n fig i ¹ J n fig O.jI j log jI j/
Output negation J n fig fig J n fig¹ fig O.jI j log jI j/

3 Lower Bounds on the Minimum Project Duration 51

For the LP-formulation let #0 < #1 < : : : < #� be the ordered sequence of
all different ri - and di -values. For � D 1; : : : ; � we consider the intervals I � WD
Œ#��1; #�� of length #� � #��1. With each interval I � we associate a set V � of all
activities i which can partially be scheduled in this interval, i.e. with ri � #��1 <
#� � d i . Let A � be the set of all feasible antichains consisting of activities from the
set V � (here, again a reduction to the set of non-dominated antichains can be done)
and denote again by aA 2 f0; 1gn the incidence vector corresponding to antichain
A. Furthermore, for � D 1; : : : ; � let zA;� be a variable denoting the number of
time units when antichain A 2 A � is processed in interval I �. Then the preemptive
feasibility problem may be written as follows:

�X

�D1

X

A2A �

aAi zA;� � pi .i D 1; : : : ; n/ (3.9)

X

A2A �

zA;� � #� � #��1 .� D 1; : : : ; �/ (3.10)

zA;� � 0 .� D 1; : : : ; � IA 2 A �/ (3.11)

Due to restrictions (3.9) all activities i are processed for at least pi time units.
Conditions (3.10) ensure that the number of time units scheduled in interval I � does
not exceed the length #� � #��1 of this interval.

By introducing artificial variables u� for � D 1; : : : ; � in conditions (3.10), the
feasibility problem can be formulated as the following linear program:

Min.
�X

�D1
u� (3.12)

s. t.
�X

�D1

X

A2A �

aAi zA;� � pi .i D 1; : : : ; n/ (3.13)

�
X

A2A �

zA;� C u� � �#� C #��1 .� D 1; : : : ; �/ (3.14)

zA;� � 0 .� D 1; : : : ; � IA 2 A �/ (3.15)

u� � 0 .� D 1; : : : ; �/ (3.16)

A solution for the preemptive feasibility problem exists if and only if the linear
program has the optimal solution value zero, i.e. if all values of the artificial
variables become zero.

Example 3.3. Consider again Example 3.2 from the previous subsection. In Fig. 3.4
additionally the time windows Œri ; d i � for T D 6 are shown.

52 S. Knust

Fig. 3.4 A feasible preemptive schedule for T D 6, taken from Brucker and Knust (2012)

For this instance we have � D 5 intervals I � with the following sets V �:

I1 D Œ0; 2� W V1 D f1; 2; 3g;
I2 D Œ2; 3� W V2 D f1; 2; 3; 4; 5g;
I3 D Œ3; 4� W V3 D f1; 2; 3; 4; 5; 6g;
I4 D Œ4; 5� W V4 D f1; 4; 5; 6g;
I5 D Œ5; 6� W V5 D f1; 5; 6g:

In Fig. 3.4 a feasible preemptive schedule is shown corresponding to the solution

zf1;2;3g;1 D 1; zf1g;1 D 1; zf3;4g;2 D 1; zf2;5g;3 D 1; zf5g;4 D 1; zf6g;5 D 1

which may be derived from the non-dominated solution

zf1;2;3g;1 D 2; zf3;4g;2 D 1; zf2;5g;3 D 1; zf5g;4 D 1; zf1;6g;5 D 1

by eliminating parts of activities i which are processed longer than pi time units.
Furthermore, it is easy to see that for T D 5 no feasible schedule respecting the

time windows exists. Thus, we get a lower bound value of 6, which improves the
lower bound from the previous subsection by one unit. �

Again, the linear programming formulation contains an exponential number of
variables, but can be solved efficiently with column generation techniques (see
Brucker and Knust 2000). In Baptiste and Demassey (2004) the LP-formulation
was strengthened by adding additional valid inequalities (so-called “cuts”). In the
following three different types of inequalities are described.

For an interval Œa; b� � Œ0; T � and an activity i we calculate a lower bound
Pi.a; b/ for the amount of time where i has to be processed in Œa; b� in any feasible
schedule. The value Pi.a; b/ is given by the minimum of

• the interval length b � a,
• pCi WD maxf0; pi �maxf0; a � ri gg, which equals the required processing time

in Œa; d i � if i is started at time ri , and

3 Lower Bounds on the Minimum Project Duration 53

• p�i WD maxf0; pi �maxf0; d i � bgg, which equals the required processing time
in Œri ; b� if i is completed at time d i .

Obviously, the minimum of these three values is a lower bound for the processing
time of activity i in the interval Œa; b� \ Œri ; d i �.

For the LP-formulation each interval Œ#�1 ; #�2 � with 0 � �1 < �2 � � may be
considered. We may add the so-called “energetic cuts”

�2X

�D�1C1

X

A2A �

aAi zA;� � Pi.#�1 ; #�2 / .i D 1; : : : ; nI 0 � �1 < �2 � �/ (3.17)

For the formulation using all feasible antichains (and not only the non-dominated
ones) some other valid inequalities may be derived from the observation that in
a non-preemptive schedule (where additionally all starting times are integral), an
activity cannot be processed simultaneously in two intervals Œ#���1; #�� Œ (� D 1; 2)
which have a distance of at least pi � 1 time units. For example, an activity i
with processing time pi D 5 cannot overlap with the intervals Œ1; 4Œ and Œ8; 10Œ
simultaneously. Furthermore, activity i can be processed for at most maxf4�1; 10�
8g D 3 time units in Œ1; 4Œ[Œ8; 10Œ.

More generally, for each activity i we consider subsets of the given intervals
I � D Œ#��1; #�Œ in which i can be processed and which have a distance of at least
pi � 1 time units. For activity i let �i � f1; : : : ; �g be a subset of interval indices
with I � D Œ#��1; #t Œ� Œri ; d i � for all � 2 �i and #�0�1 � #� � pi � 1 for all
indices � < �0 2 �i . Then we may state that i can be processed in at most one
interval of �i , i.e. the maximal length of an interval in �i is an upper bound for the
total processing time of i in all intervals belonging to �i .

Thus, we may add the “non-preemptive cuts”
X

�2�i

X

A2A �

aAi zA;� � max
�2�i
f#� � #��1g .i D 1; : : : ; nI �i � f1; : : : ; �g/ (3.18)

There are many possible subsets �i � f1; : : : ; �g for an activity i representing non-
overlapping intervals with distance at least pi � 1. Baptiste and Demassey (2004)
suggested to construct a set �i;� for each i and each � 2 f1; : : : ; �g with I � �
Œri ; d i � and add all the corresponding inequalities.

Finally, the third type of inequalities tries to take into account the precedence
constraints. For each activity i D 1; : : : ; n we introduce an additional variable
Mi representing the midpoint of activity i (i.e. the average of its starting and its
completion time, Mi D SiCCi

2
). Then the precedence relations .i; j / 2 E may be

expressed as Sj � Ci , which implies Cj � Ci � pj and Sj � Si � pi . By adding
the last two inequalities and dividing the result by two we get

Mj �Mi � pj C pi
2

for all .i; j / 2 E (3.19)

54 S. Knust

The midpoint variables Mi may be linked to the zA;�-variables by the additional
inequalities

�X

�D1
.#��1C0:5/

X

A2A �

aAi zA;��Mipi �
�X

�D1
.#��0:5/

X

A2A �

aAi zA;� .i D 1; : : : ; n/

If these “precedence cuts” as well as conditions (3.19) are added to the LP, additional
(infeasible) solutions are excluded, i.e. the lower bound is strengthened (see Baptiste
and Demassey 2004).

3.4 Conclusions

In recent years large progress has been made in calculating good lower bounds
for the RCPSP (cf. Néron et al. 2006). Different concepts have been proposed
and computationally tested on large sets of benchmark instances (e.g. from the
PSPLIB, cf. Kolisch and Sprecher 1997). Currently, the best lower bounds can be
obtained with a destructive approach combining intensive constraint propagation
(cf. Baptiste and Demassey 2004) with the linear programming formulation of
Brucker and Knust (2000) tightened by some cuts introduced in Baptiste and
Demassey (2004). Recently, some improved lower bound values for the PSPLIB
instances were reported by Schutt et al. (2011) using constraint programming.

Lower bounds for extended versions of the RCPSP can for example be found
in Bianco and Caramia (2011) for the problem PS j temp jCmax with generalized
precedence relations (cf. also Chap. 5 of this handbook) or in Brucker and Knust
(2003) for the multi-mode problem MPS j temp jCmax with generalized precedence
relations.

References

Artigues C, Demassey S, Néron E (2010) Resource-constrained project scheduling: models,
algorithms, extensions and applications. Wiley, Hoboken

Baar T, Brucker P, Knust S (1999) Tabu search algorithms and lower bounds for the resource-
constrained project scheduling problem. In: Voss S, Martello S, Osman I, Roucairol C (eds)
Meta-heuristics: advances and trends in local search paradigms for optimization. Kluwer,
Boston, pp 1–18

Baptiste P, Demassey S (2004) Tight LP bounds for resource constrained project scheduling. OR
Spectr 26(2):251–262

Baptiste P, Le Pape C, Nuijten W (2001) Constraint-based scheduling: applying constraint pro-
gramming to scheduling problems. International series in operations research & management
science, vol 39. Kluwer, Boston

Bianco L, Caramia M (2011) A new lower bound for the resource-constrained project scheduling
problem with generalized precedence relations. Comput Oper Res 38(1):14–20

3 Lower Bounds on the Minimum Project Duration 55

Brucker P, Knust S (2000) A linear programming and constraint propagation-based lower bound
for the RCPSP. Eur J Oper Res 127(2):355–362

Brucker P, Knust S (2003) Lower bounds for resource-constrained project scheduling problems.
Eur J Oper Res 149(2):302–313

Brucker P, Knust S (2012) Complex scheduling. Springer, Berlin
Carlier J, Néron E (2000) A new LP-based lower bound for the cumulative scheduling problem.

Eur J Oper Res 127(2):363–382
Damay J, Quilliot A, Sanlaville E (2007) Linear programming based algorithms for preemptive

and non-preemptive RCPSP. Eur J Oper Res 182(3):1012–1022
Demeulemeester E (1992) Optimal algorithms for various classes of multiple resource constrained

project scheduling problems. Ph.D. dissertation, Katholieke Universiteit Leuven, Leuven,
Belgium

Dorndorf U, Huy TP, Pesch E (1999) A survey of interval capacity consistency tests for time-
and resource-constrained scheduling. In: Wȩglarz J (ed) Project scheduling. Kluwer, Boston,
pp 213–238

Klein R, Scholl A (1999) Computing lower bounds by destructive improvement: an application to
resource-constrained project scheduling. Eur J Oper Res 112(2):322–346

Kolisch R, Sprecher A (1997) PSPLIB - a project scheduling problem library: OR software -
ORSEP operations research software exchange program. Eur J Oper Res 96(1):205–216.
http://www.om-db.wi.tum.de/psplib/

Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for project
scheduling with resource constraints based on a new mathematical formulation. Manage Sci
44(5):714–729

Möhring R, Schulz A, Stork F, Uetz M (2003) Solving project scheduling problems by minimum
cut computations. Manage Sci 49(3):330–350

Néron E, Artigues C, Baptiste P, Carlier J, Damay J, Demassey S, Laborie P (2006) Lower
bounds for resource constrained project scheduling problem. In: Perspectives in modern project
scheduling. Springer, New York, pp 167–204

Schutt A, Feydy T, Stuckey P, Wallace M (2011) Explaining the cumulative propagator. Constraints
16(3):250–282

Stinson J, Davis E, Khumawala B (1978) Multiple resource-constrained scheduling using branch
and bound. AIIE Trans 10(3):252–259

http://www.om-db.wi.tum.de/psplib/

Chapter 4
Metaheuristic Methods

Anurag Agarwal, Selcuk Colak, and Selcuk Erenguc

Abstract Given the NP-hard nature of the Resource Constrained Project
Scheduling Problem (RCPSP), obtaining an optimal solution for larger instances
of the problem becomes computationally intractable. Metaheuristic approaches are
therefore commonly used to provide near-optimal solutions for larger instances
of the problem. Over the past two decades, a number of different metaheuristic
approaches have been proposed and developed for combinatorial optimization
problems in general and for the RCPSP in particular. In this chapter, we review the
various metaheuristic approaches such as genetic algorithms, simulated annealing,
tabu search, scatter search, ant colonies, the bees algorithm, neural networks etc.,
that have been applied to the RCPSP. One metaheuristic approach called the
NeuroGenetic approach is described in more detail. The NeuroGenetic approach is a
hybrid of a neural-network based approach and the genetic algorithms approach. We
summarize the best results in the literature for the various metaheuristic approaches
on the standard benchmark problems J30, J60, J90, and J120 from PSPLIB (Kolisch
and Sprecher, Eur J Oper Res 96:205–216, 1996).

Keywords Makespan minimization • Metaheuristics • NeuroGenetic approach •
Project scheduling • Resource constraints

A. Agarwal (�)
Department of Information Systems and Decision Sciences, University of South Florida,
Sarasota, FL, USA
e-mail: agarwala@usf.edu

S. Colak
Department of Business, Cukurova University, Adana, Turkey
e-mail: scolak@cu.edu.tr

S. Erenguc
Department of Information Systems and Operations Management, University of Florida,
Gainesville, FL, USA
e-mail: selcuk.erenguc@warrington.ufl.edu

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_4

57

mailto:agarwala@usf.edu
mailto:scolak@cu.edu.tr
mailto:selcuk.erenguc@warrington.ufl.edu

58 A. Agarwal et al.

4.1 Introduction

Due to the combinatorial nature of the Resource Constrained Project Scheduling
Problem (RCPSP), obtaining optimal solutions using exact methods, for problems
with over 50 or so activities, becomes intractable and hence impractical. Metaheuris-
tic approaches such as genetic algorithms, simulated annealing, tabu search, scatter
search etc., are therefore used to provide near-optimal solutions within reasonable
computation times. Over the last two decades, a number of metaheuristic approaches
have been proposed and applied to various optimization problems in general and
to the RCPSP in particular. In this chapter, we will review and discuss these
metaheuristic approaches.

In the standard RCPSP problem, the one that is most commonly studied and
for which standard benchmark problems exist, the objective is to minimize the
makespan. Other characteristics of the problem include: (1) preemption of activities
is not allowed, (2) the resources are renewable from period to period, (3) there
is a single mode of resource usage, (4) the quantities of available resources are
known and fixed for the duration of the project, and (5) resource requirements
and processing times for each activity are known and fixed a priori. Benchmark
problems for this standard RCPSP problem exist in PSPLIB (Kolisch and Sprecher
1996). Many researchers have demonstrated the effectiveness of their approaches
on these benchmark problems.

The rest of the chapter is organized as follows. Before discussing the various
metaheuristics, for the sake of completeness, we will briefly review, in Sect. 4.2,
some important concepts about heuristic methods in general. These concepts are
critical to the understanding of metaheuristics. In Sect. 4.3, we will review the
various metaheuristic approaches in the literature, which have been applied to the
RCPSP. In Sect. 4.4 we will describe in some detail, one metaheuristic called the
NeuroGenetic approach. Computational results are presented in Sect. 4.5 and the
conclusions are discussed in Sect. 4.6.

4.2 Single-Pass Heuristics Methods

A variety of single-pass heuristics based on different priority rules, such as,
“minimum latest-finish-time next” (min LFT) or “longest processing time first”
(LPT) etc. have been proposed in the literature for the RCPSP. The priority rule
determines a unique activity list. An activity list, for a given problem, is basically
a list of all the activities of that problem listed in a certain precedence feasible
order. The order is determined by the priority rule. Different priority rules produce
different activity lists. Given an activity list, a schedule can be generated using a
schedule-generation scheme. While single-pass heuristics are extremely fast with
O.n � ln.n// complexity, the optimality gaps are considered quite unsatisfactory.

4 Metaheuristic Methods 59

To further reduce the optimality gaps, several improvement techniques have
been proposed in the literature. These improvement techniques include (1) applying
different schedule-generation schemes (Serial and Parallel), (2) using forward
and backward scheduling, and (3) applying double justification schemes. These
improvement methods supplement single-pass heuristic approaches to reduce the
optimality gaps without significant extra computational time. We will briefly review
these improvement methods next.

4.2.1 Serial vs. Parallel Schedule-Generation Scheme

Given an activity list `, we can use either the serial schedule-generation scheme (S-
SGS) or the parallel schedule-generation scheme (P-SGS) to generate a schedule.
In S-SGS, activities in ` are considered one by one in serial order, and scheduled
at the earliest clock time at which that activity becomes precedence and resource
feasible. In P-SGS, a clock is maintained and at each unit of clock time, the set of
activities that is precedence and resource feasible is determined. If this set contains
only one activity, that activity is scheduled. If the set contains more than one activity,
then priority is given to the activity that appears first in the activity list. These
two schedule-generation schemes often give different schedules. We can apply both
these schemes to a problem and use the schedule with the shorter makespan. For
more details, please refer to Kolisch (1996) or Chap. 1 of this handbook.

4.2.2 Forward and Backward Scheduling

An RCPSP graph G D .V;E/, where V represents nodes and E represents
arcs or precedence constraints, can be viewed either as a forward problem or a
backward problem. In the backward problem, the last activity node is regarded as
the first activity node and vice versa. Essentially, the entire activity graph is viewed
backwards. Using the same schedule-generation scheme and the same priority rule,
the forward and backward schedules for the same problem often give different
makespans. The schedule with the shorter makespan can be used as the best solution.
This method was first proposed by Li and Willis (1992). For the same activity list,
applying forward and backward scheduling, in conjunction with serial and parallel
schedule-generation schemes can produce as many as four different solutions and
we can use the best of these four as our final solution.

4.2.3 Double Justification Scheme

Once a schedule has been generated using some schedule-generation scheme and
some priority rule, it is often possible to reduce the empty spaces on the Gantt chart

60 A. Agarwal et al.

by scanning the Gantt chart in the reverse direction and shifting the activities to the
right to fill the empty spaces. This shifting of activities packs the Gantt chart more
densely, thus reducing the makespan. This procedure of shifting activities to the
right is called backward justification. Once we perform the backward justification
process, we can then perform a forward justification in which activities are scanned
in the forward direction and activities shifted to the left to fill the empty spaces on
the new Gantt chart. Applying both these procedures is called forward–backward
improvement (FBI) or double justification (Valls et al. 2005). This approach can be
applied to refine any solution obtained through any schedule-generation scheme.

Single-Pass heuristics in conjunction with the improvement techniques discussed
above provide very good solutions. However, the optimality gaps are still unsatisfac-
tory. By using metaheuristics, the optimality gap can be reduced further, although
at the expense of more computation time. In the next section we will discuss the
various metaheuristic approaches.

4.3 Metaheuristic Methods

Over the past 20 years, several metaheuristic approaches such as genetic algorithms,
simulated annealing, tabu search etc., have become very popular for solving
combinatorial optimization problems in general and the RCPSP in particular. While
a single-pass heuristic generates solutions in a deterministic manner, a metaheuristic
generates multiple solutions in a somewhat random manner within the problem’s
search space in the hopes of finding the optimal or a near-optimal solution. Different
types of metaheuristics employ different search strategies to produce new solutions,
but they all strive to find increasingly better solutions as the search progresses. At
some point the search must stop, using some stopping criteria, in the interest of
computation time. The stopping criteria can either be in terms of a predetermined
CPU time or in terms of the number of solutions evaluated or in terms of achieving
a certain minimum gap from a known lower bound solution (for a minimization
problem).

Many of the metaheuristic approaches have been inspired by processes observed
in nature. For example the genetic algorithms were inspired by the process of
evolution of species. The simulated annealing approach was inspired by the
annealing process of metals and the ant colony optimization approach was inspired
by observing the foraging behavior of colonies of ants. Before we discuss each of
the metaheuristic approaches we will briefly discuss the concept of global vs. local
search, also sometimes referred to as diversification and intensification.

Every search method faces two main challenges. The first challenge is—how
to converge the search to the best solution in a given neighborhood in the search
space (local search). The second challenge is—how to direct the search towards
the best neighborhood amongst many neighborhoods in the overall search space
(global search). A technique that effectively addresses both these challenges is
likely to be more successful in generating good solutions. Unfortunately, search

4 Metaheuristic Methods 61

strategies that help with local search are often in conflict with those that help with
global search, and vice versa. Metaheuristics have to therefore device strategies to
balance these two conflicting goals. In general, strategies devised for global search
are termed diversification strategies, whereas those designed for local search are
termed intensification strategies.

All metaheuristic approaches must address how these conflicting goals are bal-
anced. Sometimes, a hybrid of two metaheuristics is employed if one metaheuristic
happens to be intrinsically better at local search, such as simulated annealing, and
the other intrinsically better at global search, such as genetic algorithms. One of
the challenges in global search is how to avoid getting stuck in a non-optimal
neighborhood. Strategies should be developed to sense the state of being stuck in
a local neighborhood and to have an escape plan. So essentially, all metaheuristics
must have elements of local search, global search, and a strategy to avoid getting
stuck in one neighborhood. We will now briefly describe each of the metaheuristic
approaches. Detailed explanation can be found in the cited references.

We list below, the various metaheuristic approaches that, to the best of our
knowledge, have been applied to the RCPSP:

1. Genetic Algorithms
2. Scatter Search
3. Electromagnetism-Like Search
4. Shuffled Frog Leaping Algorithm
5. Simulated Annealing
6. Tabu Search
7. Ant-Colony Optimization
8. Bees Algorithm
9. Multi-Pass Sampling

10. Filter and Fan
11. Neural-Networks based search
12. The Neuro Genetic Approach

We next provide a brief description of each of these approaches with references
to articles using these approaches.

4.3.1 Genetic Algorithms

The Genetic algorithms (GAs) approach, proposed by Goldberg (1989), is by far the
most popular metaheuristic approach for optimization problems in general and the
RCPSP in particular. As previously stated, GAs are inspired by the phenomenon
of evolution of species observed in nature. In the evolution process, successive
generations of populations of a species attempt to improve upon their previous
generations through certain genetic and survival-of-the-fittest processes. For this
reason, GAs are also called population-based metaheuristics. When applied to an
optimization problem, GAs employ similar processes to produce improved sets of

62 A. Agarwal et al.

solutions (generations of population) as the search progresses from one generation
to the next.

When applying GAs to the RCPSP, a set of activity lists acts as the population.
From a given population of activity lists, a new population is produced through
the reproduction process, involving an appropriate crossover mechanism. The
survival-of-the-fittest process is employed by being selective about the choice of
parent activity lists used for producing a new offspring for the next generation
of population. An activity list, when used for genetic algorithms, is also called a
chromosome in which each activity is considered a gene. For a given chromosome
(or activity list), the best possible schedule can be generated using the S-SGS or
the P-SGS, forward or backward scheduling, and FBI. In GAs, diversification is
achieved through crossover mechanisms that involve two or more crossover points.
Intensification is generally achieved using some local search strategy that is not
necessarily population based. If the search gets stuck in a local neighborhood, the
process of mutation is applied to escape from the neighborhood. In mutation, the
position of one gene is randomly changed, as long as it maintains its precedence
feasible state.

Within the umbrella of Genetic Algorithm procedures, many variations are
possible depending on the strategies used to produce new populations. Several
mechanisms affect the creation of new populations, including (1) the choice of
parent chromosomes, (2) the crossover mechanism, and (3) mutation strategies. The
GA approach has been found to be particularly effective for global search although
somewhat weak for local search. Researchers have tried to supplement GAs with
some non-GA search strategies such as path relinking to fine tune solutions obtained
by GAs. Genetic algorithms have been applied by Hartmann (1998, 2002), Valls
et al. (2004, 2008), Alcaraz and Maroto (2001), Debels and Vanhoucke (2007),
Gonçalves et al. (2011), Khanzadi et al. (2011), Sebt et al. (2012), and Zamani
(2013). Amongst all the metaheuristics, GAs have produced some of the best results
in the literature for the RCPSP. One of the variations of Genetic Algorithms is
Scatter Search which we discuss next.

4.3.2 Scatter Search

Scatter Search (SS) can be considered a variation of Genetic Algorithms, in that
they both work with populations of chromosomes. In SS, the main difference is
that there is heavy emphasis on diversification. In SS, in addition to the pool of
chromosomes used in each generation, a reference set of chromosomes (RefSet) is
also maintained. The RefSet is further divided into two subsets. The first subset
(RefSet1) is a collection of high-quality solutions and the second subset (RefSet2) is
a collection of diverse solutions. A new pool of solutions is generated by crossing
pairs of chromosomes in RefSet1 and also by crossing a chromosome from RefSet1
by a chromosome in RefSet2.

4 Metaheuristic Methods 63

This approach is also called a two-tier design, which is maintained throughout
the search process. To ensure diversity, the diverse solutions must be sufficiently
distant from the high-quality solutions. A good SS approach must specify (1) the
diversification generation method to generate the initial pool of chromosomes, (2)
the improvement method, which is usually the double justification method, (3) the
reference set update method to ensure that in the new generations of chromosomes,
adequate diversification is maintained, and (4) the solution combination method to
generate new solutions using appropriate crossover techniques. Debels et al. (2006),
Ranjbar et al. (2009), and Mobini et al. (2009) have applied the scatter search
approach for the RCPSP. Scatter search metaheuristic has also produced some of
the best results in the RCPSP literature.

4.3.3 Electromagnetism-Like Search

The Electromagnetism-Like (EM) Search can be thought of as another variation
of Genetic Algorithms because it also works with populations of chromosomes.
The EM Search strategy comes into play when generating new populations of
chromosomes. EM Search is inspired by Coulomb’s Inverse Square Law, found
in Electromagnetism theory, which describes the electrostatic interaction between
electrically charged particles. The force between charged particles is inversely
proportional to the square of the distance between them. Birbil and Fang (2003)
first introduced the idea of EM Search applied to global optimization. Debels et al.
(2006) applied the EM search approach to the RCPSP, along with Scatter Search.
When applied to the RCPSP, each chromosome is regarded as a particle with a
certain charge, where the charge is a function of the objective function value. Each
particle exerts a certain force, either attraction or repulsion, with other particles. The
principle behind the algorithm is that inferior particles (or activity lists) will repel
or prevent a move in their direction and superior particles will attract or facilitate
move in their direction. This strategy ensures that subsequent generations improve
upon previous generations. For details of how the charges are defined and how the
forces are calculated, please refer to Debels et al. (2006).

4.3.4 Shuffled Frog Leaping Algorithm

The Shuffled Frog Leaping Algorithm (SFLA) can also be regarded as a variation
of Genetic Algorithms, as it also works with populations of activity lists or
chromosomes. The algorithm was first proposed by Eusuff et al. (2006) and first
applied to the RCPSP by Fang and Wang (2012). In the SFLA, an initial population
of chromosomes of activity lists is formed by a set of randomly generated solutions
called virtual frogs. Fang and Wang generate the initial population using the regret-
based biased random sample method based on the min LFT priority rule. Then

64 A. Agarwal et al.

double justification improvement is applied to each solution in the population. The
chromosomes are then sorted in descending order of the objective function value.
The virtual frog with the best objective function value in the entire population is
denoted by PG . The population is then partitioned into � subsets of frogs called
memeplexes. Each memeplex, containing � frogs, is considered as having its own
culture and evolves independently. Each memeplex is further partitioned into several
submemeplexes, each with � virtual frogs. The resource-based crossover is applied
to the best frog .PB/ and the worst frog .PW / in a submemeplex to produce a child.
If the child is worse than PW , then PW and PG are crossed over. If the new child
is still worse than PW , a random frog is generated to replace PW . For the new
child, permutation based local search (PBLS) and double justification improvements
are applied. After a certain number of iterations of crossover and local search, the
whole population is shuffled and partitioned again to perform the next generation of
evolution. For further details, please refer to Fang and Wang (2012).

4.3.5 Simulated Annealing

The Simulated Annealing (SA) metaheuristic has been inspired by the process of
annealing used in metallurgy for hardening metals. In the SA algorithm, a current
solution is maintained at all times. Neighborhood solutions from the current solution
are evaluated iteratively and if a better solution is found, it becomes the new current
solution. Occasionally, with a certain acceptance probability, a worse solution
replaces the current solution as a mechanism to escape from a local neighborhood.
If the probability � D e.��=Temp/ is less than a random number u 2 Œ0; 1�, a worse
solution is accepted. Here, � is the difference in the objective function value of
the current solution and the new solution. So, the smaller this difference, the higher
the acceptance probability and vice versa. Temp is a temperature parameter. So, the
higher the value of Temp, the higher is the acceptance probability and vice versa.
A cooling schedule for Temp is generally deployed in which you start with a high
value and progressively lower the value as the search progresses. A higher value of
Temp encourages diversification because it increases the probability of accepting a
worse solution, which in turn allows search in other neighborhoods, while a lower
Temp value encourages intensification. Note that if we never accept a worse solution,
we will necessarily stay in the same neighborhood. A good neighbor-generation-
scheme must be specified for a SA algorithm, one that allows improvements within
the local neighborhood, yet allows opportunities to escape a local neighborhood to
evaluate diversified neighborhoods.

The SA metaheuristic is stronger for local search than for a global search. Boctor
(1996), Cho and Kim (1997), Bouleimen and Lecocq (2003), and Bouffard and
Ferland (2006) have applied simulated annealing to the RCPSP.

4 Metaheuristic Methods 65

4.3.6 Tabu Search

Tabu Search (TS) employs intelligent use of memory to help exploit useful past
experience in search. Memory is essentially a list of previously visited solutions.
Several types of lists are maintained, each for a different purpose. A short-term tabu
list includes recently visited solutions. Its purpose is to help avoid cycling within
the same neighborhood. If a new solution is in this short-term list, it implies that
the current neighborhood should not be explored further and the search should
diversify to another neighborhood by using a different starting point. A list of
poor solutions is also maintained so that if the search leads to a neighborhood of
poor solutions, its presence can be detected and the search directed away from the
current neighborhood—as if it is taboo to be found in some neighborhoods. A list
of good quality solutions is also maintained to help identify good neighborhoods,
in which search can be intensified. Neighborhood search is performed similar to
the neighborhood search in SA using a neighbor-generation-scheme. Appropriate
diversification and intensification strategies are devised to guide the search. Tabu
search based metaheuristics for the RCPSP are proposed by Pinson et al. (1994),
Baar et al. (1997), Thomas and Salhi (1998), and Nonobe and Ibaraki (2002).

4.3.7 Ant Colony Optimization

Ant colony optimization (ACO) metaheuristic is inspired by the observed foraging
behavior of ant colonies in which ants discharge a chemical substance called
pheromone along the path between its colony and the food source. The smell of
pheromone signals to the other ants in the colony about the existence of previously
followed paths. A stronger smell signals that a larger number of ants have been on
that path more recently, suggesting that food might be found on that path. After
some elapsed time, all ants in a colony figure out the shortest path towards food
and they travel on the shortest possible path, thus optimizing their collective efforts.
When applied to the RCPSP, an ant selects the activity order in the activity list. The
ant uses heuristic information .˜ij / and pheromone information .£ij / as indicators
of goodness of placing an activity at a particular position in the activity list. The
idea behind using heuristic information is similar to the idea of using a priority rule.
The pheromone information stems from former ants that have found good solutions.
Some function of ˜ij and £ij determines the probability of choosing the next activity
in the activity list from amongst the set of eligible activities. Merkle et al. (2002)
proposed an ant-colony approach to the RCPSP.

Escaping from a neighborhood is achieved by accepting worse solutions after
a predetermined number of searches in the current neighborhood. A suggested
intensification strategy by Merkel et al. (2002) is a 2-OPT move. The 2-OPT move
has nothing to do with ACO though, and can be applied in conjunction with any
metaheuristic. Tseng and Chen (2006) use a hybrid of ACO and Genetic algorithms
and call their algorithm ANGEL.

66 A. Agarwal et al.

4.3.8 Bees Algorithm/Artificial Bee Colony/Bee Swarm
Optimization

The Bees Algorithm (BA), also known as Artificial Bee Colony (ABC) approach or
Bee Swarm Optimization (BSO) is inspired by the observed foraging behavior of
bees. The foraging behavior of bees happens to be quite different from the foraging
behavior of ants, hence the BA is quite different from the ACO. Foraging in a bee
colony begins by sending a few scout bees to search for good flower patches. These
scout bees search various flower patches randomly and return to the hive and convey
the information about good flower patches through a “waggle dance”. They convey
the distance, the direction, and the quality rating of a flower patch through their
dance. After the dance, some follower bees follow the scout bees who reported the
highest quality flower patches. This mechanism allows the bee colony to efficiently
gather food. Inspired by this behavior of the bees, in the Bees Algorithm, an initial
set of random solutions in the search space serves as scout bees. Each solution in the
initial set is evaluated for its quality. Bees reporting the highest quality are chosen
as “selected bees” and the neighborhood chosen by the selected bees become targets
for local neighborhood search. The scouting mechanism becomes more focused
on good neighborhoods for intensification. Sadeghi et al. (2011) and Ziarati et al.
(2011) report results on the RCPSP problem, using the Bees Algorithm. Jia and Seo
(2013) also use the Bees Algorithm for the RCPSP.

4.3.9 Multi-Pass Sampling

The term “sampling” in the multi-pass sampling approach simply means that
a sample of all possible schedules is evaluated. In that sense, all metaheuristic
approaches are essentially multi-pass sampling approaches. But in the multi-pass
sampling approach as applied to the RCSPS, (Kolisch and Drexl 1996), a sample
of solutions is generated and evaluated using certain random strategies designed to
bias the solutions towards better solutions. Kolisch and Drexl (1996) talk about three
types of sampling strategies—(1) random sampling, (2) biased random sampling,
and (3) parameterized regret-based biased sampling. A different mapping function is
used for each type of sampling strategy that determines the probability of an activity
being selected next in the activity list. Before the advent of the more advanced
metaheuristic approaches, multi-pass sampling approaches gave some of the best
results for the RCPSP.

4.3.10 Filter and Fan

The Filter and Fan (F&F) search is more of a tree search than a metaheuristic,
although it has elements of randomness that is characteristic of metaheuristics. It
builds a search tree where the root node is the solution obtained by an iterative

4 Metaheuristic Methods 67

local search approach starting from a random schedule. The first level of the tree
is constructed using certain moves that were captured during the descent process in
the local search. The next level of the tree is similarly determined from the local
search. The method stops branching as soon as an improved solution is found or
the maximum number of levels is reached, or if no more candidate moves remain
to be evaluated. In case a global improvement is found during the tree search, the
new best solution is made the starting solution for another run of the local search
procedure. For details, please refer to Ranjbar (2008).

4.3.11 Neural-Networks Based Search

The Neural-Networks based (NN-based) search was first proposed for a scheduling
problem by Agarwal et al. (2003) and was first applied to the RCPSP by Colak et
al. (2006). In this approach, a chosen priority rule (such as min LFT or LPT) and
a chosen SGS, i.e., serial or parallel, is applied iteratively. The best solution, after
a certain number of iterations, is saved as the final solution. In each iteration, the
activity list ` is different. Since only one priority rule is used, the question is how is a
new activity list generated? In this approach, for a set of activities V D .0; 1; : : :; nC
1/ we define a weight vector W D .w0;w1; : : :;wnC1/. Suppose Q represents the
vector of parameters used in the chosen priority rule. For example, if the chosen
priority rule is say Min LFT, then let qi represent the LFT for activity i and Q D
.q0; q1; : : :; qnC1/ represents the vector of latest finish times of all activities. If the
chosen heuristic is say LPT, then qi in Q represents the processing time for activity
i . LetQw represent a vector of weighted parameters .w0 �q0;w1 �q1; : : :;wnC1 �qnC1/.
If we assume a unit weight vectorW , thenQw D Q. For the first iteration we obtain
` using Q. For subsequent iterations, we use Qw to obtain a different `. After each
iteration, W is updated using a weight update strategy to give a new Qw, which in
turn generates a new `, which produces a new solution.

This NN-based approach is basically a local search approach because the
perturbed vector Qw produces a perturbed activity list in the local neighborhood of
the original activity list. The approach is called NN-based because of its similarity
with the traditional neural networks in which a weight vector is used as the
perturbation mechanism. If a good priority rule and a good SGS are used to produce
the initial solution, the local search around this original solution produces very
competitive results as shown in Colak et al. (2006). In the next section, we will
describe the NeuroGenetic approach in some detail.

4.4 The NeuroGenetic Approach

In recent years, there has been a trend towards hybrid metaheuristics. The Neu-
roGenetic (NG) approach is one such hybrid approach. It’s a hybrid of the
neural-networks based approach and the genetic algorithms approach. The GA

68 A. Agarwal et al.

approach has shown remarkable success in solving the RCPSP and is one of the most
preferred approaches for this problem. Colak et al. (2006) proposed a NN-based
approach which also gave very competitive results for this problem. Although both
GA and NN-based approaches give some of the best known results in the literature,
the two approaches are very different from each other in terms of search strategies.
While the GA approach is very effective for global search, the NN-based approach
is basically a nondeterministic local-search technique. In the NG approach, GAs
provide the diversification in search while NNs provide the intensification.

It may be noted that while GA is a solution-space based approach, NN-based
approach is a problem-space based approach. In a solution-space based approach,
the solution is perturbed from one iteration to the next, using some mechanism
(such as crossover and mutation in Genetic Algorithms). Tabu Search, Simulated
Annealing, GA, and Ant-Colony Optimization all belong to the class of solution-
space based approaches. In a problem-space approach, the problem parameters
are perturbed before moving to the next iteration, while using the same heuristic.
The NN-based approach provides a framework for applying a problem-space based
approach. With the help of a weight vector which is modified after each iteration,
weighted problem parameters are used instead of the original parameters. A suitable
weight modification strategy guides the search. The makespan for the new schedule
is still calculated using the original problem parameters. The NG approach may also
be regarded as a hybrid of a solution-space based approach and a problem-space
based approach.

In the NG approach, the GA iterations and NN iterations are interleaved, i.e., the
search alternates between GA iterations and NN iterations. When switching from
the GA to the NN approach, a small set of good quality solutions obtained thus
far by the GA approach are fed to the NN approach, which tries to improve upon
those solutions locally (intensification). When returning to the GA approach, a set
of good solutions obtained thus far by the NN approach becomes part of the current
GA population. Interleaving requires that switching back and forth between the two
techniques be technically feasible. Switching between NN and GA approaches is
somewhat challenging, given that the two approaches work quite differently in terms
of problem encoding. For more details on how the switching is done, please see
Agarwal et al. (2011).

4.5 Computational Results

In this section, we will summarize the best results in the literature for various
metaheuristics discussed in this chapter. We discuss the results for the NeuroGenetic
approach in some detail. We will present the results of running the NN approach
and the GA approach individually and then of running the NeuroGenetic approach.
These techniques were run on the well-known benchmark problem instance sets
from PSPLIB (Kolisch and Sprecher 1996) and http://www.om-db.wi.tum.de/
psplib/main.html. The sets J30, J60, and J90 consist of 480 problem instances with

http://www.om-db.wi.tum.de/psplib/main.html
http://www.om-db.wi.tum.de/psplib/main.html

4 Metaheuristic Methods 69

Table 4.1 Average percentage deviations from optimal solutions for J30 and from critical-path
based lower bound for J60, J90, and J120 for NN, GA, and Neurogenetic Approaches

Number of schedules evaluated
Approach Dataset 1,000 5,000

NN approach alone J30 0:25 0:11

GA J30 0:19 0:15

Neurogenetic J30 0:13 0:10

NN approach alone J60 11:72 11:39

GA J60 11:66 11:52

Neurogenetic J60 11:51 11:29

NN approach alone J90 11:21 11:10

GA J90 11:31 11:11

Neurogenetic J90 11:17 11:06

NN approach alone J120 34:94 34:57

GA J120 35:11 34:95

Neurogenetic J120 34:65 34:15

4 resource types and 30, 60, and 90 activities, respectively. The set J120 consists of
600 problem instances with 4 resource type and 120 activities. For a good review
of results we refer the readers to Icmeli et al. (1993), Ozdamar and Ulusoy (1995),
Demeulemeester and Herroelen (1997), Herroelen et al. (1998), Herroelen et al.
(1998), Hartmann and Kolisch (2000), Kolisch and Hartmann (2006).

Table 4.1 shows the results of NN, GA, and NG approaches for 1,000 and 5,000
solutions for each of the four datasets in terms of the average percentage deviations
from optimal solutions for J30 and from critical-path based lower bound solutions
for J60, J90, and J120. For each dataset, NG performs better than NN or GA alone.
Tables 4.2 through 4.5 show the results obtained by some of the top performing
metaheuristics in the literature for 1,000 and 5,000 schedules, respectively. Again,
for the J30 problems in Table 4.2, the average percentage deviations from optimal
solutions are shown. For J60, J90, and J120 problems (Tables 4.3, 4.4, and 4.5),
the average percentage deviations from the critical-path based lower bound are
presented.

4.6 Conclusions

Over the past 20 years, a large number of metaheuristic approaches have been
proposed for the resource constrained project scheduling problem. Many of the
metaheuristics have been inspired by observation of certain processes found in
nature. These processes include the genetic processes for evolution of species, ant
colony’s food foraging behavior, bee colony food foraging behavior, electromag-
netism, behavior of neurons in a neural networks etc. The various metaheuristics

70 A. Agarwal et al.

Table 4.2 Average percentage deviations from the optimal solutions for J30

of schedules
Algorithm Reference 1,000 5,000

Scatter search Mobini et al. (2009) 0.05 0.02

Filter and fan Ranjbar (2008) 0.09 0.00

Hybrid scatter search Ranjbar et al. (2009) 0.10 0.03

GA, TS, path relinking Kochetov and Stolyar (2003) 0.10 0.04

Decomposition based GA Debels and Vanhoucke (2007) 0.12 0.04

Neurogenetic Agarwal et al. (2011) 0.13 0.10

Bees algorithm Sadeghi et al. (2011) 0.15 0.09

ACO and GA (ANGEL) Tseng and Chen (2006) 0.22 0.09

Sampling—LFT Tormos and Lova (2003) 0.23 0.14

GA Alcaraz et al. (2004) 0.25 0.06

HNA Colak et al. (2006) 0.25 0.11

Sampling—LFT Tormos and Lova (2001) 0.25 0.15

GA—hybrid Valls et al. (2008) 0.27 0.06

Scatter search/EM Debels et al. (2006) 0. 27 0.11

GA (biased random key) Gonçalves et al. (2011) 0.32 0.02

GA Alcaraz and Maroto (2001) 0.33 0.12

Bees algorithm Jia and Seo (2013) 0.34 0.17

GA Valls et al. (2005) 0.34 0.20

Table 4.3 Avg percentage deviations from critical path based lower bounds for J60

of schedules
Algorithm Reference 1,000 5,000

GA Khanzadi et al. (2011) 10:10 9:54

Filter and fan Ranjbar (2008) 10:66 10:56

SS, path relinking Mobini et al. (2009) 11:12 10:74

Decomposition based GA Debels and Vanhoucke (2007) 11:31 10:95

GA Zamani (2013) 11:33 10:94

Shuffled frog-leaping Fang and Wang (2012) 11:44 10:87

Neurogenetic Agarwal et al. (2011) 11:51 11:29

GA (biased random key) Gonçalves et al. (2011) 11:56 10:57

GA—hybrid Valls et al. (2008) 11:56 11:10

Hybrid scatter search Ranjbar et al. (2009) 11:59 11:07

HNA Colak et al. (2006) 11:72 11:39

Scatter search Debels et al. (2006) 11:73 11:10

GA Alcaraz et al. (2004) 11:89 11:19

Bees algorithm Sadeghi et al. (2011) 11:93 11:48

ACO and GA (ANGEL) Tseng and Chen (2006) 11:94 11:27

Sampling—LFT Tormos and Lova (2003) 12:04 11:72

GA Valls et al. (2005) 12:21 11:27

Bees algorithm Jia and Seo (2013) 12:35 11:96

4 Metaheuristic Methods 71

Table 4.4 Avg percentage deviations from critical path based lower bounds for J90

of schedules
Algorithm Reference 1,000 5,000

GA—hybrid Valls et al. (2008) NA 10.46

Filter and fan Ranjbar (2008) 10.52 10.11

Decomposition based GA Debels and Vanhoucke (2007) 10.80 10.35

GA Khanzadi et al. (2011) 11.02 10.75

Neurogenetic Agarwal et al. (2011) 11.17 11.06

Scatter search/EM Debels et al. (2006) 11.30 10.59

Table 4.5 Avg percentage deviations from critical path based lower bounds for J120

of schedules
Algorithm Reference 1,000 5,000

Filter and fan Ranjbar (2008) 32:96 31:42

Decomposition based GA Debels and Vanhoucke (2007) 33:55 32:18

GA Zamani (2013) 34:02 32:89

GA—hybrid Valls et al. (2008) 34:07 32:54

Scatter search, path relinking Mobini et al. (2009) 34:49 32:61

Neurogenetic Agarwal et al. (2011) 34:65 34:15

Shuffled frog leaping Fang and Wang (2012) 34:83 33:20

HNA—FBI Colak et al. (2006) 34:94 34:57

Scatter search Debels et al. (2006) 35:22 33:10

GA—FBI Valls et al. (2005) 35:39 33:24

GA (biased random key) Gonçalves et al. (2011) 35:94 32:76

Sampling—LFT Tormos and Lova (2003) 35:98 35:30

Sampling—LFT Tormos and Lova (2001) 36:32 35:62

ACO and GA hybrid (ANGEL) Tseng and Chen (2006) 36:39 34:49

GA Alcaraz et al. (2004) 36:53 33:91

Bees algorithm Jia and Seo (2013) 36:84 35:79

include Genetic Algorithms, Neural Networks, Ant Colony Optimization, Bees
Algorithm, Simulated Annealing, Shuffled Frog-Leaping Algorithm, Scatter Search,
Electromagnetism-Like Algorithms, Tabu Search, and Filter and Fan approach.

In this chapter we have reviewed and discussed the various metaheuristic
approaches used for the RCPSP and explained in some detail one metaheuristic
approach called the NeuroGenetic approach. The top performing metaheuristics
are mostly GA based approaches. Metaheuristics that are not GA based, that
perform well are Filter and Fan, Neural Networks based metaheuristics, Multi-
pass Sampling, and Bee Colony Algorithms. Simulated Annealing, Tabu Search,
and Ant Colony Optimization have not performed quite as well in comparison to
other metaheuristics.

72 A. Agarwal et al.

References

Agarwal A, Jacob VS, Pirkul H (2003) Augmented neural networks for task scheduling. Eur J Oper
Res 151(3):481–502

Agarwal A, Colak S, Erenguc SS (2011) A neurogenetic approach for the resource-constrained
project scheduling problem. Comput Oper Res 38(1):44–50

Alcaraz J, Maroto C (2001) A robust genetic algorithm for resource allocation in project
scheduling. Ann Oper Res 102:83–109

Alcaraz J, Maroto C, Ruiz R (2004) Improving the performance of genetic algorithms for the
RCPS problem. In: Proceedings of the ninth international workshop on project management
and scheduling, Nancy, pp 40–43

Baar T, Brucker P, Knust S (1997) Tabu search algorithms for resource-constrained project
scheduling problems. In: Voss S, Martello S, Osman I, Roucairol C (eds) Metaheuristics:
advances and trends in local search paradigms for optimization. Kluwer, Boston, pp 1–18

Birbil SI, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Global
Optim 25:263–282

Boctor FF (1996) Resource-constrained project scheduling simulated annealing. Int J Prod Res
34(8):2335–2351

Bouffard V, Ferland JA (2007) Improving simulated annealing with variable neighborhood search
to solve the resource-constrained scheduling problem. J Sched 10:375–386

Bouleimen K, Lecocq H (2003) A new efficient simulated annealing algorithm for the resource-
constrained project scheduling problem and its multiple mode version. Eur J Oper Res
149:268–281

Cho JH, Kim YD (1997) A simulated annealing algorithm for resource-constrained project
scheduling problems. J Oper Res 48(7):736–744

Colak S, Agarwal A, Erenguc SS (2006) Resource-constrained project scheduling problem: a
hybrid neural approach. In: Wȩglarz J, Jozefowska J (eds) Perspectives in modern project
scheduling. Springer, New York, pp 297–318

Debels D, Vanhoucke M (2007) A decomposition-based genetic algorithm for the resource-
constrained project-scheduling problem. Oper Res 55(3):457–469

Debels D, De Reyck B, Leus R, Vanhoucke M (2006) A hybrid scatter search/electromagnetism
meta-heuristic for project scheduling. Eur J Oper Res 169(2):638–653

Demeulemeester E, Herroelen W (1997) New benchmark results for the resource-constrained
project scheduling problem. Manag Sci 43(11):1485–1492

Eusuff M, Lansey K, Fasha F (2006) Shuffled frog-leaping algorithm: a memetic metaheuristic for
discrete optimization. Eng Optim 38(2):129–154

Fang C, Wang L (2012) An effective shuffled frog-leaping algorithm for resource-constrained
project scheduling problem. Comput Oper Res 39:890–901

Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison
Wesley, New York

Gonçalves JF, Resende MGC, Mendes JJM (2011) A biased random-key genetic algorithm with
forward-backward improvement for the resource constrained project scheduling problem. J
Heuristics 17:467–486

Hartmann S (1998) A competitive genetic algorithm for the resource-constrained project schedul-
ing. Nav Res Log 45:733–750

Hartmann S (2002) A self-adapting genetic algorithm for project scheduling under resource
constraints. Nav Res Log 49(5):433–448

Hartmann S, Kolisch R (2000) Experimental evaluation of state of-the-art heuristics for the
resource-constrained project scheduling problem. Eur Oper Res 127:394–407

Herroelen W, Demeulemeester E, De Reyck B (1998) Resource-constrained project scheduling: a
survey of recent developments. Comput Oper 25(4):279–302

Icmeli O, Erenguc SS, Zappe CJ (1993) Project scheduling problems: a survey. Int J Oper Prod
Man 13(11):80–91

4 Metaheuristic Methods 73

Jia Q, Seo Y (2013) Solving resource-constrained project scheduling problems: conceptual
validation of FLP formulation and efficient permutation-based ABC computation. Comput
Oper Res 40(8):2037–2050

Khanzadi M, Soufipour R, Rostami M (2011) A new improved genetic algorithm approach and a
competitive heuristic method for large-scale multiple resource-constrained project-scheduling
problems. Int J Ind Eng Comput 2:737–748

Kochetov Y, Stolyar A (2003) Evolutionary local search with variable neighborhood for the
resource constrained project scheduling problem. In: Proceedings of the 3rd international
workshop of computer science and information technologies, Russia

Kolisch R (1996) Serial and parallel resource–constrained project scheduling methods revisited:
theory and computation. Eur J Oper Res 90:320–333

Kolisch R, Drexl A (1996) Adaptive search for solving hard project scheduling problems. Nav Res
Log 43(1):23–40

Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource–constrained
project scheduling: an update. Eur J Oper Res 174(1):23–37

Kolisch R, Sprecher A (1996) PSPLIB – a project scheduling problem library. Eur J Oper Res
96:205–216

Li K, Willis R (1992) An iterative scheduling technique for resource-constrained project schedul-
ing. Eur J Oper Res 56(3):370–379

Mobini M, Rabbani M, Amalnik MS, Razmi J, Rahimi-Vahed AR (2009) Using an enhanced
scatter search algorithm for a resource-constrained project scheduling problem. Soft Comput
13:597–610

Merkle D, Middendorf M, Schmeck H (2002) Ant colony optimization for resource-constrained
project scheduling. IEEE Trans Evol Comput 6:333–346

Nonobe K, Ibaraki T (2002) Formulation and tabu search algorithm for the resource constrained
project scheduling problem. In: Ribeiro CC, Hansen P (eds) Essays and surveys in metaheuris-
tics. Kluwer, Boston, pp 557–588

Ozdamar L, Ulusoy G (1995) A survey on the resource-constrained project scheduling problem.
IIE Trans 27:574–586

Pinson E, Prins C, Rullier F (1994) Using tabu search for solving the resource-constrained project
scheduling problem. In: Proceedings of the 4th international workshop on project management
and scheduling, Leuven, pp 102–106

Ranjbar M (2008) Solving the resource constrained project scheduling problem using filter-and-fan
approach. Appl Math Comput 201:313–318

Ranjbar M, De Reyck B, Kianfar F (2009) A hybrid scatter search for the discrete time/resource
trade-off problem in project scheduling. Eur J Oper Res 193:35–48

Sadeghi A, Kalanaki A, Noktehdan A, Samghabadi AS, Barzinpour F (2011) Using bees algorithm
to solve the resource constrained project scheduling problem in PSPLIB. In: Zhou Q (ed)
ICTMF 2011. CCIS, vol 164, pp 486–494

Sebt MH, Alipouri Y, Alipouri Y (2012) Solving resource-constrained project scheduling problem
with evolutionary programming. J Oper Res Soc 62:1–9

Thomas PR, Salhi S (1998) A tabu search approach for the resource constrained project scheduling
problem. J Heuristics 4:123–139

Tormos P, Lova A (2001) A competitive heuristic solution technique for resource constrained
project scheduling. Ann Oper Res 102:65–81

Tormos P, Lova A (2003) An efficient multi-pass heuristic for project scheduling with constrained
resources. Int J Prod Res 41(5):1071–1086

Tseng LY, Chen SC (2006) A hybrid metaheuristic for the resource-constrained project scheduling
problem. Eur J Oper Res 175:707–721

Valls V, Ballestín F, Quintanilla MS (2004) A population-based approach to the resource-
constrained project scheduling problem. Ann Oper Res 131:305–324

Valls V, Ballestín F, Quintanilla MS (2005) Justification and RCPSP: a technique that pays. Eur J
Oper Res 165(2):375–386

74 A. Agarwal et al.

Valls V, Ballestín F, Quintanilla MS (2008) A hybrid genetic algorithm for the resource constrained
project scheduling problem. Eur J Oper Res 185:495–508

Zamani R (2013) A competitive magnet-based genetic algorithm for solving the resource-
constrained project scheduling problem. Eur J Oper Res 229:552–559

Ziarati K, Akbari R, Zeighami V (2011) On the performance of bee algorithms for resource-
constrained project scheduling problem. Appl Soft Comput 11:3720–3733

Part II
The Resource-Constrained Project

Scheduling Problem with Generalized
Precedence Relations

Chapter 5
Lower Bounds and Exact Solution Approaches

Lucio Bianco and Massimiliano Caramia

Abstract Generalized precedence relations are temporal constraints in which the
starting/finishing times of a pair of activities have to be separated by at least or at
most an amount of time denoted as time lag (minimum time lag and maximum
time lag, respectively). This chapter is devoted to project scheduling with gen-
eralized precedence relations with and without resource constraints. Attention is
focused on lower bounds and exact algorithms. In presenting existing results
on these topics, we concentrate on recent results obtained by ourselves. The
mathematical models and the algorithms presented here are supported by extensive
computational results.

Keywords Generalized precedence relations • Makespan minimization • Project
scheduling • Resource constraints

5.1 Introduction

Generalized Precedence Relations (GPRs) (Elmaghraby and Kamburowski 1992)
are temporal constraints in which the starting/finishing times of a pair of activities
have to be separated by at least or at most an amount of time denoted as
“time lag” (minimum time lag and maximum time lag, respectively). GPRs can
be classified into Start-to-Start .SS/, Start-to-Finish .SF/, Finish-to-Start .FS/ and
Finish-to-Finish .FF/ relations.

A minimum time lag constraint .SSmin
ij .ı/; SFmin

ij .ı/;FSmin
ij .ı/;FFmin

ij .ı// specifies
that activity j can start (finish) only if its predecessor i has started (finished)
at least ı time units before. Analogously, a maximum time lag constraint
.SSmax

ij .ı/; SFmax
ij .ı/;FSmax

ij .ı/;FFmax
ij .ı// imposes that activity j can be started

(finished) at most ı time slots beyond the starting (finishing) time of activity i .
The introduction of GPRs has been stimulated by many practical applications. An

example may be given by a company that must supply a client with a certain number

L. Bianco (�) • M. Caramia
Department of Enterprise Engineering, University of Rome “Tor Vergata”, Roma, Italy
e-mail: bianco@dii.uniroma2.it; caramia@dii.uniroma2.it

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_5

77

mailto:bianco@dii.uniroma2.it
mailto:caramia@dii.uniroma2.it

78 L. Bianco and M. Caramia

of products which must be also assembled within 100 days; this relationship can be
modeled as SFmax

ij .100/, which says that the assembly process (activity j) must
finish at most 100 days after the starting time of the assembly (activity i) of the
products. Another example may be borrowed from building construction companies
that during the planning process often have to face with planning problems in which
pairs of activities i; j have to be scheduled in such a way that the beginning of
activity j must be at least ı units of time after the starting time of activity i . These
situations can be represented by a constraint of the type SSmin

ij .ı/.
GPRs can be represented in a so-called standardized form by transforming them,

e.g., into minimum Start-to-Start precedence relationships by means of the so-called
Bartusch et al.’s transformations (Bartusch et al. 1988). Thus, when applied to a
given Activity-on-Node (AoN) network with GPRs, such transformations lead to
a standardized activity network where, to each arc .i; j /, a label ıij representing
the time lag between the two activities i and j is associated (De Reyck 1998). If
more than one time lag ıij between i and j exists, only the largest ıij is considered.
In GPR networks, depending on the transformations, temporal relationships may
produce cycles while preserving project feasibility, as it happens with Bartusch
et al.’s transformations.

When no resource constraints are concerned the minimum completion time can
be calculated in polynomial time by computing the longest path from the source to
the sink in such a network. In fact it is well known that, in presence of GPRs and
not positive cycles, such longest path can be computed by means of the algorithm
of Floyd and Warshall (see, e.g., Ahuja et al. 1993) which complexity is O.n3/
where n is the number of network nodes (i.e., the number of real activities of
the project). A variant of this algorithm, proposed by Bellman–Ford–Moore (see,
Ahuja et al. 1993), can be also utilized. It has a complexity O.n � m/ where n
is the number of nodes (i.e., the number of real activities of the project) and m
the number of arcs of the network. Bianco and Caramia (2010) proposed a new
formulation of the Resource Unconstrained Project Scheduling Problem (RUPSP)
with GPRs which permits to compute the minimum project duration in O.m/
time where m is the number of precedence relations. This formulation will be
described in Sect. 5.2. When resource constraints are involved the problem is
denoted as Resource Constrained Project Scheduling Problem (RCPSP) with GPRs.
It is strongly NP-hard and also the easier problem of detecting whether a feasible
solution exists is NP-complete (Bartusch et al. 1988).

To the best of our knowledge, the exact procedures presented in the literature
for such a problem are the branch-and-bound algorithms by Bartusch et al. (1988),
Demeulemeester and Herroelen (1997b), De Reyck (1998), Schwindt (1998), Fest
et al. (1999), Dorndorf et al. (2000). The paper by Bartusch et al. (1988) reports a
limited computational experience on a case study. The paper by Demeulemeester
and Herroelen (1997b) is conceived to work on minimum time lags only. The
other three algorithms work with both minimum and maximum time lags. In
particular, De Reyck and Herroelen (1998) present results on projects with 30
activities and percentages of maximum time lags of 10 and 20 % with respect
to the total number of generalized precedence relations. The branch-and-bound

5 Lower Bounds and Exact Solution Approaches 79

algorithm by Schwindt (1998) is characterized by delaying activities by adding
special precedence constraints, i.e., disjunctive precedence constraints, between sets
of activities rather than pair of activities as done by the above mentioned approaches.
The algorithm by Fest et al. (1999) differs from that of Schwindt (1998) by
making use of release dates for certain activities in place of disjunctive precedence
constraints used in the previous approach. The algorithm by Dorndorf et al. (2000)
uses constraint-propagation techniques which check whether certain start times can
be excluded from the computation since they cannot produce a feasible, active or
optimal schedule.

Also lower bounds are available for this problem. In particular, two classes of
lower bounds are well known in the literature, i.e., constructive and destructive lower
bounds. The first class is formed by those lower bounds associated with relaxations
of the mathematical formulation of the problem (for instance, the critical path lower
bound and the basic resource based lower bound; see, e.g., Demeulemeester and
Herroelen 2002). Destructive lower bounds, instead, are obtained by means of an
iterated binary search based routine as reported, e.g., in Klein and Scholl (1999).
Also De Reyck and Herroelen (1998) proposed a lower bound for the RCPSP-
GPRs denoted with lb3-gpr that is the extension of the lower bound lb3 proposed
by Demeulemeester and Herroelen (1997a) for the RCPSP.

Additional literature on RCPSP with GPRs can be found in the books of Dorndorf
(2002), Neumann et al. (2003).

In Sect. 5.2 a new mathematical formulation for the RUPSP with GPRs is
illustrated (Bianco and Caramia 2010). In Sect. 5.3.1 and in Sect. 5.3.2 a new
lower bound and a new mathematical formulation with an exact solution algorithm
proposed by Bianco and Caramia (2011a, 2012) are described, respectively.

5.2 A New Formulation of the Resource Unconstrained
Project Scheduling Problem with GPRs

It is well known in project scheduling that PERT/CPM methods can be applied under
two assumptions. The first one is that resources are available in infinite amounts,
and the second is that the precedence relationships between two activities are only
of the Finish-to-Start type with time lags equal to zero; this implies that an activity
can start only as soon as all its predecessors have finished.

In this context, one can define an acyclic network whose nodes are the activities
and arcs are the precedence constraints (AoN network), and compute the minimum
project completion time as the length of the critical path, i.e., the longest path from
the initial activity to the final activity in such an activity network (see, e.g., Moder
et al. 1983; Radermacher 1985).

The computation of the critical path can be accomplished by means of the
well-known forward pass recursion algorithm (see, e.g., Kelley 1963), that is a
classical label setting algorithm for longest path calculation. The computational
complexity of this algorithm is O.m/, wherem is the number of arcs of the network;

80 L. Bianco and M. Caramia

when the graph has a high density, the complexity tends to O.n2/, where n is the
number of real activities.

When GPRs are present, the standardized network, as mentioned in the
introduction may contain cycles.

This implies that the RUPSP with GPRs and minimum completion time
objective:

• cannot be solved by the classical forward and backward recursion algorithm;
• can be solved by computing the longest path on the standardized network from

the source node to the sink node, whose length is the sum of the time lags
associated with its arcs, using an algorithm working on “general” networks with
a worst-case complexity O.n �m/ (see, e.g., Ahuja et al. 1993);

• does not admit feasible solutions when the topology of the network and the
arc-length function induce one or more directed cycles of positive length (see,
e.g., Demeulemeester and Herroelen 2002).

In the following, the new network model for RUPSP with GPRs, mentioned
before, is described. It is based on a new formulation such that the standardized
network obtained is always acyclic since the precedence relationships between each
pair of activities are only of the Finish-to-Start type with zero time lags.

5.2.1 A Network Formulation of RUPSP with GPRs

For the sake of completeness, before presenting such a new formulation, we show
how project scheduling with GPRs and minimum makespan (without resource
constraints) is formulated in the literature. First GPRs are all converted into
Start-to-Start minimum time lag relationships by means of the Bartusch et al.’s
transformation (Bartusch et al. 1988) where ıij is the generic time lag between
activities i and j ; then, denoting with nC 1 the (dummy) sink node of the project
network and with E the set of pairs of activities constrained by GPRs, we have

Min. SnC1
s. t. Sj � Si C ıij ..i; j / 2 E/

Si � 0 .i 2 V /

where Si is the starting time of activity i , and V is the set of activities to be carried
out.

Let us consider now an acyclic AoN network, representing a given project, where
the labels on the nodes denote the activity durations while the labels on the arcs
encode time lags. An example is the network in Fig. 5.1, where node 0 and node 5
are dummy nodes (the source and the sink of the network, respectively), i.e., they
have zero durations.

5 Lower Bounds and Exact Solution Approaches 81

0 1

2

4

4

50 2

7

4 0

3

)9(min
12SF

)4(min
24SS

)4(min
13SS

)8(max
13FF

)3(min
34FF

)0(min
01SS

)0(min
45FS

Fig. 5.1 A network with GPRs

0 1

2

4

3

50 2

7

4 0

4

0

2
4

-6

4
3

4

Fig. 5.2 The AoN standardized network and its critical path (bold arcs)

If all the GPRs are transformed into SSmin
ij type precedence relationships by

means of the Bartusch et al.’s transformations, we obtain the standardized network
in Fig. 5.2, where the label on a generic arc .i; j / is the Start-to-Start minimum time
lag between i and j , and the label on the generic node i is the duration pi of the
corresponding activity i (note that the network contains a cycle).

Let us now examine whether an acyclic AoN network with GPRs can be
transformed into an AoN acyclic network with all constraints of the Finish-to-Start
type and zero time lag. To this aim let us consider all GPRs between two activities
i and j . They have the following form:

Si C SSmin
ij � Sj � Si C SSmax

ij

Si C SFmin
ij � Cj � Si C SFmax

ij

Ci C FSmin
ij � Sj � Ci C FSmax

ij

Ci C FFmin
ij � Cj � Ci C FFmax

ij

where Si.Sj / denotes the starting time, and Ci.Cj / the finishing time of activity
i.j /. Moreover, SSmin

ij ; SFmin
ij ;FSmin

ij ;FFmin
ij are the minimum time lags, while

82 L. Bianco and M. Caramia

SSmax
ij ; SFmax

ij ;FSmax
ij ;FFmax

ij are the maximum time lags, each one corresponding
to the different type of constraint between activities i and j .

These relations can be transformed in terms of FSij constraints by means of the
following transformation rules:

Si C SSmin
ij � Sj ! Ci C Oıij � Sj ; with Oıij D �pi C SSmin

ij

Sj � Si C SSmax
ij ! Sj � Ci C Oıij; with Oıij D �pi C SSmax

ij

Si C SFmin
ij � Cj ! Ci C Oıij � Sj ; with Oıij D �pi � pj C SFmin

ij

Cj � Si C SFmax
ij ! Sj � Ci C Oıij; with Oıij D �pi � pj C SFmax

ij

Ci C FSmin
ij � Sj ! Ci C Oıij � Sj ; with Oıij D FSmin

ij

Sj � Ci C FSmax
ij ! Sj � Ci C Oıij; with Oıij D FSmax

ij

Ci C FFmin
ij � Cj ! Ci C Oıij � Sj ; with Oıij D FFmin

ij � pj
Cj � Ci C FFmax

ij ! Sj � Ci C Oıij; with Oıij D FFmax
ij � pj

Now, it is possible to define a new AoN network where between each pair of
nodes i; j of the original network related to a temporal constraint, we insert a
dummy activity (dummy node) i 0 whose duration pi 0 is

pi 0 � Oıij

in the case of minimum time lag, and

pi 0 � Oıij

in the case of maximum time lag. Note that Oıij in the former case is a lower bound
on the value of pi 0 , and in the latter case is an upper bound on its value.

This new network is acyclic and will have only precedence relationships of the
FS type and zero time lags since the latter are embedded in durations pi 0 associated
with the dummy activities.

Referring to the previous example, the transformed AoN network is represented
in Fig. 5.3, where, based on the proposed transformation, p00 � 0; p10 � 2; p100 �
4; p1000 � 0; p20 � �3; p30 � �1; p40 � 0.

The minimum completion time of the project is then given by the earliest
starting time of node 5. In the next section, we give a mathematical programming
formulation of the problem now described.

5 Lower Bounds and Exact Solution Approaches 83

0 1

2

4

4

5
0 2

7

4 0

3

0'
p0'

p1'''

p1'

p1''

1'

1''

1''' 2'

p2'

3'
p3'

4'
p4'

Fig. 5.3 The transformed acyclic network

0 1 n+1

i

0'

p0'p0 p1

pi

pn+1

i'

pi'
j

pj

Fig. 5.4 A generic transformed AoN network

5.2.2 A Mathematical Programming Formulation of RUPSP
with GPRs

Following the presentation in the previous section, given a project with GPRs,
we can use the AoN network representation shown in Fig. 5.4, where temporal
constraints are of the FS type only with zero time lags.

Let us denote by

• V the set of the nodes of the original network;
• NV the set of the dummy nodes of the transformed network;
• V [NV the set of all nodes of the transformed network;
• NU the subset of nodes in NV corresponding to minimum time lag constraints in the

original network.

The problem of finding the minimum completion time of a project is that of
computing the minimum time to reach node nC 1, and can be formulated in terms
of linear programming as follows:

Min. SnC1

s. t. Si 0 D Si C pi .i 0 2 NV I i 2 Pred.i 0// (5.1)

84 L. Bianco and M. Caramia

Si D Si 0 C pi 0 .i 2 V I i 0 2 Pred.i// (5.2)

pi 0 � `i 0 .i 0 2 NU � NV / (5.3)

pi 0 � `i 0 .i 0 2 NV n NU / (5.4)

Si 2 R�0 .i 2 V n f0g/ (5.5)

Si 0 2 R�0 .i 0 2 NV / (5.6)

S0 D 0 (5.7)

where

• pi is the duration of activity i 2 V ; we assume, without loss of generality, that
these durations are positive integer values;

• `i 0 is the bound on the duration pi 0 , equal to the Oıij value obtained by means of
the Finish-to-Start transformation rules;

• Pred.i/ and Pred.i 0/ are, respectively, the predecessor node sets of i and i 0;
• Si .Si 0/ is the starting time of activity i 2 V.i 0 2 NV /;
• pi 0 is the duration of activity i 0 2 NV .

Note that equality constraints (5.1) are guaranteed since each dummy node i 0
has a unique predecessor and, therefore, its starting time is equal to the sum of
the starting time and the duration of its (unique) predecessor. Equality constraints
(5.2) can be guaranteed even if a node i can admit more than one predecessor
i 0 2 Pred.i/; indeed, we just need to observe that pi 0 , with i 0 2 Pred.i/, are
variables and, hence, can assume proper values [respecting (5.3) and (5.4)] that
allow equalities to be satisfied.

The above mathematical program can be solved in O.m/. In fact, it can be
observed that constraints (5.3) and (5.4) can be merged with constraints (5.2)
obtaining the following mathematical program:

Min. SnC1

s. t. Si 0 D Si C pi .i 0 2 NV I i 2 Pred.i 0//

Si � Si 0 C `i 0 .i 2 V I i 0 2 Pred.i/\ NU /
Si � Si 0 C `i 0 .i 2 V I i 0 2 Pred.i/\ . NV n NU /
Si 2 R�0 .i 2 V n f0g/
Si 0 2 R�0 .i 0 2 NV /
S0 D 0

The above formulation is solvable in time linear with the number of arcs for
acyclic networks using a dynamic programming recursion (see, e.g., Hochbaum and
Naor 1994).

5 Lower Bounds and Exact Solution Approaches 85

Solving RUPSP with GPRs in O.m/ time represents a novel result, compared
to the currently known O.n � m/ time complexity associated with the approach of
Bartusch et al. (1988) mentioned before.

In Bianco and Caramia (2010) it is also shown that:

• the minimum completion time of a project with minimum time lags only is
given by the length of the longest path in the network, where the path length
is given by the sum of the node weights on the path (see Proposition 3);

• when minimum and maximum time lags are present simultaneously, by
exploiting the dual formulation of the mathematical program (5.1)–(5.7),
the minimum completion time can be achieved with the same computational
complexity O.m/ by finding an augmenting path of longest length from node
0 to node n C 1 in the proposed acyclic network in which a unit capacity is
installed on each arc (see Propositions 4 and 5).

The main results contained in Bianco and Caramia (2010) when minimum and
maximum time lags are present simultaneously state that in the acyclic network
two consecutive minimum and maximum time lag arcs have not to be oriented in
the same direction when they are in the optimal augmenting path. To this end one
must impose a starting flow vector whose components corresponding to minimum
time lag arcs are zero and those associated with maximum time lag arcs are one.
Since the flow vector must satisfy the mass balance constraints, the source is
connected with the tail of each maximum time lag arc .i; i 0/, when on this tail
node at least one minimum time lag arc is incident. Analogously, the head of each
maximum time lag arc .i 0; i / is connected with the sink when on this head node at
least one minimum time lag arc is incident. To such additional dummy arcs (denote
with Ed this set of dummy arcs) a flow equal to one is assigned.

Note that the length of an augmenting path in the network can be computed as
the sum of its arc weights where, according to the dual formulation and the main
results proved in the paper:

• the weight of a minimum time lag arc .i; i 0/ is given by pi ;
• the weight of a minimum time lag arc .i 0; i / is given by `i 0 ;
• the weight of a maximum time lag arc .i; i 0/ is given by �pi ;
• the weight of a maximum time lag arc .i 0; i / is given by �`i 0
• the weight of dummy arcs in D is �1, since they must not be traversed by the

augmenting path.

We finally note that the proposed approach is also able to cope with infeasibility
of project without any additional computing time.

In order to analyze how the proposed model behaves experimentally a compari-
son with Bartusch et al.’s approach (using the O.n �m/ Bellman–Ford–Moore label
correction algorithm (see Ahuja et al. 1993) has been carried out using benchmarks
taken from the library of projects at the web page http://www.wiwi.tu-clausthal.de/
abteilungen/produktion/forschung/schwerpunkte/project-generator.

This site contains projects of sizes ranging from 10 to 1,000 activities, where each
group of projects has 90 instances each with 5 resources. The authors experimented

http://www.wiwi.tu-clausthal.de/abteilungen/produktion/forschung/schwerpunkte/project-generator
http://www.wiwi.tu-clausthal.de/abteilungen/produktion/forschung/schwerpunkte/project-generator

86 L. Bianco and M. Caramia

with projects having 100 and 1,000 activities, neglecting resource constraints, and
reported extensively the running times employed by the two approaches to find
the minimum completion time. In the approach proposed by Bianco and Caramia
running times on networks with 100 and 1,000 activities oscillate around between
10 and 100 s for 104 replications of the algorithm, respectively. Using instead
the Bartusch et al.’s approach, running times are very close to 100 and 1,000 s,
respectively, for 104 replications of the algorithm.

5.2.3 An Example

In this section we show an example on how the approach described in the previous
section works. Consider the network in Fig. 5.5. By applying the transformation
described in Sect. 5.2.1, we obtain the network depicted in Fig. 5.6. In Fig. 5.7, we
display the network with weights on arcs, where the label on a generic arc represents
the cost (time) to traverse such an arc.

Note that:

• paths 0 � 00 � 1 � 10 � 2 � 20 � 3 � 30 � 4 � 40 � 5 and 0 � 2 � 20 � 3 � 5
are not feasible; indeed, the unit of flow entering at node 2, in both paths, cannot
traverse arc .2; 20/ since the latter is saturated.

Therefore, the unit of flow can be routed onto three different augmenting paths,
i.e.,

P1 W 0 � 00 � 1� 10 � 2 � 200 � 4 � 40 � 5
P2 W 0 � 00 � 1� 100 � 3 � 30 � 4 � 40 � 5
P3 W 0 � 00 � 1� 100 � 3 � 20 � 2 � 200 � 4 � 40 � 5

Augmenting paths P1 and P2 have length equal to 11, while path P3 (depicted
in bold in Fig. 5.7) is an augmenting path of longest length (the critical path), and
gives the minimum completion time of the project equal to 12 time units.

0 1

2

4

4

50 2

7

4 0

3

)0(min
01SS

)4(min
45SS

)2(min

12SS

)4(min

13SS)3(min
34SS

)5(min
24SS

)1(max
23SS

Fig. 5.5 An example of GPRs network

5 Lower Bounds and Exact Solution Approaches 87

0' 1

2

4

4

4'0 2

7

4 0

3

0
0 5

01'
0

2
1''

2'
-6

2''
-2

3'
-1

Fig. 5.6 The transformed GPRs network

0' 1

2

4

4

4'
0

2

7

4 0

3

0
0 5

1'

0

2

1''

2'

6

2'' -2

3'
-1

2

-7

∞−

∞−

[0,1] [0,1]

[0,1]

[0,1]

[0,1]

[0,1]
[1,1]

[1,1]
[1,1]

[0,1]

[0,1]

[0,1] [0,1] [0,1]

[1,1][0,1]

Fig. 5.7 The network with weights, flows and capacities on arcs. Note that labels Œ�; �� contain arc
flow and arc capacity, respectively, for each arc

5.3 The Resource Constrained Project Scheduling Problem
with GPRs

In this section, the RCPSP with GPRs is considered and the most recent results
obtained by Bianco and Caramia (2011a, 2012) are illustrated.

5.3.1 A New Lower Bound for RCPSP with GPRs

In Bianco and Caramia (2011a) a new lower bound is proposed. This lower bound
is based on a relaxation of the resource constraints among independent activities
and on a solution of the relaxed problem suitably represented by means of an AoN
acyclic network. In particular, the network model proposed in Bianco and Caramia
(2010) is exploited to try to get rid of the resource constraints. The analysis is
restricted only on those pairs of activities for which a GPR exists to determine
a lower bound on the minimum makespan. For each of these pairs it is verified

88 L. Bianco and M. Caramia

whether the amount of resources requested exceeds the resource availability, for
at least one resource type. In case of a positive answer, some results which allow
the reduction of the problem to a new resource unconstrained project scheduling
problem with different lags and additional disjunctive constraints are obtained. This
last problem can be formulated as an integer linear program whose linear relaxation
can be solved by means of a network flow approach (see also Bianco and Caramia
2010). Computational results confirm a better practical performance of the proposed
lower bound with respect to the aforementioned ones in the introduction.

5.3.1.1 Network Representation

In order to represent the relaxed problem mentioned before on an acyclic network,
it is necessary to transform all constraints in terms of Finish-to-Start relations with
zero time lags. To this end let us consider a generic pair of activities i; j . The related
resource incompatibility imposes that

Sj � Si C pi (5.8)

or, alternatively,

Si � Sj C pj (5.9)

Let us examine now how the resource constraint combines with the different
GPRs. As far as constraint SSmin

ij .ı/, with ı � 0, is concerned, we note that it can be

transformed in Ci C Qıij where Qıij D �pi C ı. Two cases must be considered:

1: �pi C ı � 0, i.e., SSmin
ij .ı/ dominates constraint (5.8);

2: �pi C ı < 0, i.e., constraint (5.8) dominates SSmin
ij .ı/;

Constraint (5.9) does not play any role since it is not compatible with SSmin
ij .ı/.

Therefore, a resource incompatibility constraint between i and j joined with a
SSmin

ij .ı/ relation can be expressed as a FSmin
ij .ı

0/ relation where, ı0 D maxf0; Qıijg.
A similar analysis has been conducted in De Reyck and Herroelen (1998) (see
Theorem 6). Analogously, the association of a resource constraint with a SFmin

ij .ı/,
FSmin

ij .ı/, FFmin
ij .ı/, leads to a GPR constraint of the type FSmin

ij .ı
0/, where ı0 D

maxf0; Qıijg and Qıij D �pi � pj C ı, Qıij D ı, Qıij D ı � pj , respectively. The
four cases with minimum time lags can thus be represented on an AoN transformed
network as depicted in Fig. 5.8.

In the latter figure, i 0 is a dummy node and the relations between i; i 0 and i 0; j
are of the Finish-to-Start type with zero time lags. The duration pi 0 is known only
in terms of lower bound. Let us now examine the maximum time lag different
scenarios.

Constraint SSmax
ij .ı/ implies that Sj � Ci C Qıij, where Qıij D �pi C ı. We have

two cases:

5 Lower Bounds and Exact Solution Approaches 89

i j
pi pj

i'
'' δ≥ip

Fig. 5.8 Representation of a resource incompatibility constraint and a minimum time lag in the
transformed acyclic network

)(max
jiij ppFS −−

i j
pjpi

i j
pjpi

i j
pj

pi

or, alternatively,

(i)

(ii)

)
~

(max

ijijFS δ)
~

(max
ijijFS δ

)0(min
ijFS)(max

jiij ppFS −−

0
~ ≥ijδ

0
~ <ijδ

Fig. 5.9 Standardized representation of a resource incompatibility constraint combined with a
maximum time lag in terms of Finish-to-Start relations

1: �pi C ı � 0. In this case SSmax
ij .ı/ is compatible with both the relations (5.8)

and (5.9) related to the resource incompatibility constraints. In fact one of the
following two conditions can be verified, i.e., either

�
Sj � Ci C Qıij

Sj � Si C pi (5.10)

or

�
Sj � Ci C Qıij

Si � Sj C pj (5.11)

Obviously, since ı � pi , in alternative (5.11) resource incompatibility
constraint (5.9) dominates SSmax

ij .ı/.
2: �pi C ı < 0. In this case only alternative (5.11) is valid since resource

incompatibility constraint (5.8) is not compatible with SSmax
ij .ı/. Therefore,

resource incompatibility constraint (5.9) dominates SSmax
ij .ı/.

For SFmax
ij .ı/, FSmax

ij .ı/, FFmax
ij .ı/ we have similar occurrences where Qıij D

�pi �pj C ı, Qıij D ı, Qıij D ı�pj , respectively. All the four GPRs with maximum
time lags correspond to the two Finish-to-Start scenarios depicted in Fig. 5.9.

90 L. Bianco and M. Caramia

i i '

pi pj

j

i j

pi pj

i '

pi '' ≥ 0
i ''

i j

pi pj

i'

pi '' - (pi + pj)
i ''

pi ' - (pi + pj)

(i)

(ii)

0
~ ≥ijδ

ijip δ~' ≤

≤

≤

ijip δ~' ≤

0
~ <ijδ

or, alternatively,

Fig. 5.10 Representation of a resource incompatibility constraint combined with a maximum time
lag in the transformed acyclic network

0 1 n+1

i

0'
p0'p0 p1

pi

pn+1

i'
pi'

i+1
pi +1

Fig. 5.11 A representation on the AoN acyclic network of the relaxed RCPSP with GPRs

This representation on an AoN network can be transformed in a network
representation with zero time lags, as depicted in Fig. 5.10.

In the latter picture, the dashed nodes are dummy nodes and the relation between
any pair of adjacent nodes is of the type Finish-to-Start with zero time lag. The
durations associated with the dummy nodes are known only in terms of upper
bounds and lower bounds.

5.3.1.2 A Mathematical Programming Formulation

Following what we presented in the previous section, given a project with GPRs and
resource incompatibility constraints only between pairs of activities with GPRs, we
can use the AoN network representation, shown in Fig. 5.11, where only temporal
constraints of the Finish-to-Start type with zero time lags are present.

The minimum SnC1 is the optimal solution of the relaxed RCPSP with GPRs,
and then a lower bound of the original problem. Let us now denote:

5 Lower Bounds and Exact Solution Approaches 91

• V the set of the nodes of the original network;
• NV D NVg [NVG [NVm [NVM the set of dummy nodes of the transformed network;
• NVg the subset of dummy nodes derived from the GPRs with minimum time lags

among pairs of activities for which no resource incompatibility exist;
• NVG the subset of dummy nodes derived from the GPRs with maximum time lags

among pairs of activities for which no resource incompatibility exist;
• NVm the subset of dummy nodes derived from the GPRs with minimum time lags

among pairs of activities for which resource incompatibility exist;
• NVM D NV 0M [NV 00M the subset of dummy nodes derived from the GPRs with

maximum time lags among pairs of activities for which resource incompatibility
exist;

• NV 0M the subset of NVM such that Qıij � 0;
• NV 00M the subset of NV 0M such that Qıij < 0.

Moreover, NV 0M D NV 0M1
[NV 0M2

where NV 0M1
is the subset of dummy nodes

representing only the maximum time lag constraints and NV 0M2
is the subset of dummy

nodes representing only the resource incompatibility constraints compatible with the
GPRs with maximum time lags (see Fig. 5.10). Of course j NV 0M1

j D j NV 0M2
j.

Defining a binary variable wi 0 to model the disjunctive scenarios defined in the
previous section, the problem of finding the minimum SnC1 is that of computing the
minimum time to reach node nC 1 on that network and can be formulated in terms
of mixed integer programming as follows:

Min. SnC1

s. t. Si 0 D Si C pi .i 0 2 NV I i 2 Pred.i 0/ � V / (5.12)

Si D Si 0 C pi 0 .i 2 V I i 0 2 Pred.i/ � NV / (5.13)

pi 0 � `i 0 `i 0 D ı0; .i 0 2 NVm/I `i 0 D Qıij; .i
0 2 NVg/ (5.14)

pi 0 � `i 0 `i 0 D Qıij; .i
0 2 NV 0M1

[NVG/ (5.15)

pi 0 � �M � wi 0 C `i 0 `i 0 D 0; .i 0 2 NV 0M2
/ (5.16)

pi 0 �M � .1 � wi 0/C `i 0 `i 0 D �pi � pj ; .i 0 2 NV 0M2
/ (5.17)

pi 0 � `i 0 `i 0 D �pi � pj ; .i 0 2 NV 00M/ (5.18)

wi 0 2 f0; 1g .i 0 2 NV 0M2
/ (5.19)

Si 2 R�0 .i 2 V n f0g/ (5.20)

Si 0 2 R�0 .i 0 2 NV / (5.21)

S0 D 0 (5.22)

Constraints (5.12) and (5.13) model the Finish-to-Start relations in the acyclic
network. Constraints (5.14), (5.15), (5.16), (5.17) and (5.18) model the bound on the

92 L. Bianco and M. Caramia

values of pi 0 found from the analysis in the previous section. In particular, note that
constraints (5.16) and (5.17) refer to the disjunctive situations depicted in Figs. 5.9
and 5.10. In these constraintsM is a very large positive number such that if wi 0 D 1
constraints (5.16) are trivially satisfied and constraints (5.17) are effective; if wi 0 D
0 we have the opposite situation, i.e., constraints (5.16) are effective and constraints
(5.17) are always satisfied. Constraints (5.19), (5.20), (5.21) and (5.22) define the
range of variability of the decision variables.

Let us consider the linear relaxation of the above formulation, i.e., replacing
constraint (5.19) with

wi 0 � 1 .i 0 2 NV 0M2
/ (5.23)

wi 0 � 0 .i 0 2 NV 0M2
/ (5.24)

and let us define the corresponding dual problem. To this end let us define the
following dual variables yii 0 , yi 0i , zi 0 , zai 0 , zbi 0 , Nwi 0 corresponding to constraints (5.12),
(5.13), [(5.14), (5.15) and (5.18)], (5.16), (5.17), [(5.23) and (5.24)], respectively.
The dual formulation of the previous relaxed problem is the following:

Max. f
X

i2V

X

i 02Succ.i/

piyii0 C
X

i 02 NVm[NVg
`i 0zi 0 C

X

i 02 NV 0

M1
[NV 00

M[NVG
`i 0zi 0C

X

i 02 NV 0

M2

.�M C pi C pj / � zbi 0 C
X

i 02 NV 0

M2

Nwi 0g

s. t.
X

i2Pred.i 0/

yii0 �
X

i2Succ.i 0/

yi 0i � 0 .i 0 2 NV / (5.25)

X

i 02Pred.i/

yi 0i �
X

i 02Succ.i/

yii0 � 0 .i 2 V n f0; nC 1g/ (5.26)

X

i 02Pred.nC1/
yi 0nC1 � 1 (5.27)

zi 0 � yi 0i D 0 .i 0 2 NVm [NV 0M1
[NV 00M [NVg [NVG/ (5.28)

� yi 0i C zai 0 � zbi 0 D 0 .i 0 2 NV 0M2
/ (5.29)

�M � zbi 0 CM � zai 0 C Nwi 0 � 0 .i 0 2 NV 0M2
/ (5.30)

yii0 free .i 2 V I i 0 2 Succ.i// (5.31)

yi 0i free .i 0 2 NV I i 2 Succ.i 0// (5.32)

zi 0 � 0 .i 0 2 NVm [NVg/ (5.33)

zi 0 � 0 .i 0 2 NV 0M1
[NV 00M [NVG/ (5.34)

5 Lower Bounds and Exact Solution Approaches 93

Nwi 0 � 0 .i 0 2 NV 0M2
/ (5.35)

zai 0 � 0 .i 0 2 NV 0M2
/ (5.36)

zbi 0 � 0 .i 0 2 NV 0M2
/ (5.37)

5.3.1.3 Analysis on the Primal-Dual Formulation: Main Result

In this section, we provide the main result on the possibility to find the opti-
mal solution to the problem in polynomial time O.m/. Exploiting the equality
constraints (5.28) and (5.29) by substituting (5.28) in the objective function
and (5.29) in constraint (5.30), we have the following equivalent mathematical
formulation:

Max. f
X

i2V

X

i 02Succ.i/

piyii0 C
X

i2Succ.i 0/

X

i 02 NVm[NVg[NV 0

M1
[NV 00

M[NVG
`i 0yi 0iC

X

i 02 NV 0

M2

.�M C pi C pj / � zbi 0 C
X

i 02 NV 0

M2

Nwi 0g

s. t.
X

i2Pred.i 0/

yii0 �
X

i2Succ.i 0/

yi 0i � 0 .i 0 2 NV / (5.38)

X

i 02Pred.i/

yi 0i �
X

i 02Succ.i/

yii0 � 0 .i 2 V n f0; nC 1g/ (5.39)

X

i 02Pred.nC1/
yi 0nC1 � 1 (5.40)

M � yi 0i C Nwi 0 � 0 .i 0 2 NV 0M2
I i 2 Succ.i 0// (5.41)

yii0 free .i 2 V I i 0 2 Succ.i// (5.42)

yi 0i � 0 .i 0 2 NVm [NVgI i 2 Succ.i 0// (5.43)

yi 0i � 0 .i 0 2 NVM1 [NV 00M [NVG I i 2 Succ.i 0// (5.44)

yii0 free .i 0 2 NV 0M2
I i 2 Succ.i 0// (5.45)

Nwi 0 � 0 .i 0 2 NV 0M2
/ (5.46)

zbi 0 � 0 .i 0 2 NV 0M2
/ (5.47)

Since M is positive and arbitrarily large and zbi 0 � 0, the objective function is
maximized imposing that zb

�

i 0
D 0, where zb

�

i 0
D 0 is the optimal value of zb

i 0
.

Moreover, for the complementary slackness conditions referred to constraint (5.41)
we have that:

94 L. Bianco and M. Caramia

w�i 0.�M � y�i 0i � Nw�i 0/ D 0 .i 0 2 NV 0M2
I i 2 Succ.i 0// (5.48)

For node i 0 we can have either w�i 0 D 0 or w�i 0 D 1. Let us examine these two
situations separately.

Case a: w�
i 0
D 1

By (5.48) we have that

w�i 0 D �M � y�i 0i .i 0 2 NV 0M2
I i 2 Succ.i 0// (5.49)

By constraint (5.46) we have that:

y�i 0i � 0 .i 0 2 NV 0M2
I i 2 Succ.i 0// (5.50)

Substituting (5.49) and (5.50) in the mathematical formulation we have:

Max. f
X

i2V

X

i 02Succ.i/

piyii0 C
X

i 02 NV

X

i2Succ.i 0/

`i 0yi 0i g

where `i 0 D �M; .i 0 2 NV 0M2
/

s. t.
X

i2Pred.i 0/

yii0 �
X

i2Succ.i 0/

yi 0i � 0 .i 0 2 NV / (5.51)

X

i 02Pred.i/

yi 0i �
X

i 02Succ.i/

yii0 � 0 .i 2 V n f0; nC 1g/ (5.52)

X

i 02Pred.nC1/
yi 0nC1 � 1 (5.53)

yii0 free .i 2 V I i 0 2 Succ.i// (5.54)

yi 0i � 0 .i 0 2 NVm [NV 0M2
[NVgI i 2 Succ.i 0// (5.55)

yi 0i � 0 .i 0 2 NVM1 [NV 00M [NVG I i 2 Succ.i 0// (5.56)

Case b: w�i 0 D 0

By the complementary slackness property on constraint (5.23) we have that

w�i 0.1 � w�i 0/ D 0 .i 0 2 NV 0M2
/

by which we obtain that

w�i 0 D 0 .i 0 2 NV 0M2
/

5 Lower Bounds and Exact Solution Approaches 95

This implies that, by constraint (5.30),

za
�

i 0 � zb
�

i 0 .i 0 2 NV 0M2
/

Since the objective function is maximized by imposing zb
�

i 0 D 0 , we have that
also [see constraint (5.36)]

za
�

i 0 D 0 .i 0 2 NV 0M2
/

The dual problem then transforms into:

Max. f
X

i2V

X

i 02Succ.i/

piyii0 C
X

i 02 NVm[NVg
`i 0zi 0 C

X

i 02 NV 0

M1
[NV 00

M[NVG
`i 0zi 0g

s. t.
X

i2Pred.i 0/

yii0 �
X

i2Succ.i 0/

yi 0i � 0 .i 0 2 NV / (5.57)

X

i 02Pred.i/

yi 0i �
X

i 02Succ.i/

yii0 � 0 .i 2 V n f0; nC 1g/ (5.58)

X

i 02Pred.nC1/
yi 0nC1 � 1 (5.59)

zi 0 � yi 0i D 0 .i 0 2 NVm [NV 0M1
[NV 00M [NVg [NVG I i 2 Succ.i 0// (5.60)

� yi 0i D 0 .i 0 2 NV 0M2
I i 2 Succ.i 0// (5.61)

yii0 free .i 2 V I i 0 2 Succ.i// (5.62)

yi 0i free .i 0 2 NV I i 2 Succ.i 0// (5.63)

zi 0 � 0 .i 0 2 NVm [NVg/ (5.64)

zi 0 � 0 .i 0 2 NV 0M1
[NV 00M [NVG/ (5.65)

Substituting now constraints (5.60) in the objective function we have the
following formulation

Max. f
X

i2V

X

i 02Succ.i/

piyii0 C
X

i 02 NV

X

i2Succ.i 0/

`i 0yi 0i g

where we can assign `i 0 D �M; .i 0 2 NV 0M2
/; being yi 0i D 0;

.i 0 2 NV 0M2
I i 2 Succ.i 0//; by (5.61)

s. t.
X

i2Pred.i 0/

yii0 �
X

i2Succ.i 0/

yi 0i � 0 .i 0 2 NV / (5.66)

96 L. Bianco and M. Caramia

X

i 02Pred.i/

yi 0i �
X

i 02Succ.i/

yii0 � 0 .i 2 V n f0; nC 1g/ (5.67)

X

i 02Pred.nC1/
yi 0nC1 � 1 (5.68)

� yi 0i D 0 .i 0 2 NV 0M2
I i 2 Succ.i 0// (5.69)

yii0 free .i 2 V I i 0 2 Succ.i// (5.70)

yi 0i � 0 .i 0 2 NVm [NVgI i 2 Succ.i 0// (5.71)

yi 0i � 0 .i 0 2 NVM1 [NV 00M [NVG I i 2 Succ.i 0// (5.72)

We note that in both of the two cases analyzed we achieved the same
mathematical formulation, meaning that either w�

i 0
D 0 or w�

i 0
D 1 we can use the

same solution strategy. Moreover, we note that this mathematical model obtained
is polynomially solvable in O.m/ by means of a dynamic programming approach
since the formulation has at most two variable per constraint (see Hochbaum and
Naor 1994). Furthermore, this formulation is the same as that found in absence
of resource constraints by Bianco and Caramia (2010). Therefore, there holds the
property demonstrated in that paper, i.e., the optimal solution to the relaxed RCPSP
with GPRs, and therefore the lower bound of the original problem, is an augmenting
path of maximum length on the described AoN network where unit capacities have
been installed on arcs.

5.3.1.4 Computational Results

In this section, we show the results of our experimentation. Our algorithm and the
other lower-bound algorithms used for comparison have been implemented in the C
language. The machine used for the experiments is a Pentium IV PC with a 3 GHz
processor and 2 Gb RAM. All the computing times are negligible (i.e., less than 1 s)
and therefore are omitted in the presentation of the results. In order to assess the
quality of our lower bound with respect to lower bound algorithms from the state
of the art, we have experimented the proposed approach on networks with 100 and
500 activities. These networks have been generated at random with the following
parameters:

• Maximum number of initial (without predecessors) activities: 10;
• Maximum number of terminal (without successors) activities: 10;
• Maximum indegree of activities: 5;
• Maximum time lag constraints ranging from 0 to 20 % of the total number of

arcs;

We generated 90 problems for each network size, as done also in the RCPSP-max
library, and reported our results in Figs. 5.12 and 5.13.

5 Lower Bounds and Exact Solution Approaches 97

1,8

1,9

2,0

2,1

2,2

2,3

2,4

2,5

2,6

2,7

2,8

1 4 40 647 10 13 16 19 22 2825 31 34 37 43 46 49 52 55 58 61 67 7370 76 79 82 85 88

Network-based lower bound
Resource-based lower bound
lb3-gpr
Our lower bound

Fig. 5.12 Comparison among our lower bound (Our_LB), the network-based lower bound (LB1),
the resource-based one (LB2), and lb3-gpr (LB3) on 100 activity networks

2,2

2,3

2,4

2,5

2,6

2,7

2,8

2,9

3,0

3,1

3,2

3,3

3,4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Network-based lower bound
Resource-based lower bound
lb3-gpr
Our lower bound

Fig. 5.13 Comparison among our lower bound (Our_LB), the network-based lower bound (LB1),
the resource-based one (LB2), and lb3-gpr (LB3) on 500 activity networks

98 L. Bianco and M. Caramia

The chart in Fig. 5.12 shows the performance of our lower bound, denoted in the
following with Our_LB, compared to the network based lower bound, denoted with
LB1, the resource-based lower bound, denoted with LB2, and the lb3-gpr lower
bound, denoted with LB3, on 100 activity networks. Figure 5.13 reports the same
comparison on 500 activity networks. Values in the y-axis are reported as base ten
logarithms. Analyzing in detail the behaviour of LB1, LB2, and LB3, we notice that,
as one can expect, LB2 is quite sensitive to the resource-strength factor.1 Indeed,
looking for instance at the chart in Fig. 5.13 (where this appears clearer), we observe
that for instances ranging from 1 to 10, from 31 to 40, and from 61 to 70, where the
resource strength parameter is zero, LB2 outperforms LB1 and LB3. For the other
instance classes, whose resource strength parameter ranges from 0.25 to 0.5, we
have that the values of LB1 and LB3 tend to overlap (with LB3 having a slightly
better behaviour) and dominate LB2. Indeed, from a general viewpoint, while it
appears that LB1 and LB3 tend to outperform LB2 on projects with 100 activities, it
happens that there is not a striking dominance among LB1, LB2, and LB3 when 500
activities are considered. Analysing the behaviour of Our_LB, one can note that it is
robust to the different input instances, unlike the three competing lower bounds. In
fact, Our_LB is able to outperform LB1, LB2, and LB3 on all the tested instances.
In particular, by analysing the computational results, we note that, on 100 activity
networks, Our_LB improves the best value among LB1, LB2, and LB3 by 5.2 %,
while on projects with 500 activities the improvement is 4.4 %.

5.3.2 An Exact Algorithm for RCPSP with GPRs

In the following, a new mathematical formulation of the RCPSP with GPRs in
terms of mixed integer programming is presented. Moreover, a branch-and-bound
algorithm exploiting both the latter formulation and a Lagrangian relaxation based
lower bound is described (Bianco and Caramia 2012). In particular, the proposed
lower bound is based on a fast method developed in Bianco and Caramia (2011b)
to compute an estimate of the optimal Lagrangian multipliers. This estimate is then
used to feed a standard subgradient algorithm. An extensive experimentation, and a
comparison with both known lower bounds and the exact algorithms by De Reyck
and Herroelen (1998), Schwindt (1998), Fest et al. (1999), Dorndorf et al. (2000),
show the performance of the proposed algorithm.

1Given resource k, let rmin
k be the maximum usage of this resource by a single activity, that is

rmin
k D maxi2V rik. Let rmax

k denote the peak demand of resource k in the earliest start schedule
with infinite resource capacity. The resource strength of resource k is thus defined as RSk D
Rk�rmin

k

rmax
k �rmin

k

(Kolish et al. 1995).

5 Lower Bounds and Exact Solution Approaches 99

5.3.2.1 The Mathematical Model

In this section, a novel formulation for the project scheduling problem with GPRs,
scarce resources and minimum makespan objective is described. This formulation
will be used by the enumerative scheme presented in the next section.

Differently from the standard GPRs formulation present in the literature, men-
tioned in Sect. 5.2.1, we assume that there is a planning horizon within which all the
activities have to be carried out. In particular, we denote such a planning horizon as
Œ0; T /, where T is an upper bound on the minimum project makespan. Moreover,
we assume, without loss of generality, that the time horizon is discretized into T
unit-width time periods Œ0; 1/; Œ1; 2/; : : : ; ŒT � 1; T /, indexed by t D 1; : : : ; T . Let
us define the following parameters:

• K , the number of renewable (continuously divisible) resources, each one avail-
able in an amount of Rk units, with k D 1; : : : ; K;

• Nrik, the overall amount of units of resource k necessary to carry out activity i ; it
is given by the (renewable) resource request per period times the duration of the
activity;

• pi , the duration of activity i .

Furthermore, according to the previous hypotheses on time discretization, let us
consider the following decision variables:

• �it , the percentage of activity i executed within the end of time period t .
• �it , a binary variable that assumes value 1 if activity i has started within the

beginning of a time period � � t , and assumes value 0 otherwise.
• � 0i t , a binary variable that assumes value 1 if activity i has finished within the end

a time period � � t , and assumes value 0 otherwise.

Since the completion time of an activity i 2 V can be expressed as�
T �PT

tD1 � 0i t C 1
�

, the objective function can be written as

Min.

(

Max.i2V

(

T �
TX

tD1
� 0i t C 1

))

and the constraints can be modelled as follows:

TX

�D1
�i� �

TX

�D1
�j� C ıij ..i; j / 2 E/ (5.73)

�it � �i;t�1 D 1

pi
.�it � � 0i;t�1/ .i 2 V n f0; nC 1gI t D 1; : : : ; T / (5.74)

�it � �i;tC1 .i 2 V I t D 1; : : : ; T / (5.75)

� 0i;t�1 � � 0i t .i 2 V I t D 1; : : : ; T / (5.76)

100 L. Bianco and M. Caramia

�iT D � 0iT D �iT D 1 .i 2 V n f0; nC 1g/ (5.77)

�i0 D � 0i0 D �i0 D 0 .i 2 V n f0; nC 1g/ (5.78)

� 0i t � �it � �it .i 2 V n f0; nC 1gI t D 1; : : : ; T / (5.79)

� 000 D �01 D � 0nC1;T D �nC1;TC1 D 1 (5.80)

jV jX

iD1
Nrik.�it � �i;t�1/ � Rk .k D 1; : : : ; KI t D 1; : : : ; T / (5.81)

�it 2 f0; 1g .i 2 V I t D 1; : : : ; T C 1/ (5.82)

� 0i t 2 f0; 1g .i 2 V I t D 0; : : : ; T / (5.83)

�it � 0 .i 2 V I t D 1; : : : ; T / (5.84)

By posing� D maxi2V
�
T �PT

tD1 � 0i t C 1
�

, this problem can be rewritten as:

Min. �

s. t.
TX

�D1
�i� �

TX

�D1
�j� C ıij ..i; j / 2 E/

: : :

: : :

�it � 0 .i 2 V I t D 1; : : : ; T /

� �

T �
TX

tD1
� 0it C 1

!

.i 2 V / (5.85)

Constraints (5.73) model Start-to-Start precedence constraints with minimum
time lags ıij, .i; j / 2 E . In fact, since the starting time of activity i is .T �PT

�D1 �i� /
and, similarly, the starting time of activity j is .T �PT

�D1 �j� /, the generic Start-to-
Start precedence constraint between .i; j / 2 E can be written as T �PT

�D1 �j� �
T �PT

�D1 �i� C ıij. By simplifying terms in the previous equation, one obtains
constraint (5.73). Constraints (5.74) regulate the total amount processed of an
activity i 2 V n f0; n C 1g over time. We note that either this value is 0 or it is
equal to 1

pi
. This constraint imposes also that pre-emption is not allowed. Indeed if

activity i starts at time t then until its finishing time it must be processed without
interruption. Constraints (5.75) imply that if an activity i 2 V is started at time t ,
then variable �i� D 1 for every � � t , and, on the contrary, if activity i is not started
at time t , �i� D 0 for every � � t: Constraints (5.76) are the same as constraints
(5.75) when finishing times are concerned. Constraints (5.77) say that every activity
i 2 V must start and finish within the planning horizon. Constraints (5.78) represent

5 Lower Bounds and Exact Solution Approaches 101

the initialization conditions for variables �it; �
0
it; �it when t D 0. Constraints (5.79)

force �it to be zero if �it D 0, and � 0it to be zero if �it < 1. Constraints (5.80) are
boundary conditions for dummy activities. Resource constraints are represented by
relations (5.81). Constraints (5.82), (5.83), and (5.84) limit the range of variability
of the variables.

In order to improve the comprehension of the model, and, in particular, the role
played by the variables, we consider a simple example of a project with a time
horizon of three periods and a single activity i with a unitary duration. Assume
that activity i starts and finishes in time period 2. Then, the values assumed by the
variables are: �i1 D � 0i1 D 0; �i2 D �i3 D 1; � 0i2 D � 0i3 D 1.

Referring to constraints (5.74) we have: �i1 � �i0 D �i1 � � 0i0 D 0 which
implies that �i1 D 0 by constraints (5.79). Similarly, we have: �i2 � �i1 D
�i2 � � 0i1 D 1 which implies that �i2 D 1. The completion time of activity i is�
3 � .� 0i1 C � 0i2 C � 0i3/C 1

� D 2.

5.3.2.2 The Exact Solution Algorithm Description

In this section, the search tree structure, a Lagrangian based lower bound, the
branching rule adopted and some node fathoming rules, are illustrated.

The Search Tree Structure

The enumerative algorithm proposed exploits both the mathematical formulation
presented in the previous section and branch-and-bound rules.

The root node ˛0 of the search tree is associated with the whole problem denoted
with P0. With P0 we associate the time horizon T (an upper bound on the minimum
makespan) and a lower bound on the minimum makespan based on the Lagrangian
relaxation of the resource constraints (5.81). The time horizon T may be easily
computed by summing up all the activity durations and the positive time lags ıij,
with .i; j / 2 E . This is clearly an upper bound because the temporal relationships
are of the Start-to-Start type with minimum time lags.

The search tree is structured in such a way that each level is associated with an
activity in V , which means that the tree will have at most jV j levels.

Denoting with i the activity associated with the first level of the search tree (see
Fig. 5.14), at most T subproblems can be generated in such a level from the root.
Let us denote with P1t , with t 2 f1; : : : ; T g, the generic subproblem associated with
level 1, and with ˛1t the corresponding node of the search tree. Each subproblemPit

is associated with a time slot t D 1; : : : ; T that represents the latest time at which
activity i can start, and is obtained from P0 (its parent) by imposing �it D 1 (the
branching variable). The generic subproblem Pit is associated with a node ˛it in the
search tree.

102 L. Bianco and M. Caramia

Fig. 5.14 Two levels of the branch-and-bound tree. i and j are the activities associated with level
1 and level 2, respectively

The same analysis described for the first level can be applied to every level of the
search tree, i.e., from a subproblem Pi� at level i we can generate T subproblems
PiC1;t at level i C 1, with t D 1; : : : ; T , each obtained by Pi� by fixing �jt D 1,
where j is the activity associated with level i C 1.

The Lagrangian Relaxation Based Lower Bound

The lower bound used at each node of the search tree is based on the Lagrangian
relaxation of the resource constraints. Let � be the vector of the Langrangian
multipliers, with components �kt; k D 1; : : : ; K; t D 1; : : : ; T . The resulting
Lagrangian problem PLaR is as follows:

Min.

8
<

:
� �

KX

kD1

TX

tD1
�kt

2

4Rk �
jV jX

iD1
Nrik.�it � �i;t�1/

3

5

9
=

;

s. t.
TX

�D1
�i� �

TX

�D1
�j� C ıij ..i; j / 2 E/

: : :

� 0it � �it � �it .i 2 V n f0; nC 1gI t D 1; : : : ; T /
� 000 D �01 D � 0nC1;T D �nC1;TC1 D 1
�it 2 f0; 1g .i 2 V I t D 1; : : : ; T C 1/
� 0it 2 f0; 1g .i 2 V I t D 0; : : : ; T /
�it � 0 .i 2 V I t D 1; : : : ; T /

� �

T �
TX

tD1
� 0it C 1

!

.i 2 V /

5 Lower Bounds and Exact Solution Approaches 103

where for non-negative values of the �kt multipliers, with k D 1; : : : ; K; t D
1; : : : ; T , the value of an optimal solution of PLaR provides a lower bound to the
optimal solution of problem P0. The dual Lagrangian problem is to find the vector
�� maximizing PLaR, that is

Max.�kt

8
<

:
Min.

8
<

:
� �

KX

kD1

TX

tD1
�kt

2

4Rk �
jV jX

iD1
Nrik.�it � �i;t�1/

3

5

9
=

;

9
=

;

s. t.
TX

�D1
�i� �

TX

�D1
�j� C ıij ..i; j / 2 E/

: : :

� 0it � �it � �it .i 2 V n f0; nC 1gI t D 1; : : : ; T /
� 000 D �01 D � 0nC1;T D �nC1;TC1 D 1
�it 2 f0; 1g .i 2 V I t D 1; : : : ; T C 1/
� 0it 2 f0; 1g .i 2 V I t D 0; : : : ; T /
�it � 0 .i 2 V I t D 1; : : : ; T /

� �

T �
TX

tD1
� 0it C 1

!

.i 2 V /

�kt � 0 .k D 1; : : : ; KI t D 1; : : : ; T / (5.86)

Usually �� is computed by means of a subgradient algorithm which, in general,
is very time consuming. This method, in fact, starts with � D 0 and iteratively
computes the Lagrangian multipliers until a stopping criterion is met. The values
so obtained are either the optimal ones or an estimate of ��. In the following,
we apply a method to estimate ��, proposed in Bianco and Caramia (2011b), that
was experimented to be very fast and effective. In the same paper it was proved
that the Mixed Integer Linear Program (MILP) presented above can be solved in
pseudo-polynomial time. However, since in the latter paper the project scheduling
problem studied is not exactly the same as the RCPSP with GPRs, the estimate of
�� found is used to initialize the execution of a very limited number of iterations
of a subgradient algorithm. This is done to verify if it is possible to improve the
estimate of the optimal Lagrangian multipliers.

For the sake of completeness, in the following, the different steps of the
aforementioned method to estimate �� are reported.

By previous constraints (5.79) and (5.85) we have �it � � 0it and � � .T �
PT

tD1 � 0it C 1/; therefore,

� � .T �
TX

tD1
�it C 1/

104 L. Bianco and M. Caramia

and, hence,

TX

tD1
�it � .T ��C 1/ (5.87)

If we multiply both the left- and the right-hand sides of (5.87) by �kt Nrik, and sum
up with respect to i; k; t , we get the following relation:

jV jX

iD1

KX

kD1

TX

tD1
�kt Nrik�it � .T ��C 1/

jV jX

iD1

KX

kD1

TX

tD1
�kt Nrik (5.88)

Rewriting the objective function accordingly, we have:

Max.�kt

8
<

:
�

KX

kD1

TX

tD1
�ktRk CMin.

2

4�C
jV jX

iD1

KX

kD1

TX

tD1
�kt Nrik�it

�
jV jX

iD1

KX

kD1

TX

tD1
�kt Nrik�i;t�1

3

5

9
=

;
�

Max.�kt

8
<

:
�

KX

kD1

TX

tD1
�ktRk CMin.

2

4�C .T ��C 1/
jV jX

iD1

KX

kD1

TX

tD1
�kt Nrik

�
jV jX

iD1

KX

kD1

TX

tD1
�kt Nrik

3

5

9
=

;

where the second expression is obtained by exploiting (5.88) in the triple summation
with the positive sign of the Min. term, and by posing �i;t�1 D 1 in the triple
summation with the negative sign.

Now we are in the position to find an estimate Q�kt of the optimal Lagrangian
multipliers ��kt by solving the following problem:

Max.�kt

8
<

:
�

KX

kD1

TX

tD1
�ktRk CMin.

2

4�

0

@1 �
jV jX

iD1

KX

kD1

TX

tD1
�kt Nrik

1

A

C
jV jX

iD1

KX

kD1

TX

tD1
T �kt Nrik

3

5

9
=

;

s. t. � � 0
�kt � 0 .k D 1; : : : ; KI t D 1; : : : ; T /

5 Lower Bounds and Exact Solution Approaches 105

In fact, noting that the above problem admits a bounded solution if

0

@1 �
jV jX

iD1

KX

kD1

TX

tD1
�kt Nrik

1

A � 0

Q�kt multipliers are obtained by solving the following linear program:

Max.�kt

KX

kD1

TX

tD1
�kt

2

4
jV jX

iD1
T Nrik �Rk

3

5

s. t.
jV jX

iD1

KX

kD1

TX

tD1
�kt Nrik � 1

�kt � 0 .k D 1; : : : ; K; t D 1; : : : ; T /

These Q�kt values are used as starting Lagrangian multipliers for the subgradient
algorithm (Held and Karp 1970) to possibly improve the quality of the lower bound.
Let z.PLaR. Q�// be the lower bound associated with the Q� values found by the above
linear program. The subgradient algorithm used is the following:

Step 1. Let ˛ WD 2.
Let � WD Q� the initial Lagrangian multipliers.
Let LB WD z.PLaR.�//.
Let z.UB/ the value of a heuristic solution to the problem.

Step 2. Let .��it ; ��it ; � 0
�
it/ be the optimal solution to PLaR of value z.PLaR.�//.

Let LB WD maxŒLB; z.PLaR.�//�.
if
PjV j

iD1 Nrik.�
�
it � ��i;t�1/ � Rk; .k D 1 : : : ;KI t D 1; : : : ; T /

and �kt � .Rk �PjV jiD1 Nrik.�
�
it � ��i;t�1// D 0; .k D; 1 : : : ; KI t D 1; : : : ; T / then

.��it ; ��it ; � 0
�
it/ is the optimal solution to the original problem and stop.

Step 3. Let the vector sg of components sgkt, .k D 1; : : : ; KI t D 1; : : : ; T /, be a
subgradient associated with the relaxed constraints where
sgkt WDPjV jiD1 Nrik.�

�
it � ��i;t�1/ �Rk , .k D 1 : : : ;KI t D 1; : : : ; T).

Step 4. Let � WD ˛ Œz.UB/�z.PLaR.�//�PK
kD1

PT
tD1 sg

2
kt

.

Step 5. Update the Lagrangian penalties as follows
�kt WD maxŒ0; �kt C�sgkt�; .k D 1; : : : ; KI t D 1; : : : ; T /.
go to Step 2.

A similar approach can be found in Möhring et al. (1999, 2003). In the
latter paper the authors provide a Lagrangian relaxation of a time-indexed integer
programming formulation and relaxation-based list scheduling, along with an idea
borrowed from approximation algorithms for machine scheduling problems. The
efficiency of the algorithm results from the fact that the relaxed problem can be
solved by computing a minimum cut in a proper directed graph.

106 L. Bianco and M. Caramia

The Branching Rule, the Bounding Phase and the Node Fathoming Rules

We first describe the branching rule adopted by the branch-and-bound algorithm.
The idea stems from the observation that a GPR between i; j is such that activity i
constraints the starting time of activity j . By representing all the GPRs in a graph,
where an arc .i; j / exists if there is a GPR between i and j , the higher the number
of successors of an activity, the higher should be the degree of constrainedness that
this activity may impose to its successors. Therefore, the rule we adopt is that of
assigning, to each level of the search tree, the activity with the greatest number of
successors (ties are broken arbitrarily).

Let us now consider the bounding phase, with the corresponding fathoming rules.
Each subproblem Pit associated with the tree node ˛it (see Fig. 5.14) undergoes a
bounding phase in which the Lagrangian lower bound on the minimum makespan is
computed as done for the root node. The calculation of the Lagrangian multipliers
and the successive solution of the MILP associated with the Lagrangian problem
is done by means of a commercial solver. Here we can have four alternative
outcomes:

1. the time slot t of subproblem Pit is such that t � UB� where UB� is the best
upper bound found so far;

2. the mathematical program associated with the Lagrangian lower bound is
infeasible, i.e., some GPRs cannot be obeyed;

3. the solution of the Lagrangian relaxation is not feasible with respect to some
resource constraints;

4. the latter solution respects all the resource constraints.

Clearly, in the case 1, the tree is pruned and a backtracking phase is executed.
Also in the case 2, the subtree generating from problem Pit is fathomed since a
feasible solution cannot be found, with a consequent backtracking to the previous
tree level; in the case 3, the Lagrangian relaxation solution value f .Pit/LaR, which
is a lower bound for subproblem Pit, is compared to the best upper bound UB�
found so far; if f .Pit/LaR � UB� then the tree is pruned again (with a consequent
backtracking), otherwise the search is continued in a depth first search strategy.

In the last occurrence, i.e., in the case 4, the solution value f .Pit/, obtained
by entering the �it; �it; �

0
it values obtained by the Lagrangian relaxation in Pit, is

an upper bound for the latter subproblem and therefore it is an upper bound for the
whole problemP0. Now, if this solution to Pit satisfies the complementary slackness
conditions, it is the optimal solution for Pit and the tree can be pruned, possibly
updating UB� to f .Pit/ if the former is greater than the latter. If the solution is not
optimal for Pit, then the search continues in a depth first search strategy possibly
updating UB� to f .Pit/ if UB� > f .Pit/.

5 Lower Bounds and Exact Solution Approaches 107

5.3.3 Computational Results

5.3.3.1 Implementation Details

The implementation of the algorithm has been carried out in the C language; the
mathematical formulations presented above have been implemented in the AMPL
language and solved by means of the commercial solver CPLEX, version 8.0.0. The
machine used for the experiments is a PC Core Duo with a 1.6 GHz Intel Centrino
Processor and 1 GB RAM.

The proposed approach has been experimented on networks with 30, 50, 80, and
100 activities. These networks have been generated at random with the following
parameters:

• maximum number of initial (without predecessors) activities: 10;
• maximum number of terminal (without successors) activities: 10;
• maximum indegree of activities: 5;
• maximum time lag constraints equal to 0, 10, and 20 % of the total number of

GPRs;
• numberK of renewable resources equal to 5;
• amount Rk of resource availability per period for each resource k D 1; : : : ; K

equal to 4;
• request per period rik of resource k D 1; : : : ; K for every activity i 2 V assigned

uniformly at random from 1 to 3;
• values ıij assigned uniformly at random in the range Œ�10; 10�.

Ninety problems for each network size have been generated as done in the
RCPSP-max library (see the web site http://www.wiwi.tu-clausthal.de/abteilungen/
produktion/forschung/schwerpunkte/project-generator).

5.3.3.2 Analysis of the Results

An extensive experimentation can be found in the appendix of the paper by Bianco
and Caramia (2012). Here only a comparison in terms of average performance
between the De Reyck and Herroelen, and Bianco and Caramia algorithms with
respect to different lower bounds (i.e., network-based, resource-based, Bianco and
Caramia 2011a denoted as BC11, lb3-gpr, Lagrangian-based denoted as Lagr) is
reported. In Table 5.1, the average percentage gap among the makespan of the De
Reyck and Herroelen and our algorithm with respect to the different lower bounds,
computed as makespan�lowerbound

makespan is presented. Results show that the percentage gap in
Bianco and Caramia is always lower than in De Reyck and Herroelen.

It was studied also the effect of varying resource strength RS based on the
deviations of the makespans of the two algorithms from the relative lower bounds.
Table 5.2 reports the average gaps for different RS and jV j values, computed
as our makespan�Lagr

our makespan and De Reyck Herroelen makespan�lb3�gpr
De Reyck Herroelen makespan , respectively. By Table 5.2,

http://www.wiwi.tu-clausthal.de/abteilungen/produktion/forschung/schwerpunkte/project-generator
http://www.wiwi.tu-clausthal.de/abteilungen/produktion/forschung/schwerpunkte/project-generator

108 L. Bianco and M. Caramia

Table 5.1 Average percentage gap between exact approach solutions and lower bound values

De Reyck and Herroelen Bianco and Caramia

Network- Resource- Network- Resource-
jV j based based BC11 lb3-gpr Lagr based based BC11 lb3-gpr Lagr

30 22.0% 20.3% 8.6% 12.4% 8.1% 15.3% 13.5% 0.8% 4.9% 0.3%

50 47.9% 61.7% 28.9% 30.5% 21.3% 44.6% 59.2% 24.4% 26.0% 16.3%

80 43.7% 41.0% 24.9% 30.7% 23.4% 37.7% 34.6% 16.8% 23.3% 15.2%

100 35.2% 63.6% 30.3% 33.8% 25.3% 29.1% 60.1% 23.7% 27.6% 18.2%

Table 5.2 Average percentage gap between the makespans and the lower bounds for different RS
and jV j values

De Reyck and Herroelen Bianco and Caramia

jV j RS D 0 RS D 0:25 RS D 0:5 RS D 0 RS D 0:25 RS D 0:5

30 12.1% 12.5% 12.6% 0.25% 0.26% 0.28%

50 30.2% 30.6% 30.7% 15.7% 16.5% 16.8%

80 29.7% 29.7% 32.8% 14.2% 15.4% 16.0%

100 33.8% 33.8% 33.9% 17.9% 18.2% 18.7%

it may be noticed that these gaps tend to increase when RS increases. Since the
makespan decreases for increasing values of RS (see detailed results in Bianco and
Caramia 2012), this implies a corresponding greater decrease of the lower bound
values, that is meaningful since, when the instance is less constrained in terms of
resources, the lower bounds are less effective.

5.3.3.3 Further Comparison with State of the Art Algorithms
on Benchmarks

To further assess the effectiveness of our approach, we compared the performance
of our algorithm with those of De Reyck and Herroelen (1998), Schwindt (1998),
Fest et al. (1999), Dorndorf et al. (2000) approaches. Tests have been conducted
on known benchmarks, i.e., the 1,080 problems with 100 activities generated by
Schwindt (1996) using the generator ProGen/Max. Among these 1,080 problems,
31 do not admit a feasible solution.

In this comparison, results obtained by the competing algorithms have been taken
verbatim from the paper of Dorndorf et al. (2000). We note that the machines used
to experiment such algorithms were the following: the results of De Reyck and
Herroelen (1998) were obtained by means of a Pentium 60/PC; those of Schwindt
(1998), Fest et al. (1999), Dorndorf et al. (2000) by machines with 200 MHz
clocks, i.e., Pentium/200 PC, Sun Ultra 200 MHz, and Pentium Pro/200 PC,
respectively. Hence, the algorithm of De Reyck and Herroelen has computing times
corresponding to 60/200 of the computation times of the other three approaches.
To achieve a fair comparison we used a (old) Pentium Pro/200 PC to run our code.

5 Lower Bounds and Exact Solution Approaches 109

Table 5.3 Comparison, on known benchmarks with 100 activities, of our algorithm with four
competing approaches

Algorithm t lim
cpu (s) Feasible Optimal Infeasibility proven

De Reyck and Herroelen 3 97.3 54.8 1.4

30 97.5 56.4 1.4

100 – – –

Schwindt 3 98.1 58.0 1.9

30 98.1 62.5 1.9

100 98.1 63.4 1.9

Fest et al. 3 92.2 58.1 1.9

30 98.1 69.4 1.9

100 98.1 71.1 1.9

Dorndorf et al. 3 97.8 66.2 1.9

30 98.1 70.4 1.9

100 98.1 71.1 1.9

Bianco and Caramia 3 98.1 67.6 1.9

30 98.1 71.8 1.9

100 98.1 72.2 1.9

This test consists in running the algorithm with a time limit t limcpu of 3, 30, and 100 s,
respectively. For each experiment, three percentages have been collected, i.e., the
number of projects over the 1,080 instances for which:

• a feasible solution has been found (see column “feasible”);
• an optimal solution has been found and certified (see column “optimal”);
• infeasibility has been proven (see column “infeasibility proven”).

By the results reported in Table 5.3, it appears that the Bianco and Caramia
approach is the most effective among the competing ones. Indeed, the Bianco and
Caramia algorithm was always able to find either a feasible solution, when it exists,
or infeasibility. Moreover, it was able to find optimal solutions on projects ranging
from 67.6 to 72.2 % over the 1,080 instances, that represents the best performance
among the competing approaches.

5.4 Conclusions

In this chapter, project scheduling with generalized precedence relations is
considered. In the first part a new formulation of the resource unconstrained
project scheduling problem is given. By means of this formulation we show
that the minimum completion time can be obtained in O.m/ time complexity
against O.n � m/ time which is the traditional result present in the literature. In
the second part, project scheduling with resource constraints is analyzed. For

110 L. Bianco and M. Caramia

this problem a new lower bound, based on the previous resource unconstrained
formulation, is proposed and experimented. Moreover, a new formulation in terms
of mixed integer programming and a new exact algorithm are presented. The
algorithm, based on branch-and-bound rules, exploits the previous formulation and
a Lagrangian relaxation based lower bound. The extensive computational results
presented support the effectiveness of the proposed approaches.

References

Ahuja RK, Magnanti T, Orlin J (1993) Network flows. Prentice Hall, New York
Bartusch M, Möhring RH, Radermacher FJ (1988) Scheduling project networks with resource

constraints and time windows. Ann Oper Res 16(1):201–240
Bianco L, Caramia M (2010) A new formulation of the resource-unconstrained project scheduling

problem with generalized precedence relations to minimize the completion time. Networks
56(4):263–271

Bianco L, Caramia M (2011a) A new lower bound for the resource-constrained project scheduling
problem with generalized precedence relations. Comput Oper Res 38(1):14–20

Bianco L, Caramia M (2011b) Minimizing the completion time of a project under resource
constraints and feeding precedence relations: a Lagrangian relaxation based lower bound. 4OR-
Q J Oper Res 9(4):371–389

Bianco L, Caramia M (2012) An exact algorithm to minimize the makespan in project scheduling
with scarce resources and generalized precedence relations. Eur J Oper Res 219(1):73–85

Demeulemeester EL, Herroelen WS (1997a) New benchmark results for the resource-constrained
project scheduling problem. Manage Sci 43(11):1485–1492

Demeulemeester EL, Herroelen WS (1997b) A branch-and-bound procedure for the generalized
resource-constrained project scheduling problem. Oper Res 45(2):201–212

Demeulemeester EL, Herroelen WS (2002) Project scheduling: a research handbook. Kluwer,
Boston

De Reyck B (1998) Scheduling projects with generalized precedence relations: exact and heuristic
approaches. Ph.D. dissertation, Department of Applied Economics, Katholieke Universiteit
Leuven, Leuven

De Reyck B, Herroelen W (1998) A branch-and-bound procedure for the resource-constrained
project scheduling problem with generalized precedence relations. Eur J Oper Res 111(1):152–
174

Dorndorf U (2002) Project scheduling with time windows. Physica, Heidelberg
Dorndorf U, Pesch E, Phan-Huy T (2000) A time-oriented branch-and-bound algorithm for

resource-constrained project scheduling with generalised precedence constraints. Manage Sci
46(10):1365–1384

Elmaghraby SEE, Kamburowski J (1992) The analysis of activity networks under generalized
precedence relations (GPRs). Manage Sci 38(9):1245–1263

Fest A, Möhring RH, Stork F, Uetz M (1999) Resource-constrained project scheduling with time
windows: a branching scheme based on dynamic release dates. Technical Report 596, Technical
University of Berlin, Berlin

Held M, Karp RM (1970) The traveling-salesman problem and minimum spanning trees. Oper Res
18(6):1138–1162

Hochbaum D, Naor J (1994) Simple and fast algorithms for linear and integer programs with two
variables per inequality. SIAM J Comput 23(6):1179–1192

Kelley JE (1963) The critical path method: resource planning and scheduling. In: Muth JF,
Thompson GL (eds) Industrial scheduling. Prentice-Hall Inc., Englewood Cliffs, pp 347–365

5 Lower Bounds and Exact Solution Approaches 111

Klein R, Scholl A (1999) Computing lower bounds by destructive improvement: an application to
resource-constrained project scheduling. Eur J Oper Res 112(2):322–346

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Manage Sci 41(10):1693–1703

Moder JJ, Philips CR, Davis EW (1983) Project management with CPM, PERT and precedence
diagramming, 3rd edn. Van Nostrand Reinhold Company, New York

Möhring RH, Schulz AS, Stork F, Uetz M (1999) Resource-constrained project scheduling:
computing lower bounds by solving minimum cut problems. Lecture notes in computer science,
vol 1643. Springer, Berlin, pp 139–150

Möhring RH, Schulz AS, Stork F, Uetz M (2003) Solving project scheduling problems by
minimum cut computations. Manage Sci 49(3):330–350

Neumann K, Schwindt C, Zimmerman J (2003) Project scheduling with time windows and scarce
resources, 2nd edn. LNEMS, vol 508. Springer, Berlin

Radermacher FJ (1985) Scheduling of project networks. Ann Oper Res 4(1):227–252
Schwindt C (1996) ProGen/Max: generation of resource-constrained scheduling problems with

minimal and maximal time lags. Technical Report WIOR-489, University of Karlsruhe,
Karlsruhe

Schwindt C (1998) Verfahren zur Lösung des ressourcenbeschränkten Projektdauermin-
imierungsproblems mit planungsabhängigen Zeitfenstern. Shaker, Aachen

Chapter 6
A Precedence Constraint Posting Approach

Amedeo Cesta, Angelo Oddi, Nicola Policella, and Stephen F. Smith

Abstract This chapter summarizes some previous work on a constraint-based
scheduling approach effectively applied to Resource-Constrained Project Schedul-
ing problems. The approach is based on a formulation of the problem as a Constraint
Satisfaction Problem (CSP). In particular the problem is reduced to the one of estab-
lishing sufficient precedence constraints between activities that require the same
resource so as to eliminate all possible resource contention, defining what is called
the Precedence Constraint Posting (PCP) approach. The PCP scheduling approach
has two attractive properties: first it operates in a search space that avoids over-
commitment to specific activity start times, and can be more efficiently searched;
second, the solution generated is a so-called “flexible schedule”, designating a set of
acceptable futures, which provides a basis for efficiently responding to unexpected
disruptions during execution. This chapter summarizes a body of work developed
over the years on PCP-based scheduling to take advantage of such properties. In
particular, the chapter presents an overview on a number of original algorithms
for efficiently finding a solution to a scheduling problem, for generating robust
schedules, and for searching near-optimal makespan solutions.

Keywords Constraint-based reasoning • Generalized precedence relations •
Makespan minimization • Renewable resources • Robust scheduling • Temporal
flexibility

A. Cesta (�) • A. Oddi
Institute of Cognitive Sciences and Technologies, CNR - Italian National Research Council,
Rome, Italy
e-mail: amedeo.cesta@istc.cnr.it; angelo.oddi@istc.cnr.it

N. Policella
European Space Operations Centre, European Space Agency, Darmstadt, Germany
e-mail: nicola.policella@esa.int

S.F. Smith
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: sfs@cmu.edu

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_6

113

mailto:amedeo.cesta@istc.cnr.it
mailto:angelo.oddi@istc.cnr.it
mailto:nicola.policella@esa.int
mailto:sfs@cmu.edu

114 A. Cesta et al.

6.1 Introduction

Constraint-based scheduling models combine rich representational flexibility with
compositional search procedures and heuristics, and this combination can provide
significant leverage in addressing complex scheduling problems. These approaches
start with a formulation of the problem of interest as a Constraint Satisfaction
Problem (CSP), which involves specification of a set of decision variables together
with a set of constraints on their mutual values. Much like the MILP formulations
discussed in Chap. 2 of this handbook, there are different possibilities. One basic
approach is to formulate the problem as one of finding a consistent assignment
of start times for all constituent activities to be scheduled (analogous to the time-
indexed formulations of Chap. 2 of this handbook). This fixed times assignment
formulation, however, has a couple of drawbacks. From a constraint reasoning
perspective, it promotes over-commitment (i.e., the problem constraints likely do
not require commitment to specific start times to ensure feasibility), which results in
a correspondingly larger solution space to search. From an operational perspective,
a fixed-times solution offers no resilience against executional uncertainty, and is
likely to quickly become invalid.

An alternative CSP formulation, which we adopt in this chapter, is to reduce
the problem to one of establishing sufficient precedence constraints between
activities competing for the same resources to eliminate all possible resource
contention, and ensure both time and resource feasibility. This approach, referred
to as Precedence Constraint Posting (PCP), address the over-commitment issue
raised above by instead producing a so-called “flexible schedule” where activity
start times are constrained to occur within an interval that is consistent with the
problem constraints. The original formulation (Smith and Cheng 1993) was shown
to achieve order-of-magnitude speedup in solving time over a corresponding fixed
times assignment procedure in a basic job shop scheduling setting. More recently,
this approach has been generalized to address cumulative resources, has been
effectively applied to the resource constrained project scheduling problem (Cesta
et al. 2002), and has been extended to generate Partial Order Schedules (POSs),
activity networks with the property that any temporal solution to the graph is also
resource-feasible (Policella et al. 2007). The ability to generate POSs provides a
basis for efficiently responding to unexpected disruptions at execution time. It also
provides a conceptual framework for optimizing solution robustness in the absence
of knowledge about the uncertainties in the execution environment (similar in some
ways to the robust scheduling techniques discussed in Chap. 40 in the second
volume of this handbook, and in contrast to the stochastic models of Chap. 37 in
the second volume of this handbook).

In this chapter we summarize this PCP approach to Project Scheduling. We
present a basic set of core solving algorithms for generating a solution in the form
of an activity network N , a directed graph N D .V;E/, where the edges in E are
simple precedence constraints imposed on the set of problem activities V . Via a
polynomial time calculation, such a network N can be always turned into a Partial

6 A Precedence Constraint Posting Approach 115

Order Schedule (POS). We also discuss incorporation of these core algorithms
into extended optimizing search procedures targeted on two different objectives:
improve the robustness of a solution (Policella et al. 2009) and minimize the solution
makespan (e.g., Oddi et al. 2010a).

The chapter is organized as it follows: Sect. 6.2 reviews the state-of-the-art in
Constraint-based Scheduling. After the introduction of the reference scheduling
problem (RCPSP/max, Sect. 6.3) and its CSP representation (Sect. 6.4), the chapter
than continues describing the basic concepts behind PCP (Sect. 6.5). A core PCP
framework is discussed in Sect. 6.6. The last part of the chapter then summarizes the
results along two different directions of work: a first for generating robust schedules
(Sect. 6.7); a second one for the generation of optimal solutions (Sect. 6.8). The final
conclusions are discussed in Sect. 6.9.

6.2 Constraint-Based Scheduling

Constraint Programming (see Rossi et al. 2006) is an approach to solving combina-
torial search problems based on the Constraint Satisfaction Problem (CSP) paradigm
(Kumar 1992; Montanari 1974; Tsang 1993). Constraints are just relations and a
CSP states which relations should hold among the given problem decision variables.
This framework is based on the combination of search techniques and constraint
propagation. Constraint propagation consists of using constraints actively to prune
the search space. Different propagation algorithms have been defined for different
kinds of constraints. Their aim is to reduce the domains of variables involved in
the constraints by removing the values that cannot be part of any feasible solution.
The filtering algorithm is invoked any time a domain of some variable is changed
(either as a result of search decisions or during constraint propagation) to propagate
the consequences of the change over all decision variables. As described by Dechter
and Rossi (2002), “in general, constraint satisfaction tasks, like finding one or all
solutions or the best solution, are computationally intractable, NP-hard”. For
this reason the constraint propagation process cannot be complete, that is, some
infeasible values may still remain in the domains of the variables and thus decisions
are necessary to find a complete feasible valuation of the variables. In general,
constraint propagation is aimed at achieving local consistency among subsets of
variables.

Constraint satisfaction and propagation rules have been successfully used to
model, reason and solve about many classes of problems in such diverse areas
as scheduling, temporal reasoning, resource allocation, network optimization and
graphical interfaces. In particular, CSP approaches have proven to be an effective
way to model and solve complex scheduling problems (see, for instance, Baptiste
et al. 2001; Beck et al. 1998; Cesta et al. 2002; Fox 1990; Sadeh 1991; Smith
1994). The use of variables and constraints provides representational flexibility and
reasoning power. For example, variables can represent the start and the end times of
an activity, and these variables can be constrained in arbitrary ways.

116 A. Cesta et al.

In the remainder of this section we first provide a formal definition of the
Constraint Satisfaction Problem, next a brief description of a generic solver, and
finally an overview of the different ways in which this paradigm has been used to
solve scheduling problems.

6.2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem, CSP, consists of a finite set of decision
variables, each associated with a domain of values, and a set of constraints that
define the relation between the values that the variables can assume. Therefore, a
CSP is defined by the tuple hV;D;Ci where:

• V D fv1; v2; : : : ; vng is a set of n variables;
• D D fD1;D2; : : : ;Dng is the set of corresponding domains of values for any

variable, such that vi 2 Di , i D 1; : : : ; n;
• C D fc1; c2; : : : ; c�g, is a set of � constraints, c�.v1; v2; : : : ; vn/, that are

predicates defined on the Cartesian product of the variable domains, D1 �D2 �
: : : �Dn.

A solution s is a value assignment to each variable vi , from its domain,

.�1; �2; : : : ; �n/ 2 D1 �D2 � : : : �Dn

such that the set of constraints is satisfied.
Constraint processing tasks include not only the satisfaction task, but also

Constraint Optimization Problems (COP). In this case an objective function f .S/
(or cost function) evaluates any single feasible solution S . The goal is to find an
optimal solution S� which minimizes (or maximizes) the objective function f ./.

Finally, we observe an instance of a CSP hV;D;Ci can be represented as a
constraint graph, G D .V;E/. For every variable vi 2 V , there is a corresponding
node in the graph. For every set of variables connected by a constraint cj 2 C, there
is a corresponding hyper-edge. In the particular case of binary constraints (each
constraint involves at most two variables) the hyper-edges become simply edges. A
well known example of binary CSP (extensively used in this chapter) is the Simple
Temporal Problem (STP) introduced by Dechter et al. (1991).

6.2.2 A Generic CSP Solver

A complete CSP solving procedure consists of the following three steps (Algo-
rithm 6.1): (a) current problemP is checked for consistency [CheckConsistency(P)]
by the application of a propagation procedure, if at least one constraint is violated
the algorithm exits with failure. If the problem P is also a solution [IsSolution(P)],

6 A Precedence Constraint Posting Approach 117

Algorithm 6.1: CSP-Solver(P)
if CheckConsistency(P) then

if IsSolution(P) then
S P

return S

else
vi SelectVariable(P)
�i Choose-Value(P; vi)
CSP-Solver(P [f�ig)

end if
else

return ;
end if

then the algorithm exits and returns the generated solution S D P . Otherwise
the problem is still not solved and the following two steps are executed; (b) a
variable vi is selected by a variable ordering heuristic; (c) a value �i is chosen by
a value ordering heuristic and added to P . The solver is recursively called on the
updated problem P [f�ig.

6.2.3 CSP Approaches to Scheduling Problems

Scheduling problems are difficult combinatorial optimization problems and repre-
sent an important application area for constraint directed search. Different constraint
programming approaches have been developed in this direction, for instance, the
reader can refer to Baptiste et al. (2001) for a thorough analysis of different
constraint based techniques for scheduling problems. The work of Constraint
directed Scheduling of the 1980s (see for example Fox 1990; Sadeh 1991; Smith
1994) has developed into Constraint-based Scheduling approaches in the late 1990s
(see Baptiste and Le Pape 1995; Beck et al. 1998; Hentenryck and Michel 2009;
Nuijten and Aarts 1996; Smith and Pyle 2004). These approaches all focus on the
use of constraints as a basis for representing and managing the search for a solution
to the scheduling problem at hand. As mentioned above, the search for a solution
to a CSP can be viewed as modifying the constraint graph G D .V;E/ through
the addition and removal of constraints, where the constraint graph is an evolving
representation of the search state, and a solution is a state in which a single value
remains in the domain of each variable and all constraints are satisfied.

As mentioned at the outset, research in constraint-based scheduling has pursued
two basic formulations of the scheduling problem. One set of approaches (e.g.,
Nuijten and Le Pape 1998; Sadeh 1991; Smith and Pyle 2004) has formulated the
problem as that of finding a consistent assignment of start times for each activity to
be performed. Under this model, decision variables are time points that designate the
start times of various activities and CSP search focuses on determining a consistent

118 A. Cesta et al.

assignment of start time values. The “serial and parallel” methods discussed in
Chap. 1 of this handbook similarly aim to find consistent sets of start times. A
second set of approaches have focused on a problem formulation more akin to
least-commitment frameworks. In this model, which is based on a disjunctive graph
representation (Adams et al. 1988) and is referred to as Precedence Constraint
Posting (Smith and Cheng 1993), solving consists of posting additional precedence
constraints between pairs of activities contending for the same resources to ensure
feasibility with respect to time and capacity constraints. Solutions generated in this
way generally represent a set of feasible schedules (i.e., the sets of activity start
times that remain consistent with posted sequencing constraints), as opposed to a
single assignment of start times.

6.3 The Reference Scheduling Problem: RCPSP/max

We adopt the Resource-Constrained Project Scheduling Problem with minimum
and maximum time lags, RCPSP/max,1 as a reference problem (see Bartusch et al.
1988). The basic entities of interest in this problem are activities. The set of activities
is denoted by V D f1; 2; : : : ng where each activity has a fixed processing time, or
duration, pi and must be scheduled without preemption.

A schedule is an assignment of start times to each activity in V , i.e., a vector
S D .S1; S2; : : : ; Sn/where Si denotes the start time of activity i . The time at which
activity i has been completely processed is called its completion time and is denoted
by Ci . Since we assume that processing times are deterministic and preemption is
not permitted, completion times are determined by:

Ci D Si C pi .i 2 V / (6.1)

Schedules are subject to two types of constraints, temporal constraints and resource
constraints. In their most general form temporal constraints designate arbitrary
minimum and maximum time lags between the start times of any two activities,

dmin
ij � Sj � Si � dmax

ij ..i; j / 2 V / (6.2)

where dmin
ij and dmax

ij are the minimum and maximum time lag of activity j relative
to i . A schedule S D .S1; S2; : : : ; Sn/ is time feasible, if all inequalities given by
the activity precedences/time lags (6.2) and durations (6.1) hold for start times Si .

During their processing, activities require specific resource units from a set
R D f1; 2; : : : ; Kg of resources. Resources are reusable (renewable), i.e., they are
released when no longer required by an activity and are then available for use by
another activity. Each activity i 2 V requires rik units of the resource k 2 R during
its processing time pi . Each resource k 2 R has a limited capacity of Rk units.

1The three field classification of RCPSP/max is PSjtempjCmax.

6 A Precedence Constraint Posting Approach 119

A schedule S is resource feasible if at each time t the demand for each resource
k 2 R does not exceed its capacity Rk , i.e.,

rk.S; t/ D
X

i2V WSi�t<Ci
rik � Rk .k 2 RI t 2 Œ0; T �/ (6.3)

A schedule S is called feasible if it is both time and resource feasible.
The RCPSP/max problem is a complex scheduling problem: in fact not only the

optimization version but also the feasibility problem is NP-hard (see Bartusch
et al. 1988). The reason for this NP-hardness result lies in the presence of
maximum time lags. In fact these imply the presence of deadline constraints, trans-
forming feasibility problems for precedence-constrained scheduling to scheduling
problems with time windows.

6.4 The RCPSP/max as a CSP

As introduced above, we formulate the project scheduling problem as a Constraint
Satisfaction Problem (CSP), in particular we refer to the definition of the problem
proposed in the work Bartusch et al. (1988), such that decision variables are the so-
called Forbidden Sets also known as Minimal Critical Sets (see Laborie and Ghallab
1995 or Chap. 2 of this handbook, we use MCS in the rest of the chapter).

Given a generic resource k, a conflict is a set of activities requiring the resource
k, which can mutually overlap and whose combined resource requirement is in
excess of the resource capacity Rk . A Minimal Critical Set, MCS � V , represents a
resource conflict of minimal size (each subsets is not a resource conflict), which can
be resolved by posting a single precedence constraint between two of the competing
activities in the conflict set. Hence, in CSP terms, a decision variable is defined
for each MCS and the domain of possible vales is the set of all possible feasible
precedence constraints i 	 j which can be imposed between any pair of activities
in the MCS.

A solution of the scheduling problem is a set of precedence constraints (added to
the original problem described in the previous Sect. 6.3) such that removes all the
MCSs.

A solution takes the form of an activity network NS , a directed graph NS D
.VS ;E/, where VS D V [fsource; sinkg, the set of problem activities V plus
two fictitious activities source and sink, and E is the set of directed edges .i; j /,
representing the set of precedence constraints i 	 j defined among the activities in
VS . In particular, the set E is partitioned in two subsets, E D Eprob [Epost, where
Eprob is the set of precedence constraints originating from the problem definition
and Epost is the set of precedence constraints posted to resolve resource conflicts.
In general, the directed graph NS.VS;E/ represents a set of temporal solutions
.S1; S2; : : : ; Sn/, that is a set of assignments to the activities’ start-times which are
consistent with the set of constraints E and the set of imposed resource constraints.

120 A. Cesta et al.

We observe as in the new formulation of the problem it becomes a pure
disjunctive temporal problem (Oddi et al. 2010b), such that the original resource
constraints are compiled into a set of MCSs, each MCS can be seen as a disjunctive
temporal clause. A drawback of the previous MCS reduction is the large number of
MCSs obtained for each resource k; if nk is the number activities requiring resource
k, the number of MCSs is

� jnk j
RkC1

�
, hence O.nRkC1k /.

The next section proposes a summary of the works (Cesta et al. 1999, 2002)
which describes how to overcame the limitation imposed by the large size set
of MCSs. The proposed approach, targeted to identification of decision variables,
attempts to reconcile two, typically conflicting desiderata: (1) on one hand to always
take the decision centers on the most critical precedence constraint to post and (2) on
the other to minimize the amount of time spent in the analysis that leads to this
decision. For details on the empirical evaluation of the algorithms the author can
refer to the original works (Cesta et al. 1999, 2002).

6.5 Precedence Constraint Posting

The proposed Precedence Constraint Posting (PCP) approach was first introduced
by Smith and Cheng (1993) for problems with binary resources and then extended
to more general problems in subsequent research, aims at synthesizing additional
precedence constraints between pairs of activities for the purpose of pruning all
inconsistent allocations of resources to activities. The general schema of this
approach is provided in Fig. 6.1 and consists of representing, analyzing, and solving
different aspects of the problem in two separate layers. In the former the temporal
aspects of the scheduling problem, e.g., activity durations, constraints between pairs
of activities, due dates, release time, etc., are considered. The second layer, instead,
represents and analyzes the resource aspects of the problem. Let us now explain the
details of the two layers.

temporal
flexible
solution

precedence
constraint

resource

time

resource profile analysis

temporal constraint propagation

Fig. 6.1 Precedence Constraint Posting schema

6 A Precedence Constraint Posting Approach 121

6.5.1 Time Layer

The temporal aspects of the scheduling problems are represented through an STP
(Simple Temporal Problem) network (see Dechter et al. 1991). This is a temporal
graph in which the set of nodes represents a set of temporal variables named time-
points, tp�, while linear temporal constraints, of the form tp� � tp� � d�� , define
the distances among them. Each time point has initially a domain of possible
values equal to Œ0; T � where T is the temporal horizon of the problem. The
problem is represented by associating with each activity a pair of time points
which represent, respectively, the start and the end-time of the activity. Therefore
a temporal constraint may be imposed between a pair of time points that can
“belong” to the same activity or not. In the latter case (when they do not belong
to the same activity) the temporal constraints represent constraints between two
activities of the problem. If alternatively, the two time-points belong to the same
activity, the temporal constraints represent the duration, or processing time, of the
activity. By propagating the temporal constraints it is possible to bound the domains
of each time-point, tp� 2 Œlb�; ub��. In the case of empty domains for one or
more time-points the temporal graph does not admit any solution. In Dechter et al.
(1991) it was proved that it is possible to completely propagate the whole set of
temporal constraints in polynomial time, O.n3/, and, moreover, that a solution can
be obtained by selecting for each time-point its lower bound value, tp� D lb�
(this solution is referred to as the Earliest Start-Time Solution). The temporal layer
then, given the temporal aspects of a scheduling problem, provides, in polynomial
time (using constraint propagation) a set of solutions defined by a temporal graph.
This result is taken as input in the second layer. In fact, at this stage we have a set of
temporal solutions (time feasible) that need to also be proven to be resource feasible.

6.5.2 Resource Layer

This layer takes into account the other aspect of the scheduling problem, namely
the constraints on resources (i.e., capacity). In general, resources can be binary,
multi-capacitive, or consumable (non-renewable). As described above, the input
to this layer in the PCP approach is a temporally flexible solution—a set of
temporal solutions (see also Fig. 6.1). Like in the previous layer it is possible to use
constraint propagation to reduce the search space. Even though there are different
methodologies described in the literature, these propagation procedures are not
sufficient in general (see Laborie 2003; Nuijten and Aarts 1996). In fact they are
not complete, which implies that they are not able to prune all inconsistent temporal
solutions. For this reason a PCP procedure uses a Resource Profile (see Cesta et al.
2002) to analyse resource usage over time and detect MCS decision variables. The
procedure then proceeds to post further constraints to level (or solve) some of the
detected conflicts. These new constraints are propagated in the underlying layer

122 A. Cesta et al.

to check the temporal consistency. Then the time layer provides a new temporally
flexible solution that is analyzed again using the resource profiles. The search stops
when either the temporal graph becomes inconsistent or the resource profiles are
consistent with the resource capacities.

6.6 The Core Constraint-Based Scheduling Framework

The core of the implemented framework is based on the greedy procedure described
in Algorithm 6.2, which is an instance of the procedure described in Sect. 6.2.2.
Within this framework, a solution is generated by progressively detecting time
periods where resource demand is higher than resource capacity (conflicts) and
posting sequencing constraints between competing activities to reduce demand
and eliminate capacity conflicts. As explained above, after the current situation is
initialized with the input problem, S0 P , the procedure builds an estimate of
the required resource profile according to the current temporal precedences in the
network and detects resource conflicts—SELECTCONFLICTSET(S0). If the set of
conflicts F is not empty then new constraints are synthesized, SELECTLEVELING-
CONSTRAINT(F), and posted on the current situation. The search proceeds until
either the STP temporal graph becomes inconsistent or a solution is found.

Using the reference scheduling problem (RCPSP/max) introduced above, we
proceed now to summarize the core components needed to fully specify the
approach. In fact, the introduction of a specific scheduling problem allows us
to set the general framework introduced above. The first issue in the framework
implementation concerns how to identify activities that are in a conflicting situation.
This allows identification of the points in the current solution state that need to be
resolved. The second issue concerns the heuristics (variable and value ordering)
used to respectively select and solve conflicts that have been identified.

6.6.1 Consider Resource Utilization

A first, important issue that needs to be explored is how to compute resource
utilization profiles. In fact, the input temporal graph represents a set of solutions,
possibly infinite, and to consider all the possible combinations is impossible in
practice.

A possible affordable alternative consists of computing bounds on resource
utilization. Examples of bounding procedures can be found in Drabble and Tate
(1994), Cesta and Stella (1997), Laborie (2003), Muscettola (2002). It is worth
noting that consideration of resource bounds as resource profiles implies that all
temporal solutions represented by the temporal graph are also resource feasible.

A different approach to dealing with resources consists of focusing attention
on a specific temporal solution and its resource utilization. In contrast to resource

6 A Precedence Constraint Posting Approach 123

a b

Fig. 6.2 Two different ways to consider the resource utilization. (a) Bounds of the resource
utilization for the set of solutions defined by a temporal graph. (b) Resource utilization of a single
temporal solution

bounding approaches, this process only assures that the final temporal graph
contains at least one resource feasible solution (the one for which the resource
utilization is in fact considered); some of the temporal solutions may not be resource
feasible. Since only a single feasible solution is computed instead of encapsulating
all possible feasible solutions, this approach gains substantial computational effi-
ciency.

Figure 6.2 summarizes the two alternative resource profiles. In the first case
resource bounds are used to consider all the temporal solutions and their associated
resource utilization (Fig. 6.2a). Alternatively, only one temporal solution of the set
is considered in the second case (Fig. 6.2b).

6.6.2 How to Identify Decision Variables

The starting point in identifying the possible conflicts is the computation of
the possible contention peaks. A contention peak is a set of activities whose
simultaneous execution exceeds the resource capacity. A contention peak designates
a conflict of a certain size (corresponding to the number of activities in the peak). In
Algorithm 6.2 the function SELECTCONFLICTSET(S0) collects all maximal peaks2

in the current schedule. Then selects a decision variable (MCS) from the set of
peaks. An alternative selection procedure first ranks the selected peaks, next picks
the more critical one (e.g., one with maximal size), and last selects a decision

2Specifically, we follow a strategy of collecting sets of activities such that none of the sets is a
subset of the others.

124 A. Cesta et al.

Algorithm 6.2: GREEDYPCP(P)
Require: a problem P

Ensure: a solution S (or the empty set otherwise)
S0 P

if Exists an unresolvable conflict in S0 then
S ;

else
F SELECTCONFLICTSET(S0)
if F D ; then
S S0

else
fi � j g SELECTLEVELINGCONSTRAINT(F)
S0 S0 [fi � j g
S GREEDYPCP(S0)

end if
end if
return S

variable from the selected peaks. The selected MCS is solved by imposing on the
conflicting activities a single precedence constraint i 	 j . Next Sect. 6.6.3 gives
more details about the used selection procedures.

Cesta et al. (1999, 2002) showed that much of the advantage of this type of global
conflict analysis can be retained by using an approximate polynomial procedure for
computing MCSs. In particular, Cesta et al. (1999, 2002) proposed two polynomial
strategies for sampling MCSs from a peak of size jF j. These strategies are based
on the idea of sorting the activities of each peak according to their resource usage
(greatest first), then MCSs are collected by visiting such a list and extracting sub-
sequences of activities corresponding to MCSs. The two methods are named linear
and quadratic according to their complexity (they respectively collect O.jF j/ and
O.jF j2/ elements). An additional and effective strategy is based on the idea of
imposing a lexicographical order on the set of searched MCSs, the reader can refer
to the paper Cesta et al. (2002) to see the detail of the procedure.

6.6.3 Selecting and Solving Conflicts

According to the proposed CSP framework, in all cases where no mandatory
decisions can be deduced from the propagation phase, heuristics and methods used
to respectively select and solve one of the conflicts are introduced by defining
variable and value ordering heuristics for the decision variables. The basic idea
is to repeatedly evaluate the decision variables and select the one with the best
heuristic evaluation. The selection of which variable to assign next is based on the
most constrained first (MCF) principle, and the selection of values follows the least
constraining value (LCV) heuristic. More specifically, the following heuristics are
assumed:

6 A Precedence Constraint Posting Approach 125

Ranking conflicts: for evaluating MCSs we have used the heuristic estimator �./
described by Laborie and Ghallab (1995), where the MCS with highest value of
�.MCS/ is then chosen. A conflict is unsolvable if no pair of activities in the
conflict can be ordered. Basically, �./ will measure how close a given conflict is
to being unsolvable.

Slack-based value selection: to choose an ordering decision among the possible,
the choice which retains the most temporal slack is taken.

It is worth underscoring that the above PCP framework establishes resource
feasibility strictly by sequencing conflicting activities. It remains non-committal on
activity start times. As such, PCP preserves temporal flexibility that follows from
problem constraints. Further, the two heuristic choices adopt a minimal commitment
strategy with respect to preserving temporal slack, and this again favors temporal
flexibility.

6.7 Flexible Solutions, Robustness, and Partial Order
Schedules

As shown in the previous section, the outcome of a Precedence Constraint Posting
solver is a Simple Temporal Problem (STP) network or STN, that not only contains
the temporal constraints belonging to the initial problem, but also the additional
precedences that have been added during the resolution process. In a STN, each
time point is associated with a bounded interval of values which represents the set
of admissible values for that time point; hence, the adjective “temporally flexible”
is often used to refer to these kind of solutions. Therefore the PCP approach tries
to retain the temporal flexibility of the underlying STN to the extent possible
(somehow maximizing the domain size of the time points). In particular, the use
of PCP approaches (and the schedules produced by them) can be justified in two
ways:

• As a means of retaining the flexibility implied by problem constraints (time and
capacity) and avoiding over commitment;

• As a means of establishing conditions for guaranteed executability.

In fact, in most practical scheduling environments, off-line schedules can have
a very limited lifetime and scheduling is really an ongoing process of responding
to unexpected and evolving circumstances. In such environments, insurance of
robust response is generally the first concern. Unfortunately, the lack of guidance
that might be provided by a schedule often leads to myopic, sub-optimal decision-
making.

One way to address this problem is reactively, through schedule repair. To keep
pace with execution, the repair process must be both fast and complete. The response
to a disruption must be fast because of the need to re-start execution of the schedule
as soon as possible. A repair must also be complete in the sense of accounting

126 A. Cesta et al.

for all changes that have occurred, while attempting to avoid the introduction of
new changes. As these two goals can be conflicting, a compromise solution is often
required. Different approaches exist and they tend to favour either timeliness (Smith
1994) or completeness (El Sakkout and Wallace 2000) of the reactive response.

An alternative, proactive approach to managing execution in dynamic environ-
ments is to focus on building schedules that retain flexibility and are able to absorb
some amount of unexpected events without rescheduling. One technique consists
of factoring time and/or resource redundancy into the schedule, taking into account
the types and nature of uncertainty present in the target domain (Davenport et al.
2001; Hiatt et al. 2009). An alternative technique is to construct an explicit set of
contingencies (i.e., a set of complementary solutions) and use the most suitable
with respect to the actual evolution of the environment (Drummond et al. 1994).
Both of these proactive techniques presume an awareness of the possible events
that can occur in the operating environment, and in some cases, these knowledge
requirements can present a barrier to their use.

Research approaches are based on different interpretations of the concept of
a robust solution, e.g., the ability to preserve solution qualities or the ability to
maintain a stable solution. The concept of robustness, on which this work is based,
can be viewed as execution-oriented; a solution to a scheduling problem will be
considered robust if it provides two general features: (1) the ability to absorb
exogenous and/or unforeseen events without loss of consistency, and (2) the ability
to keep the pace with the execution guaranteeing a prompt answer to the various
events.

Figure 6.3a describes the execution of a schedule. This is given to an executor (it
can be either a machine or a human being) that manages the different activities.
If something happens (i.e., an unforeseen event occurs) the executor will give
feedback to a scheduler module asking for a new solution. Then, once a new

Fig. 6.3 Rescheduling actions during the execution. (a) General rescheduling phase.
(b) Rescheduling phase using a flexible solution

6 A Precedence Constraint Posting Approach 127

solution is computed, it is given back to the executor. In Fig. 6.3b, instead, the
execution of a flexible schedule is highlighted. The substantial difference in this
case is that the use of flexible solutions allows the introduction of two separate
rescheduling phases: the first enabling rapid response by immediate means like
temporal constraint propagation over the set of activities, and the second entailing to
more extensive re-computation of the schedule when the first phase cannot offer a
response. In practice, the first phase exploits the flexibility characteristics of the
solution (and for this reason we named this module bounded repair scheduler).
Of course it is possible that an unforeseen event will force the system outside of
the bounds provided by the flexible solution. In this case, it will be necessary to
invoke the second, more complete scheduling phase. This second phase involves re-
computation of the overall flexible schedule, and performs a much more extensive
constraint-based search procedure (global revision module). Note that the use of
flexible schedules makes it possible to bypass this extended computation in many
circumstances in favor of a prompt answer.3

6.7.1 Partial Order Schedules

To take maximum advantage of the opportunity to bypass extended computation
in the event of unexpected events, a stronger form of flexible schedule is required.
Policella et al. (2004) and Policella (2005) further elaborated the idea of exploiting
temporal flexibility by adopting a graph formulation of the scheduling problem and
focusing on generation of the Partial Order Schedules (POSs).

Definition 6.1 (Partial Order Schedule). A Partial Order Schedule POS for a
problem P is an activity network, such that any possible temporal solution is also a
resource-consistent assignment.

Within a POS, each activity retains a set of feasible start times, and these options
provide a basis for responding to unexpected disruptions.

An attractive property of a POS is that reactive response to many external changes
can be accomplished via simple propagation in an underlying temporal network (a
polynomial time calculation); only when an external change exhausts all options
for an activity is it necessary to recompute a new schedule from scratch. In fact the
augmented duration of an activity, as well as a greater release time, can be modeled
as a new temporal constraint to post on the graph. To propagate all the effects of
the new edge over the entire graph it is necessary to achieve the arc-consistency of
the graph (that is, ensure that any activity has a legal allocation with respect to the
temporal constraints of the problem).

Note that, even though the propagation process does not explicitly consider
consistency with respect to the resource constraints, it is guaranteed to obtain a

3Although the reader should also note that these solutions are in general sub-optimal.

128 A. Cesta et al.

Fig. 6.4 An example of Partial Order Schedule (POS)

feasible solution by definition. Therefore a partial order schedule provides a means
to find a new solution and ensures to compute it in a fast way.

The common thread underlying a POS is the characteristic that activities
which require the same resource units are linked via precedence constraints into
precedence chains. Given this structure, each constraint becomes more than just a
simple precedence constraint, but represents a producer-consumer relation, allowing
each activity to be connected with the set of predecessors which supply the
units of resource it requires for execution. In this way, the resulting network of
chains can be interpreted as a flow of resource units through the schedule; each
time an activity completes its execution, it passes its resource unit(s) on to its
successors (a similar formulation is used in Chap. 2 of this handbook). Figure 6.4
shows an example of Partial Order Schedule for a single resource with capacity
five. In particular, activities are represented as rectangles and edges represent the
precedence constraints. The numbers inside the rectangles represent the resource
requirements and the labeling numbers on the directed edges represents the flow
of resource units supplied to a generic activity i from its predecessors in order to
satisfy the imposed resource constraint, independently from the start time values of
the activities. For example, the activity which requires four units of resource receives
two units of resource from each of its two predecessors and supplies one and three
units of resource respectively to its two successors. In general, in a POS solution
each activity has a set of inputs predecessors which supply the units of resource
needed for its execution.

Hence, an activity network NS.VS;EPOS/ is in POS-form if for each resource
k there exists a labeling function fk W EPOS �! Œ0::Rk� representing the flow
of resource units among the activities such that for each activity i the following
constraint holds:

X

j2Pred.i/

fk.j; i/ D
X

j2Succ.i/

fk.i; j / D rik (6.4)

where Pred.i/ D fj 2 V j9.j; i/ 2 EPOS/g and Succ.i/ D fj 2 V j9.i; j / 2
EPOS/g.4 Given an input solution S (represented either as a graph or as a set of

4Pred.source/ D Succ.sink/ D ;.

6 A Precedence Constraint Posting Approach 129

start-time values) a polynomial transformation method, named CHAINING, can be
defined that creates sets of activity chains (Policella et al. 2007). This operation can
be accomplished in three steps:

1. all the previously posted leveling constraints are removed from the input partial
order;

2. the activities are sorted by increasing activity earliest start times;
3. for each resource and for each activity i (according to the increasing order of

start times), one or more predecessors p are chosen, which supplies the units
of resource required by i – a precedence constraint p 	 i is posted for each
predecessor p. The last step is iterated until all the activities are linked by
precedence chains and the constraints in (6.4) are satisfied.

Before concluding we make a further remark about partial order schedules. Roy
and Sussman (1964) introduced the disjunctive graph representation of the classical
job shop scheduling problem and describe how a solution can be achieved by solving
all the disjunctive constraints and transforming each into a conjunctive one. Also
in our case of RCPSP/max, solution of all disjunctive constraints is required to
achieve a POS. In essence, the disjunctive graph representation has been extended
to the more general case where multi-capacity resources are defined. In this case
“disjunctive” hyper-constraints among activities that use the same resource are
introduced, the so-called MCSs. Based on this representation we can note that a
partial order schedule is obtained once any disjunctive MCS is solved. In this case,
a set of precedence constraints is posted to solve each MCS.

6.8 Extended Optimizing Search

In the previous sections we have presented a basic set of core solving algorithms
for generating a solution in the form of an activity network N . In addition, we have
also shown as such a network can be always turned into a Partial Order Schedule
(POS) via a polynomial time calculation. Now in this section we summarize how
to use these core algorithms into a set of extended optimizing search procedures
targeted on two different objectives: minimize the solution makespan and improve
the robustness of a solution.

A first procedure is described in (Cesta et al. 2002), where an iterated version
of Algorithm 6.2, called the ISES procedure, is proposed. This algorithm is an
iterative method, which at each step utilizes a randomized version of Algorithm 6.2
to produce different solutions. The key idea underlying the described approach is to
heuristically bias random choices in a dynamic fashion, according to how well (or
how poor) the available search heuristics (variable and value ordering) discriminate
among several alternatives.

A generalization of the previous procedure is the so-called Iterative Flattening
Search (IFS, Cesta et al. 2000; Oddi et al. 2010a). The concept of iterative flattening
search is quite general and provides a framework for designing effective procedures

130 A. Cesta et al.

Algorithm 6.3: IFS(S , MaxFail)
Sbest S

counter 0

while counter � MaxFail do
Relax(S)
S PCP(S)
if Cmax.S/ < Cmax.Sbest/ then

Sbest S

counter 0
else

counter counterC 1
end if

end while
return Sbest

for scheduling optimization, this concept is also known in literature as Large
Neighborhood Search (LNS) and was independently developed for solving vehicle
routing problems in Shaw (1998). It iteratively applies two steps: (1) Random
relaxation of the current solution; (2) An incremental solving step to regain solution
feasibility. Algorithm 6.3 introduces the generic IFS procedure. The algorithm
alternates relaxation and flattening steps until a better solution is found or a
maximal number of non-improving iterations is reached. The procedure takes two
parameters as input: (1) an initial solution S ; (2) a positive integer MaxFail, which
specifies the maximum number of consecutive non makespan-improving moves
that the algorithm will tolerate before terminating. After initialization, a solution
is repeatedly modified within the while loop by applying the RELAX procedure,
and a PCP procedure is used as solving step. At each iteration, the RELAX step
reintroduces the possibility of resource contention, and the PCP step is called
again to restore resource feasibility. If a better makespan solution is found, the
new solution is saved in Sbest. If no improvement is found within MaxFail moves,
the algorithm terminates and returns the best solution found. It is worth noting
that Partial Order Schedules in the context of IFS (or LNS) are an effective way
for designing neighborhood structures, examples of neighborhoods for solving
scheduling problems with cumulative renewable resources are given in the papers
Oddi et al. (2010a), in addition, as shown in Laborie and Godard (2007), the concept
can be extended to various types of resources.

The problem of increasing (optimizing) the robustness of generated POSs is
addressed via an iterative (randomized) chaining procedure in Policella et al. (2009).
In particular, the problem is addressed by separating the phase of problem solution,
which may pursue a standard optimization criterion (e.g., minimal makespan),
from a subsequent phase of solution robustification in which a more flexible
set of solutions is obtained and compactly represented through a Partial Order
Schedule. In particular, the paper focuses on specific heuristic algorithms for
synthesis of POSs, starting from a pre-existing schedule and different extensions
of the technique CHAINING algorithm described in Sect. 6.7.1, which progressively

6 A Precedence Constraint Posting Approach 131

introduces temporal flexibility into the representation of the solution. In fact, we can
observe that given the form of the output solution (an activity network), “classical”
objective like the minimization of project makespan, Cmax, co-exists very naturally
with a POS solution and the objective of increasing the solution’s robustness. In fact,
in the best case, the early start time solution which minimizes makespan is executed;
but in the event that unexpected events prevent this possibility, the accompanying
POS provides a feasible, bounded relaxation strategy.

6.9 Conclusions

In this chapter we have summarized a constraint satisfaction problem solving (CSP)
framework for solving project scheduling problems. We have advocated a somewhat
unconventional Precedence Constraint Posting (PCP) approach, which exploits the
expressiveness and computational efficiency of a simple temporal network (STN) to
enforce complex temporal constraints and interdependencies between activities, and
establishes resource feasibility by iteratively sequencing activities that are found to
be competing for the same resources until all potential resource conflicts have been
resolved. One important advantage of a PCP approach is that a generated solution
consists of a set of feasible schedules, as opposed to a single assignment of activity
start times that is the target of many scheduling approaches. In fact, such a flexible
solution can be efficiently transformed into a Partial Order Schedule (POS), which
guarantees resource feasibility over ranges of activity start times that are consistent
with posted constraints. POSs can be enable quick reaction to unforeseen events
during execution via efficient temporal constraint propagation procedures.

We have discussed core technology components for managing complex temporal
constraints and for detecting and responding to potential resource conflicts, which
are necessary ingredients for configuring a PCP-based scheduling procedure.
We have also illustrated their applicability to the resource constrained project
scheduling problem with minimum and maximum lag times (RCPSP/max). Due
to space considerations, we have not focused heavily on the issue of optimization of
project schedules. However, it is important to note that the PCP approach we have
described can be directly embedded as a sub-procedure in various forms of extended
optimizing search (see Cesta et al. 2002; Oddi et al. 2010a; Policella et al. 2009).

Minimization of project makespan, for example, is an objective that co-exists
very naturally with a POS solution—In the best case, the early start time solution
which minimizes makespan is executed; but in the event that unexpected events
prevent this possibility, the accompanying POS provides a feasible, bounded
relaxation strategy. Overall, PCP provides a flexible and efficient framework for
solving complex combinatorial problems like project scheduling.

Acknowledgements Authors would like to thank the anonymous reviewers for detailed comments
to previous drafts of this chapter. Stephen Smith was supported in part by the US Air Force

132 A. Cesta et al.

Research Laboratory under contracts FA8650-12-C-6269 and FA8750-12-C-0068, and the CMU
Robotics Institute. CNR authors were supported by internal funds for basic research.

References

Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop scheduling.
Manage Sci 34(3):391–401

Baptiste P, Le Pape C (1995) A theoretical and experimental comparison of constraint propagation
techniques for disjunctive scheduling. In: IJCAI-95. Morgan Kaufmann, San Francisco,
pp 600–606

Baptiste P, Le Pape C, Nuijten W (2001) Constraint-based scheduling. Kluwer, Boston
Bartusch M, Mohring RH, Radermacher FJ (1988) Scheduling project networks with resource

constraints and time windows. Ann Oper Res 16(1):201–240
Beck JC, Davenport AJ, Davis ED, Fox MS (1998) The ODO project: towards a unified basis for

constraint-directed scheduling. J Sched 1:89–125
Cesta A, Stella C (1997) A time and resource problem for planning architectures. In: ECP-97.

Lecture notes in computer science, vol 1348. Springer, New York, pp 117–129
Cesta A, Oddi A, Smith SF (1999) An iterative sampling procedure for resource constrained project

scheduling with time windows. In: IJCAI-99. Morgan Kaufmann, San Francisco, pp 1022–1029
Cesta A, Oddi A, Smith SF (2000) Iterative flattening: a scalable method for solving multi-capacity

scheduling problems. In: AAAI-00. AAAI Press, Menlo Park, pp 742–747
Cesta A, Oddi A, Smith SF (2002) A constraint-based method for project scheduling with time

windows. J Heuristics 8(1):109–136
Davenport AJ, Gefflot C, Beck JC (2001) Slack-based techniques for robust schedules. In: ECP-01.

Lecture notes in computer science. Springer, Heidelberg, pp 7–18
Dechter R, Rossi F (2002) Constraint satisfaction. In: Nadel L (ed) Encyclopedia of cognitive

science, Nature Publishing Group, London
Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif Intell 49(1–3):61–95
Drabble B, Tate A (1994) The use of optimistic and pessimistic resource profiles to inform search

in an activity based planner. In: AIPS-94. AAAI Press, Menlo Park, pp 243–248
Drummond M, Bresina J, Swanson K (1994) Just-in-case scheduling. In: AAAI-94. AAAI Press,

Menlo Park, pp 1098–1104
El Sakkout HH, Wallace MG (2000) Probe backtrack search for minimal perturbation in dynamic

scheduling. Constraints 5(4):359–388
Fox MS (1990) Constraint guided scheduling: a short history of scheduling research at CMU.

Comp Ind 14(1–3):79–88
Hentenryck PV, Michel L (2009) Constraint-based local search. MIT Press, Cambridge
Hiatt LM, Zimmerman TL, Smith SF, Simmons R (2009) Strengthening schedules through

uncertainty analysis agents. In: IJCAI-09. AAAI Press, Menlo Park
Kumar V (1992) Algorithms for constraint-satisfaction problems: a survey. Artif Intell Mag

13(1):32–44
Laborie P (2003) Algorithms for propagating resource constraints in A.I. planning and scheduling:

existing approaches and new results. Artif Intell 143(2):151–188
Laborie P, Ghallab M (1995) Planning with sharable resource constraints. In: IJCAI-95. Morgan

Kaufmann, San Francisco, pp 1643–1651
Laborie P, Godard D (2007) Self-adapting large neighborhood search: application to single-mode

scheduling problems. In: Proceedings MISTA-07, Paris, pp 276–284
Montanari U (1974) Networks of constraints: fundamental properties and applications to picture

processing. Inform Sci 7:95–132
Muscettola N (2002) Computing the envelope for stepwise-constant resource allocations. In:

CP-2002. Lecture notes in computer science, vol 2470. Springer, Heidelberg, pp 139–154

6 A Precedence Constraint Posting Approach 133

Nuijten WPM, Aarts EHL (1996) A computational study of constraint satisfaction for multiple
capacitated job shop scheduling. Eur J Oper Res 90(2):269–284

Nuijten W, Le Pape C (1998) Constraint-based job shop scheduling with ILOG-scheduler.
J Heuristics 3(4):271–286

Oddi A, Cesta A, Policella N, Smith S (2010a) Iterative flattening search for resource constrained
scheduling. J Intell Manuf 21(1):17–30

Oddi A, Rasconi R, Cesta A (2010b) Project scheduling as a disjunctive temporal problem. In:
ECAI 2010. IOS Press, Amsterdam, pp 967–968

Policella N (2005) Scheduling with uncertainty: a proactive approach using partial order schedules.
Ph.D. dissertation, Department of Computer and Systems Science, University of Rome
“La Sapienza”, Rome

Policella N, Smith SF, Cesta A, Oddi A (2004) Generating robust schedules through temporal
flexibility. In: ICAPS’04. AAAI Press, Menlo Park, pp 209–218

Policella N, Cesta A, Oddi A, Smith S (2007) From precedence constraint posting to partial order
schedules: a CSP approach to robust scheduling. AI Commun 20(3):163–180

Policella N, Cesta A, Oddi A, Smith S (2009) Solve-and-robustify. J Sched 12(3):299–314
Rossi F, van Beek P, Walsh T (2006) Handbook of constraint programming. Foundations of

artificial intelligence, Elsevier Science, Amsterdam
Roy B, Sussman B (1964) Les problemes d’ordonnancement avec contraintes disjonctives, note

DS n. 9 bis. SEMA, Paris
Sadeh NM (1991) Look-ahead techniques for micro-opportunistic job shop scheduling. Ph.D.

dissertation, School of Computer Science, Carnegie Mellon University, Pittsburgh
Shaw P (1998) Using constraint programming and local search methods to solve vehicle routing

problems. In: CP98. Lecture notes in computer science, vol 1520. Springer, Berlin, pp 417–431
Smith SF (1994) OPIS: a methodology and architecture for reactive scheduling. In: Fox M, Zweben

M (eds) Intelligent scheduling, Morgan Kaufmann, San Francisco, pp 29–66
Smith SF, Cheng C (1993) Slack-based heuristics for constraint satisfactions scheduling. In: AAAI-

93. AAAI Press, Menlo Park, pp 139–144
Smith TB, Pyle JM (2004) An effective algorithm for project scheduling with arbitrary temporal

constraints. In: AAAI’04. AAAI Press, Menlo Park, pp 544–549
Tsang EPK (1993) Foundations of constraint satisfaction. Academic Press, London/San Diego

Chapter 7
A Satisfiability Solving Approach

Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace

Abstract Boolean satisfiability solving is a powerful approach for testing the
feasibility of propositional logic formulae in conjunctive normal form. Nowadays,
Boolean satisfiability solvers efficiently handle problems with millions of clauses
and hundreds of thousands of Boolean variables. But still many combinatorial
problems such as resource-constrained project scheduling are beyond their capa-
bilities. However, hybrid solution approaches have recently been proposed for
resource-constrained project scheduling with generalized precedence constraints
(PSjtempjCmax) that incorporate advanced Boolean satisfiability technology such
as nogood learning and conflict-driven search. In this chapter, we present a generic
exact method for PSjtempjCmax using one of the most successful hybrid approaches
called lazy clause generation. This approach combines constraint programming
solving with Boolean satisfiability solving.

Keywords Generalized precedence relations • Lazy clause generation •
Makespan minimization • Project scheduling • Resource constraints

A. Schutt (�) • T. Feydy • P.J. Stuckey
National ICT Australia & Computing and Information Systems, University of Melbourne,
Melbourne, VIC, Australia
e-mail: andreas.schutt@nicta.com.au; thibaut.feydy@nicta.com.au; peter.stuckey@nicta.com.au

Mark G. Wallace
Opturion & Faculty of Information Technology, Monash University, Caulfield, VIC, Australia
e-mail: mark.wallace@monash.edu

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_7

135

mailto:andreas.schutt@nicta.com.au
mailto:thibaut.feydy@nicta.com.au
mailto:peter.stuckey@nicta.com.au
mailto:mark.wallace@monash.edu

136 A. Schutt et al.

7.1 Introduction

The resource-constrained project scheduling problem with generalized precedence
relations1 consists of scarce resources, activities, and precedence relations between
pairs of activities, where activities require some resources during their execution.
The goal is to create a schedule of activities within the planning period such that the
resource usage does not exceed the resource capacity and all precedence relations
are satisfied. In this chapter, we restrict ourselves to project scheduling problems
on renewable resources (i.e., the resource capacity is constant during the planning
period), non-preemptive activities (i.e., no interruption is allowed during execution),
and finding a schedule with a minimal project duration. This problem is denoted
as PSjtempjCmax in Brucker et al. (1999). Bartusch et al. (1988, Theorem 3.10)
show that the feasibility problem, whether an instance is feasible given an unlimited
project duration, is NP-hard.

PSjtempjCmax is a very general problem. Practical scheduling problems can
include substantially varied restrictions on the resources and activities. The follow-
ing restrictions can be modeled with generalized precedence relations: minimal and
maximal overlaps of activities, synchronization of start or end times for activities,
change of the resource requirement during the activity’s execution, fixed start times
of activities, setup times, or non-delay execution of activities (see, e.g., Bartusch
et al. 1988; Dorndorf et al. 2000; Neumann and Schwindt 1997). Moreover, a
variation of the resource availability over time can be modeled by adding fictitious
activities.

PSjtempjCmax is widely studied and some of its applications can be found in
Bartusch et al. (1988), e.g., civil engineering, building projects, and processor
scheduling. A problem instance consists of a set of resources, a set of activities,
and a set of generalized precedence constraints between activities. Each resource is
characterized by its integral capacity, and each activity by its integral duration and its
resource requirements. Generalized precedence relations express relations of start-
to-start, start-to-end, end-to-start, and end-to-end times between pairs of activities.
All these relations can be formulated as start-to-start time precedences. They have
the form Si C ıij � Sj where Si and Sj are the start times of the activities i and
j , respectively, and ıij is an integral distance between them. If ıij � 0 this imposes
a minimal time lag, while if ıij < 0 this imposes a maximal time lag between start
times.

Example 7.1. A simple example of an PSjtempjCmax problem consists of the five
activities with start times S1; S2; S3; S4, and S5, durations 2; 5; 3; 1, and 2 and
resource requirements on a single resource 3; 2; 1; 2; and 2 with a resource capacity
of 4. Suppose we also have the generalized precedence relations S1 C 2 � S2
(activity 1 ends before activity 2 starts), S2 C 1 � S3 (activity 2 starts at least 1

1In the literature, generalized precedence relations are also known as temporal precedences,
arbitrary precedences, minimal and maximal time lags, or time windows.

7 A Satisfiability Solving Approach 137

Fig. 7.1 The Activity-on-Node project network and the Gantt chart of a solution to a small
PSjtempjCmax

time unit before activity 3 starts), S3 � 6 � S1 (activity 3 cannot start later than 6
time units after activity 1 starts), S4 C 3 � S5 (activity 4 starts at least 3 time units
before activity 5 starts), and S5 � 3 � S4 (activity 5 cannot start later than 3 time
units after activity 4 starts). Note that the last two precedence relations express the
relation S4 C 3 D S5 (activity 4 starts exactly 3 time units before activity 5).

Let the maximal project duration, in which all activities must be completed, be
8. Figure 7.1 illustrates the Activity-on-Node project network between the five tasks
and source 0 at the left (time 0) and sink 6 at the right (time 8), as well as a potential
solution to this problem in the Gantt chart, where a rectangle for activity i has width
equal to its duration and height equal to its resource requirements.

Note that additional edges between the source (sink) are drawn in the Activity-
on-Node project network. These edges reflect the constraints that the activities must
be executed in the planning period created by start time of the source and end time
of the sink, which is between time 0 and time 8. �

Solution approaches that incorporate advanced Boolean satisfiability (SAT)
technology based on the Davis-Putnam-Logemann-Loveland (DPLL) procedure for
solving resource-constrained project scheduling are relatively new. In 2009, Schutt
et al. present a generic exact solution approach using lazy clause generation (LCG)
(Ohrimenko et al. 2009) for the basic resource-constrained project scheduling
problem (PSjprecjCmax) that only involves “standard” precedence relations. LCG is
a constraint programming (CP) approach with underlying advanced SAT technology
from which it inherits the advantage of nogood learning for pruning the search
space and conflict driven search for search guidance. This first approach (Schutt
et al. 2009) modeled the resource constraints by decomposition. Later in Schutt
et al. (2011, 2013a), LCG was extended with the global constraint cumulative
which natively models resource constraints and performs better as the size of the
problem grows. These approaches were then adopted for PSjtempjCmax in Schutt
et al. (2013b) and PSjprecj˙cFi ˇCi in Schutt et al. (2012) (or see Chap. 14 of this
handbook).

In 2010, Horbach proposes a hand-tailored exact solution approach for solving
PSjprecjCmax. He modifies a SAT solver so that the resource constraints are
handled outside by decomposition. This approach is very similar to a satisfiability

138 A. Schutt et al.

modulo theory solver. In the same year, Berthold et al. (2010) showed a generic
exact solution approach for PSjprecjCmax using the constraint integer solver
SCIP (Achterberg 2009) which combines CP, SAT, and integer programming and
handles resource constraint by the global constraint cumulative. This approach
was then adopted for PSjtempjCmax (Heinz et al. 2013). In 2011, Ansótegui
et al. present a generic exact solution approach for PSjprecjCmax that uses the
satisfiability modulo theory solver Yices (Dutertre and de Moura 2006) and handles
resource constraints by decomposition. Although, the approaches Horbach (2010)
and Ansótegui et al. (2011) only have been applied on PSjprecjCmax they can be
extended for PSjtempjCmax.

All these approaches benefit from the underlying SAT technology and perform
similarly on PSjprecjCmax whereas the LCG approach (Schutt et al. 2011) seems
to have the edge. The main differences between the approaches are the Boolean
representation of the possible start times of activities, the model of resource
constraints, and the optimization strategy, i.e., branch and bound or dichotomic
search. Despite that, all these approaches outperform exact solution approaches that
do not take advantage of SAT technologies.

In this chapter, we present a generic exact solution approach that incorporates
advanced SAT technology, on the example of the LCG approach described in Schutt
et al. (2013b). We show that the approach to solving PSjtempjCmax performs better
than published methods so far, especially for improving an initial solution once a
solution is found, and proving optimality. We state the limitations of our current
model and how to overcome them. We compare our approach to the best known
approaches to PSjtempjCmax on standard benchmark suites.

For that we give an overview in finite domain propagation (which is a part of CP
only dealing with variables having finite domains), SAT solving, and LCG solving in
Sect. 7.2. Then, in Sect. 7.3 we present a basic model for PSjtempjCmax and discuss
some improvements to it. In Sect. 7.4, we discuss the various branch-and-bound
procedures that we use to search for optimal solutions. In Sect. 7.6, we compare our
algorithm to the best approaches we are aware of on three challenging benchmark
suites. Finally, we conclude in Sect. 7.7.

7.2 Preliminaries

In this section, we explain LCG by first introducing finite domain propagation and
DPLL-based SAT solving. Then we describe the hybrid approach. We discuss how
the hybrid explains conflicts and briefly discuss how a cumulative propagator is
extended to explain its propagations.

Before starting with the introduction, we restrict the definitions of intervals to
the set of integers in this chapter because PSjtempjCmax is a combinatorial problem
where real numbers do not play any role.

Œa; bŒ WD fx 2 Z j a � x < bg

7 A Satisfiability Solving Approach 139

�a; b� WD fx 2 Z j a < x � bg
Œa; b� WD fx 2 Z j a � x � bg

In the remainder, we also referred these intervals of integers as ranges of integers.

7.2.1 Finite Domain Propagation

Finite domain (FD) propagation (see, e.g., Marriott and Stuckey 1998; Tsang 1993)
is a powerful approach to tackling combinatorial problems. An FD problem (C,D)
consists of a set of constraints C over a set of variables X , and a domain D, which
determines the finite set of possible values of each variable in X . A domain D is a
complete mapping from X to finite sets of integers. Hence, given domain D, then
D.x/ is the set of possible values that variable x 2 X can take. Let minD.x/ WD
min.D.x// and maxD.x/ WD max.D.x//. In this chapter, we will focus on domains
where D.x/ is a range for all x 2 X . The initial domain is referred as D0. Let
D1 and D2 be two domains, then D1 is stronger than D2, written D1 v D2, if
D1.x/ � D2.x/ for all x 2 X . Similarly, if D1 v D2 then D2 is weaker than D1.
For instance, all domains D that occur will be stronger than the initial domain, i.e.,
D v D0. A false domain is a domain D that maps at least one variable x to the
empty set, i.e., 9x 2 X with D.x/ D ;.

A valuation � is a mapping of variables to values, written fx1 7! d1; : : : ; xn 7!
dng. We extend the valuation � to map expressions or constraints involving the
variables in the natural way. Let vars be the function that returns the set of variables
appearing in an expression, constraint or valuation. In an abuse of notation, we
define a valuation � to be an element of a domainD, written � 2 D, if �.x/ 2 D.x/
for all x 2 vars.�/. Note that a false domain D has no element valuations. A
valuation domain D is a domain where jD.x/j D 1;8x 2 X . We can define
the corresponding valuation �D for a valuation domain D as fx 7! d j D.x/ D
fd g; x 2 Xg.

A constraint c 2 C is a set of valuations over vars.c/ which give the permissible
values for a set of variables. In FD solvers, constraints are implemented by
propagators. A propagator g implementing c is an inclusion-decreasing function
on domains such that for all domains D v D0: g.D/ v D and no solutions are
lost, i.e., f� 2 D j � 2 cg D f� 2 g.D/ j � 2 cg. We assume each propagator
g is checking, that is if D is a valuation domain then g.D/ D D if and only if �D
restricted to vars.c/ is a solutions of c. Conversely, g.D/ is a false domain if and
only if �D restricted to vars.c/ is not a solution of c. Given a set of constraints C we
assume a corresponding set of propagators F WD fg j c 2 C; g implements cg.

A propagation solver solv.F;D/ for a set of propagators F and current domain
D repeatedly applies all the propagators in F starting from domainD until there is
no further change in resulting domain. solv.F;D/ is some weakest domainD0 v D
which is a fixed point (i.e., g.D0/ D D0) for all g 2 F .

140 A. Schutt et al.

FD solving interleaves propagation with search decisions. Given an initial
problem (C,D) where F are the propagators for the constraints C, we first run
the propagation solver solv.F;D/ D D0. If this determines failure (D0 is a false
domain) then the problem has no solution and we backtrack to visit the next
unexplored choice. IfD0 is a valuation domain then we have determined a solution.
Otherwise we pick a variable x 2 X where jD0.x/j � 2 and split its domain D0.x/
into two disjoint parts U1 [U2 D D0.x/ creating two subproblems .C;D1/ and
.C;D2/, where Di.x/ D Ui and Di.v/ D D0.v/; v ¤ x, whose solutions are also
solutions of the original problem. We then recursively explore the first problem, and
when we have shown it has no solutions we explore the second problem.

As defined above FD propagation is only applicable to satisfaction problems.
FD solvers solve optimization problems by mapping them to repeated satisfaction
problems. Given an objective function f to minimize under constraints C with
domain D, the finite domain solving approach first finds a solution � to .C;D/,
and then finds a solution to .C [ff < �.f /g;D/, that is, the satisfaction problem of
finding a better solution than previously found. It repeats this process until a problem
is reached with no solution, in which case the last found solution is optimal. If the
process is halted before proving optimality, then the solving process just returns
the last solution found as the best known. We note that a dichotomic search on
the values of objective function values is also possible, and requires solving fewer
satisfaction problems to optimally solve the problem, but it does not allow the reuse
of all nogoods between the different satisfaction problems.

FD propagation is a powerful generic approach to solving combinatorial opti-
mization problems. Its chief strengths are the ability to model problems at a
very high level, and the use of global propagators, that is specialized propagation
algorithms, for important constraints.

7.2.1.1 Generalized Precedence Constraints

A binary inequality propagator g for a generalized precedence relation x C d � y
updates the domains of x and y in constant time as follows

g.D/.u/ WD

8
ˆ̂
<

ˆ̂
:

D.x/ \ ��1;maxD.y/� d� if u D x
D.y/ \ ŒminD.x/C d;1Œ if u D y
D.u/ otherwise

where x; y; u 2 X . Hence, the propagator infers a new upper bound on x if
maxD.y/�d < maxD.x/ and a new lower bound on y if minD.x/Cd > minD.y/.

7.2.1.2 Cumulative Resource Constraints

Beside generalized precedence relations PSjtempjCmax involves resources with
a limited resource capacities which cannot be exceeded in any time during the

7 A Satisfiability Solving Approach 141

planning horizon. In CP, such resource restrictions are called cumulative (resource)
constraints. These constraints can be modeled by decompositions or the global
propagator/constraint cumulative which offers stronger and more efficient
pruning algorithms. Since the approach of Schutt et al. (2013b) uses cumulative
we concentrate on this global propagator.

The constraint cumulative introduced by Aggoun and Beldiceanu (1993)
imposes the resource restrictions for one scarce resource k 2 R by

cumulative.ŒSi j i 2 V �; Œpi j i 2 V �; Œrik j i 2 V �;Rk/

X

i2V
rik.t/ � Rk .t 2 Œ0; T Œ/

where T is the initial upper bound on SnC1, i.e., T WD maxD0.SnC1/, and rik.t/ is
the resource usage of activity i on resource k at time t , i.e., it equals to rik if i runs
at time t and 0 otherwise. Recall that Si , pi , and rik respectively are the start time
variable, the fixed duration, and the fixed resource usage of activity i and all values
are integral whereas pi and rik are non-negative.

Example 7.2. Consider the five activities from Example 7.1 with durations 2, 5, 3,
1, and 2 and resource usages 3, 2, 1, 2, and 2 and a resource capacity of 4. This is
represented by the cumulative constraint.

cumulative.ŒS1; S2; S3; S4; S5�; Œ2; 5; 3; 1; 2�; Œ3; 2; 1; 2; 2�; 4/

Imagine each task must start at time 0 or after and finish before time 8. The
cumulative problem corresponds to scheduling the activities shown in Fig. 7.2a into
the Gantt chart shown to the left. �

There are many propagation algorithms for the cumulative constraint (see, e.g.,
Baptiste et al. 2001; Mercier and Van Hentenryck 2008; Schutt and Wolf 2010;
Vilím 2011), but the most widely used for project scheduling problems is based on
timetable propagation (see, e.g., Le Pape 1994), because generalized precedence
relations usually impose an order between many pairs of activities so that not
many activities can run concurrently. In the following, the timetable propagation
is described.

An activity i has a compulsory part given domain D from ŒmaxD Si ;minD
Si C pi Œ, that requires that activity i makes use of rik resources at each of the times
in ŒmaxD Si ;minD Si C pi Œ if the range is non-empty. The timetable propagator
for cumulative first determines the resource (usage) profile, i.e., it determines
rk.S; t/ which is the minimal amount of resource k used at time t with respect to
current domain bounds of the start time variables Si . If at some time t the profile
exceeds the resource capacity, i.e., rk.S; t/ > Rk , the constraint is violated and
failure detected. If at some time t the resources used in the profile are such that
there is not enough left for an activity i , i.e., rk.S; t/ C rik > Rk , then we can
determine that activity i cannot be scheduled to run during time t . If the earliest start

142 A. Schutt et al.

a

b c

Fig. 7.2 Figure illustrates the timetable propagation of the cumulative constraint for activities 2
and 3 where dark boxes describe compulsory parts of unfixed activities

time minD Si of activity i , is such that the activity cannot be scheduled completely
before time t , i.e., minD Si C pi > t , we can update the earliest start time to be
t C 1, similarly if the latest start time of the activity is such that the activity cannot
be scheduled completely after t , i.e., maxD Si � t , then we can update the latest start
time to be t � pi . For a full description of timetable propagation for cumulative
(see, e.g., Schutt et al. 2011).

Example 7.3. Consider the cumulative constraint of Example 7.2. We assume that
the domains of the start times areD.S1/ WD Œ1; 2�,D.S2/ WD Œ0; 3�,D.S3/ WD Œ3; 5�,
D.S4/ WD Œ0; 2�, D.S5/ WD Œ0; 4�. Then there are compulsory parts of activities 1
and 2 in the ranges Œ2; 3Œ and Œ3; 5Œ respectively shown in Fig. 7.2b in red (dark).
No other activities have a compulsory part. Hence the red contour illustrates
the resource usage profile. Since activity 2 cannot be scheduled in parallel with
activity 1, and the earliest start time of activity 2, which is 0, means that the activity
cannot be scheduled before activity 1 we can reduce the domain of the start time for
activity 2 to the singleton Œ3; 3�. This is illustrated in Fig. 7.2b. The opposite holds
for activity 1 that cannot be run after activity 2, hence the domain of its start time
shrinks to the singleton range Œ1; 1�. Once we make these changes the compulsory
parts of the activities 1 and 2 increase to the ranges Œ1; 3Œ and Œ3; 8Œ respectively.
This in turn causes the start times of activities 4 and 5 to become Œ0; 0� and Œ3; 4�
respectively, creating compulsory parts in the ranges Œ0; 1Œ and Œ4; 5Œ respectively.
The latter causes the start time of activity 3 to become fixed at 5 generating the
compulsory part in Œ5; 8Œwhich causes that the start time of activity 5 becomes fixed

7 A Satisfiability Solving Approach 143

at 3. This is illustrated in Fig. 7.2c. In this case the timetable propagation results in
a final schedule in the right of Fig. 7.1. �

7.2.2 Boolean Satisfiability Solving

Let B be a set of Boolean variables. A literal l is either a Boolean variable b 2 B,
i.e., l
 b, or its negation, i.e., l
 :b. The negation of a literal:l is defined as :b
if l
 b and b if l
 :b. A clause c is a set of literals understood as a disjunction.
Hence clause fl1; : : : ; lng is satisfied if at least one literal li is true. An assignment
A is a set of Boolean literals that does not include a variable and its negation, i.e.,
Àb 2 B W fb;:bg � A. An assignment can be seen as a partial valuation on Boolean
variables, fb 7! true jb 2 Ag[fb 7! false j :b 2 Ag. A theory T is a set of clauses.
A SAT problem .T;A/ consists of a set of clauses T and an assignment A over (some
of) the variables occurring in T . Thus, the assignment A can be a partial, possible
empty, assignment. A solution for the theory T is an assignment A containing each
Boolean variable in either a positive or negative context, and satisfying all clauses in
T . Consequently, a solution for a SAT problem .T;A/ is a solution A0 of the theory
T that is a superset of A, i.e., A0 � A.

A SAT solver based on the DPLL procedure (Davis and Putnam 1960; Davis et al.
1962) is a form of FD propagation solver specialized for Boolean clauses. Each
clause is propagated by so-called unit propagation. Given an assignment A, unit
propagation detects failure using clause c if f:l j l 2 cg � A, and unit propagation
detects a new unit consequence l if c
 flg [c0 and f:l 0 j l 0 2 c0g � A, in which
case it adds l to the current assignment A. Unit propagation continues until failure
is detected, or no new unit consequences can be determined.

SAT solvers exhaustively apply unit propagation to the current assignment A to
generate all the consequences resulting in a new assignmentA0. They then choose an
unfixed variable b and create two equivalent problems .T;A0[fbg/, .T;A0[f:bg/
and recursively search these subproblems. The literals added to the assignment by
choice are termed decision literals.

Modern DPLL-based SAT solving is a powerful approach to solving combina-
torial optimization problems because it records nogoods that prevent the search
from revisiting similar parts of the search space. The SAT solver records an
explanation for each unit consequence discovered (the clause that caused unit
propagation), and on failure uses these explanations to determine a set of mutually
incompatible decisions, a nogood, which is added as a new clause to the theory of
the problem. These nogoods drastically reduce the size of the search space needed
to be examined. Another advantage of SAT solvers is that they track which variables
are involved in the most failures (called active variables), and use a powerful
autonomous search procedure which concentrates on the variables that are most
active. The disadvantages of SAT solvers are the restriction to Boolean variables
and the sometime huge models that are required to represent a problem using only
clauses.

144 A. Schutt et al.

7.2.3 Lazy Clause Generation

LCG is a hybrid of FD propagation and SAT solving. The key idea in LCG is to
run a FD propagation solver, but to instrument its execution in order to build an
explanation of the propagations made by the solver. These are recorded as clauses
on a Boolean variable representation of the problem. Hence, as the FD search
progresses, we lazily create a clausal representation of the problem. The hybrid has
the advantages of FD solving, but inherits the SAT solvers ability to create nogoods
to drastically reduce search and use activity based search.

7.2.3.1 Variable Representation

An LCG problem is stated as an FD problem, but each integer variable has a
clausal representation in the SAT solver. In the remainder of this work, we use �:�
as the names of Boolean variables. An integer variable x 2 vars with the initial
domain D0.x/ WD Œl; u� is represented by 2.u � l/C 1 Boolean variables �x D l�,
�x D l C 1�, . . . , �x D u� and �x � l�, �x � l C 1�, . . . , �x � u� 1�. The variable
�x D d � is true if x takes the value d , and false if x takes a value different from d .
Similarly, the variable �x � d � is true if x takes a value less than or equal to d and
false for a value greater than d .

We use the notation �d � x� to refer to the literal :�x � d � 1�.
Not every assignment of Boolean variables is consistent with the integer vari-

able x, for example f�x D 3�; �x � 2�g (i.e., both Boolean variables are true)
requires that x is both 3 and � 2. In order to ensure that assignments represent a
consistent set of possibilities for the integer variable x we add to the SAT solver the
clauses DOM.x/ that encode

�x � d �! �x � d C 1� .l � d < u � 1/ (7.1)

�x D l�$ �x � l� (7.2)

�x D d �$.�x � d � ^ :�x � d � 1�/ .l < d < u/ (7.3)

�x D u�$:�x � u � 1� (7.4)

whereD0.x/ D Œl; u�. This equates to u�l�1 clauses for Eq. (7.1) and 3.u�l�1/C4
clauses for Eqs. (7.2)–(7.4). Note that clauses in Eqs. (7.2)–(7.4) are generated lazily
on demand when propagation needs to express something using the literal �x D d �
(see Feydy 2010 for details).

Any assignment A on these Boolean variables can be converted to a domain:

domain.A/.x/ WD fd 2 D0.x/ j 8�c� 2 A; vars.�c�/ D fxg W x D d ˆ cg

7 A Satisfiability Solving Approach 145

i.e., the domain includes all values for x that are consistent with all the Boolean
variables related to x. It should be noted that the domain may assign no values to
some variable.

Example 7.4. Consider Example 7.1 and assume the initial domains D0.Si/ WD
Œ0; 15� for i 2 f1; 2; 3; 4; 5g. The assignment A D f:�S1 � 1�;:�S1 D 3�;:�S1 D
4�; �S1 � 6�;:�S2 � 2�; �S2 � 5�;:�S3 � 4�; �S3 � 7�;:�S5 � 3�g is consistent
with S1 D 2, S1 D 5, and S1 D 6. Therefore domain.A/.S1/ D f2; 5; 6g.
For the remaining variables domain.A/.S2/ D Œ3; 5�, domain.A/.S3/ D Œ5; 7�,
domain.A/.S4/ D Œ0; 15�, and domain.A/.S5/ D Œ4; 15�. Note that for brevity A
is not a fixed point of unit propagation for DOM.S1/ since we are missing many
implied literals such as :�S1 D 0�, :�S1 D 8� etc. �

7.2.3.2 Explaining Propagators

In LCG, a propagator is no longer simply a mapping from domains to domains, it
is also a generator of clauses describing propagation. When g.D/ ¤ D we assume
the propagator g can determine a clause c to explain each domain change. Similarly,
when g.D/ is a false domain the propagator must create a clause c that explains the
failure.

Example 7.5. Consider the binary inequality propagator g for the precedence con-
straint S1C2 � S2 from Example 7.1. When applied to the domainsD.Si / D Œ0; 15�
for i 2 f1; 2g it obtains g.D/.S1/ D Œ0; 13�, and g.D/.S2/ D Œ2; 15�. The clausal
explanation of the change in domain of S1 is �S2 � 15�! �S1 � 13�, similarly the
change in domain of S2 is :�S1 � �1� ! :�S2 � 1� (�0 � S1� ! �2 � S2�).
These become the clauses :�S2 � 15� _ �S1 � 13� and �S1 � �1� _ :�S2 � 1�.
�

The explanation clauses of the propagation are sent to the SAT solver on which
unit propagation is performed. The clauses will always have the form c ! l where c
is a conjunction of literals true in the current assignment, and l is a literal not true in
the current assignment, the newly added clause will always cause unit propagation,
adding l to the current assignment.

Example 7.6. Consider the propagation from Example 7.5. The clauses :�S2 �
15� _ �S1 � 13� and �S1 � �1� _ :�S2 � 1� are added to the SAT theory. Unit
propagation infers that �S1 � 13� is true and :�S2 � 1� is true since :�S2 � 15�
and �S1 � �1� are false, and adds these literals to the assignment. Note that the unit
propagation is not finished, since for example the implied literal �S1 � 14�, can be
detected true as well. �

The unit propagation on the added clauses c is guaranteed to be as strong as
the propagator f on the original domains. This means if domain.A/ v D then
domain.A0/ v g.D/ where A0 is the resulting assignment after addition of c and
unit propagation (see Ohrimenko et al. 2009).

146 A. Schutt et al.

Note that a single new propagation could be explained using different sets of
clauses. In order to get maximum benefit from the explanation we desire a “stron-
gest” explanation as possible. A set of clauses c1 is stronger than a set of clauses c2
if c1 implies c2. In other words, c1 restricts the search space at least as much as c2.

Example 7.7. Consider explaining the propagation of the start time of the activity 3
described in Example 7.3 and Fig. 7.2c. The domain change �5 � S3� arises from
the compulsory parts of activity 2 and 5 as well as the fact that activity 3 cannot
start before time 3. An explanation of the propagation is hence �3 � S3� ^ �3 �
S2� ^ �S2 � 3� ^ �3 � S5� ^ �S5 � 4� ! �5 � S3�. We can observe that if
2 � S3 then the same domain change �5 � S3� follows due to the compulsory parts
of activity 2 and 5. Therefore, a stronger explanation is obtained by replacing the
literal �3 � S3� by �2 � S3�.

Moreover, the compulsory parts of the activity 2 in the ranges Œ3; 3� and Œ5; 8�
are not necessary for the domain change. We only require that there is not enough
resources at time 4 to schedule task c. Thus the refined explanation can be further
strengthened by replacing �3 � S2� ^ �S2 � 3� by �S2 � 4� which is enough
to force a compulsory part of S2 at time 4. This leads to the stronger explanation
�2 � S3� ^ �S2 � 4� ^ �3 � S5� ^ �S5 � 4�! �5 � S3�. �

In this example the final explanation corresponds to a pointwise explanation
defined in Schutt et al. (2011). In this work, we use the timetable propagation,
as earlier described in this section, that generates pointwise explanations. The
maximum size of these explanations (maxLenCumu) is bounded by 2 � maxfT �
f1; 2; : : : ; ng j Pi2V rik > Rk and 8j 2 V W Pi2V nfj g rik � Rkg literals where n
is the number of activities requiring some resource units of the renewable resource
and Rk is the resource capacity of resource k. For a full discussion about the best
way to explain propagation of cumulative see Schutt et al. (2011).

7.2.3.3 Nogood Generation

Since all propagation steps in LCG have been mapped to unit propagation on
clauses, we can perform nogood generation just as in a SAT solver. Here, the nogood
generation is based on an implication graph and the first unique implication point
(1UIP). The graph is a directed acyclic graph where nodes represent fixed literals
and directed edges reasons why a literal became true, and is extended as the search
progresses. Unit propagation marks the literal it makes true with the clause that
caused the unit propagation. The true literals are kept in a stack showing the order
that they were determined as true by unit consequence or decisions.

For brevity, we do not differentiate between literals and nodes. A literal is fixed
either by a search decision or unit propagation. In the first case, the graph is extended
only by the literal and, in the second case, by the literal and incoming edges to that
literal from all other literals in the clause on that the unit propagation assigned the
true value to the literal (Fig. 7.3).

7 A Satisfiability Solving Approach 147

Fig. 7.3 (Part of) The
implication graph for the
propagation of Example 7.9
where decision literals are
shown double boxed, while
literals set by unit
propagation are shown boxed

S1 ≤ 0

2 ≤ S2 S2 ≤ 5 S2 ≤ 2

3 ≤ S3 S3 ≤ 6 6 ≤ S3 f ail

2 ≤ S4 S4 ≤ 2

5 ≤ S5 S5 ≤ 5

Example 7.8. Consider the strongest explanation �2 � S3� ^�S2 � 4� ^ �3 �
S5� ^ �S5 � 4� ! �5 � S3� from Example 7.7. It is added to the SAT database as
clause :�2 � S3� _ :�S2 � 4� _ :�3 � S5� _ :�S5 � 4� _ �5 � S3� and unit
propagation sets �5 � S3� true. Therefore the implication graph is extended by the
edges �2 � S3� ! �5 � S3�, �S2 � 4� ! �5 � S3�, �3 � S5� ! �5 � S3�, and
�S5 � 4�! �5 � S3�. �

Every node and edge is associated with the search level at which they are added to
the graph. Once a conflict occurs, a nogood which is the 1UIP in LCG is calculated
based on the implication graph. A conflict is recognized when the unit propagation
reaches a clause where all literals are false. This clause is the starting point of the
analysis and builds a first tentative nogood. Literals in the tentative nogood are
replaced one by one by the literals from their incoming edges, in the reverse order
of their addition to the implication graph. This process continues until the tentative
nogood contains exactly one literal associated with the current conflict search level.
Thus, the time complexity of the nogood computation is bounded by the size of
the extension of the implication graph at the conflict level. Given that in our case
the timetable propagation of cumulative creates the largest explanations, the
time complexity is bounded by nprop � maxLenCumu where nprop is the number
of domain reductions performed in the conflict level and maxLenCumu is maximal
length of an explanation for cumulative, which is described earlier. The resulting
nogood is called the 1UIP nogood (Moskewicz et al. 2001).

Example 7.9. Consider the PSjtempjCmax instance from Example 7.1 on page 136.
Assume an initial domain of D0 WD Œ0; 15� then after the initial propagation of the
precedence constraints the domains are D.S1/ D Œ0; 8�, D.S2/ D Œ2; 10�, D.S3/ D
Œ3; 12�, D.S4/ D Œ0; 10�, and D.S2/ D Œ3; 13�. Note that no tighter bounds can be
inferred by the cumulative propagator.

Assume search now sets S1 � 0. This sets the literal �S1 � 0� as true, and unit
propagation on the domain clauses sets �S1 D 0�, �S1 � 1�, �S1 � 2� etc. In the
remainder of the example, we will ignore propagation of the domain clauses and
concentrate on the “interesting propagation.”

The precedence constraint S3 � 6 � S1 forces S3 � 6 with explanation �S1 �
0� ! �S3 � 6�. The precedence constraint S2 C 1 � S3 forces S2 � 5 with
explanation �S3 � 6�! �S2 � 5�.

148 A. Schutt et al.

The timetable propagator for cumulative uses the compulsory part of activity
1 in Œ0; 2Œ to force S4 � 2. The explanation for this is �S1 � 0� ! �2 � S4�. The
precedence S4 C 3 � S5 forces S5 � 5 with explanation �S4 � 2�! �5 � S5�.

Suppose next that search sets S2 � 2. It creates a compulsory part of 2 from Œ2; 7Œ

but there is no propagation from precedence constraints or cumulative.
Suppose now that the search sets S4 � 2. Then the precedence constraint S5 �

3 � S4 forces S5 � 5 with explanation �S4 � 2� ! �S5 � 5�. This creates
a compulsory part of 4 in Œ2; 3Œ and a compulsory part of 5 in Œ5; 7Œ. In fact all
the activities 1, 2, 4, and 5 are fixed now. Timetable propagation infers, since all
resources are used at time 5, that activity 3 cannot start before time 6. A reason
for this is �2 � S2� ^ �S2 � 5� (which forces 2 to use 2 resources in Œ5; 7Œ), plus
�5 � S5� ^ �S5 � 5� (which forces 5 to use 2 resources in Œ5; 7Œ), plus �3 � S3�
(which forces 3 to overlap this time). Hence an explanation is �2 � S2� ^ �S2 �
5� ^ �5 � S5� ^ �S5 � 5� ^ �3 � S3�! �6 � S3�.

This forces a compulsory part of 3 at time 6 which causes a resource overload at
that time. An explanation of the failure is �2 � S2�^ �S2 � 5�^ �5 � S5� ^ �S5 �
5� ^ �6 � S3� ^ �S3 � 6�! false.

The nogood generation process starts from this original explanation of failure. It
removes the last literal in the nogood by replacing it by its explanation. Replacing
�6 � S3� by its explanation creates the new nogood �2 � S2� ^ �S2 � 5� ^ �5 �
S5� ^ �S5 � 5� ^ �3 � S3� ^ �S3 � 6� ! false. Since this nogood has only one
literal that was made true after the last decision �S5 � 5� this is the 1UIP nogood.
Rewritten as a clause it is �S2 � 1� _ :�S2 � 5� _ �S5 � 4� _ :�S5 � 5� _ �S3 �
2� _ :�S3 � 6�.

Now the solver backtracks to the previous decision level, undoing the decision
S4 � 2 and its consequences. The newly added nogood unit propagates to force
S5 � 6 with explanation �2 � S2� ^ �S2 � 5� ^ �5 � S5� ^ �3 � S3� ^ �S3 �
6� ! �6 � S5�, and the precedence constraint S5 � 3 � S4 forces S4 � 3 with
explanation �6 � S5�! �3 � S4�. Search proceeds looking for a solution. �

Nogoods generated by this process can have a size as large as the number of
possible Boolean variables in the SAT representation, except that there can be at
most two non-redundant inequality literals for each integer variable involved. Note
that all generated nogoods encode redundant information, and we could delete any
of them at any time, but also lose the search reduction that their propagation creates.
In this chapter, all generated nogoods are kept permanently which requires space
bounded by the maximal size of a nogood times the number of conflicts encountered
during the search.

7.2.3.4 Lazy Clause Generation for Large Problems

For large problems, LCG can become inefficient if the domain sizes are large and
the clause database contains a huge number of clauses. In the following, we briefly
describe two improvements which tackle these issues.

7 A Satisfiability Solving Approach 149

If we have an initial domain D0.x/ WD Œl; u� then the Boolean representation
in the SAT solver is created upfront, which can consume a significant amount of
memory if the size of the initial domain is large. Instead of this, we can always
create the representation lazily by adding Boolean variables �x � d � or �x D d �
and the corresponding clauses in the SAT solver when they appear in an explanation
or nogood. Initially, the domain D0.x/ D Œl; u� is only represented by the global
literals false and true which represent �x � l � 1� and �x � u� respectively. We
add a Boolean variable �x � d �, d 2 Œl; uŒ whenever a clause, i.e., an explanation
or a nogood, is added to the clause database that requires this Boolean variable.
We also add clauses of the form �x D d �. If at some stage during the search the
integer variable is represented by more than one Boolean variable then a consistent
assignment of these variables is maintained by the domain of the variable causing
propagation, i.e., no clauses are added to the SAT forcing a consistent assignment.
In the remainder, we refer to it as lazy variable representation.

In LCG an explanation clause is added to the clause database for each prop-
agation and a nogood clause is added for each conflict. Thus, with each added
clause, the performance of the unit propagation decays somewhat. The main use
of an explanation is during conflict analysis for creating a strong nogood. A by-
product of adding the explanation to the clause database is that the SAT solver can
perform unit propagation on it. However, this propagation can also be done by the
constraint propagator that built the explanation. Thus, we can exclude explanations
for unit propagation in order to keep unit propagation more efficient. This is done
by keeping the explanation in separate database and using the atomic constraints
x � d , x D d , and their negations in the explanation.

In the remainder, we assume that these two improvements are not used unless
stated.

7.3 Models for RCPSP/max

In this section, a basic model for PSjtempjCmax is first presented and then a number
of model improvements.

Given PSjtempjCmax instance as a project network N with the weighted digraph
.V;E; ı/ and a set of resources R. Recall that the nodes in V represent the activities
and the arcs in E represent the generalized precedence relations in connection with
the vector ı of arc weights. In order to obtained finite domains for the start time
variables, an upper bound on the project duration must be imposed. We denote such
an upper bound as T . A trivial upper bound can be computed by scheduling all
activities in sequence without considering maximal time lags between activities,
i.e., T WDP

i2V max.pi ;maxfıij j .i; j / 2 Eg/. Then the problem can be stated as
follows:

Min. SnC1 (7.5)

150 A. Schutt et al.

s. t. Si C ıij � Sj ..i; j / 2 E/ (7.6)

cumulative.ŒSi j i 2 V �; Œpi j i 2 V �; Œrik j i 2 V �;Rk/ .k 2 R/ (7.7)

Si C pi � SnC1 .i 2 V / (7.8)

0 � Si � T � pi .i 2 V / (7.9)

The objective is to minimize the project duration SnC1 Eq. (7.5) which is sub-
jected to the generalized precedence constraints Eq. (7.6), the resource constraints
Eq. (7.7), and the objective constraints Eq. (7.8). All start times must be non-
negative and all activities must be scheduled in the planning period from 0 until
T Eq. (7.9), which enforces an initial domain of D0.Si / WD Œ0; T � pi �.

A basic constraint model uses a binary inequality propagator for each precedence
relation Eq. (7.6), one cumulative propagator for each resource constraint, and
a binary inequality propagator for each objective constraint Eq. (7.8). Since none
of the propagators either generate or use equality literals of the form �x D d � they
and their defining clauses inDOM.x/ are never generated during execution. Hence,
only .nC 1/ � T �Pi2V pi Boolean variables and .nC 1/ � .T � 1/�Pi2V pi
clauses are needed for the domain representation of the start time variables and the
objective variable. Thus, the number of literals in a nogood is bounded to 2�nC 2.

This basic model has a number of weaknesses: first the initial domains of the
start times are large, second each precedence relation is modeled as one individual
propagator, and finally the SAT solver in LCG has no structural information about
activities in disjunction.

A smaller initial domain reduces the size of the problem because fewer Boolean
variables are necessary to represent the integer domain in the SAT solver. It can be
computed in a preprocessing step by taking into account the precedences in E as
described in the next subsection. Individual propagators for precedence constraints
may not be too costly for a small number of precedence constraints, but for a
larger number of propagators, their queuing behavior may result in long and costly
propagation sequences. A global propagator can efficiently adjust the time-bounds
in O.n log nC jEj/ time (see Feydy et al. 2008) if the set of precedence constraints
is feasible. Since the solver used herein does not offer this global propagator, an
individual propagator is used for each precedence constraint.

7.3.1 Initial Domains

A smaller initial domain can be used for the start time variables if the lengths of the
longest path from the dummy source to the activity d0 i and from the activity to the
dummy sink di;nC1 are known where the former path determines the earliest possible
start time for i and the latter path the latest possible start time in any schedule. Then
the initial domain of the start time variable Si is D0.Si / WD Œd0 i ; T � di;nC1�.

7 A Satisfiability Solving Approach 151

These longest paths can be obtained by applying the Bellman–Ford single source
shortest path algorithm (see Bellman 1958; Ford and Fulkerson 1962) on the
weighted digraph .V;E;�ı/. Note that this digraph is the project network but with
negated arc weights. Thus, the negated length of the shortest path between two nodes
is the length of the longest path between them. If the digraph contains a negative-
weight cycle then the PSjtempjCmax instance is infeasible. The Bellman–Ford
algorithm has a runtime complexity of O.jV j � jEj/.

These earliest and latest start times can not only be used for smaller initial
domains, but also to improve the objective constraints by replacing them with

Si C di;nC1 � SnC1 .i 2 V /

since the start time will push back the minimum project duration by at least this
much. These smaller domains result in

P
i2V .d0 i C di;nC1/ less Boolean variables

and clauses for the variable representation in the SAT solver. The maximal size of a
nogood is not affected.

Preliminary experiments confirmed that starting the solution process with a
smaller initial domain offers major improvements in the runtime for solving an
instance and generating a first solution, especially on larger instances.

7.3.2 Activities in Disjunction

Two activities i and j 2 V are in disjunction, if they cannot be executed at the
same time, i.e., the sum of their resource usages for at least one resource k 2 R is
greater than the available capacity: rik C rjk > Rk . Activities in disjunction can be
exploited in order to reduce the search space.

The simplest way to model two activities i and j in disjunction is by two half-
reified constraints (Feydy et al. 2011) sharing the same Boolean variable Bij.

Bij ! Si C pi � Sj .i; j 2 V W i and j in disjunction and i < j /

:Bij ! Sj C pj � Si .i; j 2 V W i and j in disjunction and i < j /

If Bij is true then i must end before j starts (denoted by i � j), and if Bij is
false then j � i . The literals Bij and :Bij can be directly represented in the SAT

solver, consequently Bij represents the relation (structure) between these activities.
The propagator of such a half-reified constraint can only infer new bounds on left
hand side of the implication if the right hand side is false, and on the start times
variables if the left hand side is true. For example, the right hand side in the second
constraint is false if and only if maxD Si � minD Sj < pj . In this case the literal
:Bij must be false and therefore i � j .

We add these redundant constraints to the model which allows the propagation
solver to determine information about start time variables more quickly. For each

152 A. Schutt et al.

constraint, the Boolean variable is directly modeled in the SAT solver and the
maximal size of a nogood increases by one.

The detection of which activity runs before another can be further improved by
considering the domains of the start times, and the minimal distances in the project
network (see Dorndorf et al. 2000). This requires keeping track of the minimal
distance between each pair of activities in the network. Since such a propagator is
not offered by the LCG solver, we do not use their improvement for the benchmarks.

7.4 The Branch-and-Bound Algorithm

Our branch-and-bound algorithm is based on start-time and conflict-driven branch-
ing strategies. We use them alone or in combination. After each branch all
constraints from the model, including constraints for activities in disjunctive, are
propagated until a fixpoint is reached or the inconsistency of the partial schedule or
the instance is proven. In the first case a new node is explored and in the second case
an unexplored branch is chosen if one exists or backtracking is performed.

The propagation solver uses a priority queue in which the unit propagation in
the SAT solver has the highest priority followed by propagators for precedence
constraints, objective constraints, and the constraints for activities in disjunction.
The propagators for cumulative constraints have the lowest priority. Thus, they are
executed after no further domain reduction can be made by any other propagators.

7.4.1 Start-Time Branching

The start-time branching strategy selects an unfixed start time variable Si with the
smallest possible start time minD Si . If there is a tie between several variables then
the variable with the biggest size, i.e., maxD Si �minD Si , is chosen. If there is still
a tie then the variable with the lowest index i is selected. The binary branching is as
follows: left branch Si � minD Si , and right branch Si > minD Si . In the remainder
this branching is denoted by MSLF.

This branching creates a time-oriented branch-and-bound algorithm similar to
Dorndorf et al. (2000), but it is simpler and does not involve any dominance rules.
Hence, it is weaker than their algorithm.

7.4.2 Conflict-Driven Branching

The conflict-driven branching is a binary branching over literals in the SAT solver.
In the left branch, the literal is set to true and, in the right branch, to false. As
described in Sect. 7.2.3.1 on page 144 the Boolean variables in the SAT solver

7 A Satisfiability Solving Approach 153

represent values in the integer domain of a variable x (e.g.,:�x � 3� and �x � 10�)
or a disjunction between activities. Hence, it creates a branch-and-bound algorithm
that can be considered as a mixture of time oriented and conflict-set oriented.

As a branching heuristic, an activity-based heuristic is used which is a variant of
the Variable-State-Independent-Decaying-Sum (VSIDS) (Moskewicz et al. 2001).
This heuristic is embedded in the SAT solver. In each branch, it selects the literal
with the highest activity counter where an activity counter is assigned to each literal,
and is increased during conflict analysis if the literal is related to the conflict. The
analysis results in a nogood which is added to the clause database. Here, we use the
1UIP as a nogood. Once in a while all counters are decreased by the same factor not
only to avoid a (possible) overflow, but also to give literals in recent conflicts more
weight.

In order to accelerate the finding of solutions and increase the robustness of the
search on hard instances, VSIDS can be combined with restarts, which has been
shown beneficial in SAT solving. On restart the set of nogoods and the activity
counters have changed, so that the search will explore a very different part of the
search tree. In the remainder VSIDS with restart is denoted by RESTART. Different
restart policies can be applied. Here a geometric restart on failed nodes with an
initial limit of 250 and a restart factor of 2:0 is used (Huang 2007; Walsh 1999).

7.4.3 Hybrid Branching

At the beginning of a search, the activity counters of the variables have to be
initialized somehow. By default they are all initialized to the same value. With no
useful information in this initial setting, these activities can mislead VSIDS resulting
in poor performance. To avoid this, we consider a hybrid search that uses MSLF

to search initially, which has the effect of modifying the activity counts to reflect
some structure of the problem, and then switch to VSIDS after the first restart. Here,
we switch the searches after exploration of the first 500 nodes unless otherwise
stated. The strategy is denoted by HOT START, and HOT RESTART when VSIDS is
combined with restart.

7.5 Other Approaches

Beside the LCG approach, there exist only a few other exact solution approaches
using Boolean satisfiability solving, mostly for PSjprecjCmax. However, these
approaches to solving PSjprecjCmax can easily be extended for PSjtempjCmax. Dif-
ferent Boolean satisfiability approaches proposed include Horbach (2010), Berthold
et al. (2010), Ansótegui et al. (2011), Heinz et al. (2013). They are differentiated
from the LCG approach by: the Boolean variable representation, the handling of the
resource constraints, the optimization heuristic, and the branching strategy.

154 A. Schutt et al.

The approach in Horbach (2010) internally modifies a SAT solver, to create a
hand-tailored solution for PSjprecjCmax , but could be extended for PSjtempjCmax,
In contrast to LCG, it uses the time-indexed decomposition for resource constraints
which are handled outside the SAT solver. This decomposition requires one auxiliary
Boolean variable �it for each activity i and time t in the planning horizon. The
variable �it expresses whether an activity i runs at a specific time t or not. Start
time variables are only represented by Boolean variables of form �Si D d � in the
SAT solver. Precedence relations are encoded as clauses using the auxiliary Boolean
variables �it and �Si D d �. In order to minimize the project duration, a sequence
of feasibility problems are set up with a decreasing fixed project duration. Horbach
uses the built-in branching strategy of the SAT solver which is a variant of VSIDS

with a restart policy. This approach leads to comparable results to the LCG approach
on PSjprecjCmax problems.

Berthold et al. (2010) present a generic exact solution approach for PSjprecjCmax
which is then also applied to PSjtempjCmax in Heinz et al. (2013). As in our
model, they model the resource constraints by the global cumulative propagators
and precedence relations by binary inequality propagators. Since their approach
combines not only CP and SAT, but also integer programming, linear programming
relaxations of the resource constraints can also be used for separation. They use
the lazy Boolean variable representation for integer variables and they do not
add explanations to the clause database. Their cumulative propagator (Heinz and
Schulz 2011) generates weaker explanations than the corresponding cumulative
propagator in an LCG solver. A branch and bound algorithm is used for minimizing
the project duration and it is combined with a dedicated branching strategy for
PSjprecjCmax. Their PSjprecjCmax approach (Berthold et al. 2010) is competitive,
but their PSjtempjCmax approach (Heinz et al. 2013) is not competitive; using a
10 min time limit it can only solve about 40% of the instances whereas our approach
solves the majority of the same instances.

Ansótegui et al. (2011) tackles PSjprecjCmax with a satisfiability modulo theories
(SMT) solver. Such solvers work similarly to an LCG solver in which theory
propagators act like constraint propagators in LCG, but consider all of one class
of constraints simultaneously. Individual theory propagators only communicate
through Boolean variables. They studied different decompositions of the resource
constraints into linear inequality constraints, and then solved these using the theory
of linear integer arithmetic propagation. Precedence relations are modelled with the
same theory. In contrast to other approaches, they use a dichotomic optimization
strategy. They use the default (VSIDS like) branching strategy of the SMT solver
Yices (Dutertre and de Moura 2006). This approach is roughly equivalent in
performance to the LCG approach in Schutt et al. (2011) for PSjprecjCmax.
However, on some problems where many activities can be executed concurrently,
it performs better than LCG approach.

7 A Satisfiability Solving Approach 155

7.6 Computational Results

We carried out experiments on PSjtempjCmax instances from the benchmark suites
CD, UBO, and SM. Here, we provide a summary of our exact solution method with
different branching strategies presented in the previous section. Detailed results of
our method are available at http://ww2.cs.mu.oz.au/~pjs/rcpsp. A comparison of our
method with other exact and non-exact solution methods is reported in Schutt et al.
(2013b).

The considered benchmark suites were systematically created by the instance
generator ProGen/Max (Schwindt 1995) and have following characteristics:

CD: c, and d: each consisting of 540 instances with 100 activities and 5
resources.

UBO: ubo10, ubo20, ubo50, ubo100, ubo200, ubo500, and ubo1000: each con-
taining 90 instances with 5 resources and 10, 20, 50, 100, 200, 500, and
1,000 activities respectively (Franck et al. 2001).

SM: j10, j20, and j30: each containing 270 instances with 5 resources and 10,
20, and 30 activities respectively (Kolisch et al. 1998).

Note that although the test set SM consists of small instances they are considerably
harder than, e.g., ubo10 and ubo20.

The experiments were run on an Intel(R) Xeon(R) CPU E54052 processor with
2 GHz clock running GNU Linux. The code was written in Mercury using the G12
Constraint Programming Platform and compiled with the Mercury Compiler using
grade hlc.gc.trseg. All clauses created during propagation and all nogoods inferred
during conflict analysis were permanently added to the original problem, i.e., there
was no garbage collection of clauses. Each run was given a 10 min runtime limit.

7.6.1 Setup and Table Notations

In order to solve each instance, a two-phase process was used. Both phases used the
basic model with the two described extensions (cf. Sects. 7.3.1 and 7.3.2).

In the first phase, a HOT START search was run to determine a first solution or to
prove the infeasibility of the instance. The feasibility runs were set up with the trivial
upper bound on the project duration T WD P

i2V max.pi ;maxfıij j .i; j / 2 Eg/.
The feasibility test was run until a solution was found or infeasibility proved. If
a solution was found, we use UB to denote the project duration of the resulting
solution. In the first phase, the search strategy should be good at both finding a
solution or proving infeasibility, but not necessarily at finding and proving the
optimal solution. Hence, it could be exchanged with methods that might be more
suitable than HOT START. To improve HOT START for finding a solution, when we
used it in the first phase we explored 5 � n nodes using the start-time branching
strategy before switching to VSIDS.

http://ww2.cs.mu.oz.au/~pjs/rcpsp

156 A. Schutt et al.

In the second optimization phase, each feasible instance was set up again this
time with T WD UB . The tighter bound is highly beneficial to lazy clause generation
since it reduces the number of Boolean variables required to represent the problem.
The search for optimality was performed using one of the various search strategies
defined in the previous section.

The execution of the two-phased process leads to the following measurements.

tøcpu: The average runtime in seconds (for both phases).
pfails: The average number of infeasible nodes encountered in both phases of

the search.
pfeas: The percentage of instances for which a solution was found.
pinf : The percentage of instances for which the infeasibility was proven.
popt: The percentage of instances for which an optimal solution was found

and proven.
�LB : The average relative deviation (as a percentage) from the best known

lower bounds of feasible instances given in Project Duration Problem
RCPSP/max (2010). The relative deviation is .bestk � LBk/=LBk for
an instance k where bestk and LBk are the best found and best known
lower bound of the instance k respectively.

cmpr.i/: Columns with this header give measurements only related to those
instances that were solved by each procedure where i is the number
of these instances.

all.i/: Columns with this header compare measurements for all instances
examined in the experiment where i is the number of these instances.

7.6.2 Experiments on Instances up to 200 Activities

In the first experiment, we compare all of our search strategies against each other on
all instances up to 200 activities. The strategies are compared in terms of average
runtime in seconds (tøcpu) and number of fails for each test set. For this experiment,
we use the re-engineered version of LCG called LAZYFD (Feydy and Stuckey
2009).

The results are summarized in the Table 7.1. Similar to the results for the problem
PSjprecjCmax in Schutt et al. (2011) all strategies using VSIDS are superior to the
start-time methods (MSLF), and similarly competitive. HOT RESTART is the most
robust strategy, solving the most instances to optimality and having the lowest�LB .
Restart makes the search more robust for the conflict-driven strategies, whereas the
impact of restart on MSLF is minimal.

In contrast to the results in Schutt et al. (2011) for PSjprecjCmax the conflict-
driven searches were not uniformly superior to MSLF. The three instances 67, 68,
and 154 from j30 were solved to optimality by MSLF and MSLF with restart, but
neither RESTART and HOT RESTART could prove the optimality in the given time
limit, whereas VSIDS and HOT START were not even able to find an optimal solution

7 A Satisfiability Solving Approach 157

Table 7.1 Comparison on the test sets CD, UBO, ubo10-200 and SM. The best entries in each
column is shown in bold

cmpr.2230/ all.2340/

Procedure pfeas popt pinf �LB t ø
cpu pfails t ø

cpu pfails

MSLF 85:0 80:60 15:0 3:96785 7:73 6,804 35:96 23,781

MSLF with restart 85:0 80:60 15:0 3:96352 7:80 6,793 36:04 23,787

VSIDS 85:0 82:26 15:0 3:76; 928 2:16 1,567 22:91 13,211

RESTART 85:0 82:26 15:0 3:73334 2:02 1,363 22:38 12,212
HOT START 85:0 82:31 15:0 3:84003 2:22 1,684 22:71 12,933

HOT RESTART 85:0 82:35 15:0 3:73049 2:04 1,475 22:36 12,341

within the time limit. Furthermore, none of our methods could find a first solution
for the ubo200 instances 2, 4, and 70 nor prove the infeasibility for the ubo200
instance 40 within 10 min. Only for these instances we let our methods run until a
first solution was found or infeasibility was proven. The corresponding numbers are
included in Table 7.1.

7.6.3 Experiments on Larger Instances

The second experiment uses the largest instances of the test sets, namely the sub-test
sets ubo500 and ubo1000. Due to the large initial domain size in the first phase of
our solution approach the LCG solver LAZYFD was not suitable for those instances.
Instead of LAZYFD, we use the LCG solver NICTA CPX which implements the lazy
variable representation (Sect. 7.2.3.4).

Currently, NICTA CPX does not support restarts and the branching strategy
MSLF. Furthermore, the conflict driven search of NICTA CPX works differently
to VSIDS, because of the lazy variable representation and thus are incomparable.
Therefore, we use following branching strategies:

FIRSTFAIL: Selects an unfixed start time variable Si with the smallest domain
size. If there is a tie then the variable with the lowest index i is chosen. Then
FIRSTFAIL creates a branch for each value in the domain of Si and explores
them in increasing order.

FREE: Selects an unfixed variable and a split value in its domain based on a sparse
integer conflict-driven heuristic inspired from VSIDS. Then FREE creates a binary
branching that splits the domain along that value.

Moreover, we execute NICTA CPX in two different modes: lcg where explanations
are added to the clause database (just as in LAZYFD) and fwd no explanations are
not added to the clause database.

Table 7.2 shows on the one hand that almost for one third of the instances neither
a solution was found nor the infeasibility proven, but on the other hand that the
large majority of the other instances were either solved optimally or proven to be

158 A. Schutt et al.

Table 7.2 Comparison on the sub-test sets ubo500 and ubo1000. The best entries in each column
is shown in bold

cmpr.108/ all.180/

Procedure pfeas popt pinf t ø
cpu pfails t ø

cpu pfails

CPX with FIRSTFAIL+fwd 66:7 64:4 1:7 26:91 876 225:32 1,424

CPX with FREE+fwd 65:0 63:3 2:2 44:02 5,069 250:02 4,847

CPX with FIRSTFAIL+lcg 66:7 64:4 1:7 26:01 840 223:91 1,316
CPX with FREE+lcg 65:0 60:0 2:2 43:33 5,787 257:85 5,061

infeasible. If unit propagation is performed on explanations or not is insignificant for
the instances considered, but the search strategy makes a difference. In this case, the
search strategy FIRSTFAIL is preferable over FREE, except for infeasible instances.

We also ran NICTA CPX on the smaller instances, but the results were inferior
to LAZYFD.

7.7 Conclusions

In this chapter, we introduce an exact solution method for PSjtempjCmax based on
lazy clause generation (LCG) which is a state-of-the-art method for this class of
scheduling problem. LCG combines constraint programming with Boolean satisfia-
bility solving in order to benefit from the advanced nogood learning technology and
the generic conflict-driven search which branches over variables appearing often in
recent conflicts.

Although the method presented provides the best results for instances up to
200 activities, bigger instances are currently beyond its capability. This is strongly
related to the eager Boolean representation of integer variables which can consume
a significant amount of memory when those variables have a large domain size.
However, a significant part of the Boolean variables in the Boolean representation
are not needed. Thus, this bottleneck can be solved by creating a Boolean variable
only on demand.

Moreover, the method can further be improved by replacing the individual
constraint propagators for each precedence relation by one constraint propagator
that considers all precedence relations at once.

To sum up, the presented method is a state-of-the-art method for optimally solv-
ing PSjtempjCmax. The major strengths rely on two facts: the Boolean representation
of integer variables by inequalities “�” and the nogood learning during conflict
analysis which is nothing else than a resolution over constraints and variables related
to the conflict and leads to a global valid constraint called nogood. If the nogood is
added to the problem then it can exponentially prune the search space.

7 A Satisfiability Solving Approach 159

Acknowledgements NICTA is funded by the Australian Government as represented by the
Department of Communications and the Australian Research Council through the ICT Centre of
Excellence program. This work was partially supported by Asian Office of Aerospace Research
and Development grant 10-4123.

References

Achterberg T (2009) SCIP: solving constraint integer programs. Math Program Comput 1(1):1–41
Aggoun A, Beldiceanu N (1993) Extending CHIP in order to solve complex scheduling and

placement problems. Math Comput Model 17(7):57–73
Ansótegui C, Bofill M, Palahí M, Suy J, Villaret M (2011) Satisfiability modulo theories: an

efficient approach for the resource-constrained project scheduling problem. In: Genesereth
MR, Revesz PZ (eds) Proceedings of the ninth symposium on abstraction, reformulation, and
approximation, SARA 2011. AAAI Press, Menlo Park

Baptiste P, Le Pape C, Nuijten W (2001) Constraint-based scheduling. Kluwer, Norwell
Bartusch M, Möhring RH, Radermacher FJ (1988) Scheduling project networks with resource

constraints and time windows. Ann Oper Res 16(1):199–240
Bellman R (1958) On a routing problem. Q Appl Math 16(1):87–90
Berthold T, Heinz S, Lübbecke ME, Möhring RH, Schulz J (2010) A constraint integer program-

ming approach for resource-constrained project scheduling. In: Lodi A, Milano M, Toth P (eds)
Integration of AI and OR techniques in constraint programming for combinatorial optimization
problems. Lecture notes in computer science, vol 6140. Springer, Heidelberg, pp 313–317

Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project
scheduling: notation, classification, models, and methods. Eur J Oper Res 112(1):3–41

Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM 7:201–215
Davis M, Logemann G, Loveland D (1962) A machine program for theorem proving. Commun

ACM 5(7):394–397
Dorndorf U, Pesch E, Phan-Huy T (2000) A time-oriented branch-and-bound algorithm for

resource-constrained project scheduling with generalised precedence constraints. Manage Sci
46(10):1365–1384

Dutertre B, de Moura L (2006) The Yices SMT solver. http://yices.csl.sri.com/tool-paper.pdf
Feydy T (2010) Constraint programming: improving propagation. Ph.D. dissertation, University of

Melbourne, Melbourne
Feydy T, Stuckey PJ (2009) Lazy clause generation reengineered. In: Gent I (ed) Proceedings of

the 15th international conference on principles and practice of constraint programming. Lecture
notes in computer science, vol 5732. Springer, Heidelberg, pp 352–366

Feydy T, Schutt A, Stuckey PJ (2008) Global difference constraint propagation for finite domain
solvers. In: Antoy S, Albert E (eds) Proceedings of principles and practice of declarative
programming – PPDP 2008. ACM, New York, pp 226–235

Feydy T, Somogyi Z, Stuckey PJ (2011) Half reification and flattening. In: Lee JHM (ed)
Proceedings of principles and practice of constraint programming – CP 2011. Lecture notes
in computer science, vol 6876. Springer, Heidelberg, pp 286–301

Ford LR Jr, Fulkerson DR (1962) Flows in networks. Princeton University Press, Princeton
Franck B, Neumann K, Schwindt C (2001) Truncated branch-and-bound, schedule-construction,

and schedule-improvement procedures for resource-constrained project scheduling. OR Spectr
23(3):297–324

Heinz S, Schulz J (2011) Explanations for the cumulative constraint: an experimental study. In:
Pardalos PM, Rebennack S (eds) Experimental algorithms. Lecture notes in computer science,
vol 6630. Springer, Heidelberg, pp 400–409

Heinz S, Schulz J, Beck JC (2013) Using dual presolving reductions to reformulate cumulative
constraints. Constraints 18(2):166–201

http://yices.csl.sri.com/tool-paper.pdf

160 A. Schutt et al.

Horbach A (2010) A boolean satisfiability approach to the resource-constrained project scheduling
problem. Ann Oper Res 181:89–107

Huang J (2007) The effect of restarts on the efficiency of clause learning. In: Veloso MM (ed)
Proceedings of artificial intelligence – IJCAI 2007, pp 2318–2323

Kolisch R, Schwindt C, Sprecher A (1998) Benchmark instances for project scheduling problems.
In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer,
Boston, pp 197–212

Le Pape C (1994) Implementation of resource constraints in ILOG SCHEDULE: a library for the
development of constraint-based scheduling systems. Intell Syst Eng 3(2):55–66

Marriott K, Stuckey PJ (1998) Programming with constraints: an introduction. The MIT Press,
Cambridge

Mercier L, Van Hentenryck P (2008) Edge finding for cumulative scheduling. INFORMS J Comput
20(1):143–153

Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: engineering an efficient
SAT solver. In: Design automation conference. ACM, New York, pp 530–535

Neumann K, Schwindt C (1997) Activity-on-node networks with minimal and maximal time lags
and their application to make-to-order production. OR Spectr 19:205–217

Ohrimenko O, Stuckey PJ, Codish M (2009) Propagation via lazy clause generation. Constraints
14(3):357–391

Project Duration Problem RCPSP/max (2010). http://www.wior.uni-karlsruhe.de/LS_Neumann/
Forschung/ProGenMax/rcpspmax.html

Schutt A, Wolf A (2010) A new O.n2 logn/ not-first/not-last pruning algorithm for cumulative
resource constraints. In: Cohen D (ed) Principles and practice of constraint programming – CP
2010. Lecture notes in computer science, vol 6308. Springer, Heidelberg, pp 445–459

Schutt A, Feydy T, Stuckey PJ, Wallace MG (2009) Why cumulative decomposition is not as bad
as it sounds. In: Gent IP (ed) Proceedings of principles and practice of constraint programming
– CP 2009. Lecture notes in computer science, vol 5732. Springer, Heidelberg, pp 746–761

Schutt A, Feydy T, Stuckey PJ, Wallace MG (2011) Explaining the cumulative propagator.
Constraints 16(3):250–282

Schutt A, Chu G, Stuckey PJ, Wallace MG (2012) Maximising the net present value for resource-
constrained project scheduling. In: Beldiceanu N, Jussien N, Pinson E (eds) Integration of AI
and OR techniques in contraint programming for combinatorial optimzation problems. Lecture
notes in computer science, vol 7298. Springer, Heidelberg, pp 362–378

Schutt A, Feydy T, Stuckey P (2013a) Explaining time-table-edge-finding propagation for the
cumulative resource constraint. In: Gomes CP, Sellmann M (eds) Integration of AI and OR
techniques in constraint programming for combinatorial optimization problems. Lecture notes
in computer science, vol 7874. Springer, Heidelberg, pp 234–250

Schutt A, Feydy T, Stuckey PJ, Wallace MG (2013b) Solving RCPSP/max by lazy clause
generation. J Sched 16(3):273–289

Schwindt C (1995) ProGen/max: a new problem generator for different resource-constrained
project scheduling problems with minimal and maximal time lags. WIOR 449, Universität
Karlsruhe, Karlsruhe

Tsang E (1993) Foundations of constraint satisfaction. Academic, London
Vilím P (2011) Timetable edge finding filtering algorithm for discrete cumulative resources. In:

Achterberg T, Beck JC (eds) Integration of AI and OR techniques in constraint programming for
combinatorial optimization problems. Lecture notes in computer science, vol 6697. Springer,
Heidelberg, pp 230–245

Walsh T (1999) Search in a small world. In: Proceedings of artificial intelligence – IJCAI 1999.
Morgan Kaufmann, San Francisco, pp 1172–1177

http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/rcpspmax.html
http://www.wior.uni-karlsruhe.de/LS_Neumann/Forschung/ProGenMax/rcpspmax.html

Part III
Alternative Resource Constraints

in Project Scheduling

Chapter 8
Time-Varying Resource Requirements
and Capacities

Sönke Hartmann

Abstract This contribution discusses an extension of the classical resource-con-
strained project scheduling problem (RCPSP) in which the resource requests of
the activities and the resource capacities may change over time. We present
relationships to other variants of the RCPSP as well as some applications of this
problem setting. Subsequently, we analyze the applicability of heuristics which
were originally developed for the standard RCPSP and adapt one of them, a genetic
algorithm, to this extension. The chapter closes with a few computational results
and some remarks on research perspectives.

Keywords Genetic algorithm • Makespan minimization • Project scheduling •
Time-varying resource constraints

8.1 Introduction

In the classical resource-constrained project scheduling problem (RCPSP), a set
of activities has to be scheduled such that precedence and resource constraints are
met. That is, activities may not start before their predecessors have finished, and
the resource requests may not exceed the capacities in any period. The goal is to
determine a schedule with the shortest possible project duration.

The RCPSP is simple to describe but hard to solve, which has it made attractive
for many researchers. One important direction of research has been the development
of better solution methods (see Kolisch and Hartmann 2006 for an overview of
heuristics). Another main research direction has been the definition of alternative
and more general problem settings (see Hartmann and Briskorn 2010 for a survey).

Popular variants and extensions of the standard RCPSP include multiple exe-
cution modes for activities (Chaps. 21 and 22 of this handbook), generalized
precedence relations (Chaps. 5, 6, and 7 of this handbook), and alternative objectives
such as maximization of the net present value (Chap. 14 of this handbook). Also

S. Hartmann (�)
HSBA Hamburg School of Business Administration, Hamburg, Germany
e-mail: soenke.hartmann@hsba.de

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_8

163

mailto:soenke.hartmann@hsba.de

164 S. Hartmann

several approaches to generalize the resource constraints have been proposed.
This includes alternative resource types such as storage resources (Chap. 9 of
this handbook), continuous resources (Chap. 10 of this handbook), and partially
renewable resources (Chap. 11 of this handbook).

In this contribution, we take a look at another generalization of the resource
constraints. Resource requests and capacities are assumed to be constant over time
in the standard RCPSP. This might be too restrictive for practical applications.
Vacation of staff or planned maintenance of machines lead to capacities which vary
over time. Also the resource request of an activity might not be constant during its
processing time, depending on the actual application. Consequently, we consider an
extension of the RCPSP in which resource availabilities are given for each period of
the planning horizon, and resource demands are given for each period of an activity’s
duration. The resulting problem setting is referred to as RCPSP/t to indicate the
time-dependency.

Resource capacities and requests varying with time have not yet gained much
attention in the scientific literature. While the concept has been mentioned in a few
papers (e.g., Bartusch et al. 1988; de Reyck et al. 1999; Sprecher 1994), the only
dedicated approach is that of Hartmann (2013). There, a priority rule is developed
for time-dependent capacities and requests and embedded into a general randomized
scheduling framework. Tests based on a large set of test instances revealed that the
priority rule performs marginally better than standard RCPSP rules such as the well-
known latest start time rule (LST).

The goal of this contribution is twofold. First, we underscore the relevance of
the RCPSP/t by pointing out to applications in medical research and aggregated
production planning. Second, we discuss heuristics and their performance. We
summarize findings concerning the applicability of heuristics that were designed
for the standard RCPSP, and we exploit these results to adapt a genetic algorithm to
the RCPSP/t.

8.2 Problem Setting

In this section we will give a more formal outline of the problem setting. We will
also have a brief look at other project scheduling problems which are special cases
of the problem discussed here or which include the problem discussed here as a
special case, respectively.

8.2.1 Formal Problem Description

The RCPSP with time-varying resource requirements and capacities, the RCPSP/t,
can be summarized as follows. As in the standard RCPSP, we consider n activities

8 Time-Varying Resource Requirements and Capacities 165

1; : : : ; n with a processing time or duration pj for each activity j 2 f1; : : : ; ng.
Once started, an activity may not be interrupted. An activity j may not be started
before all its predecessor activities i 2 Pred.j / have finished, where Pred.j /
denotes the set of the immediate predecessors of activity j . Two additional activities
0 and nC 1 are added. They are dummy activities with p0 D pnC1 D 0 and reflect
the start and the end of the project, respectively.
K resources are given. Resource k, k D 1; : : : ; K has a capacity of Rk.t/ in

period t D 1; : : : ; T , where T is the planning horizon. An activity j requires rjk.t/

units of resource k in the t-th period of its duration, i.e., t D 1; : : : ; pj . We usually
assume the parameters such as processing times, capacities, and resource requests
to be nonnegative and integer valued. The objective is to determine a schedule (i.e.,
a start time for each activity) with minimal total project duration (i.e., minimal
makespan) such that both the temporal and the resource constraints are fulfilled.

A mathematical model can easily be obtained from incorporating the time-
dependency of the resource parameters into the classical formulation of Pritsker
et al. (1969). The resulting model can be found in Hartmann (2013). In the three-
field classification scheme ˛jˇj of Brucker et al. (1999), the RCPSP/t would be
denoted by PStjprecjCmax, where ˛ D PSt stands for project scheduling with limited
time-varying renewable resources.

8.2.2 Relationships to Other Project Scheduling Problems

Obviously, the RCPSP/t generalizes the standard RCPSP. If all resources have
constant capacities and if all activities have constant resource requests, we obtain
the standard RCPSP.

Furthermore, the RCPSP/t is a special case of the RCPSP/max, i.e., the RCPSP
with generalized precedence constraints. As outlined by Bartusch et al. (1988), time-
varying resource capacities can be transformed into constant ones by selecting the
highest capacity and by defining a dummy activity for each drop in the capacity.
Such a dummy activity is then fixed in time by adding a precedence relation with
the source activity along with appropriate minimal and maximal time lags. Time-
varying resource requests can be obtained in the RCPSP/max by splitting an activity
whenever the request for a resource changes. The resulting sub-activities related to
the original activity can now be stitched together using minimal and maximal time
lags.

Finally, it should be mentioned that time-varying resource capacities are a
special case of the so-called partially renewable resources (Böttcher et al. 1999 and
Chap. 11 of this handbook). A partially renewable resource k is associated with
a set of period subsets ˘k D fPk1; : : : ; Pk�g where Pk� � f1; : : : ; T g for each
� D f1; : : : ; �g. For each period subset Pk� 2 ˘k there is a total resource capacity
R
p

k .Pk�/. That is, over the periods t 2 Pk�, the total capacity of resource k is
R
p

k .Pk�/. Time-varying resource capacities can obviously be captured by defining

166 S. Hartmann

one period subset ftg for each period t of the planning horizon and by setting
R
p

k .ftg/ WD Rk.t/.

8.3 Applications

The applicability of time-varying resource capacities and requests is straightfor-
ward. The capacity of a resource may vary due to vacations of staff or maintenance
of machines. Resource requests of an activity are not necessarily constant over time
in case of longer or more complex activities. Case studies on project scheduling
problems including such a time-dependency can occasionally be found in the
literature, see, e.g., Kolisch and Meyer (2006). This section reviews two specific
applications of time-varying resource capacities and requests.

8.3.1 Medical Research Projects

As reported by Hartmann (2013), the RCPSP/t can be applied to capture projects in
medical research. Many projects in this field consist of experiments which require
certain resources such as laboratory staff and equipment. The experiments can be
viewed as activities which have to be scheduled such that an early end of the project
is achieved. These characteristics suggest to apply project scheduling models like
the RCPSP. A few properties of such medical research projects, however, go beyond
the standard RCPSP, but they can easily be captured by the RCPSP/t.

The laboratory staff and the equipment often have capacities that vary over time.
The staff might be absent due to vacation, or it might be present on certain weekends.
Since often several projects are carried out in the same laboratory at the same time,
the equipment might be available for a particular project only during certain weeks
or on certain weekdays.

Moreover, the resource requests of the activities representing experiments need
not be constant over time. Certain laboratory equipment might be required only on
specific days, e.g., on the last day of an experiment. Also, laboratory staff might be
required only on certain days of an experiment.

Finally, there are often specific requirements concerning the temporal arrange-
ment of experiments. A typical constraint is that many repetitions of the same
experiment are carried out in parallel because this makes it easier and more efficient
to handle them. It also leads to a clearer schedule which helps to avoid mistakes
when processing the experiments. On the other hand, it is important that not all
repetitions are executed in parallel because otherwise possible mistakes in the
handling of the experiments might not be detected and the results are distorted.

This can be captured by the RCPSP/t as follows: The repetitions of one
experiment are grouped such that each group contains a number of repetitions
that should be carried out in parallel. For each such group one activity is defined.

8 Time-Varying Resource Requirements and Capacities 167

For example, if an experiment must be repeated 30 times, one would define three
activities corresponding to 10 repetitions each, given that always 10 repetitions
should be carried out in parallel. To make sure that these three activities are not
carried out in parallel in the sense that they do not start on the same day, we define
a fictitious resource with a constant capacity of one unit. Each of the three activities
requests one unit this additional resource in the first period of its duration (and no
units in the remaining periods).

More details on modeling medical research projects using the RCPSP/t as well
as a case study based on real data can be found in Hartmann (2013).

8.3.2 Aggregated Production Scheduling

In what follows, we consider the case of a manufacturer of special machines located
in Northern Germany. The company produces highly specialized machines in a
make-to-order process. In addition to short-term planning at a detailed level, also
long-term planning at an aggregated level is carried out.

The long-term planning approach takes all currently known orders into account.
Each order corresponds to a machine of a particular type. While the production
process of a machine is related to a project network with several activities, it is not
necessary to consider all these individual activities in long-term planning.

Moreover, the only resources that need to be considered in long-term planning
are the assembly areas. There are several different assembly areas, and each of these
contains a number of so-called cells. The production of a machine type requires one
or more cells from several assembly areas.

Each order is related to a deadline which must not be exceeded. The goal of
aggregated planning is to determine a schedule in which the production of all
ordered machines finishes as early as possible. The latter is of particular importance
since it leads to free resource capacities for future orders.

This planning task can be captured as follows. We define one activity for each
order. In other words, each project that is related to the production of one ordered
machine is represented by a single activity. This activity is derived from the standard
schedule that is associated with the production process of the related machine.
Within this standard schedule, the start times are assumed to be fixed. The duration
of an activity is defined as the total manufacturing time of the machine according to
the standard schedule.

Obviously, each assembly area corresponds to one resource with a capacity given
by the number of cells that are available. An activity requires some of the assembly
areas, the request corresponds to the number of required cells. The request for an
assembly area usually varies over time. For example, the first part of an activity
might correspond to the manufacturing of certain parts in related assembly areas.
The second part might correspond to the assembly of the machine using these parts.
For this, another assembly area is needed whereas the assembly areas of the parts
are no longer needed. This aggregation of activities to super-activities with time-

168 S. Hartmann

varying resource requests has also been applied by Heimerl and Kolisch (2010) in a
similar way.

We are looking for a start time for each activity (which must observe the
given deadline of each activity). That is, we are looking for the time at which the
production related to an order should start such that the makespan is minimized.
Summing up, we obtain the RCPSP/t with an additional deadline constraint.

8.4 Heuristics for the RCPSP/t

This section deals with heuristics for the RCPSP/t. We discuss in general how
heuristics developed for the standard RCPSP can be applied. Subsequently, we
consider a genetic algorithm which is extended by so-called delays in order to match
the search space of the RCPSP/t.

8.4.1 Applicability of Heuristics Designed for the Standard
RCPSP

Over the last decades, a large number of heuristics have been developed for the
classical RCPSP, for overviews refer to Kolisch and Hartmann (1999, 2006). Since
the structure is very similar to the RCPSP/t, many of them can also be applied to the
extended problem. One particular reason is that the so-called schedule-generation
schemes (SGS) which are the backbone of most RCPSP heuristics also work for the
RCPSP/t.

Two main SGS are available for the standard RCPSP, the serial and the parallel
one (Kolisch 1996). The serial SGS picks an activity in each step and schedules
it at the earliest precedence and resource feasible start time. The parallel SGS on
the other hand considers a point in time and successively picks an activity that
can start at this time without violating the precedence and resource constraints.
Whenever there is no activity left that can be feasibly started, the next point in time
is selected. Note that the SGS only guides the scheduling process. In both SGS, the
decision which activity to pick next is made by a priority rule or by a metaheuristic
representation.

As shown by Sprecher et al. (1995), the search space of the serial SGS always
contains an optimal schedule for the RCPSP whereas the parallel one sometimes
does not. Thus the parallel SGS might not be able to find an optimal solution
for a given instance. This a drawback especially in small search spaces where the
serial SGS is superior because it might be able to find an optimal solution. On the
other hand, the parallel SGS is superior when applied to large instances because it
produces schedules of better average quality, which is an advantage in large search
spaces.

8 Time-Varying Resource Requirements and Capacities 169

Generally, both SGS can be applied to the RCPSP/t. However, their properties
change for this problem class. There are some instances of the RCPSP/t for which
the search space of the serial SGS does not contain an (existing) optimal solution.
This has been shown by counterexample in Hartmann (2013). This counterexample
indicates that one may have to start an activity later than at the earliest possible start
time to find an optimal solution.

Another important component of many RCPSP heuristics is the so-called justi-
fication or forward-backward improvement approach of Tormos and Lova (2001).
The idea is to improve a schedule as follows. In a first step, the schedule is scanned
from right to left. Thereby, each activity is shifted to the right as far as possible, but
not beyond the dummy sink activity. Next, the activities are scanned from left to
right and shifted as far to the left as possible, but not before the new start time of the
dummy source activity. Valls et al. (2005) have demonstrated that this concept can
be added to almost every heuristic and that it improves the results drastically.

This concept is not applicable when resource capacities are varying with time.
Activities are shifted to the right to condense the project, but thereby also the dummy
start activity is started later. In case of constant capacities, one can simply shift the
entire project to the left and hence bring it back to the old start time while keeping
the condensed schedule. The latter, however, is not possible if resource capacities
vary over time.

Summing up, the SGS for the RCPSP are applicable to the RCPSP/t as well. This
also holds for heuristics based on these SGS. Unfortunately, however, both SGS
are unable to find an existing optimal solution for some instances of the RCPSP/t.
Moreover, justification or forward-backward improvement is not applicable to the
RCPSP/t. These issues must be considered when adapting heuristics from the
RCPSP to the RCPSP/t.

8.4.2 An Adapted Genetic Algorithm

In this section, we adapt the genetic algorithm (GA) of Hartmann (1998) to the
RCPSP/t. This GA was originally proposed for the standard RCPSP. It is based
on the so-called activity list representation in which the non-dummy activities are
given in some order. This order must be precedence feasible, that is, an activity may
not appear before any of its predecessors. The serial SGS is applied to determine a
schedule for an activity list. It simply takes the activities in the order given by the
activity list and schedules each one at the earliest precedence and resource feasible
time. The activity lists for the first generation are constructed using a randomized
priority rule, namely the latest finish time rule (LFT).

The crossover operator takes parts of the activity lists from the mother and the
father and combines them to form a child. We apply a two-point crossover for which
two positions q1 and q2 with 1 � q1 < q2 � n are drawn randomly. The activities
for the child in positions 1; : : : ; q1 are copied from the father. Child positions q1 C
1; : : : ; q2 are filled successively with activities from the mother. We always take the

170 S. Hartmann

leftmost activity in the mother’s list that does not yet appear in the child’s current
partial list. The remaining child positions q2 C 1; : : : ; n are taken from the father
accordingly. Note that this crossover preserves the activities’ relative positions in the
parents and always produces precedence feasible offspring. The mutation operator
swaps two activities with probability�mutation, given that the result is still precedence
feasible. For more details, refer to Hartmann (1998).

This GA has yielded better results than other genetic prepresentations for the
standard RCPSP (Hartmann 1998). In the subsequent years, it has been extended by
various researchers. The most noteworthy extension was the concept of justification
or forward-backward improvement (see Sect. 8.4.1). As discussed above, however,
it is not applicable to instances of the RCPSP/t. Therefore, we stick with the GA as
described above.

In what follows, we discuss two ways of applying this GA to the RCPSP/t.
The first approach is fairly straightforward. Considering that the serial SGS yields
feasible solutions for the RCPSP/t, we can apply the GA described above. The only
minor change is that we replace the method to calculate the first generation with
an RCPSP/t-specific procedure, namely the tournament method and the critical path
and resource utilization (CPRU) rule of Hartmann (2013). The main drawback of
this GA approach is that it might not find an optimal solution because of the serial
SGS (recall the discussion in Sect. 8.4.1).

This issue leads us to the second approach. Here we allow to delay activities, that
is, an activity may be started at a time later than the earliest feasible start time. This
extends the search space such that an optimal solution can be found.

The idea behind this is somewhat similar to that of Cho and Kim (1997) for
the standard RCPSP. They proposed a simulated annealing (SA) heuristic in which
solutions are represented by priority values and decoded by the parallel SGS. Recall
that, like the serial SGS for the RCPSP/t, also the parallel SGS for the RCPSP might
exclude all optimal solutions from the search space. To overcome this restriction,
Cho and Kim (1997) suggest to allow to delay activities. They indicate a delay by a
negative priority value (whereas an activity with a positive priority value is started
as early as possible). Moreover, they test different rules to control the number of
periods an activity may be delayed.

Our approach is similar as it allows to delay activities as well, albeit using the
activity list representation and the serial SGS. Handling delays, however, follows a
different concept. For each activity j we define a delay value ı.j / and include it in
the representation. Now the activity list of an individual I includes a delay value for
each activity:

I D
	

j1 j2 � � � jn

ı.j1/ ı.j2/ : : : ı.jn/

The serial SGS is applied to determine the schedule for an individual. It schedules
the activities in the order prescribed by the activity list. If an activity ji has a delay
value of ı.ji / D 0, then this activity is scheduled as early as possible. If it has a

8 Time-Varying Resource Requirements and Capacities 171

delay value of ı.ji / D 1, the earliest possible start time is ignored and the next
feasible start time is selected. Higher delay values imply that more feasible start
times are skipped. Generally, the earliest ı.ji / feasible start times are skipped and
the next feasible start time is selected. Note that ı.ji / does not indicate the number
of periods an activity is delayed. This is necessary because a feasible start time t for
some activity does not mean that start time t C 1 is always feasible if the serial SGS
is applied to the RCPSP/t. Also observe that, in contrast to Cho and Kim (1997), the
magnitude of the delay is part of the representation and needs not be controlled by
additional rules.

The GA based on this extended representation proceeds as follows. In the
first generation, each individual is assigned an activity list using the tournament
procedure and the CPRU rule. With a probability of �delay, an activity is assigned a
delay value of 1 and 0 otherwise (higher delay values can be produced by mutation).
The crossover operator is extended in a straightforward way: Each activity ji
simply keeps its associated delay value ı.ji /. The mutation operator is expanded
by changing a delay value with probability �mutation. Then it is either increased by
1 or decreased by 1, each with a probability of 0.5 (a negative delay value is not
accepted, though). This concept implies that the delay is subject to inheritance—if
delaying an activity is beneficial, this will be passed on to the offspring.

Of course, it is not a priori clear whether or not delaying activities is a promising
approach. On one hand, it helps to avoid the drawback of the serial SGS which might
exclude all optimal solutions from the search space. On the other hand, scheduling
activities later than necessary can be counterproductive if the objective is an early
end of the project. Thus computational experiments can provide further insight.

8.5 Computational Results

In order to analyze the behavior of the heuristics and of the extended genetic
algorithm, a computational study has been carried out. In what follows, we briefly
describe the sets of test instances and present the computational results.

8.5.1 Test Sets

For the computational analysis we make use of the sets of test instances generated by
Hartmann (2013). These sets are based on sets for the standard RCPSP which can be
found in the internet-based project scheduling problem library PSPLIB, cf. Kolisch
and Sprecher (1996). The original RCPSP sets were generated by ProGen (see
Kolisch et al. 1995) and have been widely accepted as a standard test bed by the
RCPSP community.

Hartmann (2013) added changes to the resource capacities and requests of these
instances to adapt them to the RCPSP/t. These changes are based on parameters.

172 S. Hartmann

ProbabilitiesPR andP r control whether or not a reduction is applied to the capacity
and the request in a period, respectively. Higher probabilities imply more frequent
changes in the resource availabilities and requests. Factors FR and F r determine
the strength of the reduction for the availability and the request, respectively. The
smaller the factor, the stronger the reduction.

The probabilities were set to 0.05, 0.1, and 0.2. The probabilities for changing
the capacities and the requests were always kept the same, that is, PR D P r . The
factors were set to 0 and 0.5. Also the factors for capacities and the requests are
the same, that is, FR D F r . This led to six different instances derived from the
set with n D 30 activities (and hence 6 � 480 D 2;880 instances in total) and six
different instances derived from the set with n D 120 activities (thus 6 �600 D 3;600
instances in total). More details can be found in Hartmann (2013).

8.5.2 Results

We tested the tournament heuristic of Hartmann (2013) with three different priority
rules. We included the random rule (RND) as a benchmark, the latest start time
rule (LST) which is one of the best performing rules for the standard RCPSP
(Kolisch 1996), and the critical path and resource utilization rule (CPRU) which was
developed for the RCPSP/t (Hartmann 2013). We also tested the GA of Hartmann
(1998) in its standard form without delay as well as in the extended version designed
for the RCPSP/t. In the latter version, different probabilities�delay for controlling the
distribution of delay values in the first generation were examined.

To obtain a basis for the comparison, all tested heuristics were stopped after
5,000 schedules were computed for an instance (in the GA, this corresponds to
a population size of 100 over 50 generations). Table 8.1 provides a summary of
the results obtained for the two test sets with n D 30 and n D 120 activities,
respectively. It reports the average deviation from the lower bound LB/t (which
makes use of the critical path and the time-varying resource parameters, see
Hartmann 2013 for a definition), the percentage of instances for which a feasible
solution is found, and the average computation time per instance in seconds.

The tested methods yield rather similar results for the set with n D 30, whereas
the set with n D 120 shows differences between the heuristics. On the latter set, all
methods clearly outperform the random approach. The CPRU rule is slightly better
than the LST rule for the standard RCPSP, which confirms the findings of Hartmann
(2013). The GAs lead to better results than the priority rule methods because they
exploit learning effects during the search. This is in line with the results of Kolisch
and Hartmann (2006).

For the set with n D 30, adding the possibility to delay activities in the GA can
have a slight positive effect (the impact is fairly marginal, but it was confirmed in
several repetitions of the experiment). For the set with n D 120 the GA without
delays works best. In case of the much smaller solution space related to the n D 30

8 Time-Varying Resource Requirements and Capacities 173

Table 8.1 Heuristic results, limit = 5,000 schedules

n D 30 n D 120

Heuristic Configuration Deviation Feasible CPU-sec Deviation Feasible CPU-sec

Tournament RND 11.9 % 98.3 % 0.101 39.1 % 100 % 0.471

Tournament LST 11.3 % 98.3 % 0.103 31.7 % 100 % 0.627

Tournament CPRU 11.3 % 98.3 % 0.104 31.1 % 100 % 0.643

GA No delay 11.3 % 98.3 % 0.039 29.7 % 100 % 0.191

GA �delay D 0:01 11.2 % 98.5 % 0.041 30.3 % 100 % 0.209

GA �delay D 0:05 11.3 % 98.5 % 0.041 30.5 % 100 % 0.209

GA �delay D 0:10 11.3 % 98.5 % 0.042 30.8 % 100 % 0.216

GA �delay D 0:20 11.4 % 98.5 % 0.043 31.5 % 100 % 0.224

set, it makes sense to explore a search space that always contains an optimal
solution. Considering the huge solution space for the n D 120 set, however, it
seems to be more promising to reduce the search space to schedules of good average
quality. The latter is achieved when activities are not delayed. This is very similar
to the findings of Hartmann and Kolisch (2000) for the standard RCPSP, where a
larger search space (due to the serial SGS) is better for smaller projects whereas a
smaller search space (due to the parallel SGS) is more promising for larger projects.

The results also show that higher delay probabilities for setting up the first
generation slightly worsens the results. Increasing the delay probability means that
too many activities are delayed which leads to inferior solutions. But the results do
not deteriorate too much because mutation and selection can eliminate unfavorable
delay values from the gene pool. That indicates that the GA is robust because the
evolution will discard delays sooner or later if they are not favorable.

The computation times of the priority rule methods are higher than those of
the random method because of the time-consuming activity selection method.
The lowest computation times are obtained for the GA because it simply picks
the next activity from the activity list. Thus, there is no need for a more time-
consuming activity selection. Increasing the delay probability leads to slightly
higher computation times because in case of a delay the start time calculation of an
activity has to be executed more than once. It should also be noted that the methods
stop whenever the lower bound LB/t has been reached and thus an optimal solution
has been found.

Tables 8.2 and 8.3 show the average deviations from the lower bound LB/t for
the different instances subsets, that is, for the different probabilities and strengths
of the resource capacity and request reduction. Likewise, Tables 8.4 and 8.5 display
the percentages of those instances for which the lower bound LB/t was met (and
hence the solution is proven to be optimal). Here, we restrict ourselves to the most
important heuristics.

We observe that the solution gap between upper and lower bound is generally
small for the sets with n D 30, and for many instances, the solution gap is 0 which
means that the lower bound is met. Taking also the sets with n D 120 into account,

174 S. Hartmann

Table 8.2 Average deviation from lower bound LB/t in % (n D 30)

FR D F r 0 0.5

PR D P r 0.05 0.1 0.2 0.05 0.1 0.2

Tournament RND 11.7 8.7 5.9 14.7 15.2 14.4

Tournament CPRU 11.2 8.4 5.8 13.9 14.5 13.6

GA No delay 11.3 8.5 5.9 13.8 14.4 13.6

GA �delay D 0:01 11.2 8.4 5.8 13.9 14.3 13.3

Table 8.3 Average deviation from lower bound LB/t in % (n D 120)

FR D F r 0 0.5

PR D P r 0.05 0.1 0.2 0.05 0.1 0.2

Tournament RND 35.6 27.7 15.9 49.8 51.4 54.0

Tournament CPRU 28.3 21.3 12.5 40.5 41.3 43.0

GA No delay 27.1 20.6 12.3 38.3 39.3 40.8

GA �delay D 0:01 27.5 20.9 12.2 39.2 40.1 41.7

Table 8.4 Percentage of instances for which lower bound LB/t is met (n D 30)

FR D F r 0 0.5

PR D P r 0.05 0.1 0.2 0.05 0.1 0.2

Tournament RND 57.9 66.5 69.4 38.5 34.0 34.2

Tournament CPRU 58.3 67.3 69.6 39.0 34.8 35.2

GA No delay 57.7 67.7 69.0 38.8 34.8 34.8

GA �delay D 0:01 58.1 66.9 69.6 39.0 34.6 34.6

Table 8.5 Percentage of instances for which lower bound LB/t is met (n D 120)

FR D F r 0 0.5

PR D P r 0.05 0.1 0.2 0.05 0.1 0.2

Tournament RND 25.3 36.7 59.5 6.7 4.5 5.5

Tournament CPRU 34.3 43.8 63.8 16.3 12.3 9.3

GA No delay 35.7 44.3 63.2 16.0 12.5 9.8

GA �delay D 0:01 36.0 45.7 65.3 16.3 12.8 10.3

we see that generally the reduction factors of FR D F r D 0 lead to lower solution
gaps and more optimal solutions than factors of F R D F r D 0:5. Among the
sets for F R D F r D 0, the solution gap is lowest for a high reduction probability
(PR D P r D 0:2). Also note that for the sets with FR D F r D 0 and PR D P r D
0:2 there is only a small difference between the random method and the best GA
(n D 120) or hardly any difference at all (n D 30).

A capacity reduction down to 0 means that less degrees of freedom exist for
scheduling activities. In such a case, there may be only a few resource feasible start
times, especially for activities with a long duration. If such an activity can only start
rather late due to the resource capacities, this may determine the makespan to a

8 Time-Varying Resource Requirements and Capacities 175

large degree, and better heuristics cannot find better schedules than simple random
methods. Taking these observations into account, future research might focus more
on the sets with FR D F r D 0:5 because this setting leaves more degrees of
freedom for scheduling, which helps to identify performance differences between
different heuristics.

8.6 Conclusions

In this contribution, we have summarized the current state of research concerning
the RCPSP with time-dependent resource availabilities and requests. We have
also adapted a well-known genetic algorithm which was originally proposed for
the standard RCPSP. By allowing activities to start later than necessary, we have
extended the search space of the genetic algorithm in a way than an optimal solution
can be found for the RCPSP/t. The computational experiments showed, however,
that delaying activities only leads to better results in case of small project instances.

Future research directions for the RCPSP/t can be promising in two directions.
First, further methods tailored for this problem class might lead to improved results.
Second, research on real-world applications and case studies can be useful to assess
the relevance of the RCPSP/t. It can also be a good idea to use case studies to identify
promising combinations of the RCPSP/t with other extensions of the RCPSP. The
case study concerning aggregated production planning has shown that additional
deadlines can be relevant in practice. Further extensions might also be possible, e.g.,
multiple modes to reflect alternative speeds of the production processes. Multiple
modes can also be useful when the selection of orders shall be included, since one
mode can reflect the decision not to carry out the production. When order selection
is included, also a different objective function such as the maximization of the net
present value would be needed.

Acknowledgements The author was supported by the HSBA foundation.

References

Bartusch M, Möhring RH, Radermacher FJ (1988) Scheduling project networks with resource
constraints and time windows. Ann Oper Res 16:201–240

Böttcher J, Drexl A, Kolisch R, Salewski F (1999) Project scheduling under partially renewable
resource constraints. Manage Sci 45:543–559

Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project
scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41

Cho JH, Kim YD (1997) A simulated annealing algorithm for resource-constrained project
scheduling problems. J Oper Res Soc 48:736–744

de Reyck B, Demeulemeester EL, Herroelen WS (1999) Algorithms for scheduling projects
with generalized precedence relations. In: Wȩglarz J (ed) Project scheduling: recent models,
algorithms and applications. Kluwer, Boston, pp 77–106

176 S. Hartmann

Hartmann S (1998) A competitive genetic algorithm for resource-constrained project scheduling.
Nav Res Logist 45:733–750

Hartmann S (2013) Project scheduling with resource capacities and requests varying with time:
a case study. Flex Serv Manuf J 25:74–93

Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained
project scheduling problem. Eur J Oper Res 207:1–14

Hartmann S, Kolisch R (2000) Experimental evaluation of state-of-the-art heuristics for the
resource-constrained project scheduling problem. Eur J Oper Res 127:394–407

Heimerl C, Kolisch R (2010) Scheduling and staffing multiple projects with a multi-skilled
workforce. OR Spectr 32:343–368

Kolisch R (1996) Serial and parallel resource-constrained project scheduling methods revisited:
theory and computation. Eur J Oper Res 90:320–333

Kolisch R, Hartmann S (1999) Heuristic algorithms for solving the resource-constrained project
scheduling problem: classification and computational analysis. In: Wȩglarz J (ed) Project
scheduling: recent models, algorithms and applications. Kluwer, Boston, pp 147–178

Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained
project scheduling: an update. Eur J Oper Res 174:23–37

Kolisch R, Meyer K (2006) Selection and scheduling of pharmaceutical research projects.
In: Jozefowska J, Wȩglarz J (eds) Perspectives in modern project scheduling. Springer,
New York, pp 321–344

Kolisch R, Sprecher A (1996) PSPLIB – a project scheduling problem library. Eur J Oper Res
96:205–216

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Manage Sci 41:1693–1703

Pritsker AAB, Watters LJ, Wolfe PM (1969) Multiproject scheduling with limited resources:
a zero-one programming approach. Manage Sci 16:93–107

Sprecher A (1994) Resource-constrained project scheduling: exact methods for the multi-mode
case. Lecture notes in economics and mathematical systems, No. 409. Springer, Berlin

Sprecher A, Kolisch R, Drexl A (1995) Semi-active, active and non-delay schedules for the
resource-constrained project scheduling problem. Eur J Oper Res 80:94–102

Tormos P, Lova A (2001) A competitive heuristic solution technique for resource-constrained
project scheduling. Ann Oper Res 102:65–81

Valls V, Ballestín F, Quintanilla MS (2005) Justification and RCPSP: a technique that pays. Eur J
Oper Res 165:375–386

Chapter 9
Storage Resources

Jacques Carlier and Aziz Moukrim

Abstract This chapter looks at project scheduling problems with storage resources.
Activities can produce or consume resources at their start or at their completion. We
consider projects composed of events subject to precedence constraints and resource
constraints. We describe briefly the exact methods of Neumann and Schwindt and
of Laborie, which solve the problem when stocks of resources have to be between
minimum and maximum levels. We then suppose that there are no maximum stocks.
We report the shifting algorithm which solves in polynomial time the financing
problem where resources are produced at given dates. We also explain how an
earliest schedule corresponding to a linear order of consumption events can be
built. The enumeration of linear orders then becomes sufficient for building an exact
method.

Keywords Linear order • Makespan minimization • Project scheduling •
Storage resources

9.1 Introduction

Most papers on scheduling problems consider activities that use renewable
resources, meaning that the activities require certain quantities of resources when
they start, and then give them back at their completion (see Chaps. 1, 2, and 3 of
this handbook, Graham et al. 1979, and Neumann et al. 2003). This is the case, for
instance, for the Resource Constrained Project Scheduling Problem, where activities
are also subject to precedence constraints. We assume that all data take the form
of integer values. Renewable resources can model manpower or machines. In this
chapter we consider non-renewable resources that can be consumed or produced
by activities when they start or when they complete. We use the term storage
resources, because when a quantity of resources is produced it is stocked and when
it is consumed it is de-stocked. Such resources can represent money, raw materials,

J. Carlier (�) • A. Moukrim
Heudiasyc, CNRS UMR 7253, Université de Technologie de Compiègne, Compiègne, France
e-mail: jacques.carlier@utc.fr; aziz.moukrim@utc.fr

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_9

177

mailto:jacques.carlier@utc.fr
mailto:aziz.moukrim@utc.fr

178 J. Carlier and A. Moukrim

mechanical parts etc. Non-renewable resources were introduced in Błażewicz, cf.
Chap. 1: Błażewicz et al. (1986) and in Carlier and Rinnooy Kan (1982). Carlier
and Rinnooy Kan consider the particular case of money by looking at the financing
problem where different amounts of money arrive at given dates and can be used to
finance activities. More recently Neumann and Schwindt (2003) consider the project
scheduling problem with inventory constraints, where there are several resources,
the level of whose stocks must always respect minimum and maximum values. The
problem consists in computing a schedule that is resource-feasible, time-feasible,
and that minimizes makespan. A schedule is time-feasible if precedence constraints
are satisfied and resource-feasible if at any given time the stock of each resource
is between the minimum and maximum permitted levels. Neumann and Schwindt
propose a branch and bound method for solving this scheduling problem. It is an
exact method that can solve most of the instances of a benchmark with up to 100
events. We will be describing the Neumann and Schwindt (2003) method briefly
below. Laborie (2003) also proposes a particularly innovative exact method that can
solve all the instances of Neumann and Schwindt (2003). Other authors have studied
the particular case when there is no maximum stock. This is known as the problem
with consumption and production of resources. Carlier et al. (2009) explain how
to build an earliest schedule associated with a linear order on events that enables
schedules to be enumerated by enumerating linear orders. They also prove that
linear orders can be limited to consumption events or production events. Koné et al.
(2013) propose solving the problem using a linear programming model. Given
that the project scheduling problem with storage resources is interesting from both
the practical and theoretical standpoints, more research into this subject is clearly
desirable. The chapter is organized as follows. After this introduction, we describe,
in Sect. 9.2, the project scheduling problem with inventory constraints and the exact
methods of Neumann and Schwindt (2003) and of Laborie (2003). Section 9.3 is
devoted to the financing problem and Sect. 9.4 to the project scheduling problem
with consumption and production of resources. Section 9.5 presents our conclusion.

9.2 The Project Scheduling Problem with Inventory
Constraints

Neumann and Schwindt first introduced the project scheduling problem with
inventory constraints. Inventory constraints refer to non-renewable resources, which
can be stocked and have minimum and maximum prescribed stocks. Neumann
and Schwindt proposed a branch and bound method for solving this problem and
truncated it to a filtered beam search heuristic. Laborie subsequently proposed
a constraint programming method for solving the problem. In this section, we
introduce the model and briefly describe both methods.

9 Storage Resources 179

9.2.1 The Model

In this model, activities are replaced by events. An event might be, for example,
the start or the completion of an activity. There are also storage resources. rik is the
demand for storage resource k by event i . If rik is strictly positive, it corresponds
to the production by event i of rik units of resource k. If it is strictly negative, it
corresponds to the consumption of -rik units of resource k. A project consists of n
events 1; : : : ; n. In addition the fictitious events 0 and nC1 which represent the start
and the completion of the project are introduced. The nodesV D f0; 1; : : : ; n; nC1g
of a graph are associated with the events. There are minimum and maximum
time lags between the events. A project network N D .V;E; ı/ is obtained by
introducing arcs between pairs of events. If there is a minimum time lag dmin

ij
between the occurrences of two events i and j , an arc .i; j / is introduced with
ıij WD dmin

ij . If there is a maximum time lag dmax
ij between the occurrences of

two events i and j , an arc .j; i/ is introduced with ıji WD �dmax
ij . A schedule S

is a function of V into Z�0 giving the starting times of the events. It has to be
time-feasible and resource-feasible. S is time-feasible if it satisfies the inequality
Sj �Si � ıij for every arc .i; j / ofE . It is resource-feasible if, for every time t and
for every resource k, the inventory of the resource is between a minimum levelRmin

k

and a maximum level Rmax
k . Given a schedule S , let A .S; t/ D fi 2 V j t � Sig

and rk.S; t/ DP
i2A .S;t/ rik. The schedule S is resource-feasible if, for any time t

and for every resource k: Rmax
k � rk.S; t/ � Rmin

k .
A schedule is time-feasible if it satisfies the inequality constraints, resource-

feasible if it satisfies the resource constraints and it is said to be feasible if it is
both time-feasible and resource-feasible. We remark that it can be supposed without
loss of generality that Rmin

k D 0, if it is supposed that, for any k, event 0 consumes
Rmin
k units of resource k. In literature, the problem is denoted PSsjtempjCmax.

9.2.2 The Exact Method of Neumann and Schwindt

Neumann and Schwindt (2003) propose a branch and bound method which enu-
merates alternatives for avoiding stock shortages and surpluses by introducing
disjunctive precedence constraints between some disjoint sets of eventsA and B: A
is beforeB if minfSi j i 2 Bg � minfSi j i 2 Ag. So a node in the tree corresponds
to a set of these disjunctive precedence constraints. The authors show that if the set
of schedules of a node is not empty, there exists an earliest schedule S respecting the
initial precedence constraints and the disjunctive precedence constraints. Moreover
they explain how to compute this earliest schedule by adjusting the starting times
of events. If this schedule is resource-feasible, it is feasible, so we backtrack.
Otherwise, there exists a time t such that A .S; t/ is a surplus set or a shortage set.

180 J. Carlier and A. Moukrim

That is: rk.S; t/ > Rmax
k or rk.S; t/ < Rmin

k . They consider the smallest t satisfying
the previous condition.

Let us explain the case of a surplus set. Here it is necessary to postpone a minimal
subset B of events (B included in A .S; t/). B is composed of events i with rik

strictly positive (production events) and it is minimal in the sense that the surplus
conflict is solved, but it is not solved for some proper subset of B . Of course it is
necessary to enumerate several alternatives for B . To postpone B , they consider the
set A of events which are not in A .S; t/ and with rik strictly negative (consumption
events).

A first lower bound of the makespan is associated with the earliest schedule.
A second lower bound uses the earliest schedule S and also a latest schedule LS
defined by LSi WD d i , where d i is a deadline of event i . A lower bound of the stock
is obtained by starting the consumption events as early as possible, given by S , and
the production events as late as possible, given by LS. Similarly an upper bound of
the stock is obtained by starting the consumption events as late as possible, given
by LS, and the production events as early as possible, given by S . If at some time t
it can be proved that the stock will be insufficient or too large, there is no solution
and the corresponding node of the tree can be cancelled.

The experimental analysis of Neumann and Schwindt (2003) shows that their
method can solve problem instances with 100 events and five storage resources.
These data were generated by the authors, and are composed of 360 projects. Twelve
projects have not been solved optimally. The larger problems are solved by replacing
the minimal subset B by a subset of cardinality one.

9.2.3 The Exact Method of Laborie

The scheduling problems which are considered by Laborie (2003) are very general.
They include the Resource Constrained Project Scheduling Problem and the project
scheduling problem with inventory constraints. His method propagates resource
constraints within a constraint programming approach. Its application to the project
scheduling problem with inventory constraints is presented below. Laborie (2003)
refers to a resource reservoir, because the maximum and minimum levels are given.
Most of the techniques in the literature refine the execution intervals of activities.
These are the cases of edge finding or energy based reasoning devoted to renewable
resources. But generally, at the start of the search, no activity intervals can yet be
deduced. So Laborie (2003) focuses on the precedence relations between events
rather on their absolute positions in time, as we explain below. It is a method that is
complementary to the aforementioned techniques.

The search space consists of a global search tree. The method consists in
iteratively refining a partial schedule. A partial schedule is composed of a set of
events, temporal constraints and resource constraints. The main tools of Laborie
(2003) are time-tabling, the resource graph, and the balance constraints.

9 Storage Resources 181

Time-tabling is a propagation technique which relies on the computation of
upper and lower bounds at any time t for the use of every resource k. It can limit
the domains of the start and completion times of activities by removing the dates
that would necessarily lead to an over-consumption or under-consumption of some
resource by an event.

The resource graph RG is composed of two sets of arcs: RG D .V;E�; E</,
where E< is included in E�, and

• E� is the set of couples .i; j / such that: Si � Sj ,
• E< is the set of couples .i; j / such that: Si < Sj .

The resource graph expresses precedence relations between events. The graph on
a resource is designed to gather together all the precedence relations between events
on the resource. They may come from initial temporal constraints, from deductions,
and from branching decisions. When new precedence relations are introduced, the
transitive closure of the resource graph is maintained thanks to a matrix.

This graph means that balance constraints associated with events can be evalu-
ated. The basic idea is to compute, for each event using a specific resource, upper
and lower bounds on the resource level just before and just after this event. An event
i is safe for some resource if the upper bound of the resource level just before i
and just after i is smaller than the minimum capacity and the lower bound of the
resource level before i and after i is larger than the minimum capacity. When all
events of a resource are safe, the reservoir constraint of this resource is satisfied.

The balance constraint can reveal three types of information: dead-ends, new
bounds for time variables, and new precedence relations. For instance, when the
upper bound of the resource level just before event i is strictly smaller than the
minimal level, we get a dead-end. We can also get new bounds on time variables.
For instance, if the resource level before i in the partial schedule is smaller than the
minimum level, production events need to be scheduled before i . The earliest dates
can be computed at which sufficient resources might be available for processing i .
It will depend on the earliest dates at which production events can be scheduled.
Finally if the processing of event j after event i would provoke a dead-end, i must
be scheduled before j . So we can add the corresponding precedence constraint.

Branching is based on precedence relations. It involves choosing two events
i and j . Laborie chooses either to process i before j or j before i , one of
both precedences being strict. i is chosen as a critical event, for instance an
event consuming or producing a large quantity of resources. The choice which is
sophisticated is explained in the paper.

Laborie’s method has been implemented in the ILOG Scheduler, a C++ library
for constraint-based scheduling (see Le Pape 1994). It can solve to optimality all
the instances of Neumann and Schwindt (2003), including the 12 previously open
instances in less than 10 s. To resume this method is elaborated and innovative. It is
also very efficient in practice.

182 J. Carlier and A. Moukrim

9.3 The Financing Problem

The financing problem was a subject of study prior to the project scheduling problem
with inventory constraints (see Carlier and Rinnooy Kan 1982; Słowiński 1984).
This problem aims to model the financing of some project being realized. It is a
special case, insofar as the dates of production events are given whenever there are
precedence constraints between consumption events. It is solved using a polynomial
algorithm known as the shifting algorithm. Deadlines can also be taken into account.
The model, the shifting algorithm and a discussion are reported below.

9.3.1 The Model

Dependent tasks have to be scheduled in a minimal makespan. Task i consumes at
the outset a quantity ri of a non-renewable resource, which can represent money.
Task i is replaced by its starting event, denoted without ambiguity i . Initially at
time �1 D 0, b1 units of the resource are available. b2; b3; : : : ; bq additional units
of the resource become available at dates �2; �3; : : : ; �q . A precedence graph N D
.V;E; ı/ is associated with the problem. V contains the set of consumption events
and the two fictitious events 0 and nC 1. We suppose that the minimum capacity is
0 and the maximum capacity is infinite. When money is involved, it is better to have
as large a stock as possible! At first we will suppose that N does not contain any arc
.i; 0/. Such an arc will model a deadline d i .

9.3.2 Time-Feasible Schedules

Let us denote dij the value of a maximal path from i to j inN . ES D fESi D d0i j
i 2 V g is the earliest time-feasible schedule and LS D fLSi D d0;nC1 � di;nC1 j i 2
V g the latest time-feasible schedule. It is also well known that there exists a latest
schedule with makespan d0;nC1C�which is defined by LS.�/ D fLSiC� j i 2 V g
when� is positive.

9.3.3 Feasible Schedule

A time-feasible schedule S D .S0; S1; : : : ; SnC1/ is resource-feasible if the
following condition is satisfied: for any t W RE.t/ D P

fi jSi�tg ri � A.t/ DP
f�2f1;:::;qgj���tg b�. In other words, the requirement curve is below the availability

curve (see Fig. 9.1). Note that r.S; t/ introduced in Sect. 9.2.1 is equal to A.t/ �
RE.t/.

9 Storage Resources 183

t

A(t)

RE(t)

τ1 S1 τ2 τqS2 Sn

A(t)

RE(t)

Fig. 9.1 Graphical interpretation of feasible schedules

9.3.4 The Shifting Algorithm

In the shifting algorithm, the latest schedule is shifted in order to satisfy the
feasibility condition.

Algorithm 9.1: The shifting algorithm

begin
if (
P

i2V ri >
P

�2f1;:::;qg

b�) then
write there is no feasible schedule

else
Compute the latest schedule LS WD fLSi D d0;nC1 � di;nC1=i 2 V g;
A.�1/ WD b1;
for � WD 2 to q do

A.��/ WD A.���1/C b�
� WD 1I� WD 0IRE WD 0;
for i WD 1 to n do

RE WD REC ri ;
while A.��/ < RE do

� WD �C 1
if � < .�� � LSi / then

� WD .�� � LSi /

9.3.5 An Instance

We consider a precedence graph with four tasks 1; 2; 3 and 4 with processing times
7; 8; 9 and 6. Task 1 precedes task 4, task 2 precedes tasks 3 and 4. Assume that

184 J. Carlier and A. Moukrim

1 4

0 5

2 3

0

0

7

8

8

6

9

Fig. 9.2 Example with four tasks such that r1 D r2 D r3 D r4 D 7 and �1 D 0; �2 D 5 and
�3 D 10, b1 D b2 D b3 D 10

t

A(t)
RE(t)

4 5 8 10 11

7

10

14

20
21

28
30 A(t)

RE(t)
Δ

Fig. 9.3 Applying the shifting algorithm

any task consumes seven units of resource. Moreover, at times �1 D 0; �2 D 5 and
�3 D 10, b1 D b2 D b3 D 10 units of resource become available (see Fig. 9.2).

The shifting algorithm computes the latest schedule LS W LS0 D 0, LS1 D 4,
LS2 D 0;LS3 D 8;LS4 D 11 and LS5 D 17. Next, we determine for any task i , the
smallest time �� such that A.��/ � RE.LSi /. Then� is the smallest value such that
A.LSi C�/ � RE.LSi / for any i . Therefore,� D 2 and the optimal schedule built
by the algorithm is S0 D 0; S1 D 6; S2 D 2; S3 D 10; S4 D 13 and S5 D 19 (see
Fig. 9.3).

9.3.6 Discussion

The shifting algorithm computes an optimal schedule when .
P

i2V ri �P
1���q b�/. This is because it is better to finance activities as late as possible,

which is ensured by restricting the research to schedules LS.�/. The algorithm
computes the lowest possible positive value of �. If we have several resources,
the generalization is straightforward. We can also take into account deadlines (see

9 Storage Resources 185

Carlier 1989). Some other generalizations are presented in Carlier (1989) and
Carlier (1984).

9.4 The Project Scheduling Problem with Consumption
and Production of Resources

We now consider the particular case where there are no maximum stocks. It can
model the RCPSP and the project scheduling problem with inventory constraints.
So it remains NP-hard. The case with one resource can be polynomially solved
when the precedence graph is series-parallel. In the general case, when a linear
order on all events is given, there exists an earliest schedule which can be computed
efficiently because we can replace the linear order by precedence constraints. If we
have a linear order on consumption events, there also exists an earliest schedule,
which can be computed efficiently when valuations of arcs are positive or null. If
we have a linear order on production events, then a latest schedule exists. We report
all these results below.

9.4.1 The Model

We will now explain how we can model a project scheduling problem with inventory
constraints by a project scheduling problem with consumption and production of
resources. Let us consider an instance of the project scheduling problem with
inventory constraints and k a resource with Rmin

k D 0. We replace resource k by two
new resources denoted k1 and k2. If event i produces a quantity rik in the original
instance, it will produce a quantity rik1 D rik of resource k1 in the new instance and
produce a quantity rik2 D �rik of resource k2. The initial availability of resource k2
is Rmax

k .
We can also model the resource constrained project scheduling problem

(RCPSP). Let us consider an instance of RCPSP. We have to schedule a set of
activities subject to precedence constraints and to renewable resource constraints.
An activity i is replaced by two events i1 and i2. i1 corresponds to the start of
activity i , and i2 to its completion. Of course, between i1 and i2 there is a time lag
equal to the processing time of activity i . If activity i requires a quantity rik of the
renewable resource k, event i1 will consume a quantity rik of the renewable resource
k and event i2 will produce a quantity rik.

Abdel-Wahab and Kameda (1978) have proved that the existence scheduling
problem with consumption and production of resources becomes polynomial when
there is one resource only and the precedence graph is series-parallel. But it remains
NP-hard even if the consumption and production of resources are equal to one and
the time lags are equal to one (see Abdel-Wahab and Kameda 1978; Sethi 1975).

186 J. Carlier and A. Moukrim

1 4

0 2 5 7 9 10

3 6 8

1

5
1

1

1-3

1

1

-2

1-3

1

-2

12

16

1-3 15

1

-4

Fig. 9.4 An instance of the project scheduling problem with production and consumption of
resources

9.4.2 Example

Figure 9.4 reports an example where there are nine events. The precedence graph
therefore has eleven nodes when we add the two fictitious nodes 0 and 10. It can
be seen that there is only one resource with initial availability 5. There are also
three consumption events without predecessors, and no production events without
predecessors. If we start at first event 1, event 5 can be started and the availability
of the resource becomes equal to 4. It is not sufficient to start both events 2 and 3.
Consequently, event 6 cannot start and it is not possible to build a schedule in this
way. So, events 2 and 3 need to be started before event 1, because event 6 can start
after them. The schedule can be completed in a straightforward manner by starting
after events 1; 5; 4; 7; 9; and 8.

9.4.3 The Earliest Schedule Associated with a Complete Linear
Order

A complete linear order
 D .i1; i2; : : : ; in/ on events is said to be feasible if there
exists a schedule S such that Si1 � Si2 � : : : � Sin . To simplify the presentation,
we assume throughout this section that there is only one resource and that
 D
.1; 2; : : : ; n/. We first introduce the set of precedence arcs E
 D f.1; 2/; : : : ; .n �
1; n/g valued by 0. We will now show that the linear order can be replaced by a set
E of precedence arcs valued by 0.

Let us suppose we want to start event j and that
P

i2f0;1;:::;j g ri < 0. If there is no
production event after j in the linear order, there is no feasible solution, because it
is necessary to start such a production event at the same time as j . We have to force
some production event to start at the same time as j by introducing an arc .j 0; j /

9 Storage Resources 187

with valuation 0. j 0 is the smallest event larger than j such that
P

i2f0;1;:::;j 0g ri � 0.
We therefore replace the linear order by a set of precedence arcs E . The problem
is modeled by the graph G
 D .V;E C E
 C E/. So an earliest schedule can be
computed in O.nm/ if there are n events and m arcs by a modified label correcting
algorithm.

9.4.4 The Earliest Schedule Associated with a Linear Order
on Consumption Events

The drawback of the previous method is that there are a large number of complete
linear orders. But as we will now see, the operation can be restricted to consumption
events only. We denote by
c a complete linear order of consumption events. To
simplify the presentation we assume that
c D .1; 2; : : : ; c/. A first result is that,
provided
c is feasible, there exists an earliest schedule. Moreover this earliest
schedule can be computed efficiently when the valuations of arcs are strictly positive
or null. In the general case, that is to say when valuations can also be negative, we
get only a pseudo-polynomial algorithm.

Let us first suppose that the valuations of arcs are strictly positive. We then
associate a cut Cut.j / with a consumption event j as the partition of nodes in the
graph G
c D .V;E C E
c /: Succ.j / and V n Succ.j / (an event i is in Succ.j / if
there exists a path from j to i in the graph). j does not belong to Succ.j /. We say
thatCut.j / is feasible if:

P
i2V nSucc.j / ri � 0. Of course if there exists an infeasible

cut there is no feasible schedule. We have proved that conversely if all these cuts are
feasible, there exists a feasible schedule. In order for a graph to be feasible, it must
not contain any directed cycle. So there is at least one event without a predecessor.
The strategy for calculating the earliest start time schedule is to start the production
events as soon as possible. A consumption event without a predecessor may be
able to start if the resource availability is sufficient. Otherwise it has to wait for the
starting time of some production event. It can be proved that the method works if no
infeasible cut exists. The complexity of the method is O.n2/.

Let us suppose now that the valuations of arcs are strictly positive or null. Of
course if there are directed cycles with null valuations, all the events in such a
cycle can be replaced by a new event. So it can be assumed that there are no
such cycles. The previous algorithm cannot be applied because production events
which are successors of an event with a valuation 0 can start at the same time as
the consumption event. An algorithm which takes into account this latter property
solves this case in O.n3/.

The remaining case is when there exist negative weight arcs. The earliest
schedule can be computed if it exists in pseudo-polynomial time. It is a question
of adjusting dates. In a first step the previous algorithms are used without taking
into account the negative arcs. Then in a second step negative arcs are taken into
account by modifying the starting dates. Finally we iterate both steps for as long as

188 J. Carlier and A. Moukrim

required. We do not know if the corresponding problem is NP-hard in the weak
sense. Determining the status of this problem is something of a challenge.

9.5 Conclusions

This chapter has been devoted to the storage scheduling problem. We have
considered three models: the project scheduling problem with inventory constraints,
the financing problem, and the project scheduling problem with production and
consumption of resources. The exact methods for the project scheduling problem
with inventory constraints are very powerful but so far they have been applied to
one benchmark of instances only. It is important to improve them and test them on
larger or different benchmarks. One perspective would be to consider the project
scheduling problem with consumption and production of resources by the implicit
enumeration of linear orders of consumption events. Classical lower bounds from
the literature for renewable resources (Carlier et al. 2010) might also be integrated.
Our current work is taking us in this direction. Another active field is that of
the financing model. Recent papers have looked at this with additional renewable
resources, and polynomial algorithms and complexity results have been presented
(see Briskorn et al. 2013; Drotos and Kis 2013). Determining the frontier between
easy and hard problems is also very challenging. We firmly believe that further
research on the storage scheduling problem is needed because of its great potential
for modeling and consequently for use in different applications.

Acknowledgements This work was carried out within the framework of the Labex MS2T, which
was funded by the French Government, through the program Investments for the future managed
by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

References

Abdel-Wahab HM, Kameda T (1978) Scheduling to minimize maximum cumulative costs subject
to series-parallel precedence constraints. Oper Res 26:141–158

Błażewicz, cf. Chap. 1: Błażewicz J, Cellary W, Słowiński R, Wȩglarz J (1986) Scheduling under
resource constraints: deterministic models. Baltzer, Basel

Briskorn D, Jaehn F, Pesch E (2013) Exact algorithms for inventory constrained scheduling on a
single machine. J Sched 16:105–115

Carlier J (1984) Problèmes d’ordonnancements à contraintes de ressources: algorithmes et
complexité. Habilitation thesis, Université de Paris VI, France

Carlier J (1989) Scheduling under financial constraints. In: Słowiński R, Wȩglarz J (eds) Advances
in project scheduling. Elsevier, Amsterdam, pp 187–224

Carlier J, Rinnooy Kan AHG (1982) Financing and scheduling. Oper Res Lett 1:52–55
Carlier J, Moukrim A, Xu H (2009) The project scheduling problem with production and

consumption of resources: a list-scheduling based algorithm. Discrete Appl Math 157:3631–
3642

9 Storage Resources 189

Carlier J, Moukrim A, Xu H (2010) A branch and bound method for the generalized resource
constrained project scheduling problem. In: Proceedings of the 10th international workshop on
project management and scheduling, Poznań, pp 135–140

Drotos M, Kis T (2013) Scheduling of inventory releasing jobs to minimize a regular objective
function of delivery times. J Scheduling 16:337–346

Graham R, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in
deterministic sequencing and scheduling: a survey. Ann Discrete Math 5:287–326

Koné O, Artigues C, Lopez P, Mongeau M (2013) Comparison of mixed integer linear program-
ming models for the resource constrained project scheduling problem with consumption and
production of resources. Flex Serv Manuf J 25:25–47

Laborie P (2003) Algorithms for propagating resource constraints in AI planning and scheduling:
existing approaches and new results. Artif Intell 143:151–188

Le Pape C (1994) Implementation of resource constraints in ILOG Schedule: a library for the
development of constraint-based scheduling systems. Intell Syst Eng 3:55–66

Neumann K, Schwindt C (2003) Project scheduling with inventory constraints. Math Method Oper
Res 56:513–533

Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce
resources: temporal and resource-constrained project scheduling with regular and nonregular
objective functions. Springer, Berlin

Sethi R (1975) Complete register allocation. SIAM J Comput 4:226–248
Słowiński R (1984) Preemptive scheduling of independent jobs on parallel machines subject to

financial constraints. Eur J Oper Res 15:366–373

Chapter 10
Continuous Resources

Grzegorz Waligóra and Jan Wȩglarz

Abstract In this chapter project scheduling under an additional continuous
resource is considered. In particular, we deal with discrete-continuous project
scheduling problems to minimize the project duration. These problems are
characterized by the fact that activities of a project simultaneously require discrete
and continuous resources for their execution. A class of the problems is considered,
where the number of discrete resources is arbitrary, and there is one continuous,
renewable resource, whose total amount available at a time is limited. Activities are
nonpreemptable, and the processing rate of an activity is a continuous, increasing
function of the amount of the continuous resource allotted to the activity at a time.
Theoretical results for the cases of convex and concave processing rate functions of
activities are presented, and the methodology developed for solving the problems
with concave functions is described in detail. Some conclusions and final remarks
are given.

Keywords Continuous resources • Demand division • Feasible sequence •
Makespan minimization • Processing rate • Project scheduling

10.1 Introduction

In the classical project scheduling problems it is assumed that resources can be
assigned to activities in amounts from a given finite set only (i.e., in discrete numbers
of units). Such resources are called discrete (or discretely-divisible). However, in
many practical situations resources can be allotted to activities in arbitrary numbers
from a given interval (i.e., in real numbers). Such resources are called continuous
(or continuously-divisible). Situations of this type occur when, e.g., activities are
processed by parallel processing units driven by a common (electric, pneumatic,
hydraulic) power source, like commonly supplied grinding or mixing machines,
electrolytic tanks, or refueling terminals. Also in computer systems, where multiple

G. Waligóra (�) • J. Wȩglarz
Institute of Computing Science, Poznan University of Technology, Poznan, Poland
e-mail: grzegorz.waligora@cs.put.poznan.pl; jan.weglarz@cs.put.poznan.pl

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_10

191

mailto:grzegorz.waligora@cs.put.poznan.pl
mailto:jan.weglarz@cs.put.poznan.pl

192 G. Waligóra and J. Wȩglarz

processors share a common primary memory, if it is a paged-virtual memory system
and the number of pages goes into hundreds, then primary memory can be treated as
a continuous resource (Wȩglarz 1980). On the other hand, the processors themselves
can be considered as a continuous resource in scalable (SPP) or massively parallel
(MPP) systems when the number of them is huge (hundreds or even thousands).
More recently, so called power- (or energy-) aware scheduling problems have been
considered, where a set of processors is a discrete resource and power (energy) is a
continuous resource (see, e.g., Różycki and Wȩglarz 2014).

In general, two activity processing models appear in the literature. In the first
model—the processing time vs. resource amount, the activity duration is a function
of the amount of a continuous resource allotted to this activity. This model is a
straightforward generalization of the well-known discrete time-resource tradeoff
model. It is implicitly assumed that the resource amount allocated to an activity
does not change during its execution. Within the approach based on this model, the
existence of some polynomially solvable cases of machine scheduling problems for
linear functions have been proved. In the second model—the processing rate vs.
resource amount, the processing rate of an activity is a function of the amount of
a continuous resource allotted to this activity at a time. In this case, the amount of
the continuous resource allotted to an activity may change during its execution. A
fundamental result for this model and a renewable resource can be found in Wȩglarz
(1976), whereas for a doubly constrained resource in Wȩglarz (1981). In both these
papers activities are assumed to be (continuously-)preemptable.

From between the two abovementioned models, the processing rate vs. resource
amount model is more natural in the majority of practical situations, since it reflects
directly the temporary nature of renewable resources. As examples, functions like
rotational speed vs. electric current, or progress rate vs. number of primary memory
pages allotted to a program can be given. This temporary character is vital, as it is
often ignored in practice in the case of some doubly constrained resources, which
can be then treated as nonrenewable ones. Money is a good example of such a
resource where usually only the total consumption is taken into account, whereas
it also has a temporary nature as it may be limited in a given period. Even the
most typical continuous, renewable resource, which is power, is also, in general,
doubly constrained, since its consumption, i.e., energy, is also limited. Moreover,
the processing rate vs. resource amount model enables to perform a deeper analysis
of the properties of optimal schedules, and can even lead to analytical results in
some cases. Because of that, it is sometimes reasonable to treat a discrete resource
as a continuous one in order to use this model. Such an approach may be applied
when there are sufficiently many allotments of the discrete resource for processing
an activity, e.g., in SPP or MPP systems.

The chapter is organized as follows. In Sect. 10.2 we recall the most important
results concerning the problem of allocating the continuous renewable resource
among independent activities to minimize the project duration, in the case when it is
the only limited resource (in the absence of limited discrete resources). In Sect. 10.3
we define the discrete-continuous project scheduling problem in which both discrete
and continuous resources are limited, and the activities are precedence-related.

10 Continuous Resources 193

Section 10.4 reports the basic results for the defined problem obtained for two
classes of the processing rate functions of activities: convex and concave functions.
Since it is shown that the case of convex functions is trivial, we focus on the
case with concave functions in Sect. 10.5, and present the methodology for solving
the problem developed for this class of functions. Section 10.6 contains some
conclusions and final remarks.

10.2 Continuous Resource Allocation

In this section we recall very briefly main theoretical results concerning the
continuous resource allocation. The results relate to independent activities, the
processing rate vs. resource amount activity processing model, and the minimization
of the project duration.

We assume that one continuous, renewable resource is available. The availability
of the resource over time is constant and equal to 1. The resource can be allotted
to activities in (arbitrary) amounts from the interval [0, 1]. The amount (unknown
in advance) of the continuous resource allotted to activity i at time t is denoted by
ui .t/, and

Pn
iD1 ui .t/ D 1 for any t . The resource amount ui .t/ determines the

processing rate of activity i , which is described by the following equation:

Pxi .t/ D dxi .t/

dt
D fi Œui .t/�; xi .0/ D 0; xi .Ci / D Qxi (10.1)

where:

xi .t/ is the state of activity i at time t ;
fi is a continuous, increasing function, such that fi .0/ D 0;
ui .t/ is the continuous resource amount allotted to activity i at time t ;
Ci is the completion time (unknown in advance) of activity i ;
Qxi is the processing demand (final state) of activity i .

State xi .t/ of activity i at time t is an objective measure of work related to the
processing of activity i up to time t . It may denote, e.g., the number of man-hours
already spent on processing activity i , the volume (in cubic meters) of a constructed
building, the number of standard instructions in processing computer program i etc.

The problem is to find an allocation of the continuous resource to activities that
minimizes the project duration. The continuous resource allocation is defined by a
piecewise continuous, nonnegative vector function u.t/ D Œu1.t/; u2.t/; : : : ; un.t/�,
whose values u� D �

u�1 ; u�2 ; : : : ; u�n
�

are (continuous) resource allocations corre-
sponding to C �max—the minimal value of Cmax. Completion of activity i requires
that:

xi .Ci / D
CiZ

0

fi Œui .t/� dt D Qxi (10.2)

194 G. Waligóra and J. Wȩglarz

The following result, proved by Wȩglarz in (1976), is fundamental for the
continuous resource allocation problem:

Theorem 10.1. The minimum project duration C �max as a function of final states
of activities Qx D . Qx1; Qx2; : : : ; Qxn/ can always be given by:

C �max.Qx/ D minfCmax > 0 W Qx=Cmax 2 conv.Y /g

where conv.Y / is the convex hull of Y , and set Y is defined as:

Y D fy W yi D fi .ui / ; ui � 0; i D 1; 2; : : : ; n; and
nX

iD1
ui � 1g

C �max.Qx/ is a convex function.

Two immediate corollaries follow (Wȩglarz 1976):

Corollary 10.1. For convex processing rate functions of activities the project
duration is minimized by sequential processing of all activities, each of them using
the total available amount of the continuous resource.

Corollary 10.2. For concave functions fi , i D 1; 2; : : :; n, the project duration is
minimized by fully parallel processing of all activities using the following resource
amounts:

u�i D f �1i

� Qxi=C �max
�

.i D 1; 2; : : : ; n/ (10.3)

where C �max is the unique positive root of the equation:

nX

iD1
f �1i . Qxi =Cmax/ D 1 (10.4)

Let us comment briefly on both the Corollaries. Firstly, Corollary 10.1 holds, in
fact, for all functions fulfilling the conditionfi � biui ; bi D fi .1/ ; i D 1; 2; : : : ; n,
i.e., functions not greater than a linear function. In the sequel, the results presented
for convex functions hold for functions fulfilling the above condition.

Secondly, Corollary 10.2 identifies very important cases in which an optimal
resource allocation can be found in an efficient way. Generally speaking, these
are the cases when Eq. (10.4) can be solved analytically. From among them the
ones in which Eq. (10.4) is an algebraic equation of an order � 4 are of special
importance. This is, for example, the case of power processing rate functions of the
form: fi .ui / D biu

1=˛i
i ; ˛i 2 f1; 2; 3; 4g ; i D 1; 2; : : : ; n. Using these functions

we can model activity processing rates in a variety of practical problems, e.g., those
arising in multiprocessor scheduling with memory allocation (see Wȩglarz 1980).

It should also be noticed that in both the above Corollaries preemptability of
activities is of no importance. In Corollary 10.1 activities are processed sequentially,

10 Continuous Resources 195

each of them using the total available amount of the continuous resource. In
Corollary 10.2 activities are processed using constant resource amounts [given by
Eq. (10.3)] from their starts to their completions. As a result, allowing activity
preemptions does not affect optimal schedules. In the remainder of the chapter we
deal with nonpreemptable activities, however, preemptable ones can be considered
as well, especially in the context of computer systems.

In the next sections we will show how the results recalled above can be applied to
the case when activities are nonpreemptable and precedence-related, and additional
discrete, renewable resources occur.

10.3 Discrete-Continuous Project Scheduling

In Sect. 10.2 properties of optimal schedules have been given, proved for the case
where a single continuous resource is the only limited resource, and the independent
activities may be performed in parallel. However, also discrete limited resources can
appear, as well as precedence constraints between activities, which can restrict the
execution order of the activities. Discrete-continuous project scheduling problems
arise when activities of a project simultaneously require discrete and continuous
resources for their execution.

The discrete-continuous resource-constrained project scheduling problem
(DCRCPSP) is defined as follows (Waligóra 2011). Given is a project consisting
of n precedence-related, nonpreemptable activities, which require resources of
two types: discrete and continuous ones. We assume that K discrete resources are
available and rik, i D 1; 2; : : :; n; k D 1; 2; : : :; K , is the (fixed) discrete resource
request of activity i for resource k. The total number of units of discrete resource
k available in each time period is Rk, k D 1; 2; : : :; K . A project is represented
by an activity-on-node (AoN) directed, acyclic, and topologically ordered graph
G D .V;E/, where the set of nodes V corresponds to the set of activities, and
the set of arcs E represents precedence constraints. The activities are subject to
finish-to-start precedence constraints of the type .i; j / with zero minimum time
lags. The precedence constraints of activity i with other activities are defined by
two sets: set P red.i/ of direct predecessors of activity i , and set Succ.i/ of direct
successors of activity i . One continuous resource is available, and the processing
rate of each activity at a time is defined by the amount of the continuous resource
allotted to the activity, according to Eq. (10.1). Thus, each activity of the project is
characterized by its processing demand, processing rate function, discrete resource
requests, and precedence constraints with other activities. It is assumed that all
activities and resources are available from the start of the project. The problem is
to find a precedence- and discrete resource-feasible schedule and, simultaneously,
a continuous resource allocation, that minimize the project duration.

Using the project scheduling classification scheme presented in Brucker et al.
(1999), the notation of the considered problem is PScjprecjCmax.

All the parameters of the DCRCPSP are summarized in Table 10.1.

196 G. Waligóra and J. Wȩglarz

Table 10.1 Parameters of the DCRCPSP

Symbol Definition

n Number of activities

G D .V; E/ Directed graph with node set V and arc set E

.i; j / 2 E Precedence constraint between activities i and j

Pred.i/ Set of immediate predecessors of activity i

Succ.i/ Set of immediate successors of activity i

K Number of discrete resources

Rk Number of available units of discrete resource k

rik Request for discrete resource k by activity i

fi Processing rate function of activity i

Qxi Processing demand of activity i

Si Starting time of activity i

Ci Completion time of activity i

pi D Ci � Si Duration of activity i

10.4 Basic Results for DCRCPSP

In this section we recall after Waligóra (2014) the most important theoretical results
for the DCRCPSP. We will show how the results presented in Sect. 10.2 can be
applied to the problem defined in Sect. 10.3 for the considered classes of processing
rate functions of activities: convex (Sect. 10.4.1) and concave (Sect. 10.4.2) func-
tions.

10.4.1 Convex Processing Rate Functions

In this case the following lemma was proved, which follows directly from Corol-
lary 10.1.

Lemma 10.1. In the DCRCPSP with convex processing rate functions, the project
duration is minimized by a sequential configuration of activities, in which activities
are processed one after another in a precedence-feasible order, each of them using
the total available amount of the continuous resource.

Thus, for convex processing rate functions the solution of the DCRCPSP is
trivial, since any precedence-feasible sequence of activities leads to an optimal
schedule. Obviously, if the condition rik � Rk; i D 1; 2; : : :; nI k D 1; 2; : : :; K ,
holds, then the discrete resource constraints are not violated because only one
activity is performed at a time.

10 Continuous Resources 197

10.4.2 Concave Processing Rate Functions

In this case another lemma holds, following directly from Corollary 10.2:

Lemma 10.2. In the DCRCPSP with concave processing rate functions, the project
duration is minimized by a parallel precedence- and discrete resource-feasible
configuration of activities, where the activities are processed using the resource
amounts given by Eq. (10.3), and C �max is the unique positive root of Eq. (10.4). The
parallel configuration means that as many activities as possible are processed in
parallel, respecting precedence and discrete resource constraints.

Thus, for concave functions the problem becomes more complicated since many
different parallel schedules can be constructed. In order to solve the DCRCPSP for
this class of functions, a special methodology has been developed which is described
in Sect. 10.5.

10.5 Methodology Based on Feasible Sequences

The methodology for the DCRCPSP with concave processing rate functions of
activities, based on Lemma 10.2, uses the idea of a feasible sequence introduced
in Józefowska and Wȩglarz (1998) for discrete-continuous machine scheduling.
Observe that a feasible schedule (i.e., a solution of a discrete-continuous project
scheduling problem) can be divided into � � n intervals defined by the completion
times of the consecutive activities. Let Z� denote the combination of activities pro-
cessed in parallel in the �-th interval. Thus, a feasible sequence � of combinations
Z�;� D 1; 2; : : :; �, is associated with each feasible schedule. The feasibility of
such a sequence requires that:

• Each activity appears in at least one combination, i.e.:

^

i2f1;:::;ng

_

�2f1;:::;�g
i 2 Z�

• Nonpreemptability of each activity is guaranteed, i.e.:

^

i2f1;:::;ng

^

.�;�/Wi2Z�;i2Z�;���
.� D �/ _ �i 2 Z
;
 D �C 1; : : : ; � � 1

�

which means that each activity appears in exactly one or in successive combina-
tions in �

198 G. Waligóra and J. Wȩglarz

3

2

1

6

5

4 7 9

8

Fig. 10.1 An exemplary project

• Precedence constraints between activities are satisfied, i.e.:

^

.i;j /2E

�
i 2 Z� ^ j 2 Z�

�) .� > �/

• The number of units of each discrete resource k; k D 1; 2; : : :; K , assigned to all
activities in combinationZ�;� D 1; 2; : : :; �, does not exceed Rk , i.e.:

^

k2f1;:::;Kg

^

�2f1;:::;�g

X

i2Z�
rik � Rk

Example 10.1. Consider a nine-activity project .n D 9/ presented in Fig. 10.1.
Assume that there is one discrete resource .K D 1/ available in four units .R1 D 4/.
The resource requests of activities are defined by vector r1 D Œ3; 2; 1; 1; 3; 1; 4; 2; 1�.

There are many feasible sequences for this exemplary project. One of them is,
e.g.:

� D f1g; f2; 3; 4g; f3; 4g; f3; 5g; f5; 6g; f6; 8g; f7g; f9g

The above form of a feasible sequence means that activity 1 is processed alone
in the first interval, and this interval ends with the completion of this activity.
The corresponding combination is Z1 D f1g. Then activities 2, 3, and 4 are
processed in parallel, and the completion of activity 2 ends the second interval.
The corresponding combination is Z2 D f2; 3; 4g. Next, only activities 3 and 4
are processed in the third interval, since the resource request of activity 5 does
not allow it to be executed in this interval (although all its direct predecessors are
finished). Thus, the corresponding third combination is Z3 D f3; 4g. All the next
combinations also fulfill the precedence and discrete resource constraints. The last
interval ends with the completion of activity 9, and this is the end of the schedule.
The resulting last combination is Z8 D f9g. A schedule corresponding to the
considered feasible sequence� is shown in Fig. 10.2.

10 Continuous Resources 199

4

3 6

1 2 5 8 7 9

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Fig. 10.2 Schedule corresponding to feasible sequence �

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Fig. 10.3 Demand division for feasible sequence �

It is important to stress that at this moment the actual durations of activities are
still unknown, since the continuous resource has not yet been allocated. However,
the form of a feasible sequence gives the information which activities are processed
in parallel in consecutive intervals. The continuous resource will be allocated on a
basis on that information.

Next, for a given feasible sequence�, the processing demand Qxi of each activity
i , i D 1; 2; : : :; n, can be divided into parts Qxi� � 0 (unknown in advance)
corresponding to particular time intervals (combinations), i.e., Qxi� is a part of
activity i processed in combination Z�. Such a division of processing demands of
activities among successive intervals (combinations) for a given feasible sequence is
called a demand division. The number of such divisions is, in general, infinite. The
demand division for the feasible sequence� considered in the example is shown in
Fig. 10.3.

Obviously, the sum of all parts of the processing demand of an activity must
be equal to its total processing demand, i.e., Qx11 D Qx1; Qx22 D Qx2; Qx32 C Qx33 C
Qx34 D Qx3 etc. Then, an optimal division of processing demands of activities Qxi ,
i D 1; 2; : : : ; n, among combinations in � can be found, i.e., a division that leads
to a minimum-length schedule from among all feasible schedules generated by �.
To this end, a nonlinear mathematical programming problem can be formulated
in which the sum of the minimum-length intervals generated by consecutive
combinations in�, as functions of the vector Qx� D f Qxi�gi2Z� , is minimized subject
to the constraints that each activity has to be completed.

Let C �max.Qx�/ be the minimum length of the part of the schedule generated by
Z� 2 �, and let �i be the set of all indices ofZ�’s such that i 2 Z�. The following
mathematical programming problem (Problem P) finds an optimal demand division
(and, in consequence, an optimal continuous resource allocation) for a given feasible
sequence:

200 G. Waligóra and J. Wȩglarz

Problem P

Min. Cmax D
�X

�D1
C �max

�Qx�
�

(10.5)

s.t.
X

�2�i
Qxi� D Qxi .i D 1; 2; : : : ; n/ (10.6)

Qxi� � 0 .i D 1; 2; : : : ; nI� 2 i/ (10.7)

where C �max
�Qx�

�
is the unique positive root of the equation:

X

i2Z�
f �1i

� Qxi�=C �max.Qx�/
� D 1 (10.8)

Constraints (10.6) correspond to the condition of fulfilling the processing
demands of all activities, whereas constraints (10.7) ensure that the Qxi�’s are
nonnegative. As a sum of convex functions (see Theorem 10.1), the objective
function (10.5) is also a convex function. Thus, the problem is to minimize a convex
function subject to linear constraints.

After finding an optimal division Qxi�; i D 1; 2; : : :; n; � 2 �i of Qxi ’s,
the corresponding optimal continuous resource allocation for combination Z� is
given as:

u�i� D f �1i

� Qxi�=C �max
� Qx�

�� �
i 2 Z�

�
(10.9)

Thus, the solution of Problem P allows to find an optimal continuous resource
allocation for a given feasible sequence. Consequently, the DCRCPSP decomposes
into two interrelated subproblems: (1) to construct a precedence- and resource-
feasible sequence of activities with respect to discrete resources only, i.e., a
feasible sequence as defined earlier, and (2) to allocate the continuous resource
optimally among activities in the feasible sequence. It should be stressed that this
decomposition of the DCRCPSP is of huge importance. Firstly, notice that an
optimal solution can be found by solving Problem P for all feasible sequences,
and choosing the one with the minimum project duration. This full enumeration
approach can be applied for small problem sizes, and guarantees finding an optimal
schedule. In general, the number of all feasible sequences grows exponentially with
the number of activities, and therefore, searching for an optimal feasible sequence
may be performed by various search algorithms, e.g., local search metaheuristics.
Secondly, the decomposition into the discrete and the continuous part allows to
incorporate the knowledge on the properties of solutions to both the subproblems,
and, in that way, identify cases which are easier to solve. An alternative approach
could be a formulation of the DCRCPSP as a mixed integer nonlinear programming
(MINLP) problem, as some problem variables are discrete and some are continuous.
However, as it is known, MINLP problems are typically very difficult to solve

10 Continuous Resources 201

(see, e.g., Floudas 1995), and therefore this approach has not been taken into
consideration so far.

10.6 Conclusions

In this chapter the discrete-continuous resource-constrained project scheduling
problem (DCRCPSP) has been considered. The problem is an extension of the
classical discrete resource-constrained project scheduling problem (RCPSP), well-
known from the literature. The extension consists in the presence of an additional
continuous, renewable resource whose total amount available at a time is limited.
As it has been discussed, continuous resources can appear very often in real
life situations. The methodology for solving the DCRCPSP has been presented,
based on the results obtained for the continuous resource allocation problem. The
methodology critically depends on the form of the processing rate functions of
activities. It has been shown that for convex functions the problem becomes easy,
since sequential execution of activities, each one using the total available amount
of the continuous resource, leads to optimal schedules. On the other hand, for
concave processing rate functions it is desirable to perform activities in parallel.
In this case the special methodology based on feasible sequences is required.
In the first step a feasible sequence of activity sets is constructed, and in the
second step an optimal continuous resource allocation is calculated by solving
a convex mathematical programming problem. Unfortunately, in order to find an
optimal schedule all feasible sequences have to be examined in general, and, in
consequence, this approach becomes computationally inefficient for larger problem
sizes. Moreover, in such cases, when the number of variables in the problem
grows rapidly, solving the mathematical programming problem in the second step
using specialized nonlinear solvers may take a long time. Therefore some heuristic
approaches to allocating the continuous resource, based on procedures presented
in Józefowska et al. (2002) and Waligóra (2009) for discrete-continuous machine
scheduling, have already been proposed in Waligóra (2011).

In Józefowska et al. (2000) and Waligóra (2011) another heuristic approach has
been proposed, where continuous resource allotments are discretized. As a result,
the classical discrete multi-mode resource-constrained project scheduling problem
(MRCPSP) (see Wȩglarz et al. 2011 and Chap. 21 of this handbook for surveys)
is obtained in a version without nonrenewable resources. The number of modes
for the activities depends on the discretization level, i.e., the number of discretized
allotments. It should be stressed that in this approach the processing rate functions
of activities need not be concave, but may be arbitrary continuous, increasing func-
tions. The resulting MRCPSP can then be solved using one of the numerous existing
methods known from the literature, e.g., efficient metaheuristics. This will generate
an approximate schedule for the original DCRCPSP, however the calculations will
be much less time consuming with no need for solving the nonlinear mathematical
programming problem. Thus, the importance of the discretization idea follows from

202 G. Waligóra and J. Wȩglarz

the fact that it allows to convert a discrete-continuous project scheduling problem
into a purely discrete one. On the other hand, as mentioned earlier, it can be
sometimes useful to continuize a discrete resource, in order to take advantage of
the results proved for the processing rate vs. resource amount model. Discretization
and continuization are opposite approaches, and the decision on using them depends
on the problem knowledge and, particularly, processing rate functions.

Acknowledgements This chapter is a part of the project no. 2013/11/B/ST6/00970, funded by the
Polish National Science Centre.

References

Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project
scheduling: notation, classification, models and methods. Eur J Oper Res 112(1):3–41

Floudas CA (1995) Nonlinear and mixed-integer optimization: fundamentals and applications.
Oxford University Press, Oxford

Józefowska J, Wȩglarz J (1998) On a methodology for discrete-continuous scheduling.
Eur J Oper Res 107(2):338–353

Józefowska J, Mika M, Różycki R, Waligóra G, Wȩglarz J (2000) Solving the discrete-continuous
project scheduling problem via its discretization. Math Method Oper Res 52(3):489–499

Józefowska J, Mika M, Różycki R, Waligóra G, Wȩglarz J (2002) A heuristic approach to
allocating the continuous resource in discrete-continuous scheduling problems to minimize the
makespan. J Sched 5(6):487–499

Różycki R, Wȩglarz J (2014) Power-aware scheduling of preemptable jobs on identical parallel
processors to minimize makespan. Ann Oper Res 213(1):235–252

Waligóra G (2009) Tabu search for discrete-continuous scheduling problems with heuristic
continuous resource allocation. Eur J Oper Res 193(3):849–856

Waligóra G (2011) Heuristic approaches to discrete-continuous project scheduling problems to
minimize the makespan. Comput Optim Appl 48(2):399–421

Waligóra G (2014) Discrete-continuous project scheduling with discounted cash inflows and
various payment models – a review of recent results. Ann Oper Res 213(1):319–340

Wȩglarz J (1976) Time-optimal control of resource allocation in a complex of operations
framework. IEEE T Syst Man Cyb 6(11):783–788

Wȩglarz J (1980) Multiprocessor scheduling with memory allocation – a deterministic approach.
IEEE T Comput 29(8):703–709

Wȩglarz J (1981) Project scheduling with continuously-divisible, doubly constrained resources.
Manag Sci 27(9):1040–1052

Wȩglarz J, Józefowska J, Mika M, Waligóra G (2011) Project scheduling with finite or infinite
number of activity processing modes – a survey. Eur J Oper Res 208(3):177–205

Chapter 11
Partially Renewable Resources

Ramon Alvarez-Valdes, Jose Manuel Tamarit, and Fulgencia Villa

Abstract In recent years, in the field of project scheduling the concept of partially
renewable resources has been introduced. Theoretically, it is a generalization of both
renewable and non-renewable resources. From an applied point of view, partially
renewable resources allow us to model a large variety of situations that do not fit
into classical models, but can be found in real problems in timetabling and labor
scheduling. In this chapter we define this type of resource, describe an integer linear
formulation and present some examples of conditions appearing in real problems
which can be modeled using partially renewable resources. Then we introduce some
preprocessing procedures to identify infeasible instances and to reduce the size
of the feasible ones. Some exact, heuristic, and metaheuristic algorithms are also
described and tested.

Keywords GRASP • Makespan minimization • Partially renewable resources •
Project scheduling • Scatter search

11.1 Introduction

The classical RCPSP basically includes two types of resources: renewable
resources, in which the availability of each resource is renewed at each period
of the planning horizon, and non-renewable resources, whose availability are given
at the beginning of the project and which are consumed throughout the processing
of the activities requiring them. However, in the last decade new types of resources
have been proposed to allow the model to include new types of constraints which
appear in industrial problems: allocatable resources (Schwindt and Trautmann

R. Alvarez-Valdes (�) • J.M. Tamarit
Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
e-mail: ramon.alvarez@uv.es; jose.tamarit@uv.es

F. Villa
Department of Applied Statistics and Operations Research, and Quality, Polytechnic University of
Valencia, Valencia, Spain
e-mail: mfuvilju@eio.upv.es

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_11

203

mailto:ramon.alvarez@uv.es
mailto:jose.tamarit@uv.es
mailto:mfuvilju@eio.upv.es

204 R. Alvarez-Valdes et al.

2003, Mellentien et al. 2004), storage or cumulative resources (Neumann et al.
2002, 2005, Chap. 9 of this handbook), spatial resources (de Boer 1998), recycling
resources (Shewchuk and Chang 1995), time-varying resources (Chap. 8 of this
handbook) or continuous resources (Chap. 10 of this handbook).

Another new type of resource is partially renewable resources. The availability
of this resource is associated to a subset of periods of the planning horizon and
the activities requiring the resource only consume it if they are processed in these
periods. Although these resources may seem strange at first glance, they can be
a powerful tool for solving project scheduling problems. On the one hand, from
a theoretical point of view, they include renewable and non-renewable resources
as particular cases. In fact, a renewable resource can be considered as a partially
renewable resource with an associated subset of periods consisting of exactly
one period. Non-renewable resources are partially renewable resources where the
associated subset is the whole planning horizon. On the other hand, partially
renewable resources make it possible to model complicated labor regulations and
timetabling constraints, therefore allowing us to approach many labor scheduling
and timetabling problems as special cases of project scheduling problems. The
RCPSP with partially renewable resources is denoted by RCPSP/� or in the three-
field classification by PSpjprecjCmax.

Partially renewable resources were first introduced by Böttcher et al. (1999),
who proposed an integer linear formulation and developed exact and heuristic
algorithms. Schirmer (2000) studied this new type of resource thoroughly in his
book on project scheduling problems. He presented many examples of special
conditions which can be suitably modeled using partially renewable resources
and made a theoretical study of the problem. He also proposed several families
of heuristic algorithms for solving the problem. More recently, Alvarez-Valdes
et al. (2006, 2008) have developed some preprocessing procedures, as well as
GRASP/Path Relinking and Scatter Search algorithms, which efficiently solve the
test instances published in previous studies.

In this chapter we introduce the concept of partially renewable resources and
review all the existing algorithms. In Sect. 11.2 we define first this type of resource
and describe an integer linear formulation, adapted from Böttcher et al. (1999). Then
we present and discuss some examples of conditions appearing in real problems
which can be modeled using partially renewable resources, and briefly review the
first proposed algorithms. Section 11.3 contains the preprocessing procedures and
Sects. 11.4 and 11.5 describe the GRASP/PR and the Scatter Search algorithms in
more detail. Finally, Sect. 11.6 contains the computational results and Sect. 11.7 the
conclusions.

11.2 Solving Problems with Partially Renewable Resources

The RCPSP/� can be defined as follows: Let n be the number of activities to
schedule. The project consists of nC 2 activities, numbered from 0 to nC 1, where
activities 0 and nC1 represent the beginning and the end of the project, respectively.

11 Partially Renewable Resources 205

Let Pred.i/ be the set of immediate predecessors of activity i . Each activity i has
a processing time of pi and once started cannot be interrupted. Let Rp be the set
of partially renewable resources. Each resource k 2 Rp has a total availability
Rk and an associated set of periods ˘k . An activity i requiring resource k will
consume rik units of it at each period t 2 ˘k in which it is processed. Finally,
let T be the planning horizon in which all the activities must be processed. For
each activity i we obtain its earliest and latest start times, ESi , LSi , by critical path
analysis. We denote byWi D fESi ; : : : :;LSi g, the set of possible starting times, and
Qit D ft � pi C 1; : : : ; tg.

11.2.1 Formulation of the Problem

The RCPSP/� consists of sequencing the activities so that the precedence and
resource constraints are satisfied and the makespan is minimized.

If we define the variables:

xit D
(
1 if activity i starts at time t

0 otherwise:

the problem can be formulated as follows:

Min.
X

t2WnC1

t xnC1;t (11.1)

s. t.
X

t2Wi
xit D 1 .i D 0; : : : ; nC 1/ (11.2)

X

t2Wj
.t C pj /xjt �

X

t2Wi
t xit .i D 0; : : : ; nC 1; j 2 Pred.i//

(11.3)

nX

iD1
rik

X

t2˘k

X

q2Qit
T
Wi

xiq � Rk .k 2 Rp/ (11.4)

xit 2 f0; 1g .i D 0; : : : ; nC 1; t 2 Wi/ (11.5)

The objective function (11.1) to be minimized is the starting time of the last
activity and hence the makespan of the project. According to constraints (11.2),
each activity must start once. Constraints (11.3) are the precedence constraints and
constraints (11.4) are the resource constraints. Note that in this problem there is only
one global constraint for each resource k 2 Rp. An activity i consumes rik units
of a resource k for each period in which it is processed within ˘k . Another special
characteristic of this problem is that all the activities must finish within the planning

206 R. Alvarez-Valdes et al.

horizon T in which sets ˘k are defined. The starting times of each activity i form
a finite set Wi and therefore the existence of feasible solutions is not guaranteed.
In fact, Schirmer (2000) has shown that the feasibility variant of the RCPSP/� is
NP-complete in the strong sense.

The above formulation is called the normalized formulation by Böttcher et al.
(1999) and Schirmer (2000). Both consider an alternative, more general, formulation
in which several subsets of periods are associated with each resource k 2 Rp .
˘k D fPk1; : : : ; Pk�g is a set of subsets of periods where each subset of periods
Pk� 2 ˘k has a resource capacityRk�. This general formulation can be transformed
into the above formulation by a “normalization” procedure in which a new resource
k0 is defined for each subset of periods Pk�. Therefore, the normalized formulation
can be used without loss of generalization.

11.2.2 Modeling Capabilities

In this section we describe several situations in which partially renewable resources
can be used to model conditions which classical renewable or non-renewable cannot
accommodate.

11.2.2.1 Lunch Break Assignments

In this example, taken from Böttcher et al. (1999), we have five workers in a 09:00
to 18:00 shift with a lunch break of 1 h. If the lunch period is fixed to period 13 for
all workers, the availability profile would be that depicted in Fig. 11.1. We would
get more flexibility if each worker could have the break either in period 13 or 14.
However, if we use renewable resources, the number of workers taking the break at
each period must have been decided beforehand. An example appears in Fig. 11.2,
in which three workers take the break at period 13 and two at period 14.

The situation can be more appropriately modeled by using a partially renewable
resource k with˘k D f13; 14g and total availability ofRk D 5 units. Each task con-
sumes rik D 1. Therefore, the total number of working hours assigned to these peri-
ods cannot exceed five, leaving time for the five workers to have their lunch break.

0 5 10 15 20 24

1

3

5

Staff

Fig. 11.1 Fixed break at period 13

11 Partially Renewable Resources 207

0 5 10 15 20 24

1

3

5

Staff

Fig. 11.2 Fixed distribution of breaks between periods 13 and 14

A B C

6 7 13 14 20 21

Fig. 11.3 Weekend days-off assignment

11.2.2.2 Weekend Days-Off Assignments

Let us consider a contractual condition like that of working at most two weekend
days out of every three consecutive weeks (Alvarez-Valdes et al. 2008). This
condition cannot be modeled as a renewable resource because this type of resource
considers each period separately. It cannot be modeled as a non-renewable resource
because this type of resource considers the whole planning horizon. We model this
condition for each worker as a partially renewable resource k with a set of periods
˘k D f6; 7; 13; 14; 20; 21g for the first three weekends and a total availability of
Rk D 2 units. Each task i assigned to this worker consumes rik D 1 unit of this
resource for each weekend day in which it is processed. In Fig. 11.3 we see three
activities A, B, and C scheduled within the timescale depicted above. Activity A is
in process at periods 6 and 7 and then it consumes two units of the resource. Activity
B does not consume the resource and activity C consumes one unit in period 20. If
these three activities had to be done by the same worker, the solution in the figure
would not be possible because it would exceed the resource availability.

11.2.2.3 Special Conditions in School Timetabling Problems

When building their timetables, some schools include conditions such as that each
teacher must have classes at least one afternoon per week and at most two afternoons
per week. Let us assume for simplicity that the morning sessions are numbered 1, 3,
5, 7, 9 and the afternoon sessions are numbered 2, 4, 6, 8, 10. For each teacher we
define two partially renewable resources. In both cases,˘1 D ˘2 D f2; 4; 6; 8; 10g.
In order to ensure that the teacher attends at least one afternoon session, R1 D �1
and for each of the teacher’s classes, ri1 D �1. The second condition is ensured
defining R2 D 2, ri2 D 1.

208 R. Alvarez-Valdes et al.

A complete study of logical conditions that can be modeled by using partially
renewable resources and then applied to different real situations can be found in
Schirmer (2000).

11.2.3 A Branch & Bound Algorithm

Böttcher et al. (1999) proposed an exact algorithm for the RCPSP/� that is based
upon the branch and bound method introduced by Talbot and Patterson (1978) for
the classical RCPSP, because this was one of the few approaches allowing time-
varying capacity profiles to be accommodated. The basic scheme of the algorithm
is straightforward. Starting with an empty schedule, partial schedules are feasibly
augmented by activities, one at a time. The enumeration tree is built with a depth-
first strategy, where the depth of a branch is the number of activities scheduled.
Backtracking occurs when an activity cannot be scheduled within its feasible
interval. In order to reduce the computational effort, Böttcher et al. (1999) developed
several resource-based feasibility bounds tailored to the specifics of the problem.

The authors employed a sample of 1,000 test instances generated from a
modification of ProGen (Kolisch et al. 1995). They generated four sets with 250
instances each one and with 15, 20, 30, and 60 activities, respectively. The number
of resources for each set was 30. Applying the branch and bound algorithm in
a truncated version (TBB), using a CPU time limit of 5 min per instance on a
C-language implementation on an IBM RS/6000 workstation at 66 MHz, produced
the results shown in Table 11.1.

The study by Böttcher et al. (1999) also included several priority rules designed
to obtain good quality solutions in short computing times. First, they tested some
classical rules: MINEFT (minimum earliest finishing time), MINLFT (minimum
latest finishing time), MINSLK (minimum slack), MTSUCC (most total suc-
cessors). Defining the maximum resource usage of each activity i as SRUi DP

k2Rp rik, they included the priority rules MAXSRU and MINSRU, considering
the maximum and minimum of the activities resource consumptions. In order
to obtain a more accurate calculation of resource usage they defined SCikt, the
consumption of resource k by activity i when started at period t , MCikt D
minfSCik� jt � � � LSi g, the minimum resource consumption of resource k
by activity i when started not earlier than t and not later than LSi , and MCIikt

Table 11.1 Effectiveness of
TBB algorithm proposed by
Böttcher et al. (1999)

Solved to Solved to

Activities optimality feasibility Unsolved

15 240 10 –

20 229 21 –

30 217 14 19

60 229 11 10

11 Partially Renewable Resources 209

which is the sum of MCikt of all the successors of activity i considering their
corresponding time intervals. These elements were used to calculate TRUit DP

k2Rp.SCikt C MCIikt/ and RRUit D P
k2Rp WRk>0.SCik C MCIikt/=Rk which

are lower bounds on the absolute and relative resource usage, producing rules
MAXTRU, MINTRU, MAXRRU, MINRRU. These rules are static because they
do no take into account the resources already consumed in a partial solution.
If R0k if the left-over capacity of resource k with respect to a partial schedule,
DRRUjt D P

k2Rp WR0k>0.SCikt C MCIikt/=R
0
k is the dynamic relative resource

usage and TRCjt D P
k2Rp.R0k � SCikt C MCIikt/=R

0
k an upper bound of the

total remaining capacity. These values were used to define rules MAXDRRU,
MINDRRU, MAXTRC, MINTRC. Böttcher et al. (1999) concluded that classical
rules worked well for easy instances, while the new dynamic rules did a better job
on hard instances. In summary, rule MINLFT seemed to be the most promising one.

11.2.4 Schirmer’s Algorithms

In his book in 2000, Schirmer made a complete study of partially renewable
resources, their modeling capabilities and theoretical properties. He also developed
a series of progressively more complex algorithms. First, he collected known
priority rules and added some new ones. The list appears in Table 11.2. In order
to test them, Schirmer used Progen to generate new instances, but previously he
analyzed the parameter combinations that generally produce infeasible solutions.
So he selected the most promising parameter combinations to generate the new set
of test instances. For each of the 96 promising clusters, ten instances were generated
of sizes 10, 20, 30, and 40 with 30 resources.

In Table 11.2, RKks is the remaining availability or resource k at stage s; RDikt is
the relevant demand (consumption) of resource k if activity i starts at time t ; MDEikt

is the minimum relevant demand on resource k of all the successors of activity i
when it starts at time t ; and Ds is the set of possible assignments .i; t/ at stage s.
The 12 rules involving resources can use all the resources or only those which are
potentially scarce. Therefore, a total of 32 rules were defined.

In a second phase he introduced randomization, using the Modified Regret-
Based Biased Random Sampling, in which the probability assigned to each activity
is calculated using the regret, that is the worst possible consequences that might
result from selecting another candidate. In a third phase, Schirmer developed a local
search, based on local and global left-shifts of the activities. Finally, he proposed a
Tabu Search algorithm. He compared the results with those obtained with the TBB
algorithm by Böttcher et al. (1999) and concluded that good construction methods
solved significantly more instances optimally than tabu search, so these perform
better on easier instances. Yet, on very hard instances, tabu search outperformed all
construction methods. Indeed, the multi-start version of the tabu search method was
the only one that managed to solve all the instances attempted, except for five that
he conjectured to be infeasible.

210 R. Alvarez-Valdes et al.

Table 11.2 Priority rules proposed by Schirmer (2000)

Static vs. Local vs.

Measure Definition dynamic global

MIN EFi ESi C pi S L

MIN ESi ESi S G

MIN LFi LSi C pi S L

MIN LSi LSi S G

MAX MTSi jfi 0ji < i 0gj S L

MIN SLK i LSi � EFi D L

MIN SPT i pi S L

MIN SSLK i LSi � ESi S L

MAX DRCit
P

k.RKks � RDikt/ D L

MAX DRC=Eit
P

k.RKks � RDikt �MDEikt/ D G

MIN DRDit
P

k RDikt=maxfRDi 0kt0 j.i 0; t 0/ 2 Ds D G

MIN DRD=Eit
P

k.RDikt CMDEikt/=maxfRDi 0kt0 D G

CMDEi 0kt0 j.i 0; t 0/ 2 Ds/

MIN DRSit
P

k RDikt=RKks D L

MIN DRS=Eit
P

k.RDikt CMDEikt/=RKks D G

MIN RRDit
P

k RDikt=.rikpi / S L

MIN RRD=Eit
P

k RDikt=.rikpi /CPi<j MDEjkESTj =.rjkpk/ D G

MIN TRDit
P

k RDikt S L

MIN TRD=Eit
P

k.RDikt CMDEikt/ S G

MIN TRSit
P

k RDikt=Rk S L

MIN TRS=Eit
P

k.RDikt CMDEikt/=Rk S G

11.3 Preprocessing

Preprocessing has two objectives. First, helping to decide whether a given instance
is infeasible or if it has feasible solutions. If the latter is the case, a second objective
is to reduce the number of possible starting times of the activities and the number of
resources. If these two objectives are satisfactorily achieved, the solution procedures
will not waste time trying to solve infeasible problems and will concentrate their
efforts on the relevant elements of the problem.

The preprocessing we have developed includes several procedures:

1. Identifying trivial problems
If the solution in which the starting time of each activity i is set to ESi is resource-
feasible, then it is optimal.

2. Reducing the planning horizon T
For each instance, we are given a planning horizon .0; T /. This value plays an
important role in the time-indexed problem formulation. In fact, late starting
times of the activities, LSi are calculated starting from T in a backward recursion.
Therefore, the lower the value T , the fewer variables the problem will have. In

11 Partially Renewable Resources 211

order to reduce T , we try to build a feasible solution for the given instance, using
a GRASP algorithm, which will be described later. The GRASP iterative process
stops as soon as a feasible solution is obtained or after 200 iterations. The new
value T is updated to the makespan of the feasible solution obtained. Otherwise,
T is unchanged.
If the makespan of the solution equals the length of the critical path in the
precedence graph, the solution is optimal and the process stops and returns the
solution.

3. Eliminating idle resources
Each resource k 2 Rp is consumed only if the activities requiring it are
processed in periods t 2 ˘k . Each activity can only be processed in a finite
interval. It is therefore possible that no activity requiring the resource can be
processed in any period of ˘k . In this case, the resource is idle and can be
eliminated. More precisely, if we denote the points in time where activity i can be
in progress byWi D fESi ; : : : ;LSiCpi�1g , and8i j rik > 0 W ˘k

T
Wi D ;;

the resource k 2 Rp is idle and can be eliminated.
4. Eliminating non-scarce resources

Schirmer (2000) distinguishes between scarce and non-scarce resources. He
considers a resource k 2 Rp as scarce if

Pn
iD1 rikpi > Rk; that is, if an upper

bound on the maximum resource consumption exceeds the resource availability.
In this case, the upper bound is computed by supposing that all the activities
requiring the resource are processed completely inside ˘k .
We have refined this idea by taking into account the precedence constraints.
Specifically, we calculate an upper bound on the maximum consumption of
resource k by solving the following linear problem:

Max.
nX

iD1
rik

X

t2˘k

X

q2Qit
T
Wi

xiq (11.6)

s. t.
X

t2Wi
xit D 1 .i D 1; : : : ; n/ (11.7)

TX

�Dt
xj� C

tCpj�1X

�D1
xi� � 1 .i D 1; : : : ; nI j 2 Pred.i/I t � T /

(11.8)

xit � 0 .i D 1; : : : ; nI t 2 Wi/ (11.9)

The objective function (11.6) maximizes the resource consumption over the
whole project. Constraints (11.7) ensure that each activity starts once. Constraints
(11.8) are the precedence constraints. We use this expression, introduced by
Christofides et al. (1987), because it is more efficient than the usual precedence
constraint. In fact, the reformulation of these constraints produces a linear
problem whose coefficient matrix is totally unimodular and thus all the vertices

212 R. Alvarez-Valdes et al.

of the feasible region are integer-valued (Chaudhuri et al. 1994). If the solution
value is not greater than the resource availability, this resource will not cause any
conflict and can be skipped in the solution process.

5. A filter for variables based on resources
For each activity i and each possible starting time t 2 Wi , we compute a lower
bound LBkit on the consumption of each resource k if activity i starts at time t .
We first include the resource consumption of activity i when starting at that time
t and then for each other activity in the project we consider all its possible starting
times, determine for which of them the resource consumption is minimum and
add that amount to LBkit. Note that this minimum is calculated over all the periods
in Wj for each activity j not linked with i by precedence constraints, but for an
activity hwhich is a predecessor or successor of i , the setWh is reduced by taking
into account that i is starting at time t . If for some resource k, LBkit > Rk , time
t is not feasible for activity i to start in, and the corresponding variable xit is set
to 0.
When this filter is applied to an activity i , some of its possible starting times can
be eliminated. From then on, the set of possible starting times is no longer Wi .
We denote by Wi the set of starting times passing the filter.
This filter is applied iteratively. After a first run on every activity and every
starting time, if some of the variables are eliminated the process starts again,
but this time computing LBkit on the reduced sets. As the minimum resource
consumptions are calculated over restricted subsets, it is possible that new
starting times will fail the test and can be eliminated. The process is repeated
until no starting time is eliminated in a complete run.

6. Consistency test for finishing times
When the above filter eliminates a starting time of an activity i , it is possible
that some of the starting times of its predecessors and successors are no longer
feasible. For an activity i , �i D maxft j t 2 Wig. Then, for each j 2 Pred.i/
the starting times t 2 Wj such that t > �i � pj can be eliminated. Analogously,
i D minft j t 2 Wi g. Then, for each j 2 Succ.i/, the starting times t 2 Wj such
that t < i C pi can also be eliminated.
This test is also applied iteratively until no more starting times are eliminated.
If, after applying these two procedures for reducing variables, an activity i has
Wi D ;, the problem is infeasible. If the makespan of the initial solution built
by GRASP equals the minimum starting time of the last activity nC 1, then this
solution is optimal.

7. A linear programming bound for the starting time of activity nC 1
We solve the linear relaxation of the integer formulation of the problem given
in Sect. 11.2.1, using only variables and resources not eliminated in previous
preprocessing procedures and replacing expression (11.3) with expression (11.8)
for the precedence constraints. The optimal value of the linear program, opl1,
is a lower bound for the optimal value of the starting time of activity n C 1.
Therefore we can set xnC1;t WD 0 for all t < dopl1e. If that eliminates some
variables with non-zero fractional values, we solve the modified problem and

11 Partially Renewable Resources 213

obtain a new solution opl2, strictly greater than opl1, which can in turn be used
to eliminate new variables, and the process goes on until no more variables are
removed. If the solution value obtained by GRASP equals the updated minimum
starting time for activity n C 1, this solution is optimal. Otherwise, the lower
bound can be used to check the optimality of improved solutions obtained in the
GRASP process.

11.4 GRASP Algorithm

In this section we describe the elements of our GRASP implementation in detail.
The first two subsections contain the constructive randomized phase and the
improvement phase. The last two subsections describe an enhanced GRASP
procedure and a Path Relinking algorithm operating over the best GRASP solutions
obtained. A comprehensive review of GRASP can be found in Resende and Ribeiro
(2003).

11.4.1 The Constructive Phase

11.4.1.1 A Deterministic Constructive Algorithm

We have adapted the serial schedule-generation scheme (SSS) proposed by Schirmer
(2000), which in turn is an adaptation of the serial schedule-generation scheme
commonly used for the classical RCPSP. We denote by Si the starting time assigned
to activity i . At each stage of the iterative procedure an activity is scheduled by
choosing from among the current set of decisions, defined as the pairs .i; t/ of an
activity i and a possible starting time t 2 Wi . The selection is based on a priority
rule.

Step 0. Initialization
S0 WD 0 (sequencing dummy activity 0)
C WD f0g (activities already scheduled)
8k 2 Rp W RKk WD Rk (remaining capacity of resource k)

TDk WD
nP

iD1
rikpi (maximum possible demand for k)

SR WD fk 2 Rp j TDk > RKkg (set of possible scarce resources)
EL WD set of eligible activities, i.e. those activities for which activity 0 is the only
predecessor

Step 1. Constructing the set of decisions
D WD f.i; t/ j i 2 EL ; t 2 Wi g

Step 2. Choosing the decision
Select the best decision .i�; t�/ in D , according to a priority rule

214 R. Alvarez-Valdes et al.

Step 3. Feasibility test
if .i�; t�/ is resource-feasible, go to Step 4.
else

D WD D n f.i�; t�/g
if D D ;, STOP. The algorithm does not find a feasible solution.
else, go to Step 2.

Step 4. Update
Si� WD t�
C WD C [fi�g
EL WD .EL n fi�g/[fi jPred.i/ � Sg
8h j i 2 Pred.h/ W Wh D Wh n f� j t� C pi� > �g
8k 2 Rp W RKk WD RKk � RDikt

TDk WD TDk � ri�kpi�
if TDk � RKk ; then SR D SR n fkg

if jS j D nC 2, STOP. The sequence is completed.
else, go to Step 1.

At Steps 1 and 2, we follow Schirmer’s design, working with the set of decisions
D and choosing from it both the activity to sequence and the time at which it
starts. An alternative could have been to first select the activity and then the time,
choosing, for instance, the earliest resource-feasible time. However, this strategy has
serious drawbacks. First, it is less flexible. Priority rules which take into account the
resource consumption could not be used, because this consumption varies depending
on the periods in which the activity is processed. Second, as Schirmer has shown in
his book, scheduling each activity at its earliest resource-feasible time may not only
fail to produce an optimal solution but may also fail to produce feasible solutions.
As he says: “delaying activities from their earliest feasible start time is crucial to
finding good—even feasible—solutions for some instances”.

At Step 3, we perform a complex feasibility test which does not involve only
activity i� but also the unscheduled activities. Following a process which is quite
similar to the filter described in Sect. 11.3, we try to assess the effect of scheduling
i� at time t� by computing an estimation of the global resource consumptions,
also considering the minimum consumption of the activities not yet scheduled.
If this estimation exceeds the remaining resource availability, t� is labeled as
non-feasible for i�. This test allows us to avoid decisions which will inevitably
produce infeasible solutions in the later stages of the constructive process and our
computational experience has told us that significantly improves the proportion of
feasible solutions we obtain. However, it has a larger computational cost. Therefore,
we do not perform the feasibility test for each decision of D at Step 1, as in
Schirmer’s algorithm, but only for the decision chosen at Step 2. In problems with
a large number of possible finishing times for the activities, this strategy is more
efficient. If this decision fails the feasibility test of Step 3, the second best decision
is tested and so on. Few tests are usually required and therefore it is more convenient
to take the feasibility test out of Step 1.

11 Partially Renewable Resources 215

The resource availabilities are updated, subtracting RDikt, the consumption of
activity i when starting at period t from the remaining capacity Rk . We also keep
the set of possible scarce resources SR updated because some priority rules based
on resource consumption only take this type of resource into account.

11.4.1.2 Priority Rules

We have tested the 32 priority rules used by Schirmer (2000). The first eight are
based on the network structure, including classical rules such as EFT, LFT, SPT or
MINSLK. The other 24 rules are based on resource utilization. Twelve of them
use all the resources and the other 12 only the scarce resources. A preliminary
computational experience allowed us to choose the most promising rules and use
them in the next phases of the algorithm’s development. These preliminary results
also showed that even with the best performing rules, the deterministic constructive
algorithm failed to obtain a feasible solution for many of the ten-activity instances
generated by Böttcher et al. (1999). Therefore, the objective of the randomization
procedures included in the algorithm was not only to produce diverse solutions but
also to ensure that for most of the problems the algorithm would obtain a feasible
solution.

11.4.1.3 Randomization Strategies

We introduce randomization procedures for selecting the decision at Step 2 of the
constructive algorithm. Let scit be the score of decision .i; t/ on the priority rule we
are using, let scmax D maxfscitj.i; t/ 2 Dg, and let ı be a parameter to be determined
(0 < ı < 1). We have considered three alternatives:

1. Random selection on the Restricted Candidate List, RCL
Select decision .i�; t�/ at random in set RCL D f.i; t/ j scit � ıscmaxg

2. Biased selection on the Restricted Candidate List, RCL
We build the Restricted Candidate List as in alternative 1, but instead of choosing
at random from among its elements, the decisions involving the same activity i
are given a weight which is inversely proportional to the order of their finishing
times. For instance, if in RCL we have decisions .2; 4/; .2; 5/; .2; 7/; .2; 8/
involving activity 2 and ordered by increasing finishing times, then decision
.2; 4/ will have a weight of 1, decision .2; 5/ weight 1=2, decision .2; 7/

weight 1=3 and decision .2; 8/ weight 1=4. The same procedure is applied to
the decisions corresponding to the other activities. Therefore, the decisions in
RCL corresponding to the lowest starting times of the activities involved will be
equally likely and the randomized selection process will favor them.

3. Biased selection on the set of decisions D
We have also implemented the Modified Regret-Based Biased Random Sampling
(MRBRS/ı) proposed by Schirmer (2000), in which the decision .i; t/ is chosen

216 R. Alvarez-Valdes et al.

from among the whole set D but with its probability proportional to its regret
value. The regret value is a measure of the worst possible consequence that might
result from selecting another decision.

11.4.1.4 A Repairing Mechanism

The randomization strategies described above significantly improve the ability of the
constructive algorithm to find feasible solutions for tightly constrained instances.
However, a limited computational experience showed that not even with the best
priority rule and the best randomization procedure could the constructive algorithm
obtain feasible solutions for all of the ten-activity instances generated by Böttcher
et al. (1999). Therefore, we felt that the algorithm was not well-prepared for solving
larger problems and we decided to include a repairing mechanism for infeasible
partial schedules.

In the construction process, if at Step 3 all the decisions in D fail the feasibility
test and D finally becomes empty, instead of stopping the process and starting a
new iteration, we try to re-assign some of the already sequenced activities to other
finishing times in order to free some resources that could be used for the first of the
unscheduled activities to be processed. If this procedure succeeds, the constructive
process continues. Otherwise, it stops.

11.4.2 The Improvement Phase

Given a feasible solution obtained in the constructive phase, the improvement phase
basically consists of two steps. First, identifying the activities whose starting times
must be reduced in order to have a new solution with the shortest makespan. These
activities are labeled as critical. Second, moving critical activities to lower finishing
times in such a way that the resulting sequence is feasible according to precedence
and resource constraints. We have designed two types of moves: a simple move,
involving only the critical activity, and a double move in which, apart from the
critical activity, other activities are also moved.

11.4.3 An Aggressive Procedure

The standard version of our heuristic algorithm starts by applying the prepro-
cessing procedure in Sect. 11.3. The reduced problem then goes through the
iterative GRASP algorithm described above, combining a constructive phase and
an improvement phase at each iteration, until the stopping criterion, here a fixed
number of iterations, is met.

11 Partially Renewable Resources 217

An enhanced version of the heuristic algorithm combines preprocessing and
GRASP procedures in a more aggressive way. After a given number of iterations
(stopping criterion), we check whether the best known solution has been improved.
If this is the case, we run the preprocessing procedures again, setting the planning
horizon T to the makespan of the best-known solution and running the filters for
variable reduction. The GRASP algorithm is then applied to the reduced problem.
Obtaining feasible solutions is now harder, but if the procedure succeeds we will get
high quality solutions.

The stopping criterion combines two aspects: the number of iterations since the
last improvement and the number of iterations since the last call to preprocessing.
For the first aspect a low limit of 50 iterations is set. We do not call preprocessing
every time the solution is improved, but we do not wait too long to take advantage
of the improvements. For the second aspect we set a higher limit of 500 iterations
to give the process enough possibilities of improving the best current solution and,
at the same time, do not allow it to run for too long a time.

11.4.4 Path Relinking

If throughout the iterative procedures described above we keep a set of the best
solutions, usually denoted as elite solutions, we can perform a Path Relinking
procedure. Starting from one of these elite solutions called the initiating solution,
we build a path towards another elite solution called the guiding solution. We
progressively impose the attributes of the guiding solution onto the intermediate
solutions in the path, so these intermediate solutions evolve from the initiating
solution until they reach the guiding solution. Hopefully, along these paths we will
find solutions which are better than both the initiating and the guiding solutions.

We keep the ten best solutions obtained in the GRASP procedure. We consider
each of them in turn as the initiating solution and another as the guiding solution. We
build a path from the initiating to the final solution with n�1 intermediate solutions.
The j th solution will have the finishing times of the first j activities taken from the
guiding solution, while the remaining n � j finishing times will still correspond to
those of the initiating solution. Therefore, along the path, the intermediate solutions
will become progressively more similar to the guiding solution and more different
from the initiating one. In many cases these intermediate solutions will not be
feasible. If this is the case, a repairing mechanism similar to that described in
Sect. 11.4 is applied. We proceed from activity 1 to activity n, checking for each
activity j whether the partial solution from 1 to j is feasible. If it is not, we first try
to find a feasible finishing time for activity j , keeping previous activities unchanged.
If that is not possible, we try to re-assign some of the previous activities to other
finishing times in order to obtain some resources which are necessary for processing
activity j at one of its possible finishing times. If this procedure succeeds, we
consider activity j C 1. Otherwise, the solution is discarded and we proceed to the
next intermediate solution. If we obtain a complete intermediate solution which is
feasible, we apply to it the improvement phase described in the GRASP algorithm.

218 R. Alvarez-Valdes et al.

11.5 Scatter Search Algorithm

A Scatter Search algorithm is an approximate procedure in which an initial
population of feasible solutions is built and then the elements of specific subsets
of that population are systematically combined to produce new feasible solutions
which will hopefully improve the best known solution (see the book by Laguna
and Marti (2004) for a comprehensive description of the algorithm). The basic
algorithmic scheme is composed of five steps:

1. Generation and improvement of solutions
2. Construction of the Reference Set
3. Subset selection
4. Combination procedure
5. Update of the Reference Set

This basic algorithm stops when the Reference Set cannot be updated and then
no new solutions are available for the combination procedure. However, the scheme
can be enhanced by adding a new step in which the Reference Set is regenerated
and new combinations are possible. The following enumeration describes each step
of the algorithm in detail.

1. Generation and improvement of solutions
The initial population is generated by using the basic version of the GRASP
algorithm.

2. Generation of the Reference Set
The Reference Set, RefSet, the set of solutions which will be combined to obtain
new solutions, is built by choosing a fixed number b of solutions from the initial
population. Following the usual strategy, b1 of them are selected according to a
quality criterion: the b1 solutions with the shortest makespan, with ties randomly
broken. The remaining b2 D b � b1 solutions are selected according to a
diversity criterion: the solutions are selected one at a time, each one of them
the most diverse from the solutions currently in RefSet. That is, select solution S 0
for which the MinS2RefSetfdist.S; S 0/g is maximum. The distance between two
solutions S1 and S2 is defined as

dist.S1; S2/ D
nC1X

iD1
jS1i � S2i j

where S�i is the starting time of the i -th activity in solution S�.
3. Subset selection

Several combination procedures were developed and tested. Most of them
combine two solutions, but one of them combines three solutions. The first time
the combination procedure is called, all pairs (or trios) of solutions are considered
and combined. In the subsequent calls to the combination procedure, when the

11 Partially Renewable Resources 219

Reference Set has been updated and is composed of new and old solutions, only
combinations containing at least one new solution are studied.

4. Combining solutions
Eight different combination procedures have been developed. Each solution S�

is represented by the vector of the starting times of the activities of the project:
S� D .S

�
0 ; S

�
1 ; S

�2; : : : ; S
�
n ; S

�
nC1/. When combining two solutions S1 and S2

(or three solutions S1, S2 and S3), the solutions will be ordered by nondecreasing
makespan. Therefore, S1 will be a solution with a makespan lower than or equal
to the makespan of S2 (and the makespan of S2 will be lower than or equal to
the makespan of S3).
Combination 1
The starting times of each activity in the new solution, Snew, will be a weighted
average of the corresponding starting times in the two original solutions:

Snew
i D bk1S

1
i C k2S2i
k1 C k2 c where k1 D .1=S1nC1/2 and k2 D .1=S2nC1/2

Combination 2
A crosspointm 2 f1; 2; ::; ng is taken randomly. The new solution,Snew, takes the
firstm starting times from S1. The remaining starting timesmC1;mC2; ::; nC1
are selected at random from S1 or S2.
Combination 3
A crosspointm 2 f1; 2; ::; ng is taken randomly. The new solution,Snew, takes the
firstm starting times from S1. The remaining starting timesmC1;mC2; ::; nC1
are selected from S1 or S2 with probabilities, �1 and �2, inversely proportional
to the square of their makespan:

�1 D .1=S1nC1/2

.1=S1nC1/2 C .1=S2nC1/2
and �2 D .1=S2nC1/2

.1=S1nC1/2 C .1=S2nC1/2

Combination 4
The combination procedure 2 with m D 1. Only the first starting time is
guaranteed to be taken from S1.
Combination 5
The combination procedure 3 with m D 1. Only the first starting time is
guaranteed to be taken from S1.
Combination 6
Two crosspoints m1;m2 2 f1; 2; ::; ng are taken randomly. The new solution,
Snew, takes the first m1 starting times from S1. The starting times m1 C 1;m1 C
2; ::; m2 are taken from S2 and the starting times m2 C 1;m2 C 2; ::; n C 1 are
taken from S1.

220 R. Alvarez-Valdes et al.

Combination 7
The starting times of S1 and S2 are taken alternatively to be included in Snew.
Starting from the last activity n C 1, Snew

nC1 D S1nC1, then Snew
n D S2n and so on

until completing the combined solution.
Combination 8
Three solutions S1, S2 and S3 are combined by using a voting procedure. When
deciding the value of Snew

i , the three solutions vote for their own starting time S1i ,
S2i , S3i . The value with a majority of votes is taken as Snew

i . If the three values are
different, there is a tie. In that case, if the makespan of S1 is strictly lower than
the others, the vote of quality of S1 imposes its finishing time. Otherwise, if two
or three solutions have the same minimum makespan, the starting time is chosen
at random from among those of the tied solutions.

Snew
i D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

S1i if S1i D S2i
S2i if S1i ¤ S2i D S3i
S1i if S1i ¤ S2i ¤ S3i and S1nC1 < S2nC1
randomfS1i ; S2i g if S1i ¤ S2i ¤ S3i and S1nC1 D S2nC1 < S3nC1
randomfS1i ; S2i ; S3i g if S1i ¤ S2i ¤ S3i and S1nC1 D S2nC1 D S3nC1

Most of the solutions obtained by the combination procedures do not satisfy all
the resource and precedence constraints. The non-feasible solutions go through
a repairing process that tries to produce feasible solutions which are as close
as possible to the non-feasible combined solution. This process is composed of
two phases. First, the starting times Snew

i are considered in topological order
to check if the partial solution .Snew

0 ; Snew
1 ; ::; Snew

i / satisfies precedence and
resource constraints. If that is the case, the next time Snew

iC1 is studied. Otherwise,
Snew
i is discarded as the starting time of activity i and a new time is searched

for from among those possible starting times of i . The search goes from times
close to Snew

i to times far away from it. As soon as a time t i is found which could
be included in a feasible partial solution .Snew

0 ; Snew
1 ; ::; t i /, the search stops and

the next time Snew
iC1 is considered. If no feasible time is found for activity i , the

process goes to the second phase which consists of a repairing procedure similar
to that of the constructive algorithm. This procedure tries to change the starting
times of previous activities, 1; 2; ::; i � 1, in order to give activity i more chances
of finding a starting time satisfying precedence and resource constraints. If this
repairing mechanism succeeds, the process goes back to the first phase and the
next time Snew

iC1 is considered. Otherwise, the combined solution is discarded.
5. Updating the Reference Set

The combined solutions which were initially feasible and the feasible solutions
obtained by the repairing process described above go through the improvement
phase in Sect. 11.4.2. The improved solutions are then considered for inclusion in
the Reference Set. The Reference Set RefSet is updated according to the quality

11 Partially Renewable Resources 221

criterion: the best b solutions from among those currently in RefSet and from
those coming from the improvement phase will form the updated set RefSet.
If the set RefSet is not updated because none of the new solutions qualify, then the
algorithm stops, unless the regeneration of RefSet is included in the algorithmic
scheme.

6. Regenerating the Reference Set
The regeneration of Reference Set RefSet has two objectives: on the one hand,
introducing diversity into the set, because the way in which RefSet is updated
may cause diverse solutions with a high makespan to be quickly substituted with
new solutions with a lower makespan but more similar to solutions already in
RefSet; on the other hand, obtaining high quality solutions, even better than those
currently in RefSet.
The new solutions are obtained by again applying the GRASP algorithm with a
modification. We take advantage of the information about the optimal solution
obtained up to that point in order to focus the search on high quality solutions.
More precisely, if the best known solution has a makespan Sbest

nC1, we set the
planning horizon T D Sbest

nC1 and run the preprocessing procedures again,
reducing the possible starting times of the activities. When we run the GRASP
algorithm, obtaining solutions is harder, because only solutions with a makespan
lower than or equal to Sbest

nC1 are allowed, but if the algorithm succeeds we will
get high quality solutions.
For the regenerated set RefSet we then consider three sources of solutions: the
solutions obtained by the GRASP algorithm, the solutions currently in RefSet and
the solutions in the initial population. From these solutions, the new set RefSet is
formed. Typically, the b1 quality solutions will come from the solutions obtained
by the GRASP, completed if necessary by the best solutions already in RefSet,
while the b2 diverse solutions will come from the initial population.

11.6 Computational Results

This section describes the test instances used and summarizes the results obtained
on them by the preprocessing procedures, the priority rules, and the metaheuristic
algorithms developed in previous sections.

11.6.1 Test Instances

Böttcher et al. (1999) generated an instance generator PROGEN 2. Taking as
their starting point PROGEN (Kolisch et al. 1995), an instance generator for the
classical RCPSP with renewable resources, they modified and enlarged the set of
parameters and generated a set of 2,160 instances with ten non-dummy activities,
ten replications for each one of the 216 combinations of parameter values. As most

222 R. Alvarez-Valdes et al.

of the problems were infeasible, they restricted the parameter values to the 25 most
promising combinations and generated 250 instances of sizes 15, 20, 30 and 60 of
non-dummy activities, always keeping the number of resources to 30.

Later Schirmer (2000) developed PROGEN 3, an extension of PROGEN 2, and
generated some new test instances. He generated 960 instances of sizes 10, 20, 30,
and 40, with 30 resources. Most of them have a feasible solution, while a few of
those with ten activities are infeasible. Additionally, we generated a new set of test
instances of 60 activities using Schirmer’s PROGEN 3, with the same parameter
values he used to generate his problems. This new set gave us an indication of the
performance and running times of our algorithms on larger problems.

We applied all the algorithms and procedures described in previous sections to
both sets of instances, obtaining similar results. In the next subsections we present
and comment on the results obtained on Schirmer’s problems.

11.6.2 Preprocessing Results

Table 11.3 shows the detailed results of the preprocessing process. A first filter
identifies the trivial instances. For the remaining instances, a first feasible solution
is obtained. Let us suppose that the value of this solution is S start

nC1. If S start
nC1 equals the

length of the critical path, the solution is optimal. The number of instances proven
optimal by this test appears as CPM_bound. Otherwise, the filters for resources and
variables are used, sometimes eliminating some feasible finishing times for the last
activity n C 1. If S start

nC1 equals the minimum possible finishing time of n C 1, the
solution is optimal. The number of instances proven optimal by this test appears as
MIN_PFT_bound. Finally, the linear bound is calculated. If S start

nC1 equals the linear
bound, the solution is optimal. The number of instances proven optimal by this
test appears as LP_bound. However, the linear bound is only applied if the number
of remaining variables is fewer than 1,500, to avoid lengthy runs. The sum of the
instances proven to be optimal by these three tests appears as Solved to optimality
by preprocessing. The remaining problems are shown on the last line of the table.
For more than 60 % of the non-trivial problems, the preprocessing procedures are
able to provide a provably optimal solution.

A characteristic of PROGEN 3 is that it tends to produce large values of the
planning horizon T . For this set of problems the reduction of T described in
Sect. 11.3 is especially useful. Table 11.4 shows the reduction of T obtained by
that procedure on the non-optimally solved problems.

The reductions in the planning horizon T , together with the procedures for
reducing possible finishing times for the activities, produce significant decreases
in the final number of variables to be used by solution procedures, as can be seen in
Table 11.5.

11 Partially Renewable Resources 223

Table 11.3 Schirmer problems—optimal solutions identified in the preprocessing

Activities 10 20 30 40 60

Problems 951 960 960 960 960

Feasible problems 946 960 960 960 960

Trivial problems 143 395 507 574 614

Solved to optimality by pre-processing 502 341 291 221 202

CPM_bound 259 287 279 212 201

MIN_PFT_bound 209 46 10 8 1

LP_bound 34 8 2 1 0

Remaining problems 301 224 162 165 144

Table 11.4 Schirmer
problems—reductions of
planning horizon T

Activities 10 20 30 40 60

Problems 301 224 162 165 144

Average initial T 43 82 120 158 230

Average reduction 21 % 38 % 43 % 48 % 53 %

Maximal reduction 54 % 66 % 68 % 73 % 73 %

Table 11.5 Schirmer problems—reductions of resources and variables

Activities 10 20 30 40 60

Problems 301 224 162 165 144

Initial resources 30 30 30 30 30

Remaining resources (average) 15 (50 %) 15 (50 %) 18 (60 %) 18 (60 %) 20 (67 %)

Initial variables (average) 211 971 2,281 4,256 9,962

Remaining variables (average) 103 (49 %) 338 (35 %) 718 (31 %) 1,188 (28 %) 2,616 (26 %)

11.6.3 Computational Results of Constructive Algorithms

The 32 priority rules described by Schirmer (2000) were coded and embedded in the
constructive algorithm in Sect. 11.4.1. In a preliminary computational study these
rules were tested on the 879 feasible instances of size 10 generated by Böttcher et al.
(1999). Table 11.6 shows the results obtained by the six best performing rules. The
first three rules are based on the network structure of the problems. The last three
rules are based on resource consumption. In them, SR indicates that the rules require
the use of only scarce resources, indexed by k. RKks is the remaining capacity of
resource k at stage s. RDikt is the relevant demand, defined as RDikt D rikjQit\˘kj:
MDEikt is the minimum relevant demand entailed for resource k by all successors
of activity i when started at period t . The most important feature of Table 11.6
is that even the best rules fail to produce a feasible solution for 20 % of these
small instances of size 10. Therefore, we need randomizing strategies and repairing
mechanisms to significantly increase the probability of finding feasible solutions in
the constructive phase of the GRASP algorithm.

224 R. Alvarez-Valdes et al.

Table 11.6 Results of priority rules

Rule Definition Feasible solutions (%) Optimal solutions (%)

LFT MinfLFTj g 80.09 64.28

MTS Maxfjfi jj 2 P 0

i gjg 79.64 69.98

SLK MinfLSTj � EFTj g 76.22 61.66

DRC/SR MaxfPr .RKrs � RDjrt/g 81.57 27.08

DRS/SR MinfPr .RKrs=RDjrt/g 79.29 27.53

TRS/SR MinfPr .RDjrt CMDEjrt/g 79.41 28.56

The randomization procedures allowed us to get an important increase in the
number of feasible solutions. However, not all these small problems could be solved.
That was the reason for the development of a repairing mechanism to help the
constructive algorithm to find feasible solutions for the more tightly constrained
problems. After this preliminary study we decided to use the second randomization
procedure, a biased selection on the Restricted Candidate List, and the priority rule
LFT.

11.6.4 Computational Results of GRASP Algorithms

Table 11.7 contains the results on the 2,553 non-trivial Schirmer instances, including
the 60-activity instances we generated. The first part of the table shows the average
distance to optimal solutions. However, not all the optimal solutions are known. The
optimal solution is not known for one instance of size 30 and five instances of size
40. In these cases, the comparison is made with the best-known solution, obtained
by a time-limited run of the CPLEX integer code, by the best version of GRASP
algorithms in any of the preliminary tests or by the best version of the Scatter Search
algorithm. The second part of the table shows the number of times the best solution
does not match the optimal or best known solution, while the third part shows the
average computing times in seconds.

Columns 6 to 9 of Table 11.7 show the results of the GRASP algorithms.
Four versions have been tested: GRASP, the basic GRASP algorithm, GR+PR,
in which the best solutions obtained in the GRASP iterations go through the
Path Relinking phase, AG-GR, the aggressive GRASP procedure, and AG+PR,
combining aggressive GRASP and Path Relinking. The GRASP algorithms use
priority rule LFT and the second randomization procedure with ı D 0:85. The
GRASP algorithm runs for a maximum of 2,000 iterations while for the aggressive
procedure in Sect. 11.4.3 we use the limits described there.

The results in Table 11.7 allow us to observe the different performance of the
four algorithms more clearly. The aggressive GRASP procedure does not guarantee
a better solution than the basic GRASP algorithm for each instance, but it tends to

11 Partially Renewable Resources 225

Table 11.7 Comparison of Scatter Search and GRASP algorithms on Schirmer problems

Non-trivial Scatter Search GRASP

Activities instances Regen 0 Regen 1 Regen 6 GRASP GR+PR AG-GR AG+PR

Average deviation from optimal solution (%)

10 803 0.02 0.00 0.00 0.00 0.00 0.00 0.00

20 565 0.15 0.03 0.04 0.40 0.33 0.13 0.12

30 453 0.32 0.19 0.10 1.00 0.88 0.24 0.21

40 386 0.59 0.36 0.25 2.03 1.82 0.67 0.59

60 346 1.22 0.90 0.71 3.68 3.31 1.38 1.16

Total 2;553 0.35 0.04 0.03 0.27 0.24 0.07 0.06

Non-optimal solutions

10 803 3 0 0 1 1 1 1

20 565 22 10 5 43 32 22 19

30 453 41 29 21 68 63 35 33

40 386 61 41 31 89 84 59 54

60 346 85 74 67 110 105 91 80

Total 2;553 212 154 124 311 285 208 187

Average running time

10 803 1.2 1.8 2.5 0.9 0.9 0.3 0.3

20 565 3.0 3.4 17.0 1.4 1.4 1.1 1.2

30 453 7.2 11.8 28.8 2.9 3.1 3.4 3.7

40 386 15.7 25.8 51.1 5.7 6.2 2.9 7.2

60 346 55.8 105.2 175.9 8.7 10.3 10.6 13.4

Total 2;553 18.3 33.6 60.1 3.6 4.1 4.0 4.9

produce better results especially for large problems. The Path Relinking algorithm
adds little improvement to the good results obtained by GRASP procedures.

The last lines of the table provide the running times of the algorithms, in CPU
seconds. In all cases preprocessing is included as a part of the solution procedure.
The algorithms have been coded in C++ and run on a Pentium IV at 2.8 GHz. The
average running times are very short, though some problems would require quite
long times. In order to avoid excessively long runs, we have imposed a time limit of
60 s for the GRASP procedures. This limit negatively affects the solution of some
hard instances, which could have obtained better solutions in longer times, but in
general it ensures a good balance between solution quality and required running
time. The addition of the Path Relinking procedure does not increase the running
times very much, in part because we have included a mechanism to detect solutions
which have already been explored and avoid submitting them to the improvement
procedure. Therefore it seems convenient to keep it in the final implementation.
Therefore, the aggressive GRASP algorithm with Path Relinking seems to be the
best option for this type of metaheuristic algorithm.

226 R. Alvarez-Valdes et al.

11.6.5 Computational Results of Scatter Search Algorithms

In order to obtain the initial population, the GRASP algorithm is run until 100
different feasible solutions are obtained or the limit of 2,000 iterations is reached.
From the initial population, a reference set RefSet of b D 10 solutions is built, with
b1 D 5 quality solutions and b2 D 5 diverse solutions.

In a preliminary experience, the eight combination procedures described in
Sect. 11.5 have been tested on Schirmer’s problems. In this case, no regeneration
of the reference set is included and the algorithm stops whenever no new solutions
can be added to the Reference Set after a combination phase. We could see that all
the combinations except for Combination 7 obtained similar results. So for further
testing we keep Combinations 1 and 8, which produce the best results and have
completely different structures. We could observe that the basic Scatter Search
algorithm is very efficient, obtaining optimal solutions for most of the 3,826 feasible
Schirmer test instances. Therefore, an additional step in which the reference set is
regenerated will only be justified if it helps to solve the hardest problems, those
not solved by the basic algorithm. The regeneration procedure depends on three
parameters: the number of iterations of the modified GRASP algorithm, the number
of new solutions obtained, and the number of times the regeneration process is
called. We have considered the following values for these parameters:

1. Maximum number of iterations: 500–1,000
2. Maximum number of new solutions: 20–50
3. Calls to regenerate: three times—Only when the solution is improved after the

last call to regenerating

Table 11.7 shows the results for three versions of the Scatter Search algo-
rithm: Regen 0 (without regeneration), Regen 1 (500 iterations, 20 solutions, the
regeneration is called while the solution is improved), Regen 6 (1,000 iterations,
50 solutions, regeneration is called three times), and compare them with the
best version of the GRASP algorithms. The table shows that while the GRASP
algorithm is very efficient and can obtain better solutions on small problems, the
Scatter Search procedure with increasingly complex regeneration strategies can
significantly improve the overall results with a moderate increase in the running
times. Similar results were obtained for the test instances of Böttcher et al. (1999).

11.7 Conclusions

Partially renewable resources, in which the availability of the resource is associated
to a given set of periods and the activities only consume it when they are processed
in these periods, can be seen as a generalization of renewable and non-renewable
resources, but their main interest comes from their usefulness for modeling complex

11 Partially Renewable Resources 227

situations appearing in timetabling and labor scheduling problems, which can be
approached as project scheduling problems.

Preprocessing techniques which help to determine the existence of feasible
solutions and to reduce the number of variables and constraints are specially useful
for this type of problems because of the existence of a time horizon in which the
partially renewable resources are defined.

In this chapter we have reviewed existing formulations and exact algorithms but
we have focused on preprocessing techniques and heuristic algorithms, ranging form
simple priority rules to sophisticated GRASP/Path Relinking and Scatter Search
procedures. The computational results show that these metaheuristic algorithms are
able to produce high quality solutions in moderate computing times.

Acknowledgements This work has been partially supported by the Spanish Ministry of Education
and Science DPI2011-24977.

References

Alvarez-Valdes R, Crespo E, Tamarit JM, Villa F (2006) GRASP and path relinking for project
scheduling under partially renewable resources. Eur J Oper Res 189:1153–1170

Alvarez-Valdes R, Crespo E, Tamarit JM, Villa F (2008) A scatter search algorithm for project
scheduling under partially renewable resources. J Heuristics 12:95–113

Böttcher J, Drexl A, Kolisch R, Salewski F (1999) Project scheduling under partially renewable
resource constraints. Manage Sci 45:544–559

Chaudhuri S, Walker RA, Mitchell JE (1994) Analyzing and exploiting the structure of the
constraints in the ILP approach to the scheduling problem. IEEE T VLSI Syst 2:456–471

Christofides N, Alvarez-Valdes R, Tamarit JM (1987) Project scheduling with resource constraints:
a branch and bound approach. Eur J Oper Res 29:262–273

de Boer(1998) Resource-constrained multi-project management: a hierarchical decision support
system. Ph.D. dissertation, University of Twente, Twente, The Netherlands

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Manage Sci 41:1693–1703

Laguna M, Marti R (2004) Scatter search. Kluwer, Boston
Mellentien C, Schwindt C, Trautmann N (2004) Scheduling the factory pick-up of new cars. OR

Spectr 26:579–601
Neumann K, Schwindt C, Trautmann N (2002) Advanced production scheduling for batch plants

in process industries. OR Spectr 24:251–279
Neumann K, Schwindt C, Trautmann N (2005) Scheduling of continuous and discontinuous

material flows with intermediate storage restrictions. Eur J Oper Res 165:495–509
Resende, MGC, Ribeiro CC (2003) Greedy randomized adaptive search procedures. In: Glover F,

Kochenbeger G (eds) Handbook of metaheuristics. Kluwer, Boston, pp 219–249
Schirmer A (2000) Project scheduling with scarce resources. Dr. Kovac, Hamburg
Schwindt C, Trautmann N (2003) Scheduling the production of rolling ingots: industrial context,

model and solution method. Int Trans Oper Res 10:547–563
Shewchuk JP, Chang TC (1995) Resource-constrained job scheduling with recyclable resources.

Eur J Oper Res 81:364–375
Talbot FB, Patterson JH (1978) An efficient integer programming algorithm with network cuts fo

solving resource-constrained project scheduling problems. Manage Sci 24:1163–1174

Part IV
Preemptive Project Scheduling

Chapter 12
Integer Preemption Problems

Sacramento Quintanilla, Pilar Lino, Ángeles Pérez,
Francisco Ballestín, and Vicente Valls

Abstract A fundamental assumption in the basic RCPSP is that activities in
progress are non-preemptable. Some papers reveal the potential benefits of allowing
activity interruptions in the schedule when the objective is the makespan minimiza-
tion. In this chapter we consider the Maxnint_PRCPSP in which it is assumed that
activities can be interrupted at any integer time instant with no cost incurred, that
each activity can be split into a maximum number of parts, and that each part has
a minimum duration established. We show how some procedures developed for
the RCPSP can be adapted to work with the Maxnint_PRCPSP and we introduce
some procedures specifically designed for this problem. Furthermore, precedence
relationships between activities can refer to portions of work content or periods of
time. In single-modal project scheduling when interruption is not allowed, both are
equivalent but not when preemption is considered. We present a study of generalized
work and time precedence relationships and all conversions amongst them.

Keywords Integer preemption • Makespan minimization • Project scheduling •
Time and work generalized precedence relationships

12.1 Introduction

The interruption of an activity of a project while being executed is a situation that
often appears in practice and that many commercial software packages contemplate.
However, there is not much research work dealing with the interruption of activities
in the RCPSP context.

S. Quintanilla (�) • P. Lino • Á. Pérez • F. Ballestín
Department of Mathematics for the Economy, University of Valencia, Valencia, Spain
e-mail: maria.quintanilla@uv.es; pilar.lino@uv.es; angeles.perez@uv.es;
francisco.ballestin@uv.es

V. Valls
University of Valencia, Valencia, Spain
e-mail: vicente.valls@uv.es

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_12

231

mailto:maria.quintanilla@uv.es
mailto:pilar.lino@uv.es
mailto:angeles.perez@uv.es
mailto:francisco.ballestin@uv.es
mailto:vicente.valls@uv.es

232 S. Quintanilla et al.

The interruption of an activity can be considered discrete (it is only accepted
at any integer time instant) or continuous (the activity can be interrupted at whatever
moment during its execution). In this chapter we focus on the first case (discrete
interruption), while the following chapter deals with the continuous case. The
generalized precedence relationships (GPR) have been studied in Chaps. 5–7 of this
handbook and Ballestín et al. (2013) in the context of single-modal and multi-modal
project scheduling, respectively. When preemption is allowed and/or the duration of
an activity depends on the mode, the lag of a GPR cannot equivalently be expressed
in terms of elapsed time or in terms of work content. This chapter shows how to deal
with this situation.

Kaplan (1988, 1991) was the first to study the preemptive resource-constrained
project scheduling problem (PRCPSP) where preemption at integer points is
allowed. Demeulemeester and Herroelen (1996) proposed a Branch and Bound
algorithm for the PRCPSP and proved that the procedure proposed by Kaplan was
wrong. Ballestín et al. (2008) presented a procedure to solve the RCPSP in the case
where one interruption is allowed per activity (1_PRCPSP), always at integer points.
This was the first paper which made clear that preemption does significantly help
to decrease the project length with respect to the non-interruption case. Previous
studies did not reach this conclusion probably because the computational tests were
made on the Patterson instance set (Patterson 1984). Li et al. (2011) developed a
particle swarm optimization method to solve the RCPSP and the 1_PRCPSP and the
authors concluded that preemption helps to reduce the project duration significantly.
The 1_PRCPSP can be generalized to the
_PRCPSP where
 interruptions are
allowed per activity, always at integer points.

Ballestín et al. (2009) introduced a model for discrete preemption in the RCPSP
where the maximum number of times that each activity can be interrupted and
the minimum length of each subactivity can be fixed. The problem was named
Maxnint_PRCPSP and the authors introduced an evolutionary algorithm with a
suitable codification and crossover to solve the problem and they studied preemption
in the presence of due dates. The conclusion was that preemption is useful and helps
to find better solutions when due dates are present. Also, the greater the number of
interruptions per activity that are allowed the higher the quality of the solutions.
However, it is shown that allowing more than two interruptions does not seem to
add much to the solution quality.

Van Peteghem and Vanhoucke (2010) presented a genetic algorithm for the multi-
modal RCPSP and PRCPSP, concluding that activity preemption always leads to
better solutions. Quintanilla et al. (2012) worked with a complex model in the
context of a Service Centre. The problem was modeled as a multi-modal project
scheduling problem with due dates, each activity needed a single unit of resource,
preemption was allowed and time and work generalized precedence relationships
with minimal and maximal time lag between the tasks were considered. In this
context, time and work relationships are not equivalent and the authors presented
a complete study of work and time GPRs which included proper definitions, a new
notation and all possible conversions among them. A review of project scheduling
with generalized precedence relationships can be found in Neumann et al. (2003).

12 Integer Preemption Problems 233

The rest of the chapter is organized as follows: Sect. 12.2 models the
Maxnint_PRCPSP. Section 12.3 introduces a codification to the solutions of the
Maxnint_PRCPSP in such a way that some procedures developed for the RCPSP
can be directly used for the Maxnint_PRCPSP. Section 12.4 adapts some of these
procedures to the new problem with the aim of obtaining better solutions. The
modifications consist in introducing new breaks in the activities and changes in
the initial duration of each part or subactivity. Sections 12.5 and 12.6, respectively,
describe and compare 11 algorithms to solve the Maxnint_PRCPSP. In Sect. 12.7
we present a study of work and time generalized precedence relationships and all
conversions amongst them. Finally, conclusions are given in Sect. 12.8.

12.2 The Maxnint_PRCPSP

The preemptive resource-constrained project scheduling problem, PRCPSP
(PSjprec; pmtn=intjCmax), is defined as the RCPSP with the assumption of the non-
preemption of activities relaxed. A project consists of nC 2 activities numbered 0
to nC 1 where dummy activities i D 0 and i D nC 1 represent the beginning and
completion of the project. There are precedence relations between the activities.
E D f.i; j / 2 V � V ji must finish before j can startg is the set of those
relationships where V is the set of activities. Each activity i has a duration pi and
needs some renewable resources to ensure it is carried out. There are K different
resource types with availability in each time period ofRk units, k D 1; : : : ; K . Each
activity i requires rik units of resource k during each period of time in which it is
processed. Dummy activities i D 0 and nC1 have zero duration and resource usage.
In the PRCPSP, activities are allowed to be preempted at any integer time instant
and resumed later on with no cost incurred. This problem can be solved by splitting
each activity i in pi parts (subactivities) of one unit duration each and introducing
a precedence relationship between two consecutive parts. The Maxnint_PRCPSP
adds the restriction that each activity i can be preempted a maximum number of
times .maxninti / and each part should have a minimum duration ."i /. The RCPSP is
the Maxnint_PRCPSP with maxninti D 0 or equivalently "i D pi and the PRCPSP
is the Maxnint_PRCPSP with maxninti D pi � 1. All parameters are assumed to be
non-negative integer values.

We consider maxnint0 D 0 and maxnintnC1 D 0 and we can update maxninti D
min .maxninti ; bpi="ic � 1/ 8i D 1; : : :; n. In the rest of the chapter we will
consider that this update has been made.

The conceptual model of the Maxnint_PRCPSP, was introduced in
Ballestín et al. (2009) as follows:

Min: SnC1;1 (12.1)

s:t: S01 D 0 (12.2)

234 S. Quintanilla et al.

Sj1 � Si;maxnintiC1 C pi;maxnintiC1 ..i; j / 2 E/ (12.3)
X

i2A .S;t/

rik � Rk .t D 0; : : : ;UBI k D 1; : : : ; K/ (12.4)

Si;�C1�Si�Cpi� .i2V with maxninti>0I�D1; : : : ;maxninti / (12.5)

maxnintiC1X

jD1
pi� D pi .i 2 V / (12.6)

pi� � "iyi� .i 2 V I� D 1; : : :;maxninti C 1/ (12.7)

yi;�C1�yi� .i 2 V with maxninti>0I�D1; : : : ;maxninti / (12.8)

Si�; pi� 2 Z�0 .i 2 V I� D 1; : : : ;maxninti C 1/ (12.9)

yi� 2 f0; 1g .i 2 V I� D 1; : : : ;maxninti C 1/ (12.10)

where the variables used have the following meaning:

• Si� D start time of the �-th part of activity i , � � maxninti C 1
• pi� D processing time of the �-th part of activity i , � � maxninti C 1
• yi� is 1 if part � of activity i is a non-dummy part, i.e., does not have duration

0, � � maxninti C 1. If an activity is split into fewer parts than maxninti C 1,
the last parts of the activity will be dummy parts with duration 0. Their start and
finish times will be the finish time of the last non-dummy part.

The objective of the problem is to minimize the makespan. Equation (12.2)
assigns the start time 0 to the dummy activity 0. The precedence constraints given
by (12.3) indicate that the start of an activity j must wait for the end of the last
subactivity of all the predecessor activities of j . For each renewable resource type,
Eq. (12.4) indicates that the resource amount required by the activities in progress
cannot exceed the resource availability, t D 0; : : :;UB where UB is an upper bound
on the project length, e.g., the sum of the activities’ durations. Equation (12.5)
ensures that a subactivity of an activity i does not start sooner than the end of the
previous subactivity of the same activity. Conditions on the durations of subactivities
are reflected in (12.6)–(12.8). In (12.6) the sum of the durations of all parts of an
activity i must be equal to the processing time of i . In Eq. (12.7) the duration of each
subactivity must be at least the minimum duration "i , but only if the part is a non-
dummy one. Restrictions (12.8) ensure that the non-dummy parts of each activity
are the first parts. The variables yi� are binary (12.10) and the rest of the variables
must be non-negative integers, as stated in (12.9).

Since the RCPSP is a particular case of the Maxnint_PRCPSP, our problem is
NP-hard in the strong sense (see Błażewicz et al. 1983 for the NP-hardness of
the RCPSP).

The most important aspect of the problem is that we can work at the same
time with non-preemptable activities .maxninti D 0/ and preemptable activities
.maxninti > 0/, in addition to activities with different numbers of allowed
interruptions.

12 Integer Preemption Problems 235

It is obvious that if we know the value of Si� and pi� for non-dummy
subactivities we can easily obtain the value of the remaining variables .yi�/. For
this reason, a schedule or solution is determined knowing only these values.

12.3 Using Existing Procedures for the RCPSP
to Solve the Maxnint_PRCPSP

Some good heuristic algorithms developed for the RCPSP (Kolisch and Hartmann
2006) use the activity list as a codification of a solution, the serial schedule-
generation scheme (SGS) to decode it, the rapid Double Justification local search,
and the one-point or two-point crossovers.

The serial SGS is capable of generating every active schedule, therefore it is able
to find an optimal solution for each feasible instance, as the set of active schedules
always contains an optimal schedule.

This section shows how to adapt the codification of a solution to directly use
these three procedures for the Maxnint_PRCPSP.

12.3.1 Codification of a Solution

A codification of a solution for the Maxnint_PRCPSP has been introduced in
Ballestín et al. (2009) by means of a pair of vectors D .`;˝/, a subactivity
list vector `, and a duration vector ˝ . ` contains each activity as many times
as subactivities of this activity are considered. ˝.u/ stores the processing time
of a subactivity of the activity `.u/. Each activity i will always appear behind
their predecessors in the vector ` and i can appear a maximum of maxninti C 1
times. A precedence relationship is considered to exist between the subactivities
corresponding to two consecutive occurrences of the same activity in `. As ˝.u/
corresponds to the processing time of one subactivity of activity `.u/, ˝.u/ has to
be greater than or equal to "`.u/. The sum of the components of ˝ corresponding to
the same activity i in ` must be equal to pi .

Given a solution of the Maxnint_PRCPSP we define the representation of it as
the pair D .`;˝/ constructed as follows: The lengths of ` and ˝ are equal to the

number of non-dummy parts in the solution
�Pn

iD1
PmaxnintiC1

�D1 yi�

�
. Instants Si�

corresponding to non-dummy parts are sorted in increasing order. If Si� occupies
position v, then i and pi� occupy position v in ` and ˝ respectively.

As an example, the representation of the last schedule in Fig. 12.1 is:

` D .1; 3; 2; 4; 1; 3; 2; 5; 4; 3; 5/
˝ D .3; 7; 4; 5; 4; 1; 2; 3; 3; 4; 3/

236 S. Quintanilla et al.

1

2
4

3
2

1
5

3

5

1
2

4

1

3

2
1

5

3

5

1
2

41

3

2

1
5

3

2
5

2 4 6 8 10 12 14 16 18 20 22 24 26

3 3
4

5

3 4
5

Mother

Father

Daughter

2

3

1
5

3 3

4
2

RJ(Daughter)

4
5

1

4

3

1
5

3
3

4
2

5
2

1

DJ(Daughter)

2 4 6 8 10 12 14 16 18 20 22 24 26

2 4 6 8 10 12 14 16 18 20 22 24 26

2 4 6 8 10 12 14 16 18 20 22 24 26

2 4 6 8 10 12 14 16 18 20 22 24 26

Fig. 12.1 Schedules obtained by applying serial SGS to the mother, father, and daughter. Right
justification and double justification applied to the schedule associated with the daughter

12.3.2 The Serial SGS

Given D .`;˝/, the serial SGS can be used to obtain a feasible schedule S
for the Maxnint_PRCPSP. First, the dummy activity 0 is started at time 0. Then
the subactivities are scheduled following the order established in ` during the

12 Integer Preemption Problems 237

processing time given by ˝ . Note that a subactivity can be started only if all
previous subactivities for the same activity in the list have been completed.

Note that if S is the schedule obtained by application of the serial SGS to the pair
.`;˝/ and .`0;˝ 0/ is a representation of S , then the serial SGS applied to .`0;˝ 0/
yields S . Note also that `0 and ˝ 0 are not necessarily equal to ` and ˝ respectively
and they may even have different dimensions.

As an example, let us consider ` D .1; 2; 1; 3; 2; 4; 1; 2; 5; 3; 5/ and ˝ D
.3; 4; 2; 7; 1; 8; 2; 1; 4; 5; 2/. The serial SGS applied to .`;˝/ produces the schedule
serialSGS.`;˝/ that corresponds to the first schedule in Fig. 12.1. However, the
representation of that schedule is .`0;˝ 0/ where `0 D .1; 3; 2; 1; 2; 4; 1; 3; 2; 5/ and
˝ 0 D .3; 7; 4; 2; 1; 8; 2; 5; 1; 6/.

12.3.3 The Double Justification

In the RCPSP context, the double justification is a technique that acts on a feasible
schedule, it never increases the makespan of the schedule and in many cases it
shortens it. This technique (Valls et al. 2005) is equivalent to applying the serial
SGS twice. Firstly, in the reverse project, it is applied to the activity list (for the
reverse project) made up of the activities in non-increasing order of their finishing
times. Secondly, in the original project, it is applied to the activity list composed of
the activities in non-decreasing order of their starting times in the last calculated
schedule. The reverse project is the network obtained by simply reversing the
precedence relationships of the original project. Therefore, double justification can
be used for the Maxnint_PRCPSP using the content from the previous two sections.
Both the project and the reverse project must consider the relationships linking any
two consecutive subactivities of the schedule.

12.3.4 One-Point and Two-Point Crossovers

The one-point and two-point crossovers proposed by Hartmann (1998) act on
vectors of equal length. As the vectors in two different codifications can have
a different number of components, to work with the Hartmann crossovers, we
construct a pair of vectors of constant length for each codification. The crossovers
are applied on the new vectors and finally we transform the resulting vectors into
codifications, as follows:

Given .`;˝/, we construct V1 and V 2 of a constant length equal to maxnsub DP
i2V .maxnintiC1/, the maximum number of subactivities in any feasible schedule.

V1 is constructed following the order in ` but adding dummy activities to ensure
that each activity i appears maxninti C 1 times. The dummy activities associated
with activity i appear in the new vector after the last occurrence of i in `. V 2 is

238 S. Quintanilla et al.

constructed by copying ˝ and inserting a zero every time a dummy activity is
inserted into V1.

To apply the crossovers we consider the mother M D .`M ;˝M/, the father
F D .`F ;˝F /, and the pair of vectors corresponding to the mother .V 1M ; V 2M /
and the father .V 1F ; V 2F /. As a result we will obtain two children: a daughter
.V 1D; V 2D/ and a son .V 1S ; V 2S/. To construct the children, firstly, we apply the
Hartmann crossover to the subactivity lists in V1M and V1F obtaining V1D and
V1S . Then we calculate component by component the second vector of each child
as follows:

Let u be 1 � u � maxnsub and let i be the activity stored in
V1D.u/. If i comes from the mother then V 2D.u/ belongs to the set˚
0; "i ; "i C 1; "i C 2; : : : :; V 2M .u/

. To decide the value, we first calculate t as:

t D
X

vjV1M .v/Di;v�u

V 2M.v/ �
X

vjV1D.v/Di;v<u

V 2D.v/

Then, if t < "i , V 2D .u/ D 0, otherwise V 2D .u/ D min
�
V 2M .u/ ; t

�
.

Similarly, if activity i stored in V1D.u/ comes from the father, then V 2D.u/
belongs to the set

˚
0; "i ; "i C 1; "i C 2; : : : :; V 2F .u/

. To decide the value, we first

calculate t as:

t D
X

vjV1F .v/Di;v�u

V 2F .v/�
X

vjV1D.v/Di;v<u

V 2D.v/

Then, if t < "i ; V 2D .u/ D 0, otherwise V 2D .u/ D min
�
V 2F .u/ ; t

�
.

After obtaining V1D and V 2D , every time that a component is equal to zero
in V 2, this component is erased in both vectors. Analogously, V 2S.u/ and a
codification for the son are obtained.

A desirable property of a crossover is that the children inherit the structures
shared by the parents. The crossover introduced has this property. Activities with
just one appearance in both activity lists appear also just once in the children. Also,
activities with the same number of parts and the same part durations in both parents
are also transferred in that way to the children.

The two-point crossover introduced in Ballestín et al. (2008) for the 1_PRCPSP
coincides with the two-point crossover introduced here if we consider maxninti D
"i D 1;8 i D 1; : : :; n.

As an example, consider the project in Fig. 12.2. The project consists of five non-
dummy activities .n D 5/ and two dummy activities (0 and 6) with one renewable
resource of availability 4 .K D 1;R1 D 4/. The activities are represented in the
vertices. The edges represent precedence relationships. If there is a directed edge
from a vertex i to vertex j , it is because .i; j / 2 E . Above each vertex is shown the
duration of the activity and the number of units of the resource needed to ensure it is
carried out. We suppose that maxnint1 D maxnint3 D 4, maxnint2 D maxnint5 D 3,
maxnint4 D 1; "1 D "2 D "3 D "5 D 1 and "4 D 3. We consider as the mother

12 Integer Preemption Problems 239

Fig. 12.2 Project pi / ri1

1

60

4

2

3

K=1 R1=4

5
i

6 / 3

6 / 4

8 / 2

12 / 1

7 / 2

0 / 0

the pair `M D .1; 2; 1; 3; 2; 4; 1; 2; 5; 3; 5/ and ˝M D .3; 4; 2; 7; 1; 8; 2; 1; 4; 5; 2/

and as the father the pair `F D .2; 3; 4; 1; 2; 1; 5; 3; 4; 3; 5; 3; 5/ and ˝F D
.1; 4; 5; 3; 5; 4; 2; 2; 3; 2; 1; 4; 3/.

To do the crossover we transform the two pairs in the following vectors of 20
components .maxnsub D 5C 4C 5C 2C 4 D 20/.

V1M D .1; 2; 1; 3; 2; 4; 4; 1; 1; 1; 2; 2; 5; 3; 3; 3; 3; 5; 5; 5/

V 2M D .3; 4; 2; 7; 1; 8; 0; 2; 0; 0; 1; 0; 4; 5; 0; 0; 0; 2; 0; 0/

V 1F D .2; 3; 4; 1; 2; 2; 2; 1; 1; 1; 1; 5; 3; 4; 3; 5; 3; 3; 5; 5/

V 2F D .1; 4; 5; 3; 5; 0; 0; 4; 0; 0; 0; 2; 2; 3; 2; 1; 4; 0; 3; 0/

If we apply the one-point crossover considering the first four positions from the
mother and the remaining sixteen positions completed with the subactivities not
previously considered and in the order of the father, we obtain:

V1D D .1; 2; 1; 3; 4; 2; 2; 2; 1; 1; 1; 5; 3; 4; 3; 5; 3; 3; 5; 5/
V 2D D .3; 4; 2; 7; 5; 2; 0; 0; 2; 0; 0; 2; 0; 3; 1; 1; 4; 0; 3; 0/

and the corresponding codification, by erasing the zero components, is:

`D D .1; 2; 1; 3; 4; 2; 1; 5; 4; 3; 5; 3; 5/
˝D D .3; 4; 2; 7; 5; 2; 2; 2; 3; 1; 1; 4; 3/

Figure 12.1 shows the corresponding schedules after applying the serial SGS on the
mother, father, and daughter. The fourth (fifth) schedule is the result of applying
right justification (left justification) to the third (fourth) schedule. In brief, the last
schedule is DJ.serialSGS.`D;˝D// and their representation is:

` D .1; 3; 2; 4; 1; 3; 2; 5; 4; 3; 5/
˝ D .3; 7; 4; 5; 4; 1; 2; 3; 3; 4; 3/

240 S. Quintanilla et al.

12.4 Specific Procedures Developed
for the Maxnint_PRCPSP

The procedures described in the above section can be adapted to allow more
breaks and changes in the lengths of the parts. As a result, it is possible to obtain
better schedules. Ballestín et al. (2009) have adapted the three procedures to the
Maxnint_PRCPSP and have presented a new procedure, the unary operator, a
mutation operation introduced for this particular problem. We shall look at each
one of these procedures.

12.4.1 Decoding Procedure: Maxnint_Serial SGS

Given D .`;˝/, we define nsubi as the number of occurrences of the activity i
in ` and totalnsub DPn

iD1 nsubi I totalnsub is therefore the dimension of vectors `
and˝ .

The Maxnint_Serial SGS works as the serialSGS explained in Sect. 12.3.2 but
the procedure permits more interruptions. During the creation of the schedule the
procedure changes the codification according to the current number of subactivities
and their duration. The procedure schedules one by one the subactivities that appear
in `. When scheduling a subactivity `.u/ D i , the procedure calculates t as the finish
time of the last scheduled predecessor of subactivity i . Two cases are considered:

If t coincides with the finish time of a subactivity of activity i :

Let h be the maximum value such that in Œt; tChŒ there are enough free resources
to schedule i . If h � ˝.u/ or ˝.u/ D "i , the subactivity `.u/ is scheduled
as in the serial SGS. If the subactivity is started in t , the component in ˝
corresponding to the processing time of the subactivity of i that finished in t
is increased in ˝.u/ units, nsubi D nsubi � 1, and vectors `;˝ are updated by
decreasing their dimension in one unit and erasing component u in both vectors.
If h < ˝.u/ and ˝.u/ ¤ "i , the procedure schedules h1 units of i at t where
h1 WD min.h;˝.u/ � "i /; the component in ˝ corresponding to the processing
time of the subactivity of i that finished in t is increased in h1 units, ˝.u/ is
updated as ˝.u/� h1, and the procedure newly considers the subactivity `.u/.

Otherwise:

If nsubi � 1 D maxninti or ˝.u/ < 2 � "i , then the subactivity i is scheduled
as in the serial SGS. Otherwise, let t1 � t be the minimum time instant, such
that in Œt1; t1C "i Œ there are enough free resources to schedule i and let h be the
maximum value such that between Œt1; t1ChŒ there are enough free resources to
schedule i . If h � ˝.u/, i is scheduled as in the serial SGS. Otherwise, activity i

12 Integer Preemption Problems 241

will be interrupted. In this case, Maxnint_Serial SGS schedules the first h1 WD
min.h;˝.u/�"i / units of i in Œt1; t1Ch1Œ, makes nsubi D nsubiC1, and updates
vectors `;˝ by increasing their dimension in one unit and inserting a component
after the component uW `.uC 1/ D i , ˝.u/ D h1 and˝.uC 1/ D ˝.u/� h1.

12.4.2 Maxnint_DJ

Maxnint_DJ consists in applying Maxnint_Serial SGS twice, firstly in the reverse
project and secondly in the original project. Maxnint_DJ is the same procedure
as the double justification presented in Sect. 12.3.3, but using Maxnint_Serial SGS
instead of serial SGS. Maxnint_DJ can modify the interruptions in a schedule,
something that did not occur with the double justification. Note that although
new preemptions can appear, the procedure never increases the makespan of
a schedule. Also, the double justification adapted to the 1_PRCPSP presented
in Ballestín et al. (2008) matches Maxnint_DJ procedure when "i D 1 and
maxninti D 1;8i D 1; : : :; n.

12.4.3 BeginEndOnePointCrossover

The procedure obtains two children, daughter, and son from a mother M D
.`M ;˝M/ and a father F D .`F ;˝F /. During the creation of the children the
procedure fills vectors ` and˝ . When the children have been partially built, we can
calculate leftduri as the processing time of activity i not yet considered in vector˝:
leftduri D pi �

Pmaxnsub
uD1 ˝.u/j�.u/ D i .

To generate a daughter, the procedure considers two empty vectors `D and ˝D

with initial length maxnsub and generates a random integer number q between 1
and totalnsubM . The first q positions in vectors `D and ˝D are copied from the
mother. Next, the procedure iteratively considers the father components, starting
from the last. Let u be the last component not considered yet in the father such
that leftdurD

�F .u/ ¤ 0 and let v be the last empty position in the daughter. Let i

be the activity stored in `F .u/. Then `D.v/ D `F .u/. If nsubDi < maxninti � 1
and leftdurDi � "i C ˝F .u/, then ˝D.v/ D ˝D.u/, otherwise, i is not further
interrupted in the daughter, and ˝D.v/ D leftdurDi . The procedure ends by erasing
the blank cells from `D and ˝D. Similarly, a son can be obtained by interchanging
the roles of the father and the mother.

If we apply the BeginEndOnePointCrossover on the mother and father in the last
example, with q D 4, we obtain the daughter:

`D D .1; 2; 1; 3; 4; 1; 5; 3; 4; 3; 5; 3; 5/
˝D D .3; 4; 2; 7; 5; 2; 2; 1; 3; 2; 1; 4; 3/

242 S. Quintanilla et al.

12.4.4 Unary Operator

This unary operator is a mutation operator that acts on a codification and changes
the position of some subactivities in ` and/or reduces the number of interruptions of
some activities. The authors also tested allowing more interruptions, but preliminary
tests showed that this does not improve the quality of the final solutions. They also
commented that one reason could be that other procedures such as Maxnint_Serial
SGS and Maxnint_DJ already produce new interruptions in the solutions.

The UnaryOperator selects �mut � totalnsub subactivities, where �mut is the
mutation probability. If a subactivity i D `.u/ is selected and nsubi > 1 then, with
probability equal to 0.5, the number of interruptions of activity i is reduced by one
and, with probability equal to 0.5, the position in ` of this subactivity is changed, if
it is possible. Otherwise .nsubi D 1/, the position in ` of this subactivity is changed,
if it is possible.

To reduce the number of interruptions, the component in ˝ corresponding to the
first processing time of a subactivity of i is increased in ˝.u/, nsubi D nsubi � 1,
and vectors `, ˝ are updated by decreasing their dimension in one unit and erasing
component u in both vectors.

To change the position of the subactivity in ` the procedure calculates the first
and last possible positions to place subactivity i D `.u/ within ` so that ` remains
a list of activities, taking into account the precedence relationships among the
subactivities of activity i already defined. If more than one position is possible,
a position is randomly selected and the unary operator relocates i in this position,
maintaining the relative order of the rest of the subactivities in `. Obviously ˝ is
consistently updated.

12.5 Algorithms for the Maxnint_PRCPSP

Ballestín et al. (2008) tested the influence of interruption in the case of one inter-
ruption being allowed per activity (1_PRCPSP), when activity lists are randomly
generated and when one of the best algorithms for the RCPSP is considered
(the genetic algorithm of Hartmann 1998). Also, the influence of the double
justification was tested when one interruption is allowed. Eight algorithms were
considered in total, based on one random and one genetic algorithm and adding,
or not, interruption and double justification. Ballestín et al. (2009) developed
an evolutionary algorithm, EvoAlg, for the Maxnint_PRCPSP. Twelve different
versions of the algorithm were tested by the authors by varying some parameters
and techniques. We have considered the best version. Table 12.1 summarizes the
11 algorithms considered in this chapter for solving problems RCPSP, 1_PRCPSP,
PRCPSP, and Max_nintPRCSP. The considered algorithms work until a certain
number of schedules (nschedules) are generated.

12 Integer Preemption Problems 243

Table 12.1 Algorithms for the RCPSP,1_PRCPSP, PRCPSP, and Maxnint_PRCPSP

Algorithm Problem Explanation

Random RCPSP Generates nschedules random activity lists and applies
serial SGS to each one

GA RCPSP Genetic algorithm of Hartmann (1998) with a maximum
of nschedules schedules

DJRandom RCPSP Generates nschedules/3 random activity lists and applies
serial SGS to each one. Finally, applies double
justification to each schedule

DJGA RCPSP GA modified by applying double justification to each
evaluated schedule until a maximum of nschedules
schedules

HGA RCPSP Hybrid Genetic algorithm of Valls et al. (2008) with a
maximum of nschedules schedules

1_Random 1_PRCPSP Randomly generates nschedules codifications D .`;˝/

introduced in 12.3.1. The activity list ` contains each
activity twice. The processing times in˝ are randomly
generated. Maxnint_serial SGS is applied to each
codification

1_GA 1_PRCPSP GA with the codification D .`;˝/ from 12.3.1,
Maxnint_serial SGS instead of serial SGS and the
two-point crossover introduced in 12.3.4 instead of the
two-point crossover

1_DJRandom 1_PRCPSP Randomly generates nschedules/3 codifications
 D .`;˝/ introduced in 12.3.1. The activity list `
contains each activity twice. The processing times in ˝
are randomly generated. Maxnint_serial SGS and
Maxnint_DJ are applied to each codification

1_DJGA 1_PRCPSP GA with the codification D .`;˝/ from 12.3.1,
Maxnint_serial SGS and Maxnint_DJ instead of serial
SGS and the two-point crossover introduced in 12.3.4
instead of the two-point crossover

1 HGA PRCPSP HGA applied to the transformed project in which each
activity i is split into pi subactivities of duration 1

EvoAlg Maxnint_PRCPSP Algorithm in Fig. 12.3 with the following parameters:
�pop D 50; ' D b�pop=4c; �cros D
0:75; perceninterrup D 1; �mut D 0:05, and maxlifeD 6

except for the best individual for which maxlifeD1

The EvoAlg algorithm shown in Fig. 12.3 works with a “population” of indi-
viduals (codifications of solutions). The size of the population is �pop, and ' is
the number of children generated at each iteration. One child can be obtained by
applying the UnaryOperator or by crossing two individuals to obtain a daughter
by the operator BeginEndOnePointCrossover. With probability �cros we apply the
crossover. Each individual stays in the population maxlife iterations, except the
current best individual that never dies. This concept was defined as life span

244 S. Quintanilla et al.

1. for [i := 1, 4spop]
1.1 g := CalculateInitialCodification
1.2 S := Maxnint_SerialSGS(g)
1.3 S’:= Maxnint_DJ (S)
1.4 g’ := Representation of S’

2. Create a population POP with the best spop codifications g’
3. until the stopping criteria are met:

3.1 Children :=Æ
3.2 for [i := 1, j]

3.2.1 Draw a uniformly distributed random number u Î [0 1]
3.2.2 if(u £ pcros)

3.2.2.1Select two individuals g1 and g2 from the population
3.2.2.2g := BeginEndOnePointCrossover (g1, g2)

3.2.3 else
3.2.3.1Select an individual g1 from the population
3.2.3.2g := UnaryOperator(g1)

3.2.4 S := Maxnint_SerialSGS(g)
3.2.5 S’ := Maxnint_DJ (S)
3.2.6 g’ := Representation of S’
3.2.7 Children := Children È {g’}

3.3 Increase the life span of every individual of the population by 1
3.4 Eliminate from POP the individuals with lifespan := maxlife
3.5 POP := Best spop individuals of POP È Children

4. The outcome is the individual with the best fitness

Fig. 12.3 Outline of algorithm EvoAlg

(Michalewicz 1994). The procedure to generate the initial population, CalculateIni-
tialCodification, is explained later.

CalculateInitialCodification is a procedure that iteratively generates a codifi-
cation D .`;˝/. While a new codification is being generated, the procedure
maintains the set Elig that contains the activities that are not totally introduced in
` and whose predecessors have already been totally introduced in ` (an activity
i is totally introduced in ` if the sum of the durations of ˝ corresponding to i
coincides with pi /. At iteration u, the procedure selects an activity i .`.u/ D i/

from the set Elig and randomly generates˝.u/ in such a way that some conditions
are fulfilled. To select the activity i at iteration u, the regret-based biased random
sampling method together with the Latest Finish Time priority rule is employed.
The latest finish times of the activities are computed on the original graph .V;E/.
To assign ˝.u/, the procedure calculates leftduri . If activity i has already been
interrupted maxninti times, or if leftduri is less than 2 � "i , then it cannot be further
interrupted and ˝.u/ D leftduri . Otherwise, a random number between 0 and 1 is
generated. If this number is less than a parameter perceninterrup, then activity i is

12 Integer Preemption Problems 245

not interrupted and ˝.u/ D leftduri . If the random number is greater than or equal
to perceninterrup, then ˝.u/ is calculated as a random integer number between "i
and leftduri � "i . Each time an activity i is totally introduced in ` .leftduri D 0/,
Elig is updated. The procedure ends when Elig is empty. This procedure builds a
codification in totalnsub iterations, where totalnsub is unknown until the end of
the procedure. Note that the designed procedure is able to generate every possible
codification for the problem.

12.6 Computational Results

In this section we present the results of computational studies concerning the
algorithms introduced in the Sect. 12.5. As test instances, we have used the
standard sets j30 and j120 for the RCPSP. They were generated using PROGEN
(Kolisch et al. 1995) under a full factorial experimental design with the following
three independent problem parameters: network complexity (NC), resource factor
(RF), and resource strength (RS). The set j120 (j30) consists of 600 (480) projects
with 120 (30) non-dummy activities. Both sets require four resource types. Further
details of these problem instances are given in Kolisch et al. (1995). They are
available in the Project Scheduling Library (PSPLIB: http://www.om-db.wi.tum.de/
psplib/main.html) along with their optimum or the best of all the known makespans.
Among the four RCPSP instance sets in PSPLIB, we have selected the j30 set
because it is the only set for which the optimal solution is known for all the instances
in the set. j120 is the set with the largest and most difficult projects in the library.
To use these sets of instances for the
_PRCPSP it is only necessary to add the
possibility of interrupting each activity a maximum of
 times. Throughout the text
we will not consider the 120 instances of j30 with RS D 1, since they are trivial
both for the RCPSP and the
_PRCPSP (the ES is feasible and then optimal).

In the RCPSP, it is a common practice (see, for example Hartmann and
Kolisch 2000) to compare heuristic algorithms by limiting the maximum number
of evaluated schedules. The most usual number is 5,000 .nschedules D 5;000/,
although several other limits have been considered. Throughout this section we will
use the following measures of the quality of an algorithm. We will denote by CP_dev
the average percentage deviation of an algorithm from the critical path makespan,
which is a lower bound for the RCPSP whether or not preemption is allowed.

First of all, we have made comparisons when solving three particular cases of
the Maxnint_PRCPSP (RCPSP, 1_PRCPSP, and PRCPSP). We have considered
three algorithms to solve the two first problems and two algorithms to solve the
PRCPSP, with a maximum of 5,000 generated schedules. Table 12.2 shows the
different results for j30 in terms of deviation with respect to the optimal solution
and for j120 in terms of deviation with respect to the CPM (CP_dev).

http://www.om-db.wi.tum.de/psplib/main.html
http://www.om-db.wi.tum.de/psplib/main.html

246 S. Quintanilla et al.

Table 12.2 Computational results on the sets j30 and j120

EvoAlg 1 HGA EvoAlg

nschedules D 5;000 Random DJGA HGA 1_Random 1_DJGA (1_PRCPSP) (PRCPSP) (PRCPSP)

j30 (opt_dev) 0.95 0.2 0.06 0.2 �1.04 �1.45 �1.55

j120 (CPM_dev) 47.51 33.24 32.54 43.74 30.35 29.91 29.51 29.03

Table 12.3 CP_dev for different algorithms with different limits on the number of schedules
and j120

EvoAlg 1HGA EvoAlg

nschedules DJGA HGA 1_DJGA (1_PRCPSP) (PRCPSP) (PRCPSP)

5,000 33.24 32.54 30.35 29.91 29.51 29.03

10,000 32.75 32.04 29.78 29.53 29.21 28.68

25,000 31.98 31.52 29.34 29.02 28.86 28.29

100,000 31.10 30.95 28.71 28.41 28.57 27.74

It can be observed that there is an important difference between the algorithms
with and without interruption, with better results when preemption is allowed,
especially in j120. In this set, there is a difference of 3.77 % between the random
solutions in the 1_PRCPSP and in the RCPSP. So, the data indicates that the search
space in the 1_RCPSP is of better quality than that of the RCPSP. There is also
an important difference between DJGA and 1_DJGA. DJGA and HGA are two of
the best heuristics for the RCPSP, and the difference between HGA and 1_DJGA
is 2.19 %. EvoAlg outperforms the rest of the algorithms in the 1_PRCPSP and the
PRCPSP.

Table 12.3 shows the performance of the two best algorithms in each of the three
problems, varying the number of schedules generated and without taking the 152
instances where the solution of HGA coincides with the critical path length. In these
cases no improvement is possible.

As we can see, EvoAlg is capable of calculating better solutions if more schedules
are evaluated and EvoAlg outperforms the rest of the algorithms in the 1_PRCPSP
in all cases. It also outperforms HGA in the PRCPSP even more clearly. EvoAlg with
5,000, 10,000, and 25,000 obtains better results than HGA with 10,000, 25,000, and
100,000 schedules, respectively. It seems that specific algorithms for the PRCPSP
are clearly better than algorithms for the RCPSP used for this purpose.

To study the behavior of EvoAlg when different number of interruptions are
allowed, Ballestín et al. (2009) tested EvoAlg in j120 in the
_PRCPSP with

 D 1; 2; 3, and unlimited (PRCPSP) with a limit of 10,000, 25,000, and 100,000
schedules. All versions have been set the same parameters, except for the number
of individuals in the population. The results are shown in Table 12.4(a)–(c) without
taking into account the 152 instances where the solution of HGA coincides with
the critical path length. The first column indicates the limit on the number of
schedules. Table 12.4(a) contains the average of CP_dev. The average and maximum

12 Integer Preemption Problems 247

Table 12.4 (a) CP_dev
depends on the number of
schedules calculated (j120),
(b) average improvement with
respect to HGA (j120), and
(c) maximum average
improvement with respect to
HGA (j120)

nschedules 0 1 2 3 Unlimited

(a)

5,000 32.54 29.91 29.30 29.12 29.03

10,000 32.04 29.53 28.92 28.76 28.68

25,000 31.52 29.02 28.48 28.33 28.29

100,000 30.95 28.41 27.95 27.83 27.74

(b)

5,000 1.85 2.26 2.38 2.45

10,000 1.78 2.18 2.29 2.35

25,000 1.77 2.12 2.21 2.25

100,000 1.81 2.11 2.19 2.25

(c)

5,000 8.26 9.93 9.15 9.82

10,000 7.34 7.34 8.33 8.72

25,000 7.34 7.59 9.68 9.68

100,000 7.34 9.35 8.13 8.33

improvement with respect to HGA are shown in Table 12.4(b) and (c) respectively.
The authors define the improvement obtained by the algorithm in the instance ins
as (HGA(ins) � Alg(ins))/Alg(ins), where HGA(ins) and Alg(ins) are the solutions
obtained in the instance ins by HGA and Alg respectively.

The results show that the algorithm obtains better results in all versions when
the number of generated schedules increases. As far as the difference between
interrupting activities or not, we can see that the difference decreases, although it
seems to stabilize and is still between 2.45 and 2.25 % in 1,00,000. The maximum
improvement does not decrease and the average improvement does not decrease
much either. Taking everything into account, preemption also seems to be useful
when many schedules are calculated.

EvoAlg applies double justification to each schedule generated. The goodness
of the double justification in the RCPSP was proven in Valls et al. (2005) where
the authors affirmed that this technique greatly improves the quality of the solution
obtained, without having to calculate more schedules. Ballestín et al. (2008) found
that statement was also valid in the case of interruption being allowed, by comparing
the solutions obtained by the algorithms Random, DJRandom, GA, and DJGA in
set j30 and j120. All algorithms in both problems and instance sets perform better
with DJ than without it. Concerning the problem 1_PRCPSP, double justification
improves both algorithms in both sets, and the improvement is greater than in the
RCPSP.

248 S. Quintanilla et al.

12.7 Time and Work Generalized Precedence Relationship
with Integer Preemption

When activity preemption is not allowed and tasks have fixed durations and fixed
resource requirements per period, the lag of a GPR can equivalently be expressed in
terms of elapsed time or in terms of work content carried out. However, both terms
are not equivalent when preemption is allowed. Quintanilla et al. (2012) presented
a complete study of work and time GPRs which includes proper definitions, a new
notation and all possible conversions among them.

When lags are expressed in terms of elapsed periods, the authors speak of
time GPRs and when lags are expressed in terms of percentage work content they
speak of work GPRs. A generalized precedence relationship can be represented by
means of four parameters: GPRij D .T; 'i ; 'j ;wt/. T indicates the relationship
type .SSmin

ij ; SFmin
ij ;FSmin

ij ;FFmin
ij ; SSmax

ij ; SFmax
ij ;FSmax

ij ;FFmax
ij /. If GPRij is a work

relationship, then wt D w and 'i and 'j are integer numbers between 0 and 100
indicating percentages. If GPRij is a time relationship, then wt D t and 'i and 'j
are integer numbers indicating time units.

Although we could think of 16 GPRs, 8 time and 8 work GPRs, it can be shown
that a maximal GPR (work or time) can be converted into an opposite direction
minimal GPR and vice versa, then we can consider only 8 different GPRs in total.

Next, we present the definitions for the minimal work GPRs, the corresponding
inequality and the equivalence with the maximal work GPRs, where t si .'i / is defined

as the minimum time instant at which 'i% of task i is completed and tfi .'i / as the
maximum time instant at which 'i% of task i still has to be completed:

• .SSmin
ij ; 'i ; 'j ;w/ means that the initial 'j% of task j can be completed only

if the initial 'i% of task i has been completed $ t sj .'j / � t si .'i / $
.SSmax

ji ; 'j ; 'i ;w/ $ the initial 'i% of task i must be finished at the completion
of the initial 'j% of task j .

• .SFmin
ij ; 'i ; 'j ;w/means that the process of the final 'j% of task j can be started

only if the initial 'i% of task i has been completed $ t
f
j .'j / � t si .'i / $

.FSmax
ji ; 'j ; 'i ;w/ $ the initial 'i% of task i must be finished at the start of the

process of the final 'j% of task j .
• .FSmin

ij ; 'j ; 'i ;w/ means that the initial 'j% of task j can be completed only if

the process of the final 'i% of task i has been started $ t sj .'j / � t
f
i .'i / $

.SFmax
ji ; 'j ; 'i ;w/ $ the process of the final 'i% of task i must have started at

the completion of the initial 'j% of task j .
• .FFmin

ij ; 'i ; 'j ;w/means that the process of the final 'j% of task j can be started

only if the process of the final 'i% of task i has been started $ t
f
j .'j / �

t
f
i .'i /$.FFmax

ji ; 'j ; 'i ;w/ $ the process of the final 'i% of task i must have
started at the start of the process of the final 'j% of task j .

12 Integer Preemption Problems 249

On the other hand, when preemption is allowed, t si .'i / may be different from

t
f
i .100� 'i /. Therefore, it is not true that a minimal work GPR of a given type can

be converted into a minimal work GPR of another type.
Time GPRs are equivalent to the classical GPR that has been extensively studied

(Bartusch et al. 1988, Demeulemeester and Herroelen 2002, Neumann et al. 2003).
For example and following the introduced notation, .SFmin

ij ; 'i ; 'j ; t/$ Cj �'j �
Si C 'i $ Cj � Si C 'i C 'j $.SFmin

ij ; 'i C 'j ; 0; t/ that in classical notation is
expressed as SFmin

ij D 'i C 'j . Any time GPR can be equivalently converted into a
time GPR in which 'i or 'j are equal to 0.

As the distance Ci � Si is not a constant (due to the preemption), it is not true
that a given work GPR, or time GPR, of a given type can always be converted into
any other type.

12.8 Conclusions

In this chapter we have studied how to deal with integer preemption in project
scheduling. Some preemption project scheduling problems previously introduced in
the literature have been described and some procedures introduced for the RCPSP
have been adapted to work with preemption. As well, some specific procedures for
the Maxnint_PRCPSP are presented. Computational results show that the specific
procedures outperform the adapted procedures. The generalized relationships when
preemption is allowed and the time lag depends on the work content need a special
treatment. A complete study of the different types of work GPRs with minimal and
maximal work content is presented. Computational results show that preemption
can be beneficial when trying to minimize Cmax.

Acknowledgements This research was partially supported by Ministerio de Ciencia e Innovación,
MTM2011-23546.

References

Ballestín F, Valls V, Quintanilla S (2008) Preemption in resource-constrained project scheduling.
Eur J Oper Res 189:1636–1152

Ballestín F, Valls V, Quintanilla S (2009) Scheduling projects with limited number of preemptions.
Comput Oper Res 36:2913–2925

Ballestín F, Barrios A, Valls V (2013) Looking for the best modes helps solving the MRCPSP/max.
Int J Prod Res 51:813–827

Bartusch M, Möhring RH, Radermacher FJ (1988) Scheduling project networks with resource
constraints and time windows. Ann Oper Res 16:201–240

Błażewicz J, Lenstra JK, RinooyKan AHG (1983) Scheduling subject to resource constraints:
classification and complexity. Discrete Appl Math 5:11–24

250 S. Quintanilla et al.

Demeulemeester E, Herroelen W (1996) An efficient optimal procedure for the preemptive
resource-constrained project scheduling problem. Eur J Oper Res 90:334–48

Demeulemeester E, Herroelen W (2002) Project scheduling: a research handbook. Kluwer
Academic, Norwell

Hartmann, S (1998) A competitive genetic algorithm for resource-constrained project scheduling.
Nav Res Logist 45:733–750

Hartmann S, Kolisch R (2000) Experimental evaluation of state-of-the-art heuristics for the
resource-constrained project scheduling problem. Eur J Oper Res 127:394–407

Kaplan LA (1988) Resource-constrained project scheduling with pre-emption of jobs. Unpublished
Ph.D. dissertation, University of Michigan, Ann Arbor

Kaplan LA (1991) Resource-constrained project scheduling with setup times. Unpublished paper,
Department of Management, University of Tennessee, Knoxville

Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained
project scheduling: an update. Eur J Oper Res 174(1):23–37

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Manag Sci 41:1693–703

Li F, Lai Ch, Shou Y (2011) Particle swarm optimization for preemptive project scheduling with
resource constraints. In: Proceedings of the IEEM 2011. IEEE, Singapore, pp 869–871

Michalewicz Z (1994) Genetic algorithms C data structures D evolution programs. Springer,
New York

Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce
resources. Springer, Berlin

Patterson JH (1984) A comparison of exact procedures for solving the multiple constrained
resource project scheduling problem. Manag Sci 30(7):854–867

Quintanilla S, Pérez A, Lino P, Valls V (2012) Time and work generalised precedence relationships
in project scheduling with pre-emption: an application to the management of service centres.
Eur J Oper Res 219:59–72

Valls V, Ballestín F, Quintanilla S (2005) Justification and RCPSP: a technique that pays. Eur J
Oper Res 165(2):375–386

Valls V, Ballestín F, Quintanilla S (2008) A hybrid genetic algorithm for the resource-constrained
project scheduling problem. Eur J Oper Res 85(2):495–508

Van Peteghem V, Vanhoucke M (2010) A genetic algorithm for the preemptive and non-preemptive
multi-mode resource-constrained project scheduling problem. Eur J Oper Res 201:409–418

Chapter 13
Continuous Preemption Problems

Christoph Schwindt and Tobias Paetz

Abstract In this chapter we are concerned with project scheduling problems
involving preemption of activities at arbitrary points in time. We survey the literature
on preemptive project scheduling and propose a classification scheme for these
problems. We then consider a project scheduling problem under continuous pre-
emption, flexible resource allocation, and generalized feeding precedence relations
between the activities. After providing a formal problem statement we reduce
the problem to a canonical form only containing nonpositive completion-to-start
time lags and investigate structural issues like necessary feasibility conditions and
preemption gains. Next, we develop an MILP formulation that encodes a schedule as
a sequence of slices containing sets of activities that are simultaneously in progress.
Moreover, feasibility tests, preprocessing methods, and a column-generated based
lower bound on the minimum project duration are presented. Finally, we report
on the results of an experimental performance analysis of the MILP model for the
project duration problem.

Keywords Column generation • Continuous preemption • Makespan minimiza-
tion • Mixed-integer linear programming formulation • Project scheduling •
Resource constraints

13.1 Introduction

This chapter is devoted to resource-constrained project scheduling problems in
which the activities can be interrupted during their execution at any point in time.
While there exists a considerable body of papers dealing with the case of job
preemptions in machine and processor scheduling, preemptive resource-constrained
project scheduling has received much less attention. On the other hand, there exist

C. Schwindt (�) • T. Paetz
Institute of Management and Economics, Clausthal University of Technology,
Clausthal-Zellerfeld, Germany
e-mail: christoph.schwindt@tu-clausthal.de; tobias.paetz@tu-clausthal.de

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_13

251

mailto:christoph.schwindt@tu-clausthal.de
mailto:tobias.paetz@tu-clausthal.de

252 C. Schwindt and T. Paetz

many practical scheduling problems in which resource units have to be allocated to
divisible activities over time.

Examples of such applications include aggregate project planning, finite capacity
scheduling, the remote dispatch of controllable electric appliances, or scheduling
multi-processor tasks on parallel microprocessors of a computer system. When
dealing with long-term undertakings like development or construction projects, it
is generally expedient to start with a rough-cut planning model and to iteratively
refine the project plan according to a hierarchical project planning approach (see
Neumann et al. 2003, Sect. 3.10). At the higher planning levels, the projects are
represented in an aggregate form where the activities to be scheduled represent
subprojects or working packages. In such a project scheduling setting, there is
commonly no need to assume that these aggregate activities must not be interrupted.

In production planning and control systems, finite capacity scheduling FCS
receives time-phased production orders from the materials requirements planning
(MRP) module and schedules these orders under resource constraints, before
releasing them to the shop floor. Since MRP creates the production orders using
methods for uncapacitated lot sizing, it is often necessary to split the orders on
the FCS level to be able to meet the planned completion times of the orders. FCS
problems can be modeled as resource-constrained project scheduling problems, the
activities corresponding to the production orders (see, e.g., Franck et al. 1997).

An important objective of short-term scheduling in smart grids consists in the
leveling of power demands over time. To reduce the load during peak usage periods,
electric utility companies may switch off certain devices like electric heating
facilities, air-conditioning plants, or cold storage houses, which can be controlled
remotely via metering and communication technology. The heating or cooling tasks
of these devices can be interpreted as interruptible activities, whose executions must
be scheduled under temperature interval conditions.

In a multi-microprocessor computer system, a computing job requires one or
more processors at a time. The scheduling of such jobs on the processors is
termed multi-processor tasks scheduling in machine scheduling. When considering
a central system with parallel (i. e., non-distributed) processors, communication
times between the processors can be integrated into the processing time of the job
and no communication delays need be considered. In certain applications, the jobs
can be interrupted and resumed later at (nearly) no cost. Moreover, there may exist
precedence relations between the jobs, e.g., if the jobs correspond to modules of a
computer program. In such a setting, some modules may be processed concurrently
on different processors, whereas other modules cannot be carried out in parallel
since the output of one module is required as input of other modules. Various models
and methods for multi-processor task scheduling can be found in Chap. 6 of the book
by Błażewicz et al. (2007).

The remainder of the chapter is organized as follows. In Sect. 13.2 we review
the literature on preemptive project scheduling problems. Section 13.3 is dedicated
to a generic scheduling problem including continuous activity preemption and
generalized feeding precedence relations between the activities. In Sect. 13.4 we
study alternative representations of the problem, feasibility conditions, and potential

13 Continuous Preemption Problems 253

preemption gains. An MILP formulation of polynomial size for the problem is
proposed in Sect. 13.5, which also addresses the question of the maximum number
of slices that are needed for encoding optimal schedules. In Sect. 13.6 we devise
feasibility tests and preprocessing techniques, which can be used to reduce the
CPU time requirements of commercial solvers on instances of the MILP model.
Moreover, we explain how effective lower bounds on the minimum project duration
can be obtained by solving a large-scale linear program via column generation.
Section 13.7 presents the results of an experimental performance analysis of
the model and the lower-bounding procedure for the minimum project duration
problem. The chapter concludes with a brief summary and some remarks on future
research directions in Sect. 13.8.

13.2 Literature Survey on Preemptive Project Scheduling

In this section we first develop a classification scheme for various preemptive
resource-constrained project scheduling problems that have been studied in the
literature. Next, we survey the different types of solution approaches that have been
proposed for preemptive project scheduling.

13.2.1 Classification of Preemptive Project Scheduling
Problems

Several variants of preemptive project scheduling problems with renewable re-
sources have been studied in the literature. These variants can be classified
according to attributes such as the type, the potential causes, and the maximum
allowable number of preemptions, the flexibility of the resource allocation, and the
type of precedence relations between the activities.

With respect to the type of interruptions, we may distinguish between the cases
of integer, discrete, and continuous preemptions. Integer preemption, which is also
referred to as integral preemption, assumes that interruptions can only occur at
integral points in time. Remarkably, this problem setting has been a common (and
mostly tacit) assumption in preemptive project scheduling for a long time. Integer
preemption project scheduling problems are studied in Chap. 12 of this handbook.
Project scheduling under continuous preemption, which allows activities to be
suspended at any wanted moments, was already investigated in the seminal paper
by Słowiński (1980). Only recently, however, the case of continuous preemption
in project scheduling has been taken up again. Continuous preemption is sometimes
also called rational preemption in the literature (see, e.g., Damay 2008). In a discrete
preemption setting, the interruption of an activity is limited to a finite set of points
in time at which the activity has attained one of the predefined progress portions.

254 C. Schwindt and T. Paetz

In practice, there may exist various causes for planned activity interruptions.
For example, an activity may be interrupted because some renewable resource
becomes unavailable during a rest time or a planned maintenance operation. It is
then generally assumed that the activity must be resumed as soon as the resource
is available again. In the context of a scheduling problem, this kind of preemptions
must be considered explicitly if not all resources are unavailable at the same time or
if some activities must not be interrupted. Project scheduling problems with activity
calenders have been considered by Franck et al. (2001b). An activity calendar
specifies individual intervals for each activity during which it cannot be processed.
A related problem setting in which each activity is associated with one of a given
number of cyclic work/rest patterns has been studied by Yang and Chen (2000)
and Vanhoucke et al. (2002) under the name of time-switch constraints (see also
Chap. 30 of this handbook). Another example of a reason for suspending an activity
is the release of some activity with higher priority. This case is referred to as
selective preemption in scheduling (see Damay 2008). In the most general and most
common setting, which we will call discretionary preemption in what follows, an
activity can be interrupted for any reason. In particular, it may be necessary to
consider discretionary preemption when seeking for a compact schedule. This point
becomes immediately clear by considering the preemptive parallel machine problem
P2 j pmtn; pj D 1 j Cmax with three jobs of equal priority. The minimum makespan
of 1.5 time units can only be attained by suspending the execution of some job at
time 0.5 and resuming the same job at time 1.0 on the other machine.

In a preemptive scheduling problem, the number of interruptions per activity
is usually not explicitly limited to some prescribed upper bound. As we will see
later on, the number of interruptions required for obtaining an optimal preemptive
schedule is often polynomially bounded in the number of activities. Since any
interruption may incur additional cost, some authors have also studied preemptive
project scheduling problems with an a-priori limit on the number of interruptions
(see, e.g., Ballestín et al. 2008 or Li et al. 2011 for the case with at most one
interruption per activity and Ballestín et al. 2009 or Chap. 12 of this handbook for
the more general case where a limited number of interruptions are allowed for each
activity).

The allocation flexibility specifies the way in which the reallocation of resource
units can be performed when an activity is resumed after having been interrupted.
In the more restrictive setting of an inflexible allocation, each activity must be
carried out by the same resource units during the entire processing time. Otherwise,
we speak of a flexible resource allocation. An inflexible resource allocation is
generally encountered when dealing with human resources. A resource unit then
represents a staff member and switching the resource unit after an interruption
would require extensive briefing or instruction of the person pursuing the activity.
A preemptive project scheduling problem with inflexible resource allocation is
considered in Chap. 28 of this handbook. In the more common flexible allocation
case, the resource units may be reallocated at no cost every time an activity is
resumed. The example of the preemptive parallel machine scheduling problem
mentioned above shows that in general a resource reallocation is necessary to obtain
an optimal schedule.

13 Continuous Preemption Problems 255

Like in non-preemptive project scheduling, we may further distinguish between
different types of precedence relations among the activities. Ordinary precedence
relations ensure that an activity can only be started when all of its predecessors
have been completed. An immediate generalization of this setting arises when we
consider generalized precedence relations in the form of minimum and maximum
time lags between the start or completion times of the activities. In difference to non-
preemptive scheduling, however, the time lag between the start and the completion
time of an activity is not given in advance. Consequently, a completion-to-start
time lag between two activities cannot be transformed into an equivalent start-to-
start time lag. That is why the concept of (ordinary) feeding precedence relations
has been proposed by Kis (2005). A feeding precedence relation requires that an
activity can only be started when the preceding activity has been executed to a given
percentage. We may think of the preceding activity as being decomposed into two
parts, the initial part representing the execution of the activity up to the specified
percentage and the final part corresponding to the rest of the activity. Alfieria et
al. (2011) considered three further types of feeding precedence relations, which
enforce an activity to be started or to be completed, respectively, no later than the
initial part of the preceding activity was finished or guarantee that an activity is
not completed before the initial part of the preceding activity was finished (these
types of precedence relations are also discussed in Chap. 56 in the second volume
of this handbook). Recently, Quintanilla et al. (2012) introduced a more general
type of constraints called generalized work relationships, which define ordinary
precedence relations between the initial part of the preceding and the final part
of the succeeding activity (see also Chap. 12 of this handbook). In Sect. 13.3
we will present the concept of generalized feeding precedence relations, which
includes all of the above types of precedence relations that are applicable in the
case of continuous preemption problems. A generalized feeding precedence relation
between two activities defines a minimum or a maximum time lag between the
initial and final parts of two activities. As we will show in Sect. 13.4, generalized
feeding precedence relations can always be reduced to (possibly negative) minimum
completion-to-start time lags by representing the individual parts as independent
activities.

Table 13.1 summarizes the classification of preemptive project scheduling
problems discussed in this section, the characteristics of the problem considered
in this chapter being set in italics.

13.2.2 Solution Approaches to Preemptive Project Scheduling
Problems

The earliest reference to a preemptive project scheduling problem we are aware of
is the paper by Słowiński (1980). In this work, besides further types of scheduling
problems, the preemptive project scheduling problem PS j prec; pmtn j Cmax

256 C. Schwindt and T. Paetz

Table 13.1 Classification of
preemptive project scheduling
problems

Attribute Characteristics

Type of preemptions Integer (integral)

Discrete

Continuous (rational)

Causes of preemptions Calendars

Selective

Discretionary

Number of preemptions Limited

Unlimited

Resource allocation Inflexible

Flexible

Type of precedence relations Ordinary precedence relations

Ordinary feeding relations

Generalized work relationships

Generalized feeding precedence

relations

with continuous preemption, flexible resource allocation, and ordinary precedence
relations is solved based on a large-scale linear program containing a nonnegative
duration variable for each set of activities that can be executed in parallel. In
what follows, we will refer to such a set of activities as a feasible antichain of
the precedence order. The linear program can be solved with the revised simplex
algorithm. However, the linear program must be set up with only a subset of all
feasible antichains, otherwise the solution of the linear program may violate some
transitive precedence relations. That is why Słowiński suggests to generate the
subset of antichains using a heuristic method presented in Słowiński (1978). The
linear program containing a decision variable for each feasible antichain constitutes
a relaxation of the problem in which the (direct and transitive) precedence relations
are replaced by disjunctive constraints preventing the simultaneous execution of
precedence-related activities. We will refer to this problem as the disjunctive
relaxation.

The general idea of Słowiński’s problem formulation was readopted by Mingozzi
et al. (1998), Brucker and Knust (2000), and Baptiste and Demassey (2004) for
computing lower bounds on the minimum duration of non-preemptive projects
by solving the disjunctive relaxation (see Chap. 3 of this handbook). The same
formulation is also the starting point of an exact branch-and-bound algorithm for
PS j prec; pmtn j Cmax, which has been proposed by Damay et al. in 2007. The main
idea of the method consists in solving the linear program with a column-generation
approach, which will be discussed in Sect. 13.6.4. If the resulting solution is feasible
with respect to the precedence relations, any sequence of the active antichains
respecting the precedence relations gives rise to an optimal solution. Otherwise,
the solution induces an oriented cycle in a directed graph containing all active
antichains as nodes and the precedence relations among the active antichains as
arcs. In this case, the algorithm selects one �-minimal directed cycle and branches

13 Continuous Preemption Problems 257

over all alternatives to break the cycle by forbidding the parallel execution of
two activities jointly contained in one of the antichains on the cycle. In addition
to the branch-and-bound procedure, Damay et al. (2007) also develop an order-
theoretical characterization of basic solutions to Słowiński’s linear program that
can be translated into a precedence-feasible sequence of antichains. Furthermore,
they devise a heuristic descent and neighborhood search methods for a generalized
version of the problem in which some but not necessarily all activities may be
interrupted. These methods rely on Słowiński’s LP formulation of the disjunctive
relaxation.

The increase in problem complexity that is due to the possibility of splitting
activities is considerably reduced when only integer preemptions are permitted.
Integer preemption problems of type PS j prec; pmtn=int j f are amenable
to classical time-indexed MILP formulations, which, e.g., were proposed in the
doctoral dissertation of Kaplan (1988) for the project duration f D Cmax. A
combinatorial branch-and-bound algorithm for the case of integer preemptions
was presented by Demeulemeester and Herroelen (1996). The basic idea consists
in decomposing each activity into a sequence of unit-duration subactivities. The
resulting project scheduling problem is then solved with an adapted version of
a branch-and-bound algorithm for the non-preemptive case. Vanhoucke (2008)
followed a similar approach for an integer preemption problem with setup times, in
which the duration of an activity may also be shortened by processing several parts
of the activity in parallel (fast-tracking). Nadjafi and Shadrokh (2008) presented
a time-indexed MILP for the integer preemption problem with activity due dates
and preemption costs. The objective function is composed of earliness and tardiness
costs for the completion of the activities as well as costs incurred for the interruption
of the activities. Similarly to the approaches by Demeulemeester and Herroelen and
Vanhoucke, the decision variables of the model refer to the subactivities that arise
from splitting the activities into unit-duration tasks.

Several authors proposed adaptations of priority-rule based methods to the case
of activity preemptions (see, e.g., Richter and Yano 1986 and Kaplan 1988).
Due to the way in which the serial and the parallel schedule-generation schemes
dispatch the activities, these methods are implicitly dedicated to the case of an
inflexible resource allocation and may systematically exclude optimal schedules.
As already noticed by Damay (2008), it seems difficult to obtain optimal solutions
to continuous preemption problems with flexible resource allocation by applying
iterative schedule-construction procedures since the interruption of an activity is
not necessarily caused by the completion or the release of another activity.

Bianco et al. (1999) considered the variant PSm; 1 j prec; pmtn=int j Cmax of
the integer preemption problem with unary resources. They show that the problem
is equivalent to a precedence-constrained weighted vertex coloring problem of the
disjunctive activity-on-node graph in which incompatible activities are connected
by edges. Each color corresponds to a unit time period, and the problem consists in
assigning each node a set of color indices such that the number of allotted colors
coincides with its duration, the color sets of incompatible activities are disjoint, the

258 C. Schwindt and T. Paetz

minimum color index of an activity is greater than the maximum color index of any
of its predecessors, and a minimum number of different colors is needed. For solving
this coloring problem, the authors devise an adapted version of a branch-and-bound
algorithm for the weighted vertex coloring problem.

Integer preemption problems with a limited number of interruptions per activity
were studied by Ballestín et al. (see also Chap. 12 of this handbook). In a paper of
2008 they focus on the problem in which each activity can be interrupted at most
once. The serial schedule-generation scheme and the so-called double-justification
technique are adapted to accommodate this problem setting. Double justification
is a schedule-improvement procedure which starting from some feasible schedule
performs backward and then forward scheduling of the activities in nonincreasing
order of completion times and nondecreasing order of start times, respectively. In
Ballestín et al. (2009) the general case of a given maximum number i of activity
interruptions is investigated. Each activity is decomposed into a series of i C 1

subactivities representing the non-preemptive execution of a part of the activity. In
difference to the approach by Demeulemeester and Herroelen (1996), the durations
of the subactivities are not given in advance but are integer decision variables,
bounded from below by some given minimum execution time during which no
interruption is allowed. The problem is solved with an evolutionary algorithm
encoding the individuals by pairs of a subactivity list and an associated duration
vector and decoding the individuals into schedules by means of an adapted version
of the serial schedule-generation scheme.

The multi-mode project scheduling problem MPS j prec; pmtn j Cmax with
continuous preemptions and flexible mode assignment was already investigated by
Słowiński (1980). The linear programming formulation of the disjunctive relaxation
can easily be generalized to the case of alternative execution modes and limited
nonrenewable resources. Based on this formulation, good feasible schedules can be
generated in a similar way to the single-mode problem.

Several authors dealt with multi-mode integer preemption problems with inflex-
ible mode assignment. In difference to the problem studied by Słowiński, they
assume that the mode assignment is inflexible, i. e., that an activity must be resumed
in the execution mode in which it had been processed before. Nudtasomboon
and Randhawa (1997) presented a time-indexed binary linear programming model
for the minimum duration, the minimum execution cost, and a resource leveling
objective function. Moreover, they devise a goal programming formulation for the
multi-criteria variant of the problem. The developed branch-and-bound methods are
based on the principles of an implicit enumeration algorithm for the non-preemptive
multi-mode project scheduling problem MPS j prec j Cmax by Talbot and an implicit
enumeration method for binary goal programming, respectively. Van Peteghem
and Vanhoucke (2010) present a bi-population genetic algorithm for the project
duration version of the problem, which combines the serial schedule-generation
scheme with a mode improvement procedure. Like in the approach by Demeule-
meester and Herroelen (1996), the option to interrupt activities at integral points
in time is represented by splitting each activity into a sequence of unit-duration
subactivities.

13 Continuous Preemption Problems 259

A variant of the problem with renewable resources of time-varying capacities
is discussed in Buddhakulsomsiri and Kim (2006). In addition to a time-indexed
MILP problem formulation, the authors describe a branch-and-bound algorithm
adapted from the precedence tree algorithm by Hartmann and Drexl (1998) for the
non-preemptive problem. An extensive experimental performance analysis of the
algorithm shows that activity preemption may significantly reduce the minimum
project duration when resources are not permanently available due to vacations or
scheduled downtimes. Buddhakulsomsiri and Kim (2007) proposed a priority-rule
based method for the same problem, which is based on the concept of a moving
resource strength. In each iteration of the schedule-generation scheme, the moving
resource strength is computed as the ratio of the mean and the maximum resource
capacity that is available in the time interval between the minimum earliest start
time and the minimum latest start time of some eligible activity. A small value of
the ratio indicates that the splitting of the activity to be scheduled is encouraged.

13.3 The Preemptive Resource-Constrained Project
Scheduling Problem With Generalized Feeding
Precedence Relations

The balance of this chapter is devoted to a generic resource-constrained project
scheduling problem, which includes the cases of preemptive and non-preemptive
activities, continuous, discrete, and integer preemptions, as well as ordinary feeding
relations and generalized work relationships. In Sect. 13.3.1 we define the problem
under consideration and provide a descriptive model. In Sect. 13.3.2 we elaborate
on the semantic power of the problem setting and explain how non-preemptive
activities and the different types of preemptions and precedence relations can be
represented within this framework.

13.3.1 Problem Definition and Descriptive Model

We consider a project comprising a set V of n activities i with deterministic
durations pi 2 Z�0. To execute the activities, a set R of renewable resources k
with capacities Rk 2 N is available. During its execution, each activity i requires
rik 2 Z�0 units of resources k 2 R. According to the continuous preemption and
flexible resource allocation settings, the processing of an activity may be stopped
at any point in time and resumed later on using an arbitrary set of rik available
units of each resource k. A solution to the scheduling problem can be specified as
a trajectory x W t 7! .xi .t//i2V , where xi .t/ 2 Œ0; 1� denotes the percentage of
activity i that has been processed by time t � 0. In what follows, we will refer to
this percentage as the relative progress of activity i at time t . For activities i 2 V

260 C. Schwindt and T. Paetz

with pi D 0 representing project events we adopt the convention that xi .t/ D 1 at
the occurrence time of i . The project is completed when all activities i have been
executed with their respective durations pi , i. e., when xi .t/ D 1 for all i 2 V .

Obviously, it holds that 0 � xi .t C�t/ � xi .t/ � �t=pi for any t � 0 and any
�t � 0 if pi > 0. Consequently, the right-hand derivative

dCxi
dt

.t/ D lim
�t#0

xi .t C�t/ � xi .t/
�t

(
� 0 and
� lim�t#0 �t=pi�t

D 1
pi

of function xi .t/ exists for each real activity i 2 V and any t � 0. As it
has been shown by Baptiste et al. for a more general scheduling problem, each
feasible instance of the problem admits a solution with a finite number of activity
interruptions (Lemma 2 in Baptiste et al. 2004 or Theorem 3.4 in Baptiste et al.
2011). That is why for each i 2 V with pi > 0, function xi .t/ is piecewise linear
and the right-continuous function

yi .t/ WD pi � dCxi
dt

.t/

equals one precisely if activity i is in progress at time t and zero, otherwise. Hence,
the resource constraints of the scheduling problem can be stated as

X

i2V 0

rikyi .t/ � Rk .k 2 RI t � 0/ (13.1)

where V 0 WD fi 2 V j pi > 0g. For events i 2 V we define yi .t/ WD 1 if
t D minft 0 j xi .t 0/ D 1g and yi .t/ WD 0, otherwise.

We assume that for certain pairs .i; j / of activities i; j 2 V , a generalized
feeding precedence relation�ij D .�i ; �j ; ıij/with �i 2 �0; 1�\Q and �j 2 Œ0; 1Œ\Q

must be observed. Precedence relation �ij requires that the final portion 1 � �j of
activity j can be started ıij time units after activity i attained relative progress �i at
the earliest. Let

t�i .�/ WD minft j xi .t/ � �g .0 < � � 1/ and

tCi .�/ WD supft j xi .t/ � �g .0 � � < 1/

be the earliest and latest times t � 0, respectively, at which activity i has been
executed to portion �. The reason why the supremum is needed in the definition
of tCi .�/ is that by the above convention, function xi .t/ is a right-continuous step
function for events i . We note that the start and completion times Si and Ci of
activity i can be expressed as Si D tCi .0/ and Ci D t�i .1/, where Si D Ci for
events i 2 V .

13 Continuous Preemption Problems 261

Let E � V � V be the set of activity pairs .i; j / for which a precedence
relation �ij has been specified. The generalized feeding precedence relations are
stated as the inequalities

tCj .�j / � t�i .�i /C ıij ..i; j / 2 E/ (13.2)

If time lag ıij is negative, �ıij > 0 can be interpreted as a maximum time lag
between time points tCj .�j / and t�i .�i /. Since supft j xj .t/ � �gD infft j xj .t/>�g
for all � < 1, the left-hand side tCj .�j / of constraint (13.2) equals the earliest point
in time at which the relative progress of j exceeds �j .

Furthermore, we point out that precedence relations of type �ij D .0; �j ; ıij/

and �ij D .�i ; 1; ıij/ cannot be established, given that t�i .0/ and tCi .1/ have
not been defined. These precedence relations, however, would not be meaningful
because they could be satisfied by interrupting activity i immediately after its start
or interrupting activity j immediately before its completion, respectively. More
generally, constraints that arise from replacing function tCj by t�j or function t�i
by tCi in inequality (13.2) are not purposeful either in the context of continuous
preemption. For example, the constraint t�j .�j / � t for some right-hand side t says
that the initial portion �j of activity j must not be completed before time t . In case
of continuous preemption, portion �j � " of activity i with arbitrarily small " > 0

can still be completed before time t , rendering the feasible region of the scheduling
problem non-closed and hence the scheduling problem possibly infeasible even
when the feasible region is nonempty. A similar reasoning applies to constraints
of type tCi .�i / � t . These observations also become clear by taking into account
that inequality (13.2) defines a minimum time lag ıij between the completion of the
initial portion �i of activity i and the start of the final portion 1��j of activity j . By
altering the superscriptsC or�, one would define start-to-start, start-to-completion,
and completion-to-completion relations between the two parts of activities i and j .
As we have seen before, these relations are not meaningful when (parts of) activities
can be continuously interrupted.

Example 13.1. We consider a precedence relation�ij D .0:25; 0:4; 3/ between two
preemptive activities i and j with durations pi D 4 and pj D 5. Suppose that
activity i is executed in time intervals Œ0; 1Œ and Œ3; 6Œ and activity j is in progress
in intervals Œ0; 2Œ and Œ4; 7Œ. Figure 13.1 shows the corresponding Gantt chart and
the graphs of functions xi and xj . Activity i attains relative progress �i D 0:25 at
time t D t�i .�i / D 1, and the latest point in time at which the relative progress of j
equals �j D 0:4 is t D tCj .�j / D 4. Since tCj .�j / D 4 � t�i .�/C ıij D 1C 3, the
schedule for activities i and j satisfies the precedence relation.

We show that inequality (13.2) models the requirement that earlier than ıij time
units after the percentage �i of activity i has been completed, the relative progress
of activity j must not exceed �j . This can be seen as follows, the third equivalence
following from the nondecreasing property of function xj .

262 C. Schwindt and T. Paetz

Fig. 13.1 Definition of generalized feeding precedence relations

tCj .�j / � t�i .�i /C ıij

, supft j xj .t/ � �j g � minft j xi .t/ � �i g C ıij

, infft j xj .t/ > �j g � minft j xi .t/ � �i g C ıij

, .xj .t
0/ > �j) t 0 � minft j xi .t/ � �i g C ıij/

, .t 0 < minft j xi .t/ � �i g C ıij) xj .t
0/ � �j /

Let f .x/ denote the objective function value of solution x for the scheduling
problem under consideration. For example, f may be chosen to be the project
duration or makespan Cmax D maxi2V Ci . The resulting resource-constrained
project scheduling problem PS j temp; feed; pmtn j f with continuous preemptions,
flexible resource allocation, and generalized feeding precedence relations can be
written as

.P /

(
Min. f .x/

s. t. Eqs. (13.1) and (13.2)

As we will see later on, problem .P / also includes the case of non-preemptive
activities. Hence, .P / is a generalization of the non-preemptive project scheduling
problem PS j temp j f , for which the feasibility variant is known to be strongly
NP-complete.

In project scheduling with generalized precedence relations, it is customary to
represent the project as an activity-on-node network N D .V;E;�/ with node
set V , arc set E , and arc weights �. For notational convenience it is assumed
that in addition to the n project activities, set V also contains a project beginning

13 Continuous Preemption Problems 263

0
0

0

i
4

4

j
1

2

j
4

2

i

4

1

5
0

0

i

pi

ri

j

p j

r j

(1,0,0)

(1,0,0)

(1,0,1)

(1,0.75,−4)

(0.75,0.25,−1)

(1,0,−7)

(1,0,−1)

(1,0,0)

(1,0,0)

(1,0,0)

Legend:

(ξi ξ j δij)

Fig. 13.2 Example project with four real activities and one resource with capacity R D 4

event i D 0 with Si D 0 and a project termination event i D n C 1 with
CnC1 D Cmax. Network N contains an arc for each pair .i; j / of activities i and
j for which a precedence relation �ij has been defined. In difference to the case of
non-preemptive scheduling, set E may also contain loops and parallel arcs. A loop
.i; i/ 2 E with �ii D .�1i ; �

2
i ; ıii/ defines a prescribed lag of ıii time units between

the moments when activity i reaches relative progress �1i and starts being processed
beyond percentage �2i . For example, if �1i D 1 and �2i D 0, the precedence relation
implies Ci � Si � �ıii, which means that activity i must not be interrupted longer
than �ıii � pi time units. In particular, if ıii D �pi , activity i is non-preemptive.
Parallel arcs .i; j /1 and .i; j /2 belonging to different precedence relations �1

ij and
�2

ij may also be meaningful since in general the corresponding inequalities cannot
be reduced to a single constraint of type (13.2). In Sect. 13.4.1 we will develop a
canonical representation of our problem for which without loss of generality we
may assume that the project network is a simple digraph with loops but without
parallel arcs.

Example 13.2. Consider the project with four real activities i; i 0; j; j 0 and a single
renewable resource of capacity R D 4 represented by the activity-on-node
network N depicted in Fig. 13.2. The arcs emanating from node 0 ensure that no
activity is started before the project beginning, and the arcs leading to node 5
guarantee that all activities are terminated when the project is completed. The
oriented cycle containing nodes i and j expresses the requirement that activity j
can only be started one time unit after the completion of activity i and that activity j
must be completed four time units after the last quarter of activity i was started. The
loop .j; j / prevents activity j from being interrupted.

Figure 13.3 shows a schedule for the execution of the four activities with the
minimum makespan Cmax D 8:5. The example illustrates that even though all
activity durations pi and all durations pi ��i of parts of activities are integral, certain
activities are started or completed at non-integral points in time. Moreover, one and

264 C. Schwindt and T. Paetz

Fig. 13.3 Schedule with minimum makespan for example project

the same activity set may be in progress in different time intervals, and two activity
sets may alternate several times.

13.3.2 Semantic Power of the Model

The preemptive project scheduling problem .P / defined in the previous section
includes most of the preemptive project scheduling problems considered in the
literature as special cases. As we already noticed, interruptions of an activity i can
be prevented by adding the precedence relation �ii D .1; 0;�pi/, which defines a
maximum time lag of pi time units between start time Si and completion time Ci .
Consequently, .P / is a generalization of respective non-preemptive scheduling
problems. The case of discrete preemption can be modeled as follows. Assume
that activity i can be interrupted precisely t1; t2; : : : ; t� time units after its start. We
then split activity i into a sequence of subactivities i1; i2; : : : ; i�; i�C1 with durations
t1; t2 � t1; : : : ; t� � t��1; pi � t� , introduce completion-to-start precedence relations
�i�i�C1

D .1; 0; 0/ between any two subsequent subactivities i� and i�C1 and
prevent the interruption of all subactivities i� by maximum time lags. Since integer
preemption is a special case of discrete preemption, integer preemption problems
are included as well.

With respect to the type of precedence relations, the model is very generic. Of
course, an ordinary precedence relation between two activities i and j can be repre-
sented by relation�ij D .1; 0; 0/. A delayed precedence relation imposing a time lag
ımin

ij > 0 between the completion of activity i and the start of activity j corresponds
to the case of �ij D .1; 0; ımin

ij /, whereas a maximum start-to-completion time lag
ımax

ij between i and j can be modeled as relation �ji D .1; 0;�ımax
ij /. A relation

�ij D .1; 0; ıij/ with arbitrary ıij is termed a time relationship and denoted by
.FSmin

ij ; 'i ; 0; t/ with 'i D ıij by Quintanilla et al. (2012), see also Chap. 12 of
this handbook. More generally, the relation �ji D .�j ; �i ;�ımax

ij / with ımax
ij > 0

gives rise to the maximum time lag constraint t�j .�j / � tCi .�i / C ımax
ij , which

ensures that activity j attains relative progress �j not later than ımax
ij time units after

the final portion 1 � �i of activity i was started. An ordinary feeding precedence
relation stating that activity j can only be started when �i � 100% of activity i have
been completed (i. e., Sj � t�i .�i /) is represented by relation �ij D .�i ; 0; 0/. As

13 Continuous Preemption Problems 265

mentioned in Sect. 13.2.1, three further types of feeding precedence relations have
been introduced by Alfieria et al. (2011), corresponding to the inequalities Sj �
t�i .�i /, Cj � t�i .�i /, and Cj � t�i .�i /. Neither of these constraints is purposeful
in the context of continuous preemption. The second inequality, however, could be
slightly modified to Cj � tCi .�i /, being equivalent to relation �ji D .1; �i ; 0/.
For the generalized work relationships proposed by Quintanilla et al. (2012), an
analogous observation can be made. The work relationship .SF min

ij ; 'i ; 'j ;w/ states
that the final 'j % of activity j can only be started when the initial 'i % of
activity i have been completed, i. e., tCj .1� 'j=100/ � t�i .'i=100/. Such a relationship
can be expressed as relation �ij D .'i=100; 1 � 'j=100; 0/. The three remaining
types of work relationships giving rise to the inequalities t�j .'j=100/ � t�i .'i=100/,
t�j .'j=100/ � tCi .1�'i=100/, and tCj .1�'j=100/ � tCi .1�'i=100/ cannot be formulated
in our framework given that they are not meaningful when coping with continuous
preemption (recall our discussion in Sect. 13.3.1).

Finally, we show that generalized feeding precedence relations may also serve to
define lower and upper bounds on the relative progress of an activity with positive
duration. We consider some relation �ij D .�i ; �j ; ıij/. Due to the nondecreasing
property and the continuity of function xj , the respective inequality tCj .�j / D
supft j xj .t/ � �j g � t�i .�i /C ıij DW t 0 is equivalent to the constraint �j � xj .t 0/,
which imposes upper bound �j on the relative progress of activity j at time t 0.
Symmetrically, the inequality can also be written as t 00 WD tCj .�j / � ıij � t�i .�i / D
minft j xi .t/ � �i g, which is equivalent to lower bounding condition xi .t 00/ � �i .

13.4 Structural Issues

In this section we first present a reduction of our problem to a canonical representa-
tion, which significantly facilitates the analysis. Furthermore, following the general
approach of Słowiński for continuous preemptive project scheduling problems,
we give an alternative interpretation of the problem as a sequencing problem of
resource-feasible activity sets of variable duration. Next, we develop necessary
feasibility conditions, which may be checked in a preprocessing step of a solution
procedure to detect infeasible instances. Finally, we are concerned with preemption
gains for the project duration problem, i. e., with the question of how large the
relative improvement in the makespan can become when we move from a non-
preemptive to a preemptive problem setting.

13.4.1 Alternative Representations of the Problem

We begin by proving the following proposition, which allows us to restrict ourselves
to precedence relations�ij D .1; 0; ıij/ with ıij � 0. We say that a problem instance

266 C. Schwindt and T. Paetz

is in canonical form if all precedence relations are specified in this manner. In
what follows, we will designate completion-to-start minimum time lags between
activities i and j by ıcs

ij .

Proposition 13.1 (Canonical Representation). Any instance of PS j temp; feed;
pmtn j f can be transformed into an equivalent instance of problem PS j
temp; pmtn j f containing only nonpositive and integral completion-to-start
minimum time lags and no parallel arcs in the project network.

Proof. Consider a generalized feeding precedence relation �ij D .�i ; �j ; ıij/. As
already mentioned, the relation can be interpreted as a completion-to-start time lag
between the initial portion �i of activity i and the final portion 1 � �j of activity
j . That is why we split both activities i and j into two parts i1; i2 and j1; j2 with
durations pi1 D �i � pi , pi2 D .1 � �i / � pi , pj1 D �j � pj , and pj2 D .1 � �j / �
pj . The precedence relation is then translated into the completion-to-start relation
�i1j2 D .1; 0; ıcs

ij / between activities i1 and j2. Furthermore, we link the two parts
belonging to the original activities by completion-to-start relations�i1i2 D �j1j2 D
.1; 0; 0/ and replace arcs that lead to the original nodes i or j by arcs leading to
the respective initial parts i1 or j1 and arcs that emanated from nodes i or j by arcs
emanating from the respective final parts i2 or j2. In case that there exist more than
one generalized feeding precedence relation involving one and the same activity i or
j of duration p and these relations refer to � > 1 different portions �, the portions
are sorted in increasing order �1; �2; : : : ; �� and the activities are partitioned into
� C 1 parts with durations p� D .�� � ���1/ � p > 0 for � D 1; : : : ; � C 1,
where �0 WD 0 and ��C1 WD 1. Next, we eliminate any delayed precedence relation
�ij D .1; 0; ıij/ with positive time lag ıij > 0 by introducing a dummy activity h of
duration h D ıij and replacing the original relation �ij by two ordinary precedence
relations �ih D �hj D .1; 0; 0/. Now assume that arc set E contains parallel arcs,
say .i; j /1 and .i; j /2. We can substitute the parallel arcs into a single arc .i; j /
with weight ıcs

ij D maxfıcs
.ij/1
; ıcs
.ij/2
g. Finally, we multiply all time lags and activity

durations by the least common denominator of all ıcs
ij to obtain integral time lags.

ut
According to Proposition 13.1, we may replace inequality (13.2) in the definition

of problem .P / by the simpler constraint

Sj � Ci C ıcs
ij ..i; j / 2 E/ (13.3)

Example 13.3. We return to the problem instance with four real activities intro-
duced in Example 13.2. According to the transformation rules that we applied in the
proof of Proposition 13.1, we decompose activities i and j 0 into two parts each. Note
that since both relations�ij0 D .0:75; 0:25;�1/ and�ji D .1; 0:75;�4/ refer to the
same portion �i D 0:75 of activity i , it is not necessary to consider a third part of
activity i . Moreover, the delayed precedence relation �ij D .1; 0; 1/ is eliminated
by introducing dummy activity h. The resulting activity-on-node network of the
canonical representation of the instance is displayed in Fig. 13.4.

13 Continuous Preemption Problems 267

Fig. 13.4 Canonical form of example project and corresponding optimal schedule

In the remainder of this chapter we suppose that the problem is posed in the
canonical form. We proceed by characterizing our problem as a sequencing problem
of activity sets with variable durations. First we give a formal definition of a
schedule and its decomposition into slices.

Definition 13.1 (Schedule and Slices). A schedule is a pair � D .�; z/ composed
of a finite sequence� D .A1; A2; : : : ; A�/ of activity setsA� � V and an associated
duration vector z D .z1; : : : ; z�/ with z� � 0 for all � D 1; : : : ; �. For the sake of
uniqueness we establish the convention that if z� D 0, then � D � or z�C1 > 0 and
A� A�C1. We say that schedule � is complete if each activity is fully executed,
i. e., if

S
� A� D V and

X

�Wi2A�
z� D pi .i 2 V / (13.4)

Schedule � is resource-feasible if and only if all sets A� with z� > 0 are resource-
feasible, i. e., if

X

i2A�
rik � Rk .� D 1; : : : ; � W z� > 0I k 2 R/

The schedule is time-feasible if the sequence � of activity sets with durations z is
compatible with the completion-to-start time lags ıcs

ij . These precedence relations
can be expressed by exploiting that Ci D maxfP�

�D1 z� j i 2 A�g and Sj D

268 C. Schwindt and T. Paetz

minfP��1
�D1 z� j j 2 A�g, where

P
; z� WD 0. Hence, the temporal constraints (13.3)

for the activities included in schedule � can be formulated as

minf
��1X

�D1
z� j j 2 A�g � maxf

�X

�D1
z� j i 2 A�g C ıcs

ij ..i; j / 2 E W i; j 2S� A�/

Finally, we define a feasible schedule to be a complete, resource-feasible, and time-
feasible schedule. An optimal schedule is a feasible schedule � with minimum
objective function value f .z/. For f D Cmax it holds that f .z/ D Cmax.�/ DP�

�D1 z�. Schedule � partitions interval Œ0; Cmax.�/� into intervals �� with left

boundaries t� D P��1
�D1 z� and right boundaries t 0� D

P�

�D1 z� (� D 1; : : : ; �).
The pair s� D .��; A�) is called the �-th slice of schedule � , and t� and t 0� are
referred to as the left and right ends of slice s�. We speak of a positive slice s� if its
size t 0� � t� D z� > 0; the activity set A� of a positive slice s� is said to be active.

Remarks 13.1.

1. In difference to the case of ordinary precedence relations, it may be necessary
that one and the same activity set A occurs more than once in sequence � to be
able to encode an optimal solution (see the schedule depicted in Fig. 13.4 for an
example).

2. Since the activity set V contains events, slice intervals � may be singletons,
half-open intervals, or open intervals. For example, the schedule displayed in
Fig. 13.4 consists of the nine slices s1 D .f0g; f0; i 0; j 01g/, s2 D .�0; 1Œ; fi 0; j 01g/,
s3 D .Œ1; 4Œ; fi1g/, s4 D .Œ4; 5:5Œ; fi 0; j 02g/, s5 D .Œ5:5; 6:5Œ; fi2g/, s6 D
.Œ6:5; 7:5Œ; fi 0; j 02g/, s7 D .Œ7:5; 8Œ; fj; j 02g/, s8 D .Œ8; 8:5Œ; fi 0; j g/, and s9 D
.f8:5g; f8g/.

3. The start time of activity j coincides with the minimum left end t� of a slice s�
with j 2 A�, whereas the completion time of activity i equals the maximum
right end t 0� of a slice s� with i 2 A�. That is why the precedence relations can
be expressed as

min
�Wj2A�

t� � max
�Wi2A�

t 0� C ıcs
ij ..i; j / 2 E/

4. The set A .�; t/ of activities being in progress or occurring at time t , which
is called the active set of schedule � at time t , coincides with the set A�
for which t 2 ��. This is due to the convention that was established in
Definition 13.1 to ensure the uniqueness of the schedule representation of a
solution to problem .P /.

5. Any feasible schedule � with minimum makespan Cmax.�/ processes at least
one activity i until the project has been terminated, i. e., A .�; t/ ¤ ; for all
t 2 Œ0; Cmax.�/�.

6. Complete schedules � and trajectories x are alternative ways of encoding
solutions to project scheduling problem .P /. Given a schedule � , the trajectorial

13 Continuous Preemption Problems 269

representation x of the solution can be obtained via

xi .t/ D 1

pi

Z t

t 0D0Wi2A .�;t 0/

dt 0

where for events i , de l’Hôpital’s rule provides xi .t/ D 1 if i 2 A .�; t 0/ for
some t 0 � t and xi .t/ D 0, otherwise.

In what follows we reformulate problem .P / as the combination of the disjunc-
tive relaxation , which consists in sizing the slices of the schedule, and a sequencing
problem of the slices subject to completion-to-start time lags.

Theorem 13.1 (Sizing and Sequencing). Given an instance I of problem .P / and
a set A 0 of (pairwise different) resource-feasible activity sets A with associated
vector z of durations (or slice sizes) zA � 0 satisfying the completeness requirementsS
A2A 0

A D V and
P

A2A 0Wi2A zA D pi for all i 2 V , there exists a feasible
schedule � D .�; z0/ for I with sequence � D .A�/� on set A 0 and duration vector
z0 D .z0�/� satisfying

P
�WA�DA z0� D zA for all A 2 A 0 if and only if the instance

I.z/ of the single-machine problem 1 j temp; pmtn j � with jobsA 2 A 0 of durations
zA and completion-to-start time lags ıcs

AA0

D max.i;j /2.A�A0/\E ıcs
ij for all .A;A0/

with .A � A0/ \E ¤ ; is feasible.

Proof. Consider a feasible solution to single-machine problem I.z/. This solution
gives rise to a schedule � D .�; z0/ composed of slices s� D .��; A�/. By
construction of I.z/, it holds that

P
�WA�DA z0� D zA for all A 2 A 0 and hence

P
�Wi2A� z� D pi for all i 2 V , which means that � is complete. Since all

sets A� are resource-feasible, � is resource-feasible as well. Moreover, the time
lags of I.z/ ensure that min�WA�DA0 t� � max�WA�DA t 0� C ıcs

AA0

for all .A;A0/
with .A � A0/ \ E ¤ ;. For each arc .i; j / 2 E it holds that ıcs

AA0

� ıcs
ij

for all .A � A0/ W i 2 A; j 2 A0. Consequently, it holds that Sj � Ci D
minA0Wj2A0 min�WA�DA t� � maxAWi2A max�WA�DA0 t 0� � ıcs

ij for all .i; j / 2 E , which
provides the time-feasibility and hence the feasibility of schedule � for instance I .

Now assume that we are given a feasible schedule � D .�; z0/ for instance I with
sequence � D .A�/� and

P
�WA�DA z0� D zA for all A 2 A 0. Since no two slices of

� overlap in time, � represents a feasible solution to I.z/ if the completion-to-start
precedence relations are satisfied for all .A;A0/ with .A � A0/\E ¤ ;. Since � is
feasible for I , it holds that Sj � Ci C ıcs

ij for all .i; j / 2 E . Accordingly, for a pair
.A;A0/ with .A � A0/\ E ¤ ; we have

min
i2A;j2A0

.Sj � Ci � ıcs
ij / � 0 , min

j2A0

Sj � max
i2A Ci C max

i2A;j2A0

ıcs
ij

, min
j2A0

min
�Wj2A�

t� � max
i2A max

�Wi2A�
t 0� C ıcs

AA0

) min
�WA�DA0

t� � max
�WA�DA

t 0� C ıcs
AA0

which proves the precedence relation between jobs A and A0 to be satisfied. ut

270 C. Schwindt and T. Paetz

Remark 13.2. Without loss of generality, the set A 0 of activity sets A considered
in Theorem 13.1 can be assumed to contain only activities that can pairwise overlap
in some time-feasible schedule. Let d cs

ij 2 Z [f�1g be the completion-to-start
time lag between two activities i and j implied by the precedence relations from
set E . Time lag d cs

ij equals the minimum difference Sj �Ci arising in any complete
and time-feasible schedule. In Sect. 13.6 we present a modified version of Floyd
and Warshall’s algorithm for computing longest path lengths in a network, which
yields the matrix Dcs D .d cs

ij /i;j2V of all time lags. From the Helly property of
intervals it follows that there exists a time-feasible schedule for which all activities
i 2 A overlap in time precisely if A is an antichain of preorder�.Dcs/ WD f.i; j / 2
V � V j d cs

ij � 0g (see Lemma 2.7 in Schwindt 2005). In what follows, the set of
all (resource-)feasible antichains of �.Dcs/ and all singletons containing an event
i 2 V is denoted by A . In slight abuse of terminology, we will designate all sets
A 2 A as feasible antichains.

For the special case of ordinary precedence relations, the existence of a feasible
single-machine schedule can be verified efficiently. The problem is feasible if and
only if the directed graph G D .A 0; E.A 0// with node set A 0 and arcs set
E.A 0/ D f.A;A0/ 2 A 0 �A 0 j .A � A0/ \ E ¤ ;g is acyclic. This assertion also
follows from Theorem 2.7 given in Damay et al. (2007), for the special case where
all activities are preemptive. In case of generalized precedence relations considered
in this chapter, checking the feasibility of the single-machine problem is strongly
NP-complete. As it has been shown by Wikum et al. (1994), the feasibility variant
of the non-preemptive single-machine problem with nonpositive completion-to-start
time lags ıcs

AA0

between jobs A and A0 is strongly NP-complete even if E is
symmetric, ıcs

AA0

� ıcs
A0A D 0 for all .A;A0/ 2 E.A 0/, and the precedence graph

containing the arcs .A;A0/ with ıAA0 D 0 is a (special) intree (cf. problem “max
delays, k n1; 1; : : : ; 1-chains” in Table 1 of the above paper). Since the case of
non-preemptive activities is contained in our problem setting, the single machine
problem arising from the sizing of the activity sets is a generalization of the problem
investigated by Wikum et al. (1994).

Now we are ready to reformulate problem .P / as a sizing-and-sequencing
problem .P 0/ of the set of all feasible antichains A 2 A .

.P 0/

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Min. f .z/

s. t.
X

A2A Wi2A
zA D pi .i 2 V /

Instance I.z/ is feasible

zA � 0 .A 2 A /

When considering the makespan criterion Cmax, the objective function to be
minimized is f .z/ DPA2A zA.

13 Continuous Preemption Problems 271

13.4.2 Feasibility Conditions

As we have seen before, the feasibility variant of problem .P / is strongly NP-
complete. In this section we present different necessary feasibility conditions, which
may be evaluated for detecting the infeasibility of a problem instance I . These
conditions form the basis of feasibility tests presented in Sect. 13.6.2.

Theorem 13.2 (General Feasibility Conditions). For a given set of activities
U ¤ ; let LB.U / be some lower bound on the minimum makespan C �max.U / D
maxi2U Ci � minj2U Sj for executing all activities i 2 U in a feasible schedule.
Instance I is only feasible if

max
;¤U	V

.LB.U /C min
i;j2U d

cs
ij / � 0

Proof. The negated completion-to-start time lag �d cs
ij between activities i and j

equals the maximum time lag between the start of activity j and the completion
of activity i , i. e., Ci � Sj � �d cs

ij for any complete and time-feasible schedule.
Consequently, for each nonempty set U and each feasible schedule we have

� min
i;j2U d

cs
ij D max

i;j2U.�d
cs
ij /

� max
i;j2U.Ci � Sj / D max

i2U Ci �min
j2U Sj

� C �max.U / � LB.U /

which provides LB.U /Cmini;j2U d cs
ij � 0. Hence, if there is some set U ¤ ; such

that LB.U /Cmini;j2U d cs
ij > 0, then there does not exist any feasible schedule, i. e.,

instance I is infeasible. ut
Let V 0 D fi 2 V j pi > 0g denote the set of activities with positive durations.

A set of activities U � V 0, which is not resource-feasible, is called a forbidden
set. The two activities i; j of a forbidden set fi; j g are said to be incompatible. The
following example shows that in difference to the non-preemptive case there exist
feasible instances with incompatible activities i; j such that pi C pj > �d cs

ij and
pi C pj > �d cs

ji .

Example 13.4. Consider a forbidden set U D fi; j g with activities of durations
pi D pj D 2. We suppose that activity i can be interrupted for two time units,
whereas activity j cannot be split. Furthermore, we define the minimum time lags
ıcs

ij D ıcs
ji D �3. The corresponding time lag matrix is Dcs D ��4 �3

�3 �2
�

and thus
LB.U / C mini;j2U dij D pi C pj C dii D 2C 2 � 4 � 0. Figure 13.5 shows the
unique feasible schedule for activities i; j .

To apply feasibility conditions derived from Theorem 13.2, we need lower
bounds LB.U / on the minimum makespan C �max.U / for processing activities i 2 U .

272 C. Schwindt and T. Paetz

0 1 2 3 4

t

1
i j i

Fig. 13.5 Unique feasible schedule for set U of Example 13.4

The next proposition shows how such lower bounds can be obtained based on
forbidden sets.

Proposition 13.2 (Lower Bound on Minimum Subset Makespan). Given some
integer m � 2, let U � V 0 be a set of activities such that each subset U 0 � U

containingm elements is forbidden. Then LB.U / D 1
m�1

P
i2U pi is a lower bound

on makespan C �max.U /.

Proof. From the definition of set U it follows that for each complete and resource-
feasible schedule and any point in time, at most m � 1 activities from set U are
executed in parallel. Now consider some feasible schedule realizing the minimum
makespan C �max.U / for set U . Since the schedule is resource-feasible and because
all activities i 2 U are entirely processed within C �max.U / time units, it holds that
C �max.U / � .m � 1/ �

P
i2U pi and hence LB.U / D 1

m�1
P

i2U pi � C �max.U /. ut
Corollary 13.1 (Feasibility Conditions Based on Forbidden Sets).

1. Let F 0 be the set of all activity sets U � V 0 with jU j � 2 containing only
pairwise incompatible activities. Instance I is only feasible if

max
U2F 0

�X

i2U
pi C min

i;j2U d
cs
ij

�
� 0 (13.5)

2. Let F be the set of all forbidden activity sets U � V 0. Instance I is only feasible
if

max
U2F

�X

i2U
pi C .jU j � 1/ � min

i;j2U d
cs
ij

�
� 0 (13.6)

Proof. The proofs of assertions 1. and 2. immediately follow from Theorem 13.2
and Proposition 13.2 by choosingm D 2 andm D jU j, respectively. ut

The two feasibility conditions of Corollary 13.1 can be evaluated by solving
mixed-integer linear programs of moderate sizes. If one of the two programs yields a
solution with a positive objective function value, the tested instance is infeasible. Let
us first consider program .FT1/ implementing the first test. The binary variables xi
serve to encode activity sets U , where xi D 1 if i 2 U and xi D 0, otherwise. The
value of the continuous variable dmin coincides with mini;j2U d cs

ij in any optimal
solution to .FT1/.

13 Continuous Preemption Problems 273

.FT1/

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

Max. f .x/ D
X

i2V 0

pixi C dmin

s. t.
X

i2V 0

xi � 2

xi C xj � 1 .i; j 2 V 0 W fi; j g … F /

dmin � d cs
ij � .xi C xj � 1/ ..i; j / 2 V 0 � V 0 Wd cs

ij � 0/
xi 2 f0; 1g .i 2 V 0/

(13.7)

(13.8)

(13.9)

The objective function expresses the argument
P

i2U pi C mini;j2U d cs
ij of the

left-hand side of condition (13.5). Constraint (13.7) ensures that only sets U
containing at least two activities are taken into account, and inequality (13.8)
excludes all sets U containing two compatible activities i; j . Condition (13.9)
guarantees that dmin � mini;j2U d cs

ij .
The second program .FT2/ evaluates condition (13.6). It involves two types of

binary variables, xi and yk , as well as continuous variable Dmin. Variables xi have
the same interpretation as for program .FT1/, whereas variables yk are used to
model the forbiddenness of sets U , where yk D 0 if the joint requirements of the
activities i 2 U for resource k do not exceed the capacityRk . In an optimal solution
to .FT2/, variableDmin equals .jU j � 1/ �mini;j2U d cs

ij .

.FT2/

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Max. f .x/ D
X

i2V 0

pixi CDmin

s. t. Rkyk �
X

i2V 0

rikxi � 1 .k 2 R/

X

k2R
yk � 1

Dmin � d cs
ij �

h
.
X

h2V 0

xh � 1/C

.n�2/.xiCxj�2/
i

..i; j /2V 0�V 0 W d cs
ij � 0/

xi ; yk 2 f0; 1g .i 2 V 0I k 2 R/

(13.10)

(13.11)

(13.12)

The objective function of .FT2/models the term
P

i2U piC .jU j�1/ �mini;j2U d cs
ij

that is maximized on the left-hand side of condition (13.6). Inequality (13.10) sets
yk to zero if U does not violate capacity Rk . Constraint (13.11) ensures that set
U exceeds the capacity of at least one resource, i. e., that U is a forbidden set. By
inequality (13.12) the value ofDmin is equal to .jU j�1/�mini;j2U d cs

ij in any optimal
solution to .FT2/.

274 C. Schwindt and T. Paetz

13.4.3 Preemption Gains for Makespan Minimization

The preemptive version of a scheduling problem always represents a relaxation
of the respective non-preemptive problem. As we have seen for our scheduling
problem, this relaxation is not necessarily more tractable to solve. An optimal
preemptive schedule, however, offers nonnegative preemption gains , which are
defined as the relative improvement in the objective function value with respect to
an optimal schedule for the non-preemptive problem.

For instances of machine scheduling problems with m uniform machines, Braun
and Schmidt (2003) examined the ratio
i of the minimum makespan C i

max for
the version of the problem in which at most i interruptions are allowed and the
minimum makespan C pmtn

max D C1max for the fully preemptive version Pm j pmtn j
Cmax of the problem. They showed that ratio
i is bounded from above by

i D 2 �
2

m
iC1 C 1

In particular, the ratio cannot exceed
0 D 2 � 2
mC1 < 2 when considering the

non-preemptive problem Pm j j Cmax where i D 0. The ratio provides an upper
bound on the preemption gains of D 1 � 1

0
D 1

2
� 1

2m
. Since for problem

.P / the feasibility of an instance may depend on the preemptability of activities, the
preemption gains may be unbounded. The following proposition shows that even
when limiting the analysis to feasible instances of .P /, the tightest upper bound
on gains cannot be smaller than 2=3.

Proposition 13.3. There exist feasible instances I of problem Pm j temp; pmtn j
Cmax with m � 2 with preemption gains D 2

3
� 2

9mC3 � " for arbitrarily small
" > 0.

Proof. We consider an instance I of a parallel machine problem with m parallel
processors and nonpositive completion-to-start time lags. Aside from the dummy
activities 0 and n C 1 set V comprises two sets of activities V1 and V2. Set V1
contains m C 1 activities i D 1; : : : ; m C 1 of equal duration pi D p, where
p D a �m for some a 2 N. The second set V2 consists of m unit-duration activities
i D m C 2; : : : ; 2m C 1 and a dummy activity 2m C 2 of duration mC1

m
p, which

does not require a processor. Between any two different activities i; j 2 V1 we
introduce time lags ıcs

ij D �2p. The execution times of the unit-duration activities

i 2 V2 are all fixed to interval ŒmC1
m
p; mC1

m
p C 1Œ by time lags ıcs

.2mC2/i D 0 and

ıcs
i0 D �.mC1m p C 1/.

Optimal schedules for the preemptive and the non-preemptive version of the
problem are shown in Fig. 13.6. The dark shaded activities i 2 V2 serve to erect
a barricade. If activity splitting is allowed, the light shaded activities i 2 V1 can all
be positioned left to the barricade, and the resulting makespan isC pmtn

max D mC1
m
pC1.

Otherwise, the makespan C0
max.V1/ for processing the activities from set V1 equals

13 Continuous Preemption Problems 275

t
m+1
m p+1

1 2

2 3

3 · · ·
· · · m+1

t
3m+1
m p+1

1 2

3

· · ·
m+1

Fig. 13.6 Optimal schedules for problems Pm j temp; pmtn j Cmax and Pm j temp j Cmax

2p because one activity must be shifted behind the completion of the others. Due
to the maximum time lags of 2p time units between all activities i; j 2 V1, the
complete set V1 can only be started behind the barricade, leading to a makespan of
C0

max D 3mC1
m
pC 1. Hence, the resulting preemption gains are D 1� .mC1/pCm

.3mC1/pCm .
By interpreting gains as a function .p/ of the duration of the activities i 2 V1
and taking the limit as p tends to infinity, we obtain limp!1 .p/ D 1 � mC1

3mC1 D
2
3
� 2

9mC3 , which concludes the proof. ut

13.5 A Novel MILP Problem Formulation

In this section we propose a new type of MILP model for preemptive (and non-
preemptive) project scheduling problems. In Sect. 13.5.1 we develop the MILP
formulation, and in Sect. 13.5.2 we analyze the size of the model in terms of
the number of slices required to represent a feasible schedule with minimum
makespan. As a by-product, we obtain an upper bound on the number of activity
interruptions.

13.5.1 Formulation of the Model

The model formulation is based on the schedule representation of solutions to
problem .P /. According to this representation, a solution is defined as a sequence
.s1; : : : ; s�/ of slices s� with associated feasible antichains A� that are in progress
in the respective slices s�. In contrast to the approaches by Słowiński (1980) and
Damay et al. (2007), the feasible antichains are not input of the model but are
encoded by binary variables yi� that indicate whether or not activity i is executed in
slice s�. Thus, it is no longer necessary to consider a decision variable zA for each
feasible antichain A, and we obtain a much more compact problem formulation. By
introducing for each slice s� the continuous decision variable z� representing its

276 C. Schwindt and T. Paetz

size, the increase in the progress proportion xi of activity i during slice s� is

�xi� D z�
pi
� yi� (13.13)

The completeness conditions (13.4) for the schedule can be stated as
P�

�D1 �xi�D1
.i 2 V /. The requirement of the activities i 2 A� for resource k equalsP

i2V 0

rik � yi� and must not exceed capacity Rk . If activity i is in progress in slice

s� (i. e., yi� D 1), then Si � P��1
�D1 z� and Ci � P�

�D1 z�. Both inequalities are
binding if i is started or completed, respectively, in slice s�. By combining the
above considerations, we obtain the MILP formulation .P 00/ of problem .P / for the
makespan criterion Cmax, where pmax D maxi2V pi and UB denotes some upper
bound on the minimum project duration. The model can easily be adapted to other
objective functions f , provided that they can be expressed as piecewise linear and
convex functions in the decision variables�x, y, and z. Examples of such objective
functions considered in project scheduling will be indicated in the sequel.

.P 00/

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

Min. Cmax D
�X

�D1
z�

s. t. 0 � z� � pi�xi� � pmax � .1 � yi�/ .i 2 V I � D 1; : : : ; �/
0 � �xi� � yi� .i 2 V I � D 1; : : : ; �/
�X

�D1
�xi� D 1 .i 2 V /

X

i2V 0

rik � yi� � Rk .� D 1; : : : ; �I k 2 R/

Si �
��1X

�D1
z� C UB � .1 � yi�/ .i 2 V I � D 1; : : : ; �/

Ci �
�X

�D1
z� � UB � .1 � yi�/ .i 2 V I � D 1; : : : ; �/

Sj � Ci C ıcs
ij ..i; j / 2 E/

yi� 2 f0; 1g .i 2 V I � D 1; : : : ; �/

The first two pairs of inequalities in .P 00/ serve us to eliminate the bilinear
products z� � yi� in the definition (13.13) of variables �xi�. As we will show in
Sect. 13.5.2, the number � of slices s� is linear in the number of activities; hence
the model is polynomial in the problem size. A variant of the model for the non-
preemptive version of our problem is obtained by adding the equationsCi D SiCpi
for all i 2 V .

13 Continuous Preemption Problems 277

Remarks 13.3.

1. For the case of ordinary precedence relations, the precedence constraints can be
expressed via the inequalities

.� ��C 1/ � yj� � � ��C 1�
�X

�D�
yi� ..i; j / 2 EI � D 1; : : : ; �/ (13.14)

which yields a version of model .P 00/ with a stronger LP relaxation. In
our computational experiments, which are described in Sect. 13.7, we added
conditions (13.14) for all .i; j / 2 E W ıcs

ij D 0. Moreover, we tried a large
number of redundant constraints, intended to strengthen the LP relaxation and to
speed up the solution of the model. From these investigations we identified the
two following inequalities, which had a positive impact on computation times.

Si C pi � Ci � Cmax � d cs
i.nC1/ .i 2 V /

2. As mentioned before, analogous models can be formulated for any objective
function, which can be expressed as a linear or piecewise linear and convex
objective function in the decision variables. For example, the objective function
of the total availability cost problem PS j temp j ˙ck max rkt (see, e.g., Chaps. 15
and 16 of this handbook)

f .�/ D
X

k2R
ck maxfrk.�; t/ j t � 0g D

X

k2R
ck max

�D1;:::;�
X

i2V 0

rikyi�

with rk.�; t/ DPi2A .�;t/ rik is piecewise linear and convex in variables yi�. The
same holds true for the total adjustment cost problem PS j temp j ˙ck˙�kt (see
Chap. 17 of this handbook) with objective function

f .�/ D
X

k2R
ck
X

t2DT

Œ�rk.�; t/�
C D

X

k2R
ck

�X

�D1

"
X

i2V 0

rik.yi� � yi.��1//
#C

where yi0 WD 0 and Œa�C WD maxfa; 0g, DT denotes the set containing t D 0 and
all jump discontinuities t in resource profiles rk.�; �/ and�rk.�; t/ is the positive
or negative step height of rk.�; �/ at time t .

13.5.2 Number of Slices and Activity Interruptions

In order to instantiate model .P 00/ for given instances I , we need know the number �
of required slices. In this section we prove that this number is bounded from above

278 C. Schwindt and T. Paetz

by 2n � 1 and that this bound is tight. Furthermore, we derive an upper bound on
the maximum number of activity preemptions.

Theorem 13.3 (Number of Slices). Let n1 D jV 0j be the number of activities i2V
with positive durations pi . For each feasible instance I of PS j temp; pmtn j Cmax

in canonical form there exists an optimal schedule with at most nC n1 � 1 positive
slices s�.

Proof. Given an optimal solution � D .S; C;�x; y; z/ to model .P 00/ for
instance I , let S � f1; : : : ; �g be the index set of slices s� occupied by at least
one activity, i. e., S D f� D 1; : : : ; � j Pi2V yi� � 1g. Since at any point in time
t < Cmax at least one activity i 2 V is in progress (see item 5 of Remarks 13.1),
we have z� D 0 if � … S . Suppose that all binary variables yi� of program .P 00/
are fixed to zero or one according to their values in �. Problem .P 00/ then turns
into a linear program with decision variables Si , Ci , z�, and �xi� for i 2 V and
� 2 S . The variables�xi� can be eliminated from the linear program by replacing
equations

P�
�D1 �xi� D 1 (i 2 V) with

P�
�D1 zi� D pi (i 2 V 0). For activity i we

denote by �min
i WD minf� 2 S j yi� D 1g and �max

i WD maxf� 2 S j yi� D 1g
the first and the last slice to which i has been assigned. The linear program can then
be formulated as follows:

.LP/

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Min. Cmax D
X

�2S
z�

s. t.
X

�2S Wyi�D1
z� D pi .i 2 V 0/

Si D
X

�2S W�<�min
i

z� .i 2 V /

Ci D
X

�2S W���max
i

z� .i 2 V /

Sj � Ci C ıcs
ij ..i; j / 2 E/

z� � 0 .� 2 S /

(13.15)

(13.16)

(13.17)

(13.18)

Since we set the values of the binary variables according to solution �, the part
� 0 D .S; C; z/ of � solves linear program .LP/. We construct an equivalent linear
program .LP0/ whose optimal basic solutions also solve .LP/ and contain no more
than nC n1 � 1 variables z� with positive values.

For each activity i starting at time Si D 0 we replace Eq. (13.16) by the
nonnegativity condition Si � 0; analogously, if Ci D 0, we remove Eq. (13.17)
for i and add the corresponding condition Ci � 0. In this way, for each of the n0
remaining Eqs. (13.16) and (13.17) we have a variable Si or Ci with positive value
in � 0.

13 Continuous Preemption Problems 279

Let E 0 � E be the set of arcs in which the loops .i; i/ have been deleted. As
it is well-known (see, e.g., Neumann et al. 2003, Sect. 1.3) the set of generalized
precedence relations (13.18) referring to E 0 can be replaced by a set of equations
Sj D CiCıcs

ij for which the respective arcs .i; j / 2 E 0 belong to a spanning outtree
of the precedence graph G D .V;E/ rooted at node 0. In fact, the arcs of the equa-
tions form a spanning forestG0 ofG, and without loss of generality we may assume
that G0 contains at least one arc emanating from node 0 and exactly one arc leading
to node nC 1. Each equation corresponds to a generalized precedence relation that
is binding in � 0. Since spanning forest G0 contains no more than jV j � 1 D nC 1
arcs, we obtain at most n C 1 equations, which replace the constraints (13.18)
for .i; j / 2 E 0. The set of all binding precedence relations .i; j / 2 E may also
contain loops. For each such loop .i; i/, however, the start time Si is explained by
the equation Si D Ci C ıcs

ii , which implies that G0 can be chosen in such a way
that node i is a source of a component of G0. This means that for the generalized
precedence relations (13.18) we still need at most one equation per activity i ¤ 0,
such that the number of these equations remains bounded by nC 1.

We can save two more equations by taking advantage of the convention that
instance I is specified in canonical form. First, we consider the project termination
node nC 1 of the spanning forest. Since pnC1 D 0 and the objective function valueP

�2S z� coincides with CnC1, it holds that in � 0 variable CnC1 takes its minimum
value SnC1. From ıcs

i.nC1/ D 0 for all .i; nC 1/ 2 E it follows that SnC1 D Ci for
the predecessor i of n C 1 in G0. Thus, we may remove equation SnC1 D Ci and
replace equations Sj D CnC1 C ıcs

.nC1/j by equations Sj D Ci C ıcs
.nC1/j if there

exist successors j of nC 1 in G0. Second, the canonical form also implies ıcs
0i D 0

for all .0; i/ 2 E . At least one of these arcs .0; i/ belongs to G0, and the respective
equations can be removed since their inequalities (13.18) are already expressed as
the nonnegativity conditions Si � 0.

In sum, the transformed linear program .LP0/ comprises n1 equations of
type (13.15), n0 � 2.nC2/ equations of type (13.16) and (13.17), and at most n�1
equations of type Sj D Ci C ıcs

ij . Hence, any basic solution � 00 to .LP0/ contains no
more than n1C n0C n� 1 basic variables. Since each variable with a positive value
must be a basic variable, n0 out of these basic variables correspond to positive start
and completion times Si and Ci . There remain at most n1 C n � 1 basic variables
that may correspond to positive variables z�. By construction of .LP0/, an optimal
basic solution � 00 to .LP0/ also solves .LP/, which shows that the number of positive
slices s� in a solution to instance I can be bounded from above by nC n1 � 1. ut
Remarks 13.4.

1. From Theorem 13.3 it follows that the number of slices required in model .P 00/
is � D nC n1 � 1C .nC 2 � n1/ D 2nC 1.

2. Equations (13.16)–(13.18) as well as decision variables Si and Ci can be
eliminated from .LP/ by expressing the generalized precedence relations by
means of the inequality

280 C. Schwindt and T. Paetz

t
1 2 3 · · · 2n−1

n n−1 n−2 · · · 1 · · · n−2 n−1 n

Fig. 13.7 Unique feasible schedule, being composed of 2n� 1 positive slices

X

�min
j ����max

i

z� � �ıcs
ij ..i; j / 2 E/ (13.19)

The following example shows that the bound of 2n � 1 positive slices is tight
even if jRj D 1, R D 1, and ri D 1 for all i 2 V .

Example 13.5. Consider the single-machine problem with n activities of durations
p1 D 1 and pi D 2 for i D 2; : : : ; n. Any two consecutive activities i and i C 1 are
mutually linked by the two time lags ıcs

i.iC1/ D ıcs
.iC1/i D �2i . Figure 13.7 shows

the unique feasible schedule for this instance, which is composed of 2n� 1 positive
slices.

Remark 13.5. The first item of Remarks 13.3 implies that Eqs. (13.16)–(13.18)
of the linear program .LP/ in the proof of Theorem 13.3 can be omitted for all
arcs corresponding to ordinary precedence relations. Hence, for any instance I of
problem PS j prec; pmtn j Cmax there exists an optimal schedule with at most n
positive slices. This property also follows from the Rational Structure Theorem
given in Baptiste et al. (2004).

A common assumption in preemptive scheduling is that activities can be
interrupted at no cost. In practice, however, splitting activities may incur additional
coordination or setup efforts, and schedules according to which activities are
frequently stopped and resumed would be unworkable. That is why we are interested
in the maximum number of interruptions that must be accepted to obtain a feasible
schedule with minimum objective function value. For a generalization of problem
PS j temp; pmtn j f considered in this chapter, Baptiste et al. (2004) have shown
that the number of activity interruptions remains polynomially bounded in the size
of the problem instance. As a direct consequence of Theorem 13.3 we obtain the
following upper bound, which, however, may be far from being tight.

Corollary 13.2. For each feasible instance I of PS j temp; pmtn j Cmax in
canonical form there exists an optimal schedule with at most n.n � 1/ activity
interruptions. If only ordinary precedence relations are present, the number of
activity interruptions is limited by n.n�1/

2
.

The next example provides an instance for which n2=4 interruptions are needed to
obtain a feasible schedule.

Example 13.6. We consider a project with an even number n of real activities and
one renewable resource of capacityR D n

2
. The set of real activities consists of two

13 Continuous Preemption Problems 281

t
1 2 3 · · · 2n−1

1

2

· · ·
n
2

n 2
+

1

1

2

· · ·
n
2

n 2
+

2

1

2

· · ·
n
2

n 2
+

3 · · ·

n
−

1

1

2

· · ·
n
2

n

1

2

· · ·
n
2

Fig. 13.8 Unique feasible schedule, incurring n2

4
interruptions

subsets V1 and V2. Set V1 contains activities i D 1; : : : n
2

of durations 3
2
n�2iC1 and

resource requirements ri D 1 (light shaded activities in Fig. 13.8). Two consecutive
activities i and iC1 from V1 are linked by a time lag ıcs

i.iC1/ D �2.n�i/. Moreover,
we introduce the time lags ıcs

i0 D �.2n�i/ for all i 2 V1, which define the deadlines
d i D 2n � i for the completion of activities i 2 V1.

Set V2 contains unit-duration activities i D n
2
C 1; : : : ; n with resource

requirements of ri D n
2

and deadlines d i D �ıcs
i0 D 2i� n2�1 (dark shaded activities

in Fig. 13.8). Since p1 D 3
2
n � 1 � di for all i 2 V2, activity 1 is completed after

all activities i 2 V2, which implies C1 � p1 C n
2
� 1 D 3

2
n � 1C n

2
D 2n � 1. Due

to deadline d1 D 2n � 1, activity 1 is pulled tight and must be completed precisely
at time 2n � 1. By adding time lags ıcs

1i D �. 52n � 2i C 1/, the execution times of
all activities i from set V2 are fixed to intervals Œ2.i � 1/� n

2
; 2.i � 1/� n

2
C 1Œ.

Time lag ıcs
1;2 D �2nC 2 constrains activity 2 to start no earlier than t D 1 and

thusC2 � 1Cp2 D 3
2
n�2. Since the completion time of activity 2 is right-shifted by

one time unit for each activity i 2 V2 that must be completed earlier, it also finishes
after all activities i 2 V2, and its earliest completion time 2n � 2 coincides with
its deadline d2. Applying iteratively the same arguments for activities i D 3; : : : ; n

2

shows that all activities i 2 V1 are completed at their respective deadlines d i after
all activities from set V2. In sum, the schedule displayed in Fig. 13.8 is the only
feasible solution and causes n

2
� n
2
D n2

4
interruptions of activities. It is composed of

2n � 1 positive slices.

13.6 Preprocessing Methods and Lower Bounds

The performance of MILP solvers on the mixed-binary linear program .P 00/ can
be significantly improved by applying preprocessing techniques and providing
effective lower bounds. In this section we present a method for computing the
matrix Dcs of all transitive time lags d cs

ij , algorithms for enhancing matrix Dcs by
time lags that are implied by resource constraints, an efficient heuristic for testing
the feasibility of problem instances, a simple method for fixing the values of certain

282 C. Schwindt and T. Paetz

decision variables, and a column-generation based lower bound on the minimum
project duration.

13.6.1 Computing and Tightening the Time Lag Matrix

The necessary feasibility conditions proposed in Sect. 13.4.2 are based on the
matrix Dcs of transitive completion-to-start time lags, which determine the max-
imum feasible time span �d cs

ji between the start of activity i and the completion
of activity j between any two activities i; j . For non-preemptive problems with
generalized precedence relations, the temporal constraints are usually specified as
start-to-start time lags ıss

ij because the transitive hull of these time lags coincides
with the distance matrix of the project network, i. e., the transitive time lags d ss

ij
coincide with the longest path lengths (or distances, for short) `ij from nodes i to
nodes j . That is why matrix Dss can be computed efficiently using some algorithm
for longest path calculations in simple networks like the Floyd-Warshall algorithm
(see Floyd 1962). This algorithm can be slightly modified to provide matrixDcs. To
explain how the algorithm works, we introduce an event-on-node networkN 0, which
contains a start node i s and a completion node i c for each activity i . The arcs of this
network represent minimum time lags between the occurrence times of the events.
For each activity i 2 V , nodes i s and i c are linked by arc .i s; i c/ weighted with
the duration pi of activity i . This arc ensures that the completion of i can occur pi
time units after its start at the earliest. The arcs .i; j / 2 E representing completion-
to-start time lags between activities i and j are translated into arcs .i c; j s/ in N 0.
In particular, this implies that non-preemptive activities i , which were represented
as loops in project network N , create cycles .i s; i c; i s/ in N 0 and hence N 0 is a
simple network without loops. By applying Floyd and Warshall’s algorithm to N 0
we obtain the transitive time lags between the occurrence times of all events. The
completion-to-start time lags d cs

ij correspond to distances `icj s from completion to
start events.

In our implementation of the algorithm we perform all computations directly on
project network N . This is possible because in N 0 it holds that `isj s D `icj s C pi ,
`isj c D `icj s C pi C pj , and `icj c D `icj s C pj and consequently all “triple
operations” `hj WD maxf`hj; `hi C `ijg updating the path lengths can be limited to
path lengths from completion to start nodes. The resulting method is displayed in
Algorithm 13.1.

There exist many situations in which the resource constraints and the precedence
relations imply new precedence relations or, to put it differently, tighten the time
lags d cs

ij . In what follows we present two preprocessing procedures for detecting
such precedence relations. The first method was devised by Heilmann and Schwindt
(1997) for the non-preemptive problem PS j temp j Cmax and can, with minor
modifications, be applied to problem .P /. The idea consists in identifying for each
pair of activities i and j the minimum durations of activities h 2 V that must be
processed between the completion of i and the start of j . For each resource we

13 Continuous Preemption Problems 283

Algorithm 13.1: Modified Floyd-Warshall algorithm

Require: Instance I of problem PS j temp; pmtn j f
Ensure: Compute time lag matrix Dcs

1: for all i; j 2 V do
2: set d cs

ij WD �1;
3: end for
4: for all .i; j / 2 E do
5: set d cs

ij WD ıcs
ij ;

6: end for
7: for all i 2 V W pi D 0 do
8: set d cs

ii WD 0;
9: end for

10: for all i 2 V do
11: for all h; j 2 V do
12: set d cs

hj WD maxfd cs
hj ; d

cs
hi C pi C d cs

ij g;
13: end for
14: end for

then construct an instance of the single-machine problem 1 j rj ; qj ; pmtn j Cmax

with release dates rj and quarantine times qj whose optimum makespan yields a
lower bound on the time lag Sj � Ci between the completion of i and the start of
j in any feasible schedule. Consequently, if the makespan is larger than the current
value of d cs

ij , we can set d cs
ij to the makespan. The single-machine problem can be

solved efficiently in O.n logn/ time by Carlier’s preemptive version of Schrage’s
algorithm (see Carlier 1982).

As it is easily verified, the minimum processing time of activity h between the
completion of i and the start of j is

ph.i; j / D maxf0;minfph; d cs
ij ; d

cs
ih C ph; d cs

hj C phgg (13.20)

The time lag d cs
ih defines a release date rh.i/ for activity h after the completion

of i , and the time lag d cs
hj can be interpreted as a quarantine time qh.j / after the

completion of activity h before the start of j .
Since we want to solve a single-machine problem, we have to scale the durations

ph.i; j / with the ratio rhk
Rk
� 1 of resource requirement and resource capacity,

which gives rise to resource-specific durations ph.i; j; k/ D rhk�ph.i;j /
Rk

for resources
k 2R. In this way we obtain an instance I.i; j; k/ of the preemptive single-machine
problem for each pair of activities i; j and each resource k 2 R. If the resulting
minimum makespan C �max.i; j; k/ is larger than d cs

ij , we can put d cs
ij to C �max.i; j; k/.

The complete method is shown in Algorithm 13.2.
The procedure only considers pairs .i; j / and activities h for which Eq. (13.20)

gives a positive processing time ph.i; j /. The time lags are updated until the

284 C. Schwindt and T. Paetz

Algorithm 13.2: Single-machine preprocessing

Require: Instance I of problem PS j temp; pmtn j f , time lag matrixDcs

Ensure: Tighten time lag matrix Dcs

1: repeat
2: set stop WD true;
3: for all i; j 2 V W d cs

ij > 0 do
4: set V.i; j / WD fh 2 V j minfd cs

ih ; d
cs
hj g C ph > 0g;

5: for all h 2 V.i; j / do
6: set release date rh.i; j / WD d cs

ih and quarantine time qh.i; j / WD d cs
hj ;

7: end for
8: for all k 2 R do
9: for all h 2 V.i; j / do

10: set processing time
ph.i; j; k/ WD rhk

Rk
�minfph; d cs

ij ; d
cs
ih C ph; d cs

hj C phg;
11: end for
12: determine makespan C �max.i; j; k/ of optimum Schrage schedule;
13: if C �max.i; j; k/ > d

cs
ij then

14: set d cs
ij WD C �max.i; j; k/ and stop WD false;

15: end if
16: end for
17: end for
18: if not stop then
19: restore transitivity of Dcs by executing lines 10–14 of Algorithm 13.1;
20: end if
21: until stop;

sequence of matricesDcs reached a fixed point. The time complexity of one iteration
of the repeat-until loop is O.Kn3 logn/, where K D jRj. After each iteration, we
restore the transitivity of matrix Dcs with the modified Floyd-Warshall algorithm.
In doing so, further time lags may be strengthened.

Applied to the project of Example 13.3, Algorithm 13.2 increases the time lags
d cs
0h from 4 to 4.5, d cs

0j from 5 to 5.5, d cs
0j 0

2
from 2 to 2.5, and d cs

08 from 6 to 7.5. Time
lag d cs

08 also provides the new lower bound of 7.5 for the minimum project duration.
The second method for tightening matrix Dcs considers situations in which two

incompatible activities g and h have to be partly or entirely carried out between
the completion of an activity i and the start of an activity j . Since g and h are
incompatible, the time lag between the start of the first and the completion of the
second will always be greater than or equal to pg C ph, independently of the actual
timing of the activities. Hence, the completion-to-start time lag between i and j is
bounded from below by the time lag minfd cs

ig ; d
cs
ih g between the completion of i and

the start of one of the two activities, plus the durations pg C ph of both activities,
plus the time lag minfd cs

gj ; d
cs
hj g between the completion of one of the two activities

13 Continuous Preemption Problems 285

Algorithm 13.3: Disjunctive preprocessing

Require: Instance I of problem PS j temp; pmtn j f , time lag matrixDcs

Ensure: Tighten time lag matrix Dcs

1: repeat
2: put stop WD true;
3: for all i; j 2 V do
4: for all incompatible g; h 2 V n fi; j g W g < h do
5: if d cs

ij < minfd cs
ig ; d

cs
ih g C pg C ph Cminfd cs

gj C d cs
hj g then

6: set d cs
ij WD minfd cs

ig ; d
cs
ih g C pg C ph Cminfd cs

gj ; d
cs
hj g and

stop WD false;
7: end if
8: end for
9: end for

10: if not stop then
11: restore transitivity of Dcs by executing lines 10–14 of Algorithm 13.1;
12: end if
13: until stop;

and the start of j . Algorithm 13.3 iterates pairs .i; j / and incompatible activities g
and h until no further time lag d cs

ij can be updated. If the incompatibilities between
activities g; h 2 V are evaluated before starting the iterations, the time complexity
of one iteration of the repeat-until loop is O.n4/.

For the project of Example 13.3, Algorithm 13.3 allows an additional increase in
time lag d cs

0j 0

2
from 2.5 to minfd cs

0i1
; d cs

0j 0

1
g C pi1 C pj 0

1
Cminfd cs

i1j
0

2
; d cs

j 0

1j
0

2
g D 3.

13.6.2 Efficient Feasibility Tests

In Sect. 13.4.2 we have proposed necessary feasibility conditions and respective
mixed-integer linear programs for evaluating these conditions. In what follows, we
discuss a procedure implementing three simple feasibility tests, which may also
be applied to large test instances. The first two tests evaluate a weakened version
of condition (13.5) for which set F 0 is restricted to all two-element or three-
element sets U of pairwise incompatible activities, respectively. The third test is
based on condition (13.6), but instead of taking the maximum over all forbidden
sets U , only the three-element nondominated forbidden sets are considered (we
say that a forbidden set is nondominated if it does not include any proper subset
that is forbidden). The three feasibility tests are summarized in Algorithm 13.4; the
symbols F2 and F3 stand for the sets of all two-element and nondominated three-
element forbidden sets. The time complexity of the algorithm is O.Kn3/.

The two procedures for tightening the time lags and the feasibility tests can
be combined into the preprocessing method displayed in Algorithm 13.5. The

286 C. Schwindt and T. Paetz

Algorithm 13.4: Feasibility tests

Require: Instance I of problem PS j temp; pmtn j f , time lag matrixDcs

Ensure: If false is returned, I is infeasible

1: for all i 2 V do
2: if d cs

ii > �pi then
3: return false;
4: end if
5: end for
6: generate sets F2 and F3;
7: for all i; j 2 V W i < j do
8: set dmin

ij WD minfd cs
ii ; d

cs
ij ; d

cs
ji ; d

cs
jj g;

9: if fi; j g 2 F2 and pi C pj C dmin
ij > 0 then

10: return false;
11: end if
12: end for
13: for all h; i; j 2 V W h < i < j do
14: set dmin

hij WD minfdmin
hi ; d

min
hj ; d

min
ij g;

15: if fh; ig; fh; j g; fi; j g 2 F2 and ph C pi C pj C dmin
hij > 0 then

16: return false;
17: else if fh; i; j g 2 F3 and ph C pi C pj C 2 � dmin

hij > 0 then
18: return false;
19: end if
20: end for
21: return true;

algorithm iterates the individual procedures until either matrix Dcs constitutes a
fixed point of the method or the tested problem instance I has been shown to be
infeasible. Our computational experiments with small and medium-sized instances
of the project duration problem PS j temp; pmtn j Cmax indicate that the method is
able to reliably identify infeasible problem instances (see Sect. 13.7).

13.6.3 Fixing Variables

Consider a feasible instance I of the resource-relaxation of problem .P /, in which
the resource constraints (13.1) have been deleted, and assume that the objective
function f to be minimized is regular, i. e., nondecreasing in the completion times
Ci of the activities. Obviously, the unique schedule �.EC/ completing all activities
at their earliest completion times ECi D d cs

0i C pi represents an optimal solution to
I because this schedule is feasible and no activity can be finished earlier.

13 Continuous Preemption Problems 287

Algorithm 13.5: Preprocessing

Require: Instance I of problem PS j temp; pmtn j f
Ensure: Compute and tighten time lag matrix Dcs; if false is returned, I is

infeasible

1: compute initial time lag matrix Dcs (Algorithm 13.1);
2: if feasibility tests (Algorithm 13.4) return false then
3: return false;
4: end if
5: while single-machine or disjunctive preprocessing steps

(Algorithms 13.2, 13.3) tighten matrixDcs do
6: if feasibility tests (Algorithm 13.4) return false then
7: return false;
8: end if
9: end while

10: return true;

The idea of the following procedure consists in fixing all decision variables of
MILP model .P 00/ referring to a time interval during which there is no need for
delaying the completion of an activity to resolve a resource conflict. Given vector
EC D .ECi/i2V , we determine the earliest point in time t at which schedule �.EC/
violates the resource constraints (13.1) for some resource k 2 R. The subproblem
defined on the workload that is processed by time t is solved to optimality when
executing the activities according to schedule �.EC/. To obtain a feasible schedule
after time t , it will be necessary to delay the completion of some activities i with
respect to their earliest completion times ECi . Such a displacement may, however,
cause the start of other activities j with ECj < t to be delayed if �1 < d cs

ij < 0.
That is why we can only lock the schedule up to time t 0 D minft;minfECj � pj j
d cs

ij > �1 for some i 2 V with ECi > tgg. This part of schedule �.EC/ is frozen
by fixing the corresponding decision variables �xi�, yi�, and z� for all activities i
with ECi � pi < t 0 and all slice indices � D 1; : : : ; � with

P�

�D1 z� � t 0 to their
respective values in �.EC/. We note that this procedure allows to fix all decision
variables in cases where schedule �.EC/ is resource-feasible and that for instances
containing only ordinary precedence relations, the right end t 0 of the frozen zone
always coincides with the earliest conflict time t .

13.6.4 Column-Generation Based Lower Bound

The computation time of an implicit enumeration algorithm may be significantly
reduced if effective lower bounds on the minimum objective function values are
available. In this section we sketch a column-generation procedure used by Damay

288 C. Schwindt and T. Paetz

et al. (2007) to compute the values of a lower bound on the minimum project
duration that was initially proposed by Mingozzi et al. (1998, see Chap. 3 of this
handbook for details).

We start from the representation of problem .P / as the sizing-and-sequencing
problem .P 0/ introduced in Sect. 13.4.1. By removing the sequencing part of the
problem, we obtain the disjunctive relaxation of the problem as the following linear
program, containing a nonnegative decision variable z� for each feasible antichain
A 2 A .

.LP/

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

Min. Cmax D
X

A2A
zA

s. t.
X

A2A Wi2A
zA D pi .i 2 V /

zA � 0 .A 2 A /

(13.21)

Mingozzi et al. (1998) considered the relaxed variant of .LP/ in which
Eq. (13.21) is replaced by the respective �-inequality and only nondominated (i. e.,
�-minimal) antichains are taken into account. In this way, the number of decision
variables is markedly reduced but still remains exponential in the number n of
activities. In what follows, we will explain how .LP/ can be solved within a
reasonable amount of time using a (delayed) column-generation procedure.

The basic idea of the method consists in deferring the generation of the columns
of the coefficient matrix to the point in time when the respective column enters the
basis. The algorithm first computes some initial basic solution to the linear program.
In each iteration it then determines a nonbasic variable with negative reduced cost
by solving an appropriate pricing problem and performs a simplex pivot entering
this nonbasic variable into the basis. The procedure is terminated when all reduced
costs are nonnegative and hence the current basic solution is optimal.

Let B be some basic matrix to .LP/ and zB D B�1 � p with p D .pi /i2V be
the corresponding basic solution. The simplex multipliers ui associated to B are
obtained as u D .B>/�1 �1 with 1 D .1; 1; : : : ; 1/>. From the constraint in the dual

.D/

8
ˆ̂
<̂

ˆ̂
:̂

Max.
X

i2V
piui

s. t.
X

i2A
ui � 1 .i 2 V /

of .LP/ it follows that the reduced cost of variable zA with respect to multipliers u
is
A D 1 � Pi2A ui . Accordingly, a sufficient optimality condition for zB is
minA2A
A D 0. For given vector u of simplex multipliers for zB , the pricing
problem .PP.u// consists in computing a (nonbasic) variable zA� with minimum
reduced cost
A� . Let wi denote a binary indicator variable with wi D 1 if and only

13 Continuous Preemption Problems 289

Algorithm 13.6: Column-generation method

Require: Disjunctive relaxation .LP/ for instance I of problem
PSjtemp; pmtnjCmax

Ensure: Optimal solution z proving lower bound LB DPA2A zA

determine earliest completion vector EC subject to ordinary precedence
relations .i; j / 2 �.Dcs/ and construct corresponding basic matrix B;
repeat

compute basic solution zDB�1 �p and simplex multipliers uD .B>/�1 �1;
determine solution w� to pricing problem .PP.u// and set
A� WD fi 2 V jw�i D 1g;
if
A� < 0 then

compute D B�1 � w� and choose A0 2 argminf zA
A
j A > 0g;

replace column A� in B by column A0;
end if

until
A� D 0;

if i 2 A�. The pricing problem now can be stated as the following binary linear
program.

.PP.u//

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Min.
A� D 1 �
X

i2V
uiwi

s. t. wi C wj � 1 ..i; j / 2 �.Dcs//
X

i2V 0

rikwi � Rk .k 2 R/

wi 2 f0; 1g .i 2 V /

(13.22)

(13.23)

Constraints (13.22) and (13.23) ensure that a solution w to .PP.u// encodes a
feasible antichain A of preorder�.Dcs/, see Remark 13.2. As was already noticed
by Damay et al. (2007), program .PP.u// can be interpreted as an (NP-hard) multi-
dimensional knapsack problem. However, our computational experience shows that
the pricing problem is solved within a split second with commercial MILP solvers.

Algorithm 13.6 summarizes the column-generation procedure for solving linear
program .LP/. For the project of Example 13.3, the method provides the tight lower
bound on the minimum duration of 8.5 time units within six iterations.

Finally, we note that the disjunctive relaxation .LP/ of .P / can be strengthened
by taking into account that the transitive completion-to-start time lags d cs

ij define
upper bounds on the maximum execution times of antichains in time-feasible
schedules. For example, if an antichain A contains two activities i and j , its
duration zA is bounded from above by minf�d cs

ij ;�d cs
ji g. This observation can be

exploited to add the following relaxation of inequality (13.19) to linear program

290 C. Schwindt and T. Paetz

.LP/:

X

A2A Wi;j2A
zA � �d cs

ij .i; j 2 V W 0 < �d cs
ij < minfpi ; pj g/

13.7 Computational Results

We tested the efficiency of the MILP formulation .P 00/ of problem .P / using
two standard test sets from literature. The model was coded under GAMS 24.0.1
invoking CPLEX 12.5 as MILP solver. The computational experiments were
performed on a dual-core PC with 3.16 GHz clock pulse and 3 GB RAM operating
under Windows 7. The solver was stopped after a computation time limit of 300 s.
All problem instances were preprocessed by Algorithm 13.5 and lower bounds were
computed by the column-generation method of Algorithm 13.6. The preprocessing
methods were implemented in C# under MS Visual Studio 2010, whereas the
column-generation procedure was coded under GAMS.

Table 13.2 summarizes the results that we obtained for the 480 KSD-30 instances
of problem PS j prec; pmtn j Cmax containing 30 activities and four resources
each (see Kolisch and Sprecher 1996). The hardness of the instances is largely
influenced by the resource strength parameter RS, which respectively equals 0.2,
0.5, 0.7, or 1.0 for 120 of the 480 instances; the smaller RS, the scarcer are the
resources. The columns popt and p fnd

opt display the percentages of instances for
which the enumeration was completed within the imposed time limit (i. e., the
schedule found was proved to be optimal) and for which an optimal schedule
was found, respectively. �ø

opt and �nonp designate the mean relative deviations
of the makespans from the optimum project durations of the preemptive problem
(communicated by Damay 2011) and the non-preemptive problem (taken from the
PSPLIB website). The next two columns show the maximum reduction �min

nonp in
project duration obtained by our model as compared to the non-preemptive problem
and the corresponding percentage pimp of instances with positive preemption gains.
The last column provides the mean number nint of activity interruptions in the
computed schedules. In sum, the model is able to solve more than two thirds of the
instances to optimality within 5 min of computation time. The remaining optimality

Table 13.2 Performance of MILP model for the KSD-30 instances

popt p fnd
opt �

ø
opt �nonp �min

nonp pimp nint

RS D 0:2 10:0% 31:7% 2:5% �0:6% �8:8% 46:7% 14:2

RS D 0:5 40:0% 60:0% 0:7% �1:7% �7:3% 57:5% 11:4

RS D 0:7 80:0% 87:5% 0:2% �0:9% �6:7% 27:5% 8:2

RS D 1:0 100:0% 100:0% 0:0% 0:0% 0:0% 0:0% 0:0

Total 57:5% 69:8% 0:8% �0:8% �8:8% 32:9% 8:5

13 Continuous Preemption Problems 291

Table 13.3 Performance of the MILP model for the UBO-10 instances

popt pinf pfeas punk p fnd
opt �

ø
LB �nonp pimp nint

RS D 0:0 20.0 % 20.0 % 60.0 % 0.0 % 43.3 % 3.9 % �1:9% 36.7 % 1.4

RS D 0:25 23.3 % 10.0 % 66.7 % 0.0 % 50.0 % 3.4 % �2:7% 43.3 % 2.8

RS D 0:5 56.7 % 13.3 % 30.0 % 0.0 % 60.0 % 1.6 % �1:9% 33.3 % 1.8

Total 33.3 % 14.4 % 52.2 % 0.0 % 51.1 % 2.9 % �2:2% 37.8 % 2.0

gap of 0.8 % is relatively small. Even if on average the decrease in the project
duration is only minor, there exist projects for which almost 9 % of the scheduled
lead time can be saved by considering activity preemptions. All instances with
RS D 1:0 were already settled by the variable-fixing procedure given that schedule
�.EC/ is feasible.

The computed schedules contained a mean number of 21.3 positive slices, from
which 8.1 were frozen by the variable-fixing algorithm. The column-generation
procedure solved the instances of linear program .LP/ within 11.9 s and 73.0
iterations on average. The mean gap between the resulting lower bounds and the
optimum objective function values equals 2.0 % (it is reduced to 1.6 % if the lower
bound d cs

0.nC1/ provided by the preprocessing is also taken into account), and the
bound is tight for 57.5 % of all instances.

To test the performance of the model for the case of generalized precedence
relations we used the UBO-10 and UBO-20 sets of instances with 10 and 20
activities and five resources each introduced by Franck et al. (2001a). These
instances are much harder to solve, which is due to the tighter resource constraints
and the presence of minimum and maximum time lags. Since not all instances
are feasible, we also provide the percentages pinf and punk of instances for which
the model could prove infeasibility and for which the feasibility status remained
unknown.pfeas denotes the percentage of instances for which a feasible solution was
found, but the enumeration could not be completed within the time limit. The mean
relative deviation �ø

LB of the computed project durations from the lower bounds
refer to the maximum of the two lower bounds obtained with the preprocessing and
with the column-generation procedure.

The results for the UBO-10 instances are shown in Table 13.3. On the one hand,
the proportion of instances for which the enumeration could be completed within the
time limit (47.8 %) is smaller than for the larger KSD-30 instances, on the other hand
the improvement with respect to the non-preemptive optimal solutions is superior
compared to the case of ordinary precedence relations. For each instance, either
a feasible schedule could be found or the instance was shown to be infeasible by
the infeasibility tests. The maximum savings in project duration enabled by activity
interruptions amount to ��min

nonp D 16:7%.
On average, the decision variables of 1.21 slices were fixed in advance, the

computed schedules comprise 10.2 positive slices, and column generation took 4.4 s
and 17.7 iterations to solve the disjunctive relaxation .LP/.

292 C. Schwindt and T. Paetz

Table 13.4 Performance of the MILP model for the UBO-20 instances

popt pinf pfeas punk p fnd
opt �

ø
LB �nonp pimp nint

RS D 0:0 3.3 % 16.7 % 80.0 % 0.0 % 13.3 % 7.5 % �3:0% 63.3 % 3.6

RS D 0:25 16.7 % 6.7 % 76.7 % 0.0 % 23.3 % 7.8 % �1:3% 60.0 % 5.7

RS D 0:5 50.0 % 6.7 % 43.3 % 0.0 % 50.0 % 3.7 % �0:5% 46.7 % 4.6

Total 23.3 % 10.0 % 66.7 % 0.0 % 28.9 % 6.3 % �1:4% 56.7 % 4.6

The results for the instances of the UBO-20 set are listed in Table 13.4. As
compared to the smaller instances of the UBO-10 set, the number of instances for
which the solver stopped before the runtime limit was reached decreases, from 47.8
to 33.3 %, and the mean percentage gap between the lower bounds and the computed
makespans increases, from 2.9 to 6.3 %. Nevertheless, we were still able to identify
all infeasible instances by applying the feasibility test, and for each feasible instance
the solver found a feasible schedule. Interestingly, the percentage of instances for
which preemption pays is increased, from 37.8 to 56.7 %. The maximum realized
preemption gains are ��min

nonp D 12:5%.
Only a small fraction of the slices could be frozen by the variable-fixing method.

On average, the computed schedules consist of 21.5 positive slices, 1.22 of which
were settled before the enumeration started. The column-generation method solved
the linear program within a mean computation time of 19.7 s and 72.7 iterations.

13.8 Conclusions

Preemptive resource-constrained project scheduling problems arise in the context
of hierarchical project planning and in different project scheduling applications like
production planning or computer-system operation. In this chapter we provided a
survey on different types of preemptive project scheduling problems and respective
solution approaches that were discussed in the literature. Furthermore, we proposed
a generic preemptive scheduling model with continuous preemption and generalized
feeding precedence relations, for which we addressed several structural issues
relating to the representation of solutions, feasibility conditions, preemption gains,
number of schedule slices, and required number of activity interruptions. Based
on the reduction to a canonical form, in which all precedence relations are
expressed in terms of completion-to-start time lags, we developed a novel MILP
formulation for preemptive and non-preemptive scheduling problems. To enhance
the performance of MILP solvers on instances of the model, we devised several
preprocessing methods and explained how effective lower bounds can be computed
via column-generation techniques. Computational experience with the model on
different benchmark data sets from literature shows that it is possible to solve small
and medium-sized problem instances with up to 30 activities within a reasonable
amount of time and a moderate optimality gap.

13 Continuous Preemption Problems 293

There are various avenues for future research on complex preemptive scheduling
problems. For example, open issues include tight upper bounds on the maximum
number of interruptions and on the maximum preemption gains for feasible
instances. A question that we were not able to settle is related to the structure of
efficient solutions. We conjecture that for any feasible instance of the scheduling
problem formulated in canonical form there exists an optimal schedule for which
at each slice end, at least one activity is started or completed. The design of an
efficient enumeration scheme following the general approach by Damay et al. (2007)
also deserves further scrutiny. Such a scheme would rely on the decomposition of
the problem into a disjunctive relaxation for slice-sizing and a slice-sequencing
problem. The disjunctive relaxation can be formulated in such a way that all
prescribed precedence relations are represented via dummy activities and the
temporal constraints can be expressed as linear inequalities in binary variables.
Given an optimal solution to the disjunctive relaxation, the existence of a feasible
schedule containing precisely the slices corresponding to the optimal basis could
then be checked by solving the sequencing problem for fixed slice sizes. In case
of infeasibility of the sequencing problem, branching over forbidden activity sets
would provide a complete enumeration scheme. Finally, further research could
be oriented towards an appropriate concept of active schedules in the presence
of continuous preemptions. To the best of our knowledge, the concepts that were
proposed for complex scheduling problems give rise to an uncountable set of active
schedules. New concepts leading to a finite set of efficient solutions could be a
stepping stone for future advancements in exact and heuristic solution procedures
for complex preemptive scheduling problems.

Acknowledgements The authors are indebted to Dr. Jean Damay for providing the benchmark
results of the KSD-30 instances.

References

Alfieria A, Toliob T, Urgo M (2011) A project scheduling approach to production planning with
feeding precedence relations. Int J Prod Res 49:995–1020

Ballestín F, Valls V, Quintanilla S (2008) Pre-emption in resource-constrained project scheduling.
Eur J Oper Res 189:1136–1152

Ballestín F, Valls V, Quintanilla S (2009) Scheduling projects with limited number of preemptions.
Comput Oper Res 36:2913–2925

Baptiste P, Demassey S (2004) Tight LP bounds for resource constrained project scheduling. OR
Spectr 26:251–262

Baptiste P, Carlier J, Kononov A, Queyranned M, Sevastyanov S, Sviridenko M (2004) Struc-
tural properties of preemptive schedules. IBM Research Report, IBM T.J. Watson Research
Center, Yorktown Heigths. Available at http://www.research.ibm.com/people/s/sviri/papers/
structure27.pdf. Cited 8 Feb 2014

Baptiste P, Carlier J, Kononov A, Queyranned M, Sevastyanov S, Sviridenko M (2011) Properties
of optimal schedules in preemptive shop scheduling. Discrete Appl Math 159:272–280

http://www.research.ibm.com/people/s/sviri/papers/structure27.pdf
http://www.research.ibm.com/people/s/sviri/papers/structure27.pdf

294 C. Schwindt and T. Paetz

Bianco L, Caramia M, Dell’Olmo P (1999) Solving a preemptive project scheduling problem with
coloring techniques. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms, and
applications. Kluwer Academic Publishers, Boston, pp 135–145

Błażewicz J, Ecker KH, Pesch E, Schmidt G, Wȩglarz J (2007) Handbook on scheduling: from
theory to applications. Springer, Berlin

Braun O, Schmidt G (2003) Parallel processor scheduling with limited number of preemptions.
SIAM J Comput 32:671–680

Brucker P, Knust S (2000) A linear programming and constraint propagation-based lower bound
for the RCPSP. Eur J Oper Res 127:355–362

Buddhakulsomsiri J, Kim DS (2006) Properties of multi-mode resource-constrained project
scheduling problems with resource vacations and activity splitting. Eur J Oper Res 175:279–
295

Buddhakulsomsiri J, Kim DS (2007) Priority rule-based heuristic for multi-mode resource-
constrained project scheduling problems with resource vacations and activity splitting. Eur J
Oper Res 178:374–390

Carlier J (1982) The one-machine sequencing problem. Eur J Oper Res 11:42–47
Damay J (2008) Preemptive activities. In: Artigues C, Demassey S, Néron E (eds) Resource-

constrained project scheduling: models, algorithms, extensions and applications. Wiley,
Hoboken, pp 139–147

Damay J (2011) Personal communication
Damay J, Quilliot A, Sanlaville E (2007) Linear programming based algorithms for preemptive

and non-preemptive RCPSP. Eur J Oper Res 182:1012–1022
Demeulemeester EL, Herroelen WS (1996) An efficient optimal solution procedure for the

preemptive resource-constrained project scheduling problem. Eur J Oper Res 90:334–348
Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5:345
Franck B, Neumann K, Schwindt C (1997) A capacity-oriented hierarchical approach to single-

item and small-batch production planning using project-scheduling methods. OR Spektrum
19:77–85

Franck B, Neumann K, Schwindt C (2001a) Truncated branch-and-bound, schedule-construction,
and schedule-improvement procedures for resource-constrained project scheduling. OR Spek-
trum 23:297–324

Franck B, Neumann K, Schwindt C (2001b) Project scheduling with calendars. OR Spektrum
23:325–334

Hartmann S, Drexl A (1998) Project scheduling with multiple modes: a comparison of exact
algorithms. Networks 32:283–298

Heilmann R, Schwindt C (1997) Lower bounds for RCPSP/max. Technical Report WIOR-511,
University of Karlsruhe, Germany

Kaplan L (1988) Resource-constrained project scheduling with preemption of jobs. Ph.D. disser-
tation, University of Michigan, Ann Arbor

Kis T (2005) A branch-and-cut algorithm for scheduling of projects with variable-intensity
activities. Math Program 103:515–539

Kolisch R, Sprecher A (1996) PSPLIB: a project scheduling library. Eur J Oper Res 96:205–216
Li F, Lai C, Shou Y (2011) Particle swarm optimization for preemptive project scheduling with

resource constraints. In: Proceedings of the 2011 IEEE international conference on industrial
engineering and engineering management (IEEM), Singapore, pp 869–873

Mingozzi A, Maniezzo V, Ricciardelly S, Bianco L (1998) An exact algorithm for the resource-
constrained project scheduling based on a new mathematical formulation. Manage Sci 44:714–
729

Nadjafi BA, Shadrokh S (2008) The preemptive resource-constrained project scheduling problem
subject to due dates and preemption penalties: an integer programming approach. J Ind Eng
1:35–39

Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce
resources. Springer, Berlin

13 Continuous Preemption Problems 295

Nudtasomboon N, Randhawa SU (1997) Resource-constrained project scheduling with renewable
and non-renewable resources and time-resource tradeoffs. Comput Ind Eng 32:227–242

Quintanilla S, Pérez A, Lino P, Valls V (2012) Time and work generalised precedence relatioships
in project scheduling with pre-emption: an application to the management of Service Centres.
Eur J Oper Res 219:59–72

Richter LK, Yano CA (1986) A comparison of heuristics for preemptive resource-constrained
project scheduling. Technical Report 86–39, Department of Industrial and Operations Engi-
neering, University of Michigan, Ann Arbor

Schwindt C (2005) Resource allocation in project management. Springer, Berlin
Słowiński R (1978) A node ordering heuristic for network scheduling under multiple resource

constraints. Found Control Eng 3:19–27
Słowiński R (1980) Two approaches to problems of resource allocation among project activities: a

comparative study. J Oper Res Soc 31:711–723
Vanhoucke M (2008) Setup times and fast tracking in resource-constrained project scheduling.

Comput Ind Eng 54:1062–1070
Vanhoucke M, Demeulemeester E, Herroelen W (2002) Discrete time/cost tradeoffs in project

scheduling with time-switch constraints. J Oper Res Soc 53:741–751
Van Peteghem V, Vanhoucke M (2010) A genetic algorithm for the preemptive and non-preemptive

multi-mode resource-constrained project scheduling problem. Eur J Oper Res 201:409–418
Wikum ED, Llewellyn DC, Nemhauser GL (1994) One-machine generalized precedence con-

strained scheduling problems. Oper Res Lett 16:87–99
Yang HH, Chen YL (2000) Finding the critical path in an activity network with time-switch

constraints. Eur J Oper Res 120:603–613

Part V
Non-Regular Objectives in Project

Scheduling

Chapter 14
Exact and Heuristic Methods
for the Resource-Constrained Net Present Value
Problem

Hanyu Gu, Andreas Schutt, Peter J. Stuckey, Mark G. Wallace,
and Geoffrey Chu

Abstract An important variant of the resource-constrained project scheduling
problem is to maximise the net present value. Significant progress has been made
recently on this problem for both exact and inexact methods. The lazy clause
generation based constraint programming approach is the state of the art among
the exact methods and is briefly discussed. The performance of the Lagrangian
relaxation based decomposition method is greatly improved when the forward-
backward improvement heuristic is employed. A novel decomposition approach is
designed for very large industrial problems which can make full use of the parallel
computing capability of modern personal computers. Computational results are also
presented to compare different approaches on both difficult benchmark problems
and large industrial applications.

Keywords Constraint programming • Lagrangian relaxation • Net present
value • Project scheduling • Resource constraints

H. Gu (�)
School of Mathematical Sciences, University of Technology, Sydney, Australia
e-mail: Hanyu.Gu@uts.edu.au

A. Schutt • P.J. Stuckey • G. Chu
National ICT Australia & Computing and Information Systems, University of Melbourne,
Melbourne, Australia
e-mail: andreas.schutt@nicta.com.au; peter.stuckey@nicta.com.au;
Geoffrey.Chu@unimelb.edu.au

M.G. Wallace
Faculty of Information Technology, Monash University, Caulfield, Australia
e-mail: mark.wallace@monash.edu

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_14

299

mailto:Hanyu.Gu@uts.edu.au
mailto:andreas.schutt@nicta.com.au
mailto:peter.stuckey@nicta.com.au
mailto:Geoffrey.Chu@unimelb.edu.au
mailto:mark.wallace@monash.edu

300 H. Gu et al.

14.1 Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the
most studied scheduling problems. It consists of scarce resources, activities, and
precedence constraints between pairs of activities where a precedence constraint
expresses that an activity can be run after the execution of its preceding activity is
finished. Each activity requires some units of resources during their execution. The
aim is to build a schedule that satisfies the resource and precedence constraints.
Here, we assume renewable resources (i.e., their supply is constant during the
planning period) and non-preemptive activities (i.e., once started their execution
cannot be interrupted). Usually the objective in solving resource-constrained project
scheduling problems is to minimise the makespan, i.e., to complete the entire project
in the minimum total time. But another important objective is to maximise the net
present value (npv), because it better captures the financial aspects of the project.
In this formulation each activity has an associated cash flow which may be a
payment (negative cash flow) or a receipt (positive cash flow). These cash flows
are discounted with respect to a discount rate, which makes it, in general, beneficial
for the npv to execute activities with a positive (negative) cash flow as early (late)
as possible. The problem is to maximise the npv for a given RCPSP problem.
We denote the problem RCPSPDC, i.e., RCPSP with discounted cash flows. It is
classified as PS jprec; d jP cFi ˇ

Ci in Brucker et al. (1999).
Optimisation of the net present value for project scheduling problems was first

introduced in Russell (1970). Different exact and inexact methods for RCPSPDC
with or without generalised precedence constraints have been proposed, the reader
is referred to Hartmann and Briskorn (2010) for a more extensive literature overview
of solution approaches for RCPSPDC and other variants or extensions of RCPSP.

Most exact methods for RCPSPDC use a branch-and-bound algorithm to max-
imise the npv. The approaches in Icmeli and Erengüç (1996), Vanhoucke et al.
(2001) and Neumann and Zimmermann (2002) are based on the branch-and-
bound algorithm in Demeulemeester and Herroelen (1992, 1997) for RCPSP. These
algorithms use a schedule-generation scheme which resolves resource conflicts
by adding new precedence constraints between activities in conflict. The method
in Vanhoucke et al. (2001) improves upon the one in Icmeli and Erengüç (1996)
whereas the work of Neumann and Zimmermann (2002) considers RCPSPDC with
generalised precedence constraints. Recently Schutt et al. (2012) developed the lazy
clause generation based approaches which provide the state of the art exact method
for RCPSPDC.

But exact methods can only solve problems up to one hundred activities.
In contrast various meta-heuristics can produce good solutions with very little
CPU time. The evolutionary population based scatter search algorithm (Van-
houcke 2010) achieved the best results in comparison with other meta-heuristics
such as genetic algorithms (Kolisch and Hartmann 2006) and tabu search (Zhu
and Padman 1999) on a comprehensive set of test cases. To cope with large
industrial applications with thousands of activities, various rules based heuristics

14 The Resource-Constrained Net Present Value Problem 301

(Baroum and Patterson 1996; Padman et al. 1997; Selle and Zimmermann 2003) are
used in practice. However these approaches are not robust especially for problems
with tight constraints.

Decomposition methods are widely used for large-scale combinatorial optimi-
sation problems. Lagrangian relaxation was successfully applied on RCPSP for up
to 1,000 jobs (Möhring et al. 2003). It has also been applied to RCPSPDC with
good results (Kimms 2001) and is more robust than rule based heuristics. Gu et al.
(2013) produced very competitive results for problems with tight deadlines and
resource constraints by combining the forward-backward improvement heuristic
with Lagrangian relaxation based on the ˛-point heuristic. For very large industrial
problems Gu et al. (2012) proposed a novel decomposition approach that can make
full use of the parallel computing capability of modern personal computers.

This chapter is organized as follows. The lazy clause generation based exact
method is discussed in Sect. 14.3, after models for the RCPSPDC are introduced in
Sect. 14.2. The Lagrangian relaxation method is described in Sect. 14.4 which also
includes the forward-backward improvement heuristic using the idea of ˛-point.
The novel decomposition approach for large problems is presented in Sect. 14.5.
Computational results are shown in Sect. 14.6, and a summary is given in Sect. 14.7.

14.2 Models for RCPSPDC

In this section we give two models for RCPSPDC, a constraint programming model,
and a mixed integer programming model.

The RCPSPDC is defined as follows: A set of activities V D f1; : : : ; ng is subject
to precedence relations in E � V 2 between two activities, and scarce resources in
R. The goal is to find a schedule S D .Si /i2V that respects the precedence and
resource constraints, and maximises the npv which is equal to

Pn
iD1 e�˛Si cFi where

˛ is the continuous discount rate, Si is the start time of the activity i , and cFi is the
cash flow that occurs when activity i starts.1

Each activity i has a finite duration pi and requires (non-negative) rik units of
resource k, k 2 R for its execution where rik is the resource requirement or usage
of activity i for resource k. A resource k 2 R has a constant resource capacity
Rk over the planning period which cannot be exceeded at any point in time. The
planning period is given by Œ0; d / where d is the maximal project duration. Each
resource k is modeled by a single cumulative constraint (Aggoun and Beldiceanu
1993): cumulative.S; p; Œrikji 2 V �;Rk/.

The constraint programming model of RCPSPDC problem can be stated as
follows:

1Note that much of the work on PSPDC and RCPSPDC considers discounted cash flows at the
end of activities, and find solutions to end time variables, here we use start times. If the cash flows
occur at the completion time instead of the start time, cFi has to be replaced by cFi e

˛pi .

302 H. Gu et al.

NPV D Max.
Xn

iD1 e
�˛Si cFi (14.1)

s. t. Si C pi � Sj ..i; j / 2 E/ (14.2)

cumulative.S; p; Œrikji 2 V �;Rk/ .k 2 R/ (14.3)

0 � Si � d � pi .i 2 V / (14.4)

The objective is to maximise the net present value (Eq. 14.1) which is subject to
the precedence constraints (Eq. 14.2), and the resource constraints (Eq. 14.3). All
start times must be non-negative and all activities must be scheduled in the planning
period (Eq. 14.4).

We now show a MIP model for RCPSPDC. Let wjt be the discounted cash flow of
activity j when starting at time t , i.e., wjt D e�˛t cFj . The time-indexed formulation
(Doersch and Patterson 1977) is:

NPV D Max.
X

j

X

t

wjtxjt (14.5)

s. t.
X

t

xjt D 1 .j 2 V / (14.6)

dX

�Dt
xi� C

tCpi�1X

�D0
xj� � 1 ..i; j / 2 EI t D 0; : : : ; d / (14.7)

X

j

rjk.

tX

�Dt�pjC1
xj� / � Rk .k 2 RI t D 0; : : : ; d / (14.8)

all variables binary (14.9)

where the binary variable xjt D 1 if activity j starts at t (Sj D t), and xjt D 0

otherwise. The assignment constraints (14.6) ensure that each activity has exactly
one start time. The precedence constraints (14.7) imply that activity j cannot start
before t C pi if activity i starts at or after time t for each .i; j / 2 E . The resource
constraints (14.8) enforce that the resource consumption of all activities processed
simultaneously must be within the resource capacity.

14.3 Lazy Clause Generation Based Exact Method

Lazy clause generation (LCG) is a sophisticated learning technology in constraint
programming (CP). In a CP solver each variable Si ; 1 � i � n has an initial domain
of possible values D0.Si / which is initially Œ0; d � pi �. The solver maintains a
current domain D for all variables. The CP search interleaves propagation with
search. The constraints are represented by propagators that, given the current

14 The Resource-Constrained Net Present Value Problem 303

domain D, creates a new smaller domain D0 by eliminating infeasible values. For
more details on CP see, e.g., Schulte and Stuckey (2008).

For a learning solver we also represent the domain of each variable Si using
Boolean variables �Si � v�; 0 � v < d �pi . These are used to track the reasons for
propagation and generate nogoods. For more details see Ohrimenko et al. (2009).
We use the notation �Si � v�; 1 � v � d � pi as shorthand for :�Si � v � 1�, and
treat �Si � 0� and �Si � d � pi� as synonyms for true. Propagators in a learning
solver must explain each reduction in domain by building a clausal explanation
using these Boolean variables.

Efficient propagators for cumulative constraints (Schutt et al. 2011) and
precedence constraints (Harvey and Stuckey 2003) which explain themselves are
well understood.

Optimisation problems are typically solved in CP via branch and bound. Given
an objective function f which is to be maximised, when a solution S 0 is found with
objective value f .S 0/, a new constraint f .S/ > f .S 0/ is posted to enforce that we
only look for better solutions in the subsequent search.

Chapter 7 of this handbook demonstrates how to solve RCPSP with generalised
precedence relations very efficiently using LCG. To solve RCPSPDC using LCG
we need to build a propagator for the nonlinear objective constraint. Three different
implementations were proposed in Schutt et al. (2012) with different strength and
computational complexity. Here we only consider the simplest version which solves
the max-NPV problem without precedence relations:

Max.
Xn

iD1 e
�˛Si cFi

s. t. minD.Si / � Si � maxD.Si / .1 � i � n/

This is easy to solve by simply setting Si D minD.Si / when cFi > 0 and Si D
maxD.Si / when cFi < 0. Define TC D fi j i 2 f1; : : : ; ng; cFi > 0g and T � D
fi j i 2 f1; : : : ; ng; cFi < 0g.

In a branch and bound solution process, we will be trying to improve on
a previous solution, and the constraint on the objective can be represented as:Pn

iD1 e�˛Si cFi > f best where f best is the current best solution found. We can build
a propagator directly for this as follows:

Consistency: Calculate DC D P
i2TC

e�˛minD.Si /cFi C
P

i2T�
e�˛maxD.Si /cFi .

If DC � f best then fail.

Example 14.1. Consider five activities with cash flows �100, 125, �150, 200, 20
and ˛ D 0:01. Suppose the current domain is D.S1/ D Œ0; 7�, D.S2/ D Œ3; 8�,
D.S3/ D Œ0; 4�, D.S4/ D Œ1; 5� and D.S5/ D Œ4; 8�. Then DC D �100e�0:01.7/ C
125e�0:01.3/�150e�0:01.4/C200e�0:01.1/C20e�0:01.4/ D 101:17. Suppose the current
best solution is f best D 105 then the propagator would trigger backtracking. �

Bounds propagation: If DC > f best then propagate bounds as follows. For each
i 2 TC, let DCi D DC�e�˛minD.Si /cFi . Let ui D b�˛�1.ln.f best�DCi /�ln.cFi //c
and set D.Si / D D.Si / \ Œ0; ui �: Similarly for each i 2 T �, let DCi D DC �

304 H. Gu et al.

e�˛maxD.Si /cFi and li D d�˛�1.ln.DCi � f best/ � ln.�cFi //e and set D.Si / D
D.Si /\ Œli ; d �:
Example 14.2. Consider the problem of Example 14.1 but assume the current best
solution is f best D 100. Then we can propagate bounds. DC2 D �20:13 and hence a
new upper bound on S2 is u2 D b�100.ln.100��20:13/�ln.125//c D b3:97c D 3.
Similarly DC4 D �96:84 and a new upper bound for S4 is u4 D b�100.ln.100 �
�96:84/� ln.200//c D b1:59c D 1. Now DC5 D 81:95 and a potential new upper
bound for S5 is u5 D b�100.ln.100 � 81:95/� ln.20//c D b10:26c D 10, but this
is not lower than its current upper bound so there is no propagation. �

Explanation: The explanation of failure simply uses the appropriate bounds of the
variables. If DC � f best then we generate explanation

V
j2TC

�Sj � minD.Sj /�^V
j2T�

�Sj � maxD.Sj /� ! false : Similarly for bounds propagation if DC >

f best we generate an explanation
V
j2TC�fig�Sj � minD.Sj /� ^ Vj2T�

�Sj �
maxD.Sj /� ! �Si � ui � for changing the upper bound of Si where cFi > 0,
and

V
j2TC

�Sj � minD.Sj /� ^Vj2T��fig�Sj � maxD.Sj /� ! �Si � li � for
changing the lower bound of Si where cFi < 0.

Example 14.3. An explanation for the failure of Example 14.1 is �S1 � 7�^ �S2 �
3� ^ �S3 � 4� ^ �S4 � 1� ^ �S5 � 4� ! false. An explanation for the new upper
bound of S4 in Example 14.2 is �S1 � 7� ^ �S2 � 3� ^ �S3 � 4� ^ �S5 � 4� !
�S4 � 1�. �

Strengthening Explanations: The explanations described above are not necessar-
ily the strongest possible, there may be weaker left hand sides of the explanation
which still explain the right hand side consequence.

Assume cFi > 0 and Si � ui is propagated. Then DCiCe�˛.uiC1/cFi � f best. Let
r D f best � .DCi C e�˛.uiC1/cFi / be the remainder before the bounds propagation
will be weakened. We can relax the bounds on the other variables Si , changing
DC and DCi as long as r remains non-negative. This generates a stronger (more
reusable) explanation.

Example 14.4. Consider the explanation for the propagation of S4 � 1 in Exam-
ple 14.2. The remainder before the propagation is r D 100 � .�96:84 C
e�0:01.2/200/ D 0:80. If we relax the bound on S5 to 0 the new DC is 101.96.
The difference is 101.96� 101.17 = 0.79, hence the same upper bound for S4 holds.
Since S5 � 0 is universally true we can remove it from the explanation obtaining
a stronger explanation �S1 � 7� ^ �S2 � 3� ^ �S3 � 4� ! �S4 � 1�. Weakening
any bound further drops the remainder to negative, so this explanation is as strong
as possible. �

The more complex propagators defined in Schutt et al. (2012) take into account
precedence relations in propagation. The results in Schutt et al. (2012) comprehen-
sively improve on the previous state of the art complete method for RCPSPDC in
Vanhoucke et al. (2001). More explanations about the lazy clause generation
technique can also be found in Chap. 7 of this handbook.

14 The Resource-Constrained Net Present Value Problem 305

14.4 Lagrangian Relaxation Based Forward-Backward
Improvement Heuristic

The Lagrangian relaxation method works on the MIP model for RCPSPDC
described in Sect. 14.2. Lagrangian relaxation identifies “hard” constraints in the
optimisation problem, and removes these “hard” constraints by putting them in the
objective function as penalties for the violation of these relaxed constraints (Fisher
1981). The Lagrangian Relaxation Problem (LRP) obtained by relaxing the resource
constraints (14.8) with Lagrangian multipliers �kt, k 2 R, t D 0; : : : ; d is

ZLR.�/ D Max. LRP.x/ (14.10)

s. t. (14.6), (14.7), (14.9) (14.11)

where

LRP.x/ D
X

j

X

t

wjtxjt C
X

k2R

X

t

�kt

0

@Rk �
X

j

rjk

0

@
tX

�Dt�pjC1
xj�

1

A

1

A (14.12)

By rearranging the terms in Eq. (14.12) we have

LRP.x/ D
X

j

X

t

zjtxjt C
X

k2R

X

t

�ktRk (14.13)

where

zjt D wjt �
tCpj�1X

�Dt

X

k2R
�k�rjk (14.14)

The Lagrangian multiplier �k� can be interpreted as the unit price for using
resource k at time period � . The discounted cash flow of activity j starting at
time t is then further reduced in Constraints (14.14) by the amount paid for all
the resources used from the start to the completion of this activity. It is well-known
(Fisher 1981) that ZLR.�/ is a valid upper bound of RCPSPDC for � � 0.

The polytope described by (14.6), (14.7), and (14.9) is integral (Chaudhuri et al.
1994). However, it is inefficient to solve LRP using a general LP solver. Instead, it
can be transformed into a minimum cut problem (Möhring et al. 2003) and solved
efficiently by a general max-flow algorithm.

The upper bound obtained by solving LRP can be tightened by optimising the
Lagrangian Dual Problem(LDP) as

min
��0 ZLR.�/ (14.15)

306 H. Gu et al.

We use the standard subgradient algorithm (SSA) (Fisher 1981) which updates the
Lagrangian multipliers at the &-th iteration �& according to

�&C1 D
�

�& � ı& ZLR.�
&/� LB�

jjg&� jj2
g
&

�

�C
(14.16)

where Œ��C denotes the non-negative part of a vector, ı& is a scalar step size, LB� is
the best known lower bound, and g&� is a subgradient calculated as

g
&

�.k; t/ D Rk �
X

j

rjk

0

@
tX

sDt�pjC1
x
&
js

1

A (14.17)

where x& is the optimal solution of LRP at the &-th iteration.
In practice ı& is reduced by a factor
 if ZLR is not improved by at least �&

after nmax
iter iterations. The algorithm can terminate when ı& is small enough to avoid

excessive iterations.
The schedule S derived from the solution to ZLR.�/ is normally not feasible

with respect to the resource constraints. Kimms (2001) proposed a Lagrangian
Relaxation based Heuristic (LRH) which works very well on some randomly
generated test cases. However our experiments with the set of test instances
in Vanhoucke (2010) clearly shows that LRH has difficulty in finding feasible
solutions on a significant percentage of instances. Careful analysis suggests that the
test instances used in Kimms (2001) have much looser deadline and smaller duality
gap compared with those of Vanhoucke (2010). Since the Lagrangian relaxation
solution may not be close to the optimal solution for the hardest cases, it is not
surprising that the simple forward list scheduling based LRH failed.

We present a Lagrangian Relaxation based Forward-Backward Improvement
heuristic (LR-FBI). For LR-FBI we try to find a feasible schedule similar to S using
FBI(S) detailed in Algorithm 11. Firstly a set of keysK.S/ is created for S . A key is
a vector x 2 R

jV j which is decoded into a schedule by a schedule-generation scheme
(SGS) (Hartmann and Kolisch 2000). The iterative forward/backward scheduling
technique is used to reduce the makespan of a deadline infeasible schedule. It was
introduced by Li and Willis (1992) for RCPSP and was adapted for many meta-
heuristics (Vanhoucke 2010). Finally, the NPV of the schedule is further improved
by shifting activities (shift) as in Kimms (2001).

To calculate keys K.S/, rather than use a Linear Programming relaxation of
the original problem (Gu 2008; Gu et al. 2007; Savelsbergh et al. 2005), we use
the computationally more efficient ˛-point idea of Möhring et al. (2003) which is
based on a single LRP solution. The j th key element of the �th key is defined as
x
�
j D Sj C ˛�j � pj , ˛�j 2 Œ0; 1�. We have two different strategies to create K.S/.

Best-˛.�/ generates � uniformly distributed keys with ˛�j D �=�,� D 0; : : : ; ��1.
Random-˛.�/ generates � random keys where each ˛�j is randomly chosen with
uniform distribution.

14 The Resource-Constrained Net Present Value Problem 307

Algorithm 14.1: FBI(S)
1 best_NPV := �1; generate keys K.S/;
2 for x 2 K.S/ do
3 right := true; S 0 := SGS_left(x) % decode x to schedule S 0;

4 whilemakespan.S 0/ > d do
5 if right then
6 S 00 := SGS_right(S 0 C p) % rightmost schedule using activity end times;

7 else S 00 := SGS_left(S 0) % leftmost schedule using activity start times;
8 if makespan.S 00/ � makespan.S 0/ then return best_NPV ;
9 right := :right; S 0 := S 00;

10 S 0 := shift(S 0); if NPV.S 0/ > best_NPV then best_NPV WD NPV.S 0/ ;

11 return best_NPV ;

Algorithm 14.2: SGS_left(x)
1 current clock time t := 0; unscheduled activities U WD V ;
2 while U ¤ ; do
3 calculate A WD fi 2 U j activity i has no predecessor in U g;
4 while A ¤ ; do
5 i WD argminj2Axj ;
6 find the earliest time t 0 to schedule activity i with respect to the resource and

precedence constraints for the partial schedule of V n U ;
7 if t 0 � t then
8 U WD U n i ; A WD A n i ; si WD t 0 ;

9 else A WD A n i ;

10 t := t + 1;

11 return S ;

SGS_left(x) (SGS_right(x)) (Debels and Vanhoucke 2007) greedily schedules
activities one by one as early (late) as possible respecting the (reverse) precedence
constraints and resource constraints, in the order where i is scheduled before (after)
j if xi < xj (xi � xj). The resulting schedules are left(right)-justified (Sprecher
et al. 1995). SGS can be implemented in both serial and parallel modes (Hartmann
and Kolisch 2000). A simple implementation of the parallel mode of SGS_left(x)
is given in Algorithm 12.

14.5 Lagrangian Relaxation Method for Large Problems

To overcome the scalability problem of the max-flow algorithm in solving LRP we
further relax some precedence constraints so that activities can form clusters that are
independent from each other. We partition the set of activities V into V D V1[V2[
: : : [VU where U is the given number of clusters. The multi-cut of this partition is

308 H. Gu et al.

Fig. 14.1 Example of multi-cut for nine activities and three clusters

defined as the set of precedence relations OE D f.i; j / 2 Eji 2 Vg; j 2 Vg0 ; g ¤
g0g. Denote the set of precedence relations that hold on cluster Vg by OEg D f.i; j / 2
Eji 2 Vg; j 2 Vgg. Obviously we haveE D OE[OE1[: : :[OEU . As an example given
if Fig. 14.1, the set of nine activities is partitioned into V1 D f1; 3; 5g,V2 D f2; 4; 6g,
and V3 D f7; 8; 9g. The multi-cut of this partition is OE D fe1; e2; e3; e4g.

To reduce the number of Lagrangian multipliers introduced for the relaxed
precedence relations, we use the weak form of the precedence constraints (Möhring
et al. 2003)

X

t

t .xjt � xit/ � pi ..i; j / 2 OE/ (14.18)

By relaxing the precedence constraints (14.18) with Lagrangian multipliers�we
can obtain a Decomposable Lagrangian Relaxing Problem (DLRP)

ZLR.�; �/ D Max. LRP.x/C
X

.i;j /2 OE
�ij

X

t

t .xjt � xit/� pi
!

(14.19)

s. t. (14.6), (14.9) (14.20)

dX

�Dt
xi� C

tCpi�1X

�D0
xj� � 1 ..i; j / 2 En OEI t D 0; : : : ; d /

(14.21)

Let the set of precedence constraints in the multi-cut that have activity i as
predecessor be OECi D f.i; j / 2 OEg, the set of precedence constraints in the
multi-cut that have activity i as successor be OE�i D f.j; i/ 2 OEg. For the example
in Fig. 14.1, we have empty OECi and OE�i except that OEC2 D fe1g, OE�3 D fe1g,OEC5 D fe2; e4g, OE�6 D fe2g, OEC6 D fe3g, OE�7 D fe3g, and OE�8 D fe4g.

By rearranging the items in the objective function of DLRP in Constraint (14.19),
we get

LRP.x/C
X

j

X

t

0

B
@

X

.i;j /2 OE�

j

t�ij �
X

.j;i/2 OEC

j

t�ji

1

C
A xjt �

X

.i;j /2 OE
�ijpi (14.22)

14 The Resource-Constrained Net Present Value Problem 309

By ignoring the constant terms the DLRP can be decomposed into U independent
subproblems on each of the clusters Vg , g D 1; : : : ; U

Max.
X

j2Vg

X

t

0

B
@zjt C

X

.i;j /2 OE�

j

t�ij �
X

.j;i/2 OEC

j

t�ji

1

C
A xjt (14.23)

s. t.
X

t

xjt D 1 .j 2 Vg/ (14.24)

dX

�Dt
xi� C

tCpi�1X

�D0
xj� � 1 ..i; j / 2 OEgI t D 0; : : : ; d / (14.25)

all variables binary (14.26)

Since each subproblem has smaller size, the max-flow solver can solve DLRP
much faster than LRP. Also these subproblems can be solved in parallel utilising
the multi-core computers that are now ubiquitous. If main memory of the computer
is a bottleneck we can construct the network flow model of each cluster on the fly.
In this way we can solve the DLRP with over a hundred million variables within
500 MB memory.

The upper bound will become worse, i.e., ZLR.�/ � ZLR.�; �/ since the weak
form of the precedence constraints is used. Our goal therefore is to relax as few as
possible the precedence constraints but still obtain activity clusters small enough to
solve efficiently as a maximum flow problem. This can be formulated as the Min-Cut
Clustering problem (MCC) as in Johnson et al. (1993)

Min.
UX

gD1

X

e2E
zeg (14.27)

s. t.
XU

gD1 xig D 1 .i 2 V / (14.28)

xig � xjg � zeg .e D .i; j / 2 EI g D 1; : : : ; U / (14.29)

l �
X

i2V xig � u .g D 1; : : : ; U / (14.30)

all variables binary (14.31)

where U is the upper bound of the number of clusters, xig is 1 if activity i is
included in the cluster g, and otherwise 0. The set partitioning constraints (14.28)
make sure that each activity is contained in only one cluster; Constraints (14.29) and
the minimisation of (14.27) imply that the binary variable zeg is 1 if the predecessor
activity of e is included in the cluster g but the successor activity is in a different
cluster, and otherwise 0; Constraints (14.30) ensure that the cluster size is within the
specified range Œl; u�.

310 H. Gu et al.

MCC is also NP-hard, and only small problems can be solved to optimality.
For our purposes the cluster size constraints (14.30) are just soft constraints. We
can use heuristics to generate good partitions very quickly. Our experimentation
with METIS (Karypis 2011) shows that the project with 11,000 activities can be
partitioned into 100 balanced parts within 0.1 s and only 384 precedence constraints
need to be relaxed.

The subgradient algorithm tends to converge slowly for problems of high dimen-
sions due to the zig-zag phenomenon (Zhao and Luh 2002). For large RCPSPDC
problems we observed that the convergence of the precedence multipliers � was
extremely slow using the updating rule

.�&C1; �&C1/ D
�

.�& ; �& /� ı& ZLR.�
& ; �&/ � LB�

jjg&� jj2 C jjg&�jj2
.g
&

� ; g
&
�/

�C
(14.32)

where .g&� ; g
&
�/ is a subgradient calculated as

g
&

�.k; t/ D Rk �
X

j

rjk

0

@
tX

�Dt�pjC1
x
&
j�

1

A (14.33)

and

g&�.i; j / D
X

t

t .x
&
jt � x&it / � pi ..i; j / 2 OE/ (14.34)

The reasons could be

• The contribution of the precedence multipliers in the objective function value
ZLR is trivial. It can be even smaller than �& which is used to test if the upper
bound is improved. Too small �& can only lead to excessive iterations before ı&

can be reduced.
• In Constraints (14.32) the resource component of the subgradient jjg&� jj2 is much

larger than the precedence component jjg&�jj2, which may lead to steps too small
for the convergence of �.

Good � can lead to near-feasible solutions with respect to the precedence
constraints, which is important for the Lagrangian relaxation based heuristics to
produce good lower bounds.

To accelerate the convergence of precedence multipliers we introduce a hier-
archical subgradient algorithm (HSA) which has two levels. At the first level we
update the multipliers according to (14.32) for a certain number of iterations n1iter
and then move to the second level by just updating the precedence multipliers as

�&C1 D
�

�& � ı&ı&�
ZLR.�

& ; �& /

jjg&�jj2 g&�

�C
(14.35)

14 The Resource-Constrained Net Present Value Problem 311

Only ı&� is reduced at the second level if ZLR is not improved after nmax
iter iterations.

After a certain number of iterations n2iter the algorithm will switch back to the first
level. This process is repeated until some stopping criterion are met.

14.6 Computational Results

We report the results of CP, Lagrangian relaxation and scatter search on small
benchmark problems first in Sect. 14.6.1. The capability of Lagrangian relaxation
for very large problems is presented in Sect. 14.6.2. We implemented the algorithms
in C++. BOOST version 1.49.0 (Siek et al. 2001) is used for the max-flow solver
and multi-threading. METIS version 5.0 (Karypis 2011) is used to solve the
MCC problem. We implemented our CP based approach using the LCG solver
Chuffed. For the subgradient algorithm we use ı0 D 1 in Constraints(14.16, 14.32),
ı0� D 0:01 in Constraints (14.35), the threshold for significant objective value
improvement is �& D 0:0001�ZLR.�

& ; �& /, the number of iterations for reducing
ı& is nmax

iter D 3 and the factor
 D 0:5, the maximal number of iterations for each
level of HSA is n1iter D n2iter D 10. All tests were run on a computing cluster of
which each node has two 2.8 GHz AMD 6-Core CPU.

14.6.1 Comparison of CP, LR, and Scatter Search
on Benchmark Problems

We carried out extensive experiments on the benchmark set of Vanhoucke (2010).
The benchmark set consists of 17280 RCPSPDC instances which are split in four
problem sizes, i.e., 25-, 50-, 75-, and 100-activities. A more detailed specification
of these instances can be found in Vanhoucke (2010). We set a time limit of 5 min
for both CP and LR. The NPV and CPU time for each instance is also available for
the scatter search method in Vanhoucke (2010) which terminates when a maximal
number of schedules are generated using a computer with a Dual Core processor
2.8 GHz.

We illustrate the effects of our improvements on the LRH in Kimms (2001) in
Table 14.1. We report the percentage of instances which have feasible schedule
found (pfeas), the number of instances on which the best NPV is achieved (nbest)
and the average relative deviation (�UB) of the NPV found by the heuristic from
upper bound UB (only instances for which all methods find a feasible schedule are
considered).�UB is defined as abs..UB� LB/=UB/ (see Vanhoucke 2010).�Vh is
calculated with the upper bound in Vanhoucke (2010), while�LR uses the LR upper
bound. The prefix S-(P-) stands for the serial (parallel) SGS. It can be seen that LRH
has serious problems with feasibility. Parallel SGS is superior to serial SGS in terms
of feasibility. The use of ˛-point further improves both feasibility and NPV . Since
LR can produce much stronger upper bounds than Vanhoucke (2010) we only use
�LR for the remaining tests.

312 H. Gu et al.

Table 14.1 Comparison of
feasibility results on
100-activities instances

pfeas �Vh �LR nbest

LRH 72:9 203:3 76:1 836

S-Best-˛.1/ 77:3 203:0 74:7 1,005

P-Best-˛.1/ 91:9 207:6 79:5 450

P-Best-˛.10/ 95:8 197:1 69:4 1,919

P-Random-˛.2000/ 99:5 197:1 69:4 2,304

Values in bold are the best in their groups.

Table 14.2 Comparison of Scatter search, CP, and LR

Scatter(5000) CP-VSIDS P-Random-˛.2000/

Size pfeas �LR nbest pfeas �LR nbest pfeas �LR nbest

25 100:0 73:1 2,507 100 72:8 3,663 99:8 81:6 795

50 99:9 91:6 1,556 98:4 104:8 1,124 99:9 82:4 937

75 99:7 106:9 1,196 90:3 � – 99:8 98:3 1,836
100 99:6 100:2 1,612 76:8 � – 99:5 95:3 1,524

Values in bold are the best in their groups.

Table 14.3 Comparison with best scatter search results on size 100

pfeas �LR nbest t ø
cpu tmax

cpu

Scatter(50000) 99:6 89:9 2,003 26:2 139:8
P-Random-˛.2000/ 99:5 86:5 1,283 167 607

Values in bold are the best in their groups.

We compare the reported results for scatter search (Vanhoucke 2010) with at most
5,000 schedules, with CP (Schutt et al. 2012), and LR-FBI in Table 14.2. Scatter
search is very fast (average computation time is 4.2 s for size 100) and almost always
finds a feasible solution. CP performs very well on the smallest instances but does
not scale well. LR-FBI is highly competitive when problem sizes increase, generally
finding better solutions, but requires more time than scatter search (82 s on average
for size 100).

We also compare with the best results of scatter search with 50,000 schedules in
Table 14.3, showing also average (tøcpu) and maximum solving time (tmax

cpu) in seconds.
The time limit for LR-FBI is set to 10 min. The LR-FBI has better deviation. It was
reported in Gu et al. (2013) that the hybridisation of LR and CP can produce better
results on more instances.

14.6.2 Lagrangian Relaxation for Large Problems

Table 14.4 shows six of the eight test cases we obtained from a underground mining
consulting company. The other two have no resource constraints and can be solved
to optimality within 2 min. The first column in the table is the name of each case.
The next two columns are the number of activities jV j and the average number of

14 The Resource-Constrained Net Present Value Problem 313

successors of each activity in the precedence constraints E . The fourth column is
the number of resources K . The fifth column is the number of Natural Clusters
(NCl) which is the number of clusters without relaxing any precedence constraints.
The remaining columns give the pairs of the number of obtained clusters (U) after
relaxing the number of precedence constraints (OE) by solving MCC. These test cases
ranges from about 1,400 activities to about 11,000 activities. The average number of
successors per activity is small for all of these test cases. However only the smaller
caNZ_def and caGL have natural clusters. Even for these two cases the natural
clusters are not balanced in size. For example 38 precedence constraints have to
be relaxed for caNZ_def to have 10 balanced clusters which is smaller than the
number of natural clusters. It can be seen that more precedence constraints have to
be relaxed when the number of clusters required increases. We omit here the running
times of METIS because all MCC instances for our six test cases in Table 14.4 can
be solved within 0.1 s.

14.6.2.1 Relaxing Resource Constraints Only

Without relaxing precedence constraints we can only solve the three smaller test
cases and the results are shown in Table 14.5. The makespan of the feasible solution
with the best npv, the upper bound (UB), and lower bound (LB) are reported in
columns two to four. The fifth column is the optimality gap calculated as �UB D
.UB � LB/=UB. The next two columns are the total number of iterations for the
subgradient algorithm, and the total cpu time (tcpu). The last two columns are the
number of nodes jV NM j and number of edges jENM j in the network model for
solving the Lagrangian relaxation problem. All times are in seconds. Entries in bold
are the best over entries in Tables 14.5, 14.6, 14.7, and 14.8. It can be seen that

Table 14.4 Test cases for large RCPSPDC

Case name jV j jEj=jV j K d NCl (U ,j OEj)
caNZ_def 1,410 1:18 7 3,040 14 (10,38) (50,126) (100,233)

caW 2,817 1:26 2 3,472 1 (10,120) (50,314) (100,578)

caGL 3,838 1:16 5 2,280 17 (10,59) (50,174) (100,269)

caZ 5,032 1:36 5 8,171 1 (50,274) (100,427)

caCH 8,284 1:24 4 7,251 1 (100,623) (200,866)

caZF 11,769 1:16 5 6,484 1 (100,384) (200,595)

Table 14.5 Test results for relaxing resource constraints only

Case name Makespan UB LB �UB niter tcpu jV NMj jENMj
caNZ_def 3,040 1.199E9 1.140E9 0:0496 81 10,370 2,874,917 5,854,335

caW 3,471 6.014E8 4.681E8 0:2217 72 12,336 6,178,671 13,449,822

caGL 2,269 1.055E9 1.021E9 0:0318 86 60,885 6,371,416 13,224,808

Values in bold are the best in their groups.

314 H. Gu et al.

Table 14.6 Test results of SSA for comparison with HSA

Case name U Makespan UB LB �UB niter tcpu

caNZ_def 10 3,035 1.202E9 1.047E9 0:128 96 2,261

caW 10 – 6.036E8 – – 62 2,103

caGL 10 2,237 1.058E9 1.010E9 0:046 89 7,887

caZ 100 7,969 3.003E8 1.259E8 0:581 100 19,357

caCH 200 7,251 3.031E9 2.326E9 0:232 100 18,885

caZF 200 6,337 3.979E8 2.091E8 0:474 100 11,371

Values in bold are the best in their groups.

Table 14.7 Test results of HSA for comparison with SSA

Case name U Makespan UB LB �UB niter tcpu

caNZ_def 10 3,033 1.200E9 1.136E9 0:054 100 6,330

caW 10 3,456 6.017E8 4.803E8 0:202 100 6,657

caGL 10 2,254 1.056E9 1.019E9 0:035 100 9,523

caZ 100 7,931 2.919E8 1.735E8 0:406 100 23,076

caCH 200 7,251 3.060E9 2.449E9 0:200 100 44,353

caZF 200 6,368 3.952E8 2.394E8 0:394 100 17,318

Values in bold are the best in their groups.

Table 14.8 Test results for effects of the number of clusters

Case name U Makespan UB LB �UB niter tcpu

caNZ_def 10 3,033 1.200E9 1.136E9 0:054 100 6,330

caNZ_def 50 3,030 1.202E9 1.125E9 0:064 100 1,349

caNZ_def 100 3,025 1.203E9 1.100E9 0:086 100 967

caW 10 3,456 6.017E8 4.803E8 0:202 100 6,657

caW 50 3,457 6.025E8 4.615E8 0:234 100 4,390

caW 100 3,460 6.036E8 4.380E8 0:274 100 3,699

caGL 10 2,254 1.056E9 1.019E9 0:035 100 9,523

caGL 50 2,228 1.060E9 1.017E9 0:040 100 3,574

caGL 100 2,218 1.060E9 1.010E9 0:047 100 2,337

caZ 50 7,909 2.856E8 1.714E8 0:400 100 31,180

caZ 100 7,931 2.919E8 1.735E8s 0:406 100 23,076

caCH 100 7,251 3.023E9 2.365E9 0:218 100 64,758

caCH 200 7,251 3.060E9 2.449E9 0:200 100 44,353

caZF 100 6,427 3.860E8 2.398E8 0:379 100 27,663

caZF 200 6,368 3.952E8 2.394E8 0:394 100 17,318

Values in bold are the best in their groups.

caNZ_def and caGL have very good optimality gaps which are under 5 %, while
caW has quite a large gap. Although caW and caGL have similar sizes of network
flow model, caGL is much slower to solve. The reason could be that caGL has larger
edge capacities which can also affect the performance of max-flow algorithm.

14 The Resource-Constrained Net Present Value Problem 315

14.6.2.2 Relaxing Both Resource and Precedence Constraints

We first study how convergence can be affected after relaxing precedence constraints
by comparing the standard subgradient algorithm (SSA) and the hierarchical
subgradient algorithm (HSA). The maximal number of iterations is set to be 100
for all tests. We use ten cores to speed up the tests.

The results for SSA and HSA are reported in Tables 14.6 and 14.7 respectively.
For the three smaller test cases it can be seen clearly that the upper bounds are
trivially worsened by relaxing precedence constraints. However the lower bounds
become significantly worse if SSA is used. The test case caW could not even
find a feasible solution. In sharp contrast HSA finds a better lower bound for
caW than without precedence constraint relaxation. This shows that HSA makes
the Lagrangian multipliers associated with precedence constraints converge much
faster. For the three larger cases HSA produces much better lower bounds than SSA
especially for caZ. However SSA got a better upper bound for caCH. The reason
is that HSA only uses half the number of iterations on updating the Lagrangian
multipliers associated with the resource constraints. All the following tests will use
HSA because of the overwhelming advantages on lower bounds over SSA.

We study how the quality of bounds are affected by the number of clusters. The
results are reported in Tables 14.7 and 14.8. For the three smaller test cases, both
upper bounds and lower bounds consistently become worse with the number of
clusters increased. The lower bounds are more adversely affected than the upper
bounds. For the three larger test cases the worsening of upper bounds is more than
1 % after the number of clusters is doubled. However the lower bounds become
significantly better on caZ and caCH. The reason could be that list scheduling is
not robust. But it can also be that the HSA does not converge well on the Lagrangian
multipliers related to the precedence constraints. By setting n1iter D n2iter D 50 and
keeping the maximal number of iterations the same we get lower bound 1.86E8 for
caZ with U D 50. This suggests more work need to be done to adaptively tune
parameters of HSA.

We next study the impact on solution time from parallelization. We calculate the
speedup factor
LD due to solving DLRP instead of LRP as

LD D tø;Lcpu =t
ø;D
cpu

where tø;Dcpu is the average solution time of DLRP while tø;Lcpu is the average solution
time of LRP. We also calculate the speedup factor
DM due to solving DLRP using
multi-cores as

DM D tø;Dcpu =t
ø;M
cpu

where tø;Mcpu is the average solution time of DLRP with multi-cores. We implemented
a thread pool using the BOOST thread library. If the number of clusters is larger than
the number of cores available the longest solution time first rule (Dósa 2004) is used

316 H. Gu et al.

Table 14.9 Test results for speedups due to decomposition and parallelization as an effect of the
number of clusters

Case name U D 10 U D 50 U D 100

LD
DM
LD �
DM
LD
DM
LD �
DM
LD
DM
LD �
DM

caNZ_def 0:94 2:16 2.02 1:68 5:63 9.49 2:46 5:38 13.24

caW 0:92 2:81 2.57 0:63 6:18 3.90 0:76 6:11 4.63

caGL 1:50 4:97 7.43 3:32 5:97 19.81 5:11 5:93 30.29

to schedule the threads. Solution time is estimated based on the previous iterations.
If the estimation of the solution time produces the same list of threads as using the
real solution time, this rule has performance guarantee 4=3 . The results for smaller
cases are reported in Table 14.9 using ten threads. We cannot calculate
LD for the
larger cases.
DM is similar to those of the smaller cases.

14.7 Conclusions

RCPSPDC is a difficult NP-hard problem. For small problems the LCG based
CP approach clearly outperforms the state of the art meta-heuristic and Lagrangian
relaxation method. For larger problems the Lagrangian relaxation method becomes
highly competitive in terms of solution quality if the forward-backward improve-
ment heuristic is employed. It also produces the tightest upper bound for the
RCPSPDC. Lagrangian relaxation can be also applied for very large industrial
problems with further decomposition on the precedence constraints. The ability for
parallelisation is especially attractive due to the ever-increasing computing power
of modern parallel computers. The hybridization of the different approaches, i.e.,
constraint programming, decomposition method, and meta-heuristic is a promising
future direction.

Acknowledgements NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

Aggoun A, Beldiceanu N (1993) Extending CHIP in order to solve complex scheduling and
placement problems. Math Comput Model 17(7):57–73

Baroum S, Patterson J (1996) The development of cash flow weight procedures for maximizing
the net present value of a project. J Oper Manag 14(3):209–227

Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project
scheduling: notation, classification, models, and methods. Eur J Oper Res 112(1):3–41

14 The Resource-Constrained Net Present Value Problem 317

Chaudhuri S, Walker R, Mitchell J (1994) Analyzing and exploiting the structure of the constraints
in the ILP approach to the scheduling problem. IEEE Trans VLSI Syst 2(4):456–471

Debels D, Vanhoucke M (2007) A decomposition-based genetic algorithm for the
resource-constrained project-scheduling problem. Oper Res 55(3):457–469

Demeulemeester EL, Herroelen WS (1992) A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem. Manag Sci 38(12):1803–1818

Demeulemeester EL, Herroelen WS (1997) New benchmark results for the resource-constrained
project scheduling problem. Manag Sci 43(11):1485–1492

Doersch R, Patterson J (1977) Scheduling a project to maximize its present value: a zero-one
programming approach. Manag Sci 23(8):882–889

Dósa G (2004) Graham’s example is the only tight one for PjjCmax. Ann Univ Sci Budapest Sec
Math 47:207–210

Fisher M (1981) The lagrangian relaxation method for solving integer programming problems.
Manag Sci 27(1):1–18

Gu HY (2008) Computation of approximate alpha-points for large scale single machine scheduling
problem. Comput Oper Res 35(10):3262–3275

Gu H, Xi Y, Tao J (2007) Randomized Lagrangian heuristic based on Nash equilibrium for large
scale single machine scheduling problem. In: Proceedings of the 22nd IEEE international
symposium on intelligent control, pp 464–468

Gu H, Stuckey P, Wallace M (2012) Maximising the net present value of large resource-constrained
projects. In: Milano M (ed) CP 2012. Lecture notes in computer science, vol 7514. Springer,
Heidelberg, pp 767–781

Gu H, Schutt A, Stuckey P (2013) A Lagrangian relaxation based forward-backward improvement
heuristic for maximising the net present value of resource-constrained projects. In: Gomes
C, Sellmann M (eds) CPAIOR 2013. Lecture notes in computer science, vol 7874. Springer,
Heidelberg, pp 340–346

Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained
project scheduling problem. Eur J Oper Res 207(1):1–14

Hartmann S, Kolisch R (2000) Experimental evaluation of state-of-the-art heuristics for resource
constrained project scheduling. Eur J Oper Res 127(2):394–407

Harvey W, Stuckey PJ (2003) Improving linear constraint propagation by changing constraint
representation. Constraints 8(2):173–207

Icmeli O, Erengüç SS (1996) A branch and bound procedure for the resource constrained project
scheduling problem with discounted cash flows. Manag Sci 42(10):1395–1408

Johnson E, Mehrotra A, Nemhauser G (1993) Min-cut clustering. Math Program 62(1–3):133–151
Karypis G (2011) METIS: A software package for partitioning unstructured graphs, partitioning

meshes, and computing fill-reducing orderings of sparse matrices, Version 5.0. URL http://
glaros.dtc.umn.edu/gkhome/views/metis

Kimms A (2001) Maximizing the net present value of a project under resource constraints using a
Lagrangian relaxation based heuristic with tight upper bounds. Ann Oper Res 102(1–4):221–
236

Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained
project scheduling: an update. Eur J Oper Res 174(1):23–37

Li K, Willis R (1992) An iterative scheduling technique for resource-constrained project schedul-
ing. Eur J Oper Res 56(3):370–379

Möhring RH, Schulz AS, Stork F, Uetz M (2003) Solving project scheduling problems by
minimum cut computations. Manag Sci 49(3):330–350

Neumann K, Zimmermann J (2002) Exact and truncated branch-and-bound procedures for
resource-constrained project scheduling with discounted cash flows and general temporal
constraints. Cent Eur J Oper Res 10(4):357–380

Ohrimenko O, Stuckey PJ, Codish M (2009) Propagation via lazy clause generation. Constraints
14(3):357–391

Padman R, Smith-Daniels DE, Smith-Daniels VL (1997) Heuristic scheduling of
resource-constrained projects with cash flows. Nav Res Log 44(4):365–381

http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis

318 H. Gu et al.

Russell AH (1970) Cash flows in networks. Manag Sci 16(5):357–373
Savelsbergh M, Uma R, Wein J (2005) An experimental study of LP-based approximation

algorithms for scheduling problems. INFORMS J Comput 17(1):123–136
Schulte C, Stuckey PJ (2008) Efficient constraint propagation engines. ACM Trans Program Lang

Syst 31(1):1–43 (Article No. 2)
Schutt A, Feydy T, Stuckey PJ, Wallace MG (2011) Explaining the cumulative propagator.

Constraints 16(3):250–282
Schutt A, Chu G, Stuckey PJ, Wallace MG (2012) Maximizing the net-present-value for resource

constrained project scheduling. In: Beldiceanu N, Jussien N, Pinson E (eds) CPAIOR 2012.
Lecture notes in computer science, vol 7298. Springer, Heidelberg, pp 362–378

Selle T, Zimmermann J (2003) A bidirectional heuristic for maximizing the net present value of
large-scale projects subject to limited resources. Nav Res Log 50(2):130–148

Siek JG, Lee LQ, Lumsdaine A (2001) The boost graph library: user guide and reference manual.
Addison-Wesley, Boston

Sprecher A, Kolisch R, Drexl A (1995) Semi-active, active, and non-delay schedules for the
resource-constrained project scheduling problem. Eur J Oper Res 80(1):94–102

Vanhoucke M (2010) A scatter search heuristic for maximising the net present value of a resource
constrained project with fixed activity cash flows. Int J Prod Res 48(7):1983–2001

Vanhoucke M, Demeulemeester EL, Herroelen WS (2001) On maximizing the net present value of
a project under renewable resource constraints. Manag Sci 47(8):1113–1121

Zhao X, Luh PB (2002) New bundle methods for solving Lagrangian relaxation dual problems.
J Optim Theory App 113(2):373–397

Zhu D, Padman R (1999) A metaheuristic scheduling procedure for resource-constrained projects
with cash flows. Nav Res Log 46(8):912–927

Chapter 15
Exact Methods for the Resource Availability
Cost Problem

Savio B. Rodrigues and Denise S. Yamashita

Abstract In this chapter, an exact method for the RACP problem is built from
a combination of an RCPSP exact solver and RCPSP heuristic. In the RACP, the
objective is to find the resource values that yield the least cost while finishing the
project before the deadline. In the present method, the project feasibility is assessed
by fixing the RACP resources and solving the underlying RCPSP with an exact
algorithm. The idea is to reduce the number of RCPSP subproblems to be solved
by sweeping the search space with a branching strategy that generates good bounds
along the search. This approach is called the modified minimum bounding algorithm
(MMBA). In the algorithm, we also employ a heuristic method in order to find an
upper bound for the project cost. We fully describe the MMBA including possible
alternative implementations. We also include an integer programming formulation
of the RACP to be used directly or in subproblem solvers.

Keywords Exact algorithm • Heuristic bound • Hybrid method • Project
scheduling • Resource availability

15.1 Introduction

In this chapter we address an exact method called the modified minimum bounding
algorithm (MMBA) for solving the resource allocation cost problem (RACP); the
problem classification is PSjprec; d jP ck max rkt. In the RACP, the objective is
to complete the project before the deadline and to determine resource levels in
order to minimize the total cost. The approach of the method is to repeatedly
fix resource levels and solve the underlying project scheduling problem (RCPSP)
where, of course, it is desirable to solve as few RCPSP as possible. The MMBA

S.B. Rodrigues (�)
Department of Mathematics, Federal University of São Carlos, São Carlos, Brazil
e-mail: savio@dm.ufscar.br

D.S. Yamashita
Department of Production Engineering, Federal University of São Carlos, São Carlos, Brazil
e-mail: denisesy@dep.ufscar.br

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_15

319

mailto:savio@dm.ufscar.br
mailto:denisesy@dep.ufscar.br

320 S.B. Rodrigues and D.S. Yamashita

is a method to organize the search so that good bounds are obtained along the
search. We remark that, as long as an efficient subproblem solver is available,
the MMBA can be applied to other project scheduling problems found in this
book. For example, the MMBA can be applied to solve problems where activities
have different restrictions: multi-mode, preemption, sequence dependence, etc;
nevertheless the formulation must have a project deadline and a resource availability
cost. In principle, the MMBA can be adapted to solve problems with time varying
resources; the dimension of the search space increases and this increases the
computational effort.

The RACP is formulated as follows: the decision variables are the availabilities
of resources Rk , k D 1; : : : ; K and the starting times Si of activities, i D 1; : : : ; n.
The objective is to minimize the total cost

c �R D
KX

kD1
ckRk

where R D .R1; : : : ; RK/ denotes the vector of resource availabilities, which we
also call resource vector for short, and c D .c1; : : : ; cK/ denotes the cost vector
with 0 < c1 � c2 � � � � � cK . As usual, each activity i has a duration pi and
requires rik quantities of the renewable resource k during its processing time. These
activities are subjected to a set E of precedence relations; if .i; j / 2 E , activity i
must precede activity j . The sum of resource k required by all the activities being
processed at a given time must not exceed the availabilityRk , for k D 1; : : : ; K . All
activities of the project must finish before or on the deadline d . A complete integer
programming definition is given in Sect. 15.7.

There are a few articles with exact solution methods for the RACP. It was
first studied by Möhring (1984) motivated by a bridge construction project. Later,
Demeulemeester (1995) proposed an exact algorithm (called minimum bounding
algorithm—MBA) to solve the RACP and showed that the MBA was faster on the
same bridge project instances proposed by Möhring (1984). Rangaswamy (1998)
proposed a branch-and-bound for the RACP and applied it to the same instance
set used by Demeulemeester (1995). Computational results were not conclusive
due to the difference in the computer platforms used in the experiments. Drexl
and Kimms (2001) proposed two lower-bound procedures for the RACP based on
Lagrangian relaxation and column generation methods. Moreover, feasible solutions
were provided by both procedures. The authors pointed out that the solution of
the RACP for various deadlines provides time/cost tradeoffs, which is valuable
information for negotiating the price for the project. Rodrigues and Yamashita
(2010) brings an exact method with a branching procedure similar to the MBA but
where heuristics are used to reduce the search space. Computational experiments
show an improvement over the MBA algorithm.

An important concept is the feasibility of the resources assigned to the project.
A resource vector R D .R1; : : : ; RK/ is said to be feasible if there is a schedule
that finishes the project before or on the deadline. If such a schedule does not exist,
we say R is an unfeasible resource vector. Once a resource vector R is given, an

15 Exact Methods for the Resource Availability Cost Problem 321

algorithm that establishes if R is feasible/unfeasible is called a subproblem solver
(SPS) or simply a solver. Any algorithm that solves the RCPSP can be used as a
subproblem solver; in particular, the algorithm may be stopped as soon as a feasible
schedule is found. We remark that a heuristic method may speed up the proof thatR
is feasible however only exact methods and lower bounds on duration (cf. Chap. 3
of this handbook) can prove that R is unfeasible. We use heuristics to find an upper
bound on the project cost, the methods found in Chaps. 4 and 16 of this handbook
are also suitable for this purpose.

The goal is to sweep the search space requiring a small number of subproblem
calls. The MMBA accomplishes this by generating good cuts along the search
whenever a resource vector Ru is found to be unfeasible. Of course, any resource
vector R with fewer resources than Ru is necessarily unfeasible too. We state that
the inequality R � Ru holds wheneverRi � Ru

i for every index i .
The algorithm MMBA works with any choice of subproblem solver and con-

structive heuristic. In this chapter, as in Rodrigues and Yamashita (2010), we use
the solver proposed by Demeulemeester and Herroelen (1992) and the constructive
heuristic method from Tormos and Lova (2003) which employs dispatch rules. Other
exact subproblem solvers, bounds on project completion time, and heuristics can be
used instead; see for example Chaps. 1–4 of this handbook.

The present chapter is structured as follows. Section 15.2 explains the search
strategies and other features of the MMBA. In Sect. 15.3 we give the pseudo-code
of the MMBA and details of its implementation. An important subroutine of the
MMBA called FCC is explained in Sect. 15.4; it determines the resource vector to
be evaluated by the subproblem solver. Two theoretical results related to the MMBA
are described in Sect. 15.5. In Sect. 15.6 we give a summary of computational results
to show the size of instances that can be dealt with this algorithm, also we show
that the cuts introduced by the MMBA yield a significant time reduction in many
instances. In Sect. 15.7 we give an integer programming formulation to aid possible
subproblem constructions and other direct methods for the RACP.

15.2 Strategies for Searching an Optimal Resource Vector

There are several strategies for searching an optimal resource vector. The details of
the MMBA are given in Sect. 15.3, but first we explain its motivation. The MMBA
is designed to yield good cuts while performing a branching scheme that searches
for an optimal solution. Loosely speaking, the algorithm bisects the search space
at a certain objective value, it makes one call of the subproblem solver, and it cuts
from the search space either a set of points with higher objective value or a set of
points with lower ones. The larger the set of points being cut the better.

We illustrate how the MMBA generates good cuts along the search using
Fig. 15.1 where we consider an instance with two resources. The points with integer
coordinates represent the resource vectors; the horizontal line BD and the vertical
lines BC represent the minimal quantities of resources 1 and 2 respectively. The slant

322 S.B. Rodrigues and D.S. Yamashita

A

B

C

D

Z

x x

x x x

x x x

x

x

x

x x xx

C

D

R

R2

1

1

1

Fig. 15.1 The vertical (horizontal) line BC (BD) represents the least amount of resource R2 (R1).
The segment CD indicates the points with equal objective function value as the point Z

line connecting CD represents points with the same objective cost as the incumbent
solution Z; this slant line is called the incumbent line. Assume we do not have
information about the feasibility of the resource vectors inside the triangle BCD
(including its border). A resource vector must be selected inside the triangle BCD
and evaluated by the subproblem solver. By selecting the point A, we can be sure to
eliminate many points from the search space. If A is feasible then a new incumbent
solution is found and the line C1D1 is the new incumbent line; all points above this
line are eliminated from the search. Else, if A is unfeasible, all the points marked
with X are eliminated because their resources are strictly smaller than A. Thus, the
pointA is the pivot of a win-win strategy: either feasible or unfeasible, many points
are cut from the search space. Of course, this is only an illustration of the first step
of the method. The procedure needs to be repeated by trying to eliminate as many
points from the search space as possible in each subproblem evaluation. Also, we
need a branching scheme which we explain next.

The MMBA employs a branching scheme to search an optimal solution by
tracking the point of the search space with the least objective function value, this
point is called the best candidate point. For example, considering Fig. 15.1 and
assuming BCD to be the initial search space, the point B is the best candidate point
because it has the smallest objective function value. Now assume point A is found
to be unfeasible, then all the points marked with X in Fig. 15.1 are known to be
unfeasible too. The point B is deleted as the best candidate point and the search
proceeds by finding the next best candidate point. Figure 15.2 shows that the point
B branches into points B1 and B2 where either B1 or B2 is the best candidate point.
In Fig. 15.2 the dotted line through B1 shows that it has a lower objective function
value than B2. Both points B1 and B2 are kept on a list ordered by least cost, this
list is called list of candidate points (LCP) and it is comprised of fB1;B2g in this
example. The best candidate point is now B1 and the MMBA seeks to prove it is
unfeasible by evaluating the feasibility of point A1 with larger resources than B1. A
detailed description of the algorithm is given in the next two sections.

15 Exact Methods for the Resource Availability Cost Problem 323

A

B

C

D

Z

x x

x x x

x x x

x

x

x

x x xx

R

R

B

B

A

2

2

1

1

1

Fig. 15.2 When A is known to be unfeasible, B1 and B2 branch from the point B . If A1 is
unfeasible then B1 is also unfeasible

P

B

C

D

Z

R

R2

1

C1

D1

Fig. 15.3 The incumbent slice is the region between the dashed lines, any point in the triangle
BC1D1 is dominated by at least one point in the incumbent slice as illustrated by the point P

The incumbent slice is an important concept introduced in Rodrigues and
Yamashita (2010). Given an incumbent resource vector Rz D .Rz

1; : : : ; R
z
K/

(represented by the pointZ in Fig. 15.3), the incumbent slice comprises all resource
vectors R of the search space such that

c �Rz � c1 � c �R < c �Rz

324 S.B. Rodrigues and D.S. Yamashita

The incumbent slice is illustrated in Fig. 15.3; it comprises the region between the
two parallel dashed lines. We remark that any resource vector Rp in the triangle
BC1D1 can be dominated by a resource vector Ro that is located in the incumbent
slice, i.e., there is a resource vectorRo withRp � Ro. To find a point marked o from
point P , simply increase the first resource of P until it reaches the incumbent slice
as indicated by the horizontal arrow in Fig. 15.3. As a consequence, if all the points
on the incumbent slice are unfeasible then the incumbent solution Z is optimal;
this result is stated in Theorem 1 of Rodrigues and Yamashita (2010). A top-down
search strategy consists in evaluating points on the incumbent slice before any other
points. Although valid, this strategy is fragile because if there is a feasible point
on the incumbent slice then the incumbent slice is redefined with a slightly lower
incumbent cost; repeatedly finding new incumbent solutions may hinder efficiency.

We remark that the choice of the pivot point A in the example of Fig. 15.1 is
rather arbitrary, other choices are possible. In fact, the point A can be moved either
closer to the best candidate point B or close to the incumbent line. These choices of
A are controlled in the MMBA by a parameter we call � , 0 � � � 1. The MMBA
selects A D B when � D 0 and it selects a point in the incumbent slice when
� D 1. Of course, these two extreme values give antagonistic strategies and either
choices � D 0 or � D 1 may perform extremely poorly in some instances. To see
this, consider again Fig. 15.3. If � D 0 and if the incumbent solution Z happens
to be an optimal solution, then the MMBA evaluates every point in the triangle
BCD before concluding that the incumbent point Z is optimal. Of course, a slight
increase in � avoids this undesirable outcome. We have performed computational
tests in Rodrigues and Yamashita (2010) and we have found that � D 3=4 is a good
choice. In Sect. 15.4 we suggest how to select � dynamically so that the method
avoids the pitfalls of the worst case scenario.

By guessing if an optimal solution is closer to the candidate point or closer to the
incumbent slice one may improve the MMBA. A correct guess may significantly
reduce the number of subproblem calls and the total computational time but a
wrong guess may hinder any computational gain. As a general rule, we recommend
to heuristically adapt parameters using additional information. For example, it is
possible to gather information from recent outcomes of the subproblem calls and
attribute a change in the parameter � accordingly; if recent subproblem calls return
feasible/unfeasible then � should be decreased/increased. With the same goal, one
can use heuristics to evaluate if an instance is easy or difficult before calling the
subproblem solver. On devising new algorithms one should keep in mind that the
computational time required by each call of the subproblem solver varies with the
resource vector. In computational experiments the number of subproblem calls is
strongly correlated to the total computational time of the MMBA, see Sect. 15.6.

We remark that the MMBA can be used with time varying resources. The
fundamental idea is to compare the amount of each resource k at each time t , i.e.,
regardRk.t/ as a resource matrix with dimensionsK�d and compare two matrices
R � Rz when the inequality Rk.t/ � Rz

k.t/ holds for each entry. The incumbent
slice is defined in a search space with dimension Kd . This dimension is larger

15 Exact Methods for the Resource Availability Cost Problem 325

than the dimension K of constant resources and this increases the computational
effort. Nevertheless, there is one computational saving: once an incumbent resource
matrix Rz is found, the time varying resources can be rearranged to find an optimal
resource matrix Ro for the incumbent schedule; this is a new incumbent solution.
An example of optimization of the resource matrix can be found in Nübel (2001)
where it is applied to a resource renting problem.

15.3 The Modified Minimum Bounding Algorithm (MMBA)

The algorithm for solving the RACP is explained in four parts: data structure and its
initialization, branching scheme, selection of cut candidate, and the pseudo-code.
The heart of the MMBA is the selection of a cut candidate which reduces the need
for new search branches.

The data structure consists of two lists of vectors: the list of candidate points
(LCP) which stores the data for the branching scheme that searches an optimal
solution; and the list of known cuts (LKC) which keeps the points that are known to
be unfeasible. Initially LKC is empty and assume the LCP is initially comprised of
a single vector Rmin where all the resources are at their theoretical minimum

Rmin
k D max

1�i�n rik (15.1)

k D 1; : : : ; K . We say that the optimal candidate property (OCP) is satisfied
if feasibility of the first element of LCP implies it is also an optimal solution.
Clearly the initialization of LCP with Eq. (15.1) satisfies the OCP. There is another
initialization of LCP that leads to a better overall computational time; this is
explained at the end of this section.

The branching scheme of the MMBA is organized so that LCP satisfies the
OCP along the algorithm. To explain how the branching scheme works together
with the LCP we describe the pseudo-code of the minimum bounding algorithm
(MBA); we remark that the MBA originates from Demeulemeester (1995). Let the
variable Rf store the first element of LCP at any time during the execution of the
MBA and let the subroutine SPS(Rf) return true/false if the resource vector Rf is
feasible/unfeasible. Assume that the LCP is initialized so that the OCP holds true.
The while statement of the MBA ends when Rf is feasible and, therefore, Rf is an
optimal solution. If Rf is unfeasible then K new branches are created, each new
branch increases the availability of a distinct resource of Rf by one unit; this is
done on lines 2 through 5 of the pseudo-code. The new branches are inserted into
the LCP; namely,K resource vectors

Rk D .Rf1 ; Rf2 ; : : : ; Rfk�1; Rfk C 1;RfkC1; : : : ; RfK/

326 S.B. Rodrigues and D.S. Yamashita

for k D 1; : : : ; K , are inserted in LCP in increasing order of cost function. By
following this method, the fist element of LCP always maintains the OCP.

Algorithm—MBA

01 Initialize the LCP with the optimal candidate property (OCP)
02 Attribute to Rf the first element of LCP
03 while SPS(Rf) = false
04 for k WD 1; : : : ; K
05 Rk WD .Rf1 ; : : : ; Rfk�1; Rfk C 1;RfkC1; : : : ; RfK/
06 Insert the vector Rk in LCP (ordered by increasing cost)

unless there is an R in LCP such that R � Rk
07 end
08 Remove the first element of LCP
09 Attribute to Rf the first element of LCP
10 end

The above algorithm exemplifies the bottom-up approach where an optimal
solution can be found quickly if it is close to the minimal resource vector of
Eq. (15.1) initializing LCP.

Next we explain the selection of the cut candidateRc , this is done in a subroutine
called find cut candidate (FCC). The MMBA modifies the while loop of the MBA
by calling the subroutine SPS(Rc) with a resource vector Rc such that Rc � Rf ,
the resource vectorRc is called a cut candidate. IfRc is found to be unfeasible so is
Rf ; the idea is to select Rc > Rf and thus encompass many elements of the search
space simultaneously. Moreover, Rc must have a lower cost than the incumbent
solution, c � Rc < c � Rz. The choice of Rc is heuristic and the intuition on how to
choose this element is explained in Fig. 15.1. In Rodrigues and Yamashita (2010)
we have made a selection based on the volume of the space that is being cut; this
is explained in more detail in Sect. 15.4. The following pseudo-code describes the
MMBA.

Algorithm—MMBA

01 Initialize the LCP with the optimal candidate property
02 Attribute to Rf the first element of LCP
03 Initialize Rz as a feasible resource vector
04 Initialize LKC as empty
05 If c �Rf D c �Rz then return Rz (optimal solution)
06 repeat
07 is_feasible := TRUE
08 while is_feasible
09 Rc := FCC
10 is_feasible := SPS(Rc)
11 if is_feasible
12 Rz WD Rc (new incumbent is found)

15 Exact Methods for the Resource Availability Cost Problem 327

13 If c �Rf D c �Rz then return Rz (optimal solution)
14 end
15 end
16 Insert Rc in LKC (Rc is unfeasible)
17 branch := TRUE
18 while branch
19 for k WD 1; : : : ; K
20 Rk WD .Rf1 ; : : : ; Rfk�1; Rck C 1;RfkC1; : : : ; RfK/
21 If c �Rk < c �Rz and there is no R in LCP such

that R � Rk , then insert the vector Rk in
LCP ordered by increasing cost

22 end
23 Remove the first element of LCP
24 If LCP is empty then return Rz (optimal solution)
25 Attribute to Rf the first element of LCP
26 If c �Rf � c �Rz then return Rz (optimal solution)
27 if Rf � Rl for some Rl in LKC
28 Rc WD Rl (Rc is a known cut for Rf)
29 else
30 branch := FALSE
31 end
32 end
33 end

The MMBA accounts for the information of Rc being either feasible or unfea-
sible. If Rc is unfeasible then the new search branches are the resource vectors Rk

on line 20; they have one unit of resource greater than Rc . If Rc is feasible then the
incumbent solution is updated on line 12. The current cost of the incumbent solution
is an upper bound on the objective value of new branches, the bound is imposed on
line 21, and it also influences the selection of Rc by the FCC. The LKC is used to
find out if Rf , the first element of LCP, is unfeasible by searching through LKC for
an element Ru such that Ru � Rf . Of course, the search for Ru is much faster than
one call of SPS.

We remark that by always selecting Rc WD Rf on line 9, the MMBA becomes
equivalent to the MBA. Because of this connection, it is possible to theoretically
compare these two algorithms and obtain a theorem which, in essence, states that
if the MMBA makes more SPS calls than the MBA for a given instance then the
difference of SPS calls cannot be too large. The statement and proof of the theorem
are found in Rodrigues and Yamashita (2010), we explain the ideas of the proof in
Sect. 15.5.

Finally, we describe efficient methods to initialize LCP. Initializing it with the
resource vector of Eq. (15.1) is inefficient; there are two improvements that can be
implemented in sequence. The first improvement is to find computationally the least
global value for each resource k , i.e., find the least value of RMIN

k � Rmin
k such

328 S.B. Rodrigues and D.S. Yamashita

that the resource vector .C1; : : : ;C1; RMIN
k ;C1; : : : ;C1/ is feasible for each

k D 1; : : : ; K . Then, the LCP can be initialized with the resource vector RMIN D
.RMIN

1 ; : : : ; RMIN
K /. The algorithm for finding RMIN

k is simple: take an initial guess
R
g

k and call SPS with the resource k limited byRgk and with all other resources being
unlimited; if SPS returns a feasible/unfeasible schedule then decrease/increase Rgk .
The second improvement is to compute tradeoff curves among pairs of resources, for
example, resource 1 and k, while all the other resources are unlimited. The tradeoff
curve is comprised of all pairs of values .R1IRk/ such that

R1k D .R1;C1; : : : ;C1; Rk;C1; : : : ;C1/

is feasible but neither R1 nor Rk can be reduced and preserve feasibility. An
algorithm to obtain the tradeoff curve is in Demeulemeester (1995) where, in
essence, to construct the curve, the resource Rk is lowered by one unit while R1 is
increased by one unit until a feasible schedule is found. For a precise notation, let us
indicateRk.R1/ to sayRk is a function ofR1 on the tradeoff curve, i.e., if resource 1
is fixed at levelR1 and all resources except the k-th resource are unbounded, then the
least value of Rk that yields a feasible schedule is Rk.R1/. Once the resource pairs
.R1IRk.R1// are found for k D 2; : : : ; K , the LCP is initialized with the resource
vectors at the lowest possible values. The following expression summarizes the set
of resource vectors in the initial LCP:

[

RMIN
1 �R1�RMAX

1

.R1;R2.R1/; : : : ; RK.R1//

where RMAX
1 is so large that RMIN

k D Rk.RMAX
1 / for k D 2; : : : ; K . The elements in

LCP need to be ordered by increasing cost, then its first element satisfies the OCP.
In essence, this procedure repeatedly solves instances of the RACP where each
instance has two resources only. Computational experiments in Demeulemeester
(1995) and Rodrigues and Yamashita (2010) use this initialization (we have
experimented with simpler initializations of LCP but the computational time was
clearly worse, thus, these results were not reported in the article).

As an example of the initialization of LCP, we consider an instance with
three resources with costs c1 D 2; c2 D 3; and c3 D 5. First, a simple algo-
rithm can be used to determine three feasible resource vectors .RMIN

1 ;C1;C1/,
.C1; RMIN

2 ;C1/, .C1;C1; RMIN
3 / where each resource is at its minimum

possible value. In this example we assume the numerical values RMIN
1 D RMIN

2 D
RMIN
3 D 3. A simple but inefficient initialization of LCP is the set f.3; 3; 3/g. An

efficient initialization requires the determination of the tradeoff curves between R1
and each other resource. In Fig. 15.4 we exemplify the construction of the tradeoff
curve between R1 and R2 while keeping resource R3 D C1. The arrows show
the sequence of points that are evaluated for feasibility using the SPS; the feasible
points along the path are marked with circles while the unfeasible points are marked
with squares. We start the algorithm with the initial point .RMIN

1 ; RMIN
2 / D .3; 3/ and

15 Exact Methods for the Resource Availability Cost Problem 329

R

R2

1
3 4 5 6 7

3

4

5

8 9 10

6

Fig. 15.4 Tradeoff curve of R1 and R2

R

R

13 4 5 6 7

3

4

5

8 9 10

6

3

Fig. 15.5 Tradeoff curve of R1 and R3

then we increase resource R2 while the point .3;R2/ is unfeasible. This generates
the vertical sequence of points up to .3; 6/. Now decrease R2 by one unit to .3; 5/
and proceed with the algorithmic loop: increaseR1 by one unit until a feasible point
is found; then decrease R2 by one unit until an unfeasible point is found or until it
reaches RMIN

2 . The tradeoff curve connecting the feasible points is represented by
the continuous line in Fig. 15.4. An example of tradeoff curve between R1 and R3
is shown in Fig. 15.5; the path of points evaluated by the SPS is also shown.

The LCP is initialized by varying R1 from 3 to 7 while the tradeoff curves
give the values for the other two resources; this yields the following resource
vectors: .3; 6; 5/I .4; 6; 4/I .5; 5; 4/I .6; 4; 3/I .7; 3; 3/. Finally, these resource vectors
are ordered by increasing cost, f.7; 3; 3/I .6; 4; 3/I .5; 5; 4/I .4; 6; 4/I .3; 6; 5/g.

330 S.B. Rodrigues and D.S. Yamashita

There is a balance between investing too little or too much computational time to
initialize LCP. We emphasize that the preceding example illustrates one possibility
to initialize LCP, but this may be far from an optimal procedure. In the example we
use R1 as the pivot resource to construct the tradeoff curves. In principle one could
compute tradeoff curves between other resource pairs to improve the initialization
of LCP, e.g. R2 and R3. Nevertheless, our intuition is that it should be possible to
design a clever initialization of LCP spending less computational time. For example,
initializing the LPC with a shorter list, e.g. f.7; 3; 3/I .6; 4; 3/g, may require less
SPS calls and the overall efficiency of the MMBA may be improved. Unfortunately,
alternative initializations of LCP have not been thoroughly examined.

15.4 Choice of Cut Candidate

The subroutine FCC (find cut candidate) heuristically selects a cut candidate Rc

on line 9 of the MMBA pseudo-code; two conditions must be fulfilled Rc � Rf

and c � Rc is smaller than the incumbent cost. Here we describe the FCC used in
Rodrigues and Yamashita (2010) and in the end of the section we describe other
possibilities.

The cut candidate can be selected either closer to the Rf or closer to the
incumbent slice; a parameter called � , 0 � � � 1, controls this selection. The
parameter � sets Rc D Rf when � D 0 and when 0 < � � 1 it sets the objective
value c �Rc within the interval

�c �Rz C .1 � �/c �Rf � c1 � c �Rc < �c �Rz C .1� �/c �Rf (15.2)

When � D 1 the cut candidate Rc is selected in the incumbent slice. In Rodrigues
and Yamashita (2010) we perform all the computational results with � D 3=4.
Once � > 0 is given, there is a slice of points where Rc can be placed; these
points are marked with a circle on Fig. 15.3 where � D 1 (if � < 1 the slice is
displaced towards the point B). Intuitively, one should chooseRc as the point in the
slice that maximizes the number of integer points in the rectangle with lower left
corner in B and upper right corner in the slice. This choice maximizes, in a greedy
sense, the number of points being cut from the search space. The heuristic idea is to
maximize the K-dimensional volume of the box where the pointsRf and Rc are at
the diagonal of the box and Rc is restricted to the K � 1-dimensional plane

c �Rc D �c �Rz C .1 � �/c �Rf

of the slice in Eq. (15.2). Of course, we need to regard Rc as a vector of RK for a
moment. Using Lagrange multipliers, it is a simple matter to discoverRc should be
chosen as

Rc D Rf C sv

15 Exact Methods for the Resource Availability Cost Problem 331

where s is a real positive parameter and v D .v1; : : : ; vK/ is a vector with vk D 1=ck .
The continuous volume is an indication to the number of integer points inside this
box, not a certainty, and the direction v is a clue on how to maximize the number of
integer points inside theK-dimensional box. In short, v is used as a biased direction
to increase Rf . The FCC starts with Rc D Rf then spins a biased roulette wheel
that selects one of the resources of Rc to be increased by one unit; this procedure is
repeated untilRc verifies the inequality (15.2). With this direction, the pseudo-code
for FCC is given below.

Algorithm—FCC

01 Initially set u WD Rf
02 while true
03 Let k, 1 � k � K , be the maximum index k such that

c � .u1; : : : ; uk�1; uk C 1; ukC1; : : : ; uK/ < �c �Rz C .1 � �/c �Rf
04 If no such index exists, return u and break loop (exit procedure)
05 s WDPk

hD1 vh
06 Select one resource l , 1 � l � k, with probability vl =s
07 ul WD ul C 1
08 end

The right hand side of the inequality on line 3 guarantees that the objective function
c �Rc remains within the desired value controlled by Eq. (15.2). By fixing � D 0 the
FCC subroutine always selects Rc D Rf and thus the MMBA becomes equal to the
MBA as remarked in the previous section. From now on we associate the MMBA
with � D 0 as being the MBA even if the MBA is not mentioned.

The computational results of Rodrigues and Yamashita (2010) were performed
with � D 3=4. A summary of these results is in Sect. 15.6. It is possible to show
theoretically that fixing � > 0 is a good choice when compared to fixing � D 0, this
is explained in the next section.

Finally, we remark that depending on the RACP instance one may decide to risk
exchanging some robustness for the possibility of a faster solution. This can be done
by dynamically varying the parameter � at each call of FCC. One possibility is to
choose an integer � > 0 and update, for example, � WD .� � 1=�/C whenever Rc

turns out to be feasible on line 10 of the MMBA. When Rf is indeed an optimal
solution, this reduction in � accelerates the MMBA; i.e., � decreases towards zero
so that the MMBA selects Rc D Rf earlier than it would do if � remained a fixed
value. By the same reason, one can reassign � a larger value � WD minf�C1=�; 1g in
order to increase � towards 1 ifRc is unfeasible. Also, it may be a good idea to allow
� slightly greater than 1 because it allows Rc to encompass a largerK-dimensional
box. Of course, if Rc turns out to be feasible then nothing is gained because it will
not be a new incumbent solution (some logical changes have to be made on MMBA
to account for this possibility).

332 S.B. Rodrigues and D.S. Yamashita

15.5 Theoretical Results

In this section we present two theorems about the effectiveness of using either � D 0
or � D 1 in the MMBA. The first one states that if all the points in the incumbent
slice are unfeasible then the incumbent solution is optimal. The second one states
that the upper bound on the number of subproblem calls when fixing � > 0 is
slightly higher than the number of subproblem calls when fixing � D 0. These
two theorems have practical implications on how to select the parameter � in the
MMBA: the overall conclusion is that a robust method should avoid the extremes of
the interval � 2 Œ0; 1�. The details about these theorems are found in Rodrigues and
Yamashita (2010), here we explain their fundamental reasons.

The key step of theorem 1 is that any point in the search space is dominated by
a point in the incumbent slice as illustrated in Fig. 15.3. We remark that P could be
any point in the search space because it is associated to a point in the incumbent
slice obtained by increasing the first resource of Rp by a suitable integer � so that
the resource vector Rs D .R

p
1 C �;Rp2 ; : : : ; RpK/ belongs to the incumbent slice.

Thus, if all points in the incumbent slice are unfeasible then the same is true for
all points in the search space and the incumbent solution is optimal. By setting
� D 1, the MMBA can be used to verify if the incumbent solution is indeed optimal.
Thus, fixing � D 1 sets the MMBA on a top-down search which is efficient if the
incumbent solution is near the optimal objective value.

For any given instance of the RACP, Theorem 2 in Rodrigues and Yamashita
(2010) compares the number of SPS calls needed when � D 0 and � > 0. Let � and
� denote the number of SPS calls of the MMBA when executing the algorithm with
� fixed at 0 and � fixed in .0; 1/, respectively. In simple terms, the theorem states
that the difference � � � is bounded by

� � � �
�

log1=�
f .Rz/� f �
.1 � �/c1

�

(15.3)

where f .Rz/ D c � Rz is the objective cost of the incumbent solution obtained on
line 3 (MMBA pseudo code) and f � is the objective cost of an optimal solution
(usually unknown a priori) and we assume f .Rz/ > f �.

This bound becomes tighter as � approaches zero but when � approaches 1
the bound is not tight because the right hand expression tends to infinity. With an
intermediate value of � , � D 1=2 for example, the logarithm base 2 guarantees that
the bound cannot be too large even if f .Rz/ and f � are far apart.

Here we argue that the preceding bound can be sightly improved to yield

� � � �
�

log1=�
f .Rz/� f �

c1

�

(15.4)

The argument is essentially the same as in Rodrigues and Yamashita (2010) but
here we use a sharper inequality and we simplify the notation. The bound follows

15 Exact Methods for the Resource Availability Cost Problem 333

by observing that the MMBA with � > 0 gains an advantage over the case � D 0

whenever line 10 of algorithm finds an unfeasible Rc with Rc > Rf because then
more than one point is cut from the search space. This advantage for fixing � > 0

disappears only if Rc fails to be unfeasible. It follows that the worst case for fixing
� > 0 happens when Rc is a new incumbent solution at every loop of the MMBA.
This situation occurs only if an optimal solution is the first element of LCP after it is
initialized on line 1 of the MMBA. Denote the sequence of incumbent solutions by
Rz
1; R

z
2; : : : ; R

z
X ;R

z
XC1; where it finishes with an optimal solution Rz

XC1 D R� D
Rf . Inequality (15.4) is obtained by counting the number of loops (SPS evaluations)
it takes until the X -th incumbent cost c � Rz

X is low enough to yield Rc D Rf as
the result of the FCC procedure; i.e., the value of c �Rz

X is such that on line 3 of the
FCC algorithm

c �Rf C c1 � �c �Rz
X C .1 � �/c �Rf

This inequality simplifies to

c1 � �.c �Rz
X � f �/ (15.5)

where f � D c � Rf because we are assuming R� D Rf . Also from line 3 of the
FCC algorithm, we find a bound for the difference of the objective value of the
incumbent solution to the optimal objective value

c �Rz
� � f � < �.c �Rz

��1 � f �/

which is valid for every � D 2; : : : ; X . By applying this inequality repeatedly
through all X loops of the MMBA, we find

c �Rz
X � f � < �X�1.c �Rz

1 � f �/ (15.6)

Now assume X is large enough to satisfy

c1 � �X.c �Rz
1 � f �/ (15.7)

in which case inequality (15.5) is certainly true due to inequality (15.6). The
bound (15.4) follows by taking the logarithm of inequality (15.7)

log
c1

c �Rz
1 � f �

� X log �

and recalling that: f .Rz/ D c �Rz
1, log � < 0, and log 1=� D � log � .

334 S.B. Rodrigues and D.S. Yamashita

15.6 Computational Results

Computational results reported in the literature show that solving the RACP is
challenging. Rodrigues and Yamashita (2010) evaluated the performance of the
MMBA in 384 instances with 30 activities and 4 resource types. All computational
experiments were performed on a PC Pentium 4 (2.80 GHz with 1.0 GB of RAM).
Two important parameters used for generating the instances are the network
complexity .NC/ and resource factor .RF/, Kolisch et al. (1995). NC reflects the
average number of immediate successors of an activity. RF varies between 0 and
1, reflecting the density of the different resource types needed by an activity. For
example, if RF D 1, each activity requires all types of resources, while RF D 0

indicates that activities do not require any type of resources. It is also necessary
to determine a deadline for the project. Drexl and Kimms (2001) compute the
deadline d for the project as a function of the project critical path. Specifically,
d D DF maxi ECi , where DF is the deadline factor and ECi is the earliest
completion time of activity i . The cost ck of a resource type k was drawn from
a uniform distribution U Œ1; 10�. For each combination of DF D 1:0; 1:2; 1:4; and
1:6; RF D 0:25; 0:5; 0:75; and 1:0; and NC D 1:5; 1:8; and 2:1; eight instances
were generated, resulting in a total of 4 � 4 � 3 � 8 D 384 instances. All instances
used � D 3=4. The stopping criteria for MMBA was set to 7,200 s for each instance.
All procedures were coded in C++ language.

Figure 15.6 shows the time spent to solve 288 instances that were solved within
the 7,200 s time limit. The horizontal axis shows the total number of SPS calls
and the vertical axis shows the total computational time (in seconds). Both axes
are in log10 scale because the computational effort to solve the RACP can vary
significantly from instance to instance. The legend on the bottom right corner
of the graph indicates the instances classified by DF. Some features are evident
from the graph: (i) a large cloud of clustered points indicates a strong correlation
between the number of subproblem calls and the total computational time; (ii) on
the cluster cloud, the instances with larger DF demand more computational time per
SPS call (this feature is more pronounced for instances that required less than 102

SPS calls); (iii) there are scattered points above the cluster cloud indicating some
instances required much more computational time per SPS call (in this group the
points with DF = 1:0 are absent). We remark that common features are found when
examining either the computational time of instances that were solved or the number
of instances not solved within the time limit: it is found that the difficulty increases
when RF increases, and the difficulty increases when NC decreases; Rodrigues and
Yamashita (2010) brings a table with this data.

For the hardest instances, we identified the difficulty in solving the RCPSP
subproblem as the cause for the increase in computational time. Each SPS call takes
a longer time because the number of possible schedules that need to be searched
has increased. Of course, an instance becomes less restricted if DF is increased
or NC is lowered; more possible schedules cause more branches to be examined
inside the SPS. It is less clear why the difficulty should increase when RF increases;

15 Exact Methods for the Resource Availability Cost Problem 335

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

log
10

 number of solver calls

lo
g 10

 c
om

pu
ta

tio
na

l t
im

e
[s

]

DF = 1.0
DF = 1.2
DF = 1.4
DF = 1.6

Fig. 15.6 Each symbol represents one of the instances solved within the time limit. The total
number of SPS calls and the total computational time (in seconds) are in log10 scale

this occurs possibly because the activities become rather indistinct from each other
allowing them to be interchanged. Not only is the difficulty of the problem affected
by these three factors but also it is affected by the number of activities and the
number of resources.

Figure 15.7 shows a comparison of the computational time to reach optimality
in each instance using two different parameters � D 3=4 (MMBA) and � D 0

(MBA). The vertical axis is the time gain which is defined as the absolute difference
between the computational time to find an optimal solution using each parameter,
i.e., the time gain is jtcpu.� D 3

4
/ � tcpu.� D 0/j where tcpu.� D 3

4
/ and

tcpu.� D 0/ denote the total computational time for each parameter. The marks
above the dashed line is the time gain when the MMBA was faster while the marks
below the dashed line is the time gain when the MBA was faster. Within each
group, the instances are sorted in order of decreasing time gain; they are numbered
1 through 118 and 1 through 46 for the MMBA and the MBA respectively. The
legend indicates the relative gain which is defined as the time gain divided by
the total computational time of the slower algorithm: jtcpu.� D 3

4
/ � tcpu.� D

0/j=maxftcpu.� D 3
4
/; tcpu.� D 0/g.

We observe several features in Fig. 15.7 that show the advantage of using the
MMBA with � D 3=4: it is faster in more instances (118 against 46 of the
MBA); it consistently shows a larger time gain (up to 103 s); it frequently shows
a relative gain above 40 % (circles) and sometimes above 80 % (squares). Also,
it can be observed that the time gain of the MMBA correlates with its relative

336 S.B. Rodrigues and D.S. Yamashita

0 20 40 60 80 100 120
10

−1

10
0

10
1

10
2

10
3

instance

lo
g 10

 ti
m

e
sa

ve
d

[s
]

80%−95%
40%−80%
20%−40%
0.5%−20%

Fig. 15.7 Time gain when the best parameter is either � D 3=4 (above dashed line) or � D 0

(below it). The legend indicates the range of relative gain of each data point

gain: as one follows the figure from left to right, the marks above the dashed
line show the predominance of squares, circles, stars, and dots, in this order; the
marks appear in clusters. In contrast, the marks below the dashed line show that
circles and dots are more or less evenly spread. The aforementioned correlation is
a subtle feature; it may be interpreted as a sign that MMBA has slightly “lower
complexity” then the MBA. For example, imagine the comparison between two
algorithms where one algorithm is linear and the other is quadratic with respect to
algorithmic complexity. In this case, both the time gain and the relative gain of the
linear algorithm compared to the quadratic one increase as the size of the instances
increases. Unfortunately, we cannot be certain that this is the real reason for the
correlation observed in Fig. 15.7 because the effect is subtle and stochastic, also,
there are several parameters involved when generating the instances.

We remark that the data in Fig. 15.7 consider 164 instances where the time
gain was greater than 0.2 s; other factors unrelated to the MMBA algorithm may
influence significantly the time gain below this threshold, e.g., implementation
issues. In total, there are 285 instances where an optimal solution was found using
both parameters (there are three instances where the MMBA finds an optimal
solution while the MBA exceeds the maximum computational time).

As an overall conclusion, the MMBA does provide a robust and efficient
framework to solve RACP instances. Moreover, the difficult RACP instances are
hard because the underlying RCPSP is difficult to solve at each SPS call. To improve
the SPS subroutine one may incorporate new developments described in Chaps. 1–4
of this handbook.

15 Exact Methods for the Resource Availability Cost Problem 337

15.7 Integer Programming Model

To complete the description of exact methods for the RACP, we include an integer
programming formulation of the problem. This formulation may be helpful either
for solving the RACP directly or for creating the SPS subroutine for the MMBA.
The model is as follows,

Min.
KX

kD1
ckRk (15.8)

s. t.
LSiX

tDESi

xit D 1 .i D 0; : : : ; nC 1/ (15.9)

LSiX

tDESi

.t C pi /xit �
LSjX

tDESj

txjt ..i; j / 2 E/ (15.10)

nX

iD1

t�1X

bD.t�pi /C
rikxib � Rk .k D 1; : : : ; KI t D 1; : : : ; d / (15.11)

xit 2 f0; 1g .i D 0; : : : ; nC 1I t D ESi ; : : : ;LSi / (15.12)

Rk � 0 (15.13)

Rk 2 Z .k D 1; : : : ; K/ (15.14)

where the binary decision variable is xit (1 if activity j starts at time t and 0
otherwise). Equation (15.9) enforces that each of the nC2 real and dummy activities
starts exactly once. Equation (15.10) enforces the precedence relations of the
network edges E , the processing time of activity j is pj . Equation (15.11) enforces
that activities never exceed the resource capacity at any time. The remaining
equations represent integer constraints. We remark that the latest starting time of
activity j , LSj , and the earliest starting time of activity j , ESj , are pre-computed
from the precedence graphG and the deadline d of the project. Finally, an important
observation, this model assumes an activity with processing time pi which starts at
Si consumes resources at t D SiC1; : : : ; SiCpi , i.e., the activity does not consume
resources at t D Si .

15.8 Conclusions

The MMBA is an exact algorithm designed to solve the RACP using RCPSP
subproblem solvers in its main loop. The algorithm introduces the parameter
� 2 Œ0; 1� which can accelerate the solution significantly; � is a very robust

338 S.B. Rodrigues and D.S. Yamashita

parameter. The computational results show that using � D 3=4 is significantly
better than using � D 0. The computational gain originates from a combination
of constructive heuristics and good cuts which reduce the number of subproblem
calls; the parameter � controls how the cuts are achieved. A theorem shows that
using � > 0 can require, in the worst case, a few more subproblem calls than using
� D 0. For the hardest instances of the RACP we have found that the solution of the
RCPSP subproblem is the main source of difficulty. The less restricted instances are
computationally more demanding due to the large number of possibilities that need
to be searched; this conclusion is supported by the computational experiments where
we have detailed the parameters that influence the computational time. Finally, as
long as an efficient subproblem solver is available, the MMBA can be used for other
resource availability problems with different objective functions and different types
of precedence relations.

References

Demeulemeester E (1995) Minimizing resource availability costs in time-limited project networks.
Manag Sci 41:1590–1598

Demeulemeester E, Herroelen S (1992) A branch-and-bound procedure for the multiple resource-
constrained project scheduling problem. Manag Sci 38:1803–1818

Drexl A, Kimms A (2001) Optimization guided lower and upper bounds for the resource
investment problem. J Oper Res Soc 52:340–351

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Manag Sci 41:1693–1703

Möhring RF (1984) Minimizing costs of resource requirements in project networks subject to a
fixed completion time. Oper Res 32:89–120

Nübel H (2001) The resource renting problem subject to temporal constraints. OR Spektrum
23:359–381

Rangaswamy B. (1998) Multiple resource planning and allocation in resource-constrained project
networks. Ph.D. dissertation, Graduate School of Business, University of Colorado, USA

Rodrigues SB, Yamashita DS (2010) An exact algorithm for minimizing resource availability costs
in project scheduling. Eur J Oper Res 206:562–568

Tormos P, Lova A (2003) An efficient multi-pass heuristics for project scheduling with constrained
resources. Int J Prod Res 41:1071–1086

Chapter 16
Heuristic Methods for the Resource Availability
Cost Problem

Vincent Van Peteghem and Mario Vanhoucke

Abstract In this chapter, an Invasive Weed Optimization (IWO) algorithm for
the resource availability cost problem is presented, in which the total cost of the
(unlimited) renewable resources required to complete the project by a prespecified
project deadline should be minimized. The IWO algorithm is a new search strategy,
which makes use of mechanisms inspired by the natural behavior of weeds in
colonizing and finding a suitable place for growth and reproduction. All algorithmic
components are explained in detail and computational results for the RACP are
presented. The procedure is also executed to solve the RACP with tardiness
(RACPT), in which lateness of the project is permitted with a predefined penalty.

Keywords Heuristic algorithms • Invasive weed • Project scheduling • Resource
availability • Tardiness cost

16.1 Introduction

The aim of project scheduling is the allocation of time intervals to the processing
of activities, which can be executed by using a set of scarce resources. In the
classical resource-constrained project scheduling problem (RCPSP), this set of
available resources is limited and is not allowed to exceed the available resources.
The main focus lies in the minimization of the total duration of the project subject
to precedence relations between the activities and the limited renewable resource
availabilities. Various exact and (meta-)heuristic procedures for the RCPSP are
already proposed in the literature. For an overview of the literature on the RCPSP,
see Kolisch and Hartmann (2006) and Hartmann and Briskorn (2010), amongst
others.

V. Van Peteghem (�)
EDHEC Business School, Lille, France
e-mail: vincent.vanpeteghem@edhec.edu

M. Vanhoucke
Ghent University, Ghent, Belgium
e-mail: mario.vanhoucke@ugent.be

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_16

339

mailto:vincent.vanpeteghem@edhec.edu
mailto:mario.vanhoucke@ugent.be

340 V. Van Peteghem and M. Vanhoucke

Another problem in project scheduling, the resource availability cost problem
(RACP), focuses on the minimization of the resource cost. In contrast to the
“problem of scarce resources” (Möhring 1984), the resources are not constrained
by limited capacities, but a predefined deadline is imposed on the project duration.
Möhring (1984) refers to this problem as the “problem of scarce time”. The aim
is to reduce the cost which is associated to the use of resources. The objective is to
schedule the activities such that all precedence constraints are observed, the deadline
for project termination is met, and the total resource availability cost is minimized.
An extension of this problem is the resource availability cost problem with tardiness
(RACPT). In this problem, a due date for the project is set, but tardiness of the
project is permitted with a predefined penalty. The total project cost is than equal
to the sum of the resource availability cost and the tardiness cost. If a large penalty
cost is considered, the problem is equal to the RACP.

In this study, an Invasive Weed Optimization (IWO) algorithm is used to solve
the RACP and the RACPT. IWO is a new search algorithm inspired by the principles
of weed ecology. To the best of our knowledge, IWO has never been used before to
solve a (project) scheduling problem in general and the RACP(T) specifically.

The remainder of this chapter is organized as follows. Section 16.2 describes
the RACP(T) formulation, while in Sect. 16.3 an overview is given of the available
metaheuristic solution procedures for the problem under study. In Sect. 16.4, the
principles of the weed ecology are presented while the proposed solution algorithm
and the various parameters are described in Sect. 16.5. Section 16.6 reports detailed
comparative computational results and Sect. 16.7 contains the conclusions of this
study.

16.2 Problem Formulation

The RACP can be stated as follows. A set of activities V of project network N ,
numbered from a dummy start node 0 to a dummy end node n + 1, is to be scheduled
without pre-emption on a set R of renewable resource types. Each activity i 2 V
has a deterministic duration pi and requires rik units of resource type k 2 R which
has a constant availability Rk throughout the project horizon. We present a project
network N D .V;E; ı/ in an activity-on-node format where E is the set of pairs of
activities between which a finish-start precedence relationship with time lag 0 exists,
and a dummy start node 0 and end node n + 1 representing the start and completion
of the project. These dummy nodes have zero duration while the other activities
have a non-zero duration; the dummies also have zero resource usage. We assume
the directed graph G D .V;E/ to be acyclic. A schedule S is defined by a vector
of activity start times and is said to be feasible if all precedence and renewable
resource constraints are satisfied. The objective of the RACP is to find a feasible
schedule within a prespecified project deadline d such that the total resource cost
is minimized. We define ck as the unit cost of resource k resulting in a discrete
non-decreasing total resource cost function ckRk associated with the availability

16 Heuristic Methods for the Resource Availability Cost Problem 341

Rk of the resource type k. The variables are the resource availability values Rk and
the start times Si of each project activity i . The resource availability cost problem
can be represented asm; 1jcpm; ınjrac using the classification scheme of Herroelen
et al. (1999) or as PS1jprec; d jP ckmaxrkt following the classification scheme of
Brucker et al. (1999).

The RACP can be conceptually formulated as follows:

Min.
KX

kD1
ckRk (16.1)

s. t. Si C pi � Sj ..i; j / 2 E/ (16.2)

rk.S; t/ � Rk .k 2 R; t D 0; : : : ; d � 1/ (16.3)

SnC1 � d (16.4)

S0 D 0 (16.5)

The objective function (16.1) minimizes the total resource cost of the project.
Constraints (16.2) take the finish-start precedence relations with a time lag of
zero into account. The renewable resource constraints are satisfied thanks to
Constraints (16.3), where rk.S; t/ represents the amount of resource k used at time
t given schedule S . Constraint (16.4) imposes a prespecified deadline to the project
and Constraint (16.5) forces the project to start at time instance zero.

If the RACPT is considered, the tardiness cost is added to the objective function,
which can then be formulated as follows:

Min. .
KX

kD1
ck �Rk C wTnC1 �maxf0; SnC1 � d g/ (16.6)

with wTnC1 the predefined penalty cost. The constraints remain the same, only
Constraint (16.4) does not need to be considered anymore.

Consider an example project with ten non-dummy activities, two resources (K D
2) and a project deadline d D 20 (which is 25 % higher than its critical path length).
The resource unit cost equals c1 D 2 and c2 D 3. Figure 16.1 shows the activity-on-
node network where the number above the node denotes the activity duration and
the numbers below the node the resource requirements for each resource type. In
Fig. 16.2, optimal resource profiles of the two resource types are displayed, resulting
in a total resource cost of 7 � 2C 8 � 3D 38 and a project makespan of 20 time units.

If tardiness is allowed and the penalty cost is set wTnC1 D 2, the optimal solution
changes. By finishing the project 2 days later than the predefined due date, the
resource use for resource 2 decreases to 6. The total cost thus decreases to 36, 32
for the resource cost (7 � 2C 6 � 3) and 4 for the tardiness cost. In Fig. 16.3, optimal
resource profiles for the two resource types are displayed.

342 V. Van Peteghem and M. Vanhoucke

Fig. 16.1 Network of the example project

Fig. 16.2 Optimal resource profiles RACP if tardiness is not allowed

16 Heuristic Methods for the Resource Availability Cost Problem 343

Fig. 16.3 Optimal resource profiles RACPT if tardiness is allowed

16.3 (Meta)heuristic Solution Procedures

The resource availability cost problem was introduced by Möhring (1984),
analyzing the construction of a bridge as a practical case study. In order to
finish the construction in a predefined deadline, sufficient resources need to be
provided in such a way that the total financial investment was minimized. For that
reason, the problem was initially known as the resource investment problem. To
solve this problem, Möhring (1984) proposes an exact procedure based on graph
theoretical algorithms for comparability graph and interval graph recognition and
orientation. Later, Demeulemeester (1995) and Rodrigues and Yamashita (2010),
amongst others, both developed an effective optimal algorithm for the RACP. For
an overview of the existing exact procedures, the reader is referred to Chap. 15 of
this handbook.

Since the RACP is an NP-hard problem (Möhring 1984), meaning that optimal
solution procedures can only be used for relatively simple and small problem
instances, a handful of (meta)heuristic solution procedures were developed in the
past decade in order to solve the problem for large sized projects.

Drexl and Kimms (2001) presented two algorithms in order to obtain lower
bounds: an algorithm based on Lagrangian relaxation combined with subgradient
optimization and an algorithm that employs column generation techniques. Both

344 V. Van Peteghem and M. Vanhoucke

methods are able to obtain improved lower bounds, compared to the rather simple
lower bounds based on the resource demand and availability for each resource type,
and improved upper bounds, compared to the upper bound defined by the earliest
start schedule.

Yamashita et al. (2006) were the first to propose a metaheuristic solution
procedure for the resource availability cost problem. In their paper, they presented
a multi-start heuristic and a scatter search procedure. In both procedures, a solution
vector is represented by an activity list and a capacity list. A two-stage improvement
heuristic is developed in order to make infeasible solution vectors feasible (first
stage) and to improve them (second stage). This improvement heuristic is applied
in combination with the path relinking method, which generates new population
elements by gradually reducing the distance between two solution vectors, i.e. the
initiating and guiding solution (Glover et al. 2000). Computational results show the
robustness of the scatter search procedure, both for small and large project sizes.

Shadrokh and Kianfar (2007) presented a genetic algorithm to solve the RACP
when tardiness of the project is permitted with defined penalty costs. If a large
penalty cost is considered, the algorithm can also be used to solve the RACP. The
algorithm makes use of chromosomes, which are represented by a priority list and
an availability list of resources and is using both the serial and parallel scheduling
schemes to construct schedules.

Ranjbar et al. (2008) propose a path relinking method to solve the RACP, as
well as a genetic algorithm. Solution vectors are only represented by an activity
list. Based on this list, a schedule is generated using a schedule-generation scheme
which is based on the procedure of Burgess and Killebrew (1962), trying to level
the use of the different resource types. Computational results revealed that the path
relinking method outperformed the genetic algorithm procedure.

Van Peteghem and Vanhoucke (2013) developed an artificial immune system
algorithm, which makes use of mechanisms inspired by the vertebrate immune
system. A solution vector is represented by an activity list and a capacity list. The
procedure includes a new fitness function, a probability function for the composition
of the capacity lists, and a K-means density function in order to avoid premature
convergence. Although comparison is difficult, the authors show that their algorithm
performs better than the procedure of Shadrokh and Kianfar (2007).

Several extensions for the resource availability cost problem were presented
as well. Shadrokh and Kianfar (2007) proposed a genetic algorithm to solve the
RACPT when tardiness of the project is permitted with defined penalty costs. In
this problem, a delay in the completion of the project is allowed, but for every time
unit the project finishes later than the predefined deadline d , a fixed penalty cost
increases the total cost. The objective of this problem is to minimize the sum of the
resource availability costs and this tardiness cost. Yamashita et al. (2006) extended
their scatter search procedure and multi-start heuristic for the RACP with scenarios
(RACPS), in which uncertainty was added to the activity durations. Finally, a
priority rule heuristic for multi-mode version of the RACP was presented by Hsu
and Kim (2005).

16 Heuristic Methods for the Resource Availability Cost Problem 345

Problems similar to the RACP are the resource renting problem (RRP) and
the time-constrained project scheduling problem (TCPSP). In the RRP, renewable
resources have to be rented in such a way that the total renting cost is minimized.
This cost contains per resource type a fixed cost per unit and a variable renting cost
per unit and per time period. In case the variable renting cost is equal to 0, the
RRP is similar to the RACP. Solution procedures for this problem are proposed
by Nübel (2001) and Ballestín (2007). In the TCPSP, only additional resources
that need to be hired above the available resources such that the project can be
executed in the predefined deadline have a cost. The objective in this problem is
to minimize these extra hiring costs. Procedures for this problem are proposed by
Kolisch (1995), Neumann and Zimmermann (1999), Guldemond et al. (2008) and
Kreter et al. (2014).

16.4 Invasive Weed Optimization Algorithm

The Invasive Weed Optimization algorithm is a computational algorithm proposed
by Mehrabian and Lucas (2006) and inspired by the natural behavior of weeds in
colonizing and finding a suitable place for growth and reproduction. The algorithm
originates from the idea that weeds are one of the most robust plants in agriculture
and that after thousands of years of hand-weeding and decades of herbicides, weeds
are still in the same fields. This property has led to the fact that the expression “the
weeds always win” has become a common belief in agronomy. Weeds are able to
adapt themselves to their environment and change their behavior and get better and
fitter, due to the weed biology and ecology.

The reproduction of weeds depends on the type of plant. In most cases, a plant
begins its life history when the egg in the pistil is fertilized by pollen and forms
a seed in the parent plant. These seeds invade a cropping system by means of
dispersal (spatial dispersal) and occupy opportunity spaces between the crops.
The seeds germinate and grow to flowering weeds, each reproducing new weeds,
independently. The number of new weeds depends on the fitness of the flowering
weed in the colony: the better the weeds adapt to the environment and the more
unused resources are taken, the faster the seeds grow and the more seeds are
produced. Since the carrying capacity of the environment is limited and restricted,
only those weeds with better fitness can survive and produce new weeds. Due to this
competitive contest between the weeds (competitive exclusion), the weeds become
well adapted and improved over time.

16.5 An Invasive Weed Algorithm for the RACP(T)

These efficient mechanisms of the weed ecology make invasive weed optimization
algorithms useful for optimization problems. Recently, IWO is proposed for electro-
magnetic applications (Karimkashi and Kishk 2010) and for the design of encoding

346 V. Van Peteghem and M. Vanhoucke

Fig. 16.4 Invasive Weed Optimization Algorithm: procedure

sequences for DNA computing (Zhang et al. 2009). However, to the best of our
knowledge, this search strategy has not been used to optimize scheduling problems.
In this section, a problem-solving technique for the RACP and RACPT based on the
principles of the invasive weed ecology is presented. The different generic steps in
our algorithm are presented in Fig. 16.4 and will be discussed along the following
subsections.

16.5.1 Representation and Schedule-Generation Scheme

A solution procedure for the RACP does not operate directly on a schedule, but on
a representation of a schedule that is convenient and effective for the functioning of
the algorithm. Therefore, each individual I in the weed colony is constructed from
two lists: an activity list and a capacity list.

The activity list determines the sequence in which the activities are scheduled. In
this text, the activity list (AL) representation is used, in which the position `i of an
activity i determines the relative priority of that activity versus the other activities.
In order to avoid infeasible solutions, the activity list is always precedence feasible,
which means that the precedence relations between the different activities are met.
Ranjbar et al. (2008) indicate such an AL as a precedence feasible activity list
(PFAL). Next to the activity list, a resource capacity list R is used to determine
the available resource capacities. This capacity list is resource feasible, i.e. Rk �
maxiD1;:::;nfrikg, 8k.

A schedule-generation scheme (SGS) translates the individual I D .`I ; RI / into
a schedule S . In this study, the serial schedule-generation scheme is used (Kelley Jr.
1963). This scheme sequentially adds activities to the schedule one-at-a-time. In
each iteration, the next activity in the activity list is chosen and that activity is
assigned to the schedule as soon as possible within the precedence and resource
constraints.

16 Heuristic Methods for the Resource Availability Cost Problem 347

16.5.2 Preprocessing

Before the algorithm is started, a preprocessing procedure is applied. This procedure
minimizes the search space for the capacity list and sets a minimum availability
Rmin
k and maximum availability Rmax

k to each resource k and calculates the initial
best cost f best. The preprocessing procedure that is used in this algorithm is the one
as described in Van Peteghem and Vanhoucke (2013). The procedure contains three
subroutines and can be shortly explained along the following lines.

1. Minimal resource demand Based on the required resource demand for each
activity, the minimal resource availability Rmin

k can be determined for each
renewable resource k.

Rmin
k D max.

Pn
iD1 rikpi

d
;maxiD1;:::;nfrikg/

The minimum resource availabilities are tightened with the critical sequence
lower bound method of Stinson et al. (1978).

2. Heuristic upper bound solution The heuristic upper bound solution is determined
by applying the resource leveling procedure of Burgess and Killebrew (1962).
This procedure (further denoted as BK62) starts with the earliest start schedule

and iteratively decreases the objective function (i.e. min:
Pd

tD0
PK

kD1 r2k.S; t/,
with rk.S; t/ the use of resource k at time t) by delaying activities according to a
predefined activity list. The upper bound solution is calculated as

PK
kD1 ckumax

k ,
where umax

k is the maximal resource use for each resource k in the obtained
schedule. The upper bound solution is used as initial best cost f best.

3. Maximal resource availability To calculate the maximum availability per
resource type, Van Peteghem and Vanhoucke (2013) developed an inverse
BK62 procedure. This heuristic procedure, based on the original procedure
of Burgess and Killebrew (1962), starts from the earliest start schedule,
but activities are only delayed if they increase the objective function, i.e.

max:
Pd

tD0
PK

kD1 r2k .S; t/, which means that peaks in the project schedule
are stimulated. The activities are delayed according to a predefined activity list.
In order to avoid the escape of the optimal solution, the procedure is repeated
with random generated activity lists until J consecutive unsuccessful trials to
increase the maximal resource availabilityRmax

k have been made (in this chapter,
J is equal to 5).

The obtained value for Rmax
k can further be tightened by using the following

formula:

vmax
k D

jf best � f min
k…R

ck

k
8k 2 R

348 V. Van Peteghem and M. Vanhoucke

where f min
k…R is the minimal cost determined by the minimum resource availabil-

ities of all resources, excluding the cost of resource k. The maximal resource
availability Rmax

k then can be calculated as the minimum of umax
k and vmax

k , i.e.
Rmax
k D min.umax

k ; vmax
k /, 8k.

By applying this preprocessing procedure, an initial best cost f best and the
feasible ranges for each resource k, ŒRmin

k ; Rmax
k �, are determined.

16.5.3 Fitness Function

In order to measure the fitness of an individual weed, a fitness value is calculated. In
the RCPSP, the fitness value normally equals the makespan of the project Cmax.
It is a good measure for sequencing the different individuals according to their
contribution to the objective of the problem. However, using the makespan or even
the cost as fitness value for an individual is inappropriate in the RACP. Since most
individuals will be infeasible (if feasible, it is unnecessary to search further to
individuals which result in the same cost), some authors also use the term unfitness
function (Shadrokh and Kianfar 2007).

In literature, three different fitness functions are proposed.

1. Yamashita et al. (2006) use the objective function of the problem, i.e. the total
resource usage cost, to differentiate between the different feasible solutions. The
fitness function is only calculated if the solution vector itself is feasible, i.e. if the
project can be scheduled within the predefined deadline d . If this fitness function
is used, infeasible solutions can not be part of the population of solution vectors.

FI D
KX

kD1
ck �Rk (16.7)

2. Shadrokh and Kianfar (2007) introduced the unfitness function, which can be
formulated as follows

FI D
KX

kD1
ck �Rk C wTnC1 �max.0; SInC1 � d/ (16.8)

with wTnC1 the tardiness cost. This penalty function allows infeasible solutions to
remain part of the population of solution vectors.

3. Van Peteghem and Vanhoucke (2013) state that an individual which can be
scheduled in a time SnC1 > d , but close to the deadline and at a relatively low
cost must be favored with respect to an individual which can be scheduled within
the deadline but at a relatively higher cost. They therefore formulated a fitness
function as follows:

16 Heuristic Methods for the Resource Availability Cost Problem 349

FI D f I

f min
� d Cmax.0; SInC1 � d/

d

The first part indicates the relative cost of the individual compared to the minimal
cost (based on the minimal resource use). A second part indicates the deadline
feasibility. If the value of this second part is equal to 1, the individual is deadline
feasible (i.e. SInC1 � d). If the individual weed is deadline infeasible (SInC1 > d),
the value of this part increases the more the finish time exceeds the predefined
deadline. If FI is equal to 1, the best cost is equal to the minimal cost and the
algorithm can be stopped.

Previous computational tests have shown that the fitness function of
Van Peteghem and Vanhoucke (2013) outperformed the fitness function of Shadrokh
and Kianfar (2007). However, for the RACPT-procedure, the former fitness function
is not applicable and therefore the fitness function of Shadrokh and Kianfar (2007)
will be used for these problems.

16.5.4 Initial Population Generation

During the initial population generation, a set of �pop population elements (i.e.
weeds) is generated. In order to obtain a diversified initial population of solution
vectors, the initial starting solutions are generated randomly. For each individual
I in the population, a precedence feasible activity list (PFAL) `I is determined
randomly and a resource capacity list RI is set. This resource capacity list is
generated by searching a resource availability RIk for each resource k such that
the total cost f I D PK

kD1 ckRk is smaller than or equal to f best and such that
Rmin
k � RIk � Rmax

k , 8k.

16.5.5 Reproduction

Based on the fitness value of the different elements in the population, the number of
seeds (nIseed) is determined for each colony element I . This number depends on the
fitness of the plant itself (FI) and on the colony’s lowest and highest fitness (Fmin

and Fmax, respectively). The number decreases linearly from the maximum possible
seed production nmax

seed to its minimum nmin
seed. The number of seeds can be calculated

as follows:

nIseed D
FI � Fmin

Fmax � Fmin
.nmax

seed � nmin
seed/C nmin

seed

350 V. Van Peteghem and M. Vanhoucke

Fig. 16.5 Seed reproduction procedure

In Fig. 16.5, the reproduction technique is illustrated. This procedure gives a
chance to infeasible individuals to survive and reproduces new seeds, similar to
the mechanism happening in nature (Mehrabian and Lucas 2006). Since all weeds
should have a chance to reproduce, the minimum number of seeds nmin

seed is equal to 1.

16.5.6 Spatial Dispersal

The generated seeds are randomly distributed over the search space. This process is
applied in two phases for each new seed: first, a mutation procedure is applied on
the activity list and second, a new capacity list is generated.

16.5.6.1 Activity List

Each of the activity lists is mutated for a certain number of times. However, the
number of mutations will be reduced from a predefined maximum number of
mutations nmax

mut to a final minimal number of mutations nmin
mut, in every generation.

The number of mutations is calculated as follows:

nImut D
nmax

iter � nIiter

nmax
iter

.nmax
mut � nmin

mut/C nmin
mut

where nmax
iter is the maximum number of iterations and nIiter is the current number

of iterations. By using this formula, the neighborhood of the different elements

16 Heuristic Methods for the Resource Availability Cost Problem 351

is narrowed in every new generation, until a minimum number of mutations is
obtained. The minimum number of mutations is equal to 1.

16.5.6.2 Capacity List

For each new seed which is created, a new capacity list is determined. The cost of
the new capacity list is always set smaller than or equal to the best cost f best. The
capacity list is generated based on a probability function PkRk , which sets for every
resource availability level Rk (Rmin

k � Rk � Rmax
k , 8k) the chance that the specific

value is chosen for a specific resource type k. This chance is determined by the
inverse of the sum of all the differences between the finish time of a project SnC1
and the deadline d , if SnC1 > d , obtained by the individuals which have a value of
Rk in their capacity list for resource k. By this manner, the resource availabilities
which create feasible schedules have a larger chance to be chosen than resource
availabilities resulting in infeasible schedules (i.e. SnC1 > d). However, the set of
differences is smoothed every generation with a smooth factor SF (0 < SF < 1), in
order to decrease the impact of the differences from the previous generations.

Each new seed (combination of an adapted activity list and a new capacity list) is
evaluated using the serial schedule-generation scheme, as explained in Sect. 16.5.1.
On the obtained solution, a local search procedure is applied.

16.5.7 Local Search

A local search procedure is applied on each element in the weed colony. If the
duration of the schedule is smaller than or equal to the deadline (SnC1 � d), the
resource leveling local search is applied, in order to improve the total resource
cost. If the duration of the schedule is larger than the deadline (SnC1 > d), a
forward-backward local search is applied, in order to decrease the project finish
time.

16.5.7.1 Resource Leveling Local Search

The resource leveling local search is an extension of the Burgess and Killebrew
procedure, as explained in Sect. 16.5.2. The procedure starts from the schedule
obtained from the SGS and iteratively tries to improve the objective function by
delaying activities according to the activity list of the weed. The objective function

of this adapted BK62 procedure is min:
Pd

tD0
PK

kD1 ckr2k.S; t/, which means that
the more expensive resources outweigh the less expensive resources. The procedure
is repeated until no further improvements occur.

352 V. Van Peteghem and M. Vanhoucke

16.5.7.2 Forward-Backward Local Search

This technique, proposed by Li and Willis (1992), transforms left-justified schedules
(where all activities are scheduled as soon as possible) into right-justified schedules
(where all activities are scheduled as late as possible) and vice versa. During the
backward (forward) scheduling stage, the makespan of the schedule is tried to be
reduced by shifting the activities, in a sequence determined by the finish (start)
times, as much as possible to the right (left), without affecting the project completion
time. During the forward-backward procedure only improvements can occur. This
procedure is applied until no further improvements occur.

16.5.8 Competitive Exclusion

All weeds (both new weeds and parent weeds) are then ranked according to their
fitness value. Weeds with higher values are eliminated from the colony and only the
weeds with the better fitness survive and are allowed to replicate.

However, in order to maintain diversity in the colony, only the �best% weeds are
included. For every other individual weed that is added to the new colony, the weed
should be divers with respect to all the other members which are already in the new
colony. The diversity function is defined as the number of differences in `I and `J ,
the activity lists of weeds I and J , respectively, and can be formulated as follows:

�IJ D
nX

iD1

�
1 if `Ii D `Ji
0 otherwise

where the value�IJ should be smaller than a threshold value TV (which is calculated
as a percentage �excl of the total number of real activities n) to allow membership in
the new colony. If the number of weeds in the population is smaller than �pop, the
colony is seeded with new random elements in order to maintain the diversity in the
population.

16.6 Computational Results

In order to prove the efficiency of our algorithm, we have tested our IWO solution
procedure on a test set which is defined in Sect. 16.6.1. In Sect. 16.6.2, the Taguchi
method is used to configure the algorithmic parameter settings, while in Sect. 16.6.3
the performance and effectiveness of the algorithm on the RACP and RACPT is
tested. In Sect. 16.6.4, a comparison with other solution procedures is made on the
proposed dataset and on the PSPLIB dataset instances.

16 Heuristic Methods for the Resource Availability Cost Problem 353

16.6.1 Benchmark Problem Set

The procedure is coded in Xcode 3.2 and all computational experiments are
performed on an Apple computer with 2 GB of internal memory and an Intel Core
2 Duo (2.26 GHz) processor. We have validated the procedure on a dataset with
projects of 30 activities and 4 resources. The order strength (OS), which gives an
indication of the network complexity (Mastor 1970), equals 0.25, 0.50 or 0.75. The
resource factor (RF), which indicates the density of the different resource types
needed by an activity (Pascoe 1966), equals 0.25, 0.50, 0.75 or 1. For each project
setting, 20 instances were generated. In total, 240 different project instances were
generated. For the generation of the instances, we have used the RanGen project
scheduling instance generator developed by Vanhoucke et al. (2008). The deadline
d of the project is set at d D .1C �/ESnC1, with ESnC1 the earliest finish time of
the project and � equal to 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The cost of the resources is
drawn randomly from a uniform distribution U[1,5] for each resource. In total, 1,440
different project situations are tested. The dataset (called RACP30 in the remainder
of this chapter) and the best results found for each instance are available on the
website http://www.projectmanagement.ugent.be and can be used by researchers to
compare the results of their solution procedures.

In order to make a fair, platform-independent comparison possible, the evaluation
is stopped after a predefined number of generated schedules. In this chapter, the
number is set at 5,000 schedules. Kolisch and Hartmann (2006) state in their RCPSP
review paper that one schedule corresponds to (at most) one start time assignment
per activity, as done by a SGS. According to the authors, the advantage of the
number of schedules as stop criterion is twofold: first, it is platform-independent
and second, future studies can easily make use of the benchmark results by applying
the same stop criterion. However, the stop criterion also has a few shortcomings.
First, it cannot be applied to all heuristic strategies. Second, the required time to
compute one schedule might differ between metaheuristics. Nevertheless, Kolisch
and Hartmann conclude that limiting the number of schedules is the best criterion
available for a broad comparison, which motivated us to use this stop criterion.

16.6.2 Parameter Setting

In order to determine a suitable set of parameters for our invasive weed optimization
algorithm, the Taguchi method is used (Montgomery 2005). This method involves
reducing the variation in the process through robust design of experiments (DOE).

The algorithm contains the following six key parameters: the values �pop, nmax
seed,

nmax
mut , SF, �best and �excl. According to the number of levels (five for each parameter),

the orthogonal array L25 is chosen. The values which are chosen for each parameter
are shown in Table 16.1.

http://www.projectmanagement.ugent.be

354 V. Van Peteghem and M. Vanhoucke

Table 16.1 Different
parameter values

Factor level �pop nmax
seed nmax

mut SF �best �excl

1 20 5 2 25 % 20 % 3 %

2 30 6 3 30 % 30 % 5 %

3 40 7 4 35 % 40 % 7 %

4 50 8 5 40 % 50 % 9 %

5 60 9 6 45 % 60 % 11 %

Table 16.2 Response table
with 5,000 schedules

Factor level �pop nmax
seed nmax

mut SF �best �excl

1 91.43 90.06 94.63 90.31 88.60 90.73

2 88.57 89.02 91.27 91.27 89.76 89.97

3 87.59 89.03 86.80 89.61 90.36 89.94

4 90.65 89.98 88.52 89.07 88.92 89.54

5 90.01 90.17 87.04 88.01 90.62 88.09

In Table 16.2, an overview is given of the average of the average deviation from
the best found solution after 5,000 schedules for each of the different parameters and
levels (expressed in �). According to the factor level trends, the best combination of
parameter values for the algorithm is determined, as indicated in bold in Table 16.2.

16.6.3 Performance

In this section, the effectiveness and performance of the algorithm is tested. In
Sect. 16.6.3.1, the performance of the algorithm on the resource availability cost
problem will be shown, while in Sect. 16.6.3.2, results are discussed with respect to
the performance of the algorithm on the problem with tardiness.

16.6.3.1 RACP

In Table 16.3, a detailed overview is given for each of the different values of � and
the different values of OS and RF. The result for each setting is the percentage
improvement of the upper bound, according to the formula presented by Drexl
and Kimms (2001). As can be seen, the percentage improvement increases for
decreasing values of OS and increasing values of RF. The results also improve for
larger values of � .

16 Heuristic Methods for the Resource Availability Cost Problem 355

Table 16.3 Detailed results IWO algorithm (5,000 schedules)

�

0 0.1 0.2 0.3 0.4 0.5 Global

OS D 0:25 RF D 0:25 35.49 39.96 45.73 49.51 53.12 55.02 46.47

RF D 0:5 40.32 44.64 50.05 53.63 56.91 59.44 50.83

RF D 0:75 39.50 44.66 49.35 53.65 56.59 59.16 50.49

RF D 1 40.09 44.62 49.61 53.16 56.49 58.97 50.49

OS D 0:5 RF D 0:25 29.10 36.62 41.00 43.35 44.31 45.15 39.92

RF D 0:5 32.22 40.52 47.50 52.32 55.20 57.52 47.55

RF D 0:75 31.81 39.29 45.42 49.66 52.65 55.49 45.72

RF D 1 33.94 41.58 46.81 50.64 54.20 57.07 47.37

OS D 0:75 RF D 0:25 18.41 29.96 34.76 36.69 36.82 37.02 32.28

RF D 0:5 19.06 30.19 38.85 43.76 47.69 50.80 38.39

RF D 0:75 28.89 38.99 44.48 47.91 51.21 53.79 44.21

RF D 1 24.90 36.68 42.79 47.64 50.62 53.20 42.64

Overall 31.14 38.98 44.70 48.49 51.32 53.55 44.70

Table 16.4 Detailed results IWO algorithm (5,000 schedules)

� 0 12.5 25 37.5 50 62.5 75 87.5 100 M

Av. dev.

RACP (%) �37.55 �15.98 �5.93 �2.66 �1.27 �0.80 �0.51 �0.28 �0.16 0.00

SnC1 > d (%) 93.26 84.79 67.57 50.56 32.85 23.26 15.28 10.00 2.50 0.00

Av. dev. d (%) 145.49 69.46 19.04 6.28 2.02 0.91 �0.01 �0.43 �0.82 �0.92

16.6.3.2 RACPT

Table 16.4 shows the results of the algorithm if the problem with tardiness is solved.
The tardiness cost wTnC1 is equal to � percent of the sum of the resource unit costs,
PK

kD1 ck , with � equal to 0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100 and M (with M
a big value). If the value of � is equal to M , the problem can be seen as the RACP
without tardiness. If � is equal to 0, the value of wTnC1 is equal to 0, otherwise the
following formula can be used:

wTnC1 D max.1; b �
100

KX

kD1
ckc/

For each of the different values of � the average deviation from the RACP-cost
is given (Av. dev. RACP), the percentage of times the finish time is larger than the
deadline (SnC1 > d) and the average percentage deviation from the deadline (Av.
dev. d).

When � is equal to 0, the solution is equal to the minimum cost f min. As can be
seen, the average deviation from the RACP-solution is almost 38 %. This percentage

356 V. Van Peteghem and M. Vanhoucke

Table 16.5 Comparison between AIS and IWO on RACP30 dataset (5,000 schedules)

�

Cost Algorithm 0 0.1 0.2 0.3 0.4 0.5 Global

ck D 1 IWO 30.84 38.54 44.09 47.94 50.76 53.00 44.19

AIS 30.83 38.49 44.00 47.80 50.61 52.88 44.10

ck 2 Œ1; 5� IWO 31.14 38.98 44.70 48.49 51.32 53.55 44.70

AIS 31.19 39.05 44.74 48.53 51.36 53.55 44.74

decreases significantly for an increasing value of � . The percentage of solutions
where the finish time is larger than the deadline also decreases for an increasing
tardiness costs. The negative average deviation from the deadline d for large values
of � can be explained by the fact that—on average—in a limited number of cases
the finish time is smaller than the predefined deadline. Moreover, the value of this
variable for the RACP-procedure is �0.92 %.

16.6.4 Comparison

Finally, the results obtained from the IWO are compared with other existing
metaheuristic solution procedures in literature on the RACP30 dataset presented
in Sect. 16.6.1 and on the well-known PSPLIB dataset (Kolisch et al. 1995).

16.6.4.1 RACP30

First, a comparison is performed on the RACP30 dataset. The algorithm is compared
with the artificial immune system (AIS) algorithm of Van Peteghem and Vanhoucke
(2013). In Table 16.5, a detailed overview of the average percentage deviation from
the upperbound (�ø

UB) for both algorithms is given for each of the different values
of � . The test is also performed using two different cost structures: one where all
resource costs are equal to 1, and one where the cost of the resources is drawn
randomly from a uniform distribution U[1,5] for each resource.

In case where ck 2 Œ1; 5�, the AIS algorithm outperforms the IWO algorithm for
all values of � , except for � D 50. The inverse is true for the case where ck D 1,
where the IWO algorithm outperforms the AIS algorithm for all cases.

16.6.4.2 PSPLIB

Second, the algorithm is tested on the well-known PSPLIB dataset (Kolisch
et al. 1995). This dataset contains instances involving 4 resource types and 30,
60, 90, and 120 activities, with different parameters for the network complexity

16 Heuristic Methods for the Resource Availability Cost Problem 357

Table 16.6 Comparison between metaheuristics on J30 dataset (5,000 schedules)

� 0 0.1 0.2 0.3 0.4 0.5

Shadroh and Kianfar Av. Imp. 29.57 38.11 42.63 46.36 48.97 50.95

IWO Av. Imp. 30.33 39.05 44.33 47.78 50.33 52.31

St. Dev. 0.16 0.13 0.13 0.11 0.11 0.10

Min. 30.02 38.83 44.09 47.63 50.15 52.14

Max. 30.63 39.33 44.59 47.97 50.53 52.52

AIS Av. Imp. 30.34 39.03 44.25 47.67 50.23 52.19

St. Dev. 0.17 0.16 0.14 0.15 0.15 0.16

Min. 29.87 38.64 43.93 47.34 49.90 51.87

Max. 30.66 39.31 44.49 47.89 50.51 52.42

(NC 2 f1:5; 1:8; 2:1g) and the resource factor (RF 2 f0:25; 0:5; 0:75; 1:0g). The
instances with 30 activities constitute the J30 dataset.

In the paper of Shadrokh and Kianfar (2007), the average percentage of
improvement of the upper bound (Av. Imp.) is given for the J30 dataset (with a
stop criterion of 2 s). Shadrokh and Kianfar (2007) set the unit resource cost for
each resource equal to a random number from the interval Œ1; 10�. Although the set
of costs which is used in their experiments is not available, the following experiment
is set up in order to prove the effectiveness of the IWO algorithm, similar as done in
the paper of Van Peteghem and Vanhoucke (2013).

The IWO algorithm is performed 20 times on each problem instance of the J30
dataset, each time with a different value for the resource cost ck (8k), randomly
chosen from the uniform distribution U[1,10]. In Table 16.6, the average and
the standard deviation of the average percentage deviation from the upper bound
is shown, as well as the results obtained from the paper of Van Peteghem and
Vanhoucke (2013). Moreover, the minimum and maximum average percentage
deviation is also shown.

Compared to the results of Shadrokh and Kianfar (2007) and Van Peteghem and
Vanhoucke (2013), the following conclusions can be drawn:

• In all cases, the IWO algorithm performs better than the genetic algorithm of
Shadrokh and Kianfar (2007) and the AIS algorithm of Van Peteghem and
Vanhoucke (2013).

• Moreover, the algorithm of Shadrokh and Kianfar (2007) has a stop criterion of
2 s (on a computer with 1 GHz processor), while the stop criterion for the IWO
and AIS algorithm is 5,000 schedules with an average CPU-time of less than 0.5 s
(on a computer with a 2.26 GHz processor).

• Based on the number of experiments, the average improvement and the standard
deviation, a 99.7 % confidence interval can be found with a stochastic lower
endpoint which is larger than the average improvement obtained by Shadrokh
and Kianfar (2007).

358 V. Van Peteghem and M. Vanhoucke

16.7 Conclusions

In this chapter, an invasive weed optimization algorithm is presented for the resource
availability cost problem. In this scheduling problem, the total cost of the (unlimited)
renewable resources required to complete the project by a prespecified project
deadline should be minimized. This search strategy is inspired by the natural
behavior of weeds in colonizing and finding a suitable place for growth and
reproduction.

The proposed procedure can also be used to solve the resource availability cost
problem with tardiness. In this problem, a due date for the project is set, but tardiness
of the project is permitted with a predefined penalty. The total project cost is
than equal to the sum of the resource availability cost and the tardiness cost. The
proposed procedure proved being successful for both the RACP and RACPT.

Future research should focus on the use of this search strategy for other project
scheduling problems such as the discrete time-resource trade-off problem (DTRTP)
or extensions of the RACP. Moreover, the examination of the influence of varying
cost parameters and the introduction of bonus and penalty costs could lead to
interesting managerial insights.

References

Ballestín F (2007) A genetic algorithm for the resource renting problem with minimum and
maximum time lags. In: Cotta C, van Hemert J (eds) EvoCOP 2007. Lecture notes in computer
science, vol 4446. Springer, Heidelberg, pp 25–35

Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project
scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41

Burgess A, Killebrew J (1962) Variation in activity level on a cyclic arrow diagram. J Ind Eng
2:76–83

Demeulemeester E (1995) Minimizing resource availability costs in time-limited project networks.
Manag Sci 41:1590–1598

Drexl A, Kimms A (2001) Optimization guided lower and upper bounds for the resource
investment problem. J Oper Res Soc 52:340–351

Glover F, Laguna M, Marti R (2000) Fundamentals of scatter search and path relinking. Control
Cybern 29:653–684

Guldemond TA, Hurink JL, Paulus JJ, Schutten JMJ (2008) Time-constrained project scheduling.
J Sched 11:137–148

Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained
project scheduling problem. Eur J Oper Res 207:1–15

Herroelen W, De Reyck B, Demeulemeester E (1999) A classification scheme for project
scheduling. In: Wȩglarz J (ed) Handbook of recent advances in project scheduling. Kluwer,
Dordrecht, pp 1–26

Hsu C-C, Kim D (2005) A new heuristic for the multi-mode resource investment problem.
J Oper Res Soc 56:406–413

Karimkashi S, Kishk A (2010) Invasive weed optimization and its features in electro-magnetics.
IEEE Trans Antennas Propag 58:1269–1278

Kelley J Jr (1963) The critical-path method: resources planning and scheduling. Prentice-Hall,
Englewood Cliffs

16 Heuristic Methods for the Resource Availability Cost Problem 359

Kolisch R (1995) Project scheduling under resource constraints. Physica, Berlin
Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained

project scheduling: an update. Eur J Oper Res 174:23–37
Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of

resource-constrained project scheduling problems. Manag Sci 41:1693–1703
Kreter S, Rieck J, Zimmermann J (2014) The total adjustment cost problem: applications, models,

and solution algorithms. J Sched 17:145–160
Li K, Willis R (1992) An iterative scheduling technique for resource-constrained project

scheduling. Eur J Oper Res 56:370–379
Mastor A (1970) An experimental and comparative evaluation of production line balancing

techniques. Manag Sci 16:728–746
Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed

colonization. Ecol Inform 1:355–366
Möhring R (1984) Minimizing costs of resource requirements in project networks subject to a fixed

completion time. Oper Res 32:89–120
Montgomery D (2005) Design and analysis of experiments. Wiley, Hoboken
Neumann K, Zimmermann J (1999) Resource levelling for projects with schedule-dependent time

windows. Eur J Oper Res 117:591–605
Nübel H (2001) The resource renting problem subject to temporal constraints. OR Spektrum

23:574–586
Pascoe T (1966) Allocation of resources: CPM. Revue Française de Recherche Opérationnelle

38:31–38
Ranjbar M, Kianfar F, Shadrokh S (2008) Solving the resource availability cost problem in project

scheduling by path relinking and genetic algorithm. Appl Math Comput 196:879–888
Rodrigues S, Yamashita D (2010) An exact algorithm for minimizing resource availability costs in

project scheduling. Eur J Oper Res 206:562–568
Shadrokh S, Kianfar F (2007) A genetic algorithm for resource investment project scheduling

problem, tardiness permitted with penalty. Eur J Oper Res 181:86–101
Stinson J, Davis E, Khumawala B (1978) Multiple resource-constrained scheduling using

branch-and-bound. AIIE Trans 10:252–259
Van Peteghem V, Vanhoucke M (2013) An artificial immune system algorithm for the resource

availability cost problem. Flex Serv Manuf J 25:122–144
Vanhoucke M, Coelho J, Debels D, Maenhout B, Tavares L (2008) An evaluation of the adequacy

of project network generators with systematically sampled networks. Eur J Oper Res 187:511–
524

Yamashita D, Armentano V, Laguna M (2006) Scatter search for project scheduling with resource
availability cost. Eur J Oper Res 169:623–637

Yamashita D, Armentano V, Laguna M (2007) Robust optimization models for project scheduling
with resource availability cost. J Sched 10:67–76

Zhang X, Wang Y, Cui G, Niu Y, Xu J (2009) Application of a novel IWO to the design of encoding
sequences for DNA computing. Comput Math Appl 57:2001–2008

Chapter 17
Exact Methods for Resource Leveling Problems

Julia Rieck and Jürgen Zimmermann

Abstract Resource leveling problems arise whenever it is expedient to reduce
the fluctuations in resource utilization over time, while maintaining a prescribed
project completion deadline. Several resource leveling objective functions may be
defined, whose consideration results in resource profiles with desired properties,
e.g., well-balanced resource profiles or profiles with a minimum number of jump
discontinuities. In this chapter, we concentrate on three resource leveling problems
that are known from the literature. In order to solve medium-scale instances of
the considered problems, an enumeration scheme that uses problem structures is
presented. Furthermore, mixed-integer (linear) programming models are introduced,
and resource leveling instances are solved using CPLEX 12. In a comprehensive
computational study, the performance of the described methods is analyzed.

Keywords Minimum and maximum time lags • Mixed-integer programming •
Renewable resources • Resource leveling • Tree-based branch-and-bound method

17.1 Introduction

In order to face the challenges of decreasing product lifecycles, rapid advances
in technologies, and tougher competitions in markets, many companies focus on
an efficient usage of resources. To avoid the extremes of resource overloads or
resource underloads, associated with an increase in costs, expensive renewable
resources such as special machines, equipment, or highly qualified manpower have
to be utilized in a “leveled” form. Scheduling problems in which interdependent
activities are to be scheduled such that the resource utilization will be as smooth
as possible or will contain as few as possible jump discontinuities over a medium-
term planning horizon are called resource leveling problems (Demeulemeester and
Herroelen 2002, Sect. 5).

J. Rieck (�) • J. Zimmermann
Institute of Management and Economics, Clausthal University of Technology,
Clausthal-Zellerfeld, Germany
e-mail: julia.rieck@tu-clausthal.de; juergen.zimmermann@tu-clausthal.de

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_17

361

mailto:julia.rieck@tu-clausthal.de
mailto:juergen.zimmermann@tu-clausthal.de

362 J. Rieck and J. Zimmermann

Resource leveling problems (RLPs) are interesting from both practical and
theoretical points of view. On the one hand, the levels of resource utilization are
generally linked to quality of products, reject rates, and balanced material flows.
On the other hand, resource leveling problems are NP-hard in the strong sense
and difficult to solve to optimality (Neumann et al. 2003, Sect. 3.4). Thus, many
researchers have developed heuristic algorithms for RLPs in order to generate
good solutions for practical relevant problem sizes (Ballestín et al. 2007; Raja
and Kumanan 2007). However, RLPs also have nice structural properties, whose
consideration can be used to find optimal solutions for medium-scale instances in
moderate computation time.

A multitude of resource leveling functions may be defined, where the minimiza-
tion will provide, for example, well-balanced resource profiles. In what follows,
we investigate three special resource leveling problems that are known from the
literature. In particular, we consider the “classical resource leveling problem”, where
variations in resource utilizations within the project duration are to be minimized
(Burgess 1962). In addition, we study the “overload problem”, where costs are
incurred if either a given supply of some renewable resources or a threshold for
the resource utilization is exceeded (Easa 1989). Finally, we examine the “total
adjustment cost problem” that coincides with the cumulative costs arising from
increasing or decreasing the utilizations of resources (Kreter et al. 2014).

The remainder of this chapter is organized as follows: In Sect. 17.2, we formally
describe resource leveling problems using the three objective functions and present
the mathematical background. Section 17.3 contains structural properties of RLPs.
Section 17.4 is devoted to a literature review on exact solution methods for resource
leveling, where we sketch the most common approaches. In Sect. 17.5 a tree-based
branch-and-bound procedure is introduced, and in Sect. 17.6 known mathematical
model formulations are presented. Based on those models, we proceed to describe
methods for linearizing the corresponding objective functions and improving the
quality of the resulting formulations in terms of computation time and solution gap.
The results of a comprehensive performance analysis are given in Sect. 17.7 and
finally, conclusions are presented in Sect. 17.8.

17.2 Problem Description

In what follows, we consider projects specified by activity-on-node networks N D
.V;EI ı/, where V is the set of vertices and E is the set of arcs with weights ı 2 Z.
Vertex set V WD V r [V m [f0; nC 1g consists of real activities, milestones that
specify significant events, and two fictitious activities, 0 and n C 1, that represent
the beginning and completion of the underlying project, respectively. Each activity i
has a given processing time pi 2 Z�0 and has to be carried out without interruption.
For activities 0 and n C 1, as well as for milestones, the processing time is set to
zero.

17 Exact Methods for Resource Leveling Problems 363

We denote the start time of activity i 2 V by Si . Temporal relationships between
start times of activities are represented by minimum and maximum time lags. If
activity j cannot be started earlier than dmin

ij 2 Z�0 time units after the start of
activity i (minimum time lag), i.e. Sj � Si � dmin

ij , we introduce an arc .i; j /
having weight ıij WD dmin

ij into networkN . If activity j must be started no later than
dmax

ij 2 Z�0 time units after activity i (maximum time lag), i.e. Sj � Si � dmax
ij , we

insert a backward arc .j; i/ with weight ıji WD �dmax
ij . At a medium-term planning

level, a deadline d for the termination of the project is usually given. In order to
ensure that the prescribed deadline will not be exceeded, an arc .n C 1; 0/ having
weight ınC1;0 WD �d is further added to the network. Hence, the set of feasible start
times of activity i 2 V forms a proper time window ŒESi ;LSi �, where ESi is the
earliest and LSi the latest start time of activity i with respect to the given temporal
constraints. By definition, ES0 D LS0 WD 0. We assume that the underlying project
is “well-defined”, i.e., the conditions Si � 0 and SiCpi � SnC1; i 2 V;will always
be observed by the underlying minimum and maximum time lags.

Let R be the set of (discrete) renewable resources available at each point in
time, independent of their former utilization. The amount of resource k 2 R used
constantly during execution of activity i 2 V (resource requirement) is represented
by rik 2 Z�0. We suppose that the resource requirements of activities 0 and nC 1,
as well as of milestones, are zero. In order to avoid that two activities i and j with
Si C pi D Sj compete for some renewable resource required, we assume that each
real activity is executed during the half-open time interval ŒSi ; Si C pi Œ.

Given some schedule S D .Si /i2V , the “active set” A .S; t/ contains all real
activities in progress at time t , i.e., A .S; t/ WD fi 2 V r jSi � t < Si C pi g. Thus,
rk.S; t/ WD P

i2A .S;t/ rik represents the total amount of resource k 2 R required
for those activities in progress at time t . The resulting resource profiles rk.S; �/ W
Œ0; d � ! R�0 are step functions continuous from the right at their jump points.
In project scheduling, we distinguish between time-based, financial, and resource-
based objectives. A resource leveling approach always considers some non-regular
resource-based objective function that evaluates the resource utilization over time.

In practice, companies often want to realize smooth resource profiles in the
course of the project, and aim at penalizing high resource utilizations more than
low resource utilizations. Let ck � 0 be the cost incurred per unit of resource k
and per time unit. The “classical resource leveling objective function” represents
the total squared utilization cost for a given schedule S and will be given by

f .S/ WD
X

k2R
ck

Z

t2Œ0;d �
r2k .S; t/ dt (C-RL)

(Burgess 1962; Harris 1990). A possible application can be found in make-to-
order manufacturing operations, where an even-workload distribution of resources
is desirable (Ballestín et al. 2007).

364 J. Rieck and J. Zimmermann

Employers are usually required to pay overtime premiums to employees who
work more than the standard hours. Additional costs for covering the positive
deviations from the desired resource utilizations Yk; k 2 R, will therefore be
incurred (Bandelloni et al. 1994; Easa 1989). In order to take only the positive
deviations into account, we consider the “total overload cost function”

f .S/ WD
X

k2R
ck

Z

t2Œ0;d �
.rk.S; t/� Yk/Cdt (O-RL)

where .z/C WD max.z; 0/. In case no thresholds Yk , e.g., the standard weekly
hours, have been prescribed, Yk may be chosen equal to the (rounded) average
resource utilizations, i.e., Yk WD P

i2V .rik pi=d /. Objective function (O-RL) may
be modified by replacing .: : :/C by j : : : j in order to take positive and negative
deviations into account. Furthermore, if the condition .: : :/C is substituted by .: : :/2,
we obtain a problem that is equivalent to the classical resource leveling problem.
Assuming that time t is discrete, the integrals appearing in (C-RL) and (O-RL) could
be replaced by summations and the three-field notation for the classical RLP could
be given by PS1jtemp; d j˙ck˙r2k and for the overload problem by PS1jtemp;
d j˙ck˙okt with okt WD .rk.S; t/� Yk/C.

If resources represent different kinds of manpower, where changing the size of
work force from period to period is associated with high costs, the “total adjustment
cost function” is used to identify the cumulative costs arising from increasing or
decreasing the resource utilizations. Given some schedule S , the set of points in
time, at which at least one activity i 2 V is started or completed, is denoted by
DT (decision times concerning schedule S). Let �t WD maxf� 2 DTj� < tg be the
decision time preceding some t 2 DT n f0g and

�rkt WD
(
rk.S; t/ � rk.S; �t /; if 0 < t � d
rk.S; 0/ otherwise

the jump difference in the resource profile of resource k 2 R at time t 2 DT .
Moreover,�Crkt WD .�rkt/

C and��rkt WD .��rkt/
C are the increase and decrease,

respectively, in utilization of resource k at time t . The parameters cCk � 0 and
c�k � 0 denote the costs for positive and negative jumps in resource utilization of
resource k by one unit. Since the condition

P
t2DT �

Crkt DPt2DT �
�rkt holds for

all resources k 2 R, the “total adjustment cost function” may be formulated by

f .S/ WD
X

k2R
ck

X

t2DTnfdg
�Crkt (A-RL)

where ck WD cCk C c�k ; k 2 R. Hence, it is sufficient to consider only the positive
jump differences in the resource profiles. In order to strengthen the resource leveling

17 Exact Methods for Resource Leveling Problems 365

effect, �Crkt can be squared in the objective function. The three-field notation for
the total adjustment cost problem is typically given by PS1jtemp; d j˙ck˙�rkt.

The problem of finding an optimal (time-feasible) schedule for a resource
leveling problem with objective function (C-RL), (O-RL), or (A-RL) can now be
formulated as follows:

Min. f .S/
s.t. Sj � Si � ıij ..i; j / 2 E/

S0 D 0

9
=

;
(RL)

The feasible region ST of the described problem is non-empty, iff network
N contains no cycle of positive length (Bartusch et al. 1988). As shown in
Neumann et al. (2003) by a polynomial reduction to three-partition, problem (RL)
is NP-hard in the strong sense for all three resource leveling variants presented,
even if only one single resource is considered (i.e., jRj D 1).

17.3 Structural Properties of Resource Leveling Problems

Structural properties can be exploited in order to restrict the search for an optimal
solution to the finite subset of so called “quasistable” schedules. In what follows,
some basic definitions and concepts are introduced to facilitate understanding of
exact procedures from literature presented further on (Neumann et al. 2000).

A “strict order”O is an asymmetric and transitive relation in (real) activity set V r

that establish time-oriented precedences among activities. Moreover, set ST .O/ WD
fS 2 ST j Sj � SiCpi for all .i; j / 2 Og of all time-feasible schedules satisfying
the precedence constraints induced by strict orderO is termed the “order polytope”
of O . Network N.O/ is called the “order network” of strict order O if it contains a
precedence arc .i; j / with weight pi for each activity pair .i; j / 2 O .

Resource leveling objective functions have some specific characteristics, for
example, objective functions (C-RL) and (O-RL) are continuous and concave
on each set of schedules representing the same strict order O [i.e., (C-RL) and
(O-RL) belong to the class of “locally concave” functions]. In contrast, objective
function (A-RL) is not necessarily continuous, but it can be noticed that it is
“lower semicontinuous”, as for all schedules S; S 0 2 R

nC2
�0 the condition f .S/ �

lim infS 0!S f .S 0/ holds. Moreover, function (A-RL) is also “quasiconcave” on each
set of schedules representing the same strict order O [i.e., (A-RL) belongs to the
class of “locally quasiconcave” functions].

Consider the resource profile in Fig. 17.1. We assume that activity 2 is delayed
from its earliest start time, ES2 D 0, to its latest start time, LS2 D 6. The
resulting course of the objective functions (C-RL), (C-RL), and (A-RL) are depicted
in the three coordinate systems in Fig. 17.1. Functions (C-RL) and (O-RL) are
continuous and concave on the intervals Œ0; 1� (strict order O D f.2; 3/g), �1; 4Œ

366 J. Rieck and J. Zimmermann

12

2

3

t

r(S t)

1 2 3 4 5

1

2

3

0

S2

O-RL: f (S2)

1 2 3 4 5 6

1

2

3

4

S2

C-RL: f (S2)

1 2 3 4 5 6

14

16

18

20

S2

A-RL: f (S2)

1 2 3 4 5 6

2

4

6

8

Fig. 17.1 Continuous and lower semicontinuous functions

(strict order O D ;), Œ4; 5Œ (strict order O D f.3; 2/g), and Œ5; 6� (strict order
O D f.1; 2/; .3; 2/g). Function (A-RL) is lower semicontinuous and has jump
discontinuities at times t D 1 and t D 4. Furthermore, (A-RL) is quasiconcave
on the intervals Œ0; 1�, �1; 4Œ, Œ4; 5Œ, and Œ5; 6�.

For a locally (quasi-)concave function f , there invariably exists a “quasistable”
schedule which is optimal for the three considered resource leveling problems
(Neumann et al. 2000, 2003).

Remark 17.1. A feasible schedule S is termed quasistable if there is no pair of
opposite order-preserving shifts.

Let S be a quasistable schedule. For each activity i 2 V , there is either an activity
j 2 V such that Si C pi D Sj or Si C ıij D Sj , or an activity h 2 V such that
Si D Sh C ph or Si D Sh C ıhi . The set of quasistable schedules covers exactly
the set of extreme points of all order polytopes ST .O/. Consequently, there must
always be an extreme point S� of some order polytopeST .O/which is a minimizer
of problem (RL) on ST ¤ ;. Moreover, each extreme point can be represented by a
spanning tree of the corresponding order networkN.O/, where every arc represents
a binding temporal or precedence constraint (Neumann et al. 2000).

Finally, objective functions (C-RL) and (O-RL) are r-monotone, i.e., the condi-
tion f .S/ � f .S 0/ is implicitly specified for (partial) schedules S and S 0 with
rk.S; t/ � rk.S

0; t/ for all k 2 R and t 2 Œ0; d � (Zimmermann 2001). This
property can be used to generate good and efficient lower bounds for all schedules

17 Exact Methods for Resource Leveling Problems 367

generated in the course of an enumeration scheme. Objective function (A-RL) is
not r-monotone. Therefore, the determination of lower bounds is more difficult
and requires the estimation of jump differences in resource profiles with respect
to scheduled and unscheduled activities. Consequently, the values of lower bounds,
e.g., the values of linear programming relaxations used in solvers like CPLEX, are
relatively weak.

17.4 Literature Review

Exact solution procedures for resource leveling problems presented in the literature
may be separated into three different categories:

1. Enumeration schemes that enumerate the feasible integral start times of project
activities.

2. Enumeration schemes that enumerate the spanning trees (extreme points) of all
feasible order networks (order polytopes) of the underlying project.

3. Mixed-integer programming (MIP) models that consider binary variables for the
activities involved.

Approaches in the first and the third category mostly require a discretization of the
time horizon. Since the components S�i ; i 2 V , of at least one optimal schedule
S� are integers (assuming that pi ; ıij 2 Z�0; i; j 2 V; cf. Sect. 17.2), we are able
to restrict the possible start times of activity i to a set of discrete times, Wi WD
fESi ; : : : ;LSig.

Petrovic (1969) introduced the first exact solution approach for resource leveling
problems with precedence constraints that can be classified into category one.
The method is based on dynamic programming and aims at minimizing objective
function (C-RL). After that, Ahuja (1976, Sect. 11) presented a procedure that
enumerates every combination of feasible start times in order to minimize a
quadratic variant of objective function (A-RL). Younis and Saad (1996) proposed
a method based on integer programming in order to treat the sum of absolute
deviations of the resource utilization from a desired resource profile. Moreover,
Bandelloni et al. (1994) devised a dynamic programming approach for the overload
problem based on integral floats of activities. For problems with general temporal
constraints, Neumann and Zimmermann (2000) proposed a time-window based
branch-and-bound procedure that may be used for all objective functions mentioned
in Sect. 17.2. The method continues the concepts of the aforementioned approaches.

Gather et al. (2011) considered a tree-based enumeration scheme (second
category) for resource leveling problems with general temporal constraints, where
different techniques for avoiding redundancies are employed. The enumeration
scheme can be adopted for problems with objective functions (C-RL) or (O-RL),
respectively. During the course of the algorithm structural properties are used in an
efficient way in order to speed up the solution process (cf. Sect. 17.5).

368 J. Rieck and J. Zimmermann

Mixed-integer programming models for project scheduling problems are inspired
by the work of Pritsker et al. (1969). There, a discrete time-based formulation is
proposed, where binary variables xit are introduced that allocate a feasible start
time t 2 Wi to each activity i 2 V . In the case of the overload problem with
precedence constraints, a float-based model has been presented by Easa (1989).
Selle (2002) introduced a discrete time-based formulation for the total adjustment
cost problem. Several MIP-formulations for problems with objective functions
(C-RL) and (O-RL) are presented in Rieck et al. (2012). Applying preprocessing and
linearization techniques, the authors solved instances with up to 50 real activities
and varying project completion deadlines to optimality using CPLEX 12. Finally,
Kreter et al. (2014) developed MIP-formulations for the total adjustment cost
problem that focus on the fact that a positive jump in the resource profiles occurs
only if one or more real activities are started. The algorithms of Rieck et al. (2012)
as well as Kreter et al. (2014) are currently the best exact approaches to tackle RLPs
(cf. Sect. 17.6). The methods outperform the procedures presented by Neumann and
Zimmermann (2000) as well as Gather et al. (2011) in terms of computation time
and solution gap.

In order to solve RLPs approximately, many authors developed heuristic
approaches, where most of them may be used for all objective functions mentioned
above. Simple shifting and priority-rule methods for problems with precedence
constraints can be found in Burgess (1962), Wiest (1963), Galbreath (1965), Ahuja
(1976), as well as in Harris (1978, 1990). In addition, several metaheuristics either
based on local search or on nature based algorithms are introduced by Takamoto
et al. (1995), Savin et al. (1997), Raja and Kumanan (2007), Christodoulou et al.
(2010), and Geng et al. (2011). The last two articles are relatively new, but the
authors consider only small problem instances with up to eleven real activities.
Furthermore, Ranjbar (2013) describes a path-relinking metaheuristic for projects
with precedence constraints that is able to solve instances with 500 activities in
acceptable time.

Neumann and Zimmermann (1999, 2000) proposed heuristic approaches being
suitable for all aforementioned resource leveling problems as well as projects with
general temporal constraints. In Neumann et al. (2003) neighborhoods, which allow
schedule-improvement procedures to reach optimal solutions independently of the
initial schedule chosen, are presented. Moreover, Ballestín et al. (2007) published
a population-based method of the integrated greedy-type that generates the best
known results for large instances containing minimum and maximum time lags with
up to 1,000 activities so far.

17.5 Tree-Based Branch-and-Bound Method

The tree-based branch-and-bound procedure presented by Gather et al. (2011) is
currently the best branch-and-bound method presented in the literature. Based on
a directed multigraph N. OO/ that contains arcs for every time lag and for every

17 Exact Methods for Resource Leveling Problems 369

feasible strict order, the extreme points (quasistable schedules) of all order polytopes
ST .O/ are enumerated by generating the corresponding spanning trees. During the
enumeration, only time-feasible trees are constructed and the generation of different
spanning trees leading to one and the same schedule is avoided by using the T-
minimality concept of Nübel (1999). Additionally, an enhanced variation on the
bridge-concept devised by Gabow and Myers (1978) is employed, which has the
advantage that no partial tree, except for the current one, must be stored.

Let C be the completed set, i.e., the set of all activities which have already been
scheduled, and let SC be a partial schedule, where SC

i � 0 is satisfied for every
activity i 2 C � V and SC

0 D 0. The tree-based enumeration is initiated using
C D f0g and S0 D 0. In each iteration, a pair .C ; SC / (i.e., a subtree) is removed
from a set ˝ . If C D V , an extreme point of some order polytope has been found;
otherwise, the current partial schedule SC is extended as follows: For every j 2
V n C , a set Dj of tentative start times, t 2 ŒESj .SC /;LSj .SC /�; for which there
is an activity i 2 C such that

.i/ t D Si C ıij; i.e., temporal constraint Sj � Si � ıij is binding, or

.ii/ t D Si � ıji; i.e., temporal constraint Si � Sj � ıji is binding, or

.iii/ t D Si C pi ; i.e., precedence constraint Sj � Si � pi is binding, or

.iv/ t D Si � pj ; i.e., precedence constraint Si � Sj � pj is binding,

is determined. Then for every t 2 Dj , the corresponding extended partial schedule
SC 0

, where C 0 D C [fj g and Sj D t , is added to set ˝ . In order to improve
the efficiency of the procedure, the enumeration scheme is embedded into a branch-
and-bound approach.

The whole procedure was mainly constructed to solve the classical RLP. There-
fore, the branch-and-bound elements (i.e., upper and lower bounds) must be adopted
for other resource leveling variants. An upper bound on the objective function
value allow for evaluating the quality of new solutions or even partial solutions.
Upper bounds for the classical resource leveling and the overload problem can be
calculated by using the Ballestín et al. (2007) heuristic. Furthermore, an enhanced
version of the Ballestín et al. (2007) heuristic, that is suitable for the total adjustment
cost problem, may be found in Kreter et al. (2014). The procedure ensures that no
neighboring quasistable schedule is skipped.

A lower bound helps to avoid further examination of (partial) schedules that can
be recognized as non-optimal. During the enumeration, Gather et al. (2011) use
a constructive lower bound, LB, which is an extension of the bound devised by
Engelhardt and Zimmermann (1998). Lower bound LB can be used for objective
functions (C-RL) and (O-RL) and the calculation is based on the resource profiles
for partial schedules. The following four steps have to be executed:

1. Initialize a resource profile for each resource k 2 R by considering the resource
requirements rik of all activities i 2 V fix WD C having already a fixed start
time Si .

370 J. Rieck and J. Zimmermann

Activity i 0 1 2 3 4 5

ESi 0 1 9 3 0 10

LSi 0 1 9 8 1 10

pi ri 0,0 1,1 1,3 1,4 2,4 0,0

14

4

4

4

4
3

2

t

rLB(S t)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

after steps 1, 2, 3, 4 r

1

4

4 3
2

t

r(S∗ t)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

4

4

1

4

4

4

3 3 3 3

2

t

LB (S t)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

after steps 1, 2, 3’, 4’

Fig. 17.2 Calculation of lower bounds LB and LB0

2. Add resource requirements of all critical activities j with ESj D LSj and update
V fix. Add resource requirements of all near-critical activities j with ESj Cpj >
LSj within the interval ŒLSj ;ECj Œ.

3. Insert the resource requirements of a maximum set of non-scheduled activities j
with disjoint time windows ŒESj ;LCj Œ in the resource profiles as best as possible.
Update V fix.

4. Finally, differentiate all remaining activity resource requirements in a set of
independent blocks of 1-resource-unit-for-1-time-unit (1-blocks). These 1-blocks
are distributed as best as possible within the time interval ŒminfESmjm 2 V n
V fixg;maxfLCnjn 2 V n V fixgŒ.
In order to illustrate the determination of lower bounds, we consider a project

with four real activities and one renewable resource. The earliest and latest start
times as well as the durations and resource requirements of activities are given in
the upper part of Fig. 17.2. Moreover, the resource profile of an optimal solution
S� for problem (RL) with objective functions (C-RL) or (A-RL) is depicted. To
calculate LB, we assume that only activity 0 is scheduled, i.e., C D f0g. Therefore,
the resource profile remains empty after step 1. In step 2, the resource requirements
of critical activities 1 and 2 as well as of near-critical activity 4 are added. Since
the remaining activity 3 does not overlap with any other activity, the resource
requirements are inserted as best as possible. In the fourth step, 1-blocks of activity
4 are distributed within the time interval Œ0; 3Œ. The resulting resource profile
rLB.SC ; �/ is given in the lower part of Fig. 17.2.

Unfortunately, lower bound LB is not valid for the total adjustment cost problem,
since A-RL: f .rLB.SC ; t// D 9 > A-RL: f .S�/ D 8, assuming that cost
component c is equal to 1. For function (A-RL), which is not r-monotone, a new

17 Exact Methods for Resource Leveling Problems 371

lower bound LB0 must be determined in which the third and the fourth step are
modified. In doing so, time intervals are determined, where activities i 2 V n V fix

may be in execution due to their current time windows (step 3’). Within these
intervals, 1-blocks of the corresponding activities are distributed such that as few
as possible resource jumps occur (step 4’).

Considering the example described above. In step 3’, the intervals Œ3; 9Œ (exe-
cution interval of activity 3) and Œ0; 3Œ (execution interval of activity 4) are
determined and in step 4’ the 1-blocks of activities 3 and 4 are added. The resulting
resource profile rLB0

.SC ; �/ is given on the right hand side of Fig. 17.2 and A-RL:
f .rLB0

.SC ; t// D 8 � A-RL: f .S�/ D 8 holds.

17.6 Mixed-Integer Programming Models

In this section, we present different MIP-models for resource leveling problems that
are successful in generating optimal solutions in considerable time (Kreter et al.
2014; Rieck et al. 2012). Firstly, discrete time-based formulations are introduced
in Sect. 17.6.1. Then, Sect. 17.6.2 is devoted to linear models for the classical
resource leveling and the overload problem. Moreover, linear formulations for the
total adjustment cost problem are presented in Sect. 17.6.3.

17.6.1 Discrete Time-Based Formulations

Most common model formulations for project scheduling problems are based on a
time discretization, where the time axis is divided into equidistant subintervals. A
corresponding discrete time-based model applies binary variables xit that allocate a
feasible start time t 2 Wi WD fESi ; : : : ;LSi g to each activity i 2 V , i.e.,

xit WD
�
1; if activity i starts at time t
0; otherwise

(17.1)

The problem of finding an optimal schedule for an objective function f may then
be formulated as follows:

Min. f .x/

s.t.
X

t2Wi
xit D 1 .i 2 V / (17.2)

X

t2Wj
t xjt �

X

t2Wi
t xit � ıij ..i; j / 2 E/ (17.3)

372 J. Rieck and J. Zimmermann

x00 D 1 (17.4)

xit 2 f0; 1g .i 2 V; t 2 Wi/ (17.5)

Constraints (17.2) ensure that each activity receives exactly one start time. Since
Si DPt2Wi t xit holds for all activities i 2 V , Inequalities (17.3) guarantee that the
temporal constraints given by minimum and maximum time lags will be satisfied.
Finally, Condition (17.4) sets the start time for the project to zero.

In order to present a time-indexed formulation for objective functions (C-RL)
and (O-RL), continuous auxiliary variables zkt � 0, which indicate the total resource
requirements for resource k 2 R and time t 2 T WD f1; : : : ; d � 1g, are introduced.
A (real) activity i is in progress and requires resources at some time t if Si 2 ft �
pi C 1; : : : ; tg. Then, inequalities

zkt �
X

i2V r
rik

minft;LSi gX

�DmaxfESi ;t�piC1g
xi� .k 2 R; t 2 T / (17.6)

estimate the resource requirements of all activities for resource k and time t and the
objective functions may be specified by

f .x/ WD
X

k2R
ck
X

t2T
z2kt (C-RL-a)

f .x/ WD
X

k2R
ck
X

t2T
.zkt � Yk/C (O-RL-a)

For the total adjustment cost objective function, continuous auxiliary variables
�Ckt � 0, which determine the positive jump difference in the resource profile of
resource k and time t , are introduced, i.e.,

�Ckt �
X

i2V r
rik

minft;LSi gX

�DmaxfESi ;t�piC1g
xi� �

X

i2V r
rik

minft�1;LSi gX

�DmaxfESi ;t�pi g
xi� .k 2 R; t 2 T /

(17.7)

Consequently, the objective function has the form

f .x/ WD
X

k2R
ck
X

t2T
�Ckt (A-RL-a)

All formulations incorporate O.jV j2 C jRjjT j/ constraints, as well as jRjjT j
real-valued auxiliary and

P
i2V jWi j binary variables. Since all numbers depend on

the time discretization, the models cannot be designated as polynomial models.

17 Exact Methods for Resource Leveling Problems 373

Easa (1989) proposed a float-based formulation for the overload problem that
has some similarities to the discrete time-based formulation. The model uses binary
variables xiq 2 f0; 1g that state the extent of shifting, q 2 f1; : : : ;TFi g, of activity
i 2 V beyond its earliest start time. Rieck et al. (2012) extended the formulation
in order to deal with general temporal constraints and a set of renewable resources.
However, the resulting model turned out to be less efficient in numerical tests.

Koné (2011) used the start/end event-based methodology in order to solve
resource-constrained project scheduling problems with precedence constraints. For
those problems, there always exists an optimal solution in which the start time of an
activity is either 0 or coincides with the end time of some other activity. Therefore,
the number of possible events can be defined as E 0 WD minfjV r j C 2 C jV mj; dg
which is significantly lower than the number E WD minf2jV r j C 2 C jV mj; dg of
events needed for problems with general temporal constraints. In addition, RLPs are
characterized by many feasible schedules with the same objective function value.
Therefore, the events may be positioned at various analogous points in time, which
reduces the performance of a solver. Kreter et al. (2014) considered the formulation
for the total adjustment cost problem, but it is found to be of little value as an
alternative method.

Note that flow-based continuous-time and on/off event-based formulations are
also available for resource-constrained project scheduling problems (Koné 2011).
However, both formulations cannot be extended to a resource leveling problem as
they are not able to describe total resource requirements at specific points in time,
which are needed for determining the objective function values.

MIP-models with linear constraints and a linear objective function are proved to
be a key factor for obtaining exact solutions to combinatorial optimization problems
in reasonable time. However, objective functions (C-RL-a) and (O-RL-a) are still
nonlinear. Therefore, preprocessing and linearization techniques are needed in order
to reduce, or simplify, these optimization problems. The methods presented in
Sect. 17.6.2 lead to the currently best-known exact approaches for RLPs.

17.6.2 Linear Formulations for the Classical Resource
Leveling and the Overload Problem

Model formulations (C-RL-a), (17.2)–(17.6) and (O-RL-a), (17.2)–(17.6) use con-
tinuous auxiliary variables zkt � 0 for resource k 2 R at time t 2 T . The domains
of those variables may be restricted by considering upper resource requirements
bounds. We identify Hkt � 0 with the maximum requirements for resource k
that can occur at time t , for the case of any feasible schedule. The value Hkt can
be computed by regarding the interval ŒESi ;LCi Œ as execution interval for every
real activity i 2 V r . Since ŒSi ; Si C pi Œ� ŒESi ;LCi Œ holds for any feasible
start time of activity i , the corresponding resource profiles Ork.�/ provide upper
bounds on the resource requirements for resource k at time t . In order to further

374 J. Rieck and J. Zimmermann

determine time-orientated precedences among project activities, the concept of so-
called antichains may be used (Möhring 1984; Schwindt 2005). An antichain U
is a set of activities, such that any two distinct activities, i and j , may overlap
under a feasible schedule. For each antichain and each resource, a weight can be
calculated. A maximum-weight antichain is thus an antichain that produces the
maximum weight among all possible antichains. Weight

Hkt WD
X

i2Umaxkt

rik

of a maximum-weight antichain Umax
kt � V at jump point t 2 T in resource profile

Ork.�/ equals the total number of units of resource k required for project execution
at time t in the most unfavorable case. Hkt may be efficiently determined by com-
puting a minimum origin-destination flow on a specific constructed flow network
(Rieck et al. 2012).

Until now, objective function (C-RL-a) is based on auxiliary variables

0 � zkt � Hkt .k 2 R; t 2 T / (17.8)

In order to linearize (C-RL-a), we divide the interval of resource requirements,
Œ0; : : : ;Hkt�, into Hkt equal parts, Œ0; 1�; Œ1; 2�; : : : ; ŒHkt � 1;Hkt�. In addition, a
continuous auxiliary variable, ykth, is introduced for each part, where

0 � ykth � 1 .k 2 R; t 2 T; h 2 f1; : : : ;Hkt g/ (17.9)

The auxiliary variables zkt in Constraints (17.6), and the auxiliary variables ykth may
then be linked using the relation

zkt D
HktX

hD1
ykth .k 2 R; t 2 T / (17.10)

The assumption that the resource requirements rik are non-negative, along with the
fact that the objective function is convex will force the variables ykth to take on
values of either 0 or 1, which is why we merely need to demand that the conditions
ykth 2 Œ0; 1�, rather than the conditions ykth 2 f0; 1g, are satisfied.

Moreover, we are readily able to compute a direction factor, 2h � 1, for every
variable ykth, which equals the difference between h2 and .h � 1/2. Combined with
auxiliary variables ykth 2 Œ0; 1�, we obtain an exact approximation for objective
function (C-RL-a) that depends on zkt 2 N0. The stepwise-linear objective function
may now be written as

f .x/ WD
X

k2R
ck
X

t2T

HktX

hD1
.2h� 1/ ykth (C-RL-b)

17 Exact Methods for Resource Leveling Problems 375

Another possibility to linearize objective function (C-RL-a) involves considering
additional binary variables gkth 2 f0; 1g designating that h 2 f0; : : : ;Hktg units of
resource k 2 R are required at time t 2 T (Gather et al. 2010). Since the resulting
model turns out to be less efficient in numerical test (Rieck et al. 2012), we skipped
pursuing further details.

The total overload cost function (O-RL-a) contains the term .zkt � Yk/C which
may be replaced by maxfzkt�Yk; 0g. In order to linearize the resulting max-function,
continuous auxiliary variables

0 � vkt � Hkt � Yk .k 2 R; t 2 T / (17.11)

are introduced that represent the positive deviations of total resource requirements
from the desired resource rate Yk. Then, the overload function could be replaced by
linear function

f .x/ WD
X

k2R
ck
X

t2T
vkt (O-RL-b)

and Inequalities (17.6) must be substituted by

vkt �
X

i2V
rik

minft;LSi gX

�DmaxfESi ;t�piC1g
xi� � Yk .k 2 R; t 2 T / (17.12)

Using the described linearization techniques, we obtain model

MC-RL
1 W (C-RL-b), (17.2)–(17.6), (17.8), (17.9), (17.10)

for the classical resource leveling problem and model

MO-RL
2 W (O-RL-b), (17.2)–(17.5), (17.11), (17.12)

for the overload problem. In our performance analysis, we will compare the results
of both models to the results obtained by the tree-based branch-and-bound method.

17.6.3 Linear Formulations for the Total Adjustment Cost
Problem

The discrete time-based model (A-RL-a), (17.2)–(17.5), (17.7) specified in
Sect. 17.6.1 is already linear and uses continuous auxiliary variables �Ckt � 0

for resource k 2 R at time t 2 T . In order to restrict the domains to those
variables, we introduce lower resource requirements bounds. Let Pkt � 0 be the
minimum requirements for resource k that can occur at time t , for the case of any
feasible schedule.Pkt may be obtained by considering the unavoidable time interval,

376 J. Rieck and J. Zimmermann

ŒLSi ;ECi Œ, for every real activity i 2 V r . With boundsPkt andHkt, we are now able
to estimate the maximum positive jump

Mkt WD Hkt � Pk;t�1
in the resource profile of resource k at time t , where Pk;�1 WD 0 for all k. Moreover,

Mk WD max
t2T fHkt � Pk;t�1g

represents the maximum positive jump that may occur for resource k throughout the
planning horizon. Using this information, the domains of continuous variables may
be defined as

0 � �Ckt � Mkt .k 2 R; t 2 T / (17.13)

In contrast to objective functions (C-RL) and (O-RL), function (A-RL) is not
r-monotone and the lower bounds determined by solving the linear programming
relaxation in MIP-solvers are relatively weak. Thus, a total adjustment cost problem
seems to be harder to solve than the two other RLPs and the consideration of smart
models, particularly polynomial models, is efficient. For that reason, we consider a
start-based formulation that focuses on the fact that a positive jump in the resource
profiles occurs, only if one or more real activities are started. For all activities i; j 2
V r; i < j , we make use of binary variables gij indicating whether real activities i
and j start at the same time, i.e.,

gij WD
�
1 or 0; if the start of activity i is equal to the start of activity j

0; otherwise

Additionally, we consider binary variables eij specifying if the start of real activity
i and the completion of real activity j , i 6D j , occurs at the same point in time, i.e.,

eij WD
�
1 or 0; if the start of activity i is equal to the completion of activity j

0; otherwise

Both types of variables have some “degree of freedom” when more than two
activities start or end at the same time. For three activities with Si D Sj D Sh,
i < j < h, the variables gij; gih; and gjh could be equal to one by definition.
However, the resource requirements rik; rjk and rhk must be considered once in order
to determine the correct jump difference in the resource profiles. That is always
guaranteed in our model by setting gij D gih WD 1 and gjh WD 0.

If only one real activity i 2 V r is started at a specific point in time, then
continuous auxiliary variables 0 � �Cki � Mk indicate the positive adjustment of
resource k 2 R at the start time of activity i . In case that a set of real activities, e.g.,
activities i , j , and h, is started at the same time, (�Cki C�Ckj C�Ckh/ � 0 represents

17 Exact Methods for Resource Leveling Problems 377

the positive jump in the resource profile of resource k. Using two “big-M-values”
for each activity pair fi; j g, and one “big-M-value” for each renewable resource
k, the start-based formulation for the total adjustment cost problem takes the form
(Kreter et al. 2014):

Min.
X

k2R
ck
X

i2V r
�Cki (A-RL-b)

s.t.

Sj � Si � ıij ..i; j / 2 E/ (17.14)

Si � .Sj C pj / � Mij.1 � eij/ .i; j 2 V r ; i ¤ j / (17.15)

Sj C pj � Si � Mij.1 � eij/ .i; j 2 V r ; i ¤ j / (17.16)
X

i2V r

i¤j

eij � 1 .j 2 V r/ (17.17)

Si � Sj � M0ij.1 � gij/ .i; j 2 V r ; i < j / (17.18)

Sj � Si � M0ij.1 � gij/ .i; j 2 V r ; i < j / (17.19)
X

i2V r

i<j

gij � 1 .j 2 V r/ (17.20)

X

k2V r

j<k

gjk � .1 � gij/ .i; j 2 V r ; i < j / (17.21)

�Cki � rik C
X

j2V r

i<j

rjkgij �
X

j2V r

j¤i

rjkeij �
X

j2V r

j<i

gjiMk .i 2 V r ; k 2 R/ (17.22)

0 � �Cki � Mk .i 2 V r ; k 2 R/ (17.23)

Si 2 ŒESi ;LSi � .i 2 V / (17.24)

gij 2 f0; 1g .i; j 2 V r ; i < j / (17.25)

eij 2 f0; 1g .i; j 2 V r ; i ¤ j / (17.26)

Inequalities (17.14) correspond to the given minimum and maximum time lags
between activities. If the start time of activity i is not equal to the completion time
of activity j , decision variable eij receives the value zero, otherwise the value might
be equal to one [cf. Constraints (17.15) and (17.16)]. With Constraints (17.17), it
is guaranteed that every completing activity j is assigned to at most one starting
activity, even if Cj D Si holds for more than one activity i . Since the strongest
LP-relaxation will result from choosing the smallest possible “big-M-value”, we set
Mij WD maxfLSi � .ESj C pj /;LSj C pj � ESi g. Inequalities (17.18) and (17.19)
specify the values of decision variables gij in an analogous manner, where

378 J. Rieck and J. Zimmermann

M0ij WD maxfLSi � ESj ;LSj � ESig. In the event that Si 6D Sj holds for activities i
and j , variables gij will be set to zero, otherwise the values might be equal to one.
Constraints (17.20) ensure that starting activity j is assigned to at most one starting
activity i . If gij D 1, Constraints (17.21) guarantee that the start of none other
activity k > j can be assigned to starting activity j , i.e., only non-transitive pairs
of decision variables can receive the value one and thus each resource requirement
is considered once within the calculation of �Cki . Inequalities (17.22), together with
objective function (A-RL-b), make sure that the significant decision variables are
set to one and the positive adjustment of resource k at the start time of real activity
i is estimated correctly. In order to ensure that no resource jump is counted more
than once, the big-Mk-value reduces the irrelevant decision variables �Cki � 0 to
zero.

The resulting model contains O.jV j2 C jV j jRj/ constraints, as well as jV j C
jV r jjRj real-valued auxiliary and 3

2
jV r j2 � 3

2
jV r j binary variables. Since all

numbers are independent of the scaling of the time axis, the model can be classified
as a polynomial model.

To sum up, two efficient linear models for the total adjustment problem are
specified, namely

MA-RL
3 W (A-RL-a), (17.2)–(17.5), (17.7), (17.13) and

MA-RL
4 W (A-RL-b), (17.14)–(17.26)

In our performance analysis, the results of both formulations will be compared to
the results of the tree-based branch-and-bound method.

17.7 Computational Results

This section covers the results of computations undertaken in order to investigate
the performance of the presented exact solution methods for resource leveling
problems. We begin by describing the composition and generation of problem
instances considered for testing the approaches (cf. Sect. 17.7.1). In an experimental
performance analysis (cf. Sect. 17.7.2), we used the various MIP-formulations and
CPLEX to solve medium-scale problem instances to optimality. The run times
of the branch-and-cut procedures provided by CPLEX are compared to those for
corresponding tree-based branch-and-bound methods.

17.7.1 Benchmark Instances

The computational tests have been performed on problem instances generated by
the ProGen/max instance generator (Schwindt 1998). The test set incorporates

17 Exact Methods for Resource Leveling Problems 379

Table 17.1 Control
parameters of the considered
test set

Parameter Test set

jV r j 10, 15, 20, 30, 50

RT 0.3, 0.6

rik 1; : : : ; 5

pi 1; : : : ; 10

ŒjRj; RF� [1, 1.0], [3, 0.7], [5, 0.6]

instances involving as many as 50 activities, where every activity may require
more than a single resource for its execution, if jRj > 1. Moreover, the design of
the test set highlights several control parameters for network structure, activities,
and resources that affect the behavior of scheduling algorithms. Parameters for
the network structure are the number jV r j of real activities and the restrictiveness
of Thesen (RT) that measures the degree to which precedence constraints restrict
the total number of feasible activity sequences. We obtain RT D 0 for a parallel
network and RT D 1 for a series network. The parameters for any activity i 2 V
are the resource utilizations rik; k 2 R; and the processing time pi . The resource
parameters involved are the number jRj of differing renewable resources, and the
resource factor .RF/, which denotes the average fraction of the jRj resources used
per activity. Table 17.1 lists the control parameter values. The test set consists of
600 instances, i.e., 20 instances for each jV r j, RT, and jRj combination.

17.7.2 Performance Study

In a comprehensive performance analysis, we studied the resource leveling problems
by considering the four different model formulations. Each instance is solved using
CPLEX 12 and ILOG’s Concert interface for communications with the solver. Since
the RLPs considered are NP-hard optimization problems, we cannot expect that
a branch-and-cut approach provided by CPLEX will terminate within a reasonable
time limitation. That is why we allow a maximum computation time of 3 (or 6) h,
after which the best solution found up to that point is returned. In order to determine
the impact of expanding time-windows, ŒESi ;LSi �, for activities i 2 V , we tested
each instance using the shortest possible deadline, d WD ESnC1, as well as deadlines
d WD ˛ESnC1 with ˛ 2 f1:1; 1:5; 2:0g. Moreover, to improve the bounding accuracy
and to speed up the solver, particularly for large instances, an initial solution is
generated using the Ballestín et al. (2007) heuristic and posted to the solver.

In order to investigate the increases in computation time occasioned by increasing
the number of activities, the number of resources, as well as the deadline, we
considered blocks of 40 instances (named by jV r j-jRj-˛). In addition, we utilized
extensions of the resource requirements of activities (i.e., rik WD 10 rik, i 2 V; k 2
R), which lead to large increases in the upper bounds Hkt; k 2 R; t 2 T . The
corresponding instance names obtained an additional suffix “-10”.

380 J. Rieck and J. Zimmermann

Table 17.2 Computation
times and number of
instances solved (classical
RLP, jV r j D 10; 15; 20)

MC-RL
1 Tree-based B&B

Instances tcpu [s] Inst<3 h tcpu [s] Inst<6 h

10-1-1.0 0.03 40 0.03 40

10-3-1.0 0.15 40 0.03 40

10-5-1.0 0.20 40 0.05 40

10-1-1.1 0.07 40 0.10 40

10-3-1.1 0.28 40 0.16 40

10-5-1.1 0.63 40 0.38 40

10-1-1.5 0.99 40 0.51 40

10-3-1.5 4.17 40 0.90 40

10-5-1.5 20.29 40 2.31 40

10-1-1.5-10 277.59 36 1.19 40

10-3-1.5-10 744.34 33 2.15 40

10-5-1.5-10 1,181.03 26 5.03 40

15-1-1.0 0.15 40 0.15 40

15-3-1.0 0.29 40 25.72 40

15-5-1.0 0.51 40 29.40 40

15-1-1.1 1.16 40 136.95 40

15-3-1.1 5.67 40 382.97 40

15-5-1.1 7.59 40 688.15 40

15-1-1.5 151.01 40 775.56 40

15-3-1.5 262.68 38 2,813.01 37

15-5-1.5 824.42 40 3,930.29 37

20-1-1.0 0.34 40 1,792.09 38

20-3-1.0 2.41 40 1,540.26 35

20-5-1.0 2.41 40 3,392.97 31

Opt 933 938

Table 17.2 lists the performance results for the classical resource leveling
problem based on model MC-RL

1 and the corresponding tree-based branch-and-bound
method. Column “tcpu” designates the average computation times (in seconds) of all
optimally solved instances and column “Inst<ˇh” displays the number of instances
solved to proven optimality within a time limit of ˇ hours. For the MIP-model, we
considered a time limit of 3 h. In order to arrive at fair comparisons, the tree-based
method is terminated after 6 h (the program uses just one processor core). Line “#
Opt” indicates the total number of instances solved to proven optimality within ˇ
hours.

As expected, the tree-based algorithm performs very well for instances involving
ten activities. The average run times are invariably less than six seconds. Extensions
of the time-windows have a crucial impact on the performance of the MIP-
approach, since both the number of binary variables, xit; i 2 V; t 2 T; and the
number of constraints increased with the increasing length of the time horizon. In
contrast, the tree-based method turns out to be much more robust in relation to
the deadlines for project completion. Considerations involving extended resource

17 Exact Methods for Resource Leveling Problems 381

Table 17.3 Computation
times and number of
instances solved (overload
problem, jV r j D 10; 15; 20)

MO-RL
2 Tree-based B&B

Instances tcpu [s] Inst<3 h tcpu [s] Inst<6 h

10-1-1.0 0.01 40 0.02 40

10-3-1.0 0.03 40 0.02 40

10-5-1.0 0.05 40 0.04 40

10-1-1.1 0.03 40 0.05 40

10-3-1.1 0.09 40 0.30 40

10-5-1.1 0.16 40 0.38 40

10-1-1.5 0.10 40 0.12 40

10-3-1.5 0.47 40 0.41 40

10-5-1.5 2.14 40 1.39 40

10-1-1.5-10 0.05 40 0.13 40

10-3-1.5-10 0.39 40 0.44 40

10-5-1.5-10 2.68 40 1.49 40

15-1-1.0 0.10 40 9.73 40

15-3-1.0 0.07 40 20.04 40

15-5-1.0 0.11 40 23.64 40

15-1-1.1 0.27 40 47.85 40

15-3-1.1 0.88 40 262.95 40

15-5-1.1 2.13 40 518.70 40

15-1-1.5 3.12 40 43.00 40

15-3-1.5 80.79 40 1,441.20 39

15-5-1.5 88.53 40 1,912.63 38

20-1-1.0 0.19 40 1,566.70 38

20-3-1.0 1.17 40 2,283.95 37

20-5-1.0 1.52 40 2,751.41 31

Opt 960 943

requirements also lead to drastic increases in the number of auxiliary variables,
ykth, k 2 R; t 2 T; h 2 f1; : : : ;Hktg. In particular, model MC-RL

1 proved incapable
of terminating the enumerations for all of the respective instances. Based on the
practically-relevant problem dimension of 15 activities, the performance of model
MC-RL
1 must be regarded as acceptable. The computation times of the tree-based

method are highly dependent upon the network structure, the activities, and the
resources involved. Increasing numbers of activities lead to the existence of many
feasible order networks that must be considered during enumeration. Furthermore,
the long running times are a consequence of the parallelism of project networks
(with RT < 0.5) and the existence of a large slack factor SF 2 f0:5; 1:0g. A positive
slack factor avoids that activities are firmly tied by temporal constraints. Since the
number of instances solved to optimality is relatively low for the tree-based method,
we investigated larger instances with 20 activities only with tight deadlines.

Table 17.3 summarizes the results for the overload problem in the case of model
MO-RL
2 and the respective tree-based branch-and-bound method. For small instances

382 J. Rieck and J. Zimmermann

Table 17.4 Computation
times and number of
instances solved (classical
RLP and overload problem,
jV r j D 20; 30; 50)

MC-RL
1 MO-RL

2

Instances tcpu [s] Inst<3 h tcpu [s] Inst<3 h

20-1-1.1 4.27 40 2.53 40

20-3-1.1 260.84 40 35.13 40

20-5-1.1 85.70 40 52.29 40

20-1-1.5 1,245.81 36 86.16 39

20-3-1.5 2,669.79 30 340.24 39

20-5-1.5 3,074.42 20 1,395.45 34

30-1-1.0 9.98 40 12.53 40

30-3-1.0 18.39 40 14.16 40

30-5-1.0 61.20 40 101.54 40

30-1-1.1 387.53 36 196.60 36

30-3-1.1 691.95 38 608.06 38

30-5-1.1 1,808.03 33 112.82 36

50-1-1.0 530.36 38 334.41 37

50-3-1.0 675.81 36 926.27 36

50-5-1.0 969.61 32 288.89 28

Opt 539 563

with ten activities no superiority of the tree-based method over the procedure using
model MO-RL

2 can be ascertained. Extensions of the time-windows have no relevant
impacts on computation times. Moreover, the run times for instances having long
project durations, as well as instances having long project durations and extended
resource requirements are similar, since the number of auxiliary variables, vkt; k 2
R; t 2 T , depends on the number of resources and the time horizon. For larger
instances involving 15 or more activities, model MO-RL

2 yields the best results. All
of the problem instances under consideration are optimally solved within 1.5 min or
less.

The computational studies that we have conducted thus far, demonstrate the
dominance of the branch-and-cut procedures provided by CPLEX in combination
with suitable model formulations. Since model MC-RL

1 should be considered in order
to solve instances of the classical RLP, and model MO-RL

2 should be considered
in order to solve instances of the overload problem, our further analyses involve
these methods. Table 17.4 shows that most instances with up to 50 activities and
tight project deadlines are solved to optimality. Note that no algorithm known from
the literature has found optimal schedules for similar problem sizes or real-world
instances within reasonable time.

We continue our analyses by studying the total adjustment cost problem. Since
the restrictiveness of Thesen affect the behavior of procedures that take advantage
of problem structures during the solution process (i.e., model MA-RL

4 as well as the
tree-based branch-and-bound method), we now consider blocks jV r j-jRj-RT-˛ of
20 instances. Table 17.5 lists the results for models MA-RL

3 and MA-RL
4 as well as the

respective tree-based method for instances with 10 real activities.

17 Exact Methods for Resource Leveling Problems 383

Table 17.5 Computation times and number of instances solved (total adjustment cost problem,
jV r j D 10)

MA-RL
3 MA-RL

4 Tree-based B&B
Instances tcpu [s] Inst<3 h tcpu [s] Inst<3 h tcpu [s] Inst<3 h

10-1-0.3-1.0 0.02 20 0.10 20 0.06 20

10-3-0.3-1.0 0.03 20 0.05 20 0.12 20

10-5-0.3-1.0 0.04 20 0.12 20 0.52 20

10-1-0.3-1.5 0.43 20 0.20 20 1.15 20

10-3-0.3-1.5 7.89 20 0.24 20 3.52 20

10-5-0.3-1.5 5.44 20 0.65 20 14.21 20

10-1-0.6-1.0 0.02 20 0.03 20 0.01 20

10-3-0.6-1.0 0.01 20 0.03 20 0.02 20

10-5-0.6-1.0 0.02 20 0.06 20 0.02 20

10-1-0.6-1.5 0.53 20 0.09 20 0.34 20

10-3-0.6-1.5 2.96 20 0.05 20 0.57 20

10-5-0.6-1.5 12.01 20 0.13 20 1.80 20

Opt 240 240 240

Table 17.6 Computation times and number of instances solved (total adjustment cost problem,
jV r j D 15; 20)

MA-RL
3 MA-RL

4 Tree-based B&B
Instances tcpu [s] Inst<3 h tcpu [s] Inst<3 h tcpu [s] Inst<3 h

15-3-0.3-1.0 0.21 20 1.63 20 109.29 20

15-3-0.3-1.5 267.55 19 37.36 20 4,538.50 9

20-3-0.3-1.0 8.13 20 80.81 20 1,051.68 9

20-3-0.3-1.5 1,971.78 13 1,864.97 19 – 0

15-3-0.6-1.0 0.05 20 0.17 20 8.85 20

15-3-0.6-1.5 861.35 19 1.09 20 727.47 20

20-3-0.6-1.0 0.08 20 0.62 20 644.59 20

20-3-0.6-1.5 1,153.28 11 8.67 20 1,587.79 2

Opt 142 159 100

Regarding the average computation times, both models as well as the tree-based
branch-and-bound method are efficient. All average run times are lower than 15 s. In
order to examine the impact of large activity resource requirements, we also solved
instances with rik WD 10rik. As the resource requirements only affect the Mk- or
Mkt-values, as well as the domains of auxiliary variables in the models, no explicit
differences concerning performance may be determined by analyzing the results.

In order to consider larger instances with 15 and 20 real activities, Table 17.6
summarizes the results. We concentrate on problems with three renewable resources
and varying project completion deadlines. For instances with RT D 0:3 (i.e., rather
parallel networks) and tight project completion deadlines (˛ D 1:0), model MA-RL

3

performs well. However, if the value ˛ is increased, the average run times are

384 J. Rieck and J. Zimmermann

Table 17.7 Computation
times and number of
instances solved (total
adjustment cost problem,
jV r j D 15; 20; ˛ D 2:0)

MA-RL
3 MA-RL

4

Instances tcpu [s] Inst<3 h tcpu [s] Inst<3 h

15-3-0.3-2.0 974.37 13 85.71 20

20-3-0.3-2.0 4,784.11 5 2,668.58 16

15-3-0.6-2.0 3,080.63 14 1.32 20

20-3-0.6-2.0 1,792.65 4 11.65 20

Opt 36 76

significantly longer. In contrast, model MA-RL
4 turns out to be much more robust

in relation to the deadlines for project completion. All instances with 15 and nearly
all instances with 20 real activities are solved to optimality within 3 h. Furthermore,
the tree-based branch-and-bound method is not able to match up to the branch-and-
cut procedures provided by CPLEX. Less than 50 % of the problem instances are
optimally solved. Considering a rather series network with RT D 0:6, model MA-RL

4

is able to strengthen its success, all instances are solved in less than 10 seconds on
average. Additionally, the performance of the tree-based branch-and-bound method
is better than for instances with RT D 0:3. However, the average run times are
higher than those of the two models. In order to arrive at fair comparisons, the
tree-based method might have run longer than 3 h. Nevertheless, if we consider the
instances solved to proven optimality, the run times of the MA-RL

4 -model and the
tree-based method differ by a factor of more than 60, which is above a computation
time reduction that a multi-core processor running CPLEX can induce. For the
MA-RL
3 -model, the restrictiveness of Thesen has no obvious impact on the run times

and the number of instances solved. The procedure obtains similar results for both
RT-values. As expected, the restrictiveness of Thesen influences the run times of
model MA-RL

4 as well as the tree-based method. As a rule, a lower value for the
restrictiveness of Thesen complicates the problem of finding and proving an optimal
schedule. Rather parallel networks involving RT D 0:3 induce a large number
of feasible activity sequences, whereas in rather series networks many (indirect)
precedence constraints lead to a reduction of feasible activity sequences.

We investigate the robustness of models MA-RL
3 and MA-RL

4 in relation to varying
RT-values and expanded project completion deadlines by setting ˛ WD 2:0 for
instances involving 15 or 20 real activities. Table 17.7 depicts the results. Model
MA-RL
4 indeed works very well. Only four instances with RT D 0:3 are not proven

optimally solved. Particularly, the run times for instances with RT D 0:6 are shorter
than expected. As opposed to this, model MA-RL

3 is only able to solve less than
50 % of all problem instances to optimality within 3 h. Thus, the model, due to its
non-polynomial characteristic, is not suitable for instances involving large project
completion deadlines.

Table 17.8 shows the results for medium-scale instances with up to 50 real activ-
ities and project deadlines d D ˛ESnC1, ˛ D f1:0; 1:5g. Here, the boundaries of an
exact solution methodology become apparent. Within a time limit of 6 h, about half
of all instances are optimally solved. Moreover, the strength of model MA-RL

3 appears

17 Exact Methods for Resource Leveling Problems 385

Table 17.8 Computation
times and number of
instances solved (total
adjustment cost problem,
jV r j D 30; 50)

MA-RL
3 MA-RL

4

Instances tcpu [s] Inst<6 h tcpu [s] Inst<6 h

30-3-0.3-1.0 120.04 20 6,383.74 12

30-3-0.3-1.5 – 0 16,608.54 1

50-3-0.3-1.0 2,069.61 8 – 0

30-3-0.6-1.0 2.04 20 419.92 20

30-3-0.6-1.5 – 0 3,227.21 16

50-3-0.6-1.0 2,107.37 16 2,458.69 7

Opt 64 56

by regarding the results for instances with tight project completion deadlines. In
contrast, for projects with ˛ D 1:5, model MA-RL

4 produces significantly better
results than model MA-RL

3 .

17.8 Conclusions

The chapter considers exact methods for several resource leveling problems. All
problems and its objective functions have nice structural properties that could be
exploited on the way to an optimal solution. Particularly, the classical resource
leveling and the overload function are locally concave. In contrast, the total
adjustment cost function is locally quasi-concave and may be determined by
considering the start and end times of activities. For all problems, tree-based branch-
and-bound methods are described that use the structural conventions. In addition,
discrete time-based formulations are introduced that consider binary variables to
allocate a feasible start time to each activity. Furthermore, a polynomial model for
the total adjustment cost problem (start-based formulation) is presented, which is
independent of a scaling of the time axis.

The results of a comprehensive performance analysis show that the discrete
time-based formulations are efficient for instances with tight project completion
deadlines. The corresponding branch-and-cut procedures are able to solve instances
with up to 50 real activities. For the total adjustment cost problem with increased
project deadlines, the start-based model performs well. There are even many
instances with 30 real activities and ˛ D 1:5 that are solved to optimality.

Future research will include the consideration of stochastic activity durations
or alternative execution modes, which differ in processing time, time lags, and
resource requirements (Hartmann and Briskorn 2010). Furthermore, a simultaneous
consideration of (A-RL), (C-RL), and (O-RL) in a multi-criteria approach could be
interesting. Since all objective functions are locally (quasi-)concave, there always
exists a quasistable schedule that will be optimal for a resulting weighted objective
function.

386 J. Rieck and J. Zimmermann

Acknowledgements The benchmarks presented herein and the results obtained (i.e., upper
and lower bounds) may be downloaded from the web-page http://www.wiwi.tu-clausthal.de/
abteilungen/unternehmensforschung/forschung.

References

Ahuja HN (1976) Construction performance control by networks. Wiley, New York
Ballestín F, Schwindt C, Zimmermann J (2007) Resource leveling in make-to-order production:

modeling and heuristic solution method. Int J Oper Res 4:50–62
Bandelloni M, Tucci M, Rinaldi R (1994) Optimal resource leveling using non-serial dynamic

programming. Eur J Oper Res 78:162–177
Bartusch M, Möhring R, Radermacher F (1988) Scheduling project networks with resource

constraints and time windows. Ann Oper Res 16:201–240
Burgess AR, Killebrew JB (1962) Variation in activity level on a cyclical arrow diagram. Int J Ind

Eng 2:76–83
Christodoulou SE, Ellinas G, Michaelidou-Kamenou A (2010) Minimum moment method for

resource leveling using entropy maximization. J Constr Eng Manag 136:518–527
Demeulemeester EL, Herroelen WS (2002) Project scheduling: a research handbook. Kluwer,

Boston
Easa SM (1989) Resource leveling in construction by optimization. J Constr Eng Manag 115:302–

316
Engelhardt H, Zimmermann J (1998) Lower bounds and exact methods for resource levelling

problems. Technical Report WIOR-517, University of Karlsruhe, Karlsruhe
Gabow H, Myers E (1978) Finding all spanning trees of directed and undirected graphs. SIAM

J Comput 7:208–287
Galbreath RV (1965) Computer program for leveling resource usage. J Const Div Proc Am Soc

Civil Eng 91:107–124
Gather T, Rieck J, Zimmermann J (2010) A linearized mixed-integer formulation for the resource

levelling problem. In: Proceedings of the 12th international workshop on project management
and scheduling, Tours, pp 199–202

Gather T, Zimmermann J, Bartels, J-H (2011) Exact methods for the resource levelling problem.
J Sched 14:557–569

Geng J, Weng L, Liu S (2011) An improved ant colony optimization algorithm for nonlinear
resource-leveling problems. Comput Math Appl 61:2300–2305

Harris RB (1978) Precedence and arrow networking techniques for construction. Wiley, New York
Harris RB (1990) Packing method for resource leveling (Pack). J Constr Eng Manag 116:39–43
Hartmann S, Briskorn D (2010) A survey of deterministic modeling approaches for project

scheduling under resource constraints. Eur J Oper Res 207:1–14
Koné O, Artigues C, Lopeza P, Mongeauc M (2011) Event-based MILP models for resource-

constrained project scheduling problems. Comput Oper Res 38:3–13
Kreter S, Rieck J, Zimmermann J (2014) The total adjustment cost problem: applications, models,

and solution algorithms. J Sched 17:145–160
Möhring RH (1984) Minimizing costs of resource requirements in project networks subject to a

fixed completion time. Oper Res 32:89–120
Neumann K, Zimmermann J (1999) Resource levelling for projects with schedule-dependent time

windows. Eur J Oper Res 117:591–605
Neumann K, Zimmermann J (2000) Procedures for resource levelling and net present value

problems in project scheduling with general temporal and resource constraints. Eur J Oper
Res 127:425–443

Neumann K, Nübel H, Schwindt C (2000) Active and stable project scheduling. Math Method
Oper Res 52:441–465

http://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung
http://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung

17 Exact Methods for Resource Leveling Problems 387

Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce
resources. Springer, Berlin

Nübel H (1999) Minimierung der Ressourcenkosten für Projekte mit planungsabhängigen
Zeitfenstern. Gabler, Wiesbaden

Petrovic R (1969) On optimization of resource leveling in project plans. In: Lombaers HJ (ed)
Project planning by network analysis. North-Holland, Amsterdam, pp 268–273

Pritsker AAB, Watters LJ, Wolfe PM (1969) Multi-project scheduling with limited resources: a
zero-one programming approach. Manag Sci 16:93–108

Raja K, Kumanan S (2007) Resource leveling using petrinet and memetic approach. Am J Appl
Sci 4:317–322

Ranjbar M (2013) A path-relinking metaheuristic for the resource levelling problem. J Oper Res
Soc 64:1071–1078

Rieck J, Zimmermann J, Gather T (2012) Mixed-integer linear programming for resource leveling
problems. Eur J Oper Res 221:27–37

Savin D, Alkass S, Fazio P (1997) A procedure for calculating the weight-matrix of a neural
network for resource leveling. Adv Eng Softw 28:277–283

Schwindt C (1998) Generation of resource-constrained project scheduling problems subject to
temporal constraints. Technical Report WIOR-543, University of Karlsruhe, Karlsruhe

Schwindt C (2005) Resource allocation in project management. Springer, Berlin
Selle T (2002) Untere Schranken für Projektplanungsprobleme. Shaker, Aachen
Takamoto M, Yamada N, Kobayashi Y, Nonaka H (1995) Zero-one quadratic programming

algorithm for resource leveling of manufacturing process schedules. Syst Comput Jpn 26:68–76
Wiest JD (1963) The scheduling of large projects with limited resources. Unpublished Ph.D.

dissertation, Carnegie Institute of Technology, Pittsburgh
Younis MA, Saad B (1996) Optimal resource leveling of multi-resource projects. Comput Ind Eng

31:1–4
Zimmermann J (2001) Ablauforientiertes Projektmanagement: Modelle, Verfahren und Anwen-

dungen. Gabler, Wiesbaden

Chapter 18
Heuristic Methods for Resource Leveling
Problems

Symeon E. Christodoulou, Anastasia Michaelidou-Kamenou,
and Georgios Ellinas

Abstract A novel resource-leveling algorithm is presented based on entropy
concepts, restating the resource-leveling heuristic known as the “Minimum Moment
Method”, as an “Entropy Maximization Method” and improving on its efficiency.
The proposed resource-leveling algorithm makes use of the general theory of
entropy and two of its principal properties (subadditivity and maximality) to restate
resource leveling as a process of maximizing the entropy found in a project’s
resource histogram. Entropy in this resource-centric problem domain is defined as
the ratio of allocated daily resource units over the total number of resource units to
complete the project. Entropy’s subadditivity and maximality properties state that
if a system consists of two subdomains having n and m components respectively,
then the total system entropy is less than or equal to the sum of the subdomains’
entropy, and that the entropy is maximum when all admissible outcomes have equal
probabilities of occurrence (maximal uncertainty is reached for the equiprobability
distribution of possible outcomes).

Keywords Entropy maximization method • Heuristic methods • Project
scheduling • Resource leveling

18.1 Introduction

Resource-Constrained Scheduling Problems (RCSP) refer to a class of scheduling
problems the activities of which are assigned resources with limited capacity or of
limited availability. The result of such resource availability constraints is that the
underlying project network is constrained in its capacity to meet the constructor’s

S.E. Christodoulou (�) • A. Michaelidou-Kamenou
Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
e-mail: schristo@ucy.ac.cy; anastasia.kamenou@cyta.com.cy

G. Ellinas
Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
e-mail: gellinas@ucy.ac.cy

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_18

389

mailto:schristo@ucy.ac.cy
mailto:anastasia.kamenou@cyta.com.cy
mailto:gellinas@ucy.ac.cy

390 S.E. Christodoulou et al.

primary objective for timely and cost-efficient project completion. As Senouci and
Adeli (2001) state, the need for resource-constrained scheduling “arises when there
are definite limits on the amount of resources available. The scheduling objective is
to extend the project duration as little as possible beyond the original critical path
duration in such a way that the resource constraints are met. In this process, both
critical and noncritical activities are shifted.”

RCSP are NP-hard problems, the complexity of which increases substantially
with the project network size. The number of activities and precedence relationships,
as well as the number of resource types utilized in the project and the constraints
imposed on them are the main sources of complexity in such schedules and add
greatly to the difficulty in finding optimal time and resource allocation solutions.
An optimal solution in this type of network problems can most often be found by
employing computationally intensive analyses or exhaustive enumeration analyses
in which all possible outcomes are evaluated. However, because of the aforemen-
tioned computational complexity, in most cases near-optimal solutions are sought
by means of heuristics.

The resource leveling problem (RLP) is a variation of the RCSP and relates to the
need for resolving over-allocations or conflicts in resource usage and/or resolving
the unbalanced use of resources over time, aiming at increasing the efficiency in
resource utilization. As Senouci and Adeli (2001) state, “the resource leveling
problem arises when there are sufficient resources available and it is necessary
to reduce the fluctuations in the resource usage over the project duration. These
resource fluctuations are undesirable because they often require a short-time hiring
and firing policy. The short-term hiring and firing presents labor, utilization, and
financial difficulties because (1) the clerical costs for employee processing are
increased; (2) top-notch journeymen are discouraged to join a company with a
reputation of doing this; and (3) new, less experienced employees require long
periods of training. The scheduling objective of the resource leveling problem is
to make the resource requirements as uniform as possible or to make them match
a particular nonuniform resource distribution in order to meet the needs of a given
project. . . . In resource leveling, the project duration of the original critical path
remains unchanged.” It should be noted, though, that besides the original critical
path it is possible to make use of a prescribed deadline greater than the length of the
critical path for the maximal project duration (cf. Chaps. 14–17 of this handbook).

Metaheuristics are computational methods that attempt the solution of problems
whose solution is impossible to obtain analytically or difficult to compute (usually
NP-hard problems), and they are typically used for combinatorial optimization.
Metaheuristics reach a solution by iteratively trying to improve a candidate solution
with regard to a given measure of quality and based on few, if any, assumptions
about the problem being optimized.

It should be noted that, even though metaheuristics do not guarantee an optimal
solution they usually achieve better results and better performance than their classic
counterparts (e.g., classical local search), because in reaching a global optimal solu-
tion metaheuristics have the ability to overcome local minima in the solution space.
Some of the most well-known metaheuristic methods are: genetic algorithms (GA’s),

18 Heuristic Methods for Resource Leveling Problems 391

evolutionary programming, Tabu search, particle swarm optimization (PSO), ant
colony optimization (ACO), and simulated annealing.

A definition of the resource leveling problem (RLP) is given in Chap. 17 of this
handbook. The remaining of this chapter will utilize the objectives, constraints, and
notation (where possible) of the notions described in Chap. 17 of this handbook,
and consider activity-on-node networks with only precedence constraints. Instead
of an exact solution method, though, this chapter will focus on outlining a heuristic
approach to reaching a solution (optimal or near-optimal). The proposed RLP
heuristic is based on the method presented by Christodoulou et al. (2010), which
utilizes the general theory of entropy and two of its principal properties (subaddi-
tivity and maximality) to restate resource leveling as a process of maximizing the
entropy found in a project’s resource histogram.

Further to the short introduction and literature review, this chapter introduces
readers to the Minimum Moment and PACK methods, prior to shifting focus to
the concepts of entropy and their applicability to resource leveling. A simplified
mathematical depiction of the proposed entropy maximization method is then
presented and subsequently expanded to address resource leveling. The chapter
moves to an example network, to demonstrate the method, and then to the listing
of an algorithm on the proposed entropy maximization method. The chapter ends
with concluding remarks on the proposed heuristic method.

18.2 Literature Review

There are, in general, two categories of scheduling paradigms (or else, schedule
generation schemes) that can be used in addressing resource-constrained prob-
lems: serial scheduling and parallel scheduling. A serial schedule generation
scheme makes use of an activity-incrementation principle while a parallel schedule
generation scheme follows a time-incrementation scheme.

In the former paradigm, a priority list of activities is determined at time zero,
with the order of activities in the priority list independent of the resource constraints.
Given the priority list, activities are scheduled at the earliest possible time at which
the precedence constraints are satisfied and the resources are available. In essence,
the serial method is an activity-based schedule generation scheme, with the schedule
obtained by first prioretizing activities (by their early start) and then scheduling
them, one at a time, at their earliest possible time allowed by both resource and
precedence constraints.

In the latter scheduling paradigm, the order of activities is not determined at
time zero and scheduling decisions are made when activities are planned to begin
and resources are available. In essence, this is a time-based schedule generation
scheme, in which again all of the activities should be prioritized but the priority list
is not required to be precedence-feasible. In terms of parallel resource-constrained
scheduling, the fundamental issue is which activity among competing activities will
receive the required resources first. In order to answer this question the construction

392 S.E. Christodoulou et al.

planner has to dynamically evaluate his options at every junction in the construction
process and decide on the activity that would maximize the constructor’s “return
on investment”, which usually means the activity that would minimize the overall
project duration.

Common approaches to solving RCSP utilize implicit enumeration and
backtracking, such as branch and bound methods, or intelligent branching
and evaluation techniques, such as mathematical programming, dynamic
programming and zero-one programming. Common are also artificial agent
techniques such as genetic algorithms (Hegazy 1999) and ant colony optimization
(Christodoulou and Ellinas 2010), or heuristic techniques, examples of which are
the methods proposed by Brucker et al. (1998) and Harris (1990).

In terms of resource-leveling problems (RLP) and the utilization of non-exact
methods for solving such problems, one of the most widely used resource-leveling
heuristic is the Minimum Moment Method (Harris 1978) and a variation of it called
“Packing Method (PACK)” (Harris 1990). These methods attempt to convert an
unleveled resource profile into one of rectangular shape by discretizing the overall
project resource histogram into smaller time intervals and minimizing the total
moment of the resulting resource-time rectangles about the histogram’s horizontal
axis. The methods, which are explained in detail in subsequent sections, have been
computerized and extended to account for any number of different resource types
utilized in a project.

Resource leveling was the subject of work presented by Burgess and Killebrew
(1962), who had developed a computer program to solve RLP by moving in time
activities with slack. Their algorithm relies on empirical rules and measures progress
towards the objective of leveling by considering and in effect minimizing the sum
of squares of the resource demands in all time periods.

In the work by Seibert and Evans (1991), a serial-type resource-leveling method
is described which ranks activities based on user-defined priority rules, and then
schedules the project on an activity-by-activity basis, attempting to keep the project
within the given resource constraints. If that is not possible, the method attempts to
exceed the availability limits in a uniform manner aiming for a leveled resource
profile. A measure of variance between the resource-leveled and the unleveled
resource profile can be obtained by use of a utilization factor, defined as the
ratio of the resource-leveled amount during the period of interest over the initial
profile value during the same period. This factor is also used in determining where
the assumed resource profile should be revised for subsequent resource-leveling
runs, while a metric for acceptable residuals is used during the leveling phase for
benchmarking the degree of leveling obtained. The metric is defined as the assumed
resource level multiplied by the acceptable utilization-factor deviation and a well-
leveled resource histogram should have the sum of the squares of the residuals
approaching zero.

Takamoto et al. (1995) utilize an objective function which is monotonic and
which simply increases with the degree of resources leveling, and then solve
the optimization problem by fixing the process start dates while minimizing the
objective function. Recognizing that in many cases the network to solve is large,

18 Heuristic Methods for Resource Leveling Problems 393

and that it is very difficult to obtain a global optimization solution, the researchers
developed an algorithm which quickly searches for a good suboptimal solution
close to the global optimal solution of a 0–1 quadratic programming problem. The
developed algorithm searches the solution space by repeating a pivot operation using
variable selection rules for resources leveling.

In the work by Brinkmann and Neumann (1996), heuristics for two types
of resource-constrained project-scheduling problems were examined: the problem
of levelling the resources consumption and the minimum project-duration prob-
lem. The researchers present two different heuristic procedures (the sequential
or direct method, and the contraction method) concluding that for the minimum
project-duration problem, the contraction method is superior to the direct method
and that for the resource-levelling problem, both approaches behave similarly. In the
direct method the nodes are processed successively without scheduling the strong
components of the network separately, while in the contraction method feasible
subschedules are first found for each strong component of the cyclic network and
replaced by a single node, with the resulting (contracted) acyclic network then
treated by the direct method.

Neumann and Zimmermann (1999) presented polynomial heuristic procedures
for different types of resource leveling problems for projects with minimum and
maximum time lags between project activities. Problems with and without explicit
resource constraints were also investigated and reported on. The researchers also
dealt with resource-constrained project scheduling problems with nonregular objec-
tive functions, where general temporal constraints given by minimum and maximum
time lags between activities are prescribed, such as the case of resource leveling
and net present value problems (Neumann and Zimmermann 2000). The authors
presented several algorithms, along with a detailed experimental performance
analysis of the algorithms, showing that the procedures examined could solve large
problem instances in reasonable computing time.

Senouci and Adeli (2001) presented a mathematical model for resource leveling
focused on minimizing the total project cost as opposed to previous resource
scheduling formulations which traditionally focused on minimizing the project
duration. In their formulation, resource leveling and resource-constrained schedul-
ing are performed simultaneously and additional project scheduling characteristics
such as precedence relationships, multiple crew-strategies, and time-cost trade-off
are considered. The resource scheduling problem is formulated as a constrained
optimization problem which is then transformed into an unconstrained optimization
problem using the exterior penalty function method and solved by using the neural
dynamics model of Adeli and Park (1995).

Zhang et al. (2005) put forward a permutation-based scheme for RCSP based
on particle swarm optimization (PSO). This method uses a hybrid particle-updating
mechanism coupled with a partially mapped crossover of a genetic algorithm in
order to handle the permutation-feasibility and precedence-constraint problems
when updating the particle-represented sequence or solution for the RCSP. The
particle-represented sequence is transformed into a schedule including start times
and resource assignments for all activities by means of a serial method and then

394 S.E. Christodoulou et al.

evaluated against the objective of minimizing project duration. As the authors state,
the permutation-based PSO “is more robust than general analytical and heuristic
methods, because it does not lead to combinatorial explosion or problem-dependent
effectiveness. It is able to search for global optima as GA does. However, unlike GA,
which needs to predefine the crossover probability and performs crossover between
two unclassified survivals or individuals, the proposed PSO uses the dynamic
probability and performs partially mapped crossover updating of a particle by
mapping it with a reference particle (i.e., the particle’s local best or the global
best sequence found so far).” (Zhang et al. 2005).

Similar to PSO are the methods presented by Christodoulou and Ellinas
(2010) on ant colony optimization algorithms for both resource-unconstrained
and resource-constrained scheduling. Ant colony optimization (ACO) is a
population-based, artificial multi-agent, general-search technique with its
theoretical roots based on the behavior of real ant colonies and the collective
trail-laying and trail-following of its members in searching for optimal solutions
when traversing multiple paths. The work presented by Christodoulou and Ellinas
(2010) outlines the fundamental mathematical background of the ACO method and
a suggested possible implementation strategy for resource leveling.

Work on ACO was also presented by Garmsiri and Abassi (2012), who proposed
a resource leveling approach that can be used in projects with multi-mode execution
activities. In the proposed method, artificial ants select an execution mode for each
activity and establish start-to-end routes based on heuristics and a resource-leveling
index, with the resulting project schedule established based on the ant route which
has the optimal objective function.

Noteworthy are finally the works by Ballestín et al. (2007) and Ranjbar (2013)
who presented additional heuristic methods for solving RLP. Ballestín et al. (2007),
through an experimental performance analysis, concluded that a population-based
iterated greedy method proposed by them, compared favorably to leveling heuristics
from literature with respect to accuracy and computation time. Iterated greedy is a
metaheuristic belonging to the class of local search methods, and the researchers
utilize a large-neighborhood search method to reschedule freed activities within the
time windows defined by the fixed start times of frozen activities. In the proposed
method, an initial solution is first constructed and the associated ES and LS dates
computed. After the computation of the initial solution, the iterated greedy method
performs a stochastic local search in the set of feasible solutions by iterating cycles
of destruction and construction phases, during which partial schedules (destruction
phase) and complete schedules (construction phase) are generated.

Ranjbar (2013) presented a path-relinking metaheuristic algorithm which,
instead of directly producing new solutions when combining original ones, it
generates paths between and beyond the selected solutions in the neighborhood
space. Thus, relinking explores trajectories connecting elite solutions obtained by
heuristic methods. The relinking method constructs these trajectories (paths) as
sequences of elements in which each element is a vector of start times and differs
with its previous and next elements in the start time of only one activity. The author

18 Heuristic Methods for Resource Leveling Problems 395

concluded that the proposed relinking method compared favorably to leveling
heuristics from literature.

18.3 Minimum Moment and PACK Methods

As already noted, a number of heuristic methods have been developed over the
years for addressing resource leveling. One of the most common methods is the
Minimum Moment Method (Harris 1978) and a variation of it called “Packing
Method (PACK)” (Harris 1990). The methods are based on the observation that
a perfectly leveled project has a rectangularly shaped resource histogram and by
extension on the premise that leveled projects result in a more efficient project
execution. This, in turn, is based on the premise that the fluctuation in daily resource
usage is linked to inefficiencies in their utilization and in their management and thus
in inefficiencies in the project time and cost. In attempting to transform a project’s
original resource histogram into one of rectangular shape, both the Minimum
Moment Method and the PACK method utilize a heuristic to assign activities to
specific days and to build up the resource histogram, so that the final resource
histogram approaches a rectangle and its moment about the x-axis converges to a
minimum value.

The project’s total resource moment (Mx) is obtained by summing up the
individual resource moments about the time axis and it can be expressed as

Mx D
ntX

�D1

�
�
t�r�

�
	
1

2
r�

�

(18.1)

where � is the time interval index, nt is the number of time intervals comprising the
resource histogram, t� and r� are the time and resource values of the �th histogram
interval respectively. Alternatively, t� is the time between two adjacent jump points
in the resource profile and r� represents the total amount of the resource required
for those activities in progress in the corresponding interval. The factor 1=2 in the
aforementioned equation stems from the fact that the moment of each histogram
bar about the x-axis is calculated as the bar’s area (t�r�) times the bar’s center of
gravity, or alternatively half the bar’s height (1

2
r�). For a daily resource histogram,

the time-step equals to 1 (t D 1), the number of time intervals equals the project
duration and Eq. (18.1) becomes

Mx D
ntX

�D1

h
0:5r2�

i
(18.2)

If we consider projects specified by activity-on-node networks N D .V;E; ı/

where V is the set of vertices, E is the set of arcs, and ı are the arc weights, we
denote the start time of each activity i 2 V by Si and we let R be the set of

396 S.E. Christodoulou et al.

(discrete) renewable resources available at each point in time (independently of their
utilization), then the amount of resource k 2 R used constantly during execution
of activity i 2 V represents the resource requirement and it is denoted by rik.
Furthermore, given some schedule S D .Si /i2V , the active set A .S; t/ contains
all real activities in progress at time t , and rk.S; t/ WD P

i2A .S;t/ rik represents the
total amount of resource k 2 R required for the activities which are in progress at
time t . With the aforementioned in mind, Eq. (18.2) becomes

Mrk D
dX

tD0

�
0:5r2k.S; t/

�
(18.3)

where, t denotes time; rk.S; t/ is the amount of resource k used at time t given
schedule S ; Mrk is the moment of resource k about the horizontal (time) axis; and
d is the prescribed maximum project duration.

The method’s objective is the reduction of daily fluctuations in resource demand
by shifting activities in time and within each activity’s free float whilst avoiding
to impact successor activities. This activity shifting is typically time-constrained
(the overall project duration is expected to remain unchanged) and not necessarily
resource-constrained. The method’s operating assumptions are the following:

• activities are time-continuous and, thus, once started they cannot be interrupted,
• resource assignments for each activity are assumed constant throughout the

duration of the activity,
• the duration of each activity remains as originally planned,
• the project’s logic (activity relationships) is fixed,
• the project’s total duration is fixed (this may result in a project duration that is

different than the one obtained from the critical path).

The priority rules used by the method in leveling resources are: (1) to place the
activities in decreasing resource rate order; (2) if a tie on resource rates exists, the
second priority is to place the tied activities in increasing order of total float; (3) if
there is a tie on both the resource rate and the total float, the priority is to place the
activities in decreasing order of sequence steps; and (4) if there still a tie, place these
tied activities in an arbitrary order.

Computationally, the method requires two distinct cycles (a forward and a
backward pass) that mimic the cycles of the traditional CPM. In the forward pass,
a resource improvement factor (as defined by Harris 1978) is computed for all
activities on the last sequence step of the network and the activity producing the
largest positive improvement factor is shifted. This process is repeated for each
sequence step until the first step is reached.

The improvement factor, which is computed for every possible shift of an activity
within its free float, is used to compare activities within the same group regarding
their capacity to reduce the moment of the histogram. This improvement factor is, in
effect, the change in the resource moment, computed as the original moment minus
the resulting (after an activity shift) resource moment.

18 Heuristic Methods for Resource Leveling Problems 397

The method, which was originally developed for single-type resource leveling,
was computerized by Martinez and Ioannou (1993) and later extended by Hiyassat
(2000, 2001) to account for multiple resource leveling (Modified Minimum Moment
Method). A detailed description of the Minimum Moment Method can be found
in the original work by Harris (1978), as well as in the work by Martinez and
Ioannou (1993) and Hegazy et al. (2000). Extensions of the original method and
further case studies can also be found in Harris (1990), Martinez and Ioannou
(1993), and Hiyassat (2000). The Minimum Moment Method can also be modified
to account for the resource utilization period by also considering the moments about
the vertical axis (Double Moments Method). A higher resource moment about the
vertical axis indicates that the resource remains employed in the project till a later
date, thus its utilization period is higher (Hegazy 1999). The focus should usually
be on minimizing both the daily resource fluctuations (minimum moment about the
horizontal axis) and on reducing the resource utilization period (minimum moment
about the vertical axis).

The PACK Method (Harris 1990) is based on the idea of “packing” activities
one-by-one so that their daily resource requirements fill the largest gaps in the
original daily resource histogram. Instead of shifting activities, the PACK method
first builds a histogram considering only critical activities and the remaining
activities are ordered in a processing queue based on the daily resource requirement
(in decreasing order), the total float (in increasing order), and the sequence step (in
decreasing order). Activities are then hierarchically selected from the processing
queue and positioned in time between the originally scheduled early start and late
start time. The activity shift is chosen so that it minimizes the sum of the daily
resource requirement and it considers the impact on the successor activities.

18.4 Entropy Maximization Method

More recently, the Minimum Moment Method was revisited by Christodoulou et al.
(2010) and was restated as an entropy maximization problem giving the method a
different perspective and improving on its efficiency.

At the core of the method is the concept of entropy, its utilization as a metric of
disorder (Christodoulou et al. 2009a,b) and two of entropy’s principal properties.
Entropy (Hx) in its classical definition is considered to be a metric of a system’s
order and stability and it can mathematically be evaluated as the product of the
probability density function, fQx.x/, of a random variable Qx, times the natural
logarithm of the inverse of this probability (Eq. 18.4).

Hx D fQx.x/ � ln .1=fQx.x// (18.4)

Similarly, in the case of a discrete distribution the total entropy, HT , can be
evaluated as the sum of the values of the product defined by Eq. (18.4) at each value
of the variable (Eq. 18.5).

398 S.E. Christodoulou et al.

Fig. 18.1 Illustration of entropy’s subadditivity and maximality properties

HT D
X

x2N

�

fQx.x/ � ln
	

1

fQx.x/

�

(18.5)

Among the principal properties of entropy, two are of particular importance:
subadditivity and maximality. The subadditivity property states that the entropy
value for the sum of two elements is always less than or equal to the sum of the
values at each element. The maximality property states that the entropy function
takes its greatest value when all admissible outcomes have equal probabilities (i.e.,
the case of equiprobability). An illustrative example of these properties is given in
Fig. 18.1, in which the possible allocations (in time) of six resources are depicted,
along with the resulting project entropy values based on Eq. (18.7). As it can be
seen, the project entropy increases as the number of splits increases and reaches a
maximum when there is equiprobability.

Based on the aforementioned properties, the resource-leveling problem was
restated as an entropy-maximization problem with its objective being the con-
vergence to the equiprobability distribution in the daily resource histogram. The
objective function was formulated as shown in Eq. (18.7), with the total project
entropy denoted by HT and the value of fQx.x/ in the entropy equation (Eq. 18.5)

18 Heuristic Methods for Resource Leveling Problems 399

replaced with the ratio of assigned resource units, rk.S; t/, over the total number of
resource units needed to complete the project (wk). If rk.S; t/ D 0 the value of the
corresponding summandHtk is zero (Eq. 18.6).

Htk D
8
<

:

rk.S;t/

wk
ln
�

1
rk.S;t/=wk

�
D � rk.S;t/wk

ln
�
rk.S;t/

wk

�
if rk.S; t/ > 0

0 if rk.S; t/ > 0
(18.6)

HT D
dX

tD0
Htk (18.7)

In the above equation, k is a single resource belonging to the set R of (discrete)
renewable resources (e.g., workers) utilized in the project in examination; rk.S; t/
is the amount of resource k used at time t given schedule S of prescribed duration
d ; and wk is the total number of units of resource k needed to complete the
project. The value of wk can be computed by summing up the resource units rik
used by each activity i (of duration pi) in the schedule (wk WD P

i2V pi rik).
In the case of multiple resource types, the total project entropy was defined by
Christodoulou et al. (2010) to be

HT D
KX

kD1

dX

tD0
Htk (18.8)

where k is the resource-type index;K is the number of different resource types used
in the project; rk.S; t/ is the number of units of resource type k used on time unit t ,
and wk is the total number of units of resource type k used in the project.

Thus, the entropy-maximization resource-leveling set of equations becomes,

Max. HT D Max.
KX

kD1

dX

tD0
Htk (18.9)

s. t. rik 2 N .i 2 V I k 2 R/ (18.10)

Si C pi � Sj ..i; j / 2 E/ (18.11)

SnC1 � d (18.12)

S0 D 0 (18.13)

dX

tD0
xit D 1 .i 2 V / (18.14)

400 S.E. Christodoulou et al.

Furthermore, since wk is the total number of resource units needed to complete
the project, the following inequalities also hold true:

dX

tD0
Œrk.S; t/� � wk .k 2 R/ (18.15)

rk.S; t/ � wk .k 2 RI t D 0; 1; 2; : : : ; d / (18.16)

The constraint of Eq. (18.10) in the above model formulation refers to the
assumption that resource assignments are of integer value since fractional resource
assignments are disallowed as non-physical. Equation (18.11) refers to the finish-
start precedence relations with a time lag of zero, while Eqs. (18.12) and (18.13)
impose, respectively, a prescribed project deadline and a project start at time
instance zero. Equation (18.14) ensures that each activity i 2 V receives exactly one
start time (i.e., activities are not allowed to be interrupted during their execution).
The variable xit in Eq. (18.14) is binary (xit D 1 if activity i is started at time

t ; xit D 0 otherwise), and Si D Pd
tD0 txit holds for all activities i 2 V (Si

being the start time of activity i). Then, the number of units of resource type k
used on time unit t can be written as rk.S; t/ D P

i2V
Pt

�Dmax.t�piC1;0/ xi� rik.
Equation (18.15) satisfies the overall project resource-availability constraints, while
Eq. (18.16) satisfies the renewable resource constraints.

It should be noted that the entropy method can also provide the planner with a
measure of the obtained degree of optimization in terms of the theoretical lower and
upper bounds. The theoretical lower bound is always HT D 0:0, obtained when
all resource units are employed on a single day, thus enabling the project at hand
to finish in a single day. The upper bound can be obtained by invoking entropy’s
principle of maximality, according to which the entropy function takes the maximal
value when all admissible outcomes have equal probabilities (i.e., an equiprobable
distribution of resources). Thus, the upper bound of Eq. (18.7) can be obtained by
dividing the total man-days required to complete the project by the total project
duration (d) and, for a project of a single-type resource (with wk being the total
number of units of this resource used in the project), it can be written as

0 � HT � �d

wk=d

wk

!

ln

wk=d

wk

!

D ln
�
d
�

(18.17)

In reality, both the lower and upper bounds are restricted by (1) the project
relationships manifested in the network graphs and thus the time-sequence of
resource requirements, (2) the total number of resources available per time-period,
and (3) the exclusion from the solution space of the “non-physical” (fractional)
resource assignments (Eq. 18.10).

The solution of Eqs. (18.9)–(18.16) can be obtained by either Monte Carlo
simulation or by analytical methods.

18 Heuristic Methods for Resource Leveling Problems 401

18.5 RLP with Prescribed Fixed Activity Durations

As a demonstration of the proposed heuristic method for RLP, let us consider the
case of a resource-leveling example from literature with prescribed fixed activity
durations. Figure 18.2 presents a small network (Harris 1990) consisting of eleven
activities and requiring a single resource type (e.g., “laborer”). A duration of 16
days and a total number of 108 man-days are required to complete the project, with
the project network calculations for the unleveled schedule shown in Table 18.1.

If both the project duration and the individual activity durations are assumed
fixed, then by use of Monte Carlo simulation the resource histogram’s highest
entropy value is obtained at HT D 2:714, corresponding to daily resource
assignments of {7, 9, 7, 7, 10, 10, 10, 6, 6, 6, 5, 7, 7, 7, 3, 2}. This is identical
to the solution provided by Harris (1990) (Table 18.1).

The resource-based entropy metric (Eq. 18.8) for the network shown in Figs. 18.2
and 18.3 can be shown to be HT � 2:475 for the unleveled state and H 0T � 2:714

for the leveled state. The values are in agreement with entropy’s subadditivity and
maximality properties, according to which higher entropy values indicate better
leveling. Furthermore, since optimal leveling, as per Eq. (18.17), would have been
achieved at an entropy value of H 0Tmax D ln.16/ � 2:773, the computed resource-
leveled schedule exhibits a 89:25% optimization. It should also be noted that 100 %
optimization cannot always be reached due to time lags between the activities.

The aforementioned RLP case can be easily transformed into a generic RCSP
case, by removing the constraint on fixed activity durations. In that case, and
assuming that the project duration is still time-constrained (duration � 16 days)
then by use of simulation a number of feasible entropy-based and resource-leveled
solutions can be obtained. The solutions are dependent on the level of flexibility

Fig. 18.2 Example 1—AoN network (from Harris 1990)

402 S.E. Christodoulou et al.

Table 18.1 Example 1—CPM calculations for unleveled and leveled networks (based on the
Minimum Moment Method [from Harris 1990] and the Entropy Maximization Method [from
Christodoulou et al. 2010])

Unleveled Leveleda Leveledb

Activity Resources/Day Duration (days) ES EF ES EF ES EF

START 0 0 0 0 0 0 0 0

A 2 2 0 2 0 2 0 2

B 1 4 0 4 0 4 0 4

C 4 1 0 1 0 1 0 1

D 4 4 2 6 10 14 10 14

E 2 3 4 7 7 10 7 10

F 4 6 4 10 4 10 4 10

G 6 6 1 7 1 7 1 7

H 0 1 7 8 14 15 14 15

J 2 4 7 11 11 15 11 15

K 1 5 10 15 10 15 10 15

L 2 1 15 16 15 16 15 16

END 0 0 16 16 16 16 16 16
aSchedule leveled with the Minimum Moment Method
bSchedule leveled with the Entropy Maximization Method

Fig. 18.3 Example 1—Resource histogram of unleveled and leveled schedules (based on the
Minimum Moment Method [from Harris 1990] and the Entropy Maximization Method)

assumed for each activity duration (i.e., the activity ‘stretching’ and ‘compression’
factors). Detailed results pertaining to the aforementioned example study of Harris
(1990) can be found in the work reported by Christodoulou et al. (2010), along
with additional and more complex examples utilizing finish-to-start, start-to-start
and finish-to-finish relationships.

18 Heuristic Methods for Resource Leveling Problems 403

18.6 Entropy-Maximization Resource-Leveling Algorithm

As in the case of other popular resource-leveling heuristics, the proposed
entropy-maximization resource-leveling algorithm is a CPM-based heuristic relying
on project characteristics and on decision-making rules for prioritizing the activities
to be resource-leveled. The heuristic makes use of entropy-based decision criteria
as well as the earliest late-start rule for evaluating the process at each network
node and for ranking the activities to be leveled based on their contribution to the
project’s total entropy. The earliest late-start (ELS) rule is advantageous compared
to the least total-float (LTF) rule because the values of the late-start dates are derived
from the original CPM calculations, unlike the total float values which change every
time an activity is rescheduled during the resource leveling process. Thus, the ELS
rule can be applied with much less computational effort than the LTF rule (Hegazy
et al. 2000).

The entropy-maximization algorithm listed below is an adaptation of the
algorithm proposed by Martinez and Ioannou (1993) on the minimum moment
method (Harris 1978) and makes use of the expected change of entropy
(�HT D H 0T � H0

T) from state H0
T to state H 0T , as a result of a resource shift

of “m” time units.
Figure 18.4 is used as an aid to the algorithm, with the �H value expressed

analytically by Eq. (18.18). For the sake of simplicity in listing the algorithm, only
one resource type is considered and the index k in all resource-related equations

Fig. 18.4 Change in entropy of a project’s resource histogram following an activity shift

404 S.E. Christodoulou et al.

in this chapter is dropped. Thus, rk.S; t/ and wk are expressed as r.S; t/ and w
respectively, with r.S; t/ being the amount of resource in use at time t , and w being
the total required resource effort for completing the project. The parameters vq and
uq in Eq. (18.18) are used to describe the reduction or increase, respectively, in total
resource usage at time q, as a result of a resource shift of r units during the leveling
process (Fig. 18.4).

�HT D
mX

qD1

�

� vq � r
w

ln
�vq � r

w

�
C vq

w
ln
�vq

w

�

� uq C r
w

ln

	
uq C r

w

C uq
w

ln
�uq

w

��
(18.18)

A description of the algorithm follows.

1. Preliminary calculations:

1.1 Compute the network
1.2 Schedule all activities i at their early start ESi
1.3 Assign sequence steps to each activity. These sequence steps are based on

the early start date (ESi) of the activities, and they are used as identifiers in
grouping activities with the same ESi

1.4 Group the activities by sequence step (from [1.3])
1.5 Compute the forward (early) free float (EFFi) of each activity
1.6 Calculate the daily resource histogram that corresponds to the early start dates
1.7 Compute the project duration (d) and the total number of resources required

to complete the project (w)

2. Forward Pass: Starting with the last group of activities, the following steps are
performed,

2.1 Shift all activities j with zero daily resource requirements (rj D 0), by the
amount of their forward free float EFFj

2.2 Remove from the group all activities with no forward free float. If no activities
remain in the group go to Step 5

2.3 For the other activities j in the group:

2.3.1 Define the “improvement factor (IF)” as
IF.j;�j / WDPm

qD1
�� vq�r

w ln
� vq�r

w

�C vq
w ln

� vq
w

��C
Pm

qD1
h
� vqCr

w ln
�

vqCr
w

�
C vq

w ln
� vq

w

�i

where m is the total number of time-steps the shift affects. Compute
the improvement factor IF.j;�j / for all possible forward shifts �j , for
�j D 1; 2; : : : ;EFFj .

2.3.2 Select the shift that produces the greatest improvement factor. If more than
one shift produces the maximum improvement factor, select the largest
shift

18 Heuristic Methods for Resource Leveling Problems 405

2.3.3 Call this shift ��j and the corresponding maximum improvement factor
IFj D IF.j;��j /

3. From within these activities:

3.1 Select the one with the greatest IFj
3.2 If there is a tie, select the one with the largest rj
3.3 If still tied, select the one with the largest�j

3.4 If still tied, select the one with the latest ESj
3.5 The selected IFj is defined as IF�j

4. If the IF�j for the selected activity j is negative go to Step 5, otherwise:

4.1 Carry out the shift
4.2 Update the forward and backward free float for all activities
4.3 Update the resource histogram
4.4 Go back to Step 2.2

5. Consider the group of activities in the earlier group and then go back to Step 2.1
until all the groups have been considered

6. Backward Pass: Repeat the forward pass steps, but this time (i) consider the
groups in reverse order, (ii) shift activities backward to earlier times rather than
forward to later times.

The aforementioned algorithm was kept rudimentary in nature, for the purpose
of explaining the method. The efficiency of the algorithm can be improved by
approximating Eq. (18.18) with a series of Taylor expansions. A computationally
more efficient algorithm is currently in development, based on the cross-entropy
algorithm (Rubinstein and Kroese 2004) and a greedy-search algorithm that simul-
taneously considers the resulting entropy values at times t and t C 1 in an attempt
to reduce the computing steps/time by half.

18.7 Sample Implementation of Proposed Algorithm

As a demonstration of the aforementioned algorithm, consider the following simple
project network of six activities and of a single resource type (“laborers”) with
a daily resource histogram as shown in Fig. 18.5a. The total project duration is 6
days (shaded bars in the Gantt chart indicate critical activities) and the total effort
required to complete the project is 16 person-days.

By use of Eq. (18.7), the original project entropy is 1.630. If a daily
resource constraint of three laborers is enforced, then the project shows a resource
over-allocation in its first 3 days which calls for resource-leveling. Application of
the entropy-based leveling algorithm results in a revised (leveled) Gantt chart and
resource histogram (Fig. 18.5b) by shifting selected activities to later start dates.
The activity shifts (in turn: A, C, and E twice) result in project entropy values of

406 S.E. Christodoulou et al.

Fig. 18.5 Example 2—(a) Original (unleveled) Gantt chart and daily resource histogram; (b)
Revised (leveled) Gantt chart and daily resource histogram

1.667, 1.721, 1.721, and 1.775 respectively. As expected, better resource-leveling is
indeed accompanied by higher project entropy values.

18.8 Conclusions

This chapter discusses RLP and presents a newly-developed resource-leveling
metaheuristic based on entropy and its two principal mathematical properties of
subadditivity and maximality. The proposed metaheuristic and associated algo-
rithm use an entropy-maximization approach to restate resource leveling as a
process of maximizing the entropy found in a project’s resource histogram. The
entropy-maximization method performs very well both as a Monte Carlo simula-
tion approach and as a metaheuristic algorithm. Furthermore, it can account for
multiple resource types, for both duration-constrained and duration-unconstrained
projects, as well as for activity stretching and activity crunching. Future work
entails multi-resource leveling and improvements on the efficiency of the proposed
algorithm.

18 Heuristic Methods for Resource Leveling Problems 407

References

Adeli H, Park HS (1995) Optimization of space structures by neural dynamics. Neural Netw
8(5):769–781

Ballestín F, Schwindt C, Zimmermann J (2007) Resource leveling in make-to-order production:
modeling and heuristic solution method. Int J Oper Res 4(1):50–62

Brinkmann K, Neumann K (1996) Heuristic procedures for resource-constrained project schedul-
ing with minimal and maximal time lags: the resource-levelling and minimum project-duration
problems. J Decis Syst 5:129–156

Brucker P, Knust S, Schoo A, Thiel O (1998) A branch and bound algorithm for the
resource-constrained project scheduling problem. Eur J Oper Res 107(2):272–288

Burgess AR, Killebrew JB (1962) Variation in activity level on a cyclic arrow diagram. J Ind Eng
13:76–83

Christodoulou SE, Ellinas G (2010) Scheduling resource-constrained projects with ant colony
optimization artificial agents. J Comput Civil Eng 24(1):45–55

Christodoulou SE, Ellinas G, Aslani P (2009a) Disorder considerations in resource-constrained
scheduling. Constr Manag Econ 27(3):229–240

Christodoulou SE, Ellinas G, Aslani P (2009b) Entropy-based scheduling of resource-constrained
construction projects. Automat Constr 18(7):919–928

Christodoulou SE, Ellinas G, Michaelidou-Kamenou A (2010) Minimum moment method for
resource leveling using entropy maximization. J Constr Eng M ASCE 136(5):518–527

Garmsiri M, Abassi MR (2012) Resource leveling scheduling by an ant colony-based model.
J Ind Eng Int 8(7)

Harris RB (1978) Precedence and arrow networking techniques for construction. Wiley, New York
Harris RB (1990) Packing method for resource leveling (Pack). J Constr Eng M ASCE 116(2):331–

350
Hegazy T (1999) Optimization of resource allocation and leveling using genetic algorithms.

J Constr Eng M ASCE 125(3):167–175
Hegazy T, Shabeeb AK, Elbeltagi E, Cheema T (2000) Algorithm for scheduling with multiskilled

constrained resources. J Constr Eng M ASCE 126(6):414–421
Hiyassat MAS (2000) Modification of minimum moment approach in resource leveling.

J Constr Eng M ASCE 126(4):278–284
Hiyassat MAS (2001) Applying modified minimum moment method to multiple resource leveling.

J Constr Eng M ASCE 127(3):192–198
Martinez J, Ioannou P (1993) Resource leveling based on the modified moment heuristic. In:

Proceedings of 5th international conference on civil and building engineering, Anaheim,
pp 287–294

Neumann K, Zimmermann J (1999) Resource leveling for projects with schedule-dependent time
windows. Eur J Oper Res 117(3):714–729

Neumann K, Zimmermann J (2000) Procedures for resource leveling and net present value
problems in project scheduling with general temporal and resource constraints. Eur J Oper Res
127(2):425–443

Ranjbar M (2013) A path-relinking metaheuristic for the resource levelling problem. J Oper Res
Soc 64:1071–1078

Rubinstein RY, Kroese DP (2004) The cross-entropy method: a unified approach to combinatorial
optimization, Monte-Carlo simulation, and machine learning. Springer, New York

Seibert JE, Evans GW (1991) Time-constrained resource leveling. J Constr Eng M ASCE
117(3):503–520

Senouci AB, Adeli H (2001) Resource scheduling using neural dynamics model of Adeli and Park.
J Constr Eng M ASCE 127(1):28–34

Takamoto M, Yamada N, Kobayashi Y, Nonaka H (1995) Zero-one quadratic programming algo-
rithm for resource leveling of manufacturing process schedules. Syst Comput Jpn 26(10):68–76

Zhang H, Li X, Li H, Huang F (2005) Particle swarm optimization-based schemes for
resource-constrained project scheduling. Automat Constr 14(3):393–404

Part VI
Multi-Criteria Objectives in Project

Scheduling

Chapter 19
Theoretical and Practical Fundamentals

Francisco Ballestín and Rosa Blanco

Abstract Project managers carry out a project with several objectives in mind.
They want to finish the project as soon as possible, with the minimum cost, the
maximum quality, etc. This chapter studies project scheduling problems when
several goals are sought, that is, multi-objective project scheduling problems
(MOPSPs) and multi-objective resource-constrained project scheduling problems
(MORCPSPs). We will discuss some of the most important issues that have to be
taken into account when dealing with these problems. We will also prove some
useful results that can help researchers create algorithms for some of these problems.

Keywords Heuristic algorithms • Multi-criteria objective • Project scheduling •
Resource constraints

19.1 Introduction

In most of the previous chapters the defined optimization problems included one
objective function. The difficulty of these problems and the extensive number
of interesting generalizations make this field almost endless. However, project
scheduling is an inherently multi-objective problem. If academic research wants
to get closer to practice we must be able to combine several goals in our project
scheduling problems in one way or another. In this chapter we study multi-objective
resource-constrained project scheduling problems (MORCPSPs), supposing we
are working with a single mode for each activity and precedence relationships.
We will make a distinction between problems where all the performance measures
are regular and problems with at least one non-regular objective function. We recall
that a regular objective function (ROF) is a non-decreasing function of the activity

F. Ballestín (�)
Department of Mathematics for the Economy, University of Valencia, Valencia, Spain
e-mail: francisco.ballestin@uv.es

R. Blanco
Department of Statistics and Operations Research, Public University of Navarra, Pamplona, Spain
e-mail: rosa.blanco@navarra.es

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_19

411

mailto:francisco.ballestin@uv.es
mailto:rosa.blanco@navarra.es

412 F. Ballestín and R. Blanco

start times (in the case of a minimization problem), see Chap. 1 of this handbook.
The best known case of a ROF is the project completion or makespan. Many papers
in project scheduling are dedicated to this objective function: theoretical results,
optimal and heuristic algorithms with different codifications, schedule-generation
schemes, etc., have been developed throughout the years. It is consequently sound
to start solving MORCPSP by solving MORCPSP with ROFs. However, the real
power of MORCPSP lies in combining ROFs with non-regular objective functions
(NROFs).

The chapter is organized as follows. The following section introduces key con-
cepts used in the field of evolutionary multi-objective optimization, and establishes
the problems that will be studied. Section 19.3 classifies relevant and recent papers
of the literature and discovers an important weakness in most of them. Several
important results in the fields of MOPSP and MORCPSP are presented in Sect. 19.4.
Section 19.5 discusses some of the hot topics to cover when developing a heuristic
algorithm for a MORCPSP. The final section is reserved for future lines of research.

19.2 Multi-Objective Optimization and MORCPSPs

A multi-objective optimization problem (MOP) can be defined as follows:

Min: y D f .x/ D Œf1.x/; f2.x/; : : :; f�.x/�
s. t. x 2 X feas;

where x D .x1; x2; : : :; xn/ 2 R
n is a vector of decision variables called decision

vector, y is the objective vector, X feas is the set of feasible solutions and Y D
f .X feas/ � R

� is the image of the feasible set in the criterion space. A multi-
objective combinatorial optimization problem (MOCO) is a MOP with a restriction
of integrality on the decision variables.

While it is quite obvious what it means to solve a (single-objective) optimization
problem, this is not so clear in the case of a MOP. There are several ways to
tackle a MOP, depending on the importance we assign to the objective functions
or the information we have about them. Hwang and Masud (1979) and Horn (1997)
defined three categories, which depend on how the decision maker (DM) relates to
the optimization process:

1. Decision making before search: Information given by the DM leads to a single
objective optimization problem where the objective is an often linear function of
the original objectives of the MOP.

2. Search before decision making: A set of candidate solutions (ideally the Pareto
front or an approximation of it) is calculated and then the DM selects the solution
among them.

19 Theoretical and Practical Fundamentals 413

3. Decision making during search: The optimization is divided into steps, after each
of which a number of alternative trade-offs are presented to the DM, whose
information guides the next step.

Some advantages and disadvantages of these approaches can be seen in Zitzler
(1999). This chapter is devoted to the second class of this classification. However,
many issues discussed in the text apply to the other two classes.

In the following paragraph we will follow Ehrgott and Gandibleux (2004) and
Hansen (1979). A feasible solution x 2 X feas is called efficient if there is no solution
strictly better than x for at least one criterion and not worse in the remaining criteria.
The image y D f .x/ of an efficient solution is called non-dominated. The set of
efficient solutions is X feas

E , the set of non-dominated vectors is PF D f .X
feas
E /.

The set of all non-dominated solutions is also called the Pareto set or Pareto front.
Two efficient solutions x, x0 are equivalent if f .x/ D f .x0/. A (minimal) complete
set contains (only) one decision vector for every non-dominated objective vector.
A maximal complete set contains all equivalent solutions for every non-dominated
objective vector. When describing an exact or heuristic algorithm for a MOCO
problem, it is important to clarify whether every non-dominated objective vector is
attainable and whether a minimal or the maximal complete set is sought. In general,
nevertheless, and as a generalization of single-objective optimization problems, a
MOCO problem is considered as solved if a minimal complete set is calculated.
That is, the Pareto front should be found, even if only one representative for each
non-dominated objective vector is obtained. In the first category discussed above
to solve a MOCO (“Decision making before search”), there are efficient solutions
that are not optimal for any weighted sum of the objective functions. They are
termed unsupported efficient solutions DNE. The solutions which are optimal for
some weighted sum problem are termed supported efficient solutions DSE.

Regarding the difficulty of MOCOs, the problems are in general NP- and
#P-complete, respectively, even if there are efficient algorithms in the single
objective case. We refer to Ehrgott (2000), Emelichev and Perepelitsa (1991), and
Serafini. (1986) for results in this respect; and to Garey and Johnson (1979) and
Valiant and Vazirani (1986) for introductions to the theory of NP-completeness
and #Pcompleteness. As a consequence, metaheuristic algorithms are often devel-
oped to heuristically solve the problems, sometimes termed MOMHs (multi-
objective metaheuristic algorithms).

MORCPSPs inherit many aspects from MOCOs, but there are also some relevant
specific features to take into account. One of their most important characteristics
is that a solution is always a schedule, a plan that explains when each activity is
scheduled. This usually means defining a start time for each activity, supposing
non-preemption. We may need though additional information to completely define
a solution depending on the problem we are dealing with: the mode the activity
is scheduled, how many resources are bought or rented, etc. The set of feasible
solutions S of a MORCPSP is determined by precedence relationships between
activities and resource restrictions. We can have therefore all the richness found
in resource-constrained PSPs—minimum and maximum time lags, non-renewable

414 F. Ballestín and R. Blanco

resource constraints, multi-mode, etc.—or we can work with the basic restrictions
of the RCPSP. Independently of S , there are many objective functions of interest
for managers. They usually have to do with time issues, managing the resources
(usually how many to use or how to level their use), cost (associated to activities,
to resources or to both), quality or stability. Here is a list with some of the most
used ones (see the formal definitions in Ballestín and Blanco 2011). These objective
functions should be minimised, unless stated otherwise: (1) makespan or project
completion; (2) maximum tardiness; (3) total number of tardy activities; (4) sum
of start times; (5) total weighted tardiness; (6) total weighted flow time; (7) net
present value (maximise); (8) weighted earliness-tardiness; (9) resource levelling;
(10) resource investment: RI (also known as resource availability cost RAC); (11)
weighted sum of start times (maximise); (12) stability/robustness (maximise). In
this last problem, the duration of an activity is a random variable instead of a known
constant.

The average is sometimes considered instead of the total (weighted) tardiness
and the total (weighted) flow time. On other occasions, the lateness is considered
instead of the tardiness. Functions (9) and (10) are examples of resource levelling
functions, other examples of these types of functions are described in Neumann et al.
(2003). In these functions, the resource restrictions are sometimes not considered,
because resources are already taken into account in the objective function. Functions
(1)–(4) are ROFs, (5), (6), and—NPVare ROFs only if the weights (cash flows) are
non-negative. We say that an ROF is strict, or that we work with a strict ROF, if
the function is an increasing function of the activity start times. Function (4) is the
classical example of a strict ROF. The remaining functions are usually non-regular.

We obtain a different MOPSP or MORCPSP for each combination of objective
functions and restrictions. Obviously, there are thousands of them. Nonetheless, we
think that some combinations of objective functions make more sense or are more
interesting than others. Another crucial issue is whether each goal in the problem
is included in the optimization problem as an objective function. Sometimes some
goals should be included as restrictions, and sometimes as an objective function and
as a restriction at the same time.

19.3 Classifications of Papers of the Literature

Once we have established some definitions, we can briefly classify and comment on
the most important papers that have researched MORCPSPs or similar problems.
Additional information can be obtained in Ballestín and Blanco (2011).

Slowinski (1981) was the first author to explicitly place the RCPSP in a multi-
objective framework. His approach belongs to the first class of the classification,
because he proposes applying parametric linear programming. Note that this
procedure can only calculate supported efficient solutions. Slowinski also dis-
cusses the possibilities of using goal programming and fuzzy linear programming.
This author, sometimes in collaboration with others, published several papers on

19 Theoretical and Practical Fundamentals 415

MORCPSPs (Slowinski 1989, Slowinski and Wȩglarz 1985, Slowinski et al. 1994).
The procedures presented in these papers are interactive procedures that pertain to
the third class of the classification. In Slowinski et al. (1994), a decision support
system is presented. The fuzzy versions of MORCPSP have also been studied (see
e.g. Hapke et al. 1997, Hapke and Slowinski 2000, and Pan and Yeh 2003). Pareto
simulated annealing (PSA) is used in most of the papers for these problems. Hapke
et al. (1998) presented a two-stage interactive search procedure. In the first stage
an approximation of the efficient set is calculated and then an interactive search
over the sample is organised. This second part belongs therefore to the third class
of the classification discussed above. The definition of employed techniques seem
to indicate that only active schedules can be calculated, something which is not
enough for obtaining the Pareto front in the case of non-regular measures (see
Sect. 19.4). Nabrzyski and Wȩglarz (1995, 1999) also developed procedures for a
similar MORCPSP as in Hapke et al. (1998). In the first paper, a decision support
system is described. From among the generated feasible schedules, non-dominated
schedules are found and an interactive procedure with the DM is organised on
this set. The definition of the algorithm, as stated in the paper, seems not to be
able in general to find all the efficient solutions. In the second paper, an approach
belonging to the third class described above is described. Viana and de Sousa (2000)
implemented MOMHs for regular and non-regular objective functions. From the
described neighbourhood, it seems very unlikely that the procedures can obtain
solutions with good values in some of the used performance measures in medium or
large instances.

There are also papers in the literature looking for trade-off curves between two
objectives, which lie therefore between single- and multiobjective (see for example
Schwindt and Zimmermann 2002).

Al-Fawzan and Haouari (2005) and Abbasi et al. (2006) have studied the
MORCPSP with renewable resources and two objectives, makespan and robustness,
modelled as the sum of the free slack of activities that should be maximised.
A multi-objective Tabu Search is applied to calculate an approximation of the
efficient set. Activity lists and the serial schedule-generation scheme (SGS) are
used in the algorithm (see Chap. 1 of this handbook). A forward-backward recursion
procedure helps to compute the latest completion times for the activities and hence
their free slacks. The authors state that their MOTS algorithm consists in running
a single-objective TS a certain number of times, each time with a different linear
aggregated function. Due to the SGS used, the procedure can obtain good solutions
in terms of makespan, but will probably miss all efficient solutions with (very)
good robustness and bad makespan. Therefore, a whole part of the Pareto front
cannot be reached with the proposed approach. Abbasi et al. (2006) work with
only one renewable resource and aggregate the two objectives in a linear objective.
Therefore, their procedure belongs to the first class of the classification described
above. The authors apply a SA with a forward-backward recursion procedure. To
generate different solutions, some virtual constraints are added to the problem.
Valls et al. (2009) worked with the skilled workforce project scheduling problem, a
complex problem of task scheduling and resource assignment that comes up in the

416 F. Ballestín and R. Blanco

daily management of many company’s Service Centres. The solution methodology
used was to lexicographically minimise firstly the infeasibility of the total violation
of the temporal constraints, secondly a linear combination of maximum dates and
worker availability violations, and finally three other secondary objectives. Odedario
and Oladokun (2011) wrote about the relevance and applicability of MORCPSP,
and concluded that single objective approaches in RCPSP are generally idealistic.
Xiong et al. (2012) developed a MOMH for the RCPSP with perturbation on activity
durations, with the makespan, robustness and stability as objectives. They also use
activity lists and the serial SGS to calculate schedules. Yannibelli and Amandib
(2013) developed a MOMH for a MORCPSP that minimises the makespan and
optimises the effectiveness of human resources. The codification employed also
contains activity lists, and the serial SGS decodes them, too. However, since the
two functions are regular, these methods are searching in the right solution space
(see Sect. 19.4). Nevertheless, the authors do not include any discussion about how
or why the attainable schedules are appropriate for their problem.

As a conclusion of the review, there are many papers that seem not to be able
to calculate a good approximation of the Pareto front. An essential aspect of an
algorithm for a MORCPSP is that it is searching in the right solution space, i.e.,
there is no non-dominated decision vector which can never be found. A paper should
prove that the described algorithms are indeed using the right type of schedules. This
aspect is, however, almost never discussed in papers that cover MORCPSPs.

19.4 Theoretical Results for the MOPSP and MORCPSP

As stated in Sect. 19.2, the number of different MOPSPs and MORCPSPs is very
big. Our experience with these problems says that a MORCPSP becomes easily
intractable, and that in most cases heuristics algorithms will be needed to offer
efficient solutions for instances with a moderate size. Nevertheless, exact algorithms
should also be developed to allow us learn about MORCPSPs, and to evaluate
heuristic algorithms. Moreover, theoretical results should be developed, too, so that
heuristic and exact algorithms build the correct schedules (candidates for optimal
schedules, see Neumann et al. 2003) that guarantee the obtaining of a minimal
complete set. In the following subsections we present results for MOPSPs and
MORCPSPs with ROFs, and for some MO(RC)PSPs with NROFs, especially bi-
objective problems with the makespan as one of the objective functions. Proofs for
those results can be found in Ballestín and Blanco (2011). We are going to suppose
we work with the restrictions of the RCPSP, i.e., non-preemption, precedence
relationships and renewable resource restrictions. This assumption implies for
example that the start of an activity determines its finish time. Generalizations can be
sometimes made to general precedence relationships and non-renewable resources.

One important aspect to take into account when solving MORCPSPs is that
relationships between activities define time windows for activities. If we have a
partial schedule where we have scheduled only some of the activities, the start

19 Theoretical and Practical Fundamentals 417

time of the next activity to be scheduled is limited to an interval defined by its
predecessors and successors. This fact is true for each objective value, and the time
interval is the same for each objective function, since it is based on the restrictions.
The objective function determines at which time inside that time window is (locally)
optimal to schedule the activity. For instance, the best time for a ROF is the first
instant of that time window. In a MORCPSP different objective functions will
usually prefer different instants inside the time windows, and there lies the difficulty
of the problems.

19.4.1 MOPSP with ROFs

As stated in Chap. 1 of this handbook, the ES schedule is the schedule where
every activity is scheduled at its earliest start time according to the precedence
relationships. The ES schedule forms a minimal complete set in any MOP with
ROFs. Besides, the ES schedule is the only efficient solution in any MOP with ROFs
with at least one strict ROF.

19.4.2 MORCPSP with ROFs

The most important problem studied in resource-constrained project scheduling is
the RCPSP. Therefore it is natural to study MORCPSP with ROFs and to develop
exact and metaheuristic algorithms for these problems. As commented in Chap. 1
of this handbook, the serial SGS generates so-called active schedules, where each
activity is scheduled as early as possible. There is always an active schedule that
is optimal in the single-objective RCPSP with any ROF (see Neumann et al.
2003). This fact leads to the result that the set of active schedules AS contains a
complete set of efficient solutions in any MORCPSP with ROFs. Moreover, the set
of active schedules AS contains a maximal complete set of efficient solutions in any
MORCPSP with ROFs and at least one strict ROF. Obviously, as it happens in the
classical RCPSP with the makespan, it is not enough in general to work with active
schedules to obtain a maximal complete set of efficient solutions if the objective
functions are regular but not strictly regular. For instance, let us consider a bi-
objective RCPSP with the makespan and number of tardy activities, where the due
date of each activity is greater than the optimal project length. In this problem, any
non-active schedule with makespan equal to the optimal project length is efficient.

Based on these results we can devise procedures to calculate, optimally or
heuristically, a minimal complete set for any MORCPSP with ROFS, or a maximal
complete set in the case where at least one objective function is strict regular.
Namely, any method that explicitly or implicitly explores all active schedules
assures the exact solution of those problems. Besides, any heuristic algorithm that
works with activity lists and the serial SGS is searching in the right solution space.

418 F. Ballestín and R. Blanco

In principle, the algorithm is able to find any efficient solution. A good MOMH
with these ingredients will therefore find a good approximation of a complete set in
a MORCPSP with ROFs.

19.4.3 MORCPSP with at Least One NROFs

One of the most appealing aspects of working with MORCPSPs for a project
manager is the possibility of combining the makespan with a non-regular objective
function. All or almost all papers of the literature that work with MORCPSPs enter
in that description. However, it seems that in some of those papers active schedules
are used. The first fact to show is therefore that working with those schedules is not
enough or advisable. Actually, it is easy to find a counterexample. Let us consider
a project with two non-dummy activities 1 and 2, with a precedence relationship
between them. They do not require resources and have a duration of 1. There is
a due date of 3 for activity 2, with an associated earliness cost of 1. The only
active schedule of this problem starts activities 1 and 2 at 0 and 1, respectively. This
schedule has an optimal makespan of 2 and a cost of 1. There are two more efficient
solutions in the problem. Both schedules starts activity 2 at 2, one solution starts
activity 1 at 0 and the other starts activity 1 at 1. Both solutions have a makespan
of 3 and a cost of 0. Summing up, if we work with NROFs active schedules are
usually not going to be enough to find a representative for every non-dominated
vector.

Hence, we have to find other types of schedules to use in those MORCPSPs.
Combining ROFs and NROFs clearly makes more difficult the job to do. Never-
theless, there are several results that can be proven. Before stating them, we need
to recall a result of Neumann et al. (2003). They introduced and gather together
different types of functions, like antiregular, convex, binary-monotone, quasicon-
cave, locally regular and locally quasiconcave functions. For each of these functions
they find the schedule type needed to solve the corresponding single-objective
problem. They proved that to obtain an optimal solution for objective functions of
the antiregular, convex, binary-monotone, quasiconcave, locally regular and locally
quasiconcave types it is enough to work with antiactive, locally order-optimal,
pseudostable, stable, quasiactive and quasistable schedules, respectively.

The objective functions of the WET, RI, RL and NPV problems are convex,
locally regular, locally quasiconcave and binary-monotone, respectively. To ease
the following discussion about all these measures, we will denote a certain type of
objective function with ¦. We will denote S¦ the set of schedules always containing
an optimal solution for an objective function of type ¦. Depending on the function
type, this set depends on the deadline d given for the project. For a given d we
denote S¦.d/ the set of schedules S¦ corresponding to that deadline.

19 Theoretical and Practical Fundamentals 419

Results

1. The set of non-dominated solutions PF is finite if there is a deadline for the
makespan d .

2. The set of non-dominated solutions PF is finite if each of the involved objective
functions is regular or belongs to the set {WET, RL, RI}.

3. We consider the bi-objective MORCPSP with the makespan and an objective
function of the type ¦ and with a fixed global deadline D. Then, the set
[D
dD1S¦.d/ contains a minimal complete set for that problem.

The proofs can be seen in Ballestín and Blanco (2011).
The previous results are not true in the general case. Let us see counterexamples

for the first two. Let us consider a project with two non-dummy activities of duration
one, with a relationship between them and without resource requirements. Suppose
the objective functions are the makespan and the NPV. The weight (cash flows) of
activities 1 and 2 are 0 and �1, respectively, the parameter ’ is 1. So, the NPV
function is �e�C2 , with C2 the finish time of activity 2, and we want to maximise it.
That is, we want to minimise e�C2 . The finish time of activity 2 marks the makespan
and NPV of the schedule. If there is a deadline d there are d � 1 non-dominated
vectors PF D f.2; e�2/; .3; e�3/; : : : ; .d ; e�d /g. Therefore we have an infinite
number of non-dominate vectors and efficient solutions if there is no deadline.

The third result offers a method to optimally solve the bi-objective MORCPSP
with the makespan and objective functions of the type ¦, to (explicitly or implicitly)
enumerate all the schedules S¦.d/, but with different deadlines. The result also
helps in devising heuristic algorithms for these problems: using the SGS developed
in each case to produce schedules of the right type. There are very efficient
procedures capable of obtaining the optimal WET or NPV value for a given deadline
(see e.g. Neumann et al. 2003). Just by applying these procedures to all deadlines
between the makespan of the ES schedule (the critical path length) and the global
deadline we obtain a set H containing the set of non-dominated solutions.

19.5 Topics to Study in a MOMH for MORCPSPs

Even though there are many possible MORCPSPs, there are only so many common
topics that can be studied in MOMHs for those problems, apart from those related
to the specific functions or restrictions defined in the problem. The following does
not pretend to be an exhaustive list, but gives some ideas as to what to investigate in
a MOMH for a MORCPS.

• Codification and SGS
A very important decision in a heuristic algorithm, even in single-objective
optimization problems, is the way to represent a solution (codification), and
the way to build a solution out of a codification (SGS). A sensible decision
when dealing with a ROF is to work with activity lists and the Serial SGS. In

420 F. Ballestín and R. Blanco

a MORCPSP with ROFS, as stated above, it is also enough to work with that
codification and SGS. However, each different problem with at least one NROF
will call for a different codification and SGS. To give an example, let us consider
the MORCPSP with precedence relationships and two objective functions,
makespan and resource investment. In the resource investment problem, each
resource has a cost associated with it, and it has to be decided how many units
of each resource to have. Each unit of each resource implies a cost, and the
total resource cost should be minimized. These two functions are negatively
correlated, therefore we will obtain (the same or) a best solution with smaller
makespan if the availability of each resource is higher. If there are n non-
dummy activities and K resources, we can codify an individual with two lists,
an activity list and a list of available resource capacities, I D .`; R/, with
R D .R1;R2; : : :; RK/. To obtain a solution we schedule the activities according
to the activity list ` and the serial SGS, but with the resource availabilities given
by R. It can be proved (see Ballestín and Blanco 2011) that if we tried every
duple .`; R/ we would find at least one efficient solution for each non-dominated
vector.

Other codifications and SGSs will have to be found for other MORCPSPs,
especially for bi-objective problems. We think that problems with several NROFS
will not have easy codifications or SGS capable of calculating every efficient
solution. Depending on the combination of objectives, a heuristic algorithm may
have to work with a vector of start time for each activity, i.e., to work with the
schedule itself.

• Metaheuristic algorithm to use
Many papers propose general metaheuristic algorithms for MOCOs. Some of
the most used are NSGA-II (Deb et al. 2000), SPEA2 (Zitzler et al. 2001),
PSA (Czyzak and Jaszkiewicz 1998), or MOEA/D (Zhang and Li 2007). Many
more procedures have been developed, based on Tabu Search, Ant Colony
Optimization, Particle Swarm Optimization, Artificial Immune System, etc. One
of the tasks of a researcher in MORCPSP will be to decide which one of
the existing frameworks to use for a specific problem, or to develop an ad-
hoc procedure. The suitability of these procedures, the performance differences
among them, etc., have to be reassessed in the context of MORCPSPs. Even
more than the metaheuristic themselves, researchers should study which tools
or procedures from the vast multi-objective optimization literature have a great
impact in MORCPSPs. Some of these tools are commented on in the following
points.

• Improvement Operators for each objective function
Our hypothesis is that MORCPSPs with several NROFS will not have easy
codifications or SGS capable of calculating a representative for each non-
dominated vector. In those cases, a MOMH can be built in the following manner.
The defined codification and SGS provides (good-quality) solutions, which are
further improved by improvement operators. The use of these operators applied
to solutions obtained from the SGS could help reach the parts of the Pareto front

19 Theoretical and Practical Fundamentals 421

Fig. 19.1 Intensification and diversification operators

not reachable with the codification + SGS. Part of the research would then be to
find the best combination codification + SGS + improvement operators.

• Diversification v. Intensification
How to balance diversification and diversification has always been an issue in
heuristic algorithms. Nevertheless, it is even more important in multi-objective
optimization. Both concepts can be easily interpreted in terms of the non-
dominated decision vectors. Figure 19.1 gives examples of the direction of
typical intensification operators (I arrows) and diversification operators (D
arrows). On the one hand, diversification comprises the techniques that try to
calculate non-dominated decision vectors “quite different” from the (approx-
imation of the) non-dominated decision vectors the algorithm has calculated
until that moment. The most important goal of diversification in a MOMH
should be that there is no part of the Pareto front without a representative in
the outcome set, the set of solutions provided by the algorithm. An example
of a diversification operator would seek to obtain new best values in one (or a
couple of) objective function(s), even at the expense of significantly worsening
the rest of the objectives. We consider again the bi-objective problem defined in
the first point of this subsection, the MORCPSP with precedence relationships
and two objective functions, the makespan and resource investment. At a given
moment of a heuristic algorithm, the algorithm applies a diversification operator
to the schedule S obtained from .`; R/ with the minimum cost we have obtained
so far. The algorithm calculates a new list of available resource capacities R0
by reducing one of the resource levels by one unit. If we calculate a random
sampling centered in .`; R0/, all the solutions obtained will have a new best
value in the cost function, although they may be worse in terms of the makespan.

422 F. Ballestín and R. Blanco

On the other hand, intensification would try to carry the search closer to the
Pareto front. Typically it could be applied to a non-efficient solution S obtained
by the algorithm which is an approximation of one or several efficient solutions
of the Pareto front—because of proximity of decision vectors. An intensification
operator would start with S and try to obtain solutions closer to those efficient
solutions. The goal would therefore be to obtain an improvement in one or several
objectives, maintaining the remaining objectives without worsening or with a
slight deterioration. In the same bi-objective problem defined above, we can
fix the resource levels of a solution at hand and apply the forward backward
technique. This technique may improve the makespan and will not worsen the
cost function.

• Justification/forward-backward technique
The basic forward-backward technique is defined in Chap. 4 of this handbook.
However, the idea of justification is more general. Basically, justification consists
in shifting activities within their time windows—i.e., fulfilling time constraints—
and therefore without worsening the makespan. The forward-backward technique
just shifts every activity as late as possible and then as soon as possible. The
gaps created with those movements are used by other activities and sometimes
the makespan is reduced. However, shifting one activity without worsening the
makespan is a perfect movement for bi-objective problems with the makespan
and a NROF like resource leveling, NPV or WET. We believe that this technique
or modifications of it can be used in many MORCPSPs, also because justification
can take advantage of (or be tailored to cope with) modes, due dates, non-
renewable resources, etc.

• Including information in the initial population
In some works for MOPs it is discussed whether to start a MOMH out of a
population of random solutions or to use knowledge of the objective functions to
start with better solutions. Our experience with RCPSPs and MORCPSPs clearly
favors the use of information. However, in that case it has to be decided how to
do it. For example, every objective function should be taken into account. The
whole search might get biased if the population focuses on some objectives and
disregards the remaining goals. A whole part of the Pareto front may even not be
easily reached during the search.

• Management of the population: elitism, choosing among similar solutions, etc.
The handling of a population is very different in a MOMH than in a heuristic for
a single-objective problem. The reason for this is that we are looking for a set
of solutions. One could store all currently efficient solutions, those solutions that
are not improved by other so far calculated solutions. However, sometimes there
are many of these solutions. Some researchers keep a separate set (sometimes
called an archive) for those solutions, but it should be decided which of these
currently efficient solutions to keep in the population and which ones to erase,
even from the archive. In this decision, the similarity of solutions—either the
similarity of schedules or of objective vectors—should also be taken into account.
If too many similar solutions are kept, it is much more difficult to lead the
search to different regions of the Pareto front. Independently of how many and

19 Theoretical and Practical Fundamentals 423

where to store the efficient solutions, the researcher should decide how these best
individuals—perhaps not calculated in the last iterations—influence the creation
of the next generation. This issue is termed elitism. We are convinced that a
certain degree of elitism is beneficial: best solutions should be used to create the
next population. A different thing is how much randomness or information from
the last iteration should be included in that calculation. There are other issues
concerning the management of the population to take into account, for instance,
how to select among non-efficient solutions when there are very few efficient
solutions, or when it is necessary to refresh the population, and in that case how
to do it.

• Measures to express the quality of a heuristic algorithm
The measurement of the performance of a heuristic algorithm in a single-
objective optimization problem on a given instance is easy: algorithms can
always be ranked according to their value in the objective function. To compare
algorithms regarding their performance on a set of instances is more difficult.
For instance, when the objective function is the total tardiness, depending on
the tightness of the due dates there may be instances with an optimal value of 0
and others with an optimal value of thousands. It is not straightforward how to
calculate an indicator of the algorithm quality using both instances. However, in
most cases the commonly accepted measure is the average deviation with respect
to a lower bound or with respect to the best obtained solutions—when enough
different algorithms have been tested.
When it comes to MOPs the problem of measuring the performance of an
algorithm reaches a whole new level. In general, it is not even clear how to
decide which of the two algorithms is the best, even with just one instance.
Several metrics have been published to measure the quality of heuristics (see
e.g. Zitzler et al. 2003). The hypervolume indicator has become a very popular
metric for comparing approximation sets in the last years. The hypervolume
indicator measures the area between the solutions of the Pareto approximation
set and the ‘reference point’. In Ballestín and Blanco (2011) some disadvantages
for MORCPSPs of some measures are discussed: problems with scalability,
sensitiveness to the size of the outcome sets, etc. There is no clear solution to
determine which the best measure is, but some measures should not be used
alone, for instance, the size of the approximation set or the maximum spread.
The former just counts the number of solutions in the approximation set, while
the latter measures the diversity of the approximation set. Both measures can
be clearly misleading, assigning better values to algorithms clearly worse than
others. A good measure in some cases for MORCPSPs is the distance from the
reference set, cf. Czyzak and Jaszkiewicz (1998). The reference set RefSet is
the set union of sets obtained by different algorithms. It is the generalisation
to multi-objective problems of the best known solution for an instance. The
distance between outcome set M and reference set RefSet calculates the distance
between the outcome of an algorithm and this set. This distance can be
defined as:

424 F. Ballestín and R. Blanco

� D 1

jRefSetj
X

y2RefSet
min
x2M fc .x; y/g; where c .x; y/ D max

�D1;:::;v
ˇ
ˇw��

�
f� .x/ � f� .y/

�ˇ
ˇ ; with x 2M; y 2 RefSet; w� D 1=ı�:

Due to the fact that the proximity to the Pareto optimal front is measured, smaller
values are preferable. The weights and values •k are used to standardize all
objective values. It is not easy to determine those •k . We propose to use the
objective function of a feasible solution, for example one given by an established
priority rule. We also propose to add one to the numerator of •k , since, for
example, for the total tardiness the value of •k can be 0. This measure has also
an important disadvantage, as it needs a good reference set. This means that, if a
new MORCPSP is considered, several different methods should be implemented,
so that a good reference set can be calculated. Random solutions, priority rules,
random biased samplings and even other metaheuristic algorithm should be run to
make sure that the developed MOMH has enough good competitors. The MOMH
itself, but with much more time available, can also help build a better reference
set.

• Computational tests
Needless to say, computational tests are essential in the development of research.
It is therefore necessary to develop benchmark instances for the most important
MORCPSPs. These instances should help identify which MOMHs outperform
better, and which components of a MOMH really contribute to the performance
of the algorithm.
In Ballestín and Blanco (2011) we worked with several MOMHs for different
MORCPSPs with ROFS and a MORCPSP with one NROF. We worked with the
standard j120 set for the RCPSP (Kolisch et al. 1995), which consists of 600
projects with 120 non-dummy activities. We introduced additional information
for each activity and each resource to be able to work with functions such as the
NPV (with positive cash flows), tardiness and RI. Different limits for the number
of calculated solutions were imposed. We witnessed the following behaviour
trends: the use of justification, the use of information in the initial population,
and elitism, all of which helped find better solutions. Including the parallel SGS
(see Chap. 1 of this handbook) did not improve the quality of algorithms. We
run three metaheuristic algorithms, the NSGA-II, the SPEA2 and the PSA, and
a sampling procedure to check the quality of the metaheuristic algorithms. Both
SPEA2 and NSGA clearly outperformed the PSA and the sampling procedure.
SPEA2 and NSGA2 offered a similar average quality. The size of the Pareto
front was small or very small in the case of ROFs. This is a strange case in multi-
objective optimization, caused by the positive correlation among the performance
measures. This fact does not happen when NROFs are present. We observed in
several cases how the Pareto fronts were more similar in those cases to what is
expected in a multi-objective problem.

19 Theoretical and Practical Fundamentals 425

19.6 Conclusions

This chapter has established the general framework for working with MORCPSPs
with ROFs. A very good method to develop MOMHs for these problems can be
activity lists plus the serial SGS. However, many techniques and methods can still
be evaluated in these problems, as the RCPSP has also been a testing bank for new
metaheuristic procedures.

Nevertheless, the most important research field in MORCPSPs lies in combining
ROFs with NROFs. The first steps should be to present quality algorithms for bi-
objective problems that combine the makespan with important objective functions
such as the WET, NPV, etc. Those algorithms should obviously search in the correct
solution space, and proofs that any solution from the Pareto front can be attained
must be offered. A second more difficult step could be to combine two negatively
correlated NROFs, probably with the makespan. Here it would be interesting to
see the possible development of new codifications and SGSs, intensification and
diversification methods. In our opinion, MORCPSPs with many different ROFs
and NROFs together will likely need algorithms that work with the schedules
themselves. At the current stage of the research in MORCPSP, those problems may
be more interesting if connected to a real problem rather than with pure academic
research.

Finally, exact algorithms for the most important MORCPSPs cannot be forgotten.
Their existence would help us learn the features of Pareto fronts in the different
MORCPSPs, as well as compare the approximation sets obtained by heuristic
algorithms.

Acknowledgements This research was partially supported by Ministerio de Ciencia e Innovación,
MTM2011-23546.

References

Abbasi B, Shadrokh S, Arkat J (2006) Bi-objective resource-constrained project scheduling with
robustness and makespan criteria. Appl Math Model 180:146–152

Al-Fawzan MA, Haouari M (2005) A bi-objective model for robust resource-constrained project
scheduling. Int J Prod Econ 96:175–187

Ballestín F, Blanco R (2011) Theoretical and practical fundamentals for multi-objective optimisa-
tion in resource-constrained project scheduling problems. Comput Oper Res 38 (1):51–62

Czyzak P, Jaszkiewicz A (1998) Pareto simulated annealing: a metaheuristic technique for
multiple-objective combinatorial optimization. J Multi-Criteria Decis Anal 7(1):34–47

Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist nondominated sorting genetic
algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M et al. (eds) Parallel
problem solving from nature (PPSN VI). Springer, London, pp 849–858

Ehrgott M (2000) Approximation algorithms for combinatorial multicriteria optimization prob-
lems. Int Trans Oper Res 7:5–31

Ehrgott M, Gandibleux X (2004) Approximative solution methods for multiobjective combinatorial
optimization. TOP 12(1):1–88

426 F. Ballestín and R. Blanco

Emelichev VA, Perepelitsa VA (1991) Complexity of vector optimization problems on graphs.
Optimization 22:903–918

Garey MR, Johnson DS (1979) Computers and intractability – a guide to the theory of
NP-completeness. Freeman, San Francisco

Hansen P (1979) Bicriterion path problems. In: Fandel G, Gal T (eds) Multiple criteria decision
making theory and application. LNEMS, vol 177. Springer, Berlin, pp 109–127

Hapke M, Slowinski R (2000) Fuzzy set approach to multi-objective and multi-mode project
scheduling under uncertainty. In: Slowinski R, Hapke M (eds) Scheduling under fuzziness.
Physica, Heidelberg, pp 197–221

Hapke M, Jaszkiewicz A, Slowinski R (1997) Fuzzy project scheduling with multiple criteria.
Fuzzy systems. In: Proceedings of the sixth IEEE international conference, Barcelona, pp
1277–1282

Hapke M, Jaszkiewicz A, Slowinski R (1998) Interactive analysis of multiple-criteria project
scheduling problems. Eur J Oper Res 107:315–324

Horn J (1997) Multicriteria decision making. In: Back T, Fogel DB, Michalewicz Z (eds)
Handbook of evolutionary computation, F1.9. IOP Publishing and Oxford University Press,
Bristol, pp 1–15

Hwang CL, Masud AS (1979) Multi-objective decision making, methods and applications: a state
of the art survey. LNEMS, vol 164. Springer, Berlin

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Manag Sci 41:1693–1703

Nabrzyski J, Wȩglarz J (1995) On an expert system with tabu search for multiobjective project
scheduling. In: Proceedings of INRIA/IEEE symposium on emerging technologies and factory
automation III, pp 87–94

Nabrzyski J, Wȩglarz J (1999) Knowledge-based multiobjective project scheduling problems. In:
Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer, Boston,
pp 383–413

Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce
resources. Springer, Berlin

Odedario BO, Oladokun V (2011) Relevance and applicability of multi-objective resource
constrained project scheduling problem. Eng Technol Appl Sci Res 1(6):144–150

Pan H, Yeh CH (2003) Ametaheuristic approach to fuzzy project scheduling. In: Palade V, Howlett
RJ, Jain L (eds) KES 2003. LNCS, vol 2773. Springer, Heidelberg, pp 1081–1087

Schwindt C, Zimmermann J (2002) Parametrische Optimierung als Instrument zur Bewertung von
Investitionsprojekten. Z Betriebswirt 72:593–617

Serafini P (1986) Some considerations about computational complexity for multi objective
combinatorial problems. In: Jahn J, Krabs W (eds) Recent advances and historical development
of vector optimization. LNEMS, vol 294. Springer, Berlin, pp 222–232

Słowiński R (1981) Multiobjective network scheduling with efficient use of renewable and
nonrenewable resources. Eur J Oper Res 7:265–273

Słowiński R (1989) Multiobjective network scheduling under multiple-category resource con-
straints. In: Slowinski R, Wȩglarz J (eds) Advances in project scheduling. Elsevier, Amsterdam,
pp 151–167

Słowiński R, Wȩglarz J (1985). An interactive algorithm for multiobjective precedence and
resource constrained scheduling problems. In: Proceedings of the 8 World congress on project
management INTERNET85. North-Holland, Amsterdam, pp 866–873

Slowiński R, Soniewiclu B, Wȩglarz J (1994) DSS for multiobjective project scheduling. Eur J
Oper Res 79(2):220–229

Valiant LG, Vazirani VV (1986) NP is as easy as detecting unique solutions. Theor Comput Sci
47:85–93

Valls V, Pérez A, Quintanilla S (2009) Skilled workforce scheduling in service centres. Eur J Oper
Res 193:791–804

Viana A, de Sousa JP (2000) Using metaheuristics in multiobjective resource constraints project
scheduling. Eur J Oper Res 120:359–374

19 Theoretical and Practical Fundamentals 427

Xiong J, Chen Y-W, Yang K-W, Zhao Q-S, Xing, L-N (2012) A hybrid multiobjective genetic
algorithm for robust resource-constrained project scheduling with stochastic durations. Math
Probl Eng 2012. Article ID 786923, 24 pp.

Yannibellia V, Amandib A (2013) Project scheduling: a multi-objective evolutionary algorithm that
optimizes the effectiveness of human resources and the project makespan. Eng Optim 45(1):
45–65

Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition.
IEEE Trans Evol Comput 11(6):712–731

Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applica-
tions. Ph.D. dissertation, Swiss Federal Institute of Technology (ETH), Zurich

Zitzler E, Laumanns M, Thiele L (2001) Sped: improving the strength Pareto evolutionary
algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), ETH
Zurich, Switzerland

Zitzler E, Thiele L, Laumanns M, Fonseca C, Grunert da Fonseca V (2003) Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput
7(2):117–132

Chapter 20
Goal Programming for Multi-Objective
Resource-Constrained Project Scheduling

Belaïd Aouni, Gilles d’Avignon, and Michel Gagnon

Abstract The aim of this chapter is to present a simplified formulation of multi-
objective resource-constrained project scheduling problem based on a goal program-
ming model. Three objectives will be explained and formulated in the context of
project management, namely: the project duration, the project cost, and the quantity
of the allocated resources. These objectives are incommensurable and conflicting.
The proposed model will provide the baseline schedule of the best compromise
based on the project manager’s preference structure.

Keywords Baseline schedule • Goal programming • Manager’s preferences •
Multi-criteria • Project scheduling • Resource constraints

20.1 Introduction

The multi-criteria decision aid (MCDA) paradigm is driven by the need to deal
with decision-making situations where several incommensurable and conflicting
dimensions (attributes, criteria or objectives) are simultaneously optimized. The
aggregation of different objectives requires from the decision-maker (DM) or the
manager some compromises or tradeoffs. Hence the obtained solution is the one of

B. Aouni (�)
Department of Management and Marketing, College of Business and Economics, Qatar
University, Doha, Qatar
e-mail: belaid.aouni@qu.edu.qa

G. d’Avignon
Faculty of Business Administration, Laval University, Quebec, QC, Canada
e-mail: Gilles.DAvignon@fsa.ulaval.ca

M. Gagnon
AGL & Associates, 213 du Grand-Hunier, Saint-Augustin-de-Desmaures, QC, Canada
e-mail: Gagnon.Michel.J@gmail.com

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_20

429

mailto:belaid.aouni@qu.edu.qa
mailto:Gilles.DAvignon@fsa.ulaval.ca
mailto:Gagnon.Michel.J@gmail.com

430 B. Aouni et al.

the best compromise. In fact, within the MCDA paradigm the DM pure rationality
and the optimal solution concepts have been evolved to the notion of satisficing
concept where the outcome of the decision-making process can be seen as a
recommendation (Simon 1956, 1976; Lee 1973; Ignizio 1976; Aouni et al. 2009).

Some of the MCDA aggregation procedures are based on the distance function
model (DFM) that minimizes the distance between the achievement and the

aspiration levels of � objectives as follows: Min.
�P�

�D1
�
w�
ˇ
ˇg� � f� .x/

ˇ
ˇ
�l
�1=l

,

subject to x 2 X � R
n, where f� .x/ represent the �-th achievement level of the

alternatives,X designates the set of the feasible solutions, g� are the fixed goals for
objectives �, l is a parameter that defines the family of distance functions and w�
are the relative importance of the objectives �. The Goal Programming (GP) model
is a special case of the DFM where the parameter l D 1 and all objective functions
f�.x/ are linear. The linear representation of the FDM minimizes the unwanted
deviations between the aspirations levels g� and the achievement levels f�.x/. The
GP model has been introduced first by Charnes et al. (1955) as well as Charnes and
Cooper (1961). This model has been widely applied in several fields (Tamiz et al.
1995, 1998, Aouni and Kettani 2001, Jones and Tamiz 2002, Caballero et al. 2006,
Caballero and Hernandez 2006, Glover and Sueyoshi 2009).

One of the fields of the GP application is the resource-constrained project
scheduling problem. Recently, Gagnon et al. (2012) developed a GP model that
integrates explicitly, through the concept of satisfaction functions, the project
manager’s preferences for generating the baseline schedule of the best compro-
mise among a set of conflicting project objectives, such as: the project duration,
the project cost of different resource types, and the fluctuation of the required
resources. The aim of this chapter is to present a framework of the use of GP
model as a tool for the multi-objective resource-constrained project scheduling
problem. Section 20.2 presents the GP model. Section 20.3 deals with the modeling
of the scheduling problem under resource constraints. Section 20.4 defines the
multi-objective resource-constrained project scheduling problem. A simplified GP
formulation for the resource-constrained project scheduling problem is provided in
Sect. 20.5. Section 20.6 is devoted to some concluding remarks.

20.2 Goal Programming Model

Linear programming (LP) was initially developed by George Dantzig in the 1940s
and it has been applied widely in several domains and economic sectors. Within
the mono-criteria paradigm, the LP models optimize only one objective function
such as the maximization of the profit or the minimization of the cost. In the
context of a multi-criteria decision aid paradigm, the GP model can be seen as
an extension of the LP models where several incommensurable and conflicting

20 Goal Programming for Multi-Objective Resource-Constrained Project Scheduling 431

objectives are simultaneously aggregated and optimized. This model is a DFM
where the deviations between the achievement and the aspiration levels are to
be minimized. Through this model, the DM looks for a solution (alternative)
with an achievement level closer to the target values g� for each objective (for
� D 1; 2; : : :; v/. This can be expressed by the following mathematical relation:
f� .x1; x2; : : : ; xn/ Š g� (for � D 1; 2; : : :; v). The left side of this relation denotes
the achievement level or the performance of the different alternatives in contributing
to the objective �. The right side is the DM’s aspiration levels (goals) associated
with each objective. The difference between the achievement and the aspiration
levels is expressed by the unwanted positive ıC� and negative ı�� deviations. In fact,
the DM will be satisfied with an alternative that minimizes the following total sum

of deviations
P�

�D1
�
ıC� C ı��

�
.

For each objective, the DM may face the three following situations:

1. The achievement and the aspiration levels are equal (f� .x1; x2; : : : ; xn/ Š g�,
for some � D 1; 2; : : : ; �/. This means that the obtained solution fits well the
target value fixed by the DM for specific objectives. In such case, there are no
deviations from the goals .ıC� D ı�� D 0/.

2. The achievement level is lower than the aspiration level (f� .x1; x2; : : : ; xn/ <
g�, for some � D 1; 2; : : : ; �/. In such case, the target value of the objective has
not been met and there are negative deviations for some �.ı�� > 0 and ıC� D 0/.

3. The achievement level is greater than the aspiration level (f� .x1; x2; : : : ; xn/ >
g�, for some � D 1; 2; : : : ; �/. In such case, the target value of the objective has
been met and there are positive deviations for some �.ıC� > 0 and ı�� D 0/.

From these three situations, the unwanted deviational variables ıC� and ı�� are
mutually exclusive and the solution of the best compromise will satisfy the relation
ıC� �ı�� D 0, (for� D 1; 2; : : : ; �/ (Martel and Aouni 1990). Hence, there is no need
to add this relation in the constraints of the GP model.

The GP aims to minimize the total sum of deviations under the two following
types of conditions: (a) constraints related to the objectives, and (b) constraints
of the project or the decision-making situation. The alternative that optimizes
the objectives must respect the model constraints. Charnes and Cooper (1961)
developed the first standard formulation of the GP model as follows:

Min. Z D
X�

�D1
�
ıC� C ı��

�

s:t: f� .x/C ı�� � ıC� D g� .� D 1; 2; : : : ; �/
x 2 X
ı�� and ıC� � 0 .� D 1; 2; : : : ; �/

432 B. Aouni et al.

This formulation is known as the standard GP where the objectives have the same
relative importance. However, the DM may appreciate the objectives differently.
Moreover, for the same objective, the DM can provide different weights for the
positive and the negative deviations depending on his/her preferences. In order to
integrate the relative importance of the objectives within the GP model, Charnes
and Cooper (1977) have proposed the weighted GP as follows:

Min: Z D
X�

�D1
�

wC� ıC� C w��ı��
�

s.t. f� .x/C ı�� � ıC� D g� .� D 1; 2; : : : ; �/
x 2 X
ı�� and ıC� � 0 .� D 1; 2; : : : ; �/

where wC� and w�� are the relative importance (weights) of the positive and
the negative deviations for objective �, respectively. According to Kettani et al.
(2004), the weights play the following two roles: (a) the normalization of different
measurement scales of the objectives, and (b) the valuation of each objective.
Zeleny (1982) highlighted that there are two types of weight estimates namely
subjective and objective estimates. The subjective estimates depend on social,
cultural, traditional and environmental influences. The objective estimates are
related to the intrinsic information contained in the alternatives and the objectives.
Generally, the DM provides the relative importance of the objectives at an early
stage of the decision-making process and the determination of the weights is usually
done in interactive and iterative manners (Lee and Olson 1999). This can be seen as
a learning process where the DM can learn more about his/her preferences. The
DM can modify the values of the weights while he/she is evolving towards the
best recommendation or the solution of the best compromise. In fact, there is no
optimal solution or alternative since the objectives are, in general, conflicting and
incommensurable. Therefore, the DM has to make some tradeoffs based on his/her
preferences. The different variants of GP integrate differently of DM’s preferences
during the decision-making process. In their paper, Aouni et al. (2009) present the
main variants of the GP model and they propose a typology based on the moment
that the DM’s preferences are integrated in the GP variant. Aouni et al. (2009)
present and discuss the formulations of the most known variant of the GP model.
Within this section, we will provide the standard and the weighted GP variants. We
will also present the mathematical formulation of the Lexicographic GP (LGP) or
the pre-emptive GP. The LGP is one of the well and wide applied variant because
it is easier for the DM to provide his/her preferences through a lexicographic order.
The most important objectives will be at the higher level and so on. Those are less
important for the DM will be at the lower priority levels. In fact, the objectives in
the lower priority levels will play a marginal role in the decision-making process.
This can be seen as a limit of the LGP.

20 Goal Programming for Multi-Objective Resource-Constrained Project Scheduling 433

The mathematical formulation of the LGP model is as follows:

Lex: Min: Z D �l1
�
ı�; ıC

�
; l2
�
ı�; ıC

�
; : : : ; lh

�
ı�; ıC

��

s:t: f� .x/C ı�� � ıC� D g� .� D 1; 2; : : : ; �/
x 2 X
ı�� and ıC� � 0 .� D 1; 2; : : : ; �/

where Z represents an ordered vector of the deviation variables, h indicates the
priority levels. Obtaining a solution through the LGP model requires solving h sub-
programs in sequential manner. The objectives at the higher priority levels play an
important role and the obtained values of their deviations will be introduced suc-
cessively as constraints within the mathematical programs related to the objectives
placed in lower levels of priority.

The GP has been applied in several domains and in the literature it is considered
as the most known model of the multi-objectives programming tools. This model is
continually fed with theoretical developments and new applications with resounding
success (Aouni and Kettani 2001). In Sect. 20.5 of this chapter we will be presenting
how the GP model has been applied to the scheduling problem under resource
constraints. In the Sect. 20.3, one will provide a brief review of the resource-
constrained project scheduling problem.

20.3 Modeling of the Project Scheduling Problem Under
Resource Constraints

The resource-constrained project scheduling problem (RCPSP) consists of a set
V D f1; : : : ; ng of n activities. A project may be represented by an activity-on-
node network. Two additional dummy activities of null duration, noted by 0 and
n C 1 are introduced to set the beginning and the end nodes of the network and
they provide, respectively, the start and the completion time of the project. Logical
and technological execution constraints between two activities result in precedence
relations, denoted by .i; j /, between the activities concerned. Hence, the precedence
relations define a partial order relation. The set Pred .j / denotes all immediate
predecessors of the activity j so that i 2 Pred .j / if and only if i immediately
precedes j . Here, V denotes the set of all the nodes representing the activities of
the project and E denotes the set of precedence relations between the activities.
The corresponding graph, denoted by G D .V;E/, has to be without circuit. Each
activity j has a fixed time duration, noted pj 2 N. Furthermore, all the project
activities cannot be interrupted during their execution. To execute the project, each
activity may require renewable resources taken out of a set of resource types given
by R D f1; : : : ; Kg. For each resource type k, k 2 R, a determined amount of

434 B. Aouni et al.

renewable resources, noted rjk 2 N, is required for each period (time unit) t of the
activity duration pj to execute the activity j . The renewable resources are allocated
for the activity duration only and they become again available at the end of the
activity, hence the name renewable resources. The maximum amount of renewable
resources of type k available at each period t is given by Rk . In this traditional
RCPSP model, the rate of use of renewable resources of type k is constant during
the execution of each activity j .

In the same way, the objective function of the traditional RCPSP optimization
problem is to minimize the longest path length of the project activity network,
often designated by the project makespan. A feasible solution S to the scheduling
problem gives the start times of each activity j , satisfying the following two
conditions:

1. the immediate predecessor relationships,
2. the availability constraints of resources for each time period.

A regular objective function is a non-decreasing function of the activity start
times, e.g., the makespan minimization in the RCPS problem is a regular objective
function.

In practice, the search for an optimal solution to this problem is only applicable
to projects of small size up to 60 tasks. Błażewicz et al. (1983) has demonstrated
that the RCPSP belongs to the class of NP-hard problems. To solve large scale
RCPSPs in reasonable time, efficient heuristics or meta-heuristics are needed.

The best known heuristic method being used belongs to one of two classes: the
class of priority rule-based heuristic (Boctor 1993) and the class of local search
approaches often called meta-heuristics. A priority rule-based heuristic builds a
schedule by selecting activities from a range of activities available successively so
that all activities are sequenced (Boctor 1993). There are still two types of priority
rule-based heuristics, the serial heuristics where the priority of the activities is
predetermined and remains fixed for the duration of the scheduling process, and the
parallel heuristics where the activity priorities of the current active set at period t are
updated each time an activity is inserted in the partial schedule under construction.

The class of local search approaches available in the literature groups among
them, the tabu search, the simulated annealing and genetic algorithms (Hartmann
1999). These meta-heuristics start with an initial solution, often obtained by a
priority rule-based heuristic method, and try to improve it according to varying
search strategies. The improvement of current solutions at a given stage of the search
is obtained by transforming one or several solutions into new ones. These meta-
heuristics stop with the best solution found when given conditions are satisfied.

Over the years, to better reflect the needs of project management and to
implement diverse constraints to reflect practical situations, many variants and
extensions of the basic RCPSP problem model have been introduced. Variants may
account, for example, for the variability of the amount of resources available during
the project execution, lags and delays between the activities to accelerate the project,
activity due dates and a project deadline. We refer the reader to the papers by
Brucker et al. (1999); Kolisch and Hartmann (1999) and Artigues et al. (2008) for a
survey of many of the best known RCPSP problem variants.

20 Goal Programming for Multi-Objective Resource-Constrained Project Scheduling 435

Other objective functions with appropriate solution methods have been develop
to satisfy Project Manager (PM) decision making requirements. Depending on
the management needs of particular projects, the PM may be looking to satisfy
other objectives such as the minimization of the total cost of the project, the
maximization of the net present value, the minimization of the maximum workload
of renewable resources over a given period and other resource related objective
functions such as resource leveling. Considering and aggregating simultaneously
several conflicting and incommensurable objectives requires trade-offs that the
PM should made according to his/her preferences. In the Sect. 20.4, one will be
discussing the Multi-Objective Resource-Constrained Project Scheduling Problem
(MORCPSP).

20.4 Multi-Objective Resource-Constrained Project
Scheduling Problem

In fact, the RCPSP is an important academic problem in project management, since
many real-life applications in engineering, forestry, mining operations, software
implementations and many other areas make more and more use of such mathemat-
ical modeling. During the last two decades, the RCPSP problem has been largely
studied in the Operations Research literature. In solving the RCPSP problem, the
minimization of the project duration, noted Cmax, is the usual objective (Kolisch and
Hartmann 2006). That objective is defined as the duration between the start time and
the end time of the project. In some cases, the objective could be the maximization
of the net present value of the project, the minimization of the project cost or
the minimization of the quantity of resources of given types, allocated in a time
period during the project planning. For each of these objectives, extensive research
and progress has been reported, mainly through the use of heuristic procedures
for practical size project seeking solutions in efficient time as reported in the
literature.

Moreover, in real applications, the PM, as a decision maker, has to consider
several objectives at the same time in deciding on a particular baseline schedule
for the project. Here, the PM must usually consider trade-offs (compromises)
between the project duration, the project cost of different resource types and other
performance measures. Nowadays, for the implementation of project management
in organizations, one observes that PMs rely to A Guide to the Project Management
Body of Knowledge—PMBOK Guide, Fifth edition (PMI 2013). That Guide
suggests producing, as an output, a baseline schedule after considering activity
durations and its resource requirements, among others. Therefore, the project
scheduling problems could be linked to multi-objective decision-making problems.
In this context, one faces to the MORCPSP. In this multi-objective paradigm, this
chapter focuses on methodologies for explicitly considering several objectives or
criteria used for the choice by the PM of the “best” baseline schedule. The need

436 B. Aouni et al.

for further research to improve these multi-objective scheduling tools was raised
by Pollack-Johnson (1998). It should be noted here that the literature on project
scheduling based on several objectives is sparse when compared to the mono-
criterion one. One direction of improvement would benefit from incorporating
methodological developments from multi-objective decision-aid literature. Recent
results in multiple objectives literature for project management are promising in
this context (Gagnon and d’Avignon 2006; Gagnon et al. 2007, 2012).

In order to explore the generation of baseline schedules, one needs to recall
the basic formulation of MORCPSP. Conceptually, a MORCPSP has the following
form:

Optimize f .S/ D ff1 .S/ ; f2 .S/ ; : : : ; f� .S/g
such that S 2 S

where S D .S0; : : : ; SnC1/ 2 R
nC2
�0 denotes a vector of decision variables

corresponding to a schedule, S is the set of feasible schedules and f .S / is
the image of the feasible set in the criterion space representing the criteria to be
optimized. Set S is given implicitly by the various scheduling constraints and the
selected criteria by restraining the size of the set of feasible schedules. The solution
of a MORCPSP consists in choosing the “best values” of the vector f .S/ calculated
on S from the set S . In general, a MORCPSP yields to a large set of Pareto optimal
solutions. A feasible solution S is considered as a Pareto optimal or efficient if there
is no better feasible solution S 0 2 S such that f .S 0/ � .S/ and f� .S 0/ < f� .S/
for some �, where � indexes the multi-objective function vector, and assuming
the minimization of all objective functions. In this case, the multi-objective vector
f .S/ is said to dominate f .S 0/. For this and since the objectives are conflicting, it
is important to be aware of trade-offs among the solutions because the improvement
of one objective function value is generally gained at the expense of at least another
objective function value. The Pareto optimal set, denoted by PF , is a subset of
all the possible solutions in S . A class of solution algorithms aims to determine
the Pareto front which is the set that contains the evaluated objective vectors
of PF .

Among the many attempts in solving the MORCPSP, one considers the use of
the goal programming (GP) which has the advantage of explicitly making use of
the PM’s preferences in choosing a baseline schedule for the project. Section 20.5
presents the methodological formulation of how the GP incorporates explicitly the
PM’s preferences into a trade-offs analysis for the generation of a baseline schedule.
The idea of trade-off analysis between quality, time, and cost for the project has
recently been proposed by Pollack-Johnson and Liberatore (2006). In fact, one
utilizes the weighted GP model introduced in Sect. 20.2 to solve the MORCPSP
discussed in Sect. 20.3 and described in this section.

20 Goal Programming for Multi-Objective Resource-Constrained Project Scheduling 437

20.5 Resource-Constrained Project Scheduling Through the
Goal Programming Model

In order to present the GP formulation for the MORCPSP, one used the notation
defined in Sect. 20.3 as well as the following ones. The project planning horizon,
denoted by T , is a number of time periods, noted by t D 1; : : : ; T , large enough
to complete all project activities. Given the upper bound T on the project duration,
the precedence relations can be utilized to calculate the earliest start time ESj and
latest completion time LCj , containing the precedence feasible completion time of
activity j.j 2 V /, by forward and backward recursion. Moreover, the maximal
availability Rk of resources of type k is given by the PM.

The literature offers different formulations for the project cost. In this paper, we
are interested to minimize the resource availability cost over the project duration.
Considering a per-period resource availability cost ckr for every named resource r
of type k.r 2 f1; : : : ; Rkg/, the PM can derive an upper bound on the project cost
C , which is usually linked to the project budget. For a given schedule and having
the required amount of resources for each activity, one wants to find the appropriate
number of resources of each type to be assigned over the project duration. Now,
having a per-period availability cost for each named resource, one determines the
project availability cost by multiplying the project duration by the availability cost
of resources assigned to the project according to a project schedule.

Consider a PM pursuing the following project scheduling objectives: (a) the
minimization of the project duration (makespan); (b) the minimization of the project
availability cost ; and (c) the minimization of the quantity of allocated resources of
each type.

One uses the couple .x; y/ to denote a schedule S to the MORCPSP. Hence, the
first entry of the couple, x, is a vector indicating the finished periods where:

xjt D
�
1; if the activity j finishes in period t;
0; otherwise:

The second entry of the couple, y, is a vector indicating the resource assignments
where:

ykr D
�
1; if the resource r of type k is assigned to project;
0; otherwise:

With the above notation, one observes that a solution or a schedule to the MORCPSP
is given by the couple .x; y/. We will be using also the following notations:

438 B. Aouni et al.

ESj ;LCj Earliest start and latest completion times of activity j
pj Duration, in consecutive periods, of activity j
Pred .j / Set of immediate predecessors of activity j
T Feasible project planning horizon
gT Goal for the project duration specified by the PM, gT � T
ckr Per-period availability cost of named resource r of type k when

allocated to the project
C Upper bound on project cost
gc Goal for the project cost specified by the PM, gc � C
rjk Required amount of resources of type k per period to execute

activity j
Rk Maximal availability of resources of type k, k 2 R, at each

point in time
gk Goal for the amount of resources of type k allocated during the

project, (k 2 K/
xjt Zero-one decision variable equal to 1 if the activity j ends in

the time period t and equal to 0 otherwise
ykr Zero-one decision variable equal to 1 if the named resource r

of type k is allocated to the project and 0 otherwise
fT .x; y/ Project duration for the schedule S D .x; y/, fT .x; y/ DPLCnC1

tDESnC1
txnC1;t

fc .x; y/ Project cost for the schedule S D .x; y/, fc .x; y/ D�PLCnC1

tDESnC1
txnC1;t

� �PK
kD1

PRk
rD1 ckrykr

�

fk .x; y/ Amount of resources of type k allocated in a period dur-
ing the project for the schedule S D .x; y/, fk .x; y/ DPRk

rD1 ykr.k D 1; 2; : : : ; K/
ı� Deviation between the objective function value f� .x; y/ and

the goal g�, � D T; 1; 2; : : : ; K; c
For a schedule S D .x; y/, the resource assignments, fk .x; y/, gives precisely the
maximum amount of resources of type k allocated in at least one period during
the project. This amount will then be used to determine the availability cost for the
whole project duration.

The weighted GP variant will be utilized to formulate the MORCPSP, as follows:

Min: Z D wT ıT C wcıc C
XK

kD1 wkık

s:t:
XLCj

tDESjCpj
xjt D 1 .j D 0; 1; : : : ; nC 1/ (20.1)

XLC

tDESiCpi
txi;t �

XLCj

tDESjCpj
�
t � dj

�
xj;t

.i 2 Pred .j / I j D 1; 2; : : : ; nC 1/ (20.2)

20 Goal Programming for Multi-Objective Resource-Constrained Project Scheduling 439

Xn

jD1
XminftCpj�1;LCj g

�Dmaxft;ESjCpj g rjkxj� �
XRk

rD1 ykr

.k D 1; : : : ; KI t D 1; 2; : : : ; T / (20.3)
XRk

rD1 ykr � ık D gk .k D 1; : : : ; K/ (20.4)
	XLCnC1

tDESnC1

txnC1;t

�
	XK

kD1
XRk

rD1 ckrykr

� ıc D gc (20.5)

XLCnC1

tDESnC1

txnC1;t � ıT D gT (20.6)

xjt D f0; 1g
�
j D 0; 1; : : : ; nC 1I t D ESj C pj ; : : : ;LCj

�
(20.7)

ykr D f0; 1g .k D 1; : : : ; KI r D 1; : : : ; Rk/ (20.8)

ıT ; ıc and ık � 0

Since the three considered objectives are to be minimized, the target values (goals)
for the objectives can be seen as an ideal point that can be computed by minimizing
separately each objective subject to the same set of constraints. The target values,
included in the previous weighted GP model, gk .k D 1; : : : ; K/, gc , and gT are
obtained by solving the following three mathematical programs:

1. Target value for the amount of resources of type k to be allocated during the
project .gk/:

Min.
PRk

rD1 ykr

Subject to the constraints (20.1), (20.2), (20.3), (20.7) and (20.8).

2. Target value for the resource availability cost of the project (gc/:

Min.
�PLCnC1

tDESnC1
txnC1;t

�
�
�PK

kD1
PRk

rD1 ckrykr

�

Subject to the constraints (20.1), (20.2), (20.3), (20.7) and (20.8).

3. Target value for the project duration (gT /:

Min.
PLCnC1

tDESnC1
txnC1;t

Subject to the constraints (20.1), (20.2), (20.3), (20.7) and (20.8).

The parameters wT , wc and wk are the relative importance of the objectives: (a) the
project duration, (b) the project cost, and (c) the quantity of the allocated resources
of type k, .k D 1; : : : ; K/, respectively. These parameters are provided by the PM
according to his/her preferences. This problem can be also formulated through the
Lexicographic GP where the PM will be asked to provide the priority level of the
three objectives. For simplicity, we will keep in this chapter only the formulation
of the weighted GP. In their paper, Gagnon et al. (2012) provide a GP formulation
for the MORCPSP where the PM’s preferences are explicitly integrated through the
satisfaction functions.

440 B. Aouni et al.

A Tabu search algorithm has been designed to solve the MORCPS. The algorithm
proceeds in two levels. At the first level, the algorithm generates a new resource
configuration. Starting with this resource configuration at the second level, the
algorithm iterates and tries to improve the current schedule by local search. For each
schedule, the algorithm verifies the number of resources allocated and evaluates
the objective functions simultaneously. It also keeps a current list of approximate
Pareto optimal solutions. The list is updated each time the algorithm finds a new
non-dominated solution and removes.

The proposed weighted GP formulation in this context will allow the PM to
obtain the best baseline schedule that integrates simultaneously several conflicting
objectives and his/her preferences through the relative importance of the objectives.
This formulation can be extended to other variants of the GP.

20.6 Conclusions

The aim of this chapter was to present a simple formulation of the MORCPSP. The
provided formulation is based on the GP model and it aggregates simultaneously
the following three incommensurable and conflicting objectives: (a) the project
duration, (b) the quantity of resources of each type to be allocated in a period during
the project, and (c) the project cost. The proposed model generates the best baseline
schedule that will allow monitoring and controlling the realization of a project.
The PM’s preferences are partially integrated through the relative importance
coefficients (the weights) associated with the project scheduling objectives. In fact,
these weights will allow the PM to make compromises among the project duration,
the project cost, and the amount of resources to be allocated. This process of
elucidating the PM’s preferences will be done through an iterative manner that
allows him/her to learn more about the decision-making situation. It is a learning
process that fits well with the paradigm of decision aid axioms where the PM is
involved along the decision-making process.

References

Aouni B, Kettani O (2001) Goal programming model: a glorious history and a promising future.
Eur J Oper Res 133:225–231

Aouni B, Hassaine A, Martel J-M (2009) Decision-maker’s preferences modelling within the goal
programming model: a new typology. J Decis Anal 16:163–178

Artigues C, Dempsey S, Néron E (eds) (2008) Resource-constrained project scheduling: models,
algorithms, extensions and applications. Wiley, Hoboken

Błażewicz J, Lenstra JK, RinnooyKan AHG (1983) Scheduling subject to resource constraints:
classification and complexity. Discrete Appl Math 5:11–24

Boctor FF (1993) Heuristics for scheduling projects with resource restrictions and several resource-
duration modes. Int J Prod Res 31:2547–2558

20 Goal Programming for Multi-Objective Resource-Constrained Project Scheduling 441

Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project
scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41

Caballero R, Hernandez M (2006) Restoration of efficiency in a goal programming problem with
linear fractional criteria. Eur J Oper Res 172:31–39

Caballero R, Gomez T, Ruiz F (2006) Goal programming: realistic targets for the near future.
In: Proceedings of the VII international conference on multi-objective and goal programming,
Toulouse

Charnes A, Cooper WW (1961) Management models and industrial applications of linear
programming. Wiley, New York

Charnes A, Cooper WW (1977) Goal programming and multiple objectives optimisations. Eur J
Oper Res 1:39–54

Charnes A, Cooper WW, Ferguson R (1955) Optimal estimation of executive compensation by
linear programming. Manage Sci 1:138–151

Gagnon M, d’Avignon GR (2006) Project planning and scheduling using goal programming
models. In: Proceedings of ASAC 2006, Banff, Canada

Gagnon M, d’Avignon GR, Aouni B (2007) Project planning and scheduling using goal program-
ming models. In: Proceedings of ASAC 2007, Ottawa

Gagnon M, d’Avignon G, Aouni B (2012) Resource-constrained project scheduling through the
goal programming model: integration of the manager’s preferences. Int Trans Oper Res 19:547–
565

Glover F, Sueyoshi T (2009) Contributions of Professor William Cooper in operations research and
management science. Eur J Oper Res 197:1–16

Hartmann S (1999) Project scheduling under limited resources: models, methods, and applications.
LNEMS, vol 478. Springer, Berlin

Ignizio JP (1976) Goal programming and extensions. Lexington Books, Lexington
Jones DF, Tamiz M (2002) Goal programming in the period 1990–2000. In: Ehrgott M, Ganibleux

X (eds) Multicriteria optimization: state of the art annotated bibliographic surveys. Kluwer,
Boston, pp 129–170

Kettani O, Aouni B, Martel J-M (2004) The double role of the weight factor in the goal
programming model. Comput Oper Res 31:1833–1845

Kolisch R, Hartmann S (1999) Heuristic algorithms for solving the resource-constrained project
scheduling problem: classification and computational analysis. In: Wellers J (ed) Handbook on
recent advances in project scheduling. Kluwer, Boston, pp 147–178

Kolisch R, Hartmann S (2006) Experimental evaluation of heuristics for the resource-constrained
project scheduling problem: an update. Eur J Oper Res 174:23–37

Lee SM (1973) Goal programming for decision analysis of multiple objectives. Sloan Manage Rev
14:11–24

Lee SM, Olson DL (1999) Goal programming. In: Gal T, Stewart TJ, Hanne T (eds) Multicriteria
decision making: advances in MCDM models, algorithms, theory and applications. Kluwer,
Boston, pp 203–235

Martel J-M, Aouni B (1990) Incorporating the decision-maker’s preferences in the goal program-
ming model. J Oper Res Soc 41:1121–1132

PMI (2013). A guide to the project management body of knowledge (PMBOK®Guide). Project
Management Institute, Newtown Square

Pollack-Johnson B, Liberatore MJ (1998) Project management software usage patterns and
suggested research directions for future developments. Proj Manage J, 29(2): 19–28

Pollack-Johnson B, Liberatore MJ (2006) Incorporating quality considerations into project
time/cost tradeoff analysis and decision making. IEEE T Eng Manage 53(4):534–542

Simon HA (1956) Rational choice and the structure of the environment. Psychol Rev 63:129–138
Simon HA (1976) From substantive to procedural rationality. In: Latsis S (ed) Method and

appraisal in economics. Cambridge University Press, Cambridge

442 B. Aouni et al.

Tamiz M, Jones DF, El-Darzi E (1995) A review of goal programming and its applications. Ann
Oper Res 58:39–53

Tamiz M, Jones DF, Romero C (1998) Goal programming for decision-making: an overview of the
current state-of-the-art. Eur J Oper Res 111:569–581

Zeleny M (1982) Multiple criteria decision making. McGraw-Hill, New York

Part VII
Multi-Mode Project Scheduling Problems

Chapter 21
Overview and State of the Art

Marek Mika, Grzegorz Waligóra, and Jan Wȩglarz

Abstract In this chapter we present a state-of-the-art in the area of multi-mode
project scheduling problems. These problems are characterized by the fact that
each activity of a project can be executed in one of several modes, representing
a relation between the resource requirements of the activity and its duration. In the
overview we present the models and solution approaches that have been proposed
in the literature across the class of multi-mode project scheduling problems up
to now. Firstly we deal with the basic multi-mode resource-constrained project
scheduling problems with the objective to minimize the project duration. We present
the mixed-integer linear programming formulations of the problem, describe the
exact approaches, the existing methods for lower bounds calculation, as well as
heuristic approaches to solve the problem. Secondly, we also discuss special cases
and extensions of the basic problem. Finally, we analyze multi-mode problems with
other objectives, distinguishing between financial and resource-based objectives.

Keywords Exact approaches • Heuristics • Lower bounds • Multi mode •
Project scheduling • Resource constraints

21.1 Introduction

The multi-mode resource-constrained project scheduling problem (MRCPSP),
denoted in the three-field classification ˛ jˇj for project scheduling as
MPS j prec jCmax, is a generalization of the single-mode RCPSP .PS j prec jCmax /

(see Chap. 1 of this handbook). There are two main differences between these
problems. In the MRCPSP each activity can be performed in one of several
execution modes, and two other basic categories of discrete resources are considered
in addition to renewable ones: nonrenewable and doubly constrained. A mode is a
pair whose first element is a vector of resource requirements of an activity, and the

M. Mika (�) • G. Waligóra • J. Wȩglarz
Institute of Computing Science, Poznań University of Technology, Poznań, Poland
e-mail: Marek.Mika@cs.put.poznan.pl; Grzegorz.Waligora@cs.put.poznan.pl;
Jan.Weglarz@cs.put.poznan.pl

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_21

445

mailto:Marek.Mika@cs.put.poznan.pl
mailto:Grzegorz.Waligora@cs.put.poznan.pl
mailto:Jan.Weglarz@cs.put.poznan.pl

446 M. Mika et al.

second element is the activity processing time. Doubly constrained resources are
usually not considered explicitly, since each such resource can be replaced by a pair
of one renewable and one nonrenewable resource, according to the transformation
proposed by Talbot (1982).

In the MRCPSP a set of n nonpreemptable activities have to be performed using
and consuming resource units from a given set of resources. The structure of the
project is represented by an Activity-on-Node network G D .V;E/ where set
of nodes V represents activities, and set of arcs E represents direct precedence
constraints between pairs of activities. Usually, two additional dummy activities
are members of the set V : activity 0 which is the unique initial activity without
predecessors, and activity n C 1 which is the unique terminal activity without
successors. Both dummy activities have durations and all resource requirements
equal to 0. The planning horizon is divided into time periods which means that time
is also a discrete variable. All activities and resources are available at the start of the
project. The objective is to find a vector of mode assignments as well as precedence-
and resource-feasible start times for all activities such that the project duration (or
makespan) is minimized.

The MRCPSP is NP-hard in the strong sense being a generalization of the
RCPSP. Moreover, for more than one nonrenewable resource the problem of finding
a feasible solution is already NP-complete (Kolisch 1995).

In this chapter we present a survey of recent developments concerning the
deterministic multi-mode resource-constrained project scheduling problem. Within
this class of problems it is an updated version of the survey presented by Wȩglarz
et al. (2011).

The chapter is organized as follows. In Sect. 21.2 some mixed-integer linear
programming formulations are presented. In Sects. 21.3–21.6 we survey the results
concerning the multi-mode problems with the makespan minimization objective.
Section 21.3 deals with the exact approaches. In Sect. 21.4 several methods of the
lower bounds calculations are presented. Section 21.5 is devoted to the heuristic
approaches and is divided into three parts concerning priority-rule based algorithms,
metaheuristics and local search, and other heuristic approaches. Special cases and
extensions of the MRCPSP with the makespan minimization objective are described
in Sect. 21.6. Section 21.7 deals with multi-mode problems with objectives other
than the makespan, from among which the maximization of the net present value
(NPV) is discussed most extensively.

21.2 MILP Formulations

The most commonly used mathematical model of the MRCPSP was introduced by
Talbot (1982), and based on the model of the RCPSP by Pritsker et al. (1969). It is
formulated as follows:

21 Overview and State of the Art 447

Min:
LCnC1X

tDECnC1

t � znC1;1;t (21.1)

s:t:
X

m2Mj

LCjX

tDECj

zjmt D 1 .j 2 V / (21.2)

X

m2Mj

LCiX

tDECi

t � zimt �
X

m2Mj

LCjX

tDECj

t � zjmt � pjm

�
.i; j / 2 E

�

(21.3)

X

j2V a

X

m2Mj

minftCpjm�1;LCj gX

qDmaxft;ECj g
rjkm � zjmq � Rk

�
k 2 RI
t D 1; : : : ; d

� (21.4)

X

j2V a

X

m2Mj

LCjX

tDECj

rjkm � zjmt � Rk .k 2 Rn/ (21.5)

zjmt 2 f0; 1g
�
j 2 V Im 2Mj I t D ECj ; : : : ;LCj

�

(21.6)

where:

• binary variable zjmt D 1 if and only if activity j executed in mode m 2 Mj is
completed at the end of time period t

• Rk is the number of available units of renewable (nonrenewable) resource k 2
R .k 2 Rn/

• rjkm is the number of units of the k-th renewable (nonrenewable) resource
required by activity j executed in modem 2Mj

• pjm is the duration of activity j executed in modem 2Mj

• ECj ;LCj are the earliest and the latest completion time of activity j calculated
assuming that the shortest duration mode is assigned to each activity, resource
constraints are not taken into account, and the latest possible completion time for
the entire project Nd is calculated for the modes with the longest durations.

Constraints (21.2) ensure that each nonpreemptable activity is performed exactly
once in exactly one mode. Precedence constraints are guaranteed by inequali-
ties (21.3). Constraints (21.4) and (21.5) ensure that the renewable and nonre-
newable resource limits are not exceeded, respectively. Finally, constraints (21.5)
define the binary status of the decision variables. The objective is to minimize the
makespan, which is defined as completion time of the final dummy activity nC 1
and is expressed by objective function (21.1). The solution of the problem (21.1)–
(21.6) defines an optimal schedule as a pair of lists: (i) list of assignments of modes
to activities, (ii) list of activity completion times.

448 M. Mika et al.

Another mathematical formulation of the MRCPSP, based on the feasible subsets
concept, is presented by Maniezzo and Mingozzi (1999). A feasible subset A� of
the set of all activity-mode combinations is a set of pairs .j;m/, where m 2 Mj

denotes the processing mode assigned to activity j 2 V a that satisfy the following
conditions:

• each activity j 2 V a occurs in at most one pair .j;m/
•
P

.j;m/2A� rjkm � Rk for k 2 R
•
P

.j;m/2A� rjkm � Rk for k 2 Rn

• there are no precedence constrains between any activities from subset A�

Three types of binary variables are used in this formulation:

• zjt D 1 if and only if activity j is completed at the end of period t
• y�t D 1 if and only if all activities of feasible subset A� are executed in period t
• xjm D 1 if and only if activity j is performed in modem 2Mj

The corresponding mathematical model of the MRCPSP is formulated as follows:

Min:
LCnC1X

tDECnC1

t � znC1;t (21.7)

s:t:
X

�2Ajm

LCjX

tDESj

y�t D pjm � xjm
�
j 2 V aIm 2Mj

�
(21.8)

ƒX

�D1
y�t � 1

�
t D 1; : : : ; d

�
(21.9)

X

m2Mj

xjm D 1 .j 2 V / (21.10)

zjt �
X

�2Aj

y�t �
X

�2Aj

y�;tC1
�
j 2 V aI t D ECj ; : : : ;LCj

�

(21.11)

LCjX

tDECj

t � zjt �
LCiX

tDECi

t � zit �
X

m2Mj

pjm � xjm ..i; j / 2 E/ (21.12)

X

j2V

X

m2Mj

rjkm � xjm � Rk .k 2 Rn/ (21.13)

zjt 2 f0; 1g
�
j 2 V I t D 1; : : : ; d

�
(21.14)

y�t 2 f0; 1g
�
� D 1; : : : ; ƒI t D 1; : : : ; d

�
(21.15)

xjm 2 f0; 1g
�
j 2 V Im 2Mj

�
(21.16)

21 Overview and State of the Art 449

where:ƒ is the number of feasible subsets, set Ajm D f� W .j;m/ 2 A�g, and Aj D
[m2MjAjm.

Constraints (21.8) guarantee that feasible subsets containing activity-resource
combination for activity j executed in mode m 2 Mj are in progress for exactly
pjm time periods. Constraints (21.9) ensure that in each time period t at most
one feasible subset is in progress, whereas constraints (21.10) ensure that each
activity is performed in exactly one mode. Constraints (21.11) guarantee that the
processing of activity j terminates at time period t if this activity belongs to
a feasible subset being in progress at time period t and does not belong to a
feasible subset being in progress at time period t C 1. Precedence constraints are
guaranteed by (21.12). Constraints (21.13) ensure that the nonrenewable resource
limitations are not exceeded. Finally, constraints (21.14)–(21.16) define the binary
status of the decision variables. Notice, that the renewable resource limitations do
not occur explicitly in this formulation, because feasibility of a solution with respect
to renewable resources is guaranteed by definition by the feasible subsets.

Recently, two papers concerning new mathematical formulations of the exten-
sions of the MRCPSP have been published. Sabzehparvar and Seyed-Hosseini
(2008) propose a mathematical formulation for the MRCPSP with generalized
precedence constraints and mode-dependent time lags. Zapata et al. (2008) propose
three alternative formulations of the multi-project version of the MRCPSP, in two
of them time is a continuous variable. Obviously, under some assumptions these
models may be used to formulate mathematically the MRCPSP.

Another MILP formulation for the MRCPSP based on the Resource-Task Net-
work (RTN) representation is proposed by Kyriakidis et al. (2012). The formulation
consists of five types of constraints: timing, slot, excess resources balances, excess
resource capacities, and task operations constraints. The timing constraints ensure
that the total duration of all time slots is equal to the planning horizon, and that
activity i may extend over one or more consecutive time slots and the sum of the
durations of these slots is equal to duration pim of activity i executed in mode m.
Slot constraints guarantee that each activity is performed exactly once in exactly
one mode. Excess resource balances preserve the balance of resource k at slot
boundary t . Excess resource capacity constraints ensure that the actual excess
amount of any resource k lies between a lower and upper bound of its capacity.
Finally, task operation constraints secure that surpluses of resource k consumed and
produced by activity i lies between corresponding bounds.

21.3 Exact Approaches

Exact approaches are proposed by Talbot (1982), Patterson et al. (1989), Speranza
and Vercellis (1993), Sprecher (1994), Sprecher et al. (1997), Hartmann and Drexl
(1998), Sprecher and Drexl (1998), and Zhu et al. (2006). All approaches, except
the one proposed by Zhu et al. (2006), are based on the branch-and-bound (B&B)

450 M. Mika et al.

method and the idea to enumerate partial schedules. A detailed comparison of these
methods is provided by Hartmann and Drexl (1998).

Talbot (1982) proposes a two-stage algorithm. In stage one, activities, resources,
and modes are sorted according to some selected rules. In stage two, a priority rule
heuristic is used to calculate an upper bound and then a B&B with backtracking is
used. At each level � of the search tree the first unscheduled activity j from the
sorted list is assigned its first resource-feasible mode, and it is added to the partial
schedule with the earliest precedence- and resource-feasible completion time Cj . If
none of the modes of activity j is resource-feasible, then the algorithm backtracks
to the previous level � � 1, and an attempt is made to reassign activity j � 1
previously scheduled at this level to the earliest feasible completion time greater
than the previously assigned completion time Cj�1. If it is impossible, the next
mode is selected for activity j � 1. This process continues until an attempt is made
to backtrack below activity 0, or until activity nC1 is scheduled. In the former case
the best solution found so far is the optimal one. In the latter case a new improved
solution with makespan C 0max is found. If C 0max is equal to the known solution lower
bound then the obtained schedule is optimal. Otherwise, a new upper bound is set
to C 0max and the process starts anew with activity 0 executed in its first mode.

A depth-first B&B with backtracking is also used by Patterson et al. (1989) where
the solution is represented by two resource- and precedence-feasible lists: a list of
selected modes and a list of activity completion times. The solution method consists
of two phases: a problem initialization phase, and an enumeration phase. During
the initialization phase, similar to the stage one of the Talbot’s algorithm (1982),
activities and their modes are sorted using some rules in order to heuristically
generate a good initial schedule, that is used to calculate an initial upper bound. In
the enumeration phase the precedence tree is used to guide the search in the set of
all precedence-feasible sequences of activities. At each level of the search tree only
one activity from the set of eligible activities is chosen together with an assigned
mode. An eligible activity is defined as an activity, the predecessors of which are
already scheduled. Next, the precedence- and resource-feasible start time of this
activity is calculated that is not less than the start time assigned at the previous level
of the search tree and the procedure pass to the next level where another activity is
chosen. If we obtain the sink dummy activity it means that a complete schedule is
found. In this case the upper bound on completion time of each activity is computed,
and the backtracking to the previous level occurs, where the next untested mode for
this activity is chosen. If all modes are already tested then the next eligible activity
is chosen. If all activities from the set of eligible activities at the given level of
the tree are already tested, the backtracking to previous level occurs once more.
Optimality is guaranteed when a solution equal to a known lower bound is found, or
when backtracking proceeds to the dummy activity 0. The bounding rules include
the consideration of continuously updated upper bounds on the completion time of
each activity, as well as procedures ensuring precedence and resource feasibility.
The performance of this approach was examined for 91 problems with the number
of activities equal to 10, 20, 30, 50, 100, and 500 (Patterson et al. 1990).

21 Overview and State of the Art 451

Speranza and Vercellis (1993) propose a depth-first B&B procedure which
enumerates the set of tight schedules. This algorithm is used for a single project
being a part of the multi-project model. It is shown that the set of tight schedules
dominates the set of schedules, and therefore an enumeration procedure can be
reduced to the set of tight schedules only. The presented algorithm uses so-
called maximal extensions of partial schedules in order to generate tight schedules.
However, Hartmann and Sprecher (1996) showed that the method might fail to find
optimal solution if at least two renewable resources are used during the execution of
the project. Moreover, for some problems with limited availability of nonrenewable
resources the algorithm does not even find an existing feasible solution.

Another depth-first B&B algorithm where the precedence tree is used as an enu-
meration scheme is presented by Sprecher (1994). Moreover, the author proposes
the following bounding rules: (i) Basic Time Window Rule – if an activity should
be scheduled but the assigned completion time is greater than the current latest finish
time, then the current partial schedule does not lead to a solution better than the best
currently known; (ii) Non Delay Ability Rule – if an eligible activity cannot be
feasibly scheduled in any mode in the current partial schedule without exceeding its
latest completion time, then no other eligible activity needs to be examined at this
level; (iii) Nonrenewable Resource Rule – if scheduling each currently unscheduled
activity in the mode with the lowest requirement for a nonrenewable resource would
exceed the capacity of this nonrenewable resource, then the current partial schedule
cannot be feasibly completed; (iv) Local Left Shift Rule – if an activity that has
been started at the current level of the B&B tree can be locally left shifted without
changing its mode, then the current partial schedule needs not be completed; (v)
Single Enumeration Rule (further improved by Hartmann and Drexl (1998) and
called Precedence Tree Rule) – if for two activities i and j scheduled at the previous
and at the current level of the B&B tree, respectively, Si D Sj and i > j , then the
current partial schedule needs not be completed.

Sprecher et al. (1997) propose a B&B algorithm in which another enumeration
scheme named mode and delay alternatives is used, which is a multi-mode extension
of the delay alternative concept proposed by Christofides et al. (1987) and used
by Demeulemeester and Herroelen (1992) for the RCPSP. In the mode and delay
alternatives each node g of the search tree is associated with a fixed time tg at which
activities may start processing. An activity j becomes eligible at time tg when all its
predecessors have completion times smaller than tg , and it is in progress at time tg if
Cj�pjm � tg < Cj , assuming that activity j is processed in modem 2Mj . At each
level g of the search tree firstly a new decision point tg is calculated as the earliest
completion time of activities currently in progress. Then a set of eligible activities
is computed. All eligible activities with modes assigned at the previous level are
temporally started at time tg . For the set of all new eligible activities (i.e., those
becoming eligible at time tg) a set of mode alternatives is calculated, where a mode
alternative represents one of the possible choices of modes for eligible activities.
Selecting one mode alternative the new eligible activities are temporally started at
time tg as well. Now, when all eligible activities are added to the set of activities in
progress, some resource conflicts may occur. In order to resolve these conflicts, a

452 M. Mika et al.

set of minimal delay alternatives is computed, where a delay alternative is the set of
activities the removal of which from the set of activities in progress at time tg makes
all resource constraints satisfied. A delay alternative is minimal if no proper subset
of the delay alternative is also a delay alternative. One minimal delay alternative is
chosen, and the activities from this set are delayed in the partial schedule considered
at this level of the search tree. Next, another decision point is calculated for the
next level of the search tree. If the complete schedule is obtained, a backtracking to
the previous level occurs and the next minimal delay alternative or the next mode
alternative is tested. The main differences between this approach and the precedence
tree are that at each level more than one activity can be scheduled, and that at the
current level one may withdraw decisions made at the previous level.

Sprecher et al. (1997) propose another enumeration scheme, named mode and
extension alternatives, which is very similar to the mode and delay alternatives, and
it is almost the same except that extension alternatives are employed instead of the
delay alternatives. An extension alternative is a subset of activities in progress for
which all resource constraints are satisfied and they are delayed but scheduled at
time tg . The bounding rules introduced or redefined in this implementation of B&B
include: (i) Nondelayability Rule modified for the presented enumerating schemes
is defined in the following way – if an eligible activity, the mode of which has not
yet been fixed, cannot be started in the mode with the shortest duration at the current
level of the search tree without exceeding its latest completion time, then no mode
alternative needs to be examined at the current level; (ii) Data Reduction (so-called
preprocessing) which looks as follows – the project data can be adapted by executing
the following steps: (a) removing all nonexecutable modes (modes which always
violate the resource constraints), (b) deleting the redundant nonrenewable resources
(resources with availabilities greater than the maximal total resource requirements),
and (c) eliminating all inefficient modes (modes with duration not shorter and
resource requirements not less than those of another mode for the same activity).
Steps b and c are executed iteratively until further elimination is no more possible.
This preprocessing rule is also used in some metaheuristic approaches described
in Sect. 21.5.2; (iii) Multi-mode Rule defined in the following way – assume that
no currently unscheduled activity will be started before the completion time of a
scheduled activity j when the current partial schedule is completed, if a multi-
mode left shift or a mode reduction of activity j with resulting mode m0 2 Mj ,
1 � m0 � Mj , can be performed on the current partial schedule and, moreover,
rjkm0 � rjkm if holds for each nonrenewable resource k 2 Rn, then the current partial
schedule needs not be completed; (iv) and finally Immediate Selection that looks as
follows – the following situation is assumed: all activities that start before the current
decision point tg complete at or before tg . After selecting a mode alternative, there is
an eligible activity j with assigned modem 2Mj which cannot be simultaneously
processed with any other activity i in its assigned modem0 2Mi . Moreover, activity
j cannot be simultaneously processed with any unscheduled activity h in any mode
m00 2Mh. Then the delay alternative obtained from the set of activities in progress
at time tg after removing activity j from this set is the only minimal delay alternative

21 Overview and State of the Art 453

that has to be examined, and the extension set containing only activity j is the only
extension alternative that has to be examined.

Sprecher and Drexl (1998) use in their B&B algorithm the precedence tree
enumeration scheme and many bounding rules proposed by Sprecher (1994). The
newly introduced bounding rule is the Cutset Rule which is defined as follows. Let
PS denote a previously evaluated partial schedule with cutset CS

�
PS
�
, maximal

completion time Cmax.PS/, and leftover capacities Rk.PS/ of the nonrenewable
resources k 2 Rn. Let PS be the current partial schedule considered to be extended
by scheduling some activity j with start time Sj . If we have CS .PS/ D CS

�
PS
�
,

Sj � Cmax
�
PS
�

and Rk .PS/ � Rk
�
PS
�

for all k 2 Rn, then PS needs not be
completed, where a cutset of a partial schedule PS is defined as the set of activities
scheduled in PS.

Hartmann and Drexl (1998) extend the approach proposed by Sprecher and Drexl
(1998) by two new bounding rules, namely the Order Swap Rule and the Immediate
Selection Rule for Precedence Tree. The Order Swap Rule is defined as follows.
Consider a scheduled activity the finish time of which is less than or equal to any
start time that may be assigned when completing the current partial schedule. If an
order swap on this activity together with any of those activities that finish at its start
time can be performed, then the current partial schedule needs not be completed.
The Immediate Selection Rule for Precedence Tree looks as follows. Consider
an eligible activity j no mode of which is simultaneously performable with any
currently unscheduled activity in any mode. If the earliest feasible start time of each
other eligible activity in any mode is equal to the maximal completion time of the
currently scheduled activities, then j is the only eligible activity that needs to be
selected for being scheduled at the current level of the B&B tree.

Another exact approach was proposed by Zhu et al. (2006). Although it is
primarily developed for the multi-mode version of the RCPSP with partially
renewable resources, it can be successfully used for the classical MRCPSP because
both renewable and nonrenewable resources can be easily modeled using partially
renewable resources. Instead of using the B&B method, which explicitly enumerates
all (partial) schedules, they use a branch-and-cut (B&C) approach. In this approach
the linear programming relaxation of the integer linear programming model is used
to obtain a lower bound of the project duration at each node of the search tree.
If the node of the search tree cannot be fathomed and has fractional value of
the objective function, then the algorithm tries to find cuts, i.e., valid inequalities
that are violated by the fractional solution but are satisfied by all feasible integer
solutions represented by this node in the search tree. If no cut is found for a
given node, then the branching is performed to create new nodes in the search
tree. The rules used in the considered B&C algorithm can be divided into four
categories: reduction of the number of variables, branching and bound tightening,
cuts, and high-level search strategy. The number of variables is reduced using: (i)
time windows derived from the improved distance matrix, (ii) lower bound based on
the usage of renewable resources, (iii) lower bound obtained by a truncated version
of B&C, (iv) upper bound obtained by the authors’ implementation of a genetic

454 M. Mika et al.

algorithm. The considered B&C algorithm uses the cut-generating features built
into the mixed integer programming (MIP) solver that is a part of CPLEX (ILOG
2002), as well as two other problem-specific cuts: cuts from make the branching
more effective, a procedure operating on the so-called special ordered set (SOS) is
used for bound tightening.

Another bound tightening procedure, which takes into account the current value
of the makespan, is proposed for the problem with makespan minimization criterion.
Finally, local branching (Fischetti and Lodi 2003) procedure is used as high-level
search strategy. The performance of the proposed B&C algorithm is examined on
the basis of computational experiments where datasets containing instances of the
MRCPSP with 20 and 30 activities from PSPLIB – a library of data for project
scheduling (Kolisch and Sprecher 1997) – are used. Optimal solutions are found for
all instances with 20 activities and for 506 out of 552 instances with 30 activities.
Moreover, for 5 instances with 30 activities the considered B&C algorithm found
solutions with the makespan better than the best one known, and for 23 instances it
found solutions worse than those reported in PSPLIB. Unfortunately, these results
were not recorded in the PSPLIB files containing the best known solutions.

The computational times of the B&C reported by the authors are smaller than
those reported by Sprecher and Drexl (1998) for their B&B, however, taking into
account the processor clocks, the B&B performs faster than the B&C. A comparison
of the presented exact approaches, except the last one by Zhu et al. (2006), is
reported by Hartmann and Drexl (1998). The obtained theoretical and experimental
results show that for both precedence tree and mode and delay alternatives enumer-
ating schemes there exist instances for which the sets of schedules generated by
these two procedures may differ between themselves, but the mode and extension
alternatives enumerating scheme is able to generate the same schedules as the
two other approaches. Moreover, the algorithm by Sprecher and Drexl (1998)
outperforms the other approaches. And finally, finding optimal solutions for a
number of activities greater than 20 is computationally intractable by any of the
analyzed algorithms. The last conclusion is still true. The newest exact approach –
B&C by Zhu et al. (2006) – was tested on instances from PSPLIB. The algorithm
found optimal solutions for all instances with 20 activities, but only 506 out of
552 instances with 30 activities were solved optimally (notice that 307 of those
instances can be solved optimally by CPM assuming the shortest duration mode for
each activity). Thus, there still exist instances with 30 activities for which optimal
solutions have not been found.

21.4 Lower Bounds

The first lower bound for the MRCPSP was proposed by Talbot (1982). It was
calculated as the length of the critical path for the project, where the shortest
duration mode is assigned to each activity and resource constraints are neglected.

21 Overview and State of the Art 455

Maniezzo and Mingozzi (1999) propose four other rules for computing the
lower bounds. The first one is computed as a solution of a weighted node packing
problem on graph QG, which consists in finding an independent set of QG of maximum
weight. QG D .V a; E 0/ is an intersection graph, where V a is a set of non-dummy
activities of the project, and .i; j / 2 E 0 if and only if the precedence network
does not contain any path from vertex i to vertex j (or from j to i/, and for
each renewable resource the sum of minimal renewable resource requirements
for both activities i and j is smaller than the availability of this resource. The
second lower bound, giving results not worse than the previous one, is based on
the mathematical formulation (21.7)–(21.16) of the MRCPSP, and is calculated as a
solution of the LP-relaxation of the problem where precedence and nonpreemptibil-
ity constraints (21.9), (21.11), (21.12) are removed. The resulting LP problem
solved to find the lower bound looks as follows: (i) the objective is to minimize
P�

�D1 z�, where z� D P Nd
tD1 y�t is the total processing time of feasible subset A�;

(ii) constraints (21.10), (21.13), and (21.16)are the same as in formulation (21.7)–
(21.16); (iii) constraints (21.8) are changed to

P
�2Ajm

PLCj
tDESj

y�t D pjm � xjm for
j 2 V ; m 2Mj , and constraints z� � 0 for � D 1; : : : ; � are added; (iv) all other
constraints, i.e., (21.9), (21.11), (21.12), (21.14), and (21.15), are removed from the
model.

The third and the fourth lower bounds, which give results not worse than the
first one and not better than the second one, are based on the same mathematical
formulation of the LP-relaxed problem where for the third lower bound equations
are replaced by inequalities, and for the fourth lower bound additionally non-
renewable resource constraints are removed. The formulation of the third lower
bound looks as follows: (i) the objective is to minimize

PjA j
�D1 z�, where A D

f� W � 2 f1; : : : ; ƒg ; A�0 6� A�; �0 2 f1; : : : ; ƒgnf�gg is the set of maximal feasible
subsets; (ii) constraints (21.10), (21.13), and (21.16) are the same as in formula-
tion (21.7)–(21.16); (iii) constraints (21.8) are changed to

P
�2Ajm

z� � pjm � xjm

for j 2 V ; m 2 Mj ; where Ajm is the set of indices of all maximal feasible
subsets containing activity j performed in mode m, and constraints z� � 0 for
� D 1; : : : ; jA j are added; (iv) all other constraints, i.e., (21.9), (21.11), (21.12),
(21.14), and (21.15), are removed from the model. The formulation of the fourth
lower bound is the same except for constraints (21.13) which are also removed.

Pesch (1999) uses the Talbot’s B&B (1982) as a base algorithm to test various
strategies in order to analyze the influence of different settings of the problem
parameters on the quality of the enumeration approaches by defining different
classes of problem instances. The main conclusion from this paper is that probably
no procedure exists that is able to efficiently solve problem instances of different
classes. Therefore different implementations are necessary, and they are to be
applied to different classes of problem instances.

A destructive lower bound for the MRCPSP with minimal and maximal time
lags is presented in Brucker and Knust (2003). The lower bound calculations are
based on two methods for proving infeasibility of a given threshold value T for the
makespan. The first one uses constraint propagation techniques, while the second

456 M. Mika et al.

one is based on the linear programming formulation by Maniezzo and Mingozzi
(1999) which is solved by a column generation procedure. Computational results
are reported for several test instances of the multi-mode problem with and without
time lags and the single-mode version with time lags.

21.5 Heuristics

Most of the papers on the MRCPSP are devoted to heuristic approaches, which are
discussed in this section. We divide the section into three subsections, similarly to
the classification made by Kolisch and Hartmann (1999). First, we present some
priority rule-based algorithms, next metaheuristics and other heuristics based on
local search procedures, and finally some other approaches are discussed. Most of
the algorithms presented in this section, especially list algorithms, use one of the
two basic procedures as a decoding rule to build a schedule. These are well-known
serial and parallel schedule generation schemes (SGS) (see, e.g., Bedworth 1973;
Kelley 1963; Kolisch 1996; Chap. 1 of this handbook).

21.5.1 Priority Rule-Based Heuristics

This group of algorithms is dominated by algorithms, where the order in which
activities are executed is determined by their priorities calculated on the basis of a
given rule. A schedule is generated either once, when the only one priority rule is
used (single-pass methods), or at most a few times, when a set of rules is applied
(multi-pass methods). Therefore, the priority-rule based heuristics are the fastest
algorithms developed for the MRCPSP, but the obtained results are usually worse
than those obtained by metaheuristics and other algorithms which visit a larger
number of solutions. It should be noted that in the case of the MRCPSP the order
of activities is not a sufficient information to build schedule. Essential is also the
second part of the solution, which is used to determine an execution mode for each
activity. Priority rules are also used in other algorithms in order to build a good initial
solution. In the literature, there are several papers concerning such an approach.

Talbot (1982) uses a priority rule in the stage one of his B&B to reorder the list
of activities and to provide a good initial solution used to obtain initial upper bounds
for completion times of activities. The following eight rules are proposed: maximum
average activity duration (MAX ADUR), maximum activity duration (MAX DUR),
minimum late finish time (MIN LFT), maximum average resource demand (MAX
RD), minimum early finish time (MIN EFT), minimum late finish time reduced
by smallest duration (MIN (L-D)), random (RAND), and minimum late finish time
reduced by average duration (MIN (L-ADUR)). A small computational experiment
(100 problem instances with 10 activities, 3 renewable resources, and 1–3 modes for
each activity) shows that random rule is outperformed by all other heuristics, and

21 Overview and State of the Art 457

moreover the best results are obtained using priority rules based on the minimum
late finish time.

Another set of priority rules was proposed by Boctor (1993) where the following
priority were introduced: minimum total slack (MIN SLK), shortest processing
time (SPT), maximum number of immediate successors (MAX NIS), maximum
remaining work (MAX RWK), longest processing time (LPT), and maximum
number of subsequent candidates (MAX CAN). More information about this
approach is presented in Sect. 21.6, because it is used for the special case of the
MRCPSP where only renewable resources occur.

Özdamar (1999) uses several priority rules to construct a solution in genetic
algorithms. The following rules were not considered in previous approaches:
weighted resource utilization and precedence (WRUP), minimum late start time
(MIN LST), minimum early start time (MIN EST), and most total successors
(MTS).

Lova et al. (2006) consider five new priority rules used to determine the order
of activities: minimum activity number (MIN AN), greatest rank positional weight
(GRPW), greatest resource demand (GRD), minimum latest start and finish time
(MIN LSTLFT), and minimum free slack (MIN FREE).

In the case where at least two activities have the same priority according to a
given priority rule another rule have to be applied to resolve the draws. The simplest
approach is a rule that uses the activity indices to determine which activity has a
higher priority. Other approaches require additional priority rules to be applied in
cases where the master rule would make a draw.

Another set of rules is used to determine the execution modes of activities. It
includes three rules proposed by Boctor (1993): shortest feasible mode (SFM), the
least criticality ratio (LCR), and the least resource proportion (LRP); as well as one
rule introduced by Lova et al. (2006) – earliest feasible finish time (EFFT).

Drexl and Grünewald (1993) present a simple stochastic scheduling method
named STOCOM. In this method a schedule is generated by selecting activities from
the set of eligible activities together with modes assigned to them in a random way.
The probability of a choice is either proportional to the weights that are calculated
for each activity-mode combination regarding the longest duration mode from all
modes of all eligible activities, or proportional to the weights calculated regarding
the latest completion times of eligible activities. Computational results show that
this method is superior to other deterministic scheduling rules existing when the
experiment was performed. Extensions to problems in which resource requirements
of activities vary with time, in addition to time-varying supply resource profiles,
are discussed as well. Boctor (1996a,b) uses this approach in his computational
experiment, but unfortunately it completely failed being unable to find a feasible
solution to any of the 240 test instances of the problem. The reason for such a
result is that this heuristic may generate feasible or infeasible schedules, scheduling
all activities at their earliest start times which are calculated taking into account
precedence constraints only. Feasibility with respect to resource constraints is
checked solely for the final schedule.

458 M. Mika et al.

Another simple heuristic approach is proposed by Boctor (1996a) but it is
developed for the special case of the MRCPSP with renewable resources only, and
is discussed in Sect. 21.6.

The next simple heuristic approach named local constraint based analysis
(LCBA) is proposed by Özdamar and Ulusoy (1994) for the MRCPSP with one
nonrenewable resource only. In this algorithm the parallel SGS is used as decoding
rule. The selection of activities and their assigned modes is made locally at every
decision point as long as a complete sequence of schedulable activities is found.
The procedure is also adapted to various model extensions such as flexible resource
requirement levels. The computational experiment including a set of 95 instances
with 20–57 activities, 1–6 renewable and one nonrenewable resource was performed
for LCBA and three dispatching rules. The obtained results show that the proposed
procedure yields an average increase over the precedence-based lower bound of
59 % which is a better result than this obtained by priority rules which were applied
for comparative purposes and yielded an average deviation of 65 %. Unfortunately,
the constraint-based approach has two disadvantages. First, the worst-case time
complexity of the procedure is exponential. Secondly, it is not suited for solving
the MRCPSP with multiple scarce nonrenewable resources.

Finally, the polynomial activity insertion algorithm developed by Artigues and
Roubellat (2000) is a simple heuristic that can be used jointly with an activity
removal algorithm in the neighbourhood generation mechanism of the local search
algorithms applied to the MRCPSP with renewable resources only, and therefore it
is discussed in Sect. 21.6.

21.5.2 Metaheuristics and Local Search

The first local search strategy applied to the MRCPSP is an algorithm proposed
by Kolisch and Sprecher (1997), where a solution is represented by both a mode
assignment list and a list of activity completion times. It consists of three phases.
Firstly, in the construction phase, an initial mode assignment is generated and
then, if it satisfies nonrenewable resource constraints, a fast heuristic for the
resulting RCPSP is used. In the second phase, a local search, that performs a single
neighbourhood search on the set of feasible mode assignments, is performed for
prescribed number of iterations. In the final intensification phase a schedule with an
improved objective function is searched on the basis of the best mode assignment
obtained during the previous phase. The computational experiment, where two sets
of benchmark instances of the problem with 10 and 30 activities were generated
using the ProGen project generator (Kolisch et al. 1995), is used to check the
performance of the proposed approach. Both sets contain 640 instances, where
in each instance two renewable and two nonrenewable resources, as well as three
modes per activity, are considered. The results obtained by the proposed algorithm
are compared with the results obtained by a truncated B&B (Talbot 1982) and
STOCOM (Drexl and Grünewald 1993). The proposed heuristic is the only one from

21 Overview and State of the Art 459

the three tested approaches that finds feasible solutions for all 10-activity instances
and for most 30-activities instances.

From among many various metaheuristics applied to the MRCPSP, genetic
algorithm (GA) is the most popular one. The first adaptation of this algorithm to the
MRCPSP is presented by Mori and Tseng (1997), but it is developed for a special
case of the problem with renewable resources only, and therefore it is discussed in
Sect. 21.6.

The next two versions of GA, pure (PGA) and hybrid (HGA), are proposed
by Özdamar (1999). A solution in the HGA is represented by two lists: a mode
assignment list and a list of priority rules. The position i on the second list denotes
a priority rule used for the i -th scheduling decision. The set of the applied priority
rules includes: MIN SLK, MIN LFT, SPT, RAND, WRUP, MIN LST, MIN EST,
and MTS. As a decoding rule, a forward–backward scheduling (see, e.g., Li and
Willis 1992) employing the parallel SGS is used. Solutions of the next population
are generated using two-point crossover and uniform crossover operators as well as
a mutation operator, which randomly changes one position in the mode assignment
list and one position in the list of priority rules. In the PGA a solution is represented
by both a mode assignment list and an activity list. The serial SGS is employed as
a decoding rule. Offspring solutions are generated using two-point linear crossover,
and repair procedure is run when the obtained offspring is not precedence-feasible.
A mutation operator for the PGA randomly changes one position in the mode
assignment list and pairwise swaps two activities from the activity list, if it is
precedence-feasible. In both algorithms, if the offspring is not feasible with respect
to any nonrenewable resource, then it is not evaluated. In other words, only solutions
with nonrenewable resource-feasible assignments of modes are permitted. The
performance of the proposed approaches is evaluated using 536 problem instances
with 10 activities, 3 modes per activity, two renewable and two nonrenewable
resources as well as 32 instances with 90 activities, two modes per activity, two
renewable and two nonrenewable resources. All instances are generated by ProGen
and available via Internet at PSPLIB. The obtained results are compared with those
reported by Kolisch and Drexl (1997) and show that the HGA outperforms all other
algorithms tested in the experiment.

Another genetic algorithm is proposed by Hartmann (2001). For a long time it
was considered the best adaptation of GA to the MRCPSP. Before executing the
main procedure, the preprocessing rule (described in Sect. 21.3) is applied in order
to reduce the search space by adapting the project data. A solution is represented by
two lists: a precedence-feasible list of activities and a mode assignment list. Such a
representation allows to generate schedules infeasible with respect to nonrenewable
resource constraints. In such a case, a penalty function is used to calculate the
fitness of an infeasible solution. Offspring solutions are generated using one-point
crossover where two different cut points are used, one for the activity list and
another one for the mode assignment list, as well as a mutation operator that swaps
two adjacent activities on the activity list if it is precedence feasible and randomly
changes one mode on the mode assignment list. The ranking method is used as a

460 M. Mika et al.

selection operator. A schedule is constructed applying the serial SGS, and a single-
pass or multi-pass local search based on the multi-mode left shift operation is
performed on this schedule. Next, if the schedule is improved, an encoding rule
is applied to reversely transform the schedule into activity and mode assignment
lists. This operation, called inheritance, unfortunately does not significantly improve
the obtained results. The author also shows that repetition approach and island
model of GA, as well as other selection operators, do not improve the performance
of the proposed approach. During the computational experiment where data sets
from PSPLIB with 10, 12, 14, 16, 18, 20, and 30 activities are used the best
settings for the proposed GA are experimentally chosen, and the performance of the
final fine-tuned version of GA is compared with performance of other approaches,
namely local search by Kolisch and Drexl (1997), genetic algorithm by Özdamar
(1999), simulated annealing by Bouleimen and Lecocq (2003), and the truncated
B&B by Hartmann and Drexl (1998). The obtained results show that the new
genetic algorithm clearly performs better than other heuristics. The only exception
is the truncated B&B which is slightly better for instances with small numbers of
activities.

In the next adaptation of genetic algorithm proposed by Alcaraz et al. (2003)
a solution is also represented by an activity list and a mode assignment list as
well as one additional bit (forward/backward gene) representing the scheduling
generation scheme used to build the schedule (serial forward or backward). As in
other approaches, preprocessing precedes the main genetic algorithm. The fitness
function is calculated either simply as the makespan, if the obtained schedule is
feasible, or otherwise as CmaxCMFCmax�LBmin

0 CPF, where Cmax is the makespan
of the current solution, MFCmax is the maximum feasible makespan from the current
population, LBmin

0 is the critical path length calculated for the shortest duration

modes, and PF D Pn
lD1

�
min

n
0;Rk �Pj2V a rjkm

o�
for k 2 Rn is a penalty for

violating nonrenewable resource constraints. It is shown that this fitness function is
better than the one proposed by Hartmann (2001). A so-called two-point forward–
backward crossover is proposed in which an offspring is build either from the head
or from the tail depending on the value of the parent’s forward/backward gene. The
mutation operator consists of two-phases: in the first one, activities are reordered
in the activity list with a given probability in the way that the activity list after
this operation is still precedence-feasible, and in the second phase, modes from the
mode assignment list are changed with a given probability. The forward/backward
gene may be changed in the first phase. Finally, a random replacement procedure is
applied that replaces with a given probability solutions from the current population
with other solutions generated randomly. The computational experiment is carried
out using PSPLIB data sets containing instances with 10, 12, 14, 16, 18, 20, and
30 activities. The comparison with the local search by Kolisch and Drexl (1997),
the genetic algorithm by Hartmann (2001), and the genetic algorithm by Özdamar
(1999) is made only for the data set with 10 activities after generating 6,000
solutions, and show that the proposed GA outperforms the local search and GA
by Özdamar, but performs slightly worse than Hartmann’s GA. More results are

21 Overview and State of the Art 461

presented for the comparison with simulated annealing (SA) by Józefowska et al.
(2001). In this case all data sets except the one with 30 activities are considered,
and a stop criterion for both the analyzed algorithms is fixed at 5,000 generated
solutions. The presented results show that the proposed GA outperforms SA.

Lova et al. (2009) propose a hybrid genetic algorithm (MM-HGA). As in many
other algorithms, preprocessing is performed before the start of the main genetic
algorithm procedure. A solution is represented in the same way as in GA proposed
by Alcaraz et al. (2003) except that one additional bit named serial/parallel gene is
used to denote the variant of SGS used to build the schedule. A new fitness function
is proposed. It is shown that applying this function in the proposed approach
improves its performance compared with two other fitness functions proposed by
Hartmann (2001) and by Alcaraz et al. (2003), respectively. The next generation is
obtained using two-point crossover and mutation operators. Mutation is applied to
both the activity list and the mode assignment list, as well as to the two additional
genes. On the activity list a random shift is performed. Mutation applied on the
mode assignment list depends on the feasibility of the solution with respect to
nonrenewable resources. For a feasible solution modes are changed randomly with
a given probability that is the same for all activities. If a solution is infeasible
then a so-called massive mutation is applied: a mode is randomly chosen for a
randomly chosen activity until either a feasible mode assignment is found or modes
are already chosen for all activities. The forward/backward and serial/parallel genes
are randomly changed with a given mutation probability. A 2-tournament selection
operator with elitism is applied to generate the next population. Moreover, two
additional mechanisms are used: a random replacement of some solutions from
the current population, and a multi-mode forward–backward improvement. The
data sets from PSPLIB with instances containing 10, 12, 14, 16, 18, 20, and 30
activities are used in the computational experiment. The performance of MM-HGA
is compared with local search (Kolisch and Sprecher 1997), genetic algorithms
(Alcaraz et al. 2003; Hartmann 2001; Özdamar 1999), and simulated annealing
(Bouleimen and Lecocq 2003) for the instances with 10 activities. Moreover, for all
data sets, except the one with 30 activities, MM-HGA is compared with simulated
annealing by Józefowska et al. (2001) and genetic algorithm by Alcaraz et al.
(2003). The obtained results show that MM-HGA outperforms the other heuristics.

Yet another implementation of a genetic algorithm is presented by Van Peteghem
and Vanhoucke (2010), where, similarly to other approaches, preprocessing runs
before the start of the main algorithm. They use a so-called bipopulation version of
GA in which the idea of justifying the schedule to the right or to the left is adapted
from Valls et al. (2005) resulting in two different populations of the same size:
a population POPR that contains right-justified schedules only, and a population
POPL that contains left-justified schedules only. A solution is represented by two
lists: a topological ordering random key list and a mode assignment list. A random
key representation is a list of priority values, and when topological ordering (see,
e.g., Valls et al. 2003) is employed, priorities preserve precedence constraints,
i.e., if i precedes j then the priority value for i is smaller than the one j . The
forward-backward scheduling with the serial SGS is used to construct a schedule.

462 M. Mika et al.

The forward procedure is applied to the left-justified population, and is used to build
a right-justified schedule. Next, the completion times of activities are used as the
priority values for the random key representation, and each activity is scheduled as
late as possible. Genetic operators are then applied to the right-justified schedules,
and the backward procedure runs for the obtained population of right-justified
schedules. A mode improvement procedure runs together with the serial SGS.
This procedure is applied to activities of the project with a given probability, and
checks for a chosen activity if the change of the assigned mode leads to an earlier
completion time of this activity without increasing the penalty function value. The
penalty function is calculated for the nonrenewable resources consumption that
exceeds resource availability limitations. Two fitness functions are investigated: the
one proposed by Hartmann (2001) and the other one proposed by Alcaraz et al.
(2003). The offspring solutions are generated using 2-tournament selection, one-
point crossover, and two mutation operators (one acting on the mode assignment
list, and the other acting on a random key vector). In the computational experiment
the data sets from PSPLIB containing instances with 10, 12, 14, 16, 18, 20, and 30
activities are used. The performance of the proposed algorithm is compared with
the performance of other approaches including the genetic algorithms by Özdamar
(1999), by Hartmann (2001), and by Alcaraz et al. (2003), as well as the local search
by Kolisch and Drexl (1997), and the simulated annealing by Józefowska et al.
(2001). The obtained results show that the considered genetic algorithm approach
is one of the most powerful heuristic developed up to now. The average relative
deviation from optimum is less than 0.5 % for all data sets, and the percentage of
optimal solutions found is from about 88 % for the data set with 20 activities up to
almost 100 % for the data set with 10 activities.

The second metaheuristic commonly used for the MRCPSP is simulated anneal-
ing. Up to now, the best adaptation of this approach to the considered problem is
proposed by Józefowska et al. (2001). A solution is represented by a precedence-
feasible activity list and a mode assignment list. A schedule is constructed using
the serial SGS. Similarly to other algorithms, preprocessing is performed before the
start of the main algorithm in order to reduce the search space. Two versions of SA
are considered: with and without penalty function. A penalty for the violation of
nonrenewable resource constraints is added to the upper bound of the makespan in
the version with penalty function. Neighbour solutions are generated by a random
shift of a chosen activity and/or by changing randomly the chosen mode. In the
version without penalty function a change of mode has to result in the mode
assignment feasible with respect to the nonrenewable resource constraints. The
search process is controlled by the adaptive cooling scheme. Performance of both
the proposed approaches is examined during a computational experiment where
data sets from PSPLIB with 10, 12, 14, 16, 18, 20, and 30 activities are used. The
obtained results indicate that the version with penalty function is the better one and
comparable with the GA proposed by Hartmann (2001).

Another implementation of simulated annealing is proposed by Bouleimen and
Lecocq (2003) who use the same decoding rule and solution representation (except
that the mode assignment should be resource-feasible). Neighbour solutions are

21 Overview and State of the Art 463

generated using a two-phase procedure. In phase one, a resource-feasible change
of a randomly chosen activity is made. Then for a fixed resource-feasible mode
assignment, in the second phase, nonrenewable resource constraints are removed,
and an improved schedule is searched by generating a neighbour activity list using
a random shift operation. The search process is controlled by a cooling scheme
where the control parameter is changed according to the geometrical progression,
and “reheating” is allowed for instances where the search process prematurely traps
in local optimum. A computational experiment is performed for the same data sets
as in Józefowska et al. (2001), but no comparison with any other approach is made.

In the first adaptation of tabu search (TS) approach to the MRCPSP (Nonobe and
Ibaraki 2002) a solution is represented by an activity list and a mode assignment
list. Neighbour solutions are generated either by a change on the mode assignment
list, or by shifting some activities on the activity list. The schedule is generated
by applying a scheme proposed by the authors, named CONSTRUCT, but further
observations show that in some cases an optimal solution cannot be obtained by this
procedure. Computational results are only reported for data set with 30 activities
from PSPLIB, but no comparison to any other approach is presented.

Van Peteghem and Vanhoucke (2011) propose a scatter search (SS) in which
they incorporate the resource scarceness characteristics in different improvement
methods, each tailored to the specific characteristics of different renewable and
nonrenewable resource scarceness values methods. A solution is encoded using
random key representation for ordering the activities, and a mode assignment list. A
schedule is constructed using the serial SGS. The next solutions are generated using
two-point crossover operator. Several methods are used to improve the obtained
schedules including feasibility improvement method, critical path improvement
method, and work content improvement method, as well as local search. Some
other mechanisms are used in different phases of the proposed algorithm. The
computational experiment is divided into two parts. The first one is used to check the
influence of different improvement methods on the algorithmic parameter settings
and is performed using new data sets especially generated for this purpose by
RanGen project scheduling instances generator (Vanhoucke et al. 2008). In the part
of computational experiment carried out in order to compare the proposed approach
with other existing approaches the instances with 10, 12, 14, 16, 18, 20, and 30
activities from PSPLIB are used. A set of algorithms used in the computational
experiment include: simulated annealing by Józefowska et al. (2001), scatter search
by Ranjbar et al. (2009), and four different genetic algorithms (Alcaraz et al. 2003;
Lova et al. 2009; Tseng and Chen 2009; Van Peteghem and Vanhoucke 2010). The
presented results show that the proposed algorithm is the most powerful heuristic
developed up to now. The average relative deviation from optimum is less than
0.35 % for data sets with up to 20 activities, and the percentage of optimal solutions
found is from about 88 % for the data set with 20 activities up to 100 % for the data
set with 10 activities. These results show that a good algorithm should adapt itself
to the instance of the considered problem.

Another group of metaheuristics used to solve the MRCPSP are evolutionary
algorithms. They include a population learning algorithm by Jȩdrzejowicz and

464 M. Mika et al.

Ratajczak (2006), evolutionary algorithm by Elloumi et al. (2006) and Elloumi and
Fortemps (2010), differential evolution algorithm by Damak et al. (2009), genetic
local search algorithm by Tseng and Chen (2009), shuffled frog-leaping algorithm
by Wang and Fang (2011), and estimation of distribution algorithm by Wang and
Fang (2012).

Jȩdrzejowicz and Ratajczak (2006) propose a population learning algorithm
(PLA) where a solution is represented by a list of objects. Each object refers to
one activity and includes some important information about it. At the beginning of
PLA the preprocessing procedure runs. The main PLA consists of three learning
stages. At the first learning stage three procedures are used. They are: the crossover
operator, simple local search algorithm (LSA), and the RHIA procedure that is based
on the idea of improving the resource utilization in homogeneous intervals proposed
in Valls et al. (2004). At the second learning stage, two evolutionary operators,
crossover and mutation, as well as two heuristics procedures LSA and EPTA (exact
precedence tree algorithm – based on precedence tree branching rule) are used. And
finally, at the third learning stage two heuristics LSA and EPTA are applied. If the
new generated solution is infeasible regarding nonrenewable resource constraints
then a procedure trying to improve the usage of nonrenewable resources is run. The
performance of PLA is validated for standard data sets from PSPLIB. The results
obtained during the computational experiment are compared with those presented
in Józefowska et al. (2001), and show that these two approaches are very similar in
terms of performance.

Elloumi et al. (2006) develop an evolutionary algorithm which, after preprocess-
ing, starts with generating an initial population of individuals represented by an
activity list and a mode assignment list. For each individual the fitness function is
calculated using rank-based assignment method, clustering heuristics for density
computation, and penalty for violation of the nonrenewable resource constraints.
Neighbourhood is generated using one-point crossover, mutation operating on both
lists independently, ranking, and the roulette wheel selection methods, as well as the
left shift procedure. The computational experiment, where instances from PSPLIB
with 10, 12, 14, 16, 18, 20, and 30 activities are used, shows that the proposed
approach is comparable to the genetic algorithm by Alcaraz et al. (2003), and
performs better than the genetic algorithms by Hartmann (2001) and by Özdamar
(1999), the truncated B&B by Sprecher and Drexl (1998), simulated annealing
algorithms by Józefowska et al. (2001) and by Bouleimen and Lecocq (2003), and
local search by Kolisch and Drexl (1997).

Elloumi and Fortemps (2010) propose another version of the evolutionary
algorithm (EA) where a solution is represented by an activity list and a mode
assignment list. Solutions infeasible with respect to nonrenewable resources are
penalized. A penalty function is treated as the second criterion which has to be
minimized. Thus, the MRCPSP becomes a bi-objective problem. The preprocessing
procedure is executed before the beginning of the EA. In each iteration of the
algorithm a local search procedure is applied on the infeasible solutions in order
to improve them by trying to reduce their penalties. Then a half of the population is
chosen for one-point crossover operation adapted from the GA by Hartmann (2001),

21 Overview and State of the Art 465

and the obtained offspring solutions undergo the mutation with a given probability.
For the obtained solutions the fitness function is calculated for both makespan and
penalty. Next the rank-based fitness assignment method and clustering heuristics
are used. Next a selection operator is applied to choose individuals for the next
population. In the computational experiment instances from data sets for problems
with 10, 12, 14, 16, 18, 20, and 30 activities from PSPLIB are used. The obtained
results are compared with those reported for simulated annealing (Bouleimen and
Lecocq 2003; Józefowska et al. 2001), genetic algorithms (Alcaraz et al. 2003;
Hartmann 2001; Özdamar 1999), local search (Kolisch and Drexl 1997), scatter
search (Ranjbar et al. 2009), particle swarm optimization (Jarboui et al. 2008),
differential evolution (Damak et al. 2009) and truncated B&B (Sprecher and Drexl
1998). The proposed EA with K-means based clustering heuristic and different
ranks clusters numbers outperforms all other algorithms except GA by Hartmann
(2001).

Damak et al. (2009) propose a differential evolution algorithm, where a solution
is represented by a mode assignment list and an activity list which needs not be
precedence-feasible. Neighbour solutions are generated using two operators: muta-
tion and crossover. Selection operator uses the values of the objective function which
is penalized for solutions infeasible with respect to the nonrenewable resources.
The performance of this algorithm is evaluated on the basis of a computational
experiment where instances from PSPLIB with 10, 12, 14, 16, 18, and 20 activities
are used. The obtained results are compared with the results obtained by two other
approaches only: simulated annealing by Bouleimen and Lecocq (2003) and particle
swarm optimization by Jarboui et al. (2008). Unfortunately, they are not compared
with the results obtained by other more efficient algorithms.

A two-phase genetic local search algorithm where the same genetic local search
algorithm runs with different initial populations for both phases for different search
purposes is proposed by Tseng and Chen (2009). In the first phase, the initial
population is generated randomly, and the set of good solutions (so-called elite set)
is searched. In the second phase, the initial population contains mainly solutions
from the elite set and the purpose of this phase is to search more thoroughly within
the regions located by the solutions from the elite set. Similarly to other approaches,
preprocessing is executed before the start of the main procedure. A single solution
is represented as in many other algorithms by an activity list and a mode assignment
list. The fitness function is calculated in the same way as in Alcaraz et al. (2003), and
the proposed forward–backward local search method is used to transform a given
solution to the standard representation. After this transformation each schedule has
exactly one solution representation. Neighbour solutions are generated using two-
point crossover proposed by Alcaraz et al. (2003) and its slightly modified version,
as well as two mutation operators which allow to diversify the population lightly or
heavily, respectively. The first mutation operator is taken from Alcaraz et al. (2003),
whereas the second one is a new concept developed by the authors. Selection is made
using ranking and 2-tournament methods. The computational experiment carried
out using instances from PSPLIB with 10, 12, 14, 16, 18, 20, and 30 nondummy
activities was executed to compare the performance of the proposed approach with

466 M. Mika et al.

five other algorithms: local search by Kolisch and Drexl (1997), simulated annealing
by Józefowska et al. (2001), and three versions of genetic algorithms – by Özdamar
(1999), by Hartmann (2001), and by Alcaraz et al. (2003). The presented results
show that the proposed two-phase genetic local search algorithm outperforms the
other approaches.

Wang and Fang (2011) propose one of the newest metaheuristics named the
shuffled frog-leaping algorithm (SFLA). The SFLA combines the benefits of
memetic algorithm and particle swarm optimization. In the SFLA each individual is
called a frog, and the whole population is divided into a number of memeplexes. The
different memeplexes are considered as different cultures of frogs, and each meme-
plex performs a local search by moving around in the search space with the help
of neighbourhood frogs’ social experiences in the same memeplex. In the presented
adaptation of the SFLA to the MRCPSP a solution is represented by a so called
extended multi-mode activity list (EMAL) which consists of four lists: an activity
list, a mode assignment list, a list of activity start times, and a list of activity finish
time. The serial SGS is used as the decoding rule. Similarly to the other approaches,
the preprocessing procedure is executed before the start of the metaheuristic. At the
beginning of the main procedure the regret-based biased random sample with LFT
priority rule is used to generate an initial population which is next improved by
the forward-backward scheduling. For each generation the population is partitioned
into a given number of memeplexes, and for each memeplex a submemeplex is
generated using the two-point crossover. If the obtained frog is better than the worst
one in the memeplex it replaces this worst one, otherwise a new frog is generated
using two-point crossover operator for another pair of parents. If for a given number
of such crossover operations a generated frog is still worse than the worst frog
in the memeplex, then the worst frog is replaced by the randomly generated one.
A combined local search including permutation based local search and forward-
backward improvement is used to explore the neighbourhood of the frog. The
instances with 10, 12, 14, 16, 18, 20, and 30 activities are used in the computational
experiment where the results obtained for the considered algorithm are compared
with those reported for other approaches including simulated annealing (Bouleimen
and Lecocq 2003; Józefowska et al. 2001), genetic algorithms (Alcaraz et al.
2003; Hartmann 2001), scatter search (Ranjbar et al. 2009), evolutionary algorithm
(Elloumi and Fortemps 2010), truncated B&B (Sprecher and Drexl 1998), and
particle swarm optimization (Jarboui et al. 2008). The obtained results show that
the proposed approach outperforms other approaches used in the experiment.

Estimation and distribution algorithm (EDA) is applied by Wang and Fang
(2012). It is a kind of stochastic optimization algorithm based on statistical
learning, where new individuals are generated by predicting the most promising
area based on the distribution of elite individuals of former generations in the search
space. In this algorithm a solution is encoded using a mode assignment and an
activity list. A novel probability model and updating mechanism are developed
to help identifying the most promising area. The forward-backward iteration and
the permutation based local search method are applied to the best individuals to
exploit their neighbourhood. Some other mechanisms known from other algorithms

21 Overview and State of the Art 467

are implemented as well. They include: preprocessing, the serial SGS, and a
penalty function for violating nonrenewable resource constraints. The results of the
computational experiment where instances from PSPLIB with 10–30 activities are
used show that the proposed algorithm performs better than the simulated annealing
by Józefowska et al. (2001), genetic local search by Tseng and Chen (2009), genetic
algorithm by Alcaraz et al. (2003), scatter search by Ranjbar et al. (2009), and
evolutionary algorithm by Elloumi and Fortemps (2010). It is outperformed by
genetic algorithms by Lova et al. (2009) and Van Peteghem and Vanhoucke (2010),
as well as by artificial immune system by Van Peteghem and Vanhoucke (2009).

Another quiet large group of metaheuristics frequently used for the MRCPSP are
algorithms commonly named swarm intelligence algorithms. This group includes
ant colony optimization (Chiang et al. 2008; Chyu et al. 2005; Li and Zhang 2013;
Zhang 2012), and particle swarm optimization (Zhang et al. 2006; Jarboui et al.
2008) approaches.

Ant colony optimization (ACO) is a class of algorithms modeled on the
behaviour of an ant colony. The ‘artificial ants’ similarly to the natural ants locate
the best solutions by moving through the search space and record their positions and
the quality of their solution, which may be used by other ‘artificial ants’ in the next
iterations of the algorithm. The first adaptation of this method to the MRCPSP is a
hybrid ant colony optimization (H-ACO) by Chyu et al. (2005) in which the solution
construction mechanism of B&B and ant colony optimization (ACO) algorithms are
hybridized. First, B&B is used to find a set of feasible (i.e., satisfying nonrenewable
resource constraints) mode assignments. For each feasible mode assignment the
following procedure is applied. Firstly, CPM is used to calculate the schedule length
with neglected resource constraints. Secondly, a disjunctive rule is applied to add
some arcs to the AoN network in order to remove resource conflicts. Thirdly, a new
project makespan is calculated for the new AoN network representing the structure
of the project. Next, a given number of mode assignments with the best potential
values of the makespan obtained during the third step of the above mentioned
procedure are chosen for the second phase of H-ACO where the ACO algorithm with
the forward–backward improvement is applied to each chosen mode assignment.
Finally, the best schedules obtained by ACO for each chosen mode assignment
are compared, and the best one is chosen as a solution of the considered instance
of the problem. H-ACO is compared only with SA by Józefowska et al. (2001)
using the standard data sets from PSPLIB. The obtained results show that H-ACO
outperforms SA.

Another ACO algorithm called ACO-MRCPSP is proposed by Chiang et al.
(2008). In this approach a solution is represented by two lists: a mode assignment
list and a random key list. The proposed algorithm consists of four phases: (1)
preprocessing; (2) initialization where some control parameters are calculated for
a given instance of the problem; (3) construction where artificial ants are guided to
construct feasible solutions; and (4) feedback where the best schedule found so far is
taken as the guide for properly reinforcing the pheromone concentration on the links
of specific paths in the construction graphs. The performance of the ACO-MRCPSP
is checked on the basis of a computational experiment where instances from

468 M. Mika et al.

PSPLIB with 10, 20, and 30 nondummy activities are used. The obtained results
are compared with the results provided for four other state-of-the-art algorithms:
simulated annealing by Józefowska et al. (2001), genetic algorithms by Özdamar
(1999) and by Alcaraz et al. (2003), and evolutionary algorithm by Elloumi et al.
(2006). The presented results show that the ACO-MRCPSP outperforms the other
approaches.

The newest ACO approach is presented by Li and Zhang (2013), in which a
solution is represented by an activity list and a mode assignments list, and therefore
two levels of pheromones are considered with regard to the solution (one for each
list). Elitist-rank strategy and nonrenewable resource-constraint are incorporated
into the updating procedure of the pheromones. The serial SGS is used as the
decoding rule. In the computational experiment data for instances with 10, 12,
14, 16, 18, 20, and 30 activities from PSPLIB are used. The proposed algorithm
is compared with simulated annealing by Bouleimen and Lecocq (2003), genetic
algorithm by Hartmann (2001), particle swarm optimization by Zhang et al. (2006)
and Jarboui et al. (2008). The obtained results show that the proposed approach
is better than those proposed by Zhang et al. (2006) and Bouleimen and Lecocq
(2003), but are worse than algorithms proposed by Hartmann (2001) and Jarboui
et al. (2008). The same algorithm but without the results of the computational
experiment is presented by Zhang (2012).

In the particle swarm optimization (PSO) a population called swarm consists
of candidate solutions called particles. Each particle is moved over the search
space according to a few simple rules taking into account the position of the
swarm. The particle is characterized by its position and its velocity, and the best
known positions of both the particle and the swarm are memorized for the next
iterations. The first PSO adaptation applied to the MRCPSP is proposed by Zhang
et al. (2006), where a solution is represented by two particles: the first one in the
form of a random key representation of activity priorities, and the second one in
the form of a mode assignment list. A new solution is generated using for each
particle two formulas calculating both a new position, and a new velocity of a
particle taking into account the position and the velocity of the best particle of
the swarm. A repairing procedure is applied for solutions with mode assignments
infeasible according to nonrenewable resource constraints. The serial SGS is used
as a decoding rule. A comparison with other heuristics including the truncated B&B
(Sprecher and Drexl 1998), simulated annealing (Bouleimen and Lecocq 2003), and
genetic algorithm (Hartmann 2001) is based on a computational experiment where
instances of projects with 10, 12, 14, 16, 18 and 20 activities available in PSPLIB
are used. The results show that the proposed PSO performs a little bit worse than
GA, and better than SA. Moreover, it is outperformed by truncated B&B for small
number of activities 10 and 12.

Another PSO approach named combinatorial particle swarm optimization
(CPSO) is used by Jarboui et al. (2008) to generate solutions of the mode
assignment subproblem of the MRCPSP. Next, for a fixed mode assignment, a
local search algorithm is used to find suboptimal solutions of the resulting RCPSP. A
computational experiment is carried out for seven data sets from PSPLIB containing

21 Overview and State of the Art 469

instances with 10–30 activities. The results obtained by the proposed approach are
compared with the results generated by two other approaches, namely the simulated
annealing by Bouleimen and Lecocq (2003) and the particle swarm optimization by
Zhang et al. (2006), and show that the proposed approach performs better than the
two other approaches.

Van Peteghem and Vanhoucke (2009) propose artificial immune system (AIS),
where in order to generate a good and diverse initial population a controlled search
procedure is used, which is based on an observed link between predefined profit
values and the makespan of the mode assignment, and which leads the search
process more quickly to more interesting search regions. The performance of this
approach is verified on the basis of a computational experiment, and its high
effectiveness is proved by the obtained results.

Coelho and Vanhoucke (2011) propose a new approach which splits the
MRCPSP into two interrelated subproblems: the mode assignment and single
mode resource-constrained project scheduling. The mode assignment subproblem
is solved using a satisfiability (SAT) problem solver which finds a feasible mode
assignment which is then passed to the scheduling subproblem where, for a fixed
assignment of modes to activities, the resulting RCPSP is solved using the best
metaheuristics developed for this problem. It is shown that if SAT solver is used for
the mode assignment subproblem, then the size of the memory needed to run this
algorithm grows exponentially with the size of the problem (number of activities
and/or number of nonrenewable resource constraints). Several small improvements
are implemented to solve this subproblem in less memory. In the second subproblem
the decomposition based genetic algorithm of Debels and Vanhoucke (2007) is
used. In the computational experiment data sets with 10, 12, 14, 16, 18, 20, and 30
activities from PSPLIB are used. The obtained results are compared with results
obtained for genetic algorithms by Alcaraz et al. (2003), Lova et al. (2009), and
Van Peteghem and Vanhoucke (2010). The analysis of these results show that the
proposed approach is better than GA by Alcaraz et al. (2003), but is outperformed
by both the other approaches.

21.5.3 Other Approaches

Apart from the methods described in the two previous subsections, also other
approaches have been developed for the MRCPSP.

Setting up a limit on computational time of the B&B, it can be treated as a
heuristic. Such an approach is proposed by Talbot (1982), Patterson et al. (1989), as
well as Sprecher and Drexl (1998).

Maniezzo and Mingozzi (1999) use their mathematical formulation (21.7)–
(21.16) of the MRCPSP to develop a new heuristic based on the Benders decompo-
sition and named it HBEND. The LP-relaxed problem in the form used to calculate
the third lower bound proposed by them is decomposed into a master problem and a
subproblem, which run iteratively. At each iteration the master problem constructs

470 M. Mika et al.

an RCPSP instance assigning modes to activities in such a way that nonrenewable
resource constraints hold. Next, the subproblem heuristically finds a valid lower
bound for this instance of the RCPSP. This lower bound is then used to obtain a
valid Benders cut that is added to the master problem in the next iteration. A number
of the best RCPSP instances obtained from the master problem are memorized and
solved optimally using the B&B algorithm for the RCPSP developed by Mingozzi
et al. (1998). It is done at the end of HBEND to improve the quality of the MRCPSP
upper bound. This approach is compared with the local search approach by Kolisch
and Drexl (1997), and the truncated B&B by Sprecher and Drexl (1998) on the
basis of results obtained during the computational experiment where test instances
with 10, 20, and 30 activities from PSPLIB are used. The obtained results show
that HBEND requires a number of cuts before achieving good results. Moreover,
it outperforms both the considered algorithms (except results for the set with ten
activities where HBEND is outperformed by the B&B).

HBEND is once more presented in Boschetti and Maniezzo (2009), where it
is compared with other well performing algorithms, namely the truncated B&B by
Sprecher and Drexl (1998), the genetic algorithm by Hartmann (2001), two versions
of simulated annealing proposed respectively by Józefowska et al. (2001) and by
Bouleimen and Lecocq (2003), and the particle swarm optimization (PSO) by Zhang
et al. (2006). The results of the computational experiment obtained for instances
from data sets with 10 and 20 activities available in PSPLIB show that HBEND is
outperformed by the other heuristics except the truncated version of B&B.

21.6 Special Cases and Extensions

Some special cases as well as extensions of the basic MRCPSP model are presented
in several papers. In this section we shortly describe these models together with
algorithms proposed to solve them. A comprehensive survey of different variants
and extensions of the RCPSP, including variants and extensions of the MRCPSP, is
presented by Hartmann and Briskorn (2010).

21.6.1 Special Cases

The most commonly considered special case of the MRCPSP is its version with
renewable resources only. Algorithms developed for this model of the MRCPSP
cannot be used for the model with nonrenewable and doubly constrained resources,
since they do not guarantee that the obtained solution is feasible with respect to
the nonrenewable resource constraints. Such a problem is studied by Elmaghraby
(1977), Boctor (1993, 1996a,b), Knotts et al. (2000), Artigues and Roubellat
(2000), Gagnon et al. (2005), and Lova et al. (2006). Other special cases are the

21 Overview and State of the Art 471

discrete time-cost tradeoff problem (DTCTP) (see Chap. 29 of this handbook) and
the discrete time-resource tradeoff problem (DTRTP), as well as the resource-
constrained project scheduling problem (RCPSP).

Elmaghraby (1977) was the first one who considered multiple operating modes
of activities in the project scheduling problem. The objective of this problem is to
minimize both costs and the makespan. The set of constraints is formulated, and an
example of such a problem is presented.

Boctor (1993) compares 21 priority rule based heuristics on the basis of a com-
putational experiment consisting of 240 problems with 50 and 100 activities, and
1, 2, and 4 renewable resources (nonrenewable and doubly constrained resources
are not considered). The following priority rules are used for ordering activities:
MIN SLK, MIN LFT, SPT, MAX NIS, MAX RWK, LPT, and MAX CAN. Draws,
if occur, are broken by choosing the activity with the smallest number. Modes
are selected using SFM, LCR, and LRP heuristics. The resulting heuristics that
are examined in a computational experiment appear as possible combinations of
any priority rule for activities and any mode assignment rule. The results of the
computational experiment show that the best combination of heuristic rules are
the following: MIN SLK-SFM, MAX RWK-SFM, MAX CAN-SFM, and MIN
LFT-SFM. Another heuristic approach for the same problem is also proposed
by Boctor (1996a). This heuristic uses forward and backward parallel scheduling
of schedulable and nondominated activity-mode combinations. An activity-mode
combination is a subset of the set of eligible activities where for each activity a
mode is assigned. Such a combination is called schedulable at a given time period if
the resources available (nonallocated) during this period and in succeeding periods
allow to execute all activities from the corresponding subset in the assigned modes.
An activity-mode combination is dominated by another combination if at least
one of the following conditions holds: (i) the first combination is a subset of the
second one; (ii) both combinations are identical except that the mode assigned
to one activity in the second combination is shorter than the mode for the same
activity in the first combination. The results of the computational experiment for
the same set of 240 problems show that the proposed approach is better than the
previously examined priority rules. The same problem is considered once more
by Boctor (1996b) who uses a simulated annealing algorithm to find suboptimal
schedules. A solution is represented by an activity list only. Modes are assigned
to activities during the execution of the serial SGS procedure that is used as a
decoding rule. For a given activity, a mode that guarantees the earliest precedence-
and resource-feasible completion time of this activity in the generated schedule is
selected. Neighbour solutions are generated by shifting a randomly chosen activity
to a new precedence-feasible position in the activity list, chosen in a random way.
The search process is controlled by a cooling scheme where the control parameter
is changed according to the geometrical progression. The computational experiment
is once more carried out for all 240 problems from the Boctor’s benchmark set.
The obtained results show that the proposed approach outperforms all heuristics
proposed previously by Boctor (1993, 1996a).

472 M. Mika et al.

Mori and Tseng (1997) propose a genetic algorithm for the MRCPSP without
nonrenewable or doubly constrained resources. A direct representation of a schedule
is used. It contains information about the activity, the assigned mode, the priority,
and the calculated start and completion times of this activity. The initial population
is built by setting activities in an ascending order and randomly choosing a mode
for each activity. The priority is determined randomly for the activity order interval,
and start and completion times of each activity are calculated. A crossover operator
where one parent is always the best solution in the current population is used to
generate the offspring solutions together with two mutation operators. In the first
one, a set of activities is chosen and then a mode is randomly chosen for each
selected activity. In the second one, a new solution is constructed using the same
method as in the initialization phase. A new generation is built of: the 20 best
solutions from the previous generation, 10 solutions generated using a crossover
operator, 7 solutions generated using a mutation operator, and 3 solutions generated
randomly. In the computational experiment 700 instances of the problem with 10,
20, 30, 40, 50, 60, or 70 activities, 2 to 4 modes for each activity, and 4 renewable
resources are generated using a Random Activity Network Generator proposed
by Demeulemeester et al. (1993). The proposed GA is compared with STOCOM
(Drexl and Grünewald 1993) that generates 100 feasible solutions for each test
problem. The obtained results show that the proposed GA is significantly better
than STOCOM, especially for larger problems.

The next approach to the MRCPSP without nonrenewable resources is presented
by Knotts et al. (2000) who propose to use the agent technology that is known from
artificial intelligence. For each activity of the project one agent is created that is
responsible for acquiring the resources required by this activity. Agents try to find
the best solution during the simulation process in which they act according to some
rules which determine their behavior. The performance of the approach is validated
on the basis of a computational experiment in which an extended data set from
(Maroto and Tormos 1994) is used, and the obtained results are compared with the
results obtained by commercial software. These results show that the considered
approach performs better than some commercial applications but is outperformed
by others.

Artigues and Roubellat (2000) develop a polynomial activity insertion algorithm,
which is used to insert an activity into an existing schedule for problems with
minimization of the maximum lateness. This algorithm can also be used to generate
neighbour solutions in local search methods applied to the MRCPSP with renewable
resources only and minimization of the makespan. In such an application this
insertion algorithm must be used jointly with an activity removal algorithm.
Unfortunately, no computational results are reported for the application of this
method to the MRCPSP.

Another approach proposed by Gagnon et al. (2005) for the MRCPSP without
nonrenewable resources is based on tabu search. A solution is represented by
an activity list and a mode assignment list, and seven operators are proposed to
generate neighbour solutions. A computational experiment is performed using data
sets by Boctor (1993). The proposed approach is compared with simulated annealing
(Boctor 1996b) only.

21 Overview and State of the Art 473

Lova et al. (2006) consider several single-pass and multi-pass heuristics based on
priority rules for the MRCPSP with renewable resources only. They analyze three
components of such heuristics: schedule generation scheme, priority rule, and mode
selection rule on the basis of a computational experiment in which Boctor’s (1993)
data sets are used. The analyzed schedule generation schemes are serial and parallel;
priority rules include: MIN EFT, MIN EST, MAX DUR, MIN LFT, MIN LST, MIN
SLK, MAX NIS, MAX RWK, SPT, MIN AN, GRPW, GRD, MIN LSTLFT, and
MIN FREE; and earliest feasible finish time (EFFT) is used as a mode selection
rule. The results show that the serial SGS greatly outperforms the parallel SGS, and
the multi-pass heuristic combining eight priority rules (LSTLFT, LFT, LST, and
RWK with both versions of SGS) gives the best results.

Ranjbar et al. (2009) present a new hybrid metaheuristic algorithm based on
scatter search (SS) and path relinking methods for the DTRTP with multiple
resources. The resulting problem denoted as MDTRTP is the DTRTP with multiple
renewable resources, each with time-resource tradeoffs. In fact, the MDTRTP
becomes a special case of the MRCPSP with the absence of nonrenewable resources.
In the proposed SS algorithm for the MDTRTP, they use path relinking concepts
to generate children from parent solutions, in the form of a new combination
method. They also incorporate new strategies for diversification and intensification
to enhance the search, in the form of local search and forward-backward scheduling,
based on so-called reverse schedules, with the activity dependencies reversed.
The proposed algorithm is also modified to tackle the RCPSP and MRCPSP. The
performance of the algorithm is tested on four datasets, which show that in most
cases it outperforms the other heuristic approaches presented in the literature.

21.6.2 Extensions

Apart from the special cases discussed above, also some extensions of the MRCPSP
have been considered in several papers.

An extension of the MRCPSP to its version with generalized precedence
relations (also called time windows), denoted in the three-field classification ˛ jˇj
for project scheduling problems as MPS j tempjCmax or using the acronyms as
the MRCPSP-GPR (or MRCPSP/max), is studied in several publications. Exact
approaches based on the B&B method are proposed in De Reyck and Herroelen
(1998), Dornorf (2002), and Heilmann (2003). Some heuristic algorithms are
proposed by De Reyck and Herroelen (1999) who use a hybrid of tabu search and
a truncated version of their B&B, by Heilmann (2001) who proposes a multi-pass
priority rule approach with back planning which is based on an integration approach
and embedded in random sampling, and by Calhoun et al. (2002) who implement
tabu search. Moreover, Van Hove and Deckro (1998) propose a B&B approach for
the MRCPSP with minimal time lags only. An exhaustive review of some project
scheduling problems with time windows may be found in Neumann et al. (2002).
Barrios et al. (2011) propose for the MRCPSP-GPR a so-called double genetic

474 M. Mika et al.

algorithm which outperforms other state-of-the-art approaches in medium and large
instances. This version of a genetic algorithm consists of two-phases. In the first
phase algorithm searches for the best modes of the activities, and in the second phase
the makespan is minimized. For each phase different parameters and mechanisms
are defined including representation, fitness, operators, etc. Ballestín et al. (2013)
propose a heuristic for this problem called SA-EVA that is a combination of
simulated annealing and evolutionary algorithm. The problem is divided into two
parts, which are solved in two successive phases: a mode assignment phase, and a
RCPSP with minimum and maximum time lags phase. First, the best mode vector is
searched using a simulated annealing algorithm. Then the evolutionary algorithm
EVA designed in Ballestín et al. (2011) is executed in order to search for the
best start time vector. The computational results show that SA-EVA outperforms
the state-of-the-art algorithms for medium and large instances. It is also proved
that looking for the best modes can be very useful in the optimization of the
MRCPSP/max.

An extended version of the MRCPSP with so-called mode identity constraints
is considered by Salewski et al. (1997). The resulting problem is called the
mode identity resource-constrained project scheduling problem (MIRCPSP), and is
motivated by real-world situations where several activities should be performed in
the same way, i.e., by allocating them the same resources. Practical examples of such
a problem occur in an audit staff scheduling, timetabling, course scheduling, etc.
Formally, in this problem the set of all project activities is partitioned into several
disjoint subsets, and all activities belonging to the same subset have to be performed
by the same resources. The time and cost of executing activities from such a subset
depend on the resources assigned. Moreover, for each activity a deadline, a ready
time, and a set of mode-dependent finish-to-start time lags with direct predecessors
are defined. A mathematical model of the problem is formulated, and the NP-
hardness in the strong sense is proved. A two-phase heuristic is used to find a good
feasible schedule. In phase one, for each subset of activities a mode is selected
randomly. In phase two, a solution is built by scheduling randomly chosen activities
from the eligible set. Afshar-Nadjafi et al. (2013) propose a genetic algorithm
for this problem. As in many other metaheuristic approaches, the preprocessing
procedure runs before the main procedure. A solution is represented by an activity
list and a reduced mode assignment list (with size equal to the number of activities’
subsets). An initial population is generated randomly and offspring solutions are
generated using a one-point crossover operation, which acts independently on both
lists, and a mutation operator which is a shift operation for the activity list and
a mode change for the list of mode assignments. A local search is performed for
each offspring solution using a structure called Memory Vector. A computational
experiment is carried out using instances of the problem with 20, 25, 30, 35, 60, and
90 activities, 2 renewable resources, and 3 modes, generated by ProGen/ x (Drexl
et al. 2000). Rahimi et al. (2013) propose for the considered problem adaptations
of three metaheuristics: imperialist competitive algorithm, simulated annealing and
differential evolution. In order to improve the quality of the obtained results a local
search and learning module are combined with the metaheuristics. The performance

21 Overview and State of the Art 475

of the algorithms is evaluated on 180 test problems by comparing solutions found by
metaheuristics with results of a B&B algorithm. The results show that the integration
of the learning module and the employed evolutionary algorithms statistically gives
better performance regarding the objective function and/or convergence time.

Ahn and Erenguc (1998) and Erenguc et al. (2001) propose heuristic and
exact procedures, respectively, for the RCPSP with multiple crashable modes
(RCPSPMCM). In this problem each activity can be executed in one of several
modes, duration of which may be shortened (crashed) by additional cost. Thus,
this problem can be viewed as a combination of the MRCPSP with the time-cost
tradeoff problem (TCTP). Indeed, in the absence of the resource constraints the
RCPSPMCM reduces to the TCTP, and in the absence of crashing within a mode it
becomes the MRCPSP.

The multi-skill project scheduling problem (MSPSP) (see, e.g., Bellenguez and
Néron 2005; Bellenguez-Morineau and Néron 2008; Bellenguez-Morineau 2008)
is another project scheduling problem where activities may be executed in one
of several modes. In this problem multi-skill resources are used during activity
processing. Each unit of a multi-skill resource treated as unary resource is able to
perform activities requiring different skills. Thus, if a given resource unit is allotted
to an activity requiring one skill, it cannot be allotted at the same time to any other
activity requiring another skill managed by this resource unit. In other words, each
resource unit can be assigned to at most one skill at a time. In consequence, the
MSPSP can be treated as multi-mode version of the project scheduling problem with
resource/resource trade-off. Li and Womer (2009) extend this model by employing
general precedence relations, and replacing the project makespan minimization by
a cost-related objective function. Another extension of the MSPSP is presented in
Valls et al. (2009) where there are general precedence relations considered, activity
processing times depending on the skill level of the resource unit assigned to this
activity, and an objective function which takes into account: criticality of activities,
assignment of the best skilled resources to each activity, and well-balanced resource
workload levels. Santos and Tereso (2011) consider a version of the problem where
the objective is to minimize the total cost of the project including cost of resources
used, penalty for tardiness, and bonus for earliness.

The MRCPSP with renewable and nonrenewable resources replaced by partially
renewable ones is considered by Zhu et al. (2006) who propose a B&C approach
to solve this problem optimally. The authors show on the basis of a computational
experiment that the proposed approach appears very promising, and can be success-
fully applied to the MRCPSP as well.

Mika et al. (2008) present an extension of the MRCPSP where schedule-
dependent setup times are considered. Three algorithms are proposed for this
problem and compared on the basis of a computational experiment. The obtained
results show that the proposed tabu search algorithm outperforms the other two
presented approaches, namely the multi-start iterative improvement and random
sampling. In all the considered approaches, a solution is represented in the same
way, and the number of generated solutions is identical.

476 M. Mika et al.

Li and Womer (2008) model the supply chain configuration problem with
resource constraints as the MRCPSP with due dates and additional quality level
constraints, and show that this model can be easily extended by applying minimal
and maximal time lags, variable resource availability, and various objectives.

A problem of scheduling tests in automotive research and development projects
is considered by Bartels and Zimmermann (2009), who model this problem as
the MRCPSP with renewable and cumulative resources, as well as minimal and
maximal time lags. Some resources used during the course of the project have to
be created by certain activities of the project in order to enable the execution of
further activities, but it is unknown in advance how many units of these resources are
required. Moreover, partially ordered destructive relation between pairs of activities
is introduced, because some tests (activities) may destroy a resource unit being
used, and therefore it cannot be used in other tests anymore. A mixed integer
linear programming (MILP) model of this problem is formulated and used in the
computational experiment for small instances solved optimally by CPLEX. For
large instances both single-pass and multi-pass priority rule-based heuristics are
proposed.

A sports league scheduling problem which occurs in planning nonprofessional
table tennis leagues is considered by Knust (2010). This problem consists in finding
a schedule for a time-relaxed double round robin tournament with many different
hard and soft constraints. One of the two presented approaches is to model this
problem as the MRCPSP with partially renewable resources and time-dependent
resource profiles. All hard constraints are covered by introducing appropriate
additional renewable, nonrenewable, or partially renewable resources, whereas soft
constraints are incorporated into the objective function in the form of penalties.
All activities have unit processing times. Although a large number of resources
have to be introduced to cover all hard constraints, each activity requires only a
few of them and, in consequence, the solution algorithm is quite fast. A two-stage
local search algorithm is proposed, where in the first stage some theoretical results
on so-called balanced home-away assignments (Knust and von Thaden 2006) are
implemented, and in the second stage algorithms known from the RCPSP are used
(in this implementation – the genetic algorithm by Hartmann 1998).

In the classical models of project scheduling problems it is assumed that activities
are nonpreemptable. However, in some project environments it is possible that the
nonpreemption assumption might be relaxed. To the best of our knowledge, the
multi-mode version of the preemptive RCPSP has only been considered in five
papers. Nudtasomboon and Randhawa (1997) were the first to include activity
preemption into the MRCPSP. They assume that activities may be preempted
an arbitrary number of times at integer time instants. The main contribution of
the paper is the formulation of a zero-one integer programming model of the
MRCPSP, which includes many important characteristics of project scheduling:
activity preemption, renewable and nonrenewable resources, variation in resource
availability, time-cost and time-resource tradeoffs, and multiple objectives. Solution
algorithms are presented and evaluated for three single-objective problems: with
makespan minimization, cost minimization, and resource levelling, as well as for

21 Overview and State of the Art 477

a multi-objective problem combining those three criteria. Prashant et al. (2001)
study a version of the problem with renewable resources only. The paper addresses
the use of a Petri net as a modelling and scheduling tool in this context. The
benefits of Petri nets in project scheduling are discussed. The authors propose some
extensions of Petri nets to suit scheduling of activities in a decision CPM. They
also propose the use of a P-matrix for token movements in Petri nets. A genetic
algorithm is used to find a better solution. Petri-net-aided software including genetic
algorithm based search and heuristics is described to deal with a multi-mode, multi-
constrained scheduling problem with preemption of activities. In Buddhakulsomsiri
and Kim (2006) the authors introduced a new model of the MRCPSP, in which
activities may be preempted under situations where resources may be temporarily
not available. All resources considered are renewable, and each resource unit may
not be available at all times due to resource vacations, which are known in advance,
and assignments to other finite duration activities. Activities may only be preempted
at discrete points in time, and mode switching is not allowed when activities are
resumed after preemption. A designed experiment is conducted that investigates
project makespan improvement when activity preemption is permitted in various
project scenarios, where different project scenarios are defined by parameters that
have been used in the literature. A B&B procedure is applied to solve a number
of small project scheduling problems with and without activity preemption. The
results show that, in the presence of resource vacations and temporary resource
unavailability, activity preemption can significantly improve the optimal project
makespan in many scenarios, especially when resources are tight. The results
also show that the makespan improvement is primarily dependent on parameters
that impact resource utilization. In the follow-on paper (Buddhakulsomsiri and
Kim 2007) the authors propose a heuristic approach to the preemptive MRCPSP
mentioned above. A new concept, called moving resource strength, is developed to
help identify project situations where activity preemption is likely to be beneficial
during scheduling. The moving resource strength concept is implemented in priority
rule-based heuristics to control activity preemption when scheduling. Multiple
comparisons of the performance of combination of activity-mode priority rules
used in the heuristics are provided. Computational experiments demonstrate the
effectiveness of the heuristic in reducing project makespan, and minimizing the
number of preemptions. Zare et al. (2012) introduce a model for the preemptive
multi-objective MRCPSP.

Wuliang and Chengen (2009) extend the general DTCTP to a new multi-
mode resource-constrained DTCTP model (MRC-DTCTP), in which renewable
resource constraints are added to the problem. By predefining the resource price, the
renewable resources are related to the project costs, including direct cost and indirect
cost. Each activity can be executed in the crashing way, in which the project direct
costs are used to shorten the activity duration. According to the characteristics of the
MRC-DTCTP, a genetic algorithm for solving it is developed, and its effectiveness
is verified by a comparison with an exact algorithm. A similar problem is considered
by Nabipoor Afruzi et al. (2013), who develop a multi-objective metaheuristic
algorithm named adjusted fuzzy dominance genetic algorithm. The performance

478 M. Mika et al.

of the proposed algorithm is evaluated by a comparison with four other algorithms
known from the literature, and the obtained results show the effectiveness of the
proposed algorithm. Multi-mode resource-constrained discrete time–cost–resource
optimization (MRC-DTCRO) in project scheduling is considered by Ghoddousi
et al. (2013), who add the resource leveling capability to the MRC-DTCRO and
propose non-domination based genetic algorithm (NSGA-II) to search for the non-
dominated solutions considering total project time, cost, and resources moment
deviation as three objectives.

21.7 Multi-Mode Problems with Other Objectives

As formulated in Sect. 21.2, in the classical MRCPSP the objective is to minimize
the project duration. However, also other objectives have been considered in the
project scheduling literature in the context of multiple execution modes of activities.
In this section we present a review of the papers devoted to multi-mode problems
with objectives other than the project duration, distinguishing between financial
objectives (Sect. 21.7.1) and resource-based objectives (Sect. 21.7.2).

21.7.1 Financial Objectives

In this section we deal with multi-mode problems with discounted cash flows,
including the basic multi-mode resource-constrained project scheduling problems
with discounted cash flows, problems with probabilistic cash flows, and payment
scheduling problems.

21.7.1.1 Multi-Mode Resource-Constrained Project Scheduling Problem
with Discounted Cash Flows

The multi-mode resource-constrained project scheduling problem with discounted
cash flows (MRCPSPDCF) is an extension of the MRCPSP where cash flows
(positive and/or negative) are associated with the activities of a project. In the most
general case the cash flows may depend on the processing modes of the activities.
The objective of the MRCPSPDCF is to maximize the net present value (NPV) of all
cash flows of the project. The MRCPSPDCF has been considered in several papers,
where heuristic approaches have been developed. To the best of our knowledge, no
exact procedure for the MRCPSPDCF has been proposed up to now.

Sung and Lim (1994) study a problem with positive and negative cash flows,
and availability constraints imposed on capital and renewable resources. Resource-
duration interactions are considered while analyzing the problem. The authors
propose a two-phase heuristic algorithm, whose efficiency is tested with various
numerical problems.

21 Overview and State of the Art 479

Ulusoy et al. (2001) study the MRCPSPDCF with renewable, nonrenewable, and
doubly-constrained resources. Positive and negative cash flows are associated with
events and/or activities, depending on the considered payment model. Four models
are analyzed: lump-sum payment at the completion of the project, payments at fixed
event nodes, payments at equal time intervals, and progress payments. A genetic
algorithm with a specially designed crossover operator able to exploit the multi-
component nature of the problem is proposed. A number of 93 problems from the
set of instances proposed in Ulusoy and Özdamar (1995) are solved, under the
four payment models and different resource combinations. The efficiency of the
presented GA algorithm is tested.

Mika et al. (2005) consider the MRCPSPDCF with positive cash flows associated
with activities. Four payment models are considered: lump-sum payment at the
completion of the project, payments at activity completion times, payments at
equal time intervals, and progress payments. Two local search metaheuristics,
simulated annealing and tabu search, are proposed to solve the problem. In both the
implementations, a solution is classically represented by an activity list and a mode
assignment list. An extensive computational experiment is described, performed
on a set of instances based on standard test problems constructed by ProGen,
where, additionally, activity cash flows are generated randomly from the uniform
distribution. The experiment is carried out for the adopted PSPLIB instances with
10, 12, 14, 16, 18, 20, and 30 instances, four payment models, five values of the
discount rate, and various combinations of the interval lengths in payment models.
In overall, a number of 192,100 MRCPSPDCF instances are solved by each of the
metaheuristics tested.

Seifi and Tavakkoli-Moghaddam (2008) consider a problem similar to the one
presented by Ulusoy et al. (2001). The main difference is the objective function,
which is a sum of the NPV and the activity cost measure proposed by Liu and
Wang (2006). The measure takes into account the costs of executing some activities
by subcontractors, and is to be minimized. The same four payment models are
considered but for the “payments at fixed event nodes” model events occur at the
completion times of activities, and therefore the model becomes identical to the
“payments at activity completion times” model presented by Mika et al. (2005).
Simulated annealing is proposed for the considered problem, and its performance is
computationally tested on the PSPLIB instances.

Kavlak et al. (2009) consider a so-called client-contractor bargaining problem
in the context of the MRCPSPDCF with renewable resources only. Two payment
models are analyzed: payments at activity completion times and progress payments.
The project duration is bounded from above by a deadline imposed by the client,
which constitutes a hard constraint. The objective is to maximize the bargaining
objective function comprised of the objectives of both the client and the contractor.
Simulated annealing and genetic algorithm approaches are proposed as solution
procedures. A solution is represented by a combination of three serial lists: activity
list, mode assignment list, and idle time list. The idle time value represents the exact
idle time to be inserted before the start of the corresponding activity in the activity
list. The proposed algorithms are experimentally compared on the PSPLIB instances

480 M. Mika et al.

with 14, 20, and 30 activities, adopted by eliminating the tardiness costs, relaxing
the deadlines, and excluding the nonrenewable resources. Also sensitivity analysis
is conducted for different parameters used in the model, namely the profit margin,
the discount rate, and the bargaining power weights.

Chen et al. (2010) consider the MRCPSPDCF with cash inflows and outflows.
The ant colony system (ACS) approach is proposed to solve the problem. In the
presented algorithm, the AoA network is first converted into a mode-on-node (MoN)
graph, which next becomes the construction graph for the ACS algorithm. Based on
the construction graph, the authors apply the serial SGS for artificial ants to explore
the solutions to the problem. In the process of the algorithm, each ant maintains
a schedule generator, and builds its solution by selecting arcs on the graph using
pheromone and heuristic information. Eight different domain-based heuristics are
developed to enhance the search skill of ants by considering the factors of time, cost,
resources, and precedence constraints. The proposed ACS approach is compared
with the authors’ implementations of the genetic algorithm by Ulusoy et al. (2001),
as well as simulated annealing and tabu search by Mika et al. (2005), on 55 randomly
generated instances with 13 up to 98 activities. On the basis of experimental results
the authors state that their algorithm outperforms the other three metaheuristics.

21.7.1.2 Problems with Probabilistic Cash Flows

Although we do not deal with nondeterministic models in this overview, two papers
considering probabilistic cash flows are worth mentioning, as they belong to the
small group of papers on the NPV maximization under multiple processing modes
of activities.

Özdamar and Dündar (1997) introduce a new model concerning housing projects,
where an initial capital covers activity expenditures in the starting phase of the
project, and then customers who arrive randomly over the project span, provide
the necessary funds for continuation. Capital is considered as a nonrenewable
resource, which is the only limited resource in the model. It is reduced by activity
expenditures and augmented by the sales of flats. Activities can be carried out in
different operating modes, and the total cost of an activity is fixed irrespective of
its operating mode. The rate of activity expenditures differs among the modes. The
authors propose a flexible heuristic algorithm for solving the capital-constrained
mode selection problem, where there exist general precedence relationships among
activities, and the magnitude of precedence lags depend on the specific activity
mode. The algorithm is tested using a typical housing project with real data, and
also by using hypothetical test problems.

Similar situations in the housing industry are further analyzed in Özdamar
(1998), where the same stochastic model, involving probabilistic cash inflows, is
used. The contractor, who is the owner of the project, starts with an initial capital
to cover the activity expenditures, and then capital is augmented by the sale of
flats, which take place randomly over the progress of the project. In this risky
environment, the contractor has to decide on the rate of expenditure at each decision

21 Overview and State of the Art 481

time in order to maintain a positive cash balance. Hence, activities are performed
in multiple processing modes with different durations and the same total cost. A
heuristic to construct and reconstruct schedules during the progress of the project
is proposed with the aim of maximizing the NPV while completing the project on
time. The heuristic incorporates dynamic mode selection objectives which change
adaptively according to the current status of the project. Computational experiments
demonstrate that the heuristic provides satisfactory results regarding the feasibility
of the schedules with respect to the project due date and the nonrenewable resource
constraints.

21.7.1.3 Payment Scheduling Problem

In the models presented above it is assumed that the amounts and timing of cash
flows are known. In Dayanand and Padman (1997) the authors argue that the
expenses associated with activities are usually known but the amounts and timing
of payment can be important variables to negotiate by the contractor in order to
improve financial returns. Consequently, the payment scheduling problem (PSP) is
formulated, in which both the amounts and the timing of the payments have to be
determined to maximize the NPV subject to a project deadline. The multi-mode
version of the PSP has only been considered in a few papers.

Ulusoy and Cebelli (2000) report a new approach to the payment scheduling
problem. The authors set up a special multi-mode problem, where the goals of
the contractor and the client are joined in one model. They look for an equitable
solution, in which both the contractor and the client deviate from their respective
ideal solutions by an equal percentage. The ideal solutions for the contractor and
the client result from having a lump-sum payment at the start and at the end of
the project, respectively. A double-loop genetic algorithm is proposed to solve the
problem, where the outer loop represents the client and the inner loop the contractor.
A number of 93 problems from the set of instances proposed in Ulusoy and Özdamar
(1995) are solved, and some computational results are reported.

He and Xu (2008) consider a so-called multi-mode project payment scheduling
problem (MPPSP) with bonus-penalty structure, where activities can be performed
with several modes and a bonus-penalty structure exists at the deadline of the
project. In the problem the decisions on when to schedule events and payments,
the magnitude of each payment, and the performing mode of each activity need
to be optimized. Two-module simulated annealing is proposed to solve the mixed
integer nonlinear programming (MINLP) models for the contractor and the client,
and a satisfactory solution, which consists of payment event set, event schedule, and
payment amount set, may be found through iterations between the heuristic’s two
modules. The profits of the two parties of the contract are changed significantly by
the bonus-penalty structure, and the structure may be considered as a coordination
mechanism essentially, which may enhance the flexibility of payment scheduling
and be helpful for the two parties to get more profits from the project. The
authors solve and analyze a numerical example, and draw the conclusions that

482 M. Mika et al.

the bonus-penalty structure may advance the project completion effectively, and
improve the profits of the two parties in the meantime.

He et al. (2009) consider the MPPSP with no resource constraints, where the
activities can be performed with one of several discrete modes. The objective is to
assign activity modes and progress payments, so as to maximize the NPV of the
contractor under the constraint of a project deadline. Using the event-based method,
the basic model of the problem is constructed, and in terms of different payment
rules it is further extended through changing the constraints on payment time as the
progress-based, expense-based, and time-based models. The strong NP-hardness
of the problem is proved by simplifying it to the deadline subproblem of the discrete
time-cost tradeoff problem. Simulated annealing and tabu search metaheuristics are
proposed to solve the problem. The two approaches are computationally compared
on a data set constructed by ProGen. The results show that the proposed simulated
annealing heuristic is the most promising algorithm for solving the defined problem
especially when the instances become larger. In addition, the effects of several
key parameters on the net present value of the contractor are analyzed, and some
conclusions are given based on the results of the computational experiment.

He et al. (2013) define a new problem named the capital-constrained project pay-
ment scheduling problem (CCPPSP) as the combination of the capital-constrained
project scheduling problem (CCPSP) and the project payment scheduling problem
(PPSP), and they consider the new problem in a multi-mode version (MCCPPSP).
The objective is to assign activity modes and payments concurrently, so as to
maximize the NPV of the contractor under the constraint of capital availability.
Basing on some payment patterns known from the literature, four optimization
models are constructed using the event-based method. Two metaheuristics, tabu
search and simulated annealing, are developed and compared with multi-start
iterative improvement and random sampling, based on a computational experiment
performed on a data set generated randomly. The results indicate that the loop nested
tabu search is the most promising procedure for the problem studied. Moreover, the
effects of several key parameters on the contractor’s NPV are investigated, and some
conclusions are drawn. The authors also point out directions for future research,
which are analyzing the problem from the client’s and joint point of view, integrating
the bonus/penalty structure into the models, and taking into account various types
of resource constraints.

21.7.2 Resource-Based Objectives

Beside financial objectives, also resource-based objectives have been considered in
a few papers for project scheduling problems with multiple execution modes.

Hsu and Kim (2005) consider the multi-mode resource investment problem
(MRIP), which is an extension of the resource investment problem (RIP), where
at least one activity may be executed in one of several modes. In this formulation
activities are executed using renewable resources only, and a project duration

21 Overview and State of the Art 483

is upper-bounded by a given due date. A priority rule-based heuristic, which
simultaneously takes into account the resource usage level and the project due date
in one decision rule, is proposed to find suboptimal solutions of the problem.

Sabzehparvar et al. (2008) propose a mathematical model for the multi-mode
resource investment problem with general precedence relations (MRIP-GPR). In
this model activities are executed using renewable resources only, a project has to
be finished before its deadline, and for some pairs of activities there are minimal
and maximal time lags which depend on the modes of both activities.

Mika and Wȩglarz (2004) consider the multi-mode resource leveling problem
(MRLP), which is formulated similarly to the MRCPSP assuming that there are two
types of limitations: limited availability of renewable and nonrenewable resources,
and a deadline for the entire project. The objective is to minimize the weighted
sum of squared deviation from the assumed resource usage level for all renewable
resources. A simulated annealing approach is developed for the considered problem
and tested on the basis of a computational experiment with instances with 10 and
20 activities. The obtained results show that simulated annealing performs better for
the projects with tight deadlines.

Motivated by applications in chemical manufacturing, Megow et al. (2011)
formulate the multi-mode shutdown and turnaround scheduling problem as an
integrated problem that contains various optimization problems as subproblems,
such as the time-cost tradeoff problem, the problem of scheduling with resource
capacities and working shifts, and the resource leveling problem, all of which have
been considered individually previously. The authors report on their successful solu-
tion approach within a more comprehensive decision support tool that additionally
provides tools for risk analysis during the decision process and for the final schedule.
The proposed optimization algorithm yields near-optimal solutions in a short time.

Coughlan et al. (2010) consider the MRLP with the objective to minimize
the resource availability cost. They present an exact branch-and-price approach
together with a new heuristic to optimally or near-optimally solve the more general
turnaround scheduling problem. In addition to precedence and resource constraints,
also resource availability periods and multiple execution modes of activities are
taken into account. The authors formulate a mixed integer programming problem,
which is based on working shifts, and thus has an exponential number of variables.
The proposed branch-and-price algorithm to solve this model computes optimal
schedules for instances with up to 50 activities. The derived lower bounds demon-
strate that heuristic solutions are mostly near the optimum or at least near the best
solution found by exact methods within half an hour.

Khalilzadeh et al. (2012) introduce a new problem called the multi-mode
resource-constrained project scheduling problem with minimization of total
weighted resource tardiness penalty cost (MRCPSP-TWRTPC), in which they
consider renewable and nonrenewable resource costs. It is assumed that renewable
resources are rented, and are not available in all periods of time of the project.
In other words, there is a mandated ready date as well as a due date for each
renewable resource type, so that no resource is used before its ready date. However,
the resources are permitted to be used after their due dates by paying penalty costs.

484 M. Mika et al.

The objective is to minimize the total costs of both renewable and nonrenewable
resource usage. For this problem, the authors propose a metaheuristic algorithm
based on a modified particle swarm optimization (PSO) approach, which uses a
modified rule for the displacement of particles. They present a prioritization rule for
activities and several improvement and local search methods. Experimental results
reveal the effectiveness and efficiency of the proposed algorithm for the problem in
question.

21.8 Conclusions

The main goal of this chapter has been to present the state-of-the-art in the area of
multi-mode project scheduling problems. The main part of this review is devoted
to the basic multi-mode resource-constrained project scheduling problem with the
objective to minimize the project duration. For this problem several mixed-integer
linear programming formulations as well as exact approaches based on branch-
and-bound and branch-and-cut methods are presented. Moreover, the existing
methods for lower bounds calculation are described, as well. However, the largest
group of the described approaches are heuristic algorithms. The presentation of
these algorithms has been divided into three parts concerning priority rule-based
algorithms, metaheuristics and other heuristics based on local search procedures,
and some other approaches. It is easy to observe that the largest number of
papers published in recent years are devoted to the metaheuristic approaches, in
particular genetic, evolutionary and swarm intelligence algorithms. Some special
cases and extensions of the MRCPSP are also discussed including MRCPSP with-
out nonrenewable resources, MRCPSP with generalized precedence constraints,
mode identity RCPSP, RCPSP with multiple crashable modes, multi-skill project
scheduling problems, MRCPSP with partially renewable resources, MRCPSP with
schedule dependent setup times, MRCPSP with preemptable activities, and multi-
mode version of DTCTP. Finally, the multi-mode project scheduling problems
with two other categories of objectives, i.e., financial and resource-based ones, are
analyzed.

Acknowledgements This work has been funded by the Polish National Science Centre as a
research project in the years 2013–2016 under grant No. 2013/08/A/ST6/00296.

References

Afshar-Nadjafi B, Rahimi A, Karimi H (2013) A genetic algorithm for mode identity and the
resource constrained project scheduling problem. Sci Iran 20:824–831

Ahn T, Erenguc SS (1998) The resource-constrained project scheduling problem with multiple
crashable modes: a heuristic procedure. Eur J Oper Res 107:250–259

21 Overview and State of the Art 485

Alcaraz J, Maroto C, Ruiz R (2003) Solving the multi-mode resource-constrained project
scheduling problem with genetic algorithms. J Oper Res Soc 54:614–626

Artigues C, Roubellat F (2000) A polynomial activity insertion algorithm in a multi-resource
schedule with cumulative constraints and multiple modes. Eur J Oper Res 127:297–316

Ballestín F, Barrios A, Valls V (2011) An evolutionary algorithm for the resource-constrained
project scheduling problem with minimum and maximum time lags. J Sched 14:391–406

Ballestín F, Barrios A, Valls V (2013) Looking for the best modes helps solving the MRCPSP/max.
Int J Prod Res 51:813–827

Barrios A, Ballestín F, Valls V (2011) A double genetic algorithm for the MRCPSP/max. Comput
Oper Res 38:33–43

Bartels JH, Zimmermann J (2009) Scheduling tests in automotive R&D projects. Eur J Oper Res
193:805–819

Bedworth DD (1973) Industrial systems: planning, analysis, and control. The Ronald Press,
New York

Bellenguez O, Néron E (2005) Lower bounds for the multi-skill project scheduling problem with
hierarchical level of skills. In: Burke EK, Trick M (eds) Practice and theory of automated
timetabling V. Lecture Notes in Computer Science, vol 3616. Springer, Berlin, pp 229–243

Bellenguez-Morineau O (2008) Methods to solve multi-skill project scheduling problem. 4OR-Q
J Oper Res 6:85–88

Bellenguez-Morineau O, Néron E (2008) Multi-mode and multi-skill project scheduling problem.
In: Artigues C, Demassey S, Néron E (eds) Resource-constrained project scheduling: models,
algorithms, extensions and applications. ISTE-Wiley, London, pp 149–160

Boctor FF (1993) Heuristics for scheduling projects with resource restrictions and several resource-
duration modes. Int J Prod Res 31:2547–2558

Boctor FF (1996a) A new and efficient heuristic for scheduling projects with resource restrictions
and multiple execution modes. Eur J Oper Res 90:349–361

Boctor FF (1996b) Resource-constrained project scheduling by simulated annealing. Int J Prod Res
34:2335–2351

Boschetti M, Maniezzo V (2009) Benders decomposition, Lagrangean relaxation and metaheuristic
design. J Heuristics 15:283–312

Bouleimen K, Lecocq H (2003) A new efficient simulated annealing algorithm for the resource-
constrained project scheduling problem and its multiple mode version. Eur J Oper Res
149:268–281

Brucker P, Knust S (2003) Lower bounds for resource-constrained project scheduling problems.
Eur J Oper Res 149:302–313

Buddhakulsomsiri J, Kim DS (2006) Properties of multi-mode resource-constrained project
scheduling problems with resource vacations and activity splitting. Eur J Oper Res 175:279–
295

Buddhakulsomsiri J, Kim DS (2007) Priority rule-based heuristic for multi-mode resource-
constrained project scheduling problems with resource vacations and activity splitting. Eur J
Oper Res 178:374–390

Calhoun KM, Deckro RF, Moore JT, Chrissis JW, Van Hove JC (2002) Planning and re-planning
in project and production scheduling. Omega Int J Manag S 30:155–170

Chen WN, Zhang J, Chung HSH, Huang RZ, Liu O (2010) Optimizing discounted cash flows in
project scheduling: an ant colony optimization approach. IEEE T Syst Man Cybern C 40:64–77

Chiang CW, Huang YQ, Wang WY (2008) Ant colony optimization with parameter adaptation for
multi-mode resource-constrained project scheduling. J Intell Fuzzy Syst 29:345–358

Christofides N, Alvarez-Valdes R, Tamarit JM (1987) Project scheduling with resource constraints:
a branch-and-bound approach. Eur J Oper Res 29:262–273

Chyu CC, Chen AHL, Lin XH (2005) A hybrid ant colony approach to multi-mode resource-
constrained project scheduling problems with nonrenewable types. In: Proceedings of first
international conference on operations and supply chain management, Bali, 2005

Coelho J, Vanhoucke M (2011) Multi-mode resource-constrained project scheduling using RCPSP
and SAT solvers. Eur J Oper Res 213:73–82

486 M. Mika et al.

Coughlan ET, Lübbecke ME, Schulz J (2010) A branch-and-price algorithm for multi-mode
resource leveling. Lecture notes in computer science, vol 6049. Springer, Berlin, pp 226–238

Damak J, Jarboui B, Siarry P, Loukil T (2009) Differential evolution for solving multi-mode
resource-constrained project scheduling problems. Comput Oper Res 36:2653–2659

Dayanand N, Padman R (1997) On modeling progress payments in project networks. J Oper Res
Soc 48:906–918

De Reyck B, Herroelen WS (1998) A branch-and-bound procedure for the resource-constrained
project scheduling problem with generalized precedence relations. Eur J Oper Res 111:152–
174

De Reyck B, Herroelen WS (1999) The multi-mode resource-constrained project scheduling
problem with generalized precedence relations. Eur J Oper Res 119:538–556

Debels D, Vanhoucke M (2007) A decomposition-based genetic algorithm for the resource-
constrained project scheduling problem. Oper Res 55:457–469

Demeulemeester EL, Herroelen WS (1992) A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem. Manag Sci 38:1803–1818

Demeulemeester EL, Dodin B, Herroelen WS (1993) A random network activity generator. Oper
Res 41:972–980

Dornorf U (2002) Project scheduling with time windows: from theory to applications. Physica,
Heidelberg

Drexl A, Grünewald J (1993) Nonpreemptive multi-mode resource-constrained project scheduling.
IIE Trans 25:74–81

Drexl A, Nissen R, Patterson JH and Salewski F (2000) ProGen/ x: an instance generator
for resource constrained project scheduling problems with partially renewable resources and
further extensions. Eur J Oper Res 125:59–72

Elloumi S, Fortemps P (2010) A hybrid rank-based evolutionary algorithm applied to multi-mode
resource-constrained project scheduling problem. Eur J Oper Res 205:31–41

Elloumi S, Fortemps P, Teghem J, Loukil T (2006) A new bi-objective algorithm using clustering
heuristics to solve the multi-mode resource-constrained project scheduling problem. In:
Proceedings of the 25th workshop of the UK planning and scheduling special interest group
(PlanSIG 2006), Nottingham, pp 113–120

Elmaghraby SE (1977) Activity networks: project planning and control by network models. Wiley,
New York

Erenguc SS, Ahn T, Conway DG (2001) The resource constrained project scheduling problem with
multiple crashable modes: an exact solution method. Nav Res Logist 48:107–127

Fischetti M, Lodi A (2003) Local branching. Math Program 98:23–47
Gagnon M, Boctor FF, d’Avignon G (2005) A tabu search algorithm for the multiple mode resource

constrained project scheduling problem. In: Proceedings of the ASAC 2005, Toronto, Canada,
pp 89–102

Ghoddousi P, Eshtehardian E, Jooybanpour S, Javanmardi A (2013) Multi-mode resource-
constrained discrete time–cost–resource optimization in project scheduling using non-
dominated sorting genetic algorithm. Automa Constr 30:216–227

Hartmann S (1998) A competitive genetic algorithm for resource-constrained project scheduling.
Nav Res Logist 45:733–750

Hartmann S (2001) Project scheduling with multiple modes: a genetic algorithm. Ann Oper Res
102:111–135

Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained
project scheduling problem. Eur J Oper Res 207:1–14

Hartmann S, Drexl A (1998) Project scheduling with multiple modes: a comparison of exact
algorithms. Networks 32:283–297

Hartmann S, Sprecher A (1996) A note on “Hierarchical models for multi-project planning and
scheduling”. Eur J Oper Res 94:377–383

He Z, Xu Y (2008) Multi-mode project payment scheduling problems with bonus-penalty structure.
Eur J Oper Res 189:1191–1207

21 Overview and State of the Art 487

He Z, Wang N, Jia T, Xu Y (2009) Simulated annealing and tabu search for multimode project
payment scheduling. Eur J Oper Res 198:688–696

He Z, Liu R, Jia T (2013) Metaheuristics for multi-mode capital-constrained project payment
scheduling. Eur J Oper Res 223:605–613

Heilmann R (2001) Resource-constrained project scheduling: a heuristic for the multi-mode case.
OR Spektrum 23:335–357

Heilmann R (2003) A branch-and-bound procedure for the multi-mode resource-constrained
project scheduling problem with minimum and maximum time lags. Eur J Oper Res 144:348–
365

Hsu CC, Kim DS (2005) A new heuristic for the multi-mode resource investment problem. J Oper
Res Soc 56:406–413

ILOG (2002) ILOG CPLEX 7.5: Reference manual. ILOG, Mountain View, CA
Jarboui B, Damak N, Siarry P, Rebai A (2008) A combinatorial particle swarm optimization for

solving multi-mode resource-constrained project scheduling problems. Appl Math Comput
195:299–308

Jȩdrzejowicz P, Ratajczak E (2006) Population learning algorithm for the resource-constrained
project scheduling. In: Józefowska J, Wȩglarz J (eds) Perspectives in modern project schedul-
ing. Springer, Berlin, pp 275–296

Józefowska J, Mika M, Różycki R, Waligóra G, Wȩglarz J (2001) Simulated annealing for multi-
mode resource-constrained project scheduling. Ann Oper Res 102:137–155

Kavlak N, Ulusoy G, Sivrikaya-Şerifoğlu F, Birbil I (2009) Client-contractor bargaining on net
present value in project scheduling with limited resources. Nav Res Logist 56:93–112

Kelley Jr. JE (1963) The critical path method: resources planning and scheduling. In: Muth JF,
Thompson GL (eds) Industrial scheduling. Prentice-Hall, Englewood Cliffs, pp 347–365

Khalilzadeh M, Kianfar F, Chaleshtari AS, Shadrokh S, Ranjbar M (2012) A modified PSO
algorithm for minimizing the total costs of resources in MRCPSP. Math Probl Eng.
doi:10.1155/2012/365697

Knotts G, Dror M, Hartman BC (2000) Agent-based project scheduling. IIE Trans 32:387–401
Knust S (2010) Scheduling non-professional table-tennis leagues. Eur J Oper Res 200:358–367
Knust S, von Thaden M (2006) Balanced home-away assignments. Discrete Optim 3:354–365
Kolisch R (1995) Project scheduling under resource constraints: efficient heuristics for several

problem classes. Physica, Heidelberg
Kolisch R (1996) Serial and parallel resource-constrained project scheduling methods revisited:

theory and computation. Eur J Oper Res 90:320–333
Kolisch R, Drexl A (1997) Local search for nonpreemptive multi-mode resource-constrained

project scheduling. IIE Trans 29:987–999
Kolisch R, Hartmann S (1999) Heuristic algorithms for the resource-constrained project scheduling

problem: classification and computational analysis. In: Wȩglarz J (ed) Project scheduling:
recent models, algorithms, and applications. Kluwer Academic, Boston, pp 147–178

Kolisch R, Sprecher A (1997) PSPLIB: a project scheduling problem library. Eur J Oper Res
96:205–216

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Manag Sci 41:1693–1703

Kyriakidis T, Kopanos G, Georgiadis M (2012) MILP formulation for single- and multi-mode
resource-constrained project scheduling problems. Comput Chem Eng 36:369–385

Li H, Zhang H (2013) Ant colony optimization-based multi-mode scheduling under renewable and
nonrenewable resource constraints. Autom Constr 35:431–438

Li KY, Willis RJ (1992) An iterative scheduling technique for resource-constrained project
scheduling. Eur J Oper Res 56:370–379

Li H, Womer K (2008) Modeling the supply chain configuration problem with resource constraints.
Int J Proj Manag 26:646–654

Li H, Womer K (2009) Scheduling projects with multi-skilled personnel by a hybrid MILP/CP
Benders decomposition algorithm. J Sched 12:281–298

488 M. Mika et al.

Liu Z, Wang H (2006) Heuristic algorithm for the RCPSP with the objective of minimizing
activities’ cost. J Syst Eng Electron 17:96–102

Lova A, Tormos P, Barber F (2006) Multi-mode resource constrained project scheduling: schedul-
ing schemes, priority rules and mode selection rules. Inteligencia Artif 10:69–86

Lova A, Tormos P, Cervantes M, Barber F (2009) An efficient hybrid genetic algorithm for
scheduling projects with resource constraints and multiple execution modes. Int J Prod Econ
117:302–316

Maniezzo V, Mingozzi A (1999) A heuristic procedure for the multi-mode project scheduling
problem based on Bender’s decomposition. In: Wȩglarz J (ed) Project scheduling: recent
models, algorithms and applications. Kluwer, Dordrecht, pp 179–196

Maroto C, Tormos P (1994) Project management: an evaluation of software quality. Int Trans Oper
Res 1:209–221

Megow N, Möhring R, Schulz J (2011) Decision support and optimization in shutdown and
turnaround scheduling. INFORMS J Comput 23:189–204

Mika M, Wȩglarz J (2004) Heurystyczne algorytmy równoważenia obcia̧żenia w problemach
rozdziału zasobów z wieloma sposobami wykonywania czynności. In: Gessing R, Szkodny T
(eds) Automatyzacja Procesów Dyskretnych: Optymalizacja Dyskretna; Robotyka i Sterowniki
Programowalne. Wydawnictwa Naukowo Techniczne, Warszawa, pp 161–168

Mika M, Waligóra G, Wȩglarz J (2005) Simulated annealing and tabu search for multi-mode
resource-constrained project scheduling with positive discounted cash flows and different
payment models. Eur J Oper Res 164:639–668

Mika M, Waligóra G, Wȩglarz J (2008) Tabu search for multi-mode resource-constrained project
scheduling with schedule-dependent setup times. Eur J Oper Res 187:1238–1250

Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for project
scheduling with resource constraints based on a new mathematical formulation. Manag Sci
44:714–729

Mori M, Tseng CC (1997) A genetic algorithm for multi-mode resource constrained project
scheduling problem. Eur J Oper Res 100:134–141

Nabipoor Afruzi E, Roghanian E, Najafi AA, Mazinani (2013) A multi-mode resource-constrained
discrete time-cost tradeoff problem solving using an adjusted fuzzy dominance genetic
algorithm. Sci Iran 20:931–944

Neumann K, Schwindt C, Zimmermann J (2002) Project scheduling with time windows and scarce
resources: temporal and resource-constrained project scheduling with regular and nonregular
objective functions. Springer, Berlin

Nonobe K, Ibaraki T (2002) Formulation and tabu search algorithm for the resource constrained
project scheduling problem. In: Ribeiro CC, Hansen P (eds) Essays and surveys in metaheuris-
tics. Kluwer, Boston, pp 557–588

Nudtasomboon N, Randhawa SU (1997) Resource-constrained project scheduling with renewable
and nonrenewable resources and time-resource trade-offs. Comput Ind Eng 32:227–242

Özdamar L (1998) On scheduling project activities with variable expenditure rates. IIE Trans
30:695–704

Özdamar L (1999) A genetic algorithm approach to a general category project scheduling problem.
IEEE T Syst Man Cybern C 29:44–59

Özdamar L, Dündar H (1997) A flexible heuristic for a multi-mode capital constrained project
scheduling problem with probabilistic cash inflows. Comput Oper Res 24:1187–1200

Özdamar L, Ulusoy G (1994) A local constraint based analysis approach to project scheduling
under general resource constraints. Eur J Oper Res 79:287–298

Patterson JH, Słowiński R, Talbot FB, Wȩglarz J (1989) An algorithm for a general class of
precedence and resource constrained scheduling problems. In: Słowiński R, Wȩglarz J (eds)
Advances in project scheduling. Elsevier, Amsterdam, pp 3–28

Patterson JH, Talbot FB, Słowiński R, Wȩglarz J (1990) Computational experience with a
backtracking algorithm for solving a general class of precedence and resource-constrained
scheduling problems. Eur J Oper Res 49:68–79

21 Overview and State of the Art 489

Pesch E (1999) Lower bounds in different problem classes of project schedules with resource
constraints. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications.
Kluwer, Dordrecht, pp 53–76

Prashant Reddy J, Kumanan S, Krishnaiah Chetty OV (2001) Application of Petri nets and a
genetic algorithm to multi-mode multi-resource constrained project scheduling. Int J Adv
Manuf Tech 17:305–314

Pritsker ABA, Watters LJ, Wolfe PM (1969) Multiproject scheduling with limited resources: a
zero-one programming approach. Manag Sci 16:93–107

Rahimi A, Karimi H, Afshar-Nadjafi B (2013) Using meta-heuristics for project scheduling under
mode identity constraints. Appl Softw Comput 13:2124–2135

Ranjbar M, De Reyck B, Kianfar F (2009) A hybrid scatter search for the discrete time/resource
trade-off problem in project scheduling. Eur J Oper Res 193:35–48

Sabzehparvar M, Seyed-Hosseini SM (2008) A mathematical model for the multi-mode resource-
constrained project scheduling problem with mode dependent time lags. J Supercomput
44:257–273

Sabzehparvar M, Seyed-Hosseini SM, Nouri S (2008) A mathematical model for the multi-mode
resource investment problem. J Ind Eng 4:25–32

Salewski F, Schrimer A, Drexl A (1997) Project scheduling under resource and mode identity
constraints: model, complexity, methods, and application. Eur J Oper Res 102:88–110

Santos MA, Tereso AP (2011) On the multi-mode, multi-skill resource constrained project
scheduling problem: a software application. Adv Softw Comp 96:239–248

Seifi M, Tavakkoli-Moghaddam R (2008) A new bi-objective model for a multimode resource-
constrained project scheduling problem with discounted cash flows and four payments model.
Int J Eng Trans A Basics 21:347–360

Speranza MG, Vercellis C (1993) Hierarchical models for multi-project planning and scheduling.
Eur J Oper Res 64:312–325

Sprecher A (1994) Resource-constrained project scheduling: exact methods for the multi-mode
case. Springer, Berlin

Sprecher A, Drexl A (1998) Multi-mode resource-constrained project scheduling by a simple,
general and powerful sequencing algorithm. Eur J Oper Res 107:431–450

Sprecher A, Hartmann S, Drexl A (1997) An exact algorithm for project scheduling with multiple
modes. OR Spektrum 19:195–203

Sung CS, Lim SK (1994) A project activity scheduling problem with net present value measure.
Int J Prod Econ 37:177–187

Talbot FB (1982) Resource-constrained project scheduling with time-resource trade-offs: the
nonpreemptive case. Manag Sci 28:1197–1210

Tseng LY, Chen SC (2009) Two-phase genetic local search algorithm for the multimode resource-
constrained project scheduling problem. IEEE T Evol Comput 13:848–857

Ulusoy G, Cebelli S (2000) An equitable approach to the payment scheduling problem in project
management. Eur J Oper Res 127:262–278

Ulusoy G, Özdamar L (1995) A heuristic scheduling algorithm for improving the duration and net
present value of a project. Int J Oper Prod Man 15:89–98

Ulusoy G, Sivrikaya-Şerifoğlu, Şahin S (2001) Four payment models for the multi-mode resource
constrained project scheduling problem with discounted cash flows. Ann Oper Res 102:237–
261

Valls V, Quintanilla S, Ballestín F (2003) Resource-constrained project scheduling: a critical
activity reordering heuristic. Eur J Oper Res 149:282–301

Valls V, Ballestín F, Quintanilla S (2004) A population-based approach to the resource-constrained
project scheduling problem. Ann Oper Res 131:305–324

Valls V, Ballestín F, Quintanilla S (2005) Justification and RCPSP: a technique that pays. Eur J
Oper Res 165:375–386

Valls V, Pérez Á, Quintanilla S (2009) Skilled workforce scheduling in service centres. Eur Oper
Res 193:791–804

490 M. Mika et al.

Van Hove JC, Deckro RF (1998) Multi-modal project scheduling with generalized precedence
constraints. In: Babarasoğlu G, Karabati S, Özdamar L, Ulusoy G (eds) Proceedings of the
sixth international workshop on project management and scheduling, Istanbul, pp 137–140

Van Peteghem V, Vanhoucke M (2009) An artificial immune system for the multi-mode resource-
constrained project scheduling problem. In: Cotta C, Cowling B (eds) Proceedings of the 9-th
European conference EvoCOP 2009. Lecture notes in computer science, vol 5482. Springer,
Berlin, pp 85–96

Van Peteghem V, Vanhoucke M (2010) A genetic algorithm for the preemptive and nonpreemptive
multi-mode resource-constrained project scheduling problem. Eur J Oper Res 201:409–418

Van Peteghem V, Vanhoucke M (2011) Using resource scarceness characteristics to solve the multi-
mode resource-constrained project scheduling problem. J Heuristics 17:705–728

Vanhoucke M, Coelho J, Debels D, Maenhout B, Tavares L (2008) An evaluation of the adequacy
of project network generators with systematically sampled networks. Eur J Oper Res 187:511–
524

Wang L, Fang Ch (2011) An effective shuffled frog-leaping algorithm for multi-mode resource-
constrained project scheduling problem. Inform Sci 181:4804–4822

Wang L, Fang Ch (2012) An effective estimation of distribution algorithm for the multi-mode
resource-constrained project scheduling problem. Comput Oper Res 39:449–460

Wȩglarz J, Józefowska J, Mika M, Waligóra G (2011) Project scheduling with finite or infinite
number of activity processing modes: a survey. Eur J Oper Res 208:177–205

Wuliang P, Chengen W (2009) A multi-mode resource-constrained discrete time-cost trade-off
problem and its genetic algorithm based solution. Int J Proj Manag 27:600–609

Zapata JC, Hodge BM, Reklaitis GV (2008) The multi-mode resource constrained multi-project
scheduling problem: alternative formulations. AIChE J 54:2101–2119

Zare Z, Naddaf A, Reza Salehi M (2012) Proposing a model on preemptive multi-mode resource-
constrained project scheduling problem. Int J Bus Soc Sci 3:126–127

Zhang H (2012) Ant colony optimization for multimode resource-constrained project scheduling.
J Manag Eng 28:150–159

Zhang H, Tam CM, Li H (2006) Multi-mode project scheduling based on particle swarm
optimization. Comput-Aided. Civ Inf 21:93–103

Zhu G, Bard JF, Yu G (2006) A branch-and-cut procedure for the multi-mode resource-constrained
project scheduling problem. INFORMS J Comput 18:377–390

Chapter 22
The Multi-Mode Resource-Constrained Project
Scheduling Problem

José Coelho and Mario Vanhoucke

Abstract This chapter reports on a new solution approach for the multi-mode
resource-constrained project scheduling problem (MRCPSP, MPSjprecjCmax). This
problem type aims at the selection of a single activity mode from a set of available
modes in order to construct a precedence and a (renewable and nonrenewable)
resource-feasible project schedule with a minimal makespan. The problem type
is known to be N P-hard and has been solved using various exact as well as
(meta-)heuristic procedures. The new algorithm splits the problem type into a mode
assignment and a single mode project scheduling step. The mode assignment step
is solved by a satisfiability (SAT) problem solver and returns a feasible mode
selection to the project scheduling step. The project scheduling step is solved
using an efficient meta-heuristic procedure from literature to solve the resource-
constrained project scheduling problem (RCPSP). However, unlike many traditional
meta-heuristic methods in literature to solve the MRCPSP, the new approach
executes these two steps in one run, relying on a single priority list. Straightforward
adaptations to the pure SAT solver by using pseudo boolean nonrenewable resource
constraints has led to a high quality solution approach in a reasonable computational
time. Computational results show that the procedure can report similar or sometimes
even better solutions than found by other procedures in literature, although it often
requires a higher CPU time.

Keywords Makespan minimization • Multi-mode • Project scheduling •
Resource constraints • SAT

J. Coelho (�)
Department of Sciences and Technology, Universidade Aberta, Lisbon, Portugal
e-mail: Jose.Coelho@uab.pt

M. Vanhoucke
Faculty of Economics and Business Administration, Ghent University, Gent, Belgium

Technology and Operations Management Area, Vlerick Business School, Gent, Belgium

Department of Management Science and Innovation, University College London, London, UK
e-mail: mario.vanhoucke@ugent.be; mario.vanhoucke@vlerick.com; m.vanhoucke@ucl.ac.uk

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_22

491

mailto:Jose.Coelho@uab.pt
mailto:mario.vanhoucke@ugent.be
mailto:mario.vanhoucke@vlerick.com
mailto:m.vanhoucke@ucl.ac.uk

492 J. Coelho and M. Vanhoucke

22.1 Introduction

This chapter presents a novel meta-heuristic approach to solve the non-preemptive
multi-mode resource-constrained project scheduling problem (MRCPSP) within
the presence of both limited renewable and nonrenewable resource constraints,
as proposed in Coelho and Vanhoucke (2011). The MRCPSP is an extension of
the well-known RCPSP to the presence of multiple activity modes where each
activity can be executed under a different duration and a corresponding renewable
and nonrenewable resource use. For a recent survey on MRCPSP we refer to
Wȩglarz et al. (2011), and to Chap. 21 of this handbook. The chapter is organized as
follows. Section 22.2 introduces the notation and describes the problem formulation
in detail. In Sect. 22.3 we present our approach to solve the scheduling problem
type under study and give illustrative examples. Moreover, it is shown that the
solution approach is very general and can be used for various other scheduling
extensions. Section 22.4 enhances this solution approach to cope with excessive
memory requirements. Section 22.5 reports comparative computational results and
Sect. 22.6 contains the conclusions.

22.2 Model Formulation

The multi-mode project scheduling problem with multiple renewable and nonre-
newable resources (MPSjprecjCmax in the three field classification) can be stated
as follows. A set of activities V , numbered from a dummy start node 0 to a
dummy end node n C 1, is to be scheduled without pre-emption on a set R of
renewable resources and a set of Rn of nonrenewable resources. Each renewable
resource k 2 R has a constant availability Rk per period while each nonrenewable
resource k 2 Rn is restricted to Rk units over the complete planning horizon. Each
non-dummy activity i 2 V can be executed in one of Mi modes (pim; rim) with
rim D .rikm/k2R[Rn and m 2 f1; 2; : : : ;Mig. The selection of an activity mode
involves a deterministic duration pim for each activity i , which requires rikm units of
resources k 2 R[Rn. The start and end dummy activities representing the start and
completion of the project have only one mode with a duration and renewable and
nonrenewable resource requirements equal to zero. A project network is represented
by a topologically ordered activity-on-node format where E is the set of pairs of
activities between which a finish-start precedence relationship with time lag 0 exists.
We assume graph G D .V;E/ to be acyclic. A schedule S is defined by a vector
of activity start times and is said to be feasible if all precedence and renewable
and nonrenewable resource constraints are satisfied. The objective of the problem
type is to find a feasible schedule within the lowest possible project makespan, and
hence, the problem type can be represented as m; 1T jcpm; disc;mujCmax using the

22 The Multi-Mode Resource-Constrained Project Scheduling Problem 493

classification scheme of Herroelen et al. (1999) or as MPSjprecjCmax following the
classification scheme of Brucker et al. (1999). The multi-mode resource-constrained
project scheduling problem can be formulated as follows (see Talbot 1982):

Min.
LSnC1X

tDESnC1

txnC1;1;t (22.1)

s. t.
MiX

mD1

LSiX

tDESi

.t C pim/ximt �
MjX

mD1

LSjX

tDESj

txjmt ..i; j / 2 E/ (22.2)

MiX

mD1

LSiX

tDESi

ximt D 1 .i 2 V / (22.3)

nX

iD1

MiX

mD1
rikm

min.t�1;LSi /X

sDmax.t�pim;ESi /

xims � Rk .k 2 RI t D 1; : : : ;UB/ (22.4)

nX

iD1

MiX

mD1
rikm

LSiX

tDESi

ximt � Rk .k 2 Rn/ (22.5)

ximt 2 f0; 1g .i 2 V I m D 1; : : : ;Mi I t D 1; : : : ;UB/ (22.6)

where ximt is equal to 1 if activity i is performed in mode m and started at
time instance t , and 0 otherwise. Equation (22.1) minimizes the total project
makespan. The constraints of Eq. (22.2) take the finish-start precedence relations
with a time lag of zero into account. Constraints of Eq. (22.3) secure that each
non-preemptable activity is performed exactly once in exactly one mode. The
renewable resource constraints are satisfied thanks to constraints of Eq. (22.4) where
UB is an upper bound on the project makespan. The constraints of Eq. (22.5)
restricts the use of the nonrenewable resources over the complete time horizon. The
constraints of Eq. (22.6) force the decision variables to be binary values. Note that
the abbreviations ESi and LSi are used to denote the earliest and latest start for
activity i given the project upper bound UB using traditional forward and backward
critical path calculations.

Consider an example project taken from Kolisch and Drexl (1997) that will be
used throughout the remainder of this chapter with five non-dummy activities, one
renewable resource k D 1 with an availability of R1 D 4 and one nonrenewable
resource k D 2 with an availability R2 D 8. Figure 22.1 shows the activity-on-node
network with the different activity modes below each node. The right part of the
figure displays the optimal renewable resource profile, resulting in a total project
makespan of seven time units.

494 J. Coelho and M. Vanhoucke

1

0

4

i

5

2

3

6

(0,0,0)

(4,2,3)
(6,1,1)

(2,1,0)

(3,3,4)
(5,1,2)

(2,1,0)

(2,2,3)
(4,1,2)

(0,0,0)

(pim, ,)ri1m ri2m

Time

Renewable resource consumption

1

4
3
2
1

1 (1)

2 (1)

5 (1)3 (2)

2 3 4 5 6 7

4 (1)

Fig. 22.1 A fictitious example project with optimal resource profiles (Source: Kolisch and Drexl
1997)

22.3 Solution Approach

The MRCPSP can be easily modeled as an RCPSP instance where each multi-
mode activity i is split into Mi single-mode sub-activities among which exactly
one sub-activity needs to be selected for execution. Consequently, the project
network of Fig. 22.1 can be transformed into an RCPSP network with

Pn
iD1 Mi

non-dummy sub-activities as displayed in Fig 22.2, where the first number below
the node denotes the sub-activity duration and the two other numbers below the
node the renewable and nonrenewable resource requirements. Consequently, the
MRCPSP can be split into a mode assignment step taking the nonrenewable resource
constraints into account [i.e., constraints Eqs. (22.3) and (22.5)] and a single-
mode resource-constrained project scheduling step taking the renewable resource
and precedence constraints [constraints Eqs. (22.2) and (22.4)] into account. The
mode assignment and the project scheduling steps will be discussed in Sects. 22.3.1
and 22.3.2, respectively. In literature, most meta-heuristic search procedures for the
MRCPSP make use of an activity list and a mode list, and run the mode assignment
step and the project scheduling step iteratively. In the solution approach of the
current chapter, these steps will be performed in a single run, making use of only
one priority list per run (which acts both as an activity list and a mode list). This
new feature will be discussed in Sect. 22.3.2.

22.3.1 Mode Assignment

The mode assignment step boils down to the assignment of a single mode from the
set of modes to each activity while not violating the limited nonrenewable resource
availability constraints, and can be easily modelled as a Boolean satisfiability prob-
lem instance. The boolean satisfiability problem (SAT) is a well-known decision
problem where an expression of Boolean variables (referred to as literals) linked by

22 The Multi-Mode Resource-Constrained Project Scheduling Problem 495

Fig. 22.2 The single-mode
RCPSP network of Fig. 22.1
without any activity mode
restrictions

2

0

6

i

7

3

4

9

(0,0,0)

(6,1,1)

(2,1,0)

(3,3,4)

(2,1,0)

(2,2,3)

(0,0,0)

(pi1, ,)ri11
ri21

1

(4,2,3)

5

(5,1,2)

8

(4,1,2)

means of the logical operators and, or, and not is questioned to be true or false. The
problem has been studied extensively in literature (see, e.g., the paper by Marques-
Silva and Sakallah 1999, amongst others) and is known to be N P-complete (see
Cook 1971).

Obviously, the solution of the mode assignment step needs to be checked
and possibly adjusted for the nonrenewable resource infeasibility, and hence, this
step can be easily modeled as a SAT instance. The enumeration of all feasible
mode combinations is practically impossible due to the huge number of possible
combinations. Moreover, Kolisch and Drexl (1997) have shown that finding a
feasible mode combination for the MRCPSP is N P-complete when two or more
nonrenewable resources are taken into account. Therefore, the choice of selecting a
SAT algorithm above an alternative enumeration algorithm is based on the following
logic:

• A SAT algorithm allows a simple mode feasibility check and a scheduling step
using a single activity list instead of two separate lists as normally done in
literature.

• In a SAT algorithm it is easy to implement learning (Sect. 22.3.3.2) which can be
used over different mode combination searches.

Consequently, the mode assignment step can be represented in the conjunctive
normal form (CNF) which is a conjunction of clauses linked by the “and” operator.
A SAT instance contains several clauses to deal with the various mode assignments

496 J. Coelho and M. Vanhoucke

and/or the nonrenewable resource constraints. The clauses for the network of
Figs. 22.1 and 22.2 can be represented as follows:

Single-mode activities: x0 C x3 C x6 C x9 D 4
Mode assignment for activity 1: x1 C x2 D 1
Mode assignment for activity 3: x4 C x5 D 1
Mode assignment for activity 5: x7 C x8 D 1
Nonrenewable resource constraint: 3x1Cx2C 4x4C 2x5C 3x7C 2x8 � 8

with xi a 0/1 variable of sub-activity i to denote whether the mode has been
assigned (1, true) or not (0, false). All mode assignment constraints can be easily
translated into the CNF where the 0/1 xi variables are now boolean variables
(literals). The nonrenewable resource constraint is known as a pseudo boolean
constraint. These type of constraints can be solved by a pseudo boolean solver
(Chai and Kuehlmann 2005; Markov et al. 2002) or can be translated into the CNF
(Bailleux et al. 2006). However, the nonrenewable resource constraint also contains
activity information (e.g., x1 and x2 are variables from the same activity and hence,
only one variable can be set to true), but none of the previous methods takes
this additional information into account. The enumeration scheme of Sect. 22.3.1.1
translates the pseudo boolean nonrenewable resource constraints into CNF using
this extra activity information. The mode assignment constraints can be translated
into CNF as follows1:

Single-mode activities: x0 ^ x3 ^ x6 ^ x9
Mode assignment for activity 1: .x1 _ x2/ ^ .x1 _ x2/
Mode assignment for activity 3: .x4 _ x5/ ^ .x4 _ x5/
Mode assignment for activity 5: .x7 _ x8/ ^ .x7 _ x8/
Nonrenewable resource constraint: Enumeration scheme discussed in 22.3.1.1

In the remaining sections, the translation of pseudo boolean nonrenewable
resource constraint clauses to a CNF is explained in detail. In Sect. 22.4, an adapted
pseudo boolean solver is presented that incorporates these nonrenewable resource
constraint clauses and both approaches are compared.

22.3.1.1 Nonrenewable Resource Constraint Clauses

The construction of the constraint clauses for the nonrenewable resource constraints
is based on a simple yet efficient enumeration scheme. The enumeration scheme
starts for the initial nonrenewable resource constraint (e.g., 3x1 C x2 C 4x4 C
2x5 C 3x7 C 2x8 � 8 for the example project) and gradually reduces the size of
this constraint by iteratively setting boolean variables to true. More precisely, the

1In general, a constraint y1 C y2 C : : :C yn D 1 can be represented in the CNF as .y1 _ y2 _
: : :_ yn/^ .y1 _ y2/^ : : :^ .y1 _ yn/^ .y2 _ y3/^ : : :^ .yn�1 _ yn/.

22 The Multi-Mode Resource-Constrained Project Scheduling Problem 497

scheme enumerates all activity mode variables for a single activity at each level of
the enumeration tree and creates a node at that level for each variable that is set
to true. In doing so, the size of the nonrenewable resource constraint is gradually
reduced and clauses are added when necessary.

The minimum and maximum nonrenewable resource demand for an activity i are
defined as:

rmin
ik D min

mD1;:::;Mi

rikm and rmax
ik D max

mD1;:::;Mi I
rikm (22.7)

The total minimum and maximum remaining nonrenewable resource demand is
the sum of the individual minimal and maximal resource requests, as:

r sum�min
k D

X

i2U
rmin

ik and r sum�max
k D

X

i2U
rmax

ik (22.8)

whereU � V is the set of activities that have not been evaluated at previous levels of
the search tree. Likewise,R0k is used to denote the remaining nonrenewable resource
availability after reduction of the resource use of the boolean variables (i.e., mode
selections) that have been set to true.

The remaining nonrenewable resource constraint at each node will be evaluated
to detect whether backtracking with or without adding constraint clauses is possible.
The two evaluation rules applied at each node of the tree can be defined as follows:

1. If the remaining nonrenewable resource constraint is satisfied, continue with the
other node(s) at the current level of the tree without the insertion of a clause.
Formally, if r sum�max

k � R0k then the constraint is satisfied.
2. If the remaining nonrenewable resource constraint is violated, continue with the

other node(s) at the current level of the tree and insert a clause that consists
of the negation of all activity modes selected up to the current branch of the
tree. Formally, if r sum�min

k > R0k then the remaining nonrenewable constraint is
impossible to satisfy.

The enumeration scheme of the example project can be graphically presented in
Fig. 22.3.

The enumeration search of the example has found only one conflict clause as
.x1 _ x4/ at node 3. Indeed, at node 3 of the tree, r sum�min

k D 2 > 1 and hence,
this constraint cannot be satisfied. The conflict .x1 _ x4/ is added and the algorithm
continues with node 4 of the tree. Note that, as an example, r sum�max

k D 7 � 7 at
node 5 of the enumeration tree, and hence, the remaining constraint is satisfied and
the algorithm backtracks to the previous level.

In order to improve the efficiency of the enumeration scheme, a number
of additional node reduction rules are applied during the search which can be
summarized as follows:

498 J. Coelho and M. Vanhoucke

1

act1
︷ ︸︸ ︷

3x1+ x2+

act3
︷ ︸︸ ︷

4x4+2x5+

act5
︷ ︸︸ ︷

3x7+2x8 ≤ 8

rsum−max
k = 10 and rsum−min

k = 5

2

act3
︷ ︸︸ ︷

4x4+2x5+

act5
︷ ︸︸ ︷

3x7+2x8 ≤ 5

rsum−max
k = 7 and rsum−min

k = 4

5

act3
︷ ︸︸ ︷

4x4+2x5+

act5
︷ ︸︸ ︷

3x7+2x8 ≤ 7

rsum−max
k = 7 and rsum−min

k = 4
constraint is satisfied

3

act5
︷ ︸︸ ︷

3x7+2x8 ≤ 1

rsum−max
k = 3 and rsum−min

k = 2
Conflict (x1 ∨ x4)

4
act5

︷ ︸︸ ︷

3x7+2x8 ≤ 3

rsum−max
k = 3 and rsum−min

k = 2
constraint is satisfied

x1 = true
x2 = true

x4 = true
x5 = true

Fig. 22.3 Enumeration scheme of the example project

1. If an activity has an equal nonrenewable resource demand for all its modes then
this activity can be deleted from the search and the total nonrenewable resource
availability has to be reduced by this resource demand.

2. If the difference between the nonrenewable resource demand of activity i at
mode m and its corresponding minimal nonrenewable resource demand is larger
than the difference between the resource’s availability and its total minimum
remaining resource demand, then the activity mode can be set to false and
removed from the formula. Formally, for each mode m of activity i , if rikm �
rmin

ik > R0k � r sum�min
k then remove the activity mode from the search.

No node improvement rules can be applied due to the small size of the example
network. As an example, since rikm � rmin

ik is equal to 2, 0, 0, 2, 0, 0, 1, and 0 for
activities 1–5 of Fig. 22.1 and Rk � r sum�min

k D 8 � 5 D 3, no activity mode can be
removed from the search (improvement rule 2).

22 The Multi-Mode Resource-Constrained Project Scheduling Problem 499

22.3.1.2 The Activity List SAT Mode Assignment Procedure

The procedure presented in this chapter makes use of a list with a dual role. First,
the list serves as a variable list to solve the CNF and guarantees the selection
of a single mode for each activity satisfying the nonrenewable constraints, if
possible (see Sect. 22.3.1). Second, the list serves as a traditional activity list for the
construction of a project schedule based on the selected modes (see Sect. 22.3.2). In
the remainder of this chapter, we refer to this list as an activity list AL.

Despite the N P-hardness of the SAT, research has proposed many advanced
algorithms able to solve problem instances with up to thousands of literals and
millions of constraints, which is far beyond the size of the SAT instances solved
in our case (see, e.g., the SAT competition results of Kullmann 2006). Therefore,
we rely on the efficient DPLL algorithm of Davis et al. (1962). The DPLL
algorithm is a complete, backtracking-based algorithm for deciding the satisfiability
of propositional logic formulae in the CNF. The algorithm sequentially selects
literals (i.e., variables) from a pre-defined variable list and assigns a truth value to
it in order to simplify the CNF formula. If this assignment leads to an unsatisfiable
simplified formula (referred to as a conflict), the opposite value (false) is set to
the selected literal and the algorithm continues. The unit propagation rule checks
whether a clause is a unit clause, i.e., it contains only a single unassigned literal.
When this is the case, this clause can only be satisfied by assigning the necessary
value to make this literal true.

Assume a simple activity list AL D f0;1;2;3;4;5;6;7;8;9g and a set L denoting
the set of assigned literals at a given moment (where x and x can not belong to L
at the same moment). The DPLL algorithm for the example CNF D x0 ^ x3 ^ x6 ^
x9^ .x1_x2/^ .x1_x2/^ .x4_x5/^ .x4_x5/^ .x7_x8/^ .x7_x8/^ .x1_x4/
runs as follows:

1. Activity list AL D f0;1;2;3;4;5;6;7;8;9g
Unit clause rule x0, x3, x6, x9: L D fx0; x3; x6; x9g
CNF:
.x1 _ x2/ ^ .x1 _ x2/ ^ .x4 _ x5/ ^ .x4 _ x5/ ^ .x7 _ x8/ ^ .x7 _ x8/
^.x1 _ x4/

2. Selection of variable from AL, not in L: x1: L D fx0; x3; x6; x9; x1g
CNF: x2 ^ .x4 _ x5/ ^ .x4 _ x5/ ^ .x7 _ x8/ ^ .x7 _ x8/ ^ x4
Unit clause rule x2, x4: L D fx0; x3; x6; x9; x1; x2; x4g
CNF: x5 ^ .x7 _ x8/ ^ .x7 _ x8/
Unit clause rule: x5: L D fx0; x3; x6; x9; x1; x2; x4; x5g
CNF: .x7 _ x8/ ^ .x7 _ x8/

3. Selection of variable from AL, not in L: x7: LDfx0; x3; x6; x9; x1; x2; x4; x5; x7g
CNF: x8
Unit clause rule: x8: L D fx0; x3; x6; x9; x1; x2; x4; x5; x7; x8g

500 J. Coelho and M. Vanhoucke

Table 22.1 The SAT mode
assignment solution

Figure 22.1 Figure 22.2

i m (pim; ri1m; ri2m) i L pi1

0 1 (0,0,0) 0 x0 0

1 1 (4,2,3) 1 x1 4

2 (6,1,1) 2 x2 0

2 1 (2,1,0) 3 x3 2

3 1 (3,3,4) 4 x4 0

2 (5,1,2) 5 x5 5

4 1 (2,1,0) 6 x6 2

5 1 (2,2,3) 7 x7 2

2 (4,1,2) 8 x8 0

6 1 (0,0,0) 9 x9 0

Note that no conflict has been generated during the DPLL algorithm since
each assignment has led to a satisfiable simplified CNF formula. The selection of
literals can be translated into sub-activity durations as shown in the last column
of Table 22.1. The sub-activity durations (equal to zero when the corresponding
activity mode has not been selected) of the table are input for the scheduling step of
Sect. 22.3.2. An illustrative example to show the presence of conflict generation and
algorithmic backtracking will be given in Sect. 22.3.3.2.

22.3.2 RCPSP Scheduling Step

The project scheduling step is a resource-constrained project scheduling problem
where each activity has a single execution mode determined by the mode assignment
step. The solution of SAT provides positive (in case the literal has been set to
true) or zero (literal is set to false) duration sub-activities and hence determines
the characteristics of the RCPSP instance. In this chapter, the scheduling step is
performed based on the decomposition based genetic algorithm of Debels and
Vanhoucke (2007). These authors present a genetic algorithm that makes use of
an activity list to construct resource feasible schedules based on a forward and
backward serial generation scheme and they have shown that their procedure
outperforms the current state-of-the-art procedures.

While the details of this genetic algorithm will not be repeated here, a basic
overview of the different elements is given along the following lines:

• Dual population: The population based heuristic splits the total number of
generated schedules into two separate populations containing left- and right-
justified schedules, inspired by the promising results found by Valls et al. (2005).

• Representation of a schedule: Based on the remarks by Debels et al. (2006) who
have illustrated that a random key representation is very effective thanks to the
use of the topological ordering notation (Valls et al. 2003), this notation has been

22 The Multi-Mode Resource-Constrained Project Scheduling Problem 501

adapted to the dual population heuristic, as follows: the random key elements are
equal to the activity finishing times for a left-justified schedule, and equal to the
starting times for a right-justified schedule.

• Parent selection: Parents are selected using a 2-tournament selection where two
population elements from the population are chosen randomly, and the element
with the best objective function value is selected. Afterwards, one element is
randomly labelled as the father and the other element as the mother.

• Crossover operator: The combination of the genes of both parents is done by a
two-point crossover operator based on a modified version of the peak crossover
operator of Valls et al. (2008) that makes use of the resource utilization ratio.
This ratio measures the resource utilization at time unit t allowing the selection
of time intervals for which the resource utilization is high, so-called peaks, and
time intervals with low resource utilization.

• Local search: The local search is based on an iterative forward and backward
search (Li and Willis 1992) to improve the two separate populations containing
left- and right-justified schedules.

• Decomposition approach: The genetic algorithm has been extended to a so-called
decomposition-based heuristic which iteratively solves subparts of the project
leading to the best results in literature.

While most research papers rely on two separate lists to solve the MRCPSP (one
to determine the assignment of modes and a second to feed a schedule generation
scheme), the algorithm presented here relies on a single list that takes both the mode
assignments and the activity scheduling step into account.

Theorem 22.1. Using a single activity list for the SAT mode assignment and the
RCPSP scheduling steps does not exclude optimal solutions.

Proof. It has been shown in Sect. 22.3 that a project network with multi-mode
activities can be represented by a set of sub-activities while a corresponding feasible
schedule can be represented by two subsets of this set of all sub-activities: One
subset contains sub-activities with a positive duration and a corresponding starting
time and the remaining subset contains sub-activities with a zero duration. It will
be shown that any active project schedule has at least one sub-activity list AL that,
when used as input lists by both the mode assignment step (SAT) and the scheduling
step (RCPSP), leads to this schedule. If the existence of such an AL can be shown
for any feasible active schedule, then this existence also holds for the optimal project
schedule. Consider to that purpose a feasible solution, i.e., an active project schedule
where each activity has a starting time (D scheduling step) and a positive duration
defined by the selected mode (D mode assignment step). These activities belong to
the subset of sub-activities with a positive duration while the remaining subset with
zero duration sub-activities is obviously not visible in the project schedule. The
existence of an AL that leads to the feasible project schedule using the scheduling
and mode assignment steps can be shown through the following three steps.

1. Each schedule can be easily represented by an activity list using the unique
standardized random key (RK) representation presented by Debels et al. (2006).

502 J. Coelho and M. Vanhoucke

This representation consists of the starting times of the sub-activities with a
positive duration in increasing order followed by set of remaining activity modes
that are not part of the feasible schedule (i.e., the sub-activities with a duration
of zero) and is an extension of the topological order representation of Valls et al.
(2003, 2004). Since a feasible project schedule can be uniquely defined by its
activity starting times, such an AL can always be constructed.

2. It has been shown by Debels et al. (2006) that such a standardized RK or AL has
a unique correspondence with a project schedule where each positive duration
activity has a starting time equal to its AL value, and this schedule can be
generated by the use of the well-known serial schedule-generation scheme.

3. This unique RK or AL will also result in the mode assignments of the feasible
project schedule, i.e., those sub-activities with a positive duration in the project
schedule will be set to true in the SAT step, while the zero duration sub-activities
will be set to false. Since the AL defines the ranking of sub-activities that will
be selected by the SAT step, the SAT mode assignment step applied to this AL
will select the first subset of sub-activities and set their values to true (i.e., with
a positive duration). This will never generate a conflict since the activity list
corresponds to a feasible project schedule. The remaining sub-activities will be
set to false due to the clause that only one mode can be selected per activity,
leading to the mode assignment represented in the feasible project schedule. ut
The use of a single priority list for both the mode assignment step and the activity

scheduling step is unique and in contrast with most meta-heuristic procedures to
solve the MRCPSP in literature. The new solution approach presented in the current
chapter transforms the MRCPSP instance to an RCPSP instance, where each multi-
mode activity i is split into Mi single-mode sub-activities, and SAT restrictions
are added to assure that only one sub-activity will be selected. Moreover, before
applying the serial schedule-generation scheme to the RCPSP, the mode assignment
is called using the same priority list as used for the RCPSP, and sub-activities that are
not selected are set to zero. The example of Fig. 22.2 displays the general RCPSP
instance used throughout the search to a high quality solution, without any SAT
restriction forcing that only one mode can be selected per activity. A single priority
list will transform this figure into a resource feasible schedule (i.e., the scheduling
step) where exactly one mode per activity is selected (i.e., the mode assignment
step).

22.3.3 Advantages of SAT Solvers

22.3.3.1 Pre-processing

The selection of the branching literals is an important factor for the efficiency
(Hooker and Vinay 1995). Obviously, infeasible instances and instances with tight
nonrenewable resource constraints might consume a lot of CPU time using the

22 The Multi-Mode Resource-Constrained Project Scheduling Problem 503

activity list discussed previously, since this list does not contain guiding information
to select variables to branch. Therefore, at the initial start of the MRCPSP search, a
random AL could lead to a high CPU consumption. Consequently, a pre-processing
run using a selection rule (we use the greedy heuristic rule of Marques-Silva and
Sakallah 1999) improves the decision assignment at each stage of the search process
and leads to two advantages:

• Feasibility check: When the nonrenewable resource constraints are impossible to
satisfy, the algorithm stops and there is no need to start the AL search.

• Clause learning: The information gathered during the initial pre-processing run
can be saved to improve the remaining AL runs. This is explained in the next
section.

22.3.3.2 Learning

Clause learning is an important technique in SAT, since Marques-Silva and Sakallah
(1999) have shown that recording conflict-inducing clauses can help to prevent the
occurrence of similar conflicts later on in the search. Rather than reducing the CPU
time of a single search of a SAT instance, in our case there is a need to reduce the
total CPU time used to repeatedly solve the SAT instance for all generated activity
lists.

Therefore, we made a simplification and only introduced learning clauses with
a maximum number of literals. More precisely, when a conflict arises due to an
assignment at level three (or above) then a clause is added with the negation of the
decision assignments used up to that level to prevent this conflict to occur again in
the next searches of this instance using other activity lists.

The maximum level of three guarantees that only clauses with three or less
literals are added to the SAT instance, keeping the instance size relatively stable.
Computational tests have been done with a maximum of 4–10, and have shown that
it leads to a higher CPU consumption.

In order to illustrate the effect of clause learning, a computational experiment has
been set up that compares the SAT learning effect with an enumeration scheme that
evaluates mode assignments in a similar way as the SAT procedure. More precisely,
the enumeration scheme has exactly the same performance than the SAT algorithm
under a single run, leading to exactly the same mode assignments, but it operates
on modes rather than on literals and does not include clause learning. The test
runs are done on test data truncated after a predefined number of schedules and
compare the average number of backtracks used in both the enumeration and SAT
approach since they can be considered as a proxy for the total computational time
of the mode assignment step. Since the average number of backtracks varies heavily
from instance to instance, a graph has been constructed for an example project
instance shown in Fig. 22.4 that illustrates the main results of the experiments. In
our computational tests, we have seen that approximately 25 % of the J30 problem
instances clearly benefit from clause learning. As an example, the J308_6 instance

504 J. Coelho and M. Vanhoucke

Number of schedules (stop criterion)

Enumeration

SAT approach

N
um

be
r

of
 b

ac
kt

ra
ck

s

Fig. 22.4 An example graphical representation of the number of backtracks for two mode
assignment procedures

benefits most from the SAT learning, and the computational tests have shown that
the number of backtracks is equal to 131,362,000 and 5,500,000 for the enumeration
approach and the SAT approach, respectively, under a stop criterion of 100 generated
schedules. This number increases to 481,240,000 for the enumeration approach
when the number of generated schedules is set to 1,000, while it stays relatively
constant for the SAT approach, which illustrates that the incorporation of learning
can lead to huge time reductions for some instances.

The graph shows that the initial performance of both mode assignment proce-
dures is similar under a low stop criterion, but that the SAT approach benefits from
learning while the enumeration approach is not able to do so. Indeed, while the
number of backtracks is more or less linear with the number of predefined schedules
set as a stop criterion for the enumeration approach, the SAT procedure is able to
reach a relatively horizontal increase after a certain number of generated schedules,
thanks to the incorporation of clause learning.

A small illustrative example is given along the following lines to show the
presence of conflict generation, algorithmic backtracking, and the use of learning
clauses. Assume a CNF D .a _ c _ d/^ .b _ c _ d/ ^ .a _ c _ d/ ^ .b _ c _ d/
and a simple activity list AL D fa; b; c; d g. The DPLL algorithm for the example
CNF runs as follows:

1. Level 1. Selection of variable a from the AL, not in L: L D fag
CNF D .c _ d/ ^ .b _ c _ d/ ^ .c _ d/ ^ .b _ c _ d/

2. Level 2. Selection of variable b from the AL, not in L: L D fa; bg
CNF D .c _ d/ ^ .c _ d/ ^ .c _ d/ ^ .c _ d/
This instance can never be true, but the algorithm does not detect this
since it does not generate a conflict

3. Level 3. Selection of variable c from the AL, not in L: L D fa; b; cg

22 The Multi-Mode Resource-Constrained Project Scheduling Problem 505

CNF D d ^ d
Unit clause rule d; d : L D fa; b; c; d; d g
A conflict is generated since d and d cannot belong to L
Selection of other literal of variable c from AL, not in L: L D fa; b; cg
CNF D d ^ d
Unit clause rule d; d : L D fa; b; c; d; d g
A conflict is generated since d and d cannot belong to L
There are no other values for the variable c so the algorithm backtracks to
level 2

4. Level 2. A learning clause .a _ b/
If this clause would exist at the start of the procedure, the unit clause rule of
step 1 would assign b and the conflict would not be generated
Selection of other literal of variable b from AL, not in L: L D fa; bg
CNF D .c _ d/ ^ .c _ d/

5. Level 3. Selection of variable c from the AL, not in L: L D fa; b; cg
CNF D d
Unit clause rule d : L D fa; b; c; d g
This is the first valid assignment found with this activity list
The learning clause .a _ b/ will be inserted such that during the next search
this conflict will not be generated, leading to a time saving

22.4 Adapted Pseudo Boolean Solver Approach

In the model presented earlier, each nonrenewable constraint is the subject of the
enumeration scheme of Sect. 22.3.1.1, which leads to a set of clauses that need
to be stored as an input file for the SAT solver (i.e., the DPLL procedure) that
is called for each activity list generated during the search. When the size of the
project network instance becomes relatively large, both in terms of the number of
project activities and the number of nonrenewable resource constraints, the number
of clauses translated from the pseudo boolean nonrenewable resource constraints
can grow exponentially, leading to a large SAT input file and excessive use of
memory. Table 22.2 illustrates the exponential growth of the number of clauses
and the corresponding memory need for the PSPLIB (Kolisch and Sprecher 1996)
instances. The column “SAT(3)” shows that the total disk space required to store
the PSPLIB instance with the SAT approach of Sect. 22.3 grows very quickly up
to almost 50 GB, using a stop criterion of 1 million clauses. From the J14 set on,
several instances exceed this limit and are truncated in an early stage, as shown by
column “#Ins-M”.

506 J. Coelho and M. Vanhoucke

Table 22.2 A comparison between the pure SAT and the SAT(k) approach

Set #Var #Ins M (SAT(3)) M (SAT(4)) Avg.Cl(3) Avg.Cl(4) #Ins-M

J10 32 536 119 1:5 5;883 21:4 0

J12 38 547 801 2:1 32;435 25:4 0

J14 44 551 5;342 2:4 186;436 29:4 24

J16 50 550 14;445 2:7 454;055 33:4 162

J18 56 552 23;112 3:0 653;028 37:4 320

J20 62 554 26;759 3:4 694;061 41:4 378

J30 92 640 49;554 5:8 750;030 61:5 480

The abbreviations in the first row of the table can be explained along the
following lines:

• #Var: Average number of variables in the SAT instance (equal to the number of
activity modes).

• #Ins: Number of instances in each set.
• M (SAT(3)): Total disk space of SAT instance using the SAT approach of

Sect. 22.3 (in MB).
• M (SAT(4)): Total disk space of SAT instance using the adapted SAT approach

of this section (in MB).
• Avg.Cl(3): Average number of clauses generated using the SAT approach of

Sect. 22.3.
• Avg.Cl(4): Average number of clauses generated using the adapted SAT approach

of this section.
• #Ins-M: Number of instances leading to memory problems (i.e., � 1 million

added clauses) using the SAT approach of Sect. 22.3. Note that all instances can
be solved by the adapted SAT approach as briefly discussed hereafter (i.e., #Ins-
M D 0).

In order to avoid the heavy computational burden and the excessive memory
requirement of the SAT(3) solution approach, the pseudo boolean nonrenewable
resource constraints are not translated to CNF using the enumeration scheme of
Sect. 22.3.1.1, but are used directly in the DPLL algorithm. Consequently, the
two evaluation rules and the two node reduction rules of Sect. 22.3.1.1 are still
applicable, but are dynamically used during the DPLL search. In doing so, this
approach avoids the excessive memory increase of the SAT input file due to the
enumeration of the boolean nonrenewable resource constraints in advance. The
introduction of this approach leads to a dramatic reduction in the disk space (and
hence the memory use) and the number of constraint clauses, as shown in columns
“SAT(4)” and “Avg.Cl(4)” of Table 22.2. The reduction of memory has a beneficial
effect on the initial memory allocation computation time, but does not speed up the
rest of the search of the SAT solver in any way. Indeed, the results and the number of
steps in the DPLL algorithm are the same for the SAT(3) and the SAT(4) approaches.

22 The Multi-Mode Resource-Constrained Project Scheduling Problem 507

22.5 Computational Results

This section reports on computational results to evaluate the performance of the
algorithm. The algorithm has been coded in C++ and tests have been run on a
Dell Dimension DM051 with a Pentium D with a 2.80 GHz processor. The first
benchmark test set is the well-known PSPLIB dataset which contains multi-mode
project network instances generated by ProGen (Kolisch et al. 1995) with 10, 12, 14,
16, 18, 20, and 30 activities and with 2 renewable and 2 nonrenewable resources.
The set is available from the ftp server of the University of Kiel (http://129.187.
106.231/psplib/). Results are also compared with a second benchmark dataset taken
from Boctor (1993), containing 240 instances with 50 and 100 activities and only
renewable resource constraints.

The first computational results have been displayed in Table 22.3 for the new
procedure (denoted by “This Work”) under a stop criterion of 5,000 generated
schedules. The values are average deviations from the optimal solution. The table
shows that the new procedure is able to provide comparable results for some of
the state-of-the-art procedures, but cannot outperform the best known results. The
new procedure has also been truncated after 50,000 and 500,000 schedules in order
to show the potential of the procedure to produce high-quality solutions. Although
a comparison with the state-of-the-art results is not fair anymore, the table shows
that near-optimal solution can be produced with the new procedure under high stop
criterion values.

Table 22.4 reports results for the J30 instances as the average deviation from the
minimal critical path length under four stop criterion values and compares the results

Table 22.3 Computational results for the PSPLIB dataset under a 5,000 schedule limit stop
criterion

J10 J12 J14 J16 J18 J20

Van Peteghem and Vanhoucke (2010) 0:01% 0:09% 0:22% 0:32% 0:42% 0:57%

Wang and Fang (2012) 0:12% 0:14% 0:43% 0:59% 0:90% 1:28%

Wang and Fang (2011) 0:10% 0:21% 0:46% 0:57% 0:94% 1:39%

Elloumi and Fortemps (2010) - v1 0:21% 0:29% 0:77% 0:91% 1:30% 1:62%

Elloumi and Fortemps (2010) - v2 0:14% 0:24% 0:80% 1:14% 1:53% 2:09%

Lova et al. (2009) 0:06% 0:17% 0:32% 0:44% 0:63% 0:87%

Jarboui et al. (2008) 0:03% 0:09% 0:36% 0:44% 0:89% 1:10%

Ranjbar et al. (2009) 0:18% 0:65% 0:89% 0:95% 1:21% 1:64%

Alcaraz et al. (2003) 0:24% 0:73% 1:00% 1:12% 1:43% 1:91%

Józefowska et al. (2001) 1:16% 1:73% 2:60% 4:07% 5:52% 6:74%

This Work (5,000) 0:07% 0:16% 0:32% 0:48% 0:56% 0:80%
0:4 s 0:5 s 0:7 s 0:9 s 1:0 s 1:2 s

This Work (50,000) 0:00% 0:01% 0:05% 0:06% 0:08% 0:12%
4:3 s 5:4 s 6:9 s 8:4 s 10:1 s 11:8 s

This Work (500,000) 0:00% 0:00% 0:01% 0:01% 0:01% 0:02%
43:8 s 53:9 s 68:4 s 82:9 s 100:1 s 117:0 s

http://129.187.106.231/psplib/
http://129.187.106.231/psplib/

508 J. Coelho and M. Vanhoucke

Table 22.4 Computational results for the PSPLIB J30 dataset under four different stop criteria
(number of schedules)

1,000 5,000 50,000 500,000

This Work 20:15% 14:44% 12:77% 12.41 %

2:8 s 4:5 s 25:1 s 210.1 s

Van Peteghem and Vanhoucke (2010) 15:30% 13:75% 13:31% 13.09 %

0:05 s 0:24 s 2:46 s 18.03 s

with the procedure of Van Peteghem and Vanhoucke (2010) which is described as
the best performing procedure up to today. The results show that the new SAT based
procedure is not able to outperform the best performing procedure when the stop
criterion is set relatively low. However, when both procedures are truncated after
a longer time period, the procedure of this chapter reports better results than the
best known procedure in literature. Although the SAT procedure needs a higher
CPU time for the same stop criterion (defined as a maximum number of generated
schedules), it is able to find solutions which have never been found by the genetic
algorithm of Van Peteghem and Vanhoucke (2010). It is worth noting that this
genetic algorithm was able to report an average deviation from the critical path of
12.92 % when the stop criterion was set to 5,000,000 schedules (not shown in the
table). These deviations were found after approximately 200 s, which corresponds
to the time needed for the 500,000 schedules stop criterion of the SAT procedure.
However, the latter procedure reports better results with average deviations of
12.41 %. It is also worth mentioning that four new best known solutions have
been found with a stop criterion of 50,000 schedules, and another one with a stop
criterion of 500,000 schedules. It should be noted that an increase from, e.g., 5,000
to 50,000 schedules (i.e., by a factor 10) does not lead to similar CPU time increase
(the increase in CPU is equal to 25:1

4:5
D 5:57 which is lower than a factor 10).

This can be explained by the introduction of the learning clauses that gradually
avoids the generation of identical conflicts, leading to time savings when repeatedly
solving the SAT instances. This is not the case for the J10 to J20 instances, which
might indicate that the nonrenewable resource constraints are not a constraining
factor making the clause learning less relevant. However, it should be noted that the
computational results must be placed into the right perspective. Although the table
shows that our procedure is able to generate high quality solutions which outperform
the best known results found in literature, they often come at a higher computational
cost. We have used the number of generated schedules as a stop criterion, since
this is widely used in the academic literature. However, this approach assumes that
the effort for one schedule is essentially the same in all methods (Kolisch and
Hartmann 2006), which is not the case for our procedure. Due to the often CPU
intensive search process during the mode assignment step which evaluates multiple
mode assignments per schedule, this assumption is clearly violated and hence, the
comparison in number of schedules not always fair. Since a fair and unambiguous
comparison of CPU times is very hard, we have chosen to report CPU times in

22 The Multi-Mode Resource-Constrained Project Scheduling Problem 509

Table 22.5 Computational results for the PSPLIB J30 dataset under five different stop criteria
(CPU time, in seconds)

1 s 5 s 30 s 120 s 300 s

This Work 31.03 % 16.66 % 12:75% 12:64% 12:54%

0 8 53 49 42

Van Peteghem and Vanhoucke (2010) 13.40 % 13.07 % 12:96% 12:88% 12:73%

454 243 34 20 17

Table 22.6 Computational results for the Boctor dataset under two different stop criteria

50 100

1,000 5,000 1,000 5,000

This Work 31:37% 25:11% 38:58% 30.03 %

Van Peteghem and Vanhoucke (2010) 27:36% 23:41% 29:70% 24.67 %

Lova et al. (2009) 24:89% 23:70% 26:96% 24.85 %

Alcaraz et al. (2003) 33:83% 26:52% 41:85% 29.16 %

the tables, showing the promising character of our procedure in terms of solution
quality, although the computational effort is often much higher.

However, in order to make the fair comparison complete, Table 22.5 shows a
computational comparison similar to Table 22.4 but now truncated after a predefined
running time. Since both algorithms have been developed by the same author(s)
and tested on the same computer, it can be reasonably assumed that they have been
programmed under the same implementation skills. The first rows of each algorithm
display the average deviation from the minimal critical path length truncated after
1, 5, 30, 120, and 300 s, while the second rows display the number of instances
for which a better solution is found than with the other solution procedure. As an
example, the SAT procedure is able to find better solutions for 53 instances under a
stop criterion of 30 s, while the solution procedure of Van Peteghem and Vanhoucke
(2010) finds 34 better solutions. All other solutions have the same solution quality.
The results show that the new SAT procedure is competitive with the best procedure
currently available in the literature and even outperforms it when the running time
stop criteria is set to 30 s or higher.

Finally, Table 22.6 reports results for the dataset of Boctor (1993) as the
percentage deviation above the minimal critical path length. The procedure is
not able to outperform the state-of-the-art procedures. However, when extending
the stop criterion to 50,000 schedules, the deviations decreased to 23.26 and
24.42 %, for the 50 and 100 activity instances, respectively. A further increase to
500,000 schedules resulted in deviations of 22.87 and 23.11 %. However, using
the procedure on these problem instances is not so relevant since these instances
have no nonrenewable resources. Consequently, for these instances, there are no
infeasible activity lists/mode assignment combinations, and hence, the advantage
of the SAT approach to deal with inconsistencies of nonrenewable resources is no
longer present.

510 J. Coelho and M. Vanhoucke

22.6 Conclusions

In this chapter, a novel approach has been presented to solve the multi-mode
resource-constrained project scheduling problem (MRCPSP). The algorithm splits
the problem into a mode assignment step and a single mode project scheduling step.
The mode assignment step is solved using a fast and efficient SAT solver. Due to
excessive memory requirements, a number of small and straightforward adaptations
to this solver have been implemented to solve the SAT problem instances in less
memory. The single mode project scheduling step is solved using a current state-of-
the-art RCPSP meta-heuristic from literature. When better RCPSP meta-heuristics
become available in the literature, they can easily replace the current one, possibly
leading to improved solutions.

The computational results for the MRCPSP have shown to be able to generate
solutions comparable with the solution quality found by many state-of-the-art
procedures, and outperforms them when the procedures run long enough. Moreover,
the procedure was able to find better solutions on five problem instances under
high stop criterion values. In our future research, it will be shown that the novel
solution approach has potential to solve numerous extensions to the well-known
MRCPSP problem, and hence, the solution approach will be used for alternative
problem formulations or problem extensions.

References

Alcaraz J, Maroto C, Ruiz R (2003) Solving the multi-mode resource-constrained project
scheduling problem with genetic algorithms. J Oper Res Soc 54:614–626

Bailleux O, Boufkhad Y, Roussel O (2006) A translation of pseudo-boolean constraints to SAT. J
Satisf Bool Model Comput 2:191–200

Boctor F (1993) Heuristics for scheduling projects with resource restrictions and several resource-
duration modes. Int J Prod Res 31:2547–2558

Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project
scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41

Chai D, Kuehlmann A (2005) A fast pseudo-boolean constraint solver. IEEE T Comput Aid D
24:305–317

Coelho J, Vanhoucke M (2011) Multi-mode resource-constrained project scheduling using RCPSP
and SAT solvers. Eur J Oper Res 213:73–82

Cook S (1971) The complexity of theorem-proving procedures. In: Proceedings of the third annual
ACM symposium on theory of computing, pp 151–158

Davis M, Logemann G, Loveland D (1962) A machine program for theorem proving. Comm ACM
5(7):394–397

Debels D, Vanhoucke M (2007) A decomposition-based genetic algorithm for the resource-
constrained project scheduling problems. Oper Res 55:457–469

Debels D, De Reyck B, Leus R, Vanhoucke M (2006) A hybrid scatter search/electromagnetism
meta-heuristic for project scheduling. Eur J Oper Res 169:638–653

Elloumi S, Fortemps P (2010) A hybrid rank-based evolutionary algorithm applied to multi-mode
resource-constrained project scheduling problem. Eur J Oper Res 205:31–41

22 The Multi-Mode Resource-Constrained Project Scheduling Problem 511

Herroelen W, Demeulemeester E, De Reyck B (1999) A classification scheme for project
scheduling problems. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and
applications. Kluwer Academic, Dordrecht, pp 1–26

Hooker J, Vinay V (1995) Branching rules for satisfiability. J Autom Reasoning 15:359–383
Jarboui B, Damak N, Siarry P, Rebai A (2008) A combinatorial particle swarm optimization for

solving multi-mode resource-constrained project scheduling problems. Appl Math Comput
195:299–308

Józefowska J, Mika M, Rózycki R, Waligóra G, Wȩglarz J (2001) Simulated annealing for multi-
mode resource-constrained project scheduling. Ann Oper Res 102:137–155

Kolisch R, Drexl A (1997) Local search for nonpreemptive multi-mode resource-constrained
project scheduling. IIE Trans 29:987–999

Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained
project scheduling: an update. Eur J Oper Res 174:23–37

Kolisch R, Sprecher A (1996) PSPLIB: A project scheduling problem library. Eur J Oper Res
96:205–216

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of
resource-constrained project scheduling problems. Manag Sci 41:1693–1703

Kullmann O (2006) The SAT 2005 solver competition on random instances. J Satisf Bool Model
Comput 2:61–102

Li K, Willis R (1992) An iterative scheduling technique for resource-constrained project schedul-
ing. Eur J Oper Res 56:370–379

Lova A, Tormos P, Cervantes M, Barber F (2009) An efficient hybrid genetic algorithm for
scheduling projects with resource constraints and multiple execution modes. Int J Prod Econ
117:302–316

Markov I, Sakallah K, Ramani A, Aloul F (2002) Generic ILP versus specialized 0–1 ILP: an
update. In: Proceedings of the international conference on computer-aided design (ICCAD ’02),
pp 450–457

Marques-Silva J, Sakallah K (1999) GRASP: a search algorithm for propositional satisfiability.
IEEE T Comput 48:506–521

Ranjbar M, De Reyck B, Kianfar F (2009) A hybrid scatter-search for the discrete time/resource
trade-off problem in project scheduling. Eur J Oper Res 193:35–48

Talbot F (1982) Resource-constrained project scheduling problem with time-resource trade-offs:
the nonpreemptive case. Manag Sci 28:1197–1210

Valls V, Quintanilla S, Ballestín F (2003) Resource-constrained project scheduling: A critical
activity reordering heuristic. Eur J Oper Res 149:282–301

Valls V, Ballestín F, Quintanilla S (2004) A population based approach to the resource-constrained
project scheduling problem. Ann Oper Res 131:305–324

Valls V, Ballestín F, Quintanilla S (2005) Justification and RCPSP: a technique that pays. Eur J
Oper Res 165(2):375–386

Valls V, Ballestín F, Quintanilla S (2008) A hybrid genetic algorithm for the resource-constrained
project scheduling problem. Eur J Oper Res 185(2):495–508

Van Peteghem V, Vanhoucke M (2010) A genetic algorithm for the preemptive and non-preemptive
multi-mode resource-constrained project scheduling problem. Eur J Oper Res 201:409–418

Wang L, Fang C (2011) An effective shuffled frog-leaping algorithm for multi-mode resource-
constrained project scheduling problem. Inform Sci 181:4804–4822

Wang L, Fang C (2012) An effective estimation of distribution algorithm for the multi-mode
resource-constrained project scheduling problem. Comput Oper Res 39:449–460

Wȩglarz J, Józefowska J, Mika M, Waligóra G (2011) Project scheduling with finite or infinite
number of activity processing modes: a survey. Eur J Oper Res 208:177–205

Chapter 23
The Multi-Mode Capital-Constrained Net
Present Value Problem

Zhengwen He, Nengmin Wang, and Renjing Liu

Abstract This chapter deals with a special resource-constrained multi-mode net
present value problem, i.e., the capital-constrained multi-mode project payment
scheduling problem where the objective is to assign activity modes and payments
so as to maximize the net present value (NPV) of the contractor under the capital
constraint. With the different payment patterns adopted, four optimization models
are constructed using the event-based method. Metaheuristics, including tabu search
and simulated annealing, are developed and compared with other two simple
heuristics based on a computational experiment performed on a data set generated
randomly. The results indicate that the loop nested tabu search is the most promising
procedure for the problem studied. Moreover, the effects of key parameters on the
NPV are studied and the following conclusions are drawn: The NPV rises with
the increase of the initial capital availability, the payment number, the payment
proportion, or the project deadline; the marginal return decreases as the initial capital
availability goes up; the NPVs under the milestone event based payment pattern are
not less than those under the other three payment patterns.

Keywords Capital constraints • Multi-mode • Net present value • Project
scheduling

23.1 Introduction

Since the introduction of cash flows in project scheduling problems by Russell
(1970), the problem of scheduling activities of a project in order to maximize its
NPV has gained increasing attention throughout the literature. For the Max-NPV
project scheduling problem, the research efforts have led to a large amount of
models and algorithms under a wide variety of assumptions with respect to network
representations, cash flow patterns, resource constraints, and time-cost tradeoffs.

Z. He (�) • N. Wang • R. Liu
School of Management, Xi’an Jiaotong University, Xi’an, China
e-mail: zhengwenhe@mail.xjtu.edu.cn; wangnm@mail.xjtu.edu.cn;
renjingl@mail.xjtu.edu.cn

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_23

513

mailto:zhengwenhe@mail.xjtu.edu.cn
mailto:wangnm@mail.xjtu.edu.cn
mailto:renjingl@mail.xjtu.edu.cn

514 Z. He et al.

The resource-constrained multi-mode net present value problem is an important
branch of the Max-NPV project scheduling problem where there exist resource
constraints and activities can be accomplished in more than one way. In this branch,
researchers have proposed a few models and algorithms, which are described as
follows. Sung and Lim (1994) study a problem with positive and negative cash
flows, and availability constraints imposed on capital and renewable resources.
Resource-duration interactions are considered in analyzing the problem and a two-
phase heuristic solution algorithm is exploited and tested with various numerical
problems for its effectiveness and efficiency. Ulusoy and Özdamar (1995) construct
a general model for the problem where the performance measures considered
are the minimization of project duration and the maximization of net present
value. They propose a heuristic iterative scheduling algorithm which consists
of forward/backward scheduling passes where consecutive scheduling passes are
linked by updated activity time windows. When the results of the iterative algorithm
are compared with the results given by the initial forward schedule, a considerable
amount of improvement in both performance criteria is observed. Taking renewable,
nonrenewable, and doubly constrained resources into account simultaneously,
Ulusoy et al. (2001) investigate a problem with four payment models, i.e., lump-
sum payment at the completion of the project, payments at fixed event nodes,
payments at equal time intervals, and progress payments. A genetic algorithm
with a special crossover operator which can exploit the multi-component nature
of the problem is proposed, and the efficiency of the algorithm is tested on 93
problems from the set of instances from the literature (Ulusoy and Özdamar
1995). Mika et al. (2005) consider a problem where a project is represented by
an AoN network and the four payment models are considered. Two metaheuristics,
namely simulated annealing and tabu search, are proposed to solve the problem
and a comprehensive computational experiment is performed on a set of instances
based on standard test problems constructed by the ProGen project generator. The
metaheuristics are computationally compared, the results are analyzed and discussed
and some meaningful conclusions are given. For the computational intractability
of the problem, Chen et al. (2010) develop an ant colony system (ACS) algorithm
where the AoA network of the problem is first converted into a mode-on-node graph,
which next becomes the construction graph for the ACS algorithm. The proposed
ACS approach is compared with the authors’ implementations of genetic algorithm
by Ulusoy et al. (2001), as well as simulated annealing and tabu search by Mika et al.
(2005), on 55 randomly generated instances with from 13 up to 98 activities. On the
basis of experimental results the authors state that their algorithm outperforms the
other three metaheuristics.

It should be pointed out that in this branch, there is a special category problem
named the capital-constrained multi-mode project scheduling problem (CCMPSP),
where investment in project activities is constrained by capital constraint while
payments are reinvested in the project to increase the capital availability. Consid-
ering the CCMPSP, Özdamar and Dündar (1997) introduce a model concerning
housing projects, where capital is reduced by activity expenditures and augmented
by the sales of flats. Activities can be carried out in different operating modes, and

23 The Multi-Mode Capital-Constrained Net Present Value Problem 515

the rate of activity expenditures differs from mode to mode. The authors propose
a flexible heuristic algorithm for solving the capital-constrained mode selection
problem, where there exist general precedence relationships among activities, and
the magnitude of precedence lags depend on the specific activity mode selected.
The algorithm is tested using a typical housing project with real data and also by
using hypothetical test problems. A similar scheduling problem is further analyzed
in Özdamar (1998), where the contractor has to construct and reconstruct schedules
during the progress of the project so as to maintain a positive cash balance
dynamically. The author establishes a stochastic model involving probabilistic cash
inflows which take place randomly over the progress of the project. Activities are
performed in multiple processing modes with different durations and the same total
cost, and the contractor has to decide on the rate of expenditure at each decision
time in order to maintain a positive cash balance. A heuristic, which incorporates
dynamic mode selection objectives, is proposed and computational experiments
demonstrate that the heuristic provides satisfactory results regarding the feasibility
of the schedules with respect to the project due date and the nonrenewable resource
constraints.

Another interesting extension in this branch, which needs to be mentioned
here, is the combination of the resource-constrained multi-mode net present value
problem with the project payment scheduling problem, which leads to the resource-
constrained multi-mode project payment scheduling problem (RCMPPSP). Con-
cerning the RCMPPSP Ulusoy and Cebelli (2000) set up an interesting model
where the goals of the contractor and the client are joined together. The purpose
is to look for an equitable payment schedule, for which both the contractor and the
client deviate from their respective ideal solutions by an equal percentage. The ideal
solutions for the contractor and the client result from having a lump-sum payment at
the start and at the end of the project, respectively. A double-loop genetic algorithm
is proposed to solve the problem, where the outer loop represents the client and the
inner loop the contractor. Ninety-three problems from the set of instances from the
literature (Ulusoy and Özdamar 1995) are solved, and some computational results
are reported. Kavlak et al. (2009) study a so-called client-contractor bargaining
problem within the context of the RCMPPSP where two payment models, i.e.
progress payments and payments at activity completion times, are considered.
The bargaining objective is to maximize the bargaining objective function which
reflects the two-party nature of the problem environment and seeks a compromise
between the client and the contractor. Simulated annealing algorithm and genetic
algorithm approaches are proposed as solution procedures for the problem and they
are experimentally compared on the PSPLIB instances with 14, 20, and 30 activities.
Also, sensitivity analysis is conducted for different parameters used in the model,
namely the profit margin, the discount rate, and the bargaining power weights.

Based on the literature review above, this chapter involves a new problem
named the capital-constrained multi-mode project payment scheduling problem
(CCMPPSP) proposed by He et al. (2012). In a sense, the CCMPPSP can be
recognized as a generalization of the CCMPSP with the consideration of the
arrangement of payments or an extension of the RCMPPSP where the availability

516 Z. He et al.

of the only one resource, i.e., capital, is a function of project schedule. In He et al.
(2009), the authors have proven that the multi-mode project payment scheduling
problem (MPPSP), which is a simplified version of the CCMPPSP in fact where
the capital constraints are neglected, is strongly N P-hard for general project
networks, so the CCMPPSP must be strongly N P-hard as well. In the CCMPPSP,
besides the time-cost tradeoff there also exists the tradeoff between the delay of
activities incurring cash outflows and the early completion of activities leading to
cash inflows. Therefore, it is worthwhile to be investigated intensively and this
research may have a great implication for the contractor to improve the project
profitability.

We study the CCMPPSP using the event-based method by which the project
is represented as an Activity-on-Arc (AoA) network and both cash inflows and
outflows in the project are attached to events. During the course of the project, the
amount of payments is calculated based on the contractor’s accumulative earned
value and the payment proportion, and the total amount of payments equals a given
contract price. On the basis of He et al. (2009), we consider the following four
different payment patterns.

• Milestone event based payment pattern (MEBPP): A payment occurs once a
milestone event is realized by the contractor.

• Progress based payment pattern (PBPP): A payment is made by the client once
the contractor’s accumulative earned value reaches a given threshold.

• Expense based payment pattern (EBPP): The client makes a payment to the
contractor once the latter’s accumulative expense attains a certain value.

• Time based payment pattern (TBPP): Payments are connected to events periodi-
cally based on the time elapsed from the beginning of the project.

In the problem, the number of payments over the course of project is fixed while
the time of payments is arranged in the light of one of the four payment patterns
aforementioned. On the basis of the assumptions above, the objective is to assign
activity modes and payments concurrently so as to maximize the NPV of the
contractor under the constraint of capital availability.

The remainder of the chapter is organized as follows. In the next section, we
provide the optimization models of the CCMPPSP. Metaheuristics are developed
in Sects. 23.3 and 23.4 reports on the results of the computational experiments.
Section 23.5 concludes the chapter.

23.2 Problem Formulation

23.2.1 Optimization Model with MEBPP

Consider a project represented as an AoA network G D .V;E/ with node set V
and arc set E . The set of alternative execution modes for activity .i; j / ..i; j / 2 E/
is Mij and the duration and cost of activity .i; j / under mode m .m 2 Mij/ are

23 The Multi-Mode Capital-Constrained Net Present Value Problem 517

pijm and cF�ijm , respectively. The expense of event i .i 2 V / is cF�i .cF�i � 0/ W
cF�i D P

.i;j/2EC

i

�
�ijc

F�
ijm

�
CP.h;i/2E�

i

�
.1 � �hi/ c

F�
him

�
where ECi is the set of

the activities with start event i , E�i the set of the activities with end event i , and
�ij .0 � �ij � 1/ and �hi .0 � �hi � 1/ are the distribution proportion of the cost
of activities .i; j / and .h; i/ over their start and end events respectively. The earned
value of event i is cFCi .cFCi � 0/ W cFCi D P

.h;i/2E�

i
cFChi where cFChi is the

earned value of activity .h; i/. The compensation proportion is � .0 � � � 1/ while
the amount of the p-th .p D 1; 2; : : :; P IP � jV j/ payment is cFCp . ICA, ˚ , Nd ,
and ˇ are the contractor’s initial capital availability, the contract price, the project
deadline, and the interest rate per period, respectively.

The payment pattern adopted is MEBPP and the decision variables in the problem
include following three groups.

xijm: Binary variable which equals 1 if activity .i; j / is performed with mode m
and 0 otherwise.
yit: Binary variable which equals 1 if event i is realized at period t and 0
otherwise.
zpi: Binary variable which equals 1 if paymentp is assigned to event i and 0
otherwise.

Based on the notations defined above, the optimization model of the problem is
constructed as follows.

Max: npv D
PX

pD1

(

cFCp
X

i2V

"

zpi

LSiX

tDESi

.exp.�ˇt/yit/

#)

�
X

i2V

(

cF�i
LSiX

tDESi

Œexp.�ˇt/yit�

)

(23.1)

s:t:
X

i2V nfI g
zpi D 1 .p D 1; 2; : : : ; P � 1/ (23.2)

P�1X

pD1
zpi � 1 .i 2 V n fI g/ (23.3)

X

m2Mij

xijm D 1 ..i; j / 2 E/ (23.4)

cF�i D
X

.i;j/2EC

i

2

4�ij

X

m2Mij

�
cF�ijm xijm

�
3

5

C
X

.h;i/2E�

i

2

4.1 � �hi/
X

m2Mij

�
cF�him xhim

�
3

5 .i 2 V / (23.5)

518 Z. He et al.

LSiX

tDESi

yit D 1 .i 2 V / (23.6)

LSiX

tDESi

.yitt /C
X

m2Mij

�
pijmxijm

� �
LSjX

tDESj

�
yjtt

�
..i; j / 2 E/ (23.7)

cFCp D�
"
X

i2V
cFCi

tpX

tD0
yit�

X

i2V
cFCi

tp�1X

tD0
yit

#

.pD1; 2; : : : ; P�1/

(23.8)

cFCP D ˚ �
P�1X

pD1
cFCp (23.9)

X

i2V
cF�i

�X

tD0
yit�ICAC

PX

pD1

"

cFCp
X

i2V
zpi

�X

tD0
yit

#

.�D0; 1; : : : ; Nd/

(23.10)

LSIX

tDESI

.yItt / � Nd (23.11)

xijm; yit; zpi 2 f0; 1g (23.12)

where ESi and LSi are the earliest and latest precedence feasible times of event i ,
respectively; I is the end event in the project; tp and tp�1 are the occurrence times
of the p-th and .p � 1/-th payments, respectively.

In the model, the objective (23.1) is to maximize npv, i.e., the contractor’s NPV.
Constraints (23.2) attach payments to events, making the milestone events to be
identified (note that the last payment must be arranged at the end event of the
project). Constraints (23.3) secure that at a certain event, only one payment can
be arranged at most. Constraints (23.4) select one mode for each activity exactly
and (23.5) calculate expenses for events. Constraints (23.6) make sure that the
occurrence times of events must be within their time windows, and their precedence
feasibility is maintained by (23.7). Constraints (23.8) compute payment amounts
while constraint (23.9) forces that the sum of payments equals the contract price.
Constraints (23.10) stipulate that the cumulative cash outflows cannot exceed the
contractor’s initial capital availability plus the cumulative payments obtained. A
deadline is imposed to the project by constraint (23.11) and constraints (23.12)
define the binary status of the decision variables.

23 The Multi-Mode Capital-Constrained Net Present Value Problem 519

23.2.2 Optimization Model with the Other Three Payment
Patterns

• Optimization model with PBPP
In PBPP, the payment threshold is determined by the contractor price, ˚ , and the
payment number, P . Once the contractor’s accumulative earned value reaches to
an integer multiples of d˚=P e a payment occurs. Hence, this payment pattern
can be formulated formally by

zp�D1; �D
(

i W yi�D1; � D min

(

� W
�X

tD0

X

i2V

�
cFCi yit

� � p d˚=P e
))

.p D 1; 2; : : : ; P � 1/ (23.13)

The above constraints force the p-th payment to be attached to the earliest event
of those making the contractor’s accumulative earned value reach or surpass
p d˚=P e. Replacing constraints (23.2) and (23.3) in the optimization model with
MEBPP by constraints (23.13), we can get the optimization model with PBPP.

• Optimization model with EBPP
Suppose that BC is the benchmark cost of the project for determining payment
events in EBPP (note that in reality, BC is often approved of by the two sides
in advance so it is a known parameter in the problem). According to EBPP,
a payment occurs once the contractor’s expense accumulates to an integer
multiples of dBC=P e. In terms of the fact aforementioned, the optimization
models with EBPP can be constructed by removing constraints (23.2) and (23.3)
from the optimization model with MEBPP and adding the following constraints
into it in the meantime.

zp�D1; �D
(

i W yi�D1; �Dmin

(

� W
�X

tD0

X

i2V

�
cF�i yit

� � p dBC=P e
))

.pD1; 2; : : : ; P � 1/ (23.14)

Constraints (23.14) stipulate that the p-th payment is tied to the earliest event of
those making the contractor’s accumulative expense be equal to or greater than
p dBC=P e.

• Optimization model with TBPP
The arrangement of payment times in TBPP depends upon the project deadline,
Nd , and the payment number, P . Given Nd and P , a payment is made whenever

the time of integer multiples of
˙ NdıP � has passed from the start of the project.

Similarly, TBPP can be formulated as constraints (23.15):

zp�D1; �D
˚
i W yi�D1; �Dmin

˚
� W � � p ˙ NdıP � .pD1; 2; : : :; P � 1/

(23.15)

520 Z. He et al.

Constraints (23.15) ensure the p-th payment to be assigned to the earliest
event of those occurring no earlier than p

˙ NdıP �. Through substituting con-
straints (23.15) for constraints (23.2) and (23.3) in the optimization model with
MEBPP, we can get the optimization model with TBPP.

23.3 Metaheuristics

In this section, two well-known metaheuristics, i.e., tabu search (TS) and simulated
annealing (SA), are developed for the solution of the CCMPPSP. The metaheuristics
are designed to solve the CCMPPSP with MEBPP and for the similarity of the
four payment patterns, they can be extended to the other three payment patterns
conveniently by the adjustment of the way to determine milestone events. Besides
TS and SA we also present two other methods, namely multi-start iterative
improvement (MSII) and random sampling (RS) (Mika et al. 2008; Waligóra 2008),
to provide comparable computational efforts for the metaheuristics.

23.3.1 Common Features

23.3.1.1 Solution Representation

Referring to Kolisch and Hartmann (1999), we represent a solution for the problem
using the following three lists.

• Payment event (PE): This list includes jV j 0-1 elements. The i -th .i D
1; 2; : : :; jV j/ element is set at 1 if a payment is attached to event i and 0,
otherwise.

• Mode assignment (MA): This list is composed of jEj elements which define the
mode of activities in set E .

• Shift vector (SV): This list is an jV j-element list and the i -th .i D 1; 2; : : :; jV j/
element, �i .�i 2 Œ0;LSi � ESi �/, indicates how many units of event i ’s
occurrence time deviating from ESi .

Note that in PBPP, EBPP, and TBPP, a solution consists only of MA and SV in fact,
and PE is determined by constraints (23.13), (23.14), and (23.15), respectively.

Let E be the set of eligible events, i.e., the unscheduled events whose all
predecessor events have been scheduled, Spi be event i ’s occurrence time assigned
preliminarily, Su

i be event i ’s occurrence time assigned ultimately, and CCA and
CEV be the contractor’s cumulative capital availability and the cumulative earned
value, respectively. A solution can be transformed into a project schedule according
to the decoding procedure described as follows.

23 The Multi-Mode Capital-Constrained Net Present Value Problem 521

Step 1. Set E WD fevent 1g, Su
1 WD 0;CCA WD ICA � cF�1 , CEV WD cFC1 .

Step 2. Update E , i.e., remove the scheduled events from E and add the new
eligible events into it. If E D Ø stop the procedure and output all Su

i I otherwise,
calculate ESi of the new eligible events in E and set Spi WD ESi C �i . Sort the
events in E according to an ascending sequence of Spi . Note that if several events
have a common Spi , place them at the same position in the sequence and process
them concurrently in the subsequent steps. Denote the first event in E as i_curr.
If i_curr is a milestone event go to step 3; otherwise, go to step 5.

Step 3. Set CCA WD CCA� cF�i_curr C �.CEV C cFCi_curr/. If CCA � 0 set Su
i_curr WD

S
p
i_curr, CEV WD 0, and go to step 2; otherwise, go to step 4.

Step 4. Denote the second event in E as i_next and calculate LSi_curr. If Spi_next >

LSi_curr stop the procedure and output the result that the solution is capital
infeasible; otherwise, set CCA WD CCA � cF�i_next C �cFCi_next. If CCA � 0 set
Su
i_curr WD S

p
i_next, S

u
i_next WD S

p
i_next, CEV WD 0, and go to step 2; otherwise,

process the third event in E as above. If the last event in E has been processed
and CCA is still less than 0, stop the procedure and output the result that the
solution is capital infeasible.

Step 5. Set CCA WD CCA � cF�i_curr and CEV WD CEV C cFCi_curr. If CCA � 0 set
Su
i_curr WD Spi_curr and go to step 2; otherwise, go to step 6.

Step 6. Check whether there are milestone events in E or not. If the answer
is false, stop the procedure and output the result that the solution is capital
infeasible; otherwise, denote the first milestone event in E as i_next and calculate
LSi_curr. If Spi_next > LSi_curr, stop the procedure and output the result that the
solution is capital infeasible; otherwise, set CCA WD CCA � Pi2Onext

cF�i C
�
P

i2Onext
cFCi where Onext D f W Spi_curr < S

p
 � Spi_next, 2 E g. If CCA � 0

set Su
i_curr WD S

p
i_next, S

u
i WD S

p
i_next.i 2 Onext/, CEV WD 0, and go to step 2;

otherwise, process the second milestone event in E as above. If the last milestone
event in E has been processed and CCA is still less than 0, stop the procedure
and output the result that the solution is capital infeasible.

Note that in the above process, LSi_curr is calculated using the CPM where LSI WD Nd .

23.3.1.2 Objective Function

The above decoding procedure can be used to examine the capital feasibility of
solutions. However, there also exists the probability of the generated schedule being
a time infeasible schedule where the project deadline constraint is violated. In order
not to overly restrict the search space, the deadline constraint is transformed into a
soft constraint based on a time feasibility test function defined as

TFT D max

(

0;

LSIX

tDESI

.yItt/ � Nd
)

(23.16)

522 Z. He et al.

During the searching process, if the TFT of a solution is greater than 0 its objective
function value will be penalized according to the following formula.

npv D ˚ ˚exp
��ˇ. Nd C TFT/

�� TC (23.17)

where TC is the total cost of the project in which all activities are performed with
the most expensive mode.

23.3.1.3 Preprocessing

Similar with Sprecher et al. (1997), we adapt the project data to the implementation
of algorithms using a preprocessing procedure by which all inefficient modes and
infeasible modes are eliminated. An inefficient mode is a mode with duration not
shorter and, simultaneously, cost not less than any other mode of the considered
activity. An infeasible mode is defined as follows. Suppose that xmin.i; j;m/ is an
MA in which activity .i; j / is performed with mode m while other activities are
performed with the mode corresponding to the minimal duration. Denote the ESI
under xmin.i; j;m/ as ESI

�
xmin.i; j;m/

�
. If ESI

�
xmin.i; j;m/

�
> Nd mode m is an

infeasible mode for activity .i; j /, since the project deadline constraint cannot be
satisfied no matter how to adjust the mode of other activities.

23.3.1.4 Starting Solution

A feasible starting solution is generated according to the following steps.

Step 1. Select randomly P � 1 events from all events except for event I . On PE,
set the element of the selected events and event I at 1 while that of the others
at 0.

Step 2. On MA, select randomly an executable mode for each activity and
compute ESI . If ESI � Nd accept the MA; otherwise, decline it and repeat this
step until the condition that ESI � Nd is satisfied.

Step 3. On SV, set �i WD 0 .i 2 V /, obtaining a solution. If the solution is
capital feasible and TFT D 0, accept it; otherwise, select a �i (i 2 V n f1g)
randomly and change its value within Œ0;LSi � ESi � by one unit. Judge whether
the condition that the solution is capital feasible and TFT D 0 is satisfied or not.
If the answer is false, repeat the above operations until the answer becomes true.

Note that the above operations will be executed in an infinite loop if no feasible
solution exists. To avoid the occurrence of such a case, the operations will be
terminated if the iteration number reaches a given value, which is set at 1,000�jEj in
our implementation. If this happens, the result that there is no feasible solution for
the problem will be output.

23 The Multi-Mode Capital-Constrained Net Present Value Problem 523

23.3.1.5 Neighbourhood

There are three operators utilized in the neighbourhood generation mechanism.

• Element swap (SW): On PE, select two elements whose values are 1 and
0 respectively and swap them. Check the capital feasibility of the generated
solution and accept it if it is capital feasible. A set of neighbouring solutions
can be created by selecting and swapping every such two elements on the list
separately. Note that during this course the last element must not be selected so
that its value, which is set at 1 in the starting solution, can remain unchanged.

• Mode change (MC): On MA, select one activity and change its mode to another
one. Compute ESI under the generated solution and then check its capital fea-
sibility if the condition that ESI � Nd is satisfied. Accept the generated solution
if it is capital feasible. A set of neighbouring solutions can be obtained through
changing the mode of the activity to every other executable mode and operating
each activity on the list separately according to the way aforementioned.

• Deviation change (DC): On SV, select an element and change its value to another
possible one. Check the capital feasibility of the generated solution and accept
it if it is capital feasible. The value of the element can be changed to every
other possible one and except for the first element, each element on the list can
be selected and operated separately as above, generating a set of neighbouring
solutions.

23.3.2 Tabu Search

23.3.2.1 Moves

In TS, a set of neighbouring solutions is created by the above three operators and the
best one is chosen to act as the move to improve the current solution. Corresponding
to the operators, the three moves are defined as follows.

• Move for SW: It is a couple of (position number of the chosen element whose
value is 1, position number of the chosen element whose value is 0). For example,
if element 1 in position 6 is swapped with element 0 in position 9 then the move
is represented as (6,9), meaning that a payment is shifted from event 6 to event 9.
In the meantime, the reverse move, which is denoted as (6), is added to the tabu
list, forbidding a payment to be rearranged at event 6.

• Move for MC: It is a triple of (number of the chosen position, original value,
new value). For example, if the value in position 5 is changed from 2 to 1 then
the move is expressed as (5,2,1), implying that the mode of activity 5 is changed
from 2 to 1. Consequently the reverse move, which has the form of (5,2), is added
to the tabu list, preventing the mode of activity 5 from being changed back to 2.

• Move for DC: It is a triple of (number of the chosen position, original value,
new value). For example, if the value in position 6 is changed from 1 to 2 then

524 Z. He et al.

the move is described as (6,1,2), indicating that the time deviation of event 6 is
changed from 1 to 2. In consequence, the reverse move is denoted as (6,1) and
added to the tabu list, forbidding the time deviation of event 6 to be assigned as
1 again.

23.3.2.2 Tabu List

The tabu list is managed according to the First-in-First-out rule. Whenever a move
is performed, its reverse move is added to the bottom of the tabu list and the oldest
existing move is removed from the top of the list. All the moves in the tabu list are
forbidden. However, if a tabu move can generate a solution better than the best one
found so far, its tabu status will be cancelled so that the algorithm can move to this
solution. The length of the tabu list is set at a relative low value so that the current
region can be explored intensively. However, if there are no admissible solutions in
a neighbourhood or an assumed number of iterations have been performed without
improving the objective function, the diversification will be employed to make the
search jump into a different region. When this occurs the tabu list is cleared, the
counter of iterations without improvement is reset, and the search is restarted from
another different starting solution generated randomly.

23.3.2.3 Two Versions of Tabu Search

We design two tabu search algorithms with different searching structures. The first
one is named random selection tabu search (RSTS) in which for each move, one
of the three operators is selected randomly with an equal probability to generate
neighbouring solutions. The second one, which is named loop nested tabu search
(LNTS), is based on the fact that in the studied problem, the arrangement of
payments on events is independent of that of activities’ mode and events’ occurrence
time, and activities’ mode can be arranged without any consideration of the
assignment of events’ occurrence time. LNTS is constructed with the following
three nested loops.

• Inner loop: This loop finds the satisfactory SV under the given PE and MA.
• Middle loop: This loop, which contains the inner loop, looks for the satisfactory

MA and SV based on a given PE.
• Outer loop: This loop, which includes the middle loop and can be regarded as the

main program of LNTS, searches the satisfactory PE, MA, and SV, thus forming
a desirable solution for the problem.

The stop criterion of both RSTS and LNTS is defined as an assumed number of the
visited solutions, which is set at 10;000 � jEj in this implementation.

23 The Multi-Mode Capital-Constrained Net Present Value Problem 525

23.3.3 Simulated Annealing

In SA, operators SW, MC, and DC are chosen in the same fashion as that applied in
RSTS and when an operator is selected, it only generates one neighbouring solution
in a random way for the transition. The cooling scheme of SA is described as
follows.

• Initial temperature: The initial value of the temperature, T0, is calculated from
the following equation: T0 D �npvmax= ln�0, where �npvmax is the difference
between the maximal objective value and the minimal one which are chosen
from the objective values of 50 randomly generated neighbours of the initial
solution, and �0, which is set at 0.95 in this application, is the initial acceptance
ratio defined as the number of accepted neighbours divided by that of proposed
neighbours.

• Cooling rate: Beginning from T0, the temperature is progressively reduced
according to a given cooling rate, which is set at 0.88 in our implementation.

• Markov chain length: The length of Markov chains, which determines the
number of transitions for a given value of the temperature, is set at 10 � jEj in
this application.

• Stop criterion: To compare the metaheuristics on a common computational basis,
SA utilizes the same stop criterion as that used in RSTS and LNTS, i.e., the
search process terminates when 10;000 � jEj solutions have been visited.

23.3.4 Multi-Start Iteration Improvement and Random
Sampling

To evaluate the performance of the metaheuristics, we use multi-start iteration
improvement (MSII) and random sampling (RS) to generate benchmark schedules
for comparison. MSII utilizes the same neighbourhood generation mechanism as
that employed in RSTS. It starts from an initial solution and chooses the most
improving neighbouring solution as the move. When there are no improving moves,
it restarts with another feasible solution generated randomly. MSII terminates and
takes the best solution found as the desirable one when the number of the visited
solutions reaches 10;000 � jEj. In RS, 10;000 � jEj feasible solutions are generated
randomly and the best one is selected as the desirable solution.

23.4 Computational Experiment

23.4.1 Experimental Design

The algorithms are tested on a data set constructed by ProGen project generator
(Kolisch and Sprecher 1996). The set consists of 600 instances and the parameter

526 Z. He et al.

Table 23.1 Parameter setting used to generate the data set

Parameter Setting

Number of non-dummy activities, jEj 10, 20, 30, or 40

Number of instances generated under a given
number of non-dummy activities

150

Number of initial and terminal activities Randomly selected from 2, 3, and 4

Maximal number of successors and predecessors 4

Number of performing modes 2

Activity durations under mode 1, pij1 Randomly selected from interval [1, 10]

Activity costs under mode 1, cF�

ij1 Randomly selected from interval [10, 20]

Activity durations under mode 2, pij2 $1pij1, where $1 is randomly selected
from interval [0.8, 1]

Activity costs under mode 2, cF�

ij2 $2c
F�

ij1 , where $2 is randomly selected
from interval [1, 1.2]

Earned values of activities, cFC

ij $3c
F�

ij2 , where $3 is randomly selected
from interval [1.3, 1.5]

Table 23.2 Levels of the key parameters

Parameter Value

Contractor’s initial capital availability, ICA $ICAACE, where

ACE D 1
2P

P
.i;j /2E

�
cF�

ij1 C cF�

ij2

�
and $ICA

is set at 0.8, 1, and 1.2

Payment number, P 3, 4, 5

Payment proportion for the contractor’s
accumulative earned value, �

0.7, 0.8, 0.9

Project deadline, Nd $
Nd .LBmax

0 � LBmin
0 /C LBmin

0 , where LBmax
0

and LBmin
0 are the length of the critical path of

the network when all the activities are
performed with modes 1 and 2 respectively
and $

Nd is set at 0.4, 0.6, and 0.8

setting used to generate the instances is represented in Table 23.1. The value
of the key parameters, including ICA; P; �; Nd , is set at three levels given in
Table 23.2. A full factorial experiment of the four parameters with three levels
results in 81 replicates for each instance and 48,600 ones for every type of the
CCMPPSP. Other parameters are set as follows: �ij D 0:5; ˇ D 0:01, BC D
1
2

P
.i;j /2E

�
cF�ij1 C cF�ij2

�
. The following five indices are defined to evaluate the

performance of the algorithms.

• nbest: The number of instances for which the algorithm finds a solution equal to
the best solution known, i.e., the best solution found by any of the algorithms.

• �
6O
UB.%/: Average relative percent below the best solution known.

23 The Multi-Mode Capital-Constrained Net Present Value Problem 527

Table 23.3 Computational results of RSTS

Payment pattern jEj nbest �
6O
UB �max

UB t 6Ocpu tmax
cpu

MEBPP 10 8,462 0.48 1.37 9.14 15.33
20 7,987 1.00 2.87 23.06 40.28
30 7,205 1.58 4.13 37.49 67.44
40 6,159 2.23 5.82 65.27 108.77

PBPP 10 8,643 0.39 1.08 8.23 14.08
20 7,878 1.13 3.33 21.77 41.27
30 7,152 1.80 4.11 33.34 63.24
40 6,232 2.61 6.05 58.26 98.68

EBPP 10 8,523 0.42 1.11 8.13 13.87
20 7,810 1.08 2.68 20.43 35.52
30 7,084 1.84 4.44 34.44 62.40
40 5,947 2.83 6.74 58.88 101.31

TBPP 10 8,655 0.32 0.94 8.25 15.10
20 7,854 1.21 3.55 20.00 37.27
30 6,923 1.81 4.37 34.65 66.14
40 6,221 2.94 6.88 56.63 95.28

• �max
UB .%/: Maximal relative percent below the best solution known.

• t 6Ocpu(s): Average computational time of the algorithm.
• tmax

cpu (s): Maximal computational time of the algorithm.

The algorithms are coded and compiled with Visual Basic 6.0 and the computational
experiment is performed on a Pentium-based personal computer with 1.60 GHz
clock-pulse and 256 MB RAM.

23.4.2 Experimental Results

The computational results, which are presented in Tables 23.3, 23.4, 23.5, 23.6,
and 23.7, show that as far as the comparison of algorithms is concerned, RSTS,
LNTS, and SA outperform MSII and RS remarkably and the superiority grows with
the number of activities. This result is not surprising and confirms the expectations
that intelligent search algorithms generally get an advantage over simple search
ones, and the advantage augments as the problem becomes more complex. Among
the three intelligent search algorithms, LNTS gives the most encouraging results,
especially for the larger instances. The reason for this result is described as follows.
In LNTS, the inner loop is used to find the satisfactory SV under the given PE and
MA and on the basis of the satisfactory SV returned by the inner loop, the middle
loop seeks the satisfactory MA under the given PE. With the results of the inner and
middle loops, the outer loop searches the satisfactory PE and thus forms a desirable
solution for the problem. However, in RSTS and SA the three operators are selected

528 Z. He et al.

Table 23.4 Computational results of LNTS

Payment pattern jEj nbest �
6O
UB �max

UB t 6Ocpu tmax
cpu

MEBPP 10 8,926 0.33 1.04 8.26 15.51
20 9,156 0.30 0.97 20.11 36.23
30 9,569 0.17 0.76 35.13 63.92
40 10,135 0.05 0.23 58.45 101.40

PBPP 10 9,240 0.26 0.63 7.09 12.67
20 9,681 0.18 0.44 18.86 36.66
30 10,033 0.09 0.32 28.75 58.59
40 10,255 0.04 0.19 53.44 97.46

EBPP 10 9,269 0.37 0.90 7.10 13.44
20 9,581 0.24 0.81 18.22 32.75
30 10,085 0.11 0.47 30.32 55.55
40 10,350 0.04 0.21 54.76 92.19

TBPP 10 8,975 0.28 0.74 6.82 14.04
20 9,472 0.20 0.56 17.58 35.27
30 9,931 0.13 0.43 31.74 60.11
40 10,425 0.04 0.23 52.66 90.00

Table 23.5 Computational results of SA

Payment pattern jEj nbest �
6O
UB �max

UB t 6Ocpu tmax
cpu

MEBPP 10 7,216 0.69 4.19 9.03 16.73
20 7,509 1.08 5.90 21.17 35.72
30 7,819 1.28 8.87 36.34 69.15
40 8,370 1.55 10.17 66.63 112.22

PBPP 10 7,125 0.75 3.95 7.87 15.05
20 7,470 1.02 5.34 22.00 34.39
30 8,145 1.36 8.52 32.78 57.82
40 8,437 1.72 10.78 55.88 100.22

EBPP 10 6,848 1.03 4.35 8.29 16.25
20 7,381 1.15 6.42 19.66 33.83
30 7,839 1.37 8.07 32.35 58.82
40 8,536 1.69 9.89 57.13 96.74

TBPP 10 7,085 0.67 3.84 7.46 14.83
20 7,415 1.15 5.77 20.19 36.58
30 7,951 1.46 8.38 33.73 68.24
40 8,310 1.88 10.37 57.38 99.80

in a random fashion, without any consideration of the characteristics of the problem.
This may lead to the searching structure of RSTS and SA less organized and thus
less reasonable than that of LNTS, making the desirable solutions found by RSTS
and SA worse than those obtained by LNTS especially when the problem gets larger.

23 The Multi-Mode Capital-Constrained Net Present Value Problem 529

Table 23.6 Computational results of MSII

Payment pattern jEj nbest �
6O
UB �max

UB t 6Ocpu tmax
cpu

MEBPP 10 5,152 3.31 7.25 5.82 9.99
20 4,045 7.26 13.27 13.28 25.74
30 1,927 13.35 20.64 29.37 46.83
40 653 19.70 29.33 47.34 75.01

PBPP 10 5,531 2.86 5.73 5.14 9.69
20 3,842 7.48 12.71 12.17 23.82
30 1,559 12.25 19.85 23.68 43.36
40 710 18.66 28.92 44.77 72.84

EBPP 10 5,360 2.21 6.01 4.87 8.28
20 3,923 8.35 13.22 12.61 24.77
30 1,826 13.72 20.13 25.83 45.21
40 851 19.84 30.10 45.79 68.47

TBPP 10 5,615 2.19 6.23 4.29 8.35
20 4,105 7.25 14.43 13.00 22.93
30 1,995 13.43 19.75 26.55 41.76
40 617 19.13 31.31 44.68 65.66

Table 23.7 Computational results of RS

Payment pattern jEj nbest �
6O
UB �max

UB t 6Ocpu tmax
cpu

MEBPP 10 2,134 4.55 11.22 3.66 7.33
20 1,101 12.66 27.71 9.03 19.27
30 218 20.17 46.23 18.86 39.36
40 14 31.94 81.80 34.55 67.77

PBPP 10 2,371 3.90 9.42 3.24 6.65
20 1,521 11.38 24.68 6.94 19.24
30 322 21.37 45.38 16.73 31.65
40 25 32.63 78.46 29.32 56.37

EBPP 10 1,986 5.30 12.32 2.89 7.01
20 1,358 12.51 26.93 7.77 15.35
30 264 19.94 48.65 15.69 35.21
40 19 30.75 79.24 30.11 52.66

TBPP 10 2,180 4.73 10.84 3.15 5.91
20 1,563 11.25 28.93 7.63 18.24
30 300 20.00 47.36 15.55 35.47
40 31 32.42 76.24 28.25 54.28

A further comparison of RSTS and SA shows that RSTS performs better for
smaller number of activities whereas the efficiency of SA grows with the value of
jEj, both in terms of indices nbest and � 6OUB. Moreover, the index �max

UB for SA is
greater than for RSTS, suggesting that if SA fails to find a good solution, its result
tends to be worse than the one obtained by RSTS. The above facts may be explained

530 Z. He et al.

by the random nature of SA, which makes SA work better for the larger problems in
general. Ultimately, as to MSII and RS, it is quite understandable that the former can
get better results since it employs the same neighbour generation mechanism as that
used in RSTS. RS performs worst from among the five algorithms and it becomes
worse rapidly with the increase of the problem scale. This rather proves the fact that
the problem is too complicated for a random algorithm to generate good results.

The computational times are ones to be expected—RS is the fastest, then
MSII, and RSTS, LNTS, and SA run more slowly than MSII. This follows from
the fact that RS does not generate neighbours so the times obtained for RS are
significantly shorter than those for the others. Compared with the three intelligent
search algorithms, MSII owns a simpler searching process hence it requires less
computational efforts to get a satisfactory solution for the problem.

Concerning RSTS, LNTS, and SA, LNTS works a little faster than RSTS and
SA and this phenomenon is explained below. Recall that during the searching
process of the three algorithms, operators SW, MC, and DC are used to generate
neighbouring solutions based on the current one. In RSTS and SA, the check for
the capital feasibility is required in all the three operators while in LNTS, this is
only necessary in operator DC. Furthermore, in RSTS and SA when operator MC
is selected to generate neighbouring solutions, the MA is changed while the SV
remains unchanged. This increases the probability of the generated solution being
time infeasible since LSi�ESi varies with the change of the MA. However, in LNTS
this deficiency is avoided by the loop nested searching structure where operator DC
works after the MA is determined. The above facts may explain why LNTS tends
to run faster than RSTS and SA, although LNTS seems to own a more complicated
searching structure.

The effects of the key parameters on the contractor’s NPV are shown in
Table 23.8 where the results are obtained by LNTS. From the table it can be seen
clearly that the contractor’s NPV goes up with the increase of $ICA, P , � , or $ Nd .

Table 23.8 Effects of the key parameters on the contractor’s NPV

Parameter Value MEBPP PBPP EBPP TBPP

$ICA 0.8 112.51 109.76 110.67 110.54
1.0 118.82 114.14 114.81 115.07
1.2 120.36 115.20 116.00 116.36

P 3 107.51 103.02 104.93 105.28
4 117.15 113.76 113.64 113.72
5 127.04 121.91 121.84 122.06

� 0.7 104.93 100.91 101.96 102.83
0.8 116.85 113.43 113.22 112.75
0.9 129.81 124.74 124.91 125.28

$
Nd 0.4 114.33 109.63 110.67 109.90

0.6 117.00 113.23 113.52 114.01
0.8 120.19 116.18 115.84 116.95

23 The Multi-Mode Capital-Constrained Net Present Value Problem 531

The reasons for this fact are obvious: Firstly, increasing the value of $ICA results
in an increased value of ICA. A higher ICA can loosen the capital constraint to
some extent, causing the NPV improved. Secondly, increasing P makes that some
payments occur at earlier events and hence the obtained NPV cannot be worse than
the one obtained for the smaller P . Thirdly, increasing the value of � leads to the
greater part of the cash inflows to occur earlier, thus increasing the NPV. At last,
when $ Nd increases Nd augments subsequently, so, some activities may be executed
with their cheaper mode and hence the NPV is improved.

Another interesting phenomenon, which can be observed from Table 23.8, is
that as $ICA increases the rate of increase in the contractor’s NPV decreases. The
explanation for this phenomenon is that when the capital availability increases,
the contractor always employs the increased capital to improve the arrangement
of the activities and events which can bring the greatest increment in the NPV.
Therefore, the contractor’s marginal return from such adjustments goes down with
the increase of the capital availability. Table 23.8 also shows that the contractor’s
NPVs in MEBPP are not less than the corresponding ones in the other three payment
patterns. This is because in MEBPP the milestone events are chosen without
any limitations while in the other three payment patterns, they are determined
by constraints (23.13), (23.14), and (23.15), respectively. This in fact withdraws
the freedom of the contractor’s selecting payment events, thus making the NPVs
decreased.

23.5 Conclusions

This paper considers the CCMPPSP where the objective is to assign activity modes
and payments concurrently so as to maximize the NPV under the constraint of
capital availability. In terms of the different payment patterns adopted, the opti-
mization models of the problem are constructed using the event-based method. For
the N P-hardness of the problem, two versions of TS, namely RSTS and LNTS,
which own different searching structures, and SA are developed and compared with
MSII and RS on the basis of a computational experiment performed on a data set
generated by ProGen. The results indicate that among the five algorithms, LNTS
is the most promising procedure for the problem studied. The influences of several
key parameters on the NPV of the contractor are also investigated and the following
conclusions are drawn: The NPV goes up with the increase of ICA, P , � , or Nd ,
the contractor has a decreasing marginal return as ICA goes up, and the NPVs in
MEBPP are not less than those in the other three payment patterns.

532 Z. He et al.

References

Chen WN, Zhang J, Chung HSH, Huang RZ, Liu O (2010) Optimizing discounted cash flows
in project scheduling: an ant colony optimization approach. IEEE Trans Syst Man Cybern C
40(1):64–77

He Z, Wang N, Jia T, Xu Y (2009) Simulated annealing and tabu search for multi-mode project
payment scheduling. Eur J Oper Res 198(3):688–696

He Z, Liu R, Jia T (2012) Metaheuristics for multi-mode capital-constrained project payment
scheduling. Eur J Oper Res 223(3):605–613

Kavlak N, Ulusoy G, Şerifoğlu FS, Birbil Şİ (2009) Client-contractor bargaining on net present
value in project scheduling with limited resources. Nav Res Log 56(2):93–112

Kolisch R, Hartmann S (1999) Heuristic algorithms for the resource-constrained project scheduling
problem: classification and computational analysis. In: Wȩglarz J (ed) Project scheduling:
recent models, algorithms, and applications. Kluwer Academic, Boston, pp 147–178

Kolisch R, Sprecher A (1996) PSPLIB: a project scheduling problem library. Eur J Oper Res
96(1):205–216

Mika M, Waligóra G, Wȩglarz J (2005) Simulated annealing and tabu search for multi-mode
resource-constrained project scheduling with positive discounted cash flows and different
payment models. Eur J Oper Res 164(3):639–668

Mika M, Waligóra G, Wȩglarz J (2008) Tabu search for multi-mode resource-constrained project
scheduling with schedule-dependent setup times. Eur J Oper Res 187(3):1238–1250

Özdamar L (1998) On scheduling project activities with variable expenditure rates. IIE Trans
30(8):695–704

Özdamar L, Dündar H (1997) A flexible heuristic for a multi-mode capital constrained project
scheduling problem with probabilistic cash inflows. Comput Oper Res 24(12):1187–1200

Russell AH (1970) Cash flows in networks. Manag Sci 16(5):357–373
Sprecher A, Hartmann S, Drexl A (1997) An exact algorithm for project scheduling with multiple

modes. OR Spektrum 19(3):195–203
Sung CS, Lim SK (1994) A project activity scheduling problem with net present value measure.

Int J Prod Econ 37(2–3):177–187
Ulusoy G, Cebelli S (2000) An equitable approach to the payment scheduling problem in project

management. Eur J Oper Res 127(2):262–278
Ulusoy G, Özdamar L (1995) A heuristic scheduling algorithm for improving the duration and net

present value of a project. Int J Oper Prod Manag 15(1):89–98
Ulusoy G, Sivrikaya-Serifoglu F, Sahin S (2001) Four payment models for the multi-mode resource

constrained project scheduling problem with discounted cash flows. Ann Oper Res 102(1–
4):237–261

Waligóra G (2008) Discrete-continuous project scheduling with discounted cash flows: a tabu
search approach. Comput Oper Res 35(7):2141–2153

Chapter 24
The Resource-Constrained Project Scheduling
Problem with Work-Content Constraints

Philipp Baumann, Cord-Ulrich Fündeling, and Norbert Trautmann

Abstract For executing the activities of a project, one or several resources are
required, which are in general scarce. Many resource-allocation methods assume
that the usage of these resources by an activity is constant during execution; in
practice, however, the project manager may vary resource usage by individual
activities over time within prescribed bounds. This variation gives rise to the project
scheduling problem which consists in allocating the scarce resources to the project
activities over time such that the project duration is minimized, the total number
of resource units allocated equals the prescribed work content of each activity, and
precedence and various work-content-related constraints are met.

This chapter compares a priority-rule based method known from the literature
against a recent MILP formulation on a benchmark test set of small-sized problem
instances. Our computational results indicate that the priority-rule based method
derives feasible solutions to all instances of the test set. The MILP formulation
provides feasible solutions to a surprisingly large number of instances; most of these
solutions are optimal or near-optimal, and on these instances the MILP formulation
outperforms the priority-rule based method.

Keywords Project scheduling • Resource constraints • Work-content constraints
• Mixed-integer linear programming

24.1 Introduction

A dynamic environment requires firms to execute many projects such as the
development of new products and services. A project is a unique endeavor that
can be divided into activities each of which requires time and scarce resources for

P. Baumann (�) • N. Trautmann
Department of Business Administration, University of Bern, Bern, Switzerland
e-mail: philipp.baumann@pqm.unibe.ch; norbert.trautmann@pqm.unibe.ch

C.-U. Fündeling
Galenicare Management SA, Bern, Switzerland
e-mail: cord-ulrich.fuendeling@galenicare.com

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_24

533

mailto:philipp.baumann@pqm.unibe.ch
mailto:norbert.trautmann@pqm.unibe.ch
mailto:cord-ulrich.fuendeling@galenicare.com

534 P. Baumann et al.

its completion. Due to technological or organizational restrictions, these activities
usually must be performed according to precedence constraints. The planning of
such projects includes temporal scheduling, which consists of determining the
early start schedule, the late start schedule, and the slack times for each of the
activities, and resource allocation, which consists in allocating scarce resources
to the execution of the activities over time. The efficient allocation of scarce
resources to the execution of the project activities is of particular importance for
companies that wish to remain competitive. Many project scheduling methods
assume that the activities have fixed durations and constant resource requirements.
These assumptions are often too restrictive for practical applications, in which the
decision maker may change the resource usage of an activity over time. Examples
of such applications can be found in the pharmaceutical and software development
industries. Typically, the availability of a single renewable work-content resource
(e.g., labor) is constant throughout the project, and an individual amount of work
content (e.g., number of person-days) is specified for each activity. Activities can
be executed in various ways, i.e., the number of units of the work-content resource
allocated to an activity may vary over time, as long as the requirement for the total
work content is met. This flexibility allows for a more efficient usage of the work-
content resource. In addition to the work-content resource an activity often requires
additional resources, such as tools or supplies. We assume that the amount of the
work-content resource used by an activity determines the activity’s requirement
for further resources. Currently, most project planning software packages allow
the specification of individual work contents for activities, which emphasizes the
relevance of this concept to project managers.

We consider the problem of scheduling the activities of a project to minimize
the project duration; thereby, the activities (i) are subject to finish-start precedence
relationships, (ii) impose a given workload on the work-content resource, (iii)
require units of multiple resources in addition to the work-content resource, and
(iv) may use variable amounts of the work-content resource during their execution,
subject to some organizational restrictions. These restrictions include a lower and
an upper bound on the usage of the work-content resource and a minimum time lag
between consecutive changes of the usage of the work-content resource. We refer to
this time lag as the minimum block length.

For this project scheduling problem, Fündeling (2006) presents an exact branch-
and-bound method. Although this approach is tailored to the specific problem
setting, only few and small-sized problem instances can be solved to optimality.
To tackle large-scale instances, Fündeling and Trautmann (2010) develop a priority-
rule method that schedules activities iteratively using a serial schedule-generation
scheme. In each iteration, a start time and a feasible resource profile are determined
for an activity. To construct the resource profile, the work-content resource is
allocated iteratively period by period. A consistency test is thereby used to exclude
allocations that would violate the minimum block length constraint. The quality
of the generated schedules cannot be evaluated reliably because of the lack of

24 Resource-Constrained Project Scheduling with Work-Content Constraints 535

a sufficiently large number of optimal schedules. Both approaches address the
problem in which, in a feasible schedule, the total number of resource units allocated
to each activity must coincide with its prescribed work content. Alongside, the
discrete time-resource tradeoff problem has been discussed in the literature. In this
problem, only the work-content resource is considered, and an execution mode
must be selected for each activity; each mode corresponds to a combination of a
duration and a constant resource usage such that the total number of resource units
allocated to the activity is greater than or equal to its prescribed work content.
Respective literature surveys are provided in Fündeling and Trautmann (2010),
Wȩglarz et al. (2011), and Chap. 21 of this book. Recently Naber and Kolisch (2013)
have presented four different MILP formulations for a relaxation of the problem
discussed in this chapter; they assume that the total number of resource units
allocated to an activity is to be greater than or equal to its prescribed work content,
and that the capacity of the renewable resources can be divided continuously among
the activities.

In this chapter, which draws on Baumann and Trautmann (2013), we formulate
the project scheduling problem with work-content constraints as a mixed-integer
linear program (MILP). Thereby we use the priority-rule based method presented
in Fündeling and Trautmann (2010) to compute an upper bound on the minimum
project duration; the length of the planning horizon for the MILP model is
set according to this upper bound. Due to its general structure, the proposed
MILP formulation can easily be adapted to different project scheduling problems,
including the well-known RCPSP; in this sense, we also contribute to the recent
development of novel MILP formulations for various types of project scheduling
problems (cf., e.g., Rieck et al. 2012; Bianco and Caramia 2013; Chaps. 2, 5, and 17
of this book). We have applied the proposed formulation to 480 problem instances
with 10 activities that were introduced in Fündeling and Trautmann (2010). The
proposed model solves 389 out of the 480 instances to optimality within short CPU
times.

The remainder of the chapter is organized as follows. In Sect. 24.2, we describe
the planning problem. In Sect. 24.3, we summarize the priority-rule based method
for computing the upper bound. In Sect. 24.4, we present the mixed-integer linear
programming formulation. In Sect. 24.5, we report our computational results. In
Sect. 24.6, we provide some concluding remarks.

24.2 Planning Problem

Given are a set of activities V , a set of discrete resources R, and a set of finish-
start precedence relationships between the activities. We assume that all resources
are renewable and that their capacities are constant over time. The set of resources
R consists of the work-content resource k� and the non-work-content resources
k 2 R n fk�g. For each activity i , a work content wci 2 Z�0 is given that
represents the total number of units of the work-content resource k� required for

536 P. Baumann et al.

its execution. The allocation of the work-content resource per period can vary over
integer values between a prescribed lower bound rmin

ik�

and a prescribed upper bound
rmax

ik�

. The requirements for the non-work-content resources depend on the usage of
the work-content resource. Here, a linear relation between the requirement of the
non-work-content resources and the usage of the work-content resource is assumed,
i.e., an increase (decrease) in the usage of the work-content resource results in a
proportional increase (decrease) in the requirements for further resources. However,
because we assume that all resources are discrete in nature, fractional requirements
are rounded up. Let rikt denote the requirement for resource k 2 R by activity i in
period t . The requirement rikt for resource k 2 R n fk�g is computed as follows.

rikt D drmin
ik C sik.rik�t � rmin

ik�

/e

where rmin
ik denotes the minimal requirement for resource k by activity i , and sik

represents the increment per additional unit of the work-content resource k�. The
parameter sik equals

sik D rmax
ik � rmin

ik

rmax
ik�

� rmin
ik�

where rmax
ik denotes the maximal requirement for resource k by activity i ; we set

sik D 0 if rmin
ik�

D rmax
ik�

.
The minimum block length is denoted by `, i.e., a time lag of at least ` periods

is required between consecutive changes of the usage of the work-content resource.
Such changes include the start and the end of an activity.

A feasible allocation of the work-content resource to the execution of the activ-
ities is sought such that the precedence relationships are satisfied, all activities are
scheduled without interruption, the capacities of the resources are never exceeded,
and the duration of the project is minimized.

In contrast to the well-known resource-constrained project scheduling problem
RCPSP, for some instances of the problem at hand, in each optimal solution some
activities are started later than the earliest resource- and precedence-feasible point in
time. Figure 24.1 illustrates this peculiarity for an instance with n D 3 activities with
work contents wc1 D 3, wc2 D 9, and wc3 D 7, a single precedence relationship
1 	 2, one renewable resource k� D 1 with capacityR1 D 2 (which also represents

1
2

3

∑ i∈V ri1t

1

2

t
1 2 3 4 5 6 7 8 9 10

Fig. 24.1 Optimal schedule

24 Resource-Constrained Project Scheduling with Work-Content Constraints 537

the work-content resource), and minimum block length ` D 3; the minimum and the
maximum requirements for the work-content resource are given by rmin

1;1 D rmax
1;1 D

1, rmin
2;1 D 1; rmax

2;1 D 2, and rmin
3;1 D rmax

3;1 D 1. If activity i D 2 starts at point in
time 3, it cannot be completed before point in time 12 due to the minimum block
length.

24.3 Upper Bound on the Project Duration

In this section, we briefly summarize the priority-rule based heuristic for computing
an upper bound on the project duration; this upper bound is used to determine the
length of the planning horizon in the MILP model. For a detailed presentation of the
priority-rule based heuristic, we refer to Fündeling and Trautmann (2010).

In each iteration of the priority-rule based heuristic, one activity j is scheduled.
To this end, a feasible allocation of the resources to the execution of activity j is
determined (possibly by full enumeration) such that activity j starts at the earliest
precedence-feasible point in time; thereby it is aspired to allocate in each period as
many units of the work-content resource as possible to the execution of activity j .
If no such allocation exists, then the earliest possible start time of activity j is
successively increased until activity j has been scheduled. For determining the
corresponding resource profile for activity j , Fündeling and Trautmann (2010)
apply a consistency test, which is based on the SUBSET SUM decision problem
(cf. Garey and Johnson 1979) and allows to identify partial resource profiles that
cannot be completed to a feasible profile.

For selecting the next activity to be scheduled, Fündeling and Trautmann (2010)
propose to apply a priority rule, e.g., the so-called longest-path-following (LPF)
rule or the most-total-successors (MTS) rule, or to generate random priority values,
preferably in a multi-start implementation. The computational results presented
in Fündeling and Trautmann (2010) indicate that the best results are in general
obtained by the multi-start procedure.

24.4 MILP Scheduling Model

In this section, we present a formulation of the project scheduling problem described
in Sect. 24.2 as an MILP. We closely follow Baumann and Trautmann (2013).

Several formulations for general project scheduling problems in the literature are
based on a discrete representation of time. These formulations can be divided into
three categories based on the type of decision variables used. The first category
is based on binary variables xit that equal 1 if the activity i starts or ends in
period t (cf., e.g., Pritsker et al. 1969). In the second category of formulations,
binary variables xit equal 1 if activity i is processed in period t (cf., e.g., Kaplan
1988). In the third category, binary variables xit equal 1 if activity i is in progress

538 P. Baumann et al.

or has been processed before period t (cf., e.g., Klein 2000). In addition, there exist
flow-based and event-based continuous-time formulations that comprise sequencing
variables or event variables, respectively (cf., e.g., Koné et al. 2011; Chap. 2 of this
book).

In this chapter, we present a formulation that is based on a discrete representation
of time and on binary variables xit that are equal to 1 if the activity i is processed in
period t and are equal to 0, otherwise. In Sect. 24.4.1, we introduce the notation. In
Sects. 24.4.2 and 24.4.3, we discuss the time-related and resource-related constraints
of the formulation, respectively. In Sect. 24.4.4, we introduce the objective function
and summarize the optimization problem.

24.4.1 Symbols

We use the following notation.

Indices

i Activity
t Time period
k Resource
k� Work-content resource

Sets

V Set of activities (V D f1; : : : ; nC 1g)
H Set of periods (H D f1; : : : ;LCnC1 C 1g)
R Set of resources
V a Set of real activities (V a D f1; : : : ; ng)
V a

kt Set of real activities that can be processed in period t 2 H
and require resource k 2 R

Hi Set of relevant periods for activity i (Hi DfESiC1; : : : ;LCi ;LCiC1g)
Ri Set of resources required by activity i
Pred.i/ Set of immediate predecessors of activity i

Parameters

wci Work content of activity i
rmax

ik Upper bound on the amount of resource k 2 R used by activity i
rmin

ik Lower bound on the amount of resource k 2 R used by activity i
` Minimum block length
sik Increment of requirement for resource k 2 R n fk�g by activity i

per additional unit of work content
Rk Capacity of resource k 2 R

24 Resource-Constrained Project Scheduling with Work-Content Constraints 539

Integer decision variable (non-negative)

rikt Amount of resource k 2 R used by activity i 2 V a
kt in period t 2 Hi

Binary decision variables

xit D
�
1; if activity i is processed in period t 2 Hi

0; otherwise

yit D
8
<

:

1; if the amount of resource k� used by activity i2V a in period t2Hi

differs from period t � 1
0; otherwise

24.4.2 Time-Related Constraints

For each activity i 2 V , we determine the set of available periods Hi based on the
earliest start and the latest finish times (ESi ;LCi). The decision variables related to
activity i are defined only for these periods. The earliest start times are computed
by forward recursion. The earliest start time of an activity is thereby set to the
latest of the earliest finish times of all of its immediate predecessors. The earliest
finish time of an activity is computed by adding the lower bound on its duration
dwci =rmax

ik�

e to its earliest start time. The latest finish times are computed similarly
using backward recursion. Thereby LCnC1 must be sufficiently large to guarantee
feasibility. Constraint (24.1) ensures that the project completion, i.e., the dummy
activity nC 1, is scheduled within the planning horizon.

X

t2HnC1

x.nC1/t D 1 (24.1)

Constraints (24.2) prevent activities from being interrupted. If activity i is executed
in period t � 1 and its work content has not been entirely processed by the end of
this period, then activity i must also be processed in period t .

xi.t�1/ �
X

t 02Hi W t 0<t

rik�t 0

wci
� xit .i 2 V aI t 2 Hi W t > ESi C 1/ (24.2)

The finish-to-start precedence relationships are formulated by constraints (24.3).
Activity i can start only if the total work content of all of its predecessors has been
processed.

xit �
X

t 02Hi 0 Wt 0<t

ri 0k�t 0

wci 0
.i 2 V I i 0 2 Pred.i/I t 2 Hi/ (24.3)

540 P. Baumann et al.

24.4.3 Resource-Related Constraints

Constraints (24.4) guarantee that the work content of each activity is processed
exactly during its execution.

X

t2Hi
rik�t D wci .i 2 V a/ (24.4)

Constraints (24.5) and (24.6) impose lower and upper bounds on the usage of the
work-content resource, respectively.

rmin
ik�

xit � rik�t .i 2 V aI t 2 Hi/ (24.5)

rmax
ik�

xit � rik�t .i 2 V aI t 2 Hi/ (24.6)

Constraints (24.7), (24.8), and (24.9) force the variable yit to assume the value 1 if
the usage of the work-content resource by activity i in period t � 1 differs from its
usage in period t . When an activity is completed in period t D LCi , the variable yit

in the period t D LCi C 1 will capture the last change in the usage of the work-
content resource.

rik�t � rmax
ik�

yit .i 2 V aI t D ESi C 1/ (24.7)

rik�t � rik�.t�1/ � rmax
ik�

yit .i 2 V aI t 2 Hi W t > ESi C 1/ (24.8)

rik�.t�1/ � rik�t � rmax
ik�

yit .i 2 V aI t 2 Hi W t > ESi C 1/ (24.9)

Constraints (24.10) prevent an activity i from being processed after its latest finish
time.

xit D 0 .i 2 V aI t D LCi C 1/ (24.10)

The minimum block length is ensured through constraints (24.11), which allow only
one change in the usage of the work-content resource during ` consecutive periods
t 2 Hi .

`�1X

t 0D0
yi.tCt 0/ � 1 .i 2 V aI t 2 Hi W t � LCi � .` � 2// (24.11)

The requirement for resource k 2 R n fk�g by activity i in period t is computed
by constraints (24.12). As this requirement must be an integer value, we use integer
variables rikt to round up fractional values.

rmin
ik xit C sik.rik�t � rmin

ik�

/ � rikt .i 2 V aI k 2 Ri W k ¤ k�I t 2 Hi/ (24.12)

24 Resource-Constrained Project Scheduling with Work-Content Constraints 541

Constraints (24.13) ensure that the total requirement for each resource k 2 R does
not exceed its capacity Rk .

X

i2V akt

rikt � Rk .k 2 RI t 2 H/ (24.13)

24.4.4 Objective Function

The objective is to minimize the duration of the project. The dummy activity nC 1
represents the end of the project, as it can be scheduled only after the completion of
all real activities i 2 V a. The optimization problem (P) reads as follows.

Min.
X

t2HnC1

tx.nC1/t � 1 (24.14)

s. t. .24.1/–.24.13/

rikt 2 Z�0 .i 2 V aI k 2 Ri I t 2 Hi/ (24.15)

yit 2 f0; 1g .i 2 V aI t 2 Hi/ (24.16)

xit 2 f0; 1g .i 2 V I t 2 Hi/ (24.17)

24.5 Computational Results

In this section, we apply the proposed MILP model to a set of 480 problem
instances introduced in Fündeling and Trautmann (2010). Each instance represents
a project with ten activities, one work-content resource and up to three non-work-
content resources. The instances were generated by systematically varying three
complexity parameters. The parameter order strength OS defines the density of
the project network and was chosen from the set f0:25; 0:5; 0:75g; the higher the
value, the more dense the project network. The parameter resource factor RF
defines the mean percentage of resources used by an activity and was chosen from
the set f0:25; 0:5; 0:75; 1g. The parameter resource strength RS defines the degree
of resource scarcity and was chosen from the set f0; 0:25; 0:5; 0:75g; the lower
the value, the scarcer the resources. The test set contains ten instances for each
parameter combination. The minimum block length was randomly chosen from the
set f2; 3; 4g. The parameters wci , rmin

ik and rmax
ik were selected randomly such that a

feasible solution exists for each instance. For further details, we refer to Fündeling
and Trautmann (2010).

We have used the method of Fündeling and Trautmann (2010) to compute
upper bounds on the makespan of these instances. To facilitate the computation

542 P. Baumann et al.

Table 24.1 Computational results of model IE

RS 0.00 0.25 0.50 0.75

` 2 3 4 2 3 4 2 3 4 2 3 4

Instances 36 44 40 41 43 36 38 44 38 40 30 50

Feasible 35 40 24 41 37 30 38 43 33 40 29 40

Optimal 27 36 16 39 34 26 37 40 31 40 26 37

�
ø
MIP [%] 8.9 7.3 6.0 2.1 2.1 4.7 3.4 2.4 1.6 na 1.8 2.8

�max
MIP [%] 23.6 20.3 10.8 2.3 2.8 12.3 3.4 2.6 1.8 na 2.4 4.7

�
ø
LB [%] 18.3 21.3 26.3 10.0 18.2 28.8 7.5 12.1 22.4 5.9 12.1 18.5

�
ø
UB [%] �2:9 �3:1 �2:7 �3:4 �3:4 �2:6 �2:5 �2:8 �2:9 �2:0 �2:3 �1:6

�min
UB [%] �9:8 �11:8 �9:6 �9:5 �16:3 �10:0 �11:1 �10:9 �12:9 �10:7 �9:1 �10:8

of a feasible solution, we have set the latest finish time of the dummy activities nC1
to the respective upper bound multiplied by a factor of 1.05. We have implemented
the proposed MILP formulation in AMPL and used Gurobi 5.5 as a solver on a
standard workstation with two Intel Xeon 3.1 GHz CPUs and 128 GB RAM. First
we investigate the problem setting where the number of resource units allocated
to an activity must be an integer, and the exact work content of each activity is to
be processed (setting IE). Due to the complexity of problem (P), some instances
require large CPU times. Therefore, we prescribed a time limit of t limcpu D 600 s per
instance. A feasible solution was found for 430 instances, and solution optimality
was proven for 389 instances. Table 24.1 lists the results for different combinations
of the parameters RS and `. These two parameters appear to drive the CPU time
requirement of this test set. In rows 3 to 5 of Table 24.1, we report the number
of existing instances with the respective combination of RS and `, the number of
instances for which a feasible solution was found within the time limit, and the
number of instances for which optimality could be proven within the time limit,
respectively. In rows 6 and 7, we report the average and the maximum MIP gap of
the instances for which a feasible solution was found but for which optimality could
not be proven within the time limit. In row 8, we give the average relative deviation
of our solutions to the lower bounds computed in Fündeling (2006). In rows 9 and
10, we list the average and the minimum relative deviations (i.e., the negative of the
maximum relative improvements) of our solutions from the solutions found by the
multi-start priority-rule method of Fündeling (2006).

We conclude that the scarcer the resources or the longer the minimum block
length, the more CPU time is required to find a feasible solution and to prove
optimality. The latter observation may be explained by the fact that the number of
feasible resource profiles for an activity decreases with increasing minimum block
length. If a feasible solution can be found within the time limit, the MIP gap is
generally rather small. Our schedules can be up to 16.3 % shorter than the schedules
obtained by the priority-rule method of Fündeling and Trautmann (2010). However,
the method of Fündeling and Trautmann (2010) provides a feasible solution to all
480 instances.

24 Resource-Constrained Project Scheduling with Work-Content Constraints 543

Table 24.2 Comparison of
different types of model
relaxations

Model IE IG CE CG

Instances 480 480 480 480

Feasible 430 480 480 480

Optimal 389 475 476 475

�
ø
MIP [%] 5.0 4.9 1.6 1.6

�max
MIP [%] 23.6 11.5 2.4 2.4

�
ø
LB [%] 16.2 7.1 7.0 6.7

For the sake of completeness, we summarize the results obtained for the
respective MILP models for the following relaxations of this problem setting:

• setting IG: integral resource allocation, work content processed greater than or
equal to prescribed work content

• setting CE: continuous resource allocation, work content processed equal to
prescribed work content

• setting CG: continuous resource allocation, work content processed greater than
or equal to prescribed work content

The results displayed in Table 24.2 indicate that any of these relaxations reduces
the problem complexity considerably; in particular, all instances are solved to
feasibility, and almost all instances are solved to optimality.

24.6 Conclusions

For the work-content-constrained project scheduling problem, heuristic solution
methods and a specific branch-and-bound procedure have been proposed in the
literature. In this chapter, we reviewed a priority-rule heuristic, and we presented a
novel MILP formulation. The MILP formulation covers in particular the minimum
block-length constraint and considers the dependent requirement for non-work-
content resources. We performed an experimental performance analysis with a set
of 480 test instances previously introduced by Fündeling and Trautmann (2010). For
430 instances, the model found an optimal or near-optimal solution within a short
CPU time; in these 430 instances, the proposed model outperforms the state-of-the-
art method.

The model presented in this chapter contributes to the development of efficient
MILP formulations of resource-allocation problems that can then be solved with
standard software. Our model will help to formulate exact models for related
applications such as those discussed, e.g., in Kolisch et al. (2003). The possible
extensions of this model include work-content-based precedence relationships,
i.e., only a prescribed percentage of the work content of an activity must be
completed before the succeeding activity can be started, as well as time-varying
resource capacities. The model could easily be modified to consider these extensions

544 P. Baumann et al.

by adapting constraints (24.3) and (24.13). Moreover, to further evaluate the
performance of the proposed model, we plan to develop MILP formulations that
are based on different types of decision variables.

References

Baumann P, Trautmann N (2013) Optimal scheduling of work-content-constrained projects.
In: Laosirihongthong T, Jiao R, Xie M, Sirovetnukul R (eds) Proceedings of the international
conference on industrial engineering and engineering management. IEEE, Bangkok

Bianco L, Caramia M (2013) A new formulation for the project scheduling problem under limited
resources. Flex Serv Manuf J 25:6–24

Fündeling C (2006) Ressourcenbeschränkte Projektplanung bei vorgegebenen Arbeitsvolumina.
Gabler, Wiesbaden

Fündeling C, Trautmann N (2010) A priority-rule method for project scheduling with work-content
constraints. Eur J Oper Res 203:568–574

Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP-
completeness. Freeman, New York

Kaplan LA (1988) Resource constrained project scheduling with preemption of jobs. Ph.D.
dissertation, University of Michigan, MI, USA

Klein R (2000) Scheduling of resource-constrained projects. Kluwer, Amsterdam
Kolisch R, Meyer K, Mohr R, Schwindt C, Urmann M (2003) Ablaufplanung für die Leitstruktur-

optimierung in der Pharmaforschung. Z Betriebswirt 73:825–848
Koné O, Artigues C, Lopez P, Mongeau M (2011) Event-based MILP models for resource-

constrained project scheduling problems. Comp Oper Res 38:3–13
Naber A, Kolisch R (2013) MIP models for resource-constrained project scheduling with flexible

resource profiles. Eur J Oper Res 239:335–348
Pritsker A, Watters L, Wolfe P (1969) Multiproject scheduling with limited resources: a zero-one

programming approach. Manag Sci 16:93–107
Rieck J, Zimmermann J, Gather T (2012) Mixed-integer linear programming for resource leveling

problems. Eur J Oper Res 221:27–37
Wȩglarz J, Józefowska J, Mika M, Waligóra G (2011) Project scheduling with finite or infinite

number of activity processing modes: a survey. Eur J Oper Res 208:177–205

Part VIII
Project Staffing and Scheduling Problems

Chapter 25
A Modeling Framework for Project Staffing
and Scheduling Problems

Isabel Correia and Francisco Saldanha-da-Gama

Abstract This chapter addresses modeling issues associated with project staffing
and scheduling problems. Emphasis is given to mixed-integer linear programming
formulations. The need for such formulations is motivated and a general modeling
framework is introduced, which captures many features that have been considered
in the literature on project staffing and scheduling problems. The use of the general
framework is then exemplified using two problems that have been addressed in the
literature. Several model enhancements and preprocessing procedures are discussed.

Keywords Additional inequalities • MILP models • Project scheduling • Project
staffing

25.1 Introduction

Project staffing and scheduling problems lead, in general, to very complex opti-
mization problems as they often extend a resource-constrained project scheduling
problem. Accordingly, it is important to develop methodologies which can effi-
ciently solve such problems. Large instances of the problems can often be expected
to be solved only approximately by using heuristics. Nevertheless, this does not
mean that exact approaches should not be attempted, firstly, because this is a mean
for evaluating (for small or medium size instances) new heuristic procedures and
secondly, because special classes of large instances may be solved to optimality in
an efficient way.

I. Correia (�)
Departamento de Matemática/Centro de Matemática e Aplicações, Universidade Nova de Lisboa,
Caparica, Portugal
e-mail: isc@fct.unl.pt

F. Saldanha-da-Gama
Departamento de Estatística e Investigação Operacional/Centro de Investigação Operacional,
Universidade de Lisboa, Lisboa, Portugal
e-mail: fsgama@fc.ul.pt

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_25

547

mailto:isc@fct.unl.pt
mailto:fsgama@fc.ul.pt

548 I. Correia and F. Saldanha-da-Gama

Many project staffing and scheduling problems are, in fact, optimization prob-
lems. Hence, one possibility for developing exact approaches is to consider math-
ematical programming based approaches. Such is only possible if the problems
are firstly formulated as the maximization or minimization of a function of several
variables subject to a set of constraints in these variables. The nature of the decisions
involved in such problems leads often to mixed-integer linear programming (MILP)
formulations. This is the focus of this chapter.

Once a mixed-integer linear programming formulation is available for a problem
several approaches may be attempted. These include (1) the direct use of the
formulation in an off-the-shelf solver, (2) branch-and-bound approaches, and (3)
decomposition approaches.

In many resource-constrained project scheduling problems, resources are flexible
or, as often called in the literature, multi-skilled. This means that each resource
can perform at least one skill. This is often the case when human resources are
involved. Note, however, that multi-skilled resources can also refer to machines or
other resources not necessarily human.

When resources are multi-skilled we talk of completely skilled resources when
all the resources have all the skills. We say that we have resources with hetero-
geneous efficiencies if the amount of work requiring a specific skill that can be
performed in one time unit varies from one resource to another. Otherwise we have
homogeneous efficiencies.

When resources are multi-skilled, not only it becomes necessary to decide which
resources will be assigned to each activity but also the skills with which they
contribute to each activity. Accordingly, in terms of the decisions to be made,
project staffing and scheduling problems add one dimension to resource-constrained
project scheduling problems, which, in turn, represent already a significant increase
of complexity when compared to the basic project scheduling problems.

The main purpose of this chapter is to revisit and discuss different models that
have been proposed in the literature for project staffing and scheduling problems
namely those proposed by Li and Womer (2009) and Correia et al. (2012). In
particular, a general modeling framework is first presented, which generalizes those
models. We focus only on project scheduling problems with multi-skilled resources.
Hence, we do not consider the work that has been done on single-skilled problems.
Furthermore, we consider a single project setting, i.e., we assume that we have
a project which is defined by a set of activities such that for several pairs of
activities some time dependency exists between the corresponding starting times. As
mentioned above, the focus will be put on modeling issues namely on the possibility
of using a MILP model for such type of problem.

In this chapter we avoid being too specific, thus making the modeling framework
proposed easily adjustable to more complex situations (as, for instance, the problem
arising in an industrial context, which is addressed in Chap. 28). Furthermore, the
information provided by this chapter should be complemented with further reading
namely that provided by Chaps. 26 and 27, where techniques based on column
generation, Lagrangian relaxation and Benders decomposition are proposed.

25 A Modeling Framework for Project Staffing and Scheduling Problems 549

The idea of considering mathematical programming formulations for complex
scheduling problems is far from new. Some examples are the well-known mixed-
integer linear programming formulations proposed by Applegate and Cook (1991)
for the job-shop scheduling problem, and the formulations proposed by Alvarez-
Valdes and Tamarit (1993), Baptiste and Demassey (2004), Carlier and Néron
(2003), Christofides et al. (1987), and Demassey (2008) for the resource-constrained
project scheduling problem.

The use of mathematical programming formulations for project staffing and
scheduling problems has also been attempted. This is the case with the integer
programming time-dependant formulations proposed by Bellenguez and Néron
(2005) for a multi-skill resource-constrained project scheduling problem. Li and
Womer (2009) and Correia et al. (2012) also explore the possibility of using mixed-
integer linear programming formulations for this type of problems. In the first
work, a hybrid Benders decomposition algorithm is proposed which combines the
complementary strengths of both mixed-integer linear programming and constraint
programming. The second work explores the possibility of strengthening a MILP
formulation using valid inequalities as a way of making the use of a general solver
more efficient.

Finally, we would like to cite the work by Heimerl and Kolisch (2010), who
proposed a MILP model for a quite general project staffing and scheduling problem
in the context of multiple projects. The model is enhanced with the goal of using a
general solver.

The remainder of this chapter is organized as follows: In Sect. 25.2 we discuss
several important ingredients that often have to be gathered before starting devel-
oping a MILP formulation for a project staffing and scheduling problem. In the
following section, a general modeling framework is proposed, which captures many
features that have been considered in the literature. In Sects. 25.4 and 25.5, the utility
of the general framework is illustrated by using two particular problems that are
addressed in the literature. Finally, in Sect. 25.6 we discuss some extensions. The
chapter ends with some conclusions and ideas for modeling developments in the
context of the problems addressed.

25.2 Ingredients for a General Modeling Framework

Before going deeper in terms of modeling considerations, it is important to
understand what is involved in the basic setting for a project staffing and scheduling
problem. Typically, we have a set of activities to be processed such that for several
pairs of activities, some time dependency exists between their starting times. In
order to be processed, each activity requires the use of resources, which are limited.
In project staffing and scheduling problems, such resources are people each of which
having various skills. In order to process each activity, more than one skill may
be necessary. In particular, a pre-determined number of resources for each skill is
needed. The goal is typically to decide the best way of assigning the resources to
the activities so as to optimize some predefined performance measure.

550 I. Correia and F. Saldanha-da-Gama

The final step before developing a modeling framework is to understand what
can be involved in terms of parameters, decisions to be made, and performance
measures to be optimized. Regarding the parameters, they may include information
concerning the activities, the resources, and the project as a whole.

As far as the activities are concerned, some information must be gathered:

• Processing times. For each activity, some processing time is considered, which
is assumed to be defined in advance.

• Minimum delays. When some activity can start only some pre-specified time after
the beginning of some other, we say that we have a minimum delay between the
two activities. For instance, when some activity must precede another one, the
latter can only start after the former has been completed, i.e., there is a minimum
delay equal to the processing time of the first activity.

• Deadlines. A deadline exists for some activity when the completion time of the
activity cannot exceed some pre-specified moment in time. A deadline sets a hard
constraint on the time for finishing the execution of the activity.

• Due dates. A due date is a softer version of a deadline in the sense that it sets some
desirable completion time for an activity, which, however, may not be respected.
The existence of due dates is often associated with some performance measure
(e.g., lateness).

• Resource requirements. Each activity may require resources with different skills.
Thus, for each activity, it is important to identify in advance the skills that will be
required by the activity. Furthermore, the amount of resources required for each
skill is a crucial complementary information.

As far as the resources are concerned, one can identify the following crucial
information:

• Workload. This stands for the total time that each resource (individual) can work
in the project.

• Resource potential and availability. In a multi-skill problem, each resource may
have more than one skill. Accordingly, it is important to identify the skills that
each individual can perform.

• Costs. The use of each resource may, for instance, imply a fixed cost which is
incurred by using the resource in the project.

Finally, as a complement to all the previous information, one may have to
consider information/data for the project as whole. A maximum prescribed duration
(i.e., a deadline) is possibly the most commonly used. When this is the case,
such information must be included in the model, leading to a multi-skill resource-
constrained project scheduling problem with a given deadline.

The next step towards the development of a model is the identification of
the decision variables. These can be classified into two groups: one contains the
variables, which all together implicitly represent a solution to the problem. In other
words, these are variables whose values are enough to completely define a solution
to the problem. The second set of decision variables contains what can be called
auxiliary variables. These are variables which are not needed for defining a solution

25 A Modeling Framework for Project Staffing and Scheduling Problems 551

but that are important for modeling purposes either because they help describing the
constraints of the problem or because they are fundamental for accounting for the
costs.

We detail the sets of decision variables which are typically involved in a modeling
framework for a project staffing and scheduling problem:

• Starting time for the activities. These are decision variables considered in every
project scheduling problem, which convey the major decision to be made.

• Resource allocation. These variables define how the resources will be assigned to
the different activities. In particular, when multi-skilled resources are involved,
these variables also specify the skills with which each resource contributes to
each activity.

• Sequencing. These are auxiliary variables which help to model the resource
constraints. The issue arises because it is often the case that there are pairs of
activities such that no precedence constraint or minimum delay exists between
them. In such situation, the activities may be processed simultaneously or
following some sequence to be decided. This will be decided, among other
things, by the resource availability. In any case, it is important to consider
decision variables which state the sequence (if any) by which the activities will
be processed.

• Resources usage. Such variables are important when a fixed cost is associated to
each resource. In such a case, these variables help accounting for the costs.

Finally, the performance measure to be optimized in a project staffing and
scheduling problem is a key information for a complete definition of the problem.
Typically, two performance measures that have been considered in project staffing
and scheduling problems are the time necessary to finish the entire project (i.e., the
makespan) and the total cost associated with the use of resources. Both are to be
minimized.

25.3 A General Modeling Framework

In the basic setting of the project staffing and scheduling problems underlying the
(MILP) models that will be presented in this chapter, the following is assumed:

• Preemption is not allowed. This means that once an activity starts to be executed
it can not be interrupted.

• All processing times are integer. In particular it is assumed that the time necessary
to execute an activity can be measured in hours, days, weeks, months, etc. Thus
fractional values are not accepted.

• The resource requirements for each activity are known in advance and do not
change over the processing of the activity.

• In each point in time, each resource can be involved in at most one activity and
in this case, with a single skill.

552 I. Correia and F. Saldanha-da-Gama

• Each activity must be completed before its deadline.
• The resources have homogeneous efficiencies.
• All data of the problem is known in advance and is not subject to any type of

uncertainty.

Taking into account all aspects discussed above, the following notation is now
considered:
Sets:

R D f1; : : : ; k; : : : ; Kg Set of resources.
V D f1; : : : ; ng Set of activities to be executed.
L D f1; : : : ; l; : : : ; Lg Set of skills.
Li Set of skills required by activity i 2 V .
Lk Set of skills that can be performed by resource k 2 R.

Based upon the previous notation we can define:

Rl D fk 2 R j l 2 Lkg Set of resources with skill l 2 L .
Vk D fi 2 V j Li \Lk ¤ ;g Set of activities requiring skills that resource

k 2R has.
Ri D fk 2 R j Li \Lk ¤ ;g Set of resources with skills required by activity

i 2 V .

Parameters:

ril Number of resource units (workers) with skill l 2 L required by activity
i 2 V .

pi Processing time for activity i 2 V .
dmin

ij Minimum time lag between the start of activities i and j (i; j 2 V).
dmax

ji Maximum time lag between the start of activities j and i (i; j 2 V).
ıij Weight of arc .i; j /, chosen in the set fdmin

ij ;�dmax
ji ; pi ;�1g.

d i Deadline for the completion of activity i 2 V .
d Deadline for the entire project.
WLk Workload capacity of resource k 2 R.
ck Cost of using resource k 2 R in the project.
UB Upper bound on the project makespan.

Decision Variables: Many mixed-integer linear programming models for project
scheduling problems consider non-negative decision variables for the starting time
of the activities as well as binary variables defining the execution order for any pair
of activities. The same will also be done here. Accordingly, we have

Si : Starting time for activity i 2 V .

Regarding the resource allocation we consider

xikl D
8
<

:

1 if resource k contributes with skill l
for activity i

0 otherwise
.i 2 V I k 2 Ri I l 2 Lk \Li /

25 A Modeling Framework for Project Staffing and Scheduling Problems 553

In addition to the decision variables above the following two sets of auxiliary
variables are also introduced as they are crucial for the modeling framework to be
presented:

yij D
�
1 if activity i is completed before activity j is started
0 otherwise

.i; j 2 V /

zk D
�
1 if resource k is selected to perform the project
0 otherwise

.k 2 R/

Under the assumptions made above, a generic modeling framework for a project
staffing and scheduling problem, which gathers the models proposed by Li and
Womer (2009) and Correia et al. (2012), is the following:

.P / Min. f .S; x; y; z/ (25.1)

s. t. Sj � Si C ıij .i; j 2 V / (25.2)

Sj � Si C pi �M
�
1 � yij

�
.i; j 2 V / (25.3)

X

k2Rl

xikl D ril .i 2 V I l 2 Li / (25.4)

X

l2Li\Lk

xikl � 1 .k 2 RI i 2 Vk/ (25.5)

X

l2Lk\Li

xikl C
X

l2Lk\Lj

xjkl � yij C yji C 1 .k 2 RI i; j 2 Vk/

(25.6)

Si C pi � minfdi ; d g .i 2 V / (25.7)
X

i2Vk

X

l2Lk\Li

pixikl � WLkzk .k 2 R/ (25.8)

Si � 0 .i 2 V / (25.9)

xikl 2 f0; 1g .i 2 V I k 2 Ri I l 2 Lk \Li / (25.10)

yij 2 f0; 1g .i; j 2 V / (25.11)

zk 2 f0; 1g .k 2 R/ (25.12)

The generic function in (25.1) represents the objective function to be minimized.
Constraints (25.2) are the time lag constraints. In constraints (25.3) M denotes a
large value. These constraints define the values for the sequencing variables assuring
that if yij is equal to 1, then activity j can start only after activity i is finished.
Constraints (25.4) assure that for each skill required for each activity, the necessary

554 I. Correia and F. Saldanha-da-Gama

resources are allocated. Inequalities (25.5) state that each resource contributes with
at most one skill to each activity (to which it can be assigned). Constraints (25.6)
assure that if one resource k is assigned to two activities i and j (assuming i; j 2
Vk), then yij C yji � 1, i.e., either i is performed before j or j is performed before
i . Constraints (25.7) assure that the completion time of the activities respects the
deadlines. Constraints (25.8) assure that the workload capacity of the resources is
satisfied. Constraints (25.9)–(25.12) are domain constraints.

Remark 25.1.
1. If ıij D pi for two activities i; j 2 V , then constraints (25.2) reduce to the

traditional precedence constraints. If ıij D �1, then no relation exists between
the starting time of activities i and j . Finally, as stressed by Li and Womer
(2009), if ıij � 0 the constraint represents a minimum time lag between activities
i and j ; if ıij < 0 a maximum time lag is being assured between activity j and
activity i .

2. The previous formulation assures implicitly that yij C yji � 1, i; j 2 V . In
fact, suppose that for two activities i and j we had yij C yji > 1. The only
possibility would be to have yij D 1 and yji D 1. In this case, by (25.3) we
would have Sj � Si C pi and Si � Sj C pj . Accordingly, we could write
Sj � Si C pi � Sj C pj C pi . As the processing times are positive we would
obtain Sj > Sj , which makes no sense. Hence, there is no need to introduce
consistency constraints for the choice of the values for the variables y.

3. It is in general assumed that 0 is the origin of time.
4. The formulation presented above accommodates very easily the imposition of a

sequence between two activities. This is done simply by setting the value for two
y variables. In fact, if we realize that some activity i must be processed before
some other activity j , then we can simply set yij D 1 and yji D 0.

25.3.1 Preprocessing and Model Enhancement

In practice, a model such as P may be too large. Accordingly, one important aspect
arising when facing such a model is the possibility of somehow simplify it. One
way for achieving this is to perform a preprocessing, which can lead to fixing the
values of some (ideally as much as possible) binary variables. Even when it is not
possible to directly fix the values of some binary variables, it may be possible to add
additional conditions for enhancing the model. These aspects may be relevant when
it comes to use an off-the-shelf general solver for tackling a model such as P .

One obvious simplification is the following:
If for some resource k 2 R and for some activity i 2 Vk we have WLk < pi ,

then it must be

xikl D 0 .l 2 Li \Lk/ (25.13)

25 A Modeling Framework for Project Staffing and Scheduling Problems 555

This, in turn, leads to a reduction on the cardinality of the sets Vk and Ri :

Vk WD Vk n fig Ri WD Ri n fkg (25.14)

In what follows, we assume that this reduction has been performed.
The following definition is crucial for the discussion to be presented below.

Definition 25.1. Two activities i; j 2 V are said to be incompatible if there is never
a slot in time in which they can be executed simultaneously.

The previous incompatibility concept is far from new. In fact, it has been
proposed for the resource-constrained project scheduling problem (see, for instance,
Alvarez-Valdes and Tamarit 1993; Klein and Scholl 1999).

By considering the availability of the resources as well as the skills and the
corresponding amount of resources required by each activity it is not difficult to state
sufficient conditions for incompatibility. Before doing so, consider two activities i
and j and an auxiliary directed network N 0 D .V 0; E 0/ (V 0 is the set of nodes; E 0
is the set of arcs) built as follows:

• Apart from a source and a sink node two intermediate sets of nodes are
considered in V 0.

– Each node in the first intermediate set is associated with a resource which
can be allocated to at least one of the activities i and j . Hence, the first
intermediate set of nodes is defined by the resources in Ri [Rj .

– The second intermediate set of nodes is partitioned into two subsets. In the
first subset, each node is associated with a skill in Li ; in the second subset,
each node is associated with a skill in Lj .

• The set of arcs E 0 is defined as follows.

– From the source node there will be an arc converging in each node in the first
intermediate set with a minimum throughput 0 and capacity 1.

– Each node (resource) in the first intermediate set will be linked to a node
(skill) in the first subset of the second intermediate set if the resource can
be allocated to activity i with that skill. Each node (resource) in the first
intermediate set will be linked to a node (skill) in the second subset of the
second intermediate set if the resource can be allocated to activity j with that
skill. In every case, the minimum throughput associated with an arc will be
set to 0 and the capacity to 1.

– From every node in the second intermediate set there will be an arc directed
to the sink node. Each such arc has a minimum throughput and capacity
equal to the number of resources required for the corresponding skill in the
corresponding activity i or j .

If a feasible flow exists in this auxiliary graph, then there are enough resources
to execute i and j simultaneously.

556 I. Correia and F. Saldanha-da-Gama

Two immediate sufficient conditions for two activities i and j to be incompatible
are the following:

C1 ıij � pi .
C2 No feasible flow exists in the auxiliary network N 0 D .V 0; E 0/ built as shown

above.

The concept of incompatibility can be straightforwardly extended to a triplet of
activities fi; j; hg. In this case, it is also straightforward to extend the sufficient
conditions C1 and C2.

The knowledge of the sets of incompatible activities can be easily introduced
in model P . This was first proposed by Alvarez-Valdes and Tamarit (1993) for the
project scheduling problem and can be done here in exactly the same way. In fact,
as mentioned before, if two activities i; j are incompatible, then either i will be
executed before j or the other way round. Therefore, we can impose

yij C yji D 1 (25.15)

because in this case we know in advance that it is not possible to have yij D yji D 0.
If fi; j; hg is a triplet of incompatible activities, then the following inequality is

valid for P :

yij C yji C yih C yhi C yjh C yhj � 1 (25.16)

Note that the inequality above is only of interest if fi; j g, fi; hg and fj; hg are not
incompatible otherwise the inequality is implied by (25.15) (using the appropriate
indices).

This inequality follows from the fact that if the three activities i; j; h are
incompatible, then at least one of the variables involved in the previous inequality
should be equal to 1. Again, note that this type of inequality was proposed for project
scheduling problems by Alvarez-Valdes and Tamarit (1993).

As pointed out by Correia et al. (2012) the reasoning behind inequality (25.16)
could be used to derive inequalities for sets with more than three incompatible
activities. However, in this process, a tradeoff should be reached between the gain
we get with the inequality and the computational effort required. In fact, finding sets
of four incompatible variables leads to a significant increase in the computational
effort.

In addition to the previous sets of inequalities, a new set of inequalities can
be derived by making use of the binary variables associated with the resources.
Suppose that for each resource a value WL0k is found, which represents the maximum
total time that the resource can spend in the overall project. A natural choice for WL0k
is WLk . However, when an upper bound (UB) on the project makespan is known we
can possibly do better. In fact, if for some k 2 R, UB < WLk , then we know that in
an optimal solution, the total time that resource k is allocated to the project will not
exceed UB. Hence, we define, for each k 2 R, WL0k D minfWLk;UBg. Therefore,
we can write

25 A Modeling Framework for Project Staffing and Scheduling Problems 557

X

i2Vk

X

l2Lk\Li

pixikl � WL0k .k 2 R/ (25.17)

From the previous inequalities and taking into account that we have binary
variables in the left term, we can divide both members in (25.17) by an integer
q 2 f2; : : : ;maxi2Vkfpi gg obtaining

X

i2Vk

X

l2Lk\Li

pi

q
xikl � WL0k

q
.k 2 RI q 2 f2; : : : ;maxi2Vk fpigg/

By rounding down each coefficient in the left-hand side in the previous inequal-
ities and then by doing the same in the right-hand side we obtain a new set of
additional inequalities that can be added to model P :

X

i2Vk

X

l2Lk\Li

�
pi

q

�

xikl �
�

WL0k
q

�

.k 2 RI q 2 f2; : : : ;maxi2Vk fpigg/ (25.18)

It should be noted that in the previous set of inequalities it may happen that
several inequalities have the same right-hand side. In such case, only the ‘stronger’
should be added to model P .

One can strengthen the previous inequalities as follows:

X

i2Vk

X

l2Lk\Li

�
pi

q

�

xikl �
�

WL0k
q

�

zk .k 2 RI q 2 f2; : : : ;maxi2Vk fpigg/
(25.19)

25.4 A Makespan Minimization Multi-Skill
Resource-Constrained Project Staffing
and Scheduling Problem

In order to make more clear the utility of the generic model presented in the
previous section we particularize it according to what has been presented by Correia
et al. (2012). In the problem addressed by these authors, one finds the following
particularizations:

• Two dummy activities 0 and n C 1 are included in set V . This activities are
assumed to have processing time equal to 0 and no resource requirements.

• The objective function is the makespan, i.e., f .S; x; y; z/ D SnC1.
• d i DPi2V pi , i 2 V .
• d DPi2V pi .
• WLk DPi2V pi , k 2 R.
• ıij 2 fpi ;�1g, i; j 2 V .

558 I. Correia and F. Saldanha-da-Gama

The authors assume that the project is represented by an activity-on-node
network N D .V;E; ı/, where V represents the set of activities, E represents the
precedences between such activities, and ı represents the set of arc weights. The
network is acyclic and the nodes are labeled numerically in such a way that each
activity has a label smaller than the label of every of its successors. The weight of an
arc is equal to the processing time of the activity corresponding to the initial node of
the arc. The dummy activity 0 represents the beginning of the project whereas nC1
represents the conclusion.

Precedence relations defined in the set E above imply other (non-direct)
precedences. In fact, if some activity i1 precedes i2 and i2 precedes i3, then i1
precedes i3.

The following additional set (two-element antichains) can now be defined:

A2 D f.i; j / 2 V � V j no direct or transitive relation exists between i and j g

This set contains the pairs of activities which can be processed simultaneously
with respect to the temporal and resource constraints (feasible anti-chain). Initially,
in this set, we only include the pairs of activities such that no precedence relation
exists between them. Afterwards, using some preprocessing it will be possible to
remove some pairs from that set due to incompatibilities arising from the resource
constraints.

The generic model presented before reduces now to:

.P1/ Min. SnC1 (25.20)

s. t. Sj � Si C pi ..i; j / 2 E/ (25.21)

Sj � Si C pi �M
�
1 � yij

�
..i; j / 2 A2/ (25.22)

X

k2Rl

xikl D ril .i 2 V I l 2 Li / (25.23)

X

l2Li\Lk

xikl � 1 .k 2 RI i 2 Vk/ (25.24)

X

l2Lk\Li

xikl C
X

l2Lk\Lj

xjkl � yij C yji C 1

.k 2 RI i; j 2 VkI .i; j / 2 A2/ (25.25)

Si � 0 .i 2 V / (25.26)

xikl 2 f0; 1g .i 2 V I k 2 Ri I l 2 Lk \Li / (25.27)

yij 2 f0; 1g ..i; j / 2 A2/ (25.28)

25 A Modeling Framework for Project Staffing and Scheduling Problems 559

25.4.1 Feasibility Issues

The particular problem just revisited is N P-hard as pointed out by Correia et al.
(2012). Nevertheless, checking the feasibility of an instance is quite simple in this
case.

To see this, one just need to observe that the feasibility of an instance of this
problem only depends on having enough resources for processing each one of the
activities. In fact, as no deadline exists for finishing the project, the activities can be
processed one at a time. Therefore, checking the feasibility of the problem reduces
to checking whether or not there are resources enough to execute each activity. As
pointed out by Correia et al. (2012), at a first glance, one might think that this
could be achieved by simply comparing, for each activity i , the values ril with the
cardinalities of the set Rl . However, it is easy to find trivial examples showing that
this is not the case.

Alternatively, feasibility can be checked by finding a feasible flow in a specific
network defined for each activity. Considering a particular activity i 2 V define a
directed graph Ni D .Vi ; Ei / in which:

• The set of nodes Vi contains:

– a source node s,
– Ri (a set of nodes defined by the resources that can be assigned to activity i),
– Li (a set of nodes associated with the skills required by activity i),
– a sink node t .

• The set of arcs Ei contains:

– arcs .s; k/, k 2 Ri with minimum throughput 0 and capacity 1,
– arcs .k; l/, k 2 Ri , l 2 Li \Lk , with minimum throughput 0 and capacity 1,
– arcs .l; t/, l 2 Li \Lk, with minimum throughput and capacity ril.

Note that in order to be able to execute an activity i 2 V , ril resources are
needed for each skill l required by the activity (i.e., for each skill l 2 Li). However,
each resource is used at most once because the lower and upper capacities in the
intermediate arcs are 0 and 1, respectively.

If a feasible flow between s and t can be found in the above graph, then there
are enough resources to execute activity i . If this happens for all activities, then the
problem is feasible. If for some activity i there is no feasible flow between s and t in
the corresponding graph, then the resources are not enough to execute this activity
and consequently, the entire project fails to be executed.

25.4.2 Additional Inequalities

From an integer programming point of view, an important aspect worth investigating
regarding a model such as P1 is the strength of the bound provided by its linear

560 I. Correia and F. Saldanha-da-Gama

relaxation. Correia et al. (2012) prove that such bound is in fact quite easy to obtain
as it is equal to the length of the longest path between nodes 0 and n C 1 in the
network N . Unfortunately, this bound can be extremely weak. For this reason, they
consider the use of several sets of valid inequalities that even when not able to
improve this bound may, at least, speed up a general solver when tackling the model
P1. Some of these inequalities were already introduced in Sect. 25.3.1. However,
for the particular problem at hand, additional inequalities can be considered.

25.4.2.1 Time Windows Inequalities

A straightforward set of inequalities are based on the earliest and latest starting
time for each activity. They are very popular in mixed-integer linear programming
formulations for project scheduling problems and can be applied as follows.

Let dij be the length of the longest path from node i to node j in the precedence
network, i; j 2 V; i < j . As in the previous section, denote by UB a valid upper
bound on the optimal project makespan. For each activity i 2 V denote by ESi and
LSi its earliest starting time and its latest starting time, respectively.

In project scheduling, it is well-known that activity i cannot start before time
d0i , i.e., ESi D d0i . On the other hand, taking into account that once starting the
processing of activity i one has to wait at least di;nC1 until the project is finished,
one can set LSi D UB � di;nC1. The observations above define a time window for
the starting time of each activity i :

ESi � Si � LSi (25.29)

which can be added to the formulation proposed in the previous section.
Correia et al. (2012) propose a procedure for obtaining UB.

25.4.2.2 Reduction Tests

Correia et al. (2012) add two sufficient conditions to the ones presented in
Sect. 25.3.1 namely the following:

Two activities i; j 2 V , are incompatible if

C3 LSi C pi < ESj
C4 LSj C pj < ESi

Consider two activities i; j 2 V and assume that they do not satisfy any of the
conditions C1 to C4 (i.e., the value of variable yij in model P1 can still be chosen).
Assume also that activity i cannot be finished before j . In this case, yij cannot have
value 1 and thus we can set it to 0.

Assume now that activities i and j are incompatible but without any precedence
relation existing between them (i.e., the value of variable yij in modelP1 can still be
chosen). In this case, either i must be executed before j or the other way round. In

25 A Modeling Framework for Project Staffing and Scheduling Problems 561

Algorithm 25.1: Reduction Test
Require: two activities i and j

if i and j are not incompatible and if ESi C pi > LSj then
yij D 0

end if
if i and j are incompatible with no precedence constraint existing between them then

if ESi C pi > LSj then
yji D 1; yij D 0

yjs D 1; ysj D 0, for all s 2 V such that yis D 1

ypi D 1; yip D 0, for all p 2 V such that ypj D 1

ypsD 1; yspD 0, for all p 2V such that ypj D 1 and for all s 2 V such that yisD 1
else if ESj C pj > LSi then
yij D 1; yji D 0

yis D 1; ysi D 0, for all s 2 V such that yjs D 1

ypj D 1; yjp D 0, for all p 2 V such that ypi D 1

yps D 1; ysp D 0, for all p 2 V such that ypi D 1 and for s 2 V such that yjs D 1

end if
end if

some circumstances it is possible in advance to realize which is the case. Moreover,
when we realize that one activity i should be executed before the other activity
j , then by transitivity we can possibly fix some other y variables. Therefore, the
reduction test proposed by Correia et al. (2012) is properly justified.

As pointed out by Correia et al. (2012) the second part of the reduction test (when
i and j are incompatible) is an adaptation to this problem of the well known pair
test proposed by Carlier and Pinson (1989) for the job-shop scheduling problem.

25.4.2.3 Other Inequalities

As mentioned above, the additional inequalities presented in Sect. 25.3.1 can be
applied to enhance P1. This is the case, with conditions (25.15) and (25.16).

Finally, Correia et al. (2012) considered constraints (25.18) with WL0k D UB for
all k 2 R. As mentioned before, the authors proposed a heuristic procedure for
obtaining a value UB.

25.5 A Cost Minimization Multi-Skill Resource-Constrained
Project Staffing and Scheduling Problem

Li and Womer (2009) address a unit capacity multi-skill project scheduling problem
proposing a model which can be seen as a particularization of P . In the problem
addressed by these authors we have:

562 I. Correia and F. Saldanha-da-Gama

• The objective function represents the cost associated with the resources used in
the project.

• ril D 1, i 2 V , l 2 Li .
• ıij 2 fdmin

ij ; dmax
ji ; pi g.

The model proposed is the following:

.P2/ Min.
X

k2R
ckzk (25.30)

s. t. Sj � Si C ıij .i; j 2 V / (25.31)

Sj � Si C pi �M
�
1 � yij

�
.i; j 2 V / (25.32)

X

k2Rl

xikl D 1 .i 2 V I l 2 Li / (25.33)

X

l2Li\Lk

xikl � 1 .k 2 RI i 2 Vk/ (25.34)

xikl C xjkl 0 � yij C yji C 1
.k 2 RI i; j 2 Vk I l 2 Lk \Li I l 0 2 Lk \Lj /

(25.35)

Si C pi � minfd i ; d g .i 2 V / (25.36)
X

i2Vk

X

l2Lk\Li

pixikl � WLkzk .k 2 R/ (25.37)

Si � 0 .i 2 V / (25.38)

xikl 2 f0; 1g .i 2 V I k 2 Ri I l 2 Lk \Li / (25.39)

yij 2 f0; 1g .i; j 2 V / (25.40)

zk 2 f0; 1g .k 2 R/ (25.41)

In the above formulation one observes that constraints (25.6) presented in
Sect. 25.3 are disaggregated leading to (25.35).

For this problem and using model P2, Li and Womer (2009) develop a Benders
decomposition approach (see Chap. 27 for further details).

25.6 Extensions

So far we have considered project staffing and scheduling problems in the context
of a project scheduling problem. Heimerl and Kolisch (2010) extend the basic
setting by considering a multi-project problem. Each project can be seen as one

25 A Modeling Framework for Project Staffing and Scheduling Problems 563

activity with time dependent resource requirements. Several types of resources
are considered namely internal to the organization and external. The latter convey
outsourcing. Resources are assumed to be heterogeneous as far as the efficiencies are
concerned. The objective is to minimize the total cost associated with the resources.
This cost includes regular and overtime work for the internal resources and work
for the outsourced resources. Resources may work in different projects at the same
time.

The problem above is a very general multi-project staffing and scheduling
problem. For this problem, Heimerl and Kolisch (2010) propose a MILP model,
which they enhance using valid inequalities.

Another extension can be found in Chap. 28 where the basic setting of a multi-
skill project staffing and scheduling problem is extended in order to accommodate
some needs in an industrial context. In particular, the synchronization of task skills
or the ability to preempt some tasks is now considered.

25.7 Conclusions

In this chapter a general MILP modeling framework was presented for project
staffing and scheduling problems. A single-project, multi-skill setting was consid-
ered. The general modeling framework was particularized to two problems that have
been studied in the literature. Several sets of valid inequalities and reduction tests
were presented, which aim at enhancing the MILP models for the purpose of using a
commercial solver. When the use of a commercial solver fails to solve one instance
of this type of problems, specially tailored approaches must be attempted.

References

Alvarez-Valdes R, Tamarit JM (1993) The project scheduling polyhedron: dimension, facets and
lifting theorems. Eur J Oper Res 67:204–220

Applegate D, Cook W (1991) A computational study of job-shop scheduling. ORSA J Comp
3:149–156

Baptiste P, Demassey S (2004) Tight LP bounds for resource constrained project scheduling. OR
Spectr 26:251–262

Bellenguez O, Néron E (2005) Lower bounds for the multi-skill project scheduling problem with
hierarchical levels of skills. In: Practice and theory of automated timetabling V. Lecture notes
in computer science, vol 3616. Springer, Berlin, pp 229–243

Carlier J, Néron E (2003) On linear lower bounds for the resource constrained project scheduling
problem. Eur J Oper Res 149:314–324

Carlier J, Pinson E (1989) An algorithm for solving the job-shop problem. Manag Sci 35:164–176
Christofides N, Alvarez-Valdés R, Tamarit JM (1987) Project scheduling with resource constraints:

a branch and bound approach. Eur J Oper Res 29:262–273
Correia I, Lampreia-Lourenço L, Saldanha-da-Gama F (2012) Project scheduling with flexible

resources: formulation and inequalities. OR Spectr 34:635–663

564 I. Correia and F. Saldanha-da-Gama

Demassey S (2008) Mathematical programming formulations and lower bounds. In: Artigues
C, Demassey S, Néron E (eds) Resource-constrained project scheduling: models, algorithms,
extensions and applications. Wiley, Hoboken, pp 49–62

Heimerl C, Kolisch R (2010) Scheduling and staffing multiple projects with a multi-skilled
workforce. OR Spectr 32:343–368

Klein R, Scholl A (1999) Computing lower bounds by destructive improvement: an application to
resource-constrained project scheduling problem. Eur J Oper Res 112:322–346

Li H, Womer K (2009) Scheduling projects with multi-skilled personal by a hybrid MILP/CP
Benders decomposition algorithm. J Sched 12:281–298

Chapter 26
Integrated Column Generation and Lagrangian
Relaxation Approach for the Multi-Skill Project
Scheduling Problem

Carlos Montoya, Odile Bellenguez-Morineau, Eric Pinson, and David Rivreau

Abstract This chapter introduces a procedure to solve the Multi-Skill Project
Scheduling Problem. The problem combines both the classical Resource-
Constrained Project Scheduling Problem and the multi-purpose machine model.
The aim is to find a schedule that minimizes the completion time (makespan)
of a project composed of a set of activities. Precedence relations and resources
constraints are considered. In this problem, resources are staff members that master
several skills. Thus, a given number of workers must be assigned to perform each
skill required by an activity. Practical applications include the construction of
buildings, as well as production and software development planning. We present
an approach that integrates the utilization of Lagrangian relaxation and column
generation for obtaining strong makespan lower bounds. Finally, we present the
corresponding obtained results.

Keywords Column Generation • Lagrangian relaxation • Multi-skilled
personnel • Project scheduling • Project staffing • Resource constraints

26.1 Introduction

In project scheduling, resource capacity, cost, and resource availabilities play an
important role for obtaining a schedule that reaches the goals of a company. Differ-
ent objectives can be considered in project scheduling such as the maximization of

C. Montoya (�)
Department of Industrial Engineering, Universidad de los Andes, Bogotá D.C, Colombia
e-mail: ce.montoya@uniandes.edu.co

O. Bellenguez-Morineau
IRCCyN, Ecole des Mines de Nantes, Nantes, France
e-mail: Odile.morineau@mines-nantes.fr

E. Pinson • D. Rivreau
LARIS (EA CNRS 4094), Université Catholique de l’Ouest, Angers, France
e-mail: eric.pinson@uco.fr;david.rivreau@uco.fr

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_26

565

mailto:ce.montoya@uniandes.edu.co
mailto:Odile.morineau@mines-nantes.fr
mailto:eric.pinson@uco.fr;david.rivreau@uco.fr

566 C. Montoya et al.

the net present value, the minimization of the resource costs, or the minimization of
the project duration (makespan). All of these features are addressed by the resource-
constrained project scheduling problems like the RCPSP (Brucker et al. 1999),
which are classical scheduling problems that received major attention in the last
years.

The RCPSP (PS j prec j Cmax) deals with a given number of activities that have
to be scheduled on a set of resources. It also takes into account precedence relations
between activities and limited resource availabilities. The RCPSP considers renew-
able resources, which can be used whenever they are available (e.g., staff members,
machines, and equipment).

The interest in extending the practical applications of the RCPSP encouraged
researchers to work on different extensions that capture several variants and features
related to specific real life situations (Artigues et al. 2008; Hartmann and Briskorn
2010).

We focus on one particular extension of the RCPSP, which can be classified as
a Project Staffing Problem, known as the Multi-Skill Project Scheduling Problem
MSPSP (PSS j prec j Cmax, Bellenguez-Morineau and Néron 2005). It is important
to mention that the main features of this problem are also described in Chaps. 25
and 28. Furthermore, we can outline that the MSPSP mixes both the RCPSP and
the Multi-Purpose Machine model. The aim is to find a schedule that minimizes
the makespan of a project, considering that resources are staff members that
master several skills. Practical applications include the construction of buildings,
production, and software development planning. In addition it is important to notice
that this problem is N P-hard in the strong sense (Artigues et al. 2008).

In this chapter we propose two Lagrangian relaxation models, which are inspired
by a column generation (CG) approach proposed in previous work (Montoya et al.
2013). The proposed approach aims at obtaining strong makespan lower bounds.
This chapter is organized as follows: In Sect. 26.2 we present a literature review
related to the studied problem and to the methods we use to solve it. In Sect. 26.3 we
define the problem and give an overview about column generation and subsequently
we introduce two master problem formulations. In Sect. 26.4 we propose two
Lagrangian relaxation models. In Sect. 26.5, we introduce the procedures used for
initializing the CG procedure and for selecting new columns. In Sect. 26.6 we report
the computational results. Finally, in Sect. 26.7 we conclude on our work and discuss
possible research avenues.

26.2 Literature Review

Before introducing the proposed solution method, we present a literature review
related to the studied problem and to the methods we use to solve it.

26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 567

26.2.1 Problem Background

Despite the fact that the notion of skills plays an important role in the field of
personnel assignment (Jiang et al. 2004), it is not often considered in the project
scheduling field. Regarding the Multi-Skill Project Scheduling Problem, we refer to
the work done by Bellenguez-Morineau and Néron (2005), Bellenguez-Morineau
(2008), who developed and implemented different procedures to determine lower
and upper bounds for the makespan. More recently, Montoya et al. (2013) proposed
a branch-and-price approach for the MSPSP. Other works have been done also on
some specific variants for the MSPSP. For example, Cordeau et al. (2010) developed
a construction heuristic and an adaptive large neighborhood search heuristic for the
Technician and Task Scheduling Problem (TTSP) in a large telecommunications
company. The goal in this problem is to assign technicians to tasks with multi-
level skill requirements. Here, as it occurs in the MSPSP, the requirements of the
tasks (activities) are defined by the presence of a set of resources (technicians)
that possess the necessary skills. For solving this last mentioned problem, Fırat
and Hurkens (2012) developed more recently a solution methodology that uses a
flexible matching model as a core engine based on an underlying mixed-integer
programming model.

Additionally, there are other interesting solution methodologies in the literature
of project scheduling with multi-skilled human resources. For example, Heimerl
and Kolisch (2010) proposed a mixed-integer linear program to solve a multi-
project problem where the schedule of each project is fixed. They also considered
multi-skilled human workforce with heterogeneous and static efficiencies. Li and
Womer (2009) developed a hybrid algorithm based on mixed-integer modeling
and constraint programming for solving a project scheduling problem with multi-
skilled personnel, taking into consideration an individual workload capacity for each
worker. Gutjahr et al. (2008) proposed a greedy heuristic and a hybrid solution
methodology using priority-based rules, ant colony optimization, and a genetic
algorithm to solve the so-called “Project Selection, Scheduling and Staffing with
Learning Problem”. More recently, as was introduced in Chap. 25, Correia et al.
(2012) presented a mixed-integer linear programming formulation and several sets
of additional inequalities for a variant of the resource-constrained project scheduling
problem in which resources are flexible i.e., each resource has several skills.

26.2.2 Column Generation Overview and Background

Introduced independently by Dantzig and Wolfe (1960) and Gilmore and Gomory
(1961), column generation (CG) consists in solving alternately a (restricted) master
problem (RMP) and a sub-problem resulting from the decomposition of the original
problem. The main idea underlying this approach is to select, at each iteration of

568 C. Montoya et al.

an iterative process and by means of an oracle related to the column generation
sub-problem and using duality information originating from the solving of the
current RMP, a candidate variable whose reduced cost is susceptible to improve
the objective function associated with the master problem. The related column is
added to the current RMP, and we iterate until no more candidate can be found.
Notice that such a decomposition is possible due to the exploitation of some specific
structure of the problem formulation whose pricing sub-problem leads to an “easier”
optimization problem such as shortest path or knapsack problems.

So far column generation (CG) had been used to solve specifically the Multi-
Skill Project Scheduling Problem by Montoya et al. (2013). Additionally CG
has been used in combination with other optimization techniques for solving
project scheduling problems. Particularly, Brucker et al. (1999) implemented a
destructive approach for finding tight lower bounds for the RCPSP by using both
constraint propagation techniques and CG. Afterwards, authors extended their
work for solving the Multi-Mode RCPSP (MRCPSP) (Brucker and Knust 2000).
Additionally, Van den Akker et al. (2007) presented a destructive lower bound based
on column generation for certain extensions of the RCPSP. In this approach, authors
used a simulated annealing algorithm for finding a schedule for each resource, which
was enforced by a time-indexed integer programming formulation.

On the other hand, CG has been widely used on the Vehicle Routing Problem
(VRP) and several related extensions (Lübbecke and Desrosiers 2005). Some VRP
problems consider similar features to those of the MSPSP. For example, Dohn et al.
(2009) deal with an assignment problem where a set of teams must be assigned
to a set of tasks, restricted by time-windows. As it occurs in the MSPSP, assigned
resources must start and finish a given activity simultaneously. Authors developed
a branch-and-price procedure and enforce the fulfillment of such a constraint with
a branching scheme that limits the starting time of a given activity. Moreover, for a
particular extension of the VRP, Ioachim et al. (1999) modeled the synchronization
constraint directly in the master problem with the consequence that a large number
of columns with a small variation in the starting times (departure times) of the tasks
(flights) are generated. To handle such a drawback, they introduced a tolerance in
the side constraints to allow asynchronous departure times.

Additionally, column generation has also been used to solve Staff Scheduling
Problems (Bard and Purnomo 2005; Beliën and Demeulemeester 2007; Jaumard
et al. 1998; Mason and Smith 1998; Mehrotra et al. 2000). This type of problems,
as it occurs with the MSPSP, involves the assignment of staff members to perform
a set of activities, but they normally intend to minimize a total assignment cost,
considering also a predefined time horizon.

Finally, CG has also been used to solve shop scheduling problems (Chen and
Powell 1999; Gélinas and Soumis 2005; Van den Akker et al. 2000, 2002). These
problems are related to single machine, flexible and job shop scheduling problems,
sharing also some common features with the MSPSP. For example, Gélinas and
Soumis (2005) deal with precedence constraints for solving the job shop scheduling
problem. They handle these constraints in the master problem and modeled the

26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 569

sub-problem as a single machine problem with time constraints. On another side,
Van den Akker et al. (2000) used CG based on a time-indexed formulation for solv-
ing single machine scheduling problems. They used Dantzig-Wolfe decomposition
techniques (Dantzig and Wolfe 1960) to deal with the difficulties related to the size
of a time-indexed formulation, given its capacity to obtain strong lower bounds. This
approach supports the one considered in this chapter, since our work is also based
on a time-indexed perspective.

26.2.3 Combining Lagrangian Relaxation and Column
Generation Background

Typically, column generation is used to solve the LP-relaxation of the master
problem, but it can also be combined with Lagrangian relaxation as we will discuss
in this chapter. According to Wolsey (1998), it is possible to solve the Lagrangian
dual either by means of the subgradient method or by solving the linear relaxation
of the extensive formulation by using a CG approach. Thereafter, the optimal lower
bound of the restricted linear master problem (RMP) and the best Lagrangian dual
will have the same value. Both solution methods for the Lagrangian dual have
advantages and disadvantages, hence some authors have proposed procedures that
try to combine the advantages of both approaches (Barahona and Jensen 1998;
Huisman et al. 2005).

As we will show later on, each Lagrangian multiplier vector is linked with the
dual variables related to the relaxed constraint. Consequently, this implies that the
dual values obtained by solving the RMP can be estimated by the Lagrangian
multipliers used in the related Lagrangian dual problem. Thus, instead of solving
the RMP with the simplex method by using a solver, we can use a subgradient
procedure (Held and Karp 1971) for solving the Lagrangian dual approximately.
The associated Lagrangian multipliers can be used for estimating the values of the
dual variables related to the constraints of the RMP and for pricing out new columns.

Overall, there are different reasons for using this last mentioned approach. The
subgradient method is fast, easy to implement, and does not require a commercial
solver. When solving the RMP with a simplex method, we obtain a basic dual solu-
tion that corresponds to a vertex of the optimal face of the dual polyhedron. Given
that a new column of the RMP may cut that vertex, a dual solution interior (in the
center) of the dual face allows stronger dual cuts (i.e., better primal columns). Bixby
et al. (1992) and Barnhart et al. (1998) obtained from their research that this may
improve the convergence of a column generation algorithm and reduce degeneracy.
Jans and Degraeve (2004) and Huisman et al. (2005) provide computational results
that indicate that Lagrangian multipliers are beneficial. Finally, it is also shown that
during the subgradient phase, possible feasible solutions are generated.

570 C. Montoya et al.

26.3 Problem Description and Column Generation

As was already mentioned, the Multi-Skill Project Scheduling Problem MSPSP
is a known project scheduling problem, which is mainly composed by three
components: activities, resources, and skills. It considers a set V of n activities.
Within this set, we also define two dummy activities 0 and n C 1 which represent
respectively the beginning and completion of the project. Let Succ.i/ denote the
set of immediate successors of an activity i whose processing time is denoted by
pi . Additionally, a set R of K workers and a set L of L skills are defined for
performing these activities. We denote by ril the number of workers with skill l
required by activity i . We define akl D 1 if worker k masters skill l , 0 otherwise.
Finally, T denotes an upper bound for the total duration of the project or makespan.

After understanding the main features of the MSPSP, we introduce the two master
problem formulations related to the two Lagrangian relaxation models exploited in
this chapter.

26.3.1 Column Generation Master Problem Formulations

The basic idea underlying the considered CG approach relies on a time-indexed
reformulation of the problem. In this mathematical formalization, a column ! (i.e.,
activity work pattern) represents certain processing attributes (a starting time and
set of assigned workers) of an activity i . Hence, a solution to the MSPSP consists in
identifying a single column (a starting time and a set of assigned workers) for each
activity of the project. An activity work pattern! is represented by three parameters:
(i) %!i , which takes the value of 1 if activity i is processed in activity work pattern !,
0 otherwise; (ii) (!

i , which takes the value of t if activity i starts at time t in activity
pattern !, 0 otherwise; (iii) �!kt , which takes the value of 1 if worker k is assigned on
activity work pattern ! at time t , 0 otherwise. We assume that the workers assigned
to ! satisfy the skills requirement of the related activity. Additionally, we denote
the set of all feasible activity work patterns by˝ .

The decision variables governing the target model are defined by: (i) x! , which
takes the value of 1 if activity work pattern ! is selected, 0 otherwise; (ii) Si , which
represents the starting time of an activity i .

Based on the previous description we present two master problem formulations
(MP1 and MP2), that lead to the same sub-problem (SP). Moreover, we can state that
solving the SP aims to exhibit a feasible selection of workers/skills for processing
activity i at time t .

In the next subsections we introduce MP1 and MP2, and later on, we explain the
sub-problem and the solution method applied to solve it.

26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 571

26.3.1.1 First Master Problem (MP1)

The first master problem MP1 can be stated as follows:

ZŒMP1�: Min. SnC1 (26.1)

s. t.
X

!2˝
.x! � %!i / D 1 .i 2 V / (26.2)

X

!2˝
.x! � (!

i / D Si .i 2 V / (26.3)

X

!2˝
.x! � �!kt/ � 1 .k 2 RI t D 0; : : : ; T / (26.4)

Si C pi � Sj .i 2 V I j 2 Succ.i// (26.5)

ESi � Si � LSi .i 2 V / (26.6)

x! 2 f0; 1g .! 2 ˝/ (26.7)

The objective is to minimize the makespan (26.1). Constraint set (26.2) ensures
that only a unique activity work pattern can be assigned to any task i . Constraints
(26.3) recover the associated starting times, while constraint set (26.4) ensures that
any operator can carry out at most one activity at a given time. Constraints (26.5)
state the precedence relations connecting the activities in V , and constraint set (26.6)
ensures that the starting time of each activity must be within a predefined time-
window. For this purpose, ESi (resp. LSi) denotes in this formulation a lower bound
(resp. upper) for the starting date associated with activity i . Such a time-window is
for instance simply induced by the precedence graph using recursively Bellman’s
conditions and a given upper bound (T) for the makespan.

Thereafter, for applying CG, integrality constraints (26.7) are relaxed. The
(restricted) master problem (RMP1) is then obtained by considering a partial pool of
activity work patterns N̋ (N̋ � ˝). Assuming that an optimal solution of the RMP1
has been computed with a standard LP solver, let us denote the simplex multipliers
associated with constraints (26.2), (26.3), and (26.4) respectively by .
i ; i 2 V /,
.�i ; i 2 V /, and .�kt; k 2 R; t D 0; : : : ; T /. The reduced cost associated with an
activity work pattern ! related to the processing of activity i at time t can be stated
as follows:

rcit D 0 �
i � .�i � t/ �
X

k2R

t 0DtCpi�1X

t 0Dt
.�kt0 � �!kt0/ D rc1it C rc2it (26.8)

with:

rc1it D �
i � .�i � t/ (26.9)

572 C. Montoya et al.

rc2it D �
X

k2R

t 0DtCpi�1X

t 0Dt
.�kt0 � �!kt0/ (26.10)

Hence, if rcit < 0, then the corresponding column (activity work pattern) can be
added to the current pool of columns, iteratively, until no more profitable columns
can be found (Gilmore and Gomory 1961).

26.3.1.2 Second Master Problem (MP2)

This new master problem formulation has a similar structure to the one previously
explained. This new mathematical model relies on an alternative way for integrating
the precedence relations constraints. Hence, let us consider a particular precedence
relation between two activities i and j (j 2 Succ.i/) which must be processed
in the time slot Wij D ESi ; : : : ;LSj C pj . Mapping this time slot, we can extend
the notion of an activity work pattern ! by defining a new parameter �!ijt0 in the
following way:

If ! corresponds to the execution of i at a starting time t :

• �!ijt0 D 1 .t 0 D ESi ; : : : ; t C pi � 1);
• �!ijt0 D 0 .t 0 D t C pi ; : : : ;LSj C pj).

If ! corresponds to the execution of j at a starting time t :

• �!
ijt0
D 1 .t 0 D ESi ; : : : ; t � 1);

• �!
ijt0
D 0 .t 0 D t; : : : ;LSj C pj).

If ! does not correspond to the execution of neither i nor j :

• �!ijt0 D 0 .t 0 D ESi ; : : : ;LSj C pj).

Clearly, two activity work patterns !1 and !2 should be consistent for the
precedence constraint of i and j , if:

.�
!1
ijt0
� x!1/C .�!2ijt0

� x!2/ � 1 .t 0 2 Wij/ (26.11)

Additionally, we also consider a coefficient C!
max, related to each activity work

pattern!. Hence, given that S.!/ represents the starting time linked to activity work
pattern !, we define C!

max as follows:

• C!
max D S.!/ if activity work pattern ! is related to the execution of the dummy

activity nC 1, 0 otherwise.

Notice that the proposed mathematical formulations are adapted for most of
regular as well as nonregular optimization criteria.

Let us also recall that ˝ represents the set of all feasible activity work patterns.
The only decision variable governing the target model is x! , which was already

26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 573

introduced for MP1. Therefore, the associated mathematical formulation can then
be stated as follows:

ZŒMP2�: Min.
X

!2˝
.C!

max � x!/ (26.12)

s. t.
X

!2˝
.x! � %!i / D 1 .i 2 V / (26.13)

X

!2˝
.x! � �!kt/ � 1 .k 2 RI t D 0; : : : ; T / (26.14)

X

!2˝
.x! � �!ijt/ � 1 .i 2 V I j 2 Succ.i/I t 2 Wij/ (26.15)

x! 2 f0; 1g .! 2 ˝/ (26.16)

Notice that this formulation has a structure (set packing problem) with a pure 0-1
coefficients constraint matrix. More precisely, we have that constraint set (26.13)
ensures that only a unique activity work pattern can be assigned to any task i .
Constraint set (26.14) ensures that any operator can carry out at most one activity
at a given time. Constraint (26.15) states the precedence relations connecting the
activities in V at given time-point t .

The (restricted) master problem (RMP2) can simply be obtained by relaxing the
binarity constraints relating to decision variables x! and by considering a partial
pool of activity work patterns N̋ (N̋ � ˝). Thus, after solving the RMP2 the
corresponding simplex multipliers (dual variables) associated to constraints (26.13),
(26.14), (26.15) are denoted respectively by .
i ; i 2 V /, .�kt; k 2 R; t D 0; : : : ; T /,
and .$ijt; i 2 V; j 2 Succ.i/; t 2 Wij/. Subsequently, the reduced cost associated
with an activity work pattern ! related to the processing of activity i at time t can
be stated as follows:

rcit D 0 �
i �
X

i2V

X

j2Succ.i/

X

t 02Wij

.�!ijt0 � $ijt0/�
X

k2R

t 0DtCpi�1X

t 0Dt
.�kt0 � �!kt0/ D rc1it C rc2it

(26.17)

with:

rc1it D �
i �
X

i2V

X

j2Succ.i/

X

t 02Wij

.�!ijt0 � $ijt0/ (26.18)

rc2it D �
X

k2R

t 0DtCpi�1X

t 0Dt
.�kt0 � �!kt0/ (26.19)

574 C. Montoya et al.

As was already mentioned a column is added to the current pool of columns,
iteratively, until no more profitable columns can be found (Gilmore and Gomory
1961).

Now, before introducing the combined Lagrangian relaxation and column gen-
eration approaches proposed in the present chapter, we give an insight to the
sub-problem (SP) and to the applied solution method.

26.3.1.3 Column Generation Sub-Problem (SP)

Assuming that an optimal solution of RMP1 or RMP2 has been computed, let us
define the quantity ckt, which simply corresponds to the total cost incurred by
worker k when assigned to an activity i in the time slot t; : : : ; t C pi � 1.

ckt D �
tCpi�1X

t 0Dt
�kt0 (26.20)

Subsequently, we consider the decision variables yk D 1, if worker k is assigned
to perform activity i , 0, otherwise, and zkl D 1, if worker k uses skill l to perform
activity i , 0 otherwise. Finding an optimal feasible selection of workers/skills for
processing activity i at time t that minimizes the reduced cost rcit leads to the
following sub-problem SP.i; t/:

ZŒSP.i; t/�: Min. rc2it D
X

k2R
.ckt � yk/ (26.21)

s. t.
X

k2R
zkl D ril .l 2 L / (26.22)

yk D
X

l2L
zkl .k 2 R/ (26.23)

yk 2 f0; 1g; zkl 2 f0; 1g .k 2 RI l 2 L / (26.24)

In this formulation, the objective is to minimize the total assignment cost to
perform activity i at a time t . Constraint set (26.22) guarantees its requirements
fulfillment. Constraint set (26.23) ensures that an assigned worker uses only
one skill. Finally, constraint set (26.24) defines the decision variables as binary.
Moreover, we can state that solving the SP aims to exhibit a feasible selection of
workers/skills for processing activity i at time t .

Once rc2it D �ZŒSP.i; t/� is computed, we get the targeted reduced cost defined
by (26.8) and (26.17) related to the solution of the RMP1 and RMP2 respectively. If
rcit < 0, then the corresponding column is candidate to enter the basis since it leads
to a decrease in the objective function value for the corresponding restricted master
problem (RMP1 or RMP2). Consequently, this activity work pattern can be added to

26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 575

Source

0 1

1

1, c0t

1, ckt

Sink

1

2

l

0

1

2

k

ri0

ril

Fig. 26.1 Graph G.i; t / skills assignment for activity i

the current pool of columns according to the parameters defined for each of the two
proposed master problem formulations in Sects. 26.3.1.1 and 26.3.1.2.

Of course, an enumeration on each activity for each of its potential starting date
(ESi � ti � LSi) is necessary for exhibiting an activity work pattern with global
minimal reduced cost. We refer to the next section for more details related to the
global solution method.

26.3.1.4 Column Generation Sub-Problem Solution (SP)

Clearly, solving SP.i; t/ is equivalent to find an optimal solution to a min-cost
max-flow problem on a particular network G.i; t/, whose structure is depicted in
Fig. 26.1. This graph simply formalizes the assignment of the skills required for
performing activity i to the workers mastering at least one of these skills, according
to the constraint stating that any worker can use only one skill when performing
a given activity. The values on each arc correspond respectively to its flow upper
bound and the related unit cost. Notice that each arc .l; sink/ with a positive flow
corresponds to a selected worker for the processing of activity i .yk D 1/. This
classical flow problem can be efficiently solved using the algorithm proposed by
Busacker and Gowen (1961) in O..K C L/3/ time complexity.

26.4 Combining Lagrangian Relaxation and Column
Generation

One of the main proposal of this chapter relies on combining CG with Lagrangian
relaxation, leading to a faster way of solving the (restricted) master problem rather
than using an LP solver (Huisman et al. 2005). In the sequel, we present the

576 C. Montoya et al.

two Lagrangian relaxation models related to the solution of RMP1 and RMP2,
respectively.

26.4.1 RMP1 Based Model for Combining Lagrangian
Relaxation and Column Generation

Before introducing the Lagrangian relaxation model related to RMP1, we include
the next additional surrogate constraint to the (restricted) master problem described
previously:

X

tD0;:::;T

X

k2R

X

!2 N̋
.x! � �!kt/ D

X

i2V

X

l2L
.pi � ril/ (26.25)

Such a constraint establishes that the accumulated time per resource unit assigned
(left term) must be equal to the total amount of time per resource unit required during
the whole project duration (right term). Thereafter, let us associate with constraints
(26.2), (26.3), and (26.4) the respective Lagrangian multipliers (
i ; i 2 V),
(�i ; i 2 V) and (�kt; k 2 R; t D 0; : : : ; T). The corresponding Lagrangian function
can be written as follows:

� .x; t;
; �; �/ D SnC1 C
X

i2V

i � .1 �

X

!2˝
.x! � %!i //

C
X

i2V
�i � .Si �

X

!2˝
.x! � (!

i //C
X

k2R

X

tD0;:::;T
�kt � .1 �

X

!2˝
.x! � �!kt// (26.26)

� .x; t;
; �; �/ D SnC1 C
X

i2V
.�i � Si /C

X

!2˝
..�%!i �
i / � .(!

i � �i /

�
X

k2R

X

tD0;:::;T
.�kt � �!kt// � x! C

X

i2V

i C

X

k2R

X

tD0;:::;T
�kt (26.27)

For a given distribution (
; �; �) of Lagrangian multipliers, the associated dual
function L.
; �; �/ can be computed solving the following independent Lagrangian
sub-problems:

ZŒLSP1.�/]: Min. SnC1 C
X

i2V
.�i � Si/ (26.28)

s. t. Si C pi � Sj .i 2 V I j 2 Succ.i// (26.29)

ESi � Si � LSi .i 2 V / (26.30)

26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 577

and

ZŒLSP2.
; �; �; x/]: Min.
X

!2˝
.C

0 !
max � x!/ (26.31)

s. t.
X

!2˝
.x! � wl!/ D

X

i2V

X

l2L
.pi � ril/ (26.32)

x! 2 f0; 1g .! 2 ˝/ (26.33)

where

C
0 !
max D �
i.!/ � .S.!/ � �i /�

X

k2R

X

tD0;:::;T
.�kt � �!kt/ (26.34)

wl! D
X

l2L
.pi.!/ � ril/ (26.35)

Hence, obviously we have:

ZŒL.
; �; �/� D ZŒLSP1.
; �; �; t/�

CZŒLSP2.
; �; �; x/�C
X

i2V

i C

X

k2R

X

tD0;:::;T
�kt (26.36)

Subsequently, we use a commercial solver for the solution of the first Lagrangian
sub-problem (LSP1.�/). In addition, it can be noticed that LSP2.
; �; �/, is a
classical 0-1 knapsack problem, which can be quite time consuming when the pool
of patterns N̋ increases. This problem can be solved with a pseudo-polynomial time
complexity of O.qB/, where:

q D Nj ˝ j (26.37)

B D
X

i2V

X

l2L
.pi � ril/ (26.38)

Nevertheless, we can focus on the linear relaxation of LSP2 according to the
activity work pattern generation process (x! � 0; ! 2 N̋). First, let us sort the
activity work pattern in N̋ in such a way that:

C
0 !1
max =wl!1 � C

0 !2
max =wl!2 � : : : � C

0 !q
max =wl!q (26.39)

Now, after sorting activity work patterns according to (26.39), let s be the
maximal index such that:

sX

jD0
wl!j �

X

i2V

X

l2L
.pi � ril/ (26.40)

578 C. Montoya et al.

An optimal solution to LSP2 is given by:

Nx!j D 1 .j D 0; : : : ; s/ (26.41)

Nx!sC1
D .

P
i2V

P
l2L .pi � ril//� wl!j

wl!sC1

(26.42)

Nx!j D 0 .j D s C 2; : : : ; q/ (26.43)

Considering that ZŒL.
; �; �/� defines a lower bound on the RMP1, we can
obtain the best possible lower bound by solving the related Lagrangian dual problem
(LDRMP1):

ZŒLDRMP1� D Max
;�;�L.
; �; �/ (26.44)

In the context of combinatorial optimization one efficient way to solve the
Lagrangian dual problem is to use a subgradient procedure introduced by Held
and Karp (1971), which iteratively updates the Lagrangian multipliers. Nevertheless
other methods like volume (Barahona and Anbil 2000), bundle (Fábián 2000),
and analytic center cutting plane methods (Goffin and Vial 2002) among others
(Bertsekas 1999) can be used for solving the Lagrangian dual problem. We focus
particularly on the description of the subgradient method since it is the most diffused
one. In addition, besides the fact that it was the first one used in the context of
combinatorial optimization, it has, at least, two main advantages: it is easy to code
and has minimal memory requirements.

Thereafter, we use the subgradient procedure for estimating the values of the
Lagrangian multipliers (
; �; �). Hence, after solving LSP1.�/ and LSP2.
; �; �/ we
obtain the starting times vector S and the column assignment vector Nx from the
solution of the respective sub-problem. Consequently, we can define a subgradient
for L.
; �; �/ as follows:

 1i D 1 �
X

!2˝
.x! � %!i / .i 2 V / (26.45)

 2i D Si �
X

!2˝
.x! � (!

i / .i 2 V / (26.46)

'kt D .1 �
X

!2˝
.x! � �!kt// .k 2 RI t D 0; : : : ; T / (26.47)

Now, given an upper bound T for the makespan and a step size sp, we can update
the current Lagrangian multipliers by:

i D
i C .sp � 1i / .i 2 V / (26.48)

�i D �i C .sp � 2i / .i 2 V / (26.49)

�kt D minf0; �kt C .sp � 'kt/g .k 2 RI t D 0; : : : ; T / (26.50)

26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 579

The step size sp is defined as follows:

sp D vp � .T �L.
; �; �//
Norm

(26.51)

where Norm is given by:

Norm D
X

i2V
. 1i C 2i /2 C

X

k2R

X

tD0;:::;T
'kt

2 (26.52)

Equation (26.51) represents a known step length rule, which was empirically
justified by Held et al. (1974). Moreover, this rule is less expensive in terms of CPU
times in comparison to other step length rules with proven convergence (Polyak
1967). Notice that in this equation we consider a parameter vp, which is initialized
with a value equal to 2 (vp D 2), as was proposed by Held and Karp (1971).
Additionally it is important to set a limit on the number of iterations, which defines
also the accuracy of the solution.

Overall, the general idea is to update the Lagrangian multipliers during a limited
number of iterations. Thereafter, we use the last updated multipliers as an estimation
of the dual multipliers for pricing out new columns. At the end of each iteration
we update the parameter vp with a systematic geometric revision: vp D gp � vp.
Normally the second parameter gp ranges between 0.87 and 0.9995, depending on
the targeting problem.

Finally, when there are no more columns with a negative reduced cost by using
the Lagrangian multipliers, we perform a fixed number of iterations solving the
RMP1 with the simplex method by using the solver for obtaining the values of the
dual variables for pricing out new columns. Hence, if after the fixed number of
iterations there are still columns with negative reduced costs, we go back to the
Lagrangian procedure, otherwise, we stop.

26.4.2 RMP2 Based Model for Combining Lagrangian
Relaxation and Column Generation

The second Lagrangian model proposed is based on the second (restricted) master
problem formulation (RMP2) proposed in Sect. 26.3.1.2. Now, let us associate
with constraints (26.13), (26.15), and (26.14) the respective Lagrangian multipliers
(
i ; i 2 V), ($ijt; i 2 V; j 2 Succ.i/; t 2 Wij), and (�kt; k 2 R; t D 0; : : : ; T). The
corresponding Lagrangian function can be written as follows:

� .x;
; $; �/ D
X

!2˝
.C!

max � x!/C
X

i2V

i � .1 �

X

!2˝
.x! � %!i //

580 C. Montoya et al.

C
X

i2V

X

j2Succ.i/

X

t2Wij

$ijt � .1 �
X

!2˝
.x! � �!ijt//

C
X

k2R

X

tD0;:::;T
�kt � .1 �

X

!2˝
.x! � �!kt// (26.53)

� .x;
; $; �/ D
X

!2˝
.C!

max � .%!i �
i /�
X

i2V

X

j2Succ.i/

X

t2Wij

.�!ijt � $ijt/

�
X

k2R

X

tD0;:::;T
.�kt � �!kt// � x! C

X

i2V

i

C
X

i2V

X

j2Succ.i/

X

t2Wij

$ijt C
X

k2R

X

tD0;:::;T
�kt (26.54)

For given values (
; $; �) of Lagrangian multipliers, the associated dual function
L.
; $; �/ can be computed solving the following Lagrangian sub-problem:

ZŒLSP.
; $; �; x/�: Min.
X

!2˝
.C

0 !
max � x!/ (26.55)

s. t. x! � 0 .! 2 ˝/ (26.56)

where

C
0 !
max D C!

max� %!i �
i.!/�
X

i2V

X

j2Succ.i/

X

t2Wij

.�!ijt �$ijt/�
X

k2R

X

tD0;:::;T
.�kt � �!kt/ (26.57)

Hence, obviously we have:

ZŒL.
; $; �/� D ZŒLSP.
; $; �/�C
X

i2V

i

C
X

i2V

X

j2Succ.i/

X

t2Wij

$ijt C
X

k2R

X

tD0;:::;T
�kt (26.58)

The Lagrangian sub-problem (LSP.
; $; �/) can be solved to optimality by
setting Nx! equal to 1 if C

0 !
max < 0, or equal to 0 otherwise.

ZŒL.
; $; �/� defines a lower bound on the RMP2, given that each feasible
solution for the original problem is also feasible for the Lagrangian function. Hence,
we can obtain the best possible lower bound by solving the Lagrangian dual problem
(LDRMP2):

ZŒLDRMP2� D Max
;$;�L.
; $; �/ (26.59)

26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 581

As was done for the first proposed Lagrangian model (see Sect. 26.4.1) we use
the subgradient procedure for estimating the values of the Lagrangian multipliers
(
; $; �). Hence, after solving LSP.
; $; �/ we obtain the column assignment vector
Nx. Consequently, we can define a subgradient for L.
; $; �/ as follows:

 i D 1�
X

!2˝
.x! � %!i / .i 2 V / (26.60)

#ijt D 1 �
X

!2˝
.x! � �!ijt/ .i 2 V I j 2 Succ.i/I t 2 Wij/ (26.61)

'kt D 1 �
X

!2˝
.x! � �!kt/ .k 2 RI t D 0; : : : ; T / (26.62)

Now, given an upper bound T for the makespan and a step size sp, we can update
the current Lagrangian multipliers by:

i D
i C .sp � i / .i 2 V / (26.63)

$ijt D minf0; $ijt C .sp � #ijt/g .i 2 V I j 2 Succ.i/I t 2 Wij/ (26.64)

�kt D minf0; �kt C .sp � 'kt/g .k 2 RI t D 0; : : : ; T / (26.65)

Thereafter, we remind that the step size sp is defined as follows:

sp D vp � .T � L.
; $; �//
Norm

(26.66)

where Norm is given by:

Norm D
X

i2V
. i /

2 C
X

i2V

X

j2Succ.i/

X

t2Wij

.#ijt/
2 C

X

k2R

X

tD0;:::;T
.'kt/

2 (26.67)

As was explained in Sect. 26.4.1 we start the subgradient procedure by setting
vp D 2. At the end of each iteration we update the parameter vp with a systematic
geometric revision: vp D gp � vp. Normally the second parameter gp ranges between
0.87 and 0.9995, depending on the targeting problem.

The Lagrangian multipliers are updated during a limited number of iterations.
Hence, we use the last updated multipliers as an estimation of the dual multipliers
for pricing out new columns. Therefore, as was done in Sect. 26.4.1 for solving
RMP1, when there are no more columns with a negative reduced cost by using the
Lagrangian multipliers, we perform a fixed number of iterations solving the RMP2
with the simplex method by using the solver for obtaining the values of the dual
variables for pricing out new columns. Hence, if after the fixed number of iterations
there are still columns with negative reduced costs, we go back to the Lagrangian
procedure, otherwise, we stop.

582 C. Montoya et al.

26.5 Columns Initialization and Selection

Finally, before reporting the obtained computational experiments, we describe how
the subset of columns N̋ is initialized for the first CG iteration. In addition, we
introduce the procedure developed for selecting the columns that should be included
in the pool of activity work patterns in each CG iteration.

26.5.1 Columns Initialization

For the first CG iteration, we initialize the subset of columns N̋ for solving the
RMP(N̋) according to a schedule obtained by the tabu search (TS) developed
by Bellenguez-Morineau (2008). Nevertheless, it is important to state that a
reformulation that includes the utilization of slack variables in the models proposed
in Sects. 26.3.1.1 and 26.3.1.2 allows solving the RMP without having an initial
set of columns N̋ . Thereafter, preliminary results show that initializing the pool
of columns by means of the TS allows us to prove optimality faster and enhance
the possibility of keeping a structure of activity work patterns that could lead to an
integer feasible schedule.

26.5.2 Columns Selection

As pointed out previously, exhibiting an activity pattern with global minimal
reduced cost requires the enumeration of each activity i for each time instant of
its starting domain (ESi � ti � LSi). To limit the number of sub-problems solved at
each iteration of the CG procedure, we propose filtering procedures ensuring that the
considered pairs .i; t/ may lead to columns with a negative reduced cost (rcit < 0).

First, according to duality properties, simplex multipliers �kt associated with
constraints (26.4) and (26.14) for RMP1 and RMP2, respectively, are less than or
equal to zero. Consequently, we have necessarily from (26.10) and (26.19) that
rc2it � 0. Thus, the column associated with the pair .i; t/ might have a negative
reduced cost only if rc1it < 0. Clearly, the sub-problem SP.i; t/ has to be solved only
if this condition holds.

Then, assuming that lr2it is a lower bound on rc2it, we get rcit � rc1it C lr2it D
lrit. Obviously, only sub-problems SP.i; t/ for which lrit < 0 holds have to be
considered since they potentially may lead to activity work patterns with a negative
reduced cost. For a given pair .i; t/, such a lower bound lr2it can be computed by
summing the

P
l2L ril smallest assignment costs ckt among the workers that master

at least one of the required skills to perform i .
Notice that intensive computational experiments reveal that adding several

patterns to the current pool of columns at each iteration of the CG procedure leads

26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 583

to better average CPU times. In most cases, the potential increasing in CPU time is
counterbalanced by a decrease in the number of iterations needed for ensuring the
convergence of the CG process.

26.6 Computational Results

Computational experiments were performed using the solver Gurobi Optimizer
version 4.6. We selected a subset of the available instances for the MSPSP
(Bellenguez-Morineau and Néron 2005) according to their size in terms of number
of activities, skills, and number of workers. In general terms, the computational
results shown in this section correspond to instances which contain between 20
and 62 activities, 2 and 15 skills, and 2 and 19 workers. We report results for 271
instances, which are divided into three groups:

• Group 1: We studied 110 instances from this group, containing between 20 and
51 activities, between 2 and 8 skills, and between 5 and 14 workers.

• Group 2: We included the results for 71 instances which contain between 32 and
62 activities, 9 and 15 skills, and 5 and 19 workers.

• Group 3: We studied 90 instances which contain between 22 and 32 activities, 3
and 12 skills, and 4 and 15 workers.

In Table 26.1 we compare the performance of the different column generation and
Lagrangian relaxation approaches introduced in the previous sections. On one hand,
we evaluated the CG approach based on the RMP1 (see Sect. 26.3.1.1) and using
the simplex method for solving the linear program (LP). For notation purposes, we
refer to this last approach as CG1. In addition, we have also CGLR1, in which the
LP for the related RMP1 is solved with the combined Lagrangian relaxation and
column generation approach proposed in Sect. 26.4.2. On the other hand, we have
CG2 and CGLR2, which correspond to the utilization of RMP2, which is based on
the master problem reformulation introduced in Sect. 26.3.1.1. Hence, in CG2 we
use only the simplex method for solving the LP, while in CGLR2 we combine the
use of Lagrangian relaxation and the simplex method for solving the LP, as it was
proposed in Sect. 26.4.2.

Furthermore, in Table 26.1 we compare the results of the four mentioned
approaches in terms of the average deviation �;LB�

against the best known lower
bounds (LB�) obtained by Bellenguez-Morineau and Néron (2005). Subsequently,
we also compare the average computation times and the average number of
generated columns obtained by each tested model for reaching their respective lower
bound. It is important to mention that, for enforcing the quality of the lower bound
obtained by applying column generation, we calculated a preliminary lower bound
based on the principle of the stable set. This bound was proposed by Mingozzi et al.
(1998) and adapted to the MSPSP by Bellenguez-Morineau and Néron (2005).

After analyzing the obtained results we can see that CG2 and CGLR2 lead
to better lower bounds than CG1 and CGLR1, implying that the solution of

584 C. Montoya et al.

Table 26.1 Comparison between CG approaches proposed

Group of instances
Group 1 Group 2 Group 3

Average deviation against LB� CG1 �10.80 % �4.96 % �6.17 %

CGLR1 �10.80 % �4.96 % �6.17 %

CG2 �4.31 % �3.20 % �3.30 %

CGLR2 �4.31 % �3.20 % �3.30 %

Average CPU time (sec) CG1 11.37 9.88 5.10

CGLR1 7.07 7.97 3.42

CG2 216.58 119.82 95.98

CGLR2 193.15 99.54 87.37

Average number of generated columns CG1 738.05 1,181.65 1,817.77

CGLR1 1,181.19 1,645.07 2,571.80

CG2 3,498.45 3,841.40 5,814.11

CGLR2 9,336.71 10,370.57 11,458.41

RMP2 indeed enhances a stronger linear relaxation than RMP1. Nevertheless, the
approaches based on the solution of RMP2 required a considerably larger amount
of computation time until obtaining a lower bound. In addition, we can indeed
notice that the utilization of Lagrangian relaxation allowed us to accelerate the
solution of the respective restricted master problems. Moreover, we can see that the
approaches based on the solution of RMP2 generates more columns (i.e., activity
work patterns) per instance than CG1 and CGLR1. Additionally, we can see that the
number of generated columns also increases when using the approach that combines
Lagrangian relaxation and the simplex method for solving the LP.

26.7 Conclusions

The main differences between the proposed approaches relies in the master problem
formulation and the methods used for solving the related LP. Hence, we were able
to conclude that RMP2 allowed us to obtain better linear relaxations than the ones
obtained when using RMP1. Nevertheless, we could argue that the improvement in
the quality of the resulting lower bound after applying the RMP2 based approaches is
not that significant, given the considerable increase in the computation time invested
in the solution of each tested instance. Additionally, we were also able to establish
that the utilization of the simplex method along with the proposed Lagrangian
relaxation models allowed us to decrease the computation time consumed in the
solution of each tested instance. Nevertheless, it is important to mention that there
are some new perspectives that could be considered regarding to the utilization of
column generation for solving the MSPSP. On one hand the generation of certain
additional inequalities (cuts) could lead to a stronger linear relaxation when solving

26 Column Generation and Lagrangian Relaxation for Multi-Skill Project Scheduling 585

the restricted master problem. In addition, regarding the particular performance of
the RMP2 based approaches it could be interesting to take into account certain
measures for accelerating the convergence, which could lead to a decrease in the
computation times.

References

Artigues C, Demassey S, Néron E, (2008) Resource-constrained project scheduling: models,
algorithms, extensions and applications. Wiley, Hoboken

Barahona F, Anbil R (2000) The volume algorithm: producing primal solutions with a subgradient
method. Math Program 87:385–399

Barahona F, Jensen D (1998) Plant location with minimum inventory. Math Program 83:101–111
Bard J, Purnomo H (2005) Preference scheduling for nurses using column generation. Eur J Oper

Res 164:510–534
Barnhart C, Johnson E, Nemhauser G, Savelsbergh M, Vance P (1998) Branch-and-price: column

generation for solving huge integer programs. Oper Res 46:316–329
Beliën J, Demeulemeester E (2007) On the trade-off between staff-decomposed and activity-

decomposed column generation for a staff scheduling problem. Ann Oper Res 155:143–166
Bellenguez-Morineau O (2008) Methods to solve multi-skill project scheduling problem. 4OR-Q

J Oper Res 6:85–88
Bellenguez-Morineau O, Néron E (2005) Lower bounds for the multi-skill project scheduling

problem with hierarchical levels of skills. In: Practice and theory of automated timetabling
V. Lecture notes in computer science, vol 3616. Springer, Berlin, pp 229–243

Bertsekas D (1999) Nonlinear programming. Athena Scientific, Belmont
Bixby R, Gregory J, Lustig I, Marsten R, Shanno D (1992) Very large-scale linear programming:

a case study in combining interior point and simplex methods. Oper Res 40:885–897
Brucker P, Knust S (2000) A linear programming and constraint propagation-based lower bound

for the RCPSP. Eur J Oper Res 127:355–362
Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project

scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41
Busacker R, Gowen P (1961) A procedure for determining a family of minimum-cost-flow patterns.

Technical report 15, operations research office, Johns Hopkings University, Baltimore, MD
Chen Z, Powell W (1999) A column generation based decomposition algorithm for a parallel

machine just-in-time scheduling problem. Eur J Oper Res 116:220–232
Cordeau J, Laporte G, Pasin F, Ropke S (2010) Scheduling technicians and tasks in a telecommu-

nications company. J Sched 13:1–17
Correia I, Lourenço L, Saldanha-da Gama F (2012) Project scheduling with flexible resources:

formulation and inequalities. OR Spectr 34:635–663
Dantzig G, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8:101–111
Dohn A, Kolind E, Clausen J (2009) The manpower allocation problem with time windows and

job-teaming constraints: a branch-and-price approach. Comput Oper Res 36:1145–1157
Fábián C (2000) Bundle-type methods for inexact data. Cent Eur J Oper Res 8:35–55
Fırat M, Hurkens C (2012) An improved MIP-based approach for a multi-skill workforce

scheduling problem. J Sched 15:363–380
Gélinas S, Soumis F (2005) Dantzig-Wolfe decomposition for job shop scheduling. In: Desaulniers

G, Desrosiers J, Solomon MM (eds) Column generation. Springer, New York, pp 271–302
Gilmore P, Gomory R (1961) A linear programming approach to the cutting-stock problem. Oper

Res 9:849–859
Goffin J, Vial J (2002) Convex nondifferentiable optimization: a survey focused on the analytic

center cutting plane method. Optim Method Softw 17:805–867

586 C. Montoya et al.

Gutjahr W, Katzensteiner S, Reiter P, Stummer C, Denk M (2008) Competence-driven project
portfolio selection, scheduling and staff assignment. Cent Eur J Oper Re 16:281–306

Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained
project scheduling problem. Eur J Oper Res 207:1–14

Heimerl C, Kolisch R (2010) Scheduling and staffing multiple projects with a multi-skilled
workforce. OR Spectr 32:343–368

Held M, Karp R (1971) The traveling-salesman problem and minimum spanning trees: part II.
Math Program 1:6–25

Held M, Wolfe P, Crowder H (1974) Validation of subgradient optimization. Math Program 6:
62–88

Huisman D, Jans R, Peeters M, Wagelmans A (2005) Combining column generation and lagrangian
relaxation. In: Desaulniers G, Desrosiers J, Solomon MM (eds) Column generation. Springer,
New York, pp 247–270

Ioachim I, Desrosiers J, Soumis F, Belanger N (1999) Fleet assignment and routing with schedule
synchronization constraints. Eur J Oper Res 119:75–90

Jans R, Degraeve Z (2004) An industrial extension of the discrete lot-sizing and scheduling
problem. IIE Trans 36:47–58

Jaumard B, Semet F, Vovor T (1998) A generalized linear programming model for nurse
scheduling. Eur J Oper Res 107:1–18

Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and rostering: theory and applications,
part I and II. Ann Oper Res 128:1–4

Li H, Womer K (2009) Scheduling projects with multi-skilled personnel by a hybrid MILP/CP
benders decomposition algorithm. J Sched 12:281–298

Lübbecke M, Desrosiers J (2005) Selected topics in column generation. Oper Res 53:1007–1023
Mason A, Smith M (1998) A nested column generator for solving rostering problems with integer

programming. In: Proceedings of international conference on optimisation: techniques and
applications, pp 827–834

Mehrotra A, Murphy K, Trick M (2000) Optimal shift scheduling: a branch-and-price approach.
Nav Res Log 47:185–200

Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for the resource-
constrained project scheduling problem based on a new mathematical formulation. Manag Sci
44:714–729

Montoya C, Bellenguez-Morineau O, Rivreau D (2013) Branch and price approach for the multi-
skill project scheduling problem. Optim Lett. Doi:10.1007/s11590-013-0692-8

Polyak B (1967) A general method of solving extremum problems. Sov Math Doklady 8:593–597
Van den Akker J, Hurkens C, Savelsbergh M (2000) Time-indexed formulations for machine

scheduling problems: column generation. INFORMS J Comput 12:111–124
Van den Akker J, Hoogeveen J, de Velde S (2002) Combining column generation and Lagrangian

relaxation to solve a single-machine common due date problem. INFORMS J Comput 14:
37–51

Van den Akker J, Diepen G, Hoogeveen J (2007) A column generation based destructive lower
bound for resource constrained project scheduling problems. In: Integration of AI and OR
techniques in constraint programming for combinatorial optimization problems (CPAIOR
2007). Lecture notes in computer science, vol 4510. Springer, Berlin, pp 376–390

Wolsey L (1998) Integer programming. Wiley, New York

Chapter 27
Benders Decomposition Approach for Project
Scheduling with Multi-Purpose Resources

Haitao Li

Abstract Staffing projects often requires both assignment and scheduling decisions
to be made, which leads to a computationally demanding large-scale optimization
problem. In this chapter, we show that a general class of assignment-type resource-
constrained project scheduling problems (RCPSPs) can be handled by a hybrid
Benders decomposition (HBD) approach. Our HBD framework extends the classical
Benders decomposition method (Benders, Numer Math 4:238–252, 1962) by inte-
grating solution techniques in math programming and constraint programming (CP).
Effective cut generation schemes are devised to improve the algorithm performance.
Performance of our HBD is demonstrated on a project scheduling problem with
multi-skilled workforce. Extensions to the basic HBD framework are discussed.

Keywords Constraint programming • Hybrid Benders decomposition •
Multi-skilled personnel • Project scheduling • Project staffing • Resource
constraints

27.1 Introduction

In professional service firms, project managers often need to schedule and staff
projects with multi-skilled professionals in a time- and cost-effective way. In a
shop manufacturing environment, operation managers may need to assign jobs to
cross-trained operators and schedule them in the right sequence. R&D projects in
the bio-science industry may require research activities to be well-scheduled and
assigned with the right technicians to ensure on-time and on-budget project delivery.
In the military setting, onboard tasks need to be performed by multi-skilled crew to
accomplish a mission.

H. Li (�)
Department of Logistics and Operations Management, College of Business Administration,
University of Missouri, St. Louis, MO, USA.
e-mail: lihait@umsl.edu

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_27

587

mailto:lihait@umsl.edu

588 H. Li

The above project scheduling settings share two distinctive features. First, they
all involve some multi-purpose resources that are flexible to perform different tasks.
Examples of multi-purpose resources include multi-skilled personnel due to cross-
training (Li and Womer 2006) and flexible machines/equipment that can operate on
different jobs (Brucker 2001). Second, they require both assignment and scheduling
decisions to be simultaneously made. For instance, one may want to know how to
best tradeoff project cost and makespan, and which tasks should be delayed to free
up resources for more critical tasks.

Successful completion of projects with such nature requires matching project
tasks with the right resources and scheduling them in the right sequence. It is known
as multi-skill project scheduling (Chap. 30 of this book and Néron et al. 2006), or
project scheduling with multi-purpose resources (PSMPR, Li 2005). In a typical
PSMPR setting, a set of project tasks have two aspects of technical constraints:
(1) temporal relationships among tasks, e.g. precedence and minimum time lag
relationships; and (2) skill/specification requirements for certain resources. The
decision-maker’s goal is to find a feasible assignment of multi-purpose resources
to project tasks and a task sequence, so that some project performance measure is
optimized.

The PSMPR is an extension to the single-mode resource-constrained project
scheduling problem (RCPSP, Demeulemeester and Herroelen 2002) and belongs
to the category of assignment-type RCPSPs (Drexl et al. 1998). Therefore, PSMPR
is clearly N P-complete, as finding a feasible schedule to a single-mode RCPSP is
well-known to be N P-complete (Bartusch et al. 1988).

In this chapter, we focus on a sub-class of PSMPRs where the objective
function involves only the assignment decision, but not the scheduling decision.
We show that such PSMRPs can be decomposed into an assignment sub-problem
and a scheduling sub-problem. Solving the assignment sub-problem along with the
objective function provides an upper/lower bound, because the assignment sub-
problem is a relaxation of the original problem. Next the obtained assignment
solution is checked for feasibility, i.e., whether it can be extended to a feasible
solution to the scheduling sub-problem. If it is feasible, an optimal solution to the
original problem is found; otherwise, the cause of infeasibility is inferred as “cuts”
added to the assignment sub-problem to exclude the assignments that might cause
infeasibility. The assignment sub-problem with an augmented set of cut constraints
is solved again. This procedure iterates until an optimal solution is found or the
original problem is proved to be infeasible.

The main advantage of the above solution framework is that constraints are
successively added only when the corresponding cuts are inferred. This is an
idea from the classical Benders decomposition method (Benders 1962), which is
effective for problems having a large number of constraints, because only a small
fraction of them are often binding at an optimal solution (Lasdon 1970).

Another key feature of our algorithm is its ability to incorporate different
methods for handling the assignment sub-problem and scheduling sub-problem.
For instance, mixed-integer liner programming (MILP, Nemhauser and Wolsey
1988) is usually a good candidate for an assignment problem, but may not be

27 Benders Decomposition for Project Scheduling with Multi-Purpose Resources 589

effective for a scheduling problem due to its disjunctive formulation (Balas 1979)
with a weak linear relaxation. On the other hand, constraint programming (CP,
Marriott and Stuckey 1998), a methodology originated in the artificial intelligence
(AI) area, is often able to handle complex scheduling problems well, due to
its expressive nature and effective domain reduction techniques for scheduling
problems (Baptiste et al. 2001). The complementary strengths of MILP and CP have
motivated us to integrate the two in the Benders decomposition framework, giving
rise to the so-called hybrid Benders decomposition (HBD) algorithm.

The remainder of the chapter is organized as follows. Section 27.2 describes the
basic PSMPR setting and a mathematical programming formulation to model it.
Section 27.3 presents the HBD algorithm framework and implementation details.
An application example on a multi-skill project scheduling problem is provided in
Sect. 27.4 to demonstrate the effectiveness of HBD. Section 27.5 draws conclusions
and discusses extensions to the basic HBD framework.

27.2 Optimization Model

This section starts with a description of the basic problem setting of PSMPR,
followed by an MILP model formulation. We then highlight several extensions to
the basic model.

27.2.1 Problem Description

Consider a project described by a direct graph G D .V;E/, where V is a set of
activities and E is a set of arcs. Each activity i 2 V has a processing time pi ,
and must be completed by a deadline Ndi . An arc .i; j / 2 E specifies a precedence
relationship between activity i and j , i.e.j cannot start until i is completed. Another
aspect of technical requirement is given by a three-tuple set (i; l; ril/ for i 2 V and
l 2 Li , where Li is the set of skills required by activity i . The set .i; l; ril/ means
that the execution of activity i requires ril units of resources with skill l . A set
R of multi-purpose resources are available to perform the project. Their skill mix
is described by Lk for k 2 R, i.e. resource k possesses a subset Lk of skills.
Symmetrically, the set of resources Rl that can perform skill l is well-defined, i.e.
Rl WD fk 2 Rjl 2 Lkg. A workload capacity WLk of each resource k cannot be
exceeded. A PSMPR attempts to find a feasible assignment and schedule to optimize
some project performance metric.

590 H. Li

Assumption 1 (Non-preemption). Once an activity i 2 V is started it cannot be
interrupted.

This is a typical non-preemption assumption in the scheduling literature, which
applies in most schedule environment. In the business setting, for example, a project
activity is rarely voluntarily interrupted due to disruption cost or learning curve.
Military tasks should usually not be interrupted, because an interruption often results
in failure of an entire mission.

Assumption 2 (Unary Resource). Each multi-purpose resource k 2 R is assumed
to be a unary resource that can only operate on one activity/skill at a time

This unary resource assumption applies in most machine scheduling settings,
where a machine/equipment/devise/processer can only operate on one job at any
point of time. It is also a reasonable assumption for personnel scheduling when the
time scale is sufficiently granulate, so that each individual is only able to work on
one job at a time.

Assumption 3 (Performance Metric). The project performance metric is a func-
tion of only assignment decisions.

Here the decision-maker is mainly concerned about the resource cost required
to accomplish a project, which is a function of assignment but not scheduling
decision. It can be resource acquisition cost or assignment cost. For a maximization
problem, the performance metric can be the reward/value gained through job-
resource assignments.

The skill set serves as a link between the activities and resources. A diagram
depicting the underlying activity-skill-resource structure of PSMPR can be found in
Li and Womer (2006). Note that in general, the skill set can be a set of technical
specifications, and the resources may be machines or equipment meeting these
specifications. Such flexibility gives PSMPR a wide range of possible applications,
as summarized by Table 27.1.

27.2.2 Model Formulation

Our MILP model for PSMPR is built upon the classical big-M formulation for
disjunctive scheduling. We define a binary assignment variable xikl D 1 if and only
if resource k is assigned to skill l in activity i , for i 2 V , l 2 Li and k 2 Rl . The
start time of activity i 2 V is defined as a continuous decision variable Si � 0. To
properly model the sequencing decisions between a pair of activities .i; j / 2 V �V ,
a binary sequencing decision variable yij is defined such that yij D 1 if and only if
activity i precedes j .

27 Benders Decomposition for Project Scheduling with Multi-Purpose Resources 591

Table 27.1 Diverse applications of PSMPR

Industry Problem setting Resources Objective function

Service IT and professional
service projects

Multi-skilled
professionals

Minimize total staffing
and assignment costs

Manufacturing Make-to-order (MTO)
jobs and customer
orders

Multi-purpose
machines/ equipment

Minimize production or
supply chain costs

Construction Construction project
scheduling

Multi-purpose
equipment and workers

Minimize total
construction costs

Bio-science R&D project portfolio
optimization

Multi-purpose
technicians and
equipment

Maximize total R&D
portfolio return

Airline Service operations
scheduling

Technicians and staff Minimize total operating
costs

Health care Operating room
scheduling

Equipment and nurses Minimize total operating
cost

Military Mission planning and
scheduling

Multi-skilled crew Minimize crew size or
maximize readiness

The MILP formulation of the basic version of PSMPR can be written as:

PSMPR_MILPf
Min: f .x/ (27.1)

s:t:
X

k2Rl

xikl D ril .i 2 V I l 2 Li / (27.2)

X

l2Li

xikl � 1 .i 2 V I k 2 R/ (27.3)

X

i2V
X

l2Li

pixikl � WLk .k 2 R/ (27.4)

Sj � Si � pi ..i; j / 2 V � V / (27.5)

Si C pi � Ndi .i 2 V / (27.6)

yij C yji � xikl C xikl0 � 1 .ordered .il; jl0/I k 2 R/ (27.7)

Sj � Si C pi �M
�
1 � yij

�
..i; j / 2 V � V / (27.8)

xikl; yij 2 f0; 1g ISi � 0 (27.9)

g

The objective function (27.1) minimizes some performance metric as a function
f .�/ of the vector x of assignment decision variables. It is not affected by the
scheduling decisions (Assumption 3). For instance, given the cost of assigning a
resource to an activity, one may minimize the total assignment cost for the project;

592 H. Li

one may also minimize the resource acquiring cost as in Li and Womer (2009a), or
minimize the cardinality of selected resource set (Li and Womer 2009b).

Constraint (27.2) assigns activity i with ril units of resources that have skill l
required by i . Constraint (27.3) forbids assigning more than one skill in an activity
to a resource unit, because each resource can only perform one skill at a time
(Assumption 2). Constraint (27.4) ensures that the total workload assigned to a
resource cannot exceed its available capacity. The precedence constraint between
activity i and j is satisfied through Constraint (27.5). Constraint (27.6) guarantees
that each activity is completed before its deadline. Constraint (27.7) states that if
two activities/skills are assigned with the same resource, the two activities cannot
overlap, i.e. one sequencing relation must be determined. Constraint (27.8) is the
big-M formulation to specify the sequencing relation between activity i and j : if i
precedes j .yij D 1/; j can only start after i is completed.

27.2.3 Variations and Extensions

We highlight some variations and extensions of the basic model to expand the
modeling capability of PSMPR.

• General temporal constraint: The precedence graph G D .V;E/ can be
generalized to a weighted directed graph N D .V;E; ı/ with ı being the
set of arc weights, representing some time lags between a pair of activities
(Neumann et al. 2002). For instance, a minimum time lag dmin

ij between activity
i and j requires that j cannot start until at least dmin

ij time units after i is
started. Clearly, when dmin

ij D pi such minimum time lag constraint reduces
to a precedence constraint.

• Discrete renewable resource: Rather than being treated as unary resource, a
resource unit can in general be a discrete renewable resource to operate on more
than one activity. For instance, a machine center may have identical parallel
machines that can be assigned with multiple activities at one time; a consultant
may be assigned to multiple tasks per time interval (e.g. week, month, etc.).

• Unknown skill mix of resources: The resources’ skill mix Lk or Rl may not
be known, but can be modeled as decision and be optimized. This extension is
useful to design a team of workforce for accomplishing a project. Li and Womer
(2009b) present an application to optimize the crew size and skill-mix to man a
military ship.

27.3 Hybrid Benders Decomposition

The inefficiency of directly solving the MILP formulation (27.1) through (27.9)
is mainly due to the big-M formulation in (27.8), which is known to have a
loose linear relaxation. In addition, the number of sequencing constraints (27.8)

27 Benders Decomposition for Project Scheduling with Multi-Purpose Resources 593

and (27.9) grows rapidly with problem size. Recall that the objective function (27.1)
involves only the assignment decision variables. These observations have motivated
us to decompose the original problem into an assignment sub-problem and a
scheduling sub-problem, which can be handled by appropriate methods separately.
In particular, we employ techniques in constraint programming (CP) for dealing
with the scheduling sub-problem.

In this section, we start with a brief introduction to constraint programming (CP),
then introduce the algorithm framework of hybrid Benders decomposition (HBD)
and its implementation details for PSMPR.

27.3.1 Constraint Programming

Constraint programming (CP) originated in the artificial intelligence (AI) field for
solving constraint satisfaction problems (CSP, Tsang 1993). It employs reasoning
and deduction methods, called constraint propagation or domain reduction, to itera-
tively reduce the domain of each decision variable. Efficient constraint propagation
techniques are available for dealing with scheduling problems (Baptiste et al. 2001).
CP also relies on various search procedures, e.g. depth-first (DF) and best-first (BF),
to explore the reduced solution domains.

The complementary strengths between CP and mathematical programming
have motivated the design of various hybrid algorithms to integrate the two
for solving N P-hard combinatorial optimization problems (Hooker 2002).
Existing integration schemes include branch-and-infer (Bockmayr and Kasper
1998), branch-and-price (Easton et al. 2004), Lagrangian relaxation (Benoist et al.
2001; Sellmann and Fahle 2003), and Benders decomposition (Eremin and Wallace
2001; Benoist et al. 2002).

27.3.2 HBD Framework

The hybrid Benders decomposition (HBD) was first proposed by Jain and Gross-
mann (2001) to solve a class of machine scheduling problems, known as open-shop
multiple-purpose machine scheduling or OMPM (Brucker 2001). OMPM can be
viewed as a special case of PSMPR when temporal constraints are limited to release-
and due-dates, but no time dependency among activities is considered.

In the HBD framework, the original problem is decomposed into a relaxed master
problem (RMP) containing only assignment decision variables and constraints,
and a feasibility sub-problem (SP) modeling the scheduling decision. An optimal
assignment solution to the RMP provides a lower bound to the original problem
(with a minimization objective function). Then the SP is solved, while fixing the
RMP assignment solution, to check whether the RMP solution can be extended
to a feasible schedule. If so, an optimal solution is found; otherwise, causes to
infeasibility are inferred as Benders cuts to be added back to the RMP. The role

594 H. Li

of Benders cuts is to exclude assignment solutions that will lead to an infeasible
schedule. Next the augmented RMP with cuts added is solved again. The process
iterates until an optimal solution is found or infeasibility can be proved. There are
several keys for the success of the HBD algorithm:

• The RMP without scheduling decision variables and constraints is easier to solve
than the original problem.

• There must be effective methods for solving the scheduling SP. Since one only
needs to deduce whether the SP is feasible or not, as in a constraint satisfaction
problem (CSP), it naturally calls for CP to handle the SP.

• Benders cuts must be inferred to effectively exclude infeasible assignment
solutions.

While the idea of successively adding cuts to tighten the RMP shares similarity
with the classical Benders decomposition method (BDM), the HBD framework
differs from the classical BDM and other CP-based Benders decomposition methods
(Eremin and Wallace 2001; Benoist et al. 2002) in the way the cuts are generated.
In the classical BDM, both feasibility cuts and optimality cuts are inferred by
solving the dual of the sub-problem. We refer to Martin (1999) for an updated
treatment on the classical BDM. In the HBD framework, however, only feasibility
cuts are generated because solution to the SP does not affect the objective function
(Assumption 3). This has facilitated the use of CP to directly model the primal SP
and to deduce its feasibility.

27.3.3 HBD for PSMPR

The MILP formulation (27.1)–(27.9) is decomposed into an RMP with only assign-
ment decision variables, and a scheduling sub-problem with only the scheduling
decision variables. The formulation of RMP at the �-th iteration of the HBD
algorithm can be written as:

RMP_MILP.�/f
Min: f .x/ (27.1)

s:t:
X

k2Rl

xikl D ril .i 2 V I l 2 Li / (27.2)

X

l2Li

xikl � 1 .i 2 V I k 2 R/ (27.3)

X

i2V
X

l2Li

pixikl � WLk .k 2 R/ (27.4)

ˇ� .x/ � 1 .� D 1; : : : ; �/ (27.9)

g

27 Benders Decomposition for Project Scheduling with Multi-Purpose Resources 595

The objective function (27.1) and Constraints (27.2)–(27.4) are directly taken
from the PSMPR_MILP formulation. Constraints (27.9) include cuts generated
at each iteration � D 1; : : : ; �. Each cut prevents certain assignments to avoid
infeasibility of the scheduling SP. Details on how to generate cuts will be elab-
orated later in this section. Evidently, without a large number of scheduling
decision variables and sequencing constraints, RMP_MILP is easier to solve than
PSMPR_MILP.

For a solution x� to the RMP_MILP(�) at iteration �, we construct a scheduling
sub-problem SP(x�/ with the assignment decisions fixed at x�. The goal is to check
whether x� will result in a feasible schedule that satisfies Constraints (27.5)–(27.8).
We use CP to model the SP for the following reasons: (1) the expressive nature of
CP will eliminate the need for big-M formulation, thus significantly reduce the size
of the model; (2) one only needs to find whether SP(x�) is feasible or not, which
is suitable for CP-based methods; (3) we want to take advantage of the available
effective constraint propagation techniques for scheduling problems.

To facilitate presentation of the CP model, we use the language constructs in
OPL, a modeling language developed by Van Hentenryck (1999). We define an array
of unary resources named MultipurposeRes as the resource set R. Then the CP
formulation of the feasibility SP at iteration n can be written as:

SP_CP.x�/f
Activity i precedesj; ..i; j / 2 V � V / (27.10)

Si C pi � Ndi ; .i 2 V / (27.11)

x�ikl D 1) Activity i requires MultipurposeResŒk�;

.� D 1; : : : ; �I i 2 V I l 2 Li I k 2 Rl / (27.12)

g

Note that no objective function is present here, as one only needs to find out
if the SP is feasible or not. Constraints (27.10) and (27.11) are equivalent to
Constraints (27.5) and (27.6) in PSMPR_MILP, respectively. Constraint (27.12)
is the key in our decomposition scheme, which establishes the link between the
RMP and SP. Specifically, if resource k has been assigned to skill l in activity i at
iteration � of the algorithm, we enforce that activity imust require resource k when
scheduling the activities. In this way, we eliminate the need for the large number
of Constraints (27.7) and (27.8) in the big-M formulation of PSMPR_MILP, which
has significantly reduced model size.

596 H. Li

The pseudo code of HBD algorithm to solve PSMPR is presented below.

Step 0. Initialization: Set ,

Step 1. Construct the RMP_MILP model for the relaxed master problem.

Step 2. The main HBD iteration. While :

2.1. Solve the RMP_MILP to get an optimal assignment solution

2.2. If RMP_MILP is infeasible, then
The original PSMPR is infeasible. Set .

Else
Proceed to Step 2.3.

2.3. Construct/update the sub-problem model SP_CP() while fixing assignment

solutions to .

2.4. Solve a feasibility problem to check whether SP_CP() is feasible.

2.5. If SP_CP() is feasible, then
is optimal to the original PSMPR. Set .

Else
Proceed to Step 2.6.

2.6. Infer a valid cut and add it back to RMP_MILP.

2.7. Increment .

Fig. 27.1 Pseudo code of the HBD algorithm for solving PSMPR

The SP_CP feasibility model in Step 2.4 can be effectively solved by CP based
methods for several reasons. First, the original assignment-type RCPSP has now
reduced to a single-mode RCPSP with unary resources. Second, effective constraint
propagation algorithms (Baptiste et al. 2001) are available for scheduling problems
with unary resources in (27.12) and binary constraints in (27.10) and (27.11), where
exactly two decision variables are involved in each constraint. Finally, CP is often
effective for findings feasible solution.

For the RMP_MILP in Step 2.1 to be computationally tractable, we need the
following assumption.

Assumption 4 (Convexity of Objective Function). The objective function f .x/
is a convex function of the assignment decision variables x, when the integral
requirement is relaxed.

Any linear combination of x, such as those considered in Li and Womer (2009a)
and Li and Womer (2009b) will satisfy Assumption 4. Convexity of f .x/ makes it
possible for various MILP methods (Nemhauser and Wolsey 1988) to find and prove
optima to RMP_MILP. An important convergence property of the HBD algorithm
also follows.

Proposition 27.1 (Finite Convergence of HBD). If all the cuts added in Con-
straint (27.9) are valid cuts, the HBD algorithm converges to an optimal solution or
proves infeasibility in a finite number of iterations.

Proof. We consider two cases.

27 Benders Decomposition for Project Scheduling with Multi-Purpose Resources 597

1. The original PSMPR_MILP is feasible. As the algorithm iteration � increases,
the solution space of master problem RMP_MILP (�) is reduced. Since the
domain of x is finite, there exists an iteration � when the optimal solution x� to
RMP_MILP (�) leads to a feasible schedule S� to the sub-problem SP_CP(x� /.
Thus f

�
x�
�

is an upper bound to PSMPR_MILP. Since a valid cut never
excludes any feasible solution, the master problem is a relaxation of the original
problem. This implies that f

�
x�
�

is also a lower bound to the original problem.
Therefore, x� is an optimal solution.

2. The original PSMPR_MILP is infeasible. In this case, any optimal solution to the
master problem will never lead to a feasible schedule to the sub-problem. Since
the domain of x is finite, the master problem will become infeasible after a finite
number of iterations. ut

27.3.4 Cut Generation

The finite convergence is a nice property of the HBD algorithm. However, it says
nothing about the algorithm efficiency. The performance of HBD depends largely
on whether effective cuts can be generated. We now introduce several schemes to
generate cuts in Step 2.6 of the algorithm.

No-Good Cuts

The idea of no-good cuts, as suggested by Hooker (2000), is to negate the specific
assignment solution. That is, if the scheduling sub-problem SP_CP(x�/ associated
with the solution x� at iteration � is infeasible, at least one assignment in x� must
not be made. A no-good cut thus takes the following form:

X

i2V
X

l2Li

X

k2Rl

xikl j.xikl D 1/ �
X

i2V jLi j (27.13)

The no-good cut (27.13) is clearly a valid cut, but might be too loose because it
only negates x� without excluding other potential infeasible solutions. Thus relying
only on no-good cuts alone may not be efficient.

Temporal Analysis Based Cuts

More effective cuts can be generated by exploiting the problem structure. Let’s start
with some reasoning on why an assignment solution might cause the scheduling
sub-problem to be infeasible. Consider a pair of activities .i; j / satisfying all the
temporal constraints. Their relationship might be described by three possible cases:

598 H. Li

(i) i and j must overlap, which is denoted by i k j ; (ii) i and j are possible to
overlap denoted by i jj ; and (iii) i and j never overlap denoted by i � j .

Now suppose both i and j are assigned with the same resource k, i.e., i ! k &
j ! k. Recall from Assumption 2 that resource k can only work on one activity at
a time. Therefore, for i ! k & j ! k to be feasible, i and j must never overlap
(Case iii).

However, infeasibility occurs when Case (i) is in fact true. To resolve infeasibil-
ity, a global cut can be inferred to prevent both i and j being assigned to k, which
takes the form:

X

l2Li

xikl C
X

l2Lj

xikl � 1; (27.14)

where i k j . It is a valid cut and is tighter than the no-good cut in (27.13) because it
excludes a set of assignment solutions sharing some common features, rather than
just a specific assignment solution.

When Case (ii) is true, a trial cut can be generated to resolve infeasibility:

X

l2Li

xikl C
X

l2Lj

xikl � 1; (27.15)

where i jj . A trial cut is not a valid cut, because it may exclude a feasible solution.
Our cut generating procedure starts with a temporal analysis to find the time

window, i.e. the earliest start and latest start time, of each activity. It then deduces
the relationship between every pair of activities to obtain a valid cut set and a non-
valid cut set. Only those activated cuts are added into the RMP_MILP in the HBD
algorithm of Fig. 27.1. Caution should be made that optimality can no longer be
proved whenever a trial cut is added. We refer to Li and Womer (2009a) for details
of the cut generating procedure and properties of the cut sets.

27.4 Application Example

This section presents an application of the HBD algorithm for solving an instance
of PSMPR with multi-skilled workforce. The problem setting follows that described
in Sect. 27.2, with V being a set of tasks in a project, L being the set of skills
required to execute the tasks, andR representing the set of multi-skilled individuals.
ril is assumed to be one, meaning that an activity i requires only one unit of
resource for skill l 2 Li . The objective is to minimize the total resource acquiring
cost for accomplishing a project. Let ck denote the acquiring cost of resource
k 2 R, and define a binary decision variable zk D 1 if and only if resource k
is selected/acquired. Then the objective function f .�/ takes the form:

P
k2R ckzk .

The new decision variable z is linked with x through a revised formulation of
Constraint (27.4):

27 Benders Decomposition for Project Scheduling with Multi-Purpose Resources 599

Table 27.2 Performance of
HBD algorithm compared
with MILP and CP methods

HBD algorithm MILP method CP method

pfeas(%) 100.00 100.00 93.65

p0

opt(%) 84.13 83.33 54.76

popt(%) 80.95 69.05 23.02

t;cpu(s) 418.01 1,672.91 2,734.14

X

i2V
X

l2Li

pixikl � WLkzk .k 2 R/ (27.16)

The new Constraint (27.16) states that a resource k can be assigned to activities
only when k is selected. We refer to Li and Womer (2009a) for a complete MILP
formulation and a numerical example of the application.

Our HBD algorithm with both the global cuts (27.14) and trial cuts (27.15) is
implemented to solve test instances with size up to 30 tasks, eight skill types and 90
individuals. Other data are generated in our computational experiment to control
restrictiveness of the project network (Thesen 1977), project deadline, average
number of skills required by a task, and average number of skills possessed by an
individual. We show performance of HBD compared with the pure MILP and CP
methods. A time limit of 10 h is imposed for each MILP and CP run. For the HBD,
a limit of 10 s is imposed for solving SP_CP, and 600 s for solving RMP_MILP.
Table 27.2 summarizes the results: the percentage of instances for which a feasible
solution was found .pfeas/, percentage of instances for which an optimal solution
was found and proved .popt/, percentage of instances for which an optimal solution
was found but not proved .p0opt/, and the average of computational time t;cpu.

It is evident that the HBD algorithm outperforms either the pure MILP method
or the pure CP method alone in both solution quality and speed. Both HBD and
MILP are able to find feasible solutions to all the test instances, whereas the pure
CP method fails to find feasible solutions to some instances in 10 h. HBD finds
about the same number of optimal solutions as MILP does, which outperforms CP.
Notably, HBD is able to prove more optimality than MILP does. It also spends
significantly less time than MILP or CP. Additional analysis and discussions of the
computational results are available in Li and Womer (2009a).

A typical PSMPR problem has both assignment and scheduling components. It
is difficult for CP alone to find optimal (or near-optimal) solutions by searching
through a mixture of large and complex solution space. The branch-and-bound
method in MILP also becomes less effective due to loose linear relaxation on the
big-M sequencing formulation. Our HBD framework makes it possible for MILP to
deal with only the assignment component of PSMPR, while leaving the scheduling
component to be handled by CP.

600 H. Li

27.5 Conclusions

We study a general class of assignment-type RCPSPs, called project scheduling
with multi-purpose resources (PSMPR), where a resource entity is versatile enough
to perform tasks requiring different skills or specifications. We show that when
the objective function involves only assignment decision variables, PSMPR can be
effectively solved by a hybrid Benders decomposition (HBD) algorithm. In the HBD
framework, the original PSMPR is decomposed into a relaxed master assignment
problem (RMP) and a feasibility scheduling sub-problem (SP), which can be
handled by mix-integer linear programming (MILP) and constraint programming
(CP) methods, respectively. The two sub-problems are linked by Benders cuts to
successively exclude infeasible assignment solutions. Computational results show
that the HBD algorithm outperforms either pure MILP or CP approach alone in
solution quality and speed.

There are several important extensions to the basic HBD framework presented
in this chapter. First, recall that the convexity assumption in Assumption 4 does not
exclude the possibility for objective function f .x/ to be nonlinear. There are a large
suite of mixed-integer nonlinear programming (MINLP) methods that often work
quite well for problems with convex objective function (Floudas 1995). An example
of such extension is available in Chap. 55 in the second volume of this handbook
and Li and Womer (2012), where the RMP is an MINLP with a nonlinear convex
objective function. Second, when it becomes computationally too demanding for
integer programming to find and prove optima to the RMP, one may seek to find
near-optimal RMP solution using some metaheuristics (Glover and Kochenberger
2005) that fit best for the problem at hand.

References

Balas E (1979) Disjunctive programming. Ann Discrete Math 5:3–51
Baptiste P, Le Pape C, Nuijten W (2001) Constraint-based scheduling: applying constraint

programming to scheduling problems. Springer, New York
Bartusch M, Mohring RH, Randermacher FJ (1988) Scheduling project networks with resource

constraints and time windows. Ann Oper Res 16(1):201–240
Benders JF (1962) Partition procedures for solving mixed variables programming problems.

Numer Math 4:238–252
Benoist T, Gaudin E, Rotternbourg B (2002) Constraint programming contribution to Benders

decomposition: A case study. In: Principles and practice of constraint programming (CP 2002).
Lecture notes in computer science, vol 2470. Springer, Berlin, pp 603–617

Benoist T, Laburthe F, Rottembourg B (2001) Lagrange relaxation and constraint programming
collaborative schemes for traveling tournament problems. In: Gerwet C, Wallace M (eds)
Proceedings of the third international workshop on integration of AI and OR techniques in
constraint programming for combinatorial optimization problems (CPAIOR 2001), pp 15–26

Bockmayr A, Kasper T (1998) A unifying framework for integer and finite domain constraint
programming. INFORMS J Comput 10(3):287–300

Brucker P (2001) Scheduling algorithms. Springer, Berlin

27 Benders Decomposition for Project Scheduling with Multi-Purpose Resources 601

Demeulemeester EL, Herroelen WS (2002) Project scheduling: a research handbook. International
series in operations research and management science. Kluwer Academic, Boston

Drexl A, Juretzka J, Salewski F, Schirmer A (1998) New modeling concepts and their impact on
resource-constrained project scheduling. In: Wȩglarz J (ed) Project scheduling: recent models,
algorithms and applications. Kluwer Academic, Dordrecht, pp 413–432

Easton K, Nemhauser G, Trick M (2004) CP based branch-and-price. In: Milano M (ed) Constraint
and integer programming. Operations research/computer science interfaces series, vol 27.
Kluwer Academic, Dordrecht, pp 207–231

Eremin A, Wallace M (2001) Hybrid Benders decomposition algorithms in constraint logic
programming. In: Walsh T (ed) Principles and practice of constraint programming (CP 2001).
Lecture notes of computer science, vol 2239. Springer, Berlin, pp 1–15

Floudas CA (1995) Nonlinear and mixed-integer optimization: fundamentals and applications.
Oxford University Press, New York

Glover F, Kochenberger G (2005) Handbook of metaheuristics. Springer, Berlin
Hooker J (2000) Logic-based methods for optimization: combining optimization and constraint

satisfaction. Wiley, New York
Hooker J (2002) Logic, optimization and constraint programming. INFORMS J Comput

14(4):285–321
Jain V, Grossmann I (2001) Algorithms for hybrid milp/cp models for a class of optimization

problems. INFORMS J Comput 13(4):258–276
Lasdon LS (1970) Optimization theory for large systems. Macmillan, New York
Li H (2005) Project scheduling with multi-purpose resources: models, algorithms and applications.

Ph.D. dissertation, The University of Mississippi
Li H, Womer K (2006) Project scheduling with multi-purpose resources: a combined MILP/CP

decomposition approach. Int J Oper Quant Manag 12(4):305–325
Li H, Womer K (2009a) Scheduling projects with multi-skilled personnel by a hybrid MILP/CP

Benders decomposition algorithm. J Sched 12(3):281–298
Li H, Womer K (2009b) A decomposition approach for shipboard manpower scheduling. Mil Oper

Res 14(3):1–24
Li H, Womer K (2012) Optimizing the supply chain configuration for make-to-order manufactur-

ing. Eur J Oper Res 221(1):118–128
Marriott K, Stuckey PJ (1998) Programming with constraints. MIT Press, Cambridge
Martin RK (1999) Large scale linear and integer optimization: a unified approach. Kluwer

Academic, Norwell
Nemhauser G, Wolsey L (1988) Integer and combinatorial optimization. Wiley, New York
Néron E, Bellenguez O, Heurtebise M (2006) Decomposition method for solving multi-skill

project scheduling problem. In: Proceedings of the tenth international workshop on project
management and scheduling, Poznan, pp 265–269

Neumann K, Schwindt C, Zimmermann J (2002) Project scheduling with time windows and scarce
resources: temporal and resource-constrained project scheduling with regular and nonregular
objective functions. Springer, Berlin

Sellmann M, Fahle T (2003) Constraint programming based Lagrangian relaxation for the
automatic recording problem. Ann Oper Res 118:17–33

Thesen A (1977) Measures of the restrictiveness of project networks. Networks 7(3):193–208
Tsang E (1993) Foundations of constraint satisfaction. Academic Press, London
Van Hentenryck P (1999) The OPL optimization programming language. MIT Press, Cambridge

Chapter 28
Mixed-Integer Linear Programming
Formulation and Priority-Rule Methods
for a Preemptive Project Staffing
and Scheduling Problem

Cheikh Dhib, Ameur Soukhal, and Emmanuel Néron

Abstract This chapter presents a generic model for an industrial project scheduling
problem. The problem addressed here is an extension of the Resource-Constrained
Project Scheduling Problem (RCPSP) and the Multi-Skill Project Scheduling
Problem (MSPSP). The main specificities of this problem are the following:
We considered both preemptive activities and non-preemptive activities, resource
requirements of activities are given in terms of skills, and different durations exist
in terms of both activities and skills. This model and its resolution methods are to
be used in the Apache Open For Business (OFBiz) open source Enterprise Resource
Planning (ERP) system, and must therefore satisfy some industrial constraints. We
first propose a general model for this problem. Then, we propose a Mixed Integer
Linear Program (MIP) formulation and a heuristic algorithm based on priority rules.
The originality of the model lies in the fact that it simultaneously considers skill
synchronization, preemption and precedence relationships. Experimental results
performed on adapted instances from the PSPLIB benchmark are provided.

Keywords Linear programming • Multi-Skill scheduling • Preemptive schedul-
ing • Priority-Rule heuristics • Project scheduling

28.1 Introduction

Project scheduling problems are among the most studied scheduling problems in
the literature. Resource-Constrained Project Scheduling Problem (RCPSP) is the
most classic of these problems. In the RCPSP, a set of non-preemptive activities has

C. Dhib (�) • A. Soukhal • E. Néron
Laboratory of Computer Science, Team Scheduling and Control (ERL CNRS 6305),
University François Rabelais, Tours, France
e-mail: cheikh.dhib@etu.univ-tours.fr; ameur.soukhal@univ-tours.fr;
emmanuel.neron@univ-tours.fr

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_28

603

mailto:cheikh.dhib@etu.univ-tours.fr
mailto:ameur.soukhal@univ-tours.fr
mailto:emmanuel.neron@univ-tours.fr

604 C. Dhib et al.

to be processed. Activities require a given amount of each resource to be processed
and are subject to classical end-to-start precedence relationships. Resources are
limited. This problem is known to be N P-Hard (Błażewicz et al. 1983) and several
state-of-the-art methods dealing with RCPSP can be found in Demeulemeester and
Herroelen (1997) and Artigues et al. (2008) (see Chaps. 1, 2, 3, and 4).

Resource modeling has been one fruitful research direction for new project
scheduling models. Resources can be renewable, non-renewable, or doubly con-
strained. Moreover, resource requirements of activities may differ from one mode
to another. These types of resources are modeled in the Multi-Mode Resource
Constrained Project Scheduling Problem (MRCPSP) (Bouleimen and Lecocq 2003;
Sprecher and Drexl 1998; Hartmann and Drexl 1998). Several methods for solving
MRCPSP have been proposed, including exact methods such as branch-and-bound,
and heuristics (see Chap. 21). Recently, authors have proposed to enlarge the RCPSP
model to take into account the notion of skills, i.e., staff members involved in the
project realization can contribute only to a given subset of activities. This is known
as the Multi-Skill Project Scheduling Problem (Bellenguez-Morineau and Néron
2004b, 2007). Resources considered are human resources, i.e., staff members, each
of them able to perform more than one type of activity. This model is useful in
several industrial contexts and, for instance, in the context of IT companies where
human resources are the most constrained resources. Moreover, availability periods
are considered for staff members. This extension can be seen as a special case of
Multi-Mode RCPSP, but potentially having a huge number of modes per activity
as revealed by Bellenguez-Morineau and Néron (2007). Recently, several studies
focus on the notion of skill, in a context of project scheduling (see Correia et al.
2010; Heimerl and Kolisch 2010; Li and Womer 2009; Santos and Tereso 2010;
Valls et al. 2009; Walter and Zimmermann 2010; Gürbüz 2010).

In spite of these studies, we find that these models may not be sufficient in an
industrial context. They need to be complemented by some specific constraints, such
as the synchronization of activity skills or the ability to preempt some activities.
These constraints are introduced to meet a particular need of the Neréide company,
but they can be found at all software service companies and more generally in
production service companies. The aim of this study is therefore to propose a multi-
skill project scheduling model arising in an industrial context. Therefore, proposed
solution methods have to be efficient in terms of both computation time and solution
quality. So, the industrial context underlying this paper is slightly different than the
ones addressed before. This work is a joint work with a company contributing to
an open-source ERP framework. We have defined a model for project scheduling
according to their need, which includes some specificity encountered with the
context of project scheduling embedded within a generic framework.
The main characteristics of this model are:

• Activities can be either preemptive or non-preemptive. This is a key point of the
model. On most real-life projects, some activities can be interrupted without any
penalties (such as writing documentation, archiving etc.), whereas some activities
cannot be interrupted.

28 Solution Methods for a Preemptive Project Staffing and Scheduling Problem 605

• In the case of preemption, the resource assigned to one skill for one activity must
be the one that completes the activity after the preemption. This constraint is
used to limit the preemption effect on the project organization, thus we do not
consider non-resumable or semi-resumable activities that would be implied by
the fact that a person has to redo a part of the activity.

• Exactly one resource is required for each skill for one activity. This is mainly
due to the management of the project. Moreover, in the case where several
resources can contribute to the same skill, the problem of workload estimation
becomes difficult. Notice that this constraint is relevant in the context of small-
and medium- size projects.

• All parts of one activity, each corresponding to one skill required for this activity,
must start simultaneously, but can be preempted and restarted at different time
points. This is what we call a synchronization constraint that corresponds to a
short period needed to brief the people contributing to this activity.

The problem presented in this chapter is arising in an industrial context while,
in Chap. 25, a modeling framework is addressed, where mixed-integer linear
programming formulations are presented to solve project staffing and scheduling
issues. Dealing with MSPSP problem, other resolution techniques are presented in
Chaps. 26 and 27. In Chap. 26, column generation and Lagrangian relaxation are
proposed, when Chap. 27 is dedicated to a Benders decomposition approach.

The reminder of this chapter is organized as follows. In Sect. 28.2, a formal
description and MIP formulation are presented, then we give a detailed description
of the proposed heuristic algorithm in Sect. 28.3. In Sect. 28.4, we present compu-
tational results and in Sect. 28.5, we conclude this chapter by pointing out further
research directions.

28.2 Problem Description and Model

First of all we will propose a conceptual optimization model for the studied problem.
Then a MIP formulation will be described. Preliminary results of the use of this
formulation where presented in Dhib et al. (2011b), although further results will be
presented in Sect. 28.4.2. This formulation is mainly used to establish the problem
and to model the constraints we have to consider. Unfortunately, this model cannot
be used to obtain relevant lower bounds or to build efficient solutions even for
medium-size instances. Despite this negative result, some recent works focusing
on MIP formulation for the MSPSP may be a future research direction.

28.2.1 Problem Description

V D f0; 1; : : : ; n; nC 1g denotes the set of activities. Activities 0 and nC 1 are the
starting and the ending dummy activities, respectively. These activities are subject to

606 C. Dhib et al.

precedence relationships. G D .V;E/ is the precedence graph with E D f.i; j / 2
V � V g. If j 2 Succ.i/, then j cannot start before the end of i . Activities can
be either preemptive or non-preemptive: V p � V denotes the set of preemptive
activities, V np � V is the set of non-preemptive activities, where V p [V np D V .

Let R D f1; : : : ; Kg be the set of staff members and L D f1; : : : ; Lg be the
set of skills. Then, for all i 2 V , l 2 L , pil is the workload of skill l for activity
i . According to the industrial considerations, we assume that exactly one person is
assigned for one skill requirement. Thus pil becomes a duration. Staff members are
able to process a given subset of skills. For all k 2 R, l 2 L , skl D 0 if resource
k does not possess skill l , otherwise skl D 1. Finally, for all k 2 R, t D 1; : : : ; T ,
akt D 1 if person k is available on the interval Œt; t C 1Œ. We use also aklt which
is a binary value equal to 1 if person k masters skill l and is available at t that is
deduced from both skl and akt. We use pi , ESi and di to note respectively the activity
duration, earliest start time and due date of activity i , where pi D maxl2L .pil/.

In Fig. 28.1, we present an example of a project with three activities (1, 2, and 3)
and three persons (1, 2, and 3). Each person masters one or more skills among the
three skills: analysis, web, and database. From the precedence graph of Fig. 28.1, the
information [4, 0, 1, N] of node 1means that activity 1 needs four man-days for skill
1, does not need skill 2 and needs one man-day for skill 3. The last value means that
the activity cannot be interrupted. From the skills of persons and the availability
table, we deduce that person 2 masters both skills 1 and 3 but does not master
skill 2. This person is not available during time-interval Œ5; 6Œ. The Gantt diagram
of Fig. 28.2 gives a feasible solution. We recall that only activity 3 is allowed to be
preempted.

 Person Analysis Web DB Unavailability

0

1

2

43

[0,3,1,N]

[4,0,1,N]

[2,3,0,Y]

1 1 1 1 [4,5[

2 1 0 1 [5,6[

Skill

3 1 1 0

Fig. 28.1 Example

3, Web

62 71 3 4 5

Person 1

Person 2

Person 3

1, Analysis

1, DB 2, DB

2, Web

3, Analys.3, Analys.

Fig. 28.2 Feasible solution

28 Solution Methods for a Preemptive Project Staffing and Scheduling Problem 607

28.2.2 MIP Formulation

In this section, we focus on the presentation of the proposed Mixed Integer
Linear Program (MIP). Notice that, to the best of our knowledge, a few ILP
models proposed for the non-preemptive version of the Multi-Skill RCPSP exist
(Bellenguez-Morineau and Néron 2004b; Montoya 2012). The main difficulty here
lies in modeling simultaneous precedence constraints, skills synchronization and
preemption. Notice that preemptive models based on antichains representation have
been proposed for modeling preemptive RCPSP (Ballestín et al. 2006; Damay
2005). Moreover, because there are constraints on preemption (i.e., a person who
starts an activity must complete this activity), the notion of antichains cannot be
trivially adapted to multi-skill RCPSP.

The model presented here is based on a time-indexed formulation. We first
formally define time-indexed variables. The MIP formulation is proposed after.

Decision variables:

xiklt D
�
1 if resource k performs skill l for activity i during Œt; t C 1Œ
0 otherwise

.i 2 V I k 2 RI l 2 L I t D 1; : : : ; T /

Auxiliary variables:

• Si : starting time of activity i 2 V ,
• Ci : completion time of activity i 2 V ,
• Cil: completion time of skill l 2 L of activity i 2 V ,
• Cmax: makespan

Constraints:

Availability of a person and skill constraints: a person cannot perform a skill if
he or she does not master it:

xiklt � aklt .i 2 V I k 2 RI l 2 L I t D 1; : : : ; T / (28.1)

Activities must be completed: the sum of each skill part for an activity must be
equal to its duration:

T�1X

tD0

KX

kD1
xiklt D pil .i 2 V I l 2 L / (28.2)

A resource cannot be assigned to more than one skill at the same time point:

nC1X

iD0

LX

lD1
xiklt � 1 .k 2 RI t D 1; : : : ; T / (28.3)

608 C. Dhib et al.

Starting and completion dates of activity i can be determined from starting and
completion dates of its skill contribution:

Si � t � T �
KX

kD1

t�1X

qD0
xiklq .i 2 V I l 2 L I t D 1; : : : ; T / (28.4)

Si � t � xiklt C .1 � xiklt/ � T .i 2 V I k 2 RI l 2 L I t D 1; : : : ; T / (28.5)

xiklt � .t C 1/ � Cil .i 2 V I k 2 RI l 2 L I t D 1; : : : ; T / (28.6)

Cil � Ci .i 2 V I l 2 L / (28.7)

Precedence constraints:

Ci � Sj ..i; j / 2 E/ (28.8)

Non-preemption constraint: the starting date added to the duration equals to the
completion date of the activity:

Si C pil D Cil .i 2 V np/ (28.9)

One person for one skill: at any time point a person can contribute to one skill for
one activity at the most and if a person starts a skill, no one else can be assigned
to it:

xiklt C xik0lt0 � 1 .i 2 V I k 2 RI k0 2 R W k ¤ k0I l 2 L I
t D 1; : : : ; T I t 0 D 1; : : : ; T / (28.10)

Makespan:

Cil � Cmax .i 2 V I l 2 L / (28.11)

Objective function:

Min. Cmax (28.12)

Constraints (28.4) and (28.5) enforce the variables Si to be equal to the first t so
that all activity skills have started. This also models the synchronization constraints.
Constraint (28.10) ensures that only one person can be assigned to a given skill of
an activity and he or she must finish it. The number of variables and constraints
of this model can be reduced. For example, the variables xiklt can be removed for
non-preemptive activities, in this case the start date Si is sufficient. We can also
reformulate the constraint (28.10) as follows:

28 Solution Methods for a Preemptive Project Staffing and Scheduling Problem 609

xiklt �
PT�1

t 0D0 xiklt0

pil
.i 2 V I k 2 RI l 2 L I t D 1; : : : ; T / (28.13)

Computational results of this model are presented in Sect. 28.4.2. They show that
this MIP can solve only small instances. So, we propose in the next section a
heuristic approach to solve instances of medium and large size.

28.3 Resolution Method

In this section, we propose to solve the studied scheduling problem by a heuristic
algorithm, namely a list-scheduling algorithm based on the parallel schedule-
generation scheme which has been introduced by Kolisch (1996) for solving the
classical RCPSP problem and has recently been adapted by Bellenguez-Morineau
and Néron (2004a) to solve the MSPSP problem. The main adaptation, which we
added to the classical parallel scheme, is the possibility, at a time point t , to interrupt
an activity which is in progress at t (i.e., started before t and being executed on
Œt; t C 1�). For the remainder of this paper, we call this adaptation Preemptive
Adapted Parallel Scheduling Scheme list algorithm (PAPSS). In the next section,
we explain in detail how the PAPSS algorithm works.

28.3.1 Preemptive Adapted Parallel Scheduling Scheme List
Algorithm (PAPSS)

Computing a solution using this method proceeds as follows: at each time point t ,
eligible activities, i.e., activities that are ready to be scheduled (release date lower
than or equal to t and all predecessors are finished), are sorted according to a given
priority rule without violation of precedence relationships constraints. Then, we
try to schedule the first activity by solving an assignment problem. If no feasible
assignment at t is found, then we move to the next activity in this eligibility list.
This way the priority list order is not strictly respected. After visiting all activities
in the eligibility list, we move to the first time point where a new event occurred, i.e.,
a resource becomes available, a new activity becomes eligible. The main algorithm
steps are described in Algorithm 28.1. We denote by PAPSS-R1 the execution of the
PAPSS algorithm using the priority rule R1.

610 C. Dhib et al.

Algorithm 28.1: Preemptive Adapted Parallel Schedule Scheme Algorithm
(PAPSS-R1)

Require: V : set of activities to be scheduled
t WD 0
while V ¤ 	 and t < T do
Dt : set of eligible activities at t , sorted according to priority rule R1
i WD 0
while i < jDt j do

feasible WD TrySchedule.Dt .i /; t/

if feasible then
V WD V nDt .i /

end if
i WD i C 1

end while
t WD nextEvent./

end while

This algorithm uses two procedures: TrySchedule.Dt .i /; t/ which computes the
assignment with a minimum cost and nextEvent./ which returns the next point of
time where a new event occurred (resource become available, new activity becomes
eligible). The aim of TrySchedule.Dt .i /; t/ is to:

1. Compute the assignment with a minimum cost,
2. Schedule the activity Dt .i / starting from t and using the computed assignment,
3. If the assignment caused a preemption for some activities, then it resumes them

as soon as possible.

Priority rules from the literature (see Hartmann and Kolisch 2000), as well as some
specific rules are used in the experimental tests. The following priority rules are
tested:

• Earliest Release Date (ERD): activities are sorted in non-decreasing order of their
release date,

• Earliest Due Date (EDD): activities are sorted in non-decreasing order of their
due date,

• Minimum Slack (MINSLK): activities are sorted in non-decreasing order of their
slack given by max.0; di � pi � ESi /,

• Most Number of Successors (MTS): activities are sorted in non-increasing order
of the number of their successors,

• Most Number of Skills (MSSKILL): activities are sorted in non-increasing order
of their number of needed skills,

• Total man power needed (MAXCHRG): activities are sorted in non-increasing
order of the total duration needed given by

PL
lD1 pil,

• Criticality (CRITICITY): activities are sorted in non-decreasing order of their
criticality. The criticality of an activity is the sum of its skills criticalities (see
Dhib 2013),

28 Solution Methods for a Preemptive Project Staffing and Scheduling Problem 611

• Greatest rank 1 (GRNK1): activities are sorted in non-increasing order of the
greatest rank given by

P
j2Succ.i/

PL
lD1 pjl,

• Greatest rank 2 (GRNK2): activities are sorted in non-increasing order of the
greatest rank given by

P
j2Succ.i/ Lj ,

• Greatest rank 3 (GRNK3): activities are sorted in non-increasing order of the
greatest rank given by

P
j2Succ.i/ maxl2L pjl,

• Random priority (RAND): for each activity a random priority rule is associated,
the lowest value is the highest priority activity.

28.3.1.1 Activity Assignment

At each time point t , the most prioritized activity among the eligible activities is
selected to be scheduled. Persons to be assigned to the activity i are chosen by
solving a minimum-cost assignment problem. Due to the synchronization constraint,
required persons for processing skills must be assigned to the activity at the
beginning, i.e., we have to assign a different person to each skill.

This problem can be solved using the algorithm of Kuhn (1955). A bipartite
graph is built using the skills needed by the activity i and they have to be matched
efficiently with available persons at time t . To do this matching, we link a skill node
and person node if the following conditions are fulfilled:

• Person k masters the skill l ,
• If i is not preemptive, k must have a continuous availability equal to pil. In the

case of a preemptive activity, k has to be available on Œt; t C 1�.
The availability does not take into account the running preemptive activities which
have lower priority than i . More clearly, we define the continuous availability
(avail.k; i; t/) of person k on time period t with respect to activity i as follows:
avail.k; i; t/ D 0 if t is an unavailability period for k, or he/she is executing a
preemptive activity which has higher priority than i .
avail.k; i; t/ D 1 if the following conditions are satisfied:

• Œt; t C 1Œ is not unavailability period for resource k,
• He/she does not execute any activity on Œt; t C 1�, except if the activity executed

is preemptive and is in progress at t (it started before t). In this case, one of two
conditions must be satisfied:

– The activity being executed has lower priority than i ,
– Both activities have the same priority, but the activity i needs more than one

skill.

For each person, we compute a criticality indicator measuring the degree of
activity requests for his/her person based on his skills and availability. For details
on the computation of the criticality indicators, we refer to Bellenguez-Morineau
and Néron (2007) and Dhib (2013). So, for each edge from a skill l to a person k we
associate a cost corresponding to the person’s criticality. If the person k is assigned

612 C. Dhib et al.

to a preemptive activity at the time t , a high value is used to avoid preemption if
another assignment is possible.

Experimental results using the priority rules described above are presented in
Sect. 28.4.3.

28.4 Computational Results

In this section, we first describe the instances used for experimentation, then we
present computational results of the linear model. In Sect. 28.4.3, we present results
of the PAPSS algorithm using the different priority rules. In Dhib et al. (2011a) we
presented three destructive lower bounds: a flow based lower bound, a preemptive
linear model inspired from Carlier and Néron (2000, 2003), and an energetic
reasoning based lower bound inspired from Baptiste et al. (1999). As the last lower
bound was the best among these lower bounds on the majority of tested instances
(less than 10% from the optimal in average), we use it here to measure the quality
of the proposed heuristic.

28.4.1 Instance Description

Instances with a number of activities greater than 20 were generated based on
the PSPLIB instances (Kolisch et al. 1997). For each instance of PSPLIB (single
mode), we use the same network. Hence, for each instance, the complexity NC of
its corresponding network is known, i.e., the number of activities n and an indicator
of the density of precedence relationships.
The other parameters characterizing an instance, include:

1. Skill per person (Lø
pers): the average number of mastered skills per person

2. Skill per activity (Lø
act): the activities’ average requirements for skills. It is similar

to the resource factor used for RCPSP
3. Average person availability (pavail): the percentage of randomly generated

periods of availability for different resources
4. Preemption Average (ppmtn): the percentage of activities that can be preempted.

For each instance of PSPLIB and each configuration (K ,L, Lø
pers,L

ø
act, pavail, ppmtn)

one instance is generated. Used parameters are presented in Sect. 28.4.3. We impose
that the maximal charge needed by each activity equals the activity duration as
defined in the PSPLIB original instance. During the generation process, we try to
obtain a maximum number of feasible instances as follows: each time we try to
generate skills needed for a given activity, we solve the assignment problem which
takes into consideration a person’s skills and availabilities. In fact we choose a
permutation of skills for a given activity and we solve the problem of assignment
that is based on it. If there is no subset of persons who can perform these skills, then

28 Solution Methods for a Preemptive Project Staffing and Scheduling Problem 613

Table 28.1 Instances of 6
persons, 50 % of preemption,
100 % of availability

n L T popt tcpu.s/ pfeas

10 4 14.10 90 % 5.44 10 %

5 15.10 100 % 114.66 0 %

16 4 22.00 90 % 48.67 0 %

5 23.50 60 % 209.17 10 %

20 4 22.00 90 % 55.44 10 %

5 25.90 20 % 164.00 20 %

Table 28.2 Instances of 6
persons, 50 % of preemption,
75 % of availability

n L T popt tcpu.s/ pfeas

10 4 19.0 100 % 119.70 0 %

5 24.2 80 % 754.25 0 %

16 4 30.9 50 % 915.20 20 %

5 34.7 10 % 554.00 0 %

20 4 31.7 30 % 87.33 0 %

5 39.6 0 % � 10 %

we randomly reduce by one the skills required to perform the activity. We repeat
this procedure until we obtain a valid assignment.

Concerning the instances of 10, 16, and 20 activities, we use two sets of
instances; we fix the number of persons to 6, the percentage of preemption to 50, the
percentage of skills per person to 100, and the percentage of skills per activity to 50.
We use the first 10 instances of 10 activities, 16 activities and 20 activities from the
PSPLIB multi-mode data set. We retain the graph topology and for each activity we
use the duration in the first mode as the maximum man-day request for this activity.
In the first set (Table 28.1), the average availability of persons is 100% while in the
second category (Table 28.2), the percentage is 75%.
For each set and each group of activities, we generate 10 instances with a number
of skills equal to 4, then the same number of instances with a number of skills equal
to 5. Because the model is dependent on the planning horizon, we opted to run the
heuristic method presented in Sect. 28.3, then we took the returned makespan as the
maximum horizon.

A personal computer running Linux 2.6.32, 32-bit operating system, with a
2:2GHZ Duo core Intel processor and 3GB of memory was used for all tests.

28.4.2 Integer Linear Model Computational Results

As mentioned above in Sect. 28.2, the model cannot be used except for solving small
size instances. Tests of Tables 28.1 and 28.2 use only the data sets of 20 activities
maximum. The experiments have been conducted using CPLEX 12.2 academic
version concert technology library for Java. A runtime limit of 3;600 s is used for
each instance.

614 C. Dhib et al.

We report the average horizon T (3rd column) that corresponds to Cmax value
given by heuristic PAPSS. Then, T is used as time horizon; In 4th and 5th columns
we report the percentage of optimal solutions and the average time in seconds for
the optimal solutions, and in the last column we report the percentage of feasible
solutions found which are not optimal.

In Table 28.1, we see that out of six data sets, almost all instances with four
skills are optimally solved (90%; 100%; 90%). When the average availability is
approximately 75% (Table 28.2), the MIP optimally solves only one group of
instances with ten activities and four skills. Unfortunately, the computation time
becomes considerable, because as we decrease the availability average (i.e., increase
the unavailability average), the planning horizon needed to obtain feasible solutions
also increases. Therefore, the number of variables and constraints in the MIP
increases considerably.

The last row of Table 28.2 shows a limitation of this model. When it reaches 20
activities, 6 persons and 5 skills with an average planning horizon equal to 40, MIP
is generally not able to find any optimal solution within 1 h of execution time and
returns only one feasible solution.

28.4.3 Heuristic Computational Results

In this section, we compare the 11 priority rules described in Sect. 28.3. Because of
the high number of parameters in instance definition, we decided to compare priority
rules by varying the two parameters ppmtn and pavail.

1. Using different availability rates (pavail)
In Table 28.3, three data sets of 160 instances each are used. We used the first
160 instances of 30 activities from the PSPLIB single mode. For each data set

Table 28.3 Priority rules using different availability rates

Priority rule AvailD 95 % AvailD 75 % AvailD 50 %

CRITICITY 5:719 7.944 10.361

EDD 5:619 9.156 8:184
ERD 6.338 8.269 9.076

GRNK 9.475 9.850 9.076

GRNK1 6.588 9.325 8.747

GRNK2 9.738 9.688 8.823

MAXCHRG 9.950 4:475 8:741
MAXNBSKIL 5:200 4:194 8:589
MINSLK 11.500 9.706 9.551

MTS 7.169 10.013 9.032

RAND 15.700 5:750 11.120

28 Solution Methods for a Preemptive Project Staffing and Scheduling Problem 615

Table 28.4 Priority rules using different preemption average

Priority rule ppmtn D 0 % ppmtn D 25 % ppmtn D 50 % ppmtn D 75 % ppmtn D 100 %

CRITICITY 4.600 5:719 5:981 6:650 8:863
EDD 1:306 5:619 10.088 14.513 18.431

ERD 4.788 6.338 7:531 9:513 12:856
GRNK 3:338 9.475 14.719 24.738 29.325

GRNK1 4.281 6.588 10.450 13.838 16.769

GRNK2 3.575 9.738 14.419 26.706 30.044

MAXCHRG 4.044 9.950 18.344 25.694 32.838

MAXNBSKIL 4.769 5:200 5:469 5:956 5:156
MINSLK 1:663 11.500 21.869 29.419 34.456

MTS 4.194 7.169 9.631 14.944 18.344

RAND 4.456 15.700 24.225 32.850 39.213

we have: K D 10, L D 5, Lø
pers D 50, Lø

act D 25, and ppmtn D 25%. The
values used for availability average are 95%, 75%, and 50%. For each data set,
we report the average gap from the lower bound for each priority rule (4ø

LB). For
all considered priority rules, the computation time is less than 0:02 s in average.

2. Using different preemption average (ppmtn)
In Table 28.4, 5 data sets of 160 instances each are used. We used the first 160
instances of 30 activities, from the PSPLIB single mode. For each data set, we
have: K D 10, L D 5, Lø

pers D 50, Lø
act D 25 and pavail D 95%. The values

used for preemption average (ppmtn) are 0%, 25%, 50%, 75%, and 100%. For
each data set we report the average gap from the lower bound (Dhib et al. 2011a)
for each priority rule (4ø

LB).

Analysis: In both tables, the three best priority rules in terms of solution
quality are marked in bold. We can see that MAXNBSKIL is among the three best
rules in every data set except in case of non-preemption (see the first column of
Table 28.4). In the case of non-preemption, we can see that all deviations are very
close (maximum gap is less than 5%). For five data sets, MAXNBSKIL is the best
among all priory rules. From Table 28.4, MAXNBSKIL is not really dependent
on the preemption average (its gaps were less than 6% in all data sets). Note
that MAXNBSKIL is still not affected when the average availability changes (it is
ranked first, first and second in the three data sets in Table 28.3). Another important
remark concerns the CRITICITY rule. CRITICITY is among the three best rules
for four data sets out of seven. Like MAXNBSKIL, the average person availability
pavail has no real impact on CRITICITY rule in terms of rank. However, the gap
is proportionally increasing with respect to preemption rate. Unlike MAXNBSKIL,
CRITICITY is not one of the best three rules when the availability average decreases
(as for the last two data sets in Table 28.3).

From the two Tables 28.3 and 28.4, priority rules GRNK, GRNK1, GRNK2,
MINSLK and MTS are generally dominated by the remaining rules.

616 C. Dhib et al.

The priority rule MAXCHRG gives bad results when the preemption average
increases, but when the unavailability average increases, the impact is not consider-
able and its gap is still below a 10% as shown in Table 28.3.

Concerning the priority rule EDD, the availability percentage has no significant
impact. EDD appears three times among three best rules. However, from Table 28.4,
we can deduce that the quality of solutions given by EDD depends on the preemption
average. The impact of the preemption average is not so significant on the quality of
solutions given by the ERD rule compared to EDD.

Finally, we note that the random priority rule gives weaker solutions compared
to all other rules.

28.5 Conclusions

In this chapter, we studied a multi-skill project scheduling problem encountered
in an industrial context considering specific features such as preemption, synchro-
nization and unavailability periods. A mixed integer linear model (MIP) based on
time-indexed variables is proposed. Experimental results show that this MIP is not
suitable for real instances.

Finally an adapted parallel schedule-generation scheme based on priority rules
is studied. The quality of solutions is measured using lower bounds proposed in
previous works. The algorithm is implemented and deployed on the open-source
framework OFBiz. All add-ons developed to integrate the model and the heuristic
code with a web interface on OFBiz can be found at http://addons.neogia.org/.
Regarding the speed of these heuristics, we used them within metaheuristic methods
proposed in Dhib (2013). Further analysis using different problem characteristics
may be interesting to classify the effectiveness of priority rules according to the
characteristics of the problem.

References

Artigues C, Demassey S, Néron E (2008) Resource-constrained project scheduling: models,
algorithms, extension and applications. Wiley, Hoboken

Ballestín F, Valls V, Quintanilla S (2006) Pre-emption in resource-constrained project scheduling.
Eur J Oper Res 189(3):1136–1152

Baptiste P, Le Pape C, Nuijten W (1999) Constrained project scheduling problem, satisfiability tests
and time bound adjustments for cumulative scheduling problems. Ann Oper Res 92(0):305–333

Bellenguez-Morineau O, Néron E (2004a) Methods for solving the multi-skill project scheduling
problem. In: Proceedings of 9th international workshop on project management and scheduling
(PMS’2004). Nancy, France, pp 66–69

Bellenguez-Morineau O, Néron E (2004b) Lower bounds for the multi-skill project scheduling
problem with hierarchical levels of skills. In: Proceedings of 5th international conference on the
practice and theory of automated timetabling (PATAT’2004). Pittsburgh, PA, USA, pp 429–432

Bellenguez-Morineau O, Néron E (2007) A branch-and-bound method for solving multi-skill
scheduling problem. Rairo-Oper Res 41(2):155–170

http://addons.neogia.org/

28 Solution Methods for a Preemptive Project Staffing and Scheduling Problem 617

Błażewicz J, Lenstra JK, Rinnooy Kan AHG (1983) Scheduling subject to resource constraints:
classification and complexity. Discrete Appl Math 5(1):11–24

Bouleimen K, Lecocq H (2003) A new efficient simulated annealing algorithm for the resource
constrained project scheduling problem and its multiple modes version. Eur J Oper Res
149(2):268–281

Carlier J, Néron E (2000) A new LP-based lower bound for the cumulative scheduling problem.
Eur J Oper Res 127(2):363–382

Carlier J, Néron E (2003) On linear lower bounds for the resource constrained project scheduling
problem. Eur J Oper Res 149(2):314–324

Correia I, Lourenço L, Saldanha-da-Gama F (2010) Project scheduling with flexible resources:
formulation and inequalities. OR Spectr 33(3):1–29

Damay J (2005) Techniques de résolution basées sur la Programmation Linéaire pour
l’ordonnancement de projet. Ph.D. dissertation, University Blaise Pascal, Clermont-Ferrand,
France

Demeulemeester EL, Herroelen WS (1997) New benchmark results for the resource-constrained
project scheduling problem. Manag Sci 43(11):1485–1492

Dhib C (2013) Etude et résolution de problèmes d’ordonnancement de projets multi-compétences:
Intégration à un ERP libre. Ph.D. dissertation, University of Tours, Tours, France

Dhib C, Kooli A, Soukhal A, Néron E (2011a) Lower bounds for a multi-skill scheduling problem.
In: Proceedings of the international conference on operations research (OR’2011). Zürich,
Switzerland, pp 471–476

Dhib C, Soukhal A, Néron E (2011b) A multi-skill project scheduling problem in an industrial
context. In: Proceedings of the 4th international conference on industrial engineering and
systems management (IESM’2011). Metz, France, pp 316–325

Gürbüz E (2010) A genetic algorithm for biobjective multi-skill project scheduling problem with
hierarchical levels of skills. Master thesis, Middle East Technical University, Ankara, Turkey

Hartmann S, Drexl A (1998) Project scheduling with multiple modes: a comparison of exact
algorithms. Networks 32(3):283–297

Hartmann S, Kolisch R (2000) Experimental evaluation of state of the art heuristics for the resource
constrained project scheduling problem. Eur J Oper Res 127(2):394–407

Heimerl C, Kolisch R (2010) Scheduling and staffing multiple projects with a multi-skilled
workforce. OR Spectr 32(2):343–368

Kolisch R (1996) Serial and parallel resource-constrained project scheduling methods revisited:
theory and computation. Eur J Oper Res 90(2):320–333

Kolisch R, Sprecher A, Drexl A (1997) PSPLIB: a project scheduling library. Eur J Oper Res
96(1):205–216

Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Log Q 2:83–97
Li H, Womer K (2009) Scheduling projects with multi-skilled personnel by a hybrid MILP/CP

Benders decomposition algorithm. J Sched 12(3):281–298
Montoya C (2012) New methods for the multi-skill project scheduling problem. Ph.D. dissertation,

University of Nantes, Nantes, France
Santos AM, Tereso PA (2010) On the multi-mode, multi-skill resource constrained project

scheduling problem (MRCPSP-MS). In: Proceedings of the 2nd international conference on
engineering optimization. Lisbon, Portugal

Sprecher A, Drexl A (1998) Multi-mode resource-constrained project scheduling by a simple,
general and powerful sequencing algorithm. Eur J Oper Res 107(2):431–450

Valls V, Pérez A, Quintanilla S (2009) Skilled workforce scheduling in service centres. Eur J Oper
Res 193(3):791–804

Walter M, Zimmermann J (2010) Staffing projects with multi-skilled workers in matrix organ-
isations. In: Proceedings of the 12th international workshop on project management and
scheduling (PMS’2010). Tours, France, pp 387–391

Part IX
Discrete Time-Cost Tradeoff Problems

Chapter 29
The Discrete Time-Cost Tradeoff
Problem with Irregular Starting Time Costs

Joseph G. Szmerekovsky and Prahalad Venkateshan

Abstract In this chapter we review the literature on the discrete time-cost tradeoff
problem (DTCTP). We then present the four integer programming formulations
of a version of DTCTP with irregular starting time costs from Szmerekovsky
and Venkateshan (Comp and Oper Res 39(7):1402–1410, 2012). Specifically, the
problem is an irregular costs project scheduling problem with time-cost tradeoffs.
The empirical tests performed in Szmerekovsky and Venkateshan (Comp and Oper
Res 39(7):1402–1410, 2012) are updated using the current version of CPLEX and
similar results are found being driven by a reduced number of binary variables,
a tighter linear programming relaxation, and the sparsity and embedded network
structure of the constraint matrix.

Keywords Discrete time-cost tradeoff • Integer linear programming formula-
tions • Payment schedules • Project scheduling

29.1 Introduction

In many project scheduling problems, there exists a time-cost tradeoff. Estimates of
activity times presume a given mode in which that activity is to be executed. With
each mode for an activity is associated a duration of the activity and the cost involved
in completing the activity in that time. Generally, completing an activity in shorter
time incurs higher cost. In the discrete time-cost tradeoff problem, there is a discrete
set of activity durations each with its associated cost. Discrete time-cost tradeoff
problems are typically classified into three types: (1) minimization of cost subject
to a deadline for the completion of the project, (2) minimization of completion
time subject to a cost budget, and (3) identification of the complete efficient

J.G. Szmerekovsky (�)
College of Business, North Dakota State University, Fargo, ND, USA
e-mail: Joseph.Szmerekovsky@ndsu.edu

P. Venkateshan
Indian Institute of Management, Ahmedabad, India
e-mail: prahalad@iimahd.ernet.in

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_29

621

mailto:Joseph.Szmerekovsky@ndsu.edu
mailto:prahalad@iimahd.ernet.in

622 J.G. Szmerekovsky and P. Venkateshan

time-cost curve. Though many variations of the discrete time-cost tradeoff problem
exist, this chapter considers only MPS1jprec; Nd jP ci .pi /, the time-constrained
deterministic version of the problem. The only generalization considered is in
the financial objective. To capture the variety of potential financial objectives we
consider the problem with irregular starting time costs, which can be denoted as
MPS1jprec; Nd jf . Information on the generalized, stochastic, and robust versions
of the discrete time-cost tradeoff problem can respectively be found in Chap. 30 as
well as Chaps. 36 and 39 in the second volume of this handbook.

The remainder of the chapter is organized as follows. In Sect. 29.2 we provide a
review of the literature on the basic discrete time-cost tradeoff problem and discuss
alternative financial objectives for the problem, including the general problem of
scheduling with irregular starting-time costs. We continue in Sects. 29.3 and 29.4
by reviewing the four formulations discussed in Szmerekovsky and Venkateshan
(2012) and updating their empirical experiments using the current version of the
CPLEX solver. The chapter concludes with a summary in Sect. 29.5.

29.2 Review of the Basic Discrete Time-Cost Tradeoff
Problem

There is a large body of literature on the discrete time-cost tradeoff problem. The
variety of time-cost tradeoff problems that have been studied in the literature are
reviewed by Brucker et al. (1999), De et al. (1995), and Icmeli et al. (1993).
In this section we first provide a review of the literature concerning problem
MPS1jprec; Nd jP ci .pi / and then review alternative financial objectives which can
be captured by MPS1jprec; Nd jf .

29.2.1 Literature Review for DTCTP

De et al. (1997) have shown that MPS1jprec; Nd jP ci .pi / is N P-hard in
the strong sense and so it is unlikely that an efficient algorithm for solving it
exists. Therefore, methods for addressing MPS1jprec; Nd jP ci .pi / fall into three
categories: heuristics, exact algorithms with exponential worst-case complexity, and
mathematical programming. We now review the results in these three areas.

Despite the difficulty of the problem little research has focused on heuristics for
MPS1jprec; Nd jP ci .pi /. The first heuristic was an approximation algorithm based
on rounding the solution to a natural linear relaxation of the problem developed
by Skutella (1998). Deineko and Woeginger (2001) have shown that even the
approximation problem is hard. Since then, a column generation-based heuristic
has been developed by Akkan et al. (2005) and shown to perform well compared to
local search and Lagrangian-based heuristics. More recently, Vanhoucke and Debels

29 The Discrete Time-Cost Tradeoff Problem with Irregular Starting Time Costs 623

(2007) developed a metaheuristic for a more general version of the discrete time-cost
tradeoff problem, but tested it on the basic version as well. They found that though
the metaheuristic often provides the optimal solution, it does so less efficiently than
the exact procedure of Demeulemeester et al. (1998).

The first exact procedures designed for MPS1jprec; Nd jP ci .pi / were dynamic
programs and branch-and-bound procedures with exponential worst case perfor-
mance proposed by Crowston (1970), Panagiotakopoulos (1977), Harvey and
Patterson (1979), and Hindelang and Muth (1979), whose algorithm was later
corrected in De et al. (1997). More recently, in order to identify the complete
and efficient time-cost curve, Demeulemeester et al. (1996, 1998) developed
exact algorithms for MPS1jprec; Nd jP ci .pi /. The algorithms of Demeulemeester
et al. (1996) use network reductions and the fact that for series-parallel (s/p)
networks, MPS1jprec; Nd jP ci .pi / can be solved efficiently, as discussed in
De et al. (1995). Hence, exact enumeration and branch-and-bound procedures
based on reducing non-s/p networks to s/p networks were developed for solving
MPS1jprec; Nd jP ci .pi /. The branch-and-bound algorithm of Demeulemeester
et al. (1998) uses a convex piecewise linear approximation to the discrete time-
cost curve for each activity, which underestimates the true cost. This piecewise
linear problem can be solved efficiently and is the basis for the branch-and-bound
procedure. Extensive computational testing on randomly generated data has shown
that this new procedure tends to substantially outperform the series/parallel based
procedure of Demeulemeester et al. (1996) and is potentially the best performing
exact procedure to date.

The earliest mathematical programming formulations for MPS1jprec; Nd jP
ci .pi / were introduced by Meyer and Shaffer (1965) and Crowston and

Thompson (1967), but these suffered from computational limitations. Akkan
et al. (2005) develop a binary programming formulation based on network
decompositions and analyze it using column generation techniques. Through
computational tests the resulting algorithm is shown to provide good quality
heuristic solutions and bounds in a reasonable amount of computational time even
for hard benchmark instances. More recently, Hadjiconstantinou and Klerides
(2010) have investigated a path-based binary programming formulation for
MPS1jprec; Nd jP ci .pi /. The formulation enforces the deadline through use of
a constraint for each path in the project network. The problem is then solved
with a cutting plane algorithm based on relaxing the path constraints and then
adding them in as cuts as needed. The algorithm is also augmented with speed-
up techniques based on identifying promising paths to preemptively add them
as deadline constraints before they are needed as cuts. Computational tests were
performed demonstrating that the cutting plane algorithm outperforms the branch-
and-bound procedure of Demeulemeester et al. (1998) and performs well on the test
instances from Akkan et al. (2005) providing optimal solutions to nearly all of them.
Hafizoğlu and Azizoğlu (2010) recently have also analyzed a binary programming
formulation for the problem. They develop a branch-and-bound procedure based
primarily on the linear relaxation of the integer program and the fact that at most
two modes for any activity will have positive corresponding variable values in the

624 J.G. Szmerekovsky and P. Venkateshan

optimal solution of the linear relaxation. Computational testing has shown their
procedure to be able to solve or provide high quality (within 3 % of optimality)
heuristic solutions for large problems (150 activities and 10 modes) in a reasonable
amount of time (1 h).

29.2.2 Literature Review for DTCTP with Irregular Starting
Time Costs

Szmerekovsky and Venkateshan (2012) study MPS1jprec; Nd jf with the goal of
reconciling time-cost tradeoff problems and problems with financial objective
functions. They argue that financial objective functions better represent the cor-
responding interests of contractors and clients that must be traded off in project
scheduling. For example, MPS1jprec; Nd jP ci .pi / requires contractors to incur
additional expenses to meet the deadline. Supposedly this is because the client
requires the project by the due date. Hence, the deadline alone represents the
interests of the client. Clearly this is a gross simplification of the client’s interests as,
given different costs for different completion dates, the client could be better off with
later or earlier project completion dates. Szmerekovsky and Venkateshan (2012)
argue that these financial time-cost tradeoffs can be accounted for by considering
payment schedules (i.e., time-dependent bonuses and penalties, payment retention,
the selection of milestone activities, and periodic payment schemes) and the
financial objectives of net present value (NPV) and cash availability (CA).

The NPV objective for project scheduling originally appeared in Russell (1970)
and has since received significant attention. A recent review of time-constrained
net present value problems can be found in Drezet (2008, Sect. 14.3.1). Resource-
constrained, multi-mode, and stochastic versions of the net present value problem
are discussed in Chaps. 14 and 23 as well as Chap. 35 in the second volume
of this book, respectively. Problems which consider the client’s, as opposed to
just the contractor’s, interests are discussed in Bey et al. (1981), Dayanand and
Padman (1998), Ulusoy and Cebelli (2000), Dayanand and Padman (2001), and
Szmerekovsky (2005). The CA objective was first described in Goldratt (1997)
and has since been discussed in Demeulemeester and Herroelen (2002) and
Szmerekovsky and Vairaktarakis (2006).

As observed by Szmerekovsky and Venkateshan (2012) using a general objective
function, commonly referred to as an irregular costs function, can capture the variety
of payment scheduling methods and objectives previously discussed. Möhring
et al. (2001) review the time-constrained version of the problem without time-
cost tradeoffs and Grigoriey and Woeginger (2004) establish the complexity of
MPS1jprec; Nd jf as N P-hard and APX -hard even when the precedence
constraints are of bounded height two or form an interval order.

We present the new integer programming formulation for MPS1jprec; Nd jf
investigated by Szmerekovsky and Venkateshan (2012) in Sect. 29.3. We then
update their empirical experiments to the newest version of CPLEX in Sect. 29.4.

29 The Discrete Time-Cost Tradeoff Problem with Irregular Starting Time Costs 625

29.3 A New Integer Programming Formulation for the
DTCTP with Irregular Starting Time Costs

This section considers a new integer programming formulation for MPS1jprec;
Nd jf , the irregular costs project scheduling problem with time-cost tradeoffs. We

formalize the problem and provide the New Formulation (NF) from Szmerekovsky
and Venkateshan (2012). The project is represented by an activity-on-node (AoN)
network G D .V;E/ with nC 2 activities i 2 V and arc set E . The activities i are
numbered from 0 to nC1 with dummy activity 0 representing the project beginning
and dummy activity nC1 standing for the project termination. Associated with each
activity i are Mi alternative processing modes such that processing i in mode m,
m D 1; : : : ;Mi , requires pim time units and pi.mC1/ < pim form D 1; : : : ;Mi � 1.
That is, usage of a higher mode leads to quicker completion of the activity. For
dummy activities, p01 D 0, p.nC1/1 D 0, M0 D 1, and MnC1 D 1. Associated
with each arc .i; j / 2 E is a time lag ıCCijm such that if activity i completes at time
Ci then activity j cannot finish before time Ci C ıCCijm if j is processed in mode
m. Specifically, for all computational tests we will have ıCCijm D pjm. If activity i is
processed in modem and is completed at time t , then the contractor receives an NPV
npvimt from processing activity i . Note that npvimt can be positive, indicating a net
gain from completing the activity, or negative, indicating a net loss associated with
the activity. For dummy activities, npv01t D 0 and npv.nC1/1t D 0. Furthermore,
without loss of generality, we assume that all processing times pim are integers.
Finally, let d be the integer length of the planning horizon in which the contractor
intends to complete the project, so that the project must be scheduled to complete
on or before time d .

Möhring et al. (2001) review integer programming formulations for the irregular
costs project scheduling problem when time-cost tradeoffs are not allowed. We now
present Szmerekovsky and Venkateshan (2012)’s generalization of the first of these
formulations, referred to as the New Formulation (NF). The following variables are
used in the formulation:

zimt D
�
1; if activity i is executed in modem and finishes on or before time t
0; otherwise

for i 2 V , m D 1; : : : ;Mi , and t D 0; : : : ; d .
Note that these variables are similar to those used for Integer Programming

Formulation I in Möhring et al. (2001) but they have been generalized to account
for multiple processing modes representing time-cost tradeoffs. The nature of the
variables zimt requires that the objective coefficients, cimt, are calculated recursively
using the npvimt values. This is done as follows:

626 J.G. Szmerekovsky and P. Venkateshan

ciMi d
D npviMi d

cimt D npvimt �
MiX

hDmC1

dX

sDt
cihs �

dX

sDtC1
cims �

m�1X

hD1

dX

sDtC.pih�pim/
cihs

.i 2 V I t D d; : : : ; 0I m D Mi; : : : ; 1/

We now formulate MPS1jprec; Nd jf as follows:

Max.
nX

iD1

MiX

mD1

dX

tD0
cimtzimt (29.1)

s. t. zimt � zim.t�1/ � 0 .i 2 V WMi D 1I t D 1; : : : ; d / (29.2)

zimt � zi.m�1/t � 0 .i 2 V WMi > 1I m D 2; : : : ;Mi I t D 0; : : : ; d /
(29.3)

zimt � zi.mC1/.t�Œpim�pi.mC1/�/ � 0 (29.4)

.i 2 V WMi > 1I m D 1; : : : ;Mi � 1I t D pim � pi.mC1/; : : : ; d/
ziMi .t�ıCCijm / � zjmt � 0 ..i; j / 2 EI m D 1; : : : ;Mi I t D 0; : : : ; d /

(29.5)

zimt C ziMi .t�1/ � zi.mC1/.t�Œpim�pi.mC1/�/ � 1 (29.6)

.i 2 V I m D 1; : : : ;Mi � 1I t D pim � pi.mC1/; : : : ; d /
z.nC1/M.nC1/d

D 1 (29.7)

ziMi t 2 f0; 1g .i 2 V I t D 0; : : : ; d/ (29.8)

The objective (29.1) is to maximize the contractor’s NPV. Constraints (29.2)–
(29.4) enforce the logical definition of the variables. Here, (29.2) handle activities
with a single mode and (29.3)–(29.4) handle activities with two or more modes.
Constraints (29.5) enforce the time lags associated with the project network and
when t � ıCCijm < 0, we set zjmt D 0. Constraints (29.6) prevent an activity from
having more than one completion time and processing mode by guaranteeing that
the variables do not produce more than one corner entry. In (29.6) this is done
for each zimt by ensuring that if zimt is the corner entry, then all other variables
in the preceding time column must be equal to 0 (ziMi .t�1/ D 0). If this is not
so, i.e., zimt D 1 and ziMi .t�1/ D 1, then activity i does not finish at time t and
zi.mC1/.t�Œpim�pi.mC1/�/ D 1. Finally, constraint (29.7) guarantees that activity nC 1
is completed (all other activities are covered by having activity nC1 as a successor),
and constraints (29.8) correspond to the binary conditions of the variables.

Notice that all of constraints (29.2)–(29.5) have exactly one C1 and one �1
coefficient. Hence, for the special case of a single mode, for each activity there

29 The Discrete Time-Cost Tradeoff Problem with Irregular Starting Time Costs 627

will be no constraints (29.6) and the remaining constraints will constitute a totally
unimodular matrix. Therefore any extreme point solution will satisfy the binarity
constraints (29.8). This problem is well-known as the maximum closure problem
of a directed graph and can be solved as a minimum-cut problem. The maximum
closure problem and related problems are discussed in Hochbaum (2004). Further,
the above formulation provides an alternative derivation of the ability to solve the
irregular cost problem (without crashing) through a minimum-cut computation as
is done in Möhring et al. (2003). Finally, notice that the constraints (29.8) require
only the variables ziMi t to be binary as once all of these variables are either 0 or 1,
the constraints (29.6) will also have exactly one C1 and one �1 coefficient so that
a totally unimodular matrix will be obtained. Moreover, once the ziMi t variables
are fixed, the problem decomposes into nC 2 independent problems, one for each
i 2 V .

29.4 Computational Results

In this section, we update the computational experiments of Szmerekovsky and
Venkateshan (2012), herein after referred to as the original experiments, to the
current version of CPLEX (version 12.4) to reevaluate and compare NF to three
other formulations on a randomly generated set of problem instances. We first
review the data generation for the experiments.

29.4.1 Problem Generation

The problem generation followed the method of the original experiments with
project networks being randomly generated using the procedure of Kolisch and
Sprecher (1996) and activity costs being randomly generated using the procedure
of Szmerekovsky (2005). The parameters used in the network and cost generation
procedures and for generating the rest of the problem data appear in Table 29.1.
Most of the parameters in Table 29.1 have already been defined or are self explana-
tory. However, the number of activities, network density, maximum crashing, and
payment scheme parameters are worth commenting on. Regarding network density,
the notion of network density used was the ratio of the number of arcs in the network
to the total number of arcs possible in a network. Further, the maximum crashing
parameter refers to the maximum percentage by which an activity’s duration can
be shortened compared to pi1. For each integer between the resulting minimum
duration and the maximum duration pi1 we introduce one execution mode m for
activity i . So, if pi1 D 7 and the maximum amount of crashing is 50 %, then activity
i would haveMi D 4modes with pi2 D 6, pi3 D 5, and pi4 D 4. Finally, regarding
the payment schemes, LSP refers to the contractor receiving a single payment for
the project at project completion and ETI refers to payments at project completion

628 J.G. Szmerekovsky and P. Venkateshan

Table 29.1 Parameter values used for problem generation

Parameter Values

Number of activities (n) 30, 60, and 90

Network density 25 and 75 %

Maximum activity duration (pi1) Generated from a uniform distribution on

the intervals [1,10] and [1,20]

Maximum crashing 25, 50, and 75 %

Discount factor (ˇ) 0.99, 0.995, and 1

Edge cost for edge .i; j / (cij) Generated from a uniform distribution on

the interval [50,1050]

Mode 1 cost for activity i (ci)
P

j W.i;j /2E

cij

Percentage of ci which is a variable cost 50 %

Ratio of mode 1 variable cost to modeMi variable
cost

piMi =pi1

Contractor markup 50 %

Payment schemes Lump-Sum Payment (LSP) and Equal
Time Intervals (ETI)

and every five time units over the project execution. When payments are made under
the ETI scheme they refer to the work associated with all completed activities, with
no payment being made for partially completed activities.

As in the original experiments, for each combination of the number of activities,
the network density, the maximum crashing percentage, and the payment scheme
10 problem instances were generated. All problem instances were solved using
CPLEX 12.4 without preprocessing and all other options set to default on a 3.3 GHz
Intel Core i5 processor having 4 GB of physical memory running Windows 7. All
computer code was written in CCC and compiled using Microsoft Visual Studio
2008.

29.4.2 Comparing NF with Standard Formulations

In this section, we compare the computational time required to optimally solve
MPS1jprec; Nd jf using formulation NF with the same three alternative formula-
tions used in Szmerekovsky and Venkateshan (2012). The first (referred to hereafter
as Standard I) is based on that used in Kolisch and Sprecher (1996) to model the
discrete time-cost tradeoff problem and uses the following decision variables:

yimt D
�
1; if activity i finishes at time t in modem
0; otherwise

for i 2 V , m D 1; : : : ;Mi and t D 0; : : : ; d .

29 The Discrete Time-Cost Tradeoff Problem with Irregular Starting Time Costs 629

The following integer program, which uses decision variables yimt, represents an
exact formulation of problem MPS1jprec; Nd jf .

Max.
nX

iD1

MiX

mD1

dX

tD0
npvimtyimt

s. t.
MiX

mD1

dX

tD0
yimt D 1 .i 2 V / (29.9)

MiX

mD1

dX

tD0
tyimt �

MjX

mD1

dX

tDıCCijm

.t � ıCCijm /yjmt ..i; j / 2 E/ (29.10)

yimt 2 f0; 1g .i 2 V I m D 1; : : : ;Mi I t D 0; : : : ; d /

Constraints (29.9) ensure that each activity is performed, and constraints (29.10)
enforce the precedence relationships among the activities.

The second formulation, based on that used in Möhring et al. (2001) (referred
to hereafter as Standard II), is also tested. The formulation below is a multi-modal
generalization of integer programming (IP) formulation II in Möhring et al. (2001).
It uses the following decision variables:

ximt D
�
1; if activity i starts at time t in mode m
0; otherwise

for i 2 V , m D 1; : : : ;Mi and t D 0; : : : ; d .
The following integer program uses decision variables ximt to formulate problem

MPS1jprec; Nd jf .

Max.
nX

iD1

MiX

mD1

dX

tD0
npv0imtximt

s. t.
MiX

mD1

d�pimX

tD0
ximt D 1 .i 2 V / (29.11)

dX

sDt
xims C

MjX

mD1

tCpim�1X

sD0W s�d
xjms � 1 (29.12)

..i; j / 2 EI t D 0; : : : ; d I m D 1; : : : ;Mi/

ximt 2 f0; 1g .i 2 V I m D 1; : : : ;Mi I t D 0; : : : ; d/

where npv0imt D npvim.t�pim/.

630 J.G. Szmerekovsky and P. Venkateshan

Constraints (29.11) ensure that each activity is performed. Constraints (29.12)
enforce the precedence relationship amongst activities.

The third formulation (referred to hereafter as Standard III) makes use of the
same variables yimt, but uses purely discrete properties to describe the set of feasible
solutions. The following integer program also provides an exact formulation of
problem MPS1jprec; Nd jf .

Max.
nX

iD1

MiX

mD1

dX

tD0
npvimtyimt

s. t.
MiX

mD1

dX

tD0
yimt D 1 .i 2 V / (29.13)

MiX

mD1

dX

sDt
yims C

MjX

mD1

tCpjm�1X

sD0
yjms � 1 ..i; j / 2 EI t D 0; : : : ; d / (29.14)

yimt 2 f0; 1g .i 2 V I m D 1; : : : ;Mi I t D 0; : : : ; d /

In Standard III constraints (29.13) ensure that each activity is performed, and
constraints (29.14) enforce the precedence relationships among the activities.

Each instance of MPS1jprec; Nd jf was solved using NF and the three standard
formulations. Tables 29.2, 29.3, 29.4, and 29.5 summarize the computational results.
The entries in these tables represent the average NPV and computational time over
all ten problem instances that are generated for each combination of the number of
activities, the network density, the maximum crashing percentage, and the payment
scheme. As in the original experiments, a maximum limit of the smallest multiple
of 5 min greater than the maximum time taken to solve any problem instance using
NF was imposed per problem instance solved using the standard formulations. As
in the original experiments, this resulted in the optimal solution not being found for
all instances with the Standard I and Standard II formulations. Specifically, with
the Standard II formulation not even a feasible solution was obtained for many
problems where each activity duration was generated from the interval [1, 20]. When
more than 50 % of the problem instances were unsolvable in the 300 s limit, average
values are not reported for the Standard II formulation in the tables. More details on
the failure of Standard I and Standard II to solve the problem instances are reported
in Table 29.8 and discussed subsequently.

Tables 29.2, 29.3, 29.4, and 29.5 report the results of the updated experiments.
Specifically, we are able to observe the following:

• The average computational time is increasing with the range of activity durations
([1,10] versus [1,20]) and the maximum crashing amount, with the effect of the
range of activity durations being larger.

• The average computational time is increasing with the density of the network.

29 The Discrete Time-Cost Tradeoff Problem with Irregular Starting Time Costs 631

Table 29.2 Comparison of formulations—LSP, density D 25 %, n D 30; underlined entries in
the tcpu columns indicate the formulation that resulted in least computational time

Crashing By

25 % 50 % 75 %

Formulation Interval ˇ LP IP tcpu LP IP tcpu LP IP tcpu

Standard I [1–10] 1 34,260 12,390 <1 35,277 12,390 <1 36,046 12,390 1

0.995 32,921 6,559 1 34,464 6,895 19 35,461 6,950 43

0.99 32,148 2,467 1 34,164 3,194 8 35,308 3,360 31

Standard II [1–10] 1 12,390 12,390 2 12,390 12,390 4 12,390 12,390 6

0.995 10,962 6,559 50 12,927 6,300 281 13,050 6,366 300

0.99 10,389 2,467 57 14,483 2,366 300 15,316 2,574 300

Standard III [1–10] 1 13,190 12,390 2 13,440 12,390 4 13,566 12,390 4

0.995 7,527 6,559 2 8,187 6,895 4 8,390 6,950 5

0.99 3,452 2,467 3 4,540 3,194 4 4,837 3,360 6

NF [1–10] 1 12,390 12,390 <1 12,390 12,390 2 12,390 12,390 6

0.995 6,559 6,559 <1 6,895 6,895 2 6,950 6,950 6

0.99 2,467 2,467 <1 3,194 3,194 3 3,360 3,360 7

Standard I [1–20] 1 34,477 12,390 1 35,397 12,390 3 36,114 12,390 4

0.995 32,649 2,963 215 34,398 3,647 280 35,449 3,691 300

0.99 31,806 �1;559 76 34,085 �522 241 35,376 �272 300

Standard III [1–20] 1 13,262 12,390 12 13,475 12,390 21 13,584 12,390 24

0.995 4,049 2,963 14 5,033 3,648 33 5,227 3,700 40

0.99 �649 �1;559 12 609 �521 28 1,001 �234 36

NF [1–20] 1 12,390 12,390 3 12,390 12,390 17 12,390 12,390 31

0.995 2,963 2,963 4 3,648 3,648 23 3,700 3,700 47

0.99 �633 �1;559 4 �64 �521 24 43 �234 57

• NF provides the tightest LP relaxation with a gap of less than 1 % when the
optimal NPV of the project is positive. Further, NF performs competitively with
respect to computational time for all problem instances.

• Standard I provides the loosest LP relaxation and is only competitive with respect
to computational time when there is no time value of money (ˇ D 1). It also
experiences better performance with the ETI payment scheme when the time
between payments and, hence, the impact of the time value of money is less
(compared to the LSP payment scheme).

• Standard II provides the third tightest LP relaxation but performs poorest with
respect to computational time. Specifically, for larger problem instances with
activity durations drawn from [1,20] it failed to solve more than half of the
problem instances in the time limit.

• Standard III provides the second tightest LP relaxation and is competitive with
respect to computational time especially when activity durations can be reduced
by up to 75 % through crashing.

632 J.G. Szmerekovsky and P. Venkateshan

Table 29.3 Comparison of formulations—ETI, density D 25 %, n D 30; underlined entries in
the tcpu columns indicate the formulation that resulted in least computational time

Crashing by

25 % 50 % 75 %

Formulation Interval ˇ LP IP tcpu LP IP tcpu LP IP tcpu

Standard I [1–10] 1 12,390 12,390 <1 12,390 12,390 1 12,390 12,390 1

0.995 11,094 10,136 <1 1,090 10,133 21 11,095 10,129 1

0.99 10,065 8,264 <1 10,066 8,266 31 10,097 8,248 31

Standard II [1–10] 1 12,390 12,390 2 12,390 12,390 3 12,390 12,390 6

0.995 10,487 10,136 12 10,414 10,133 47 10,305 10,129 28

0.99 9,047 8,264 41 8,935 8,238 86 8,734 8,246 69

Standard III [1–10] 1 12,390 12,390 1 12,390 12,390 2 12,390 12,390 3

0.995 10,167 10,136 2 10,170 10,133 3 10,171 10,129 4

0.99 8,339 8,264 2 8,336 8,266 3 8,338 8,248 4

NF [1–10] 1 12,390 12,390 <1 12,390 12,390 2 12,390 12,390 5

0.995 10,139 10,136 <1 10,136 10,133 2 10,132 10,129 6

0.99 8,267 8,264 <1 8,268 8,266 2 8,252 8,248 5

Standard I [1–20] 1 12,390 12,390 2 12,390 12,390 3 12,390 12,390 3

0.995 10,769 8,647 205 10,763 8,633 189 10,793 8,613 128

0.99 9,733 6,070 202 9,751 6,042 258 9,902 5,978 211

Standard III [1–20] 1 12,390 12,390 6 12,390 12,390 8 12,390 12,390 13

0.995 8,691 8,650 14 8,687 8,640 20 8,686 8,613 22

0.99 6,193 6,075 13 6,177 6,052 21 6,185 6,010 29

NF [1–20] 1 12,390 12,390 3 12,390 12,390 17 12,390 12,390 32

0.995 8,652 8,650 3 8,641 8,640 16 8,615 8,613 30

0.99 6,076 6,075 3 6,052 6,052 17 6,010 6,010 33

The first point is intuitive in that longer activity durations and more crashing
will result in more activity modes. Further, the longer activity durations also
result in a larger project horizon (d) having a double impact, which explains
the stronger effect. Though the first point is consistent with the results of the
original experiments, the second point is not. In the original experiments the
effect of network density on average computational time was ambiguous. But,
with the updated experiments using the latest version of CPLEX we see a clear
trend that network density increases average computational time. This is likely
due to a combination of increased number of constraints in the formulations and
the associated increased project horizons (d). The remaining points concerning
the performances of the different formulations are consistent with the original
experiments. The relative advantages of the different formulations can be explained
by considering the sparsity of the formulations.

Tables 29.6 and 29.7 report the average densities and number of nonzeroes for
the formulations. Clearly, NF provides the sparsest formulation with the average
density of the constraint matrix never exceeding 0.05 % while the other formulations

29 The Discrete Time-Cost Tradeoff Problem with Irregular Starting Time Costs 633

Table 29.4 Comparison of formulations—LSP, density D 75 %, n D 30; underlined entries in
the tcpu columns indicate the formulation that resulted in least computational time

Crashing By

25 % 50 % 75 %

Formulation Interval ˇ LP IP tcpu LP IP tcpu LP IP tcpu

Standard I [1–10] 1 42,743 15,142 <1 43,713 15,142 1 44,317 15,142 1

0.995 41,274 7,163 2 42,823 7,664 6 43,646 7,672 58

0.99 40,495 1,801 2 42,510 2,860 53 43,473 3,144 171

Standard II [1–10] 1 15,142 15,142 3 15,142 15,142 5 15,142 15,142 7

0.995 14,184 7,163 102 16,597 7,067 300 16,989 6,565 300

0.99 14,065 1,801 84 19,026 2,062 300 20,444 1,712 300

Standard III [1–10] 1 16,081 15,142 3 16,351 15,142 5 16,443 15,142 6

0.995 8,254 7,163 4 9,095 7,664 8 9,241 7,672 9

0.99 2,911 1,801 4 4,380 2,860 8 4,771 3,144 9

NF [1–10] 1 15,142 15,142 <1 15,142 15,142 3 15,142 15,142 7

0.995 7,163 7,163 1 7,664 7,664 4 7,672 7,672 9

0.99 1,836 1,801 <1 2,860 2,860 4 3,145 3,144 9

Standard I [1–20] 1 42,823 15,142 2 43,701 15,142 4 44,463 15,142 6

0.995 40,733 2,207 253 42,532 3,265 300 43,676 3,538 300

0.99 39,877 �3;245 129 42,219 �1;645 269 43,639 �1;077 300

Standard III [1–20] 1 16,077 15,142 18 16,331 15,142 28 16,481 15,142 41

0.995 3,346 2,208 33 4,756 3,286 51 5,212 3,582 60

0.99 �2;318 �3;245 18 �583 �1;645 34 159 �999 48

NF [1–20] 1 15,142 15,142 6 15,142 15,142 20 15,142 15,142 39

0.995 2,208 2,208 8 3,286 3,286 39 3,582 3,582 60

0.99 �960 �3;245 9 �271 �1;645 37 �116 �999 89

experience densities which are approximately two orders of magnitude larger. This
allows NF to be competitive in terms of the total number of nonzero coefficients
despite its large number of constraints with only Standard I having fewer nonzeroes
on average and Standard II and Standard III having one or two orders of magnitude
more nonzeroes on average. The tables also highlight the reason for the poor
performance of Standard II, as its loose LP relaxation can be seen to be paired
with a large number of nonzeroes, resulting in poor computational performance.
Further, on average Standard III has only approximately one-fifth to one-half the
number of nonzeroes of Standard II. When coupled with its poor LP relaxation, this
explains the superior solution times with other formulations compared to Standard
II as well as the problems encountered when using the Standard II formulation
in solving problems where activity durations are drawn from [1,20]. In contrast,
the other three formulations show tradeoffs in the tightness of LP relaxations, the
number of nonzeroes, and their sparsity so that they remain competitive with each
other on various problem instances.

634 J.G. Szmerekovsky and P. Venkateshan

Table 29.5 Comparison of formulations—ETI, density D 75 %, n D 30; underlined entries in
the tcpu columns indicate the formulation that resulted in least computational time

Crashing by

25 % 50 % 75 %

Formulation Interval ˇ LP IP tcpu LP IP tcpu LP IP tcpu

Standard I [1–10] 1 15,142 15,142 <1 15,142 15,142 1 15,142 15,142 1

0.995 13,670 12,331 <1 13,666 12,350 2 13,674 12,332 3

0.99 12,524 10,039 <1 12,537 10,093 4 12,587 10,024 12

Standard II [1–10] 1 15,142 15,142 3 15,142 15,142 5 15,142 15,142 8

0.995 12,843 12,331 31 12,742 12,350 53 12,599 12,332 53

0.99 11,115 10,039 52 10,963 10,072 144 10,686 9,759 158

Standard III [1–10] 1 15,142 15,142 2 15,142 15,142 3 15,142 15,142 4

0.995 12,370 12,331 3 12,384 12,350 4 12,370 12,332 5

0.99 10,162 10,039 3 10,171 10,093 5 10,163 10,024 7

NF [1–10] 1 15,142 15,142 <1 15,142 15,142 3 15,142 15,142 8

0.995 12,333 12,331 <1 12,350 12,350 2 12,333 12,332 7

0.99 10,044 10,039 <1 10,094 10,093 2 10,026 10,024 6

Standard I [1–20] 1 15,142 15,142 2 15,142 15,142 3 15,142 15,142 4

0.995 13,300 10,542 187 13,316 10,560 189 13,384 10,500 181

0.99 12,114 7,382 216 12,174 7,369 276 12,292 7,296 192

Standard III [1–20] 1 15,142 15,142 9 15,142 15,142 12 15,142 15,142 19

0.995 10,610 10,545 20 10,633 10,561 35 10,651 10,514 50

0.99 7,546 7,385 18 7,566 7,388 36 7,605 7,316 37

NF [1–20] 1 15,142 15,142 6 15,142 15,142 22 15,142 15,142 43

0.995 10,545 10,545 5 10,561 10,561 18 10,514 10,514 38

0.99 7,386 7,385 5 7,389 7,388 19 7,317 7,316 41

Table 29.6 Comparison of formulations in terms of sparsity—density D 25 %, n D 30

Crashing By
25 % 50 % 75 %

Formulation Interval Density Nonzeros Density Nonzeros Density Nonzeros

Standard I [1–10] 4.9 % 14,721 4.91 % 25,807 4.9 % 34,895

[1–20] 4.91 % 46,289 4.92 % 85,611 4.92 % 121,404

Standard II [1–10] 2.58 % 561,481 2.19 % 1,471,546 2.03 % 2,506,280

[1–20] 2.27 % 4,879,556 2.0 % 14,843,152 1.89 % 28,252,590

Standard III [1–10] 3.38 % 365,292 3.35 % 634,285 3.31 % 850,910

[1–20] 3.41 % 2,199,423 3.37 % 4,029,268 3.33 % 5,659,280

NF [1–10] 0.05 % 24,002 0.03 % 50,616 0.02 % 73,282

[1–20] 0.01 % 89,521 0.01 % 186,146 0.007 % 275,646

29 The Discrete Time-Cost Tradeoff Problem with Irregular Starting Time Costs 635

Table 29.7 Comparison of formulations in terms of sparsity—density D 75 %, n D 30

Crashing by
25 % 50 % 75 %

Formulation Interval Density Nonzeros Density Nonzeros Density Nonzeros

Standard I [1–10] 5.07 % 19;091 5.07 % 33;339 5.07 % 44;840

[1–20] 5.09 % 59;214 5.09 % 109;453 5.09 % 154;927

Standard II [1–10] 2.58 % 814;583 2.22 % 2;114;146 2.07 % 3;565;657

[1–20] 2.35 % 7;019;835 2.09 % 21;301;330 1.97 % 40;298;770

Standard III [1–10] 3.37 % 539;213 3.34 % 932;693 3.31 % 1;243;882

[1–20] 3.41 % 3;223;830 3.37 % 5;893;760 3.34 % 8;253;887

NF [1–10] 0.05 % 29;422 0.03 % 61;024 0.02 % 87;435

[1–20] 0.01 % 106;230 0.009 % 219;527 0.006 % 323;636

Recall that due to the maximum time limit imposed when solving the problem
instances, Standard I and Standard II formulations did not always obtain an
optimal solution. Following the original experiments we provide Table 29.8, which
summarizes for each scenario of problem parameters and payment scheme, the
number of integer programs that could not be solved within the imposed time limit
by the standard formulations. Note that each problem instance is solved for each
type of payment scheme (LSP or ETI) with three different crashing percentages.
So, summing across the ten different problem instances, we obtain a total of 30
different integer programs for each type of payment scheme that the computational
results summarized in Tables 29.2, 29.3, 29.4, and 29.5 were run against. For cases
with unsolved problems the gap (ratio of difference in objective function values
between that obtained by the respective formulation and the optimal solution) is
also reported. A dash in the table indicates that a feasible solution was not obtained
in a majority of the corresponding problem instances within the computational time
limit. It is observed that a problem with the ETI payment scheme appears to be
less difficult to solve for the standard formulations than one with the LSP payment
scheme. From Tables 29.2, 29.3, 29.4, and 29.5 it can be seen that this is likely the
result of tighter LP relaxations for the problems based on the ETI payment scheme.

We also updated the original tests to determine the limits of problem sizes that
can be solved in reasonable time by the best performing formulations—NF and
Standard III. Tables 29.9 and 29.10 report the summary of average computational
times for problem instances with number of activities n D 90, activity durations
drawn from the interval [1,20], ˇ D 0:99, and crashing of 75 % (the most difficult
combination of problem parameters). From the tables it is apparent that n D 90

represents approximately the limit on the problem size which NF and Standard III
can handle reasonably. Between NF and Standard III, NF clearly appears to be the
preferred choice.

636 J.G. Szmerekovsky and P. Venkateshan

Table 29.8 Effect of time limit on solution for standard formulations; entries indicate number of
unsolved problems, and if non-zero, also the associated gap

Number unsolved Number unsolved

Problem parameters Payment scheme Standard I Standard II

Density D 25%; n D 30 LSP 0 0

ˇ D 1; IntervalŒ1; 10� ETI 0 0

Density D 25%; n D 30 LSP 0 18, 9.9 %

ˇ D 0:995; IntervalŒ1; 10� ETI 0 1, 0 %

Density D 25%; n D 30 LSP 0 21, 11.5 %

ˇ D 0:99; IntervalŒ1; 10� ETI 2, 0 % 3, 1 %

Density D 25%; n D 30 LSP 0 –

ˇ D 1; IntervalŒ1; 20� ETI 0 –

Density D 25%; n D 30 LSP 23, 0.1 % –

ˇ D 0:995; IntervalŒ1; 20� ETI 16, 0.1 % –

Density D 25%; n D 30 LSP 18, 8.1 % –

ˇ D 0:99; IntervalŒ1; 20� ETI 17, 5.3 % –

Density D 75%; n D 30 LSP 0 0

ˇ D 1; IntervalŒ1; 10� ETI 0 0

Density D 75%; n D 30 LSP 1, 0 % 21, 23.4 %

ˇ D 0:995; IntervalŒ1; 10� ETI 0 0

Density D 75%; n D 30 LSP 3, 0 % 20, 42.7 %

ˇ D 0:99; IntervalŒ1; 10� ETI 0 8, 3.6 %

Density D 75%; n D 30 LSP 0 –

ˇ D 1; IntervalŒ1; 20� ETI 0 –

Density D 75%; n D 30 LSP 27, 0.8 % –

ˇ D 0:995; IntervalŒ1; 20� ETI 17, 0.1 % –

Density D 75%; n D 30 LSP 20, 0.3 % –

ˇ D 0:99; IntervalŒ1; 20� ETI 22, 4.5 % –

Table 29.9 Performance of NF and Standard III models on large
and difficult problem instances: n D 90, interval [1,20], ˇ D 0:99,
crashing by 75 %, densityD 25 %

Payment

Formulation scheme LP LP tcpu

NF LSP �1,057 �2,604 1,025

Standard III LSP �1,417 �2,604 1,985

NF ETI 15,911 15,987 198

Standard III ETI 16,636 15,987 1,106

29 The Discrete Time-Cost Tradeoff Problem with Irregular Starting Time Costs 637

Table 29.10 Performance of NF and Standard III models on large
and difficult problem instances: n D 90, interval [1,20], ˇ D 0:99,
crashing by 75 %, densityD 75 %

Payment

Formulation scheme LP IP tcpu

NF LSP �583 �3,517 1,568

Standard III LSP �2,499 �3,517 2,407

NF ETI 20,132 20,129 279

Standard III ETI 20,581 20,129 2,482

29.5 Conclusions

This chapter reviewed the literature on the discrete time-cost tradeoff problem
(DTCTP). It then explored four formulations for solving problem MPS1jprec; Nd jf ,
which can capture the importance of including financial objective functions in time-
cost tradeoff project scheduling. The empirical tests performed in Szmerekovsky
and Venkateshan (2012) were updated using the current version of CPLEX.
Through empirical testing the results of Szmerekovsky and Venkateshan (2012)
were reaffirmed, showing that NF efficiently solves problem instances with up
to 90 activities and outperforms Standard I, Standard II, and Standard III. The
performance of NF is due to the tightness of the LP relaxation, the sparseness of
the constraint matrix, and the reduced number of binary constraints.

References

Akkan C, Drexl A, Kimms A (2005) Network decomposition-based benchmark results for the
discrete time-cost tradeoff problem. Eur J Oper Res 165(2):339–358

Bey RB, Doersch RH, Patterson JH (1981) The net present value criterion: its impact on project
scheduling. Proj Manag Q 12(2):35–45

Brucker P, Drexl X, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project
scheduling: notation, classification, models and methods. Eur J Oper Res 112(1):3–41

Crowston WB (1970) Decision CPM: network reduction and solution. Oper Res Q 21:435–452
Crowston WB, Thompson GL (1967) Decision CPM: a method for simultaneous planning,

scheduling, and control of projects. Oper Res 15:407–426
Dayanand N, Padman R (1998) On payment schedules in client-contractor negotiations in projects:

an overview of the problem and research issues. In: Wȩglarz J (ed) Project scheduling: recent
models, algorithms and applications. Kluwer Academic, Boston

Dayanand N, Padman R (2001) Project contracts and payment schedules: the client’s problem.
Manag Sci 47(12):1654–1667

De P, Dunne EJ, Ghosh JB, Wells CE (1995) The discrete time-cost tradeoff problem revisited. Eur
J Oper Res 81(2):225–238

De P, Dunne EJ, Ghosh JB, Wells CE (1997) Complexity of the discrete time-cost tradeoff problem
for project networks. Oper Res 45(2):302–306

638 J.G. Szmerekovsky and P. Venkateshan

Deinko VG, Woeginger GJ (2001) Hardness of the approximation of the discrete time-cost tradeoff
problem. Oper Res Lett 29:207–210

Demeulemeester EL, Herroelen W (2002) Project scheduling: a research handbook. Kluwer
Academic, Boston

Demeulemeester EL, Herroelen WS, Elmaghraby SE (1996) New computational results on the
discrete time/cost tradeoff problem in project networks. Eur J Oper Res 88(1):50–68

Demeulemeester EL, De Reyck B, Foubert B, Herroelen WS, Vanhoucke M (1998) Optimal
procedures for the discrete time/cost tradeoff problem in project networks. J Oper Res Soc
49(11):1153–1163

Drezet L-E (2008) RCPSP with financial costs. In: Artigues C, Demassey S, Néron E (eds)
Resource-constrained project scheduling: models, algorithms, extensions and applications,
Chap. 14. Wiley, Hoboken

Goldratt EM (1997) Critical chain. North River Press, Great Barrington
Grigoriev A, Woeginger GJ (2004) Project scheduling with irregular costs: complexity, approx-

imability, and algorithms. Acta Inform 41(2/3):83–97
Hadjiconstantinou E, Klerides E (2010) A new path-based cutting plane approach for the discrete

time-cost tradeoff problem. Comput Manag Sci 7:313–336
Hafizoğlu AB, Azizoğlu M (2010) Linear programming based approaches for the discrete time/cost

trade-off problem in project networks. J Oper Res Soc 61(4):676–685
Harvey RT, Patterson JH (1979) An implicit enumeration algorithm for the time/cost tradeoff

problem in project network analysis. Found Contr Eng 4:107–117
Hindelang TJ, Muth JF (1979) A dynamic programming algorithm for decision CPM networks.

Oper Res 27:225–241
Hochbaum DS (2004) Selection, provisioning, shared fixed costs, maximum closure, and implica-

tions on algorithmic methods today. Manag Sci 50(6):709–723
Icmeli O, Erenguc SS, Zappe CJ (1993) Project scheduling problem: a survey. Int J Oper Prod Man

13(11):80–91
Kolisch R, Sprecher A (1996) PSPLIB: a project scheduling problem library. Eur J Oper Res

96(1):205–216
Meyer WL, Shaffer LR (1965) Extending CPM for multiform project time-cost curves. J Constr

Div-ASCE 91:45–65
Möhring RH, Schulz AS, Stork F, Uetz M (2001) On project scheduling with irregular starting

time costs. Oper Res Lett 28(4):149–154
Möhring RH, Schulz AS, Stork F, Uetz M (2003) Solving project scheduling problems by

minimum cut computations. Manag Sci 49(3):330–350
Panagiotakopoulos D (1977) A CPM time-cost computational algorithm for arbitrary activity cost

functions. INFOR 15:183–195
Russell AH (1970) Cash flows in networks. Manag Sci 16(5):357–373
Skutella M (1998) Approximation algorithms for the discrete time-cost tradeoff problem. Math

Oper Res 23:992–1020
Szmerekovsky JG (2005) The impact of contractor behavior on the client’s payment scheduling

problem. Manag Sci 51(4):629–640
Szmerekovsky JG, Vairaktarakis G (2006) Maximizing project cash availability. Nav Res Log

53(4):272–284
Szmerekovsky JG, Venkateshan P (2012) An integer programming formulation for the project

scheduling problem with irregular time-cost tradeoffs. Comp and Oper Res 39(7):1402–1410
Ulusoy G, Cebelli S (2000) An equitable approach to the payment scheduling problem in project

management. Eur J Oper Res 127(2):262–278
Vanhoucke M, Debels D (2007) The discrete time-cost tradeoff problem: extensions and heuristic

procedures. J Sched 10:311–326

Chapter 30
Generalized Discrete Time-Cost Tradeoff
Problems

Mario Vanhoucke

Abstract Time-cost tradeoffs have been extensively studied in the literature since
the development of the critical path method. Recently, the discrete version of the
problem formulation has been extended to various practical assumptions, and solved
with both exact and heuristic optimisation procedures, as described in Vanhoucke
and Debels (J Sched 10:311–326, 2007).
In this chapter, an overview is given of four variants of the discrete time-cost tradeoff
problem and a newly developed electromagnetic meta-heuristic (EM) algorithm to
solve these problems is presented. We extend the standard electromagnetic meta-
heuristic with problem specific features and investigate the influence of various EM
parameters on the solution quality. We test the new meta-heuristic on a benchmark
set from the literature and present extensive computational results.

Keywords Discrete time-cost tradeoff • Electromagnetic algorithm • Net present
value • Project scheduling • Time-switch constraints • Work continuity con-
straints

30.1 Introduction

Time-cost tradeoffs in projects have been the subject of research since the
development of the critical path method, and have led to problem descriptions
under various assumptions. While the early endeavours mainly focused on a linear
non-increasing relation between activity duration and cost (Ford and Fulkerson
1962; Fulkerson 1961; Kelley 1961; Kelley and Walker 1959; Siemens 1971; and
Elmaghraby and Salem 1984), researchers gradually extended this basic problem

M. Vanhoucke (�)
Faculty of Economics and Business Administration, Ghent University, Gent, Belgium

Technology and Operations Management Area, Vlerick Business School, Gent, Belgium

Department of Management Science and Innovation, University College London, London,
United Kingdom
e-mail: mario.vanhoucke@ugent.be; mario.vanhoucke@vlerick.com; m.vanhoucke@ucl.ac.uk

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8_30

639

mailto:mario.vanhoucke@ugent.be
mailto:mario.vanhoucke@vlerick.com
mailto:m.vanhoucke@ucl.ac.uk

640 M. Vanhoucke

type to concave (Falk and Horowitz 1972), convex (Elmaghraby and Salem 1982;
Kapur 1973; Lamberson and Hocking 1970; Siemens and Gooding 1975) or
discrete time-cost relations (Akkan et al. 2005; Azaron et al. 2005; Billstein and
Radermacher 1977; Cohen et al. 2007; Crowston 1970; Crowston and Thompson
1967; De et al. 1995, 1997; Demeulemeester and Herroelen 1996; Demeulemeester
et al. 1998; Elmaghraby and Kamburowsky 1992; Hazır et al. 2010a,b, 2011;
Hindelang and Muth 1979; Ke et al. 2009, 2012; Klerides and Hadjiconstantinou
2010; Mokhtari et al. 2011; Patterson 1979; Pour et al. 2010; Robinson 1975;
Skutella 1998; Tareghian and Taheri 2006, 2007; Vanhoucke 2005; Vanhoucke and
Debels 2007; Vanhoucke et al. 2002; Wiest and Levy 1977; Sonmez and Bettemir
2012).

The specific problem addressed in this chapter is the discrete time-cost tradeoff
problem and involves the selection of a set of execution modes (i.e., time-cost
pairs for each activity) in order to achieve a certain objective. The objective of this
problem can be threefold. The so-called deadline problem involves the scheduling
of project activities in order to minimise the total cost of the project while meeting
a given deadline. The budget problem aims at minimising the project duration
without exceeding a given budget. A third objective involves the generation of the
complete efficient time-cost profile over the set of feasible project durations. Due
to its practical relevance, the discrete time-cost tradeoff problem has been the main
subject of research, leading to various solution approaches for various variants of the
problem. In this chapter, we study the discrete time-cost tradeoff problem (DTCTP)
under four different assumptions, and develop a meta-heuristic solution approach
for the deadline version of the problem based on the principles of electromagnetic
optimisation (Birbil and Fang 2003).

The outline of this chapter is as follows. In Sect. 30.2, we briefly present four
versions of the discrete time-cost tradeoff problem and give an overview of previous
research efforts in the literature. Section 30.3 explains the building blocks of our
electromagnetic meta-heuristic for the four versions of the problem in detail. In
Sect. 30.4, we illustrate our novel approach on a problem example. Section 30.5
reports computational experience on a benchmark dataset. Section 30.6 draws
overall conclusions and highlights future research avenues.

30.2 Problem Formulation

We assume that a project is represented by an activity-on-arc network G D .V;E/,
where the set of nodes, V , represents network events and the set of arcs, E ,
represents the activities of the project. The duration pijm of an activity .i; j / 2 E is
a discrete, non-increasing function of the amount of a single nonrenewable resource
(money, cijm) allocated to it. The tuple (pijm; cijm) is referred to as a mode, and we
assume that each activity has jMijj modes with pij1 < pij2 < : : : < pijjMijj and
cij1 > cij2 > : : : > cijjMij j. We assume that the project is subject to a pre-specified

30 Generalized Discrete Time-Cost Tradeoff Problems 641

project deadline d . A solution can be represented by a selected set of modes
(pijm; cijm) (with m 2 Mij) for each activity .i; j / such that a certain objective
is optimised. In the present chapter, we study four versions of the discrete time-
cost tradeoff problem which differ in their objective function or their problem
characteristics. In Sect. 30.2.1, we briefly review the specific differences between
the four versions of the DTCTP. Section 30.2.2 briefly discusses the relevance of
the four problem types in research environments and in practice.

30.2.1 Problem Descriptions

This section gives a summary of the numerous research efforts from literature
for the four variants of the discrete time-cost tradeoff problem and presents the
classification codes according to the classification schemes of Herroelen et al.
(1999) and/or Brucker et al. (1999).

The basic discrete time-cost tradeoff problem (DTCTP) involves the scheduling
of project activities by selecting a mode m for each activity .i; j / in order to
minimise the total cost

P
.i;j /2E cijm of the project. The problem can be classified

as 1; T jcpm; ın; disc; mujav or MPS1jprec; d j˙ci .pi/, and has been solved by
various authors as discussed in Sect. 30.1.

The discrete time-cost tradeoff problem with time-switch constraints
(DTCTP-tsc) is very similar to the DTCTP, but assumes that activities are forced
to start in a specific time interval and are down in some specified rest interval.
Time-switch constraints have been introduced by Yang and Chen (2000) as a logical
extension of the analyses and achievements of Chen et al. (1997), and have been
incorporated in the DTCTP as a special type of constraints in which each activity
follows one of three possible work/rest patterns. Firstly, if an activity follows a
day-pattern, it can only be executed during day time, from Monday till Friday.
Secondly, an activity follows a d&n-pattern if it can be executed during the day or
night, from Monday till Friday. Finally, a dnw-pattern means that the corresponding
activity can be in execution every day or night and also during the weekend. The
problem can be classified as 1; T jtsc; cpm; ın; disc; mujav, and has been solved to
optimality by Vanhoucke et al. (2002) and Vanhoucke (2005).

The discrete time-cost tradeoff problem with work continuity constraints
(DTCTP-wc) also minimises the total cost of the schedule, that consists of the
sum of both the direct activity costs (resulting from the selection of a mode for
each activity) and work continuity cost for each activity group E 0 � E . Work
continuity constraints have been defined by El-Rayes and Moselhi (1998) in order
to model the timely movement of project resources and hence to maintain continuity
of work. The work continuity cost represents the cost of the use of resources during
the execution of activity group E 0. This cost can be minimised by minimising
the time-span between the first activity (start of use of resources) and last activity
(release of resources) of the activity group E 0. Vanhoucke and Debels (2007) have

642 M. Vanhoucke

shown that the DTCTP-wc can easily be transformed into the basic DTCTP by
adding two extra arcs per work continuity resource group, and hence, the problem
can be classified as 1; T jcpm; ın; disc; mujav. The problem has been solved to
optimality by Reda (1990).

The discrete time-cost tradeoff problem with net present value optimisation
(DTCTP-npv) involves the scheduling of project activities in order to maximise the
net present value of the project subject to precedence relations. In addition to the cost
cijm of modem of activity .i; j /, we assume that positive cash flows are associated to
the project events (nodes). We use cFCj � 0 to denote the positive payment received
at the realisation of event j . Note that we assume that, without loss of generality,
each cash outflow cijm occurs at the completion of each activity. This is a reasonable
assumption, since it is always possible to calculate a terminal value of each activity’s
cash flow upon completion by compounding the associated cash flow to the end of
the activity. Consequently, the net (positive or negative) cash flow of each event
j equals cFj D cFCj �P.i;j /2E�

j
cijm, with E�j denoting the set of all incoming

arcs of event j . The problem can be classified as 1; T jcpm; ın; disc;mujnpv or
MPS1jprec; d j˙cFi ˇCi . An exact method for this problem has been presented by
Erengüç et al. (1993). A heuristic method is proposed by Vanhoucke and Debels
(2007).

30.2.2 Practical Relevance

The development of a meta-heuristic algorithm is based on and inspired by various
real-life projects where time-cost tradeoffs are a matter of degree. Most of these
applications have been described elsewhere such that a detailed description needs
no repetition here.

The use of time/switch constraints is straightforward and boils down to the pres-
ence of rest and work periods in daily work schedules. Although the specific choice
of three work/rest patterns does not exclude more general problem descriptions,
it is based on a practical construction project in the field of a water purification
company in Belgium (Europe). In this project, a number of filtering machines have
to be installed to purify water towers and make use of one or more filtering bags. The
more filtering bags are used at the same time, the lower the duration of the particular
job but the larger the execution cost. Some of these machines can work without
human intervention (a dnw-pattern) or, in other cases, with a human intervention
once in a while, such as control operations (since these activities only require one
person once in a while, they follow a d&n-pattern). Of course, certain activities of
the project require a whole team and can therefore only be executed during the day
(day-pattern activities, see Vanhoucke et al. 2002).

The practical relevance of work continuity constraints has been extensively
described in literature. In Vanhoucke (2006), a literature overview and various
practical applications of work continuity constraints in project scheduling have

30 Generalized Discrete Time-Cost Tradeoff Problems 643

been given, among which a huge and complex tunnel construction project in
the Netherlands, Europe (see www.westerscheldetunnel.nl). Optimisation of work
continuity could lead to enormous cost savings in the schedule for a large freezing
machine needed to bore the links between the two lanes of the tunnel. The
scheduling details of this tunnel project are summarised in Vanhoucke (2007).

The use and practical value of net present value optimisation has been extensively
described in Herroelen et al. (1997). Vanhoucke and Demeulemeester (2003) have
illustrated the optimisation of the net present value in a capacity expansion and
construction project at a water purification company in Belgium, Europe.

30.3 Electromagnetic Optimisation

In this section, the electromagnetic meta-heuristic procedure to solve the four
variants of the DTCTP is explained in detail. The EM approach follows the same
generic approach as the original EM algorithm of Birbil and Fang (2003) and can
be displayed in pseudo-code as follows:

Algorithm EM DTCTP-extensions
create initial population
while stop criterion not met

compute forces
apply forces
local search

endwhile

In the remainder of this section, we explain the specific sub-routines of our EM
algorithm for the four different versions of the DTCTP.

Create initial population: The algorithm creates an initial population containing
�pop population elements. Each population element, or a so-called solution point xs

(s D 1; : : : ; �pop) represents a vector of activity modes that need to be transformed
into a project schedule. The EM algorithm randomly assigns values to each element
xsij ..i; j / 2 E/ of vector xs between 1 and jMijj, and transforms the resulting
vector into a project schedule using the following schedule-generation schemes:
The DTCTP and the DTCTP-wc can be efficiently scheduled by determining the
earliest completion time of each activity, using the traditional forward pass critical
path calculations (problem cpmjCmax). The DTCTP-tsc can be efficiently scheduled
by the adapted forward pass critical path calculation method of Yang and Chen
(2000) (problem cpm; tscjCmax). The DTCTP-npv reduces to the well-known max-
npv problem (problem cpmjnpv), which can be efficiently solved by the recursive
search procedure of Vanhoucke et al. (2001). In order to use this activity-on-node
(AoN) procedure, the AoA project network needs to be considered as an AoN
network: each event j is then an activity with zero duration and a cash flow cFj
and the arcs represent the precedence relations with time lags ıij D pijm.

www.westerscheldetunnel.nl

644 M. Vanhoucke

Compute forces: This sub-routine calculates charges for each solution point as
well as a total force exerted on each solution point by all other solution points,
following the principles of Coulomb’s law. The charge of each solution point xs

depends on its objective function value f .xs/ in relation to the objection function
value of the current best point xbest in the population, with better objective function
values resulting in higher charges. The charge qs of solution point xs is determined
according to Eq. (30.1). Note that the differences in objective functions are measured
as absolute values in order to cope with both minimisation and maximisation
problems. The formula uses jEj as the number of arcs in the project network.

qs D exp

�jEj jf .xs/� f .xbest/j
P�pop

rD1 jf .xr /� f .xbest/j

!

(30.1)

Next, the algorithm calculates a set of force vectors F s .s D 1; : : : ; �pop/ that are
exerted on the corresponding solution point xs , as follows:

F s D
�popX

rD1Wr¤s

(
.xr � xs/ qsqr

jjxr�xs jj2 ; if f .xr / < f .xs/

.xs � xr/ qsqr

jjxr�xs jj2 ; otherwise
(30.2)

for problems DTCTP, DTCTP-tsc, and DTCTP-wc and

F s D
�popX

rD1Wr¤s

(
.xr � xs/ qsqr

jjxr�xs jj2 ; if f .xr / > f .xs/

.xs � xr/ qsqr

jjxr�xs jj2 ; otherwise
(30.3)

for problem DTCTP-npv.
The general philosophy of Coulomb’s law is that the total force exerted on a

solution point by all other solution points is inversely proportional to the distance
between the solution points and directly proportional to the product of their charges,
as shown in Eqs. (30.2) and (30.3). The equations have been modelled such that
a point with a relatively good objective function value will attract the other one,
whereas a point with the inferior objective value repels the other. The distance
between two solution points is measured by the sum of the absolute values of the
component-wise differences between the mode number of identical activities. This
distance measure is normalised (denoted by the symbol k k) by dividing it by the
maximum of all distances between each pair of solution points, in order to lie in the
interval [0, 1].

Apply forces: A new population is generated by moving each population element
into a direction dictated by the forces. The imposed force is normalised, by dividing
it by the maximal force over all dimensions (i.e., the total number of arcs) for the
population element, and therefore only identifies the direction of the move. The
magnitude of the move is determined by a randomly selected parameter � generated
from a uniform distribution on interval [0, 1] (in analogy with Birbil and Fang 2003)
and by the number of modes for each vector element xsij ..i; j / 2 E) of vector xs .

30 Generalized Discrete Time-Cost Tradeoff Problems 645

xsij D
8
<

:

xsij C �
F sij
F smax

.jMijj � xsij/; if F s
ij > 0

xsij C �
F sij
F smax

.xsij � 1/; otherwise
(30.4)

Since the xsij vector elements are discrete numbers, while the EM move assumes
a fractional solution space, the calculated xsij are rounded up (fractional value above
0.5) or rounded down (fractional value below or equal to 0.5) to prevent that
some mode numbers are seldom or never chosen (e.g., without the rounding up
mechanism, the mode number jMijj will only be chosen (i.e., xsij D jMijj) when �
D 1 and F s

ij D F s
max).

Local search: The generation of new solution points is followed by a local search
procedure, which explores the immediate (Euclidian) neighbourhood of individual
points. The EM procedure presented in this chapter makes use of two sequential
heuristic procedures after the generation of each new population, as follows:

Local search 1: repair function: Any infeasible solution point xs for which the
project duration exceeds the project deadline is subject to a heuristic repair function,
which transforms infeasible solution points into feasible ones. The repair function
iteratively crashes activity durations until the project duration is smaller than the
pre-specified project deadline. The project activities can be selected according to
various heuristic rules:

• Random selection of activity/mode combinations (RAN): the repair method
iteratively selects project activities at random and crashes their durations to their
neighbourhood modes until a feasible solution is obtained.

• Lowest cost per time unit (LCT): all project activities are ranked according to
their cost increase per time unit when crashing the respective activity duration to
its neighbourhood mode. The repair method selects the activity with the lowest
cost increase first, and updates the cost increase ranking each time an activity
duration has been crashed.

• Lowest absolute cost difference (LAC): this method is similar to the LCT method,
but ranks all project activities according to their lowest absolute cost difference
between the activity’s current and neighbourhood mode.

Local search 2: improvement search: Feasible solution points can possibly
be improved by increasing activity durations (and hence, decreasing the activity
cost), resulting in an improved objective function value. A truncated recursive
search procedure randomly ranks all activity/mode combinations and searches
for improved schedules based on a truncated dynamic programming heuristic of
Vanhoucke and Debels (2007). This heuristic search enumerates a subset of all
possible combinations to increase activity durations following the ranking of the
randomly generated activity/mode list, and is truncated after a very small pre-
defined number of backtracking steps. In the present study, the search is truncated
after five backtracking steps, to guarantee a very fast and efficient improvement
search.

Stop criterion: The length of a search is determined by a pre-defined stop
criterion, which is a function of the number of iterations and the size of the

646 M. Vanhoucke

population. More precisely, the length of the search is defined as the product of
the population size and the maximum number of iterations (i.e., �pop � niter), which
serves as a measure for the estimated number of generated schedules during the
complete search. Indeed, since the electromagnetic heuristic completely replaces all
population elements at each iteration run, this product serves as a reliable estimate
for the total number of generated schedules. This approach also allows the fine-
tuning of the population size for identical stop criteria (i.e., varying the �pop and the
niter parameters while keeping their product at a constant level).

30.4 Illustrative Example

In this section, we show the difference between the four problem types on an
example network taken from Vanhoucke et al. (2002) and illustrate the philosophy
of the electromagnetic meta-heuristic on a small example schedule population of the
project. Each arc has two activity modes, which are displayed near the arcs. Dummy
arcs are displayed as dashed arcs. We assume that the project deadline d equals 82
days. The project network and additional data are given in Fig. 30.1.

1 4 7 9 1211

10

6 8 13

2 3 5 1716

14

15

18 1
8 6

36 2
2 12

36 6
26 13

16 1
12 15

10 4
4 20

28 6
6 8

38 1
10 3

22 8
2 14

38 9
26 27

32 7
14 24

40 1
16 19

40 3
6 11

40 1
30 15

32 15
22 16

36 10
14 24

28 4
6 10

8 4
6 23

28 6
20 29

20 3
2 15

34 1
4 17

duration

cost

Start

End

Additional information for the DTCTP-tsc Additional information for the DTCTP-wc
Arc (i,j) Pattern Arc (i,j) Pattern Arc (i,j) Pattern

 Activity group E' = {(3,5), (5,10), (9,12), (10,11), (11,12)} is subject to

(1,2) dnw (5,10) dnw (10,11) d&n
 work continuity constraints with a cost 6 per time unit of use.

(1,4) dnw (5,13) dnw (11,12) d&n Additional information for the DTCTP-npv
(1,6) d&n (6,8) dummy (12,15) day Event j Event j Event j

(2,3) d&n (6,15) d&n (12,16) dummy 1 0 7 10 13 6

(2,8) dummy (6,16) dnw (13,14) day 2 10 8 12 14 5

(3,5) dnw (7,9) day (14,15) dummy 3 10 9 11 15 20

(4,7) dnw (8,13) day (14,16) dummy 4 1 10 14 16 15

(4,11) dnw (9,11) dummy (15,17) day 5 3 11 10 17 20

(5,9) dummy (9,12) d&n (16,17) dnw 6 15 12 3

cj
F+ cj

F+ cj
F+

Fig. 30.1 An AoA project network example (source of network: Vanhoucke et al. 2002)

30 Generalized Discrete Time-Cost Tradeoff Problems 647

Table 30.1 Solutions for the example project of Fig. 30.1

Activity Work continuity Net present Project
cost E 0 duration E 0 cost value duration

DTCTP 127 [17,68] 306 13.09 82 days

DTCTP-wc 153 [27,58] 186 13.83 76 days

DTCTP-npv 153 [22,72] 300 18.39 82 days

DTCTP-tsc 199 [23,64] 246 �6.36 82 days

We assume, without loss of generality, that the duration of each activity mode has
been expressed in work periods of 12 h. The DTCTP versions without time-switch
constraints all assume that activities can be executed during all days of the week (no
weekends and no holidays), i.e., all days are working days of 12 h. The DTCTP-tsc,
on the contrary, allows night execution (for the d&n and dnw patterns), and hence,
can be used to execute two work periods of an activity. On the other hand, the day
and d&n patterns exclude the possibility to execute an activity during the weekend.

Table 30.1 reports the total activity cost, the work continuity cost, the net present
value, the duration of the activities of the work continuity group, and the total project
duration for four optimal schedules of the example project. The table shows that the
objective values of the problem types are indeed optimised (as indicated in bold).
The optimal DTCTP and DTCTP-tsc schedules have the lowest total activity cost,
the DTCTP-wc schedule has the lowest total cost (153C 186), while the DTCTP-
npv schedule has the highest net present value. Detailed results can be found in the
appendix. Note that the objective function values of the DTCTP-tsc are separated
from the rest of the table, since they cannot be compared with the values of the
other problem formulations. The DTCTP-tsc incorporates additional time-switch
constraints, which are not taken into account by the three other problem types.

Figure 30.2 shows an example translated from our CCC code of an electromag-
netic move for the DTCTP on a population of three solution elements x1, x2, and
x3 with a total activity cost of 159, 138, and 141, respectively. The charges, the
(normalised) distance matrix, and the forces are displayed in the figure. The new
solution point x4 is generated by performing the resulting move on a subset of the
activity set (these activities are indicated in grey, e.g., activity (5, 10) is not part
of the move) of solution point x3. Computational results of Sect. 30.5 reveal that
this outperforms the complete move on all activities. The general electromagnetic
philosophy is conceptually displayed in the figure. Since x3 lies far from x1 and
has a better objective function, the resulting move is directed away from x1 with
a small magnitude. The opposite is true for x3 versus x2. The new solution point
x4 has a project duration larger than the project deadline, and hence, the algorithm
randomly decreases some activity durations (displayed by the grey local search area
around x4). The improvement step increases the duration of activity (13,14) within
its available slack, leading to the optimal solution for the DTCTP.

648 M. Vanhoucke

Non-dummy
activities x 1 x 2 x 3 F3 ||F3 || M1 R2 I3 Distances Normalized distances

(1,2) 1 1 2 -0.037 -1.000 1 1 1 x 1 x2 x3 x1 x2 x3

(1,4) 2 2 2 0.000 0.000 2 2 2 x 1 0 5 6 x 1 0 0.8 1

(1,6) 2 2 2 0.000 0.000 2 2 2 x 2 5 0 5 x 2 0.8 0 0.8

(2,3) 2 2 2 0.000 0.000 2 1 1 x 3 6 5 0 x 3 1 0.8 0

(3,5) 1 2 2 0.000 0.000 2 2 2

(4,7) 2 2 2 0.000 0.000 2 2 2 Charges: q1 = 0, q2 = 1 and q3 = 0.308,

(4,11) 2 2 2 0.000 0.000 2 1 2

(5,10) 2 1 2 -0.037 -1.000 2 2 2

(5,13) 2 2 2 0.000 0.000 2 2 2

(6,15) 2 2 2 0.000 0.000 2 2 2

(6,16) 2 2 2 0.000 0.000 2 1 2

(7,9) 2 2 2 0.000 0.000 2 2 2

(8,13) 2 2 2 0.000 0.000 2 1 2

(9,12) 2 2 1 0.037 1.000 2 2 2

(10,11) 1 2 1 0.037 1.000 2 2 2

(11,12) 2 1 1 0.000 0.000 1 1 1

(12,15) 1 1 2 -0.037 -1.000 1 1 1

(13,14) 2 2 2 0.000 0.000 2 1 2
(15,17) 2 2 2 0.000 0.000 2 2 2

(16,17) 1 2 2 0.000 0.000 2 2 2

721831021141831951:tsocytivitcA

282858282828:noitaruD
1 Move: only executed on a sub-part of the activity set (see computational results),

 indicated in gray (activity (5,10) was not part of the move). λ has been randomly set to 0.9
2 Repair function: randomly decreases 5 activity durations
3 Improvement method: increases the duration of activity (13,14) within the available slack

Solution points Forces New solution point x4

f(x3) = 141

f(x2) = 138

f(x1) = 159

f(x4) = 120 → 138 → 117

Fig. 30.2 A conceptual representation of the electromagnetic charges and forces calculation

30.5 Computational Results

We have coded the electromagnetic meta-heuristic procedure in Visual CCC
version 6.0 to run on a Toshiba personal computer with a Pentium IV 2 GHz
processor under Windows XP. In order to evaluate the quality of the heuristic
solutions, we compare them with exact solutions for all four problem types as
well as another meta-heuristic procedure of Vanhoucke and Debels (2007), which
is able to cope with the four versions of the problem under study. The DTCTP
and the DTCTP-wc instances will be solved to optimality by the procedure of
Demeulemeester et al. (1998). The DTCTP-tsc instances will be solved by the exact
procedure of Vanhoucke (2005). The exact procedure for the DTCTP-npv has been
linked with the industrial LINDO optimisation library version 5.3 (Schrage 1995)
in order to rely on an adapted version of the procedure of Erengüç et al. (1993).
The test set used is an extended set from Demeulemeester et al. (1998) and has been
previously used by Vanhoucke and Debels (2007). The parameter settings for the
different problem instances are summarised along the following lines.

• DTCTP: The number of activities ranges from 10, 20, 30, 40 to 50 activities, the
number of modes is fixed at 2, 4, or 6 modes or is randomly chosen between [1,3],
[1,7], or [1,11] and the project deadline lies between the minimal and maximal
project duration in steps of 25 %, from 0 % (minimum), 25 %, 50 %, 75 % to
100 % (maximum). Each setting contains 30 problem instances, resulting in 30�
5 � 6 � 5 D 4;500 problem instances.

30 Generalized Discrete Time-Cost Tradeoff Problems 649

This dataset is extended with other parameters to test the performance of
the solution procedure to solve the DTCTP-tsc, DTCTP-wc, and DTCTP-npv, as
follows:

• DTCTP-tsc: Each activity belongs to a work/rest pattern, ranging from [0,0,100],
[0,33,66], [0,66,33], [0,100,0], [33,0,66], [33,33,33], [33,66,0], [66,0,33], [66,33,
0] to [100,0,0] (where [x,y,z] indicates [%day pattern,%day and night pat-
tern,%day, night and weekend pattern]). The extended set contains 4,500 � 10D
45,000 problem instances.

• DTCTP-wc: We define three sizes of activity groups subject to work continuity
constraints containing 25 %, 50 %, or 75 % of the original activities. The work
continuity cost has been defined as low, in-between, or high as, respectively,
75 %, 100 %, and 150 % of the average total activity cost of the corresponding
activity group. The extended set contains 4,500 � 3 � 3 D 40,500 problem
instances.

• DTCTP-npv: Each event node has a certain cash inflow value, which is a function
of the total cost of all incoming activities, ranging between the minimal value
and the maximal value in steps of 25 %, from 0 % (minimum cost), 25 %, 50 %,
75 % to 100 % (maximum cost). The extended set contains 4,500 � 5 D 22,500
problem instances.

We test the quality of our meta-heuristic procedure in two ways. In Sect. 30.5.1,
we test the influence of the various EM building blocks on the solution quality
of the problem instances. In this section, we restrict our tests on a subset of all
data instances, where we have selected only 50-activity networks with the number
of modes randomly selected between 1 and 11. In Sect. 30.5.2, we compare our
generated solutions with both exact and heuristic solutions as described earlier and
test our algorithms on the complete test set as described earlier.

30.5.1 Electromagnetic Heuristic Performance

This section reports results on the influence of the length of the electromagnetic
search as well as the contribution of the repair function and the improvement method
on the solution quality of the four DTCTP versions. The figure compares four equal
stop criteria values while varying the population size and the number of iterations
for each stop criterion. The population size varies between 10 and 100 in steps of
10, keeping the �pop � niter product constant at a level of 1,000, 2,500, 5,000, or
10,000.

All test results show that a longer search, expressed as increasing �pop � niter

values, leads to improved solutions, at the expense of a higher CPU time. The
division between the population size and the number of iterations for equal �pop

� niter values is less intuitively clear. The figures reveal an improving start trend
for increasing �pop values, with an optimum at 70, 60, 20, and 30 for the different
DTCTP versions. However, Table 30.2 shows that an increase in the population

650 M. Vanhoucke

Table 30.2 CPU times (in seconds) for the DTCTP

�pop

�pop � niter 10 20 30 40 50 60 70 80 90 100

1,000 0.41 0.52 0.62 0.72 0.86 0.97 1.14 1.30 1.50 1.70

2,500 0.93 1.21 1.39 1.59 1.81 2.02 2.25 2.47 2.78 3.02

5,000 1.75 2.34 2.65 2.99 3.35 3.68 4.04 4.42 4.84 5.19

10,000 3.31 4.55 5.13 5.79 6.42 7.04 7.61 8.26 8.96 9.61

Table 30.3 Influence of the repair function and the improvement method on the solution quality

DTCTP DTCTP-tsc DTCTP-wc DTCTP-npv

Improvement No Yes No Yes No Yes No Yes

R
ep

ai
r

No 215.90 % 1.43 % 226.20 % 1.14 % 162.57 % 4.05 % 126.24 % 5.28 %

RAN 0.93 % 0.66 % 1.60 % 1.95 %

LCT 0.10 % 0.10 % 0.20 % 0.00 %

LAC 0.00 % 0.00 % 0.00 % 0.11 %

size (and a resulting decrease in the number of iterations) goes hand in hand with
a larger CPU time requirement. This observation can mainly be explained by the
electromagnetic calculations of distances between solutions, charges and forces.
Consider, as an example, a �pop � niter value of 1,000. A population size of 10 and
a number of iterations equal to 100 means that 10� 10 D 100 distances, forces and
charges need to be calculated per iteration, resulting in 100�100 calculations during
the complete run. However, when the population size equals 100 and the number of
iterations equals 10, 100 � 100 distances, charges and forces need to be calculated
at each iteration, leading to 100,000 calculations during the complete run. We also
observed that a higher population size leads to more repairs, which also contributes
to the higher computational burden.

Due to this observed tradeoff between the solution quality and the computational
burden, we have selected a population size of 30 in the remainder of this study for
all DTCTP versions, regardless of the number of iterations.

The contribution of the improvement method and the repair function is analysed
in Table 30.3 under a stop criterion of 999 generated schedules (a popsize of 30
and a number of iterations of 33). The table displays the solution quality measured
as the average relative deviation from the best found project cost (for the DTCTP,
DTCTP-tsc, and DTCTP-wc) or from the best found net present value (DTCTP-npv)
in each cell (a cell with 0 % indicates the best found solution method).

The table shows the indispensable contribution of the improvement method on
the solution quality. The results without improvement (columns with label “no”)
are very poor, and the repair function has no influence whatsoever on the solution
quality. This can be explained by the specific implementation of the repair function,
which decreases activity durations (randomly or controlled) to construct deadline
feasible schedules. When this repair function is not immediately followed by the
improvement method, very poor feasible solutions will be created. The contribution

30 Generalized Discrete Time-Cost Tradeoff Problems 651

of the repair function in combination with the improvement method (columns with
label “yes”) is best for the LAC heuristic to minimise overall project costs and for
the LCT heuristic to maximise the net present value.

Although not displayed in a table or a figure, we have found the best results when
the forces (Eq. (30.4)) are operated on a sub-part of the schedule (see the example
of Fig. 30.2). More precisely, forces are applied on each activity with a probability
of only 50 %.

30.5.2 Benchmark Results

In this section, we report computational results on our benchmark set and compare
the solutions of each DTCTP version with an exact and a meta-heuristic solution.
The exact solutions are found by the solution approaches of Demeulemeester et al.
(1998) (for the DTCTP and the DTCTP-wc), Vanhoucke (2005) (DTCTP-tsc), and
Erengüç et al. (1993) (DTCTP-npv). We also compare the obtained solutions with
the heuristic solutions of Vanhoucke and Debels (2007), who presented, to the
best of our knowledge, the only heuristic solution procedure available in the open
literature that can solve the four versions of the DTCTP.

Solutions obtained by exact procedures: The results for the exact solution
procedure are obtained by imposing a computation time limit of 1 min. After that,
the procedure stops and the solution is reported. In doing so, the obtained solution
can be classified in one of the following categories: optimal solution, feasible (but
not necessarily optimal) solution, or infeasible solution (i.e., no solution found). The
columns with label “popt” are used to denote the percentage of problem instances for
which an optimal solution has been found. The columns labelled with “pfeas” display
the percentage of problem instances for which a feasible (but not guaranteed to be
optimal) solution has been found within the pre-specified time limit of 1 min. This
means that the procedure already has found one or more feasible solutions, but it is
truncated after the pre-specified time. The columns with “punk” show the percentage
of problem instances for which no feasible solution has been found within the pre-
specified time limit of 1 min. Each problem instance belongs to one of these three
categories, which are used for comparison purposes with the heuristic procedures.
The column labelled “tøcpu” contains the average CPU time (in seconds) needed to
solve the problem instances.

Meta-heuristic solutions: The results found by the heuristic procedure are
compared with the results of one of the three categories. The instances for which
an exact solution has been found (i.e., “popt”) are used to compare them with
the heuristic solutions as follows. The column labelled with “popt” displays the
percentage of problem instances for which the heuristic has found the optimal
solution (only for the problem instances for which the exact methods have found
optimal solutions). The column indicated with “�ø

opt” gives the average percentage
of deviation from the optimal solution (only for the problem instances of column

652 M. Vanhoucke

“popt”). The problem instances with a feasible, though not necessarily an optimal
solution (i.e., “pfeas”) are analysed as follows. On the one hand, the column labelled
with “pimp” displays the percentage of problem instances for which the heuristic
solution is better than the feasible solution found by the exact procedure (only for
the problem instances of column “pfeas”). On the other hand, the column labelled
with “pdet” indicates the percentage of problem instances for which the heuristic
solution is worse than the feasible solution found by the exact procedure (only
for the problem instances of column “pfeas”). The remaining fraction is then the
percentage of problem instances with a solution equal to the feasible solution found.
Furthermore, the columns labelled with “�ø

imp” display the average percentage of
deviation (improvement) of the heuristic solution (only for the problem instances of
column “pfeas”), while the columns with label “�ø

det” refer to the average percentage
of deviation (deterioration) of the heuristic solution (only for the problem instances
of column “pfeas”).

Stop criterion: The computational tests haven been performed under various
stop criteria. All runs performed by exact solution approaches have been truncated
after 60 s CPU time. The meta-heuristic solution approaches make use of two classes
of stop criteria: The first class of test runs has been truncated after a pre-specified
number of generated schedules (rows “schedule limit”), as discussed previously.
More precisely, the electromagnetic procedure has been truncated when the product
�pop � niter has reached the 1,000 or 5,000 threshold. These solutions will be
compared with the meta-heuristic solution procedure of Vanhoucke and Debels
(2007) truncated after 1,000 and 5,000 generated schedules. The second class of
test runs have been truncated after a pre-specified time limit of 0.1 and 0.5 s (rows
“time limit”).

The [�] references in Tables 30.4 and 30.5 are used to refer to the solution
procedures used for testing. More precisely, the exact solutions have been obtained
by [a] (Demeulemeester et al. 1998), [b] (Vanhoucke 2005), and [c] (Erengüç
et al. 1993). The heuristic solutions have been obtained by various procedures
under different stop criteria, as follows. The solution procedure of Vanhoucke and
Debels (2007) is truncated after 1,000 generated schedules [d], after 5,000 generated
schedules [e], after 0.1 s [f], or after 0.5 s [g]. The electromagnetic procedure of
the current chapter has a �pop D 30 and is truncated after niter D 1000 [h], after
niter D 5000 [i], after 0.1 s [j], or after 0.5 s [k].

The results of Tables 30.4 and 30.5 can be summarised as follows. Since there is
no major difference between the optimal procedures for both problem types (apart
from extra arcs), their results are discussed together. The table shows that the exact
branch-and-bound procedure of Demeulemeester et al. (1998) can solve all problem
instances for the DTCTP and the DTCTP-wc to optimality within the time limit
of 60 s. Although the electromagnetic procedure is able to generate high-quality
solutions within a small time fraction, it has already been concluded by Vanhoucke
and Debels (2007) that it is not beneficial to rely on this meta-heuristic procedure
to solve instances of this size. These authors have shown that even for tests on
larger instances (with up to 200 activities and 50 modes) there is no need to use
meta-heuristic procedures. The main reason is that the specific approach used for

30 Generalized Discrete Time-Cost Tradeoff Problems 653

Table 30.4 Comparative computational results (DTCTP and DTCPT-tsc)

DTCTP DTCTP-tsc

Exact [a] [b]

T
im

e
li

m
it popt 100 % 89.76 %

pfeas 0 % 8.08 %

punk 0 % 2.16 %

t ø
cpu 0.081 7.906

Heuristic [d] [h] [e] [i] [d] [h] [e] [i]

Sc
he

du
le

li
m

it

popt 79.09 % 94.20 % 86.22 % 96.31 % 86.80 % 97.65 % 92.37 % 98.46 %

�
ø
opt 0.50 % 0.04 % 0.21 % 0.02 % 0.26 % 0.02 % 0.11 % 0.014 %

pimp – – – – 29.40 % 56.22 % 46.31 % 59.71 %

�
ø
imp – – – – 0.35 % 0.73 % 0.58 % 0.79 %

pdet – – – – 50.80 % 11.00 % 25.17 % 6.24 %

�
ø
det – – – – 1.20 % 0.08 % 0.34 % 0.04 %

t ø
cpu 0.049 0.195 0.244 0.824 0.079 0.273 0.388 1.158

Heuristic [f] [j] [g] [k] [f] [j] [g] [k]

T
im

e
li

m
it

popt 80.51 % 85.09 % 86.67 % 93.98 % 86.74 % 90.10 % 92.51 % 97.54 %

�
ø
opt 0.856 % 0.607 % 0.239 % 0.073 % 0.380 % 0.305 % 0.115 % 0.023 %

pimp – – – – 14.91 % 18.45 % 38.78 % 51.95 %

�
ø
imp – – – – 0.172 % 0.205 % 0.482 % 0.670 %

pdet – – – – 73.79 % 67.05 % 36.30 % 15.92 %

�
ø
det – – – – 5.171 % 3.359 % 0.653 % 0.160 %

t ø
cpu 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.5

the exact branch-and-bound algorithm of Demeulemeester et al. (1998) results very
quickly in truncated (heuristic) solutions that are very close to the optimal solution.
Moreover, thanks to the use of an efficient lower bound calculation of Ford and
Fulkerson (1962), many nodes can be evaluated in the branch-and-bound tree within
a limited amount of CPU-time, and hence, the meta-heuristic procedure has no
computational advantage on that aspect. Note that, for obvious reasons, the rows
“pfeas” and “punk”, the rows “pdet” and “pimp”, and their corresponding rows “�ø

det”
and “�ø

imp” are empty.
The table shows that meta-heuristic algorithms are good alternatives to exact

algorithm for both the DTCTP-tsc and the DTCTP-npv. The procedure of Van-
houcke and Debels (2007) and the newly developed electromagnetic procedure
outperform the exact algorithms, both in terms of CPU time and solution quality.
The “schedule limit” results also show that the electromagnetic search outperforms
the Vanhoucke and Debels (2007) procedure, but at a higher CPU time expense (due
to the calculation of charges, forces, and distances). For this reason, we have tested
and compared their results within a time limit of 0.1 and 0.5 s. These results show
that the electromagnetic procedure performs best.

654 M. Vanhoucke

Table 30.5 Comparative computational results (DTCTP and DTCPT-tsc)

DTCTP-wc DTCTP-npv

Exact [a] [b]

T
im

e
li

m
it popt 100 % 49.70 %

pfeas 0 % 50.30 %

punk 0 % –

t ø
cpu 0.105 32.94

Heuristic [d] [h] [e] [i] [d] [h] [e] [i]

Sc
he

du
le

li
m

it

popt 58.70 % 84.13 % 69.25 % 89.11 % 90.79 % 91.68 % 91.92 % 92.84 %

�
ø
opt 98.60 % 0.11 % 0.50 % 0.07 % 2.53 % 1.50 % 2.19 % 1.45 %

pimp – – – – 80.73 % 83.52 % 83.53 % 84.65 %

�
ø
imp – – – – 107.12 % 115.84 % 113.07 % 116.86 %

pdet – – – – 19.16 % 16.33 % 16.3 % 15.19 %

�
ø
det – – – – 6.57 % 1.43 % 3.63 % 1.22 %

t ø
cpu 0.075 0.33 0.363 1.465 0.570 0.606 2.869 2.281

Heuristic [f] [j] [g] [k] [f] [j] [g] [k]

T
im

e
li

m
it

popt 60.86 % 67.21 % 71.10 % 83.17 % 85.62 % 84.85 % 90.43 % 91.01 %

�
ø
opt 1.78 % 1.06 % 0.48 % 0.15 % 28.52 % 4.50 % 11.91 % 2.56 %

pimp – – – – 64.83 % 72.69 % 76.97 % 80.69 %

�
ø
imp – – – – 82.31 % 97.49 % 101.60 % 111.30 %

pdet – – – – 35.11 % 27.17 % 22.90 % 19.17 %

�
ø
det – – – – 60.27 % 10.96 % 25.13 % 5.28 %

t ø
cpu 0.1 0.1 0.5 0.5 0.1 0.1 0.5 0.5

30.6 Conclusions

This chapter studied four variants for the well-known discrete time-cost tradeoff
problem, and developed an electromagnetic meta-heuristic to solve the problem
types. The heuristic relies on the law of Coulomb and iteratively calculates charges
and forces on population elements following the principles of Birbil and Fang
(2003). The generation of a schedule has been extended by a dual local search
method. The first local search method repairs infeasible solutions by crashing
project activities, while the second local search randomly increases activity dura-
tions of feasible project solutions within the available activity slack.

The computational results are promising and show that solutions are comparable
and often better than a previously developed procedure of Vanhoucke and Debels
(2007). Lower CPU time and higher solution quality have been obtained by running
tests on a large dataset truncated after a pre-specified number of generated solutions
or after a certain CPU time limit.

Our future research intentions lie in the development of dedicated solution
approaches for the DTCTP-tsc and DTCTP-npv. While the meta-heuristic proce-
dures presented in this chapter are rather general search procedures that can deal
with all four problem types, dedicated algorithms that exploit problem specific

30 Generalized Discrete Time-Cost Tradeoff Problems 655

information should allow to test and compare results on larger problem instances,
for which the exact algorithm fails to provide a feasible solution.

Acknowledgements We acknowledge the financial support of the “Bijzonder Onderzoeksfonds”
(BOF) for the project under contract number BOF12GOA021.

Appendix

In this appendix, more detailed results for the example project are given than
summarised in Table 30.1. Table 30.6 displays the optimal mode selection and the
corresponding activity costs for the four versions of the DTCTP. Grey shaded cells
refer to activities that belong to the work continuity groupE 0. Note that some of the

Table 30.6 Optimal mode selection and the corresponding activity cost

656 M. Vanhoucke

Table 30.7 The event occurrence times and the net present value and
work continuity cost

activities are dummy activities, as can be seen by the zero values for the mD 1 and
mD 2 columns.

Table 30.7 displays the occurrence time of each event and the net present value
and work continuity cost for the optimal mode selection of each of the four DTCTP
variants. The grey cells refer to the start (3) and end (12) event nodes for the work
continuity group. The columns with label “Sj ” provide the occurrence time of each
event node j .

References

Akkan C, Drexl A, Kimms A (2005) Network decomposition-based benchmark results for the
discrete time-cost tradeoff problem. Eur J Oper Res 165:339–358

Azaron A, Perkgoz C, Sakawa M (2005) A genetic algorithm approach for the time-cost trade-off
in PERT networks. Appl Math Comput 168:1317–1339

Billstein N, Radermacher F (1977) Time-cost optimization. Method Oper Res 27:274–294
Birbil S, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Global

Optim 25:263–282
Brucker P, Drexl A, Möhring R, Neumann K, Pesch E. (1999) Resource-constrained project

scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41

30 Generalized Discrete Time-Cost Tradeoff Problems 657

Chen Y, Rinks D, Tang K (1997) Critical path in an activity network with time constraints.
Eur J Oper Res 100:122–133

Cohen I, Golany B, Shtub A (2007) The stochastic time-cost tradeoff problem: a robust optimiza-
tion approach. Networks 49:175–188

Crowston W (1970) Network reduction and solution. Oper Res Q 21:435–450
Crowston W, Thompson G (1967) Decision CPM: a method for simultaneous planning, scheduling

and control of projects. Oper Res 15:407–426
De P, Dunne E, Ghosh J, Wells C (1995) The discrete time-cost tradeoff problem revisited.

Eur J Oper Res 81:225–238
De P, Dunne E, Ghosh J, Wells C (1997) Complexity of the discrete time/cost trade-off problem

for project networks. Oper Res 45:302–306
Demeulemeester E, Herroelen W (1996) An efficient optimal solution for the preemptive resource-

constrained project scheduling problem. Eur J Oper Res 90:334–348
Demeulemeester E, De Reyck B, Foubert B, Herroelen W, Vanhoucke M (1998) New computa-

tional results on the discrete time/cost trade-off problem in project networks. J Oper Res Soc
49:1153–1163

Elmaghraby S, Kamburowsky R (1992) The analysis of activity networks under generalized
precedence relations. Manag Sci 38:1245–1263

Elmaghraby S, Salem A (1982) Optimal project compression under quadratic cost functions. Appl
Manag Sci 2:1–39

Elmaghraby S, Salem A (1984) Optimal linear approximation in project compression. IIE Trans
16:339–347

El-Rayes K, Moselhi O (1998) Resource-driven scheduling of repetitive activities. Constr Manag
Econ 16:433–446

Erengüç S, Tufekci S, Zappe C (1993) Solving time/cost trade-off problems with discounted cash
flows using generalized Benders decomposition. Nav Res Log 40:25–50

Falk J, Horowitz J (1972) Critical path problems with concave cost-time curves. Manag Sci
19:446–455

Ford L, Fulkerson D (1962) Flows in networks. Princeton University Press, Princeton
Fulkerson D (1961) A network flow computation for project cost curves. Manag Sci 7:167–178
Hazır O, Haouari M, Erel E (2010a) Discrete time/cost trade-off problem: a decomposition-based

solution algorithm for the budget version. Comput Oper Res 37:649–655
Hazır O, Haouari M, Erel E (2010b) Robust scheduling and robustness measures for the discrete

time/cost trade-off problem. Eur J Oper Res 207:633–643
Hazır O, Erel E, Günalay Y (2011) Robust optimization models for the discrete time/cost trade-off

problem. Int J Prod Econ 130:87–95
Herroelen W, Van Dommelen P, Demeulemeester E (1997) Project network models with dis-

counted cash flows: a guided tour through recent developments. Eur J Oper Res 100:97–121
Herroelen W, Demeulemeester E, De Reyck B (1999) A classification scheme for project

scheduling problems. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and
applications. Kluwer Academic, Dordrecht, pp 1–26

Hindelang T, Muth J (1979) A dynamic programming algorithm for decision CPM networks. Oper
Res 27:225–241

Kapur K (1973) An algorithm for the project cost/duration analysis problem with quadratic and
convex cost functions. IIE Trans 5:314–322

Ke H, Ma W, Ni Y (2009) Optimization models and a GA-based algorithm for stochastic time-cost
trade-off problem. Appl Math Comput 215:308–313

Ke H, Ma W, Ni Y (2012) Modeling stochastic project time-cost trade-offs with time-dependent
activity durations. Appl Math Comput 218:9462–9469

Kelley J (1961) Critical path planning and scheduling: mathematical basis. Oper Res 9:296–320
Kelley J, Walker M (1959) Critical path planning and scheduling: an introduction. Mauchly

Associates, Ambler

658 M. Vanhoucke

Klerides E, Hadjiconstantinou E (2010) A decomposition-based stochastic programming approach
for the project scheduling problem under time/cost trade-off settings and uncertain durations.
Comput Oper Res 37:2131–2140

Lamberson L, Hocking R (1970) Optimum time compression in project scheduling. Manag Sci
16:597–606

Mokhtari H, Kazemzadeh R, Salmasnia A (2011) Time-cost tradeoff analysis in project manage-
ment: an ant system approach. IEEE Trans Eng Manag 58:36–43

Patterson J (1979) An implicit enumeration algorithm for the time/cost trade-off problem in project
network analysis. Found Control Eng 6:107–117

Pour N, Modarres M, Aryanejad M, Moghadam R (2010) The discrete time-cost-quality trade-off
problem using a novel hybrid genetic algorithm. Appl Math Sci 42:2081–2094

Reda R (1990) Repetitive project modeling. J Constr Eng M ASCE 116:316–330
Robinson D (1975) A dynamic programming solution to cost/time trade-off for CPM. Manag Sci

22:158–166
Schrage L (1995) LINDO: optimization software for linear programming. LINDO Systems,

Chicago
Siemens N (1971) A simple CPM time/cost trade-off algorithm. Manag Sci 17:354–363
Siemens N, Gooding C (1975) Reducing project duration at minimum cost: a time/cost trade-off

algorithm. Omega Int J Manag S 3:569–581
Skutella M (1998) Approximation algorithms for the discrete time-cost tradeoff problem. Math

Oper Res 23:909–929
Sonmez R, Bettemir O (2012) A hybrid genetic algorithm for the discrete time-cost trade-off

problem. Expert Syst Appl 39:1428–1434
Tareghian H, Taheri S (2006) On the discrete time, cost and quality trade-off problem. Appl Math

Comput 181:1305–1312
Tareghian H, Taheri S (2007) A solution procedure for the discrete time, cost and quality tradeoff

problem using electromagnetic scatter search. Appl Math Comput 190:1136–1145
Vanhoucke M (2005) New computational results for the discrete time/cost trade-off problem with

time-switch constraints. Eur J Oper Res 165:359–374
Vanhoucke M (2006) Work continuity constraints in project scheduling. J Constr Eng Manag

ASCE 132:14–25
Vanhoucke M (2007) Work continuity optimization for the Westerscheldetunnel project in the

Netherlands. Tijdschrift voor Econ Manag 52:435–449
Vanhoucke M, Debels D (2007) The discrete time/cost trade-off problem: extensions and heuristic

procedures. J Sched 10:311–326
Vanhoucke M, Demeulemeester E (2003) The application of project scheduling techniques in

a real-life environment. Proj Manag J 34:30–42
Vanhoucke M, Demeulemeester E, Herroelen W (2001) On maximizing the net present value of a

project under renewable resource constraints. Manag Sci 47:1113–1121
Vanhoucke M, Demeulemeester E, Herroelen W (2002) Discrete time/cost trade-offs in project

scheduling with time-switch constraints. J Oper Res Soc 53:741–751
Wiest J, Levy F (1977) A management guide to PERT/CPM: with GERT/PDM/DCPM and other

networks. Prentice Hall, Englewood Cliffs
Yang HH, Chen YL (2000) Finding the critical path in an activity network with time-switch

constraints. Eur J Oper Res 120:603–613

Index

A
˛-point, 306, 311
Active schedule, 7
Activity-based policy class, 14
Activity list, 494
Activity-on-arc network, 516
Activity-on-node network, 4, 362
Activity payments, 642
Acyclic network, 79
Additional inequality, 557, 559
Allocation flexibility, 254
Ant colony optimization (ACO), 65
Antichain, 256, 270, 374

dominated, 46
feasible, 46, 270
non-dominated, 47

Artificial Bee Colony (ABC), 66
Assembly line balancing problem, 14
Assignment problem, 611
Assignment-type RCPSP, 588
Assignment variable, 34
Augmenting path, 85, 96

B
Baseline schedule, 435, 440
Bees algorithm, 66
Bee Swarm Optimization (BSO), 66
Benders decomposition, 593
Binary linear program, 626, 629, 630
Bipartite graph, 611
Boolean satisfiability solving. See SAT solving
Branch-and-bound algorithm, 152, 208, 449

tree-based, 368

C
Canonical representation, 266
Capital constraint, 514
Cash availability objective, 624
Cash flow, 300, 513, 642
Chain decomposition, 29
Clause learning, 503
Codification, 235
Column generation, 288, 567, 569

delayed, 48
Compact formulation, 18
Complementary slackness, 93
Complete set, 413
Compromise solution, 435
Conflict-driven branching, 152
Consistency test, 534, 537
Constraint

capital, 514
cumulative resource, 140
inventory, 178
non-anticipativity, 14
synchronization, 605
time-switch, 641
work continuity, 641

Constraint programming, 301, 312, 593
Constraint propagation, 50
Constraint Satisfaction Problem (CSP), 116
Constructive lower bound, 44
Consumption of resources, 178
Contention peak, 123
Continuization of a resource, 202
Continuous resource, 192
Criticality, 610
Crossover, one-point, 241

© Springer International Publishing Switzerland 2015
C. Schwindt, J. Zimmermann (eds.), Handbook on Project Management
and Scheduling Vol. 1, International Handbooks on Information Systems,
DOI 10.1007/978-3-319-05443-8

659

660 Index

Cumulative resource constraint, 140
Cut generation, 597

D
DCRCPSP. See Discrete-continuous resource-

constrained project scheduling
problem (DRCPSP)

Decomposition method, 307, 308
Delayed column generation, 48
Delay value, 170
Demand division, 199
Destructive lower bound, 49
Disaggregated precedence relation, 20, 23
Discrete-continuous project scheduling, 195
Discrete-continuous resource-constrained

project scheduling problem
(DCRCPSP), 195

Discrete time-based formulation, 371
Discrete time-cost tradeoff problem (DTCTP),

621, 641
with irregular costs, 624
with net present value optimisation, 642
with time-switch constraints, 641
with work continuity constraints, 641

Discrete-time variable, 18
Discretization of a resource, 201
Disjunctive relaxation, 256, 269, 288
Disjunctive set, 49
Distance function model (DFM), 430
Dominated antichain, 46
Double justification, 60, 237
DPLL algorithm, 137, 499
DTCTP. See Discrete time-cost tradeoff

problem (DTCTP)
Dynamic programming, 84, 96

E
Earliest schedule, 178
Earliest start-time solution, 121
Efficient solution, 413
Electromagnetic search, 643
Electromagnetism-like search, 63
Entropy maximization method, 397, 403
Event, 33
Explaining propagators, 145, 304
Extended formulation, 18

F
Feasibility condition, 271, 285
Feasibility test, 285
Feasible antichain, 46

Feasible sequence, 197
Feasible subset, 27
Filter and fan, 66
Financing problem, 182
Find cut candidate, 330, 331
Finite capacity scheduling, 252
Finite domain propagation, 139
Fitness function, 348
Flow feasibility problem, 555, 559
Flow problem, 575
Flow variable, 32
Floyd-Warshall algorithm, 282
Forbidden set, 271
Forward-backward improvement heuristic,

306, 312
Forward-backward local search, 352
Full factorial experiment, 526

G
Generalized precedence relation, 14, 136, 165,

255, 261, 363
work and time, 248

Generalized work relationships, 255, 265
Genetic algorithm, 61, 169
Global left shift, 6
Goal programming, 430, 436
GRASP, 213

H
Hierarchical subgradient algorithm, 310, 315
Hybrid algorithm, 593
Hybrid branching, 153

I
Improvement moves, 216
Incompatible activities, 271, 555, 556
Incumbent slice, 323
Industrial context, 604
Interruptions

number of, 280
Invase weed optimization, 345
Inventory constraint, 178
Irregular costs project scheduling problem, 622

with time-cost tradeoffs, 625
Iterative Flattening Search, 129

K
Knapsack problem

multi-dimensional, 289

Index 661

L
Lagrangian relaxation, 102, 569
Lazy clause generation, 144, 302
Left shift, 6
Linear order, 186
Linear programming, 47, 83

relaxation strength, 18
Linear relaxation, 559
List of candidate points, 325
Local left shift, 6
Locally concave, 365
Locally quasiconcave, 365
Local search, 351
Longest path, 78, 85
Lower bound, 43, 287, 454, 566, 583, 612

constructive, 44
destructive, 49

M
Makespan, 44, 446. See also Project duration
Manager’s preferences, 430
Master problem, 566, 570
Mathematical formulation, 448
Maximum closure problem, 627
Maximum time lag, 14
Maxnint_PRCPSP. See Project scheduling

problem, with limited number of
interruptions

Metaheuristic, 58, 434, 446
Min-cut clustering problem, 309, 310, 313,

315
Minimal forbidden set, 30
Minimal project duration, 136
Minimum Moment Method, 392, 395
Minimum time lag, 14
Mixed-integer linear programming formulation

(MILP), 17, 103, 275, 537, 553, 558,
562, 590

Mode, 447
assignment, 494

Modeling capabilities, 206
Model relaxation, 543
Modified minimum bounding algorithm, 319,

326
MORCPSP. See Multi-objective resource-

constrained project scheduling
problem (MORCPSP)

MRCPSP. See Multi-mode resource-
constrained project scheduling
problem (MRCPSP)

MSPSP. See Multi-skill project scheduling
problem (MSPSP)

Multi-modal project scheduling, 258

Multi-mode resource-constrained project
scheduling problem (MRCPSP),
445, 492

Multi-objective combinatorial optimization
problem, 412

Multi-objective metaheuristic algorithms, 413
Multi-objective resource-constrained project

scheduling problem (MORCPSP),
411

Multi-pass sampling, 66
Multi-processor tasks, 252
Multi-purpose resource, 588
Multi-skilled personnel, 587
Multi-skilled resource, 548, 551
Multi-skill project scheduling problem

(MSPSP), 566, 570
Multi-skill resource-constrained project

staffing and scheduling, 550, 557,
561

Multi-start iterative improvement, 520

N
Natural date variable, 30
Net present value (NPV), 302, 414, 478, 624,

642
Network

activity-on-arc, 516
activity-on-node, 4, 362
acyclic, 79
series-parallel, 623

Neural-networks based search, 67
NeuroGenetic approach, 67
Nogood cuts, 597
Nogood generation, 146, 303
Non-anticipativity constraint, 14
Non-delay schedule, 7
Non-dominated antichain, 47
Non-dominated solution, 413
Non-regular objective function, 412
Non-renewable resource, 177, 494
Non-singular transformation, 19

O
Objective function

non-regular, 412
regular, 6, 411
r–monotone, 366

One-period left shift, 6
One-point crossover, 241
On-off variable, 19, 36
Overload cost function, 364
Overload problem, 373

662 Index

P
Packing Method (PACK), 392
Parallel computing, 315
Parallel schedule-generation scheme, 11, 59

preemptive adapted, 609
Pareto front, 412, 413
Partially renewable resource, 165, 204
Partial order schedule, 127
Path Relinking, 217
Payment

pattern, 516
scheduling method, 624
scheduling problem, 481

Policy
geometric restart, 153

Policy class
activity-based, 14
resource-based, 14

Positional-date variable, 33
Precedence constraint posting, 118
Precedence relation, 255

delayed, 264
disaggregated, 20, 23
feeding, 255, 261
generalized, 14, 136, 165, 255, 261, 363
ordinary, 255, 264

Preemption, 604
continuous, 253
discrete, 253, 264
discretionary, 254
gains, 274
integer, 253, 264
selective, 254

Preemptive adapted parallel schedule-
generation scheme, 609

Preprocessing, 210, 282, 285, 347, 554, 558
Pricing problem, 288
Primal-dual formulation, 93
Priority-rule method, 13, 534, 537
Priority rules, 12, 208, 450, 610
Production of resources, 178
ProGen, 514
Project duration, 262, 276, 288, 566
Project management, 435
Project planning

hierarchical, 252
Project scheduling problem

with irregular costs, 622
with limited number of interruptions, 233

Pseudo boolean nonrenewable resource
constraint clauses, 496

Pseudo boolean solver, 496
Pseudo-polynomial size formulation, 18
PSPLIB, 171

Pulse variable, 19

Q
Quasistable schedule, 366

R
RACP. See Resource availability cost problem

(RACP)
Randomization strategies, 215
Random sampling, 520
RCPSP. See Resource-constrained project

scheduling problem (RCPSP)
RCPSP/max. See Resource-constrained

project scheduling problem with
generalized precedence relations
(RCPSP/max)

RCPSP/t. See Resource-constrained project
scheduling problem with time-
varying resource requirements and
capacities (RCPSP/t)

Recursive search procedure, 645
Reduced cost, 568, 571
Reduction test, 560, 561
Regular objective function, 6, 411
Relaxation

disjunctive, 256, 269, 288
Lagrangian, 102, 569
linear, 559
model, 543

Renewable resource, 177
Repair function, 645
Repairing mechanism, 216
Representation of time

discrete, 537
Resource

continuous, 192
multi-purpose, 588
multi-skilled, 548, 551
non-renewable, 177, 494
partially renewable, 165, 204
renewable, 177
storage, 177

Resource allocation, 534, 535
Resource availability cost problem (RACP),

340, 433, 435
Resource-based policy class, 14
Resource-constrained project scheduling

problem (RCPSP), 3, 136, 163, 319
assignment-type, 588
with generalized precedence relations

(RCPSP/max), 119
preemptive, 251

Index 663

in time-varying resource requirements and
capabilities (RCPSP/t), 164

with work-content constraints, 533
Resource leveling function, 363, 365
Resource leveling local search, 351
Resource leveling problem, 361, 365, 373, 390
Resource profile, 121
Resource-strength factor, 98
Resource vector, 320
Restart policy

geometric, 153
r–monotone objective function, 366

S
Satisfaction functions, 430, 439
Satisfiability modulo theories solving, 154
SAT solving, 143
Scatter search, 62, 218, 312
Schedule, 4, 267

active, 7
baseline, 435, 440
non-delay, 7
partial order, 127
quasistable, 366
semi-active, 6

Schedule-generation scheme, 9, 168, 643
parallel, 11, 59
preemptive adapted parallel, 609
serial, 9, 59, 235

Scheduling policy, 14
Semi-active schedule, 6
Sequencing variable, 30
Serial schedule-generation scheme, 9, 59, 235
Series-parallel network, 623
Shift, 6

global left, 6
local left, 6
one-period left, 6

Shifting algorithm, 182
Shuffled frog leaping algorithm (SFLA), 63
Simulated annealing, 64, 525
Slice, 268, 277
Specific constraints, 604
SRCPSP. See Stochastic resource-constrained

project scheduling problem
(SRCPSP)

Standardized activity network, 78
Start-based formulation, 376
Step variable, 19, 26
Stochastic resource-constrained project

scheduling problem (SRCPSP), 14
Storage resource, 177

Subgradient, 569, 578
algorithm, 98, 103, 105, 306, 315

Subproblem, 567, 570
solver, 321

Synchronization constraint, 605

T
Tabu search, 65, 523
Temporal analysis, 598
Time-indexed variable, 18, 607
Time lag, 77

completion-to-start, 266
matrix, 282
maximum, 14
minimum, 14

Time-switch constraint, 641
Time-varying resource requirements and

capacities, 164
Total adjustment cost function, 364
Total adjustment cost problem, 375
Tournament heuristic, 172
Tradeoff curve, 328
Tree-based branch-and-bound algorithm, 368

U
Unimodular matrix, 627
Unit propagation, 143

V
Valid inequality. See Additional inequality
Variable

assignment, 34
discrete-time, 18
natural date, 30
on-off, 19, 36
positional-date, 33
pulse, 19
sequencing, 30
step, 19, 26
time-indexed, 18

Variable-fixing method, 287

W
Weighted earliness tardiness, 418
Work and time generalized precedence

relation, 248
Work content, 534, 535
Work continuity constraint, 641
Workload, 550, 552

	Preface
	Contents
	Contents of Volume 2
	List of Symbols
	Miscellaneous
	Sets
	Projects, Activities, and Project Networks
	Resources and Skills
	Multi-Modal Project Scheduling
	Discrete Time-Cost Tradeoff
	Multi-Project Problems
	Project Scheduling Under Uncertainty and Vagueness
	Objective Functions
	Temporal Scheduling
	Models and Solution Methods
	Computational Results
	Three-Field Classification αβγ for Project Scheduling Problems
	Field α: Resource Environment
	Field β: Project and Activity Characteristics
	Field γ: Objective Function
	Examples

	1 Projects, Project Management, and Project Scheduling
	2 Scope and Organization of the Handbook
	3 Outline of the Handbook
	References

	Part I The Resource-Constrained Project Scheduling Problem
	1 Shifts, Types, and Generation Schemes for Project Schedules
	1.1 Introduction
	1.2 The Resource-Constrained Project Scheduling Problem
	1.3 Shifts
	1.4 Schedule Types
	1.5 Schedule Generation Schemes for the RCPSP
	1.5.1 Serial Schedule Generation Scheme
	1.5.2 Parallel Schedule Generation Scheme

	1.6 Schedule Generation Schemes for Special Cases and Generalizations of the RCPSP
	1.7 Conclusions
	References

	2 Mixed-Integer Linear Programming Formulations
	2.1 Introduction
	2.2 Time-Indexed Formulations
	2.2.1 The Discrete-Time Formulation Based on ``Pulse'' Start Variables
	2.2.2 The Discrete-Time Formulation Based on Start ``Step'' Variables
	2.2.3 The Discrete-Time Formulation Based on On/Off Variables
	2.2.4 Other Equivalent or Weaker Discrete-Time Formulations
	2.2.5 The Feasible-Subset Formulation
	2.2.6 The Chain-Decomposition Formulation

	2.3 Sequencing and Natural-Date Formulations
	2.3.1 The Minimal-Forbidden-Set-Based Formulation
	2.3.2 The Flow-Based Formulation

	2.4 Positional-Date and Assignment Formulations
	2.4.1 The Start/End Event-Based Formulation
	2.4.2 The On/Off Event-Based Formulation
	2.4.3 More Event-Based Formulations

	2.5 Synthesis of Theoretical and Experimental Comparisons
	2.6 Conclusions
	References

	3 Lower Bounds on the Minimum Project Duration
	3.1 Introduction
	3.2 Constructive Lower Bounds
	3.3 Destructive Lower Bounds
	3.4 Conclusions
	References

	4 Metaheuristic Methods
	4.1 Introduction
	4.2 Single-Pass Heuristics Methods
	4.2.1 Serial vs. Parallel Schedule-Generation Scheme
	4.2.2 Forward and Backward Scheduling
	4.2.3 Double Justification Scheme

	4.3 Metaheuristic Methods
	4.3.1 Genetic Algorithms
	4.3.2 Scatter Search
	4.3.3 Electromagnetism-Like Search
	4.3.4 Shuffled Frog Leaping Algorithm
	4.3.5 Simulated Annealing
	4.3.6 Tabu Search
	4.3.7 Ant Colony Optimization
	4.3.8 Bees Algorithm/Artificial Bee Colony/Bee Swarm Optimization
	4.3.9 Multi-Pass Sampling
	4.3.10 Filter and Fan
	4.3.11 Neural-Networks Based Search

	4.4 The NeuroGenetic Approach
	4.5 Computational Results
	4.6 Conclusions
	References

	Part II The Resource-Constrained Project Scheduling Problem with Generalized Precedence Relations
	5 Lower Bounds and Exact Solution Approaches
	5.1 Introduction
	5.2 A New Formulation of the Resource Unconstrained Project Scheduling Problem with GPRs
	5.2.1 A Network Formulation of RUPSP with GPRs
	5.2.2 A Mathematical Programming Formulation of RUPSP with GPRs
	5.2.3 An Example

	5.3 The Resource Constrained Project Scheduling Problem with GPRs
	5.3.1 A New Lower Bound for RCPSP with GPRs
	5.3.1.1 Network Representation
	5.3.1.2 A Mathematical Programming Formulation
	5.3.1.3 Analysis on the Primal-Dual Formulation: Main Result
	5.3.1.4 Computational Results

	5.3.2 An Exact Algorithm for RCPSP with GPRs
	5.3.2.1 The Mathematical Model
	5.3.2.2 The Exact Solution Algorithm Description

	5.3.3 Computational Results
	5.3.3.1 Implementation Details
	5.3.3.2 Analysis of the Results
	5.3.3.3 Further Comparison with State of the Art Algorithms on Benchmarks

	5.4 Conclusions
	References

	6 A Precedence Constraint Posting Approach
	6.1 Introduction
	6.2 Constraint-Based Scheduling
	6.2.1 Constraint Satisfaction Problem
	6.2.2 A Generic CSP Solver
	6.2.3 CSP Approaches to Scheduling Problems

	6.3 The Reference Scheduling Problem: RCPSP/max
	6.4 The RCPSP/max as a CSP
	6.5 Precedence Constraint Posting
	6.5.1 Time Layer
	6.5.2 Resource Layer

	6.6 The Core Constraint-Based Scheduling Framework
	6.6.1 Consider Resource Utilization
	6.6.2 How to Identify Decision Variables
	6.6.3 Selecting and Solving Conflicts

	6.7 Flexible Solutions, Robustness, and Partial Order Schedules
	6.7.1 Partial Order Schedules

	6.8 Extended Optimizing Search
	6.9 Conclusions
	References

	7 A Satisfiability Solving Approach
	7.1 Introduction
	7.2 Preliminaries
	7.2.1 Finite Domain Propagation
	7.2.1.1 Generalized Precedence Constraints
	7.2.1.2 Cumulative Resource Constraints

	7.2.2 Boolean Satisfiability Solving
	7.2.3 Lazy Clause Generation
	7.2.3.1 Variable Representation
	7.2.3.2 Explaining Propagators
	7.2.3.3 Nogood Generation
	7.2.3.4 Lazy Clause Generation for Large Problems

	7.3 Models for RCPSP/max
	7.3.1 Initial Domains
	7.3.2 Activities in Disjunction

	7.4 The Branch-and-Bound Algorithm
	7.4.1 Start-Time Branching
	7.4.2 Conflict-Driven Branching
	7.4.3 Hybrid Branching

	7.5 Other Approaches
	7.6 Computational Results
	7.6.1 Setup and Table Notations
	7.6.2 Experiments on Instances up to 200 Activities
	7.6.3 Experiments on Larger Instances

	7.7 Conclusions
	References

	Part III Alternative Resource Constraints in Project Scheduling
	8 Time-Varying Resource Requirements and Capacities
	8.1 Introduction
	8.2 Problem Setting
	8.2.1 Formal Problem Description
	8.2.2 Relationships to Other Project Scheduling Problems

	8.3 Applications
	8.3.1 Medical Research Projects
	8.3.2 Aggregated Production Scheduling

	8.4 Heuristics for the RCPSP/t
	8.4.1 Applicability of Heuristics Designed for the Standard RCPSP
	8.4.2 An Adapted Genetic Algorithm

	8.5 Computational Results
	8.5.1 Test Sets
	8.5.2 Results

	8.6 Conclusions
	References

	9 Storage Resources
	9.1 Introduction
	9.2 The Project Scheduling Problem with Inventory Constraints
	9.2.1 The Model
	9.2.2 The Exact Method of Neumann and Schwindt
	9.2.3 The Exact Method of Laborie

	9.3 The Financing Problem
	9.3.1 The Model
	9.3.2 Time-Feasible Schedules
	9.3.3 Feasible Schedule
	9.3.4 The Shifting Algorithm
	9.3.5 An Instance
	9.3.6 Discussion

	9.4 The Project Scheduling Problem with Consumption and Production of Resources
	9.4.1 The Model
	9.4.2 Example
	9.4.3 The Earliest Schedule Associated with a Complete Linear Order
	9.4.4 The Earliest Schedule Associated with a Linear Order on Consumption Events

	9.5 Conclusions
	References

	10 Continuous Resources
	10.1 Introduction
	10.2 Continuous Resource Allocation
	10.3 Discrete-Continuous Project Scheduling
	10.4 Basic Results for DCRCPSP
	10.4.1 Convex Processing Rate Functions
	10.4.2 Concave Processing Rate Functions

	10.5 Methodology Based on Feasible Sequences
	10.6 Conclusions
	References

	11 Partially Renewable Resources
	11.1 Introduction
	11.2 Solving Problems with Partially Renewable Resources
	11.2.1 Formulation of the Problem
	11.2.2 Modeling Capabilities
	11.2.2.1 Lunch Break Assignments
	11.2.2.2 Weekend Days-Off Assignments
	11.2.2.3 Special Conditions in School Timetabling Problems

	11.2.3 A Branch & Bound Algorithm
	11.2.4 Schirmer's Algorithms

	11.3 Preprocessing
	11.4 GRASP Algorithm
	11.4.1 The Constructive Phase
	11.4.1.1 A Deterministic Constructive Algorithm
	11.4.1.2 Priority Rules
	11.4.1.3 Randomization Strategies
	11.4.1.4 A Repairing Mechanism

	11.4.2 The Improvement Phase
	11.4.3 An Aggressive Procedure
	11.4.4 Path Relinking

	11.5 Scatter Search Algorithm
	11.6 Computational Results
	11.6.1 Test Instances
	11.6.2 Preprocessing Results
	11.6.3 Computational Results of Constructive Algorithms
	11.6.4 Computational Results of GRASP Algorithms
	11.6.5 Computational Results of Scatter Search Algorithms

	11.7 Conclusions
	References

	Part IV Preemptive Project Scheduling
	12 Integer Preemption Problems
	12.1 Introduction
	12.2 The Maxnint_PRCPSP
	12.3 Using Existing Procedures for the RCPSP to Solve the Maxnint_PRCPSP
	12.3.1 Codification of a Solution
	12.3.2 The Serial SGS
	12.3.3 The Double Justification
	12.3.4 One-Point and Two-Point Crossovers

	12.4 Specific Procedures Developed for the Maxnint_PRCPSP
	12.4.1 Decoding Procedure: Maxnint_Serial SGS
	12.4.2 Maxnint_DJ
	12.4.3 BeginEndOnePointCrossover
	12.4.4 Unary Operator

	12.5 Algorithms for the Maxnint_PRCPSP
	12.6 Computational Results
	12.7 Time and Work Generalized Precedence Relationship with Integer Preemption
	12.8 Conclusions
	References

	13 Continuous Preemption Problems
	13.1 Introduction
	13.2 Literature Survey on Preemptive Project Scheduling
	13.2.1 Classification of Preemptive Project Scheduling Problems
	13.2.2 Solution Approaches to Preemptive Project Scheduling Problems

	13.3 The Preemptive Resource-Constrained Project Scheduling Problem With Generalized Feeding Precedence Relations
	13.3.1 Problem Definition and Descriptive Model
	13.3.2 Semantic Power of the Model

	13.4 Structural Issues
	13.4.1 Alternative Representations of the Problem
	13.4.2 Feasibility Conditions
	13.4.3 Preemption Gains for Makespan Minimization

	13.5 A Novel MILP Problem Formulation
	13.5.1 Formulation of the Model
	13.5.2 Number of Slices and Activity Interruptions

	13.6 Preprocessing Methods and Lower Bounds
	13.6.1 Computing and Tightening the Time Lag Matrix
	13.6.2 Efficient Feasibility Tests
	13.6.3 Fixing Variables
	13.6.4 Column-Generation Based Lower Bound

	13.7 Computational Results
	13.8 Conclusions
	References

	Part V Non-Regular Objectives in Project Scheduling
	14 Exact and Heuristic Methods for the Resource-Constrained Net Present Value Problem
	14.1 Introduction
	14.2 Models for RCPSPDC
	14.3 Lazy Clause Generation Based Exact Method
	14.4 Lagrangian Relaxation Based Forward-Backward Improvement Heuristic
	14.5 Lagrangian Relaxation Method for Large Problems
	14.6 Computational Results
	14.6.1 Comparison of CP, LR, and Scatter Search on Benchmark Problems
	14.6.2 Lagrangian Relaxation for Large Problems
	14.6.2.1 Relaxing Resource Constraints Only
	14.6.2.2 Relaxing Both Resource and Precedence Constraints

	14.7 Conclusions
	References

	15 Exact Methods for the Resource Availability Cost Problem
	15.1 Introduction
	15.2 Strategies for Searching an Optimal Resource Vector
	15.3 The Modified Minimum Bounding Algorithm (MMBA)
	15.4 Choice of Cut Candidate
	15.5 Theoretical Results
	15.6 Computational Results
	15.7 Integer Programming Model
	15.8 Conclusions
	References

	16 Heuristic Methods for the Resource Availability Cost Problem
	16.1 Introduction
	16.2 Problem Formulation
	16.3 (Meta)heuristic Solution Procedures
	16.4 Invasive Weed Optimization Algorithm
	16.5 An Invasive Weed Algorithm for the RACP(T)
	16.5.1 Representation and Schedule-Generation Scheme
	16.5.2 Preprocessing
	16.5.3 Fitness Function
	16.5.4 Initial Population Generation
	16.5.5 Reproduction
	16.5.6 Spatial Dispersal
	16.5.6.1 Activity List
	16.5.6.2 Capacity List

	16.5.7 Local Search
	16.5.7.1 Resource Leveling Local Search
	16.5.7.2 Forward-Backward Local Search

	16.5.8 Competitive Exclusion

	16.6 Computational Results
	16.6.1 Benchmark Problem Set
	16.6.2 Parameter Setting
	16.6.3 Performance
	16.6.3.1 RACP
	16.6.3.2 RACPT

	16.6.4 Comparison
	16.6.4.1 RACP30
	16.6.4.2 PSPLIB

	16.7 Conclusions
	References

	17 Exact Methods for Resource Leveling Problems
	17.1 Introduction
	17.2 Problem Description
	17.3 Structural Properties of Resource Leveling Problems
	17.4 Literature Review
	17.5 Tree-Based Branch-and-Bound Method
	17.6 Mixed-Integer Programming Models
	17.6.1 Discrete Time-Based Formulations
	17.6.2 Linear Formulations for the Classical Resource Leveling and the Overload Problem
	17.6.3 Linear Formulations for the Total Adjustment Cost Problem

	17.7 Computational Results
	17.7.1 Benchmark Instances
	17.7.2 Performance Study

	17.8 Conclusions
	References

	18 Heuristic Methods for Resource Leveling Problems
	18.1 Introduction
	18.2 Literature Review
	18.3 Minimum Moment and PACK Methods
	18.4 Entropy Maximization Method
	18.5 RLP with Prescribed Fixed Activity Durations
	18.6 Entropy-Maximization Resource-Leveling Algorithm
	18.7 Sample Implementation of Proposed Algorithm
	18.8 Conclusions
	References

	Part VI Multi-Criteria Objectives in Project Scheduling
	19 Theoretical and Practical Fundamentals
	19.1 Introduction
	19.2 Multi-Objective Optimization and MORCPSPs
	19.3 Classifications of Papers of the Literature
	19.4 Theoretical Results for the MOPSP and MORCPSP
	19.4.1 MOPSP with ROFs
	19.4.2 MORCPSP with ROFs
	19.4.3 MORCPSP with at Least One NROFs

	19.5 Topics to Study in a MOMH for MORCPSPs
	19.6 Conclusions
	References

	20 Goal Programming for Multi-Objective Resource-Constrained Project Scheduling
	20.1 Introduction
	20.2 Goal Programming Model
	20.3 Modeling of the Project Scheduling Problem Under Resource Constraints
	20.4 Multi-Objective Resource-Constrained Project Scheduling Problem
	20.5 Resource-Constrained Project Scheduling Through the Goal Programming Model
	20.6 Conclusions
	References

	Part VII Multi-Mode Project Scheduling Problems
	21 Overview and State of the Art
	21.1 Introduction
	21.2 MILP Formulations
	21.3 Exact Approaches
	21.4 Lower Bounds
	21.5 Heuristics
	21.5.1 Priority Rule-Based Heuristics
	21.5.2 Metaheuristics and Local Search
	21.5.3 Other Approaches

	21.6 Special Cases and Extensions
	21.6.1 Special Cases
	21.6.2 Extensions

	21.7 Multi-Mode Problems with Other Objectives
	21.7.1 Financial Objectives
	21.7.1.1 Multi-Mode Resource-Constrained Project Scheduling Problem with Discounted Cash Flows
	21.7.1.2 Problems with Probabilistic Cash Flows
	21.7.1.3 Payment Scheduling Problem

	21.7.2 Resource-Based Objectives

	21.8 Conclusions
	References

	22 The Multi-Mode Resource-Constrained Project Scheduling Problem
	22.1 Introduction
	22.2 Model Formulation
	22.3 Solution Approach
	22.3.1 Mode Assignment
	22.3.1.1 Nonrenewable Resource Constraint Clauses
	22.3.1.2 The Activity List SAT Mode Assignment Procedure

	22.3.2 RCPSP Scheduling Step
	22.3.3 Advantages of SAT Solvers
	22.3.3.1 Pre-processing
	22.3.3.2 Learning

	22.4 Adapted Pseudo Boolean Solver Approach
	22.5 Computational Results
	22.6 Conclusions
	References

	23 The Multi-Mode Capital-Constrained Net Present Value Problem
	23.1 Introduction
	23.2 Problem Formulation
	23.2.1 Optimization Model with MEBPP
	23.2.2 Optimization Model with the Other Three Payment Patterns

	23.3 Metaheuristics
	23.3.1 Common Features
	23.3.1.1 Solution Representation
	23.3.1.2 Objective Function
	23.3.1.3 Preprocessing
	23.3.1.4 Starting Solution
	23.3.1.5 Neighbourhood

	23.3.2 Tabu Search
	23.3.2.1 Moves
	23.3.2.2 Tabu List
	23.3.2.3 Two Versions of Tabu Search

	23.3.3 Simulated Annealing
	23.3.4 Multi-Start Iteration Improvement and Random Sampling

	23.4 Computational Experiment
	23.4.1 Experimental Design
	23.4.2 Experimental Results

	23.5 Conclusions
	References

	24 The Resource-Constrained Project Scheduling Problem with Work-Content Constraints
	24.1 Introduction
	24.2 Planning Problem
	24.3 Upper Bound on the Project Duration
	24.4 MILP Scheduling Model
	24.4.1 Symbols
	24.4.2 Time-Related Constraints
	24.4.3 Resource-Related Constraints
	24.4.4 Objective Function

	24.5 Computational Results
	24.6 Conclusions
	References

	Part VIII Project Staffing and Scheduling Problems
	25 A Modeling Framework for Project Staffing and Scheduling Problems
	25.1 Introduction
	25.2 Ingredients for a General Modeling Framework
	25.3 A General Modeling Framework
	25.3.1 Preprocessing and Model Enhancement

	25.4 A Makespan Minimization Multi-Skill Resource-Constrained Project Staffing and Scheduling Problem
	25.4.1 Feasibility Issues
	25.4.2 Additional Inequalities
	25.4.2.1 Time Windows Inequalities
	25.4.2.2 Reduction Tests
	25.4.2.3 Other Inequalities

	25.5 A Cost Minimization Multi-Skill Resource-Constrained Project Staffing and Scheduling Problem
	25.6 Extensions
	25.7 Conclusions
	References

	26 Integrated Column Generation and Lagrangian Relaxation Approach for the Multi-Skill Project Scheduling Problem
	26.1 Introduction
	26.2 Literature Review
	26.2.1 Problem Background
	26.2.2 Column Generation Overview and Background
	26.2.3 Combining Lagrangian Relaxation and Column Generation Background

	26.3 Problem Description and Column Generation
	26.3.1 Column Generation Master Problem Formulations
	26.3.1.1 First Master Problem (MP1)
	26.3.1.2 Second Master Problem (MP2)
	26.3.1.3 Column Generation Sub-Problem (SP)
	26.3.1.4 Column Generation Sub-Problem Solution (SP)

	26.4 Combining Lagrangian Relaxation and Column Generation
	26.4.1 RMP1 Based Model for Combining Lagrangian Relaxation and Column Generation
	26.4.2 RMP2 Based Model for Combining Lagrangian Relaxation and Column Generation

	26.5 Columns Initialization and Selection
	26.5.1 Columns Initialization
	26.5.2 Columns Selection

	26.6 Computational Results
	26.7 Conclusions
	References

	27 Benders Decomposition Approach for Project Scheduling with Multi-Purpose Resources
	27.1 Introduction
	27.2 Optimization Model
	27.2.1 Problem Description
	27.2.2 Model Formulation
	27.2.3 Variations and Extensions

	27.3 Hybrid Benders Decomposition
	27.3.1 Constraint Programming
	27.3.2 HBD Framework
	27.3.3 HBD for PSMPR
	27.3.4 Cut Generation
	No-Good Cuts
	Temporal Analysis Based Cuts

	27.4 Application Example
	27.5 Conclusions
	References

	28 Mixed-Integer Linear Programming Formulation and Priority-Rule Methods for a Preemptive Project Staffing and Scheduling Problem
	28.1 Introduction
	28.2 Problem Description and Model
	28.2.1 Problem Description
	28.2.2 MIP Formulation

	28.3 Resolution Method
	28.3.1 Preemptive Adapted Parallel Scheduling Scheme List Algorithm (PAPSS)
	28.3.1.1 Activity Assignment

	28.4 Computational Results
	28.4.1 Instance Description
	28.4.2 Integer Linear Model Computational Results
	28.4.3 Heuristic Computational Results

	28.5 Conclusions
	References

	Part IX Discrete Time-Cost Tradeoff Problems
	29 The Discrete Time-Cost Tradeoff Problem with Irregular Starting Time Costs
	29.1 Introduction
	29.2 Review of the Basic Discrete Time-Cost Tradeoff Problem
	29.2.1 Literature Review for DTCTP
	29.2.2 Literature Review for DTCTP with Irregular Starting Time Costs

	29.3 A New Integer Programming Formulation for the DTCTP with Irregular Starting Time Costs
	29.4 Computational Results
	29.4.1 Problem Generation
	29.4.2 Comparing NF with Standard Formulations

	29.5 Conclusions
	References

	30 Generalized Discrete Time-Cost Tradeoff Problems
	30.1 Introduction
	30.2 Problem Formulation
	30.2.1 Problem Descriptions
	30.2.2 Practical Relevance

	30.3 Electromagnetic Optimisation
	30.4 Illustrative Example
	30.5 Computational Results
	30.5.1 Electromagnetic Heuristic Performance
	30.5.2 Benchmark Results

	30.6 Conclusions
	Appendix
	References

	Index

